Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74#include <net/mpls.h>
75#include <net/mptcp.h>
76#include <net/mctp.h>
77#include <net/page_pool/helpers.h>
78#include <net/dropreason.h>
79
80#include <linux/uaccess.h>
81#include <trace/events/skb.h>
82#include <linux/highmem.h>
83#include <linux/capability.h>
84#include <linux/user_namespace.h>
85#include <linux/indirect_call_wrapper.h>
86#include <linux/textsearch.h>
87
88#include "dev.h"
89#include "sock_destructor.h"
90
91struct kmem_cache *skbuff_cache __ro_after_init;
92static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93#ifdef CONFIG_SKB_EXTENSIONS
94static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95#endif
96
97
98static struct kmem_cache *skb_small_head_cache __ro_after_init;
99
100#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101
102/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104 * size, and we can differentiate heads from skb_small_head_cache
105 * vs system slabs by looking at their size (skb_end_offset()).
106 */
107#define SKB_SMALL_HEAD_CACHE_SIZE \
108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
110 SKB_SMALL_HEAD_SIZE)
111
112#define SKB_SMALL_HEAD_HEADROOM \
113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114
115int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116EXPORT_SYMBOL(sysctl_max_skb_frags);
117
118#undef FN
119#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120static const char * const drop_reasons[] = {
121 [SKB_CONSUMED] = "CONSUMED",
122 DEFINE_DROP_REASON(FN, FN)
123};
124
125static const struct drop_reason_list drop_reasons_core = {
126 .reasons = drop_reasons,
127 .n_reasons = ARRAY_SIZE(drop_reasons),
128};
129
130const struct drop_reason_list __rcu *
131drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133};
134EXPORT_SYMBOL(drop_reasons_by_subsys);
135
136/**
137 * drop_reasons_register_subsys - register another drop reason subsystem
138 * @subsys: the subsystem to register, must not be the core
139 * @list: the list of drop reasons within the subsystem, must point to
140 * a statically initialized list
141 */
142void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 const struct drop_reason_list *list)
144{
145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 "invalid subsystem %d\n", subsys))
148 return;
149
150 /* must point to statically allocated memory, so INIT is OK */
151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152}
153EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154
155/**
156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157 * @subsys: the subsystem to remove, must not be the core
158 *
159 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 */
161void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162{
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169
170 synchronize_rcu();
171}
172EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173
174/**
175 * skb_panic - private function for out-of-line support
176 * @skb: buffer
177 * @sz: size
178 * @addr: address
179 * @msg: skb_over_panic or skb_under_panic
180 *
181 * Out-of-line support for skb_put() and skb_push().
182 * Called via the wrapper skb_over_panic() or skb_under_panic().
183 * Keep out of line to prevent kernel bloat.
184 * __builtin_return_address is not used because it is not always reliable.
185 */
186static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 const char msg[])
188{
189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 msg, addr, skb->len, sz, skb->head, skb->data,
191 (unsigned long)skb->tail, (unsigned long)skb->end,
192 skb->dev ? skb->dev->name : "<NULL>");
193 BUG();
194}
195
196static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197{
198 skb_panic(skb, sz, addr, __func__);
199}
200
201static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202{
203 skb_panic(skb, sz, addr, __func__);
204}
205
206#define NAPI_SKB_CACHE_SIZE 64
207#define NAPI_SKB_CACHE_BULK 16
208#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209
210#if PAGE_SIZE == SZ_4K
211
212#define NAPI_HAS_SMALL_PAGE_FRAG 1
213#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214
215/* specialized page frag allocator using a single order 0 page
216 * and slicing it into 1K sized fragment. Constrained to systems
217 * with a very limited amount of 1K fragments fitting a single
218 * page - to avoid excessive truesize underestimation
219 */
220
221struct page_frag_1k {
222 void *va;
223 u16 offset;
224 bool pfmemalloc;
225};
226
227static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228{
229 struct page *page;
230 int offset;
231
232 offset = nc->offset - SZ_1K;
233 if (likely(offset >= 0))
234 goto use_frag;
235
236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 if (!page)
238 return NULL;
239
240 nc->va = page_address(page);
241 nc->pfmemalloc = page_is_pfmemalloc(page);
242 offset = PAGE_SIZE - SZ_1K;
243 page_ref_add(page, offset / SZ_1K);
244
245use_frag:
246 nc->offset = offset;
247 return nc->va + offset;
248}
249#else
250
251/* the small page is actually unused in this build; add dummy helpers
252 * to please the compiler and avoid later preprocessor's conditionals
253 */
254#define NAPI_HAS_SMALL_PAGE_FRAG 0
255#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256
257struct page_frag_1k {
258};
259
260static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261{
262 return NULL;
263}
264
265#endif
266
267struct napi_alloc_cache {
268 struct page_frag_cache page;
269 struct page_frag_1k page_small;
270 unsigned int skb_count;
271 void *skb_cache[NAPI_SKB_CACHE_SIZE];
272};
273
274static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276
277/* Double check that napi_get_frags() allocates skbs with
278 * skb->head being backed by slab, not a page fragment.
279 * This is to make sure bug fixed in 3226b158e67c
280 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281 * does not accidentally come back.
282 */
283void napi_get_frags_check(struct napi_struct *napi)
284{
285 struct sk_buff *skb;
286
287 local_bh_disable();
288 skb = napi_get_frags(napi);
289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 napi_free_frags(napi);
291 local_bh_enable();
292}
293
294void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295{
296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297
298 fragsz = SKB_DATA_ALIGN(fragsz);
299
300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301}
302EXPORT_SYMBOL(__napi_alloc_frag_align);
303
304void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305{
306 void *data;
307
308 fragsz = SKB_DATA_ALIGN(fragsz);
309 if (in_hardirq() || irqs_disabled()) {
310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311
312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 } else {
314 struct napi_alloc_cache *nc;
315
316 local_bh_disable();
317 nc = this_cpu_ptr(&napi_alloc_cache);
318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 local_bh_enable();
320 }
321 return data;
322}
323EXPORT_SYMBOL(__netdev_alloc_frag_align);
324
325static struct sk_buff *napi_skb_cache_get(void)
326{
327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 struct sk_buff *skb;
329
330 if (unlikely(!nc->skb_count)) {
331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 GFP_ATOMIC,
333 NAPI_SKB_CACHE_BULK,
334 nc->skb_cache);
335 if (unlikely(!nc->skb_count))
336 return NULL;
337 }
338
339 skb = nc->skb_cache[--nc->skb_count];
340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache));
341
342 return skb;
343}
344
345static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 unsigned int size)
347{
348 struct skb_shared_info *shinfo;
349
350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351
352 /* Assumes caller memset cleared SKB */
353 skb->truesize = SKB_TRUESIZE(size);
354 refcount_set(&skb->users, 1);
355 skb->head = data;
356 skb->data = data;
357 skb_reset_tail_pointer(skb);
358 skb_set_end_offset(skb, size);
359 skb->mac_header = (typeof(skb->mac_header))~0U;
360 skb->transport_header = (typeof(skb->transport_header))~0U;
361 skb->alloc_cpu = raw_smp_processor_id();
362 /* make sure we initialize shinfo sequentially */
363 shinfo = skb_shinfo(skb);
364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 atomic_set(&shinfo->dataref, 1);
366
367 skb_set_kcov_handle(skb, kcov_common_handle());
368}
369
370static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 unsigned int *size)
372{
373 void *resized;
374
375 /* Must find the allocation size (and grow it to match). */
376 *size = ksize(data);
377 /* krealloc() will immediately return "data" when
378 * "ksize(data)" is requested: it is the existing upper
379 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 * that this "new" pointer needs to be passed back to the
381 * caller for use so the __alloc_size hinting will be
382 * tracked correctly.
383 */
384 resized = krealloc(data, *size, GFP_ATOMIC);
385 WARN_ON_ONCE(resized != data);
386 return resized;
387}
388
389/* build_skb() variant which can operate on slab buffers.
390 * Note that this should be used sparingly as slab buffers
391 * cannot be combined efficiently by GRO!
392 */
393struct sk_buff *slab_build_skb(void *data)
394{
395 struct sk_buff *skb;
396 unsigned int size;
397
398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 if (unlikely(!skb))
400 return NULL;
401
402 memset(skb, 0, offsetof(struct sk_buff, tail));
403 data = __slab_build_skb(skb, data, &size);
404 __finalize_skb_around(skb, data, size);
405
406 return skb;
407}
408EXPORT_SYMBOL(slab_build_skb);
409
410/* Caller must provide SKB that is memset cleared */
411static void __build_skb_around(struct sk_buff *skb, void *data,
412 unsigned int frag_size)
413{
414 unsigned int size = frag_size;
415
416 /* frag_size == 0 is considered deprecated now. Callers
417 * using slab buffer should use slab_build_skb() instead.
418 */
419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 data = __slab_build_skb(skb, data, &size);
421
422 __finalize_skb_around(skb, data, size);
423}
424
425/**
426 * __build_skb - build a network buffer
427 * @data: data buffer provided by caller
428 * @frag_size: size of data (must not be 0)
429 *
430 * Allocate a new &sk_buff. Caller provides space holding head and
431 * skb_shared_info. @data must have been allocated from the page
432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433 * allocation is deprecated, and callers should use slab_build_skb()
434 * instead.)
435 * The return is the new skb buffer.
436 * On a failure the return is %NULL, and @data is not freed.
437 * Notes :
438 * Before IO, driver allocates only data buffer where NIC put incoming frame
439 * Driver should add room at head (NET_SKB_PAD) and
440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
442 * before giving packet to stack.
443 * RX rings only contains data buffers, not full skbs.
444 */
445struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446{
447 struct sk_buff *skb;
448
449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 if (unlikely(!skb))
451 return NULL;
452
453 memset(skb, 0, offsetof(struct sk_buff, tail));
454 __build_skb_around(skb, data, frag_size);
455
456 return skb;
457}
458
459/* build_skb() is wrapper over __build_skb(), that specifically
460 * takes care of skb->head and skb->pfmemalloc
461 */
462struct sk_buff *build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __build_skb(data, frag_size);
465
466 if (likely(skb && frag_size)) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470 return skb;
471}
472EXPORT_SYMBOL(build_skb);
473
474/**
475 * build_skb_around - build a network buffer around provided skb
476 * @skb: sk_buff provide by caller, must be memset cleared
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
479 */
480struct sk_buff *build_skb_around(struct sk_buff *skb,
481 void *data, unsigned int frag_size)
482{
483 if (unlikely(!skb))
484 return NULL;
485
486 __build_skb_around(skb, data, frag_size);
487
488 if (frag_size) {
489 skb->head_frag = 1;
490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 }
492 return skb;
493}
494EXPORT_SYMBOL(build_skb_around);
495
496/**
497 * __napi_build_skb - build a network buffer
498 * @data: data buffer provided by caller
499 * @frag_size: size of data
500 *
501 * Version of __build_skb() that uses NAPI percpu caches to obtain
502 * skbuff_head instead of inplace allocation.
503 *
504 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 */
506static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507{
508 struct sk_buff *skb;
509
510 skb = napi_skb_cache_get();
511 if (unlikely(!skb))
512 return NULL;
513
514 memset(skb, 0, offsetof(struct sk_buff, tail));
515 __build_skb_around(skb, data, frag_size);
516
517 return skb;
518}
519
520/**
521 * napi_build_skb - build a network buffer
522 * @data: data buffer provided by caller
523 * @frag_size: size of data
524 *
525 * Version of __napi_build_skb() that takes care of skb->head_frag
526 * and skb->pfmemalloc when the data is a page or page fragment.
527 *
528 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 */
530struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531{
532 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533
534 if (likely(skb) && frag_size) {
535 skb->head_frag = 1;
536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 }
538
539 return skb;
540}
541EXPORT_SYMBOL(napi_build_skb);
542
543/*
544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545 * the caller if emergency pfmemalloc reserves are being used. If it is and
546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547 * may be used. Otherwise, the packet data may be discarded until enough
548 * memory is free
549 */
550static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 bool *pfmemalloc)
552{
553 bool ret_pfmemalloc = false;
554 size_t obj_size;
555 void *obj;
556
557 obj_size = SKB_HEAD_ALIGN(*size);
558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 obj = kmem_cache_alloc_node(skb_small_head_cache,
561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 node);
563 *size = SKB_SMALL_HEAD_CACHE_SIZE;
564 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 goto out;
566 /* Try again but now we are using pfmemalloc reserves */
567 ret_pfmemalloc = true;
568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 goto out;
570 }
571
572 obj_size = kmalloc_size_roundup(obj_size);
573 /* The following cast might truncate high-order bits of obj_size, this
574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 */
576 *size = (unsigned int)obj_size;
577
578 /*
579 * Try a regular allocation, when that fails and we're not entitled
580 * to the reserves, fail.
581 */
582 obj = kmalloc_node_track_caller(obj_size,
583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 node);
585 if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 goto out;
587
588 /* Try again but now we are using pfmemalloc reserves */
589 ret_pfmemalloc = true;
590 obj = kmalloc_node_track_caller(obj_size, flags, node);
591
592out:
593 if (pfmemalloc)
594 *pfmemalloc = ret_pfmemalloc;
595
596 return obj;
597}
598
599/* Allocate a new skbuff. We do this ourselves so we can fill in a few
600 * 'private' fields and also do memory statistics to find all the
601 * [BEEP] leaks.
602 *
603 */
604
605/**
606 * __alloc_skb - allocate a network buffer
607 * @size: size to allocate
608 * @gfp_mask: allocation mask
609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610 * instead of head cache and allocate a cloned (child) skb.
611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612 * allocations in case the data is required for writeback
613 * @node: numa node to allocate memory on
614 *
615 * Allocate a new &sk_buff. The returned buffer has no headroom and a
616 * tail room of at least size bytes. The object has a reference count
617 * of one. The return is the buffer. On a failure the return is %NULL.
618 *
619 * Buffers may only be allocated from interrupts using a @gfp_mask of
620 * %GFP_ATOMIC.
621 */
622struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 int flags, int node)
624{
625 struct kmem_cache *cache;
626 struct sk_buff *skb;
627 bool pfmemalloc;
628 u8 *data;
629
630 cache = (flags & SKB_ALLOC_FCLONE)
631 ? skbuff_fclone_cache : skbuff_cache;
632
633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 gfp_mask |= __GFP_MEMALLOC;
635
636 /* Get the HEAD */
637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 skb = napi_skb_cache_get();
640 else
641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 if (unlikely(!skb))
643 return NULL;
644 prefetchw(skb);
645
646 /* We do our best to align skb_shared_info on a separate cache
647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 * Both skb->head and skb_shared_info are cache line aligned.
650 */
651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 if (unlikely(!data))
653 goto nodata;
654 /* kmalloc_size_roundup() might give us more room than requested.
655 * Put skb_shared_info exactly at the end of allocated zone,
656 * to allow max possible filling before reallocation.
657 */
658 prefetchw(data + SKB_WITH_OVERHEAD(size));
659
660 /*
661 * Only clear those fields we need to clear, not those that we will
662 * actually initialise below. Hence, don't put any more fields after
663 * the tail pointer in struct sk_buff!
664 */
665 memset(skb, 0, offsetof(struct sk_buff, tail));
666 __build_skb_around(skb, data, size);
667 skb->pfmemalloc = pfmemalloc;
668
669 if (flags & SKB_ALLOC_FCLONE) {
670 struct sk_buff_fclones *fclones;
671
672 fclones = container_of(skb, struct sk_buff_fclones, skb1);
673
674 skb->fclone = SKB_FCLONE_ORIG;
675 refcount_set(&fclones->fclone_ref, 1);
676 }
677
678 return skb;
679
680nodata:
681 kmem_cache_free(cache, skb);
682 return NULL;
683}
684EXPORT_SYMBOL(__alloc_skb);
685
686/**
687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
688 * @dev: network device to receive on
689 * @len: length to allocate
690 * @gfp_mask: get_free_pages mask, passed to alloc_skb
691 *
692 * Allocate a new &sk_buff and assign it a usage count of one. The
693 * buffer has NET_SKB_PAD headroom built in. Users should allocate
694 * the headroom they think they need without accounting for the
695 * built in space. The built in space is used for optimisations.
696 *
697 * %NULL is returned if there is no free memory.
698 */
699struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 gfp_t gfp_mask)
701{
702 struct page_frag_cache *nc;
703 struct sk_buff *skb;
704 bool pfmemalloc;
705 void *data;
706
707 len += NET_SKB_PAD;
708
709 /* If requested length is either too small or too big,
710 * we use kmalloc() for skb->head allocation.
711 */
712 if (len <= SKB_WITH_OVERHEAD(1024) ||
713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 if (!skb)
717 goto skb_fail;
718 goto skb_success;
719 }
720
721 len = SKB_HEAD_ALIGN(len);
722
723 if (sk_memalloc_socks())
724 gfp_mask |= __GFP_MEMALLOC;
725
726 if (in_hardirq() || irqs_disabled()) {
727 nc = this_cpu_ptr(&netdev_alloc_cache);
728 data = page_frag_alloc(nc, len, gfp_mask);
729 pfmemalloc = nc->pfmemalloc;
730 } else {
731 local_bh_disable();
732 nc = this_cpu_ptr(&napi_alloc_cache.page);
733 data = page_frag_alloc(nc, len, gfp_mask);
734 pfmemalloc = nc->pfmemalloc;
735 local_bh_enable();
736 }
737
738 if (unlikely(!data))
739 return NULL;
740
741 skb = __build_skb(data, len);
742 if (unlikely(!skb)) {
743 skb_free_frag(data);
744 return NULL;
745 }
746
747 if (pfmemalloc)
748 skb->pfmemalloc = 1;
749 skb->head_frag = 1;
750
751skb_success:
752 skb_reserve(skb, NET_SKB_PAD);
753 skb->dev = dev;
754
755skb_fail:
756 return skb;
757}
758EXPORT_SYMBOL(__netdev_alloc_skb);
759
760/**
761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762 * @napi: napi instance this buffer was allocated for
763 * @len: length to allocate
764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765 *
766 * Allocate a new sk_buff for use in NAPI receive. This buffer will
767 * attempt to allocate the head from a special reserved region used
768 * only for NAPI Rx allocation. By doing this we can save several
769 * CPU cycles by avoiding having to disable and re-enable IRQs.
770 *
771 * %NULL is returned if there is no free memory.
772 */
773struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 gfp_t gfp_mask)
775{
776 struct napi_alloc_cache *nc;
777 struct sk_buff *skb;
778 bool pfmemalloc;
779 void *data;
780
781 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 len += NET_SKB_PAD + NET_IP_ALIGN;
783
784 /* If requested length is either too small or too big,
785 * we use kmalloc() for skb->head allocation.
786 * When the small frag allocator is available, prefer it over kmalloc
787 * for small fragments
788 */
789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 NUMA_NO_NODE);
794 if (!skb)
795 goto skb_fail;
796 goto skb_success;
797 }
798
799 nc = this_cpu_ptr(&napi_alloc_cache);
800
801 if (sk_memalloc_socks())
802 gfp_mask |= __GFP_MEMALLOC;
803
804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 /* we are artificially inflating the allocation size, but
806 * that is not as bad as it may look like, as:
807 * - 'len' less than GRO_MAX_HEAD makes little sense
808 * - On most systems, larger 'len' values lead to fragment
809 * size above 512 bytes
810 * - kmalloc would use the kmalloc-1k slab for such values
811 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 * little networking, as that implies no WiFi and no
813 * tunnels support, and 32 bits arches.
814 */
815 len = SZ_1K;
816
817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 } else {
820 len = SKB_HEAD_ALIGN(len);
821
822 data = page_frag_alloc(&nc->page, len, gfp_mask);
823 pfmemalloc = nc->page.pfmemalloc;
824 }
825
826 if (unlikely(!data))
827 return NULL;
828
829 skb = __napi_build_skb(data, len);
830 if (unlikely(!skb)) {
831 skb_free_frag(data);
832 return NULL;
833 }
834
835 if (pfmemalloc)
836 skb->pfmemalloc = 1;
837 skb->head_frag = 1;
838
839skb_success:
840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 skb->dev = napi->dev;
842
843skb_fail:
844 return skb;
845}
846EXPORT_SYMBOL(__napi_alloc_skb);
847
848void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 int size, unsigned int truesize)
850{
851 DEBUG_NET_WARN_ON_ONCE(size > truesize);
852
853 skb_fill_page_desc(skb, i, page, off, size);
854 skb->len += size;
855 skb->data_len += size;
856 skb->truesize += truesize;
857}
858EXPORT_SYMBOL(skb_add_rx_frag);
859
860void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 unsigned int truesize)
862{
863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864
865 DEBUG_NET_WARN_ON_ONCE(size > truesize);
866
867 skb_frag_size_add(frag, size);
868 skb->len += size;
869 skb->data_len += size;
870 skb->truesize += truesize;
871}
872EXPORT_SYMBOL(skb_coalesce_rx_frag);
873
874static void skb_drop_list(struct sk_buff **listp)
875{
876 kfree_skb_list(*listp);
877 *listp = NULL;
878}
879
880static inline void skb_drop_fraglist(struct sk_buff *skb)
881{
882 skb_drop_list(&skb_shinfo(skb)->frag_list);
883}
884
885static void skb_clone_fraglist(struct sk_buff *skb)
886{
887 struct sk_buff *list;
888
889 skb_walk_frags(skb, list)
890 skb_get(list);
891}
892
893static bool is_pp_page(struct page *page)
894{
895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896}
897
898#if IS_ENABLED(CONFIG_PAGE_POOL)
899bool napi_pp_put_page(struct page *page, bool napi_safe)
900{
901 bool allow_direct = false;
902 struct page_pool *pp;
903
904 page = compound_head(page);
905
906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 * in order to preserve any existing bits, such as bit 0 for the
908 * head page of compound page and bit 1 for pfmemalloc page, so
909 * mask those bits for freeing side when doing below checking,
910 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 * to avoid recycling the pfmemalloc page.
912 */
913 if (unlikely(!is_pp_page(page)))
914 return false;
915
916 pp = page->pp;
917
918 /* Allow direct recycle if we have reasons to believe that we are
919 * in the same context as the consumer would run, so there's
920 * no possible race.
921 * __page_pool_put_page() makes sure we're not in hardirq context
922 * and interrupts are enabled prior to accessing the cache.
923 */
924 if (napi_safe || in_softirq()) {
925 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926
927 allow_direct = napi &&
928 READ_ONCE(napi->list_owner) == smp_processor_id();
929 }
930
931 /* Driver set this to memory recycling info. Reset it on recycle.
932 * This will *not* work for NIC using a split-page memory model.
933 * The page will be returned to the pool here regardless of the
934 * 'flipped' fragment being in use or not.
935 */
936 page_pool_put_full_page(pp, page, allow_direct);
937
938 return true;
939}
940EXPORT_SYMBOL(napi_pp_put_page);
941#endif
942
943static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944{
945 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 return false;
947 return napi_pp_put_page(virt_to_page(data), napi_safe);
948}
949
950/**
951 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
952 * @skb: page pool aware skb
953 *
954 * Increase the fragment reference count (pp_ref_count) of a skb. This is
955 * intended to gain fragment references only for page pool aware skbs,
956 * i.e. when skb->pp_recycle is true, and not for fragments in a
957 * non-pp-recycling skb. It has a fallback to increase references on normal
958 * pages, as page pool aware skbs may also have normal page fragments.
959 */
960static int skb_pp_frag_ref(struct sk_buff *skb)
961{
962 struct skb_shared_info *shinfo;
963 struct page *head_page;
964 int i;
965
966 if (!skb->pp_recycle)
967 return -EINVAL;
968
969 shinfo = skb_shinfo(skb);
970
971 for (i = 0; i < shinfo->nr_frags; i++) {
972 head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
973 if (likely(is_pp_page(head_page)))
974 page_pool_ref_page(head_page);
975 else
976 page_ref_inc(head_page);
977 }
978 return 0;
979}
980
981static void skb_kfree_head(void *head, unsigned int end_offset)
982{
983 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
984 kmem_cache_free(skb_small_head_cache, head);
985 else
986 kfree(head);
987}
988
989static void skb_free_head(struct sk_buff *skb, bool napi_safe)
990{
991 unsigned char *head = skb->head;
992
993 if (skb->head_frag) {
994 if (skb_pp_recycle(skb, head, napi_safe))
995 return;
996 skb_free_frag(head);
997 } else {
998 skb_kfree_head(head, skb_end_offset(skb));
999 }
1000}
1001
1002static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1003 bool napi_safe)
1004{
1005 struct skb_shared_info *shinfo = skb_shinfo(skb);
1006 int i;
1007
1008 if (skb->cloned &&
1009 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
1010 &shinfo->dataref))
1011 goto exit;
1012
1013 if (skb_zcopy(skb)) {
1014 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1015
1016 skb_zcopy_clear(skb, true);
1017 if (skip_unref)
1018 goto free_head;
1019 }
1020
1021 for (i = 0; i < shinfo->nr_frags; i++)
1022 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1023
1024free_head:
1025 if (shinfo->frag_list)
1026 kfree_skb_list_reason(shinfo->frag_list, reason);
1027
1028 skb_free_head(skb, napi_safe);
1029exit:
1030 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1031 * bit is only set on the head though, so in order to avoid races
1032 * while trying to recycle fragments on __skb_frag_unref() we need
1033 * to make one SKB responsible for triggering the recycle path.
1034 * So disable the recycling bit if an SKB is cloned and we have
1035 * additional references to the fragmented part of the SKB.
1036 * Eventually the last SKB will have the recycling bit set and it's
1037 * dataref set to 0, which will trigger the recycling
1038 */
1039 skb->pp_recycle = 0;
1040}
1041
1042/*
1043 * Free an skbuff by memory without cleaning the state.
1044 */
1045static void kfree_skbmem(struct sk_buff *skb)
1046{
1047 struct sk_buff_fclones *fclones;
1048
1049 switch (skb->fclone) {
1050 case SKB_FCLONE_UNAVAILABLE:
1051 kmem_cache_free(skbuff_cache, skb);
1052 return;
1053
1054 case SKB_FCLONE_ORIG:
1055 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1056
1057 /* We usually free the clone (TX completion) before original skb
1058 * This test would have no chance to be true for the clone,
1059 * while here, branch prediction will be good.
1060 */
1061 if (refcount_read(&fclones->fclone_ref) == 1)
1062 goto fastpath;
1063 break;
1064
1065 default: /* SKB_FCLONE_CLONE */
1066 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1067 break;
1068 }
1069 if (!refcount_dec_and_test(&fclones->fclone_ref))
1070 return;
1071fastpath:
1072 kmem_cache_free(skbuff_fclone_cache, fclones);
1073}
1074
1075void skb_release_head_state(struct sk_buff *skb)
1076{
1077 skb_dst_drop(skb);
1078 if (skb->destructor) {
1079 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1080 skb->destructor(skb);
1081 }
1082#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1083 nf_conntrack_put(skb_nfct(skb));
1084#endif
1085 skb_ext_put(skb);
1086}
1087
1088/* Free everything but the sk_buff shell. */
1089static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1090 bool napi_safe)
1091{
1092 skb_release_head_state(skb);
1093 if (likely(skb->head))
1094 skb_release_data(skb, reason, napi_safe);
1095}
1096
1097/**
1098 * __kfree_skb - private function
1099 * @skb: buffer
1100 *
1101 * Free an sk_buff. Release anything attached to the buffer.
1102 * Clean the state. This is an internal helper function. Users should
1103 * always call kfree_skb
1104 */
1105
1106void __kfree_skb(struct sk_buff *skb)
1107{
1108 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1109 kfree_skbmem(skb);
1110}
1111EXPORT_SYMBOL(__kfree_skb);
1112
1113static __always_inline
1114bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1115{
1116 if (unlikely(!skb_unref(skb)))
1117 return false;
1118
1119 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1120 u32_get_bits(reason,
1121 SKB_DROP_REASON_SUBSYS_MASK) >=
1122 SKB_DROP_REASON_SUBSYS_NUM);
1123
1124 if (reason == SKB_CONSUMED)
1125 trace_consume_skb(skb, __builtin_return_address(0));
1126 else
1127 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1128 return true;
1129}
1130
1131/**
1132 * kfree_skb_reason - free an sk_buff with special reason
1133 * @skb: buffer to free
1134 * @reason: reason why this skb is dropped
1135 *
1136 * Drop a reference to the buffer and free it if the usage count has
1137 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1138 * tracepoint.
1139 */
1140void __fix_address
1141kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1142{
1143 if (__kfree_skb_reason(skb, reason))
1144 __kfree_skb(skb);
1145}
1146EXPORT_SYMBOL(kfree_skb_reason);
1147
1148#define KFREE_SKB_BULK_SIZE 16
1149
1150struct skb_free_array {
1151 unsigned int skb_count;
1152 void *skb_array[KFREE_SKB_BULK_SIZE];
1153};
1154
1155static void kfree_skb_add_bulk(struct sk_buff *skb,
1156 struct skb_free_array *sa,
1157 enum skb_drop_reason reason)
1158{
1159 /* if SKB is a clone, don't handle this case */
1160 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1161 __kfree_skb(skb);
1162 return;
1163 }
1164
1165 skb_release_all(skb, reason, false);
1166 sa->skb_array[sa->skb_count++] = skb;
1167
1168 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1169 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1170 sa->skb_array);
1171 sa->skb_count = 0;
1172 }
1173}
1174
1175void __fix_address
1176kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1177{
1178 struct skb_free_array sa;
1179
1180 sa.skb_count = 0;
1181
1182 while (segs) {
1183 struct sk_buff *next = segs->next;
1184
1185 if (__kfree_skb_reason(segs, reason)) {
1186 skb_poison_list(segs);
1187 kfree_skb_add_bulk(segs, &sa, reason);
1188 }
1189
1190 segs = next;
1191 }
1192
1193 if (sa.skb_count)
1194 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1195}
1196EXPORT_SYMBOL(kfree_skb_list_reason);
1197
1198/* Dump skb information and contents.
1199 *
1200 * Must only be called from net_ratelimit()-ed paths.
1201 *
1202 * Dumps whole packets if full_pkt, only headers otherwise.
1203 */
1204void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1205{
1206 struct skb_shared_info *sh = skb_shinfo(skb);
1207 struct net_device *dev = skb->dev;
1208 struct sock *sk = skb->sk;
1209 struct sk_buff *list_skb;
1210 bool has_mac, has_trans;
1211 int headroom, tailroom;
1212 int i, len, seg_len;
1213
1214 if (full_pkt)
1215 len = skb->len;
1216 else
1217 len = min_t(int, skb->len, MAX_HEADER + 128);
1218
1219 headroom = skb_headroom(skb);
1220 tailroom = skb_tailroom(skb);
1221
1222 has_mac = skb_mac_header_was_set(skb);
1223 has_trans = skb_transport_header_was_set(skb);
1224
1225 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1226 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1227 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1228 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1229 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1230 level, skb->len, headroom, skb_headlen(skb), tailroom,
1231 has_mac ? skb->mac_header : -1,
1232 has_mac ? skb_mac_header_len(skb) : -1,
1233 skb->network_header,
1234 has_trans ? skb_network_header_len(skb) : -1,
1235 has_trans ? skb->transport_header : -1,
1236 sh->tx_flags, sh->nr_frags,
1237 sh->gso_size, sh->gso_type, sh->gso_segs,
1238 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1239 skb->csum_valid, skb->csum_level,
1240 skb->hash, skb->sw_hash, skb->l4_hash,
1241 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1242
1243 if (dev)
1244 printk("%sdev name=%s feat=%pNF\n",
1245 level, dev->name, &dev->features);
1246 if (sk)
1247 printk("%ssk family=%hu type=%u proto=%u\n",
1248 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1249
1250 if (full_pkt && headroom)
1251 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1252 16, 1, skb->head, headroom, false);
1253
1254 seg_len = min_t(int, skb_headlen(skb), len);
1255 if (seg_len)
1256 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1257 16, 1, skb->data, seg_len, false);
1258 len -= seg_len;
1259
1260 if (full_pkt && tailroom)
1261 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1262 16, 1, skb_tail_pointer(skb), tailroom, false);
1263
1264 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1265 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 u32 p_off, p_len, copied;
1267 struct page *p;
1268 u8 *vaddr;
1269
1270 skb_frag_foreach_page(frag, skb_frag_off(frag),
1271 skb_frag_size(frag), p, p_off, p_len,
1272 copied) {
1273 seg_len = min_t(int, p_len, len);
1274 vaddr = kmap_atomic(p);
1275 print_hex_dump(level, "skb frag: ",
1276 DUMP_PREFIX_OFFSET,
1277 16, 1, vaddr + p_off, seg_len, false);
1278 kunmap_atomic(vaddr);
1279 len -= seg_len;
1280 if (!len)
1281 break;
1282 }
1283 }
1284
1285 if (full_pkt && skb_has_frag_list(skb)) {
1286 printk("skb fraglist:\n");
1287 skb_walk_frags(skb, list_skb)
1288 skb_dump(level, list_skb, true);
1289 }
1290}
1291EXPORT_SYMBOL(skb_dump);
1292
1293/**
1294 * skb_tx_error - report an sk_buff xmit error
1295 * @skb: buffer that triggered an error
1296 *
1297 * Report xmit error if a device callback is tracking this skb.
1298 * skb must be freed afterwards.
1299 */
1300void skb_tx_error(struct sk_buff *skb)
1301{
1302 if (skb) {
1303 skb_zcopy_downgrade_managed(skb);
1304 skb_zcopy_clear(skb, true);
1305 }
1306}
1307EXPORT_SYMBOL(skb_tx_error);
1308
1309#ifdef CONFIG_TRACEPOINTS
1310/**
1311 * consume_skb - free an skbuff
1312 * @skb: buffer to free
1313 *
1314 * Drop a ref to the buffer and free it if the usage count has hit zero
1315 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1316 * is being dropped after a failure and notes that
1317 */
1318void consume_skb(struct sk_buff *skb)
1319{
1320 if (!skb_unref(skb))
1321 return;
1322
1323 trace_consume_skb(skb, __builtin_return_address(0));
1324 __kfree_skb(skb);
1325}
1326EXPORT_SYMBOL(consume_skb);
1327#endif
1328
1329/**
1330 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1331 * @skb: buffer to free
1332 *
1333 * Alike consume_skb(), but this variant assumes that this is the last
1334 * skb reference and all the head states have been already dropped
1335 */
1336void __consume_stateless_skb(struct sk_buff *skb)
1337{
1338 trace_consume_skb(skb, __builtin_return_address(0));
1339 skb_release_data(skb, SKB_CONSUMED, false);
1340 kfree_skbmem(skb);
1341}
1342
1343static void napi_skb_cache_put(struct sk_buff *skb)
1344{
1345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1346 u32 i;
1347
1348 if (!kasan_mempool_poison_object(skb))
1349 return;
1350
1351 nc->skb_cache[nc->skb_count++] = skb;
1352
1353 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1354 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1355 kasan_mempool_unpoison_object(nc->skb_cache[i],
1356 kmem_cache_size(skbuff_cache));
1357
1358 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1359 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1360 nc->skb_count = NAPI_SKB_CACHE_HALF;
1361 }
1362}
1363
1364void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1365{
1366 skb_release_all(skb, reason, true);
1367 napi_skb_cache_put(skb);
1368}
1369
1370void napi_skb_free_stolen_head(struct sk_buff *skb)
1371{
1372 if (unlikely(skb->slow_gro)) {
1373 nf_reset_ct(skb);
1374 skb_dst_drop(skb);
1375 skb_ext_put(skb);
1376 skb_orphan(skb);
1377 skb->slow_gro = 0;
1378 }
1379 napi_skb_cache_put(skb);
1380}
1381
1382void napi_consume_skb(struct sk_buff *skb, int budget)
1383{
1384 /* Zero budget indicate non-NAPI context called us, like netpoll */
1385 if (unlikely(!budget)) {
1386 dev_consume_skb_any(skb);
1387 return;
1388 }
1389
1390 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1391
1392 if (!skb_unref(skb))
1393 return;
1394
1395 /* if reaching here SKB is ready to free */
1396 trace_consume_skb(skb, __builtin_return_address(0));
1397
1398 /* if SKB is a clone, don't handle this case */
1399 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1400 __kfree_skb(skb);
1401 return;
1402 }
1403
1404 skb_release_all(skb, SKB_CONSUMED, !!budget);
1405 napi_skb_cache_put(skb);
1406}
1407EXPORT_SYMBOL(napi_consume_skb);
1408
1409/* Make sure a field is contained by headers group */
1410#define CHECK_SKB_FIELD(field) \
1411 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1412 offsetof(struct sk_buff, headers.field)); \
1413
1414static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1415{
1416 new->tstamp = old->tstamp;
1417 /* We do not copy old->sk */
1418 new->dev = old->dev;
1419 memcpy(new->cb, old->cb, sizeof(old->cb));
1420 skb_dst_copy(new, old);
1421 __skb_ext_copy(new, old);
1422 __nf_copy(new, old, false);
1423
1424 /* Note : this field could be in the headers group.
1425 * It is not yet because we do not want to have a 16 bit hole
1426 */
1427 new->queue_mapping = old->queue_mapping;
1428
1429 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1430 CHECK_SKB_FIELD(protocol);
1431 CHECK_SKB_FIELD(csum);
1432 CHECK_SKB_FIELD(hash);
1433 CHECK_SKB_FIELD(priority);
1434 CHECK_SKB_FIELD(skb_iif);
1435 CHECK_SKB_FIELD(vlan_proto);
1436 CHECK_SKB_FIELD(vlan_tci);
1437 CHECK_SKB_FIELD(transport_header);
1438 CHECK_SKB_FIELD(network_header);
1439 CHECK_SKB_FIELD(mac_header);
1440 CHECK_SKB_FIELD(inner_protocol);
1441 CHECK_SKB_FIELD(inner_transport_header);
1442 CHECK_SKB_FIELD(inner_network_header);
1443 CHECK_SKB_FIELD(inner_mac_header);
1444 CHECK_SKB_FIELD(mark);
1445#ifdef CONFIG_NETWORK_SECMARK
1446 CHECK_SKB_FIELD(secmark);
1447#endif
1448#ifdef CONFIG_NET_RX_BUSY_POLL
1449 CHECK_SKB_FIELD(napi_id);
1450#endif
1451 CHECK_SKB_FIELD(alloc_cpu);
1452#ifdef CONFIG_XPS
1453 CHECK_SKB_FIELD(sender_cpu);
1454#endif
1455#ifdef CONFIG_NET_SCHED
1456 CHECK_SKB_FIELD(tc_index);
1457#endif
1458
1459}
1460
1461/*
1462 * You should not add any new code to this function. Add it to
1463 * __copy_skb_header above instead.
1464 */
1465static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1466{
1467#define C(x) n->x = skb->x
1468
1469 n->next = n->prev = NULL;
1470 n->sk = NULL;
1471 __copy_skb_header(n, skb);
1472
1473 C(len);
1474 C(data_len);
1475 C(mac_len);
1476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1477 n->cloned = 1;
1478 n->nohdr = 0;
1479 n->peeked = 0;
1480 C(pfmemalloc);
1481 C(pp_recycle);
1482 n->destructor = NULL;
1483 C(tail);
1484 C(end);
1485 C(head);
1486 C(head_frag);
1487 C(data);
1488 C(truesize);
1489 refcount_set(&n->users, 1);
1490
1491 atomic_inc(&(skb_shinfo(skb)->dataref));
1492 skb->cloned = 1;
1493
1494 return n;
1495#undef C
1496}
1497
1498/**
1499 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1500 * @first: first sk_buff of the msg
1501 */
1502struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1503{
1504 struct sk_buff *n;
1505
1506 n = alloc_skb(0, GFP_ATOMIC);
1507 if (!n)
1508 return NULL;
1509
1510 n->len = first->len;
1511 n->data_len = first->len;
1512 n->truesize = first->truesize;
1513
1514 skb_shinfo(n)->frag_list = first;
1515
1516 __copy_skb_header(n, first);
1517 n->destructor = NULL;
1518
1519 return n;
1520}
1521EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1522
1523/**
1524 * skb_morph - morph one skb into another
1525 * @dst: the skb to receive the contents
1526 * @src: the skb to supply the contents
1527 *
1528 * This is identical to skb_clone except that the target skb is
1529 * supplied by the user.
1530 *
1531 * The target skb is returned upon exit.
1532 */
1533struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1534{
1535 skb_release_all(dst, SKB_CONSUMED, false);
1536 return __skb_clone(dst, src);
1537}
1538EXPORT_SYMBOL_GPL(skb_morph);
1539
1540int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1541{
1542 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1543 struct user_struct *user;
1544
1545 if (capable(CAP_IPC_LOCK) || !size)
1546 return 0;
1547
1548 rlim = rlimit(RLIMIT_MEMLOCK);
1549 if (rlim == RLIM_INFINITY)
1550 return 0;
1551
1552 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1553 max_pg = rlim >> PAGE_SHIFT;
1554 user = mmp->user ? : current_user();
1555
1556 old_pg = atomic_long_read(&user->locked_vm);
1557 do {
1558 new_pg = old_pg + num_pg;
1559 if (new_pg > max_pg)
1560 return -ENOBUFS;
1561 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1562
1563 if (!mmp->user) {
1564 mmp->user = get_uid(user);
1565 mmp->num_pg = num_pg;
1566 } else {
1567 mmp->num_pg += num_pg;
1568 }
1569
1570 return 0;
1571}
1572EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1573
1574void mm_unaccount_pinned_pages(struct mmpin *mmp)
1575{
1576 if (mmp->user) {
1577 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1578 free_uid(mmp->user);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1582
1583static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1584{
1585 struct ubuf_info_msgzc *uarg;
1586 struct sk_buff *skb;
1587
1588 WARN_ON_ONCE(!in_task());
1589
1590 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1591 if (!skb)
1592 return NULL;
1593
1594 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1595 uarg = (void *)skb->cb;
1596 uarg->mmp.user = NULL;
1597
1598 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1599 kfree_skb(skb);
1600 return NULL;
1601 }
1602
1603 uarg->ubuf.callback = msg_zerocopy_callback;
1604 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1605 uarg->len = 1;
1606 uarg->bytelen = size;
1607 uarg->zerocopy = 1;
1608 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1609 refcount_set(&uarg->ubuf.refcnt, 1);
1610 sock_hold(sk);
1611
1612 return &uarg->ubuf;
1613}
1614
1615static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1616{
1617 return container_of((void *)uarg, struct sk_buff, cb);
1618}
1619
1620struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 struct ubuf_info *uarg)
1622{
1623 if (uarg) {
1624 struct ubuf_info_msgzc *uarg_zc;
1625 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1626 u32 bytelen, next;
1627
1628 /* there might be non MSG_ZEROCOPY users */
1629 if (uarg->callback != msg_zerocopy_callback)
1630 return NULL;
1631
1632 /* realloc only when socket is locked (TCP, UDP cork),
1633 * so uarg->len and sk_zckey access is serialized
1634 */
1635 if (!sock_owned_by_user(sk)) {
1636 WARN_ON_ONCE(1);
1637 return NULL;
1638 }
1639
1640 uarg_zc = uarg_to_msgzc(uarg);
1641 bytelen = uarg_zc->bytelen + size;
1642 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1643 /* TCP can create new skb to attach new uarg */
1644 if (sk->sk_type == SOCK_STREAM)
1645 goto new_alloc;
1646 return NULL;
1647 }
1648
1649 next = (u32)atomic_read(&sk->sk_zckey);
1650 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1651 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1652 return NULL;
1653 uarg_zc->len++;
1654 uarg_zc->bytelen = bytelen;
1655 atomic_set(&sk->sk_zckey, ++next);
1656
1657 /* no extra ref when appending to datagram (MSG_MORE) */
1658 if (sk->sk_type == SOCK_STREAM)
1659 net_zcopy_get(uarg);
1660
1661 return uarg;
1662 }
1663 }
1664
1665new_alloc:
1666 return msg_zerocopy_alloc(sk, size);
1667}
1668EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1669
1670static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1671{
1672 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1673 u32 old_lo, old_hi;
1674 u64 sum_len;
1675
1676 old_lo = serr->ee.ee_info;
1677 old_hi = serr->ee.ee_data;
1678 sum_len = old_hi - old_lo + 1ULL + len;
1679
1680 if (sum_len >= (1ULL << 32))
1681 return false;
1682
1683 if (lo != old_hi + 1)
1684 return false;
1685
1686 serr->ee.ee_data += len;
1687 return true;
1688}
1689
1690static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1691{
1692 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1693 struct sock_exterr_skb *serr;
1694 struct sock *sk = skb->sk;
1695 struct sk_buff_head *q;
1696 unsigned long flags;
1697 bool is_zerocopy;
1698 u32 lo, hi;
1699 u16 len;
1700
1701 mm_unaccount_pinned_pages(&uarg->mmp);
1702
1703 /* if !len, there was only 1 call, and it was aborted
1704 * so do not queue a completion notification
1705 */
1706 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1707 goto release;
1708
1709 len = uarg->len;
1710 lo = uarg->id;
1711 hi = uarg->id + len - 1;
1712 is_zerocopy = uarg->zerocopy;
1713
1714 serr = SKB_EXT_ERR(skb);
1715 memset(serr, 0, sizeof(*serr));
1716 serr->ee.ee_errno = 0;
1717 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1718 serr->ee.ee_data = hi;
1719 serr->ee.ee_info = lo;
1720 if (!is_zerocopy)
1721 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1722
1723 q = &sk->sk_error_queue;
1724 spin_lock_irqsave(&q->lock, flags);
1725 tail = skb_peek_tail(q);
1726 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1727 !skb_zerocopy_notify_extend(tail, lo, len)) {
1728 __skb_queue_tail(q, skb);
1729 skb = NULL;
1730 }
1731 spin_unlock_irqrestore(&q->lock, flags);
1732
1733 sk_error_report(sk);
1734
1735release:
1736 consume_skb(skb);
1737 sock_put(sk);
1738}
1739
1740void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1741 bool success)
1742{
1743 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1744
1745 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1746
1747 if (refcount_dec_and_test(&uarg->refcnt))
1748 __msg_zerocopy_callback(uarg_zc);
1749}
1750EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1751
1752void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1753{
1754 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1755
1756 atomic_dec(&sk->sk_zckey);
1757 uarg_to_msgzc(uarg)->len--;
1758
1759 if (have_uref)
1760 msg_zerocopy_callback(NULL, uarg, true);
1761}
1762EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1763
1764int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1765 struct msghdr *msg, int len,
1766 struct ubuf_info *uarg)
1767{
1768 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1769 int err, orig_len = skb->len;
1770
1771 /* An skb can only point to one uarg. This edge case happens when
1772 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1773 */
1774 if (orig_uarg && uarg != orig_uarg)
1775 return -EEXIST;
1776
1777 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1778 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1779 struct sock *save_sk = skb->sk;
1780
1781 /* Streams do not free skb on error. Reset to prev state. */
1782 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1783 skb->sk = sk;
1784 ___pskb_trim(skb, orig_len);
1785 skb->sk = save_sk;
1786 return err;
1787 }
1788
1789 skb_zcopy_set(skb, uarg, NULL);
1790 return skb->len - orig_len;
1791}
1792EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1793
1794void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1795{
1796 int i;
1797
1798 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1800 skb_frag_ref(skb, i);
1801}
1802EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1803
1804static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1805 gfp_t gfp_mask)
1806{
1807 if (skb_zcopy(orig)) {
1808 if (skb_zcopy(nskb)) {
1809 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1810 if (!gfp_mask) {
1811 WARN_ON_ONCE(1);
1812 return -ENOMEM;
1813 }
1814 if (skb_uarg(nskb) == skb_uarg(orig))
1815 return 0;
1816 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1817 return -EIO;
1818 }
1819 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1820 }
1821 return 0;
1822}
1823
1824/**
1825 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1826 * @skb: the skb to modify
1827 * @gfp_mask: allocation priority
1828 *
1829 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1830 * It will copy all frags into kernel and drop the reference
1831 * to userspace pages.
1832 *
1833 * If this function is called from an interrupt gfp_mask() must be
1834 * %GFP_ATOMIC.
1835 *
1836 * Returns 0 on success or a negative error code on failure
1837 * to allocate kernel memory to copy to.
1838 */
1839int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1840{
1841 int num_frags = skb_shinfo(skb)->nr_frags;
1842 struct page *page, *head = NULL;
1843 int i, order, psize, new_frags;
1844 u32 d_off;
1845
1846 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1847 return -EINVAL;
1848
1849 if (!num_frags)
1850 goto release;
1851
1852 /* We might have to allocate high order pages, so compute what minimum
1853 * page order is needed.
1854 */
1855 order = 0;
1856 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1857 order++;
1858 psize = (PAGE_SIZE << order);
1859
1860 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1861 for (i = 0; i < new_frags; i++) {
1862 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1863 if (!page) {
1864 while (head) {
1865 struct page *next = (struct page *)page_private(head);
1866 put_page(head);
1867 head = next;
1868 }
1869 return -ENOMEM;
1870 }
1871 set_page_private(page, (unsigned long)head);
1872 head = page;
1873 }
1874
1875 page = head;
1876 d_off = 0;
1877 for (i = 0; i < num_frags; i++) {
1878 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1879 u32 p_off, p_len, copied;
1880 struct page *p;
1881 u8 *vaddr;
1882
1883 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1884 p, p_off, p_len, copied) {
1885 u32 copy, done = 0;
1886 vaddr = kmap_atomic(p);
1887
1888 while (done < p_len) {
1889 if (d_off == psize) {
1890 d_off = 0;
1891 page = (struct page *)page_private(page);
1892 }
1893 copy = min_t(u32, psize - d_off, p_len - done);
1894 memcpy(page_address(page) + d_off,
1895 vaddr + p_off + done, copy);
1896 done += copy;
1897 d_off += copy;
1898 }
1899 kunmap_atomic(vaddr);
1900 }
1901 }
1902
1903 /* skb frags release userspace buffers */
1904 for (i = 0; i < num_frags; i++)
1905 skb_frag_unref(skb, i);
1906
1907 /* skb frags point to kernel buffers */
1908 for (i = 0; i < new_frags - 1; i++) {
1909 __skb_fill_page_desc(skb, i, head, 0, psize);
1910 head = (struct page *)page_private(head);
1911 }
1912 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1913 skb_shinfo(skb)->nr_frags = new_frags;
1914
1915release:
1916 skb_zcopy_clear(skb, false);
1917 return 0;
1918}
1919EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1920
1921/**
1922 * skb_clone - duplicate an sk_buff
1923 * @skb: buffer to clone
1924 * @gfp_mask: allocation priority
1925 *
1926 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1927 * copies share the same packet data but not structure. The new
1928 * buffer has a reference count of 1. If the allocation fails the
1929 * function returns %NULL otherwise the new buffer is returned.
1930 *
1931 * If this function is called from an interrupt gfp_mask() must be
1932 * %GFP_ATOMIC.
1933 */
1934
1935struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1936{
1937 struct sk_buff_fclones *fclones = container_of(skb,
1938 struct sk_buff_fclones,
1939 skb1);
1940 struct sk_buff *n;
1941
1942 if (skb_orphan_frags(skb, gfp_mask))
1943 return NULL;
1944
1945 if (skb->fclone == SKB_FCLONE_ORIG &&
1946 refcount_read(&fclones->fclone_ref) == 1) {
1947 n = &fclones->skb2;
1948 refcount_set(&fclones->fclone_ref, 2);
1949 n->fclone = SKB_FCLONE_CLONE;
1950 } else {
1951 if (skb_pfmemalloc(skb))
1952 gfp_mask |= __GFP_MEMALLOC;
1953
1954 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1955 if (!n)
1956 return NULL;
1957
1958 n->fclone = SKB_FCLONE_UNAVAILABLE;
1959 }
1960
1961 return __skb_clone(n, skb);
1962}
1963EXPORT_SYMBOL(skb_clone);
1964
1965void skb_headers_offset_update(struct sk_buff *skb, int off)
1966{
1967 /* Only adjust this if it actually is csum_start rather than csum */
1968 if (skb->ip_summed == CHECKSUM_PARTIAL)
1969 skb->csum_start += off;
1970 /* {transport,network,mac}_header and tail are relative to skb->head */
1971 skb->transport_header += off;
1972 skb->network_header += off;
1973 if (skb_mac_header_was_set(skb))
1974 skb->mac_header += off;
1975 skb->inner_transport_header += off;
1976 skb->inner_network_header += off;
1977 skb->inner_mac_header += off;
1978}
1979EXPORT_SYMBOL(skb_headers_offset_update);
1980
1981void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1982{
1983 __copy_skb_header(new, old);
1984
1985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1988}
1989EXPORT_SYMBOL(skb_copy_header);
1990
1991static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1992{
1993 if (skb_pfmemalloc(skb))
1994 return SKB_ALLOC_RX;
1995 return 0;
1996}
1997
1998/**
1999 * skb_copy - create private copy of an sk_buff
2000 * @skb: buffer to copy
2001 * @gfp_mask: allocation priority
2002 *
2003 * Make a copy of both an &sk_buff and its data. This is used when the
2004 * caller wishes to modify the data and needs a private copy of the
2005 * data to alter. Returns %NULL on failure or the pointer to the buffer
2006 * on success. The returned buffer has a reference count of 1.
2007 *
2008 * As by-product this function converts non-linear &sk_buff to linear
2009 * one, so that &sk_buff becomes completely private and caller is allowed
2010 * to modify all the data of returned buffer. This means that this
2011 * function is not recommended for use in circumstances when only
2012 * header is going to be modified. Use pskb_copy() instead.
2013 */
2014
2015struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2016{
2017 int headerlen = skb_headroom(skb);
2018 unsigned int size = skb_end_offset(skb) + skb->data_len;
2019 struct sk_buff *n = __alloc_skb(size, gfp_mask,
2020 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2021
2022 if (!n)
2023 return NULL;
2024
2025 /* Set the data pointer */
2026 skb_reserve(n, headerlen);
2027 /* Set the tail pointer and length */
2028 skb_put(n, skb->len);
2029
2030 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2031
2032 skb_copy_header(n, skb);
2033 return n;
2034}
2035EXPORT_SYMBOL(skb_copy);
2036
2037/**
2038 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2039 * @skb: buffer to copy
2040 * @headroom: headroom of new skb
2041 * @gfp_mask: allocation priority
2042 * @fclone: if true allocate the copy of the skb from the fclone
2043 * cache instead of the head cache; it is recommended to set this
2044 * to true for the cases where the copy will likely be cloned
2045 *
2046 * Make a copy of both an &sk_buff and part of its data, located
2047 * in header. Fragmented data remain shared. This is used when
2048 * the caller wishes to modify only header of &sk_buff and needs
2049 * private copy of the header to alter. Returns %NULL on failure
2050 * or the pointer to the buffer on success.
2051 * The returned buffer has a reference count of 1.
2052 */
2053
2054struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2055 gfp_t gfp_mask, bool fclone)
2056{
2057 unsigned int size = skb_headlen(skb) + headroom;
2058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2060
2061 if (!n)
2062 goto out;
2063
2064 /* Set the data pointer */
2065 skb_reserve(n, headroom);
2066 /* Set the tail pointer and length */
2067 skb_put(n, skb_headlen(skb));
2068 /* Copy the bytes */
2069 skb_copy_from_linear_data(skb, n->data, n->len);
2070
2071 n->truesize += skb->data_len;
2072 n->data_len = skb->data_len;
2073 n->len = skb->len;
2074
2075 if (skb_shinfo(skb)->nr_frags) {
2076 int i;
2077
2078 if (skb_orphan_frags(skb, gfp_mask) ||
2079 skb_zerocopy_clone(n, skb, gfp_mask)) {
2080 kfree_skb(n);
2081 n = NULL;
2082 goto out;
2083 }
2084 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2085 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2086 skb_frag_ref(skb, i);
2087 }
2088 skb_shinfo(n)->nr_frags = i;
2089 }
2090
2091 if (skb_has_frag_list(skb)) {
2092 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2093 skb_clone_fraglist(n);
2094 }
2095
2096 skb_copy_header(n, skb);
2097out:
2098 return n;
2099}
2100EXPORT_SYMBOL(__pskb_copy_fclone);
2101
2102/**
2103 * pskb_expand_head - reallocate header of &sk_buff
2104 * @skb: buffer to reallocate
2105 * @nhead: room to add at head
2106 * @ntail: room to add at tail
2107 * @gfp_mask: allocation priority
2108 *
2109 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2110 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2111 * reference count of 1. Returns zero in the case of success or error,
2112 * if expansion failed. In the last case, &sk_buff is not changed.
2113 *
2114 * All the pointers pointing into skb header may change and must be
2115 * reloaded after call to this function.
2116 */
2117
2118int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2119 gfp_t gfp_mask)
2120{
2121 unsigned int osize = skb_end_offset(skb);
2122 unsigned int size = osize + nhead + ntail;
2123 long off;
2124 u8 *data;
2125 int i;
2126
2127 BUG_ON(nhead < 0);
2128
2129 BUG_ON(skb_shared(skb));
2130
2131 skb_zcopy_downgrade_managed(skb);
2132
2133 if (skb_pfmemalloc(skb))
2134 gfp_mask |= __GFP_MEMALLOC;
2135
2136 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2137 if (!data)
2138 goto nodata;
2139 size = SKB_WITH_OVERHEAD(size);
2140
2141 /* Copy only real data... and, alas, header. This should be
2142 * optimized for the cases when header is void.
2143 */
2144 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2145
2146 memcpy((struct skb_shared_info *)(data + size),
2147 skb_shinfo(skb),
2148 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2149
2150 /*
2151 * if shinfo is shared we must drop the old head gracefully, but if it
2152 * is not we can just drop the old head and let the existing refcount
2153 * be since all we did is relocate the values
2154 */
2155 if (skb_cloned(skb)) {
2156 if (skb_orphan_frags(skb, gfp_mask))
2157 goto nofrags;
2158 if (skb_zcopy(skb))
2159 refcount_inc(&skb_uarg(skb)->refcnt);
2160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2161 skb_frag_ref(skb, i);
2162
2163 if (skb_has_frag_list(skb))
2164 skb_clone_fraglist(skb);
2165
2166 skb_release_data(skb, SKB_CONSUMED, false);
2167 } else {
2168 skb_free_head(skb, false);
2169 }
2170 off = (data + nhead) - skb->head;
2171
2172 skb->head = data;
2173 skb->head_frag = 0;
2174 skb->data += off;
2175
2176 skb_set_end_offset(skb, size);
2177#ifdef NET_SKBUFF_DATA_USES_OFFSET
2178 off = nhead;
2179#endif
2180 skb->tail += off;
2181 skb_headers_offset_update(skb, nhead);
2182 skb->cloned = 0;
2183 skb->hdr_len = 0;
2184 skb->nohdr = 0;
2185 atomic_set(&skb_shinfo(skb)->dataref, 1);
2186
2187 skb_metadata_clear(skb);
2188
2189 /* It is not generally safe to change skb->truesize.
2190 * For the moment, we really care of rx path, or
2191 * when skb is orphaned (not attached to a socket).
2192 */
2193 if (!skb->sk || skb->destructor == sock_edemux)
2194 skb->truesize += size - osize;
2195
2196 return 0;
2197
2198nofrags:
2199 skb_kfree_head(data, size);
2200nodata:
2201 return -ENOMEM;
2202}
2203EXPORT_SYMBOL(pskb_expand_head);
2204
2205/* Make private copy of skb with writable head and some headroom */
2206
2207struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2208{
2209 struct sk_buff *skb2;
2210 int delta = headroom - skb_headroom(skb);
2211
2212 if (delta <= 0)
2213 skb2 = pskb_copy(skb, GFP_ATOMIC);
2214 else {
2215 skb2 = skb_clone(skb, GFP_ATOMIC);
2216 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2217 GFP_ATOMIC)) {
2218 kfree_skb(skb2);
2219 skb2 = NULL;
2220 }
2221 }
2222 return skb2;
2223}
2224EXPORT_SYMBOL(skb_realloc_headroom);
2225
2226/* Note: We plan to rework this in linux-6.4 */
2227int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2228{
2229 unsigned int saved_end_offset, saved_truesize;
2230 struct skb_shared_info *shinfo;
2231 int res;
2232
2233 saved_end_offset = skb_end_offset(skb);
2234 saved_truesize = skb->truesize;
2235
2236 res = pskb_expand_head(skb, 0, 0, pri);
2237 if (res)
2238 return res;
2239
2240 skb->truesize = saved_truesize;
2241
2242 if (likely(skb_end_offset(skb) == saved_end_offset))
2243 return 0;
2244
2245 /* We can not change skb->end if the original or new value
2246 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2247 */
2248 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2249 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2250 /* We think this path should not be taken.
2251 * Add a temporary trace to warn us just in case.
2252 */
2253 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2254 saved_end_offset, skb_end_offset(skb));
2255 WARN_ON_ONCE(1);
2256 return 0;
2257 }
2258
2259 shinfo = skb_shinfo(skb);
2260
2261 /* We are about to change back skb->end,
2262 * we need to move skb_shinfo() to its new location.
2263 */
2264 memmove(skb->head + saved_end_offset,
2265 shinfo,
2266 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2267
2268 skb_set_end_offset(skb, saved_end_offset);
2269
2270 return 0;
2271}
2272
2273/**
2274 * skb_expand_head - reallocate header of &sk_buff
2275 * @skb: buffer to reallocate
2276 * @headroom: needed headroom
2277 *
2278 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2279 * if possible; copies skb->sk to new skb as needed
2280 * and frees original skb in case of failures.
2281 *
2282 * It expect increased headroom and generates warning otherwise.
2283 */
2284
2285struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2286{
2287 int delta = headroom - skb_headroom(skb);
2288 int osize = skb_end_offset(skb);
2289 struct sock *sk = skb->sk;
2290
2291 if (WARN_ONCE(delta <= 0,
2292 "%s is expecting an increase in the headroom", __func__))
2293 return skb;
2294
2295 delta = SKB_DATA_ALIGN(delta);
2296 /* pskb_expand_head() might crash, if skb is shared. */
2297 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2298 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2299
2300 if (unlikely(!nskb))
2301 goto fail;
2302
2303 if (sk)
2304 skb_set_owner_w(nskb, sk);
2305 consume_skb(skb);
2306 skb = nskb;
2307 }
2308 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2309 goto fail;
2310
2311 if (sk && is_skb_wmem(skb)) {
2312 delta = skb_end_offset(skb) - osize;
2313 refcount_add(delta, &sk->sk_wmem_alloc);
2314 skb->truesize += delta;
2315 }
2316 return skb;
2317
2318fail:
2319 kfree_skb(skb);
2320 return NULL;
2321}
2322EXPORT_SYMBOL(skb_expand_head);
2323
2324/**
2325 * skb_copy_expand - copy and expand sk_buff
2326 * @skb: buffer to copy
2327 * @newheadroom: new free bytes at head
2328 * @newtailroom: new free bytes at tail
2329 * @gfp_mask: allocation priority
2330 *
2331 * Make a copy of both an &sk_buff and its data and while doing so
2332 * allocate additional space.
2333 *
2334 * This is used when the caller wishes to modify the data and needs a
2335 * private copy of the data to alter as well as more space for new fields.
2336 * Returns %NULL on failure or the pointer to the buffer
2337 * on success. The returned buffer has a reference count of 1.
2338 *
2339 * You must pass %GFP_ATOMIC as the allocation priority if this function
2340 * is called from an interrupt.
2341 */
2342struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2343 int newheadroom, int newtailroom,
2344 gfp_t gfp_mask)
2345{
2346 /*
2347 * Allocate the copy buffer
2348 */
2349 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2350 gfp_mask, skb_alloc_rx_flag(skb),
2351 NUMA_NO_NODE);
2352 int oldheadroom = skb_headroom(skb);
2353 int head_copy_len, head_copy_off;
2354
2355 if (!n)
2356 return NULL;
2357
2358 skb_reserve(n, newheadroom);
2359
2360 /* Set the tail pointer and length */
2361 skb_put(n, skb->len);
2362
2363 head_copy_len = oldheadroom;
2364 head_copy_off = 0;
2365 if (newheadroom <= head_copy_len)
2366 head_copy_len = newheadroom;
2367 else
2368 head_copy_off = newheadroom - head_copy_len;
2369
2370 /* Copy the linear header and data. */
2371 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2372 skb->len + head_copy_len));
2373
2374 skb_copy_header(n, skb);
2375
2376 skb_headers_offset_update(n, newheadroom - oldheadroom);
2377
2378 return n;
2379}
2380EXPORT_SYMBOL(skb_copy_expand);
2381
2382/**
2383 * __skb_pad - zero pad the tail of an skb
2384 * @skb: buffer to pad
2385 * @pad: space to pad
2386 * @free_on_error: free buffer on error
2387 *
2388 * Ensure that a buffer is followed by a padding area that is zero
2389 * filled. Used by network drivers which may DMA or transfer data
2390 * beyond the buffer end onto the wire.
2391 *
2392 * May return error in out of memory cases. The skb is freed on error
2393 * if @free_on_error is true.
2394 */
2395
2396int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2397{
2398 int err;
2399 int ntail;
2400
2401 /* If the skbuff is non linear tailroom is always zero.. */
2402 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2403 memset(skb->data+skb->len, 0, pad);
2404 return 0;
2405 }
2406
2407 ntail = skb->data_len + pad - (skb->end - skb->tail);
2408 if (likely(skb_cloned(skb) || ntail > 0)) {
2409 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2410 if (unlikely(err))
2411 goto free_skb;
2412 }
2413
2414 /* FIXME: The use of this function with non-linear skb's really needs
2415 * to be audited.
2416 */
2417 err = skb_linearize(skb);
2418 if (unlikely(err))
2419 goto free_skb;
2420
2421 memset(skb->data + skb->len, 0, pad);
2422 return 0;
2423
2424free_skb:
2425 if (free_on_error)
2426 kfree_skb(skb);
2427 return err;
2428}
2429EXPORT_SYMBOL(__skb_pad);
2430
2431/**
2432 * pskb_put - add data to the tail of a potentially fragmented buffer
2433 * @skb: start of the buffer to use
2434 * @tail: tail fragment of the buffer to use
2435 * @len: amount of data to add
2436 *
2437 * This function extends the used data area of the potentially
2438 * fragmented buffer. @tail must be the last fragment of @skb -- or
2439 * @skb itself. If this would exceed the total buffer size the kernel
2440 * will panic. A pointer to the first byte of the extra data is
2441 * returned.
2442 */
2443
2444void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2445{
2446 if (tail != skb) {
2447 skb->data_len += len;
2448 skb->len += len;
2449 }
2450 return skb_put(tail, len);
2451}
2452EXPORT_SYMBOL_GPL(pskb_put);
2453
2454/**
2455 * skb_put - add data to a buffer
2456 * @skb: buffer to use
2457 * @len: amount of data to add
2458 *
2459 * This function extends the used data area of the buffer. If this would
2460 * exceed the total buffer size the kernel will panic. A pointer to the
2461 * first byte of the extra data is returned.
2462 */
2463void *skb_put(struct sk_buff *skb, unsigned int len)
2464{
2465 void *tmp = skb_tail_pointer(skb);
2466 SKB_LINEAR_ASSERT(skb);
2467 skb->tail += len;
2468 skb->len += len;
2469 if (unlikely(skb->tail > skb->end))
2470 skb_over_panic(skb, len, __builtin_return_address(0));
2471 return tmp;
2472}
2473EXPORT_SYMBOL(skb_put);
2474
2475/**
2476 * skb_push - add data to the start of a buffer
2477 * @skb: buffer to use
2478 * @len: amount of data to add
2479 *
2480 * This function extends the used data area of the buffer at the buffer
2481 * start. If this would exceed the total buffer headroom the kernel will
2482 * panic. A pointer to the first byte of the extra data is returned.
2483 */
2484void *skb_push(struct sk_buff *skb, unsigned int len)
2485{
2486 skb->data -= len;
2487 skb->len += len;
2488 if (unlikely(skb->data < skb->head))
2489 skb_under_panic(skb, len, __builtin_return_address(0));
2490 return skb->data;
2491}
2492EXPORT_SYMBOL(skb_push);
2493
2494/**
2495 * skb_pull - remove data from the start of a buffer
2496 * @skb: buffer to use
2497 * @len: amount of data to remove
2498 *
2499 * This function removes data from the start of a buffer, returning
2500 * the memory to the headroom. A pointer to the next data in the buffer
2501 * is returned. Once the data has been pulled future pushes will overwrite
2502 * the old data.
2503 */
2504void *skb_pull(struct sk_buff *skb, unsigned int len)
2505{
2506 return skb_pull_inline(skb, len);
2507}
2508EXPORT_SYMBOL(skb_pull);
2509
2510/**
2511 * skb_pull_data - remove data from the start of a buffer returning its
2512 * original position.
2513 * @skb: buffer to use
2514 * @len: amount of data to remove
2515 *
2516 * This function removes data from the start of a buffer, returning
2517 * the memory to the headroom. A pointer to the original data in the buffer
2518 * is returned after checking if there is enough data to pull. Once the
2519 * data has been pulled future pushes will overwrite the old data.
2520 */
2521void *skb_pull_data(struct sk_buff *skb, size_t len)
2522{
2523 void *data = skb->data;
2524
2525 if (skb->len < len)
2526 return NULL;
2527
2528 skb_pull(skb, len);
2529
2530 return data;
2531}
2532EXPORT_SYMBOL(skb_pull_data);
2533
2534/**
2535 * skb_trim - remove end from a buffer
2536 * @skb: buffer to alter
2537 * @len: new length
2538 *
2539 * Cut the length of a buffer down by removing data from the tail. If
2540 * the buffer is already under the length specified it is not modified.
2541 * The skb must be linear.
2542 */
2543void skb_trim(struct sk_buff *skb, unsigned int len)
2544{
2545 if (skb->len > len)
2546 __skb_trim(skb, len);
2547}
2548EXPORT_SYMBOL(skb_trim);
2549
2550/* Trims skb to length len. It can change skb pointers.
2551 */
2552
2553int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2554{
2555 struct sk_buff **fragp;
2556 struct sk_buff *frag;
2557 int offset = skb_headlen(skb);
2558 int nfrags = skb_shinfo(skb)->nr_frags;
2559 int i;
2560 int err;
2561
2562 if (skb_cloned(skb) &&
2563 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2564 return err;
2565
2566 i = 0;
2567 if (offset >= len)
2568 goto drop_pages;
2569
2570 for (; i < nfrags; i++) {
2571 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572
2573 if (end < len) {
2574 offset = end;
2575 continue;
2576 }
2577
2578 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2579
2580drop_pages:
2581 skb_shinfo(skb)->nr_frags = i;
2582
2583 for (; i < nfrags; i++)
2584 skb_frag_unref(skb, i);
2585
2586 if (skb_has_frag_list(skb))
2587 skb_drop_fraglist(skb);
2588 goto done;
2589 }
2590
2591 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2592 fragp = &frag->next) {
2593 int end = offset + frag->len;
2594
2595 if (skb_shared(frag)) {
2596 struct sk_buff *nfrag;
2597
2598 nfrag = skb_clone(frag, GFP_ATOMIC);
2599 if (unlikely(!nfrag))
2600 return -ENOMEM;
2601
2602 nfrag->next = frag->next;
2603 consume_skb(frag);
2604 frag = nfrag;
2605 *fragp = frag;
2606 }
2607
2608 if (end < len) {
2609 offset = end;
2610 continue;
2611 }
2612
2613 if (end > len &&
2614 unlikely((err = pskb_trim(frag, len - offset))))
2615 return err;
2616
2617 if (frag->next)
2618 skb_drop_list(&frag->next);
2619 break;
2620 }
2621
2622done:
2623 if (len > skb_headlen(skb)) {
2624 skb->data_len -= skb->len - len;
2625 skb->len = len;
2626 } else {
2627 skb->len = len;
2628 skb->data_len = 0;
2629 skb_set_tail_pointer(skb, len);
2630 }
2631
2632 if (!skb->sk || skb->destructor == sock_edemux)
2633 skb_condense(skb);
2634 return 0;
2635}
2636EXPORT_SYMBOL(___pskb_trim);
2637
2638/* Note : use pskb_trim_rcsum() instead of calling this directly
2639 */
2640int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2641{
2642 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2643 int delta = skb->len - len;
2644
2645 skb->csum = csum_block_sub(skb->csum,
2646 skb_checksum(skb, len, delta, 0),
2647 len);
2648 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2649 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2650 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2651
2652 if (offset + sizeof(__sum16) > hdlen)
2653 return -EINVAL;
2654 }
2655 return __pskb_trim(skb, len);
2656}
2657EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2658
2659/**
2660 * __pskb_pull_tail - advance tail of skb header
2661 * @skb: buffer to reallocate
2662 * @delta: number of bytes to advance tail
2663 *
2664 * The function makes a sense only on a fragmented &sk_buff,
2665 * it expands header moving its tail forward and copying necessary
2666 * data from fragmented part.
2667 *
2668 * &sk_buff MUST have reference count of 1.
2669 *
2670 * Returns %NULL (and &sk_buff does not change) if pull failed
2671 * or value of new tail of skb in the case of success.
2672 *
2673 * All the pointers pointing into skb header may change and must be
2674 * reloaded after call to this function.
2675 */
2676
2677/* Moves tail of skb head forward, copying data from fragmented part,
2678 * when it is necessary.
2679 * 1. It may fail due to malloc failure.
2680 * 2. It may change skb pointers.
2681 *
2682 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2683 */
2684void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2685{
2686 /* If skb has not enough free space at tail, get new one
2687 * plus 128 bytes for future expansions. If we have enough
2688 * room at tail, reallocate without expansion only if skb is cloned.
2689 */
2690 int i, k, eat = (skb->tail + delta) - skb->end;
2691
2692 if (eat > 0 || skb_cloned(skb)) {
2693 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2694 GFP_ATOMIC))
2695 return NULL;
2696 }
2697
2698 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2699 skb_tail_pointer(skb), delta));
2700
2701 /* Optimization: no fragments, no reasons to preestimate
2702 * size of pulled pages. Superb.
2703 */
2704 if (!skb_has_frag_list(skb))
2705 goto pull_pages;
2706
2707 /* Estimate size of pulled pages. */
2708 eat = delta;
2709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2710 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2711
2712 if (size >= eat)
2713 goto pull_pages;
2714 eat -= size;
2715 }
2716
2717 /* If we need update frag list, we are in troubles.
2718 * Certainly, it is possible to add an offset to skb data,
2719 * but taking into account that pulling is expected to
2720 * be very rare operation, it is worth to fight against
2721 * further bloating skb head and crucify ourselves here instead.
2722 * Pure masohism, indeed. 8)8)
2723 */
2724 if (eat) {
2725 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2726 struct sk_buff *clone = NULL;
2727 struct sk_buff *insp = NULL;
2728
2729 do {
2730 if (list->len <= eat) {
2731 /* Eaten as whole. */
2732 eat -= list->len;
2733 list = list->next;
2734 insp = list;
2735 } else {
2736 /* Eaten partially. */
2737 if (skb_is_gso(skb) && !list->head_frag &&
2738 skb_headlen(list))
2739 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2740
2741 if (skb_shared(list)) {
2742 /* Sucks! We need to fork list. :-( */
2743 clone = skb_clone(list, GFP_ATOMIC);
2744 if (!clone)
2745 return NULL;
2746 insp = list->next;
2747 list = clone;
2748 } else {
2749 /* This may be pulled without
2750 * problems. */
2751 insp = list;
2752 }
2753 if (!pskb_pull(list, eat)) {
2754 kfree_skb(clone);
2755 return NULL;
2756 }
2757 break;
2758 }
2759 } while (eat);
2760
2761 /* Free pulled out fragments. */
2762 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2763 skb_shinfo(skb)->frag_list = list->next;
2764 consume_skb(list);
2765 }
2766 /* And insert new clone at head. */
2767 if (clone) {
2768 clone->next = list;
2769 skb_shinfo(skb)->frag_list = clone;
2770 }
2771 }
2772 /* Success! Now we may commit changes to skb data. */
2773
2774pull_pages:
2775 eat = delta;
2776 k = 0;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2779
2780 if (size <= eat) {
2781 skb_frag_unref(skb, i);
2782 eat -= size;
2783 } else {
2784 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2785
2786 *frag = skb_shinfo(skb)->frags[i];
2787 if (eat) {
2788 skb_frag_off_add(frag, eat);
2789 skb_frag_size_sub(frag, eat);
2790 if (!i)
2791 goto end;
2792 eat = 0;
2793 }
2794 k++;
2795 }
2796 }
2797 skb_shinfo(skb)->nr_frags = k;
2798
2799end:
2800 skb->tail += delta;
2801 skb->data_len -= delta;
2802
2803 if (!skb->data_len)
2804 skb_zcopy_clear(skb, false);
2805
2806 return skb_tail_pointer(skb);
2807}
2808EXPORT_SYMBOL(__pskb_pull_tail);
2809
2810/**
2811 * skb_copy_bits - copy bits from skb to kernel buffer
2812 * @skb: source skb
2813 * @offset: offset in source
2814 * @to: destination buffer
2815 * @len: number of bytes to copy
2816 *
2817 * Copy the specified number of bytes from the source skb to the
2818 * destination buffer.
2819 *
2820 * CAUTION ! :
2821 * If its prototype is ever changed,
2822 * check arch/{*}/net/{*}.S files,
2823 * since it is called from BPF assembly code.
2824 */
2825int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2826{
2827 int start = skb_headlen(skb);
2828 struct sk_buff *frag_iter;
2829 int i, copy;
2830
2831 if (offset > (int)skb->len - len)
2832 goto fault;
2833
2834 /* Copy header. */
2835 if ((copy = start - offset) > 0) {
2836 if (copy > len)
2837 copy = len;
2838 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2839 if ((len -= copy) == 0)
2840 return 0;
2841 offset += copy;
2842 to += copy;
2843 }
2844
2845 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2846 int end;
2847 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2848
2849 WARN_ON(start > offset + len);
2850
2851 end = start + skb_frag_size(f);
2852 if ((copy = end - offset) > 0) {
2853 u32 p_off, p_len, copied;
2854 struct page *p;
2855 u8 *vaddr;
2856
2857 if (copy > len)
2858 copy = len;
2859
2860 skb_frag_foreach_page(f,
2861 skb_frag_off(f) + offset - start,
2862 copy, p, p_off, p_len, copied) {
2863 vaddr = kmap_atomic(p);
2864 memcpy(to + copied, vaddr + p_off, p_len);
2865 kunmap_atomic(vaddr);
2866 }
2867
2868 if ((len -= copy) == 0)
2869 return 0;
2870 offset += copy;
2871 to += copy;
2872 }
2873 start = end;
2874 }
2875
2876 skb_walk_frags(skb, frag_iter) {
2877 int end;
2878
2879 WARN_ON(start > offset + len);
2880
2881 end = start + frag_iter->len;
2882 if ((copy = end - offset) > 0) {
2883 if (copy > len)
2884 copy = len;
2885 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2886 goto fault;
2887 if ((len -= copy) == 0)
2888 return 0;
2889 offset += copy;
2890 to += copy;
2891 }
2892 start = end;
2893 }
2894
2895 if (!len)
2896 return 0;
2897
2898fault:
2899 return -EFAULT;
2900}
2901EXPORT_SYMBOL(skb_copy_bits);
2902
2903/*
2904 * Callback from splice_to_pipe(), if we need to release some pages
2905 * at the end of the spd in case we error'ed out in filling the pipe.
2906 */
2907static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2908{
2909 put_page(spd->pages[i]);
2910}
2911
2912static struct page *linear_to_page(struct page *page, unsigned int *len,
2913 unsigned int *offset,
2914 struct sock *sk)
2915{
2916 struct page_frag *pfrag = sk_page_frag(sk);
2917
2918 if (!sk_page_frag_refill(sk, pfrag))
2919 return NULL;
2920
2921 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2922
2923 memcpy(page_address(pfrag->page) + pfrag->offset,
2924 page_address(page) + *offset, *len);
2925 *offset = pfrag->offset;
2926 pfrag->offset += *len;
2927
2928 return pfrag->page;
2929}
2930
2931static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2932 struct page *page,
2933 unsigned int offset)
2934{
2935 return spd->nr_pages &&
2936 spd->pages[spd->nr_pages - 1] == page &&
2937 (spd->partial[spd->nr_pages - 1].offset +
2938 spd->partial[spd->nr_pages - 1].len == offset);
2939}
2940
2941/*
2942 * Fill page/offset/length into spd, if it can hold more pages.
2943 */
2944static bool spd_fill_page(struct splice_pipe_desc *spd,
2945 struct pipe_inode_info *pipe, struct page *page,
2946 unsigned int *len, unsigned int offset,
2947 bool linear,
2948 struct sock *sk)
2949{
2950 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2951 return true;
2952
2953 if (linear) {
2954 page = linear_to_page(page, len, &offset, sk);
2955 if (!page)
2956 return true;
2957 }
2958 if (spd_can_coalesce(spd, page, offset)) {
2959 spd->partial[spd->nr_pages - 1].len += *len;
2960 return false;
2961 }
2962 get_page(page);
2963 spd->pages[spd->nr_pages] = page;
2964 spd->partial[spd->nr_pages].len = *len;
2965 spd->partial[spd->nr_pages].offset = offset;
2966 spd->nr_pages++;
2967
2968 return false;
2969}
2970
2971static bool __splice_segment(struct page *page, unsigned int poff,
2972 unsigned int plen, unsigned int *off,
2973 unsigned int *len,
2974 struct splice_pipe_desc *spd, bool linear,
2975 struct sock *sk,
2976 struct pipe_inode_info *pipe)
2977{
2978 if (!*len)
2979 return true;
2980
2981 /* skip this segment if already processed */
2982 if (*off >= plen) {
2983 *off -= plen;
2984 return false;
2985 }
2986
2987 /* ignore any bits we already processed */
2988 poff += *off;
2989 plen -= *off;
2990 *off = 0;
2991
2992 do {
2993 unsigned int flen = min(*len, plen);
2994
2995 if (spd_fill_page(spd, pipe, page, &flen, poff,
2996 linear, sk))
2997 return true;
2998 poff += flen;
2999 plen -= flen;
3000 *len -= flen;
3001 } while (*len && plen);
3002
3003 return false;
3004}
3005
3006/*
3007 * Map linear and fragment data from the skb to spd. It reports true if the
3008 * pipe is full or if we already spliced the requested length.
3009 */
3010static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3011 unsigned int *offset, unsigned int *len,
3012 struct splice_pipe_desc *spd, struct sock *sk)
3013{
3014 int seg;
3015 struct sk_buff *iter;
3016
3017 /* map the linear part :
3018 * If skb->head_frag is set, this 'linear' part is backed by a
3019 * fragment, and if the head is not shared with any clones then
3020 * we can avoid a copy since we own the head portion of this page.
3021 */
3022 if (__splice_segment(virt_to_page(skb->data),
3023 (unsigned long) skb->data & (PAGE_SIZE - 1),
3024 skb_headlen(skb),
3025 offset, len, spd,
3026 skb_head_is_locked(skb),
3027 sk, pipe))
3028 return true;
3029
3030 /*
3031 * then map the fragments
3032 */
3033 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3034 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3035
3036 if (__splice_segment(skb_frag_page(f),
3037 skb_frag_off(f), skb_frag_size(f),
3038 offset, len, spd, false, sk, pipe))
3039 return true;
3040 }
3041
3042 skb_walk_frags(skb, iter) {
3043 if (*offset >= iter->len) {
3044 *offset -= iter->len;
3045 continue;
3046 }
3047 /* __skb_splice_bits() only fails if the output has no room
3048 * left, so no point in going over the frag_list for the error
3049 * case.
3050 */
3051 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3052 return true;
3053 }
3054
3055 return false;
3056}
3057
3058/*
3059 * Map data from the skb to a pipe. Should handle both the linear part,
3060 * the fragments, and the frag list.
3061 */
3062int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3063 struct pipe_inode_info *pipe, unsigned int tlen,
3064 unsigned int flags)
3065{
3066 struct partial_page partial[MAX_SKB_FRAGS];
3067 struct page *pages[MAX_SKB_FRAGS];
3068 struct splice_pipe_desc spd = {
3069 .pages = pages,
3070 .partial = partial,
3071 .nr_pages_max = MAX_SKB_FRAGS,
3072 .ops = &nosteal_pipe_buf_ops,
3073 .spd_release = sock_spd_release,
3074 };
3075 int ret = 0;
3076
3077 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3078
3079 if (spd.nr_pages)
3080 ret = splice_to_pipe(pipe, &spd);
3081
3082 return ret;
3083}
3084EXPORT_SYMBOL_GPL(skb_splice_bits);
3085
3086static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3087{
3088 struct socket *sock = sk->sk_socket;
3089 size_t size = msg_data_left(msg);
3090
3091 if (!sock)
3092 return -EINVAL;
3093
3094 if (!sock->ops->sendmsg_locked)
3095 return sock_no_sendmsg_locked(sk, msg, size);
3096
3097 return sock->ops->sendmsg_locked(sk, msg, size);
3098}
3099
3100static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3101{
3102 struct socket *sock = sk->sk_socket;
3103
3104 if (!sock)
3105 return -EINVAL;
3106 return sock_sendmsg(sock, msg);
3107}
3108
3109typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3110static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3111 int len, sendmsg_func sendmsg)
3112{
3113 unsigned int orig_len = len;
3114 struct sk_buff *head = skb;
3115 unsigned short fragidx;
3116 int slen, ret;
3117
3118do_frag_list:
3119
3120 /* Deal with head data */
3121 while (offset < skb_headlen(skb) && len) {
3122 struct kvec kv;
3123 struct msghdr msg;
3124
3125 slen = min_t(int, len, skb_headlen(skb) - offset);
3126 kv.iov_base = skb->data + offset;
3127 kv.iov_len = slen;
3128 memset(&msg, 0, sizeof(msg));
3129 msg.msg_flags = MSG_DONTWAIT;
3130
3131 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3132 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3133 sendmsg_unlocked, sk, &msg);
3134 if (ret <= 0)
3135 goto error;
3136
3137 offset += ret;
3138 len -= ret;
3139 }
3140
3141 /* All the data was skb head? */
3142 if (!len)
3143 goto out;
3144
3145 /* Make offset relative to start of frags */
3146 offset -= skb_headlen(skb);
3147
3148 /* Find where we are in frag list */
3149 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3151
3152 if (offset < skb_frag_size(frag))
3153 break;
3154
3155 offset -= skb_frag_size(frag);
3156 }
3157
3158 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3159 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3160
3161 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3162
3163 while (slen) {
3164 struct bio_vec bvec;
3165 struct msghdr msg = {
3166 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3167 };
3168
3169 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3170 skb_frag_off(frag) + offset);
3171 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3172 slen);
3173
3174 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3175 sendmsg_unlocked, sk, &msg);
3176 if (ret <= 0)
3177 goto error;
3178
3179 len -= ret;
3180 offset += ret;
3181 slen -= ret;
3182 }
3183
3184 offset = 0;
3185 }
3186
3187 if (len) {
3188 /* Process any frag lists */
3189
3190 if (skb == head) {
3191 if (skb_has_frag_list(skb)) {
3192 skb = skb_shinfo(skb)->frag_list;
3193 goto do_frag_list;
3194 }
3195 } else if (skb->next) {
3196 skb = skb->next;
3197 goto do_frag_list;
3198 }
3199 }
3200
3201out:
3202 return orig_len - len;
3203
3204error:
3205 return orig_len == len ? ret : orig_len - len;
3206}
3207
3208/* Send skb data on a socket. Socket must be locked. */
3209int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3210 int len)
3211{
3212 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3213}
3214EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3215
3216/* Send skb data on a socket. Socket must be unlocked. */
3217int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3218{
3219 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3220}
3221
3222/**
3223 * skb_store_bits - store bits from kernel buffer to skb
3224 * @skb: destination buffer
3225 * @offset: offset in destination
3226 * @from: source buffer
3227 * @len: number of bytes to copy
3228 *
3229 * Copy the specified number of bytes from the source buffer to the
3230 * destination skb. This function handles all the messy bits of
3231 * traversing fragment lists and such.
3232 */
3233
3234int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3235{
3236 int start = skb_headlen(skb);
3237 struct sk_buff *frag_iter;
3238 int i, copy;
3239
3240 if (offset > (int)skb->len - len)
3241 goto fault;
3242
3243 if ((copy = start - offset) > 0) {
3244 if (copy > len)
3245 copy = len;
3246 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3247 if ((len -= copy) == 0)
3248 return 0;
3249 offset += copy;
3250 from += copy;
3251 }
3252
3253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3255 int end;
3256
3257 WARN_ON(start > offset + len);
3258
3259 end = start + skb_frag_size(frag);
3260 if ((copy = end - offset) > 0) {
3261 u32 p_off, p_len, copied;
3262 struct page *p;
3263 u8 *vaddr;
3264
3265 if (copy > len)
3266 copy = len;
3267
3268 skb_frag_foreach_page(frag,
3269 skb_frag_off(frag) + offset - start,
3270 copy, p, p_off, p_len, copied) {
3271 vaddr = kmap_atomic(p);
3272 memcpy(vaddr + p_off, from + copied, p_len);
3273 kunmap_atomic(vaddr);
3274 }
3275
3276 if ((len -= copy) == 0)
3277 return 0;
3278 offset += copy;
3279 from += copy;
3280 }
3281 start = end;
3282 }
3283
3284 skb_walk_frags(skb, frag_iter) {
3285 int end;
3286
3287 WARN_ON(start > offset + len);
3288
3289 end = start + frag_iter->len;
3290 if ((copy = end - offset) > 0) {
3291 if (copy > len)
3292 copy = len;
3293 if (skb_store_bits(frag_iter, offset - start,
3294 from, copy))
3295 goto fault;
3296 if ((len -= copy) == 0)
3297 return 0;
3298 offset += copy;
3299 from += copy;
3300 }
3301 start = end;
3302 }
3303 if (!len)
3304 return 0;
3305
3306fault:
3307 return -EFAULT;
3308}
3309EXPORT_SYMBOL(skb_store_bits);
3310
3311/* Checksum skb data. */
3312__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 __wsum csum, const struct skb_checksum_ops *ops)
3314{
3315 int start = skb_headlen(skb);
3316 int i, copy = start - offset;
3317 struct sk_buff *frag_iter;
3318 int pos = 0;
3319
3320 /* Checksum header. */
3321 if (copy > 0) {
3322 if (copy > len)
3323 copy = len;
3324 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3325 skb->data + offset, copy, csum);
3326 if ((len -= copy) == 0)
3327 return csum;
3328 offset += copy;
3329 pos = copy;
3330 }
3331
3332 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3333 int end;
3334 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3335
3336 WARN_ON(start > offset + len);
3337
3338 end = start + skb_frag_size(frag);
3339 if ((copy = end - offset) > 0) {
3340 u32 p_off, p_len, copied;
3341 struct page *p;
3342 __wsum csum2;
3343 u8 *vaddr;
3344
3345 if (copy > len)
3346 copy = len;
3347
3348 skb_frag_foreach_page(frag,
3349 skb_frag_off(frag) + offset - start,
3350 copy, p, p_off, p_len, copied) {
3351 vaddr = kmap_atomic(p);
3352 csum2 = INDIRECT_CALL_1(ops->update,
3353 csum_partial_ext,
3354 vaddr + p_off, p_len, 0);
3355 kunmap_atomic(vaddr);
3356 csum = INDIRECT_CALL_1(ops->combine,
3357 csum_block_add_ext, csum,
3358 csum2, pos, p_len);
3359 pos += p_len;
3360 }
3361
3362 if (!(len -= copy))
3363 return csum;
3364 offset += copy;
3365 }
3366 start = end;
3367 }
3368
3369 skb_walk_frags(skb, frag_iter) {
3370 int end;
3371
3372 WARN_ON(start > offset + len);
3373
3374 end = start + frag_iter->len;
3375 if ((copy = end - offset) > 0) {
3376 __wsum csum2;
3377 if (copy > len)
3378 copy = len;
3379 csum2 = __skb_checksum(frag_iter, offset - start,
3380 copy, 0, ops);
3381 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3382 csum, csum2, pos, copy);
3383 if ((len -= copy) == 0)
3384 return csum;
3385 offset += copy;
3386 pos += copy;
3387 }
3388 start = end;
3389 }
3390 BUG_ON(len);
3391
3392 return csum;
3393}
3394EXPORT_SYMBOL(__skb_checksum);
3395
3396__wsum skb_checksum(const struct sk_buff *skb, int offset,
3397 int len, __wsum csum)
3398{
3399 const struct skb_checksum_ops ops = {
3400 .update = csum_partial_ext,
3401 .combine = csum_block_add_ext,
3402 };
3403
3404 return __skb_checksum(skb, offset, len, csum, &ops);
3405}
3406EXPORT_SYMBOL(skb_checksum);
3407
3408/* Both of above in one bottle. */
3409
3410__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3411 u8 *to, int len)
3412{
3413 int start = skb_headlen(skb);
3414 int i, copy = start - offset;
3415 struct sk_buff *frag_iter;
3416 int pos = 0;
3417 __wsum csum = 0;
3418
3419 /* Copy header. */
3420 if (copy > 0) {
3421 if (copy > len)
3422 copy = len;
3423 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3424 copy);
3425 if ((len -= copy) == 0)
3426 return csum;
3427 offset += copy;
3428 to += copy;
3429 pos = copy;
3430 }
3431
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 int end;
3434
3435 WARN_ON(start > offset + len);
3436
3437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 if ((copy = end - offset) > 0) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 u32 p_off, p_len, copied;
3441 struct page *p;
3442 __wsum csum2;
3443 u8 *vaddr;
3444
3445 if (copy > len)
3446 copy = len;
3447
3448 skb_frag_foreach_page(frag,
3449 skb_frag_off(frag) + offset - start,
3450 copy, p, p_off, p_len, copied) {
3451 vaddr = kmap_atomic(p);
3452 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3453 to + copied,
3454 p_len);
3455 kunmap_atomic(vaddr);
3456 csum = csum_block_add(csum, csum2, pos);
3457 pos += p_len;
3458 }
3459
3460 if (!(len -= copy))
3461 return csum;
3462 offset += copy;
3463 to += copy;
3464 }
3465 start = end;
3466 }
3467
3468 skb_walk_frags(skb, frag_iter) {
3469 __wsum csum2;
3470 int end;
3471
3472 WARN_ON(start > offset + len);
3473
3474 end = start + frag_iter->len;
3475 if ((copy = end - offset) > 0) {
3476 if (copy > len)
3477 copy = len;
3478 csum2 = skb_copy_and_csum_bits(frag_iter,
3479 offset - start,
3480 to, copy);
3481 csum = csum_block_add(csum, csum2, pos);
3482 if ((len -= copy) == 0)
3483 return csum;
3484 offset += copy;
3485 to += copy;
3486 pos += copy;
3487 }
3488 start = end;
3489 }
3490 BUG_ON(len);
3491 return csum;
3492}
3493EXPORT_SYMBOL(skb_copy_and_csum_bits);
3494
3495__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3496{
3497 __sum16 sum;
3498
3499 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3500 /* See comments in __skb_checksum_complete(). */
3501 if (likely(!sum)) {
3502 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3503 !skb->csum_complete_sw)
3504 netdev_rx_csum_fault(skb->dev, skb);
3505 }
3506 if (!skb_shared(skb))
3507 skb->csum_valid = !sum;
3508 return sum;
3509}
3510EXPORT_SYMBOL(__skb_checksum_complete_head);
3511
3512/* This function assumes skb->csum already holds pseudo header's checksum,
3513 * which has been changed from the hardware checksum, for example, by
3514 * __skb_checksum_validate_complete(). And, the original skb->csum must
3515 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3516 *
3517 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3518 * zero. The new checksum is stored back into skb->csum unless the skb is
3519 * shared.
3520 */
3521__sum16 __skb_checksum_complete(struct sk_buff *skb)
3522{
3523 __wsum csum;
3524 __sum16 sum;
3525
3526 csum = skb_checksum(skb, 0, skb->len, 0);
3527
3528 sum = csum_fold(csum_add(skb->csum, csum));
3529 /* This check is inverted, because we already knew the hardware
3530 * checksum is invalid before calling this function. So, if the
3531 * re-computed checksum is valid instead, then we have a mismatch
3532 * between the original skb->csum and skb_checksum(). This means either
3533 * the original hardware checksum is incorrect or we screw up skb->csum
3534 * when moving skb->data around.
3535 */
3536 if (likely(!sum)) {
3537 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3538 !skb->csum_complete_sw)
3539 netdev_rx_csum_fault(skb->dev, skb);
3540 }
3541
3542 if (!skb_shared(skb)) {
3543 /* Save full packet checksum */
3544 skb->csum = csum;
3545 skb->ip_summed = CHECKSUM_COMPLETE;
3546 skb->csum_complete_sw = 1;
3547 skb->csum_valid = !sum;
3548 }
3549
3550 return sum;
3551}
3552EXPORT_SYMBOL(__skb_checksum_complete);
3553
3554static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3555{
3556 net_warn_ratelimited(
3557 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3558 __func__);
3559 return 0;
3560}
3561
3562static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3563 int offset, int len)
3564{
3565 net_warn_ratelimited(
3566 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3567 __func__);
3568 return 0;
3569}
3570
3571static const struct skb_checksum_ops default_crc32c_ops = {
3572 .update = warn_crc32c_csum_update,
3573 .combine = warn_crc32c_csum_combine,
3574};
3575
3576const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3577 &default_crc32c_ops;
3578EXPORT_SYMBOL(crc32c_csum_stub);
3579
3580 /**
3581 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3582 * @from: source buffer
3583 *
3584 * Calculates the amount of linear headroom needed in the 'to' skb passed
3585 * into skb_zerocopy().
3586 */
3587unsigned int
3588skb_zerocopy_headlen(const struct sk_buff *from)
3589{
3590 unsigned int hlen = 0;
3591
3592 if (!from->head_frag ||
3593 skb_headlen(from) < L1_CACHE_BYTES ||
3594 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3595 hlen = skb_headlen(from);
3596 if (!hlen)
3597 hlen = from->len;
3598 }
3599
3600 if (skb_has_frag_list(from))
3601 hlen = from->len;
3602
3603 return hlen;
3604}
3605EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3606
3607/**
3608 * skb_zerocopy - Zero copy skb to skb
3609 * @to: destination buffer
3610 * @from: source buffer
3611 * @len: number of bytes to copy from source buffer
3612 * @hlen: size of linear headroom in destination buffer
3613 *
3614 * Copies up to `len` bytes from `from` to `to` by creating references
3615 * to the frags in the source buffer.
3616 *
3617 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3618 * headroom in the `to` buffer.
3619 *
3620 * Return value:
3621 * 0: everything is OK
3622 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3623 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3624 */
3625int
3626skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3627{
3628 int i, j = 0;
3629 int plen = 0; /* length of skb->head fragment */
3630 int ret;
3631 struct page *page;
3632 unsigned int offset;
3633
3634 BUG_ON(!from->head_frag && !hlen);
3635
3636 /* dont bother with small payloads */
3637 if (len <= skb_tailroom(to))
3638 return skb_copy_bits(from, 0, skb_put(to, len), len);
3639
3640 if (hlen) {
3641 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3642 if (unlikely(ret))
3643 return ret;
3644 len -= hlen;
3645 } else {
3646 plen = min_t(int, skb_headlen(from), len);
3647 if (plen) {
3648 page = virt_to_head_page(from->head);
3649 offset = from->data - (unsigned char *)page_address(page);
3650 __skb_fill_page_desc(to, 0, page, offset, plen);
3651 get_page(page);
3652 j = 1;
3653 len -= plen;
3654 }
3655 }
3656
3657 skb_len_add(to, len + plen);
3658
3659 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3660 skb_tx_error(from);
3661 return -ENOMEM;
3662 }
3663 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3664
3665 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3666 int size;
3667
3668 if (!len)
3669 break;
3670 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3671 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3672 len);
3673 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3674 len -= size;
3675 skb_frag_ref(to, j);
3676 j++;
3677 }
3678 skb_shinfo(to)->nr_frags = j;
3679
3680 return 0;
3681}
3682EXPORT_SYMBOL_GPL(skb_zerocopy);
3683
3684void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3685{
3686 __wsum csum;
3687 long csstart;
3688
3689 if (skb->ip_summed == CHECKSUM_PARTIAL)
3690 csstart = skb_checksum_start_offset(skb);
3691 else
3692 csstart = skb_headlen(skb);
3693
3694 BUG_ON(csstart > skb_headlen(skb));
3695
3696 skb_copy_from_linear_data(skb, to, csstart);
3697
3698 csum = 0;
3699 if (csstart != skb->len)
3700 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3701 skb->len - csstart);
3702
3703 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3704 long csstuff = csstart + skb->csum_offset;
3705
3706 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3707 }
3708}
3709EXPORT_SYMBOL(skb_copy_and_csum_dev);
3710
3711/**
3712 * skb_dequeue - remove from the head of the queue
3713 * @list: list to dequeue from
3714 *
3715 * Remove the head of the list. The list lock is taken so the function
3716 * may be used safely with other locking list functions. The head item is
3717 * returned or %NULL if the list is empty.
3718 */
3719
3720struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3721{
3722 unsigned long flags;
3723 struct sk_buff *result;
3724
3725 spin_lock_irqsave(&list->lock, flags);
3726 result = __skb_dequeue(list);
3727 spin_unlock_irqrestore(&list->lock, flags);
3728 return result;
3729}
3730EXPORT_SYMBOL(skb_dequeue);
3731
3732/**
3733 * skb_dequeue_tail - remove from the tail of the queue
3734 * @list: list to dequeue from
3735 *
3736 * Remove the tail of the list. The list lock is taken so the function
3737 * may be used safely with other locking list functions. The tail item is
3738 * returned or %NULL if the list is empty.
3739 */
3740struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3741{
3742 unsigned long flags;
3743 struct sk_buff *result;
3744
3745 spin_lock_irqsave(&list->lock, flags);
3746 result = __skb_dequeue_tail(list);
3747 spin_unlock_irqrestore(&list->lock, flags);
3748 return result;
3749}
3750EXPORT_SYMBOL(skb_dequeue_tail);
3751
3752/**
3753 * skb_queue_purge_reason - empty a list
3754 * @list: list to empty
3755 * @reason: drop reason
3756 *
3757 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3758 * the list and one reference dropped. This function takes the list
3759 * lock and is atomic with respect to other list locking functions.
3760 */
3761void skb_queue_purge_reason(struct sk_buff_head *list,
3762 enum skb_drop_reason reason)
3763{
3764 struct sk_buff_head tmp;
3765 unsigned long flags;
3766
3767 if (skb_queue_empty_lockless(list))
3768 return;
3769
3770 __skb_queue_head_init(&tmp);
3771
3772 spin_lock_irqsave(&list->lock, flags);
3773 skb_queue_splice_init(list, &tmp);
3774 spin_unlock_irqrestore(&list->lock, flags);
3775
3776 __skb_queue_purge_reason(&tmp, reason);
3777}
3778EXPORT_SYMBOL(skb_queue_purge_reason);
3779
3780/**
3781 * skb_rbtree_purge - empty a skb rbtree
3782 * @root: root of the rbtree to empty
3783 * Return value: the sum of truesizes of all purged skbs.
3784 *
3785 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3786 * the list and one reference dropped. This function does not take
3787 * any lock. Synchronization should be handled by the caller (e.g., TCP
3788 * out-of-order queue is protected by the socket lock).
3789 */
3790unsigned int skb_rbtree_purge(struct rb_root *root)
3791{
3792 struct rb_node *p = rb_first(root);
3793 unsigned int sum = 0;
3794
3795 while (p) {
3796 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3797
3798 p = rb_next(p);
3799 rb_erase(&skb->rbnode, root);
3800 sum += skb->truesize;
3801 kfree_skb(skb);
3802 }
3803 return sum;
3804}
3805
3806void skb_errqueue_purge(struct sk_buff_head *list)
3807{
3808 struct sk_buff *skb, *next;
3809 struct sk_buff_head kill;
3810 unsigned long flags;
3811
3812 __skb_queue_head_init(&kill);
3813
3814 spin_lock_irqsave(&list->lock, flags);
3815 skb_queue_walk_safe(list, skb, next) {
3816 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3817 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3818 continue;
3819 __skb_unlink(skb, list);
3820 __skb_queue_tail(&kill, skb);
3821 }
3822 spin_unlock_irqrestore(&list->lock, flags);
3823 __skb_queue_purge(&kill);
3824}
3825EXPORT_SYMBOL(skb_errqueue_purge);
3826
3827/**
3828 * skb_queue_head - queue a buffer at the list head
3829 * @list: list to use
3830 * @newsk: buffer to queue
3831 *
3832 * Queue a buffer at the start of the list. This function takes the
3833 * list lock and can be used safely with other locking &sk_buff functions
3834 * safely.
3835 *
3836 * A buffer cannot be placed on two lists at the same time.
3837 */
3838void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3839{
3840 unsigned long flags;
3841
3842 spin_lock_irqsave(&list->lock, flags);
3843 __skb_queue_head(list, newsk);
3844 spin_unlock_irqrestore(&list->lock, flags);
3845}
3846EXPORT_SYMBOL(skb_queue_head);
3847
3848/**
3849 * skb_queue_tail - queue a buffer at the list tail
3850 * @list: list to use
3851 * @newsk: buffer to queue
3852 *
3853 * Queue a buffer at the tail of the list. This function takes the
3854 * list lock and can be used safely with other locking &sk_buff functions
3855 * safely.
3856 *
3857 * A buffer cannot be placed on two lists at the same time.
3858 */
3859void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&list->lock, flags);
3864 __skb_queue_tail(list, newsk);
3865 spin_unlock_irqrestore(&list->lock, flags);
3866}
3867EXPORT_SYMBOL(skb_queue_tail);
3868
3869/**
3870 * skb_unlink - remove a buffer from a list
3871 * @skb: buffer to remove
3872 * @list: list to use
3873 *
3874 * Remove a packet from a list. The list locks are taken and this
3875 * function is atomic with respect to other list locked calls
3876 *
3877 * You must know what list the SKB is on.
3878 */
3879void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3880{
3881 unsigned long flags;
3882
3883 spin_lock_irqsave(&list->lock, flags);
3884 __skb_unlink(skb, list);
3885 spin_unlock_irqrestore(&list->lock, flags);
3886}
3887EXPORT_SYMBOL(skb_unlink);
3888
3889/**
3890 * skb_append - append a buffer
3891 * @old: buffer to insert after
3892 * @newsk: buffer to insert
3893 * @list: list to use
3894 *
3895 * Place a packet after a given packet in a list. The list locks are taken
3896 * and this function is atomic with respect to other list locked calls.
3897 * A buffer cannot be placed on two lists at the same time.
3898 */
3899void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3900{
3901 unsigned long flags;
3902
3903 spin_lock_irqsave(&list->lock, flags);
3904 __skb_queue_after(list, old, newsk);
3905 spin_unlock_irqrestore(&list->lock, flags);
3906}
3907EXPORT_SYMBOL(skb_append);
3908
3909static inline void skb_split_inside_header(struct sk_buff *skb,
3910 struct sk_buff* skb1,
3911 const u32 len, const int pos)
3912{
3913 int i;
3914
3915 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3916 pos - len);
3917 /* And move data appendix as is. */
3918 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3919 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3920
3921 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3922 skb_shinfo(skb)->nr_frags = 0;
3923 skb1->data_len = skb->data_len;
3924 skb1->len += skb1->data_len;
3925 skb->data_len = 0;
3926 skb->len = len;
3927 skb_set_tail_pointer(skb, len);
3928}
3929
3930static inline void skb_split_no_header(struct sk_buff *skb,
3931 struct sk_buff* skb1,
3932 const u32 len, int pos)
3933{
3934 int i, k = 0;
3935 const int nfrags = skb_shinfo(skb)->nr_frags;
3936
3937 skb_shinfo(skb)->nr_frags = 0;
3938 skb1->len = skb1->data_len = skb->len - len;
3939 skb->len = len;
3940 skb->data_len = len - pos;
3941
3942 for (i = 0; i < nfrags; i++) {
3943 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3944
3945 if (pos + size > len) {
3946 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3947
3948 if (pos < len) {
3949 /* Split frag.
3950 * We have two variants in this case:
3951 * 1. Move all the frag to the second
3952 * part, if it is possible. F.e.
3953 * this approach is mandatory for TUX,
3954 * where splitting is expensive.
3955 * 2. Split is accurately. We make this.
3956 */
3957 skb_frag_ref(skb, i);
3958 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3959 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3960 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3961 skb_shinfo(skb)->nr_frags++;
3962 }
3963 k++;
3964 } else
3965 skb_shinfo(skb)->nr_frags++;
3966 pos += size;
3967 }
3968 skb_shinfo(skb1)->nr_frags = k;
3969}
3970
3971/**
3972 * skb_split - Split fragmented skb to two parts at length len.
3973 * @skb: the buffer to split
3974 * @skb1: the buffer to receive the second part
3975 * @len: new length for skb
3976 */
3977void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3978{
3979 int pos = skb_headlen(skb);
3980 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3981
3982 skb_zcopy_downgrade_managed(skb);
3983
3984 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3985 skb_zerocopy_clone(skb1, skb, 0);
3986 if (len < pos) /* Split line is inside header. */
3987 skb_split_inside_header(skb, skb1, len, pos);
3988 else /* Second chunk has no header, nothing to copy. */
3989 skb_split_no_header(skb, skb1, len, pos);
3990}
3991EXPORT_SYMBOL(skb_split);
3992
3993/* Shifting from/to a cloned skb is a no-go.
3994 *
3995 * Caller cannot keep skb_shinfo related pointers past calling here!
3996 */
3997static int skb_prepare_for_shift(struct sk_buff *skb)
3998{
3999 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4000}
4001
4002/**
4003 * skb_shift - Shifts paged data partially from skb to another
4004 * @tgt: buffer into which tail data gets added
4005 * @skb: buffer from which the paged data comes from
4006 * @shiftlen: shift up to this many bytes
4007 *
4008 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4009 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4010 * It's up to caller to free skb if everything was shifted.
4011 *
4012 * If @tgt runs out of frags, the whole operation is aborted.
4013 *
4014 * Skb cannot include anything else but paged data while tgt is allowed
4015 * to have non-paged data as well.
4016 *
4017 * TODO: full sized shift could be optimized but that would need
4018 * specialized skb free'er to handle frags without up-to-date nr_frags.
4019 */
4020int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4021{
4022 int from, to, merge, todo;
4023 skb_frag_t *fragfrom, *fragto;
4024
4025 BUG_ON(shiftlen > skb->len);
4026
4027 if (skb_headlen(skb))
4028 return 0;
4029 if (skb_zcopy(tgt) || skb_zcopy(skb))
4030 return 0;
4031
4032 todo = shiftlen;
4033 from = 0;
4034 to = skb_shinfo(tgt)->nr_frags;
4035 fragfrom = &skb_shinfo(skb)->frags[from];
4036
4037 /* Actual merge is delayed until the point when we know we can
4038 * commit all, so that we don't have to undo partial changes
4039 */
4040 if (!to ||
4041 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4042 skb_frag_off(fragfrom))) {
4043 merge = -1;
4044 } else {
4045 merge = to - 1;
4046
4047 todo -= skb_frag_size(fragfrom);
4048 if (todo < 0) {
4049 if (skb_prepare_for_shift(skb) ||
4050 skb_prepare_for_shift(tgt))
4051 return 0;
4052
4053 /* All previous frag pointers might be stale! */
4054 fragfrom = &skb_shinfo(skb)->frags[from];
4055 fragto = &skb_shinfo(tgt)->frags[merge];
4056
4057 skb_frag_size_add(fragto, shiftlen);
4058 skb_frag_size_sub(fragfrom, shiftlen);
4059 skb_frag_off_add(fragfrom, shiftlen);
4060
4061 goto onlymerged;
4062 }
4063
4064 from++;
4065 }
4066
4067 /* Skip full, not-fitting skb to avoid expensive operations */
4068 if ((shiftlen == skb->len) &&
4069 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4070 return 0;
4071
4072 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4073 return 0;
4074
4075 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4076 if (to == MAX_SKB_FRAGS)
4077 return 0;
4078
4079 fragfrom = &skb_shinfo(skb)->frags[from];
4080 fragto = &skb_shinfo(tgt)->frags[to];
4081
4082 if (todo >= skb_frag_size(fragfrom)) {
4083 *fragto = *fragfrom;
4084 todo -= skb_frag_size(fragfrom);
4085 from++;
4086 to++;
4087
4088 } else {
4089 __skb_frag_ref(fragfrom);
4090 skb_frag_page_copy(fragto, fragfrom);
4091 skb_frag_off_copy(fragto, fragfrom);
4092 skb_frag_size_set(fragto, todo);
4093
4094 skb_frag_off_add(fragfrom, todo);
4095 skb_frag_size_sub(fragfrom, todo);
4096 todo = 0;
4097
4098 to++;
4099 break;
4100 }
4101 }
4102
4103 /* Ready to "commit" this state change to tgt */
4104 skb_shinfo(tgt)->nr_frags = to;
4105
4106 if (merge >= 0) {
4107 fragfrom = &skb_shinfo(skb)->frags[0];
4108 fragto = &skb_shinfo(tgt)->frags[merge];
4109
4110 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4111 __skb_frag_unref(fragfrom, skb->pp_recycle);
4112 }
4113
4114 /* Reposition in the original skb */
4115 to = 0;
4116 while (from < skb_shinfo(skb)->nr_frags)
4117 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4118 skb_shinfo(skb)->nr_frags = to;
4119
4120 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4121
4122onlymerged:
4123 /* Most likely the tgt won't ever need its checksum anymore, skb on
4124 * the other hand might need it if it needs to be resent
4125 */
4126 tgt->ip_summed = CHECKSUM_PARTIAL;
4127 skb->ip_summed = CHECKSUM_PARTIAL;
4128
4129 skb_len_add(skb, -shiftlen);
4130 skb_len_add(tgt, shiftlen);
4131
4132 return shiftlen;
4133}
4134
4135/**
4136 * skb_prepare_seq_read - Prepare a sequential read of skb data
4137 * @skb: the buffer to read
4138 * @from: lower offset of data to be read
4139 * @to: upper offset of data to be read
4140 * @st: state variable
4141 *
4142 * Initializes the specified state variable. Must be called before
4143 * invoking skb_seq_read() for the first time.
4144 */
4145void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4146 unsigned int to, struct skb_seq_state *st)
4147{
4148 st->lower_offset = from;
4149 st->upper_offset = to;
4150 st->root_skb = st->cur_skb = skb;
4151 st->frag_idx = st->stepped_offset = 0;
4152 st->frag_data = NULL;
4153 st->frag_off = 0;
4154}
4155EXPORT_SYMBOL(skb_prepare_seq_read);
4156
4157/**
4158 * skb_seq_read - Sequentially read skb data
4159 * @consumed: number of bytes consumed by the caller so far
4160 * @data: destination pointer for data to be returned
4161 * @st: state variable
4162 *
4163 * Reads a block of skb data at @consumed relative to the
4164 * lower offset specified to skb_prepare_seq_read(). Assigns
4165 * the head of the data block to @data and returns the length
4166 * of the block or 0 if the end of the skb data or the upper
4167 * offset has been reached.
4168 *
4169 * The caller is not required to consume all of the data
4170 * returned, i.e. @consumed is typically set to the number
4171 * of bytes already consumed and the next call to
4172 * skb_seq_read() will return the remaining part of the block.
4173 *
4174 * Note 1: The size of each block of data returned can be arbitrary,
4175 * this limitation is the cost for zerocopy sequential
4176 * reads of potentially non linear data.
4177 *
4178 * Note 2: Fragment lists within fragments are not implemented
4179 * at the moment, state->root_skb could be replaced with
4180 * a stack for this purpose.
4181 */
4182unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4183 struct skb_seq_state *st)
4184{
4185 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4186 skb_frag_t *frag;
4187
4188 if (unlikely(abs_offset >= st->upper_offset)) {
4189 if (st->frag_data) {
4190 kunmap_atomic(st->frag_data);
4191 st->frag_data = NULL;
4192 }
4193 return 0;
4194 }
4195
4196next_skb:
4197 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4198
4199 if (abs_offset < block_limit && !st->frag_data) {
4200 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4201 return block_limit - abs_offset;
4202 }
4203
4204 if (st->frag_idx == 0 && !st->frag_data)
4205 st->stepped_offset += skb_headlen(st->cur_skb);
4206
4207 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4208 unsigned int pg_idx, pg_off, pg_sz;
4209
4210 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4211
4212 pg_idx = 0;
4213 pg_off = skb_frag_off(frag);
4214 pg_sz = skb_frag_size(frag);
4215
4216 if (skb_frag_must_loop(skb_frag_page(frag))) {
4217 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4218 pg_off = offset_in_page(pg_off + st->frag_off);
4219 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4220 PAGE_SIZE - pg_off);
4221 }
4222
4223 block_limit = pg_sz + st->stepped_offset;
4224 if (abs_offset < block_limit) {
4225 if (!st->frag_data)
4226 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4227
4228 *data = (u8 *)st->frag_data + pg_off +
4229 (abs_offset - st->stepped_offset);
4230
4231 return block_limit - abs_offset;
4232 }
4233
4234 if (st->frag_data) {
4235 kunmap_atomic(st->frag_data);
4236 st->frag_data = NULL;
4237 }
4238
4239 st->stepped_offset += pg_sz;
4240 st->frag_off += pg_sz;
4241 if (st->frag_off == skb_frag_size(frag)) {
4242 st->frag_off = 0;
4243 st->frag_idx++;
4244 }
4245 }
4246
4247 if (st->frag_data) {
4248 kunmap_atomic(st->frag_data);
4249 st->frag_data = NULL;
4250 }
4251
4252 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4253 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4254 st->frag_idx = 0;
4255 goto next_skb;
4256 } else if (st->cur_skb->next) {
4257 st->cur_skb = st->cur_skb->next;
4258 st->frag_idx = 0;
4259 goto next_skb;
4260 }
4261
4262 return 0;
4263}
4264EXPORT_SYMBOL(skb_seq_read);
4265
4266/**
4267 * skb_abort_seq_read - Abort a sequential read of skb data
4268 * @st: state variable
4269 *
4270 * Must be called if skb_seq_read() was not called until it
4271 * returned 0.
4272 */
4273void skb_abort_seq_read(struct skb_seq_state *st)
4274{
4275 if (st->frag_data)
4276 kunmap_atomic(st->frag_data);
4277}
4278EXPORT_SYMBOL(skb_abort_seq_read);
4279
4280#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4281
4282static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4283 struct ts_config *conf,
4284 struct ts_state *state)
4285{
4286 return skb_seq_read(offset, text, TS_SKB_CB(state));
4287}
4288
4289static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4290{
4291 skb_abort_seq_read(TS_SKB_CB(state));
4292}
4293
4294/**
4295 * skb_find_text - Find a text pattern in skb data
4296 * @skb: the buffer to look in
4297 * @from: search offset
4298 * @to: search limit
4299 * @config: textsearch configuration
4300 *
4301 * Finds a pattern in the skb data according to the specified
4302 * textsearch configuration. Use textsearch_next() to retrieve
4303 * subsequent occurrences of the pattern. Returns the offset
4304 * to the first occurrence or UINT_MAX if no match was found.
4305 */
4306unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4307 unsigned int to, struct ts_config *config)
4308{
4309 unsigned int patlen = config->ops->get_pattern_len(config);
4310 struct ts_state state;
4311 unsigned int ret;
4312
4313 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4314
4315 config->get_next_block = skb_ts_get_next_block;
4316 config->finish = skb_ts_finish;
4317
4318 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4319
4320 ret = textsearch_find(config, &state);
4321 return (ret + patlen <= to - from ? ret : UINT_MAX);
4322}
4323EXPORT_SYMBOL(skb_find_text);
4324
4325int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4326 int offset, size_t size, size_t max_frags)
4327{
4328 int i = skb_shinfo(skb)->nr_frags;
4329
4330 if (skb_can_coalesce(skb, i, page, offset)) {
4331 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4332 } else if (i < max_frags) {
4333 skb_zcopy_downgrade_managed(skb);
4334 get_page(page);
4335 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4336 } else {
4337 return -EMSGSIZE;
4338 }
4339
4340 return 0;
4341}
4342EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4343
4344/**
4345 * skb_pull_rcsum - pull skb and update receive checksum
4346 * @skb: buffer to update
4347 * @len: length of data pulled
4348 *
4349 * This function performs an skb_pull on the packet and updates
4350 * the CHECKSUM_COMPLETE checksum. It should be used on
4351 * receive path processing instead of skb_pull unless you know
4352 * that the checksum difference is zero (e.g., a valid IP header)
4353 * or you are setting ip_summed to CHECKSUM_NONE.
4354 */
4355void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4356{
4357 unsigned char *data = skb->data;
4358
4359 BUG_ON(len > skb->len);
4360 __skb_pull(skb, len);
4361 skb_postpull_rcsum(skb, data, len);
4362 return skb->data;
4363}
4364EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4365
4366static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4367{
4368 skb_frag_t head_frag;
4369 struct page *page;
4370
4371 page = virt_to_head_page(frag_skb->head);
4372 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4373 (unsigned char *)page_address(page),
4374 skb_headlen(frag_skb));
4375 return head_frag;
4376}
4377
4378struct sk_buff *skb_segment_list(struct sk_buff *skb,
4379 netdev_features_t features,
4380 unsigned int offset)
4381{
4382 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4383 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4384 unsigned int delta_truesize = 0;
4385 unsigned int delta_len = 0;
4386 struct sk_buff *tail = NULL;
4387 struct sk_buff *nskb, *tmp;
4388 int len_diff, err;
4389
4390 skb_push(skb, -skb_network_offset(skb) + offset);
4391
4392 /* Ensure the head is writeable before touching the shared info */
4393 err = skb_unclone(skb, GFP_ATOMIC);
4394 if (err)
4395 goto err_linearize;
4396
4397 skb_shinfo(skb)->frag_list = NULL;
4398
4399 while (list_skb) {
4400 nskb = list_skb;
4401 list_skb = list_skb->next;
4402
4403 err = 0;
4404 delta_truesize += nskb->truesize;
4405 if (skb_shared(nskb)) {
4406 tmp = skb_clone(nskb, GFP_ATOMIC);
4407 if (tmp) {
4408 consume_skb(nskb);
4409 nskb = tmp;
4410 err = skb_unclone(nskb, GFP_ATOMIC);
4411 } else {
4412 err = -ENOMEM;
4413 }
4414 }
4415
4416 if (!tail)
4417 skb->next = nskb;
4418 else
4419 tail->next = nskb;
4420
4421 if (unlikely(err)) {
4422 nskb->next = list_skb;
4423 goto err_linearize;
4424 }
4425
4426 tail = nskb;
4427
4428 delta_len += nskb->len;
4429
4430 skb_push(nskb, -skb_network_offset(nskb) + offset);
4431
4432 skb_release_head_state(nskb);
4433 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4434 __copy_skb_header(nskb, skb);
4435
4436 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4437 nskb->transport_header += len_diff;
4438 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4439 nskb->data - tnl_hlen,
4440 offset + tnl_hlen);
4441
4442 if (skb_needs_linearize(nskb, features) &&
4443 __skb_linearize(nskb))
4444 goto err_linearize;
4445 }
4446
4447 skb->truesize = skb->truesize - delta_truesize;
4448 skb->data_len = skb->data_len - delta_len;
4449 skb->len = skb->len - delta_len;
4450
4451 skb_gso_reset(skb);
4452
4453 skb->prev = tail;
4454
4455 if (skb_needs_linearize(skb, features) &&
4456 __skb_linearize(skb))
4457 goto err_linearize;
4458
4459 skb_get(skb);
4460
4461 return skb;
4462
4463err_linearize:
4464 kfree_skb_list(skb->next);
4465 skb->next = NULL;
4466 return ERR_PTR(-ENOMEM);
4467}
4468EXPORT_SYMBOL_GPL(skb_segment_list);
4469
4470/**
4471 * skb_segment - Perform protocol segmentation on skb.
4472 * @head_skb: buffer to segment
4473 * @features: features for the output path (see dev->features)
4474 *
4475 * This function performs segmentation on the given skb. It returns
4476 * a pointer to the first in a list of new skbs for the segments.
4477 * In case of error it returns ERR_PTR(err).
4478 */
4479struct sk_buff *skb_segment(struct sk_buff *head_skb,
4480 netdev_features_t features)
4481{
4482 struct sk_buff *segs = NULL;
4483 struct sk_buff *tail = NULL;
4484 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4485 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4486 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4487 unsigned int offset = doffset;
4488 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4489 unsigned int partial_segs = 0;
4490 unsigned int headroom;
4491 unsigned int len = head_skb->len;
4492 struct sk_buff *frag_skb;
4493 skb_frag_t *frag;
4494 __be16 proto;
4495 bool csum, sg;
4496 int err = -ENOMEM;
4497 int i = 0;
4498 int nfrags, pos;
4499
4500 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4501 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4502 struct sk_buff *check_skb;
4503
4504 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4505 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4506 /* gso_size is untrusted, and we have a frag_list with
4507 * a linear non head_frag item.
4508 *
4509 * If head_skb's headlen does not fit requested gso_size,
4510 * it means that the frag_list members do NOT terminate
4511 * on exact gso_size boundaries. Hence we cannot perform
4512 * skb_frag_t page sharing. Therefore we must fallback to
4513 * copying the frag_list skbs; we do so by disabling SG.
4514 */
4515 features &= ~NETIF_F_SG;
4516 break;
4517 }
4518 }
4519 }
4520
4521 __skb_push(head_skb, doffset);
4522 proto = skb_network_protocol(head_skb, NULL);
4523 if (unlikely(!proto))
4524 return ERR_PTR(-EINVAL);
4525
4526 sg = !!(features & NETIF_F_SG);
4527 csum = !!can_checksum_protocol(features, proto);
4528
4529 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4530 if (!(features & NETIF_F_GSO_PARTIAL)) {
4531 struct sk_buff *iter;
4532 unsigned int frag_len;
4533
4534 if (!list_skb ||
4535 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4536 goto normal;
4537
4538 /* If we get here then all the required
4539 * GSO features except frag_list are supported.
4540 * Try to split the SKB to multiple GSO SKBs
4541 * with no frag_list.
4542 * Currently we can do that only when the buffers don't
4543 * have a linear part and all the buffers except
4544 * the last are of the same length.
4545 */
4546 frag_len = list_skb->len;
4547 skb_walk_frags(head_skb, iter) {
4548 if (frag_len != iter->len && iter->next)
4549 goto normal;
4550 if (skb_headlen(iter) && !iter->head_frag)
4551 goto normal;
4552
4553 len -= iter->len;
4554 }
4555
4556 if (len != frag_len)
4557 goto normal;
4558 }
4559
4560 /* GSO partial only requires that we trim off any excess that
4561 * doesn't fit into an MSS sized block, so take care of that
4562 * now.
4563 * Cap len to not accidentally hit GSO_BY_FRAGS.
4564 */
4565 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4566 if (partial_segs > 1)
4567 mss *= partial_segs;
4568 else
4569 partial_segs = 0;
4570 }
4571
4572normal:
4573 headroom = skb_headroom(head_skb);
4574 pos = skb_headlen(head_skb);
4575
4576 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4577 return ERR_PTR(-ENOMEM);
4578
4579 nfrags = skb_shinfo(head_skb)->nr_frags;
4580 frag = skb_shinfo(head_skb)->frags;
4581 frag_skb = head_skb;
4582
4583 do {
4584 struct sk_buff *nskb;
4585 skb_frag_t *nskb_frag;
4586 int hsize;
4587 int size;
4588
4589 if (unlikely(mss == GSO_BY_FRAGS)) {
4590 len = list_skb->len;
4591 } else {
4592 len = head_skb->len - offset;
4593 if (len > mss)
4594 len = mss;
4595 }
4596
4597 hsize = skb_headlen(head_skb) - offset;
4598
4599 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4600 (skb_headlen(list_skb) == len || sg)) {
4601 BUG_ON(skb_headlen(list_skb) > len);
4602
4603 nskb = skb_clone(list_skb, GFP_ATOMIC);
4604 if (unlikely(!nskb))
4605 goto err;
4606
4607 i = 0;
4608 nfrags = skb_shinfo(list_skb)->nr_frags;
4609 frag = skb_shinfo(list_skb)->frags;
4610 frag_skb = list_skb;
4611 pos += skb_headlen(list_skb);
4612
4613 while (pos < offset + len) {
4614 BUG_ON(i >= nfrags);
4615
4616 size = skb_frag_size(frag);
4617 if (pos + size > offset + len)
4618 break;
4619
4620 i++;
4621 pos += size;
4622 frag++;
4623 }
4624
4625 list_skb = list_skb->next;
4626
4627 if (unlikely(pskb_trim(nskb, len))) {
4628 kfree_skb(nskb);
4629 goto err;
4630 }
4631
4632 hsize = skb_end_offset(nskb);
4633 if (skb_cow_head(nskb, doffset + headroom)) {
4634 kfree_skb(nskb);
4635 goto err;
4636 }
4637
4638 nskb->truesize += skb_end_offset(nskb) - hsize;
4639 skb_release_head_state(nskb);
4640 __skb_push(nskb, doffset);
4641 } else {
4642 if (hsize < 0)
4643 hsize = 0;
4644 if (hsize > len || !sg)
4645 hsize = len;
4646
4647 nskb = __alloc_skb(hsize + doffset + headroom,
4648 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4649 NUMA_NO_NODE);
4650
4651 if (unlikely(!nskb))
4652 goto err;
4653
4654 skb_reserve(nskb, headroom);
4655 __skb_put(nskb, doffset);
4656 }
4657
4658 if (segs)
4659 tail->next = nskb;
4660 else
4661 segs = nskb;
4662 tail = nskb;
4663
4664 __copy_skb_header(nskb, head_skb);
4665
4666 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4667 skb_reset_mac_len(nskb);
4668
4669 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4670 nskb->data - tnl_hlen,
4671 doffset + tnl_hlen);
4672
4673 if (nskb->len == len + doffset)
4674 goto perform_csum_check;
4675
4676 if (!sg) {
4677 if (!csum) {
4678 if (!nskb->remcsum_offload)
4679 nskb->ip_summed = CHECKSUM_NONE;
4680 SKB_GSO_CB(nskb)->csum =
4681 skb_copy_and_csum_bits(head_skb, offset,
4682 skb_put(nskb,
4683 len),
4684 len);
4685 SKB_GSO_CB(nskb)->csum_start =
4686 skb_headroom(nskb) + doffset;
4687 } else {
4688 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4689 goto err;
4690 }
4691 continue;
4692 }
4693
4694 nskb_frag = skb_shinfo(nskb)->frags;
4695
4696 skb_copy_from_linear_data_offset(head_skb, offset,
4697 skb_put(nskb, hsize), hsize);
4698
4699 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4700 SKBFL_SHARED_FRAG;
4701
4702 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4703 goto err;
4704
4705 while (pos < offset + len) {
4706 if (i >= nfrags) {
4707 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4708 skb_zerocopy_clone(nskb, list_skb,
4709 GFP_ATOMIC))
4710 goto err;
4711
4712 i = 0;
4713 nfrags = skb_shinfo(list_skb)->nr_frags;
4714 frag = skb_shinfo(list_skb)->frags;
4715 frag_skb = list_skb;
4716 if (!skb_headlen(list_skb)) {
4717 BUG_ON(!nfrags);
4718 } else {
4719 BUG_ON(!list_skb->head_frag);
4720
4721 /* to make room for head_frag. */
4722 i--;
4723 frag--;
4724 }
4725
4726 list_skb = list_skb->next;
4727 }
4728
4729 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4730 MAX_SKB_FRAGS)) {
4731 net_warn_ratelimited(
4732 "skb_segment: too many frags: %u %u\n",
4733 pos, mss);
4734 err = -EINVAL;
4735 goto err;
4736 }
4737
4738 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4739 __skb_frag_ref(nskb_frag);
4740 size = skb_frag_size(nskb_frag);
4741
4742 if (pos < offset) {
4743 skb_frag_off_add(nskb_frag, offset - pos);
4744 skb_frag_size_sub(nskb_frag, offset - pos);
4745 }
4746
4747 skb_shinfo(nskb)->nr_frags++;
4748
4749 if (pos + size <= offset + len) {
4750 i++;
4751 frag++;
4752 pos += size;
4753 } else {
4754 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4755 goto skip_fraglist;
4756 }
4757
4758 nskb_frag++;
4759 }
4760
4761skip_fraglist:
4762 nskb->data_len = len - hsize;
4763 nskb->len += nskb->data_len;
4764 nskb->truesize += nskb->data_len;
4765
4766perform_csum_check:
4767 if (!csum) {
4768 if (skb_has_shared_frag(nskb) &&
4769 __skb_linearize(nskb))
4770 goto err;
4771
4772 if (!nskb->remcsum_offload)
4773 nskb->ip_summed = CHECKSUM_NONE;
4774 SKB_GSO_CB(nskb)->csum =
4775 skb_checksum(nskb, doffset,
4776 nskb->len - doffset, 0);
4777 SKB_GSO_CB(nskb)->csum_start =
4778 skb_headroom(nskb) + doffset;
4779 }
4780 } while ((offset += len) < head_skb->len);
4781
4782 /* Some callers want to get the end of the list.
4783 * Put it in segs->prev to avoid walking the list.
4784 * (see validate_xmit_skb_list() for example)
4785 */
4786 segs->prev = tail;
4787
4788 if (partial_segs) {
4789 struct sk_buff *iter;
4790 int type = skb_shinfo(head_skb)->gso_type;
4791 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4792
4793 /* Update type to add partial and then remove dodgy if set */
4794 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4795 type &= ~SKB_GSO_DODGY;
4796
4797 /* Update GSO info and prepare to start updating headers on
4798 * our way back down the stack of protocols.
4799 */
4800 for (iter = segs; iter; iter = iter->next) {
4801 skb_shinfo(iter)->gso_size = gso_size;
4802 skb_shinfo(iter)->gso_segs = partial_segs;
4803 skb_shinfo(iter)->gso_type = type;
4804 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4805 }
4806
4807 if (tail->len - doffset <= gso_size)
4808 skb_shinfo(tail)->gso_size = 0;
4809 else if (tail != segs)
4810 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4811 }
4812
4813 /* Following permits correct backpressure, for protocols
4814 * using skb_set_owner_w().
4815 * Idea is to tranfert ownership from head_skb to last segment.
4816 */
4817 if (head_skb->destructor == sock_wfree) {
4818 swap(tail->truesize, head_skb->truesize);
4819 swap(tail->destructor, head_skb->destructor);
4820 swap(tail->sk, head_skb->sk);
4821 }
4822 return segs;
4823
4824err:
4825 kfree_skb_list(segs);
4826 return ERR_PTR(err);
4827}
4828EXPORT_SYMBOL_GPL(skb_segment);
4829
4830#ifdef CONFIG_SKB_EXTENSIONS
4831#define SKB_EXT_ALIGN_VALUE 8
4832#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4833
4834static const u8 skb_ext_type_len[] = {
4835#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4836 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4837#endif
4838#ifdef CONFIG_XFRM
4839 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4840#endif
4841#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4842 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4843#endif
4844#if IS_ENABLED(CONFIG_MPTCP)
4845 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4846#endif
4847#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4848 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4849#endif
4850};
4851
4852static __always_inline unsigned int skb_ext_total_length(void)
4853{
4854 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4855 int i;
4856
4857 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4858 l += skb_ext_type_len[i];
4859
4860 return l;
4861}
4862
4863static void skb_extensions_init(void)
4864{
4865 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4866#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4867 BUILD_BUG_ON(skb_ext_total_length() > 255);
4868#endif
4869
4870 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4871 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4872 0,
4873 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4874 NULL);
4875}
4876#else
4877static void skb_extensions_init(void) {}
4878#endif
4879
4880/* The SKB kmem_cache slab is critical for network performance. Never
4881 * merge/alias the slab with similar sized objects. This avoids fragmentation
4882 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4883 */
4884#ifndef CONFIG_SLUB_TINY
4885#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4886#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4887#define FLAG_SKB_NO_MERGE 0
4888#endif
4889
4890void __init skb_init(void)
4891{
4892 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4893 sizeof(struct sk_buff),
4894 0,
4895 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4896 FLAG_SKB_NO_MERGE,
4897 offsetof(struct sk_buff, cb),
4898 sizeof_field(struct sk_buff, cb),
4899 NULL);
4900 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4901 sizeof(struct sk_buff_fclones),
4902 0,
4903 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4904 NULL);
4905 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4906 * struct skb_shared_info is located at the end of skb->head,
4907 * and should not be copied to/from user.
4908 */
4909 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4910 SKB_SMALL_HEAD_CACHE_SIZE,
4911 0,
4912 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4913 0,
4914 SKB_SMALL_HEAD_HEADROOM,
4915 NULL);
4916 skb_extensions_init();
4917}
4918
4919static int
4920__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4921 unsigned int recursion_level)
4922{
4923 int start = skb_headlen(skb);
4924 int i, copy = start - offset;
4925 struct sk_buff *frag_iter;
4926 int elt = 0;
4927
4928 if (unlikely(recursion_level >= 24))
4929 return -EMSGSIZE;
4930
4931 if (copy > 0) {
4932 if (copy > len)
4933 copy = len;
4934 sg_set_buf(sg, skb->data + offset, copy);
4935 elt++;
4936 if ((len -= copy) == 0)
4937 return elt;
4938 offset += copy;
4939 }
4940
4941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4942 int end;
4943
4944 WARN_ON(start > offset + len);
4945
4946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4947 if ((copy = end - offset) > 0) {
4948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4949 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4950 return -EMSGSIZE;
4951
4952 if (copy > len)
4953 copy = len;
4954 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4955 skb_frag_off(frag) + offset - start);
4956 elt++;
4957 if (!(len -= copy))
4958 return elt;
4959 offset += copy;
4960 }
4961 start = end;
4962 }
4963
4964 skb_walk_frags(skb, frag_iter) {
4965 int end, ret;
4966
4967 WARN_ON(start > offset + len);
4968
4969 end = start + frag_iter->len;
4970 if ((copy = end - offset) > 0) {
4971 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4972 return -EMSGSIZE;
4973
4974 if (copy > len)
4975 copy = len;
4976 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4977 copy, recursion_level + 1);
4978 if (unlikely(ret < 0))
4979 return ret;
4980 elt += ret;
4981 if ((len -= copy) == 0)
4982 return elt;
4983 offset += copy;
4984 }
4985 start = end;
4986 }
4987 BUG_ON(len);
4988 return elt;
4989}
4990
4991/**
4992 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4993 * @skb: Socket buffer containing the buffers to be mapped
4994 * @sg: The scatter-gather list to map into
4995 * @offset: The offset into the buffer's contents to start mapping
4996 * @len: Length of buffer space to be mapped
4997 *
4998 * Fill the specified scatter-gather list with mappings/pointers into a
4999 * region of the buffer space attached to a socket buffer. Returns either
5000 * the number of scatterlist items used, or -EMSGSIZE if the contents
5001 * could not fit.
5002 */
5003int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5004{
5005 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5006
5007 if (nsg <= 0)
5008 return nsg;
5009
5010 sg_mark_end(&sg[nsg - 1]);
5011
5012 return nsg;
5013}
5014EXPORT_SYMBOL_GPL(skb_to_sgvec);
5015
5016/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5017 * sglist without mark the sg which contain last skb data as the end.
5018 * So the caller can mannipulate sg list as will when padding new data after
5019 * the first call without calling sg_unmark_end to expend sg list.
5020 *
5021 * Scenario to use skb_to_sgvec_nomark:
5022 * 1. sg_init_table
5023 * 2. skb_to_sgvec_nomark(payload1)
5024 * 3. skb_to_sgvec_nomark(payload2)
5025 *
5026 * This is equivalent to:
5027 * 1. sg_init_table
5028 * 2. skb_to_sgvec(payload1)
5029 * 3. sg_unmark_end
5030 * 4. skb_to_sgvec(payload2)
5031 *
5032 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5033 * is more preferable.
5034 */
5035int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5036 int offset, int len)
5037{
5038 return __skb_to_sgvec(skb, sg, offset, len, 0);
5039}
5040EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5041
5042
5043
5044/**
5045 * skb_cow_data - Check that a socket buffer's data buffers are writable
5046 * @skb: The socket buffer to check.
5047 * @tailbits: Amount of trailing space to be added
5048 * @trailer: Returned pointer to the skb where the @tailbits space begins
5049 *
5050 * Make sure that the data buffers attached to a socket buffer are
5051 * writable. If they are not, private copies are made of the data buffers
5052 * and the socket buffer is set to use these instead.
5053 *
5054 * If @tailbits is given, make sure that there is space to write @tailbits
5055 * bytes of data beyond current end of socket buffer. @trailer will be
5056 * set to point to the skb in which this space begins.
5057 *
5058 * The number of scatterlist elements required to completely map the
5059 * COW'd and extended socket buffer will be returned.
5060 */
5061int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5062{
5063 int copyflag;
5064 int elt;
5065 struct sk_buff *skb1, **skb_p;
5066
5067 /* If skb is cloned or its head is paged, reallocate
5068 * head pulling out all the pages (pages are considered not writable
5069 * at the moment even if they are anonymous).
5070 */
5071 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5072 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5073 return -ENOMEM;
5074
5075 /* Easy case. Most of packets will go this way. */
5076 if (!skb_has_frag_list(skb)) {
5077 /* A little of trouble, not enough of space for trailer.
5078 * This should not happen, when stack is tuned to generate
5079 * good frames. OK, on miss we reallocate and reserve even more
5080 * space, 128 bytes is fair. */
5081
5082 if (skb_tailroom(skb) < tailbits &&
5083 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5084 return -ENOMEM;
5085
5086 /* Voila! */
5087 *trailer = skb;
5088 return 1;
5089 }
5090
5091 /* Misery. We are in troubles, going to mincer fragments... */
5092
5093 elt = 1;
5094 skb_p = &skb_shinfo(skb)->frag_list;
5095 copyflag = 0;
5096
5097 while ((skb1 = *skb_p) != NULL) {
5098 int ntail = 0;
5099
5100 /* The fragment is partially pulled by someone,
5101 * this can happen on input. Copy it and everything
5102 * after it. */
5103
5104 if (skb_shared(skb1))
5105 copyflag = 1;
5106
5107 /* If the skb is the last, worry about trailer. */
5108
5109 if (skb1->next == NULL && tailbits) {
5110 if (skb_shinfo(skb1)->nr_frags ||
5111 skb_has_frag_list(skb1) ||
5112 skb_tailroom(skb1) < tailbits)
5113 ntail = tailbits + 128;
5114 }
5115
5116 if (copyflag ||
5117 skb_cloned(skb1) ||
5118 ntail ||
5119 skb_shinfo(skb1)->nr_frags ||
5120 skb_has_frag_list(skb1)) {
5121 struct sk_buff *skb2;
5122
5123 /* Fuck, we are miserable poor guys... */
5124 if (ntail == 0)
5125 skb2 = skb_copy(skb1, GFP_ATOMIC);
5126 else
5127 skb2 = skb_copy_expand(skb1,
5128 skb_headroom(skb1),
5129 ntail,
5130 GFP_ATOMIC);
5131 if (unlikely(skb2 == NULL))
5132 return -ENOMEM;
5133
5134 if (skb1->sk)
5135 skb_set_owner_w(skb2, skb1->sk);
5136
5137 /* Looking around. Are we still alive?
5138 * OK, link new skb, drop old one */
5139
5140 skb2->next = skb1->next;
5141 *skb_p = skb2;
5142 kfree_skb(skb1);
5143 skb1 = skb2;
5144 }
5145 elt++;
5146 *trailer = skb1;
5147 skb_p = &skb1->next;
5148 }
5149
5150 return elt;
5151}
5152EXPORT_SYMBOL_GPL(skb_cow_data);
5153
5154static void sock_rmem_free(struct sk_buff *skb)
5155{
5156 struct sock *sk = skb->sk;
5157
5158 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5159}
5160
5161static void skb_set_err_queue(struct sk_buff *skb)
5162{
5163 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5164 * So, it is safe to (mis)use it to mark skbs on the error queue.
5165 */
5166 skb->pkt_type = PACKET_OUTGOING;
5167 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5168}
5169
5170/*
5171 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5172 */
5173int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5174{
5175 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5176 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5177 return -ENOMEM;
5178
5179 skb_orphan(skb);
5180 skb->sk = sk;
5181 skb->destructor = sock_rmem_free;
5182 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5183 skb_set_err_queue(skb);
5184
5185 /* before exiting rcu section, make sure dst is refcounted */
5186 skb_dst_force(skb);
5187
5188 skb_queue_tail(&sk->sk_error_queue, skb);
5189 if (!sock_flag(sk, SOCK_DEAD))
5190 sk_error_report(sk);
5191 return 0;
5192}
5193EXPORT_SYMBOL(sock_queue_err_skb);
5194
5195static bool is_icmp_err_skb(const struct sk_buff *skb)
5196{
5197 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5198 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5199}
5200
5201struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5202{
5203 struct sk_buff_head *q = &sk->sk_error_queue;
5204 struct sk_buff *skb, *skb_next = NULL;
5205 bool icmp_next = false;
5206 unsigned long flags;
5207
5208 if (skb_queue_empty_lockless(q))
5209 return NULL;
5210
5211 spin_lock_irqsave(&q->lock, flags);
5212 skb = __skb_dequeue(q);
5213 if (skb && (skb_next = skb_peek(q))) {
5214 icmp_next = is_icmp_err_skb(skb_next);
5215 if (icmp_next)
5216 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5217 }
5218 spin_unlock_irqrestore(&q->lock, flags);
5219
5220 if (is_icmp_err_skb(skb) && !icmp_next)
5221 sk->sk_err = 0;
5222
5223 if (skb_next)
5224 sk_error_report(sk);
5225
5226 return skb;
5227}
5228EXPORT_SYMBOL(sock_dequeue_err_skb);
5229
5230/**
5231 * skb_clone_sk - create clone of skb, and take reference to socket
5232 * @skb: the skb to clone
5233 *
5234 * This function creates a clone of a buffer that holds a reference on
5235 * sk_refcnt. Buffers created via this function are meant to be
5236 * returned using sock_queue_err_skb, or free via kfree_skb.
5237 *
5238 * When passing buffers allocated with this function to sock_queue_err_skb
5239 * it is necessary to wrap the call with sock_hold/sock_put in order to
5240 * prevent the socket from being released prior to being enqueued on
5241 * the sk_error_queue.
5242 */
5243struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5244{
5245 struct sock *sk = skb->sk;
5246 struct sk_buff *clone;
5247
5248 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5249 return NULL;
5250
5251 clone = skb_clone(skb, GFP_ATOMIC);
5252 if (!clone) {
5253 sock_put(sk);
5254 return NULL;
5255 }
5256
5257 clone->sk = sk;
5258 clone->destructor = sock_efree;
5259
5260 return clone;
5261}
5262EXPORT_SYMBOL(skb_clone_sk);
5263
5264static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5265 struct sock *sk,
5266 int tstype,
5267 bool opt_stats)
5268{
5269 struct sock_exterr_skb *serr;
5270 int err;
5271
5272 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5273
5274 serr = SKB_EXT_ERR(skb);
5275 memset(serr, 0, sizeof(*serr));
5276 serr->ee.ee_errno = ENOMSG;
5277 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5278 serr->ee.ee_info = tstype;
5279 serr->opt_stats = opt_stats;
5280 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5282 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5283 if (sk_is_tcp(sk))
5284 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5285 }
5286
5287 err = sock_queue_err_skb(sk, skb);
5288
5289 if (err)
5290 kfree_skb(skb);
5291}
5292
5293static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5294{
5295 bool ret;
5296
5297 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5298 return true;
5299
5300 read_lock_bh(&sk->sk_callback_lock);
5301 ret = sk->sk_socket && sk->sk_socket->file &&
5302 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5303 read_unlock_bh(&sk->sk_callback_lock);
5304 return ret;
5305}
5306
5307void skb_complete_tx_timestamp(struct sk_buff *skb,
5308 struct skb_shared_hwtstamps *hwtstamps)
5309{
5310 struct sock *sk = skb->sk;
5311
5312 if (!skb_may_tx_timestamp(sk, false))
5313 goto err;
5314
5315 /* Take a reference to prevent skb_orphan() from freeing the socket,
5316 * but only if the socket refcount is not zero.
5317 */
5318 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5319 *skb_hwtstamps(skb) = *hwtstamps;
5320 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5321 sock_put(sk);
5322 return;
5323 }
5324
5325err:
5326 kfree_skb(skb);
5327}
5328EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5329
5330void __skb_tstamp_tx(struct sk_buff *orig_skb,
5331 const struct sk_buff *ack_skb,
5332 struct skb_shared_hwtstamps *hwtstamps,
5333 struct sock *sk, int tstype)
5334{
5335 struct sk_buff *skb;
5336 bool tsonly, opt_stats = false;
5337 u32 tsflags;
5338
5339 if (!sk)
5340 return;
5341
5342 tsflags = READ_ONCE(sk->sk_tsflags);
5343 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5344 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5345 return;
5346
5347 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5348 if (!skb_may_tx_timestamp(sk, tsonly))
5349 return;
5350
5351 if (tsonly) {
5352#ifdef CONFIG_INET
5353 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5354 sk_is_tcp(sk)) {
5355 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5356 ack_skb);
5357 opt_stats = true;
5358 } else
5359#endif
5360 skb = alloc_skb(0, GFP_ATOMIC);
5361 } else {
5362 skb = skb_clone(orig_skb, GFP_ATOMIC);
5363
5364 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5365 kfree_skb(skb);
5366 return;
5367 }
5368 }
5369 if (!skb)
5370 return;
5371
5372 if (tsonly) {
5373 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5374 SKBTX_ANY_TSTAMP;
5375 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5376 }
5377
5378 if (hwtstamps)
5379 *skb_hwtstamps(skb) = *hwtstamps;
5380 else
5381 __net_timestamp(skb);
5382
5383 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5384}
5385EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5386
5387void skb_tstamp_tx(struct sk_buff *orig_skb,
5388 struct skb_shared_hwtstamps *hwtstamps)
5389{
5390 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5391 SCM_TSTAMP_SND);
5392}
5393EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5394
5395#ifdef CONFIG_WIRELESS
5396void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5397{
5398 struct sock *sk = skb->sk;
5399 struct sock_exterr_skb *serr;
5400 int err = 1;
5401
5402 skb->wifi_acked_valid = 1;
5403 skb->wifi_acked = acked;
5404
5405 serr = SKB_EXT_ERR(skb);
5406 memset(serr, 0, sizeof(*serr));
5407 serr->ee.ee_errno = ENOMSG;
5408 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5409
5410 /* Take a reference to prevent skb_orphan() from freeing the socket,
5411 * but only if the socket refcount is not zero.
5412 */
5413 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5414 err = sock_queue_err_skb(sk, skb);
5415 sock_put(sk);
5416 }
5417 if (err)
5418 kfree_skb(skb);
5419}
5420EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5421#endif /* CONFIG_WIRELESS */
5422
5423/**
5424 * skb_partial_csum_set - set up and verify partial csum values for packet
5425 * @skb: the skb to set
5426 * @start: the number of bytes after skb->data to start checksumming.
5427 * @off: the offset from start to place the checksum.
5428 *
5429 * For untrusted partially-checksummed packets, we need to make sure the values
5430 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5431 *
5432 * This function checks and sets those values and skb->ip_summed: if this
5433 * returns false you should drop the packet.
5434 */
5435bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5436{
5437 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5438 u32 csum_start = skb_headroom(skb) + (u32)start;
5439
5440 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5441 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5442 start, off, skb_headroom(skb), skb_headlen(skb));
5443 return false;
5444 }
5445 skb->ip_summed = CHECKSUM_PARTIAL;
5446 skb->csum_start = csum_start;
5447 skb->csum_offset = off;
5448 skb->transport_header = csum_start;
5449 return true;
5450}
5451EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5452
5453static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5454 unsigned int max)
5455{
5456 if (skb_headlen(skb) >= len)
5457 return 0;
5458
5459 /* If we need to pullup then pullup to the max, so we
5460 * won't need to do it again.
5461 */
5462 if (max > skb->len)
5463 max = skb->len;
5464
5465 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5466 return -ENOMEM;
5467
5468 if (skb_headlen(skb) < len)
5469 return -EPROTO;
5470
5471 return 0;
5472}
5473
5474#define MAX_TCP_HDR_LEN (15 * 4)
5475
5476static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5477 typeof(IPPROTO_IP) proto,
5478 unsigned int off)
5479{
5480 int err;
5481
5482 switch (proto) {
5483 case IPPROTO_TCP:
5484 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5485 off + MAX_TCP_HDR_LEN);
5486 if (!err && !skb_partial_csum_set(skb, off,
5487 offsetof(struct tcphdr,
5488 check)))
5489 err = -EPROTO;
5490 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5491
5492 case IPPROTO_UDP:
5493 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5494 off + sizeof(struct udphdr));
5495 if (!err && !skb_partial_csum_set(skb, off,
5496 offsetof(struct udphdr,
5497 check)))
5498 err = -EPROTO;
5499 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5500 }
5501
5502 return ERR_PTR(-EPROTO);
5503}
5504
5505/* This value should be large enough to cover a tagged ethernet header plus
5506 * maximally sized IP and TCP or UDP headers.
5507 */
5508#define MAX_IP_HDR_LEN 128
5509
5510static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5511{
5512 unsigned int off;
5513 bool fragment;
5514 __sum16 *csum;
5515 int err;
5516
5517 fragment = false;
5518
5519 err = skb_maybe_pull_tail(skb,
5520 sizeof(struct iphdr),
5521 MAX_IP_HDR_LEN);
5522 if (err < 0)
5523 goto out;
5524
5525 if (ip_is_fragment(ip_hdr(skb)))
5526 fragment = true;
5527
5528 off = ip_hdrlen(skb);
5529
5530 err = -EPROTO;
5531
5532 if (fragment)
5533 goto out;
5534
5535 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5536 if (IS_ERR(csum))
5537 return PTR_ERR(csum);
5538
5539 if (recalculate)
5540 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5541 ip_hdr(skb)->daddr,
5542 skb->len - off,
5543 ip_hdr(skb)->protocol, 0);
5544 err = 0;
5545
5546out:
5547 return err;
5548}
5549
5550/* This value should be large enough to cover a tagged ethernet header plus
5551 * an IPv6 header, all options, and a maximal TCP or UDP header.
5552 */
5553#define MAX_IPV6_HDR_LEN 256
5554
5555#define OPT_HDR(type, skb, off) \
5556 (type *)(skb_network_header(skb) + (off))
5557
5558static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5559{
5560 int err;
5561 u8 nexthdr;
5562 unsigned int off;
5563 unsigned int len;
5564 bool fragment;
5565 bool done;
5566 __sum16 *csum;
5567
5568 fragment = false;
5569 done = false;
5570
5571 off = sizeof(struct ipv6hdr);
5572
5573 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5574 if (err < 0)
5575 goto out;
5576
5577 nexthdr = ipv6_hdr(skb)->nexthdr;
5578
5579 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5580 while (off <= len && !done) {
5581 switch (nexthdr) {
5582 case IPPROTO_DSTOPTS:
5583 case IPPROTO_HOPOPTS:
5584 case IPPROTO_ROUTING: {
5585 struct ipv6_opt_hdr *hp;
5586
5587 err = skb_maybe_pull_tail(skb,
5588 off +
5589 sizeof(struct ipv6_opt_hdr),
5590 MAX_IPV6_HDR_LEN);
5591 if (err < 0)
5592 goto out;
5593
5594 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5595 nexthdr = hp->nexthdr;
5596 off += ipv6_optlen(hp);
5597 break;
5598 }
5599 case IPPROTO_AH: {
5600 struct ip_auth_hdr *hp;
5601
5602 err = skb_maybe_pull_tail(skb,
5603 off +
5604 sizeof(struct ip_auth_hdr),
5605 MAX_IPV6_HDR_LEN);
5606 if (err < 0)
5607 goto out;
5608
5609 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5610 nexthdr = hp->nexthdr;
5611 off += ipv6_authlen(hp);
5612 break;
5613 }
5614 case IPPROTO_FRAGMENT: {
5615 struct frag_hdr *hp;
5616
5617 err = skb_maybe_pull_tail(skb,
5618 off +
5619 sizeof(struct frag_hdr),
5620 MAX_IPV6_HDR_LEN);
5621 if (err < 0)
5622 goto out;
5623
5624 hp = OPT_HDR(struct frag_hdr, skb, off);
5625
5626 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5627 fragment = true;
5628
5629 nexthdr = hp->nexthdr;
5630 off += sizeof(struct frag_hdr);
5631 break;
5632 }
5633 default:
5634 done = true;
5635 break;
5636 }
5637 }
5638
5639 err = -EPROTO;
5640
5641 if (!done || fragment)
5642 goto out;
5643
5644 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5645 if (IS_ERR(csum))
5646 return PTR_ERR(csum);
5647
5648 if (recalculate)
5649 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5650 &ipv6_hdr(skb)->daddr,
5651 skb->len - off, nexthdr, 0);
5652 err = 0;
5653
5654out:
5655 return err;
5656}
5657
5658/**
5659 * skb_checksum_setup - set up partial checksum offset
5660 * @skb: the skb to set up
5661 * @recalculate: if true the pseudo-header checksum will be recalculated
5662 */
5663int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5664{
5665 int err;
5666
5667 switch (skb->protocol) {
5668 case htons(ETH_P_IP):
5669 err = skb_checksum_setup_ipv4(skb, recalculate);
5670 break;
5671
5672 case htons(ETH_P_IPV6):
5673 err = skb_checksum_setup_ipv6(skb, recalculate);
5674 break;
5675
5676 default:
5677 err = -EPROTO;
5678 break;
5679 }
5680
5681 return err;
5682}
5683EXPORT_SYMBOL(skb_checksum_setup);
5684
5685/**
5686 * skb_checksum_maybe_trim - maybe trims the given skb
5687 * @skb: the skb to check
5688 * @transport_len: the data length beyond the network header
5689 *
5690 * Checks whether the given skb has data beyond the given transport length.
5691 * If so, returns a cloned skb trimmed to this transport length.
5692 * Otherwise returns the provided skb. Returns NULL in error cases
5693 * (e.g. transport_len exceeds skb length or out-of-memory).
5694 *
5695 * Caller needs to set the skb transport header and free any returned skb if it
5696 * differs from the provided skb.
5697 */
5698static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5699 unsigned int transport_len)
5700{
5701 struct sk_buff *skb_chk;
5702 unsigned int len = skb_transport_offset(skb) + transport_len;
5703 int ret;
5704
5705 if (skb->len < len)
5706 return NULL;
5707 else if (skb->len == len)
5708 return skb;
5709
5710 skb_chk = skb_clone(skb, GFP_ATOMIC);
5711 if (!skb_chk)
5712 return NULL;
5713
5714 ret = pskb_trim_rcsum(skb_chk, len);
5715 if (ret) {
5716 kfree_skb(skb_chk);
5717 return NULL;
5718 }
5719
5720 return skb_chk;
5721}
5722
5723/**
5724 * skb_checksum_trimmed - validate checksum of an skb
5725 * @skb: the skb to check
5726 * @transport_len: the data length beyond the network header
5727 * @skb_chkf: checksum function to use
5728 *
5729 * Applies the given checksum function skb_chkf to the provided skb.
5730 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5731 *
5732 * If the skb has data beyond the given transport length, then a
5733 * trimmed & cloned skb is checked and returned.
5734 *
5735 * Caller needs to set the skb transport header and free any returned skb if it
5736 * differs from the provided skb.
5737 */
5738struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5739 unsigned int transport_len,
5740 __sum16(*skb_chkf)(struct sk_buff *skb))
5741{
5742 struct sk_buff *skb_chk;
5743 unsigned int offset = skb_transport_offset(skb);
5744 __sum16 ret;
5745
5746 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5747 if (!skb_chk)
5748 goto err;
5749
5750 if (!pskb_may_pull(skb_chk, offset))
5751 goto err;
5752
5753 skb_pull_rcsum(skb_chk, offset);
5754 ret = skb_chkf(skb_chk);
5755 skb_push_rcsum(skb_chk, offset);
5756
5757 if (ret)
5758 goto err;
5759
5760 return skb_chk;
5761
5762err:
5763 if (skb_chk && skb_chk != skb)
5764 kfree_skb(skb_chk);
5765
5766 return NULL;
5767
5768}
5769EXPORT_SYMBOL(skb_checksum_trimmed);
5770
5771void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5772{
5773 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5774 skb->dev->name);
5775}
5776EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5777
5778void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5779{
5780 if (head_stolen) {
5781 skb_release_head_state(skb);
5782 kmem_cache_free(skbuff_cache, skb);
5783 } else {
5784 __kfree_skb(skb);
5785 }
5786}
5787EXPORT_SYMBOL(kfree_skb_partial);
5788
5789/**
5790 * skb_try_coalesce - try to merge skb to prior one
5791 * @to: prior buffer
5792 * @from: buffer to add
5793 * @fragstolen: pointer to boolean
5794 * @delta_truesize: how much more was allocated than was requested
5795 */
5796bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5797 bool *fragstolen, int *delta_truesize)
5798{
5799 struct skb_shared_info *to_shinfo, *from_shinfo;
5800 int i, delta, len = from->len;
5801
5802 *fragstolen = false;
5803
5804 if (skb_cloned(to))
5805 return false;
5806
5807 /* In general, avoid mixing page_pool and non-page_pool allocated
5808 * pages within the same SKB. In theory we could take full
5809 * references if @from is cloned and !@to->pp_recycle but its
5810 * tricky (due to potential race with the clone disappearing) and
5811 * rare, so not worth dealing with.
5812 */
5813 if (to->pp_recycle != from->pp_recycle)
5814 return false;
5815
5816 if (len <= skb_tailroom(to)) {
5817 if (len)
5818 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5819 *delta_truesize = 0;
5820 return true;
5821 }
5822
5823 to_shinfo = skb_shinfo(to);
5824 from_shinfo = skb_shinfo(from);
5825 if (to_shinfo->frag_list || from_shinfo->frag_list)
5826 return false;
5827 if (skb_zcopy(to) || skb_zcopy(from))
5828 return false;
5829
5830 if (skb_headlen(from) != 0) {
5831 struct page *page;
5832 unsigned int offset;
5833
5834 if (to_shinfo->nr_frags +
5835 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5836 return false;
5837
5838 if (skb_head_is_locked(from))
5839 return false;
5840
5841 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5842
5843 page = virt_to_head_page(from->head);
5844 offset = from->data - (unsigned char *)page_address(page);
5845
5846 skb_fill_page_desc(to, to_shinfo->nr_frags,
5847 page, offset, skb_headlen(from));
5848 *fragstolen = true;
5849 } else {
5850 if (to_shinfo->nr_frags +
5851 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5852 return false;
5853
5854 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5855 }
5856
5857 WARN_ON_ONCE(delta < len);
5858
5859 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5860 from_shinfo->frags,
5861 from_shinfo->nr_frags * sizeof(skb_frag_t));
5862 to_shinfo->nr_frags += from_shinfo->nr_frags;
5863
5864 if (!skb_cloned(from))
5865 from_shinfo->nr_frags = 0;
5866
5867 /* if the skb is not cloned this does nothing
5868 * since we set nr_frags to 0.
5869 */
5870 if (skb_pp_frag_ref(from)) {
5871 for (i = 0; i < from_shinfo->nr_frags; i++)
5872 __skb_frag_ref(&from_shinfo->frags[i]);
5873 }
5874
5875 to->truesize += delta;
5876 to->len += len;
5877 to->data_len += len;
5878
5879 *delta_truesize = delta;
5880 return true;
5881}
5882EXPORT_SYMBOL(skb_try_coalesce);
5883
5884/**
5885 * skb_scrub_packet - scrub an skb
5886 *
5887 * @skb: buffer to clean
5888 * @xnet: packet is crossing netns
5889 *
5890 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5891 * into/from a tunnel. Some information have to be cleared during these
5892 * operations.
5893 * skb_scrub_packet can also be used to clean a skb before injecting it in
5894 * another namespace (@xnet == true). We have to clear all information in the
5895 * skb that could impact namespace isolation.
5896 */
5897void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5898{
5899 skb->pkt_type = PACKET_HOST;
5900 skb->skb_iif = 0;
5901 skb->ignore_df = 0;
5902 skb_dst_drop(skb);
5903 skb_ext_reset(skb);
5904 nf_reset_ct(skb);
5905 nf_reset_trace(skb);
5906
5907#ifdef CONFIG_NET_SWITCHDEV
5908 skb->offload_fwd_mark = 0;
5909 skb->offload_l3_fwd_mark = 0;
5910#endif
5911
5912 if (!xnet)
5913 return;
5914
5915 ipvs_reset(skb);
5916 skb->mark = 0;
5917 skb_clear_tstamp(skb);
5918}
5919EXPORT_SYMBOL_GPL(skb_scrub_packet);
5920
5921static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5922{
5923 int mac_len, meta_len;
5924 void *meta;
5925
5926 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5927 kfree_skb(skb);
5928 return NULL;
5929 }
5930
5931 mac_len = skb->data - skb_mac_header(skb);
5932 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5933 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5934 mac_len - VLAN_HLEN - ETH_TLEN);
5935 }
5936
5937 meta_len = skb_metadata_len(skb);
5938 if (meta_len) {
5939 meta = skb_metadata_end(skb) - meta_len;
5940 memmove(meta + VLAN_HLEN, meta, meta_len);
5941 }
5942
5943 skb->mac_header += VLAN_HLEN;
5944 return skb;
5945}
5946
5947struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5948{
5949 struct vlan_hdr *vhdr;
5950 u16 vlan_tci;
5951
5952 if (unlikely(skb_vlan_tag_present(skb))) {
5953 /* vlan_tci is already set-up so leave this for another time */
5954 return skb;
5955 }
5956
5957 skb = skb_share_check(skb, GFP_ATOMIC);
5958 if (unlikely(!skb))
5959 goto err_free;
5960 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5962 goto err_free;
5963
5964 vhdr = (struct vlan_hdr *)skb->data;
5965 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5967
5968 skb_pull_rcsum(skb, VLAN_HLEN);
5969 vlan_set_encap_proto(skb, vhdr);
5970
5971 skb = skb_reorder_vlan_header(skb);
5972 if (unlikely(!skb))
5973 goto err_free;
5974
5975 skb_reset_network_header(skb);
5976 if (!skb_transport_header_was_set(skb))
5977 skb_reset_transport_header(skb);
5978 skb_reset_mac_len(skb);
5979
5980 return skb;
5981
5982err_free:
5983 kfree_skb(skb);
5984 return NULL;
5985}
5986EXPORT_SYMBOL(skb_vlan_untag);
5987
5988int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5989{
5990 if (!pskb_may_pull(skb, write_len))
5991 return -ENOMEM;
5992
5993 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5994 return 0;
5995
5996 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5997}
5998EXPORT_SYMBOL(skb_ensure_writable);
5999
6000int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6001{
6002 int needed_headroom = dev->needed_headroom;
6003 int needed_tailroom = dev->needed_tailroom;
6004
6005 /* For tail taggers, we need to pad short frames ourselves, to ensure
6006 * that the tail tag does not fail at its role of being at the end of
6007 * the packet, once the conduit interface pads the frame. Account for
6008 * that pad length here, and pad later.
6009 */
6010 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6011 needed_tailroom += ETH_ZLEN - skb->len;
6012 /* skb_headroom() returns unsigned int... */
6013 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6014 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6015
6016 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6017 /* No reallocation needed, yay! */
6018 return 0;
6019
6020 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6021 GFP_ATOMIC);
6022}
6023EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6024
6025/* remove VLAN header from packet and update csum accordingly.
6026 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6027 */
6028int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6029{
6030 int offset = skb->data - skb_mac_header(skb);
6031 int err;
6032
6033 if (WARN_ONCE(offset,
6034 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6035 offset)) {
6036 return -EINVAL;
6037 }
6038
6039 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6040 if (unlikely(err))
6041 return err;
6042
6043 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6044
6045 vlan_remove_tag(skb, vlan_tci);
6046
6047 skb->mac_header += VLAN_HLEN;
6048
6049 if (skb_network_offset(skb) < ETH_HLEN)
6050 skb_set_network_header(skb, ETH_HLEN);
6051
6052 skb_reset_mac_len(skb);
6053
6054 return err;
6055}
6056EXPORT_SYMBOL(__skb_vlan_pop);
6057
6058/* Pop a vlan tag either from hwaccel or from payload.
6059 * Expects skb->data at mac header.
6060 */
6061int skb_vlan_pop(struct sk_buff *skb)
6062{
6063 u16 vlan_tci;
6064 __be16 vlan_proto;
6065 int err;
6066
6067 if (likely(skb_vlan_tag_present(skb))) {
6068 __vlan_hwaccel_clear_tag(skb);
6069 } else {
6070 if (unlikely(!eth_type_vlan(skb->protocol)))
6071 return 0;
6072
6073 err = __skb_vlan_pop(skb, &vlan_tci);
6074 if (err)
6075 return err;
6076 }
6077 /* move next vlan tag to hw accel tag */
6078 if (likely(!eth_type_vlan(skb->protocol)))
6079 return 0;
6080
6081 vlan_proto = skb->protocol;
6082 err = __skb_vlan_pop(skb, &vlan_tci);
6083 if (unlikely(err))
6084 return err;
6085
6086 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6087 return 0;
6088}
6089EXPORT_SYMBOL(skb_vlan_pop);
6090
6091/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6092 * Expects skb->data at mac header.
6093 */
6094int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6095{
6096 if (skb_vlan_tag_present(skb)) {
6097 int offset = skb->data - skb_mac_header(skb);
6098 int err;
6099
6100 if (WARN_ONCE(offset,
6101 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6102 offset)) {
6103 return -EINVAL;
6104 }
6105
6106 err = __vlan_insert_tag(skb, skb->vlan_proto,
6107 skb_vlan_tag_get(skb));
6108 if (err)
6109 return err;
6110
6111 skb->protocol = skb->vlan_proto;
6112 skb->mac_len += VLAN_HLEN;
6113
6114 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6115 }
6116 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6117 return 0;
6118}
6119EXPORT_SYMBOL(skb_vlan_push);
6120
6121/**
6122 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6123 *
6124 * @skb: Socket buffer to modify
6125 *
6126 * Drop the Ethernet header of @skb.
6127 *
6128 * Expects that skb->data points to the mac header and that no VLAN tags are
6129 * present.
6130 *
6131 * Returns 0 on success, -errno otherwise.
6132 */
6133int skb_eth_pop(struct sk_buff *skb)
6134{
6135 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6136 skb_network_offset(skb) < ETH_HLEN)
6137 return -EPROTO;
6138
6139 skb_pull_rcsum(skb, ETH_HLEN);
6140 skb_reset_mac_header(skb);
6141 skb_reset_mac_len(skb);
6142
6143 return 0;
6144}
6145EXPORT_SYMBOL(skb_eth_pop);
6146
6147/**
6148 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6149 *
6150 * @skb: Socket buffer to modify
6151 * @dst: Destination MAC address of the new header
6152 * @src: Source MAC address of the new header
6153 *
6154 * Prepend @skb with a new Ethernet header.
6155 *
6156 * Expects that skb->data points to the mac header, which must be empty.
6157 *
6158 * Returns 0 on success, -errno otherwise.
6159 */
6160int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6161 const unsigned char *src)
6162{
6163 struct ethhdr *eth;
6164 int err;
6165
6166 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6167 return -EPROTO;
6168
6169 err = skb_cow_head(skb, sizeof(*eth));
6170 if (err < 0)
6171 return err;
6172
6173 skb_push(skb, sizeof(*eth));
6174 skb_reset_mac_header(skb);
6175 skb_reset_mac_len(skb);
6176
6177 eth = eth_hdr(skb);
6178 ether_addr_copy(eth->h_dest, dst);
6179 ether_addr_copy(eth->h_source, src);
6180 eth->h_proto = skb->protocol;
6181
6182 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6183
6184 return 0;
6185}
6186EXPORT_SYMBOL(skb_eth_push);
6187
6188/* Update the ethertype of hdr and the skb csum value if required. */
6189static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6190 __be16 ethertype)
6191{
6192 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6193 __be16 diff[] = { ~hdr->h_proto, ethertype };
6194
6195 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6196 }
6197
6198 hdr->h_proto = ethertype;
6199}
6200
6201/**
6202 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6203 * the packet
6204 *
6205 * @skb: buffer
6206 * @mpls_lse: MPLS label stack entry to push
6207 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6208 * @mac_len: length of the MAC header
6209 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6210 * ethernet
6211 *
6212 * Expects skb->data at mac header.
6213 *
6214 * Returns 0 on success, -errno otherwise.
6215 */
6216int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6217 int mac_len, bool ethernet)
6218{
6219 struct mpls_shim_hdr *lse;
6220 int err;
6221
6222 if (unlikely(!eth_p_mpls(mpls_proto)))
6223 return -EINVAL;
6224
6225 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6226 if (skb->encapsulation)
6227 return -EINVAL;
6228
6229 err = skb_cow_head(skb, MPLS_HLEN);
6230 if (unlikely(err))
6231 return err;
6232
6233 if (!skb->inner_protocol) {
6234 skb_set_inner_network_header(skb, skb_network_offset(skb));
6235 skb_set_inner_protocol(skb, skb->protocol);
6236 }
6237
6238 skb_push(skb, MPLS_HLEN);
6239 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6240 mac_len);
6241 skb_reset_mac_header(skb);
6242 skb_set_network_header(skb, mac_len);
6243 skb_reset_mac_len(skb);
6244
6245 lse = mpls_hdr(skb);
6246 lse->label_stack_entry = mpls_lse;
6247 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6248
6249 if (ethernet && mac_len >= ETH_HLEN)
6250 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6251 skb->protocol = mpls_proto;
6252
6253 return 0;
6254}
6255EXPORT_SYMBOL_GPL(skb_mpls_push);
6256
6257/**
6258 * skb_mpls_pop() - pop the outermost MPLS header
6259 *
6260 * @skb: buffer
6261 * @next_proto: ethertype of header after popped MPLS header
6262 * @mac_len: length of the MAC header
6263 * @ethernet: flag to indicate if the packet is ethernet
6264 *
6265 * Expects skb->data at mac header.
6266 *
6267 * Returns 0 on success, -errno otherwise.
6268 */
6269int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6270 bool ethernet)
6271{
6272 int err;
6273
6274 if (unlikely(!eth_p_mpls(skb->protocol)))
6275 return 0;
6276
6277 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6278 if (unlikely(err))
6279 return err;
6280
6281 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6282 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6283 mac_len);
6284
6285 __skb_pull(skb, MPLS_HLEN);
6286 skb_reset_mac_header(skb);
6287 skb_set_network_header(skb, mac_len);
6288
6289 if (ethernet && mac_len >= ETH_HLEN) {
6290 struct ethhdr *hdr;
6291
6292 /* use mpls_hdr() to get ethertype to account for VLANs. */
6293 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6294 skb_mod_eth_type(skb, hdr, next_proto);
6295 }
6296 skb->protocol = next_proto;
6297
6298 return 0;
6299}
6300EXPORT_SYMBOL_GPL(skb_mpls_pop);
6301
6302/**
6303 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6304 *
6305 * @skb: buffer
6306 * @mpls_lse: new MPLS label stack entry to update to
6307 *
6308 * Expects skb->data at mac header.
6309 *
6310 * Returns 0 on success, -errno otherwise.
6311 */
6312int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6313{
6314 int err;
6315
6316 if (unlikely(!eth_p_mpls(skb->protocol)))
6317 return -EINVAL;
6318
6319 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6320 if (unlikely(err))
6321 return err;
6322
6323 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6324 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6325
6326 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6327 }
6328
6329 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6330
6331 return 0;
6332}
6333EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6334
6335/**
6336 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6337 *
6338 * @skb: buffer
6339 *
6340 * Expects skb->data at mac header.
6341 *
6342 * Returns 0 on success, -errno otherwise.
6343 */
6344int skb_mpls_dec_ttl(struct sk_buff *skb)
6345{
6346 u32 lse;
6347 u8 ttl;
6348
6349 if (unlikely(!eth_p_mpls(skb->protocol)))
6350 return -EINVAL;
6351
6352 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6353 return -ENOMEM;
6354
6355 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6356 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6357 if (!--ttl)
6358 return -EINVAL;
6359
6360 lse &= ~MPLS_LS_TTL_MASK;
6361 lse |= ttl << MPLS_LS_TTL_SHIFT;
6362
6363 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6364}
6365EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6366
6367/**
6368 * alloc_skb_with_frags - allocate skb with page frags
6369 *
6370 * @header_len: size of linear part
6371 * @data_len: needed length in frags
6372 * @order: max page order desired.
6373 * @errcode: pointer to error code if any
6374 * @gfp_mask: allocation mask
6375 *
6376 * This can be used to allocate a paged skb, given a maximal order for frags.
6377 */
6378struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6379 unsigned long data_len,
6380 int order,
6381 int *errcode,
6382 gfp_t gfp_mask)
6383{
6384 unsigned long chunk;
6385 struct sk_buff *skb;
6386 struct page *page;
6387 int nr_frags = 0;
6388
6389 *errcode = -EMSGSIZE;
6390 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6391 return NULL;
6392
6393 *errcode = -ENOBUFS;
6394 skb = alloc_skb(header_len, gfp_mask);
6395 if (!skb)
6396 return NULL;
6397
6398 while (data_len) {
6399 if (nr_frags == MAX_SKB_FRAGS - 1)
6400 goto failure;
6401 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6402 order--;
6403
6404 if (order) {
6405 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6406 __GFP_COMP |
6407 __GFP_NOWARN,
6408 order);
6409 if (!page) {
6410 order--;
6411 continue;
6412 }
6413 } else {
6414 page = alloc_page(gfp_mask);
6415 if (!page)
6416 goto failure;
6417 }
6418 chunk = min_t(unsigned long, data_len,
6419 PAGE_SIZE << order);
6420 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6421 nr_frags++;
6422 skb->truesize += (PAGE_SIZE << order);
6423 data_len -= chunk;
6424 }
6425 return skb;
6426
6427failure:
6428 kfree_skb(skb);
6429 return NULL;
6430}
6431EXPORT_SYMBOL(alloc_skb_with_frags);
6432
6433/* carve out the first off bytes from skb when off < headlen */
6434static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6435 const int headlen, gfp_t gfp_mask)
6436{
6437 int i;
6438 unsigned int size = skb_end_offset(skb);
6439 int new_hlen = headlen - off;
6440 u8 *data;
6441
6442 if (skb_pfmemalloc(skb))
6443 gfp_mask |= __GFP_MEMALLOC;
6444
6445 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6446 if (!data)
6447 return -ENOMEM;
6448 size = SKB_WITH_OVERHEAD(size);
6449
6450 /* Copy real data, and all frags */
6451 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6452 skb->len -= off;
6453
6454 memcpy((struct skb_shared_info *)(data + size),
6455 skb_shinfo(skb),
6456 offsetof(struct skb_shared_info,
6457 frags[skb_shinfo(skb)->nr_frags]));
6458 if (skb_cloned(skb)) {
6459 /* drop the old head gracefully */
6460 if (skb_orphan_frags(skb, gfp_mask)) {
6461 skb_kfree_head(data, size);
6462 return -ENOMEM;
6463 }
6464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6465 skb_frag_ref(skb, i);
6466 if (skb_has_frag_list(skb))
6467 skb_clone_fraglist(skb);
6468 skb_release_data(skb, SKB_CONSUMED, false);
6469 } else {
6470 /* we can reuse existing recount- all we did was
6471 * relocate values
6472 */
6473 skb_free_head(skb, false);
6474 }
6475
6476 skb->head = data;
6477 skb->data = data;
6478 skb->head_frag = 0;
6479 skb_set_end_offset(skb, size);
6480 skb_set_tail_pointer(skb, skb_headlen(skb));
6481 skb_headers_offset_update(skb, 0);
6482 skb->cloned = 0;
6483 skb->hdr_len = 0;
6484 skb->nohdr = 0;
6485 atomic_set(&skb_shinfo(skb)->dataref, 1);
6486
6487 return 0;
6488}
6489
6490static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6491
6492/* carve out the first eat bytes from skb's frag_list. May recurse into
6493 * pskb_carve()
6494 */
6495static int pskb_carve_frag_list(struct sk_buff *skb,
6496 struct skb_shared_info *shinfo, int eat,
6497 gfp_t gfp_mask)
6498{
6499 struct sk_buff *list = shinfo->frag_list;
6500 struct sk_buff *clone = NULL;
6501 struct sk_buff *insp = NULL;
6502
6503 do {
6504 if (!list) {
6505 pr_err("Not enough bytes to eat. Want %d\n", eat);
6506 return -EFAULT;
6507 }
6508 if (list->len <= eat) {
6509 /* Eaten as whole. */
6510 eat -= list->len;
6511 list = list->next;
6512 insp = list;
6513 } else {
6514 /* Eaten partially. */
6515 if (skb_shared(list)) {
6516 clone = skb_clone(list, gfp_mask);
6517 if (!clone)
6518 return -ENOMEM;
6519 insp = list->next;
6520 list = clone;
6521 } else {
6522 /* This may be pulled without problems. */
6523 insp = list;
6524 }
6525 if (pskb_carve(list, eat, gfp_mask) < 0) {
6526 kfree_skb(clone);
6527 return -ENOMEM;
6528 }
6529 break;
6530 }
6531 } while (eat);
6532
6533 /* Free pulled out fragments. */
6534 while ((list = shinfo->frag_list) != insp) {
6535 shinfo->frag_list = list->next;
6536 consume_skb(list);
6537 }
6538 /* And insert new clone at head. */
6539 if (clone) {
6540 clone->next = list;
6541 shinfo->frag_list = clone;
6542 }
6543 return 0;
6544}
6545
6546/* carve off first len bytes from skb. Split line (off) is in the
6547 * non-linear part of skb
6548 */
6549static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6550 int pos, gfp_t gfp_mask)
6551{
6552 int i, k = 0;
6553 unsigned int size = skb_end_offset(skb);
6554 u8 *data;
6555 const int nfrags = skb_shinfo(skb)->nr_frags;
6556 struct skb_shared_info *shinfo;
6557
6558 if (skb_pfmemalloc(skb))
6559 gfp_mask |= __GFP_MEMALLOC;
6560
6561 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6562 if (!data)
6563 return -ENOMEM;
6564 size = SKB_WITH_OVERHEAD(size);
6565
6566 memcpy((struct skb_shared_info *)(data + size),
6567 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6568 if (skb_orphan_frags(skb, gfp_mask)) {
6569 skb_kfree_head(data, size);
6570 return -ENOMEM;
6571 }
6572 shinfo = (struct skb_shared_info *)(data + size);
6573 for (i = 0; i < nfrags; i++) {
6574 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6575
6576 if (pos + fsize > off) {
6577 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6578
6579 if (pos < off) {
6580 /* Split frag.
6581 * We have two variants in this case:
6582 * 1. Move all the frag to the second
6583 * part, if it is possible. F.e.
6584 * this approach is mandatory for TUX,
6585 * where splitting is expensive.
6586 * 2. Split is accurately. We make this.
6587 */
6588 skb_frag_off_add(&shinfo->frags[0], off - pos);
6589 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6590 }
6591 skb_frag_ref(skb, i);
6592 k++;
6593 }
6594 pos += fsize;
6595 }
6596 shinfo->nr_frags = k;
6597 if (skb_has_frag_list(skb))
6598 skb_clone_fraglist(skb);
6599
6600 /* split line is in frag list */
6601 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6602 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6603 if (skb_has_frag_list(skb))
6604 kfree_skb_list(skb_shinfo(skb)->frag_list);
6605 skb_kfree_head(data, size);
6606 return -ENOMEM;
6607 }
6608 skb_release_data(skb, SKB_CONSUMED, false);
6609
6610 skb->head = data;
6611 skb->head_frag = 0;
6612 skb->data = data;
6613 skb_set_end_offset(skb, size);
6614 skb_reset_tail_pointer(skb);
6615 skb_headers_offset_update(skb, 0);
6616 skb->cloned = 0;
6617 skb->hdr_len = 0;
6618 skb->nohdr = 0;
6619 skb->len -= off;
6620 skb->data_len = skb->len;
6621 atomic_set(&skb_shinfo(skb)->dataref, 1);
6622 return 0;
6623}
6624
6625/* remove len bytes from the beginning of the skb */
6626static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6627{
6628 int headlen = skb_headlen(skb);
6629
6630 if (len < headlen)
6631 return pskb_carve_inside_header(skb, len, headlen, gfp);
6632 else
6633 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6634}
6635
6636/* Extract to_copy bytes starting at off from skb, and return this in
6637 * a new skb
6638 */
6639struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6640 int to_copy, gfp_t gfp)
6641{
6642 struct sk_buff *clone = skb_clone(skb, gfp);
6643
6644 if (!clone)
6645 return NULL;
6646
6647 if (pskb_carve(clone, off, gfp) < 0 ||
6648 pskb_trim(clone, to_copy)) {
6649 kfree_skb(clone);
6650 return NULL;
6651 }
6652 return clone;
6653}
6654EXPORT_SYMBOL(pskb_extract);
6655
6656/**
6657 * skb_condense - try to get rid of fragments/frag_list if possible
6658 * @skb: buffer
6659 *
6660 * Can be used to save memory before skb is added to a busy queue.
6661 * If packet has bytes in frags and enough tail room in skb->head,
6662 * pull all of them, so that we can free the frags right now and adjust
6663 * truesize.
6664 * Notes:
6665 * We do not reallocate skb->head thus can not fail.
6666 * Caller must re-evaluate skb->truesize if needed.
6667 */
6668void skb_condense(struct sk_buff *skb)
6669{
6670 if (skb->data_len) {
6671 if (skb->data_len > skb->end - skb->tail ||
6672 skb_cloned(skb))
6673 return;
6674
6675 /* Nice, we can free page frag(s) right now */
6676 __pskb_pull_tail(skb, skb->data_len);
6677 }
6678 /* At this point, skb->truesize might be over estimated,
6679 * because skb had a fragment, and fragments do not tell
6680 * their truesize.
6681 * When we pulled its content into skb->head, fragment
6682 * was freed, but __pskb_pull_tail() could not possibly
6683 * adjust skb->truesize, not knowing the frag truesize.
6684 */
6685 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6686}
6687EXPORT_SYMBOL(skb_condense);
6688
6689#ifdef CONFIG_SKB_EXTENSIONS
6690static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6691{
6692 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6693}
6694
6695/**
6696 * __skb_ext_alloc - allocate a new skb extensions storage
6697 *
6698 * @flags: See kmalloc().
6699 *
6700 * Returns the newly allocated pointer. The pointer can later attached to a
6701 * skb via __skb_ext_set().
6702 * Note: caller must handle the skb_ext as an opaque data.
6703 */
6704struct skb_ext *__skb_ext_alloc(gfp_t flags)
6705{
6706 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6707
6708 if (new) {
6709 memset(new->offset, 0, sizeof(new->offset));
6710 refcount_set(&new->refcnt, 1);
6711 }
6712
6713 return new;
6714}
6715
6716static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6717 unsigned int old_active)
6718{
6719 struct skb_ext *new;
6720
6721 if (refcount_read(&old->refcnt) == 1)
6722 return old;
6723
6724 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6725 if (!new)
6726 return NULL;
6727
6728 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6729 refcount_set(&new->refcnt, 1);
6730
6731#ifdef CONFIG_XFRM
6732 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6733 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6734 unsigned int i;
6735
6736 for (i = 0; i < sp->len; i++)
6737 xfrm_state_hold(sp->xvec[i]);
6738 }
6739#endif
6740 __skb_ext_put(old);
6741 return new;
6742}
6743
6744/**
6745 * __skb_ext_set - attach the specified extension storage to this skb
6746 * @skb: buffer
6747 * @id: extension id
6748 * @ext: extension storage previously allocated via __skb_ext_alloc()
6749 *
6750 * Existing extensions, if any, are cleared.
6751 *
6752 * Returns the pointer to the extension.
6753 */
6754void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6755 struct skb_ext *ext)
6756{
6757 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6758
6759 skb_ext_put(skb);
6760 newlen = newoff + skb_ext_type_len[id];
6761 ext->chunks = newlen;
6762 ext->offset[id] = newoff;
6763 skb->extensions = ext;
6764 skb->active_extensions = 1 << id;
6765 return skb_ext_get_ptr(ext, id);
6766}
6767
6768/**
6769 * skb_ext_add - allocate space for given extension, COW if needed
6770 * @skb: buffer
6771 * @id: extension to allocate space for
6772 *
6773 * Allocates enough space for the given extension.
6774 * If the extension is already present, a pointer to that extension
6775 * is returned.
6776 *
6777 * If the skb was cloned, COW applies and the returned memory can be
6778 * modified without changing the extension space of clones buffers.
6779 *
6780 * Returns pointer to the extension or NULL on allocation failure.
6781 */
6782void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6783{
6784 struct skb_ext *new, *old = NULL;
6785 unsigned int newlen, newoff;
6786
6787 if (skb->active_extensions) {
6788 old = skb->extensions;
6789
6790 new = skb_ext_maybe_cow(old, skb->active_extensions);
6791 if (!new)
6792 return NULL;
6793
6794 if (__skb_ext_exist(new, id))
6795 goto set_active;
6796
6797 newoff = new->chunks;
6798 } else {
6799 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6800
6801 new = __skb_ext_alloc(GFP_ATOMIC);
6802 if (!new)
6803 return NULL;
6804 }
6805
6806 newlen = newoff + skb_ext_type_len[id];
6807 new->chunks = newlen;
6808 new->offset[id] = newoff;
6809set_active:
6810 skb->slow_gro = 1;
6811 skb->extensions = new;
6812 skb->active_extensions |= 1 << id;
6813 return skb_ext_get_ptr(new, id);
6814}
6815EXPORT_SYMBOL(skb_ext_add);
6816
6817#ifdef CONFIG_XFRM
6818static void skb_ext_put_sp(struct sec_path *sp)
6819{
6820 unsigned int i;
6821
6822 for (i = 0; i < sp->len; i++)
6823 xfrm_state_put(sp->xvec[i]);
6824}
6825#endif
6826
6827#ifdef CONFIG_MCTP_FLOWS
6828static void skb_ext_put_mctp(struct mctp_flow *flow)
6829{
6830 if (flow->key)
6831 mctp_key_unref(flow->key);
6832}
6833#endif
6834
6835void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6836{
6837 struct skb_ext *ext = skb->extensions;
6838
6839 skb->active_extensions &= ~(1 << id);
6840 if (skb->active_extensions == 0) {
6841 skb->extensions = NULL;
6842 __skb_ext_put(ext);
6843#ifdef CONFIG_XFRM
6844 } else if (id == SKB_EXT_SEC_PATH &&
6845 refcount_read(&ext->refcnt) == 1) {
6846 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6847
6848 skb_ext_put_sp(sp);
6849 sp->len = 0;
6850#endif
6851 }
6852}
6853EXPORT_SYMBOL(__skb_ext_del);
6854
6855void __skb_ext_put(struct skb_ext *ext)
6856{
6857 /* If this is last clone, nothing can increment
6858 * it after check passes. Avoids one atomic op.
6859 */
6860 if (refcount_read(&ext->refcnt) == 1)
6861 goto free_now;
6862
6863 if (!refcount_dec_and_test(&ext->refcnt))
6864 return;
6865free_now:
6866#ifdef CONFIG_XFRM
6867 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6868 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6869#endif
6870#ifdef CONFIG_MCTP_FLOWS
6871 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6872 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6873#endif
6874
6875 kmem_cache_free(skbuff_ext_cache, ext);
6876}
6877EXPORT_SYMBOL(__skb_ext_put);
6878#endif /* CONFIG_SKB_EXTENSIONS */
6879
6880/**
6881 * skb_attempt_defer_free - queue skb for remote freeing
6882 * @skb: buffer
6883 *
6884 * Put @skb in a per-cpu list, using the cpu which
6885 * allocated the skb/pages to reduce false sharing
6886 * and memory zone spinlock contention.
6887 */
6888void skb_attempt_defer_free(struct sk_buff *skb)
6889{
6890 int cpu = skb->alloc_cpu;
6891 struct softnet_data *sd;
6892 unsigned int defer_max;
6893 bool kick;
6894
6895 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6896 !cpu_online(cpu) ||
6897 cpu == raw_smp_processor_id()) {
6898nodefer: __kfree_skb(skb);
6899 return;
6900 }
6901
6902 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6903 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6904
6905 sd = &per_cpu(softnet_data, cpu);
6906 defer_max = READ_ONCE(sysctl_skb_defer_max);
6907 if (READ_ONCE(sd->defer_count) >= defer_max)
6908 goto nodefer;
6909
6910 spin_lock_bh(&sd->defer_lock);
6911 /* Send an IPI every time queue reaches half capacity. */
6912 kick = sd->defer_count == (defer_max >> 1);
6913 /* Paired with the READ_ONCE() few lines above */
6914 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6915
6916 skb->next = sd->defer_list;
6917 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6918 WRITE_ONCE(sd->defer_list, skb);
6919 spin_unlock_bh(&sd->defer_lock);
6920
6921 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6922 * if we are unlucky enough (this seems very unlikely).
6923 */
6924 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6925 smp_call_function_single_async(cpu, &sd->defer_csd);
6926}
6927
6928static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6929 size_t offset, size_t len)
6930{
6931 const char *kaddr;
6932 __wsum csum;
6933
6934 kaddr = kmap_local_page(page);
6935 csum = csum_partial(kaddr + offset, len, 0);
6936 kunmap_local(kaddr);
6937 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6938}
6939
6940/**
6941 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6942 * @skb: The buffer to add pages to
6943 * @iter: Iterator representing the pages to be added
6944 * @maxsize: Maximum amount of pages to be added
6945 * @gfp: Allocation flags
6946 *
6947 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6948 * extracts pages from an iterator and adds them to the socket buffer if
6949 * possible, copying them to fragments if not possible (such as if they're slab
6950 * pages).
6951 *
6952 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6953 * insufficient space in the buffer to transfer anything.
6954 */
6955ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6956 ssize_t maxsize, gfp_t gfp)
6957{
6958 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6959 struct page *pages[8], **ppages = pages;
6960 ssize_t spliced = 0, ret = 0;
6961 unsigned int i;
6962
6963 while (iter->count > 0) {
6964 ssize_t space, nr, len;
6965 size_t off;
6966
6967 ret = -EMSGSIZE;
6968 space = frag_limit - skb_shinfo(skb)->nr_frags;
6969 if (space < 0)
6970 break;
6971
6972 /* We might be able to coalesce without increasing nr_frags */
6973 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6974
6975 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6976 if (len <= 0) {
6977 ret = len ?: -EIO;
6978 break;
6979 }
6980
6981 i = 0;
6982 do {
6983 struct page *page = pages[i++];
6984 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6985
6986 ret = -EIO;
6987 if (WARN_ON_ONCE(!sendpage_ok(page)))
6988 goto out;
6989
6990 ret = skb_append_pagefrags(skb, page, off, part,
6991 frag_limit);
6992 if (ret < 0) {
6993 iov_iter_revert(iter, len);
6994 goto out;
6995 }
6996
6997 if (skb->ip_summed == CHECKSUM_NONE)
6998 skb_splice_csum_page(skb, page, off, part);
6999
7000 off = 0;
7001 spliced += part;
7002 maxsize -= part;
7003 len -= part;
7004 } while (len > 0);
7005
7006 if (maxsize <= 0)
7007 break;
7008 }
7009
7010out:
7011 skb_len_add(skb, spliced);
7012 return spliced ?: ret;
7013}
7014EXPORT_SYMBOL(skb_splice_from_iter);
7015
7016static __always_inline
7017size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7018 size_t len, void *to, void *priv2)
7019{
7020 __wsum *csum = priv2;
7021 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7022
7023 *csum = csum_block_add(*csum, next, progress);
7024 return 0;
7025}
7026
7027static __always_inline
7028size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7029 size_t len, void *to, void *priv2)
7030{
7031 __wsum next, *csum = priv2;
7032
7033 next = csum_and_copy_from_user(iter_from, to + progress, len);
7034 *csum = csum_block_add(*csum, next, progress);
7035 return next ? 0 : len;
7036}
7037
7038bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7039 __wsum *csum, struct iov_iter *i)
7040{
7041 size_t copied;
7042
7043 if (WARN_ON_ONCE(!i->data_source))
7044 return false;
7045 copied = iterate_and_advance2(i, bytes, addr, csum,
7046 copy_from_user_iter_csum,
7047 memcpy_from_iter_csum);
7048 if (likely(copied == bytes))
7049 return true;
7050 iov_iter_revert(i, copied);
7051 return false;
7052}
7053EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/page_pool.h>
74
75#include <linux/uaccess.h>
76#include <trace/events/skb.h>
77#include <linux/highmem.h>
78#include <linux/capability.h>
79#include <linux/user_namespace.h>
80#include <linux/indirect_call_wrapper.h>
81
82#include "datagram.h"
83
84struct kmem_cache *skbuff_head_cache __ro_after_init;
85static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86#ifdef CONFIG_SKB_EXTENSIONS
87static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88#endif
89int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90EXPORT_SYMBOL(sysctl_max_skb_frags);
91
92/**
93 * skb_panic - private function for out-of-line support
94 * @skb: buffer
95 * @sz: size
96 * @addr: address
97 * @msg: skb_over_panic or skb_under_panic
98 *
99 * Out-of-line support for skb_put() and skb_push().
100 * Called via the wrapper skb_over_panic() or skb_under_panic().
101 * Keep out of line to prevent kernel bloat.
102 * __builtin_return_address is not used because it is not always reliable.
103 */
104static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 const char msg[])
106{
107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 msg, addr, skb->len, sz, skb->head, skb->data,
109 (unsigned long)skb->tail, (unsigned long)skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
111 BUG();
112}
113
114static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115{
116 skb_panic(skb, sz, addr, __func__);
117}
118
119static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120{
121 skb_panic(skb, sz, addr, __func__);
122}
123
124#define NAPI_SKB_CACHE_SIZE 64
125#define NAPI_SKB_CACHE_BULK 16
126#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
127
128struct napi_alloc_cache {
129 struct page_frag_cache page;
130 unsigned int skb_count;
131 void *skb_cache[NAPI_SKB_CACHE_SIZE];
132};
133
134static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136
137static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 unsigned int align_mask)
139{
140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141
142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143}
144
145void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146{
147 fragsz = SKB_DATA_ALIGN(fragsz);
148
149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150}
151EXPORT_SYMBOL(__napi_alloc_frag_align);
152
153void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154{
155 struct page_frag_cache *nc;
156 void *data;
157
158 fragsz = SKB_DATA_ALIGN(fragsz);
159 if (in_irq() || irqs_disabled()) {
160 nc = this_cpu_ptr(&netdev_alloc_cache);
161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 } else {
163 local_bh_disable();
164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 local_bh_enable();
166 }
167 return data;
168}
169EXPORT_SYMBOL(__netdev_alloc_frag_align);
170
171static struct sk_buff *napi_skb_cache_get(void)
172{
173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 struct sk_buff *skb;
175
176 if (unlikely(!nc->skb_count))
177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 GFP_ATOMIC,
179 NAPI_SKB_CACHE_BULK,
180 nc->skb_cache);
181 if (unlikely(!nc->skb_count))
182 return NULL;
183
184 skb = nc->skb_cache[--nc->skb_count];
185 kasan_unpoison_object_data(skbuff_head_cache, skb);
186
187 return skb;
188}
189
190/* Caller must provide SKB that is memset cleared */
191static void __build_skb_around(struct sk_buff *skb, void *data,
192 unsigned int frag_size)
193{
194 struct skb_shared_info *shinfo;
195 unsigned int size = frag_size ? : ksize(data);
196
197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198
199 /* Assumes caller memset cleared SKB */
200 skb->truesize = SKB_TRUESIZE(size);
201 refcount_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 skb->mac_header = (typeof(skb->mac_header))~0U;
207 skb->transport_header = (typeof(skb->transport_header))~0U;
208
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
213
214 skb_set_kcov_handle(skb, kcov_common_handle());
215}
216
217/**
218 * __build_skb - build a network buffer
219 * @data: data buffer provided by caller
220 * @frag_size: size of data, or 0 if head was kmalloced
221 *
222 * Allocate a new &sk_buff. Caller provides space holding head and
223 * skb_shared_info. @data must have been allocated by kmalloc() only if
224 * @frag_size is 0, otherwise data should come from the page allocator
225 * or vmalloc()
226 * The return is the new skb buffer.
227 * On a failure the return is %NULL, and @data is not freed.
228 * Notes :
229 * Before IO, driver allocates only data buffer where NIC put incoming frame
230 * Driver should add room at head (NET_SKB_PAD) and
231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
233 * before giving packet to stack.
234 * RX rings only contains data buffers, not full skbs.
235 */
236struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237{
238 struct sk_buff *skb;
239
240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 if (unlikely(!skb))
242 return NULL;
243
244 memset(skb, 0, offsetof(struct sk_buff, tail));
245 __build_skb_around(skb, data, frag_size);
246
247 return skb;
248}
249
250/* build_skb() is wrapper over __build_skb(), that specifically
251 * takes care of skb->head and skb->pfmemalloc
252 * This means that if @frag_size is not zero, then @data must be backed
253 * by a page fragment, not kmalloc() or vmalloc()
254 */
255struct sk_buff *build_skb(void *data, unsigned int frag_size)
256{
257 struct sk_buff *skb = __build_skb(data, frag_size);
258
259 if (skb && frag_size) {
260 skb->head_frag = 1;
261 if (page_is_pfmemalloc(virt_to_head_page(data)))
262 skb->pfmemalloc = 1;
263 }
264 return skb;
265}
266EXPORT_SYMBOL(build_skb);
267
268/**
269 * build_skb_around - build a network buffer around provided skb
270 * @skb: sk_buff provide by caller, must be memset cleared
271 * @data: data buffer provided by caller
272 * @frag_size: size of data, or 0 if head was kmalloced
273 */
274struct sk_buff *build_skb_around(struct sk_buff *skb,
275 void *data, unsigned int frag_size)
276{
277 if (unlikely(!skb))
278 return NULL;
279
280 __build_skb_around(skb, data, frag_size);
281
282 if (frag_size) {
283 skb->head_frag = 1;
284 if (page_is_pfmemalloc(virt_to_head_page(data)))
285 skb->pfmemalloc = 1;
286 }
287 return skb;
288}
289EXPORT_SYMBOL(build_skb_around);
290
291/**
292 * __napi_build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of data, or 0 if head was kmalloced
295 *
296 * Version of __build_skb() that uses NAPI percpu caches to obtain
297 * skbuff_head instead of inplace allocation.
298 *
299 * Returns a new &sk_buff on success, %NULL on allocation failure.
300 */
301static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302{
303 struct sk_buff *skb;
304
305 skb = napi_skb_cache_get();
306 if (unlikely(!skb))
307 return NULL;
308
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 __build_skb_around(skb, data, frag_size);
311
312 return skb;
313}
314
315/**
316 * napi_build_skb - build a network buffer
317 * @data: data buffer provided by caller
318 * @frag_size: size of data, or 0 if head was kmalloced
319 *
320 * Version of __napi_build_skb() that takes care of skb->head_frag
321 * and skb->pfmemalloc when the data is a page or page fragment.
322 *
323 * Returns a new &sk_buff on success, %NULL on allocation failure.
324 */
325struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326{
327 struct sk_buff *skb = __napi_build_skb(data, frag_size);
328
329 if (likely(skb) && frag_size) {
330 skb->head_frag = 1;
331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 }
333
334 return skb;
335}
336EXPORT_SYMBOL(napi_build_skb);
337
338/*
339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340 * the caller if emergency pfmemalloc reserves are being used. If it is and
341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342 * may be used. Otherwise, the packet data may be discarded until enough
343 * memory is free
344 */
345static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 bool *pfmemalloc)
347{
348 void *obj;
349 bool ret_pfmemalloc = false;
350
351 /*
352 * Try a regular allocation, when that fails and we're not entitled
353 * to the reserves, fail.
354 */
355 obj = kmalloc_node_track_caller(size,
356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 node);
358 if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 goto out;
360
361 /* Try again but now we are using pfmemalloc reserves */
362 ret_pfmemalloc = true;
363 obj = kmalloc_node_track_caller(size, flags, node);
364
365out:
366 if (pfmemalloc)
367 *pfmemalloc = ret_pfmemalloc;
368
369 return obj;
370}
371
372/* Allocate a new skbuff. We do this ourselves so we can fill in a few
373 * 'private' fields and also do memory statistics to find all the
374 * [BEEP] leaks.
375 *
376 */
377
378/**
379 * __alloc_skb - allocate a network buffer
380 * @size: size to allocate
381 * @gfp_mask: allocation mask
382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383 * instead of head cache and allocate a cloned (child) skb.
384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385 * allocations in case the data is required for writeback
386 * @node: numa node to allocate memory on
387 *
388 * Allocate a new &sk_buff. The returned buffer has no headroom and a
389 * tail room of at least size bytes. The object has a reference count
390 * of one. The return is the buffer. On a failure the return is %NULL.
391 *
392 * Buffers may only be allocated from interrupts using a @gfp_mask of
393 * %GFP_ATOMIC.
394 */
395struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 int flags, int node)
397{
398 struct kmem_cache *cache;
399 struct sk_buff *skb;
400 u8 *data;
401 bool pfmemalloc;
402
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
405
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
408
409 /* Get the HEAD */
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
413 else
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 if (unlikely(!skb))
416 return NULL;
417 prefetchw(skb);
418
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
423 */
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 if (unlikely(!data))
428 goto nodata;
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
432 */
433 size = SKB_WITH_OVERHEAD(ksize(data));
434 prefetchw(data + size);
435
436 /*
437 * Only clear those fields we need to clear, not those that we will
438 * actually initialise below. Hence, don't put any more fields after
439 * the tail pointer in struct sk_buff!
440 */
441 memset(skb, 0, offsetof(struct sk_buff, tail));
442 __build_skb_around(skb, data, 0);
443 skb->pfmemalloc = pfmemalloc;
444
445 if (flags & SKB_ALLOC_FCLONE) {
446 struct sk_buff_fclones *fclones;
447
448 fclones = container_of(skb, struct sk_buff_fclones, skb1);
449
450 skb->fclone = SKB_FCLONE_ORIG;
451 refcount_set(&fclones->fclone_ref, 1);
452
453 fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 }
455
456 return skb;
457
458nodata:
459 kmem_cache_free(cache, skb);
460 return NULL;
461}
462EXPORT_SYMBOL(__alloc_skb);
463
464/**
465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
466 * @dev: network device to receive on
467 * @len: length to allocate
468 * @gfp_mask: get_free_pages mask, passed to alloc_skb
469 *
470 * Allocate a new &sk_buff and assign it a usage count of one. The
471 * buffer has NET_SKB_PAD headroom built in. Users should allocate
472 * the headroom they think they need without accounting for the
473 * built in space. The built in space is used for optimisations.
474 *
475 * %NULL is returned if there is no free memory.
476 */
477struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 gfp_t gfp_mask)
479{
480 struct page_frag_cache *nc;
481 struct sk_buff *skb;
482 bool pfmemalloc;
483 void *data;
484
485 len += NET_SKB_PAD;
486
487 /* If requested length is either too small or too big,
488 * we use kmalloc() for skb->head allocation.
489 */
490 if (len <= SKB_WITH_OVERHEAD(1024) ||
491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 if (!skb)
495 goto skb_fail;
496 goto skb_success;
497 }
498
499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 len = SKB_DATA_ALIGN(len);
501
502 if (sk_memalloc_socks())
503 gfp_mask |= __GFP_MEMALLOC;
504
505 if (in_irq() || irqs_disabled()) {
506 nc = this_cpu_ptr(&netdev_alloc_cache);
507 data = page_frag_alloc(nc, len, gfp_mask);
508 pfmemalloc = nc->pfmemalloc;
509 } else {
510 local_bh_disable();
511 nc = this_cpu_ptr(&napi_alloc_cache.page);
512 data = page_frag_alloc(nc, len, gfp_mask);
513 pfmemalloc = nc->pfmemalloc;
514 local_bh_enable();
515 }
516
517 if (unlikely(!data))
518 return NULL;
519
520 skb = __build_skb(data, len);
521 if (unlikely(!skb)) {
522 skb_free_frag(data);
523 return NULL;
524 }
525
526 if (pfmemalloc)
527 skb->pfmemalloc = 1;
528 skb->head_frag = 1;
529
530skb_success:
531 skb_reserve(skb, NET_SKB_PAD);
532 skb->dev = dev;
533
534skb_fail:
535 return skb;
536}
537EXPORT_SYMBOL(__netdev_alloc_skb);
538
539/**
540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541 * @napi: napi instance this buffer was allocated for
542 * @len: length to allocate
543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544 *
545 * Allocate a new sk_buff for use in NAPI receive. This buffer will
546 * attempt to allocate the head from a special reserved region used
547 * only for NAPI Rx allocation. By doing this we can save several
548 * CPU cycles by avoiding having to disable and re-enable IRQs.
549 *
550 * %NULL is returned if there is no free memory.
551 */
552struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 gfp_t gfp_mask)
554{
555 struct napi_alloc_cache *nc;
556 struct sk_buff *skb;
557 void *data;
558
559 len += NET_SKB_PAD + NET_IP_ALIGN;
560
561 /* If requested length is either too small or too big,
562 * we use kmalloc() for skb->head allocation.
563 */
564 if (len <= SKB_WITH_OVERHEAD(1024) ||
565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 NUMA_NO_NODE);
569 if (!skb)
570 goto skb_fail;
571 goto skb_success;
572 }
573
574 nc = this_cpu_ptr(&napi_alloc_cache);
575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 len = SKB_DATA_ALIGN(len);
577
578 if (sk_memalloc_socks())
579 gfp_mask |= __GFP_MEMALLOC;
580
581 data = page_frag_alloc(&nc->page, len, gfp_mask);
582 if (unlikely(!data))
583 return NULL;
584
585 skb = __napi_build_skb(data, len);
586 if (unlikely(!skb)) {
587 skb_free_frag(data);
588 return NULL;
589 }
590
591 if (nc->page.pfmemalloc)
592 skb->pfmemalloc = 1;
593 skb->head_frag = 1;
594
595skb_success:
596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 skb->dev = napi->dev;
598
599skb_fail:
600 return skb;
601}
602EXPORT_SYMBOL(__napi_alloc_skb);
603
604void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 int size, unsigned int truesize)
606{
607 skb_fill_page_desc(skb, i, page, off, size);
608 skb->len += size;
609 skb->data_len += size;
610 skb->truesize += truesize;
611}
612EXPORT_SYMBOL(skb_add_rx_frag);
613
614void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 unsigned int truesize)
616{
617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618
619 skb_frag_size_add(frag, size);
620 skb->len += size;
621 skb->data_len += size;
622 skb->truesize += truesize;
623}
624EXPORT_SYMBOL(skb_coalesce_rx_frag);
625
626static void skb_drop_list(struct sk_buff **listp)
627{
628 kfree_skb_list(*listp);
629 *listp = NULL;
630}
631
632static inline void skb_drop_fraglist(struct sk_buff *skb)
633{
634 skb_drop_list(&skb_shinfo(skb)->frag_list);
635}
636
637static void skb_clone_fraglist(struct sk_buff *skb)
638{
639 struct sk_buff *list;
640
641 skb_walk_frags(skb, list)
642 skb_get(list);
643}
644
645static void skb_free_head(struct sk_buff *skb)
646{
647 unsigned char *head = skb->head;
648
649 if (skb->head_frag) {
650 if (skb_pp_recycle(skb, head))
651 return;
652 skb_free_frag(head);
653 } else {
654 kfree(head);
655 }
656}
657
658static void skb_release_data(struct sk_buff *skb)
659{
660 struct skb_shared_info *shinfo = skb_shinfo(skb);
661 int i;
662
663 if (skb->cloned &&
664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 &shinfo->dataref))
666 goto exit;
667
668 skb_zcopy_clear(skb, true);
669
670 for (i = 0; i < shinfo->nr_frags; i++)
671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672
673 if (shinfo->frag_list)
674 kfree_skb_list(shinfo->frag_list);
675
676 skb_free_head(skb);
677exit:
678 /* When we clone an SKB we copy the reycling bit. The pp_recycle
679 * bit is only set on the head though, so in order to avoid races
680 * while trying to recycle fragments on __skb_frag_unref() we need
681 * to make one SKB responsible for triggering the recycle path.
682 * So disable the recycling bit if an SKB is cloned and we have
683 * additional references to to the fragmented part of the SKB.
684 * Eventually the last SKB will have the recycling bit set and it's
685 * dataref set to 0, which will trigger the recycling
686 */
687 skb->pp_recycle = 0;
688}
689
690/*
691 * Free an skbuff by memory without cleaning the state.
692 */
693static void kfree_skbmem(struct sk_buff *skb)
694{
695 struct sk_buff_fclones *fclones;
696
697 switch (skb->fclone) {
698 case SKB_FCLONE_UNAVAILABLE:
699 kmem_cache_free(skbuff_head_cache, skb);
700 return;
701
702 case SKB_FCLONE_ORIG:
703 fclones = container_of(skb, struct sk_buff_fclones, skb1);
704
705 /* We usually free the clone (TX completion) before original skb
706 * This test would have no chance to be true for the clone,
707 * while here, branch prediction will be good.
708 */
709 if (refcount_read(&fclones->fclone_ref) == 1)
710 goto fastpath;
711 break;
712
713 default: /* SKB_FCLONE_CLONE */
714 fclones = container_of(skb, struct sk_buff_fclones, skb2);
715 break;
716 }
717 if (!refcount_dec_and_test(&fclones->fclone_ref))
718 return;
719fastpath:
720 kmem_cache_free(skbuff_fclone_cache, fclones);
721}
722
723void skb_release_head_state(struct sk_buff *skb)
724{
725 skb_dst_drop(skb);
726 if (skb->destructor) {
727 WARN_ON(in_irq());
728 skb->destructor(skb);
729 }
730#if IS_ENABLED(CONFIG_NF_CONNTRACK)
731 nf_conntrack_put(skb_nfct(skb));
732#endif
733 skb_ext_put(skb);
734}
735
736/* Free everything but the sk_buff shell. */
737static void skb_release_all(struct sk_buff *skb)
738{
739 skb_release_head_state(skb);
740 if (likely(skb->head))
741 skb_release_data(skb);
742}
743
744/**
745 * __kfree_skb - private function
746 * @skb: buffer
747 *
748 * Free an sk_buff. Release anything attached to the buffer.
749 * Clean the state. This is an internal helper function. Users should
750 * always call kfree_skb
751 */
752
753void __kfree_skb(struct sk_buff *skb)
754{
755 skb_release_all(skb);
756 kfree_skbmem(skb);
757}
758EXPORT_SYMBOL(__kfree_skb);
759
760/**
761 * kfree_skb - free an sk_buff
762 * @skb: buffer to free
763 *
764 * Drop a reference to the buffer and free it if the usage count has
765 * hit zero.
766 */
767void kfree_skb(struct sk_buff *skb)
768{
769 if (!skb_unref(skb))
770 return;
771
772 trace_kfree_skb(skb, __builtin_return_address(0));
773 __kfree_skb(skb);
774}
775EXPORT_SYMBOL(kfree_skb);
776
777void kfree_skb_list(struct sk_buff *segs)
778{
779 while (segs) {
780 struct sk_buff *next = segs->next;
781
782 kfree_skb(segs);
783 segs = next;
784 }
785}
786EXPORT_SYMBOL(kfree_skb_list);
787
788/* Dump skb information and contents.
789 *
790 * Must only be called from net_ratelimit()-ed paths.
791 *
792 * Dumps whole packets if full_pkt, only headers otherwise.
793 */
794void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
795{
796 struct skb_shared_info *sh = skb_shinfo(skb);
797 struct net_device *dev = skb->dev;
798 struct sock *sk = skb->sk;
799 struct sk_buff *list_skb;
800 bool has_mac, has_trans;
801 int headroom, tailroom;
802 int i, len, seg_len;
803
804 if (full_pkt)
805 len = skb->len;
806 else
807 len = min_t(int, skb->len, MAX_HEADER + 128);
808
809 headroom = skb_headroom(skb);
810 tailroom = skb_tailroom(skb);
811
812 has_mac = skb_mac_header_was_set(skb);
813 has_trans = skb_transport_header_was_set(skb);
814
815 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
816 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
817 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
818 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
819 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
820 level, skb->len, headroom, skb_headlen(skb), tailroom,
821 has_mac ? skb->mac_header : -1,
822 has_mac ? skb_mac_header_len(skb) : -1,
823 skb->network_header,
824 has_trans ? skb_network_header_len(skb) : -1,
825 has_trans ? skb->transport_header : -1,
826 sh->tx_flags, sh->nr_frags,
827 sh->gso_size, sh->gso_type, sh->gso_segs,
828 skb->csum, skb->ip_summed, skb->csum_complete_sw,
829 skb->csum_valid, skb->csum_level,
830 skb->hash, skb->sw_hash, skb->l4_hash,
831 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
832
833 if (dev)
834 printk("%sdev name=%s feat=0x%pNF\n",
835 level, dev->name, &dev->features);
836 if (sk)
837 printk("%ssk family=%hu type=%u proto=%u\n",
838 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
839
840 if (full_pkt && headroom)
841 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
842 16, 1, skb->head, headroom, false);
843
844 seg_len = min_t(int, skb_headlen(skb), len);
845 if (seg_len)
846 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
847 16, 1, skb->data, seg_len, false);
848 len -= seg_len;
849
850 if (full_pkt && tailroom)
851 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
852 16, 1, skb_tail_pointer(skb), tailroom, false);
853
854 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
855 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 u32 p_off, p_len, copied;
857 struct page *p;
858 u8 *vaddr;
859
860 skb_frag_foreach_page(frag, skb_frag_off(frag),
861 skb_frag_size(frag), p, p_off, p_len,
862 copied) {
863 seg_len = min_t(int, p_len, len);
864 vaddr = kmap_atomic(p);
865 print_hex_dump(level, "skb frag: ",
866 DUMP_PREFIX_OFFSET,
867 16, 1, vaddr + p_off, seg_len, false);
868 kunmap_atomic(vaddr);
869 len -= seg_len;
870 if (!len)
871 break;
872 }
873 }
874
875 if (full_pkt && skb_has_frag_list(skb)) {
876 printk("skb fraglist:\n");
877 skb_walk_frags(skb, list_skb)
878 skb_dump(level, list_skb, true);
879 }
880}
881EXPORT_SYMBOL(skb_dump);
882
883/**
884 * skb_tx_error - report an sk_buff xmit error
885 * @skb: buffer that triggered an error
886 *
887 * Report xmit error if a device callback is tracking this skb.
888 * skb must be freed afterwards.
889 */
890void skb_tx_error(struct sk_buff *skb)
891{
892 skb_zcopy_clear(skb, true);
893}
894EXPORT_SYMBOL(skb_tx_error);
895
896#ifdef CONFIG_TRACEPOINTS
897/**
898 * consume_skb - free an skbuff
899 * @skb: buffer to free
900 *
901 * Drop a ref to the buffer and free it if the usage count has hit zero
902 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
903 * is being dropped after a failure and notes that
904 */
905void consume_skb(struct sk_buff *skb)
906{
907 if (!skb_unref(skb))
908 return;
909
910 trace_consume_skb(skb);
911 __kfree_skb(skb);
912}
913EXPORT_SYMBOL(consume_skb);
914#endif
915
916/**
917 * __consume_stateless_skb - free an skbuff, assuming it is stateless
918 * @skb: buffer to free
919 *
920 * Alike consume_skb(), but this variant assumes that this is the last
921 * skb reference and all the head states have been already dropped
922 */
923void __consume_stateless_skb(struct sk_buff *skb)
924{
925 trace_consume_skb(skb);
926 skb_release_data(skb);
927 kfree_skbmem(skb);
928}
929
930static void napi_skb_cache_put(struct sk_buff *skb)
931{
932 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
933 u32 i;
934
935 kasan_poison_object_data(skbuff_head_cache, skb);
936 nc->skb_cache[nc->skb_count++] = skb;
937
938 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
939 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
940 kasan_unpoison_object_data(skbuff_head_cache,
941 nc->skb_cache[i]);
942
943 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
944 nc->skb_cache + NAPI_SKB_CACHE_HALF);
945 nc->skb_count = NAPI_SKB_CACHE_HALF;
946 }
947}
948
949void __kfree_skb_defer(struct sk_buff *skb)
950{
951 skb_release_all(skb);
952 napi_skb_cache_put(skb);
953}
954
955void napi_skb_free_stolen_head(struct sk_buff *skb)
956{
957 nf_reset_ct(skb);
958 skb_dst_drop(skb);
959 skb_ext_put(skb);
960 napi_skb_cache_put(skb);
961}
962
963void napi_consume_skb(struct sk_buff *skb, int budget)
964{
965 /* Zero budget indicate non-NAPI context called us, like netpoll */
966 if (unlikely(!budget)) {
967 dev_consume_skb_any(skb);
968 return;
969 }
970
971 lockdep_assert_in_softirq();
972
973 if (!skb_unref(skb))
974 return;
975
976 /* if reaching here SKB is ready to free */
977 trace_consume_skb(skb);
978
979 /* if SKB is a clone, don't handle this case */
980 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
981 __kfree_skb(skb);
982 return;
983 }
984
985 skb_release_all(skb);
986 napi_skb_cache_put(skb);
987}
988EXPORT_SYMBOL(napi_consume_skb);
989
990/* Make sure a field is enclosed inside headers_start/headers_end section */
991#define CHECK_SKB_FIELD(field) \
992 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
993 offsetof(struct sk_buff, headers_start)); \
994 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
995 offsetof(struct sk_buff, headers_end)); \
996
997static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
998{
999 new->tstamp = old->tstamp;
1000 /* We do not copy old->sk */
1001 new->dev = old->dev;
1002 memcpy(new->cb, old->cb, sizeof(old->cb));
1003 skb_dst_copy(new, old);
1004 __skb_ext_copy(new, old);
1005 __nf_copy(new, old, false);
1006
1007 /* Note : this field could be in headers_start/headers_end section
1008 * It is not yet because we do not want to have a 16 bit hole
1009 */
1010 new->queue_mapping = old->queue_mapping;
1011
1012 memcpy(&new->headers_start, &old->headers_start,
1013 offsetof(struct sk_buff, headers_end) -
1014 offsetof(struct sk_buff, headers_start));
1015 CHECK_SKB_FIELD(protocol);
1016 CHECK_SKB_FIELD(csum);
1017 CHECK_SKB_FIELD(hash);
1018 CHECK_SKB_FIELD(priority);
1019 CHECK_SKB_FIELD(skb_iif);
1020 CHECK_SKB_FIELD(vlan_proto);
1021 CHECK_SKB_FIELD(vlan_tci);
1022 CHECK_SKB_FIELD(transport_header);
1023 CHECK_SKB_FIELD(network_header);
1024 CHECK_SKB_FIELD(mac_header);
1025 CHECK_SKB_FIELD(inner_protocol);
1026 CHECK_SKB_FIELD(inner_transport_header);
1027 CHECK_SKB_FIELD(inner_network_header);
1028 CHECK_SKB_FIELD(inner_mac_header);
1029 CHECK_SKB_FIELD(mark);
1030#ifdef CONFIG_NETWORK_SECMARK
1031 CHECK_SKB_FIELD(secmark);
1032#endif
1033#ifdef CONFIG_NET_RX_BUSY_POLL
1034 CHECK_SKB_FIELD(napi_id);
1035#endif
1036#ifdef CONFIG_XPS
1037 CHECK_SKB_FIELD(sender_cpu);
1038#endif
1039#ifdef CONFIG_NET_SCHED
1040 CHECK_SKB_FIELD(tc_index);
1041#endif
1042
1043}
1044
1045/*
1046 * You should not add any new code to this function. Add it to
1047 * __copy_skb_header above instead.
1048 */
1049static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1050{
1051#define C(x) n->x = skb->x
1052
1053 n->next = n->prev = NULL;
1054 n->sk = NULL;
1055 __copy_skb_header(n, skb);
1056
1057 C(len);
1058 C(data_len);
1059 C(mac_len);
1060 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1061 n->cloned = 1;
1062 n->nohdr = 0;
1063 n->peeked = 0;
1064 C(pfmemalloc);
1065 C(pp_recycle);
1066 n->destructor = NULL;
1067 C(tail);
1068 C(end);
1069 C(head);
1070 C(head_frag);
1071 C(data);
1072 C(truesize);
1073 refcount_set(&n->users, 1);
1074
1075 atomic_inc(&(skb_shinfo(skb)->dataref));
1076 skb->cloned = 1;
1077
1078 return n;
1079#undef C
1080}
1081
1082/**
1083 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1084 * @first: first sk_buff of the msg
1085 */
1086struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1087{
1088 struct sk_buff *n;
1089
1090 n = alloc_skb(0, GFP_ATOMIC);
1091 if (!n)
1092 return NULL;
1093
1094 n->len = first->len;
1095 n->data_len = first->len;
1096 n->truesize = first->truesize;
1097
1098 skb_shinfo(n)->frag_list = first;
1099
1100 __copy_skb_header(n, first);
1101 n->destructor = NULL;
1102
1103 return n;
1104}
1105EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1106
1107/**
1108 * skb_morph - morph one skb into another
1109 * @dst: the skb to receive the contents
1110 * @src: the skb to supply the contents
1111 *
1112 * This is identical to skb_clone except that the target skb is
1113 * supplied by the user.
1114 *
1115 * The target skb is returned upon exit.
1116 */
1117struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1118{
1119 skb_release_all(dst);
1120 return __skb_clone(dst, src);
1121}
1122EXPORT_SYMBOL_GPL(skb_morph);
1123
1124int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1125{
1126 unsigned long max_pg, num_pg, new_pg, old_pg;
1127 struct user_struct *user;
1128
1129 if (capable(CAP_IPC_LOCK) || !size)
1130 return 0;
1131
1132 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1133 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1134 user = mmp->user ? : current_user();
1135
1136 do {
1137 old_pg = atomic_long_read(&user->locked_vm);
1138 new_pg = old_pg + num_pg;
1139 if (new_pg > max_pg)
1140 return -ENOBUFS;
1141 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1142 old_pg);
1143
1144 if (!mmp->user) {
1145 mmp->user = get_uid(user);
1146 mmp->num_pg = num_pg;
1147 } else {
1148 mmp->num_pg += num_pg;
1149 }
1150
1151 return 0;
1152}
1153EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1154
1155void mm_unaccount_pinned_pages(struct mmpin *mmp)
1156{
1157 if (mmp->user) {
1158 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1159 free_uid(mmp->user);
1160 }
1161}
1162EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1163
1164struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1165{
1166 struct ubuf_info *uarg;
1167 struct sk_buff *skb;
1168
1169 WARN_ON_ONCE(!in_task());
1170
1171 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1172 if (!skb)
1173 return NULL;
1174
1175 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1176 uarg = (void *)skb->cb;
1177 uarg->mmp.user = NULL;
1178
1179 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1180 kfree_skb(skb);
1181 return NULL;
1182 }
1183
1184 uarg->callback = msg_zerocopy_callback;
1185 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1186 uarg->len = 1;
1187 uarg->bytelen = size;
1188 uarg->zerocopy = 1;
1189 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1190 refcount_set(&uarg->refcnt, 1);
1191 sock_hold(sk);
1192
1193 return uarg;
1194}
1195EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1196
1197static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1198{
1199 return container_of((void *)uarg, struct sk_buff, cb);
1200}
1201
1202struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1203 struct ubuf_info *uarg)
1204{
1205 if (uarg) {
1206 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1207 u32 bytelen, next;
1208
1209 /* realloc only when socket is locked (TCP, UDP cork),
1210 * so uarg->len and sk_zckey access is serialized
1211 */
1212 if (!sock_owned_by_user(sk)) {
1213 WARN_ON_ONCE(1);
1214 return NULL;
1215 }
1216
1217 bytelen = uarg->bytelen + size;
1218 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1219 /* TCP can create new skb to attach new uarg */
1220 if (sk->sk_type == SOCK_STREAM)
1221 goto new_alloc;
1222 return NULL;
1223 }
1224
1225 next = (u32)atomic_read(&sk->sk_zckey);
1226 if ((u32)(uarg->id + uarg->len) == next) {
1227 if (mm_account_pinned_pages(&uarg->mmp, size))
1228 return NULL;
1229 uarg->len++;
1230 uarg->bytelen = bytelen;
1231 atomic_set(&sk->sk_zckey, ++next);
1232
1233 /* no extra ref when appending to datagram (MSG_MORE) */
1234 if (sk->sk_type == SOCK_STREAM)
1235 net_zcopy_get(uarg);
1236
1237 return uarg;
1238 }
1239 }
1240
1241new_alloc:
1242 return msg_zerocopy_alloc(sk, size);
1243}
1244EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1245
1246static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1247{
1248 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1249 u32 old_lo, old_hi;
1250 u64 sum_len;
1251
1252 old_lo = serr->ee.ee_info;
1253 old_hi = serr->ee.ee_data;
1254 sum_len = old_hi - old_lo + 1ULL + len;
1255
1256 if (sum_len >= (1ULL << 32))
1257 return false;
1258
1259 if (lo != old_hi + 1)
1260 return false;
1261
1262 serr->ee.ee_data += len;
1263 return true;
1264}
1265
1266static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1267{
1268 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1269 struct sock_exterr_skb *serr;
1270 struct sock *sk = skb->sk;
1271 struct sk_buff_head *q;
1272 unsigned long flags;
1273 bool is_zerocopy;
1274 u32 lo, hi;
1275 u16 len;
1276
1277 mm_unaccount_pinned_pages(&uarg->mmp);
1278
1279 /* if !len, there was only 1 call, and it was aborted
1280 * so do not queue a completion notification
1281 */
1282 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1283 goto release;
1284
1285 len = uarg->len;
1286 lo = uarg->id;
1287 hi = uarg->id + len - 1;
1288 is_zerocopy = uarg->zerocopy;
1289
1290 serr = SKB_EXT_ERR(skb);
1291 memset(serr, 0, sizeof(*serr));
1292 serr->ee.ee_errno = 0;
1293 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1294 serr->ee.ee_data = hi;
1295 serr->ee.ee_info = lo;
1296 if (!is_zerocopy)
1297 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1298
1299 q = &sk->sk_error_queue;
1300 spin_lock_irqsave(&q->lock, flags);
1301 tail = skb_peek_tail(q);
1302 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1303 !skb_zerocopy_notify_extend(tail, lo, len)) {
1304 __skb_queue_tail(q, skb);
1305 skb = NULL;
1306 }
1307 spin_unlock_irqrestore(&q->lock, flags);
1308
1309 sk_error_report(sk);
1310
1311release:
1312 consume_skb(skb);
1313 sock_put(sk);
1314}
1315
1316void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1317 bool success)
1318{
1319 uarg->zerocopy = uarg->zerocopy & success;
1320
1321 if (refcount_dec_and_test(&uarg->refcnt))
1322 __msg_zerocopy_callback(uarg);
1323}
1324EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1325
1326void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1327{
1328 struct sock *sk = skb_from_uarg(uarg)->sk;
1329
1330 atomic_dec(&sk->sk_zckey);
1331 uarg->len--;
1332
1333 if (have_uref)
1334 msg_zerocopy_callback(NULL, uarg, true);
1335}
1336EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1337
1338int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1339{
1340 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1341}
1342EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1343
1344int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1345 struct msghdr *msg, int len,
1346 struct ubuf_info *uarg)
1347{
1348 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1349 struct iov_iter orig_iter = msg->msg_iter;
1350 int err, orig_len = skb->len;
1351
1352 /* An skb can only point to one uarg. This edge case happens when
1353 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1354 */
1355 if (orig_uarg && uarg != orig_uarg)
1356 return -EEXIST;
1357
1358 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1359 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1360 struct sock *save_sk = skb->sk;
1361
1362 /* Streams do not free skb on error. Reset to prev state. */
1363 msg->msg_iter = orig_iter;
1364 skb->sk = sk;
1365 ___pskb_trim(skb, orig_len);
1366 skb->sk = save_sk;
1367 return err;
1368 }
1369
1370 skb_zcopy_set(skb, uarg, NULL);
1371 return skb->len - orig_len;
1372}
1373EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1374
1375static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1376 gfp_t gfp_mask)
1377{
1378 if (skb_zcopy(orig)) {
1379 if (skb_zcopy(nskb)) {
1380 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1381 if (!gfp_mask) {
1382 WARN_ON_ONCE(1);
1383 return -ENOMEM;
1384 }
1385 if (skb_uarg(nskb) == skb_uarg(orig))
1386 return 0;
1387 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1388 return -EIO;
1389 }
1390 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1391 }
1392 return 0;
1393}
1394
1395/**
1396 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1397 * @skb: the skb to modify
1398 * @gfp_mask: allocation priority
1399 *
1400 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1401 * It will copy all frags into kernel and drop the reference
1402 * to userspace pages.
1403 *
1404 * If this function is called from an interrupt gfp_mask() must be
1405 * %GFP_ATOMIC.
1406 *
1407 * Returns 0 on success or a negative error code on failure
1408 * to allocate kernel memory to copy to.
1409 */
1410int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1411{
1412 int num_frags = skb_shinfo(skb)->nr_frags;
1413 struct page *page, *head = NULL;
1414 int i, new_frags;
1415 u32 d_off;
1416
1417 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1418 return -EINVAL;
1419
1420 if (!num_frags)
1421 goto release;
1422
1423 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1424 for (i = 0; i < new_frags; i++) {
1425 page = alloc_page(gfp_mask);
1426 if (!page) {
1427 while (head) {
1428 struct page *next = (struct page *)page_private(head);
1429 put_page(head);
1430 head = next;
1431 }
1432 return -ENOMEM;
1433 }
1434 set_page_private(page, (unsigned long)head);
1435 head = page;
1436 }
1437
1438 page = head;
1439 d_off = 0;
1440 for (i = 0; i < num_frags; i++) {
1441 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1442 u32 p_off, p_len, copied;
1443 struct page *p;
1444 u8 *vaddr;
1445
1446 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1447 p, p_off, p_len, copied) {
1448 u32 copy, done = 0;
1449 vaddr = kmap_atomic(p);
1450
1451 while (done < p_len) {
1452 if (d_off == PAGE_SIZE) {
1453 d_off = 0;
1454 page = (struct page *)page_private(page);
1455 }
1456 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1457 memcpy(page_address(page) + d_off,
1458 vaddr + p_off + done, copy);
1459 done += copy;
1460 d_off += copy;
1461 }
1462 kunmap_atomic(vaddr);
1463 }
1464 }
1465
1466 /* skb frags release userspace buffers */
1467 for (i = 0; i < num_frags; i++)
1468 skb_frag_unref(skb, i);
1469
1470 /* skb frags point to kernel buffers */
1471 for (i = 0; i < new_frags - 1; i++) {
1472 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1473 head = (struct page *)page_private(head);
1474 }
1475 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1476 skb_shinfo(skb)->nr_frags = new_frags;
1477
1478release:
1479 skb_zcopy_clear(skb, false);
1480 return 0;
1481}
1482EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1483
1484/**
1485 * skb_clone - duplicate an sk_buff
1486 * @skb: buffer to clone
1487 * @gfp_mask: allocation priority
1488 *
1489 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1490 * copies share the same packet data but not structure. The new
1491 * buffer has a reference count of 1. If the allocation fails the
1492 * function returns %NULL otherwise the new buffer is returned.
1493 *
1494 * If this function is called from an interrupt gfp_mask() must be
1495 * %GFP_ATOMIC.
1496 */
1497
1498struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1499{
1500 struct sk_buff_fclones *fclones = container_of(skb,
1501 struct sk_buff_fclones,
1502 skb1);
1503 struct sk_buff *n;
1504
1505 if (skb_orphan_frags(skb, gfp_mask))
1506 return NULL;
1507
1508 if (skb->fclone == SKB_FCLONE_ORIG &&
1509 refcount_read(&fclones->fclone_ref) == 1) {
1510 n = &fclones->skb2;
1511 refcount_set(&fclones->fclone_ref, 2);
1512 } else {
1513 if (skb_pfmemalloc(skb))
1514 gfp_mask |= __GFP_MEMALLOC;
1515
1516 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1517 if (!n)
1518 return NULL;
1519
1520 n->fclone = SKB_FCLONE_UNAVAILABLE;
1521 }
1522
1523 return __skb_clone(n, skb);
1524}
1525EXPORT_SYMBOL(skb_clone);
1526
1527void skb_headers_offset_update(struct sk_buff *skb, int off)
1528{
1529 /* Only adjust this if it actually is csum_start rather than csum */
1530 if (skb->ip_summed == CHECKSUM_PARTIAL)
1531 skb->csum_start += off;
1532 /* {transport,network,mac}_header and tail are relative to skb->head */
1533 skb->transport_header += off;
1534 skb->network_header += off;
1535 if (skb_mac_header_was_set(skb))
1536 skb->mac_header += off;
1537 skb->inner_transport_header += off;
1538 skb->inner_network_header += off;
1539 skb->inner_mac_header += off;
1540}
1541EXPORT_SYMBOL(skb_headers_offset_update);
1542
1543void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1544{
1545 __copy_skb_header(new, old);
1546
1547 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1548 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1549 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1550}
1551EXPORT_SYMBOL(skb_copy_header);
1552
1553static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1554{
1555 if (skb_pfmemalloc(skb))
1556 return SKB_ALLOC_RX;
1557 return 0;
1558}
1559
1560/**
1561 * skb_copy - create private copy of an sk_buff
1562 * @skb: buffer to copy
1563 * @gfp_mask: allocation priority
1564 *
1565 * Make a copy of both an &sk_buff and its data. This is used when the
1566 * caller wishes to modify the data and needs a private copy of the
1567 * data to alter. Returns %NULL on failure or the pointer to the buffer
1568 * on success. The returned buffer has a reference count of 1.
1569 *
1570 * As by-product this function converts non-linear &sk_buff to linear
1571 * one, so that &sk_buff becomes completely private and caller is allowed
1572 * to modify all the data of returned buffer. This means that this
1573 * function is not recommended for use in circumstances when only
1574 * header is going to be modified. Use pskb_copy() instead.
1575 */
1576
1577struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1578{
1579 int headerlen = skb_headroom(skb);
1580 unsigned int size = skb_end_offset(skb) + skb->data_len;
1581 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1582 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1583
1584 if (!n)
1585 return NULL;
1586
1587 /* Set the data pointer */
1588 skb_reserve(n, headerlen);
1589 /* Set the tail pointer and length */
1590 skb_put(n, skb->len);
1591
1592 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1593
1594 skb_copy_header(n, skb);
1595 return n;
1596}
1597EXPORT_SYMBOL(skb_copy);
1598
1599/**
1600 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1601 * @skb: buffer to copy
1602 * @headroom: headroom of new skb
1603 * @gfp_mask: allocation priority
1604 * @fclone: if true allocate the copy of the skb from the fclone
1605 * cache instead of the head cache; it is recommended to set this
1606 * to true for the cases where the copy will likely be cloned
1607 *
1608 * Make a copy of both an &sk_buff and part of its data, located
1609 * in header. Fragmented data remain shared. This is used when
1610 * the caller wishes to modify only header of &sk_buff and needs
1611 * private copy of the header to alter. Returns %NULL on failure
1612 * or the pointer to the buffer on success.
1613 * The returned buffer has a reference count of 1.
1614 */
1615
1616struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1617 gfp_t gfp_mask, bool fclone)
1618{
1619 unsigned int size = skb_headlen(skb) + headroom;
1620 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1621 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1622
1623 if (!n)
1624 goto out;
1625
1626 /* Set the data pointer */
1627 skb_reserve(n, headroom);
1628 /* Set the tail pointer and length */
1629 skb_put(n, skb_headlen(skb));
1630 /* Copy the bytes */
1631 skb_copy_from_linear_data(skb, n->data, n->len);
1632
1633 n->truesize += skb->data_len;
1634 n->data_len = skb->data_len;
1635 n->len = skb->len;
1636
1637 if (skb_shinfo(skb)->nr_frags) {
1638 int i;
1639
1640 if (skb_orphan_frags(skb, gfp_mask) ||
1641 skb_zerocopy_clone(n, skb, gfp_mask)) {
1642 kfree_skb(n);
1643 n = NULL;
1644 goto out;
1645 }
1646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1647 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1648 skb_frag_ref(skb, i);
1649 }
1650 skb_shinfo(n)->nr_frags = i;
1651 }
1652
1653 if (skb_has_frag_list(skb)) {
1654 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1655 skb_clone_fraglist(n);
1656 }
1657
1658 skb_copy_header(n, skb);
1659out:
1660 return n;
1661}
1662EXPORT_SYMBOL(__pskb_copy_fclone);
1663
1664/**
1665 * pskb_expand_head - reallocate header of &sk_buff
1666 * @skb: buffer to reallocate
1667 * @nhead: room to add at head
1668 * @ntail: room to add at tail
1669 * @gfp_mask: allocation priority
1670 *
1671 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1672 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1673 * reference count of 1. Returns zero in the case of success or error,
1674 * if expansion failed. In the last case, &sk_buff is not changed.
1675 *
1676 * All the pointers pointing into skb header may change and must be
1677 * reloaded after call to this function.
1678 */
1679
1680int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1681 gfp_t gfp_mask)
1682{
1683 int i, osize = skb_end_offset(skb);
1684 int size = osize + nhead + ntail;
1685 long off;
1686 u8 *data;
1687
1688 BUG_ON(nhead < 0);
1689
1690 BUG_ON(skb_shared(skb));
1691
1692 size = SKB_DATA_ALIGN(size);
1693
1694 if (skb_pfmemalloc(skb))
1695 gfp_mask |= __GFP_MEMALLOC;
1696 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1697 gfp_mask, NUMA_NO_NODE, NULL);
1698 if (!data)
1699 goto nodata;
1700 size = SKB_WITH_OVERHEAD(ksize(data));
1701
1702 /* Copy only real data... and, alas, header. This should be
1703 * optimized for the cases when header is void.
1704 */
1705 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1706
1707 memcpy((struct skb_shared_info *)(data + size),
1708 skb_shinfo(skb),
1709 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1710
1711 /*
1712 * if shinfo is shared we must drop the old head gracefully, but if it
1713 * is not we can just drop the old head and let the existing refcount
1714 * be since all we did is relocate the values
1715 */
1716 if (skb_cloned(skb)) {
1717 if (skb_orphan_frags(skb, gfp_mask))
1718 goto nofrags;
1719 if (skb_zcopy(skb))
1720 refcount_inc(&skb_uarg(skb)->refcnt);
1721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1722 skb_frag_ref(skb, i);
1723
1724 if (skb_has_frag_list(skb))
1725 skb_clone_fraglist(skb);
1726
1727 skb_release_data(skb);
1728 } else {
1729 skb_free_head(skb);
1730 }
1731 off = (data + nhead) - skb->head;
1732
1733 skb->head = data;
1734 skb->head_frag = 0;
1735 skb->data += off;
1736#ifdef NET_SKBUFF_DATA_USES_OFFSET
1737 skb->end = size;
1738 off = nhead;
1739#else
1740 skb->end = skb->head + size;
1741#endif
1742 skb->tail += off;
1743 skb_headers_offset_update(skb, nhead);
1744 skb->cloned = 0;
1745 skb->hdr_len = 0;
1746 skb->nohdr = 0;
1747 atomic_set(&skb_shinfo(skb)->dataref, 1);
1748
1749 skb_metadata_clear(skb);
1750
1751 /* It is not generally safe to change skb->truesize.
1752 * For the moment, we really care of rx path, or
1753 * when skb is orphaned (not attached to a socket).
1754 */
1755 if (!skb->sk || skb->destructor == sock_edemux)
1756 skb->truesize += size - osize;
1757
1758 return 0;
1759
1760nofrags:
1761 kfree(data);
1762nodata:
1763 return -ENOMEM;
1764}
1765EXPORT_SYMBOL(pskb_expand_head);
1766
1767/* Make private copy of skb with writable head and some headroom */
1768
1769struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1770{
1771 struct sk_buff *skb2;
1772 int delta = headroom - skb_headroom(skb);
1773
1774 if (delta <= 0)
1775 skb2 = pskb_copy(skb, GFP_ATOMIC);
1776 else {
1777 skb2 = skb_clone(skb, GFP_ATOMIC);
1778 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1779 GFP_ATOMIC)) {
1780 kfree_skb(skb2);
1781 skb2 = NULL;
1782 }
1783 }
1784 return skb2;
1785}
1786EXPORT_SYMBOL(skb_realloc_headroom);
1787
1788/**
1789 * skb_copy_expand - copy and expand sk_buff
1790 * @skb: buffer to copy
1791 * @newheadroom: new free bytes at head
1792 * @newtailroom: new free bytes at tail
1793 * @gfp_mask: allocation priority
1794 *
1795 * Make a copy of both an &sk_buff and its data and while doing so
1796 * allocate additional space.
1797 *
1798 * This is used when the caller wishes to modify the data and needs a
1799 * private copy of the data to alter as well as more space for new fields.
1800 * Returns %NULL on failure or the pointer to the buffer
1801 * on success. The returned buffer has a reference count of 1.
1802 *
1803 * You must pass %GFP_ATOMIC as the allocation priority if this function
1804 * is called from an interrupt.
1805 */
1806struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1807 int newheadroom, int newtailroom,
1808 gfp_t gfp_mask)
1809{
1810 /*
1811 * Allocate the copy buffer
1812 */
1813 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1814 gfp_mask, skb_alloc_rx_flag(skb),
1815 NUMA_NO_NODE);
1816 int oldheadroom = skb_headroom(skb);
1817 int head_copy_len, head_copy_off;
1818
1819 if (!n)
1820 return NULL;
1821
1822 skb_reserve(n, newheadroom);
1823
1824 /* Set the tail pointer and length */
1825 skb_put(n, skb->len);
1826
1827 head_copy_len = oldheadroom;
1828 head_copy_off = 0;
1829 if (newheadroom <= head_copy_len)
1830 head_copy_len = newheadroom;
1831 else
1832 head_copy_off = newheadroom - head_copy_len;
1833
1834 /* Copy the linear header and data. */
1835 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1836 skb->len + head_copy_len));
1837
1838 skb_copy_header(n, skb);
1839
1840 skb_headers_offset_update(n, newheadroom - oldheadroom);
1841
1842 return n;
1843}
1844EXPORT_SYMBOL(skb_copy_expand);
1845
1846/**
1847 * __skb_pad - zero pad the tail of an skb
1848 * @skb: buffer to pad
1849 * @pad: space to pad
1850 * @free_on_error: free buffer on error
1851 *
1852 * Ensure that a buffer is followed by a padding area that is zero
1853 * filled. Used by network drivers which may DMA or transfer data
1854 * beyond the buffer end onto the wire.
1855 *
1856 * May return error in out of memory cases. The skb is freed on error
1857 * if @free_on_error is true.
1858 */
1859
1860int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1861{
1862 int err;
1863 int ntail;
1864
1865 /* If the skbuff is non linear tailroom is always zero.. */
1866 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1867 memset(skb->data+skb->len, 0, pad);
1868 return 0;
1869 }
1870
1871 ntail = skb->data_len + pad - (skb->end - skb->tail);
1872 if (likely(skb_cloned(skb) || ntail > 0)) {
1873 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1874 if (unlikely(err))
1875 goto free_skb;
1876 }
1877
1878 /* FIXME: The use of this function with non-linear skb's really needs
1879 * to be audited.
1880 */
1881 err = skb_linearize(skb);
1882 if (unlikely(err))
1883 goto free_skb;
1884
1885 memset(skb->data + skb->len, 0, pad);
1886 return 0;
1887
1888free_skb:
1889 if (free_on_error)
1890 kfree_skb(skb);
1891 return err;
1892}
1893EXPORT_SYMBOL(__skb_pad);
1894
1895/**
1896 * pskb_put - add data to the tail of a potentially fragmented buffer
1897 * @skb: start of the buffer to use
1898 * @tail: tail fragment of the buffer to use
1899 * @len: amount of data to add
1900 *
1901 * This function extends the used data area of the potentially
1902 * fragmented buffer. @tail must be the last fragment of @skb -- or
1903 * @skb itself. If this would exceed the total buffer size the kernel
1904 * will panic. A pointer to the first byte of the extra data is
1905 * returned.
1906 */
1907
1908void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1909{
1910 if (tail != skb) {
1911 skb->data_len += len;
1912 skb->len += len;
1913 }
1914 return skb_put(tail, len);
1915}
1916EXPORT_SYMBOL_GPL(pskb_put);
1917
1918/**
1919 * skb_put - add data to a buffer
1920 * @skb: buffer to use
1921 * @len: amount of data to add
1922 *
1923 * This function extends the used data area of the buffer. If this would
1924 * exceed the total buffer size the kernel will panic. A pointer to the
1925 * first byte of the extra data is returned.
1926 */
1927void *skb_put(struct sk_buff *skb, unsigned int len)
1928{
1929 void *tmp = skb_tail_pointer(skb);
1930 SKB_LINEAR_ASSERT(skb);
1931 skb->tail += len;
1932 skb->len += len;
1933 if (unlikely(skb->tail > skb->end))
1934 skb_over_panic(skb, len, __builtin_return_address(0));
1935 return tmp;
1936}
1937EXPORT_SYMBOL(skb_put);
1938
1939/**
1940 * skb_push - add data to the start of a buffer
1941 * @skb: buffer to use
1942 * @len: amount of data to add
1943 *
1944 * This function extends the used data area of the buffer at the buffer
1945 * start. If this would exceed the total buffer headroom the kernel will
1946 * panic. A pointer to the first byte of the extra data is returned.
1947 */
1948void *skb_push(struct sk_buff *skb, unsigned int len)
1949{
1950 skb->data -= len;
1951 skb->len += len;
1952 if (unlikely(skb->data < skb->head))
1953 skb_under_panic(skb, len, __builtin_return_address(0));
1954 return skb->data;
1955}
1956EXPORT_SYMBOL(skb_push);
1957
1958/**
1959 * skb_pull - remove data from the start of a buffer
1960 * @skb: buffer to use
1961 * @len: amount of data to remove
1962 *
1963 * This function removes data from the start of a buffer, returning
1964 * the memory to the headroom. A pointer to the next data in the buffer
1965 * is returned. Once the data has been pulled future pushes will overwrite
1966 * the old data.
1967 */
1968void *skb_pull(struct sk_buff *skb, unsigned int len)
1969{
1970 return skb_pull_inline(skb, len);
1971}
1972EXPORT_SYMBOL(skb_pull);
1973
1974/**
1975 * skb_trim - remove end from a buffer
1976 * @skb: buffer to alter
1977 * @len: new length
1978 *
1979 * Cut the length of a buffer down by removing data from the tail. If
1980 * the buffer is already under the length specified it is not modified.
1981 * The skb must be linear.
1982 */
1983void skb_trim(struct sk_buff *skb, unsigned int len)
1984{
1985 if (skb->len > len)
1986 __skb_trim(skb, len);
1987}
1988EXPORT_SYMBOL(skb_trim);
1989
1990/* Trims skb to length len. It can change skb pointers.
1991 */
1992
1993int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1994{
1995 struct sk_buff **fragp;
1996 struct sk_buff *frag;
1997 int offset = skb_headlen(skb);
1998 int nfrags = skb_shinfo(skb)->nr_frags;
1999 int i;
2000 int err;
2001
2002 if (skb_cloned(skb) &&
2003 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2004 return err;
2005
2006 i = 0;
2007 if (offset >= len)
2008 goto drop_pages;
2009
2010 for (; i < nfrags; i++) {
2011 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2012
2013 if (end < len) {
2014 offset = end;
2015 continue;
2016 }
2017
2018 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2019
2020drop_pages:
2021 skb_shinfo(skb)->nr_frags = i;
2022
2023 for (; i < nfrags; i++)
2024 skb_frag_unref(skb, i);
2025
2026 if (skb_has_frag_list(skb))
2027 skb_drop_fraglist(skb);
2028 goto done;
2029 }
2030
2031 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2032 fragp = &frag->next) {
2033 int end = offset + frag->len;
2034
2035 if (skb_shared(frag)) {
2036 struct sk_buff *nfrag;
2037
2038 nfrag = skb_clone(frag, GFP_ATOMIC);
2039 if (unlikely(!nfrag))
2040 return -ENOMEM;
2041
2042 nfrag->next = frag->next;
2043 consume_skb(frag);
2044 frag = nfrag;
2045 *fragp = frag;
2046 }
2047
2048 if (end < len) {
2049 offset = end;
2050 continue;
2051 }
2052
2053 if (end > len &&
2054 unlikely((err = pskb_trim(frag, len - offset))))
2055 return err;
2056
2057 if (frag->next)
2058 skb_drop_list(&frag->next);
2059 break;
2060 }
2061
2062done:
2063 if (len > skb_headlen(skb)) {
2064 skb->data_len -= skb->len - len;
2065 skb->len = len;
2066 } else {
2067 skb->len = len;
2068 skb->data_len = 0;
2069 skb_set_tail_pointer(skb, len);
2070 }
2071
2072 if (!skb->sk || skb->destructor == sock_edemux)
2073 skb_condense(skb);
2074 return 0;
2075}
2076EXPORT_SYMBOL(___pskb_trim);
2077
2078/* Note : use pskb_trim_rcsum() instead of calling this directly
2079 */
2080int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2081{
2082 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2083 int delta = skb->len - len;
2084
2085 skb->csum = csum_block_sub(skb->csum,
2086 skb_checksum(skb, len, delta, 0),
2087 len);
2088 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2090 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2091
2092 if (offset + sizeof(__sum16) > hdlen)
2093 return -EINVAL;
2094 }
2095 return __pskb_trim(skb, len);
2096}
2097EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2098
2099/**
2100 * __pskb_pull_tail - advance tail of skb header
2101 * @skb: buffer to reallocate
2102 * @delta: number of bytes to advance tail
2103 *
2104 * The function makes a sense only on a fragmented &sk_buff,
2105 * it expands header moving its tail forward and copying necessary
2106 * data from fragmented part.
2107 *
2108 * &sk_buff MUST have reference count of 1.
2109 *
2110 * Returns %NULL (and &sk_buff does not change) if pull failed
2111 * or value of new tail of skb in the case of success.
2112 *
2113 * All the pointers pointing into skb header may change and must be
2114 * reloaded after call to this function.
2115 */
2116
2117/* Moves tail of skb head forward, copying data from fragmented part,
2118 * when it is necessary.
2119 * 1. It may fail due to malloc failure.
2120 * 2. It may change skb pointers.
2121 *
2122 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2123 */
2124void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2125{
2126 /* If skb has not enough free space at tail, get new one
2127 * plus 128 bytes for future expansions. If we have enough
2128 * room at tail, reallocate without expansion only if skb is cloned.
2129 */
2130 int i, k, eat = (skb->tail + delta) - skb->end;
2131
2132 if (eat > 0 || skb_cloned(skb)) {
2133 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2134 GFP_ATOMIC))
2135 return NULL;
2136 }
2137
2138 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2139 skb_tail_pointer(skb), delta));
2140
2141 /* Optimization: no fragments, no reasons to preestimate
2142 * size of pulled pages. Superb.
2143 */
2144 if (!skb_has_frag_list(skb))
2145 goto pull_pages;
2146
2147 /* Estimate size of pulled pages. */
2148 eat = delta;
2149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2150 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2151
2152 if (size >= eat)
2153 goto pull_pages;
2154 eat -= size;
2155 }
2156
2157 /* If we need update frag list, we are in troubles.
2158 * Certainly, it is possible to add an offset to skb data,
2159 * but taking into account that pulling is expected to
2160 * be very rare operation, it is worth to fight against
2161 * further bloating skb head and crucify ourselves here instead.
2162 * Pure masohism, indeed. 8)8)
2163 */
2164 if (eat) {
2165 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2166 struct sk_buff *clone = NULL;
2167 struct sk_buff *insp = NULL;
2168
2169 do {
2170 if (list->len <= eat) {
2171 /* Eaten as whole. */
2172 eat -= list->len;
2173 list = list->next;
2174 insp = list;
2175 } else {
2176 /* Eaten partially. */
2177
2178 if (skb_shared(list)) {
2179 /* Sucks! We need to fork list. :-( */
2180 clone = skb_clone(list, GFP_ATOMIC);
2181 if (!clone)
2182 return NULL;
2183 insp = list->next;
2184 list = clone;
2185 } else {
2186 /* This may be pulled without
2187 * problems. */
2188 insp = list;
2189 }
2190 if (!pskb_pull(list, eat)) {
2191 kfree_skb(clone);
2192 return NULL;
2193 }
2194 break;
2195 }
2196 } while (eat);
2197
2198 /* Free pulled out fragments. */
2199 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2200 skb_shinfo(skb)->frag_list = list->next;
2201 kfree_skb(list);
2202 }
2203 /* And insert new clone at head. */
2204 if (clone) {
2205 clone->next = list;
2206 skb_shinfo(skb)->frag_list = clone;
2207 }
2208 }
2209 /* Success! Now we may commit changes to skb data. */
2210
2211pull_pages:
2212 eat = delta;
2213 k = 0;
2214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2215 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2216
2217 if (size <= eat) {
2218 skb_frag_unref(skb, i);
2219 eat -= size;
2220 } else {
2221 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2222
2223 *frag = skb_shinfo(skb)->frags[i];
2224 if (eat) {
2225 skb_frag_off_add(frag, eat);
2226 skb_frag_size_sub(frag, eat);
2227 if (!i)
2228 goto end;
2229 eat = 0;
2230 }
2231 k++;
2232 }
2233 }
2234 skb_shinfo(skb)->nr_frags = k;
2235
2236end:
2237 skb->tail += delta;
2238 skb->data_len -= delta;
2239
2240 if (!skb->data_len)
2241 skb_zcopy_clear(skb, false);
2242
2243 return skb_tail_pointer(skb);
2244}
2245EXPORT_SYMBOL(__pskb_pull_tail);
2246
2247/**
2248 * skb_copy_bits - copy bits from skb to kernel buffer
2249 * @skb: source skb
2250 * @offset: offset in source
2251 * @to: destination buffer
2252 * @len: number of bytes to copy
2253 *
2254 * Copy the specified number of bytes from the source skb to the
2255 * destination buffer.
2256 *
2257 * CAUTION ! :
2258 * If its prototype is ever changed,
2259 * check arch/{*}/net/{*}.S files,
2260 * since it is called from BPF assembly code.
2261 */
2262int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2263{
2264 int start = skb_headlen(skb);
2265 struct sk_buff *frag_iter;
2266 int i, copy;
2267
2268 if (offset > (int)skb->len - len)
2269 goto fault;
2270
2271 /* Copy header. */
2272 if ((copy = start - offset) > 0) {
2273 if (copy > len)
2274 copy = len;
2275 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2276 if ((len -= copy) == 0)
2277 return 0;
2278 offset += copy;
2279 to += copy;
2280 }
2281
2282 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2283 int end;
2284 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2285
2286 WARN_ON(start > offset + len);
2287
2288 end = start + skb_frag_size(f);
2289 if ((copy = end - offset) > 0) {
2290 u32 p_off, p_len, copied;
2291 struct page *p;
2292 u8 *vaddr;
2293
2294 if (copy > len)
2295 copy = len;
2296
2297 skb_frag_foreach_page(f,
2298 skb_frag_off(f) + offset - start,
2299 copy, p, p_off, p_len, copied) {
2300 vaddr = kmap_atomic(p);
2301 memcpy(to + copied, vaddr + p_off, p_len);
2302 kunmap_atomic(vaddr);
2303 }
2304
2305 if ((len -= copy) == 0)
2306 return 0;
2307 offset += copy;
2308 to += copy;
2309 }
2310 start = end;
2311 }
2312
2313 skb_walk_frags(skb, frag_iter) {
2314 int end;
2315
2316 WARN_ON(start > offset + len);
2317
2318 end = start + frag_iter->len;
2319 if ((copy = end - offset) > 0) {
2320 if (copy > len)
2321 copy = len;
2322 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2323 goto fault;
2324 if ((len -= copy) == 0)
2325 return 0;
2326 offset += copy;
2327 to += copy;
2328 }
2329 start = end;
2330 }
2331
2332 if (!len)
2333 return 0;
2334
2335fault:
2336 return -EFAULT;
2337}
2338EXPORT_SYMBOL(skb_copy_bits);
2339
2340/*
2341 * Callback from splice_to_pipe(), if we need to release some pages
2342 * at the end of the spd in case we error'ed out in filling the pipe.
2343 */
2344static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2345{
2346 put_page(spd->pages[i]);
2347}
2348
2349static struct page *linear_to_page(struct page *page, unsigned int *len,
2350 unsigned int *offset,
2351 struct sock *sk)
2352{
2353 struct page_frag *pfrag = sk_page_frag(sk);
2354
2355 if (!sk_page_frag_refill(sk, pfrag))
2356 return NULL;
2357
2358 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2359
2360 memcpy(page_address(pfrag->page) + pfrag->offset,
2361 page_address(page) + *offset, *len);
2362 *offset = pfrag->offset;
2363 pfrag->offset += *len;
2364
2365 return pfrag->page;
2366}
2367
2368static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2369 struct page *page,
2370 unsigned int offset)
2371{
2372 return spd->nr_pages &&
2373 spd->pages[spd->nr_pages - 1] == page &&
2374 (spd->partial[spd->nr_pages - 1].offset +
2375 spd->partial[spd->nr_pages - 1].len == offset);
2376}
2377
2378/*
2379 * Fill page/offset/length into spd, if it can hold more pages.
2380 */
2381static bool spd_fill_page(struct splice_pipe_desc *spd,
2382 struct pipe_inode_info *pipe, struct page *page,
2383 unsigned int *len, unsigned int offset,
2384 bool linear,
2385 struct sock *sk)
2386{
2387 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2388 return true;
2389
2390 if (linear) {
2391 page = linear_to_page(page, len, &offset, sk);
2392 if (!page)
2393 return true;
2394 }
2395 if (spd_can_coalesce(spd, page, offset)) {
2396 spd->partial[spd->nr_pages - 1].len += *len;
2397 return false;
2398 }
2399 get_page(page);
2400 spd->pages[spd->nr_pages] = page;
2401 spd->partial[spd->nr_pages].len = *len;
2402 spd->partial[spd->nr_pages].offset = offset;
2403 spd->nr_pages++;
2404
2405 return false;
2406}
2407
2408static bool __splice_segment(struct page *page, unsigned int poff,
2409 unsigned int plen, unsigned int *off,
2410 unsigned int *len,
2411 struct splice_pipe_desc *spd, bool linear,
2412 struct sock *sk,
2413 struct pipe_inode_info *pipe)
2414{
2415 if (!*len)
2416 return true;
2417
2418 /* skip this segment if already processed */
2419 if (*off >= plen) {
2420 *off -= plen;
2421 return false;
2422 }
2423
2424 /* ignore any bits we already processed */
2425 poff += *off;
2426 plen -= *off;
2427 *off = 0;
2428
2429 do {
2430 unsigned int flen = min(*len, plen);
2431
2432 if (spd_fill_page(spd, pipe, page, &flen, poff,
2433 linear, sk))
2434 return true;
2435 poff += flen;
2436 plen -= flen;
2437 *len -= flen;
2438 } while (*len && plen);
2439
2440 return false;
2441}
2442
2443/*
2444 * Map linear and fragment data from the skb to spd. It reports true if the
2445 * pipe is full or if we already spliced the requested length.
2446 */
2447static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2448 unsigned int *offset, unsigned int *len,
2449 struct splice_pipe_desc *spd, struct sock *sk)
2450{
2451 int seg;
2452 struct sk_buff *iter;
2453
2454 /* map the linear part :
2455 * If skb->head_frag is set, this 'linear' part is backed by a
2456 * fragment, and if the head is not shared with any clones then
2457 * we can avoid a copy since we own the head portion of this page.
2458 */
2459 if (__splice_segment(virt_to_page(skb->data),
2460 (unsigned long) skb->data & (PAGE_SIZE - 1),
2461 skb_headlen(skb),
2462 offset, len, spd,
2463 skb_head_is_locked(skb),
2464 sk, pipe))
2465 return true;
2466
2467 /*
2468 * then map the fragments
2469 */
2470 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2471 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2472
2473 if (__splice_segment(skb_frag_page(f),
2474 skb_frag_off(f), skb_frag_size(f),
2475 offset, len, spd, false, sk, pipe))
2476 return true;
2477 }
2478
2479 skb_walk_frags(skb, iter) {
2480 if (*offset >= iter->len) {
2481 *offset -= iter->len;
2482 continue;
2483 }
2484 /* __skb_splice_bits() only fails if the output has no room
2485 * left, so no point in going over the frag_list for the error
2486 * case.
2487 */
2488 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2489 return true;
2490 }
2491
2492 return false;
2493}
2494
2495/*
2496 * Map data from the skb to a pipe. Should handle both the linear part,
2497 * the fragments, and the frag list.
2498 */
2499int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2500 struct pipe_inode_info *pipe, unsigned int tlen,
2501 unsigned int flags)
2502{
2503 struct partial_page partial[MAX_SKB_FRAGS];
2504 struct page *pages[MAX_SKB_FRAGS];
2505 struct splice_pipe_desc spd = {
2506 .pages = pages,
2507 .partial = partial,
2508 .nr_pages_max = MAX_SKB_FRAGS,
2509 .ops = &nosteal_pipe_buf_ops,
2510 .spd_release = sock_spd_release,
2511 };
2512 int ret = 0;
2513
2514 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2515
2516 if (spd.nr_pages)
2517 ret = splice_to_pipe(pipe, &spd);
2518
2519 return ret;
2520}
2521EXPORT_SYMBOL_GPL(skb_splice_bits);
2522
2523static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2524 struct kvec *vec, size_t num, size_t size)
2525{
2526 struct socket *sock = sk->sk_socket;
2527
2528 if (!sock)
2529 return -EINVAL;
2530 return kernel_sendmsg(sock, msg, vec, num, size);
2531}
2532
2533static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2534 size_t size, int flags)
2535{
2536 struct socket *sock = sk->sk_socket;
2537
2538 if (!sock)
2539 return -EINVAL;
2540 return kernel_sendpage(sock, page, offset, size, flags);
2541}
2542
2543typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2544 struct kvec *vec, size_t num, size_t size);
2545typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2546 size_t size, int flags);
2547static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2548 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2549{
2550 unsigned int orig_len = len;
2551 struct sk_buff *head = skb;
2552 unsigned short fragidx;
2553 int slen, ret;
2554
2555do_frag_list:
2556
2557 /* Deal with head data */
2558 while (offset < skb_headlen(skb) && len) {
2559 struct kvec kv;
2560 struct msghdr msg;
2561
2562 slen = min_t(int, len, skb_headlen(skb) - offset);
2563 kv.iov_base = skb->data + offset;
2564 kv.iov_len = slen;
2565 memset(&msg, 0, sizeof(msg));
2566 msg.msg_flags = MSG_DONTWAIT;
2567
2568 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2569 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2570 if (ret <= 0)
2571 goto error;
2572
2573 offset += ret;
2574 len -= ret;
2575 }
2576
2577 /* All the data was skb head? */
2578 if (!len)
2579 goto out;
2580
2581 /* Make offset relative to start of frags */
2582 offset -= skb_headlen(skb);
2583
2584 /* Find where we are in frag list */
2585 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2586 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2587
2588 if (offset < skb_frag_size(frag))
2589 break;
2590
2591 offset -= skb_frag_size(frag);
2592 }
2593
2594 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2595 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2596
2597 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2598
2599 while (slen) {
2600 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2601 sendpage_unlocked, sk,
2602 skb_frag_page(frag),
2603 skb_frag_off(frag) + offset,
2604 slen, MSG_DONTWAIT);
2605 if (ret <= 0)
2606 goto error;
2607
2608 len -= ret;
2609 offset += ret;
2610 slen -= ret;
2611 }
2612
2613 offset = 0;
2614 }
2615
2616 if (len) {
2617 /* Process any frag lists */
2618
2619 if (skb == head) {
2620 if (skb_has_frag_list(skb)) {
2621 skb = skb_shinfo(skb)->frag_list;
2622 goto do_frag_list;
2623 }
2624 } else if (skb->next) {
2625 skb = skb->next;
2626 goto do_frag_list;
2627 }
2628 }
2629
2630out:
2631 return orig_len - len;
2632
2633error:
2634 return orig_len == len ? ret : orig_len - len;
2635}
2636
2637/* Send skb data on a socket. Socket must be locked. */
2638int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2639 int len)
2640{
2641 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2642 kernel_sendpage_locked);
2643}
2644EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2645
2646/* Send skb data on a socket. Socket must be unlocked. */
2647int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2648{
2649 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2650 sendpage_unlocked);
2651}
2652
2653/**
2654 * skb_store_bits - store bits from kernel buffer to skb
2655 * @skb: destination buffer
2656 * @offset: offset in destination
2657 * @from: source buffer
2658 * @len: number of bytes to copy
2659 *
2660 * Copy the specified number of bytes from the source buffer to the
2661 * destination skb. This function handles all the messy bits of
2662 * traversing fragment lists and such.
2663 */
2664
2665int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2666{
2667 int start = skb_headlen(skb);
2668 struct sk_buff *frag_iter;
2669 int i, copy;
2670
2671 if (offset > (int)skb->len - len)
2672 goto fault;
2673
2674 if ((copy = start - offset) > 0) {
2675 if (copy > len)
2676 copy = len;
2677 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2678 if ((len -= copy) == 0)
2679 return 0;
2680 offset += copy;
2681 from += copy;
2682 }
2683
2684 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2686 int end;
2687
2688 WARN_ON(start > offset + len);
2689
2690 end = start + skb_frag_size(frag);
2691 if ((copy = end - offset) > 0) {
2692 u32 p_off, p_len, copied;
2693 struct page *p;
2694 u8 *vaddr;
2695
2696 if (copy > len)
2697 copy = len;
2698
2699 skb_frag_foreach_page(frag,
2700 skb_frag_off(frag) + offset - start,
2701 copy, p, p_off, p_len, copied) {
2702 vaddr = kmap_atomic(p);
2703 memcpy(vaddr + p_off, from + copied, p_len);
2704 kunmap_atomic(vaddr);
2705 }
2706
2707 if ((len -= copy) == 0)
2708 return 0;
2709 offset += copy;
2710 from += copy;
2711 }
2712 start = end;
2713 }
2714
2715 skb_walk_frags(skb, frag_iter) {
2716 int end;
2717
2718 WARN_ON(start > offset + len);
2719
2720 end = start + frag_iter->len;
2721 if ((copy = end - offset) > 0) {
2722 if (copy > len)
2723 copy = len;
2724 if (skb_store_bits(frag_iter, offset - start,
2725 from, copy))
2726 goto fault;
2727 if ((len -= copy) == 0)
2728 return 0;
2729 offset += copy;
2730 from += copy;
2731 }
2732 start = end;
2733 }
2734 if (!len)
2735 return 0;
2736
2737fault:
2738 return -EFAULT;
2739}
2740EXPORT_SYMBOL(skb_store_bits);
2741
2742/* Checksum skb data. */
2743__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2744 __wsum csum, const struct skb_checksum_ops *ops)
2745{
2746 int start = skb_headlen(skb);
2747 int i, copy = start - offset;
2748 struct sk_buff *frag_iter;
2749 int pos = 0;
2750
2751 /* Checksum header. */
2752 if (copy > 0) {
2753 if (copy > len)
2754 copy = len;
2755 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2756 skb->data + offset, copy, csum);
2757 if ((len -= copy) == 0)
2758 return csum;
2759 offset += copy;
2760 pos = copy;
2761 }
2762
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 int end;
2765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2766
2767 WARN_ON(start > offset + len);
2768
2769 end = start + skb_frag_size(frag);
2770 if ((copy = end - offset) > 0) {
2771 u32 p_off, p_len, copied;
2772 struct page *p;
2773 __wsum csum2;
2774 u8 *vaddr;
2775
2776 if (copy > len)
2777 copy = len;
2778
2779 skb_frag_foreach_page(frag,
2780 skb_frag_off(frag) + offset - start,
2781 copy, p, p_off, p_len, copied) {
2782 vaddr = kmap_atomic(p);
2783 csum2 = INDIRECT_CALL_1(ops->update,
2784 csum_partial_ext,
2785 vaddr + p_off, p_len, 0);
2786 kunmap_atomic(vaddr);
2787 csum = INDIRECT_CALL_1(ops->combine,
2788 csum_block_add_ext, csum,
2789 csum2, pos, p_len);
2790 pos += p_len;
2791 }
2792
2793 if (!(len -= copy))
2794 return csum;
2795 offset += copy;
2796 }
2797 start = end;
2798 }
2799
2800 skb_walk_frags(skb, frag_iter) {
2801 int end;
2802
2803 WARN_ON(start > offset + len);
2804
2805 end = start + frag_iter->len;
2806 if ((copy = end - offset) > 0) {
2807 __wsum csum2;
2808 if (copy > len)
2809 copy = len;
2810 csum2 = __skb_checksum(frag_iter, offset - start,
2811 copy, 0, ops);
2812 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2813 csum, csum2, pos, copy);
2814 if ((len -= copy) == 0)
2815 return csum;
2816 offset += copy;
2817 pos += copy;
2818 }
2819 start = end;
2820 }
2821 BUG_ON(len);
2822
2823 return csum;
2824}
2825EXPORT_SYMBOL(__skb_checksum);
2826
2827__wsum skb_checksum(const struct sk_buff *skb, int offset,
2828 int len, __wsum csum)
2829{
2830 const struct skb_checksum_ops ops = {
2831 .update = csum_partial_ext,
2832 .combine = csum_block_add_ext,
2833 };
2834
2835 return __skb_checksum(skb, offset, len, csum, &ops);
2836}
2837EXPORT_SYMBOL(skb_checksum);
2838
2839/* Both of above in one bottle. */
2840
2841__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2842 u8 *to, int len)
2843{
2844 int start = skb_headlen(skb);
2845 int i, copy = start - offset;
2846 struct sk_buff *frag_iter;
2847 int pos = 0;
2848 __wsum csum = 0;
2849
2850 /* Copy header. */
2851 if (copy > 0) {
2852 if (copy > len)
2853 copy = len;
2854 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2855 copy);
2856 if ((len -= copy) == 0)
2857 return csum;
2858 offset += copy;
2859 to += copy;
2860 pos = copy;
2861 }
2862
2863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2864 int end;
2865
2866 WARN_ON(start > offset + len);
2867
2868 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2869 if ((copy = end - offset) > 0) {
2870 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2871 u32 p_off, p_len, copied;
2872 struct page *p;
2873 __wsum csum2;
2874 u8 *vaddr;
2875
2876 if (copy > len)
2877 copy = len;
2878
2879 skb_frag_foreach_page(frag,
2880 skb_frag_off(frag) + offset - start,
2881 copy, p, p_off, p_len, copied) {
2882 vaddr = kmap_atomic(p);
2883 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2884 to + copied,
2885 p_len);
2886 kunmap_atomic(vaddr);
2887 csum = csum_block_add(csum, csum2, pos);
2888 pos += p_len;
2889 }
2890
2891 if (!(len -= copy))
2892 return csum;
2893 offset += copy;
2894 to += copy;
2895 }
2896 start = end;
2897 }
2898
2899 skb_walk_frags(skb, frag_iter) {
2900 __wsum csum2;
2901 int end;
2902
2903 WARN_ON(start > offset + len);
2904
2905 end = start + frag_iter->len;
2906 if ((copy = end - offset) > 0) {
2907 if (copy > len)
2908 copy = len;
2909 csum2 = skb_copy_and_csum_bits(frag_iter,
2910 offset - start,
2911 to, copy);
2912 csum = csum_block_add(csum, csum2, pos);
2913 if ((len -= copy) == 0)
2914 return csum;
2915 offset += copy;
2916 to += copy;
2917 pos += copy;
2918 }
2919 start = end;
2920 }
2921 BUG_ON(len);
2922 return csum;
2923}
2924EXPORT_SYMBOL(skb_copy_and_csum_bits);
2925
2926__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2927{
2928 __sum16 sum;
2929
2930 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2931 /* See comments in __skb_checksum_complete(). */
2932 if (likely(!sum)) {
2933 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2934 !skb->csum_complete_sw)
2935 netdev_rx_csum_fault(skb->dev, skb);
2936 }
2937 if (!skb_shared(skb))
2938 skb->csum_valid = !sum;
2939 return sum;
2940}
2941EXPORT_SYMBOL(__skb_checksum_complete_head);
2942
2943/* This function assumes skb->csum already holds pseudo header's checksum,
2944 * which has been changed from the hardware checksum, for example, by
2945 * __skb_checksum_validate_complete(). And, the original skb->csum must
2946 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2947 *
2948 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2949 * zero. The new checksum is stored back into skb->csum unless the skb is
2950 * shared.
2951 */
2952__sum16 __skb_checksum_complete(struct sk_buff *skb)
2953{
2954 __wsum csum;
2955 __sum16 sum;
2956
2957 csum = skb_checksum(skb, 0, skb->len, 0);
2958
2959 sum = csum_fold(csum_add(skb->csum, csum));
2960 /* This check is inverted, because we already knew the hardware
2961 * checksum is invalid before calling this function. So, if the
2962 * re-computed checksum is valid instead, then we have a mismatch
2963 * between the original skb->csum and skb_checksum(). This means either
2964 * the original hardware checksum is incorrect or we screw up skb->csum
2965 * when moving skb->data around.
2966 */
2967 if (likely(!sum)) {
2968 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2969 !skb->csum_complete_sw)
2970 netdev_rx_csum_fault(skb->dev, skb);
2971 }
2972
2973 if (!skb_shared(skb)) {
2974 /* Save full packet checksum */
2975 skb->csum = csum;
2976 skb->ip_summed = CHECKSUM_COMPLETE;
2977 skb->csum_complete_sw = 1;
2978 skb->csum_valid = !sum;
2979 }
2980
2981 return sum;
2982}
2983EXPORT_SYMBOL(__skb_checksum_complete);
2984
2985static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2986{
2987 net_warn_ratelimited(
2988 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2989 __func__);
2990 return 0;
2991}
2992
2993static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2994 int offset, int len)
2995{
2996 net_warn_ratelimited(
2997 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2998 __func__);
2999 return 0;
3000}
3001
3002static const struct skb_checksum_ops default_crc32c_ops = {
3003 .update = warn_crc32c_csum_update,
3004 .combine = warn_crc32c_csum_combine,
3005};
3006
3007const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3008 &default_crc32c_ops;
3009EXPORT_SYMBOL(crc32c_csum_stub);
3010
3011 /**
3012 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3013 * @from: source buffer
3014 *
3015 * Calculates the amount of linear headroom needed in the 'to' skb passed
3016 * into skb_zerocopy().
3017 */
3018unsigned int
3019skb_zerocopy_headlen(const struct sk_buff *from)
3020{
3021 unsigned int hlen = 0;
3022
3023 if (!from->head_frag ||
3024 skb_headlen(from) < L1_CACHE_BYTES ||
3025 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3026 hlen = skb_headlen(from);
3027 if (!hlen)
3028 hlen = from->len;
3029 }
3030
3031 if (skb_has_frag_list(from))
3032 hlen = from->len;
3033
3034 return hlen;
3035}
3036EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3037
3038/**
3039 * skb_zerocopy - Zero copy skb to skb
3040 * @to: destination buffer
3041 * @from: source buffer
3042 * @len: number of bytes to copy from source buffer
3043 * @hlen: size of linear headroom in destination buffer
3044 *
3045 * Copies up to `len` bytes from `from` to `to` by creating references
3046 * to the frags in the source buffer.
3047 *
3048 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3049 * headroom in the `to` buffer.
3050 *
3051 * Return value:
3052 * 0: everything is OK
3053 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3054 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3055 */
3056int
3057skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3058{
3059 int i, j = 0;
3060 int plen = 0; /* length of skb->head fragment */
3061 int ret;
3062 struct page *page;
3063 unsigned int offset;
3064
3065 BUG_ON(!from->head_frag && !hlen);
3066
3067 /* dont bother with small payloads */
3068 if (len <= skb_tailroom(to))
3069 return skb_copy_bits(from, 0, skb_put(to, len), len);
3070
3071 if (hlen) {
3072 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3073 if (unlikely(ret))
3074 return ret;
3075 len -= hlen;
3076 } else {
3077 plen = min_t(int, skb_headlen(from), len);
3078 if (plen) {
3079 page = virt_to_head_page(from->head);
3080 offset = from->data - (unsigned char *)page_address(page);
3081 __skb_fill_page_desc(to, 0, page, offset, plen);
3082 get_page(page);
3083 j = 1;
3084 len -= plen;
3085 }
3086 }
3087
3088 to->truesize += len + plen;
3089 to->len += len + plen;
3090 to->data_len += len + plen;
3091
3092 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3093 skb_tx_error(from);
3094 return -ENOMEM;
3095 }
3096 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3097
3098 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3099 int size;
3100
3101 if (!len)
3102 break;
3103 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3104 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3105 len);
3106 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3107 len -= size;
3108 skb_frag_ref(to, j);
3109 j++;
3110 }
3111 skb_shinfo(to)->nr_frags = j;
3112
3113 return 0;
3114}
3115EXPORT_SYMBOL_GPL(skb_zerocopy);
3116
3117void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3118{
3119 __wsum csum;
3120 long csstart;
3121
3122 if (skb->ip_summed == CHECKSUM_PARTIAL)
3123 csstart = skb_checksum_start_offset(skb);
3124 else
3125 csstart = skb_headlen(skb);
3126
3127 BUG_ON(csstart > skb_headlen(skb));
3128
3129 skb_copy_from_linear_data(skb, to, csstart);
3130
3131 csum = 0;
3132 if (csstart != skb->len)
3133 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3134 skb->len - csstart);
3135
3136 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137 long csstuff = csstart + skb->csum_offset;
3138
3139 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3140 }
3141}
3142EXPORT_SYMBOL(skb_copy_and_csum_dev);
3143
3144/**
3145 * skb_dequeue - remove from the head of the queue
3146 * @list: list to dequeue from
3147 *
3148 * Remove the head of the list. The list lock is taken so the function
3149 * may be used safely with other locking list functions. The head item is
3150 * returned or %NULL if the list is empty.
3151 */
3152
3153struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3154{
3155 unsigned long flags;
3156 struct sk_buff *result;
3157
3158 spin_lock_irqsave(&list->lock, flags);
3159 result = __skb_dequeue(list);
3160 spin_unlock_irqrestore(&list->lock, flags);
3161 return result;
3162}
3163EXPORT_SYMBOL(skb_dequeue);
3164
3165/**
3166 * skb_dequeue_tail - remove from the tail of the queue
3167 * @list: list to dequeue from
3168 *
3169 * Remove the tail of the list. The list lock is taken so the function
3170 * may be used safely with other locking list functions. The tail item is
3171 * returned or %NULL if the list is empty.
3172 */
3173struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3174{
3175 unsigned long flags;
3176 struct sk_buff *result;
3177
3178 spin_lock_irqsave(&list->lock, flags);
3179 result = __skb_dequeue_tail(list);
3180 spin_unlock_irqrestore(&list->lock, flags);
3181 return result;
3182}
3183EXPORT_SYMBOL(skb_dequeue_tail);
3184
3185/**
3186 * skb_queue_purge - empty a list
3187 * @list: list to empty
3188 *
3189 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3190 * the list and one reference dropped. This function takes the list
3191 * lock and is atomic with respect to other list locking functions.
3192 */
3193void skb_queue_purge(struct sk_buff_head *list)
3194{
3195 struct sk_buff *skb;
3196 while ((skb = skb_dequeue(list)) != NULL)
3197 kfree_skb(skb);
3198}
3199EXPORT_SYMBOL(skb_queue_purge);
3200
3201/**
3202 * skb_rbtree_purge - empty a skb rbtree
3203 * @root: root of the rbtree to empty
3204 * Return value: the sum of truesizes of all purged skbs.
3205 *
3206 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3207 * the list and one reference dropped. This function does not take
3208 * any lock. Synchronization should be handled by the caller (e.g., TCP
3209 * out-of-order queue is protected by the socket lock).
3210 */
3211unsigned int skb_rbtree_purge(struct rb_root *root)
3212{
3213 struct rb_node *p = rb_first(root);
3214 unsigned int sum = 0;
3215
3216 while (p) {
3217 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3218
3219 p = rb_next(p);
3220 rb_erase(&skb->rbnode, root);
3221 sum += skb->truesize;
3222 kfree_skb(skb);
3223 }
3224 return sum;
3225}
3226
3227/**
3228 * skb_queue_head - queue a buffer at the list head
3229 * @list: list to use
3230 * @newsk: buffer to queue
3231 *
3232 * Queue a buffer at the start of the list. This function takes the
3233 * list lock and can be used safely with other locking &sk_buff functions
3234 * safely.
3235 *
3236 * A buffer cannot be placed on two lists at the same time.
3237 */
3238void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3239{
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&list->lock, flags);
3243 __skb_queue_head(list, newsk);
3244 spin_unlock_irqrestore(&list->lock, flags);
3245}
3246EXPORT_SYMBOL(skb_queue_head);
3247
3248/**
3249 * skb_queue_tail - queue a buffer at the list tail
3250 * @list: list to use
3251 * @newsk: buffer to queue
3252 *
3253 * Queue a buffer at the tail of the list. This function takes the
3254 * list lock and can be used safely with other locking &sk_buff functions
3255 * safely.
3256 *
3257 * A buffer cannot be placed on two lists at the same time.
3258 */
3259void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3260{
3261 unsigned long flags;
3262
3263 spin_lock_irqsave(&list->lock, flags);
3264 __skb_queue_tail(list, newsk);
3265 spin_unlock_irqrestore(&list->lock, flags);
3266}
3267EXPORT_SYMBOL(skb_queue_tail);
3268
3269/**
3270 * skb_unlink - remove a buffer from a list
3271 * @skb: buffer to remove
3272 * @list: list to use
3273 *
3274 * Remove a packet from a list. The list locks are taken and this
3275 * function is atomic with respect to other list locked calls
3276 *
3277 * You must know what list the SKB is on.
3278 */
3279void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3280{
3281 unsigned long flags;
3282
3283 spin_lock_irqsave(&list->lock, flags);
3284 __skb_unlink(skb, list);
3285 spin_unlock_irqrestore(&list->lock, flags);
3286}
3287EXPORT_SYMBOL(skb_unlink);
3288
3289/**
3290 * skb_append - append a buffer
3291 * @old: buffer to insert after
3292 * @newsk: buffer to insert
3293 * @list: list to use
3294 *
3295 * Place a packet after a given packet in a list. The list locks are taken
3296 * and this function is atomic with respect to other list locked calls.
3297 * A buffer cannot be placed on two lists at the same time.
3298 */
3299void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3300{
3301 unsigned long flags;
3302
3303 spin_lock_irqsave(&list->lock, flags);
3304 __skb_queue_after(list, old, newsk);
3305 spin_unlock_irqrestore(&list->lock, flags);
3306}
3307EXPORT_SYMBOL(skb_append);
3308
3309static inline void skb_split_inside_header(struct sk_buff *skb,
3310 struct sk_buff* skb1,
3311 const u32 len, const int pos)
3312{
3313 int i;
3314
3315 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3316 pos - len);
3317 /* And move data appendix as is. */
3318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3319 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3320
3321 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3322 skb_shinfo(skb)->nr_frags = 0;
3323 skb1->data_len = skb->data_len;
3324 skb1->len += skb1->data_len;
3325 skb->data_len = 0;
3326 skb->len = len;
3327 skb_set_tail_pointer(skb, len);
3328}
3329
3330static inline void skb_split_no_header(struct sk_buff *skb,
3331 struct sk_buff* skb1,
3332 const u32 len, int pos)
3333{
3334 int i, k = 0;
3335 const int nfrags = skb_shinfo(skb)->nr_frags;
3336
3337 skb_shinfo(skb)->nr_frags = 0;
3338 skb1->len = skb1->data_len = skb->len - len;
3339 skb->len = len;
3340 skb->data_len = len - pos;
3341
3342 for (i = 0; i < nfrags; i++) {
3343 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344
3345 if (pos + size > len) {
3346 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3347
3348 if (pos < len) {
3349 /* Split frag.
3350 * We have two variants in this case:
3351 * 1. Move all the frag to the second
3352 * part, if it is possible. F.e.
3353 * this approach is mandatory for TUX,
3354 * where splitting is expensive.
3355 * 2. Split is accurately. We make this.
3356 */
3357 skb_frag_ref(skb, i);
3358 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3359 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3360 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3361 skb_shinfo(skb)->nr_frags++;
3362 }
3363 k++;
3364 } else
3365 skb_shinfo(skb)->nr_frags++;
3366 pos += size;
3367 }
3368 skb_shinfo(skb1)->nr_frags = k;
3369}
3370
3371/**
3372 * skb_split - Split fragmented skb to two parts at length len.
3373 * @skb: the buffer to split
3374 * @skb1: the buffer to receive the second part
3375 * @len: new length for skb
3376 */
3377void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3378{
3379 int pos = skb_headlen(skb);
3380
3381 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3382 skb_zerocopy_clone(skb1, skb, 0);
3383 if (len < pos) /* Split line is inside header. */
3384 skb_split_inside_header(skb, skb1, len, pos);
3385 else /* Second chunk has no header, nothing to copy. */
3386 skb_split_no_header(skb, skb1, len, pos);
3387}
3388EXPORT_SYMBOL(skb_split);
3389
3390/* Shifting from/to a cloned skb is a no-go.
3391 *
3392 * Caller cannot keep skb_shinfo related pointers past calling here!
3393 */
3394static int skb_prepare_for_shift(struct sk_buff *skb)
3395{
3396 int ret = 0;
3397
3398 if (skb_cloned(skb)) {
3399 /* Save and restore truesize: pskb_expand_head() may reallocate
3400 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3401 * cannot change truesize at this point.
3402 */
3403 unsigned int save_truesize = skb->truesize;
3404
3405 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3406 skb->truesize = save_truesize;
3407 }
3408 return ret;
3409}
3410
3411/**
3412 * skb_shift - Shifts paged data partially from skb to another
3413 * @tgt: buffer into which tail data gets added
3414 * @skb: buffer from which the paged data comes from
3415 * @shiftlen: shift up to this many bytes
3416 *
3417 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3418 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3419 * It's up to caller to free skb if everything was shifted.
3420 *
3421 * If @tgt runs out of frags, the whole operation is aborted.
3422 *
3423 * Skb cannot include anything else but paged data while tgt is allowed
3424 * to have non-paged data as well.
3425 *
3426 * TODO: full sized shift could be optimized but that would need
3427 * specialized skb free'er to handle frags without up-to-date nr_frags.
3428 */
3429int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3430{
3431 int from, to, merge, todo;
3432 skb_frag_t *fragfrom, *fragto;
3433
3434 BUG_ON(shiftlen > skb->len);
3435
3436 if (skb_headlen(skb))
3437 return 0;
3438 if (skb_zcopy(tgt) || skb_zcopy(skb))
3439 return 0;
3440
3441 todo = shiftlen;
3442 from = 0;
3443 to = skb_shinfo(tgt)->nr_frags;
3444 fragfrom = &skb_shinfo(skb)->frags[from];
3445
3446 /* Actual merge is delayed until the point when we know we can
3447 * commit all, so that we don't have to undo partial changes
3448 */
3449 if (!to ||
3450 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3451 skb_frag_off(fragfrom))) {
3452 merge = -1;
3453 } else {
3454 merge = to - 1;
3455
3456 todo -= skb_frag_size(fragfrom);
3457 if (todo < 0) {
3458 if (skb_prepare_for_shift(skb) ||
3459 skb_prepare_for_shift(tgt))
3460 return 0;
3461
3462 /* All previous frag pointers might be stale! */
3463 fragfrom = &skb_shinfo(skb)->frags[from];
3464 fragto = &skb_shinfo(tgt)->frags[merge];
3465
3466 skb_frag_size_add(fragto, shiftlen);
3467 skb_frag_size_sub(fragfrom, shiftlen);
3468 skb_frag_off_add(fragfrom, shiftlen);
3469
3470 goto onlymerged;
3471 }
3472
3473 from++;
3474 }
3475
3476 /* Skip full, not-fitting skb to avoid expensive operations */
3477 if ((shiftlen == skb->len) &&
3478 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3479 return 0;
3480
3481 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3482 return 0;
3483
3484 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3485 if (to == MAX_SKB_FRAGS)
3486 return 0;
3487
3488 fragfrom = &skb_shinfo(skb)->frags[from];
3489 fragto = &skb_shinfo(tgt)->frags[to];
3490
3491 if (todo >= skb_frag_size(fragfrom)) {
3492 *fragto = *fragfrom;
3493 todo -= skb_frag_size(fragfrom);
3494 from++;
3495 to++;
3496
3497 } else {
3498 __skb_frag_ref(fragfrom);
3499 skb_frag_page_copy(fragto, fragfrom);
3500 skb_frag_off_copy(fragto, fragfrom);
3501 skb_frag_size_set(fragto, todo);
3502
3503 skb_frag_off_add(fragfrom, todo);
3504 skb_frag_size_sub(fragfrom, todo);
3505 todo = 0;
3506
3507 to++;
3508 break;
3509 }
3510 }
3511
3512 /* Ready to "commit" this state change to tgt */
3513 skb_shinfo(tgt)->nr_frags = to;
3514
3515 if (merge >= 0) {
3516 fragfrom = &skb_shinfo(skb)->frags[0];
3517 fragto = &skb_shinfo(tgt)->frags[merge];
3518
3519 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3520 __skb_frag_unref(fragfrom, skb->pp_recycle);
3521 }
3522
3523 /* Reposition in the original skb */
3524 to = 0;
3525 while (from < skb_shinfo(skb)->nr_frags)
3526 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3527 skb_shinfo(skb)->nr_frags = to;
3528
3529 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3530
3531onlymerged:
3532 /* Most likely the tgt won't ever need its checksum anymore, skb on
3533 * the other hand might need it if it needs to be resent
3534 */
3535 tgt->ip_summed = CHECKSUM_PARTIAL;
3536 skb->ip_summed = CHECKSUM_PARTIAL;
3537
3538 /* Yak, is it really working this way? Some helper please? */
3539 skb->len -= shiftlen;
3540 skb->data_len -= shiftlen;
3541 skb->truesize -= shiftlen;
3542 tgt->len += shiftlen;
3543 tgt->data_len += shiftlen;
3544 tgt->truesize += shiftlen;
3545
3546 return shiftlen;
3547}
3548
3549/**
3550 * skb_prepare_seq_read - Prepare a sequential read of skb data
3551 * @skb: the buffer to read
3552 * @from: lower offset of data to be read
3553 * @to: upper offset of data to be read
3554 * @st: state variable
3555 *
3556 * Initializes the specified state variable. Must be called before
3557 * invoking skb_seq_read() for the first time.
3558 */
3559void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3560 unsigned int to, struct skb_seq_state *st)
3561{
3562 st->lower_offset = from;
3563 st->upper_offset = to;
3564 st->root_skb = st->cur_skb = skb;
3565 st->frag_idx = st->stepped_offset = 0;
3566 st->frag_data = NULL;
3567 st->frag_off = 0;
3568}
3569EXPORT_SYMBOL(skb_prepare_seq_read);
3570
3571/**
3572 * skb_seq_read - Sequentially read skb data
3573 * @consumed: number of bytes consumed by the caller so far
3574 * @data: destination pointer for data to be returned
3575 * @st: state variable
3576 *
3577 * Reads a block of skb data at @consumed relative to the
3578 * lower offset specified to skb_prepare_seq_read(). Assigns
3579 * the head of the data block to @data and returns the length
3580 * of the block or 0 if the end of the skb data or the upper
3581 * offset has been reached.
3582 *
3583 * The caller is not required to consume all of the data
3584 * returned, i.e. @consumed is typically set to the number
3585 * of bytes already consumed and the next call to
3586 * skb_seq_read() will return the remaining part of the block.
3587 *
3588 * Note 1: The size of each block of data returned can be arbitrary,
3589 * this limitation is the cost for zerocopy sequential
3590 * reads of potentially non linear data.
3591 *
3592 * Note 2: Fragment lists within fragments are not implemented
3593 * at the moment, state->root_skb could be replaced with
3594 * a stack for this purpose.
3595 */
3596unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3597 struct skb_seq_state *st)
3598{
3599 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3600 skb_frag_t *frag;
3601
3602 if (unlikely(abs_offset >= st->upper_offset)) {
3603 if (st->frag_data) {
3604 kunmap_atomic(st->frag_data);
3605 st->frag_data = NULL;
3606 }
3607 return 0;
3608 }
3609
3610next_skb:
3611 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3612
3613 if (abs_offset < block_limit && !st->frag_data) {
3614 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3615 return block_limit - abs_offset;
3616 }
3617
3618 if (st->frag_idx == 0 && !st->frag_data)
3619 st->stepped_offset += skb_headlen(st->cur_skb);
3620
3621 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3622 unsigned int pg_idx, pg_off, pg_sz;
3623
3624 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3625
3626 pg_idx = 0;
3627 pg_off = skb_frag_off(frag);
3628 pg_sz = skb_frag_size(frag);
3629
3630 if (skb_frag_must_loop(skb_frag_page(frag))) {
3631 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3632 pg_off = offset_in_page(pg_off + st->frag_off);
3633 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3634 PAGE_SIZE - pg_off);
3635 }
3636
3637 block_limit = pg_sz + st->stepped_offset;
3638 if (abs_offset < block_limit) {
3639 if (!st->frag_data)
3640 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3641
3642 *data = (u8 *)st->frag_data + pg_off +
3643 (abs_offset - st->stepped_offset);
3644
3645 return block_limit - abs_offset;
3646 }
3647
3648 if (st->frag_data) {
3649 kunmap_atomic(st->frag_data);
3650 st->frag_data = NULL;
3651 }
3652
3653 st->stepped_offset += pg_sz;
3654 st->frag_off += pg_sz;
3655 if (st->frag_off == skb_frag_size(frag)) {
3656 st->frag_off = 0;
3657 st->frag_idx++;
3658 }
3659 }
3660
3661 if (st->frag_data) {
3662 kunmap_atomic(st->frag_data);
3663 st->frag_data = NULL;
3664 }
3665
3666 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3667 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3668 st->frag_idx = 0;
3669 goto next_skb;
3670 } else if (st->cur_skb->next) {
3671 st->cur_skb = st->cur_skb->next;
3672 st->frag_idx = 0;
3673 goto next_skb;
3674 }
3675
3676 return 0;
3677}
3678EXPORT_SYMBOL(skb_seq_read);
3679
3680/**
3681 * skb_abort_seq_read - Abort a sequential read of skb data
3682 * @st: state variable
3683 *
3684 * Must be called if skb_seq_read() was not called until it
3685 * returned 0.
3686 */
3687void skb_abort_seq_read(struct skb_seq_state *st)
3688{
3689 if (st->frag_data)
3690 kunmap_atomic(st->frag_data);
3691}
3692EXPORT_SYMBOL(skb_abort_seq_read);
3693
3694#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3695
3696static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3697 struct ts_config *conf,
3698 struct ts_state *state)
3699{
3700 return skb_seq_read(offset, text, TS_SKB_CB(state));
3701}
3702
3703static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3704{
3705 skb_abort_seq_read(TS_SKB_CB(state));
3706}
3707
3708/**
3709 * skb_find_text - Find a text pattern in skb data
3710 * @skb: the buffer to look in
3711 * @from: search offset
3712 * @to: search limit
3713 * @config: textsearch configuration
3714 *
3715 * Finds a pattern in the skb data according to the specified
3716 * textsearch configuration. Use textsearch_next() to retrieve
3717 * subsequent occurrences of the pattern. Returns the offset
3718 * to the first occurrence or UINT_MAX if no match was found.
3719 */
3720unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3721 unsigned int to, struct ts_config *config)
3722{
3723 struct ts_state state;
3724 unsigned int ret;
3725
3726 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3727
3728 config->get_next_block = skb_ts_get_next_block;
3729 config->finish = skb_ts_finish;
3730
3731 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3732
3733 ret = textsearch_find(config, &state);
3734 return (ret <= to - from ? ret : UINT_MAX);
3735}
3736EXPORT_SYMBOL(skb_find_text);
3737
3738int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3739 int offset, size_t size)
3740{
3741 int i = skb_shinfo(skb)->nr_frags;
3742
3743 if (skb_can_coalesce(skb, i, page, offset)) {
3744 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3745 } else if (i < MAX_SKB_FRAGS) {
3746 get_page(page);
3747 skb_fill_page_desc(skb, i, page, offset, size);
3748 } else {
3749 return -EMSGSIZE;
3750 }
3751
3752 return 0;
3753}
3754EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3755
3756/**
3757 * skb_pull_rcsum - pull skb and update receive checksum
3758 * @skb: buffer to update
3759 * @len: length of data pulled
3760 *
3761 * This function performs an skb_pull on the packet and updates
3762 * the CHECKSUM_COMPLETE checksum. It should be used on
3763 * receive path processing instead of skb_pull unless you know
3764 * that the checksum difference is zero (e.g., a valid IP header)
3765 * or you are setting ip_summed to CHECKSUM_NONE.
3766 */
3767void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3768{
3769 unsigned char *data = skb->data;
3770
3771 BUG_ON(len > skb->len);
3772 __skb_pull(skb, len);
3773 skb_postpull_rcsum(skb, data, len);
3774 return skb->data;
3775}
3776EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3777
3778static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3779{
3780 skb_frag_t head_frag;
3781 struct page *page;
3782
3783 page = virt_to_head_page(frag_skb->head);
3784 __skb_frag_set_page(&head_frag, page);
3785 skb_frag_off_set(&head_frag, frag_skb->data -
3786 (unsigned char *)page_address(page));
3787 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3788 return head_frag;
3789}
3790
3791struct sk_buff *skb_segment_list(struct sk_buff *skb,
3792 netdev_features_t features,
3793 unsigned int offset)
3794{
3795 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3796 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3797 unsigned int delta_truesize = 0;
3798 unsigned int delta_len = 0;
3799 struct sk_buff *tail = NULL;
3800 struct sk_buff *nskb, *tmp;
3801 int err;
3802
3803 skb_push(skb, -skb_network_offset(skb) + offset);
3804
3805 skb_shinfo(skb)->frag_list = NULL;
3806
3807 do {
3808 nskb = list_skb;
3809 list_skb = list_skb->next;
3810
3811 err = 0;
3812 if (skb_shared(nskb)) {
3813 tmp = skb_clone(nskb, GFP_ATOMIC);
3814 if (tmp) {
3815 consume_skb(nskb);
3816 nskb = tmp;
3817 err = skb_unclone(nskb, GFP_ATOMIC);
3818 } else {
3819 err = -ENOMEM;
3820 }
3821 }
3822
3823 if (!tail)
3824 skb->next = nskb;
3825 else
3826 tail->next = nskb;
3827
3828 if (unlikely(err)) {
3829 nskb->next = list_skb;
3830 goto err_linearize;
3831 }
3832
3833 tail = nskb;
3834
3835 delta_len += nskb->len;
3836 delta_truesize += nskb->truesize;
3837
3838 skb_push(nskb, -skb_network_offset(nskb) + offset);
3839
3840 skb_release_head_state(nskb);
3841 __copy_skb_header(nskb, skb);
3842
3843 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3844 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3845 nskb->data - tnl_hlen,
3846 offset + tnl_hlen);
3847
3848 if (skb_needs_linearize(nskb, features) &&
3849 __skb_linearize(nskb))
3850 goto err_linearize;
3851
3852 } while (list_skb);
3853
3854 skb->truesize = skb->truesize - delta_truesize;
3855 skb->data_len = skb->data_len - delta_len;
3856 skb->len = skb->len - delta_len;
3857
3858 skb_gso_reset(skb);
3859
3860 skb->prev = tail;
3861
3862 if (skb_needs_linearize(skb, features) &&
3863 __skb_linearize(skb))
3864 goto err_linearize;
3865
3866 skb_get(skb);
3867
3868 return skb;
3869
3870err_linearize:
3871 kfree_skb_list(skb->next);
3872 skb->next = NULL;
3873 return ERR_PTR(-ENOMEM);
3874}
3875EXPORT_SYMBOL_GPL(skb_segment_list);
3876
3877int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3878{
3879 if (unlikely(p->len + skb->len >= 65536))
3880 return -E2BIG;
3881
3882 if (NAPI_GRO_CB(p)->last == p)
3883 skb_shinfo(p)->frag_list = skb;
3884 else
3885 NAPI_GRO_CB(p)->last->next = skb;
3886
3887 skb_pull(skb, skb_gro_offset(skb));
3888
3889 NAPI_GRO_CB(p)->last = skb;
3890 NAPI_GRO_CB(p)->count++;
3891 p->data_len += skb->len;
3892 p->truesize += skb->truesize;
3893 p->len += skb->len;
3894
3895 NAPI_GRO_CB(skb)->same_flow = 1;
3896
3897 return 0;
3898}
3899
3900/**
3901 * skb_segment - Perform protocol segmentation on skb.
3902 * @head_skb: buffer to segment
3903 * @features: features for the output path (see dev->features)
3904 *
3905 * This function performs segmentation on the given skb. It returns
3906 * a pointer to the first in a list of new skbs for the segments.
3907 * In case of error it returns ERR_PTR(err).
3908 */
3909struct sk_buff *skb_segment(struct sk_buff *head_skb,
3910 netdev_features_t features)
3911{
3912 struct sk_buff *segs = NULL;
3913 struct sk_buff *tail = NULL;
3914 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3915 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3916 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3917 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3918 struct sk_buff *frag_skb = head_skb;
3919 unsigned int offset = doffset;
3920 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3921 unsigned int partial_segs = 0;
3922 unsigned int headroom;
3923 unsigned int len = head_skb->len;
3924 __be16 proto;
3925 bool csum, sg;
3926 int nfrags = skb_shinfo(head_skb)->nr_frags;
3927 int err = -ENOMEM;
3928 int i = 0;
3929 int pos;
3930
3931 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3932 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3933 /* gso_size is untrusted, and we have a frag_list with a linear
3934 * non head_frag head.
3935 *
3936 * (we assume checking the first list_skb member suffices;
3937 * i.e if either of the list_skb members have non head_frag
3938 * head, then the first one has too).
3939 *
3940 * If head_skb's headlen does not fit requested gso_size, it
3941 * means that the frag_list members do NOT terminate on exact
3942 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3943 * sharing. Therefore we must fallback to copying the frag_list
3944 * skbs; we do so by disabling SG.
3945 */
3946 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3947 features &= ~NETIF_F_SG;
3948 }
3949
3950 __skb_push(head_skb, doffset);
3951 proto = skb_network_protocol(head_skb, NULL);
3952 if (unlikely(!proto))
3953 return ERR_PTR(-EINVAL);
3954
3955 sg = !!(features & NETIF_F_SG);
3956 csum = !!can_checksum_protocol(features, proto);
3957
3958 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3959 if (!(features & NETIF_F_GSO_PARTIAL)) {
3960 struct sk_buff *iter;
3961 unsigned int frag_len;
3962
3963 if (!list_skb ||
3964 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3965 goto normal;
3966
3967 /* If we get here then all the required
3968 * GSO features except frag_list are supported.
3969 * Try to split the SKB to multiple GSO SKBs
3970 * with no frag_list.
3971 * Currently we can do that only when the buffers don't
3972 * have a linear part and all the buffers except
3973 * the last are of the same length.
3974 */
3975 frag_len = list_skb->len;
3976 skb_walk_frags(head_skb, iter) {
3977 if (frag_len != iter->len && iter->next)
3978 goto normal;
3979 if (skb_headlen(iter) && !iter->head_frag)
3980 goto normal;
3981
3982 len -= iter->len;
3983 }
3984
3985 if (len != frag_len)
3986 goto normal;
3987 }
3988
3989 /* GSO partial only requires that we trim off any excess that
3990 * doesn't fit into an MSS sized block, so take care of that
3991 * now.
3992 */
3993 partial_segs = len / mss;
3994 if (partial_segs > 1)
3995 mss *= partial_segs;
3996 else
3997 partial_segs = 0;
3998 }
3999
4000normal:
4001 headroom = skb_headroom(head_skb);
4002 pos = skb_headlen(head_skb);
4003
4004 do {
4005 struct sk_buff *nskb;
4006 skb_frag_t *nskb_frag;
4007 int hsize;
4008 int size;
4009
4010 if (unlikely(mss == GSO_BY_FRAGS)) {
4011 len = list_skb->len;
4012 } else {
4013 len = head_skb->len - offset;
4014 if (len > mss)
4015 len = mss;
4016 }
4017
4018 hsize = skb_headlen(head_skb) - offset;
4019
4020 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4021 (skb_headlen(list_skb) == len || sg)) {
4022 BUG_ON(skb_headlen(list_skb) > len);
4023
4024 i = 0;
4025 nfrags = skb_shinfo(list_skb)->nr_frags;
4026 frag = skb_shinfo(list_skb)->frags;
4027 frag_skb = list_skb;
4028 pos += skb_headlen(list_skb);
4029
4030 while (pos < offset + len) {
4031 BUG_ON(i >= nfrags);
4032
4033 size = skb_frag_size(frag);
4034 if (pos + size > offset + len)
4035 break;
4036
4037 i++;
4038 pos += size;
4039 frag++;
4040 }
4041
4042 nskb = skb_clone(list_skb, GFP_ATOMIC);
4043 list_skb = list_skb->next;
4044
4045 if (unlikely(!nskb))
4046 goto err;
4047
4048 if (unlikely(pskb_trim(nskb, len))) {
4049 kfree_skb(nskb);
4050 goto err;
4051 }
4052
4053 hsize = skb_end_offset(nskb);
4054 if (skb_cow_head(nskb, doffset + headroom)) {
4055 kfree_skb(nskb);
4056 goto err;
4057 }
4058
4059 nskb->truesize += skb_end_offset(nskb) - hsize;
4060 skb_release_head_state(nskb);
4061 __skb_push(nskb, doffset);
4062 } else {
4063 if (hsize < 0)
4064 hsize = 0;
4065 if (hsize > len || !sg)
4066 hsize = len;
4067
4068 nskb = __alloc_skb(hsize + doffset + headroom,
4069 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4070 NUMA_NO_NODE);
4071
4072 if (unlikely(!nskb))
4073 goto err;
4074
4075 skb_reserve(nskb, headroom);
4076 __skb_put(nskb, doffset);
4077 }
4078
4079 if (segs)
4080 tail->next = nskb;
4081 else
4082 segs = nskb;
4083 tail = nskb;
4084
4085 __copy_skb_header(nskb, head_skb);
4086
4087 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4088 skb_reset_mac_len(nskb);
4089
4090 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4091 nskb->data - tnl_hlen,
4092 doffset + tnl_hlen);
4093
4094 if (nskb->len == len + doffset)
4095 goto perform_csum_check;
4096
4097 if (!sg) {
4098 if (!csum) {
4099 if (!nskb->remcsum_offload)
4100 nskb->ip_summed = CHECKSUM_NONE;
4101 SKB_GSO_CB(nskb)->csum =
4102 skb_copy_and_csum_bits(head_skb, offset,
4103 skb_put(nskb,
4104 len),
4105 len);
4106 SKB_GSO_CB(nskb)->csum_start =
4107 skb_headroom(nskb) + doffset;
4108 } else {
4109 skb_copy_bits(head_skb, offset,
4110 skb_put(nskb, len),
4111 len);
4112 }
4113 continue;
4114 }
4115
4116 nskb_frag = skb_shinfo(nskb)->frags;
4117
4118 skb_copy_from_linear_data_offset(head_skb, offset,
4119 skb_put(nskb, hsize), hsize);
4120
4121 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4122 SKBFL_SHARED_FRAG;
4123
4124 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4125 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4126 goto err;
4127
4128 while (pos < offset + len) {
4129 if (i >= nfrags) {
4130 i = 0;
4131 nfrags = skb_shinfo(list_skb)->nr_frags;
4132 frag = skb_shinfo(list_skb)->frags;
4133 frag_skb = list_skb;
4134 if (!skb_headlen(list_skb)) {
4135 BUG_ON(!nfrags);
4136 } else {
4137 BUG_ON(!list_skb->head_frag);
4138
4139 /* to make room for head_frag. */
4140 i--;
4141 frag--;
4142 }
4143 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4144 skb_zerocopy_clone(nskb, frag_skb,
4145 GFP_ATOMIC))
4146 goto err;
4147
4148 list_skb = list_skb->next;
4149 }
4150
4151 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4152 MAX_SKB_FRAGS)) {
4153 net_warn_ratelimited(
4154 "skb_segment: too many frags: %u %u\n",
4155 pos, mss);
4156 err = -EINVAL;
4157 goto err;
4158 }
4159
4160 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4161 __skb_frag_ref(nskb_frag);
4162 size = skb_frag_size(nskb_frag);
4163
4164 if (pos < offset) {
4165 skb_frag_off_add(nskb_frag, offset - pos);
4166 skb_frag_size_sub(nskb_frag, offset - pos);
4167 }
4168
4169 skb_shinfo(nskb)->nr_frags++;
4170
4171 if (pos + size <= offset + len) {
4172 i++;
4173 frag++;
4174 pos += size;
4175 } else {
4176 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4177 goto skip_fraglist;
4178 }
4179
4180 nskb_frag++;
4181 }
4182
4183skip_fraglist:
4184 nskb->data_len = len - hsize;
4185 nskb->len += nskb->data_len;
4186 nskb->truesize += nskb->data_len;
4187
4188perform_csum_check:
4189 if (!csum) {
4190 if (skb_has_shared_frag(nskb) &&
4191 __skb_linearize(nskb))
4192 goto err;
4193
4194 if (!nskb->remcsum_offload)
4195 nskb->ip_summed = CHECKSUM_NONE;
4196 SKB_GSO_CB(nskb)->csum =
4197 skb_checksum(nskb, doffset,
4198 nskb->len - doffset, 0);
4199 SKB_GSO_CB(nskb)->csum_start =
4200 skb_headroom(nskb) + doffset;
4201 }
4202 } while ((offset += len) < head_skb->len);
4203
4204 /* Some callers want to get the end of the list.
4205 * Put it in segs->prev to avoid walking the list.
4206 * (see validate_xmit_skb_list() for example)
4207 */
4208 segs->prev = tail;
4209
4210 if (partial_segs) {
4211 struct sk_buff *iter;
4212 int type = skb_shinfo(head_skb)->gso_type;
4213 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4214
4215 /* Update type to add partial and then remove dodgy if set */
4216 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4217 type &= ~SKB_GSO_DODGY;
4218
4219 /* Update GSO info and prepare to start updating headers on
4220 * our way back down the stack of protocols.
4221 */
4222 for (iter = segs; iter; iter = iter->next) {
4223 skb_shinfo(iter)->gso_size = gso_size;
4224 skb_shinfo(iter)->gso_segs = partial_segs;
4225 skb_shinfo(iter)->gso_type = type;
4226 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4227 }
4228
4229 if (tail->len - doffset <= gso_size)
4230 skb_shinfo(tail)->gso_size = 0;
4231 else if (tail != segs)
4232 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4233 }
4234
4235 /* Following permits correct backpressure, for protocols
4236 * using skb_set_owner_w().
4237 * Idea is to tranfert ownership from head_skb to last segment.
4238 */
4239 if (head_skb->destructor == sock_wfree) {
4240 swap(tail->truesize, head_skb->truesize);
4241 swap(tail->destructor, head_skb->destructor);
4242 swap(tail->sk, head_skb->sk);
4243 }
4244 return segs;
4245
4246err:
4247 kfree_skb_list(segs);
4248 return ERR_PTR(err);
4249}
4250EXPORT_SYMBOL_GPL(skb_segment);
4251
4252int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4253{
4254 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4255 unsigned int offset = skb_gro_offset(skb);
4256 unsigned int headlen = skb_headlen(skb);
4257 unsigned int len = skb_gro_len(skb);
4258 unsigned int delta_truesize;
4259 struct sk_buff *lp;
4260
4261 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4262 return -E2BIG;
4263
4264 lp = NAPI_GRO_CB(p)->last;
4265 pinfo = skb_shinfo(lp);
4266
4267 if (headlen <= offset) {
4268 skb_frag_t *frag;
4269 skb_frag_t *frag2;
4270 int i = skbinfo->nr_frags;
4271 int nr_frags = pinfo->nr_frags + i;
4272
4273 if (nr_frags > MAX_SKB_FRAGS)
4274 goto merge;
4275
4276 offset -= headlen;
4277 pinfo->nr_frags = nr_frags;
4278 skbinfo->nr_frags = 0;
4279
4280 frag = pinfo->frags + nr_frags;
4281 frag2 = skbinfo->frags + i;
4282 do {
4283 *--frag = *--frag2;
4284 } while (--i);
4285
4286 skb_frag_off_add(frag, offset);
4287 skb_frag_size_sub(frag, offset);
4288
4289 /* all fragments truesize : remove (head size + sk_buff) */
4290 delta_truesize = skb->truesize -
4291 SKB_TRUESIZE(skb_end_offset(skb));
4292
4293 skb->truesize -= skb->data_len;
4294 skb->len -= skb->data_len;
4295 skb->data_len = 0;
4296
4297 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4298 goto done;
4299 } else if (skb->head_frag) {
4300 int nr_frags = pinfo->nr_frags;
4301 skb_frag_t *frag = pinfo->frags + nr_frags;
4302 struct page *page = virt_to_head_page(skb->head);
4303 unsigned int first_size = headlen - offset;
4304 unsigned int first_offset;
4305
4306 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4307 goto merge;
4308
4309 first_offset = skb->data -
4310 (unsigned char *)page_address(page) +
4311 offset;
4312
4313 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4314
4315 __skb_frag_set_page(frag, page);
4316 skb_frag_off_set(frag, first_offset);
4317 skb_frag_size_set(frag, first_size);
4318
4319 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4320 /* We dont need to clear skbinfo->nr_frags here */
4321
4322 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4323 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4324 goto done;
4325 }
4326
4327merge:
4328 delta_truesize = skb->truesize;
4329 if (offset > headlen) {
4330 unsigned int eat = offset - headlen;
4331
4332 skb_frag_off_add(&skbinfo->frags[0], eat);
4333 skb_frag_size_sub(&skbinfo->frags[0], eat);
4334 skb->data_len -= eat;
4335 skb->len -= eat;
4336 offset = headlen;
4337 }
4338
4339 __skb_pull(skb, offset);
4340
4341 if (NAPI_GRO_CB(p)->last == p)
4342 skb_shinfo(p)->frag_list = skb;
4343 else
4344 NAPI_GRO_CB(p)->last->next = skb;
4345 NAPI_GRO_CB(p)->last = skb;
4346 __skb_header_release(skb);
4347 lp = p;
4348
4349done:
4350 NAPI_GRO_CB(p)->count++;
4351 p->data_len += len;
4352 p->truesize += delta_truesize;
4353 p->len += len;
4354 if (lp != p) {
4355 lp->data_len += len;
4356 lp->truesize += delta_truesize;
4357 lp->len += len;
4358 }
4359 NAPI_GRO_CB(skb)->same_flow = 1;
4360 return 0;
4361}
4362
4363#ifdef CONFIG_SKB_EXTENSIONS
4364#define SKB_EXT_ALIGN_VALUE 8
4365#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4366
4367static const u8 skb_ext_type_len[] = {
4368#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4369 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4370#endif
4371#ifdef CONFIG_XFRM
4372 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4373#endif
4374#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4375 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4376#endif
4377#if IS_ENABLED(CONFIG_MPTCP)
4378 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4379#endif
4380};
4381
4382static __always_inline unsigned int skb_ext_total_length(void)
4383{
4384 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4385#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4386 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4387#endif
4388#ifdef CONFIG_XFRM
4389 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4390#endif
4391#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4392 skb_ext_type_len[TC_SKB_EXT] +
4393#endif
4394#if IS_ENABLED(CONFIG_MPTCP)
4395 skb_ext_type_len[SKB_EXT_MPTCP] +
4396#endif
4397 0;
4398}
4399
4400static void skb_extensions_init(void)
4401{
4402 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4403 BUILD_BUG_ON(skb_ext_total_length() > 255);
4404
4405 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4406 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4407 0,
4408 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4409 NULL);
4410}
4411#else
4412static void skb_extensions_init(void) {}
4413#endif
4414
4415void __init skb_init(void)
4416{
4417 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4418 sizeof(struct sk_buff),
4419 0,
4420 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4421 offsetof(struct sk_buff, cb),
4422 sizeof_field(struct sk_buff, cb),
4423 NULL);
4424 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4425 sizeof(struct sk_buff_fclones),
4426 0,
4427 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4428 NULL);
4429 skb_extensions_init();
4430}
4431
4432static int
4433__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4434 unsigned int recursion_level)
4435{
4436 int start = skb_headlen(skb);
4437 int i, copy = start - offset;
4438 struct sk_buff *frag_iter;
4439 int elt = 0;
4440
4441 if (unlikely(recursion_level >= 24))
4442 return -EMSGSIZE;
4443
4444 if (copy > 0) {
4445 if (copy > len)
4446 copy = len;
4447 sg_set_buf(sg, skb->data + offset, copy);
4448 elt++;
4449 if ((len -= copy) == 0)
4450 return elt;
4451 offset += copy;
4452 }
4453
4454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4455 int end;
4456
4457 WARN_ON(start > offset + len);
4458
4459 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4460 if ((copy = end - offset) > 0) {
4461 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4462 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4463 return -EMSGSIZE;
4464
4465 if (copy > len)
4466 copy = len;
4467 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4468 skb_frag_off(frag) + offset - start);
4469 elt++;
4470 if (!(len -= copy))
4471 return elt;
4472 offset += copy;
4473 }
4474 start = end;
4475 }
4476
4477 skb_walk_frags(skb, frag_iter) {
4478 int end, ret;
4479
4480 WARN_ON(start > offset + len);
4481
4482 end = start + frag_iter->len;
4483 if ((copy = end - offset) > 0) {
4484 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4485 return -EMSGSIZE;
4486
4487 if (copy > len)
4488 copy = len;
4489 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4490 copy, recursion_level + 1);
4491 if (unlikely(ret < 0))
4492 return ret;
4493 elt += ret;
4494 if ((len -= copy) == 0)
4495 return elt;
4496 offset += copy;
4497 }
4498 start = end;
4499 }
4500 BUG_ON(len);
4501 return elt;
4502}
4503
4504/**
4505 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4506 * @skb: Socket buffer containing the buffers to be mapped
4507 * @sg: The scatter-gather list to map into
4508 * @offset: The offset into the buffer's contents to start mapping
4509 * @len: Length of buffer space to be mapped
4510 *
4511 * Fill the specified scatter-gather list with mappings/pointers into a
4512 * region of the buffer space attached to a socket buffer. Returns either
4513 * the number of scatterlist items used, or -EMSGSIZE if the contents
4514 * could not fit.
4515 */
4516int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4517{
4518 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4519
4520 if (nsg <= 0)
4521 return nsg;
4522
4523 sg_mark_end(&sg[nsg - 1]);
4524
4525 return nsg;
4526}
4527EXPORT_SYMBOL_GPL(skb_to_sgvec);
4528
4529/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4530 * sglist without mark the sg which contain last skb data as the end.
4531 * So the caller can mannipulate sg list as will when padding new data after
4532 * the first call without calling sg_unmark_end to expend sg list.
4533 *
4534 * Scenario to use skb_to_sgvec_nomark:
4535 * 1. sg_init_table
4536 * 2. skb_to_sgvec_nomark(payload1)
4537 * 3. skb_to_sgvec_nomark(payload2)
4538 *
4539 * This is equivalent to:
4540 * 1. sg_init_table
4541 * 2. skb_to_sgvec(payload1)
4542 * 3. sg_unmark_end
4543 * 4. skb_to_sgvec(payload2)
4544 *
4545 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4546 * is more preferable.
4547 */
4548int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4549 int offset, int len)
4550{
4551 return __skb_to_sgvec(skb, sg, offset, len, 0);
4552}
4553EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4554
4555
4556
4557/**
4558 * skb_cow_data - Check that a socket buffer's data buffers are writable
4559 * @skb: The socket buffer to check.
4560 * @tailbits: Amount of trailing space to be added
4561 * @trailer: Returned pointer to the skb where the @tailbits space begins
4562 *
4563 * Make sure that the data buffers attached to a socket buffer are
4564 * writable. If they are not, private copies are made of the data buffers
4565 * and the socket buffer is set to use these instead.
4566 *
4567 * If @tailbits is given, make sure that there is space to write @tailbits
4568 * bytes of data beyond current end of socket buffer. @trailer will be
4569 * set to point to the skb in which this space begins.
4570 *
4571 * The number of scatterlist elements required to completely map the
4572 * COW'd and extended socket buffer will be returned.
4573 */
4574int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4575{
4576 int copyflag;
4577 int elt;
4578 struct sk_buff *skb1, **skb_p;
4579
4580 /* If skb is cloned or its head is paged, reallocate
4581 * head pulling out all the pages (pages are considered not writable
4582 * at the moment even if they are anonymous).
4583 */
4584 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4585 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4586 return -ENOMEM;
4587
4588 /* Easy case. Most of packets will go this way. */
4589 if (!skb_has_frag_list(skb)) {
4590 /* A little of trouble, not enough of space for trailer.
4591 * This should not happen, when stack is tuned to generate
4592 * good frames. OK, on miss we reallocate and reserve even more
4593 * space, 128 bytes is fair. */
4594
4595 if (skb_tailroom(skb) < tailbits &&
4596 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4597 return -ENOMEM;
4598
4599 /* Voila! */
4600 *trailer = skb;
4601 return 1;
4602 }
4603
4604 /* Misery. We are in troubles, going to mincer fragments... */
4605
4606 elt = 1;
4607 skb_p = &skb_shinfo(skb)->frag_list;
4608 copyflag = 0;
4609
4610 while ((skb1 = *skb_p) != NULL) {
4611 int ntail = 0;
4612
4613 /* The fragment is partially pulled by someone,
4614 * this can happen on input. Copy it and everything
4615 * after it. */
4616
4617 if (skb_shared(skb1))
4618 copyflag = 1;
4619
4620 /* If the skb is the last, worry about trailer. */
4621
4622 if (skb1->next == NULL && tailbits) {
4623 if (skb_shinfo(skb1)->nr_frags ||
4624 skb_has_frag_list(skb1) ||
4625 skb_tailroom(skb1) < tailbits)
4626 ntail = tailbits + 128;
4627 }
4628
4629 if (copyflag ||
4630 skb_cloned(skb1) ||
4631 ntail ||
4632 skb_shinfo(skb1)->nr_frags ||
4633 skb_has_frag_list(skb1)) {
4634 struct sk_buff *skb2;
4635
4636 /* Fuck, we are miserable poor guys... */
4637 if (ntail == 0)
4638 skb2 = skb_copy(skb1, GFP_ATOMIC);
4639 else
4640 skb2 = skb_copy_expand(skb1,
4641 skb_headroom(skb1),
4642 ntail,
4643 GFP_ATOMIC);
4644 if (unlikely(skb2 == NULL))
4645 return -ENOMEM;
4646
4647 if (skb1->sk)
4648 skb_set_owner_w(skb2, skb1->sk);
4649
4650 /* Looking around. Are we still alive?
4651 * OK, link new skb, drop old one */
4652
4653 skb2->next = skb1->next;
4654 *skb_p = skb2;
4655 kfree_skb(skb1);
4656 skb1 = skb2;
4657 }
4658 elt++;
4659 *trailer = skb1;
4660 skb_p = &skb1->next;
4661 }
4662
4663 return elt;
4664}
4665EXPORT_SYMBOL_GPL(skb_cow_data);
4666
4667static void sock_rmem_free(struct sk_buff *skb)
4668{
4669 struct sock *sk = skb->sk;
4670
4671 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4672}
4673
4674static void skb_set_err_queue(struct sk_buff *skb)
4675{
4676 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4677 * So, it is safe to (mis)use it to mark skbs on the error queue.
4678 */
4679 skb->pkt_type = PACKET_OUTGOING;
4680 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4681}
4682
4683/*
4684 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4685 */
4686int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4687{
4688 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4689 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4690 return -ENOMEM;
4691
4692 skb_orphan(skb);
4693 skb->sk = sk;
4694 skb->destructor = sock_rmem_free;
4695 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4696 skb_set_err_queue(skb);
4697
4698 /* before exiting rcu section, make sure dst is refcounted */
4699 skb_dst_force(skb);
4700
4701 skb_queue_tail(&sk->sk_error_queue, skb);
4702 if (!sock_flag(sk, SOCK_DEAD))
4703 sk_error_report(sk);
4704 return 0;
4705}
4706EXPORT_SYMBOL(sock_queue_err_skb);
4707
4708static bool is_icmp_err_skb(const struct sk_buff *skb)
4709{
4710 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4711 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4712}
4713
4714struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4715{
4716 struct sk_buff_head *q = &sk->sk_error_queue;
4717 struct sk_buff *skb, *skb_next = NULL;
4718 bool icmp_next = false;
4719 unsigned long flags;
4720
4721 spin_lock_irqsave(&q->lock, flags);
4722 skb = __skb_dequeue(q);
4723 if (skb && (skb_next = skb_peek(q))) {
4724 icmp_next = is_icmp_err_skb(skb_next);
4725 if (icmp_next)
4726 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4727 }
4728 spin_unlock_irqrestore(&q->lock, flags);
4729
4730 if (is_icmp_err_skb(skb) && !icmp_next)
4731 sk->sk_err = 0;
4732
4733 if (skb_next)
4734 sk_error_report(sk);
4735
4736 return skb;
4737}
4738EXPORT_SYMBOL(sock_dequeue_err_skb);
4739
4740/**
4741 * skb_clone_sk - create clone of skb, and take reference to socket
4742 * @skb: the skb to clone
4743 *
4744 * This function creates a clone of a buffer that holds a reference on
4745 * sk_refcnt. Buffers created via this function are meant to be
4746 * returned using sock_queue_err_skb, or free via kfree_skb.
4747 *
4748 * When passing buffers allocated with this function to sock_queue_err_skb
4749 * it is necessary to wrap the call with sock_hold/sock_put in order to
4750 * prevent the socket from being released prior to being enqueued on
4751 * the sk_error_queue.
4752 */
4753struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4754{
4755 struct sock *sk = skb->sk;
4756 struct sk_buff *clone;
4757
4758 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4759 return NULL;
4760
4761 clone = skb_clone(skb, GFP_ATOMIC);
4762 if (!clone) {
4763 sock_put(sk);
4764 return NULL;
4765 }
4766
4767 clone->sk = sk;
4768 clone->destructor = sock_efree;
4769
4770 return clone;
4771}
4772EXPORT_SYMBOL(skb_clone_sk);
4773
4774static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4775 struct sock *sk,
4776 int tstype,
4777 bool opt_stats)
4778{
4779 struct sock_exterr_skb *serr;
4780 int err;
4781
4782 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4783
4784 serr = SKB_EXT_ERR(skb);
4785 memset(serr, 0, sizeof(*serr));
4786 serr->ee.ee_errno = ENOMSG;
4787 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4788 serr->ee.ee_info = tstype;
4789 serr->opt_stats = opt_stats;
4790 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4791 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4792 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4793 if (sk->sk_protocol == IPPROTO_TCP &&
4794 sk->sk_type == SOCK_STREAM)
4795 serr->ee.ee_data -= sk->sk_tskey;
4796 }
4797
4798 err = sock_queue_err_skb(sk, skb);
4799
4800 if (err)
4801 kfree_skb(skb);
4802}
4803
4804static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4805{
4806 bool ret;
4807
4808 if (likely(sysctl_tstamp_allow_data || tsonly))
4809 return true;
4810
4811 read_lock_bh(&sk->sk_callback_lock);
4812 ret = sk->sk_socket && sk->sk_socket->file &&
4813 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4814 read_unlock_bh(&sk->sk_callback_lock);
4815 return ret;
4816}
4817
4818void skb_complete_tx_timestamp(struct sk_buff *skb,
4819 struct skb_shared_hwtstamps *hwtstamps)
4820{
4821 struct sock *sk = skb->sk;
4822
4823 if (!skb_may_tx_timestamp(sk, false))
4824 goto err;
4825
4826 /* Take a reference to prevent skb_orphan() from freeing the socket,
4827 * but only if the socket refcount is not zero.
4828 */
4829 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4830 *skb_hwtstamps(skb) = *hwtstamps;
4831 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4832 sock_put(sk);
4833 return;
4834 }
4835
4836err:
4837 kfree_skb(skb);
4838}
4839EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4840
4841void __skb_tstamp_tx(struct sk_buff *orig_skb,
4842 const struct sk_buff *ack_skb,
4843 struct skb_shared_hwtstamps *hwtstamps,
4844 struct sock *sk, int tstype)
4845{
4846 struct sk_buff *skb;
4847 bool tsonly, opt_stats = false;
4848
4849 if (!sk)
4850 return;
4851
4852 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4853 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4854 return;
4855
4856 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4857 if (!skb_may_tx_timestamp(sk, tsonly))
4858 return;
4859
4860 if (tsonly) {
4861#ifdef CONFIG_INET
4862 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4863 sk->sk_protocol == IPPROTO_TCP &&
4864 sk->sk_type == SOCK_STREAM) {
4865 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4866 ack_skb);
4867 opt_stats = true;
4868 } else
4869#endif
4870 skb = alloc_skb(0, GFP_ATOMIC);
4871 } else {
4872 skb = skb_clone(orig_skb, GFP_ATOMIC);
4873 }
4874 if (!skb)
4875 return;
4876
4877 if (tsonly) {
4878 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4879 SKBTX_ANY_TSTAMP;
4880 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4881 }
4882
4883 if (hwtstamps)
4884 *skb_hwtstamps(skb) = *hwtstamps;
4885 else
4886 skb->tstamp = ktime_get_real();
4887
4888 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4889}
4890EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4891
4892void skb_tstamp_tx(struct sk_buff *orig_skb,
4893 struct skb_shared_hwtstamps *hwtstamps)
4894{
4895 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4896 SCM_TSTAMP_SND);
4897}
4898EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4899
4900void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4901{
4902 struct sock *sk = skb->sk;
4903 struct sock_exterr_skb *serr;
4904 int err = 1;
4905
4906 skb->wifi_acked_valid = 1;
4907 skb->wifi_acked = acked;
4908
4909 serr = SKB_EXT_ERR(skb);
4910 memset(serr, 0, sizeof(*serr));
4911 serr->ee.ee_errno = ENOMSG;
4912 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4913
4914 /* Take a reference to prevent skb_orphan() from freeing the socket,
4915 * but only if the socket refcount is not zero.
4916 */
4917 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4918 err = sock_queue_err_skb(sk, skb);
4919 sock_put(sk);
4920 }
4921 if (err)
4922 kfree_skb(skb);
4923}
4924EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4925
4926/**
4927 * skb_partial_csum_set - set up and verify partial csum values for packet
4928 * @skb: the skb to set
4929 * @start: the number of bytes after skb->data to start checksumming.
4930 * @off: the offset from start to place the checksum.
4931 *
4932 * For untrusted partially-checksummed packets, we need to make sure the values
4933 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4934 *
4935 * This function checks and sets those values and skb->ip_summed: if this
4936 * returns false you should drop the packet.
4937 */
4938bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4939{
4940 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4941 u32 csum_start = skb_headroom(skb) + (u32)start;
4942
4943 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4944 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4945 start, off, skb_headroom(skb), skb_headlen(skb));
4946 return false;
4947 }
4948 skb->ip_summed = CHECKSUM_PARTIAL;
4949 skb->csum_start = csum_start;
4950 skb->csum_offset = off;
4951 skb_set_transport_header(skb, start);
4952 return true;
4953}
4954EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4955
4956static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4957 unsigned int max)
4958{
4959 if (skb_headlen(skb) >= len)
4960 return 0;
4961
4962 /* If we need to pullup then pullup to the max, so we
4963 * won't need to do it again.
4964 */
4965 if (max > skb->len)
4966 max = skb->len;
4967
4968 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4969 return -ENOMEM;
4970
4971 if (skb_headlen(skb) < len)
4972 return -EPROTO;
4973
4974 return 0;
4975}
4976
4977#define MAX_TCP_HDR_LEN (15 * 4)
4978
4979static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4980 typeof(IPPROTO_IP) proto,
4981 unsigned int off)
4982{
4983 int err;
4984
4985 switch (proto) {
4986 case IPPROTO_TCP:
4987 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4988 off + MAX_TCP_HDR_LEN);
4989 if (!err && !skb_partial_csum_set(skb, off,
4990 offsetof(struct tcphdr,
4991 check)))
4992 err = -EPROTO;
4993 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4994
4995 case IPPROTO_UDP:
4996 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4997 off + sizeof(struct udphdr));
4998 if (!err && !skb_partial_csum_set(skb, off,
4999 offsetof(struct udphdr,
5000 check)))
5001 err = -EPROTO;
5002 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5003 }
5004
5005 return ERR_PTR(-EPROTO);
5006}
5007
5008/* This value should be large enough to cover a tagged ethernet header plus
5009 * maximally sized IP and TCP or UDP headers.
5010 */
5011#define MAX_IP_HDR_LEN 128
5012
5013static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5014{
5015 unsigned int off;
5016 bool fragment;
5017 __sum16 *csum;
5018 int err;
5019
5020 fragment = false;
5021
5022 err = skb_maybe_pull_tail(skb,
5023 sizeof(struct iphdr),
5024 MAX_IP_HDR_LEN);
5025 if (err < 0)
5026 goto out;
5027
5028 if (ip_is_fragment(ip_hdr(skb)))
5029 fragment = true;
5030
5031 off = ip_hdrlen(skb);
5032
5033 err = -EPROTO;
5034
5035 if (fragment)
5036 goto out;
5037
5038 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5039 if (IS_ERR(csum))
5040 return PTR_ERR(csum);
5041
5042 if (recalculate)
5043 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5044 ip_hdr(skb)->daddr,
5045 skb->len - off,
5046 ip_hdr(skb)->protocol, 0);
5047 err = 0;
5048
5049out:
5050 return err;
5051}
5052
5053/* This value should be large enough to cover a tagged ethernet header plus
5054 * an IPv6 header, all options, and a maximal TCP or UDP header.
5055 */
5056#define MAX_IPV6_HDR_LEN 256
5057
5058#define OPT_HDR(type, skb, off) \
5059 (type *)(skb_network_header(skb) + (off))
5060
5061static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5062{
5063 int err;
5064 u8 nexthdr;
5065 unsigned int off;
5066 unsigned int len;
5067 bool fragment;
5068 bool done;
5069 __sum16 *csum;
5070
5071 fragment = false;
5072 done = false;
5073
5074 off = sizeof(struct ipv6hdr);
5075
5076 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5077 if (err < 0)
5078 goto out;
5079
5080 nexthdr = ipv6_hdr(skb)->nexthdr;
5081
5082 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5083 while (off <= len && !done) {
5084 switch (nexthdr) {
5085 case IPPROTO_DSTOPTS:
5086 case IPPROTO_HOPOPTS:
5087 case IPPROTO_ROUTING: {
5088 struct ipv6_opt_hdr *hp;
5089
5090 err = skb_maybe_pull_tail(skb,
5091 off +
5092 sizeof(struct ipv6_opt_hdr),
5093 MAX_IPV6_HDR_LEN);
5094 if (err < 0)
5095 goto out;
5096
5097 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5098 nexthdr = hp->nexthdr;
5099 off += ipv6_optlen(hp);
5100 break;
5101 }
5102 case IPPROTO_AH: {
5103 struct ip_auth_hdr *hp;
5104
5105 err = skb_maybe_pull_tail(skb,
5106 off +
5107 sizeof(struct ip_auth_hdr),
5108 MAX_IPV6_HDR_LEN);
5109 if (err < 0)
5110 goto out;
5111
5112 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5113 nexthdr = hp->nexthdr;
5114 off += ipv6_authlen(hp);
5115 break;
5116 }
5117 case IPPROTO_FRAGMENT: {
5118 struct frag_hdr *hp;
5119
5120 err = skb_maybe_pull_tail(skb,
5121 off +
5122 sizeof(struct frag_hdr),
5123 MAX_IPV6_HDR_LEN);
5124 if (err < 0)
5125 goto out;
5126
5127 hp = OPT_HDR(struct frag_hdr, skb, off);
5128
5129 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5130 fragment = true;
5131
5132 nexthdr = hp->nexthdr;
5133 off += sizeof(struct frag_hdr);
5134 break;
5135 }
5136 default:
5137 done = true;
5138 break;
5139 }
5140 }
5141
5142 err = -EPROTO;
5143
5144 if (!done || fragment)
5145 goto out;
5146
5147 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5148 if (IS_ERR(csum))
5149 return PTR_ERR(csum);
5150
5151 if (recalculate)
5152 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5153 &ipv6_hdr(skb)->daddr,
5154 skb->len - off, nexthdr, 0);
5155 err = 0;
5156
5157out:
5158 return err;
5159}
5160
5161/**
5162 * skb_checksum_setup - set up partial checksum offset
5163 * @skb: the skb to set up
5164 * @recalculate: if true the pseudo-header checksum will be recalculated
5165 */
5166int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5167{
5168 int err;
5169
5170 switch (skb->protocol) {
5171 case htons(ETH_P_IP):
5172 err = skb_checksum_setup_ipv4(skb, recalculate);
5173 break;
5174
5175 case htons(ETH_P_IPV6):
5176 err = skb_checksum_setup_ipv6(skb, recalculate);
5177 break;
5178
5179 default:
5180 err = -EPROTO;
5181 break;
5182 }
5183
5184 return err;
5185}
5186EXPORT_SYMBOL(skb_checksum_setup);
5187
5188/**
5189 * skb_checksum_maybe_trim - maybe trims the given skb
5190 * @skb: the skb to check
5191 * @transport_len: the data length beyond the network header
5192 *
5193 * Checks whether the given skb has data beyond the given transport length.
5194 * If so, returns a cloned skb trimmed to this transport length.
5195 * Otherwise returns the provided skb. Returns NULL in error cases
5196 * (e.g. transport_len exceeds skb length or out-of-memory).
5197 *
5198 * Caller needs to set the skb transport header and free any returned skb if it
5199 * differs from the provided skb.
5200 */
5201static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5202 unsigned int transport_len)
5203{
5204 struct sk_buff *skb_chk;
5205 unsigned int len = skb_transport_offset(skb) + transport_len;
5206 int ret;
5207
5208 if (skb->len < len)
5209 return NULL;
5210 else if (skb->len == len)
5211 return skb;
5212
5213 skb_chk = skb_clone(skb, GFP_ATOMIC);
5214 if (!skb_chk)
5215 return NULL;
5216
5217 ret = pskb_trim_rcsum(skb_chk, len);
5218 if (ret) {
5219 kfree_skb(skb_chk);
5220 return NULL;
5221 }
5222
5223 return skb_chk;
5224}
5225
5226/**
5227 * skb_checksum_trimmed - validate checksum of an skb
5228 * @skb: the skb to check
5229 * @transport_len: the data length beyond the network header
5230 * @skb_chkf: checksum function to use
5231 *
5232 * Applies the given checksum function skb_chkf to the provided skb.
5233 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5234 *
5235 * If the skb has data beyond the given transport length, then a
5236 * trimmed & cloned skb is checked and returned.
5237 *
5238 * Caller needs to set the skb transport header and free any returned skb if it
5239 * differs from the provided skb.
5240 */
5241struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5242 unsigned int transport_len,
5243 __sum16(*skb_chkf)(struct sk_buff *skb))
5244{
5245 struct sk_buff *skb_chk;
5246 unsigned int offset = skb_transport_offset(skb);
5247 __sum16 ret;
5248
5249 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5250 if (!skb_chk)
5251 goto err;
5252
5253 if (!pskb_may_pull(skb_chk, offset))
5254 goto err;
5255
5256 skb_pull_rcsum(skb_chk, offset);
5257 ret = skb_chkf(skb_chk);
5258 skb_push_rcsum(skb_chk, offset);
5259
5260 if (ret)
5261 goto err;
5262
5263 return skb_chk;
5264
5265err:
5266 if (skb_chk && skb_chk != skb)
5267 kfree_skb(skb_chk);
5268
5269 return NULL;
5270
5271}
5272EXPORT_SYMBOL(skb_checksum_trimmed);
5273
5274void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5275{
5276 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5277 skb->dev->name);
5278}
5279EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5280
5281void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5282{
5283 if (head_stolen) {
5284 skb_release_head_state(skb);
5285 kmem_cache_free(skbuff_head_cache, skb);
5286 } else {
5287 __kfree_skb(skb);
5288 }
5289}
5290EXPORT_SYMBOL(kfree_skb_partial);
5291
5292/**
5293 * skb_try_coalesce - try to merge skb to prior one
5294 * @to: prior buffer
5295 * @from: buffer to add
5296 * @fragstolen: pointer to boolean
5297 * @delta_truesize: how much more was allocated than was requested
5298 */
5299bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5300 bool *fragstolen, int *delta_truesize)
5301{
5302 struct skb_shared_info *to_shinfo, *from_shinfo;
5303 int i, delta, len = from->len;
5304
5305 *fragstolen = false;
5306
5307 if (skb_cloned(to))
5308 return false;
5309
5310 /* The page pool signature of struct page will eventually figure out
5311 * which pages can be recycled or not but for now let's prohibit slab
5312 * allocated and page_pool allocated SKBs from being coalesced.
5313 */
5314 if (to->pp_recycle != from->pp_recycle)
5315 return false;
5316
5317 if (len <= skb_tailroom(to)) {
5318 if (len)
5319 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5320 *delta_truesize = 0;
5321 return true;
5322 }
5323
5324 to_shinfo = skb_shinfo(to);
5325 from_shinfo = skb_shinfo(from);
5326 if (to_shinfo->frag_list || from_shinfo->frag_list)
5327 return false;
5328 if (skb_zcopy(to) || skb_zcopy(from))
5329 return false;
5330
5331 if (skb_headlen(from) != 0) {
5332 struct page *page;
5333 unsigned int offset;
5334
5335 if (to_shinfo->nr_frags +
5336 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5337 return false;
5338
5339 if (skb_head_is_locked(from))
5340 return false;
5341
5342 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5343
5344 page = virt_to_head_page(from->head);
5345 offset = from->data - (unsigned char *)page_address(page);
5346
5347 skb_fill_page_desc(to, to_shinfo->nr_frags,
5348 page, offset, skb_headlen(from));
5349 *fragstolen = true;
5350 } else {
5351 if (to_shinfo->nr_frags +
5352 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5353 return false;
5354
5355 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5356 }
5357
5358 WARN_ON_ONCE(delta < len);
5359
5360 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5361 from_shinfo->frags,
5362 from_shinfo->nr_frags * sizeof(skb_frag_t));
5363 to_shinfo->nr_frags += from_shinfo->nr_frags;
5364
5365 if (!skb_cloned(from))
5366 from_shinfo->nr_frags = 0;
5367
5368 /* if the skb is not cloned this does nothing
5369 * since we set nr_frags to 0.
5370 */
5371 for (i = 0; i < from_shinfo->nr_frags; i++)
5372 __skb_frag_ref(&from_shinfo->frags[i]);
5373
5374 to->truesize += delta;
5375 to->len += len;
5376 to->data_len += len;
5377
5378 *delta_truesize = delta;
5379 return true;
5380}
5381EXPORT_SYMBOL(skb_try_coalesce);
5382
5383/**
5384 * skb_scrub_packet - scrub an skb
5385 *
5386 * @skb: buffer to clean
5387 * @xnet: packet is crossing netns
5388 *
5389 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5390 * into/from a tunnel. Some information have to be cleared during these
5391 * operations.
5392 * skb_scrub_packet can also be used to clean a skb before injecting it in
5393 * another namespace (@xnet == true). We have to clear all information in the
5394 * skb that could impact namespace isolation.
5395 */
5396void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5397{
5398 skb->pkt_type = PACKET_HOST;
5399 skb->skb_iif = 0;
5400 skb->ignore_df = 0;
5401 skb_dst_drop(skb);
5402 skb_ext_reset(skb);
5403 nf_reset_ct(skb);
5404 nf_reset_trace(skb);
5405
5406#ifdef CONFIG_NET_SWITCHDEV
5407 skb->offload_fwd_mark = 0;
5408 skb->offload_l3_fwd_mark = 0;
5409#endif
5410
5411 if (!xnet)
5412 return;
5413
5414 ipvs_reset(skb);
5415 skb->mark = 0;
5416 skb->tstamp = 0;
5417}
5418EXPORT_SYMBOL_GPL(skb_scrub_packet);
5419
5420/**
5421 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5422 *
5423 * @skb: GSO skb
5424 *
5425 * skb_gso_transport_seglen is used to determine the real size of the
5426 * individual segments, including Layer4 headers (TCP/UDP).
5427 *
5428 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5429 */
5430static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5431{
5432 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5433 unsigned int thlen = 0;
5434
5435 if (skb->encapsulation) {
5436 thlen = skb_inner_transport_header(skb) -
5437 skb_transport_header(skb);
5438
5439 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5440 thlen += inner_tcp_hdrlen(skb);
5441 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5442 thlen = tcp_hdrlen(skb);
5443 } else if (unlikely(skb_is_gso_sctp(skb))) {
5444 thlen = sizeof(struct sctphdr);
5445 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5446 thlen = sizeof(struct udphdr);
5447 }
5448 /* UFO sets gso_size to the size of the fragmentation
5449 * payload, i.e. the size of the L4 (UDP) header is already
5450 * accounted for.
5451 */
5452 return thlen + shinfo->gso_size;
5453}
5454
5455/**
5456 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5457 *
5458 * @skb: GSO skb
5459 *
5460 * skb_gso_network_seglen is used to determine the real size of the
5461 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5462 *
5463 * The MAC/L2 header is not accounted for.
5464 */
5465static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5466{
5467 unsigned int hdr_len = skb_transport_header(skb) -
5468 skb_network_header(skb);
5469
5470 return hdr_len + skb_gso_transport_seglen(skb);
5471}
5472
5473/**
5474 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5475 *
5476 * @skb: GSO skb
5477 *
5478 * skb_gso_mac_seglen is used to determine the real size of the
5479 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5480 * headers (TCP/UDP).
5481 */
5482static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5483{
5484 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5485
5486 return hdr_len + skb_gso_transport_seglen(skb);
5487}
5488
5489/**
5490 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5491 *
5492 * There are a couple of instances where we have a GSO skb, and we
5493 * want to determine what size it would be after it is segmented.
5494 *
5495 * We might want to check:
5496 * - L3+L4+payload size (e.g. IP forwarding)
5497 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5498 *
5499 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5500 *
5501 * @skb: GSO skb
5502 *
5503 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5504 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5505 *
5506 * @max_len: The maximum permissible length.
5507 *
5508 * Returns true if the segmented length <= max length.
5509 */
5510static inline bool skb_gso_size_check(const struct sk_buff *skb,
5511 unsigned int seg_len,
5512 unsigned int max_len) {
5513 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5514 const struct sk_buff *iter;
5515
5516 if (shinfo->gso_size != GSO_BY_FRAGS)
5517 return seg_len <= max_len;
5518
5519 /* Undo this so we can re-use header sizes */
5520 seg_len -= GSO_BY_FRAGS;
5521
5522 skb_walk_frags(skb, iter) {
5523 if (seg_len + skb_headlen(iter) > max_len)
5524 return false;
5525 }
5526
5527 return true;
5528}
5529
5530/**
5531 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5532 *
5533 * @skb: GSO skb
5534 * @mtu: MTU to validate against
5535 *
5536 * skb_gso_validate_network_len validates if a given skb will fit a
5537 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5538 * payload.
5539 */
5540bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5541{
5542 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5543}
5544EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5545
5546/**
5547 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5548 *
5549 * @skb: GSO skb
5550 * @len: length to validate against
5551 *
5552 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5553 * length once split, including L2, L3 and L4 headers and the payload.
5554 */
5555bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5556{
5557 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5558}
5559EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5560
5561static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5562{
5563 int mac_len, meta_len;
5564 void *meta;
5565
5566 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5567 kfree_skb(skb);
5568 return NULL;
5569 }
5570
5571 mac_len = skb->data - skb_mac_header(skb);
5572 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5573 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5574 mac_len - VLAN_HLEN - ETH_TLEN);
5575 }
5576
5577 meta_len = skb_metadata_len(skb);
5578 if (meta_len) {
5579 meta = skb_metadata_end(skb) - meta_len;
5580 memmove(meta + VLAN_HLEN, meta, meta_len);
5581 }
5582
5583 skb->mac_header += VLAN_HLEN;
5584 return skb;
5585}
5586
5587struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5588{
5589 struct vlan_hdr *vhdr;
5590 u16 vlan_tci;
5591
5592 if (unlikely(skb_vlan_tag_present(skb))) {
5593 /* vlan_tci is already set-up so leave this for another time */
5594 return skb;
5595 }
5596
5597 skb = skb_share_check(skb, GFP_ATOMIC);
5598 if (unlikely(!skb))
5599 goto err_free;
5600 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5601 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5602 goto err_free;
5603
5604 vhdr = (struct vlan_hdr *)skb->data;
5605 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5606 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5607
5608 skb_pull_rcsum(skb, VLAN_HLEN);
5609 vlan_set_encap_proto(skb, vhdr);
5610
5611 skb = skb_reorder_vlan_header(skb);
5612 if (unlikely(!skb))
5613 goto err_free;
5614
5615 skb_reset_network_header(skb);
5616 if (!skb_transport_header_was_set(skb))
5617 skb_reset_transport_header(skb);
5618 skb_reset_mac_len(skb);
5619
5620 return skb;
5621
5622err_free:
5623 kfree_skb(skb);
5624 return NULL;
5625}
5626EXPORT_SYMBOL(skb_vlan_untag);
5627
5628int skb_ensure_writable(struct sk_buff *skb, int write_len)
5629{
5630 if (!pskb_may_pull(skb, write_len))
5631 return -ENOMEM;
5632
5633 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5634 return 0;
5635
5636 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5637}
5638EXPORT_SYMBOL(skb_ensure_writable);
5639
5640/* remove VLAN header from packet and update csum accordingly.
5641 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5642 */
5643int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5644{
5645 struct vlan_hdr *vhdr;
5646 int offset = skb->data - skb_mac_header(skb);
5647 int err;
5648
5649 if (WARN_ONCE(offset,
5650 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5651 offset)) {
5652 return -EINVAL;
5653 }
5654
5655 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5656 if (unlikely(err))
5657 return err;
5658
5659 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5660
5661 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5662 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5663
5664 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5665 __skb_pull(skb, VLAN_HLEN);
5666
5667 vlan_set_encap_proto(skb, vhdr);
5668 skb->mac_header += VLAN_HLEN;
5669
5670 if (skb_network_offset(skb) < ETH_HLEN)
5671 skb_set_network_header(skb, ETH_HLEN);
5672
5673 skb_reset_mac_len(skb);
5674
5675 return err;
5676}
5677EXPORT_SYMBOL(__skb_vlan_pop);
5678
5679/* Pop a vlan tag either from hwaccel or from payload.
5680 * Expects skb->data at mac header.
5681 */
5682int skb_vlan_pop(struct sk_buff *skb)
5683{
5684 u16 vlan_tci;
5685 __be16 vlan_proto;
5686 int err;
5687
5688 if (likely(skb_vlan_tag_present(skb))) {
5689 __vlan_hwaccel_clear_tag(skb);
5690 } else {
5691 if (unlikely(!eth_type_vlan(skb->protocol)))
5692 return 0;
5693
5694 err = __skb_vlan_pop(skb, &vlan_tci);
5695 if (err)
5696 return err;
5697 }
5698 /* move next vlan tag to hw accel tag */
5699 if (likely(!eth_type_vlan(skb->protocol)))
5700 return 0;
5701
5702 vlan_proto = skb->protocol;
5703 err = __skb_vlan_pop(skb, &vlan_tci);
5704 if (unlikely(err))
5705 return err;
5706
5707 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5708 return 0;
5709}
5710EXPORT_SYMBOL(skb_vlan_pop);
5711
5712/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5713 * Expects skb->data at mac header.
5714 */
5715int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5716{
5717 if (skb_vlan_tag_present(skb)) {
5718 int offset = skb->data - skb_mac_header(skb);
5719 int err;
5720
5721 if (WARN_ONCE(offset,
5722 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5723 offset)) {
5724 return -EINVAL;
5725 }
5726
5727 err = __vlan_insert_tag(skb, skb->vlan_proto,
5728 skb_vlan_tag_get(skb));
5729 if (err)
5730 return err;
5731
5732 skb->protocol = skb->vlan_proto;
5733 skb->mac_len += VLAN_HLEN;
5734
5735 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5736 }
5737 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5738 return 0;
5739}
5740EXPORT_SYMBOL(skb_vlan_push);
5741
5742/**
5743 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5744 *
5745 * @skb: Socket buffer to modify
5746 *
5747 * Drop the Ethernet header of @skb.
5748 *
5749 * Expects that skb->data points to the mac header and that no VLAN tags are
5750 * present.
5751 *
5752 * Returns 0 on success, -errno otherwise.
5753 */
5754int skb_eth_pop(struct sk_buff *skb)
5755{
5756 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5757 skb_network_offset(skb) < ETH_HLEN)
5758 return -EPROTO;
5759
5760 skb_pull_rcsum(skb, ETH_HLEN);
5761 skb_reset_mac_header(skb);
5762 skb_reset_mac_len(skb);
5763
5764 return 0;
5765}
5766EXPORT_SYMBOL(skb_eth_pop);
5767
5768/**
5769 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5770 *
5771 * @skb: Socket buffer to modify
5772 * @dst: Destination MAC address of the new header
5773 * @src: Source MAC address of the new header
5774 *
5775 * Prepend @skb with a new Ethernet header.
5776 *
5777 * Expects that skb->data points to the mac header, which must be empty.
5778 *
5779 * Returns 0 on success, -errno otherwise.
5780 */
5781int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5782 const unsigned char *src)
5783{
5784 struct ethhdr *eth;
5785 int err;
5786
5787 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5788 return -EPROTO;
5789
5790 err = skb_cow_head(skb, sizeof(*eth));
5791 if (err < 0)
5792 return err;
5793
5794 skb_push(skb, sizeof(*eth));
5795 skb_reset_mac_header(skb);
5796 skb_reset_mac_len(skb);
5797
5798 eth = eth_hdr(skb);
5799 ether_addr_copy(eth->h_dest, dst);
5800 ether_addr_copy(eth->h_source, src);
5801 eth->h_proto = skb->protocol;
5802
5803 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5804
5805 return 0;
5806}
5807EXPORT_SYMBOL(skb_eth_push);
5808
5809/* Update the ethertype of hdr and the skb csum value if required. */
5810static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5811 __be16 ethertype)
5812{
5813 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5814 __be16 diff[] = { ~hdr->h_proto, ethertype };
5815
5816 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5817 }
5818
5819 hdr->h_proto = ethertype;
5820}
5821
5822/**
5823 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5824 * the packet
5825 *
5826 * @skb: buffer
5827 * @mpls_lse: MPLS label stack entry to push
5828 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5829 * @mac_len: length of the MAC header
5830 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5831 * ethernet
5832 *
5833 * Expects skb->data at mac header.
5834 *
5835 * Returns 0 on success, -errno otherwise.
5836 */
5837int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5838 int mac_len, bool ethernet)
5839{
5840 struct mpls_shim_hdr *lse;
5841 int err;
5842
5843 if (unlikely(!eth_p_mpls(mpls_proto)))
5844 return -EINVAL;
5845
5846 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5847 if (skb->encapsulation)
5848 return -EINVAL;
5849
5850 err = skb_cow_head(skb, MPLS_HLEN);
5851 if (unlikely(err))
5852 return err;
5853
5854 if (!skb->inner_protocol) {
5855 skb_set_inner_network_header(skb, skb_network_offset(skb));
5856 skb_set_inner_protocol(skb, skb->protocol);
5857 }
5858
5859 skb_push(skb, MPLS_HLEN);
5860 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5861 mac_len);
5862 skb_reset_mac_header(skb);
5863 skb_set_network_header(skb, mac_len);
5864 skb_reset_mac_len(skb);
5865
5866 lse = mpls_hdr(skb);
5867 lse->label_stack_entry = mpls_lse;
5868 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5869
5870 if (ethernet && mac_len >= ETH_HLEN)
5871 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5872 skb->protocol = mpls_proto;
5873
5874 return 0;
5875}
5876EXPORT_SYMBOL_GPL(skb_mpls_push);
5877
5878/**
5879 * skb_mpls_pop() - pop the outermost MPLS header
5880 *
5881 * @skb: buffer
5882 * @next_proto: ethertype of header after popped MPLS header
5883 * @mac_len: length of the MAC header
5884 * @ethernet: flag to indicate if the packet is ethernet
5885 *
5886 * Expects skb->data at mac header.
5887 *
5888 * Returns 0 on success, -errno otherwise.
5889 */
5890int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5891 bool ethernet)
5892{
5893 int err;
5894
5895 if (unlikely(!eth_p_mpls(skb->protocol)))
5896 return 0;
5897
5898 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5899 if (unlikely(err))
5900 return err;
5901
5902 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5903 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5904 mac_len);
5905
5906 __skb_pull(skb, MPLS_HLEN);
5907 skb_reset_mac_header(skb);
5908 skb_set_network_header(skb, mac_len);
5909
5910 if (ethernet && mac_len >= ETH_HLEN) {
5911 struct ethhdr *hdr;
5912
5913 /* use mpls_hdr() to get ethertype to account for VLANs. */
5914 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5915 skb_mod_eth_type(skb, hdr, next_proto);
5916 }
5917 skb->protocol = next_proto;
5918
5919 return 0;
5920}
5921EXPORT_SYMBOL_GPL(skb_mpls_pop);
5922
5923/**
5924 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5925 *
5926 * @skb: buffer
5927 * @mpls_lse: new MPLS label stack entry to update to
5928 *
5929 * Expects skb->data at mac header.
5930 *
5931 * Returns 0 on success, -errno otherwise.
5932 */
5933int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5934{
5935 int err;
5936
5937 if (unlikely(!eth_p_mpls(skb->protocol)))
5938 return -EINVAL;
5939
5940 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5941 if (unlikely(err))
5942 return err;
5943
5944 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5945 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5946
5947 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5948 }
5949
5950 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5951
5952 return 0;
5953}
5954EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5955
5956/**
5957 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5958 *
5959 * @skb: buffer
5960 *
5961 * Expects skb->data at mac header.
5962 *
5963 * Returns 0 on success, -errno otherwise.
5964 */
5965int skb_mpls_dec_ttl(struct sk_buff *skb)
5966{
5967 u32 lse;
5968 u8 ttl;
5969
5970 if (unlikely(!eth_p_mpls(skb->protocol)))
5971 return -EINVAL;
5972
5973 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5974 return -ENOMEM;
5975
5976 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5977 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5978 if (!--ttl)
5979 return -EINVAL;
5980
5981 lse &= ~MPLS_LS_TTL_MASK;
5982 lse |= ttl << MPLS_LS_TTL_SHIFT;
5983
5984 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5985}
5986EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5987
5988/**
5989 * alloc_skb_with_frags - allocate skb with page frags
5990 *
5991 * @header_len: size of linear part
5992 * @data_len: needed length in frags
5993 * @max_page_order: max page order desired.
5994 * @errcode: pointer to error code if any
5995 * @gfp_mask: allocation mask
5996 *
5997 * This can be used to allocate a paged skb, given a maximal order for frags.
5998 */
5999struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6000 unsigned long data_len,
6001 int max_page_order,
6002 int *errcode,
6003 gfp_t gfp_mask)
6004{
6005 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6006 unsigned long chunk;
6007 struct sk_buff *skb;
6008 struct page *page;
6009 int i;
6010
6011 *errcode = -EMSGSIZE;
6012 /* Note this test could be relaxed, if we succeed to allocate
6013 * high order pages...
6014 */
6015 if (npages > MAX_SKB_FRAGS)
6016 return NULL;
6017
6018 *errcode = -ENOBUFS;
6019 skb = alloc_skb(header_len, gfp_mask);
6020 if (!skb)
6021 return NULL;
6022
6023 skb->truesize += npages << PAGE_SHIFT;
6024
6025 for (i = 0; npages > 0; i++) {
6026 int order = max_page_order;
6027
6028 while (order) {
6029 if (npages >= 1 << order) {
6030 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6031 __GFP_COMP |
6032 __GFP_NOWARN,
6033 order);
6034 if (page)
6035 goto fill_page;
6036 /* Do not retry other high order allocations */
6037 order = 1;
6038 max_page_order = 0;
6039 }
6040 order--;
6041 }
6042 page = alloc_page(gfp_mask);
6043 if (!page)
6044 goto failure;
6045fill_page:
6046 chunk = min_t(unsigned long, data_len,
6047 PAGE_SIZE << order);
6048 skb_fill_page_desc(skb, i, page, 0, chunk);
6049 data_len -= chunk;
6050 npages -= 1 << order;
6051 }
6052 return skb;
6053
6054failure:
6055 kfree_skb(skb);
6056 return NULL;
6057}
6058EXPORT_SYMBOL(alloc_skb_with_frags);
6059
6060/* carve out the first off bytes from skb when off < headlen */
6061static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6062 const int headlen, gfp_t gfp_mask)
6063{
6064 int i;
6065 int size = skb_end_offset(skb);
6066 int new_hlen = headlen - off;
6067 u8 *data;
6068
6069 size = SKB_DATA_ALIGN(size);
6070
6071 if (skb_pfmemalloc(skb))
6072 gfp_mask |= __GFP_MEMALLOC;
6073 data = kmalloc_reserve(size +
6074 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6075 gfp_mask, NUMA_NO_NODE, NULL);
6076 if (!data)
6077 return -ENOMEM;
6078
6079 size = SKB_WITH_OVERHEAD(ksize(data));
6080
6081 /* Copy real data, and all frags */
6082 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6083 skb->len -= off;
6084
6085 memcpy((struct skb_shared_info *)(data + size),
6086 skb_shinfo(skb),
6087 offsetof(struct skb_shared_info,
6088 frags[skb_shinfo(skb)->nr_frags]));
6089 if (skb_cloned(skb)) {
6090 /* drop the old head gracefully */
6091 if (skb_orphan_frags(skb, gfp_mask)) {
6092 kfree(data);
6093 return -ENOMEM;
6094 }
6095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6096 skb_frag_ref(skb, i);
6097 if (skb_has_frag_list(skb))
6098 skb_clone_fraglist(skb);
6099 skb_release_data(skb);
6100 } else {
6101 /* we can reuse existing recount- all we did was
6102 * relocate values
6103 */
6104 skb_free_head(skb);
6105 }
6106
6107 skb->head = data;
6108 skb->data = data;
6109 skb->head_frag = 0;
6110#ifdef NET_SKBUFF_DATA_USES_OFFSET
6111 skb->end = size;
6112#else
6113 skb->end = skb->head + size;
6114#endif
6115 skb_set_tail_pointer(skb, skb_headlen(skb));
6116 skb_headers_offset_update(skb, 0);
6117 skb->cloned = 0;
6118 skb->hdr_len = 0;
6119 skb->nohdr = 0;
6120 atomic_set(&skb_shinfo(skb)->dataref, 1);
6121
6122 return 0;
6123}
6124
6125static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6126
6127/* carve out the first eat bytes from skb's frag_list. May recurse into
6128 * pskb_carve()
6129 */
6130static int pskb_carve_frag_list(struct sk_buff *skb,
6131 struct skb_shared_info *shinfo, int eat,
6132 gfp_t gfp_mask)
6133{
6134 struct sk_buff *list = shinfo->frag_list;
6135 struct sk_buff *clone = NULL;
6136 struct sk_buff *insp = NULL;
6137
6138 do {
6139 if (!list) {
6140 pr_err("Not enough bytes to eat. Want %d\n", eat);
6141 return -EFAULT;
6142 }
6143 if (list->len <= eat) {
6144 /* Eaten as whole. */
6145 eat -= list->len;
6146 list = list->next;
6147 insp = list;
6148 } else {
6149 /* Eaten partially. */
6150 if (skb_shared(list)) {
6151 clone = skb_clone(list, gfp_mask);
6152 if (!clone)
6153 return -ENOMEM;
6154 insp = list->next;
6155 list = clone;
6156 } else {
6157 /* This may be pulled without problems. */
6158 insp = list;
6159 }
6160 if (pskb_carve(list, eat, gfp_mask) < 0) {
6161 kfree_skb(clone);
6162 return -ENOMEM;
6163 }
6164 break;
6165 }
6166 } while (eat);
6167
6168 /* Free pulled out fragments. */
6169 while ((list = shinfo->frag_list) != insp) {
6170 shinfo->frag_list = list->next;
6171 kfree_skb(list);
6172 }
6173 /* And insert new clone at head. */
6174 if (clone) {
6175 clone->next = list;
6176 shinfo->frag_list = clone;
6177 }
6178 return 0;
6179}
6180
6181/* carve off first len bytes from skb. Split line (off) is in the
6182 * non-linear part of skb
6183 */
6184static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6185 int pos, gfp_t gfp_mask)
6186{
6187 int i, k = 0;
6188 int size = skb_end_offset(skb);
6189 u8 *data;
6190 const int nfrags = skb_shinfo(skb)->nr_frags;
6191 struct skb_shared_info *shinfo;
6192
6193 size = SKB_DATA_ALIGN(size);
6194
6195 if (skb_pfmemalloc(skb))
6196 gfp_mask |= __GFP_MEMALLOC;
6197 data = kmalloc_reserve(size +
6198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6199 gfp_mask, NUMA_NO_NODE, NULL);
6200 if (!data)
6201 return -ENOMEM;
6202
6203 size = SKB_WITH_OVERHEAD(ksize(data));
6204
6205 memcpy((struct skb_shared_info *)(data + size),
6206 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6207 if (skb_orphan_frags(skb, gfp_mask)) {
6208 kfree(data);
6209 return -ENOMEM;
6210 }
6211 shinfo = (struct skb_shared_info *)(data + size);
6212 for (i = 0; i < nfrags; i++) {
6213 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6214
6215 if (pos + fsize > off) {
6216 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6217
6218 if (pos < off) {
6219 /* Split frag.
6220 * We have two variants in this case:
6221 * 1. Move all the frag to the second
6222 * part, if it is possible. F.e.
6223 * this approach is mandatory for TUX,
6224 * where splitting is expensive.
6225 * 2. Split is accurately. We make this.
6226 */
6227 skb_frag_off_add(&shinfo->frags[0], off - pos);
6228 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6229 }
6230 skb_frag_ref(skb, i);
6231 k++;
6232 }
6233 pos += fsize;
6234 }
6235 shinfo->nr_frags = k;
6236 if (skb_has_frag_list(skb))
6237 skb_clone_fraglist(skb);
6238
6239 /* split line is in frag list */
6240 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6241 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6242 if (skb_has_frag_list(skb))
6243 kfree_skb_list(skb_shinfo(skb)->frag_list);
6244 kfree(data);
6245 return -ENOMEM;
6246 }
6247 skb_release_data(skb);
6248
6249 skb->head = data;
6250 skb->head_frag = 0;
6251 skb->data = data;
6252#ifdef NET_SKBUFF_DATA_USES_OFFSET
6253 skb->end = size;
6254#else
6255 skb->end = skb->head + size;
6256#endif
6257 skb_reset_tail_pointer(skb);
6258 skb_headers_offset_update(skb, 0);
6259 skb->cloned = 0;
6260 skb->hdr_len = 0;
6261 skb->nohdr = 0;
6262 skb->len -= off;
6263 skb->data_len = skb->len;
6264 atomic_set(&skb_shinfo(skb)->dataref, 1);
6265 return 0;
6266}
6267
6268/* remove len bytes from the beginning of the skb */
6269static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6270{
6271 int headlen = skb_headlen(skb);
6272
6273 if (len < headlen)
6274 return pskb_carve_inside_header(skb, len, headlen, gfp);
6275 else
6276 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6277}
6278
6279/* Extract to_copy bytes starting at off from skb, and return this in
6280 * a new skb
6281 */
6282struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6283 int to_copy, gfp_t gfp)
6284{
6285 struct sk_buff *clone = skb_clone(skb, gfp);
6286
6287 if (!clone)
6288 return NULL;
6289
6290 if (pskb_carve(clone, off, gfp) < 0 ||
6291 pskb_trim(clone, to_copy)) {
6292 kfree_skb(clone);
6293 return NULL;
6294 }
6295 return clone;
6296}
6297EXPORT_SYMBOL(pskb_extract);
6298
6299/**
6300 * skb_condense - try to get rid of fragments/frag_list if possible
6301 * @skb: buffer
6302 *
6303 * Can be used to save memory before skb is added to a busy queue.
6304 * If packet has bytes in frags and enough tail room in skb->head,
6305 * pull all of them, so that we can free the frags right now and adjust
6306 * truesize.
6307 * Notes:
6308 * We do not reallocate skb->head thus can not fail.
6309 * Caller must re-evaluate skb->truesize if needed.
6310 */
6311void skb_condense(struct sk_buff *skb)
6312{
6313 if (skb->data_len) {
6314 if (skb->data_len > skb->end - skb->tail ||
6315 skb_cloned(skb))
6316 return;
6317
6318 /* Nice, we can free page frag(s) right now */
6319 __pskb_pull_tail(skb, skb->data_len);
6320 }
6321 /* At this point, skb->truesize might be over estimated,
6322 * because skb had a fragment, and fragments do not tell
6323 * their truesize.
6324 * When we pulled its content into skb->head, fragment
6325 * was freed, but __pskb_pull_tail() could not possibly
6326 * adjust skb->truesize, not knowing the frag truesize.
6327 */
6328 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6329}
6330
6331#ifdef CONFIG_SKB_EXTENSIONS
6332static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6333{
6334 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6335}
6336
6337/**
6338 * __skb_ext_alloc - allocate a new skb extensions storage
6339 *
6340 * @flags: See kmalloc().
6341 *
6342 * Returns the newly allocated pointer. The pointer can later attached to a
6343 * skb via __skb_ext_set().
6344 * Note: caller must handle the skb_ext as an opaque data.
6345 */
6346struct skb_ext *__skb_ext_alloc(gfp_t flags)
6347{
6348 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6349
6350 if (new) {
6351 memset(new->offset, 0, sizeof(new->offset));
6352 refcount_set(&new->refcnt, 1);
6353 }
6354
6355 return new;
6356}
6357
6358static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6359 unsigned int old_active)
6360{
6361 struct skb_ext *new;
6362
6363 if (refcount_read(&old->refcnt) == 1)
6364 return old;
6365
6366 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6367 if (!new)
6368 return NULL;
6369
6370 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6371 refcount_set(&new->refcnt, 1);
6372
6373#ifdef CONFIG_XFRM
6374 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6375 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6376 unsigned int i;
6377
6378 for (i = 0; i < sp->len; i++)
6379 xfrm_state_hold(sp->xvec[i]);
6380 }
6381#endif
6382 __skb_ext_put(old);
6383 return new;
6384}
6385
6386/**
6387 * __skb_ext_set - attach the specified extension storage to this skb
6388 * @skb: buffer
6389 * @id: extension id
6390 * @ext: extension storage previously allocated via __skb_ext_alloc()
6391 *
6392 * Existing extensions, if any, are cleared.
6393 *
6394 * Returns the pointer to the extension.
6395 */
6396void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6397 struct skb_ext *ext)
6398{
6399 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6400
6401 skb_ext_put(skb);
6402 newlen = newoff + skb_ext_type_len[id];
6403 ext->chunks = newlen;
6404 ext->offset[id] = newoff;
6405 skb->extensions = ext;
6406 skb->active_extensions = 1 << id;
6407 return skb_ext_get_ptr(ext, id);
6408}
6409
6410/**
6411 * skb_ext_add - allocate space for given extension, COW if needed
6412 * @skb: buffer
6413 * @id: extension to allocate space for
6414 *
6415 * Allocates enough space for the given extension.
6416 * If the extension is already present, a pointer to that extension
6417 * is returned.
6418 *
6419 * If the skb was cloned, COW applies and the returned memory can be
6420 * modified without changing the extension space of clones buffers.
6421 *
6422 * Returns pointer to the extension or NULL on allocation failure.
6423 */
6424void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6425{
6426 struct skb_ext *new, *old = NULL;
6427 unsigned int newlen, newoff;
6428
6429 if (skb->active_extensions) {
6430 old = skb->extensions;
6431
6432 new = skb_ext_maybe_cow(old, skb->active_extensions);
6433 if (!new)
6434 return NULL;
6435
6436 if (__skb_ext_exist(new, id))
6437 goto set_active;
6438
6439 newoff = new->chunks;
6440 } else {
6441 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6442
6443 new = __skb_ext_alloc(GFP_ATOMIC);
6444 if (!new)
6445 return NULL;
6446 }
6447
6448 newlen = newoff + skb_ext_type_len[id];
6449 new->chunks = newlen;
6450 new->offset[id] = newoff;
6451set_active:
6452 skb->extensions = new;
6453 skb->active_extensions |= 1 << id;
6454 return skb_ext_get_ptr(new, id);
6455}
6456EXPORT_SYMBOL(skb_ext_add);
6457
6458#ifdef CONFIG_XFRM
6459static void skb_ext_put_sp(struct sec_path *sp)
6460{
6461 unsigned int i;
6462
6463 for (i = 0; i < sp->len; i++)
6464 xfrm_state_put(sp->xvec[i]);
6465}
6466#endif
6467
6468void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6469{
6470 struct skb_ext *ext = skb->extensions;
6471
6472 skb->active_extensions &= ~(1 << id);
6473 if (skb->active_extensions == 0) {
6474 skb->extensions = NULL;
6475 __skb_ext_put(ext);
6476#ifdef CONFIG_XFRM
6477 } else if (id == SKB_EXT_SEC_PATH &&
6478 refcount_read(&ext->refcnt) == 1) {
6479 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6480
6481 skb_ext_put_sp(sp);
6482 sp->len = 0;
6483#endif
6484 }
6485}
6486EXPORT_SYMBOL(__skb_ext_del);
6487
6488void __skb_ext_put(struct skb_ext *ext)
6489{
6490 /* If this is last clone, nothing can increment
6491 * it after check passes. Avoids one atomic op.
6492 */
6493 if (refcount_read(&ext->refcnt) == 1)
6494 goto free_now;
6495
6496 if (!refcount_dec_and_test(&ext->refcnt))
6497 return;
6498free_now:
6499#ifdef CONFIG_XFRM
6500 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6501 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6502#endif
6503
6504 kmem_cache_free(skbuff_ext_cache, ext);
6505}
6506EXPORT_SYMBOL(__skb_ext_put);
6507#endif /* CONFIG_SKB_EXTENSIONS */