Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74#include <net/mpls.h>
75#include <net/mptcp.h>
76#include <net/mctp.h>
77#include <net/page_pool/helpers.h>
78#include <net/dropreason.h>
79
80#include <linux/uaccess.h>
81#include <trace/events/skb.h>
82#include <linux/highmem.h>
83#include <linux/capability.h>
84#include <linux/user_namespace.h>
85#include <linux/indirect_call_wrapper.h>
86#include <linux/textsearch.h>
87
88#include "dev.h"
89#include "sock_destructor.h"
90
91struct kmem_cache *skbuff_cache __ro_after_init;
92static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93#ifdef CONFIG_SKB_EXTENSIONS
94static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95#endif
96
97
98static struct kmem_cache *skb_small_head_cache __ro_after_init;
99
100#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101
102/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104 * size, and we can differentiate heads from skb_small_head_cache
105 * vs system slabs by looking at their size (skb_end_offset()).
106 */
107#define SKB_SMALL_HEAD_CACHE_SIZE \
108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
110 SKB_SMALL_HEAD_SIZE)
111
112#define SKB_SMALL_HEAD_HEADROOM \
113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114
115int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116EXPORT_SYMBOL(sysctl_max_skb_frags);
117
118#undef FN
119#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120static const char * const drop_reasons[] = {
121 [SKB_CONSUMED] = "CONSUMED",
122 DEFINE_DROP_REASON(FN, FN)
123};
124
125static const struct drop_reason_list drop_reasons_core = {
126 .reasons = drop_reasons,
127 .n_reasons = ARRAY_SIZE(drop_reasons),
128};
129
130const struct drop_reason_list __rcu *
131drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133};
134EXPORT_SYMBOL(drop_reasons_by_subsys);
135
136/**
137 * drop_reasons_register_subsys - register another drop reason subsystem
138 * @subsys: the subsystem to register, must not be the core
139 * @list: the list of drop reasons within the subsystem, must point to
140 * a statically initialized list
141 */
142void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 const struct drop_reason_list *list)
144{
145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 "invalid subsystem %d\n", subsys))
148 return;
149
150 /* must point to statically allocated memory, so INIT is OK */
151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152}
153EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154
155/**
156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157 * @subsys: the subsystem to remove, must not be the core
158 *
159 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 */
161void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162{
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169
170 synchronize_rcu();
171}
172EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173
174/**
175 * skb_panic - private function for out-of-line support
176 * @skb: buffer
177 * @sz: size
178 * @addr: address
179 * @msg: skb_over_panic or skb_under_panic
180 *
181 * Out-of-line support for skb_put() and skb_push().
182 * Called via the wrapper skb_over_panic() or skb_under_panic().
183 * Keep out of line to prevent kernel bloat.
184 * __builtin_return_address is not used because it is not always reliable.
185 */
186static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 const char msg[])
188{
189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 msg, addr, skb->len, sz, skb->head, skb->data,
191 (unsigned long)skb->tail, (unsigned long)skb->end,
192 skb->dev ? skb->dev->name : "<NULL>");
193 BUG();
194}
195
196static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197{
198 skb_panic(skb, sz, addr, __func__);
199}
200
201static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202{
203 skb_panic(skb, sz, addr, __func__);
204}
205
206#define NAPI_SKB_CACHE_SIZE 64
207#define NAPI_SKB_CACHE_BULK 16
208#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209
210#if PAGE_SIZE == SZ_4K
211
212#define NAPI_HAS_SMALL_PAGE_FRAG 1
213#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214
215/* specialized page frag allocator using a single order 0 page
216 * and slicing it into 1K sized fragment. Constrained to systems
217 * with a very limited amount of 1K fragments fitting a single
218 * page - to avoid excessive truesize underestimation
219 */
220
221struct page_frag_1k {
222 void *va;
223 u16 offset;
224 bool pfmemalloc;
225};
226
227static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228{
229 struct page *page;
230 int offset;
231
232 offset = nc->offset - SZ_1K;
233 if (likely(offset >= 0))
234 goto use_frag;
235
236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 if (!page)
238 return NULL;
239
240 nc->va = page_address(page);
241 nc->pfmemalloc = page_is_pfmemalloc(page);
242 offset = PAGE_SIZE - SZ_1K;
243 page_ref_add(page, offset / SZ_1K);
244
245use_frag:
246 nc->offset = offset;
247 return nc->va + offset;
248}
249#else
250
251/* the small page is actually unused in this build; add dummy helpers
252 * to please the compiler and avoid later preprocessor's conditionals
253 */
254#define NAPI_HAS_SMALL_PAGE_FRAG 0
255#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256
257struct page_frag_1k {
258};
259
260static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261{
262 return NULL;
263}
264
265#endif
266
267struct napi_alloc_cache {
268 struct page_frag_cache page;
269 struct page_frag_1k page_small;
270 unsigned int skb_count;
271 void *skb_cache[NAPI_SKB_CACHE_SIZE];
272};
273
274static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276
277/* Double check that napi_get_frags() allocates skbs with
278 * skb->head being backed by slab, not a page fragment.
279 * This is to make sure bug fixed in 3226b158e67c
280 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281 * does not accidentally come back.
282 */
283void napi_get_frags_check(struct napi_struct *napi)
284{
285 struct sk_buff *skb;
286
287 local_bh_disable();
288 skb = napi_get_frags(napi);
289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 napi_free_frags(napi);
291 local_bh_enable();
292}
293
294void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295{
296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297
298 fragsz = SKB_DATA_ALIGN(fragsz);
299
300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301}
302EXPORT_SYMBOL(__napi_alloc_frag_align);
303
304void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305{
306 void *data;
307
308 fragsz = SKB_DATA_ALIGN(fragsz);
309 if (in_hardirq() || irqs_disabled()) {
310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311
312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 } else {
314 struct napi_alloc_cache *nc;
315
316 local_bh_disable();
317 nc = this_cpu_ptr(&napi_alloc_cache);
318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 local_bh_enable();
320 }
321 return data;
322}
323EXPORT_SYMBOL(__netdev_alloc_frag_align);
324
325static struct sk_buff *napi_skb_cache_get(void)
326{
327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 struct sk_buff *skb;
329
330 if (unlikely(!nc->skb_count)) {
331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 GFP_ATOMIC,
333 NAPI_SKB_CACHE_BULK,
334 nc->skb_cache);
335 if (unlikely(!nc->skb_count))
336 return NULL;
337 }
338
339 skb = nc->skb_cache[--nc->skb_count];
340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache));
341
342 return skb;
343}
344
345static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 unsigned int size)
347{
348 struct skb_shared_info *shinfo;
349
350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351
352 /* Assumes caller memset cleared SKB */
353 skb->truesize = SKB_TRUESIZE(size);
354 refcount_set(&skb->users, 1);
355 skb->head = data;
356 skb->data = data;
357 skb_reset_tail_pointer(skb);
358 skb_set_end_offset(skb, size);
359 skb->mac_header = (typeof(skb->mac_header))~0U;
360 skb->transport_header = (typeof(skb->transport_header))~0U;
361 skb->alloc_cpu = raw_smp_processor_id();
362 /* make sure we initialize shinfo sequentially */
363 shinfo = skb_shinfo(skb);
364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 atomic_set(&shinfo->dataref, 1);
366
367 skb_set_kcov_handle(skb, kcov_common_handle());
368}
369
370static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 unsigned int *size)
372{
373 void *resized;
374
375 /* Must find the allocation size (and grow it to match). */
376 *size = ksize(data);
377 /* krealloc() will immediately return "data" when
378 * "ksize(data)" is requested: it is the existing upper
379 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 * that this "new" pointer needs to be passed back to the
381 * caller for use so the __alloc_size hinting will be
382 * tracked correctly.
383 */
384 resized = krealloc(data, *size, GFP_ATOMIC);
385 WARN_ON_ONCE(resized != data);
386 return resized;
387}
388
389/* build_skb() variant which can operate on slab buffers.
390 * Note that this should be used sparingly as slab buffers
391 * cannot be combined efficiently by GRO!
392 */
393struct sk_buff *slab_build_skb(void *data)
394{
395 struct sk_buff *skb;
396 unsigned int size;
397
398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 if (unlikely(!skb))
400 return NULL;
401
402 memset(skb, 0, offsetof(struct sk_buff, tail));
403 data = __slab_build_skb(skb, data, &size);
404 __finalize_skb_around(skb, data, size);
405
406 return skb;
407}
408EXPORT_SYMBOL(slab_build_skb);
409
410/* Caller must provide SKB that is memset cleared */
411static void __build_skb_around(struct sk_buff *skb, void *data,
412 unsigned int frag_size)
413{
414 unsigned int size = frag_size;
415
416 /* frag_size == 0 is considered deprecated now. Callers
417 * using slab buffer should use slab_build_skb() instead.
418 */
419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 data = __slab_build_skb(skb, data, &size);
421
422 __finalize_skb_around(skb, data, size);
423}
424
425/**
426 * __build_skb - build a network buffer
427 * @data: data buffer provided by caller
428 * @frag_size: size of data (must not be 0)
429 *
430 * Allocate a new &sk_buff. Caller provides space holding head and
431 * skb_shared_info. @data must have been allocated from the page
432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433 * allocation is deprecated, and callers should use slab_build_skb()
434 * instead.)
435 * The return is the new skb buffer.
436 * On a failure the return is %NULL, and @data is not freed.
437 * Notes :
438 * Before IO, driver allocates only data buffer where NIC put incoming frame
439 * Driver should add room at head (NET_SKB_PAD) and
440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
442 * before giving packet to stack.
443 * RX rings only contains data buffers, not full skbs.
444 */
445struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446{
447 struct sk_buff *skb;
448
449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 if (unlikely(!skb))
451 return NULL;
452
453 memset(skb, 0, offsetof(struct sk_buff, tail));
454 __build_skb_around(skb, data, frag_size);
455
456 return skb;
457}
458
459/* build_skb() is wrapper over __build_skb(), that specifically
460 * takes care of skb->head and skb->pfmemalloc
461 */
462struct sk_buff *build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __build_skb(data, frag_size);
465
466 if (likely(skb && frag_size)) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470 return skb;
471}
472EXPORT_SYMBOL(build_skb);
473
474/**
475 * build_skb_around - build a network buffer around provided skb
476 * @skb: sk_buff provide by caller, must be memset cleared
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
479 */
480struct sk_buff *build_skb_around(struct sk_buff *skb,
481 void *data, unsigned int frag_size)
482{
483 if (unlikely(!skb))
484 return NULL;
485
486 __build_skb_around(skb, data, frag_size);
487
488 if (frag_size) {
489 skb->head_frag = 1;
490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 }
492 return skb;
493}
494EXPORT_SYMBOL(build_skb_around);
495
496/**
497 * __napi_build_skb - build a network buffer
498 * @data: data buffer provided by caller
499 * @frag_size: size of data
500 *
501 * Version of __build_skb() that uses NAPI percpu caches to obtain
502 * skbuff_head instead of inplace allocation.
503 *
504 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 */
506static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507{
508 struct sk_buff *skb;
509
510 skb = napi_skb_cache_get();
511 if (unlikely(!skb))
512 return NULL;
513
514 memset(skb, 0, offsetof(struct sk_buff, tail));
515 __build_skb_around(skb, data, frag_size);
516
517 return skb;
518}
519
520/**
521 * napi_build_skb - build a network buffer
522 * @data: data buffer provided by caller
523 * @frag_size: size of data
524 *
525 * Version of __napi_build_skb() that takes care of skb->head_frag
526 * and skb->pfmemalloc when the data is a page or page fragment.
527 *
528 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 */
530struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531{
532 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533
534 if (likely(skb) && frag_size) {
535 skb->head_frag = 1;
536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 }
538
539 return skb;
540}
541EXPORT_SYMBOL(napi_build_skb);
542
543/*
544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545 * the caller if emergency pfmemalloc reserves are being used. If it is and
546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547 * may be used. Otherwise, the packet data may be discarded until enough
548 * memory is free
549 */
550static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 bool *pfmemalloc)
552{
553 bool ret_pfmemalloc = false;
554 size_t obj_size;
555 void *obj;
556
557 obj_size = SKB_HEAD_ALIGN(*size);
558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 obj = kmem_cache_alloc_node(skb_small_head_cache,
561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 node);
563 *size = SKB_SMALL_HEAD_CACHE_SIZE;
564 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 goto out;
566 /* Try again but now we are using pfmemalloc reserves */
567 ret_pfmemalloc = true;
568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 goto out;
570 }
571
572 obj_size = kmalloc_size_roundup(obj_size);
573 /* The following cast might truncate high-order bits of obj_size, this
574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 */
576 *size = (unsigned int)obj_size;
577
578 /*
579 * Try a regular allocation, when that fails and we're not entitled
580 * to the reserves, fail.
581 */
582 obj = kmalloc_node_track_caller(obj_size,
583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 node);
585 if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 goto out;
587
588 /* Try again but now we are using pfmemalloc reserves */
589 ret_pfmemalloc = true;
590 obj = kmalloc_node_track_caller(obj_size, flags, node);
591
592out:
593 if (pfmemalloc)
594 *pfmemalloc = ret_pfmemalloc;
595
596 return obj;
597}
598
599/* Allocate a new skbuff. We do this ourselves so we can fill in a few
600 * 'private' fields and also do memory statistics to find all the
601 * [BEEP] leaks.
602 *
603 */
604
605/**
606 * __alloc_skb - allocate a network buffer
607 * @size: size to allocate
608 * @gfp_mask: allocation mask
609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610 * instead of head cache and allocate a cloned (child) skb.
611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612 * allocations in case the data is required for writeback
613 * @node: numa node to allocate memory on
614 *
615 * Allocate a new &sk_buff. The returned buffer has no headroom and a
616 * tail room of at least size bytes. The object has a reference count
617 * of one. The return is the buffer. On a failure the return is %NULL.
618 *
619 * Buffers may only be allocated from interrupts using a @gfp_mask of
620 * %GFP_ATOMIC.
621 */
622struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 int flags, int node)
624{
625 struct kmem_cache *cache;
626 struct sk_buff *skb;
627 bool pfmemalloc;
628 u8 *data;
629
630 cache = (flags & SKB_ALLOC_FCLONE)
631 ? skbuff_fclone_cache : skbuff_cache;
632
633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 gfp_mask |= __GFP_MEMALLOC;
635
636 /* Get the HEAD */
637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 skb = napi_skb_cache_get();
640 else
641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 if (unlikely(!skb))
643 return NULL;
644 prefetchw(skb);
645
646 /* We do our best to align skb_shared_info on a separate cache
647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 * Both skb->head and skb_shared_info are cache line aligned.
650 */
651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 if (unlikely(!data))
653 goto nodata;
654 /* kmalloc_size_roundup() might give us more room than requested.
655 * Put skb_shared_info exactly at the end of allocated zone,
656 * to allow max possible filling before reallocation.
657 */
658 prefetchw(data + SKB_WITH_OVERHEAD(size));
659
660 /*
661 * Only clear those fields we need to clear, not those that we will
662 * actually initialise below. Hence, don't put any more fields after
663 * the tail pointer in struct sk_buff!
664 */
665 memset(skb, 0, offsetof(struct sk_buff, tail));
666 __build_skb_around(skb, data, size);
667 skb->pfmemalloc = pfmemalloc;
668
669 if (flags & SKB_ALLOC_FCLONE) {
670 struct sk_buff_fclones *fclones;
671
672 fclones = container_of(skb, struct sk_buff_fclones, skb1);
673
674 skb->fclone = SKB_FCLONE_ORIG;
675 refcount_set(&fclones->fclone_ref, 1);
676 }
677
678 return skb;
679
680nodata:
681 kmem_cache_free(cache, skb);
682 return NULL;
683}
684EXPORT_SYMBOL(__alloc_skb);
685
686/**
687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
688 * @dev: network device to receive on
689 * @len: length to allocate
690 * @gfp_mask: get_free_pages mask, passed to alloc_skb
691 *
692 * Allocate a new &sk_buff and assign it a usage count of one. The
693 * buffer has NET_SKB_PAD headroom built in. Users should allocate
694 * the headroom they think they need without accounting for the
695 * built in space. The built in space is used for optimisations.
696 *
697 * %NULL is returned if there is no free memory.
698 */
699struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 gfp_t gfp_mask)
701{
702 struct page_frag_cache *nc;
703 struct sk_buff *skb;
704 bool pfmemalloc;
705 void *data;
706
707 len += NET_SKB_PAD;
708
709 /* If requested length is either too small or too big,
710 * we use kmalloc() for skb->head allocation.
711 */
712 if (len <= SKB_WITH_OVERHEAD(1024) ||
713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 if (!skb)
717 goto skb_fail;
718 goto skb_success;
719 }
720
721 len = SKB_HEAD_ALIGN(len);
722
723 if (sk_memalloc_socks())
724 gfp_mask |= __GFP_MEMALLOC;
725
726 if (in_hardirq() || irqs_disabled()) {
727 nc = this_cpu_ptr(&netdev_alloc_cache);
728 data = page_frag_alloc(nc, len, gfp_mask);
729 pfmemalloc = nc->pfmemalloc;
730 } else {
731 local_bh_disable();
732 nc = this_cpu_ptr(&napi_alloc_cache.page);
733 data = page_frag_alloc(nc, len, gfp_mask);
734 pfmemalloc = nc->pfmemalloc;
735 local_bh_enable();
736 }
737
738 if (unlikely(!data))
739 return NULL;
740
741 skb = __build_skb(data, len);
742 if (unlikely(!skb)) {
743 skb_free_frag(data);
744 return NULL;
745 }
746
747 if (pfmemalloc)
748 skb->pfmemalloc = 1;
749 skb->head_frag = 1;
750
751skb_success:
752 skb_reserve(skb, NET_SKB_PAD);
753 skb->dev = dev;
754
755skb_fail:
756 return skb;
757}
758EXPORT_SYMBOL(__netdev_alloc_skb);
759
760/**
761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762 * @napi: napi instance this buffer was allocated for
763 * @len: length to allocate
764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765 *
766 * Allocate a new sk_buff for use in NAPI receive. This buffer will
767 * attempt to allocate the head from a special reserved region used
768 * only for NAPI Rx allocation. By doing this we can save several
769 * CPU cycles by avoiding having to disable and re-enable IRQs.
770 *
771 * %NULL is returned if there is no free memory.
772 */
773struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 gfp_t gfp_mask)
775{
776 struct napi_alloc_cache *nc;
777 struct sk_buff *skb;
778 bool pfmemalloc;
779 void *data;
780
781 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 len += NET_SKB_PAD + NET_IP_ALIGN;
783
784 /* If requested length is either too small or too big,
785 * we use kmalloc() for skb->head allocation.
786 * When the small frag allocator is available, prefer it over kmalloc
787 * for small fragments
788 */
789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 NUMA_NO_NODE);
794 if (!skb)
795 goto skb_fail;
796 goto skb_success;
797 }
798
799 nc = this_cpu_ptr(&napi_alloc_cache);
800
801 if (sk_memalloc_socks())
802 gfp_mask |= __GFP_MEMALLOC;
803
804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 /* we are artificially inflating the allocation size, but
806 * that is not as bad as it may look like, as:
807 * - 'len' less than GRO_MAX_HEAD makes little sense
808 * - On most systems, larger 'len' values lead to fragment
809 * size above 512 bytes
810 * - kmalloc would use the kmalloc-1k slab for such values
811 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 * little networking, as that implies no WiFi and no
813 * tunnels support, and 32 bits arches.
814 */
815 len = SZ_1K;
816
817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 } else {
820 len = SKB_HEAD_ALIGN(len);
821
822 data = page_frag_alloc(&nc->page, len, gfp_mask);
823 pfmemalloc = nc->page.pfmemalloc;
824 }
825
826 if (unlikely(!data))
827 return NULL;
828
829 skb = __napi_build_skb(data, len);
830 if (unlikely(!skb)) {
831 skb_free_frag(data);
832 return NULL;
833 }
834
835 if (pfmemalloc)
836 skb->pfmemalloc = 1;
837 skb->head_frag = 1;
838
839skb_success:
840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 skb->dev = napi->dev;
842
843skb_fail:
844 return skb;
845}
846EXPORT_SYMBOL(__napi_alloc_skb);
847
848void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 int size, unsigned int truesize)
850{
851 DEBUG_NET_WARN_ON_ONCE(size > truesize);
852
853 skb_fill_page_desc(skb, i, page, off, size);
854 skb->len += size;
855 skb->data_len += size;
856 skb->truesize += truesize;
857}
858EXPORT_SYMBOL(skb_add_rx_frag);
859
860void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 unsigned int truesize)
862{
863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864
865 DEBUG_NET_WARN_ON_ONCE(size > truesize);
866
867 skb_frag_size_add(frag, size);
868 skb->len += size;
869 skb->data_len += size;
870 skb->truesize += truesize;
871}
872EXPORT_SYMBOL(skb_coalesce_rx_frag);
873
874static void skb_drop_list(struct sk_buff **listp)
875{
876 kfree_skb_list(*listp);
877 *listp = NULL;
878}
879
880static inline void skb_drop_fraglist(struct sk_buff *skb)
881{
882 skb_drop_list(&skb_shinfo(skb)->frag_list);
883}
884
885static void skb_clone_fraglist(struct sk_buff *skb)
886{
887 struct sk_buff *list;
888
889 skb_walk_frags(skb, list)
890 skb_get(list);
891}
892
893static bool is_pp_page(struct page *page)
894{
895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896}
897
898#if IS_ENABLED(CONFIG_PAGE_POOL)
899bool napi_pp_put_page(struct page *page, bool napi_safe)
900{
901 bool allow_direct = false;
902 struct page_pool *pp;
903
904 page = compound_head(page);
905
906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 * in order to preserve any existing bits, such as bit 0 for the
908 * head page of compound page and bit 1 for pfmemalloc page, so
909 * mask those bits for freeing side when doing below checking,
910 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 * to avoid recycling the pfmemalloc page.
912 */
913 if (unlikely(!is_pp_page(page)))
914 return false;
915
916 pp = page->pp;
917
918 /* Allow direct recycle if we have reasons to believe that we are
919 * in the same context as the consumer would run, so there's
920 * no possible race.
921 * __page_pool_put_page() makes sure we're not in hardirq context
922 * and interrupts are enabled prior to accessing the cache.
923 */
924 if (napi_safe || in_softirq()) {
925 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926
927 allow_direct = napi &&
928 READ_ONCE(napi->list_owner) == smp_processor_id();
929 }
930
931 /* Driver set this to memory recycling info. Reset it on recycle.
932 * This will *not* work for NIC using a split-page memory model.
933 * The page will be returned to the pool here regardless of the
934 * 'flipped' fragment being in use or not.
935 */
936 page_pool_put_full_page(pp, page, allow_direct);
937
938 return true;
939}
940EXPORT_SYMBOL(napi_pp_put_page);
941#endif
942
943static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944{
945 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 return false;
947 return napi_pp_put_page(virt_to_page(data), napi_safe);
948}
949
950/**
951 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
952 * @skb: page pool aware skb
953 *
954 * Increase the fragment reference count (pp_ref_count) of a skb. This is
955 * intended to gain fragment references only for page pool aware skbs,
956 * i.e. when skb->pp_recycle is true, and not for fragments in a
957 * non-pp-recycling skb. It has a fallback to increase references on normal
958 * pages, as page pool aware skbs may also have normal page fragments.
959 */
960static int skb_pp_frag_ref(struct sk_buff *skb)
961{
962 struct skb_shared_info *shinfo;
963 struct page *head_page;
964 int i;
965
966 if (!skb->pp_recycle)
967 return -EINVAL;
968
969 shinfo = skb_shinfo(skb);
970
971 for (i = 0; i < shinfo->nr_frags; i++) {
972 head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
973 if (likely(is_pp_page(head_page)))
974 page_pool_ref_page(head_page);
975 else
976 page_ref_inc(head_page);
977 }
978 return 0;
979}
980
981static void skb_kfree_head(void *head, unsigned int end_offset)
982{
983 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
984 kmem_cache_free(skb_small_head_cache, head);
985 else
986 kfree(head);
987}
988
989static void skb_free_head(struct sk_buff *skb, bool napi_safe)
990{
991 unsigned char *head = skb->head;
992
993 if (skb->head_frag) {
994 if (skb_pp_recycle(skb, head, napi_safe))
995 return;
996 skb_free_frag(head);
997 } else {
998 skb_kfree_head(head, skb_end_offset(skb));
999 }
1000}
1001
1002static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1003 bool napi_safe)
1004{
1005 struct skb_shared_info *shinfo = skb_shinfo(skb);
1006 int i;
1007
1008 if (skb->cloned &&
1009 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
1010 &shinfo->dataref))
1011 goto exit;
1012
1013 if (skb_zcopy(skb)) {
1014 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1015
1016 skb_zcopy_clear(skb, true);
1017 if (skip_unref)
1018 goto free_head;
1019 }
1020
1021 for (i = 0; i < shinfo->nr_frags; i++)
1022 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1023
1024free_head:
1025 if (shinfo->frag_list)
1026 kfree_skb_list_reason(shinfo->frag_list, reason);
1027
1028 skb_free_head(skb, napi_safe);
1029exit:
1030 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1031 * bit is only set on the head though, so in order to avoid races
1032 * while trying to recycle fragments on __skb_frag_unref() we need
1033 * to make one SKB responsible for triggering the recycle path.
1034 * So disable the recycling bit if an SKB is cloned and we have
1035 * additional references to the fragmented part of the SKB.
1036 * Eventually the last SKB will have the recycling bit set and it's
1037 * dataref set to 0, which will trigger the recycling
1038 */
1039 skb->pp_recycle = 0;
1040}
1041
1042/*
1043 * Free an skbuff by memory without cleaning the state.
1044 */
1045static void kfree_skbmem(struct sk_buff *skb)
1046{
1047 struct sk_buff_fclones *fclones;
1048
1049 switch (skb->fclone) {
1050 case SKB_FCLONE_UNAVAILABLE:
1051 kmem_cache_free(skbuff_cache, skb);
1052 return;
1053
1054 case SKB_FCLONE_ORIG:
1055 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1056
1057 /* We usually free the clone (TX completion) before original skb
1058 * This test would have no chance to be true for the clone,
1059 * while here, branch prediction will be good.
1060 */
1061 if (refcount_read(&fclones->fclone_ref) == 1)
1062 goto fastpath;
1063 break;
1064
1065 default: /* SKB_FCLONE_CLONE */
1066 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1067 break;
1068 }
1069 if (!refcount_dec_and_test(&fclones->fclone_ref))
1070 return;
1071fastpath:
1072 kmem_cache_free(skbuff_fclone_cache, fclones);
1073}
1074
1075void skb_release_head_state(struct sk_buff *skb)
1076{
1077 skb_dst_drop(skb);
1078 if (skb->destructor) {
1079 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1080 skb->destructor(skb);
1081 }
1082#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1083 nf_conntrack_put(skb_nfct(skb));
1084#endif
1085 skb_ext_put(skb);
1086}
1087
1088/* Free everything but the sk_buff shell. */
1089static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1090 bool napi_safe)
1091{
1092 skb_release_head_state(skb);
1093 if (likely(skb->head))
1094 skb_release_data(skb, reason, napi_safe);
1095}
1096
1097/**
1098 * __kfree_skb - private function
1099 * @skb: buffer
1100 *
1101 * Free an sk_buff. Release anything attached to the buffer.
1102 * Clean the state. This is an internal helper function. Users should
1103 * always call kfree_skb
1104 */
1105
1106void __kfree_skb(struct sk_buff *skb)
1107{
1108 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1109 kfree_skbmem(skb);
1110}
1111EXPORT_SYMBOL(__kfree_skb);
1112
1113static __always_inline
1114bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1115{
1116 if (unlikely(!skb_unref(skb)))
1117 return false;
1118
1119 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1120 u32_get_bits(reason,
1121 SKB_DROP_REASON_SUBSYS_MASK) >=
1122 SKB_DROP_REASON_SUBSYS_NUM);
1123
1124 if (reason == SKB_CONSUMED)
1125 trace_consume_skb(skb, __builtin_return_address(0));
1126 else
1127 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1128 return true;
1129}
1130
1131/**
1132 * kfree_skb_reason - free an sk_buff with special reason
1133 * @skb: buffer to free
1134 * @reason: reason why this skb is dropped
1135 *
1136 * Drop a reference to the buffer and free it if the usage count has
1137 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1138 * tracepoint.
1139 */
1140void __fix_address
1141kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1142{
1143 if (__kfree_skb_reason(skb, reason))
1144 __kfree_skb(skb);
1145}
1146EXPORT_SYMBOL(kfree_skb_reason);
1147
1148#define KFREE_SKB_BULK_SIZE 16
1149
1150struct skb_free_array {
1151 unsigned int skb_count;
1152 void *skb_array[KFREE_SKB_BULK_SIZE];
1153};
1154
1155static void kfree_skb_add_bulk(struct sk_buff *skb,
1156 struct skb_free_array *sa,
1157 enum skb_drop_reason reason)
1158{
1159 /* if SKB is a clone, don't handle this case */
1160 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1161 __kfree_skb(skb);
1162 return;
1163 }
1164
1165 skb_release_all(skb, reason, false);
1166 sa->skb_array[sa->skb_count++] = skb;
1167
1168 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1169 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1170 sa->skb_array);
1171 sa->skb_count = 0;
1172 }
1173}
1174
1175void __fix_address
1176kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1177{
1178 struct skb_free_array sa;
1179
1180 sa.skb_count = 0;
1181
1182 while (segs) {
1183 struct sk_buff *next = segs->next;
1184
1185 if (__kfree_skb_reason(segs, reason)) {
1186 skb_poison_list(segs);
1187 kfree_skb_add_bulk(segs, &sa, reason);
1188 }
1189
1190 segs = next;
1191 }
1192
1193 if (sa.skb_count)
1194 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1195}
1196EXPORT_SYMBOL(kfree_skb_list_reason);
1197
1198/* Dump skb information and contents.
1199 *
1200 * Must only be called from net_ratelimit()-ed paths.
1201 *
1202 * Dumps whole packets if full_pkt, only headers otherwise.
1203 */
1204void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1205{
1206 struct skb_shared_info *sh = skb_shinfo(skb);
1207 struct net_device *dev = skb->dev;
1208 struct sock *sk = skb->sk;
1209 struct sk_buff *list_skb;
1210 bool has_mac, has_trans;
1211 int headroom, tailroom;
1212 int i, len, seg_len;
1213
1214 if (full_pkt)
1215 len = skb->len;
1216 else
1217 len = min_t(int, skb->len, MAX_HEADER + 128);
1218
1219 headroom = skb_headroom(skb);
1220 tailroom = skb_tailroom(skb);
1221
1222 has_mac = skb_mac_header_was_set(skb);
1223 has_trans = skb_transport_header_was_set(skb);
1224
1225 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1226 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1227 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1228 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1229 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1230 level, skb->len, headroom, skb_headlen(skb), tailroom,
1231 has_mac ? skb->mac_header : -1,
1232 has_mac ? skb_mac_header_len(skb) : -1,
1233 skb->network_header,
1234 has_trans ? skb_network_header_len(skb) : -1,
1235 has_trans ? skb->transport_header : -1,
1236 sh->tx_flags, sh->nr_frags,
1237 sh->gso_size, sh->gso_type, sh->gso_segs,
1238 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1239 skb->csum_valid, skb->csum_level,
1240 skb->hash, skb->sw_hash, skb->l4_hash,
1241 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1242
1243 if (dev)
1244 printk("%sdev name=%s feat=%pNF\n",
1245 level, dev->name, &dev->features);
1246 if (sk)
1247 printk("%ssk family=%hu type=%u proto=%u\n",
1248 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1249
1250 if (full_pkt && headroom)
1251 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1252 16, 1, skb->head, headroom, false);
1253
1254 seg_len = min_t(int, skb_headlen(skb), len);
1255 if (seg_len)
1256 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1257 16, 1, skb->data, seg_len, false);
1258 len -= seg_len;
1259
1260 if (full_pkt && tailroom)
1261 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1262 16, 1, skb_tail_pointer(skb), tailroom, false);
1263
1264 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1265 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 u32 p_off, p_len, copied;
1267 struct page *p;
1268 u8 *vaddr;
1269
1270 skb_frag_foreach_page(frag, skb_frag_off(frag),
1271 skb_frag_size(frag), p, p_off, p_len,
1272 copied) {
1273 seg_len = min_t(int, p_len, len);
1274 vaddr = kmap_atomic(p);
1275 print_hex_dump(level, "skb frag: ",
1276 DUMP_PREFIX_OFFSET,
1277 16, 1, vaddr + p_off, seg_len, false);
1278 kunmap_atomic(vaddr);
1279 len -= seg_len;
1280 if (!len)
1281 break;
1282 }
1283 }
1284
1285 if (full_pkt && skb_has_frag_list(skb)) {
1286 printk("skb fraglist:\n");
1287 skb_walk_frags(skb, list_skb)
1288 skb_dump(level, list_skb, true);
1289 }
1290}
1291EXPORT_SYMBOL(skb_dump);
1292
1293/**
1294 * skb_tx_error - report an sk_buff xmit error
1295 * @skb: buffer that triggered an error
1296 *
1297 * Report xmit error if a device callback is tracking this skb.
1298 * skb must be freed afterwards.
1299 */
1300void skb_tx_error(struct sk_buff *skb)
1301{
1302 if (skb) {
1303 skb_zcopy_downgrade_managed(skb);
1304 skb_zcopy_clear(skb, true);
1305 }
1306}
1307EXPORT_SYMBOL(skb_tx_error);
1308
1309#ifdef CONFIG_TRACEPOINTS
1310/**
1311 * consume_skb - free an skbuff
1312 * @skb: buffer to free
1313 *
1314 * Drop a ref to the buffer and free it if the usage count has hit zero
1315 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1316 * is being dropped after a failure and notes that
1317 */
1318void consume_skb(struct sk_buff *skb)
1319{
1320 if (!skb_unref(skb))
1321 return;
1322
1323 trace_consume_skb(skb, __builtin_return_address(0));
1324 __kfree_skb(skb);
1325}
1326EXPORT_SYMBOL(consume_skb);
1327#endif
1328
1329/**
1330 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1331 * @skb: buffer to free
1332 *
1333 * Alike consume_skb(), but this variant assumes that this is the last
1334 * skb reference and all the head states have been already dropped
1335 */
1336void __consume_stateless_skb(struct sk_buff *skb)
1337{
1338 trace_consume_skb(skb, __builtin_return_address(0));
1339 skb_release_data(skb, SKB_CONSUMED, false);
1340 kfree_skbmem(skb);
1341}
1342
1343static void napi_skb_cache_put(struct sk_buff *skb)
1344{
1345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1346 u32 i;
1347
1348 if (!kasan_mempool_poison_object(skb))
1349 return;
1350
1351 nc->skb_cache[nc->skb_count++] = skb;
1352
1353 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1354 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1355 kasan_mempool_unpoison_object(nc->skb_cache[i],
1356 kmem_cache_size(skbuff_cache));
1357
1358 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1359 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1360 nc->skb_count = NAPI_SKB_CACHE_HALF;
1361 }
1362}
1363
1364void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1365{
1366 skb_release_all(skb, reason, true);
1367 napi_skb_cache_put(skb);
1368}
1369
1370void napi_skb_free_stolen_head(struct sk_buff *skb)
1371{
1372 if (unlikely(skb->slow_gro)) {
1373 nf_reset_ct(skb);
1374 skb_dst_drop(skb);
1375 skb_ext_put(skb);
1376 skb_orphan(skb);
1377 skb->slow_gro = 0;
1378 }
1379 napi_skb_cache_put(skb);
1380}
1381
1382void napi_consume_skb(struct sk_buff *skb, int budget)
1383{
1384 /* Zero budget indicate non-NAPI context called us, like netpoll */
1385 if (unlikely(!budget)) {
1386 dev_consume_skb_any(skb);
1387 return;
1388 }
1389
1390 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1391
1392 if (!skb_unref(skb))
1393 return;
1394
1395 /* if reaching here SKB is ready to free */
1396 trace_consume_skb(skb, __builtin_return_address(0));
1397
1398 /* if SKB is a clone, don't handle this case */
1399 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1400 __kfree_skb(skb);
1401 return;
1402 }
1403
1404 skb_release_all(skb, SKB_CONSUMED, !!budget);
1405 napi_skb_cache_put(skb);
1406}
1407EXPORT_SYMBOL(napi_consume_skb);
1408
1409/* Make sure a field is contained by headers group */
1410#define CHECK_SKB_FIELD(field) \
1411 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1412 offsetof(struct sk_buff, headers.field)); \
1413
1414static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1415{
1416 new->tstamp = old->tstamp;
1417 /* We do not copy old->sk */
1418 new->dev = old->dev;
1419 memcpy(new->cb, old->cb, sizeof(old->cb));
1420 skb_dst_copy(new, old);
1421 __skb_ext_copy(new, old);
1422 __nf_copy(new, old, false);
1423
1424 /* Note : this field could be in the headers group.
1425 * It is not yet because we do not want to have a 16 bit hole
1426 */
1427 new->queue_mapping = old->queue_mapping;
1428
1429 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1430 CHECK_SKB_FIELD(protocol);
1431 CHECK_SKB_FIELD(csum);
1432 CHECK_SKB_FIELD(hash);
1433 CHECK_SKB_FIELD(priority);
1434 CHECK_SKB_FIELD(skb_iif);
1435 CHECK_SKB_FIELD(vlan_proto);
1436 CHECK_SKB_FIELD(vlan_tci);
1437 CHECK_SKB_FIELD(transport_header);
1438 CHECK_SKB_FIELD(network_header);
1439 CHECK_SKB_FIELD(mac_header);
1440 CHECK_SKB_FIELD(inner_protocol);
1441 CHECK_SKB_FIELD(inner_transport_header);
1442 CHECK_SKB_FIELD(inner_network_header);
1443 CHECK_SKB_FIELD(inner_mac_header);
1444 CHECK_SKB_FIELD(mark);
1445#ifdef CONFIG_NETWORK_SECMARK
1446 CHECK_SKB_FIELD(secmark);
1447#endif
1448#ifdef CONFIG_NET_RX_BUSY_POLL
1449 CHECK_SKB_FIELD(napi_id);
1450#endif
1451 CHECK_SKB_FIELD(alloc_cpu);
1452#ifdef CONFIG_XPS
1453 CHECK_SKB_FIELD(sender_cpu);
1454#endif
1455#ifdef CONFIG_NET_SCHED
1456 CHECK_SKB_FIELD(tc_index);
1457#endif
1458
1459}
1460
1461/*
1462 * You should not add any new code to this function. Add it to
1463 * __copy_skb_header above instead.
1464 */
1465static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1466{
1467#define C(x) n->x = skb->x
1468
1469 n->next = n->prev = NULL;
1470 n->sk = NULL;
1471 __copy_skb_header(n, skb);
1472
1473 C(len);
1474 C(data_len);
1475 C(mac_len);
1476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1477 n->cloned = 1;
1478 n->nohdr = 0;
1479 n->peeked = 0;
1480 C(pfmemalloc);
1481 C(pp_recycle);
1482 n->destructor = NULL;
1483 C(tail);
1484 C(end);
1485 C(head);
1486 C(head_frag);
1487 C(data);
1488 C(truesize);
1489 refcount_set(&n->users, 1);
1490
1491 atomic_inc(&(skb_shinfo(skb)->dataref));
1492 skb->cloned = 1;
1493
1494 return n;
1495#undef C
1496}
1497
1498/**
1499 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1500 * @first: first sk_buff of the msg
1501 */
1502struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1503{
1504 struct sk_buff *n;
1505
1506 n = alloc_skb(0, GFP_ATOMIC);
1507 if (!n)
1508 return NULL;
1509
1510 n->len = first->len;
1511 n->data_len = first->len;
1512 n->truesize = first->truesize;
1513
1514 skb_shinfo(n)->frag_list = first;
1515
1516 __copy_skb_header(n, first);
1517 n->destructor = NULL;
1518
1519 return n;
1520}
1521EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1522
1523/**
1524 * skb_morph - morph one skb into another
1525 * @dst: the skb to receive the contents
1526 * @src: the skb to supply the contents
1527 *
1528 * This is identical to skb_clone except that the target skb is
1529 * supplied by the user.
1530 *
1531 * The target skb is returned upon exit.
1532 */
1533struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1534{
1535 skb_release_all(dst, SKB_CONSUMED, false);
1536 return __skb_clone(dst, src);
1537}
1538EXPORT_SYMBOL_GPL(skb_morph);
1539
1540int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1541{
1542 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1543 struct user_struct *user;
1544
1545 if (capable(CAP_IPC_LOCK) || !size)
1546 return 0;
1547
1548 rlim = rlimit(RLIMIT_MEMLOCK);
1549 if (rlim == RLIM_INFINITY)
1550 return 0;
1551
1552 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1553 max_pg = rlim >> PAGE_SHIFT;
1554 user = mmp->user ? : current_user();
1555
1556 old_pg = atomic_long_read(&user->locked_vm);
1557 do {
1558 new_pg = old_pg + num_pg;
1559 if (new_pg > max_pg)
1560 return -ENOBUFS;
1561 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1562
1563 if (!mmp->user) {
1564 mmp->user = get_uid(user);
1565 mmp->num_pg = num_pg;
1566 } else {
1567 mmp->num_pg += num_pg;
1568 }
1569
1570 return 0;
1571}
1572EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1573
1574void mm_unaccount_pinned_pages(struct mmpin *mmp)
1575{
1576 if (mmp->user) {
1577 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1578 free_uid(mmp->user);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1582
1583static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1584{
1585 struct ubuf_info_msgzc *uarg;
1586 struct sk_buff *skb;
1587
1588 WARN_ON_ONCE(!in_task());
1589
1590 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1591 if (!skb)
1592 return NULL;
1593
1594 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1595 uarg = (void *)skb->cb;
1596 uarg->mmp.user = NULL;
1597
1598 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1599 kfree_skb(skb);
1600 return NULL;
1601 }
1602
1603 uarg->ubuf.callback = msg_zerocopy_callback;
1604 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1605 uarg->len = 1;
1606 uarg->bytelen = size;
1607 uarg->zerocopy = 1;
1608 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1609 refcount_set(&uarg->ubuf.refcnt, 1);
1610 sock_hold(sk);
1611
1612 return &uarg->ubuf;
1613}
1614
1615static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1616{
1617 return container_of((void *)uarg, struct sk_buff, cb);
1618}
1619
1620struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 struct ubuf_info *uarg)
1622{
1623 if (uarg) {
1624 struct ubuf_info_msgzc *uarg_zc;
1625 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1626 u32 bytelen, next;
1627
1628 /* there might be non MSG_ZEROCOPY users */
1629 if (uarg->callback != msg_zerocopy_callback)
1630 return NULL;
1631
1632 /* realloc only when socket is locked (TCP, UDP cork),
1633 * so uarg->len and sk_zckey access is serialized
1634 */
1635 if (!sock_owned_by_user(sk)) {
1636 WARN_ON_ONCE(1);
1637 return NULL;
1638 }
1639
1640 uarg_zc = uarg_to_msgzc(uarg);
1641 bytelen = uarg_zc->bytelen + size;
1642 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1643 /* TCP can create new skb to attach new uarg */
1644 if (sk->sk_type == SOCK_STREAM)
1645 goto new_alloc;
1646 return NULL;
1647 }
1648
1649 next = (u32)atomic_read(&sk->sk_zckey);
1650 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1651 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1652 return NULL;
1653 uarg_zc->len++;
1654 uarg_zc->bytelen = bytelen;
1655 atomic_set(&sk->sk_zckey, ++next);
1656
1657 /* no extra ref when appending to datagram (MSG_MORE) */
1658 if (sk->sk_type == SOCK_STREAM)
1659 net_zcopy_get(uarg);
1660
1661 return uarg;
1662 }
1663 }
1664
1665new_alloc:
1666 return msg_zerocopy_alloc(sk, size);
1667}
1668EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1669
1670static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1671{
1672 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1673 u32 old_lo, old_hi;
1674 u64 sum_len;
1675
1676 old_lo = serr->ee.ee_info;
1677 old_hi = serr->ee.ee_data;
1678 sum_len = old_hi - old_lo + 1ULL + len;
1679
1680 if (sum_len >= (1ULL << 32))
1681 return false;
1682
1683 if (lo != old_hi + 1)
1684 return false;
1685
1686 serr->ee.ee_data += len;
1687 return true;
1688}
1689
1690static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1691{
1692 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1693 struct sock_exterr_skb *serr;
1694 struct sock *sk = skb->sk;
1695 struct sk_buff_head *q;
1696 unsigned long flags;
1697 bool is_zerocopy;
1698 u32 lo, hi;
1699 u16 len;
1700
1701 mm_unaccount_pinned_pages(&uarg->mmp);
1702
1703 /* if !len, there was only 1 call, and it was aborted
1704 * so do not queue a completion notification
1705 */
1706 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1707 goto release;
1708
1709 len = uarg->len;
1710 lo = uarg->id;
1711 hi = uarg->id + len - 1;
1712 is_zerocopy = uarg->zerocopy;
1713
1714 serr = SKB_EXT_ERR(skb);
1715 memset(serr, 0, sizeof(*serr));
1716 serr->ee.ee_errno = 0;
1717 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1718 serr->ee.ee_data = hi;
1719 serr->ee.ee_info = lo;
1720 if (!is_zerocopy)
1721 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1722
1723 q = &sk->sk_error_queue;
1724 spin_lock_irqsave(&q->lock, flags);
1725 tail = skb_peek_tail(q);
1726 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1727 !skb_zerocopy_notify_extend(tail, lo, len)) {
1728 __skb_queue_tail(q, skb);
1729 skb = NULL;
1730 }
1731 spin_unlock_irqrestore(&q->lock, flags);
1732
1733 sk_error_report(sk);
1734
1735release:
1736 consume_skb(skb);
1737 sock_put(sk);
1738}
1739
1740void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1741 bool success)
1742{
1743 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1744
1745 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1746
1747 if (refcount_dec_and_test(&uarg->refcnt))
1748 __msg_zerocopy_callback(uarg_zc);
1749}
1750EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1751
1752void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1753{
1754 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1755
1756 atomic_dec(&sk->sk_zckey);
1757 uarg_to_msgzc(uarg)->len--;
1758
1759 if (have_uref)
1760 msg_zerocopy_callback(NULL, uarg, true);
1761}
1762EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1763
1764int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1765 struct msghdr *msg, int len,
1766 struct ubuf_info *uarg)
1767{
1768 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1769 int err, orig_len = skb->len;
1770
1771 /* An skb can only point to one uarg. This edge case happens when
1772 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1773 */
1774 if (orig_uarg && uarg != orig_uarg)
1775 return -EEXIST;
1776
1777 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1778 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1779 struct sock *save_sk = skb->sk;
1780
1781 /* Streams do not free skb on error. Reset to prev state. */
1782 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1783 skb->sk = sk;
1784 ___pskb_trim(skb, orig_len);
1785 skb->sk = save_sk;
1786 return err;
1787 }
1788
1789 skb_zcopy_set(skb, uarg, NULL);
1790 return skb->len - orig_len;
1791}
1792EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1793
1794void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1795{
1796 int i;
1797
1798 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1800 skb_frag_ref(skb, i);
1801}
1802EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1803
1804static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1805 gfp_t gfp_mask)
1806{
1807 if (skb_zcopy(orig)) {
1808 if (skb_zcopy(nskb)) {
1809 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1810 if (!gfp_mask) {
1811 WARN_ON_ONCE(1);
1812 return -ENOMEM;
1813 }
1814 if (skb_uarg(nskb) == skb_uarg(orig))
1815 return 0;
1816 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1817 return -EIO;
1818 }
1819 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1820 }
1821 return 0;
1822}
1823
1824/**
1825 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1826 * @skb: the skb to modify
1827 * @gfp_mask: allocation priority
1828 *
1829 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1830 * It will copy all frags into kernel and drop the reference
1831 * to userspace pages.
1832 *
1833 * If this function is called from an interrupt gfp_mask() must be
1834 * %GFP_ATOMIC.
1835 *
1836 * Returns 0 on success or a negative error code on failure
1837 * to allocate kernel memory to copy to.
1838 */
1839int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1840{
1841 int num_frags = skb_shinfo(skb)->nr_frags;
1842 struct page *page, *head = NULL;
1843 int i, order, psize, new_frags;
1844 u32 d_off;
1845
1846 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1847 return -EINVAL;
1848
1849 if (!num_frags)
1850 goto release;
1851
1852 /* We might have to allocate high order pages, so compute what minimum
1853 * page order is needed.
1854 */
1855 order = 0;
1856 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1857 order++;
1858 psize = (PAGE_SIZE << order);
1859
1860 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1861 for (i = 0; i < new_frags; i++) {
1862 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1863 if (!page) {
1864 while (head) {
1865 struct page *next = (struct page *)page_private(head);
1866 put_page(head);
1867 head = next;
1868 }
1869 return -ENOMEM;
1870 }
1871 set_page_private(page, (unsigned long)head);
1872 head = page;
1873 }
1874
1875 page = head;
1876 d_off = 0;
1877 for (i = 0; i < num_frags; i++) {
1878 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1879 u32 p_off, p_len, copied;
1880 struct page *p;
1881 u8 *vaddr;
1882
1883 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1884 p, p_off, p_len, copied) {
1885 u32 copy, done = 0;
1886 vaddr = kmap_atomic(p);
1887
1888 while (done < p_len) {
1889 if (d_off == psize) {
1890 d_off = 0;
1891 page = (struct page *)page_private(page);
1892 }
1893 copy = min_t(u32, psize - d_off, p_len - done);
1894 memcpy(page_address(page) + d_off,
1895 vaddr + p_off + done, copy);
1896 done += copy;
1897 d_off += copy;
1898 }
1899 kunmap_atomic(vaddr);
1900 }
1901 }
1902
1903 /* skb frags release userspace buffers */
1904 for (i = 0; i < num_frags; i++)
1905 skb_frag_unref(skb, i);
1906
1907 /* skb frags point to kernel buffers */
1908 for (i = 0; i < new_frags - 1; i++) {
1909 __skb_fill_page_desc(skb, i, head, 0, psize);
1910 head = (struct page *)page_private(head);
1911 }
1912 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1913 skb_shinfo(skb)->nr_frags = new_frags;
1914
1915release:
1916 skb_zcopy_clear(skb, false);
1917 return 0;
1918}
1919EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1920
1921/**
1922 * skb_clone - duplicate an sk_buff
1923 * @skb: buffer to clone
1924 * @gfp_mask: allocation priority
1925 *
1926 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1927 * copies share the same packet data but not structure. The new
1928 * buffer has a reference count of 1. If the allocation fails the
1929 * function returns %NULL otherwise the new buffer is returned.
1930 *
1931 * If this function is called from an interrupt gfp_mask() must be
1932 * %GFP_ATOMIC.
1933 */
1934
1935struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1936{
1937 struct sk_buff_fclones *fclones = container_of(skb,
1938 struct sk_buff_fclones,
1939 skb1);
1940 struct sk_buff *n;
1941
1942 if (skb_orphan_frags(skb, gfp_mask))
1943 return NULL;
1944
1945 if (skb->fclone == SKB_FCLONE_ORIG &&
1946 refcount_read(&fclones->fclone_ref) == 1) {
1947 n = &fclones->skb2;
1948 refcount_set(&fclones->fclone_ref, 2);
1949 n->fclone = SKB_FCLONE_CLONE;
1950 } else {
1951 if (skb_pfmemalloc(skb))
1952 gfp_mask |= __GFP_MEMALLOC;
1953
1954 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1955 if (!n)
1956 return NULL;
1957
1958 n->fclone = SKB_FCLONE_UNAVAILABLE;
1959 }
1960
1961 return __skb_clone(n, skb);
1962}
1963EXPORT_SYMBOL(skb_clone);
1964
1965void skb_headers_offset_update(struct sk_buff *skb, int off)
1966{
1967 /* Only adjust this if it actually is csum_start rather than csum */
1968 if (skb->ip_summed == CHECKSUM_PARTIAL)
1969 skb->csum_start += off;
1970 /* {transport,network,mac}_header and tail are relative to skb->head */
1971 skb->transport_header += off;
1972 skb->network_header += off;
1973 if (skb_mac_header_was_set(skb))
1974 skb->mac_header += off;
1975 skb->inner_transport_header += off;
1976 skb->inner_network_header += off;
1977 skb->inner_mac_header += off;
1978}
1979EXPORT_SYMBOL(skb_headers_offset_update);
1980
1981void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1982{
1983 __copy_skb_header(new, old);
1984
1985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1988}
1989EXPORT_SYMBOL(skb_copy_header);
1990
1991static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1992{
1993 if (skb_pfmemalloc(skb))
1994 return SKB_ALLOC_RX;
1995 return 0;
1996}
1997
1998/**
1999 * skb_copy - create private copy of an sk_buff
2000 * @skb: buffer to copy
2001 * @gfp_mask: allocation priority
2002 *
2003 * Make a copy of both an &sk_buff and its data. This is used when the
2004 * caller wishes to modify the data and needs a private copy of the
2005 * data to alter. Returns %NULL on failure or the pointer to the buffer
2006 * on success. The returned buffer has a reference count of 1.
2007 *
2008 * As by-product this function converts non-linear &sk_buff to linear
2009 * one, so that &sk_buff becomes completely private and caller is allowed
2010 * to modify all the data of returned buffer. This means that this
2011 * function is not recommended for use in circumstances when only
2012 * header is going to be modified. Use pskb_copy() instead.
2013 */
2014
2015struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2016{
2017 int headerlen = skb_headroom(skb);
2018 unsigned int size = skb_end_offset(skb) + skb->data_len;
2019 struct sk_buff *n = __alloc_skb(size, gfp_mask,
2020 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2021
2022 if (!n)
2023 return NULL;
2024
2025 /* Set the data pointer */
2026 skb_reserve(n, headerlen);
2027 /* Set the tail pointer and length */
2028 skb_put(n, skb->len);
2029
2030 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2031
2032 skb_copy_header(n, skb);
2033 return n;
2034}
2035EXPORT_SYMBOL(skb_copy);
2036
2037/**
2038 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2039 * @skb: buffer to copy
2040 * @headroom: headroom of new skb
2041 * @gfp_mask: allocation priority
2042 * @fclone: if true allocate the copy of the skb from the fclone
2043 * cache instead of the head cache; it is recommended to set this
2044 * to true for the cases where the copy will likely be cloned
2045 *
2046 * Make a copy of both an &sk_buff and part of its data, located
2047 * in header. Fragmented data remain shared. This is used when
2048 * the caller wishes to modify only header of &sk_buff and needs
2049 * private copy of the header to alter. Returns %NULL on failure
2050 * or the pointer to the buffer on success.
2051 * The returned buffer has a reference count of 1.
2052 */
2053
2054struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2055 gfp_t gfp_mask, bool fclone)
2056{
2057 unsigned int size = skb_headlen(skb) + headroom;
2058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2060
2061 if (!n)
2062 goto out;
2063
2064 /* Set the data pointer */
2065 skb_reserve(n, headroom);
2066 /* Set the tail pointer and length */
2067 skb_put(n, skb_headlen(skb));
2068 /* Copy the bytes */
2069 skb_copy_from_linear_data(skb, n->data, n->len);
2070
2071 n->truesize += skb->data_len;
2072 n->data_len = skb->data_len;
2073 n->len = skb->len;
2074
2075 if (skb_shinfo(skb)->nr_frags) {
2076 int i;
2077
2078 if (skb_orphan_frags(skb, gfp_mask) ||
2079 skb_zerocopy_clone(n, skb, gfp_mask)) {
2080 kfree_skb(n);
2081 n = NULL;
2082 goto out;
2083 }
2084 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2085 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2086 skb_frag_ref(skb, i);
2087 }
2088 skb_shinfo(n)->nr_frags = i;
2089 }
2090
2091 if (skb_has_frag_list(skb)) {
2092 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2093 skb_clone_fraglist(n);
2094 }
2095
2096 skb_copy_header(n, skb);
2097out:
2098 return n;
2099}
2100EXPORT_SYMBOL(__pskb_copy_fclone);
2101
2102/**
2103 * pskb_expand_head - reallocate header of &sk_buff
2104 * @skb: buffer to reallocate
2105 * @nhead: room to add at head
2106 * @ntail: room to add at tail
2107 * @gfp_mask: allocation priority
2108 *
2109 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2110 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2111 * reference count of 1. Returns zero in the case of success or error,
2112 * if expansion failed. In the last case, &sk_buff is not changed.
2113 *
2114 * All the pointers pointing into skb header may change and must be
2115 * reloaded after call to this function.
2116 */
2117
2118int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2119 gfp_t gfp_mask)
2120{
2121 unsigned int osize = skb_end_offset(skb);
2122 unsigned int size = osize + nhead + ntail;
2123 long off;
2124 u8 *data;
2125 int i;
2126
2127 BUG_ON(nhead < 0);
2128
2129 BUG_ON(skb_shared(skb));
2130
2131 skb_zcopy_downgrade_managed(skb);
2132
2133 if (skb_pfmemalloc(skb))
2134 gfp_mask |= __GFP_MEMALLOC;
2135
2136 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2137 if (!data)
2138 goto nodata;
2139 size = SKB_WITH_OVERHEAD(size);
2140
2141 /* Copy only real data... and, alas, header. This should be
2142 * optimized for the cases when header is void.
2143 */
2144 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2145
2146 memcpy((struct skb_shared_info *)(data + size),
2147 skb_shinfo(skb),
2148 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2149
2150 /*
2151 * if shinfo is shared we must drop the old head gracefully, but if it
2152 * is not we can just drop the old head and let the existing refcount
2153 * be since all we did is relocate the values
2154 */
2155 if (skb_cloned(skb)) {
2156 if (skb_orphan_frags(skb, gfp_mask))
2157 goto nofrags;
2158 if (skb_zcopy(skb))
2159 refcount_inc(&skb_uarg(skb)->refcnt);
2160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2161 skb_frag_ref(skb, i);
2162
2163 if (skb_has_frag_list(skb))
2164 skb_clone_fraglist(skb);
2165
2166 skb_release_data(skb, SKB_CONSUMED, false);
2167 } else {
2168 skb_free_head(skb, false);
2169 }
2170 off = (data + nhead) - skb->head;
2171
2172 skb->head = data;
2173 skb->head_frag = 0;
2174 skb->data += off;
2175
2176 skb_set_end_offset(skb, size);
2177#ifdef NET_SKBUFF_DATA_USES_OFFSET
2178 off = nhead;
2179#endif
2180 skb->tail += off;
2181 skb_headers_offset_update(skb, nhead);
2182 skb->cloned = 0;
2183 skb->hdr_len = 0;
2184 skb->nohdr = 0;
2185 atomic_set(&skb_shinfo(skb)->dataref, 1);
2186
2187 skb_metadata_clear(skb);
2188
2189 /* It is not generally safe to change skb->truesize.
2190 * For the moment, we really care of rx path, or
2191 * when skb is orphaned (not attached to a socket).
2192 */
2193 if (!skb->sk || skb->destructor == sock_edemux)
2194 skb->truesize += size - osize;
2195
2196 return 0;
2197
2198nofrags:
2199 skb_kfree_head(data, size);
2200nodata:
2201 return -ENOMEM;
2202}
2203EXPORT_SYMBOL(pskb_expand_head);
2204
2205/* Make private copy of skb with writable head and some headroom */
2206
2207struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2208{
2209 struct sk_buff *skb2;
2210 int delta = headroom - skb_headroom(skb);
2211
2212 if (delta <= 0)
2213 skb2 = pskb_copy(skb, GFP_ATOMIC);
2214 else {
2215 skb2 = skb_clone(skb, GFP_ATOMIC);
2216 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2217 GFP_ATOMIC)) {
2218 kfree_skb(skb2);
2219 skb2 = NULL;
2220 }
2221 }
2222 return skb2;
2223}
2224EXPORT_SYMBOL(skb_realloc_headroom);
2225
2226/* Note: We plan to rework this in linux-6.4 */
2227int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2228{
2229 unsigned int saved_end_offset, saved_truesize;
2230 struct skb_shared_info *shinfo;
2231 int res;
2232
2233 saved_end_offset = skb_end_offset(skb);
2234 saved_truesize = skb->truesize;
2235
2236 res = pskb_expand_head(skb, 0, 0, pri);
2237 if (res)
2238 return res;
2239
2240 skb->truesize = saved_truesize;
2241
2242 if (likely(skb_end_offset(skb) == saved_end_offset))
2243 return 0;
2244
2245 /* We can not change skb->end if the original or new value
2246 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2247 */
2248 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2249 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2250 /* We think this path should not be taken.
2251 * Add a temporary trace to warn us just in case.
2252 */
2253 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2254 saved_end_offset, skb_end_offset(skb));
2255 WARN_ON_ONCE(1);
2256 return 0;
2257 }
2258
2259 shinfo = skb_shinfo(skb);
2260
2261 /* We are about to change back skb->end,
2262 * we need to move skb_shinfo() to its new location.
2263 */
2264 memmove(skb->head + saved_end_offset,
2265 shinfo,
2266 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2267
2268 skb_set_end_offset(skb, saved_end_offset);
2269
2270 return 0;
2271}
2272
2273/**
2274 * skb_expand_head - reallocate header of &sk_buff
2275 * @skb: buffer to reallocate
2276 * @headroom: needed headroom
2277 *
2278 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2279 * if possible; copies skb->sk to new skb as needed
2280 * and frees original skb in case of failures.
2281 *
2282 * It expect increased headroom and generates warning otherwise.
2283 */
2284
2285struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2286{
2287 int delta = headroom - skb_headroom(skb);
2288 int osize = skb_end_offset(skb);
2289 struct sock *sk = skb->sk;
2290
2291 if (WARN_ONCE(delta <= 0,
2292 "%s is expecting an increase in the headroom", __func__))
2293 return skb;
2294
2295 delta = SKB_DATA_ALIGN(delta);
2296 /* pskb_expand_head() might crash, if skb is shared. */
2297 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2298 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2299
2300 if (unlikely(!nskb))
2301 goto fail;
2302
2303 if (sk)
2304 skb_set_owner_w(nskb, sk);
2305 consume_skb(skb);
2306 skb = nskb;
2307 }
2308 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2309 goto fail;
2310
2311 if (sk && is_skb_wmem(skb)) {
2312 delta = skb_end_offset(skb) - osize;
2313 refcount_add(delta, &sk->sk_wmem_alloc);
2314 skb->truesize += delta;
2315 }
2316 return skb;
2317
2318fail:
2319 kfree_skb(skb);
2320 return NULL;
2321}
2322EXPORT_SYMBOL(skb_expand_head);
2323
2324/**
2325 * skb_copy_expand - copy and expand sk_buff
2326 * @skb: buffer to copy
2327 * @newheadroom: new free bytes at head
2328 * @newtailroom: new free bytes at tail
2329 * @gfp_mask: allocation priority
2330 *
2331 * Make a copy of both an &sk_buff and its data and while doing so
2332 * allocate additional space.
2333 *
2334 * This is used when the caller wishes to modify the data and needs a
2335 * private copy of the data to alter as well as more space for new fields.
2336 * Returns %NULL on failure or the pointer to the buffer
2337 * on success. The returned buffer has a reference count of 1.
2338 *
2339 * You must pass %GFP_ATOMIC as the allocation priority if this function
2340 * is called from an interrupt.
2341 */
2342struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2343 int newheadroom, int newtailroom,
2344 gfp_t gfp_mask)
2345{
2346 /*
2347 * Allocate the copy buffer
2348 */
2349 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2350 gfp_mask, skb_alloc_rx_flag(skb),
2351 NUMA_NO_NODE);
2352 int oldheadroom = skb_headroom(skb);
2353 int head_copy_len, head_copy_off;
2354
2355 if (!n)
2356 return NULL;
2357
2358 skb_reserve(n, newheadroom);
2359
2360 /* Set the tail pointer and length */
2361 skb_put(n, skb->len);
2362
2363 head_copy_len = oldheadroom;
2364 head_copy_off = 0;
2365 if (newheadroom <= head_copy_len)
2366 head_copy_len = newheadroom;
2367 else
2368 head_copy_off = newheadroom - head_copy_len;
2369
2370 /* Copy the linear header and data. */
2371 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2372 skb->len + head_copy_len));
2373
2374 skb_copy_header(n, skb);
2375
2376 skb_headers_offset_update(n, newheadroom - oldheadroom);
2377
2378 return n;
2379}
2380EXPORT_SYMBOL(skb_copy_expand);
2381
2382/**
2383 * __skb_pad - zero pad the tail of an skb
2384 * @skb: buffer to pad
2385 * @pad: space to pad
2386 * @free_on_error: free buffer on error
2387 *
2388 * Ensure that a buffer is followed by a padding area that is zero
2389 * filled. Used by network drivers which may DMA or transfer data
2390 * beyond the buffer end onto the wire.
2391 *
2392 * May return error in out of memory cases. The skb is freed on error
2393 * if @free_on_error is true.
2394 */
2395
2396int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2397{
2398 int err;
2399 int ntail;
2400
2401 /* If the skbuff is non linear tailroom is always zero.. */
2402 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2403 memset(skb->data+skb->len, 0, pad);
2404 return 0;
2405 }
2406
2407 ntail = skb->data_len + pad - (skb->end - skb->tail);
2408 if (likely(skb_cloned(skb) || ntail > 0)) {
2409 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2410 if (unlikely(err))
2411 goto free_skb;
2412 }
2413
2414 /* FIXME: The use of this function with non-linear skb's really needs
2415 * to be audited.
2416 */
2417 err = skb_linearize(skb);
2418 if (unlikely(err))
2419 goto free_skb;
2420
2421 memset(skb->data + skb->len, 0, pad);
2422 return 0;
2423
2424free_skb:
2425 if (free_on_error)
2426 kfree_skb(skb);
2427 return err;
2428}
2429EXPORT_SYMBOL(__skb_pad);
2430
2431/**
2432 * pskb_put - add data to the tail of a potentially fragmented buffer
2433 * @skb: start of the buffer to use
2434 * @tail: tail fragment of the buffer to use
2435 * @len: amount of data to add
2436 *
2437 * This function extends the used data area of the potentially
2438 * fragmented buffer. @tail must be the last fragment of @skb -- or
2439 * @skb itself. If this would exceed the total buffer size the kernel
2440 * will panic. A pointer to the first byte of the extra data is
2441 * returned.
2442 */
2443
2444void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2445{
2446 if (tail != skb) {
2447 skb->data_len += len;
2448 skb->len += len;
2449 }
2450 return skb_put(tail, len);
2451}
2452EXPORT_SYMBOL_GPL(pskb_put);
2453
2454/**
2455 * skb_put - add data to a buffer
2456 * @skb: buffer to use
2457 * @len: amount of data to add
2458 *
2459 * This function extends the used data area of the buffer. If this would
2460 * exceed the total buffer size the kernel will panic. A pointer to the
2461 * first byte of the extra data is returned.
2462 */
2463void *skb_put(struct sk_buff *skb, unsigned int len)
2464{
2465 void *tmp = skb_tail_pointer(skb);
2466 SKB_LINEAR_ASSERT(skb);
2467 skb->tail += len;
2468 skb->len += len;
2469 if (unlikely(skb->tail > skb->end))
2470 skb_over_panic(skb, len, __builtin_return_address(0));
2471 return tmp;
2472}
2473EXPORT_SYMBOL(skb_put);
2474
2475/**
2476 * skb_push - add data to the start of a buffer
2477 * @skb: buffer to use
2478 * @len: amount of data to add
2479 *
2480 * This function extends the used data area of the buffer at the buffer
2481 * start. If this would exceed the total buffer headroom the kernel will
2482 * panic. A pointer to the first byte of the extra data is returned.
2483 */
2484void *skb_push(struct sk_buff *skb, unsigned int len)
2485{
2486 skb->data -= len;
2487 skb->len += len;
2488 if (unlikely(skb->data < skb->head))
2489 skb_under_panic(skb, len, __builtin_return_address(0));
2490 return skb->data;
2491}
2492EXPORT_SYMBOL(skb_push);
2493
2494/**
2495 * skb_pull - remove data from the start of a buffer
2496 * @skb: buffer to use
2497 * @len: amount of data to remove
2498 *
2499 * This function removes data from the start of a buffer, returning
2500 * the memory to the headroom. A pointer to the next data in the buffer
2501 * is returned. Once the data has been pulled future pushes will overwrite
2502 * the old data.
2503 */
2504void *skb_pull(struct sk_buff *skb, unsigned int len)
2505{
2506 return skb_pull_inline(skb, len);
2507}
2508EXPORT_SYMBOL(skb_pull);
2509
2510/**
2511 * skb_pull_data - remove data from the start of a buffer returning its
2512 * original position.
2513 * @skb: buffer to use
2514 * @len: amount of data to remove
2515 *
2516 * This function removes data from the start of a buffer, returning
2517 * the memory to the headroom. A pointer to the original data in the buffer
2518 * is returned after checking if there is enough data to pull. Once the
2519 * data has been pulled future pushes will overwrite the old data.
2520 */
2521void *skb_pull_data(struct sk_buff *skb, size_t len)
2522{
2523 void *data = skb->data;
2524
2525 if (skb->len < len)
2526 return NULL;
2527
2528 skb_pull(skb, len);
2529
2530 return data;
2531}
2532EXPORT_SYMBOL(skb_pull_data);
2533
2534/**
2535 * skb_trim - remove end from a buffer
2536 * @skb: buffer to alter
2537 * @len: new length
2538 *
2539 * Cut the length of a buffer down by removing data from the tail. If
2540 * the buffer is already under the length specified it is not modified.
2541 * The skb must be linear.
2542 */
2543void skb_trim(struct sk_buff *skb, unsigned int len)
2544{
2545 if (skb->len > len)
2546 __skb_trim(skb, len);
2547}
2548EXPORT_SYMBOL(skb_trim);
2549
2550/* Trims skb to length len. It can change skb pointers.
2551 */
2552
2553int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2554{
2555 struct sk_buff **fragp;
2556 struct sk_buff *frag;
2557 int offset = skb_headlen(skb);
2558 int nfrags = skb_shinfo(skb)->nr_frags;
2559 int i;
2560 int err;
2561
2562 if (skb_cloned(skb) &&
2563 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2564 return err;
2565
2566 i = 0;
2567 if (offset >= len)
2568 goto drop_pages;
2569
2570 for (; i < nfrags; i++) {
2571 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572
2573 if (end < len) {
2574 offset = end;
2575 continue;
2576 }
2577
2578 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2579
2580drop_pages:
2581 skb_shinfo(skb)->nr_frags = i;
2582
2583 for (; i < nfrags; i++)
2584 skb_frag_unref(skb, i);
2585
2586 if (skb_has_frag_list(skb))
2587 skb_drop_fraglist(skb);
2588 goto done;
2589 }
2590
2591 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2592 fragp = &frag->next) {
2593 int end = offset + frag->len;
2594
2595 if (skb_shared(frag)) {
2596 struct sk_buff *nfrag;
2597
2598 nfrag = skb_clone(frag, GFP_ATOMIC);
2599 if (unlikely(!nfrag))
2600 return -ENOMEM;
2601
2602 nfrag->next = frag->next;
2603 consume_skb(frag);
2604 frag = nfrag;
2605 *fragp = frag;
2606 }
2607
2608 if (end < len) {
2609 offset = end;
2610 continue;
2611 }
2612
2613 if (end > len &&
2614 unlikely((err = pskb_trim(frag, len - offset))))
2615 return err;
2616
2617 if (frag->next)
2618 skb_drop_list(&frag->next);
2619 break;
2620 }
2621
2622done:
2623 if (len > skb_headlen(skb)) {
2624 skb->data_len -= skb->len - len;
2625 skb->len = len;
2626 } else {
2627 skb->len = len;
2628 skb->data_len = 0;
2629 skb_set_tail_pointer(skb, len);
2630 }
2631
2632 if (!skb->sk || skb->destructor == sock_edemux)
2633 skb_condense(skb);
2634 return 0;
2635}
2636EXPORT_SYMBOL(___pskb_trim);
2637
2638/* Note : use pskb_trim_rcsum() instead of calling this directly
2639 */
2640int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2641{
2642 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2643 int delta = skb->len - len;
2644
2645 skb->csum = csum_block_sub(skb->csum,
2646 skb_checksum(skb, len, delta, 0),
2647 len);
2648 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2649 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2650 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2651
2652 if (offset + sizeof(__sum16) > hdlen)
2653 return -EINVAL;
2654 }
2655 return __pskb_trim(skb, len);
2656}
2657EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2658
2659/**
2660 * __pskb_pull_tail - advance tail of skb header
2661 * @skb: buffer to reallocate
2662 * @delta: number of bytes to advance tail
2663 *
2664 * The function makes a sense only on a fragmented &sk_buff,
2665 * it expands header moving its tail forward and copying necessary
2666 * data from fragmented part.
2667 *
2668 * &sk_buff MUST have reference count of 1.
2669 *
2670 * Returns %NULL (and &sk_buff does not change) if pull failed
2671 * or value of new tail of skb in the case of success.
2672 *
2673 * All the pointers pointing into skb header may change and must be
2674 * reloaded after call to this function.
2675 */
2676
2677/* Moves tail of skb head forward, copying data from fragmented part,
2678 * when it is necessary.
2679 * 1. It may fail due to malloc failure.
2680 * 2. It may change skb pointers.
2681 *
2682 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2683 */
2684void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2685{
2686 /* If skb has not enough free space at tail, get new one
2687 * plus 128 bytes for future expansions. If we have enough
2688 * room at tail, reallocate without expansion only if skb is cloned.
2689 */
2690 int i, k, eat = (skb->tail + delta) - skb->end;
2691
2692 if (eat > 0 || skb_cloned(skb)) {
2693 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2694 GFP_ATOMIC))
2695 return NULL;
2696 }
2697
2698 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2699 skb_tail_pointer(skb), delta));
2700
2701 /* Optimization: no fragments, no reasons to preestimate
2702 * size of pulled pages. Superb.
2703 */
2704 if (!skb_has_frag_list(skb))
2705 goto pull_pages;
2706
2707 /* Estimate size of pulled pages. */
2708 eat = delta;
2709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2710 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2711
2712 if (size >= eat)
2713 goto pull_pages;
2714 eat -= size;
2715 }
2716
2717 /* If we need update frag list, we are in troubles.
2718 * Certainly, it is possible to add an offset to skb data,
2719 * but taking into account that pulling is expected to
2720 * be very rare operation, it is worth to fight against
2721 * further bloating skb head and crucify ourselves here instead.
2722 * Pure masohism, indeed. 8)8)
2723 */
2724 if (eat) {
2725 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2726 struct sk_buff *clone = NULL;
2727 struct sk_buff *insp = NULL;
2728
2729 do {
2730 if (list->len <= eat) {
2731 /* Eaten as whole. */
2732 eat -= list->len;
2733 list = list->next;
2734 insp = list;
2735 } else {
2736 /* Eaten partially. */
2737 if (skb_is_gso(skb) && !list->head_frag &&
2738 skb_headlen(list))
2739 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2740
2741 if (skb_shared(list)) {
2742 /* Sucks! We need to fork list. :-( */
2743 clone = skb_clone(list, GFP_ATOMIC);
2744 if (!clone)
2745 return NULL;
2746 insp = list->next;
2747 list = clone;
2748 } else {
2749 /* This may be pulled without
2750 * problems. */
2751 insp = list;
2752 }
2753 if (!pskb_pull(list, eat)) {
2754 kfree_skb(clone);
2755 return NULL;
2756 }
2757 break;
2758 }
2759 } while (eat);
2760
2761 /* Free pulled out fragments. */
2762 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2763 skb_shinfo(skb)->frag_list = list->next;
2764 consume_skb(list);
2765 }
2766 /* And insert new clone at head. */
2767 if (clone) {
2768 clone->next = list;
2769 skb_shinfo(skb)->frag_list = clone;
2770 }
2771 }
2772 /* Success! Now we may commit changes to skb data. */
2773
2774pull_pages:
2775 eat = delta;
2776 k = 0;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2779
2780 if (size <= eat) {
2781 skb_frag_unref(skb, i);
2782 eat -= size;
2783 } else {
2784 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2785
2786 *frag = skb_shinfo(skb)->frags[i];
2787 if (eat) {
2788 skb_frag_off_add(frag, eat);
2789 skb_frag_size_sub(frag, eat);
2790 if (!i)
2791 goto end;
2792 eat = 0;
2793 }
2794 k++;
2795 }
2796 }
2797 skb_shinfo(skb)->nr_frags = k;
2798
2799end:
2800 skb->tail += delta;
2801 skb->data_len -= delta;
2802
2803 if (!skb->data_len)
2804 skb_zcopy_clear(skb, false);
2805
2806 return skb_tail_pointer(skb);
2807}
2808EXPORT_SYMBOL(__pskb_pull_tail);
2809
2810/**
2811 * skb_copy_bits - copy bits from skb to kernel buffer
2812 * @skb: source skb
2813 * @offset: offset in source
2814 * @to: destination buffer
2815 * @len: number of bytes to copy
2816 *
2817 * Copy the specified number of bytes from the source skb to the
2818 * destination buffer.
2819 *
2820 * CAUTION ! :
2821 * If its prototype is ever changed,
2822 * check arch/{*}/net/{*}.S files,
2823 * since it is called from BPF assembly code.
2824 */
2825int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2826{
2827 int start = skb_headlen(skb);
2828 struct sk_buff *frag_iter;
2829 int i, copy;
2830
2831 if (offset > (int)skb->len - len)
2832 goto fault;
2833
2834 /* Copy header. */
2835 if ((copy = start - offset) > 0) {
2836 if (copy > len)
2837 copy = len;
2838 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2839 if ((len -= copy) == 0)
2840 return 0;
2841 offset += copy;
2842 to += copy;
2843 }
2844
2845 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2846 int end;
2847 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2848
2849 WARN_ON(start > offset + len);
2850
2851 end = start + skb_frag_size(f);
2852 if ((copy = end - offset) > 0) {
2853 u32 p_off, p_len, copied;
2854 struct page *p;
2855 u8 *vaddr;
2856
2857 if (copy > len)
2858 copy = len;
2859
2860 skb_frag_foreach_page(f,
2861 skb_frag_off(f) + offset - start,
2862 copy, p, p_off, p_len, copied) {
2863 vaddr = kmap_atomic(p);
2864 memcpy(to + copied, vaddr + p_off, p_len);
2865 kunmap_atomic(vaddr);
2866 }
2867
2868 if ((len -= copy) == 0)
2869 return 0;
2870 offset += copy;
2871 to += copy;
2872 }
2873 start = end;
2874 }
2875
2876 skb_walk_frags(skb, frag_iter) {
2877 int end;
2878
2879 WARN_ON(start > offset + len);
2880
2881 end = start + frag_iter->len;
2882 if ((copy = end - offset) > 0) {
2883 if (copy > len)
2884 copy = len;
2885 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2886 goto fault;
2887 if ((len -= copy) == 0)
2888 return 0;
2889 offset += copy;
2890 to += copy;
2891 }
2892 start = end;
2893 }
2894
2895 if (!len)
2896 return 0;
2897
2898fault:
2899 return -EFAULT;
2900}
2901EXPORT_SYMBOL(skb_copy_bits);
2902
2903/*
2904 * Callback from splice_to_pipe(), if we need to release some pages
2905 * at the end of the spd in case we error'ed out in filling the pipe.
2906 */
2907static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2908{
2909 put_page(spd->pages[i]);
2910}
2911
2912static struct page *linear_to_page(struct page *page, unsigned int *len,
2913 unsigned int *offset,
2914 struct sock *sk)
2915{
2916 struct page_frag *pfrag = sk_page_frag(sk);
2917
2918 if (!sk_page_frag_refill(sk, pfrag))
2919 return NULL;
2920
2921 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2922
2923 memcpy(page_address(pfrag->page) + pfrag->offset,
2924 page_address(page) + *offset, *len);
2925 *offset = pfrag->offset;
2926 pfrag->offset += *len;
2927
2928 return pfrag->page;
2929}
2930
2931static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2932 struct page *page,
2933 unsigned int offset)
2934{
2935 return spd->nr_pages &&
2936 spd->pages[spd->nr_pages - 1] == page &&
2937 (spd->partial[spd->nr_pages - 1].offset +
2938 spd->partial[spd->nr_pages - 1].len == offset);
2939}
2940
2941/*
2942 * Fill page/offset/length into spd, if it can hold more pages.
2943 */
2944static bool spd_fill_page(struct splice_pipe_desc *spd,
2945 struct pipe_inode_info *pipe, struct page *page,
2946 unsigned int *len, unsigned int offset,
2947 bool linear,
2948 struct sock *sk)
2949{
2950 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2951 return true;
2952
2953 if (linear) {
2954 page = linear_to_page(page, len, &offset, sk);
2955 if (!page)
2956 return true;
2957 }
2958 if (spd_can_coalesce(spd, page, offset)) {
2959 spd->partial[spd->nr_pages - 1].len += *len;
2960 return false;
2961 }
2962 get_page(page);
2963 spd->pages[spd->nr_pages] = page;
2964 spd->partial[spd->nr_pages].len = *len;
2965 spd->partial[spd->nr_pages].offset = offset;
2966 spd->nr_pages++;
2967
2968 return false;
2969}
2970
2971static bool __splice_segment(struct page *page, unsigned int poff,
2972 unsigned int plen, unsigned int *off,
2973 unsigned int *len,
2974 struct splice_pipe_desc *spd, bool linear,
2975 struct sock *sk,
2976 struct pipe_inode_info *pipe)
2977{
2978 if (!*len)
2979 return true;
2980
2981 /* skip this segment if already processed */
2982 if (*off >= plen) {
2983 *off -= plen;
2984 return false;
2985 }
2986
2987 /* ignore any bits we already processed */
2988 poff += *off;
2989 plen -= *off;
2990 *off = 0;
2991
2992 do {
2993 unsigned int flen = min(*len, plen);
2994
2995 if (spd_fill_page(spd, pipe, page, &flen, poff,
2996 linear, sk))
2997 return true;
2998 poff += flen;
2999 plen -= flen;
3000 *len -= flen;
3001 } while (*len && plen);
3002
3003 return false;
3004}
3005
3006/*
3007 * Map linear and fragment data from the skb to spd. It reports true if the
3008 * pipe is full or if we already spliced the requested length.
3009 */
3010static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3011 unsigned int *offset, unsigned int *len,
3012 struct splice_pipe_desc *spd, struct sock *sk)
3013{
3014 int seg;
3015 struct sk_buff *iter;
3016
3017 /* map the linear part :
3018 * If skb->head_frag is set, this 'linear' part is backed by a
3019 * fragment, and if the head is not shared with any clones then
3020 * we can avoid a copy since we own the head portion of this page.
3021 */
3022 if (__splice_segment(virt_to_page(skb->data),
3023 (unsigned long) skb->data & (PAGE_SIZE - 1),
3024 skb_headlen(skb),
3025 offset, len, spd,
3026 skb_head_is_locked(skb),
3027 sk, pipe))
3028 return true;
3029
3030 /*
3031 * then map the fragments
3032 */
3033 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3034 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3035
3036 if (__splice_segment(skb_frag_page(f),
3037 skb_frag_off(f), skb_frag_size(f),
3038 offset, len, spd, false, sk, pipe))
3039 return true;
3040 }
3041
3042 skb_walk_frags(skb, iter) {
3043 if (*offset >= iter->len) {
3044 *offset -= iter->len;
3045 continue;
3046 }
3047 /* __skb_splice_bits() only fails if the output has no room
3048 * left, so no point in going over the frag_list for the error
3049 * case.
3050 */
3051 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3052 return true;
3053 }
3054
3055 return false;
3056}
3057
3058/*
3059 * Map data from the skb to a pipe. Should handle both the linear part,
3060 * the fragments, and the frag list.
3061 */
3062int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3063 struct pipe_inode_info *pipe, unsigned int tlen,
3064 unsigned int flags)
3065{
3066 struct partial_page partial[MAX_SKB_FRAGS];
3067 struct page *pages[MAX_SKB_FRAGS];
3068 struct splice_pipe_desc spd = {
3069 .pages = pages,
3070 .partial = partial,
3071 .nr_pages_max = MAX_SKB_FRAGS,
3072 .ops = &nosteal_pipe_buf_ops,
3073 .spd_release = sock_spd_release,
3074 };
3075 int ret = 0;
3076
3077 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3078
3079 if (spd.nr_pages)
3080 ret = splice_to_pipe(pipe, &spd);
3081
3082 return ret;
3083}
3084EXPORT_SYMBOL_GPL(skb_splice_bits);
3085
3086static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3087{
3088 struct socket *sock = sk->sk_socket;
3089 size_t size = msg_data_left(msg);
3090
3091 if (!sock)
3092 return -EINVAL;
3093
3094 if (!sock->ops->sendmsg_locked)
3095 return sock_no_sendmsg_locked(sk, msg, size);
3096
3097 return sock->ops->sendmsg_locked(sk, msg, size);
3098}
3099
3100static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3101{
3102 struct socket *sock = sk->sk_socket;
3103
3104 if (!sock)
3105 return -EINVAL;
3106 return sock_sendmsg(sock, msg);
3107}
3108
3109typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3110static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3111 int len, sendmsg_func sendmsg)
3112{
3113 unsigned int orig_len = len;
3114 struct sk_buff *head = skb;
3115 unsigned short fragidx;
3116 int slen, ret;
3117
3118do_frag_list:
3119
3120 /* Deal with head data */
3121 while (offset < skb_headlen(skb) && len) {
3122 struct kvec kv;
3123 struct msghdr msg;
3124
3125 slen = min_t(int, len, skb_headlen(skb) - offset);
3126 kv.iov_base = skb->data + offset;
3127 kv.iov_len = slen;
3128 memset(&msg, 0, sizeof(msg));
3129 msg.msg_flags = MSG_DONTWAIT;
3130
3131 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3132 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3133 sendmsg_unlocked, sk, &msg);
3134 if (ret <= 0)
3135 goto error;
3136
3137 offset += ret;
3138 len -= ret;
3139 }
3140
3141 /* All the data was skb head? */
3142 if (!len)
3143 goto out;
3144
3145 /* Make offset relative to start of frags */
3146 offset -= skb_headlen(skb);
3147
3148 /* Find where we are in frag list */
3149 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3151
3152 if (offset < skb_frag_size(frag))
3153 break;
3154
3155 offset -= skb_frag_size(frag);
3156 }
3157
3158 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3159 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3160
3161 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3162
3163 while (slen) {
3164 struct bio_vec bvec;
3165 struct msghdr msg = {
3166 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3167 };
3168
3169 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3170 skb_frag_off(frag) + offset);
3171 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3172 slen);
3173
3174 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3175 sendmsg_unlocked, sk, &msg);
3176 if (ret <= 0)
3177 goto error;
3178
3179 len -= ret;
3180 offset += ret;
3181 slen -= ret;
3182 }
3183
3184 offset = 0;
3185 }
3186
3187 if (len) {
3188 /* Process any frag lists */
3189
3190 if (skb == head) {
3191 if (skb_has_frag_list(skb)) {
3192 skb = skb_shinfo(skb)->frag_list;
3193 goto do_frag_list;
3194 }
3195 } else if (skb->next) {
3196 skb = skb->next;
3197 goto do_frag_list;
3198 }
3199 }
3200
3201out:
3202 return orig_len - len;
3203
3204error:
3205 return orig_len == len ? ret : orig_len - len;
3206}
3207
3208/* Send skb data on a socket. Socket must be locked. */
3209int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3210 int len)
3211{
3212 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3213}
3214EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3215
3216/* Send skb data on a socket. Socket must be unlocked. */
3217int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3218{
3219 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3220}
3221
3222/**
3223 * skb_store_bits - store bits from kernel buffer to skb
3224 * @skb: destination buffer
3225 * @offset: offset in destination
3226 * @from: source buffer
3227 * @len: number of bytes to copy
3228 *
3229 * Copy the specified number of bytes from the source buffer to the
3230 * destination skb. This function handles all the messy bits of
3231 * traversing fragment lists and such.
3232 */
3233
3234int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3235{
3236 int start = skb_headlen(skb);
3237 struct sk_buff *frag_iter;
3238 int i, copy;
3239
3240 if (offset > (int)skb->len - len)
3241 goto fault;
3242
3243 if ((copy = start - offset) > 0) {
3244 if (copy > len)
3245 copy = len;
3246 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3247 if ((len -= copy) == 0)
3248 return 0;
3249 offset += copy;
3250 from += copy;
3251 }
3252
3253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3255 int end;
3256
3257 WARN_ON(start > offset + len);
3258
3259 end = start + skb_frag_size(frag);
3260 if ((copy = end - offset) > 0) {
3261 u32 p_off, p_len, copied;
3262 struct page *p;
3263 u8 *vaddr;
3264
3265 if (copy > len)
3266 copy = len;
3267
3268 skb_frag_foreach_page(frag,
3269 skb_frag_off(frag) + offset - start,
3270 copy, p, p_off, p_len, copied) {
3271 vaddr = kmap_atomic(p);
3272 memcpy(vaddr + p_off, from + copied, p_len);
3273 kunmap_atomic(vaddr);
3274 }
3275
3276 if ((len -= copy) == 0)
3277 return 0;
3278 offset += copy;
3279 from += copy;
3280 }
3281 start = end;
3282 }
3283
3284 skb_walk_frags(skb, frag_iter) {
3285 int end;
3286
3287 WARN_ON(start > offset + len);
3288
3289 end = start + frag_iter->len;
3290 if ((copy = end - offset) > 0) {
3291 if (copy > len)
3292 copy = len;
3293 if (skb_store_bits(frag_iter, offset - start,
3294 from, copy))
3295 goto fault;
3296 if ((len -= copy) == 0)
3297 return 0;
3298 offset += copy;
3299 from += copy;
3300 }
3301 start = end;
3302 }
3303 if (!len)
3304 return 0;
3305
3306fault:
3307 return -EFAULT;
3308}
3309EXPORT_SYMBOL(skb_store_bits);
3310
3311/* Checksum skb data. */
3312__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 __wsum csum, const struct skb_checksum_ops *ops)
3314{
3315 int start = skb_headlen(skb);
3316 int i, copy = start - offset;
3317 struct sk_buff *frag_iter;
3318 int pos = 0;
3319
3320 /* Checksum header. */
3321 if (copy > 0) {
3322 if (copy > len)
3323 copy = len;
3324 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3325 skb->data + offset, copy, csum);
3326 if ((len -= copy) == 0)
3327 return csum;
3328 offset += copy;
3329 pos = copy;
3330 }
3331
3332 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3333 int end;
3334 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3335
3336 WARN_ON(start > offset + len);
3337
3338 end = start + skb_frag_size(frag);
3339 if ((copy = end - offset) > 0) {
3340 u32 p_off, p_len, copied;
3341 struct page *p;
3342 __wsum csum2;
3343 u8 *vaddr;
3344
3345 if (copy > len)
3346 copy = len;
3347
3348 skb_frag_foreach_page(frag,
3349 skb_frag_off(frag) + offset - start,
3350 copy, p, p_off, p_len, copied) {
3351 vaddr = kmap_atomic(p);
3352 csum2 = INDIRECT_CALL_1(ops->update,
3353 csum_partial_ext,
3354 vaddr + p_off, p_len, 0);
3355 kunmap_atomic(vaddr);
3356 csum = INDIRECT_CALL_1(ops->combine,
3357 csum_block_add_ext, csum,
3358 csum2, pos, p_len);
3359 pos += p_len;
3360 }
3361
3362 if (!(len -= copy))
3363 return csum;
3364 offset += copy;
3365 }
3366 start = end;
3367 }
3368
3369 skb_walk_frags(skb, frag_iter) {
3370 int end;
3371
3372 WARN_ON(start > offset + len);
3373
3374 end = start + frag_iter->len;
3375 if ((copy = end - offset) > 0) {
3376 __wsum csum2;
3377 if (copy > len)
3378 copy = len;
3379 csum2 = __skb_checksum(frag_iter, offset - start,
3380 copy, 0, ops);
3381 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3382 csum, csum2, pos, copy);
3383 if ((len -= copy) == 0)
3384 return csum;
3385 offset += copy;
3386 pos += copy;
3387 }
3388 start = end;
3389 }
3390 BUG_ON(len);
3391
3392 return csum;
3393}
3394EXPORT_SYMBOL(__skb_checksum);
3395
3396__wsum skb_checksum(const struct sk_buff *skb, int offset,
3397 int len, __wsum csum)
3398{
3399 const struct skb_checksum_ops ops = {
3400 .update = csum_partial_ext,
3401 .combine = csum_block_add_ext,
3402 };
3403
3404 return __skb_checksum(skb, offset, len, csum, &ops);
3405}
3406EXPORT_SYMBOL(skb_checksum);
3407
3408/* Both of above in one bottle. */
3409
3410__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3411 u8 *to, int len)
3412{
3413 int start = skb_headlen(skb);
3414 int i, copy = start - offset;
3415 struct sk_buff *frag_iter;
3416 int pos = 0;
3417 __wsum csum = 0;
3418
3419 /* Copy header. */
3420 if (copy > 0) {
3421 if (copy > len)
3422 copy = len;
3423 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3424 copy);
3425 if ((len -= copy) == 0)
3426 return csum;
3427 offset += copy;
3428 to += copy;
3429 pos = copy;
3430 }
3431
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 int end;
3434
3435 WARN_ON(start > offset + len);
3436
3437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 if ((copy = end - offset) > 0) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 u32 p_off, p_len, copied;
3441 struct page *p;
3442 __wsum csum2;
3443 u8 *vaddr;
3444
3445 if (copy > len)
3446 copy = len;
3447
3448 skb_frag_foreach_page(frag,
3449 skb_frag_off(frag) + offset - start,
3450 copy, p, p_off, p_len, copied) {
3451 vaddr = kmap_atomic(p);
3452 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3453 to + copied,
3454 p_len);
3455 kunmap_atomic(vaddr);
3456 csum = csum_block_add(csum, csum2, pos);
3457 pos += p_len;
3458 }
3459
3460 if (!(len -= copy))
3461 return csum;
3462 offset += copy;
3463 to += copy;
3464 }
3465 start = end;
3466 }
3467
3468 skb_walk_frags(skb, frag_iter) {
3469 __wsum csum2;
3470 int end;
3471
3472 WARN_ON(start > offset + len);
3473
3474 end = start + frag_iter->len;
3475 if ((copy = end - offset) > 0) {
3476 if (copy > len)
3477 copy = len;
3478 csum2 = skb_copy_and_csum_bits(frag_iter,
3479 offset - start,
3480 to, copy);
3481 csum = csum_block_add(csum, csum2, pos);
3482 if ((len -= copy) == 0)
3483 return csum;
3484 offset += copy;
3485 to += copy;
3486 pos += copy;
3487 }
3488 start = end;
3489 }
3490 BUG_ON(len);
3491 return csum;
3492}
3493EXPORT_SYMBOL(skb_copy_and_csum_bits);
3494
3495__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3496{
3497 __sum16 sum;
3498
3499 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3500 /* See comments in __skb_checksum_complete(). */
3501 if (likely(!sum)) {
3502 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3503 !skb->csum_complete_sw)
3504 netdev_rx_csum_fault(skb->dev, skb);
3505 }
3506 if (!skb_shared(skb))
3507 skb->csum_valid = !sum;
3508 return sum;
3509}
3510EXPORT_SYMBOL(__skb_checksum_complete_head);
3511
3512/* This function assumes skb->csum already holds pseudo header's checksum,
3513 * which has been changed from the hardware checksum, for example, by
3514 * __skb_checksum_validate_complete(). And, the original skb->csum must
3515 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3516 *
3517 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3518 * zero. The new checksum is stored back into skb->csum unless the skb is
3519 * shared.
3520 */
3521__sum16 __skb_checksum_complete(struct sk_buff *skb)
3522{
3523 __wsum csum;
3524 __sum16 sum;
3525
3526 csum = skb_checksum(skb, 0, skb->len, 0);
3527
3528 sum = csum_fold(csum_add(skb->csum, csum));
3529 /* This check is inverted, because we already knew the hardware
3530 * checksum is invalid before calling this function. So, if the
3531 * re-computed checksum is valid instead, then we have a mismatch
3532 * between the original skb->csum and skb_checksum(). This means either
3533 * the original hardware checksum is incorrect or we screw up skb->csum
3534 * when moving skb->data around.
3535 */
3536 if (likely(!sum)) {
3537 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3538 !skb->csum_complete_sw)
3539 netdev_rx_csum_fault(skb->dev, skb);
3540 }
3541
3542 if (!skb_shared(skb)) {
3543 /* Save full packet checksum */
3544 skb->csum = csum;
3545 skb->ip_summed = CHECKSUM_COMPLETE;
3546 skb->csum_complete_sw = 1;
3547 skb->csum_valid = !sum;
3548 }
3549
3550 return sum;
3551}
3552EXPORT_SYMBOL(__skb_checksum_complete);
3553
3554static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3555{
3556 net_warn_ratelimited(
3557 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3558 __func__);
3559 return 0;
3560}
3561
3562static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3563 int offset, int len)
3564{
3565 net_warn_ratelimited(
3566 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3567 __func__);
3568 return 0;
3569}
3570
3571static const struct skb_checksum_ops default_crc32c_ops = {
3572 .update = warn_crc32c_csum_update,
3573 .combine = warn_crc32c_csum_combine,
3574};
3575
3576const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3577 &default_crc32c_ops;
3578EXPORT_SYMBOL(crc32c_csum_stub);
3579
3580 /**
3581 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3582 * @from: source buffer
3583 *
3584 * Calculates the amount of linear headroom needed in the 'to' skb passed
3585 * into skb_zerocopy().
3586 */
3587unsigned int
3588skb_zerocopy_headlen(const struct sk_buff *from)
3589{
3590 unsigned int hlen = 0;
3591
3592 if (!from->head_frag ||
3593 skb_headlen(from) < L1_CACHE_BYTES ||
3594 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3595 hlen = skb_headlen(from);
3596 if (!hlen)
3597 hlen = from->len;
3598 }
3599
3600 if (skb_has_frag_list(from))
3601 hlen = from->len;
3602
3603 return hlen;
3604}
3605EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3606
3607/**
3608 * skb_zerocopy - Zero copy skb to skb
3609 * @to: destination buffer
3610 * @from: source buffer
3611 * @len: number of bytes to copy from source buffer
3612 * @hlen: size of linear headroom in destination buffer
3613 *
3614 * Copies up to `len` bytes from `from` to `to` by creating references
3615 * to the frags in the source buffer.
3616 *
3617 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3618 * headroom in the `to` buffer.
3619 *
3620 * Return value:
3621 * 0: everything is OK
3622 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3623 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3624 */
3625int
3626skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3627{
3628 int i, j = 0;
3629 int plen = 0; /* length of skb->head fragment */
3630 int ret;
3631 struct page *page;
3632 unsigned int offset;
3633
3634 BUG_ON(!from->head_frag && !hlen);
3635
3636 /* dont bother with small payloads */
3637 if (len <= skb_tailroom(to))
3638 return skb_copy_bits(from, 0, skb_put(to, len), len);
3639
3640 if (hlen) {
3641 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3642 if (unlikely(ret))
3643 return ret;
3644 len -= hlen;
3645 } else {
3646 plen = min_t(int, skb_headlen(from), len);
3647 if (plen) {
3648 page = virt_to_head_page(from->head);
3649 offset = from->data - (unsigned char *)page_address(page);
3650 __skb_fill_page_desc(to, 0, page, offset, plen);
3651 get_page(page);
3652 j = 1;
3653 len -= plen;
3654 }
3655 }
3656
3657 skb_len_add(to, len + plen);
3658
3659 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3660 skb_tx_error(from);
3661 return -ENOMEM;
3662 }
3663 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3664
3665 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3666 int size;
3667
3668 if (!len)
3669 break;
3670 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3671 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3672 len);
3673 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3674 len -= size;
3675 skb_frag_ref(to, j);
3676 j++;
3677 }
3678 skb_shinfo(to)->nr_frags = j;
3679
3680 return 0;
3681}
3682EXPORT_SYMBOL_GPL(skb_zerocopy);
3683
3684void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3685{
3686 __wsum csum;
3687 long csstart;
3688
3689 if (skb->ip_summed == CHECKSUM_PARTIAL)
3690 csstart = skb_checksum_start_offset(skb);
3691 else
3692 csstart = skb_headlen(skb);
3693
3694 BUG_ON(csstart > skb_headlen(skb));
3695
3696 skb_copy_from_linear_data(skb, to, csstart);
3697
3698 csum = 0;
3699 if (csstart != skb->len)
3700 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3701 skb->len - csstart);
3702
3703 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3704 long csstuff = csstart + skb->csum_offset;
3705
3706 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3707 }
3708}
3709EXPORT_SYMBOL(skb_copy_and_csum_dev);
3710
3711/**
3712 * skb_dequeue - remove from the head of the queue
3713 * @list: list to dequeue from
3714 *
3715 * Remove the head of the list. The list lock is taken so the function
3716 * may be used safely with other locking list functions. The head item is
3717 * returned or %NULL if the list is empty.
3718 */
3719
3720struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3721{
3722 unsigned long flags;
3723 struct sk_buff *result;
3724
3725 spin_lock_irqsave(&list->lock, flags);
3726 result = __skb_dequeue(list);
3727 spin_unlock_irqrestore(&list->lock, flags);
3728 return result;
3729}
3730EXPORT_SYMBOL(skb_dequeue);
3731
3732/**
3733 * skb_dequeue_tail - remove from the tail of the queue
3734 * @list: list to dequeue from
3735 *
3736 * Remove the tail of the list. The list lock is taken so the function
3737 * may be used safely with other locking list functions. The tail item is
3738 * returned or %NULL if the list is empty.
3739 */
3740struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3741{
3742 unsigned long flags;
3743 struct sk_buff *result;
3744
3745 spin_lock_irqsave(&list->lock, flags);
3746 result = __skb_dequeue_tail(list);
3747 spin_unlock_irqrestore(&list->lock, flags);
3748 return result;
3749}
3750EXPORT_SYMBOL(skb_dequeue_tail);
3751
3752/**
3753 * skb_queue_purge_reason - empty a list
3754 * @list: list to empty
3755 * @reason: drop reason
3756 *
3757 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3758 * the list and one reference dropped. This function takes the list
3759 * lock and is atomic with respect to other list locking functions.
3760 */
3761void skb_queue_purge_reason(struct sk_buff_head *list,
3762 enum skb_drop_reason reason)
3763{
3764 struct sk_buff_head tmp;
3765 unsigned long flags;
3766
3767 if (skb_queue_empty_lockless(list))
3768 return;
3769
3770 __skb_queue_head_init(&tmp);
3771
3772 spin_lock_irqsave(&list->lock, flags);
3773 skb_queue_splice_init(list, &tmp);
3774 spin_unlock_irqrestore(&list->lock, flags);
3775
3776 __skb_queue_purge_reason(&tmp, reason);
3777}
3778EXPORT_SYMBOL(skb_queue_purge_reason);
3779
3780/**
3781 * skb_rbtree_purge - empty a skb rbtree
3782 * @root: root of the rbtree to empty
3783 * Return value: the sum of truesizes of all purged skbs.
3784 *
3785 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3786 * the list and one reference dropped. This function does not take
3787 * any lock. Synchronization should be handled by the caller (e.g., TCP
3788 * out-of-order queue is protected by the socket lock).
3789 */
3790unsigned int skb_rbtree_purge(struct rb_root *root)
3791{
3792 struct rb_node *p = rb_first(root);
3793 unsigned int sum = 0;
3794
3795 while (p) {
3796 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3797
3798 p = rb_next(p);
3799 rb_erase(&skb->rbnode, root);
3800 sum += skb->truesize;
3801 kfree_skb(skb);
3802 }
3803 return sum;
3804}
3805
3806void skb_errqueue_purge(struct sk_buff_head *list)
3807{
3808 struct sk_buff *skb, *next;
3809 struct sk_buff_head kill;
3810 unsigned long flags;
3811
3812 __skb_queue_head_init(&kill);
3813
3814 spin_lock_irqsave(&list->lock, flags);
3815 skb_queue_walk_safe(list, skb, next) {
3816 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3817 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3818 continue;
3819 __skb_unlink(skb, list);
3820 __skb_queue_tail(&kill, skb);
3821 }
3822 spin_unlock_irqrestore(&list->lock, flags);
3823 __skb_queue_purge(&kill);
3824}
3825EXPORT_SYMBOL(skb_errqueue_purge);
3826
3827/**
3828 * skb_queue_head - queue a buffer at the list head
3829 * @list: list to use
3830 * @newsk: buffer to queue
3831 *
3832 * Queue a buffer at the start of the list. This function takes the
3833 * list lock and can be used safely with other locking &sk_buff functions
3834 * safely.
3835 *
3836 * A buffer cannot be placed on two lists at the same time.
3837 */
3838void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3839{
3840 unsigned long flags;
3841
3842 spin_lock_irqsave(&list->lock, flags);
3843 __skb_queue_head(list, newsk);
3844 spin_unlock_irqrestore(&list->lock, flags);
3845}
3846EXPORT_SYMBOL(skb_queue_head);
3847
3848/**
3849 * skb_queue_tail - queue a buffer at the list tail
3850 * @list: list to use
3851 * @newsk: buffer to queue
3852 *
3853 * Queue a buffer at the tail of the list. This function takes the
3854 * list lock and can be used safely with other locking &sk_buff functions
3855 * safely.
3856 *
3857 * A buffer cannot be placed on two lists at the same time.
3858 */
3859void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&list->lock, flags);
3864 __skb_queue_tail(list, newsk);
3865 spin_unlock_irqrestore(&list->lock, flags);
3866}
3867EXPORT_SYMBOL(skb_queue_tail);
3868
3869/**
3870 * skb_unlink - remove a buffer from a list
3871 * @skb: buffer to remove
3872 * @list: list to use
3873 *
3874 * Remove a packet from a list. The list locks are taken and this
3875 * function is atomic with respect to other list locked calls
3876 *
3877 * You must know what list the SKB is on.
3878 */
3879void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3880{
3881 unsigned long flags;
3882
3883 spin_lock_irqsave(&list->lock, flags);
3884 __skb_unlink(skb, list);
3885 spin_unlock_irqrestore(&list->lock, flags);
3886}
3887EXPORT_SYMBOL(skb_unlink);
3888
3889/**
3890 * skb_append - append a buffer
3891 * @old: buffer to insert after
3892 * @newsk: buffer to insert
3893 * @list: list to use
3894 *
3895 * Place a packet after a given packet in a list. The list locks are taken
3896 * and this function is atomic with respect to other list locked calls.
3897 * A buffer cannot be placed on two lists at the same time.
3898 */
3899void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3900{
3901 unsigned long flags;
3902
3903 spin_lock_irqsave(&list->lock, flags);
3904 __skb_queue_after(list, old, newsk);
3905 spin_unlock_irqrestore(&list->lock, flags);
3906}
3907EXPORT_SYMBOL(skb_append);
3908
3909static inline void skb_split_inside_header(struct sk_buff *skb,
3910 struct sk_buff* skb1,
3911 const u32 len, const int pos)
3912{
3913 int i;
3914
3915 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3916 pos - len);
3917 /* And move data appendix as is. */
3918 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3919 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3920
3921 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3922 skb_shinfo(skb)->nr_frags = 0;
3923 skb1->data_len = skb->data_len;
3924 skb1->len += skb1->data_len;
3925 skb->data_len = 0;
3926 skb->len = len;
3927 skb_set_tail_pointer(skb, len);
3928}
3929
3930static inline void skb_split_no_header(struct sk_buff *skb,
3931 struct sk_buff* skb1,
3932 const u32 len, int pos)
3933{
3934 int i, k = 0;
3935 const int nfrags = skb_shinfo(skb)->nr_frags;
3936
3937 skb_shinfo(skb)->nr_frags = 0;
3938 skb1->len = skb1->data_len = skb->len - len;
3939 skb->len = len;
3940 skb->data_len = len - pos;
3941
3942 for (i = 0; i < nfrags; i++) {
3943 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3944
3945 if (pos + size > len) {
3946 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3947
3948 if (pos < len) {
3949 /* Split frag.
3950 * We have two variants in this case:
3951 * 1. Move all the frag to the second
3952 * part, if it is possible. F.e.
3953 * this approach is mandatory for TUX,
3954 * where splitting is expensive.
3955 * 2. Split is accurately. We make this.
3956 */
3957 skb_frag_ref(skb, i);
3958 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3959 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3960 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3961 skb_shinfo(skb)->nr_frags++;
3962 }
3963 k++;
3964 } else
3965 skb_shinfo(skb)->nr_frags++;
3966 pos += size;
3967 }
3968 skb_shinfo(skb1)->nr_frags = k;
3969}
3970
3971/**
3972 * skb_split - Split fragmented skb to two parts at length len.
3973 * @skb: the buffer to split
3974 * @skb1: the buffer to receive the second part
3975 * @len: new length for skb
3976 */
3977void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3978{
3979 int pos = skb_headlen(skb);
3980 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3981
3982 skb_zcopy_downgrade_managed(skb);
3983
3984 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3985 skb_zerocopy_clone(skb1, skb, 0);
3986 if (len < pos) /* Split line is inside header. */
3987 skb_split_inside_header(skb, skb1, len, pos);
3988 else /* Second chunk has no header, nothing to copy. */
3989 skb_split_no_header(skb, skb1, len, pos);
3990}
3991EXPORT_SYMBOL(skb_split);
3992
3993/* Shifting from/to a cloned skb is a no-go.
3994 *
3995 * Caller cannot keep skb_shinfo related pointers past calling here!
3996 */
3997static int skb_prepare_for_shift(struct sk_buff *skb)
3998{
3999 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4000}
4001
4002/**
4003 * skb_shift - Shifts paged data partially from skb to another
4004 * @tgt: buffer into which tail data gets added
4005 * @skb: buffer from which the paged data comes from
4006 * @shiftlen: shift up to this many bytes
4007 *
4008 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4009 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4010 * It's up to caller to free skb if everything was shifted.
4011 *
4012 * If @tgt runs out of frags, the whole operation is aborted.
4013 *
4014 * Skb cannot include anything else but paged data while tgt is allowed
4015 * to have non-paged data as well.
4016 *
4017 * TODO: full sized shift could be optimized but that would need
4018 * specialized skb free'er to handle frags without up-to-date nr_frags.
4019 */
4020int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4021{
4022 int from, to, merge, todo;
4023 skb_frag_t *fragfrom, *fragto;
4024
4025 BUG_ON(shiftlen > skb->len);
4026
4027 if (skb_headlen(skb))
4028 return 0;
4029 if (skb_zcopy(tgt) || skb_zcopy(skb))
4030 return 0;
4031
4032 todo = shiftlen;
4033 from = 0;
4034 to = skb_shinfo(tgt)->nr_frags;
4035 fragfrom = &skb_shinfo(skb)->frags[from];
4036
4037 /* Actual merge is delayed until the point when we know we can
4038 * commit all, so that we don't have to undo partial changes
4039 */
4040 if (!to ||
4041 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4042 skb_frag_off(fragfrom))) {
4043 merge = -1;
4044 } else {
4045 merge = to - 1;
4046
4047 todo -= skb_frag_size(fragfrom);
4048 if (todo < 0) {
4049 if (skb_prepare_for_shift(skb) ||
4050 skb_prepare_for_shift(tgt))
4051 return 0;
4052
4053 /* All previous frag pointers might be stale! */
4054 fragfrom = &skb_shinfo(skb)->frags[from];
4055 fragto = &skb_shinfo(tgt)->frags[merge];
4056
4057 skb_frag_size_add(fragto, shiftlen);
4058 skb_frag_size_sub(fragfrom, shiftlen);
4059 skb_frag_off_add(fragfrom, shiftlen);
4060
4061 goto onlymerged;
4062 }
4063
4064 from++;
4065 }
4066
4067 /* Skip full, not-fitting skb to avoid expensive operations */
4068 if ((shiftlen == skb->len) &&
4069 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4070 return 0;
4071
4072 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4073 return 0;
4074
4075 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4076 if (to == MAX_SKB_FRAGS)
4077 return 0;
4078
4079 fragfrom = &skb_shinfo(skb)->frags[from];
4080 fragto = &skb_shinfo(tgt)->frags[to];
4081
4082 if (todo >= skb_frag_size(fragfrom)) {
4083 *fragto = *fragfrom;
4084 todo -= skb_frag_size(fragfrom);
4085 from++;
4086 to++;
4087
4088 } else {
4089 __skb_frag_ref(fragfrom);
4090 skb_frag_page_copy(fragto, fragfrom);
4091 skb_frag_off_copy(fragto, fragfrom);
4092 skb_frag_size_set(fragto, todo);
4093
4094 skb_frag_off_add(fragfrom, todo);
4095 skb_frag_size_sub(fragfrom, todo);
4096 todo = 0;
4097
4098 to++;
4099 break;
4100 }
4101 }
4102
4103 /* Ready to "commit" this state change to tgt */
4104 skb_shinfo(tgt)->nr_frags = to;
4105
4106 if (merge >= 0) {
4107 fragfrom = &skb_shinfo(skb)->frags[0];
4108 fragto = &skb_shinfo(tgt)->frags[merge];
4109
4110 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4111 __skb_frag_unref(fragfrom, skb->pp_recycle);
4112 }
4113
4114 /* Reposition in the original skb */
4115 to = 0;
4116 while (from < skb_shinfo(skb)->nr_frags)
4117 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4118 skb_shinfo(skb)->nr_frags = to;
4119
4120 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4121
4122onlymerged:
4123 /* Most likely the tgt won't ever need its checksum anymore, skb on
4124 * the other hand might need it if it needs to be resent
4125 */
4126 tgt->ip_summed = CHECKSUM_PARTIAL;
4127 skb->ip_summed = CHECKSUM_PARTIAL;
4128
4129 skb_len_add(skb, -shiftlen);
4130 skb_len_add(tgt, shiftlen);
4131
4132 return shiftlen;
4133}
4134
4135/**
4136 * skb_prepare_seq_read - Prepare a sequential read of skb data
4137 * @skb: the buffer to read
4138 * @from: lower offset of data to be read
4139 * @to: upper offset of data to be read
4140 * @st: state variable
4141 *
4142 * Initializes the specified state variable. Must be called before
4143 * invoking skb_seq_read() for the first time.
4144 */
4145void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4146 unsigned int to, struct skb_seq_state *st)
4147{
4148 st->lower_offset = from;
4149 st->upper_offset = to;
4150 st->root_skb = st->cur_skb = skb;
4151 st->frag_idx = st->stepped_offset = 0;
4152 st->frag_data = NULL;
4153 st->frag_off = 0;
4154}
4155EXPORT_SYMBOL(skb_prepare_seq_read);
4156
4157/**
4158 * skb_seq_read - Sequentially read skb data
4159 * @consumed: number of bytes consumed by the caller so far
4160 * @data: destination pointer for data to be returned
4161 * @st: state variable
4162 *
4163 * Reads a block of skb data at @consumed relative to the
4164 * lower offset specified to skb_prepare_seq_read(). Assigns
4165 * the head of the data block to @data and returns the length
4166 * of the block or 0 if the end of the skb data or the upper
4167 * offset has been reached.
4168 *
4169 * The caller is not required to consume all of the data
4170 * returned, i.e. @consumed is typically set to the number
4171 * of bytes already consumed and the next call to
4172 * skb_seq_read() will return the remaining part of the block.
4173 *
4174 * Note 1: The size of each block of data returned can be arbitrary,
4175 * this limitation is the cost for zerocopy sequential
4176 * reads of potentially non linear data.
4177 *
4178 * Note 2: Fragment lists within fragments are not implemented
4179 * at the moment, state->root_skb could be replaced with
4180 * a stack for this purpose.
4181 */
4182unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4183 struct skb_seq_state *st)
4184{
4185 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4186 skb_frag_t *frag;
4187
4188 if (unlikely(abs_offset >= st->upper_offset)) {
4189 if (st->frag_data) {
4190 kunmap_atomic(st->frag_data);
4191 st->frag_data = NULL;
4192 }
4193 return 0;
4194 }
4195
4196next_skb:
4197 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4198
4199 if (abs_offset < block_limit && !st->frag_data) {
4200 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4201 return block_limit - abs_offset;
4202 }
4203
4204 if (st->frag_idx == 0 && !st->frag_data)
4205 st->stepped_offset += skb_headlen(st->cur_skb);
4206
4207 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4208 unsigned int pg_idx, pg_off, pg_sz;
4209
4210 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4211
4212 pg_idx = 0;
4213 pg_off = skb_frag_off(frag);
4214 pg_sz = skb_frag_size(frag);
4215
4216 if (skb_frag_must_loop(skb_frag_page(frag))) {
4217 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4218 pg_off = offset_in_page(pg_off + st->frag_off);
4219 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4220 PAGE_SIZE - pg_off);
4221 }
4222
4223 block_limit = pg_sz + st->stepped_offset;
4224 if (abs_offset < block_limit) {
4225 if (!st->frag_data)
4226 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4227
4228 *data = (u8 *)st->frag_data + pg_off +
4229 (abs_offset - st->stepped_offset);
4230
4231 return block_limit - abs_offset;
4232 }
4233
4234 if (st->frag_data) {
4235 kunmap_atomic(st->frag_data);
4236 st->frag_data = NULL;
4237 }
4238
4239 st->stepped_offset += pg_sz;
4240 st->frag_off += pg_sz;
4241 if (st->frag_off == skb_frag_size(frag)) {
4242 st->frag_off = 0;
4243 st->frag_idx++;
4244 }
4245 }
4246
4247 if (st->frag_data) {
4248 kunmap_atomic(st->frag_data);
4249 st->frag_data = NULL;
4250 }
4251
4252 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4253 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4254 st->frag_idx = 0;
4255 goto next_skb;
4256 } else if (st->cur_skb->next) {
4257 st->cur_skb = st->cur_skb->next;
4258 st->frag_idx = 0;
4259 goto next_skb;
4260 }
4261
4262 return 0;
4263}
4264EXPORT_SYMBOL(skb_seq_read);
4265
4266/**
4267 * skb_abort_seq_read - Abort a sequential read of skb data
4268 * @st: state variable
4269 *
4270 * Must be called if skb_seq_read() was not called until it
4271 * returned 0.
4272 */
4273void skb_abort_seq_read(struct skb_seq_state *st)
4274{
4275 if (st->frag_data)
4276 kunmap_atomic(st->frag_data);
4277}
4278EXPORT_SYMBOL(skb_abort_seq_read);
4279
4280#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4281
4282static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4283 struct ts_config *conf,
4284 struct ts_state *state)
4285{
4286 return skb_seq_read(offset, text, TS_SKB_CB(state));
4287}
4288
4289static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4290{
4291 skb_abort_seq_read(TS_SKB_CB(state));
4292}
4293
4294/**
4295 * skb_find_text - Find a text pattern in skb data
4296 * @skb: the buffer to look in
4297 * @from: search offset
4298 * @to: search limit
4299 * @config: textsearch configuration
4300 *
4301 * Finds a pattern in the skb data according to the specified
4302 * textsearch configuration. Use textsearch_next() to retrieve
4303 * subsequent occurrences of the pattern. Returns the offset
4304 * to the first occurrence or UINT_MAX if no match was found.
4305 */
4306unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4307 unsigned int to, struct ts_config *config)
4308{
4309 unsigned int patlen = config->ops->get_pattern_len(config);
4310 struct ts_state state;
4311 unsigned int ret;
4312
4313 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4314
4315 config->get_next_block = skb_ts_get_next_block;
4316 config->finish = skb_ts_finish;
4317
4318 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4319
4320 ret = textsearch_find(config, &state);
4321 return (ret + patlen <= to - from ? ret : UINT_MAX);
4322}
4323EXPORT_SYMBOL(skb_find_text);
4324
4325int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4326 int offset, size_t size, size_t max_frags)
4327{
4328 int i = skb_shinfo(skb)->nr_frags;
4329
4330 if (skb_can_coalesce(skb, i, page, offset)) {
4331 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4332 } else if (i < max_frags) {
4333 skb_zcopy_downgrade_managed(skb);
4334 get_page(page);
4335 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4336 } else {
4337 return -EMSGSIZE;
4338 }
4339
4340 return 0;
4341}
4342EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4343
4344/**
4345 * skb_pull_rcsum - pull skb and update receive checksum
4346 * @skb: buffer to update
4347 * @len: length of data pulled
4348 *
4349 * This function performs an skb_pull on the packet and updates
4350 * the CHECKSUM_COMPLETE checksum. It should be used on
4351 * receive path processing instead of skb_pull unless you know
4352 * that the checksum difference is zero (e.g., a valid IP header)
4353 * or you are setting ip_summed to CHECKSUM_NONE.
4354 */
4355void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4356{
4357 unsigned char *data = skb->data;
4358
4359 BUG_ON(len > skb->len);
4360 __skb_pull(skb, len);
4361 skb_postpull_rcsum(skb, data, len);
4362 return skb->data;
4363}
4364EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4365
4366static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4367{
4368 skb_frag_t head_frag;
4369 struct page *page;
4370
4371 page = virt_to_head_page(frag_skb->head);
4372 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4373 (unsigned char *)page_address(page),
4374 skb_headlen(frag_skb));
4375 return head_frag;
4376}
4377
4378struct sk_buff *skb_segment_list(struct sk_buff *skb,
4379 netdev_features_t features,
4380 unsigned int offset)
4381{
4382 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4383 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4384 unsigned int delta_truesize = 0;
4385 unsigned int delta_len = 0;
4386 struct sk_buff *tail = NULL;
4387 struct sk_buff *nskb, *tmp;
4388 int len_diff, err;
4389
4390 skb_push(skb, -skb_network_offset(skb) + offset);
4391
4392 /* Ensure the head is writeable before touching the shared info */
4393 err = skb_unclone(skb, GFP_ATOMIC);
4394 if (err)
4395 goto err_linearize;
4396
4397 skb_shinfo(skb)->frag_list = NULL;
4398
4399 while (list_skb) {
4400 nskb = list_skb;
4401 list_skb = list_skb->next;
4402
4403 err = 0;
4404 delta_truesize += nskb->truesize;
4405 if (skb_shared(nskb)) {
4406 tmp = skb_clone(nskb, GFP_ATOMIC);
4407 if (tmp) {
4408 consume_skb(nskb);
4409 nskb = tmp;
4410 err = skb_unclone(nskb, GFP_ATOMIC);
4411 } else {
4412 err = -ENOMEM;
4413 }
4414 }
4415
4416 if (!tail)
4417 skb->next = nskb;
4418 else
4419 tail->next = nskb;
4420
4421 if (unlikely(err)) {
4422 nskb->next = list_skb;
4423 goto err_linearize;
4424 }
4425
4426 tail = nskb;
4427
4428 delta_len += nskb->len;
4429
4430 skb_push(nskb, -skb_network_offset(nskb) + offset);
4431
4432 skb_release_head_state(nskb);
4433 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4434 __copy_skb_header(nskb, skb);
4435
4436 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4437 nskb->transport_header += len_diff;
4438 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4439 nskb->data - tnl_hlen,
4440 offset + tnl_hlen);
4441
4442 if (skb_needs_linearize(nskb, features) &&
4443 __skb_linearize(nskb))
4444 goto err_linearize;
4445 }
4446
4447 skb->truesize = skb->truesize - delta_truesize;
4448 skb->data_len = skb->data_len - delta_len;
4449 skb->len = skb->len - delta_len;
4450
4451 skb_gso_reset(skb);
4452
4453 skb->prev = tail;
4454
4455 if (skb_needs_linearize(skb, features) &&
4456 __skb_linearize(skb))
4457 goto err_linearize;
4458
4459 skb_get(skb);
4460
4461 return skb;
4462
4463err_linearize:
4464 kfree_skb_list(skb->next);
4465 skb->next = NULL;
4466 return ERR_PTR(-ENOMEM);
4467}
4468EXPORT_SYMBOL_GPL(skb_segment_list);
4469
4470/**
4471 * skb_segment - Perform protocol segmentation on skb.
4472 * @head_skb: buffer to segment
4473 * @features: features for the output path (see dev->features)
4474 *
4475 * This function performs segmentation on the given skb. It returns
4476 * a pointer to the first in a list of new skbs for the segments.
4477 * In case of error it returns ERR_PTR(err).
4478 */
4479struct sk_buff *skb_segment(struct sk_buff *head_skb,
4480 netdev_features_t features)
4481{
4482 struct sk_buff *segs = NULL;
4483 struct sk_buff *tail = NULL;
4484 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4485 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4486 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4487 unsigned int offset = doffset;
4488 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4489 unsigned int partial_segs = 0;
4490 unsigned int headroom;
4491 unsigned int len = head_skb->len;
4492 struct sk_buff *frag_skb;
4493 skb_frag_t *frag;
4494 __be16 proto;
4495 bool csum, sg;
4496 int err = -ENOMEM;
4497 int i = 0;
4498 int nfrags, pos;
4499
4500 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4501 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4502 struct sk_buff *check_skb;
4503
4504 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4505 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4506 /* gso_size is untrusted, and we have a frag_list with
4507 * a linear non head_frag item.
4508 *
4509 * If head_skb's headlen does not fit requested gso_size,
4510 * it means that the frag_list members do NOT terminate
4511 * on exact gso_size boundaries. Hence we cannot perform
4512 * skb_frag_t page sharing. Therefore we must fallback to
4513 * copying the frag_list skbs; we do so by disabling SG.
4514 */
4515 features &= ~NETIF_F_SG;
4516 break;
4517 }
4518 }
4519 }
4520
4521 __skb_push(head_skb, doffset);
4522 proto = skb_network_protocol(head_skb, NULL);
4523 if (unlikely(!proto))
4524 return ERR_PTR(-EINVAL);
4525
4526 sg = !!(features & NETIF_F_SG);
4527 csum = !!can_checksum_protocol(features, proto);
4528
4529 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4530 if (!(features & NETIF_F_GSO_PARTIAL)) {
4531 struct sk_buff *iter;
4532 unsigned int frag_len;
4533
4534 if (!list_skb ||
4535 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4536 goto normal;
4537
4538 /* If we get here then all the required
4539 * GSO features except frag_list are supported.
4540 * Try to split the SKB to multiple GSO SKBs
4541 * with no frag_list.
4542 * Currently we can do that only when the buffers don't
4543 * have a linear part and all the buffers except
4544 * the last are of the same length.
4545 */
4546 frag_len = list_skb->len;
4547 skb_walk_frags(head_skb, iter) {
4548 if (frag_len != iter->len && iter->next)
4549 goto normal;
4550 if (skb_headlen(iter) && !iter->head_frag)
4551 goto normal;
4552
4553 len -= iter->len;
4554 }
4555
4556 if (len != frag_len)
4557 goto normal;
4558 }
4559
4560 /* GSO partial only requires that we trim off any excess that
4561 * doesn't fit into an MSS sized block, so take care of that
4562 * now.
4563 * Cap len to not accidentally hit GSO_BY_FRAGS.
4564 */
4565 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4566 if (partial_segs > 1)
4567 mss *= partial_segs;
4568 else
4569 partial_segs = 0;
4570 }
4571
4572normal:
4573 headroom = skb_headroom(head_skb);
4574 pos = skb_headlen(head_skb);
4575
4576 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4577 return ERR_PTR(-ENOMEM);
4578
4579 nfrags = skb_shinfo(head_skb)->nr_frags;
4580 frag = skb_shinfo(head_skb)->frags;
4581 frag_skb = head_skb;
4582
4583 do {
4584 struct sk_buff *nskb;
4585 skb_frag_t *nskb_frag;
4586 int hsize;
4587 int size;
4588
4589 if (unlikely(mss == GSO_BY_FRAGS)) {
4590 len = list_skb->len;
4591 } else {
4592 len = head_skb->len - offset;
4593 if (len > mss)
4594 len = mss;
4595 }
4596
4597 hsize = skb_headlen(head_skb) - offset;
4598
4599 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4600 (skb_headlen(list_skb) == len || sg)) {
4601 BUG_ON(skb_headlen(list_skb) > len);
4602
4603 nskb = skb_clone(list_skb, GFP_ATOMIC);
4604 if (unlikely(!nskb))
4605 goto err;
4606
4607 i = 0;
4608 nfrags = skb_shinfo(list_skb)->nr_frags;
4609 frag = skb_shinfo(list_skb)->frags;
4610 frag_skb = list_skb;
4611 pos += skb_headlen(list_skb);
4612
4613 while (pos < offset + len) {
4614 BUG_ON(i >= nfrags);
4615
4616 size = skb_frag_size(frag);
4617 if (pos + size > offset + len)
4618 break;
4619
4620 i++;
4621 pos += size;
4622 frag++;
4623 }
4624
4625 list_skb = list_skb->next;
4626
4627 if (unlikely(pskb_trim(nskb, len))) {
4628 kfree_skb(nskb);
4629 goto err;
4630 }
4631
4632 hsize = skb_end_offset(nskb);
4633 if (skb_cow_head(nskb, doffset + headroom)) {
4634 kfree_skb(nskb);
4635 goto err;
4636 }
4637
4638 nskb->truesize += skb_end_offset(nskb) - hsize;
4639 skb_release_head_state(nskb);
4640 __skb_push(nskb, doffset);
4641 } else {
4642 if (hsize < 0)
4643 hsize = 0;
4644 if (hsize > len || !sg)
4645 hsize = len;
4646
4647 nskb = __alloc_skb(hsize + doffset + headroom,
4648 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4649 NUMA_NO_NODE);
4650
4651 if (unlikely(!nskb))
4652 goto err;
4653
4654 skb_reserve(nskb, headroom);
4655 __skb_put(nskb, doffset);
4656 }
4657
4658 if (segs)
4659 tail->next = nskb;
4660 else
4661 segs = nskb;
4662 tail = nskb;
4663
4664 __copy_skb_header(nskb, head_skb);
4665
4666 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4667 skb_reset_mac_len(nskb);
4668
4669 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4670 nskb->data - tnl_hlen,
4671 doffset + tnl_hlen);
4672
4673 if (nskb->len == len + doffset)
4674 goto perform_csum_check;
4675
4676 if (!sg) {
4677 if (!csum) {
4678 if (!nskb->remcsum_offload)
4679 nskb->ip_summed = CHECKSUM_NONE;
4680 SKB_GSO_CB(nskb)->csum =
4681 skb_copy_and_csum_bits(head_skb, offset,
4682 skb_put(nskb,
4683 len),
4684 len);
4685 SKB_GSO_CB(nskb)->csum_start =
4686 skb_headroom(nskb) + doffset;
4687 } else {
4688 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4689 goto err;
4690 }
4691 continue;
4692 }
4693
4694 nskb_frag = skb_shinfo(nskb)->frags;
4695
4696 skb_copy_from_linear_data_offset(head_skb, offset,
4697 skb_put(nskb, hsize), hsize);
4698
4699 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4700 SKBFL_SHARED_FRAG;
4701
4702 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4703 goto err;
4704
4705 while (pos < offset + len) {
4706 if (i >= nfrags) {
4707 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4708 skb_zerocopy_clone(nskb, list_skb,
4709 GFP_ATOMIC))
4710 goto err;
4711
4712 i = 0;
4713 nfrags = skb_shinfo(list_skb)->nr_frags;
4714 frag = skb_shinfo(list_skb)->frags;
4715 frag_skb = list_skb;
4716 if (!skb_headlen(list_skb)) {
4717 BUG_ON(!nfrags);
4718 } else {
4719 BUG_ON(!list_skb->head_frag);
4720
4721 /* to make room for head_frag. */
4722 i--;
4723 frag--;
4724 }
4725
4726 list_skb = list_skb->next;
4727 }
4728
4729 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4730 MAX_SKB_FRAGS)) {
4731 net_warn_ratelimited(
4732 "skb_segment: too many frags: %u %u\n",
4733 pos, mss);
4734 err = -EINVAL;
4735 goto err;
4736 }
4737
4738 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4739 __skb_frag_ref(nskb_frag);
4740 size = skb_frag_size(nskb_frag);
4741
4742 if (pos < offset) {
4743 skb_frag_off_add(nskb_frag, offset - pos);
4744 skb_frag_size_sub(nskb_frag, offset - pos);
4745 }
4746
4747 skb_shinfo(nskb)->nr_frags++;
4748
4749 if (pos + size <= offset + len) {
4750 i++;
4751 frag++;
4752 pos += size;
4753 } else {
4754 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4755 goto skip_fraglist;
4756 }
4757
4758 nskb_frag++;
4759 }
4760
4761skip_fraglist:
4762 nskb->data_len = len - hsize;
4763 nskb->len += nskb->data_len;
4764 nskb->truesize += nskb->data_len;
4765
4766perform_csum_check:
4767 if (!csum) {
4768 if (skb_has_shared_frag(nskb) &&
4769 __skb_linearize(nskb))
4770 goto err;
4771
4772 if (!nskb->remcsum_offload)
4773 nskb->ip_summed = CHECKSUM_NONE;
4774 SKB_GSO_CB(nskb)->csum =
4775 skb_checksum(nskb, doffset,
4776 nskb->len - doffset, 0);
4777 SKB_GSO_CB(nskb)->csum_start =
4778 skb_headroom(nskb) + doffset;
4779 }
4780 } while ((offset += len) < head_skb->len);
4781
4782 /* Some callers want to get the end of the list.
4783 * Put it in segs->prev to avoid walking the list.
4784 * (see validate_xmit_skb_list() for example)
4785 */
4786 segs->prev = tail;
4787
4788 if (partial_segs) {
4789 struct sk_buff *iter;
4790 int type = skb_shinfo(head_skb)->gso_type;
4791 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4792
4793 /* Update type to add partial and then remove dodgy if set */
4794 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4795 type &= ~SKB_GSO_DODGY;
4796
4797 /* Update GSO info and prepare to start updating headers on
4798 * our way back down the stack of protocols.
4799 */
4800 for (iter = segs; iter; iter = iter->next) {
4801 skb_shinfo(iter)->gso_size = gso_size;
4802 skb_shinfo(iter)->gso_segs = partial_segs;
4803 skb_shinfo(iter)->gso_type = type;
4804 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4805 }
4806
4807 if (tail->len - doffset <= gso_size)
4808 skb_shinfo(tail)->gso_size = 0;
4809 else if (tail != segs)
4810 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4811 }
4812
4813 /* Following permits correct backpressure, for protocols
4814 * using skb_set_owner_w().
4815 * Idea is to tranfert ownership from head_skb to last segment.
4816 */
4817 if (head_skb->destructor == sock_wfree) {
4818 swap(tail->truesize, head_skb->truesize);
4819 swap(tail->destructor, head_skb->destructor);
4820 swap(tail->sk, head_skb->sk);
4821 }
4822 return segs;
4823
4824err:
4825 kfree_skb_list(segs);
4826 return ERR_PTR(err);
4827}
4828EXPORT_SYMBOL_GPL(skb_segment);
4829
4830#ifdef CONFIG_SKB_EXTENSIONS
4831#define SKB_EXT_ALIGN_VALUE 8
4832#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4833
4834static const u8 skb_ext_type_len[] = {
4835#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4836 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4837#endif
4838#ifdef CONFIG_XFRM
4839 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4840#endif
4841#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4842 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4843#endif
4844#if IS_ENABLED(CONFIG_MPTCP)
4845 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4846#endif
4847#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4848 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4849#endif
4850};
4851
4852static __always_inline unsigned int skb_ext_total_length(void)
4853{
4854 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4855 int i;
4856
4857 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4858 l += skb_ext_type_len[i];
4859
4860 return l;
4861}
4862
4863static void skb_extensions_init(void)
4864{
4865 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4866#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4867 BUILD_BUG_ON(skb_ext_total_length() > 255);
4868#endif
4869
4870 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4871 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4872 0,
4873 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4874 NULL);
4875}
4876#else
4877static void skb_extensions_init(void) {}
4878#endif
4879
4880/* The SKB kmem_cache slab is critical for network performance. Never
4881 * merge/alias the slab with similar sized objects. This avoids fragmentation
4882 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4883 */
4884#ifndef CONFIG_SLUB_TINY
4885#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4886#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4887#define FLAG_SKB_NO_MERGE 0
4888#endif
4889
4890void __init skb_init(void)
4891{
4892 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4893 sizeof(struct sk_buff),
4894 0,
4895 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4896 FLAG_SKB_NO_MERGE,
4897 offsetof(struct sk_buff, cb),
4898 sizeof_field(struct sk_buff, cb),
4899 NULL);
4900 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4901 sizeof(struct sk_buff_fclones),
4902 0,
4903 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4904 NULL);
4905 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4906 * struct skb_shared_info is located at the end of skb->head,
4907 * and should not be copied to/from user.
4908 */
4909 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4910 SKB_SMALL_HEAD_CACHE_SIZE,
4911 0,
4912 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4913 0,
4914 SKB_SMALL_HEAD_HEADROOM,
4915 NULL);
4916 skb_extensions_init();
4917}
4918
4919static int
4920__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4921 unsigned int recursion_level)
4922{
4923 int start = skb_headlen(skb);
4924 int i, copy = start - offset;
4925 struct sk_buff *frag_iter;
4926 int elt = 0;
4927
4928 if (unlikely(recursion_level >= 24))
4929 return -EMSGSIZE;
4930
4931 if (copy > 0) {
4932 if (copy > len)
4933 copy = len;
4934 sg_set_buf(sg, skb->data + offset, copy);
4935 elt++;
4936 if ((len -= copy) == 0)
4937 return elt;
4938 offset += copy;
4939 }
4940
4941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4942 int end;
4943
4944 WARN_ON(start > offset + len);
4945
4946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4947 if ((copy = end - offset) > 0) {
4948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4949 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4950 return -EMSGSIZE;
4951
4952 if (copy > len)
4953 copy = len;
4954 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4955 skb_frag_off(frag) + offset - start);
4956 elt++;
4957 if (!(len -= copy))
4958 return elt;
4959 offset += copy;
4960 }
4961 start = end;
4962 }
4963
4964 skb_walk_frags(skb, frag_iter) {
4965 int end, ret;
4966
4967 WARN_ON(start > offset + len);
4968
4969 end = start + frag_iter->len;
4970 if ((copy = end - offset) > 0) {
4971 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4972 return -EMSGSIZE;
4973
4974 if (copy > len)
4975 copy = len;
4976 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4977 copy, recursion_level + 1);
4978 if (unlikely(ret < 0))
4979 return ret;
4980 elt += ret;
4981 if ((len -= copy) == 0)
4982 return elt;
4983 offset += copy;
4984 }
4985 start = end;
4986 }
4987 BUG_ON(len);
4988 return elt;
4989}
4990
4991/**
4992 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4993 * @skb: Socket buffer containing the buffers to be mapped
4994 * @sg: The scatter-gather list to map into
4995 * @offset: The offset into the buffer's contents to start mapping
4996 * @len: Length of buffer space to be mapped
4997 *
4998 * Fill the specified scatter-gather list with mappings/pointers into a
4999 * region of the buffer space attached to a socket buffer. Returns either
5000 * the number of scatterlist items used, or -EMSGSIZE if the contents
5001 * could not fit.
5002 */
5003int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5004{
5005 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5006
5007 if (nsg <= 0)
5008 return nsg;
5009
5010 sg_mark_end(&sg[nsg - 1]);
5011
5012 return nsg;
5013}
5014EXPORT_SYMBOL_GPL(skb_to_sgvec);
5015
5016/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5017 * sglist without mark the sg which contain last skb data as the end.
5018 * So the caller can mannipulate sg list as will when padding new data after
5019 * the first call without calling sg_unmark_end to expend sg list.
5020 *
5021 * Scenario to use skb_to_sgvec_nomark:
5022 * 1. sg_init_table
5023 * 2. skb_to_sgvec_nomark(payload1)
5024 * 3. skb_to_sgvec_nomark(payload2)
5025 *
5026 * This is equivalent to:
5027 * 1. sg_init_table
5028 * 2. skb_to_sgvec(payload1)
5029 * 3. sg_unmark_end
5030 * 4. skb_to_sgvec(payload2)
5031 *
5032 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5033 * is more preferable.
5034 */
5035int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5036 int offset, int len)
5037{
5038 return __skb_to_sgvec(skb, sg, offset, len, 0);
5039}
5040EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5041
5042
5043
5044/**
5045 * skb_cow_data - Check that a socket buffer's data buffers are writable
5046 * @skb: The socket buffer to check.
5047 * @tailbits: Amount of trailing space to be added
5048 * @trailer: Returned pointer to the skb where the @tailbits space begins
5049 *
5050 * Make sure that the data buffers attached to a socket buffer are
5051 * writable. If they are not, private copies are made of the data buffers
5052 * and the socket buffer is set to use these instead.
5053 *
5054 * If @tailbits is given, make sure that there is space to write @tailbits
5055 * bytes of data beyond current end of socket buffer. @trailer will be
5056 * set to point to the skb in which this space begins.
5057 *
5058 * The number of scatterlist elements required to completely map the
5059 * COW'd and extended socket buffer will be returned.
5060 */
5061int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5062{
5063 int copyflag;
5064 int elt;
5065 struct sk_buff *skb1, **skb_p;
5066
5067 /* If skb is cloned or its head is paged, reallocate
5068 * head pulling out all the pages (pages are considered not writable
5069 * at the moment even if they are anonymous).
5070 */
5071 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5072 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5073 return -ENOMEM;
5074
5075 /* Easy case. Most of packets will go this way. */
5076 if (!skb_has_frag_list(skb)) {
5077 /* A little of trouble, not enough of space for trailer.
5078 * This should not happen, when stack is tuned to generate
5079 * good frames. OK, on miss we reallocate and reserve even more
5080 * space, 128 bytes is fair. */
5081
5082 if (skb_tailroom(skb) < tailbits &&
5083 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5084 return -ENOMEM;
5085
5086 /* Voila! */
5087 *trailer = skb;
5088 return 1;
5089 }
5090
5091 /* Misery. We are in troubles, going to mincer fragments... */
5092
5093 elt = 1;
5094 skb_p = &skb_shinfo(skb)->frag_list;
5095 copyflag = 0;
5096
5097 while ((skb1 = *skb_p) != NULL) {
5098 int ntail = 0;
5099
5100 /* The fragment is partially pulled by someone,
5101 * this can happen on input. Copy it and everything
5102 * after it. */
5103
5104 if (skb_shared(skb1))
5105 copyflag = 1;
5106
5107 /* If the skb is the last, worry about trailer. */
5108
5109 if (skb1->next == NULL && tailbits) {
5110 if (skb_shinfo(skb1)->nr_frags ||
5111 skb_has_frag_list(skb1) ||
5112 skb_tailroom(skb1) < tailbits)
5113 ntail = tailbits + 128;
5114 }
5115
5116 if (copyflag ||
5117 skb_cloned(skb1) ||
5118 ntail ||
5119 skb_shinfo(skb1)->nr_frags ||
5120 skb_has_frag_list(skb1)) {
5121 struct sk_buff *skb2;
5122
5123 /* Fuck, we are miserable poor guys... */
5124 if (ntail == 0)
5125 skb2 = skb_copy(skb1, GFP_ATOMIC);
5126 else
5127 skb2 = skb_copy_expand(skb1,
5128 skb_headroom(skb1),
5129 ntail,
5130 GFP_ATOMIC);
5131 if (unlikely(skb2 == NULL))
5132 return -ENOMEM;
5133
5134 if (skb1->sk)
5135 skb_set_owner_w(skb2, skb1->sk);
5136
5137 /* Looking around. Are we still alive?
5138 * OK, link new skb, drop old one */
5139
5140 skb2->next = skb1->next;
5141 *skb_p = skb2;
5142 kfree_skb(skb1);
5143 skb1 = skb2;
5144 }
5145 elt++;
5146 *trailer = skb1;
5147 skb_p = &skb1->next;
5148 }
5149
5150 return elt;
5151}
5152EXPORT_SYMBOL_GPL(skb_cow_data);
5153
5154static void sock_rmem_free(struct sk_buff *skb)
5155{
5156 struct sock *sk = skb->sk;
5157
5158 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5159}
5160
5161static void skb_set_err_queue(struct sk_buff *skb)
5162{
5163 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5164 * So, it is safe to (mis)use it to mark skbs on the error queue.
5165 */
5166 skb->pkt_type = PACKET_OUTGOING;
5167 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5168}
5169
5170/*
5171 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5172 */
5173int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5174{
5175 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5176 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5177 return -ENOMEM;
5178
5179 skb_orphan(skb);
5180 skb->sk = sk;
5181 skb->destructor = sock_rmem_free;
5182 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5183 skb_set_err_queue(skb);
5184
5185 /* before exiting rcu section, make sure dst is refcounted */
5186 skb_dst_force(skb);
5187
5188 skb_queue_tail(&sk->sk_error_queue, skb);
5189 if (!sock_flag(sk, SOCK_DEAD))
5190 sk_error_report(sk);
5191 return 0;
5192}
5193EXPORT_SYMBOL(sock_queue_err_skb);
5194
5195static bool is_icmp_err_skb(const struct sk_buff *skb)
5196{
5197 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5198 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5199}
5200
5201struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5202{
5203 struct sk_buff_head *q = &sk->sk_error_queue;
5204 struct sk_buff *skb, *skb_next = NULL;
5205 bool icmp_next = false;
5206 unsigned long flags;
5207
5208 if (skb_queue_empty_lockless(q))
5209 return NULL;
5210
5211 spin_lock_irqsave(&q->lock, flags);
5212 skb = __skb_dequeue(q);
5213 if (skb && (skb_next = skb_peek(q))) {
5214 icmp_next = is_icmp_err_skb(skb_next);
5215 if (icmp_next)
5216 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5217 }
5218 spin_unlock_irqrestore(&q->lock, flags);
5219
5220 if (is_icmp_err_skb(skb) && !icmp_next)
5221 sk->sk_err = 0;
5222
5223 if (skb_next)
5224 sk_error_report(sk);
5225
5226 return skb;
5227}
5228EXPORT_SYMBOL(sock_dequeue_err_skb);
5229
5230/**
5231 * skb_clone_sk - create clone of skb, and take reference to socket
5232 * @skb: the skb to clone
5233 *
5234 * This function creates a clone of a buffer that holds a reference on
5235 * sk_refcnt. Buffers created via this function are meant to be
5236 * returned using sock_queue_err_skb, or free via kfree_skb.
5237 *
5238 * When passing buffers allocated with this function to sock_queue_err_skb
5239 * it is necessary to wrap the call with sock_hold/sock_put in order to
5240 * prevent the socket from being released prior to being enqueued on
5241 * the sk_error_queue.
5242 */
5243struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5244{
5245 struct sock *sk = skb->sk;
5246 struct sk_buff *clone;
5247
5248 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5249 return NULL;
5250
5251 clone = skb_clone(skb, GFP_ATOMIC);
5252 if (!clone) {
5253 sock_put(sk);
5254 return NULL;
5255 }
5256
5257 clone->sk = sk;
5258 clone->destructor = sock_efree;
5259
5260 return clone;
5261}
5262EXPORT_SYMBOL(skb_clone_sk);
5263
5264static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5265 struct sock *sk,
5266 int tstype,
5267 bool opt_stats)
5268{
5269 struct sock_exterr_skb *serr;
5270 int err;
5271
5272 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5273
5274 serr = SKB_EXT_ERR(skb);
5275 memset(serr, 0, sizeof(*serr));
5276 serr->ee.ee_errno = ENOMSG;
5277 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5278 serr->ee.ee_info = tstype;
5279 serr->opt_stats = opt_stats;
5280 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5282 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5283 if (sk_is_tcp(sk))
5284 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5285 }
5286
5287 err = sock_queue_err_skb(sk, skb);
5288
5289 if (err)
5290 kfree_skb(skb);
5291}
5292
5293static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5294{
5295 bool ret;
5296
5297 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5298 return true;
5299
5300 read_lock_bh(&sk->sk_callback_lock);
5301 ret = sk->sk_socket && sk->sk_socket->file &&
5302 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5303 read_unlock_bh(&sk->sk_callback_lock);
5304 return ret;
5305}
5306
5307void skb_complete_tx_timestamp(struct sk_buff *skb,
5308 struct skb_shared_hwtstamps *hwtstamps)
5309{
5310 struct sock *sk = skb->sk;
5311
5312 if (!skb_may_tx_timestamp(sk, false))
5313 goto err;
5314
5315 /* Take a reference to prevent skb_orphan() from freeing the socket,
5316 * but only if the socket refcount is not zero.
5317 */
5318 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5319 *skb_hwtstamps(skb) = *hwtstamps;
5320 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5321 sock_put(sk);
5322 return;
5323 }
5324
5325err:
5326 kfree_skb(skb);
5327}
5328EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5329
5330void __skb_tstamp_tx(struct sk_buff *orig_skb,
5331 const struct sk_buff *ack_skb,
5332 struct skb_shared_hwtstamps *hwtstamps,
5333 struct sock *sk, int tstype)
5334{
5335 struct sk_buff *skb;
5336 bool tsonly, opt_stats = false;
5337 u32 tsflags;
5338
5339 if (!sk)
5340 return;
5341
5342 tsflags = READ_ONCE(sk->sk_tsflags);
5343 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5344 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5345 return;
5346
5347 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5348 if (!skb_may_tx_timestamp(sk, tsonly))
5349 return;
5350
5351 if (tsonly) {
5352#ifdef CONFIG_INET
5353 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5354 sk_is_tcp(sk)) {
5355 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5356 ack_skb);
5357 opt_stats = true;
5358 } else
5359#endif
5360 skb = alloc_skb(0, GFP_ATOMIC);
5361 } else {
5362 skb = skb_clone(orig_skb, GFP_ATOMIC);
5363
5364 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5365 kfree_skb(skb);
5366 return;
5367 }
5368 }
5369 if (!skb)
5370 return;
5371
5372 if (tsonly) {
5373 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5374 SKBTX_ANY_TSTAMP;
5375 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5376 }
5377
5378 if (hwtstamps)
5379 *skb_hwtstamps(skb) = *hwtstamps;
5380 else
5381 __net_timestamp(skb);
5382
5383 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5384}
5385EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5386
5387void skb_tstamp_tx(struct sk_buff *orig_skb,
5388 struct skb_shared_hwtstamps *hwtstamps)
5389{
5390 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5391 SCM_TSTAMP_SND);
5392}
5393EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5394
5395#ifdef CONFIG_WIRELESS
5396void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5397{
5398 struct sock *sk = skb->sk;
5399 struct sock_exterr_skb *serr;
5400 int err = 1;
5401
5402 skb->wifi_acked_valid = 1;
5403 skb->wifi_acked = acked;
5404
5405 serr = SKB_EXT_ERR(skb);
5406 memset(serr, 0, sizeof(*serr));
5407 serr->ee.ee_errno = ENOMSG;
5408 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5409
5410 /* Take a reference to prevent skb_orphan() from freeing the socket,
5411 * but only if the socket refcount is not zero.
5412 */
5413 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5414 err = sock_queue_err_skb(sk, skb);
5415 sock_put(sk);
5416 }
5417 if (err)
5418 kfree_skb(skb);
5419}
5420EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5421#endif /* CONFIG_WIRELESS */
5422
5423/**
5424 * skb_partial_csum_set - set up and verify partial csum values for packet
5425 * @skb: the skb to set
5426 * @start: the number of bytes after skb->data to start checksumming.
5427 * @off: the offset from start to place the checksum.
5428 *
5429 * For untrusted partially-checksummed packets, we need to make sure the values
5430 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5431 *
5432 * This function checks and sets those values and skb->ip_summed: if this
5433 * returns false you should drop the packet.
5434 */
5435bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5436{
5437 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5438 u32 csum_start = skb_headroom(skb) + (u32)start;
5439
5440 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5441 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5442 start, off, skb_headroom(skb), skb_headlen(skb));
5443 return false;
5444 }
5445 skb->ip_summed = CHECKSUM_PARTIAL;
5446 skb->csum_start = csum_start;
5447 skb->csum_offset = off;
5448 skb->transport_header = csum_start;
5449 return true;
5450}
5451EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5452
5453static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5454 unsigned int max)
5455{
5456 if (skb_headlen(skb) >= len)
5457 return 0;
5458
5459 /* If we need to pullup then pullup to the max, so we
5460 * won't need to do it again.
5461 */
5462 if (max > skb->len)
5463 max = skb->len;
5464
5465 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5466 return -ENOMEM;
5467
5468 if (skb_headlen(skb) < len)
5469 return -EPROTO;
5470
5471 return 0;
5472}
5473
5474#define MAX_TCP_HDR_LEN (15 * 4)
5475
5476static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5477 typeof(IPPROTO_IP) proto,
5478 unsigned int off)
5479{
5480 int err;
5481
5482 switch (proto) {
5483 case IPPROTO_TCP:
5484 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5485 off + MAX_TCP_HDR_LEN);
5486 if (!err && !skb_partial_csum_set(skb, off,
5487 offsetof(struct tcphdr,
5488 check)))
5489 err = -EPROTO;
5490 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5491
5492 case IPPROTO_UDP:
5493 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5494 off + sizeof(struct udphdr));
5495 if (!err && !skb_partial_csum_set(skb, off,
5496 offsetof(struct udphdr,
5497 check)))
5498 err = -EPROTO;
5499 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5500 }
5501
5502 return ERR_PTR(-EPROTO);
5503}
5504
5505/* This value should be large enough to cover a tagged ethernet header plus
5506 * maximally sized IP and TCP or UDP headers.
5507 */
5508#define MAX_IP_HDR_LEN 128
5509
5510static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5511{
5512 unsigned int off;
5513 bool fragment;
5514 __sum16 *csum;
5515 int err;
5516
5517 fragment = false;
5518
5519 err = skb_maybe_pull_tail(skb,
5520 sizeof(struct iphdr),
5521 MAX_IP_HDR_LEN);
5522 if (err < 0)
5523 goto out;
5524
5525 if (ip_is_fragment(ip_hdr(skb)))
5526 fragment = true;
5527
5528 off = ip_hdrlen(skb);
5529
5530 err = -EPROTO;
5531
5532 if (fragment)
5533 goto out;
5534
5535 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5536 if (IS_ERR(csum))
5537 return PTR_ERR(csum);
5538
5539 if (recalculate)
5540 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5541 ip_hdr(skb)->daddr,
5542 skb->len - off,
5543 ip_hdr(skb)->protocol, 0);
5544 err = 0;
5545
5546out:
5547 return err;
5548}
5549
5550/* This value should be large enough to cover a tagged ethernet header plus
5551 * an IPv6 header, all options, and a maximal TCP or UDP header.
5552 */
5553#define MAX_IPV6_HDR_LEN 256
5554
5555#define OPT_HDR(type, skb, off) \
5556 (type *)(skb_network_header(skb) + (off))
5557
5558static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5559{
5560 int err;
5561 u8 nexthdr;
5562 unsigned int off;
5563 unsigned int len;
5564 bool fragment;
5565 bool done;
5566 __sum16 *csum;
5567
5568 fragment = false;
5569 done = false;
5570
5571 off = sizeof(struct ipv6hdr);
5572
5573 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5574 if (err < 0)
5575 goto out;
5576
5577 nexthdr = ipv6_hdr(skb)->nexthdr;
5578
5579 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5580 while (off <= len && !done) {
5581 switch (nexthdr) {
5582 case IPPROTO_DSTOPTS:
5583 case IPPROTO_HOPOPTS:
5584 case IPPROTO_ROUTING: {
5585 struct ipv6_opt_hdr *hp;
5586
5587 err = skb_maybe_pull_tail(skb,
5588 off +
5589 sizeof(struct ipv6_opt_hdr),
5590 MAX_IPV6_HDR_LEN);
5591 if (err < 0)
5592 goto out;
5593
5594 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5595 nexthdr = hp->nexthdr;
5596 off += ipv6_optlen(hp);
5597 break;
5598 }
5599 case IPPROTO_AH: {
5600 struct ip_auth_hdr *hp;
5601
5602 err = skb_maybe_pull_tail(skb,
5603 off +
5604 sizeof(struct ip_auth_hdr),
5605 MAX_IPV6_HDR_LEN);
5606 if (err < 0)
5607 goto out;
5608
5609 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5610 nexthdr = hp->nexthdr;
5611 off += ipv6_authlen(hp);
5612 break;
5613 }
5614 case IPPROTO_FRAGMENT: {
5615 struct frag_hdr *hp;
5616
5617 err = skb_maybe_pull_tail(skb,
5618 off +
5619 sizeof(struct frag_hdr),
5620 MAX_IPV6_HDR_LEN);
5621 if (err < 0)
5622 goto out;
5623
5624 hp = OPT_HDR(struct frag_hdr, skb, off);
5625
5626 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5627 fragment = true;
5628
5629 nexthdr = hp->nexthdr;
5630 off += sizeof(struct frag_hdr);
5631 break;
5632 }
5633 default:
5634 done = true;
5635 break;
5636 }
5637 }
5638
5639 err = -EPROTO;
5640
5641 if (!done || fragment)
5642 goto out;
5643
5644 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5645 if (IS_ERR(csum))
5646 return PTR_ERR(csum);
5647
5648 if (recalculate)
5649 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5650 &ipv6_hdr(skb)->daddr,
5651 skb->len - off, nexthdr, 0);
5652 err = 0;
5653
5654out:
5655 return err;
5656}
5657
5658/**
5659 * skb_checksum_setup - set up partial checksum offset
5660 * @skb: the skb to set up
5661 * @recalculate: if true the pseudo-header checksum will be recalculated
5662 */
5663int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5664{
5665 int err;
5666
5667 switch (skb->protocol) {
5668 case htons(ETH_P_IP):
5669 err = skb_checksum_setup_ipv4(skb, recalculate);
5670 break;
5671
5672 case htons(ETH_P_IPV6):
5673 err = skb_checksum_setup_ipv6(skb, recalculate);
5674 break;
5675
5676 default:
5677 err = -EPROTO;
5678 break;
5679 }
5680
5681 return err;
5682}
5683EXPORT_SYMBOL(skb_checksum_setup);
5684
5685/**
5686 * skb_checksum_maybe_trim - maybe trims the given skb
5687 * @skb: the skb to check
5688 * @transport_len: the data length beyond the network header
5689 *
5690 * Checks whether the given skb has data beyond the given transport length.
5691 * If so, returns a cloned skb trimmed to this transport length.
5692 * Otherwise returns the provided skb. Returns NULL in error cases
5693 * (e.g. transport_len exceeds skb length or out-of-memory).
5694 *
5695 * Caller needs to set the skb transport header and free any returned skb if it
5696 * differs from the provided skb.
5697 */
5698static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5699 unsigned int transport_len)
5700{
5701 struct sk_buff *skb_chk;
5702 unsigned int len = skb_transport_offset(skb) + transport_len;
5703 int ret;
5704
5705 if (skb->len < len)
5706 return NULL;
5707 else if (skb->len == len)
5708 return skb;
5709
5710 skb_chk = skb_clone(skb, GFP_ATOMIC);
5711 if (!skb_chk)
5712 return NULL;
5713
5714 ret = pskb_trim_rcsum(skb_chk, len);
5715 if (ret) {
5716 kfree_skb(skb_chk);
5717 return NULL;
5718 }
5719
5720 return skb_chk;
5721}
5722
5723/**
5724 * skb_checksum_trimmed - validate checksum of an skb
5725 * @skb: the skb to check
5726 * @transport_len: the data length beyond the network header
5727 * @skb_chkf: checksum function to use
5728 *
5729 * Applies the given checksum function skb_chkf to the provided skb.
5730 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5731 *
5732 * If the skb has data beyond the given transport length, then a
5733 * trimmed & cloned skb is checked and returned.
5734 *
5735 * Caller needs to set the skb transport header and free any returned skb if it
5736 * differs from the provided skb.
5737 */
5738struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5739 unsigned int transport_len,
5740 __sum16(*skb_chkf)(struct sk_buff *skb))
5741{
5742 struct sk_buff *skb_chk;
5743 unsigned int offset = skb_transport_offset(skb);
5744 __sum16 ret;
5745
5746 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5747 if (!skb_chk)
5748 goto err;
5749
5750 if (!pskb_may_pull(skb_chk, offset))
5751 goto err;
5752
5753 skb_pull_rcsum(skb_chk, offset);
5754 ret = skb_chkf(skb_chk);
5755 skb_push_rcsum(skb_chk, offset);
5756
5757 if (ret)
5758 goto err;
5759
5760 return skb_chk;
5761
5762err:
5763 if (skb_chk && skb_chk != skb)
5764 kfree_skb(skb_chk);
5765
5766 return NULL;
5767
5768}
5769EXPORT_SYMBOL(skb_checksum_trimmed);
5770
5771void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5772{
5773 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5774 skb->dev->name);
5775}
5776EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5777
5778void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5779{
5780 if (head_stolen) {
5781 skb_release_head_state(skb);
5782 kmem_cache_free(skbuff_cache, skb);
5783 } else {
5784 __kfree_skb(skb);
5785 }
5786}
5787EXPORT_SYMBOL(kfree_skb_partial);
5788
5789/**
5790 * skb_try_coalesce - try to merge skb to prior one
5791 * @to: prior buffer
5792 * @from: buffer to add
5793 * @fragstolen: pointer to boolean
5794 * @delta_truesize: how much more was allocated than was requested
5795 */
5796bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5797 bool *fragstolen, int *delta_truesize)
5798{
5799 struct skb_shared_info *to_shinfo, *from_shinfo;
5800 int i, delta, len = from->len;
5801
5802 *fragstolen = false;
5803
5804 if (skb_cloned(to))
5805 return false;
5806
5807 /* In general, avoid mixing page_pool and non-page_pool allocated
5808 * pages within the same SKB. In theory we could take full
5809 * references if @from is cloned and !@to->pp_recycle but its
5810 * tricky (due to potential race with the clone disappearing) and
5811 * rare, so not worth dealing with.
5812 */
5813 if (to->pp_recycle != from->pp_recycle)
5814 return false;
5815
5816 if (len <= skb_tailroom(to)) {
5817 if (len)
5818 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5819 *delta_truesize = 0;
5820 return true;
5821 }
5822
5823 to_shinfo = skb_shinfo(to);
5824 from_shinfo = skb_shinfo(from);
5825 if (to_shinfo->frag_list || from_shinfo->frag_list)
5826 return false;
5827 if (skb_zcopy(to) || skb_zcopy(from))
5828 return false;
5829
5830 if (skb_headlen(from) != 0) {
5831 struct page *page;
5832 unsigned int offset;
5833
5834 if (to_shinfo->nr_frags +
5835 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5836 return false;
5837
5838 if (skb_head_is_locked(from))
5839 return false;
5840
5841 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5842
5843 page = virt_to_head_page(from->head);
5844 offset = from->data - (unsigned char *)page_address(page);
5845
5846 skb_fill_page_desc(to, to_shinfo->nr_frags,
5847 page, offset, skb_headlen(from));
5848 *fragstolen = true;
5849 } else {
5850 if (to_shinfo->nr_frags +
5851 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5852 return false;
5853
5854 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5855 }
5856
5857 WARN_ON_ONCE(delta < len);
5858
5859 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5860 from_shinfo->frags,
5861 from_shinfo->nr_frags * sizeof(skb_frag_t));
5862 to_shinfo->nr_frags += from_shinfo->nr_frags;
5863
5864 if (!skb_cloned(from))
5865 from_shinfo->nr_frags = 0;
5866
5867 /* if the skb is not cloned this does nothing
5868 * since we set nr_frags to 0.
5869 */
5870 if (skb_pp_frag_ref(from)) {
5871 for (i = 0; i < from_shinfo->nr_frags; i++)
5872 __skb_frag_ref(&from_shinfo->frags[i]);
5873 }
5874
5875 to->truesize += delta;
5876 to->len += len;
5877 to->data_len += len;
5878
5879 *delta_truesize = delta;
5880 return true;
5881}
5882EXPORT_SYMBOL(skb_try_coalesce);
5883
5884/**
5885 * skb_scrub_packet - scrub an skb
5886 *
5887 * @skb: buffer to clean
5888 * @xnet: packet is crossing netns
5889 *
5890 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5891 * into/from a tunnel. Some information have to be cleared during these
5892 * operations.
5893 * skb_scrub_packet can also be used to clean a skb before injecting it in
5894 * another namespace (@xnet == true). We have to clear all information in the
5895 * skb that could impact namespace isolation.
5896 */
5897void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5898{
5899 skb->pkt_type = PACKET_HOST;
5900 skb->skb_iif = 0;
5901 skb->ignore_df = 0;
5902 skb_dst_drop(skb);
5903 skb_ext_reset(skb);
5904 nf_reset_ct(skb);
5905 nf_reset_trace(skb);
5906
5907#ifdef CONFIG_NET_SWITCHDEV
5908 skb->offload_fwd_mark = 0;
5909 skb->offload_l3_fwd_mark = 0;
5910#endif
5911
5912 if (!xnet)
5913 return;
5914
5915 ipvs_reset(skb);
5916 skb->mark = 0;
5917 skb_clear_tstamp(skb);
5918}
5919EXPORT_SYMBOL_GPL(skb_scrub_packet);
5920
5921static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5922{
5923 int mac_len, meta_len;
5924 void *meta;
5925
5926 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5927 kfree_skb(skb);
5928 return NULL;
5929 }
5930
5931 mac_len = skb->data - skb_mac_header(skb);
5932 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5933 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5934 mac_len - VLAN_HLEN - ETH_TLEN);
5935 }
5936
5937 meta_len = skb_metadata_len(skb);
5938 if (meta_len) {
5939 meta = skb_metadata_end(skb) - meta_len;
5940 memmove(meta + VLAN_HLEN, meta, meta_len);
5941 }
5942
5943 skb->mac_header += VLAN_HLEN;
5944 return skb;
5945}
5946
5947struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5948{
5949 struct vlan_hdr *vhdr;
5950 u16 vlan_tci;
5951
5952 if (unlikely(skb_vlan_tag_present(skb))) {
5953 /* vlan_tci is already set-up so leave this for another time */
5954 return skb;
5955 }
5956
5957 skb = skb_share_check(skb, GFP_ATOMIC);
5958 if (unlikely(!skb))
5959 goto err_free;
5960 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5962 goto err_free;
5963
5964 vhdr = (struct vlan_hdr *)skb->data;
5965 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5967
5968 skb_pull_rcsum(skb, VLAN_HLEN);
5969 vlan_set_encap_proto(skb, vhdr);
5970
5971 skb = skb_reorder_vlan_header(skb);
5972 if (unlikely(!skb))
5973 goto err_free;
5974
5975 skb_reset_network_header(skb);
5976 if (!skb_transport_header_was_set(skb))
5977 skb_reset_transport_header(skb);
5978 skb_reset_mac_len(skb);
5979
5980 return skb;
5981
5982err_free:
5983 kfree_skb(skb);
5984 return NULL;
5985}
5986EXPORT_SYMBOL(skb_vlan_untag);
5987
5988int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5989{
5990 if (!pskb_may_pull(skb, write_len))
5991 return -ENOMEM;
5992
5993 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5994 return 0;
5995
5996 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5997}
5998EXPORT_SYMBOL(skb_ensure_writable);
5999
6000int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6001{
6002 int needed_headroom = dev->needed_headroom;
6003 int needed_tailroom = dev->needed_tailroom;
6004
6005 /* For tail taggers, we need to pad short frames ourselves, to ensure
6006 * that the tail tag does not fail at its role of being at the end of
6007 * the packet, once the conduit interface pads the frame. Account for
6008 * that pad length here, and pad later.
6009 */
6010 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6011 needed_tailroom += ETH_ZLEN - skb->len;
6012 /* skb_headroom() returns unsigned int... */
6013 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6014 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6015
6016 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6017 /* No reallocation needed, yay! */
6018 return 0;
6019
6020 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6021 GFP_ATOMIC);
6022}
6023EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6024
6025/* remove VLAN header from packet and update csum accordingly.
6026 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6027 */
6028int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6029{
6030 int offset = skb->data - skb_mac_header(skb);
6031 int err;
6032
6033 if (WARN_ONCE(offset,
6034 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6035 offset)) {
6036 return -EINVAL;
6037 }
6038
6039 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6040 if (unlikely(err))
6041 return err;
6042
6043 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6044
6045 vlan_remove_tag(skb, vlan_tci);
6046
6047 skb->mac_header += VLAN_HLEN;
6048
6049 if (skb_network_offset(skb) < ETH_HLEN)
6050 skb_set_network_header(skb, ETH_HLEN);
6051
6052 skb_reset_mac_len(skb);
6053
6054 return err;
6055}
6056EXPORT_SYMBOL(__skb_vlan_pop);
6057
6058/* Pop a vlan tag either from hwaccel or from payload.
6059 * Expects skb->data at mac header.
6060 */
6061int skb_vlan_pop(struct sk_buff *skb)
6062{
6063 u16 vlan_tci;
6064 __be16 vlan_proto;
6065 int err;
6066
6067 if (likely(skb_vlan_tag_present(skb))) {
6068 __vlan_hwaccel_clear_tag(skb);
6069 } else {
6070 if (unlikely(!eth_type_vlan(skb->protocol)))
6071 return 0;
6072
6073 err = __skb_vlan_pop(skb, &vlan_tci);
6074 if (err)
6075 return err;
6076 }
6077 /* move next vlan tag to hw accel tag */
6078 if (likely(!eth_type_vlan(skb->protocol)))
6079 return 0;
6080
6081 vlan_proto = skb->protocol;
6082 err = __skb_vlan_pop(skb, &vlan_tci);
6083 if (unlikely(err))
6084 return err;
6085
6086 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6087 return 0;
6088}
6089EXPORT_SYMBOL(skb_vlan_pop);
6090
6091/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6092 * Expects skb->data at mac header.
6093 */
6094int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6095{
6096 if (skb_vlan_tag_present(skb)) {
6097 int offset = skb->data - skb_mac_header(skb);
6098 int err;
6099
6100 if (WARN_ONCE(offset,
6101 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6102 offset)) {
6103 return -EINVAL;
6104 }
6105
6106 err = __vlan_insert_tag(skb, skb->vlan_proto,
6107 skb_vlan_tag_get(skb));
6108 if (err)
6109 return err;
6110
6111 skb->protocol = skb->vlan_proto;
6112 skb->mac_len += VLAN_HLEN;
6113
6114 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6115 }
6116 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6117 return 0;
6118}
6119EXPORT_SYMBOL(skb_vlan_push);
6120
6121/**
6122 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6123 *
6124 * @skb: Socket buffer to modify
6125 *
6126 * Drop the Ethernet header of @skb.
6127 *
6128 * Expects that skb->data points to the mac header and that no VLAN tags are
6129 * present.
6130 *
6131 * Returns 0 on success, -errno otherwise.
6132 */
6133int skb_eth_pop(struct sk_buff *skb)
6134{
6135 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6136 skb_network_offset(skb) < ETH_HLEN)
6137 return -EPROTO;
6138
6139 skb_pull_rcsum(skb, ETH_HLEN);
6140 skb_reset_mac_header(skb);
6141 skb_reset_mac_len(skb);
6142
6143 return 0;
6144}
6145EXPORT_SYMBOL(skb_eth_pop);
6146
6147/**
6148 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6149 *
6150 * @skb: Socket buffer to modify
6151 * @dst: Destination MAC address of the new header
6152 * @src: Source MAC address of the new header
6153 *
6154 * Prepend @skb with a new Ethernet header.
6155 *
6156 * Expects that skb->data points to the mac header, which must be empty.
6157 *
6158 * Returns 0 on success, -errno otherwise.
6159 */
6160int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6161 const unsigned char *src)
6162{
6163 struct ethhdr *eth;
6164 int err;
6165
6166 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6167 return -EPROTO;
6168
6169 err = skb_cow_head(skb, sizeof(*eth));
6170 if (err < 0)
6171 return err;
6172
6173 skb_push(skb, sizeof(*eth));
6174 skb_reset_mac_header(skb);
6175 skb_reset_mac_len(skb);
6176
6177 eth = eth_hdr(skb);
6178 ether_addr_copy(eth->h_dest, dst);
6179 ether_addr_copy(eth->h_source, src);
6180 eth->h_proto = skb->protocol;
6181
6182 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6183
6184 return 0;
6185}
6186EXPORT_SYMBOL(skb_eth_push);
6187
6188/* Update the ethertype of hdr and the skb csum value if required. */
6189static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6190 __be16 ethertype)
6191{
6192 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6193 __be16 diff[] = { ~hdr->h_proto, ethertype };
6194
6195 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6196 }
6197
6198 hdr->h_proto = ethertype;
6199}
6200
6201/**
6202 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6203 * the packet
6204 *
6205 * @skb: buffer
6206 * @mpls_lse: MPLS label stack entry to push
6207 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6208 * @mac_len: length of the MAC header
6209 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6210 * ethernet
6211 *
6212 * Expects skb->data at mac header.
6213 *
6214 * Returns 0 on success, -errno otherwise.
6215 */
6216int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6217 int mac_len, bool ethernet)
6218{
6219 struct mpls_shim_hdr *lse;
6220 int err;
6221
6222 if (unlikely(!eth_p_mpls(mpls_proto)))
6223 return -EINVAL;
6224
6225 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6226 if (skb->encapsulation)
6227 return -EINVAL;
6228
6229 err = skb_cow_head(skb, MPLS_HLEN);
6230 if (unlikely(err))
6231 return err;
6232
6233 if (!skb->inner_protocol) {
6234 skb_set_inner_network_header(skb, skb_network_offset(skb));
6235 skb_set_inner_protocol(skb, skb->protocol);
6236 }
6237
6238 skb_push(skb, MPLS_HLEN);
6239 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6240 mac_len);
6241 skb_reset_mac_header(skb);
6242 skb_set_network_header(skb, mac_len);
6243 skb_reset_mac_len(skb);
6244
6245 lse = mpls_hdr(skb);
6246 lse->label_stack_entry = mpls_lse;
6247 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6248
6249 if (ethernet && mac_len >= ETH_HLEN)
6250 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6251 skb->protocol = mpls_proto;
6252
6253 return 0;
6254}
6255EXPORT_SYMBOL_GPL(skb_mpls_push);
6256
6257/**
6258 * skb_mpls_pop() - pop the outermost MPLS header
6259 *
6260 * @skb: buffer
6261 * @next_proto: ethertype of header after popped MPLS header
6262 * @mac_len: length of the MAC header
6263 * @ethernet: flag to indicate if the packet is ethernet
6264 *
6265 * Expects skb->data at mac header.
6266 *
6267 * Returns 0 on success, -errno otherwise.
6268 */
6269int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6270 bool ethernet)
6271{
6272 int err;
6273
6274 if (unlikely(!eth_p_mpls(skb->protocol)))
6275 return 0;
6276
6277 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6278 if (unlikely(err))
6279 return err;
6280
6281 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6282 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6283 mac_len);
6284
6285 __skb_pull(skb, MPLS_HLEN);
6286 skb_reset_mac_header(skb);
6287 skb_set_network_header(skb, mac_len);
6288
6289 if (ethernet && mac_len >= ETH_HLEN) {
6290 struct ethhdr *hdr;
6291
6292 /* use mpls_hdr() to get ethertype to account for VLANs. */
6293 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6294 skb_mod_eth_type(skb, hdr, next_proto);
6295 }
6296 skb->protocol = next_proto;
6297
6298 return 0;
6299}
6300EXPORT_SYMBOL_GPL(skb_mpls_pop);
6301
6302/**
6303 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6304 *
6305 * @skb: buffer
6306 * @mpls_lse: new MPLS label stack entry to update to
6307 *
6308 * Expects skb->data at mac header.
6309 *
6310 * Returns 0 on success, -errno otherwise.
6311 */
6312int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6313{
6314 int err;
6315
6316 if (unlikely(!eth_p_mpls(skb->protocol)))
6317 return -EINVAL;
6318
6319 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6320 if (unlikely(err))
6321 return err;
6322
6323 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6324 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6325
6326 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6327 }
6328
6329 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6330
6331 return 0;
6332}
6333EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6334
6335/**
6336 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6337 *
6338 * @skb: buffer
6339 *
6340 * Expects skb->data at mac header.
6341 *
6342 * Returns 0 on success, -errno otherwise.
6343 */
6344int skb_mpls_dec_ttl(struct sk_buff *skb)
6345{
6346 u32 lse;
6347 u8 ttl;
6348
6349 if (unlikely(!eth_p_mpls(skb->protocol)))
6350 return -EINVAL;
6351
6352 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6353 return -ENOMEM;
6354
6355 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6356 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6357 if (!--ttl)
6358 return -EINVAL;
6359
6360 lse &= ~MPLS_LS_TTL_MASK;
6361 lse |= ttl << MPLS_LS_TTL_SHIFT;
6362
6363 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6364}
6365EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6366
6367/**
6368 * alloc_skb_with_frags - allocate skb with page frags
6369 *
6370 * @header_len: size of linear part
6371 * @data_len: needed length in frags
6372 * @order: max page order desired.
6373 * @errcode: pointer to error code if any
6374 * @gfp_mask: allocation mask
6375 *
6376 * This can be used to allocate a paged skb, given a maximal order for frags.
6377 */
6378struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6379 unsigned long data_len,
6380 int order,
6381 int *errcode,
6382 gfp_t gfp_mask)
6383{
6384 unsigned long chunk;
6385 struct sk_buff *skb;
6386 struct page *page;
6387 int nr_frags = 0;
6388
6389 *errcode = -EMSGSIZE;
6390 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6391 return NULL;
6392
6393 *errcode = -ENOBUFS;
6394 skb = alloc_skb(header_len, gfp_mask);
6395 if (!skb)
6396 return NULL;
6397
6398 while (data_len) {
6399 if (nr_frags == MAX_SKB_FRAGS - 1)
6400 goto failure;
6401 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6402 order--;
6403
6404 if (order) {
6405 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6406 __GFP_COMP |
6407 __GFP_NOWARN,
6408 order);
6409 if (!page) {
6410 order--;
6411 continue;
6412 }
6413 } else {
6414 page = alloc_page(gfp_mask);
6415 if (!page)
6416 goto failure;
6417 }
6418 chunk = min_t(unsigned long, data_len,
6419 PAGE_SIZE << order);
6420 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6421 nr_frags++;
6422 skb->truesize += (PAGE_SIZE << order);
6423 data_len -= chunk;
6424 }
6425 return skb;
6426
6427failure:
6428 kfree_skb(skb);
6429 return NULL;
6430}
6431EXPORT_SYMBOL(alloc_skb_with_frags);
6432
6433/* carve out the first off bytes from skb when off < headlen */
6434static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6435 const int headlen, gfp_t gfp_mask)
6436{
6437 int i;
6438 unsigned int size = skb_end_offset(skb);
6439 int new_hlen = headlen - off;
6440 u8 *data;
6441
6442 if (skb_pfmemalloc(skb))
6443 gfp_mask |= __GFP_MEMALLOC;
6444
6445 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6446 if (!data)
6447 return -ENOMEM;
6448 size = SKB_WITH_OVERHEAD(size);
6449
6450 /* Copy real data, and all frags */
6451 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6452 skb->len -= off;
6453
6454 memcpy((struct skb_shared_info *)(data + size),
6455 skb_shinfo(skb),
6456 offsetof(struct skb_shared_info,
6457 frags[skb_shinfo(skb)->nr_frags]));
6458 if (skb_cloned(skb)) {
6459 /* drop the old head gracefully */
6460 if (skb_orphan_frags(skb, gfp_mask)) {
6461 skb_kfree_head(data, size);
6462 return -ENOMEM;
6463 }
6464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6465 skb_frag_ref(skb, i);
6466 if (skb_has_frag_list(skb))
6467 skb_clone_fraglist(skb);
6468 skb_release_data(skb, SKB_CONSUMED, false);
6469 } else {
6470 /* we can reuse existing recount- all we did was
6471 * relocate values
6472 */
6473 skb_free_head(skb, false);
6474 }
6475
6476 skb->head = data;
6477 skb->data = data;
6478 skb->head_frag = 0;
6479 skb_set_end_offset(skb, size);
6480 skb_set_tail_pointer(skb, skb_headlen(skb));
6481 skb_headers_offset_update(skb, 0);
6482 skb->cloned = 0;
6483 skb->hdr_len = 0;
6484 skb->nohdr = 0;
6485 atomic_set(&skb_shinfo(skb)->dataref, 1);
6486
6487 return 0;
6488}
6489
6490static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6491
6492/* carve out the first eat bytes from skb's frag_list. May recurse into
6493 * pskb_carve()
6494 */
6495static int pskb_carve_frag_list(struct sk_buff *skb,
6496 struct skb_shared_info *shinfo, int eat,
6497 gfp_t gfp_mask)
6498{
6499 struct sk_buff *list = shinfo->frag_list;
6500 struct sk_buff *clone = NULL;
6501 struct sk_buff *insp = NULL;
6502
6503 do {
6504 if (!list) {
6505 pr_err("Not enough bytes to eat. Want %d\n", eat);
6506 return -EFAULT;
6507 }
6508 if (list->len <= eat) {
6509 /* Eaten as whole. */
6510 eat -= list->len;
6511 list = list->next;
6512 insp = list;
6513 } else {
6514 /* Eaten partially. */
6515 if (skb_shared(list)) {
6516 clone = skb_clone(list, gfp_mask);
6517 if (!clone)
6518 return -ENOMEM;
6519 insp = list->next;
6520 list = clone;
6521 } else {
6522 /* This may be pulled without problems. */
6523 insp = list;
6524 }
6525 if (pskb_carve(list, eat, gfp_mask) < 0) {
6526 kfree_skb(clone);
6527 return -ENOMEM;
6528 }
6529 break;
6530 }
6531 } while (eat);
6532
6533 /* Free pulled out fragments. */
6534 while ((list = shinfo->frag_list) != insp) {
6535 shinfo->frag_list = list->next;
6536 consume_skb(list);
6537 }
6538 /* And insert new clone at head. */
6539 if (clone) {
6540 clone->next = list;
6541 shinfo->frag_list = clone;
6542 }
6543 return 0;
6544}
6545
6546/* carve off first len bytes from skb. Split line (off) is in the
6547 * non-linear part of skb
6548 */
6549static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6550 int pos, gfp_t gfp_mask)
6551{
6552 int i, k = 0;
6553 unsigned int size = skb_end_offset(skb);
6554 u8 *data;
6555 const int nfrags = skb_shinfo(skb)->nr_frags;
6556 struct skb_shared_info *shinfo;
6557
6558 if (skb_pfmemalloc(skb))
6559 gfp_mask |= __GFP_MEMALLOC;
6560
6561 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6562 if (!data)
6563 return -ENOMEM;
6564 size = SKB_WITH_OVERHEAD(size);
6565
6566 memcpy((struct skb_shared_info *)(data + size),
6567 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6568 if (skb_orphan_frags(skb, gfp_mask)) {
6569 skb_kfree_head(data, size);
6570 return -ENOMEM;
6571 }
6572 shinfo = (struct skb_shared_info *)(data + size);
6573 for (i = 0; i < nfrags; i++) {
6574 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6575
6576 if (pos + fsize > off) {
6577 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6578
6579 if (pos < off) {
6580 /* Split frag.
6581 * We have two variants in this case:
6582 * 1. Move all the frag to the second
6583 * part, if it is possible. F.e.
6584 * this approach is mandatory for TUX,
6585 * where splitting is expensive.
6586 * 2. Split is accurately. We make this.
6587 */
6588 skb_frag_off_add(&shinfo->frags[0], off - pos);
6589 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6590 }
6591 skb_frag_ref(skb, i);
6592 k++;
6593 }
6594 pos += fsize;
6595 }
6596 shinfo->nr_frags = k;
6597 if (skb_has_frag_list(skb))
6598 skb_clone_fraglist(skb);
6599
6600 /* split line is in frag list */
6601 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6602 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6603 if (skb_has_frag_list(skb))
6604 kfree_skb_list(skb_shinfo(skb)->frag_list);
6605 skb_kfree_head(data, size);
6606 return -ENOMEM;
6607 }
6608 skb_release_data(skb, SKB_CONSUMED, false);
6609
6610 skb->head = data;
6611 skb->head_frag = 0;
6612 skb->data = data;
6613 skb_set_end_offset(skb, size);
6614 skb_reset_tail_pointer(skb);
6615 skb_headers_offset_update(skb, 0);
6616 skb->cloned = 0;
6617 skb->hdr_len = 0;
6618 skb->nohdr = 0;
6619 skb->len -= off;
6620 skb->data_len = skb->len;
6621 atomic_set(&skb_shinfo(skb)->dataref, 1);
6622 return 0;
6623}
6624
6625/* remove len bytes from the beginning of the skb */
6626static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6627{
6628 int headlen = skb_headlen(skb);
6629
6630 if (len < headlen)
6631 return pskb_carve_inside_header(skb, len, headlen, gfp);
6632 else
6633 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6634}
6635
6636/* Extract to_copy bytes starting at off from skb, and return this in
6637 * a new skb
6638 */
6639struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6640 int to_copy, gfp_t gfp)
6641{
6642 struct sk_buff *clone = skb_clone(skb, gfp);
6643
6644 if (!clone)
6645 return NULL;
6646
6647 if (pskb_carve(clone, off, gfp) < 0 ||
6648 pskb_trim(clone, to_copy)) {
6649 kfree_skb(clone);
6650 return NULL;
6651 }
6652 return clone;
6653}
6654EXPORT_SYMBOL(pskb_extract);
6655
6656/**
6657 * skb_condense - try to get rid of fragments/frag_list if possible
6658 * @skb: buffer
6659 *
6660 * Can be used to save memory before skb is added to a busy queue.
6661 * If packet has bytes in frags and enough tail room in skb->head,
6662 * pull all of them, so that we can free the frags right now and adjust
6663 * truesize.
6664 * Notes:
6665 * We do not reallocate skb->head thus can not fail.
6666 * Caller must re-evaluate skb->truesize if needed.
6667 */
6668void skb_condense(struct sk_buff *skb)
6669{
6670 if (skb->data_len) {
6671 if (skb->data_len > skb->end - skb->tail ||
6672 skb_cloned(skb))
6673 return;
6674
6675 /* Nice, we can free page frag(s) right now */
6676 __pskb_pull_tail(skb, skb->data_len);
6677 }
6678 /* At this point, skb->truesize might be over estimated,
6679 * because skb had a fragment, and fragments do not tell
6680 * their truesize.
6681 * When we pulled its content into skb->head, fragment
6682 * was freed, but __pskb_pull_tail() could not possibly
6683 * adjust skb->truesize, not knowing the frag truesize.
6684 */
6685 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6686}
6687EXPORT_SYMBOL(skb_condense);
6688
6689#ifdef CONFIG_SKB_EXTENSIONS
6690static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6691{
6692 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6693}
6694
6695/**
6696 * __skb_ext_alloc - allocate a new skb extensions storage
6697 *
6698 * @flags: See kmalloc().
6699 *
6700 * Returns the newly allocated pointer. The pointer can later attached to a
6701 * skb via __skb_ext_set().
6702 * Note: caller must handle the skb_ext as an opaque data.
6703 */
6704struct skb_ext *__skb_ext_alloc(gfp_t flags)
6705{
6706 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6707
6708 if (new) {
6709 memset(new->offset, 0, sizeof(new->offset));
6710 refcount_set(&new->refcnt, 1);
6711 }
6712
6713 return new;
6714}
6715
6716static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6717 unsigned int old_active)
6718{
6719 struct skb_ext *new;
6720
6721 if (refcount_read(&old->refcnt) == 1)
6722 return old;
6723
6724 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6725 if (!new)
6726 return NULL;
6727
6728 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6729 refcount_set(&new->refcnt, 1);
6730
6731#ifdef CONFIG_XFRM
6732 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6733 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6734 unsigned int i;
6735
6736 for (i = 0; i < sp->len; i++)
6737 xfrm_state_hold(sp->xvec[i]);
6738 }
6739#endif
6740 __skb_ext_put(old);
6741 return new;
6742}
6743
6744/**
6745 * __skb_ext_set - attach the specified extension storage to this skb
6746 * @skb: buffer
6747 * @id: extension id
6748 * @ext: extension storage previously allocated via __skb_ext_alloc()
6749 *
6750 * Existing extensions, if any, are cleared.
6751 *
6752 * Returns the pointer to the extension.
6753 */
6754void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6755 struct skb_ext *ext)
6756{
6757 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6758
6759 skb_ext_put(skb);
6760 newlen = newoff + skb_ext_type_len[id];
6761 ext->chunks = newlen;
6762 ext->offset[id] = newoff;
6763 skb->extensions = ext;
6764 skb->active_extensions = 1 << id;
6765 return skb_ext_get_ptr(ext, id);
6766}
6767
6768/**
6769 * skb_ext_add - allocate space for given extension, COW if needed
6770 * @skb: buffer
6771 * @id: extension to allocate space for
6772 *
6773 * Allocates enough space for the given extension.
6774 * If the extension is already present, a pointer to that extension
6775 * is returned.
6776 *
6777 * If the skb was cloned, COW applies and the returned memory can be
6778 * modified without changing the extension space of clones buffers.
6779 *
6780 * Returns pointer to the extension or NULL on allocation failure.
6781 */
6782void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6783{
6784 struct skb_ext *new, *old = NULL;
6785 unsigned int newlen, newoff;
6786
6787 if (skb->active_extensions) {
6788 old = skb->extensions;
6789
6790 new = skb_ext_maybe_cow(old, skb->active_extensions);
6791 if (!new)
6792 return NULL;
6793
6794 if (__skb_ext_exist(new, id))
6795 goto set_active;
6796
6797 newoff = new->chunks;
6798 } else {
6799 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6800
6801 new = __skb_ext_alloc(GFP_ATOMIC);
6802 if (!new)
6803 return NULL;
6804 }
6805
6806 newlen = newoff + skb_ext_type_len[id];
6807 new->chunks = newlen;
6808 new->offset[id] = newoff;
6809set_active:
6810 skb->slow_gro = 1;
6811 skb->extensions = new;
6812 skb->active_extensions |= 1 << id;
6813 return skb_ext_get_ptr(new, id);
6814}
6815EXPORT_SYMBOL(skb_ext_add);
6816
6817#ifdef CONFIG_XFRM
6818static void skb_ext_put_sp(struct sec_path *sp)
6819{
6820 unsigned int i;
6821
6822 for (i = 0; i < sp->len; i++)
6823 xfrm_state_put(sp->xvec[i]);
6824}
6825#endif
6826
6827#ifdef CONFIG_MCTP_FLOWS
6828static void skb_ext_put_mctp(struct mctp_flow *flow)
6829{
6830 if (flow->key)
6831 mctp_key_unref(flow->key);
6832}
6833#endif
6834
6835void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6836{
6837 struct skb_ext *ext = skb->extensions;
6838
6839 skb->active_extensions &= ~(1 << id);
6840 if (skb->active_extensions == 0) {
6841 skb->extensions = NULL;
6842 __skb_ext_put(ext);
6843#ifdef CONFIG_XFRM
6844 } else if (id == SKB_EXT_SEC_PATH &&
6845 refcount_read(&ext->refcnt) == 1) {
6846 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6847
6848 skb_ext_put_sp(sp);
6849 sp->len = 0;
6850#endif
6851 }
6852}
6853EXPORT_SYMBOL(__skb_ext_del);
6854
6855void __skb_ext_put(struct skb_ext *ext)
6856{
6857 /* If this is last clone, nothing can increment
6858 * it after check passes. Avoids one atomic op.
6859 */
6860 if (refcount_read(&ext->refcnt) == 1)
6861 goto free_now;
6862
6863 if (!refcount_dec_and_test(&ext->refcnt))
6864 return;
6865free_now:
6866#ifdef CONFIG_XFRM
6867 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6868 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6869#endif
6870#ifdef CONFIG_MCTP_FLOWS
6871 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6872 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6873#endif
6874
6875 kmem_cache_free(skbuff_ext_cache, ext);
6876}
6877EXPORT_SYMBOL(__skb_ext_put);
6878#endif /* CONFIG_SKB_EXTENSIONS */
6879
6880/**
6881 * skb_attempt_defer_free - queue skb for remote freeing
6882 * @skb: buffer
6883 *
6884 * Put @skb in a per-cpu list, using the cpu which
6885 * allocated the skb/pages to reduce false sharing
6886 * and memory zone spinlock contention.
6887 */
6888void skb_attempt_defer_free(struct sk_buff *skb)
6889{
6890 int cpu = skb->alloc_cpu;
6891 struct softnet_data *sd;
6892 unsigned int defer_max;
6893 bool kick;
6894
6895 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6896 !cpu_online(cpu) ||
6897 cpu == raw_smp_processor_id()) {
6898nodefer: __kfree_skb(skb);
6899 return;
6900 }
6901
6902 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6903 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6904
6905 sd = &per_cpu(softnet_data, cpu);
6906 defer_max = READ_ONCE(sysctl_skb_defer_max);
6907 if (READ_ONCE(sd->defer_count) >= defer_max)
6908 goto nodefer;
6909
6910 spin_lock_bh(&sd->defer_lock);
6911 /* Send an IPI every time queue reaches half capacity. */
6912 kick = sd->defer_count == (defer_max >> 1);
6913 /* Paired with the READ_ONCE() few lines above */
6914 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6915
6916 skb->next = sd->defer_list;
6917 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6918 WRITE_ONCE(sd->defer_list, skb);
6919 spin_unlock_bh(&sd->defer_lock);
6920
6921 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6922 * if we are unlucky enough (this seems very unlikely).
6923 */
6924 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6925 smp_call_function_single_async(cpu, &sd->defer_csd);
6926}
6927
6928static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6929 size_t offset, size_t len)
6930{
6931 const char *kaddr;
6932 __wsum csum;
6933
6934 kaddr = kmap_local_page(page);
6935 csum = csum_partial(kaddr + offset, len, 0);
6936 kunmap_local(kaddr);
6937 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6938}
6939
6940/**
6941 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6942 * @skb: The buffer to add pages to
6943 * @iter: Iterator representing the pages to be added
6944 * @maxsize: Maximum amount of pages to be added
6945 * @gfp: Allocation flags
6946 *
6947 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6948 * extracts pages from an iterator and adds them to the socket buffer if
6949 * possible, copying them to fragments if not possible (such as if they're slab
6950 * pages).
6951 *
6952 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6953 * insufficient space in the buffer to transfer anything.
6954 */
6955ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6956 ssize_t maxsize, gfp_t gfp)
6957{
6958 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6959 struct page *pages[8], **ppages = pages;
6960 ssize_t spliced = 0, ret = 0;
6961 unsigned int i;
6962
6963 while (iter->count > 0) {
6964 ssize_t space, nr, len;
6965 size_t off;
6966
6967 ret = -EMSGSIZE;
6968 space = frag_limit - skb_shinfo(skb)->nr_frags;
6969 if (space < 0)
6970 break;
6971
6972 /* We might be able to coalesce without increasing nr_frags */
6973 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6974
6975 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6976 if (len <= 0) {
6977 ret = len ?: -EIO;
6978 break;
6979 }
6980
6981 i = 0;
6982 do {
6983 struct page *page = pages[i++];
6984 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6985
6986 ret = -EIO;
6987 if (WARN_ON_ONCE(!sendpage_ok(page)))
6988 goto out;
6989
6990 ret = skb_append_pagefrags(skb, page, off, part,
6991 frag_limit);
6992 if (ret < 0) {
6993 iov_iter_revert(iter, len);
6994 goto out;
6995 }
6996
6997 if (skb->ip_summed == CHECKSUM_NONE)
6998 skb_splice_csum_page(skb, page, off, part);
6999
7000 off = 0;
7001 spliced += part;
7002 maxsize -= part;
7003 len -= part;
7004 } while (len > 0);
7005
7006 if (maxsize <= 0)
7007 break;
7008 }
7009
7010out:
7011 skb_len_add(skb, spliced);
7012 return spliced ?: ret;
7013}
7014EXPORT_SYMBOL(skb_splice_from_iter);
7015
7016static __always_inline
7017size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7018 size_t len, void *to, void *priv2)
7019{
7020 __wsum *csum = priv2;
7021 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7022
7023 *csum = csum_block_add(*csum, next, progress);
7024 return 0;
7025}
7026
7027static __always_inline
7028size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7029 size_t len, void *to, void *priv2)
7030{
7031 __wsum next, *csum = priv2;
7032
7033 next = csum_and_copy_from_user(iter_from, to + progress, len);
7034 *csum = csum_block_add(*csum, next, progress);
7035 return next ? 0 : len;
7036}
7037
7038bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7039 __wsum *csum, struct iov_iter *i)
7040{
7041 size_t copied;
7042
7043 if (WARN_ON_ONCE(!i->data_source))
7044 return false;
7045 copied = iterate_and_advance2(i, bytes, addr, csum,
7046 copy_from_user_iter_csum,
7047 memcpy_from_iter_csum);
7048 if (likely(copied == bytes))
7049 return true;
7050 iov_iter_revert(i, copied);
7051 return false;
7052}
7053EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/ip6_checksum.h>
69#include <net/xfrm.h>
70#include <net/mpls.h>
71#include <net/mptcp.h>
72
73#include <linux/uaccess.h>
74#include <trace/events/skb.h>
75#include <linux/highmem.h>
76#include <linux/capability.h>
77#include <linux/user_namespace.h>
78#include <linux/indirect_call_wrapper.h>
79
80#include "datagram.h"
81
82struct kmem_cache *skbuff_head_cache __ro_after_init;
83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84#ifdef CONFIG_SKB_EXTENSIONS
85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86#endif
87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90/**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104{
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110}
111
112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118{
119 skb_panic(skb, sz, addr, __func__);
120}
121
122/*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134{
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157}
158
159/* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165/**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184{
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252out:
253 return skb;
254nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258}
259EXPORT_SYMBOL(__alloc_skb);
260
261/* Caller must provide SKB that is memset cleared */
262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264{
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286}
287
288/**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308{
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318}
319
320/* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
325struct sk_buff *build_skb(void *data, unsigned int frag_size)
326{
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335}
336EXPORT_SYMBOL(build_skb);
337
338/**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
344struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346{
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358}
359EXPORT_SYMBOL(build_skb_around);
360
361#define NAPI_SKB_CACHE_SIZE 64
362
363struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367};
368
369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373{
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377}
378
379void *napi_alloc_frag(unsigned int fragsz)
380{
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384}
385EXPORT_SYMBOL(napi_alloc_frag);
386
387/**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
394void *netdev_alloc_frag(unsigned int fragsz)
395{
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409}
410EXPORT_SYMBOL(netdev_alloc_frag);
411
412/**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427{
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
468 }
469
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478skb_fail:
479 return skb;
480}
481EXPORT_SYMBOL(__netdev_alloc_skb);
482
483/**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498{
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 if (nc->page.pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
532
533skb_success:
534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 skb->dev = napi->dev;
536
537skb_fail:
538 return skb;
539}
540EXPORT_SYMBOL(__napi_alloc_skb);
541
542void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 int size, unsigned int truesize)
544{
545 skb_fill_page_desc(skb, i, page, off, size);
546 skb->len += size;
547 skb->data_len += size;
548 skb->truesize += truesize;
549}
550EXPORT_SYMBOL(skb_add_rx_frag);
551
552void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 unsigned int truesize)
554{
555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556
557 skb_frag_size_add(frag, size);
558 skb->len += size;
559 skb->data_len += size;
560 skb->truesize += truesize;
561}
562EXPORT_SYMBOL(skb_coalesce_rx_frag);
563
564static void skb_drop_list(struct sk_buff **listp)
565{
566 kfree_skb_list(*listp);
567 *listp = NULL;
568}
569
570static inline void skb_drop_fraglist(struct sk_buff *skb)
571{
572 skb_drop_list(&skb_shinfo(skb)->frag_list);
573}
574
575static void skb_clone_fraglist(struct sk_buff *skb)
576{
577 struct sk_buff *list;
578
579 skb_walk_frags(skb, list)
580 skb_get(list);
581}
582
583static void skb_free_head(struct sk_buff *skb)
584{
585 unsigned char *head = skb->head;
586
587 if (skb->head_frag)
588 skb_free_frag(head);
589 else
590 kfree(head);
591}
592
593static void skb_release_data(struct sk_buff *skb)
594{
595 struct skb_shared_info *shinfo = skb_shinfo(skb);
596 int i;
597
598 if (skb->cloned &&
599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 &shinfo->dataref))
601 return;
602
603 for (i = 0; i < shinfo->nr_frags; i++)
604 __skb_frag_unref(&shinfo->frags[i]);
605
606 if (shinfo->frag_list)
607 kfree_skb_list(shinfo->frag_list);
608
609 skb_zcopy_clear(skb, true);
610 skb_free_head(skb);
611}
612
613/*
614 * Free an skbuff by memory without cleaning the state.
615 */
616static void kfree_skbmem(struct sk_buff *skb)
617{
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644}
645
646void skb_release_head_state(struct sk_buff *skb)
647{
648 skb_dst_drop(skb);
649 if (skb->destructor) {
650 WARN_ON(in_irq());
651 skb->destructor(skb);
652 }
653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb));
655#endif
656 skb_ext_put(skb);
657}
658
659/* Free everything but the sk_buff shell. */
660static void skb_release_all(struct sk_buff *skb)
661{
662 skb_release_head_state(skb);
663 if (likely(skb->head))
664 skb_release_data(skb);
665}
666
667/**
668 * __kfree_skb - private function
669 * @skb: buffer
670 *
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
674 */
675
676void __kfree_skb(struct sk_buff *skb)
677{
678 skb_release_all(skb);
679 kfree_skbmem(skb);
680}
681EXPORT_SYMBOL(__kfree_skb);
682
683/**
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
686 *
687 * Drop a reference to the buffer and free it if the usage count has
688 * hit zero.
689 */
690void kfree_skb(struct sk_buff *skb)
691{
692 if (!skb_unref(skb))
693 return;
694
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
697}
698EXPORT_SYMBOL(kfree_skb);
699
700void kfree_skb_list(struct sk_buff *segs)
701{
702 while (segs) {
703 struct sk_buff *next = segs->next;
704
705 kfree_skb(segs);
706 segs = next;
707 }
708}
709EXPORT_SYMBOL(kfree_skb_list);
710
711/* Dump skb information and contents.
712 *
713 * Must only be called from net_ratelimit()-ed paths.
714 *
715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
716 */
717void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718{
719 static atomic_t can_dump_full = ATOMIC_INIT(5);
720 struct skb_shared_info *sh = skb_shinfo(skb);
721 struct net_device *dev = skb->dev;
722 struct sock *sk = skb->sk;
723 struct sk_buff *list_skb;
724 bool has_mac, has_trans;
725 int headroom, tailroom;
726 int i, len, seg_len;
727
728 if (full_pkt)
729 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
730
731 if (full_pkt)
732 len = skb->len;
733 else
734 len = min_t(int, skb->len, MAX_HEADER + 128);
735
736 headroom = skb_headroom(skb);
737 tailroom = skb_tailroom(skb);
738
739 has_mac = skb_mac_header_was_set(skb);
740 has_trans = skb_transport_header_was_set(skb);
741
742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 level, skb->len, headroom, skb_headlen(skb), tailroom,
748 has_mac ? skb->mac_header : -1,
749 has_mac ? skb_mac_header_len(skb) : -1,
750 skb->network_header,
751 has_trans ? skb_network_header_len(skb) : -1,
752 has_trans ? skb->transport_header : -1,
753 sh->tx_flags, sh->nr_frags,
754 sh->gso_size, sh->gso_type, sh->gso_segs,
755 skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 skb->csum_valid, skb->csum_level,
757 skb->hash, skb->sw_hash, skb->l4_hash,
758 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
759
760 if (dev)
761 printk("%sdev name=%s feat=0x%pNF\n",
762 level, dev->name, &dev->features);
763 if (sk)
764 printk("%ssk family=%hu type=%u proto=%u\n",
765 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
766
767 if (full_pkt && headroom)
768 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 16, 1, skb->head, headroom, false);
770
771 seg_len = min_t(int, skb_headlen(skb), len);
772 if (seg_len)
773 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
774 16, 1, skb->data, seg_len, false);
775 len -= seg_len;
776
777 if (full_pkt && tailroom)
778 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 16, 1, skb_tail_pointer(skb), tailroom, false);
780
781 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 u32 p_off, p_len, copied;
784 struct page *p;
785 u8 *vaddr;
786
787 skb_frag_foreach_page(frag, skb_frag_off(frag),
788 skb_frag_size(frag), p, p_off, p_len,
789 copied) {
790 seg_len = min_t(int, p_len, len);
791 vaddr = kmap_atomic(p);
792 print_hex_dump(level, "skb frag: ",
793 DUMP_PREFIX_OFFSET,
794 16, 1, vaddr + p_off, seg_len, false);
795 kunmap_atomic(vaddr);
796 len -= seg_len;
797 if (!len)
798 break;
799 }
800 }
801
802 if (full_pkt && skb_has_frag_list(skb)) {
803 printk("skb fraglist:\n");
804 skb_walk_frags(skb, list_skb)
805 skb_dump(level, list_skb, true);
806 }
807}
808EXPORT_SYMBOL(skb_dump);
809
810/**
811 * skb_tx_error - report an sk_buff xmit error
812 * @skb: buffer that triggered an error
813 *
814 * Report xmit error if a device callback is tracking this skb.
815 * skb must be freed afterwards.
816 */
817void skb_tx_error(struct sk_buff *skb)
818{
819 skb_zcopy_clear(skb, true);
820}
821EXPORT_SYMBOL(skb_tx_error);
822
823#ifdef CONFIG_TRACEPOINTS
824/**
825 * consume_skb - free an skbuff
826 * @skb: buffer to free
827 *
828 * Drop a ref to the buffer and free it if the usage count has hit zero
829 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
830 * is being dropped after a failure and notes that
831 */
832void consume_skb(struct sk_buff *skb)
833{
834 if (!skb_unref(skb))
835 return;
836
837 trace_consume_skb(skb);
838 __kfree_skb(skb);
839}
840EXPORT_SYMBOL(consume_skb);
841#endif
842
843/**
844 * consume_stateless_skb - free an skbuff, assuming it is stateless
845 * @skb: buffer to free
846 *
847 * Alike consume_skb(), but this variant assumes that this is the last
848 * skb reference and all the head states have been already dropped
849 */
850void __consume_stateless_skb(struct sk_buff *skb)
851{
852 trace_consume_skb(skb);
853 skb_release_data(skb);
854 kfree_skbmem(skb);
855}
856
857void __kfree_skb_flush(void)
858{
859 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
860
861 /* flush skb_cache if containing objects */
862 if (nc->skb_count) {
863 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
864 nc->skb_cache);
865 nc->skb_count = 0;
866 }
867}
868
869static inline void _kfree_skb_defer(struct sk_buff *skb)
870{
871 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872
873 /* drop skb->head and call any destructors for packet */
874 skb_release_all(skb);
875
876 /* record skb to CPU local list */
877 nc->skb_cache[nc->skb_count++] = skb;
878
879#ifdef CONFIG_SLUB
880 /* SLUB writes into objects when freeing */
881 prefetchw(skb);
882#endif
883
884 /* flush skb_cache if it is filled */
885 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
886 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
887 nc->skb_cache);
888 nc->skb_count = 0;
889 }
890}
891void __kfree_skb_defer(struct sk_buff *skb)
892{
893 _kfree_skb_defer(skb);
894}
895
896void napi_consume_skb(struct sk_buff *skb, int budget)
897{
898 if (unlikely(!skb))
899 return;
900
901 /* Zero budget indicate non-NAPI context called us, like netpoll */
902 if (unlikely(!budget)) {
903 dev_consume_skb_any(skb);
904 return;
905 }
906
907 if (!skb_unref(skb))
908 return;
909
910 /* if reaching here SKB is ready to free */
911 trace_consume_skb(skb);
912
913 /* if SKB is a clone, don't handle this case */
914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 __kfree_skb(skb);
916 return;
917 }
918
919 _kfree_skb_defer(skb);
920}
921EXPORT_SYMBOL(napi_consume_skb);
922
923/* Make sure a field is enclosed inside headers_start/headers_end section */
924#define CHECK_SKB_FIELD(field) \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
926 offsetof(struct sk_buff, headers_start)); \
927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
928 offsetof(struct sk_buff, headers_end)); \
929
930static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931{
932 new->tstamp = old->tstamp;
933 /* We do not copy old->sk */
934 new->dev = old->dev;
935 memcpy(new->cb, old->cb, sizeof(old->cb));
936 skb_dst_copy(new, old);
937 __skb_ext_copy(new, old);
938 __nf_copy(new, old, false);
939
940 /* Note : this field could be in headers_start/headers_end section
941 * It is not yet because we do not want to have a 16 bit hole
942 */
943 new->queue_mapping = old->queue_mapping;
944
945 memcpy(&new->headers_start, &old->headers_start,
946 offsetof(struct sk_buff, headers_end) -
947 offsetof(struct sk_buff, headers_start));
948 CHECK_SKB_FIELD(protocol);
949 CHECK_SKB_FIELD(csum);
950 CHECK_SKB_FIELD(hash);
951 CHECK_SKB_FIELD(priority);
952 CHECK_SKB_FIELD(skb_iif);
953 CHECK_SKB_FIELD(vlan_proto);
954 CHECK_SKB_FIELD(vlan_tci);
955 CHECK_SKB_FIELD(transport_header);
956 CHECK_SKB_FIELD(network_header);
957 CHECK_SKB_FIELD(mac_header);
958 CHECK_SKB_FIELD(inner_protocol);
959 CHECK_SKB_FIELD(inner_transport_header);
960 CHECK_SKB_FIELD(inner_network_header);
961 CHECK_SKB_FIELD(inner_mac_header);
962 CHECK_SKB_FIELD(mark);
963#ifdef CONFIG_NETWORK_SECMARK
964 CHECK_SKB_FIELD(secmark);
965#endif
966#ifdef CONFIG_NET_RX_BUSY_POLL
967 CHECK_SKB_FIELD(napi_id);
968#endif
969#ifdef CONFIG_XPS
970 CHECK_SKB_FIELD(sender_cpu);
971#endif
972#ifdef CONFIG_NET_SCHED
973 CHECK_SKB_FIELD(tc_index);
974#endif
975
976}
977
978/*
979 * You should not add any new code to this function. Add it to
980 * __copy_skb_header above instead.
981 */
982static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983{
984#define C(x) n->x = skb->x
985
986 n->next = n->prev = NULL;
987 n->sk = NULL;
988 __copy_skb_header(n, skb);
989
990 C(len);
991 C(data_len);
992 C(mac_len);
993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 n->cloned = 1;
995 n->nohdr = 0;
996 n->peeked = 0;
997 C(pfmemalloc);
998 n->destructor = NULL;
999 C(tail);
1000 C(end);
1001 C(head);
1002 C(head_frag);
1003 C(data);
1004 C(truesize);
1005 refcount_set(&n->users, 1);
1006
1007 atomic_inc(&(skb_shinfo(skb)->dataref));
1008 skb->cloned = 1;
1009
1010 return n;
1011#undef C
1012}
1013
1014/**
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1017 */
1018struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019{
1020 struct sk_buff *n;
1021
1022 n = alloc_skb(0, GFP_ATOMIC);
1023 if (!n)
1024 return NULL;
1025
1026 n->len = first->len;
1027 n->data_len = first->len;
1028 n->truesize = first->truesize;
1029
1030 skb_shinfo(n)->frag_list = first;
1031
1032 __copy_skb_header(n, first);
1033 n->destructor = NULL;
1034
1035 return n;
1036}
1037EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038
1039/**
1040 * skb_morph - morph one skb into another
1041 * @dst: the skb to receive the contents
1042 * @src: the skb to supply the contents
1043 *
1044 * This is identical to skb_clone except that the target skb is
1045 * supplied by the user.
1046 *
1047 * The target skb is returned upon exit.
1048 */
1049struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050{
1051 skb_release_all(dst);
1052 return __skb_clone(dst, src);
1053}
1054EXPORT_SYMBOL_GPL(skb_morph);
1055
1056int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057{
1058 unsigned long max_pg, num_pg, new_pg, old_pg;
1059 struct user_struct *user;
1060
1061 if (capable(CAP_IPC_LOCK) || !size)
1062 return 0;
1063
1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 user = mmp->user ? : current_user();
1067
1068 do {
1069 old_pg = atomic_long_read(&user->locked_vm);
1070 new_pg = old_pg + num_pg;
1071 if (new_pg > max_pg)
1072 return -ENOBUFS;
1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 old_pg);
1075
1076 if (!mmp->user) {
1077 mmp->user = get_uid(user);
1078 mmp->num_pg = num_pg;
1079 } else {
1080 mmp->num_pg += num_pg;
1081 }
1082
1083 return 0;
1084}
1085EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086
1087void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088{
1089 if (mmp->user) {
1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 free_uid(mmp->user);
1092 }
1093}
1094EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095
1096struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097{
1098 struct ubuf_info *uarg;
1099 struct sk_buff *skb;
1100
1101 WARN_ON_ONCE(!in_task());
1102
1103 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 if (!skb)
1105 return NULL;
1106
1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 uarg = (void *)skb->cb;
1109 uarg->mmp.user = NULL;
1110
1111 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 kfree_skb(skb);
1113 return NULL;
1114 }
1115
1116 uarg->callback = sock_zerocopy_callback;
1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 uarg->len = 1;
1119 uarg->bytelen = size;
1120 uarg->zerocopy = 1;
1121 refcount_set(&uarg->refcnt, 1);
1122 sock_hold(sk);
1123
1124 return uarg;
1125}
1126EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127
1128static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129{
1130 return container_of((void *)uarg, struct sk_buff, cb);
1131}
1132
1133struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 struct ubuf_info *uarg)
1135{
1136 if (uarg) {
1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1138 u32 bytelen, next;
1139
1140 /* realloc only when socket is locked (TCP, UDP cork),
1141 * so uarg->len and sk_zckey access is serialized
1142 */
1143 if (!sock_owned_by_user(sk)) {
1144 WARN_ON_ONCE(1);
1145 return NULL;
1146 }
1147
1148 bytelen = uarg->bytelen + size;
1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 /* TCP can create new skb to attach new uarg */
1151 if (sk->sk_type == SOCK_STREAM)
1152 goto new_alloc;
1153 return NULL;
1154 }
1155
1156 next = (u32)atomic_read(&sk->sk_zckey);
1157 if ((u32)(uarg->id + uarg->len) == next) {
1158 if (mm_account_pinned_pages(&uarg->mmp, size))
1159 return NULL;
1160 uarg->len++;
1161 uarg->bytelen = bytelen;
1162 atomic_set(&sk->sk_zckey, ++next);
1163
1164 /* no extra ref when appending to datagram (MSG_MORE) */
1165 if (sk->sk_type == SOCK_STREAM)
1166 sock_zerocopy_get(uarg);
1167
1168 return uarg;
1169 }
1170 }
1171
1172new_alloc:
1173 return sock_zerocopy_alloc(sk, size);
1174}
1175EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176
1177static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178{
1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 u32 old_lo, old_hi;
1181 u64 sum_len;
1182
1183 old_lo = serr->ee.ee_info;
1184 old_hi = serr->ee.ee_data;
1185 sum_len = old_hi - old_lo + 1ULL + len;
1186
1187 if (sum_len >= (1ULL << 32))
1188 return false;
1189
1190 if (lo != old_hi + 1)
1191 return false;
1192
1193 serr->ee.ee_data += len;
1194 return true;
1195}
1196
1197void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198{
1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 struct sock_exterr_skb *serr;
1201 struct sock *sk = skb->sk;
1202 struct sk_buff_head *q;
1203 unsigned long flags;
1204 u32 lo, hi;
1205 u16 len;
1206
1207 mm_unaccount_pinned_pages(&uarg->mmp);
1208
1209 /* if !len, there was only 1 call, and it was aborted
1210 * so do not queue a completion notification
1211 */
1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 goto release;
1214
1215 len = uarg->len;
1216 lo = uarg->id;
1217 hi = uarg->id + len - 1;
1218
1219 serr = SKB_EXT_ERR(skb);
1220 memset(serr, 0, sizeof(*serr));
1221 serr->ee.ee_errno = 0;
1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 serr->ee.ee_data = hi;
1224 serr->ee.ee_info = lo;
1225 if (!success)
1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227
1228 q = &sk->sk_error_queue;
1229 spin_lock_irqsave(&q->lock, flags);
1230 tail = skb_peek_tail(q);
1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 __skb_queue_tail(q, skb);
1234 skb = NULL;
1235 }
1236 spin_unlock_irqrestore(&q->lock, flags);
1237
1238 sk->sk_error_report(sk);
1239
1240release:
1241 consume_skb(skb);
1242 sock_put(sk);
1243}
1244EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245
1246void sock_zerocopy_put(struct ubuf_info *uarg)
1247{
1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 if (uarg->callback)
1250 uarg->callback(uarg, uarg->zerocopy);
1251 else
1252 consume_skb(skb_from_uarg(uarg));
1253 }
1254}
1255EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256
1257void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258{
1259 if (uarg) {
1260 struct sock *sk = skb_from_uarg(uarg)->sk;
1261
1262 atomic_dec(&sk->sk_zckey);
1263 uarg->len--;
1264
1265 if (have_uref)
1266 sock_zerocopy_put(uarg);
1267 }
1268}
1269EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270
1271int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272{
1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274}
1275EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276
1277int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 struct msghdr *msg, int len,
1279 struct ubuf_info *uarg)
1280{
1281 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 struct iov_iter orig_iter = msg->msg_iter;
1283 int err, orig_len = skb->len;
1284
1285 /* An skb can only point to one uarg. This edge case happens when
1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 */
1288 if (orig_uarg && uarg != orig_uarg)
1289 return -EEXIST;
1290
1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 struct sock *save_sk = skb->sk;
1294
1295 /* Streams do not free skb on error. Reset to prev state. */
1296 msg->msg_iter = orig_iter;
1297 skb->sk = sk;
1298 ___pskb_trim(skb, orig_len);
1299 skb->sk = save_sk;
1300 return err;
1301 }
1302
1303 skb_zcopy_set(skb, uarg, NULL);
1304 return skb->len - orig_len;
1305}
1306EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307
1308static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 gfp_t gfp_mask)
1310{
1311 if (skb_zcopy(orig)) {
1312 if (skb_zcopy(nskb)) {
1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 if (!gfp_mask) {
1315 WARN_ON_ONCE(1);
1316 return -ENOMEM;
1317 }
1318 if (skb_uarg(nskb) == skb_uarg(orig))
1319 return 0;
1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 return -EIO;
1322 }
1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 }
1325 return 0;
1326}
1327
1328/**
1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1330 * @skb: the skb to modify
1331 * @gfp_mask: allocation priority
1332 *
1333 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 * It will copy all frags into kernel and drop the reference
1335 * to userspace pages.
1336 *
1337 * If this function is called from an interrupt gfp_mask() must be
1338 * %GFP_ATOMIC.
1339 *
1340 * Returns 0 on success or a negative error code on failure
1341 * to allocate kernel memory to copy to.
1342 */
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344{
1345 int num_frags = skb_shinfo(skb)->nr_frags;
1346 struct page *page, *head = NULL;
1347 int i, new_frags;
1348 u32 d_off;
1349
1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 return -EINVAL;
1352
1353 if (!num_frags)
1354 goto release;
1355
1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 for (i = 0; i < new_frags; i++) {
1358 page = alloc_page(gfp_mask);
1359 if (!page) {
1360 while (head) {
1361 struct page *next = (struct page *)page_private(head);
1362 put_page(head);
1363 head = next;
1364 }
1365 return -ENOMEM;
1366 }
1367 set_page_private(page, (unsigned long)head);
1368 head = page;
1369 }
1370
1371 page = head;
1372 d_off = 0;
1373 for (i = 0; i < num_frags; i++) {
1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 u32 p_off, p_len, copied;
1376 struct page *p;
1377 u8 *vaddr;
1378
1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 p, p_off, p_len, copied) {
1381 u32 copy, done = 0;
1382 vaddr = kmap_atomic(p);
1383
1384 while (done < p_len) {
1385 if (d_off == PAGE_SIZE) {
1386 d_off = 0;
1387 page = (struct page *)page_private(page);
1388 }
1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 memcpy(page_address(page) + d_off,
1391 vaddr + p_off + done, copy);
1392 done += copy;
1393 d_off += copy;
1394 }
1395 kunmap_atomic(vaddr);
1396 }
1397 }
1398
1399 /* skb frags release userspace buffers */
1400 for (i = 0; i < num_frags; i++)
1401 skb_frag_unref(skb, i);
1402
1403 /* skb frags point to kernel buffers */
1404 for (i = 0; i < new_frags - 1; i++) {
1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 head = (struct page *)page_private(head);
1407 }
1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 skb_shinfo(skb)->nr_frags = new_frags;
1410
1411release:
1412 skb_zcopy_clear(skb, false);
1413 return 0;
1414}
1415EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416
1417/**
1418 * skb_clone - duplicate an sk_buff
1419 * @skb: buffer to clone
1420 * @gfp_mask: allocation priority
1421 *
1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 * copies share the same packet data but not structure. The new
1424 * buffer has a reference count of 1. If the allocation fails the
1425 * function returns %NULL otherwise the new buffer is returned.
1426 *
1427 * If this function is called from an interrupt gfp_mask() must be
1428 * %GFP_ATOMIC.
1429 */
1430
1431struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432{
1433 struct sk_buff_fclones *fclones = container_of(skb,
1434 struct sk_buff_fclones,
1435 skb1);
1436 struct sk_buff *n;
1437
1438 if (skb_orphan_frags(skb, gfp_mask))
1439 return NULL;
1440
1441 if (skb->fclone == SKB_FCLONE_ORIG &&
1442 refcount_read(&fclones->fclone_ref) == 1) {
1443 n = &fclones->skb2;
1444 refcount_set(&fclones->fclone_ref, 2);
1445 } else {
1446 if (skb_pfmemalloc(skb))
1447 gfp_mask |= __GFP_MEMALLOC;
1448
1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 if (!n)
1451 return NULL;
1452
1453 n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 }
1455
1456 return __skb_clone(n, skb);
1457}
1458EXPORT_SYMBOL(skb_clone);
1459
1460void skb_headers_offset_update(struct sk_buff *skb, int off)
1461{
1462 /* Only adjust this if it actually is csum_start rather than csum */
1463 if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 skb->csum_start += off;
1465 /* {transport,network,mac}_header and tail are relative to skb->head */
1466 skb->transport_header += off;
1467 skb->network_header += off;
1468 if (skb_mac_header_was_set(skb))
1469 skb->mac_header += off;
1470 skb->inner_transport_header += off;
1471 skb->inner_network_header += off;
1472 skb->inner_mac_header += off;
1473}
1474EXPORT_SYMBOL(skb_headers_offset_update);
1475
1476void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477{
1478 __copy_skb_header(new, old);
1479
1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483}
1484EXPORT_SYMBOL(skb_copy_header);
1485
1486static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487{
1488 if (skb_pfmemalloc(skb))
1489 return SKB_ALLOC_RX;
1490 return 0;
1491}
1492
1493/**
1494 * skb_copy - create private copy of an sk_buff
1495 * @skb: buffer to copy
1496 * @gfp_mask: allocation priority
1497 *
1498 * Make a copy of both an &sk_buff and its data. This is used when the
1499 * caller wishes to modify the data and needs a private copy of the
1500 * data to alter. Returns %NULL on failure or the pointer to the buffer
1501 * on success. The returned buffer has a reference count of 1.
1502 *
1503 * As by-product this function converts non-linear &sk_buff to linear
1504 * one, so that &sk_buff becomes completely private and caller is allowed
1505 * to modify all the data of returned buffer. This means that this
1506 * function is not recommended for use in circumstances when only
1507 * header is going to be modified. Use pskb_copy() instead.
1508 */
1509
1510struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511{
1512 int headerlen = skb_headroom(skb);
1513 unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516
1517 if (!n)
1518 return NULL;
1519
1520 /* Set the data pointer */
1521 skb_reserve(n, headerlen);
1522 /* Set the tail pointer and length */
1523 skb_put(n, skb->len);
1524
1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526
1527 skb_copy_header(n, skb);
1528 return n;
1529}
1530EXPORT_SYMBOL(skb_copy);
1531
1532/**
1533 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1534 * @skb: buffer to copy
1535 * @headroom: headroom of new skb
1536 * @gfp_mask: allocation priority
1537 * @fclone: if true allocate the copy of the skb from the fclone
1538 * cache instead of the head cache; it is recommended to set this
1539 * to true for the cases where the copy will likely be cloned
1540 *
1541 * Make a copy of both an &sk_buff and part of its data, located
1542 * in header. Fragmented data remain shared. This is used when
1543 * the caller wishes to modify only header of &sk_buff and needs
1544 * private copy of the header to alter. Returns %NULL on failure
1545 * or the pointer to the buffer on success.
1546 * The returned buffer has a reference count of 1.
1547 */
1548
1549struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 gfp_t gfp_mask, bool fclone)
1551{
1552 unsigned int size = skb_headlen(skb) + headroom;
1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555
1556 if (!n)
1557 goto out;
1558
1559 /* Set the data pointer */
1560 skb_reserve(n, headroom);
1561 /* Set the tail pointer and length */
1562 skb_put(n, skb_headlen(skb));
1563 /* Copy the bytes */
1564 skb_copy_from_linear_data(skb, n->data, n->len);
1565
1566 n->truesize += skb->data_len;
1567 n->data_len = skb->data_len;
1568 n->len = skb->len;
1569
1570 if (skb_shinfo(skb)->nr_frags) {
1571 int i;
1572
1573 if (skb_orphan_frags(skb, gfp_mask) ||
1574 skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 kfree_skb(n);
1576 n = NULL;
1577 goto out;
1578 }
1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 skb_frag_ref(skb, i);
1582 }
1583 skb_shinfo(n)->nr_frags = i;
1584 }
1585
1586 if (skb_has_frag_list(skb)) {
1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 skb_clone_fraglist(n);
1589 }
1590
1591 skb_copy_header(n, skb);
1592out:
1593 return n;
1594}
1595EXPORT_SYMBOL(__pskb_copy_fclone);
1596
1597/**
1598 * pskb_expand_head - reallocate header of &sk_buff
1599 * @skb: buffer to reallocate
1600 * @nhead: room to add at head
1601 * @ntail: room to add at tail
1602 * @gfp_mask: allocation priority
1603 *
1604 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 * reference count of 1. Returns zero in the case of success or error,
1607 * if expansion failed. In the last case, &sk_buff is not changed.
1608 *
1609 * All the pointers pointing into skb header may change and must be
1610 * reloaded after call to this function.
1611 */
1612
1613int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 gfp_t gfp_mask)
1615{
1616 int i, osize = skb_end_offset(skb);
1617 int size = osize + nhead + ntail;
1618 long off;
1619 u8 *data;
1620
1621 BUG_ON(nhead < 0);
1622
1623 BUG_ON(skb_shared(skb));
1624
1625 size = SKB_DATA_ALIGN(size);
1626
1627 if (skb_pfmemalloc(skb))
1628 gfp_mask |= __GFP_MEMALLOC;
1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 gfp_mask, NUMA_NO_NODE, NULL);
1631 if (!data)
1632 goto nodata;
1633 size = SKB_WITH_OVERHEAD(ksize(data));
1634
1635 /* Copy only real data... and, alas, header. This should be
1636 * optimized for the cases when header is void.
1637 */
1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639
1640 memcpy((struct skb_shared_info *)(data + size),
1641 skb_shinfo(skb),
1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643
1644 /*
1645 * if shinfo is shared we must drop the old head gracefully, but if it
1646 * is not we can just drop the old head and let the existing refcount
1647 * be since all we did is relocate the values
1648 */
1649 if (skb_cloned(skb)) {
1650 if (skb_orphan_frags(skb, gfp_mask))
1651 goto nofrags;
1652 if (skb_zcopy(skb))
1653 refcount_inc(&skb_uarg(skb)->refcnt);
1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 skb_frag_ref(skb, i);
1656
1657 if (skb_has_frag_list(skb))
1658 skb_clone_fraglist(skb);
1659
1660 skb_release_data(skb);
1661 } else {
1662 skb_free_head(skb);
1663 }
1664 off = (data + nhead) - skb->head;
1665
1666 skb->head = data;
1667 skb->head_frag = 0;
1668 skb->data += off;
1669#ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 skb->end = size;
1671 off = nhead;
1672#else
1673 skb->end = skb->head + size;
1674#endif
1675 skb->tail += off;
1676 skb_headers_offset_update(skb, nhead);
1677 skb->cloned = 0;
1678 skb->hdr_len = 0;
1679 skb->nohdr = 0;
1680 atomic_set(&skb_shinfo(skb)->dataref, 1);
1681
1682 skb_metadata_clear(skb);
1683
1684 /* It is not generally safe to change skb->truesize.
1685 * For the moment, we really care of rx path, or
1686 * when skb is orphaned (not attached to a socket).
1687 */
1688 if (!skb->sk || skb->destructor == sock_edemux)
1689 skb->truesize += size - osize;
1690
1691 return 0;
1692
1693nofrags:
1694 kfree(data);
1695nodata:
1696 return -ENOMEM;
1697}
1698EXPORT_SYMBOL(pskb_expand_head);
1699
1700/* Make private copy of skb with writable head and some headroom */
1701
1702struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703{
1704 struct sk_buff *skb2;
1705 int delta = headroom - skb_headroom(skb);
1706
1707 if (delta <= 0)
1708 skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 else {
1710 skb2 = skb_clone(skb, GFP_ATOMIC);
1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 GFP_ATOMIC)) {
1713 kfree_skb(skb2);
1714 skb2 = NULL;
1715 }
1716 }
1717 return skb2;
1718}
1719EXPORT_SYMBOL(skb_realloc_headroom);
1720
1721/**
1722 * skb_copy_expand - copy and expand sk_buff
1723 * @skb: buffer to copy
1724 * @newheadroom: new free bytes at head
1725 * @newtailroom: new free bytes at tail
1726 * @gfp_mask: allocation priority
1727 *
1728 * Make a copy of both an &sk_buff and its data and while doing so
1729 * allocate additional space.
1730 *
1731 * This is used when the caller wishes to modify the data and needs a
1732 * private copy of the data to alter as well as more space for new fields.
1733 * Returns %NULL on failure or the pointer to the buffer
1734 * on success. The returned buffer has a reference count of 1.
1735 *
1736 * You must pass %GFP_ATOMIC as the allocation priority if this function
1737 * is called from an interrupt.
1738 */
1739struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 int newheadroom, int newtailroom,
1741 gfp_t gfp_mask)
1742{
1743 /*
1744 * Allocate the copy buffer
1745 */
1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 gfp_mask, skb_alloc_rx_flag(skb),
1748 NUMA_NO_NODE);
1749 int oldheadroom = skb_headroom(skb);
1750 int head_copy_len, head_copy_off;
1751
1752 if (!n)
1753 return NULL;
1754
1755 skb_reserve(n, newheadroom);
1756
1757 /* Set the tail pointer and length */
1758 skb_put(n, skb->len);
1759
1760 head_copy_len = oldheadroom;
1761 head_copy_off = 0;
1762 if (newheadroom <= head_copy_len)
1763 head_copy_len = newheadroom;
1764 else
1765 head_copy_off = newheadroom - head_copy_len;
1766
1767 /* Copy the linear header and data. */
1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 skb->len + head_copy_len));
1770
1771 skb_copy_header(n, skb);
1772
1773 skb_headers_offset_update(n, newheadroom - oldheadroom);
1774
1775 return n;
1776}
1777EXPORT_SYMBOL(skb_copy_expand);
1778
1779/**
1780 * __skb_pad - zero pad the tail of an skb
1781 * @skb: buffer to pad
1782 * @pad: space to pad
1783 * @free_on_error: free buffer on error
1784 *
1785 * Ensure that a buffer is followed by a padding area that is zero
1786 * filled. Used by network drivers which may DMA or transfer data
1787 * beyond the buffer end onto the wire.
1788 *
1789 * May return error in out of memory cases. The skb is freed on error
1790 * if @free_on_error is true.
1791 */
1792
1793int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794{
1795 int err;
1796 int ntail;
1797
1798 /* If the skbuff is non linear tailroom is always zero.. */
1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 memset(skb->data+skb->len, 0, pad);
1801 return 0;
1802 }
1803
1804 ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 if (likely(skb_cloned(skb) || ntail > 0)) {
1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 if (unlikely(err))
1808 goto free_skb;
1809 }
1810
1811 /* FIXME: The use of this function with non-linear skb's really needs
1812 * to be audited.
1813 */
1814 err = skb_linearize(skb);
1815 if (unlikely(err))
1816 goto free_skb;
1817
1818 memset(skb->data + skb->len, 0, pad);
1819 return 0;
1820
1821free_skb:
1822 if (free_on_error)
1823 kfree_skb(skb);
1824 return err;
1825}
1826EXPORT_SYMBOL(__skb_pad);
1827
1828/**
1829 * pskb_put - add data to the tail of a potentially fragmented buffer
1830 * @skb: start of the buffer to use
1831 * @tail: tail fragment of the buffer to use
1832 * @len: amount of data to add
1833 *
1834 * This function extends the used data area of the potentially
1835 * fragmented buffer. @tail must be the last fragment of @skb -- or
1836 * @skb itself. If this would exceed the total buffer size the kernel
1837 * will panic. A pointer to the first byte of the extra data is
1838 * returned.
1839 */
1840
1841void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842{
1843 if (tail != skb) {
1844 skb->data_len += len;
1845 skb->len += len;
1846 }
1847 return skb_put(tail, len);
1848}
1849EXPORT_SYMBOL_GPL(pskb_put);
1850
1851/**
1852 * skb_put - add data to a buffer
1853 * @skb: buffer to use
1854 * @len: amount of data to add
1855 *
1856 * This function extends the used data area of the buffer. If this would
1857 * exceed the total buffer size the kernel will panic. A pointer to the
1858 * first byte of the extra data is returned.
1859 */
1860void *skb_put(struct sk_buff *skb, unsigned int len)
1861{
1862 void *tmp = skb_tail_pointer(skb);
1863 SKB_LINEAR_ASSERT(skb);
1864 skb->tail += len;
1865 skb->len += len;
1866 if (unlikely(skb->tail > skb->end))
1867 skb_over_panic(skb, len, __builtin_return_address(0));
1868 return tmp;
1869}
1870EXPORT_SYMBOL(skb_put);
1871
1872/**
1873 * skb_push - add data to the start of a buffer
1874 * @skb: buffer to use
1875 * @len: amount of data to add
1876 *
1877 * This function extends the used data area of the buffer at the buffer
1878 * start. If this would exceed the total buffer headroom the kernel will
1879 * panic. A pointer to the first byte of the extra data is returned.
1880 */
1881void *skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883 skb->data -= len;
1884 skb->len += len;
1885 if (unlikely(skb->data < skb->head))
1886 skb_under_panic(skb, len, __builtin_return_address(0));
1887 return skb->data;
1888}
1889EXPORT_SYMBOL(skb_push);
1890
1891/**
1892 * skb_pull - remove data from the start of a buffer
1893 * @skb: buffer to use
1894 * @len: amount of data to remove
1895 *
1896 * This function removes data from the start of a buffer, returning
1897 * the memory to the headroom. A pointer to the next data in the buffer
1898 * is returned. Once the data has been pulled future pushes will overwrite
1899 * the old data.
1900 */
1901void *skb_pull(struct sk_buff *skb, unsigned int len)
1902{
1903 return skb_pull_inline(skb, len);
1904}
1905EXPORT_SYMBOL(skb_pull);
1906
1907/**
1908 * skb_trim - remove end from a buffer
1909 * @skb: buffer to alter
1910 * @len: new length
1911 *
1912 * Cut the length of a buffer down by removing data from the tail. If
1913 * the buffer is already under the length specified it is not modified.
1914 * The skb must be linear.
1915 */
1916void skb_trim(struct sk_buff *skb, unsigned int len)
1917{
1918 if (skb->len > len)
1919 __skb_trim(skb, len);
1920}
1921EXPORT_SYMBOL(skb_trim);
1922
1923/* Trims skb to length len. It can change skb pointers.
1924 */
1925
1926int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928 struct sk_buff **fragp;
1929 struct sk_buff *frag;
1930 int offset = skb_headlen(skb);
1931 int nfrags = skb_shinfo(skb)->nr_frags;
1932 int i;
1933 int err;
1934
1935 if (skb_cloned(skb) &&
1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 return err;
1938
1939 i = 0;
1940 if (offset >= len)
1941 goto drop_pages;
1942
1943 for (; i < nfrags; i++) {
1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945
1946 if (end < len) {
1947 offset = end;
1948 continue;
1949 }
1950
1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952
1953drop_pages:
1954 skb_shinfo(skb)->nr_frags = i;
1955
1956 for (; i < nfrags; i++)
1957 skb_frag_unref(skb, i);
1958
1959 if (skb_has_frag_list(skb))
1960 skb_drop_fraglist(skb);
1961 goto done;
1962 }
1963
1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 fragp = &frag->next) {
1966 int end = offset + frag->len;
1967
1968 if (skb_shared(frag)) {
1969 struct sk_buff *nfrag;
1970
1971 nfrag = skb_clone(frag, GFP_ATOMIC);
1972 if (unlikely(!nfrag))
1973 return -ENOMEM;
1974
1975 nfrag->next = frag->next;
1976 consume_skb(frag);
1977 frag = nfrag;
1978 *fragp = frag;
1979 }
1980
1981 if (end < len) {
1982 offset = end;
1983 continue;
1984 }
1985
1986 if (end > len &&
1987 unlikely((err = pskb_trim(frag, len - offset))))
1988 return err;
1989
1990 if (frag->next)
1991 skb_drop_list(&frag->next);
1992 break;
1993 }
1994
1995done:
1996 if (len > skb_headlen(skb)) {
1997 skb->data_len -= skb->len - len;
1998 skb->len = len;
1999 } else {
2000 skb->len = len;
2001 skb->data_len = 0;
2002 skb_set_tail_pointer(skb, len);
2003 }
2004
2005 if (!skb->sk || skb->destructor == sock_edemux)
2006 skb_condense(skb);
2007 return 0;
2008}
2009EXPORT_SYMBOL(___pskb_trim);
2010
2011/* Note : use pskb_trim_rcsum() instead of calling this directly
2012 */
2013int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014{
2015 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 int delta = skb->len - len;
2017
2018 skb->csum = csum_block_sub(skb->csum,
2019 skb_checksum(skb, len, delta, 0),
2020 len);
2021 }
2022 return __pskb_trim(skb, len);
2023}
2024EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025
2026/**
2027 * __pskb_pull_tail - advance tail of skb header
2028 * @skb: buffer to reallocate
2029 * @delta: number of bytes to advance tail
2030 *
2031 * The function makes a sense only on a fragmented &sk_buff,
2032 * it expands header moving its tail forward and copying necessary
2033 * data from fragmented part.
2034 *
2035 * &sk_buff MUST have reference count of 1.
2036 *
2037 * Returns %NULL (and &sk_buff does not change) if pull failed
2038 * or value of new tail of skb in the case of success.
2039 *
2040 * All the pointers pointing into skb header may change and must be
2041 * reloaded after call to this function.
2042 */
2043
2044/* Moves tail of skb head forward, copying data from fragmented part,
2045 * when it is necessary.
2046 * 1. It may fail due to malloc failure.
2047 * 2. It may change skb pointers.
2048 *
2049 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050 */
2051void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052{
2053 /* If skb has not enough free space at tail, get new one
2054 * plus 128 bytes for future expansions. If we have enough
2055 * room at tail, reallocate without expansion only if skb is cloned.
2056 */
2057 int i, k, eat = (skb->tail + delta) - skb->end;
2058
2059 if (eat > 0 || skb_cloned(skb)) {
2060 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061 GFP_ATOMIC))
2062 return NULL;
2063 }
2064
2065 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066 skb_tail_pointer(skb), delta));
2067
2068 /* Optimization: no fragments, no reasons to preestimate
2069 * size of pulled pages. Superb.
2070 */
2071 if (!skb_has_frag_list(skb))
2072 goto pull_pages;
2073
2074 /* Estimate size of pulled pages. */
2075 eat = delta;
2076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078
2079 if (size >= eat)
2080 goto pull_pages;
2081 eat -= size;
2082 }
2083
2084 /* If we need update frag list, we are in troubles.
2085 * Certainly, it is possible to add an offset to skb data,
2086 * but taking into account that pulling is expected to
2087 * be very rare operation, it is worth to fight against
2088 * further bloating skb head and crucify ourselves here instead.
2089 * Pure masohism, indeed. 8)8)
2090 */
2091 if (eat) {
2092 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093 struct sk_buff *clone = NULL;
2094 struct sk_buff *insp = NULL;
2095
2096 do {
2097 if (list->len <= eat) {
2098 /* Eaten as whole. */
2099 eat -= list->len;
2100 list = list->next;
2101 insp = list;
2102 } else {
2103 /* Eaten partially. */
2104
2105 if (skb_shared(list)) {
2106 /* Sucks! We need to fork list. :-( */
2107 clone = skb_clone(list, GFP_ATOMIC);
2108 if (!clone)
2109 return NULL;
2110 insp = list->next;
2111 list = clone;
2112 } else {
2113 /* This may be pulled without
2114 * problems. */
2115 insp = list;
2116 }
2117 if (!pskb_pull(list, eat)) {
2118 kfree_skb(clone);
2119 return NULL;
2120 }
2121 break;
2122 }
2123 } while (eat);
2124
2125 /* Free pulled out fragments. */
2126 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127 skb_shinfo(skb)->frag_list = list->next;
2128 kfree_skb(list);
2129 }
2130 /* And insert new clone at head. */
2131 if (clone) {
2132 clone->next = list;
2133 skb_shinfo(skb)->frag_list = clone;
2134 }
2135 }
2136 /* Success! Now we may commit changes to skb data. */
2137
2138pull_pages:
2139 eat = delta;
2140 k = 0;
2141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143
2144 if (size <= eat) {
2145 skb_frag_unref(skb, i);
2146 eat -= size;
2147 } else {
2148 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149
2150 *frag = skb_shinfo(skb)->frags[i];
2151 if (eat) {
2152 skb_frag_off_add(frag, eat);
2153 skb_frag_size_sub(frag, eat);
2154 if (!i)
2155 goto end;
2156 eat = 0;
2157 }
2158 k++;
2159 }
2160 }
2161 skb_shinfo(skb)->nr_frags = k;
2162
2163end:
2164 skb->tail += delta;
2165 skb->data_len -= delta;
2166
2167 if (!skb->data_len)
2168 skb_zcopy_clear(skb, false);
2169
2170 return skb_tail_pointer(skb);
2171}
2172EXPORT_SYMBOL(__pskb_pull_tail);
2173
2174/**
2175 * skb_copy_bits - copy bits from skb to kernel buffer
2176 * @skb: source skb
2177 * @offset: offset in source
2178 * @to: destination buffer
2179 * @len: number of bytes to copy
2180 *
2181 * Copy the specified number of bytes from the source skb to the
2182 * destination buffer.
2183 *
2184 * CAUTION ! :
2185 * If its prototype is ever changed,
2186 * check arch/{*}/net/{*}.S files,
2187 * since it is called from BPF assembly code.
2188 */
2189int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190{
2191 int start = skb_headlen(skb);
2192 struct sk_buff *frag_iter;
2193 int i, copy;
2194
2195 if (offset > (int)skb->len - len)
2196 goto fault;
2197
2198 /* Copy header. */
2199 if ((copy = start - offset) > 0) {
2200 if (copy > len)
2201 copy = len;
2202 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203 if ((len -= copy) == 0)
2204 return 0;
2205 offset += copy;
2206 to += copy;
2207 }
2208
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 int end;
2211 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212
2213 WARN_ON(start > offset + len);
2214
2215 end = start + skb_frag_size(f);
2216 if ((copy = end - offset) > 0) {
2217 u32 p_off, p_len, copied;
2218 struct page *p;
2219 u8 *vaddr;
2220
2221 if (copy > len)
2222 copy = len;
2223
2224 skb_frag_foreach_page(f,
2225 skb_frag_off(f) + offset - start,
2226 copy, p, p_off, p_len, copied) {
2227 vaddr = kmap_atomic(p);
2228 memcpy(to + copied, vaddr + p_off, p_len);
2229 kunmap_atomic(vaddr);
2230 }
2231
2232 if ((len -= copy) == 0)
2233 return 0;
2234 offset += copy;
2235 to += copy;
2236 }
2237 start = end;
2238 }
2239
2240 skb_walk_frags(skb, frag_iter) {
2241 int end;
2242
2243 WARN_ON(start > offset + len);
2244
2245 end = start + frag_iter->len;
2246 if ((copy = end - offset) > 0) {
2247 if (copy > len)
2248 copy = len;
2249 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250 goto fault;
2251 if ((len -= copy) == 0)
2252 return 0;
2253 offset += copy;
2254 to += copy;
2255 }
2256 start = end;
2257 }
2258
2259 if (!len)
2260 return 0;
2261
2262fault:
2263 return -EFAULT;
2264}
2265EXPORT_SYMBOL(skb_copy_bits);
2266
2267/*
2268 * Callback from splice_to_pipe(), if we need to release some pages
2269 * at the end of the spd in case we error'ed out in filling the pipe.
2270 */
2271static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272{
2273 put_page(spd->pages[i]);
2274}
2275
2276static struct page *linear_to_page(struct page *page, unsigned int *len,
2277 unsigned int *offset,
2278 struct sock *sk)
2279{
2280 struct page_frag *pfrag = sk_page_frag(sk);
2281
2282 if (!sk_page_frag_refill(sk, pfrag))
2283 return NULL;
2284
2285 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286
2287 memcpy(page_address(pfrag->page) + pfrag->offset,
2288 page_address(page) + *offset, *len);
2289 *offset = pfrag->offset;
2290 pfrag->offset += *len;
2291
2292 return pfrag->page;
2293}
2294
2295static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296 struct page *page,
2297 unsigned int offset)
2298{
2299 return spd->nr_pages &&
2300 spd->pages[spd->nr_pages - 1] == page &&
2301 (spd->partial[spd->nr_pages - 1].offset +
2302 spd->partial[spd->nr_pages - 1].len == offset);
2303}
2304
2305/*
2306 * Fill page/offset/length into spd, if it can hold more pages.
2307 */
2308static bool spd_fill_page(struct splice_pipe_desc *spd,
2309 struct pipe_inode_info *pipe, struct page *page,
2310 unsigned int *len, unsigned int offset,
2311 bool linear,
2312 struct sock *sk)
2313{
2314 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315 return true;
2316
2317 if (linear) {
2318 page = linear_to_page(page, len, &offset, sk);
2319 if (!page)
2320 return true;
2321 }
2322 if (spd_can_coalesce(spd, page, offset)) {
2323 spd->partial[spd->nr_pages - 1].len += *len;
2324 return false;
2325 }
2326 get_page(page);
2327 spd->pages[spd->nr_pages] = page;
2328 spd->partial[spd->nr_pages].len = *len;
2329 spd->partial[spd->nr_pages].offset = offset;
2330 spd->nr_pages++;
2331
2332 return false;
2333}
2334
2335static bool __splice_segment(struct page *page, unsigned int poff,
2336 unsigned int plen, unsigned int *off,
2337 unsigned int *len,
2338 struct splice_pipe_desc *spd, bool linear,
2339 struct sock *sk,
2340 struct pipe_inode_info *pipe)
2341{
2342 if (!*len)
2343 return true;
2344
2345 /* skip this segment if already processed */
2346 if (*off >= plen) {
2347 *off -= plen;
2348 return false;
2349 }
2350
2351 /* ignore any bits we already processed */
2352 poff += *off;
2353 plen -= *off;
2354 *off = 0;
2355
2356 do {
2357 unsigned int flen = min(*len, plen);
2358
2359 if (spd_fill_page(spd, pipe, page, &flen, poff,
2360 linear, sk))
2361 return true;
2362 poff += flen;
2363 plen -= flen;
2364 *len -= flen;
2365 } while (*len && plen);
2366
2367 return false;
2368}
2369
2370/*
2371 * Map linear and fragment data from the skb to spd. It reports true if the
2372 * pipe is full or if we already spliced the requested length.
2373 */
2374static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375 unsigned int *offset, unsigned int *len,
2376 struct splice_pipe_desc *spd, struct sock *sk)
2377{
2378 int seg;
2379 struct sk_buff *iter;
2380
2381 /* map the linear part :
2382 * If skb->head_frag is set, this 'linear' part is backed by a
2383 * fragment, and if the head is not shared with any clones then
2384 * we can avoid a copy since we own the head portion of this page.
2385 */
2386 if (__splice_segment(virt_to_page(skb->data),
2387 (unsigned long) skb->data & (PAGE_SIZE - 1),
2388 skb_headlen(skb),
2389 offset, len, spd,
2390 skb_head_is_locked(skb),
2391 sk, pipe))
2392 return true;
2393
2394 /*
2395 * then map the fragments
2396 */
2397 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399
2400 if (__splice_segment(skb_frag_page(f),
2401 skb_frag_off(f), skb_frag_size(f),
2402 offset, len, spd, false, sk, pipe))
2403 return true;
2404 }
2405
2406 skb_walk_frags(skb, iter) {
2407 if (*offset >= iter->len) {
2408 *offset -= iter->len;
2409 continue;
2410 }
2411 /* __skb_splice_bits() only fails if the output has no room
2412 * left, so no point in going over the frag_list for the error
2413 * case.
2414 */
2415 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416 return true;
2417 }
2418
2419 return false;
2420}
2421
2422/*
2423 * Map data from the skb to a pipe. Should handle both the linear part,
2424 * the fragments, and the frag list.
2425 */
2426int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427 struct pipe_inode_info *pipe, unsigned int tlen,
2428 unsigned int flags)
2429{
2430 struct partial_page partial[MAX_SKB_FRAGS];
2431 struct page *pages[MAX_SKB_FRAGS];
2432 struct splice_pipe_desc spd = {
2433 .pages = pages,
2434 .partial = partial,
2435 .nr_pages_max = MAX_SKB_FRAGS,
2436 .ops = &nosteal_pipe_buf_ops,
2437 .spd_release = sock_spd_release,
2438 };
2439 int ret = 0;
2440
2441 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442
2443 if (spd.nr_pages)
2444 ret = splice_to_pipe(pipe, &spd);
2445
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(skb_splice_bits);
2449
2450/* Send skb data on a socket. Socket must be locked. */
2451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452 int len)
2453{
2454 unsigned int orig_len = len;
2455 struct sk_buff *head = skb;
2456 unsigned short fragidx;
2457 int slen, ret;
2458
2459do_frag_list:
2460
2461 /* Deal with head data */
2462 while (offset < skb_headlen(skb) && len) {
2463 struct kvec kv;
2464 struct msghdr msg;
2465
2466 slen = min_t(int, len, skb_headlen(skb) - offset);
2467 kv.iov_base = skb->data + offset;
2468 kv.iov_len = slen;
2469 memset(&msg, 0, sizeof(msg));
2470 msg.msg_flags = MSG_DONTWAIT;
2471
2472 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473 if (ret <= 0)
2474 goto error;
2475
2476 offset += ret;
2477 len -= ret;
2478 }
2479
2480 /* All the data was skb head? */
2481 if (!len)
2482 goto out;
2483
2484 /* Make offset relative to start of frags */
2485 offset -= skb_headlen(skb);
2486
2487 /* Find where we are in frag list */
2488 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2490
2491 if (offset < skb_frag_size(frag))
2492 break;
2493
2494 offset -= skb_frag_size(frag);
2495 }
2496
2497 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2499
2500 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501
2502 while (slen) {
2503 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504 skb_frag_off(frag) + offset,
2505 slen, MSG_DONTWAIT);
2506 if (ret <= 0)
2507 goto error;
2508
2509 len -= ret;
2510 offset += ret;
2511 slen -= ret;
2512 }
2513
2514 offset = 0;
2515 }
2516
2517 if (len) {
2518 /* Process any frag lists */
2519
2520 if (skb == head) {
2521 if (skb_has_frag_list(skb)) {
2522 skb = skb_shinfo(skb)->frag_list;
2523 goto do_frag_list;
2524 }
2525 } else if (skb->next) {
2526 skb = skb->next;
2527 goto do_frag_list;
2528 }
2529 }
2530
2531out:
2532 return orig_len - len;
2533
2534error:
2535 return orig_len == len ? ret : orig_len - len;
2536}
2537EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538
2539/**
2540 * skb_store_bits - store bits from kernel buffer to skb
2541 * @skb: destination buffer
2542 * @offset: offset in destination
2543 * @from: source buffer
2544 * @len: number of bytes to copy
2545 *
2546 * Copy the specified number of bytes from the source buffer to the
2547 * destination skb. This function handles all the messy bits of
2548 * traversing fragment lists and such.
2549 */
2550
2551int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552{
2553 int start = skb_headlen(skb);
2554 struct sk_buff *frag_iter;
2555 int i, copy;
2556
2557 if (offset > (int)skb->len - len)
2558 goto fault;
2559
2560 if ((copy = start - offset) > 0) {
2561 if (copy > len)
2562 copy = len;
2563 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564 if ((len -= copy) == 0)
2565 return 0;
2566 offset += copy;
2567 from += copy;
2568 }
2569
2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 int end;
2573
2574 WARN_ON(start > offset + len);
2575
2576 end = start + skb_frag_size(frag);
2577 if ((copy = end - offset) > 0) {
2578 u32 p_off, p_len, copied;
2579 struct page *p;
2580 u8 *vaddr;
2581
2582 if (copy > len)
2583 copy = len;
2584
2585 skb_frag_foreach_page(frag,
2586 skb_frag_off(frag) + offset - start,
2587 copy, p, p_off, p_len, copied) {
2588 vaddr = kmap_atomic(p);
2589 memcpy(vaddr + p_off, from + copied, p_len);
2590 kunmap_atomic(vaddr);
2591 }
2592
2593 if ((len -= copy) == 0)
2594 return 0;
2595 offset += copy;
2596 from += copy;
2597 }
2598 start = end;
2599 }
2600
2601 skb_walk_frags(skb, frag_iter) {
2602 int end;
2603
2604 WARN_ON(start > offset + len);
2605
2606 end = start + frag_iter->len;
2607 if ((copy = end - offset) > 0) {
2608 if (copy > len)
2609 copy = len;
2610 if (skb_store_bits(frag_iter, offset - start,
2611 from, copy))
2612 goto fault;
2613 if ((len -= copy) == 0)
2614 return 0;
2615 offset += copy;
2616 from += copy;
2617 }
2618 start = end;
2619 }
2620 if (!len)
2621 return 0;
2622
2623fault:
2624 return -EFAULT;
2625}
2626EXPORT_SYMBOL(skb_store_bits);
2627
2628/* Checksum skb data. */
2629__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630 __wsum csum, const struct skb_checksum_ops *ops)
2631{
2632 int start = skb_headlen(skb);
2633 int i, copy = start - offset;
2634 struct sk_buff *frag_iter;
2635 int pos = 0;
2636
2637 /* Checksum header. */
2638 if (copy > 0) {
2639 if (copy > len)
2640 copy = len;
2641 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642 skb->data + offset, copy, csum);
2643 if ((len -= copy) == 0)
2644 return csum;
2645 offset += copy;
2646 pos = copy;
2647 }
2648
2649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650 int end;
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652
2653 WARN_ON(start > offset + len);
2654
2655 end = start + skb_frag_size(frag);
2656 if ((copy = end - offset) > 0) {
2657 u32 p_off, p_len, copied;
2658 struct page *p;
2659 __wsum csum2;
2660 u8 *vaddr;
2661
2662 if (copy > len)
2663 copy = len;
2664
2665 skb_frag_foreach_page(frag,
2666 skb_frag_off(frag) + offset - start,
2667 copy, p, p_off, p_len, copied) {
2668 vaddr = kmap_atomic(p);
2669 csum2 = INDIRECT_CALL_1(ops->update,
2670 csum_partial_ext,
2671 vaddr + p_off, p_len, 0);
2672 kunmap_atomic(vaddr);
2673 csum = INDIRECT_CALL_1(ops->combine,
2674 csum_block_add_ext, csum,
2675 csum2, pos, p_len);
2676 pos += p_len;
2677 }
2678
2679 if (!(len -= copy))
2680 return csum;
2681 offset += copy;
2682 }
2683 start = end;
2684 }
2685
2686 skb_walk_frags(skb, frag_iter) {
2687 int end;
2688
2689 WARN_ON(start > offset + len);
2690
2691 end = start + frag_iter->len;
2692 if ((copy = end - offset) > 0) {
2693 __wsum csum2;
2694 if (copy > len)
2695 copy = len;
2696 csum2 = __skb_checksum(frag_iter, offset - start,
2697 copy, 0, ops);
2698 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699 csum, csum2, pos, copy);
2700 if ((len -= copy) == 0)
2701 return csum;
2702 offset += copy;
2703 pos += copy;
2704 }
2705 start = end;
2706 }
2707 BUG_ON(len);
2708
2709 return csum;
2710}
2711EXPORT_SYMBOL(__skb_checksum);
2712
2713__wsum skb_checksum(const struct sk_buff *skb, int offset,
2714 int len, __wsum csum)
2715{
2716 const struct skb_checksum_ops ops = {
2717 .update = csum_partial_ext,
2718 .combine = csum_block_add_ext,
2719 };
2720
2721 return __skb_checksum(skb, offset, len, csum, &ops);
2722}
2723EXPORT_SYMBOL(skb_checksum);
2724
2725/* Both of above in one bottle. */
2726
2727__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728 u8 *to, int len, __wsum csum)
2729{
2730 int start = skb_headlen(skb);
2731 int i, copy = start - offset;
2732 struct sk_buff *frag_iter;
2733 int pos = 0;
2734
2735 /* Copy header. */
2736 if (copy > 0) {
2737 if (copy > len)
2738 copy = len;
2739 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740 copy, csum);
2741 if ((len -= copy) == 0)
2742 return csum;
2743 offset += copy;
2744 to += copy;
2745 pos = copy;
2746 }
2747
2748 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749 int end;
2750
2751 WARN_ON(start > offset + len);
2752
2753 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754 if ((copy = end - offset) > 0) {
2755 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 u32 p_off, p_len, copied;
2757 struct page *p;
2758 __wsum csum2;
2759 u8 *vaddr;
2760
2761 if (copy > len)
2762 copy = len;
2763
2764 skb_frag_foreach_page(frag,
2765 skb_frag_off(frag) + offset - start,
2766 copy, p, p_off, p_len, copied) {
2767 vaddr = kmap_atomic(p);
2768 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769 to + copied,
2770 p_len, 0);
2771 kunmap_atomic(vaddr);
2772 csum = csum_block_add(csum, csum2, pos);
2773 pos += p_len;
2774 }
2775
2776 if (!(len -= copy))
2777 return csum;
2778 offset += copy;
2779 to += copy;
2780 }
2781 start = end;
2782 }
2783
2784 skb_walk_frags(skb, frag_iter) {
2785 __wsum csum2;
2786 int end;
2787
2788 WARN_ON(start > offset + len);
2789
2790 end = start + frag_iter->len;
2791 if ((copy = end - offset) > 0) {
2792 if (copy > len)
2793 copy = len;
2794 csum2 = skb_copy_and_csum_bits(frag_iter,
2795 offset - start,
2796 to, copy, 0);
2797 csum = csum_block_add(csum, csum2, pos);
2798 if ((len -= copy) == 0)
2799 return csum;
2800 offset += copy;
2801 to += copy;
2802 pos += copy;
2803 }
2804 start = end;
2805 }
2806 BUG_ON(len);
2807 return csum;
2808}
2809EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810
2811__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812{
2813 __sum16 sum;
2814
2815 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816 /* See comments in __skb_checksum_complete(). */
2817 if (likely(!sum)) {
2818 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819 !skb->csum_complete_sw)
2820 netdev_rx_csum_fault(skb->dev, skb);
2821 }
2822 if (!skb_shared(skb))
2823 skb->csum_valid = !sum;
2824 return sum;
2825}
2826EXPORT_SYMBOL(__skb_checksum_complete_head);
2827
2828/* This function assumes skb->csum already holds pseudo header's checksum,
2829 * which has been changed from the hardware checksum, for example, by
2830 * __skb_checksum_validate_complete(). And, the original skb->csum must
2831 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832 *
2833 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 * shared.
2836 */
2837__sum16 __skb_checksum_complete(struct sk_buff *skb)
2838{
2839 __wsum csum;
2840 __sum16 sum;
2841
2842 csum = skb_checksum(skb, 0, skb->len, 0);
2843
2844 sum = csum_fold(csum_add(skb->csum, csum));
2845 /* This check is inverted, because we already knew the hardware
2846 * checksum is invalid before calling this function. So, if the
2847 * re-computed checksum is valid instead, then we have a mismatch
2848 * between the original skb->csum and skb_checksum(). This means either
2849 * the original hardware checksum is incorrect or we screw up skb->csum
2850 * when moving skb->data around.
2851 */
2852 if (likely(!sum)) {
2853 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854 !skb->csum_complete_sw)
2855 netdev_rx_csum_fault(skb->dev, skb);
2856 }
2857
2858 if (!skb_shared(skb)) {
2859 /* Save full packet checksum */
2860 skb->csum = csum;
2861 skb->ip_summed = CHECKSUM_COMPLETE;
2862 skb->csum_complete_sw = 1;
2863 skb->csum_valid = !sum;
2864 }
2865
2866 return sum;
2867}
2868EXPORT_SYMBOL(__skb_checksum_complete);
2869
2870static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871{
2872 net_warn_ratelimited(
2873 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2874 __func__);
2875 return 0;
2876}
2877
2878static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879 int offset, int len)
2880{
2881 net_warn_ratelimited(
2882 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2883 __func__);
2884 return 0;
2885}
2886
2887static const struct skb_checksum_ops default_crc32c_ops = {
2888 .update = warn_crc32c_csum_update,
2889 .combine = warn_crc32c_csum_combine,
2890};
2891
2892const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893 &default_crc32c_ops;
2894EXPORT_SYMBOL(crc32c_csum_stub);
2895
2896 /**
2897 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898 * @from: source buffer
2899 *
2900 * Calculates the amount of linear headroom needed in the 'to' skb passed
2901 * into skb_zerocopy().
2902 */
2903unsigned int
2904skb_zerocopy_headlen(const struct sk_buff *from)
2905{
2906 unsigned int hlen = 0;
2907
2908 if (!from->head_frag ||
2909 skb_headlen(from) < L1_CACHE_BYTES ||
2910 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911 hlen = skb_headlen(from);
2912
2913 if (skb_has_frag_list(from))
2914 hlen = from->len;
2915
2916 return hlen;
2917}
2918EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919
2920/**
2921 * skb_zerocopy - Zero copy skb to skb
2922 * @to: destination buffer
2923 * @from: source buffer
2924 * @len: number of bytes to copy from source buffer
2925 * @hlen: size of linear headroom in destination buffer
2926 *
2927 * Copies up to `len` bytes from `from` to `to` by creating references
2928 * to the frags in the source buffer.
2929 *
2930 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931 * headroom in the `to` buffer.
2932 *
2933 * Return value:
2934 * 0: everything is OK
2935 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2936 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 */
2938int
2939skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940{
2941 int i, j = 0;
2942 int plen = 0; /* length of skb->head fragment */
2943 int ret;
2944 struct page *page;
2945 unsigned int offset;
2946
2947 BUG_ON(!from->head_frag && !hlen);
2948
2949 /* dont bother with small payloads */
2950 if (len <= skb_tailroom(to))
2951 return skb_copy_bits(from, 0, skb_put(to, len), len);
2952
2953 if (hlen) {
2954 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955 if (unlikely(ret))
2956 return ret;
2957 len -= hlen;
2958 } else {
2959 plen = min_t(int, skb_headlen(from), len);
2960 if (plen) {
2961 page = virt_to_head_page(from->head);
2962 offset = from->data - (unsigned char *)page_address(page);
2963 __skb_fill_page_desc(to, 0, page, offset, plen);
2964 get_page(page);
2965 j = 1;
2966 len -= plen;
2967 }
2968 }
2969
2970 to->truesize += len + plen;
2971 to->len += len + plen;
2972 to->data_len += len + plen;
2973
2974 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975 skb_tx_error(from);
2976 return -ENOMEM;
2977 }
2978 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979
2980 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981 int size;
2982
2983 if (!len)
2984 break;
2985 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987 len);
2988 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989 len -= size;
2990 skb_frag_ref(to, j);
2991 j++;
2992 }
2993 skb_shinfo(to)->nr_frags = j;
2994
2995 return 0;
2996}
2997EXPORT_SYMBOL_GPL(skb_zerocopy);
2998
2999void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000{
3001 __wsum csum;
3002 long csstart;
3003
3004 if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 csstart = skb_checksum_start_offset(skb);
3006 else
3007 csstart = skb_headlen(skb);
3008
3009 BUG_ON(csstart > skb_headlen(skb));
3010
3011 skb_copy_from_linear_data(skb, to, csstart);
3012
3013 csum = 0;
3014 if (csstart != skb->len)
3015 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016 skb->len - csstart, 0);
3017
3018 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019 long csstuff = csstart + skb->csum_offset;
3020
3021 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022 }
3023}
3024EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025
3026/**
3027 * skb_dequeue - remove from the head of the queue
3028 * @list: list to dequeue from
3029 *
3030 * Remove the head of the list. The list lock is taken so the function
3031 * may be used safely with other locking list functions. The head item is
3032 * returned or %NULL if the list is empty.
3033 */
3034
3035struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036{
3037 unsigned long flags;
3038 struct sk_buff *result;
3039
3040 spin_lock_irqsave(&list->lock, flags);
3041 result = __skb_dequeue(list);
3042 spin_unlock_irqrestore(&list->lock, flags);
3043 return result;
3044}
3045EXPORT_SYMBOL(skb_dequeue);
3046
3047/**
3048 * skb_dequeue_tail - remove from the tail of the queue
3049 * @list: list to dequeue from
3050 *
3051 * Remove the tail of the list. The list lock is taken so the function
3052 * may be used safely with other locking list functions. The tail item is
3053 * returned or %NULL if the list is empty.
3054 */
3055struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056{
3057 unsigned long flags;
3058 struct sk_buff *result;
3059
3060 spin_lock_irqsave(&list->lock, flags);
3061 result = __skb_dequeue_tail(list);
3062 spin_unlock_irqrestore(&list->lock, flags);
3063 return result;
3064}
3065EXPORT_SYMBOL(skb_dequeue_tail);
3066
3067/**
3068 * skb_queue_purge - empty a list
3069 * @list: list to empty
3070 *
3071 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3072 * the list and one reference dropped. This function takes the list
3073 * lock and is atomic with respect to other list locking functions.
3074 */
3075void skb_queue_purge(struct sk_buff_head *list)
3076{
3077 struct sk_buff *skb;
3078 while ((skb = skb_dequeue(list)) != NULL)
3079 kfree_skb(skb);
3080}
3081EXPORT_SYMBOL(skb_queue_purge);
3082
3083/**
3084 * skb_rbtree_purge - empty a skb rbtree
3085 * @root: root of the rbtree to empty
3086 * Return value: the sum of truesizes of all purged skbs.
3087 *
3088 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089 * the list and one reference dropped. This function does not take
3090 * any lock. Synchronization should be handled by the caller (e.g., TCP
3091 * out-of-order queue is protected by the socket lock).
3092 */
3093unsigned int skb_rbtree_purge(struct rb_root *root)
3094{
3095 struct rb_node *p = rb_first(root);
3096 unsigned int sum = 0;
3097
3098 while (p) {
3099 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100
3101 p = rb_next(p);
3102 rb_erase(&skb->rbnode, root);
3103 sum += skb->truesize;
3104 kfree_skb(skb);
3105 }
3106 return sum;
3107}
3108
3109/**
3110 * skb_queue_head - queue a buffer at the list head
3111 * @list: list to use
3112 * @newsk: buffer to queue
3113 *
3114 * Queue a buffer at the start of the list. This function takes the
3115 * list lock and can be used safely with other locking &sk_buff functions
3116 * safely.
3117 *
3118 * A buffer cannot be placed on two lists at the same time.
3119 */
3120void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121{
3122 unsigned long flags;
3123
3124 spin_lock_irqsave(&list->lock, flags);
3125 __skb_queue_head(list, newsk);
3126 spin_unlock_irqrestore(&list->lock, flags);
3127}
3128EXPORT_SYMBOL(skb_queue_head);
3129
3130/**
3131 * skb_queue_tail - queue a buffer at the list tail
3132 * @list: list to use
3133 * @newsk: buffer to queue
3134 *
3135 * Queue a buffer at the tail of the list. This function takes the
3136 * list lock and can be used safely with other locking &sk_buff functions
3137 * safely.
3138 *
3139 * A buffer cannot be placed on two lists at the same time.
3140 */
3141void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142{
3143 unsigned long flags;
3144
3145 spin_lock_irqsave(&list->lock, flags);
3146 __skb_queue_tail(list, newsk);
3147 spin_unlock_irqrestore(&list->lock, flags);
3148}
3149EXPORT_SYMBOL(skb_queue_tail);
3150
3151/**
3152 * skb_unlink - remove a buffer from a list
3153 * @skb: buffer to remove
3154 * @list: list to use
3155 *
3156 * Remove a packet from a list. The list locks are taken and this
3157 * function is atomic with respect to other list locked calls
3158 *
3159 * You must know what list the SKB is on.
3160 */
3161void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162{
3163 unsigned long flags;
3164
3165 spin_lock_irqsave(&list->lock, flags);
3166 __skb_unlink(skb, list);
3167 spin_unlock_irqrestore(&list->lock, flags);
3168}
3169EXPORT_SYMBOL(skb_unlink);
3170
3171/**
3172 * skb_append - append a buffer
3173 * @old: buffer to insert after
3174 * @newsk: buffer to insert
3175 * @list: list to use
3176 *
3177 * Place a packet after a given packet in a list. The list locks are taken
3178 * and this function is atomic with respect to other list locked calls.
3179 * A buffer cannot be placed on two lists at the same time.
3180 */
3181void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182{
3183 unsigned long flags;
3184
3185 spin_lock_irqsave(&list->lock, flags);
3186 __skb_queue_after(list, old, newsk);
3187 spin_unlock_irqrestore(&list->lock, flags);
3188}
3189EXPORT_SYMBOL(skb_append);
3190
3191static inline void skb_split_inside_header(struct sk_buff *skb,
3192 struct sk_buff* skb1,
3193 const u32 len, const int pos)
3194{
3195 int i;
3196
3197 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198 pos - len);
3199 /* And move data appendix as is. */
3200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202
3203 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204 skb_shinfo(skb)->nr_frags = 0;
3205 skb1->data_len = skb->data_len;
3206 skb1->len += skb1->data_len;
3207 skb->data_len = 0;
3208 skb->len = len;
3209 skb_set_tail_pointer(skb, len);
3210}
3211
3212static inline void skb_split_no_header(struct sk_buff *skb,
3213 struct sk_buff* skb1,
3214 const u32 len, int pos)
3215{
3216 int i, k = 0;
3217 const int nfrags = skb_shinfo(skb)->nr_frags;
3218
3219 skb_shinfo(skb)->nr_frags = 0;
3220 skb1->len = skb1->data_len = skb->len - len;
3221 skb->len = len;
3222 skb->data_len = len - pos;
3223
3224 for (i = 0; i < nfrags; i++) {
3225 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226
3227 if (pos + size > len) {
3228 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229
3230 if (pos < len) {
3231 /* Split frag.
3232 * We have two variants in this case:
3233 * 1. Move all the frag to the second
3234 * part, if it is possible. F.e.
3235 * this approach is mandatory for TUX,
3236 * where splitting is expensive.
3237 * 2. Split is accurately. We make this.
3238 */
3239 skb_frag_ref(skb, i);
3240 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243 skb_shinfo(skb)->nr_frags++;
3244 }
3245 k++;
3246 } else
3247 skb_shinfo(skb)->nr_frags++;
3248 pos += size;
3249 }
3250 skb_shinfo(skb1)->nr_frags = k;
3251}
3252
3253/**
3254 * skb_split - Split fragmented skb to two parts at length len.
3255 * @skb: the buffer to split
3256 * @skb1: the buffer to receive the second part
3257 * @len: new length for skb
3258 */
3259void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260{
3261 int pos = skb_headlen(skb);
3262
3263 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264 SKBTX_SHARED_FRAG;
3265 skb_zerocopy_clone(skb1, skb, 0);
3266 if (len < pos) /* Split line is inside header. */
3267 skb_split_inside_header(skb, skb1, len, pos);
3268 else /* Second chunk has no header, nothing to copy. */
3269 skb_split_no_header(skb, skb1, len, pos);
3270}
3271EXPORT_SYMBOL(skb_split);
3272
3273/* Shifting from/to a cloned skb is a no-go.
3274 *
3275 * Caller cannot keep skb_shinfo related pointers past calling here!
3276 */
3277static int skb_prepare_for_shift(struct sk_buff *skb)
3278{
3279 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
3282/**
3283 * skb_shift - Shifts paged data partially from skb to another
3284 * @tgt: buffer into which tail data gets added
3285 * @skb: buffer from which the paged data comes from
3286 * @shiftlen: shift up to this many bytes
3287 *
3288 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290 * It's up to caller to free skb if everything was shifted.
3291 *
3292 * If @tgt runs out of frags, the whole operation is aborted.
3293 *
3294 * Skb cannot include anything else but paged data while tgt is allowed
3295 * to have non-paged data as well.
3296 *
3297 * TODO: full sized shift could be optimized but that would need
3298 * specialized skb free'er to handle frags without up-to-date nr_frags.
3299 */
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301{
3302 int from, to, merge, todo;
3303 skb_frag_t *fragfrom, *fragto;
3304
3305 BUG_ON(shiftlen > skb->len);
3306
3307 if (skb_headlen(skb))
3308 return 0;
3309 if (skb_zcopy(tgt) || skb_zcopy(skb))
3310 return 0;
3311
3312 todo = shiftlen;
3313 from = 0;
3314 to = skb_shinfo(tgt)->nr_frags;
3315 fragfrom = &skb_shinfo(skb)->frags[from];
3316
3317 /* Actual merge is delayed until the point when we know we can
3318 * commit all, so that we don't have to undo partial changes
3319 */
3320 if (!to ||
3321 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322 skb_frag_off(fragfrom))) {
3323 merge = -1;
3324 } else {
3325 merge = to - 1;
3326
3327 todo -= skb_frag_size(fragfrom);
3328 if (todo < 0) {
3329 if (skb_prepare_for_shift(skb) ||
3330 skb_prepare_for_shift(tgt))
3331 return 0;
3332
3333 /* All previous frag pointers might be stale! */
3334 fragfrom = &skb_shinfo(skb)->frags[from];
3335 fragto = &skb_shinfo(tgt)->frags[merge];
3336
3337 skb_frag_size_add(fragto, shiftlen);
3338 skb_frag_size_sub(fragfrom, shiftlen);
3339 skb_frag_off_add(fragfrom, shiftlen);
3340
3341 goto onlymerged;
3342 }
3343
3344 from++;
3345 }
3346
3347 /* Skip full, not-fitting skb to avoid expensive operations */
3348 if ((shiftlen == skb->len) &&
3349 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350 return 0;
3351
3352 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353 return 0;
3354
3355 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356 if (to == MAX_SKB_FRAGS)
3357 return 0;
3358
3359 fragfrom = &skb_shinfo(skb)->frags[from];
3360 fragto = &skb_shinfo(tgt)->frags[to];
3361
3362 if (todo >= skb_frag_size(fragfrom)) {
3363 *fragto = *fragfrom;
3364 todo -= skb_frag_size(fragfrom);
3365 from++;
3366 to++;
3367
3368 } else {
3369 __skb_frag_ref(fragfrom);
3370 skb_frag_page_copy(fragto, fragfrom);
3371 skb_frag_off_copy(fragto, fragfrom);
3372 skb_frag_size_set(fragto, todo);
3373
3374 skb_frag_off_add(fragfrom, todo);
3375 skb_frag_size_sub(fragfrom, todo);
3376 todo = 0;
3377
3378 to++;
3379 break;
3380 }
3381 }
3382
3383 /* Ready to "commit" this state change to tgt */
3384 skb_shinfo(tgt)->nr_frags = to;
3385
3386 if (merge >= 0) {
3387 fragfrom = &skb_shinfo(skb)->frags[0];
3388 fragto = &skb_shinfo(tgt)->frags[merge];
3389
3390 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391 __skb_frag_unref(fragfrom);
3392 }
3393
3394 /* Reposition in the original skb */
3395 to = 0;
3396 while (from < skb_shinfo(skb)->nr_frags)
3397 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398 skb_shinfo(skb)->nr_frags = to;
3399
3400 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401
3402onlymerged:
3403 /* Most likely the tgt won't ever need its checksum anymore, skb on
3404 * the other hand might need it if it needs to be resent
3405 */
3406 tgt->ip_summed = CHECKSUM_PARTIAL;
3407 skb->ip_summed = CHECKSUM_PARTIAL;
3408
3409 /* Yak, is it really working this way? Some helper please? */
3410 skb->len -= shiftlen;
3411 skb->data_len -= shiftlen;
3412 skb->truesize -= shiftlen;
3413 tgt->len += shiftlen;
3414 tgt->data_len += shiftlen;
3415 tgt->truesize += shiftlen;
3416
3417 return shiftlen;
3418}
3419
3420/**
3421 * skb_prepare_seq_read - Prepare a sequential read of skb data
3422 * @skb: the buffer to read
3423 * @from: lower offset of data to be read
3424 * @to: upper offset of data to be read
3425 * @st: state variable
3426 *
3427 * Initializes the specified state variable. Must be called before
3428 * invoking skb_seq_read() for the first time.
3429 */
3430void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431 unsigned int to, struct skb_seq_state *st)
3432{
3433 st->lower_offset = from;
3434 st->upper_offset = to;
3435 st->root_skb = st->cur_skb = skb;
3436 st->frag_idx = st->stepped_offset = 0;
3437 st->frag_data = NULL;
3438}
3439EXPORT_SYMBOL(skb_prepare_seq_read);
3440
3441/**
3442 * skb_seq_read - Sequentially read skb data
3443 * @consumed: number of bytes consumed by the caller so far
3444 * @data: destination pointer for data to be returned
3445 * @st: state variable
3446 *
3447 * Reads a block of skb data at @consumed relative to the
3448 * lower offset specified to skb_prepare_seq_read(). Assigns
3449 * the head of the data block to @data and returns the length
3450 * of the block or 0 if the end of the skb data or the upper
3451 * offset has been reached.
3452 *
3453 * The caller is not required to consume all of the data
3454 * returned, i.e. @consumed is typically set to the number
3455 * of bytes already consumed and the next call to
3456 * skb_seq_read() will return the remaining part of the block.
3457 *
3458 * Note 1: The size of each block of data returned can be arbitrary,
3459 * this limitation is the cost for zerocopy sequential
3460 * reads of potentially non linear data.
3461 *
3462 * Note 2: Fragment lists within fragments are not implemented
3463 * at the moment, state->root_skb could be replaced with
3464 * a stack for this purpose.
3465 */
3466unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467 struct skb_seq_state *st)
3468{
3469 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470 skb_frag_t *frag;
3471
3472 if (unlikely(abs_offset >= st->upper_offset)) {
3473 if (st->frag_data) {
3474 kunmap_atomic(st->frag_data);
3475 st->frag_data = NULL;
3476 }
3477 return 0;
3478 }
3479
3480next_skb:
3481 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482
3483 if (abs_offset < block_limit && !st->frag_data) {
3484 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485 return block_limit - abs_offset;
3486 }
3487
3488 if (st->frag_idx == 0 && !st->frag_data)
3489 st->stepped_offset += skb_headlen(st->cur_skb);
3490
3491 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493 block_limit = skb_frag_size(frag) + st->stepped_offset;
3494
3495 if (abs_offset < block_limit) {
3496 if (!st->frag_data)
3497 st->frag_data = kmap_atomic(skb_frag_page(frag));
3498
3499 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500 (abs_offset - st->stepped_offset);
3501
3502 return block_limit - abs_offset;
3503 }
3504
3505 if (st->frag_data) {
3506 kunmap_atomic(st->frag_data);
3507 st->frag_data = NULL;
3508 }
3509
3510 st->frag_idx++;
3511 st->stepped_offset += skb_frag_size(frag);
3512 }
3513
3514 if (st->frag_data) {
3515 kunmap_atomic(st->frag_data);
3516 st->frag_data = NULL;
3517 }
3518
3519 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521 st->frag_idx = 0;
3522 goto next_skb;
3523 } else if (st->cur_skb->next) {
3524 st->cur_skb = st->cur_skb->next;
3525 st->frag_idx = 0;
3526 goto next_skb;
3527 }
3528
3529 return 0;
3530}
3531EXPORT_SYMBOL(skb_seq_read);
3532
3533/**
3534 * skb_abort_seq_read - Abort a sequential read of skb data
3535 * @st: state variable
3536 *
3537 * Must be called if skb_seq_read() was not called until it
3538 * returned 0.
3539 */
3540void skb_abort_seq_read(struct skb_seq_state *st)
3541{
3542 if (st->frag_data)
3543 kunmap_atomic(st->frag_data);
3544}
3545EXPORT_SYMBOL(skb_abort_seq_read);
3546
3547#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3548
3549static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550 struct ts_config *conf,
3551 struct ts_state *state)
3552{
3553 return skb_seq_read(offset, text, TS_SKB_CB(state));
3554}
3555
3556static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557{
3558 skb_abort_seq_read(TS_SKB_CB(state));
3559}
3560
3561/**
3562 * skb_find_text - Find a text pattern in skb data
3563 * @skb: the buffer to look in
3564 * @from: search offset
3565 * @to: search limit
3566 * @config: textsearch configuration
3567 *
3568 * Finds a pattern in the skb data according to the specified
3569 * textsearch configuration. Use textsearch_next() to retrieve
3570 * subsequent occurrences of the pattern. Returns the offset
3571 * to the first occurrence or UINT_MAX if no match was found.
3572 */
3573unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574 unsigned int to, struct ts_config *config)
3575{
3576 struct ts_state state;
3577 unsigned int ret;
3578
3579 config->get_next_block = skb_ts_get_next_block;
3580 config->finish = skb_ts_finish;
3581
3582 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583
3584 ret = textsearch_find(config, &state);
3585 return (ret <= to - from ? ret : UINT_MAX);
3586}
3587EXPORT_SYMBOL(skb_find_text);
3588
3589int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590 int offset, size_t size)
3591{
3592 int i = skb_shinfo(skb)->nr_frags;
3593
3594 if (skb_can_coalesce(skb, i, page, offset)) {
3595 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596 } else if (i < MAX_SKB_FRAGS) {
3597 get_page(page);
3598 skb_fill_page_desc(skb, i, page, offset, size);
3599 } else {
3600 return -EMSGSIZE;
3601 }
3602
3603 return 0;
3604}
3605EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606
3607/**
3608 * skb_pull_rcsum - pull skb and update receive checksum
3609 * @skb: buffer to update
3610 * @len: length of data pulled
3611 *
3612 * This function performs an skb_pull on the packet and updates
3613 * the CHECKSUM_COMPLETE checksum. It should be used on
3614 * receive path processing instead of skb_pull unless you know
3615 * that the checksum difference is zero (e.g., a valid IP header)
3616 * or you are setting ip_summed to CHECKSUM_NONE.
3617 */
3618void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619{
3620 unsigned char *data = skb->data;
3621
3622 BUG_ON(len > skb->len);
3623 __skb_pull(skb, len);
3624 skb_postpull_rcsum(skb, data, len);
3625 return skb->data;
3626}
3627EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628
3629static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630{
3631 skb_frag_t head_frag;
3632 struct page *page;
3633
3634 page = virt_to_head_page(frag_skb->head);
3635 __skb_frag_set_page(&head_frag, page);
3636 skb_frag_off_set(&head_frag, frag_skb->data -
3637 (unsigned char *)page_address(page));
3638 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639 return head_frag;
3640}
3641
3642struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643 netdev_features_t features,
3644 unsigned int offset)
3645{
3646 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648 unsigned int delta_truesize = 0;
3649 unsigned int delta_len = 0;
3650 struct sk_buff *tail = NULL;
3651 struct sk_buff *nskb;
3652
3653 skb_push(skb, -skb_network_offset(skb) + offset);
3654
3655 skb_shinfo(skb)->frag_list = NULL;
3656
3657 do {
3658 nskb = list_skb;
3659 list_skb = list_skb->next;
3660
3661 if (!tail)
3662 skb->next = nskb;
3663 else
3664 tail->next = nskb;
3665
3666 tail = nskb;
3667
3668 delta_len += nskb->len;
3669 delta_truesize += nskb->truesize;
3670
3671 skb_push(nskb, -skb_network_offset(nskb) + offset);
3672
3673 skb_release_head_state(nskb);
3674 __copy_skb_header(nskb, skb);
3675
3676 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3677 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3678 nskb->data - tnl_hlen,
3679 offset + tnl_hlen);
3680
3681 if (skb_needs_linearize(nskb, features) &&
3682 __skb_linearize(nskb))
3683 goto err_linearize;
3684
3685 } while (list_skb);
3686
3687 skb->truesize = skb->truesize - delta_truesize;
3688 skb->data_len = skb->data_len - delta_len;
3689 skb->len = skb->len - delta_len;
3690
3691 skb_gso_reset(skb);
3692
3693 skb->prev = tail;
3694
3695 if (skb_needs_linearize(skb, features) &&
3696 __skb_linearize(skb))
3697 goto err_linearize;
3698
3699 skb_get(skb);
3700
3701 return skb;
3702
3703err_linearize:
3704 kfree_skb_list(skb->next);
3705 skb->next = NULL;
3706 return ERR_PTR(-ENOMEM);
3707}
3708EXPORT_SYMBOL_GPL(skb_segment_list);
3709
3710int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3711{
3712 if (unlikely(p->len + skb->len >= 65536))
3713 return -E2BIG;
3714
3715 if (NAPI_GRO_CB(p)->last == p)
3716 skb_shinfo(p)->frag_list = skb;
3717 else
3718 NAPI_GRO_CB(p)->last->next = skb;
3719
3720 skb_pull(skb, skb_gro_offset(skb));
3721
3722 NAPI_GRO_CB(p)->last = skb;
3723 NAPI_GRO_CB(p)->count++;
3724 p->data_len += skb->len;
3725 p->truesize += skb->truesize;
3726 p->len += skb->len;
3727
3728 NAPI_GRO_CB(skb)->same_flow = 1;
3729
3730 return 0;
3731}
3732
3733/**
3734 * skb_segment - Perform protocol segmentation on skb.
3735 * @head_skb: buffer to segment
3736 * @features: features for the output path (see dev->features)
3737 *
3738 * This function performs segmentation on the given skb. It returns
3739 * a pointer to the first in a list of new skbs for the segments.
3740 * In case of error it returns ERR_PTR(err).
3741 */
3742struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743 netdev_features_t features)
3744{
3745 struct sk_buff *segs = NULL;
3746 struct sk_buff *tail = NULL;
3747 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751 struct sk_buff *frag_skb = head_skb;
3752 unsigned int offset = doffset;
3753 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754 unsigned int partial_segs = 0;
3755 unsigned int headroom;
3756 unsigned int len = head_skb->len;
3757 __be16 proto;
3758 bool csum, sg;
3759 int nfrags = skb_shinfo(head_skb)->nr_frags;
3760 int err = -ENOMEM;
3761 int i = 0;
3762 int pos;
3763
3764 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766 /* gso_size is untrusted, and we have a frag_list with a linear
3767 * non head_frag head.
3768 *
3769 * (we assume checking the first list_skb member suffices;
3770 * i.e if either of the list_skb members have non head_frag
3771 * head, then the first one has too).
3772 *
3773 * If head_skb's headlen does not fit requested gso_size, it
3774 * means that the frag_list members do NOT terminate on exact
3775 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776 * sharing. Therefore we must fallback to copying the frag_list
3777 * skbs; we do so by disabling SG.
3778 */
3779 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780 features &= ~NETIF_F_SG;
3781 }
3782
3783 __skb_push(head_skb, doffset);
3784 proto = skb_network_protocol(head_skb, NULL);
3785 if (unlikely(!proto))
3786 return ERR_PTR(-EINVAL);
3787
3788 sg = !!(features & NETIF_F_SG);
3789 csum = !!can_checksum_protocol(features, proto);
3790
3791 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3792 if (!(features & NETIF_F_GSO_PARTIAL)) {
3793 struct sk_buff *iter;
3794 unsigned int frag_len;
3795
3796 if (!list_skb ||
3797 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798 goto normal;
3799
3800 /* If we get here then all the required
3801 * GSO features except frag_list are supported.
3802 * Try to split the SKB to multiple GSO SKBs
3803 * with no frag_list.
3804 * Currently we can do that only when the buffers don't
3805 * have a linear part and all the buffers except
3806 * the last are of the same length.
3807 */
3808 frag_len = list_skb->len;
3809 skb_walk_frags(head_skb, iter) {
3810 if (frag_len != iter->len && iter->next)
3811 goto normal;
3812 if (skb_headlen(iter) && !iter->head_frag)
3813 goto normal;
3814
3815 len -= iter->len;
3816 }
3817
3818 if (len != frag_len)
3819 goto normal;
3820 }
3821
3822 /* GSO partial only requires that we trim off any excess that
3823 * doesn't fit into an MSS sized block, so take care of that
3824 * now.
3825 */
3826 partial_segs = len / mss;
3827 if (partial_segs > 1)
3828 mss *= partial_segs;
3829 else
3830 partial_segs = 0;
3831 }
3832
3833normal:
3834 headroom = skb_headroom(head_skb);
3835 pos = skb_headlen(head_skb);
3836
3837 do {
3838 struct sk_buff *nskb;
3839 skb_frag_t *nskb_frag;
3840 int hsize;
3841 int size;
3842
3843 if (unlikely(mss == GSO_BY_FRAGS)) {
3844 len = list_skb->len;
3845 } else {
3846 len = head_skb->len - offset;
3847 if (len > mss)
3848 len = mss;
3849 }
3850
3851 hsize = skb_headlen(head_skb) - offset;
3852 if (hsize < 0)
3853 hsize = 0;
3854 if (hsize > len || !sg)
3855 hsize = len;
3856
3857 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858 (skb_headlen(list_skb) == len || sg)) {
3859 BUG_ON(skb_headlen(list_skb) > len);
3860
3861 i = 0;
3862 nfrags = skb_shinfo(list_skb)->nr_frags;
3863 frag = skb_shinfo(list_skb)->frags;
3864 frag_skb = list_skb;
3865 pos += skb_headlen(list_skb);
3866
3867 while (pos < offset + len) {
3868 BUG_ON(i >= nfrags);
3869
3870 size = skb_frag_size(frag);
3871 if (pos + size > offset + len)
3872 break;
3873
3874 i++;
3875 pos += size;
3876 frag++;
3877 }
3878
3879 nskb = skb_clone(list_skb, GFP_ATOMIC);
3880 list_skb = list_skb->next;
3881
3882 if (unlikely(!nskb))
3883 goto err;
3884
3885 if (unlikely(pskb_trim(nskb, len))) {
3886 kfree_skb(nskb);
3887 goto err;
3888 }
3889
3890 hsize = skb_end_offset(nskb);
3891 if (skb_cow_head(nskb, doffset + headroom)) {
3892 kfree_skb(nskb);
3893 goto err;
3894 }
3895
3896 nskb->truesize += skb_end_offset(nskb) - hsize;
3897 skb_release_head_state(nskb);
3898 __skb_push(nskb, doffset);
3899 } else {
3900 nskb = __alloc_skb(hsize + doffset + headroom,
3901 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902 NUMA_NO_NODE);
3903
3904 if (unlikely(!nskb))
3905 goto err;
3906
3907 skb_reserve(nskb, headroom);
3908 __skb_put(nskb, doffset);
3909 }
3910
3911 if (segs)
3912 tail->next = nskb;
3913 else
3914 segs = nskb;
3915 tail = nskb;
3916
3917 __copy_skb_header(nskb, head_skb);
3918
3919 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920 skb_reset_mac_len(nskb);
3921
3922 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923 nskb->data - tnl_hlen,
3924 doffset + tnl_hlen);
3925
3926 if (nskb->len == len + doffset)
3927 goto perform_csum_check;
3928
3929 if (!sg) {
3930 if (!csum) {
3931 if (!nskb->remcsum_offload)
3932 nskb->ip_summed = CHECKSUM_NONE;
3933 SKB_GSO_CB(nskb)->csum =
3934 skb_copy_and_csum_bits(head_skb, offset,
3935 skb_put(nskb,
3936 len),
3937 len, 0);
3938 SKB_GSO_CB(nskb)->csum_start =
3939 skb_headroom(nskb) + doffset;
3940 } else {
3941 skb_copy_bits(head_skb, offset,
3942 skb_put(nskb, len),
3943 len);
3944 }
3945 continue;
3946 }
3947
3948 nskb_frag = skb_shinfo(nskb)->frags;
3949
3950 skb_copy_from_linear_data_offset(head_skb, offset,
3951 skb_put(nskb, hsize), hsize);
3952
3953 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954 SKBTX_SHARED_FRAG;
3955
3956 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958 goto err;
3959
3960 while (pos < offset + len) {
3961 if (i >= nfrags) {
3962 i = 0;
3963 nfrags = skb_shinfo(list_skb)->nr_frags;
3964 frag = skb_shinfo(list_skb)->frags;
3965 frag_skb = list_skb;
3966 if (!skb_headlen(list_skb)) {
3967 BUG_ON(!nfrags);
3968 } else {
3969 BUG_ON(!list_skb->head_frag);
3970
3971 /* to make room for head_frag. */
3972 i--;
3973 frag--;
3974 }
3975 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976 skb_zerocopy_clone(nskb, frag_skb,
3977 GFP_ATOMIC))
3978 goto err;
3979
3980 list_skb = list_skb->next;
3981 }
3982
3983 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984 MAX_SKB_FRAGS)) {
3985 net_warn_ratelimited(
3986 "skb_segment: too many frags: %u %u\n",
3987 pos, mss);
3988 err = -EINVAL;
3989 goto err;
3990 }
3991
3992 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993 __skb_frag_ref(nskb_frag);
3994 size = skb_frag_size(nskb_frag);
3995
3996 if (pos < offset) {
3997 skb_frag_off_add(nskb_frag, offset - pos);
3998 skb_frag_size_sub(nskb_frag, offset - pos);
3999 }
4000
4001 skb_shinfo(nskb)->nr_frags++;
4002
4003 if (pos + size <= offset + len) {
4004 i++;
4005 frag++;
4006 pos += size;
4007 } else {
4008 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009 goto skip_fraglist;
4010 }
4011
4012 nskb_frag++;
4013 }
4014
4015skip_fraglist:
4016 nskb->data_len = len - hsize;
4017 nskb->len += nskb->data_len;
4018 nskb->truesize += nskb->data_len;
4019
4020perform_csum_check:
4021 if (!csum) {
4022 if (skb_has_shared_frag(nskb) &&
4023 __skb_linearize(nskb))
4024 goto err;
4025
4026 if (!nskb->remcsum_offload)
4027 nskb->ip_summed = CHECKSUM_NONE;
4028 SKB_GSO_CB(nskb)->csum =
4029 skb_checksum(nskb, doffset,
4030 nskb->len - doffset, 0);
4031 SKB_GSO_CB(nskb)->csum_start =
4032 skb_headroom(nskb) + doffset;
4033 }
4034 } while ((offset += len) < head_skb->len);
4035
4036 /* Some callers want to get the end of the list.
4037 * Put it in segs->prev to avoid walking the list.
4038 * (see validate_xmit_skb_list() for example)
4039 */
4040 segs->prev = tail;
4041
4042 if (partial_segs) {
4043 struct sk_buff *iter;
4044 int type = skb_shinfo(head_skb)->gso_type;
4045 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4046
4047 /* Update type to add partial and then remove dodgy if set */
4048 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049 type &= ~SKB_GSO_DODGY;
4050
4051 /* Update GSO info and prepare to start updating headers on
4052 * our way back down the stack of protocols.
4053 */
4054 for (iter = segs; iter; iter = iter->next) {
4055 skb_shinfo(iter)->gso_size = gso_size;
4056 skb_shinfo(iter)->gso_segs = partial_segs;
4057 skb_shinfo(iter)->gso_type = type;
4058 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4059 }
4060
4061 if (tail->len - doffset <= gso_size)
4062 skb_shinfo(tail)->gso_size = 0;
4063 else if (tail != segs)
4064 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4065 }
4066
4067 /* Following permits correct backpressure, for protocols
4068 * using skb_set_owner_w().
4069 * Idea is to tranfert ownership from head_skb to last segment.
4070 */
4071 if (head_skb->destructor == sock_wfree) {
4072 swap(tail->truesize, head_skb->truesize);
4073 swap(tail->destructor, head_skb->destructor);
4074 swap(tail->sk, head_skb->sk);
4075 }
4076 return segs;
4077
4078err:
4079 kfree_skb_list(segs);
4080 return ERR_PTR(err);
4081}
4082EXPORT_SYMBOL_GPL(skb_segment);
4083
4084int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4085{
4086 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4087 unsigned int offset = skb_gro_offset(skb);
4088 unsigned int headlen = skb_headlen(skb);
4089 unsigned int len = skb_gro_len(skb);
4090 unsigned int delta_truesize;
4091 struct sk_buff *lp;
4092
4093 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094 return -E2BIG;
4095
4096 lp = NAPI_GRO_CB(p)->last;
4097 pinfo = skb_shinfo(lp);
4098
4099 if (headlen <= offset) {
4100 skb_frag_t *frag;
4101 skb_frag_t *frag2;
4102 int i = skbinfo->nr_frags;
4103 int nr_frags = pinfo->nr_frags + i;
4104
4105 if (nr_frags > MAX_SKB_FRAGS)
4106 goto merge;
4107
4108 offset -= headlen;
4109 pinfo->nr_frags = nr_frags;
4110 skbinfo->nr_frags = 0;
4111
4112 frag = pinfo->frags + nr_frags;
4113 frag2 = skbinfo->frags + i;
4114 do {
4115 *--frag = *--frag2;
4116 } while (--i);
4117
4118 skb_frag_off_add(frag, offset);
4119 skb_frag_size_sub(frag, offset);
4120
4121 /* all fragments truesize : remove (head size + sk_buff) */
4122 delta_truesize = skb->truesize -
4123 SKB_TRUESIZE(skb_end_offset(skb));
4124
4125 skb->truesize -= skb->data_len;
4126 skb->len -= skb->data_len;
4127 skb->data_len = 0;
4128
4129 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130 goto done;
4131 } else if (skb->head_frag) {
4132 int nr_frags = pinfo->nr_frags;
4133 skb_frag_t *frag = pinfo->frags + nr_frags;
4134 struct page *page = virt_to_head_page(skb->head);
4135 unsigned int first_size = headlen - offset;
4136 unsigned int first_offset;
4137
4138 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139 goto merge;
4140
4141 first_offset = skb->data -
4142 (unsigned char *)page_address(page) +
4143 offset;
4144
4145 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4146
4147 __skb_frag_set_page(frag, page);
4148 skb_frag_off_set(frag, first_offset);
4149 skb_frag_size_set(frag, first_size);
4150
4151 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152 /* We dont need to clear skbinfo->nr_frags here */
4153
4154 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156 goto done;
4157 }
4158
4159merge:
4160 delta_truesize = skb->truesize;
4161 if (offset > headlen) {
4162 unsigned int eat = offset - headlen;
4163
4164 skb_frag_off_add(&skbinfo->frags[0], eat);
4165 skb_frag_size_sub(&skbinfo->frags[0], eat);
4166 skb->data_len -= eat;
4167 skb->len -= eat;
4168 offset = headlen;
4169 }
4170
4171 __skb_pull(skb, offset);
4172
4173 if (NAPI_GRO_CB(p)->last == p)
4174 skb_shinfo(p)->frag_list = skb;
4175 else
4176 NAPI_GRO_CB(p)->last->next = skb;
4177 NAPI_GRO_CB(p)->last = skb;
4178 __skb_header_release(skb);
4179 lp = p;
4180
4181done:
4182 NAPI_GRO_CB(p)->count++;
4183 p->data_len += len;
4184 p->truesize += delta_truesize;
4185 p->len += len;
4186 if (lp != p) {
4187 lp->data_len += len;
4188 lp->truesize += delta_truesize;
4189 lp->len += len;
4190 }
4191 NAPI_GRO_CB(skb)->same_flow = 1;
4192 return 0;
4193}
4194
4195#ifdef CONFIG_SKB_EXTENSIONS
4196#define SKB_EXT_ALIGN_VALUE 8
4197#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4198
4199static const u8 skb_ext_type_len[] = {
4200#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4201 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4202#endif
4203#ifdef CONFIG_XFRM
4204 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4205#endif
4206#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4207 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4208#endif
4209#if IS_ENABLED(CONFIG_MPTCP)
4210 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4211#endif
4212};
4213
4214static __always_inline unsigned int skb_ext_total_length(void)
4215{
4216 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4217#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4218 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4219#endif
4220#ifdef CONFIG_XFRM
4221 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4222#endif
4223#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4224 skb_ext_type_len[TC_SKB_EXT] +
4225#endif
4226#if IS_ENABLED(CONFIG_MPTCP)
4227 skb_ext_type_len[SKB_EXT_MPTCP] +
4228#endif
4229 0;
4230}
4231
4232static void skb_extensions_init(void)
4233{
4234 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4235 BUILD_BUG_ON(skb_ext_total_length() > 255);
4236
4237 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4238 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4239 0,
4240 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4241 NULL);
4242}
4243#else
4244static void skb_extensions_init(void) {}
4245#endif
4246
4247void __init skb_init(void)
4248{
4249 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4250 sizeof(struct sk_buff),
4251 0,
4252 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4253 offsetof(struct sk_buff, cb),
4254 sizeof_field(struct sk_buff, cb),
4255 NULL);
4256 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4257 sizeof(struct sk_buff_fclones),
4258 0,
4259 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260 NULL);
4261 skb_extensions_init();
4262}
4263
4264static int
4265__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4266 unsigned int recursion_level)
4267{
4268 int start = skb_headlen(skb);
4269 int i, copy = start - offset;
4270 struct sk_buff *frag_iter;
4271 int elt = 0;
4272
4273 if (unlikely(recursion_level >= 24))
4274 return -EMSGSIZE;
4275
4276 if (copy > 0) {
4277 if (copy > len)
4278 copy = len;
4279 sg_set_buf(sg, skb->data + offset, copy);
4280 elt++;
4281 if ((len -= copy) == 0)
4282 return elt;
4283 offset += copy;
4284 }
4285
4286 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4287 int end;
4288
4289 WARN_ON(start > offset + len);
4290
4291 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4292 if ((copy = end - offset) > 0) {
4293 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4294 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4295 return -EMSGSIZE;
4296
4297 if (copy > len)
4298 copy = len;
4299 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4300 skb_frag_off(frag) + offset - start);
4301 elt++;
4302 if (!(len -= copy))
4303 return elt;
4304 offset += copy;
4305 }
4306 start = end;
4307 }
4308
4309 skb_walk_frags(skb, frag_iter) {
4310 int end, ret;
4311
4312 WARN_ON(start > offset + len);
4313
4314 end = start + frag_iter->len;
4315 if ((copy = end - offset) > 0) {
4316 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4317 return -EMSGSIZE;
4318
4319 if (copy > len)
4320 copy = len;
4321 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4322 copy, recursion_level + 1);
4323 if (unlikely(ret < 0))
4324 return ret;
4325 elt += ret;
4326 if ((len -= copy) == 0)
4327 return elt;
4328 offset += copy;
4329 }
4330 start = end;
4331 }
4332 BUG_ON(len);
4333 return elt;
4334}
4335
4336/**
4337 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4338 * @skb: Socket buffer containing the buffers to be mapped
4339 * @sg: The scatter-gather list to map into
4340 * @offset: The offset into the buffer's contents to start mapping
4341 * @len: Length of buffer space to be mapped
4342 *
4343 * Fill the specified scatter-gather list with mappings/pointers into a
4344 * region of the buffer space attached to a socket buffer. Returns either
4345 * the number of scatterlist items used, or -EMSGSIZE if the contents
4346 * could not fit.
4347 */
4348int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4349{
4350 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4351
4352 if (nsg <= 0)
4353 return nsg;
4354
4355 sg_mark_end(&sg[nsg - 1]);
4356
4357 return nsg;
4358}
4359EXPORT_SYMBOL_GPL(skb_to_sgvec);
4360
4361/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4362 * sglist without mark the sg which contain last skb data as the end.
4363 * So the caller can mannipulate sg list as will when padding new data after
4364 * the first call without calling sg_unmark_end to expend sg list.
4365 *
4366 * Scenario to use skb_to_sgvec_nomark:
4367 * 1. sg_init_table
4368 * 2. skb_to_sgvec_nomark(payload1)
4369 * 3. skb_to_sgvec_nomark(payload2)
4370 *
4371 * This is equivalent to:
4372 * 1. sg_init_table
4373 * 2. skb_to_sgvec(payload1)
4374 * 3. sg_unmark_end
4375 * 4. skb_to_sgvec(payload2)
4376 *
4377 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4378 * is more preferable.
4379 */
4380int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4381 int offset, int len)
4382{
4383 return __skb_to_sgvec(skb, sg, offset, len, 0);
4384}
4385EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4386
4387
4388
4389/**
4390 * skb_cow_data - Check that a socket buffer's data buffers are writable
4391 * @skb: The socket buffer to check.
4392 * @tailbits: Amount of trailing space to be added
4393 * @trailer: Returned pointer to the skb where the @tailbits space begins
4394 *
4395 * Make sure that the data buffers attached to a socket buffer are
4396 * writable. If they are not, private copies are made of the data buffers
4397 * and the socket buffer is set to use these instead.
4398 *
4399 * If @tailbits is given, make sure that there is space to write @tailbits
4400 * bytes of data beyond current end of socket buffer. @trailer will be
4401 * set to point to the skb in which this space begins.
4402 *
4403 * The number of scatterlist elements required to completely map the
4404 * COW'd and extended socket buffer will be returned.
4405 */
4406int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4407{
4408 int copyflag;
4409 int elt;
4410 struct sk_buff *skb1, **skb_p;
4411
4412 /* If skb is cloned or its head is paged, reallocate
4413 * head pulling out all the pages (pages are considered not writable
4414 * at the moment even if they are anonymous).
4415 */
4416 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4417 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4418 return -ENOMEM;
4419
4420 /* Easy case. Most of packets will go this way. */
4421 if (!skb_has_frag_list(skb)) {
4422 /* A little of trouble, not enough of space for trailer.
4423 * This should not happen, when stack is tuned to generate
4424 * good frames. OK, on miss we reallocate and reserve even more
4425 * space, 128 bytes is fair. */
4426
4427 if (skb_tailroom(skb) < tailbits &&
4428 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4429 return -ENOMEM;
4430
4431 /* Voila! */
4432 *trailer = skb;
4433 return 1;
4434 }
4435
4436 /* Misery. We are in troubles, going to mincer fragments... */
4437
4438 elt = 1;
4439 skb_p = &skb_shinfo(skb)->frag_list;
4440 copyflag = 0;
4441
4442 while ((skb1 = *skb_p) != NULL) {
4443 int ntail = 0;
4444
4445 /* The fragment is partially pulled by someone,
4446 * this can happen on input. Copy it and everything
4447 * after it. */
4448
4449 if (skb_shared(skb1))
4450 copyflag = 1;
4451
4452 /* If the skb is the last, worry about trailer. */
4453
4454 if (skb1->next == NULL && tailbits) {
4455 if (skb_shinfo(skb1)->nr_frags ||
4456 skb_has_frag_list(skb1) ||
4457 skb_tailroom(skb1) < tailbits)
4458 ntail = tailbits + 128;
4459 }
4460
4461 if (copyflag ||
4462 skb_cloned(skb1) ||
4463 ntail ||
4464 skb_shinfo(skb1)->nr_frags ||
4465 skb_has_frag_list(skb1)) {
4466 struct sk_buff *skb2;
4467
4468 /* Fuck, we are miserable poor guys... */
4469 if (ntail == 0)
4470 skb2 = skb_copy(skb1, GFP_ATOMIC);
4471 else
4472 skb2 = skb_copy_expand(skb1,
4473 skb_headroom(skb1),
4474 ntail,
4475 GFP_ATOMIC);
4476 if (unlikely(skb2 == NULL))
4477 return -ENOMEM;
4478
4479 if (skb1->sk)
4480 skb_set_owner_w(skb2, skb1->sk);
4481
4482 /* Looking around. Are we still alive?
4483 * OK, link new skb, drop old one */
4484
4485 skb2->next = skb1->next;
4486 *skb_p = skb2;
4487 kfree_skb(skb1);
4488 skb1 = skb2;
4489 }
4490 elt++;
4491 *trailer = skb1;
4492 skb_p = &skb1->next;
4493 }
4494
4495 return elt;
4496}
4497EXPORT_SYMBOL_GPL(skb_cow_data);
4498
4499static void sock_rmem_free(struct sk_buff *skb)
4500{
4501 struct sock *sk = skb->sk;
4502
4503 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4504}
4505
4506static void skb_set_err_queue(struct sk_buff *skb)
4507{
4508 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4509 * So, it is safe to (mis)use it to mark skbs on the error queue.
4510 */
4511 skb->pkt_type = PACKET_OUTGOING;
4512 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4513}
4514
4515/*
4516 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4517 */
4518int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4519{
4520 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4521 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4522 return -ENOMEM;
4523
4524 skb_orphan(skb);
4525 skb->sk = sk;
4526 skb->destructor = sock_rmem_free;
4527 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4528 skb_set_err_queue(skb);
4529
4530 /* before exiting rcu section, make sure dst is refcounted */
4531 skb_dst_force(skb);
4532
4533 skb_queue_tail(&sk->sk_error_queue, skb);
4534 if (!sock_flag(sk, SOCK_DEAD))
4535 sk->sk_error_report(sk);
4536 return 0;
4537}
4538EXPORT_SYMBOL(sock_queue_err_skb);
4539
4540static bool is_icmp_err_skb(const struct sk_buff *skb)
4541{
4542 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4543 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4544}
4545
4546struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4547{
4548 struct sk_buff_head *q = &sk->sk_error_queue;
4549 struct sk_buff *skb, *skb_next = NULL;
4550 bool icmp_next = false;
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&q->lock, flags);
4554 skb = __skb_dequeue(q);
4555 if (skb && (skb_next = skb_peek(q))) {
4556 icmp_next = is_icmp_err_skb(skb_next);
4557 if (icmp_next)
4558 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4559 }
4560 spin_unlock_irqrestore(&q->lock, flags);
4561
4562 if (is_icmp_err_skb(skb) && !icmp_next)
4563 sk->sk_err = 0;
4564
4565 if (skb_next)
4566 sk->sk_error_report(sk);
4567
4568 return skb;
4569}
4570EXPORT_SYMBOL(sock_dequeue_err_skb);
4571
4572/**
4573 * skb_clone_sk - create clone of skb, and take reference to socket
4574 * @skb: the skb to clone
4575 *
4576 * This function creates a clone of a buffer that holds a reference on
4577 * sk_refcnt. Buffers created via this function are meant to be
4578 * returned using sock_queue_err_skb, or free via kfree_skb.
4579 *
4580 * When passing buffers allocated with this function to sock_queue_err_skb
4581 * it is necessary to wrap the call with sock_hold/sock_put in order to
4582 * prevent the socket from being released prior to being enqueued on
4583 * the sk_error_queue.
4584 */
4585struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4586{
4587 struct sock *sk = skb->sk;
4588 struct sk_buff *clone;
4589
4590 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4591 return NULL;
4592
4593 clone = skb_clone(skb, GFP_ATOMIC);
4594 if (!clone) {
4595 sock_put(sk);
4596 return NULL;
4597 }
4598
4599 clone->sk = sk;
4600 clone->destructor = sock_efree;
4601
4602 return clone;
4603}
4604EXPORT_SYMBOL(skb_clone_sk);
4605
4606static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4607 struct sock *sk,
4608 int tstype,
4609 bool opt_stats)
4610{
4611 struct sock_exterr_skb *serr;
4612 int err;
4613
4614 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4615
4616 serr = SKB_EXT_ERR(skb);
4617 memset(serr, 0, sizeof(*serr));
4618 serr->ee.ee_errno = ENOMSG;
4619 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4620 serr->ee.ee_info = tstype;
4621 serr->opt_stats = opt_stats;
4622 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4623 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4624 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4625 if (sk->sk_protocol == IPPROTO_TCP &&
4626 sk->sk_type == SOCK_STREAM)
4627 serr->ee.ee_data -= sk->sk_tskey;
4628 }
4629
4630 err = sock_queue_err_skb(sk, skb);
4631
4632 if (err)
4633 kfree_skb(skb);
4634}
4635
4636static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4637{
4638 bool ret;
4639
4640 if (likely(sysctl_tstamp_allow_data || tsonly))
4641 return true;
4642
4643 read_lock_bh(&sk->sk_callback_lock);
4644 ret = sk->sk_socket && sk->sk_socket->file &&
4645 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4646 read_unlock_bh(&sk->sk_callback_lock);
4647 return ret;
4648}
4649
4650void skb_complete_tx_timestamp(struct sk_buff *skb,
4651 struct skb_shared_hwtstamps *hwtstamps)
4652{
4653 struct sock *sk = skb->sk;
4654
4655 if (!skb_may_tx_timestamp(sk, false))
4656 goto err;
4657
4658 /* Take a reference to prevent skb_orphan() from freeing the socket,
4659 * but only if the socket refcount is not zero.
4660 */
4661 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4662 *skb_hwtstamps(skb) = *hwtstamps;
4663 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4664 sock_put(sk);
4665 return;
4666 }
4667
4668err:
4669 kfree_skb(skb);
4670}
4671EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4672
4673void __skb_tstamp_tx(struct sk_buff *orig_skb,
4674 struct skb_shared_hwtstamps *hwtstamps,
4675 struct sock *sk, int tstype)
4676{
4677 struct sk_buff *skb;
4678 bool tsonly, opt_stats = false;
4679
4680 if (!sk)
4681 return;
4682
4683 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4684 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4685 return;
4686
4687 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4688 if (!skb_may_tx_timestamp(sk, tsonly))
4689 return;
4690
4691 if (tsonly) {
4692#ifdef CONFIG_INET
4693 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4694 sk->sk_protocol == IPPROTO_TCP &&
4695 sk->sk_type == SOCK_STREAM) {
4696 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4697 opt_stats = true;
4698 } else
4699#endif
4700 skb = alloc_skb(0, GFP_ATOMIC);
4701 } else {
4702 skb = skb_clone(orig_skb, GFP_ATOMIC);
4703 }
4704 if (!skb)
4705 return;
4706
4707 if (tsonly) {
4708 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4709 SKBTX_ANY_TSTAMP;
4710 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4711 }
4712
4713 if (hwtstamps)
4714 *skb_hwtstamps(skb) = *hwtstamps;
4715 else
4716 skb->tstamp = ktime_get_real();
4717
4718 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4719}
4720EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4721
4722void skb_tstamp_tx(struct sk_buff *orig_skb,
4723 struct skb_shared_hwtstamps *hwtstamps)
4724{
4725 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4726 SCM_TSTAMP_SND);
4727}
4728EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4729
4730void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4731{
4732 struct sock *sk = skb->sk;
4733 struct sock_exterr_skb *serr;
4734 int err = 1;
4735
4736 skb->wifi_acked_valid = 1;
4737 skb->wifi_acked = acked;
4738
4739 serr = SKB_EXT_ERR(skb);
4740 memset(serr, 0, sizeof(*serr));
4741 serr->ee.ee_errno = ENOMSG;
4742 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4743
4744 /* Take a reference to prevent skb_orphan() from freeing the socket,
4745 * but only if the socket refcount is not zero.
4746 */
4747 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4748 err = sock_queue_err_skb(sk, skb);
4749 sock_put(sk);
4750 }
4751 if (err)
4752 kfree_skb(skb);
4753}
4754EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4755
4756/**
4757 * skb_partial_csum_set - set up and verify partial csum values for packet
4758 * @skb: the skb to set
4759 * @start: the number of bytes after skb->data to start checksumming.
4760 * @off: the offset from start to place the checksum.
4761 *
4762 * For untrusted partially-checksummed packets, we need to make sure the values
4763 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4764 *
4765 * This function checks and sets those values and skb->ip_summed: if this
4766 * returns false you should drop the packet.
4767 */
4768bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4769{
4770 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4771 u32 csum_start = skb_headroom(skb) + (u32)start;
4772
4773 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4774 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4775 start, off, skb_headroom(skb), skb_headlen(skb));
4776 return false;
4777 }
4778 skb->ip_summed = CHECKSUM_PARTIAL;
4779 skb->csum_start = csum_start;
4780 skb->csum_offset = off;
4781 skb_set_transport_header(skb, start);
4782 return true;
4783}
4784EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4785
4786static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4787 unsigned int max)
4788{
4789 if (skb_headlen(skb) >= len)
4790 return 0;
4791
4792 /* If we need to pullup then pullup to the max, so we
4793 * won't need to do it again.
4794 */
4795 if (max > skb->len)
4796 max = skb->len;
4797
4798 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4799 return -ENOMEM;
4800
4801 if (skb_headlen(skb) < len)
4802 return -EPROTO;
4803
4804 return 0;
4805}
4806
4807#define MAX_TCP_HDR_LEN (15 * 4)
4808
4809static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4810 typeof(IPPROTO_IP) proto,
4811 unsigned int off)
4812{
4813 int err;
4814
4815 switch (proto) {
4816 case IPPROTO_TCP:
4817 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4818 off + MAX_TCP_HDR_LEN);
4819 if (!err && !skb_partial_csum_set(skb, off,
4820 offsetof(struct tcphdr,
4821 check)))
4822 err = -EPROTO;
4823 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4824
4825 case IPPROTO_UDP:
4826 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4827 off + sizeof(struct udphdr));
4828 if (!err && !skb_partial_csum_set(skb, off,
4829 offsetof(struct udphdr,
4830 check)))
4831 err = -EPROTO;
4832 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4833 }
4834
4835 return ERR_PTR(-EPROTO);
4836}
4837
4838/* This value should be large enough to cover a tagged ethernet header plus
4839 * maximally sized IP and TCP or UDP headers.
4840 */
4841#define MAX_IP_HDR_LEN 128
4842
4843static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4844{
4845 unsigned int off;
4846 bool fragment;
4847 __sum16 *csum;
4848 int err;
4849
4850 fragment = false;
4851
4852 err = skb_maybe_pull_tail(skb,
4853 sizeof(struct iphdr),
4854 MAX_IP_HDR_LEN);
4855 if (err < 0)
4856 goto out;
4857
4858 if (ip_is_fragment(ip_hdr(skb)))
4859 fragment = true;
4860
4861 off = ip_hdrlen(skb);
4862
4863 err = -EPROTO;
4864
4865 if (fragment)
4866 goto out;
4867
4868 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4869 if (IS_ERR(csum))
4870 return PTR_ERR(csum);
4871
4872 if (recalculate)
4873 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4874 ip_hdr(skb)->daddr,
4875 skb->len - off,
4876 ip_hdr(skb)->protocol, 0);
4877 err = 0;
4878
4879out:
4880 return err;
4881}
4882
4883/* This value should be large enough to cover a tagged ethernet header plus
4884 * an IPv6 header, all options, and a maximal TCP or UDP header.
4885 */
4886#define MAX_IPV6_HDR_LEN 256
4887
4888#define OPT_HDR(type, skb, off) \
4889 (type *)(skb_network_header(skb) + (off))
4890
4891static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4892{
4893 int err;
4894 u8 nexthdr;
4895 unsigned int off;
4896 unsigned int len;
4897 bool fragment;
4898 bool done;
4899 __sum16 *csum;
4900
4901 fragment = false;
4902 done = false;
4903
4904 off = sizeof(struct ipv6hdr);
4905
4906 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4907 if (err < 0)
4908 goto out;
4909
4910 nexthdr = ipv6_hdr(skb)->nexthdr;
4911
4912 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4913 while (off <= len && !done) {
4914 switch (nexthdr) {
4915 case IPPROTO_DSTOPTS:
4916 case IPPROTO_HOPOPTS:
4917 case IPPROTO_ROUTING: {
4918 struct ipv6_opt_hdr *hp;
4919
4920 err = skb_maybe_pull_tail(skb,
4921 off +
4922 sizeof(struct ipv6_opt_hdr),
4923 MAX_IPV6_HDR_LEN);
4924 if (err < 0)
4925 goto out;
4926
4927 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4928 nexthdr = hp->nexthdr;
4929 off += ipv6_optlen(hp);
4930 break;
4931 }
4932 case IPPROTO_AH: {
4933 struct ip_auth_hdr *hp;
4934
4935 err = skb_maybe_pull_tail(skb,
4936 off +
4937 sizeof(struct ip_auth_hdr),
4938 MAX_IPV6_HDR_LEN);
4939 if (err < 0)
4940 goto out;
4941
4942 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4943 nexthdr = hp->nexthdr;
4944 off += ipv6_authlen(hp);
4945 break;
4946 }
4947 case IPPROTO_FRAGMENT: {
4948 struct frag_hdr *hp;
4949
4950 err = skb_maybe_pull_tail(skb,
4951 off +
4952 sizeof(struct frag_hdr),
4953 MAX_IPV6_HDR_LEN);
4954 if (err < 0)
4955 goto out;
4956
4957 hp = OPT_HDR(struct frag_hdr, skb, off);
4958
4959 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4960 fragment = true;
4961
4962 nexthdr = hp->nexthdr;
4963 off += sizeof(struct frag_hdr);
4964 break;
4965 }
4966 default:
4967 done = true;
4968 break;
4969 }
4970 }
4971
4972 err = -EPROTO;
4973
4974 if (!done || fragment)
4975 goto out;
4976
4977 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4978 if (IS_ERR(csum))
4979 return PTR_ERR(csum);
4980
4981 if (recalculate)
4982 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4983 &ipv6_hdr(skb)->daddr,
4984 skb->len - off, nexthdr, 0);
4985 err = 0;
4986
4987out:
4988 return err;
4989}
4990
4991/**
4992 * skb_checksum_setup - set up partial checksum offset
4993 * @skb: the skb to set up
4994 * @recalculate: if true the pseudo-header checksum will be recalculated
4995 */
4996int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4997{
4998 int err;
4999
5000 switch (skb->protocol) {
5001 case htons(ETH_P_IP):
5002 err = skb_checksum_setup_ipv4(skb, recalculate);
5003 break;
5004
5005 case htons(ETH_P_IPV6):
5006 err = skb_checksum_setup_ipv6(skb, recalculate);
5007 break;
5008
5009 default:
5010 err = -EPROTO;
5011 break;
5012 }
5013
5014 return err;
5015}
5016EXPORT_SYMBOL(skb_checksum_setup);
5017
5018/**
5019 * skb_checksum_maybe_trim - maybe trims the given skb
5020 * @skb: the skb to check
5021 * @transport_len: the data length beyond the network header
5022 *
5023 * Checks whether the given skb has data beyond the given transport length.
5024 * If so, returns a cloned skb trimmed to this transport length.
5025 * Otherwise returns the provided skb. Returns NULL in error cases
5026 * (e.g. transport_len exceeds skb length or out-of-memory).
5027 *
5028 * Caller needs to set the skb transport header and free any returned skb if it
5029 * differs from the provided skb.
5030 */
5031static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5032 unsigned int transport_len)
5033{
5034 struct sk_buff *skb_chk;
5035 unsigned int len = skb_transport_offset(skb) + transport_len;
5036 int ret;
5037
5038 if (skb->len < len)
5039 return NULL;
5040 else if (skb->len == len)
5041 return skb;
5042
5043 skb_chk = skb_clone(skb, GFP_ATOMIC);
5044 if (!skb_chk)
5045 return NULL;
5046
5047 ret = pskb_trim_rcsum(skb_chk, len);
5048 if (ret) {
5049 kfree_skb(skb_chk);
5050 return NULL;
5051 }
5052
5053 return skb_chk;
5054}
5055
5056/**
5057 * skb_checksum_trimmed - validate checksum of an skb
5058 * @skb: the skb to check
5059 * @transport_len: the data length beyond the network header
5060 * @skb_chkf: checksum function to use
5061 *
5062 * Applies the given checksum function skb_chkf to the provided skb.
5063 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5064 *
5065 * If the skb has data beyond the given transport length, then a
5066 * trimmed & cloned skb is checked and returned.
5067 *
5068 * Caller needs to set the skb transport header and free any returned skb if it
5069 * differs from the provided skb.
5070 */
5071struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5072 unsigned int transport_len,
5073 __sum16(*skb_chkf)(struct sk_buff *skb))
5074{
5075 struct sk_buff *skb_chk;
5076 unsigned int offset = skb_transport_offset(skb);
5077 __sum16 ret;
5078
5079 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5080 if (!skb_chk)
5081 goto err;
5082
5083 if (!pskb_may_pull(skb_chk, offset))
5084 goto err;
5085
5086 skb_pull_rcsum(skb_chk, offset);
5087 ret = skb_chkf(skb_chk);
5088 skb_push_rcsum(skb_chk, offset);
5089
5090 if (ret)
5091 goto err;
5092
5093 return skb_chk;
5094
5095err:
5096 if (skb_chk && skb_chk != skb)
5097 kfree_skb(skb_chk);
5098
5099 return NULL;
5100
5101}
5102EXPORT_SYMBOL(skb_checksum_trimmed);
5103
5104void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5105{
5106 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5107 skb->dev->name);
5108}
5109EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5110
5111void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5112{
5113 if (head_stolen) {
5114 skb_release_head_state(skb);
5115 kmem_cache_free(skbuff_head_cache, skb);
5116 } else {
5117 __kfree_skb(skb);
5118 }
5119}
5120EXPORT_SYMBOL(kfree_skb_partial);
5121
5122/**
5123 * skb_try_coalesce - try to merge skb to prior one
5124 * @to: prior buffer
5125 * @from: buffer to add
5126 * @fragstolen: pointer to boolean
5127 * @delta_truesize: how much more was allocated than was requested
5128 */
5129bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5130 bool *fragstolen, int *delta_truesize)
5131{
5132 struct skb_shared_info *to_shinfo, *from_shinfo;
5133 int i, delta, len = from->len;
5134
5135 *fragstolen = false;
5136
5137 if (skb_cloned(to))
5138 return false;
5139
5140 if (len <= skb_tailroom(to)) {
5141 if (len)
5142 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5143 *delta_truesize = 0;
5144 return true;
5145 }
5146
5147 to_shinfo = skb_shinfo(to);
5148 from_shinfo = skb_shinfo(from);
5149 if (to_shinfo->frag_list || from_shinfo->frag_list)
5150 return false;
5151 if (skb_zcopy(to) || skb_zcopy(from))
5152 return false;
5153
5154 if (skb_headlen(from) != 0) {
5155 struct page *page;
5156 unsigned int offset;
5157
5158 if (to_shinfo->nr_frags +
5159 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5160 return false;
5161
5162 if (skb_head_is_locked(from))
5163 return false;
5164
5165 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5166
5167 page = virt_to_head_page(from->head);
5168 offset = from->data - (unsigned char *)page_address(page);
5169
5170 skb_fill_page_desc(to, to_shinfo->nr_frags,
5171 page, offset, skb_headlen(from));
5172 *fragstolen = true;
5173 } else {
5174 if (to_shinfo->nr_frags +
5175 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5176 return false;
5177
5178 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5179 }
5180
5181 WARN_ON_ONCE(delta < len);
5182
5183 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5184 from_shinfo->frags,
5185 from_shinfo->nr_frags * sizeof(skb_frag_t));
5186 to_shinfo->nr_frags += from_shinfo->nr_frags;
5187
5188 if (!skb_cloned(from))
5189 from_shinfo->nr_frags = 0;
5190
5191 /* if the skb is not cloned this does nothing
5192 * since we set nr_frags to 0.
5193 */
5194 for (i = 0; i < from_shinfo->nr_frags; i++)
5195 __skb_frag_ref(&from_shinfo->frags[i]);
5196
5197 to->truesize += delta;
5198 to->len += len;
5199 to->data_len += len;
5200
5201 *delta_truesize = delta;
5202 return true;
5203}
5204EXPORT_SYMBOL(skb_try_coalesce);
5205
5206/**
5207 * skb_scrub_packet - scrub an skb
5208 *
5209 * @skb: buffer to clean
5210 * @xnet: packet is crossing netns
5211 *
5212 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5213 * into/from a tunnel. Some information have to be cleared during these
5214 * operations.
5215 * skb_scrub_packet can also be used to clean a skb before injecting it in
5216 * another namespace (@xnet == true). We have to clear all information in the
5217 * skb that could impact namespace isolation.
5218 */
5219void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5220{
5221 skb->pkt_type = PACKET_HOST;
5222 skb->skb_iif = 0;
5223 skb->ignore_df = 0;
5224 skb_dst_drop(skb);
5225 skb_ext_reset(skb);
5226 nf_reset_ct(skb);
5227 nf_reset_trace(skb);
5228
5229#ifdef CONFIG_NET_SWITCHDEV
5230 skb->offload_fwd_mark = 0;
5231 skb->offload_l3_fwd_mark = 0;
5232#endif
5233
5234 if (!xnet)
5235 return;
5236
5237 ipvs_reset(skb);
5238 skb->mark = 0;
5239 skb->tstamp = 0;
5240}
5241EXPORT_SYMBOL_GPL(skb_scrub_packet);
5242
5243/**
5244 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5245 *
5246 * @skb: GSO skb
5247 *
5248 * skb_gso_transport_seglen is used to determine the real size of the
5249 * individual segments, including Layer4 headers (TCP/UDP).
5250 *
5251 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5252 */
5253static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5254{
5255 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5256 unsigned int thlen = 0;
5257
5258 if (skb->encapsulation) {
5259 thlen = skb_inner_transport_header(skb) -
5260 skb_transport_header(skb);
5261
5262 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5263 thlen += inner_tcp_hdrlen(skb);
5264 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5265 thlen = tcp_hdrlen(skb);
5266 } else if (unlikely(skb_is_gso_sctp(skb))) {
5267 thlen = sizeof(struct sctphdr);
5268 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5269 thlen = sizeof(struct udphdr);
5270 }
5271 /* UFO sets gso_size to the size of the fragmentation
5272 * payload, i.e. the size of the L4 (UDP) header is already
5273 * accounted for.
5274 */
5275 return thlen + shinfo->gso_size;
5276}
5277
5278/**
5279 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5280 *
5281 * @skb: GSO skb
5282 *
5283 * skb_gso_network_seglen is used to determine the real size of the
5284 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5285 *
5286 * The MAC/L2 header is not accounted for.
5287 */
5288static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5289{
5290 unsigned int hdr_len = skb_transport_header(skb) -
5291 skb_network_header(skb);
5292
5293 return hdr_len + skb_gso_transport_seglen(skb);
5294}
5295
5296/**
5297 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5298 *
5299 * @skb: GSO skb
5300 *
5301 * skb_gso_mac_seglen is used to determine the real size of the
5302 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5303 * headers (TCP/UDP).
5304 */
5305static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5306{
5307 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5308
5309 return hdr_len + skb_gso_transport_seglen(skb);
5310}
5311
5312/**
5313 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5314 *
5315 * There are a couple of instances where we have a GSO skb, and we
5316 * want to determine what size it would be after it is segmented.
5317 *
5318 * We might want to check:
5319 * - L3+L4+payload size (e.g. IP forwarding)
5320 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5321 *
5322 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5323 *
5324 * @skb: GSO skb
5325 *
5326 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5327 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5328 *
5329 * @max_len: The maximum permissible length.
5330 *
5331 * Returns true if the segmented length <= max length.
5332 */
5333static inline bool skb_gso_size_check(const struct sk_buff *skb,
5334 unsigned int seg_len,
5335 unsigned int max_len) {
5336 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5337 const struct sk_buff *iter;
5338
5339 if (shinfo->gso_size != GSO_BY_FRAGS)
5340 return seg_len <= max_len;
5341
5342 /* Undo this so we can re-use header sizes */
5343 seg_len -= GSO_BY_FRAGS;
5344
5345 skb_walk_frags(skb, iter) {
5346 if (seg_len + skb_headlen(iter) > max_len)
5347 return false;
5348 }
5349
5350 return true;
5351}
5352
5353/**
5354 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5355 *
5356 * @skb: GSO skb
5357 * @mtu: MTU to validate against
5358 *
5359 * skb_gso_validate_network_len validates if a given skb will fit a
5360 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5361 * payload.
5362 */
5363bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5364{
5365 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5366}
5367EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5368
5369/**
5370 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5371 *
5372 * @skb: GSO skb
5373 * @len: length to validate against
5374 *
5375 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5376 * length once split, including L2, L3 and L4 headers and the payload.
5377 */
5378bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5379{
5380 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5381}
5382EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5383
5384static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5385{
5386 int mac_len, meta_len;
5387 void *meta;
5388
5389 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5390 kfree_skb(skb);
5391 return NULL;
5392 }
5393
5394 mac_len = skb->data - skb_mac_header(skb);
5395 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5396 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5397 mac_len - VLAN_HLEN - ETH_TLEN);
5398 }
5399
5400 meta_len = skb_metadata_len(skb);
5401 if (meta_len) {
5402 meta = skb_metadata_end(skb) - meta_len;
5403 memmove(meta + VLAN_HLEN, meta, meta_len);
5404 }
5405
5406 skb->mac_header += VLAN_HLEN;
5407 return skb;
5408}
5409
5410struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5411{
5412 struct vlan_hdr *vhdr;
5413 u16 vlan_tci;
5414
5415 if (unlikely(skb_vlan_tag_present(skb))) {
5416 /* vlan_tci is already set-up so leave this for another time */
5417 return skb;
5418 }
5419
5420 skb = skb_share_check(skb, GFP_ATOMIC);
5421 if (unlikely(!skb))
5422 goto err_free;
5423 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5424 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5425 goto err_free;
5426
5427 vhdr = (struct vlan_hdr *)skb->data;
5428 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5429 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5430
5431 skb_pull_rcsum(skb, VLAN_HLEN);
5432 vlan_set_encap_proto(skb, vhdr);
5433
5434 skb = skb_reorder_vlan_header(skb);
5435 if (unlikely(!skb))
5436 goto err_free;
5437
5438 skb_reset_network_header(skb);
5439 skb_reset_transport_header(skb);
5440 skb_reset_mac_len(skb);
5441
5442 return skb;
5443
5444err_free:
5445 kfree_skb(skb);
5446 return NULL;
5447}
5448EXPORT_SYMBOL(skb_vlan_untag);
5449
5450int skb_ensure_writable(struct sk_buff *skb, int write_len)
5451{
5452 if (!pskb_may_pull(skb, write_len))
5453 return -ENOMEM;
5454
5455 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5456 return 0;
5457
5458 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5459}
5460EXPORT_SYMBOL(skb_ensure_writable);
5461
5462/* remove VLAN header from packet and update csum accordingly.
5463 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5464 */
5465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5466{
5467 struct vlan_hdr *vhdr;
5468 int offset = skb->data - skb_mac_header(skb);
5469 int err;
5470
5471 if (WARN_ONCE(offset,
5472 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5473 offset)) {
5474 return -EINVAL;
5475 }
5476
5477 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5478 if (unlikely(err))
5479 return err;
5480
5481 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5482
5483 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5484 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5485
5486 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5487 __skb_pull(skb, VLAN_HLEN);
5488
5489 vlan_set_encap_proto(skb, vhdr);
5490 skb->mac_header += VLAN_HLEN;
5491
5492 if (skb_network_offset(skb) < ETH_HLEN)
5493 skb_set_network_header(skb, ETH_HLEN);
5494
5495 skb_reset_mac_len(skb);
5496
5497 return err;
5498}
5499EXPORT_SYMBOL(__skb_vlan_pop);
5500
5501/* Pop a vlan tag either from hwaccel or from payload.
5502 * Expects skb->data at mac header.
5503 */
5504int skb_vlan_pop(struct sk_buff *skb)
5505{
5506 u16 vlan_tci;
5507 __be16 vlan_proto;
5508 int err;
5509
5510 if (likely(skb_vlan_tag_present(skb))) {
5511 __vlan_hwaccel_clear_tag(skb);
5512 } else {
5513 if (unlikely(!eth_type_vlan(skb->protocol)))
5514 return 0;
5515
5516 err = __skb_vlan_pop(skb, &vlan_tci);
5517 if (err)
5518 return err;
5519 }
5520 /* move next vlan tag to hw accel tag */
5521 if (likely(!eth_type_vlan(skb->protocol)))
5522 return 0;
5523
5524 vlan_proto = skb->protocol;
5525 err = __skb_vlan_pop(skb, &vlan_tci);
5526 if (unlikely(err))
5527 return err;
5528
5529 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5530 return 0;
5531}
5532EXPORT_SYMBOL(skb_vlan_pop);
5533
5534/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5535 * Expects skb->data at mac header.
5536 */
5537int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5538{
5539 if (skb_vlan_tag_present(skb)) {
5540 int offset = skb->data - skb_mac_header(skb);
5541 int err;
5542
5543 if (WARN_ONCE(offset,
5544 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5545 offset)) {
5546 return -EINVAL;
5547 }
5548
5549 err = __vlan_insert_tag(skb, skb->vlan_proto,
5550 skb_vlan_tag_get(skb));
5551 if (err)
5552 return err;
5553
5554 skb->protocol = skb->vlan_proto;
5555 skb->mac_len += VLAN_HLEN;
5556
5557 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5558 }
5559 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5560 return 0;
5561}
5562EXPORT_SYMBOL(skb_vlan_push);
5563
5564/* Update the ethertype of hdr and the skb csum value if required. */
5565static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5566 __be16 ethertype)
5567{
5568 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5569 __be16 diff[] = { ~hdr->h_proto, ethertype };
5570
5571 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5572 }
5573
5574 hdr->h_proto = ethertype;
5575}
5576
5577/**
5578 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5579 * the packet
5580 *
5581 * @skb: buffer
5582 * @mpls_lse: MPLS label stack entry to push
5583 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5584 * @mac_len: length of the MAC header
5585 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5586 * ethernet
5587 *
5588 * Expects skb->data at mac header.
5589 *
5590 * Returns 0 on success, -errno otherwise.
5591 */
5592int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5593 int mac_len, bool ethernet)
5594{
5595 struct mpls_shim_hdr *lse;
5596 int err;
5597
5598 if (unlikely(!eth_p_mpls(mpls_proto)))
5599 return -EINVAL;
5600
5601 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5602 if (skb->encapsulation)
5603 return -EINVAL;
5604
5605 err = skb_cow_head(skb, MPLS_HLEN);
5606 if (unlikely(err))
5607 return err;
5608
5609 if (!skb->inner_protocol) {
5610 skb_set_inner_network_header(skb, skb_network_offset(skb));
5611 skb_set_inner_protocol(skb, skb->protocol);
5612 }
5613
5614 skb_push(skb, MPLS_HLEN);
5615 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5616 mac_len);
5617 skb_reset_mac_header(skb);
5618 skb_set_network_header(skb, mac_len);
5619 skb_reset_mac_len(skb);
5620
5621 lse = mpls_hdr(skb);
5622 lse->label_stack_entry = mpls_lse;
5623 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5624
5625 if (ethernet && mac_len >= ETH_HLEN)
5626 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5627 skb->protocol = mpls_proto;
5628
5629 return 0;
5630}
5631EXPORT_SYMBOL_GPL(skb_mpls_push);
5632
5633/**
5634 * skb_mpls_pop() - pop the outermost MPLS header
5635 *
5636 * @skb: buffer
5637 * @next_proto: ethertype of header after popped MPLS header
5638 * @mac_len: length of the MAC header
5639 * @ethernet: flag to indicate if the packet is ethernet
5640 *
5641 * Expects skb->data at mac header.
5642 *
5643 * Returns 0 on success, -errno otherwise.
5644 */
5645int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5646 bool ethernet)
5647{
5648 int err;
5649
5650 if (unlikely(!eth_p_mpls(skb->protocol)))
5651 return 0;
5652
5653 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5654 if (unlikely(err))
5655 return err;
5656
5657 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5658 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5659 mac_len);
5660
5661 __skb_pull(skb, MPLS_HLEN);
5662 skb_reset_mac_header(skb);
5663 skb_set_network_header(skb, mac_len);
5664
5665 if (ethernet && mac_len >= ETH_HLEN) {
5666 struct ethhdr *hdr;
5667
5668 /* use mpls_hdr() to get ethertype to account for VLANs. */
5669 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5670 skb_mod_eth_type(skb, hdr, next_proto);
5671 }
5672 skb->protocol = next_proto;
5673
5674 return 0;
5675}
5676EXPORT_SYMBOL_GPL(skb_mpls_pop);
5677
5678/**
5679 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5680 *
5681 * @skb: buffer
5682 * @mpls_lse: new MPLS label stack entry to update to
5683 *
5684 * Expects skb->data at mac header.
5685 *
5686 * Returns 0 on success, -errno otherwise.
5687 */
5688int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5689{
5690 int err;
5691
5692 if (unlikely(!eth_p_mpls(skb->protocol)))
5693 return -EINVAL;
5694
5695 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5696 if (unlikely(err))
5697 return err;
5698
5699 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5700 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5701
5702 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5703 }
5704
5705 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5706
5707 return 0;
5708}
5709EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5710
5711/**
5712 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5713 *
5714 * @skb: buffer
5715 *
5716 * Expects skb->data at mac header.
5717 *
5718 * Returns 0 on success, -errno otherwise.
5719 */
5720int skb_mpls_dec_ttl(struct sk_buff *skb)
5721{
5722 u32 lse;
5723 u8 ttl;
5724
5725 if (unlikely(!eth_p_mpls(skb->protocol)))
5726 return -EINVAL;
5727
5728 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5729 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5730 if (!--ttl)
5731 return -EINVAL;
5732
5733 lse &= ~MPLS_LS_TTL_MASK;
5734 lse |= ttl << MPLS_LS_TTL_SHIFT;
5735
5736 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5737}
5738EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5739
5740/**
5741 * alloc_skb_with_frags - allocate skb with page frags
5742 *
5743 * @header_len: size of linear part
5744 * @data_len: needed length in frags
5745 * @max_page_order: max page order desired.
5746 * @errcode: pointer to error code if any
5747 * @gfp_mask: allocation mask
5748 *
5749 * This can be used to allocate a paged skb, given a maximal order for frags.
5750 */
5751struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5752 unsigned long data_len,
5753 int max_page_order,
5754 int *errcode,
5755 gfp_t gfp_mask)
5756{
5757 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5758 unsigned long chunk;
5759 struct sk_buff *skb;
5760 struct page *page;
5761 int i;
5762
5763 *errcode = -EMSGSIZE;
5764 /* Note this test could be relaxed, if we succeed to allocate
5765 * high order pages...
5766 */
5767 if (npages > MAX_SKB_FRAGS)
5768 return NULL;
5769
5770 *errcode = -ENOBUFS;
5771 skb = alloc_skb(header_len, gfp_mask);
5772 if (!skb)
5773 return NULL;
5774
5775 skb->truesize += npages << PAGE_SHIFT;
5776
5777 for (i = 0; npages > 0; i++) {
5778 int order = max_page_order;
5779
5780 while (order) {
5781 if (npages >= 1 << order) {
5782 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5783 __GFP_COMP |
5784 __GFP_NOWARN,
5785 order);
5786 if (page)
5787 goto fill_page;
5788 /* Do not retry other high order allocations */
5789 order = 1;
5790 max_page_order = 0;
5791 }
5792 order--;
5793 }
5794 page = alloc_page(gfp_mask);
5795 if (!page)
5796 goto failure;
5797fill_page:
5798 chunk = min_t(unsigned long, data_len,
5799 PAGE_SIZE << order);
5800 skb_fill_page_desc(skb, i, page, 0, chunk);
5801 data_len -= chunk;
5802 npages -= 1 << order;
5803 }
5804 return skb;
5805
5806failure:
5807 kfree_skb(skb);
5808 return NULL;
5809}
5810EXPORT_SYMBOL(alloc_skb_with_frags);
5811
5812/* carve out the first off bytes from skb when off < headlen */
5813static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5814 const int headlen, gfp_t gfp_mask)
5815{
5816 int i;
5817 int size = skb_end_offset(skb);
5818 int new_hlen = headlen - off;
5819 u8 *data;
5820
5821 size = SKB_DATA_ALIGN(size);
5822
5823 if (skb_pfmemalloc(skb))
5824 gfp_mask |= __GFP_MEMALLOC;
5825 data = kmalloc_reserve(size +
5826 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827 gfp_mask, NUMA_NO_NODE, NULL);
5828 if (!data)
5829 return -ENOMEM;
5830
5831 size = SKB_WITH_OVERHEAD(ksize(data));
5832
5833 /* Copy real data, and all frags */
5834 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5835 skb->len -= off;
5836
5837 memcpy((struct skb_shared_info *)(data + size),
5838 skb_shinfo(skb),
5839 offsetof(struct skb_shared_info,
5840 frags[skb_shinfo(skb)->nr_frags]));
5841 if (skb_cloned(skb)) {
5842 /* drop the old head gracefully */
5843 if (skb_orphan_frags(skb, gfp_mask)) {
5844 kfree(data);
5845 return -ENOMEM;
5846 }
5847 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5848 skb_frag_ref(skb, i);
5849 if (skb_has_frag_list(skb))
5850 skb_clone_fraglist(skb);
5851 skb_release_data(skb);
5852 } else {
5853 /* we can reuse existing recount- all we did was
5854 * relocate values
5855 */
5856 skb_free_head(skb);
5857 }
5858
5859 skb->head = data;
5860 skb->data = data;
5861 skb->head_frag = 0;
5862#ifdef NET_SKBUFF_DATA_USES_OFFSET
5863 skb->end = size;
5864#else
5865 skb->end = skb->head + size;
5866#endif
5867 skb_set_tail_pointer(skb, skb_headlen(skb));
5868 skb_headers_offset_update(skb, 0);
5869 skb->cloned = 0;
5870 skb->hdr_len = 0;
5871 skb->nohdr = 0;
5872 atomic_set(&skb_shinfo(skb)->dataref, 1);
5873
5874 return 0;
5875}
5876
5877static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5878
5879/* carve out the first eat bytes from skb's frag_list. May recurse into
5880 * pskb_carve()
5881 */
5882static int pskb_carve_frag_list(struct sk_buff *skb,
5883 struct skb_shared_info *shinfo, int eat,
5884 gfp_t gfp_mask)
5885{
5886 struct sk_buff *list = shinfo->frag_list;
5887 struct sk_buff *clone = NULL;
5888 struct sk_buff *insp = NULL;
5889
5890 do {
5891 if (!list) {
5892 pr_err("Not enough bytes to eat. Want %d\n", eat);
5893 return -EFAULT;
5894 }
5895 if (list->len <= eat) {
5896 /* Eaten as whole. */
5897 eat -= list->len;
5898 list = list->next;
5899 insp = list;
5900 } else {
5901 /* Eaten partially. */
5902 if (skb_shared(list)) {
5903 clone = skb_clone(list, gfp_mask);
5904 if (!clone)
5905 return -ENOMEM;
5906 insp = list->next;
5907 list = clone;
5908 } else {
5909 /* This may be pulled without problems. */
5910 insp = list;
5911 }
5912 if (pskb_carve(list, eat, gfp_mask) < 0) {
5913 kfree_skb(clone);
5914 return -ENOMEM;
5915 }
5916 break;
5917 }
5918 } while (eat);
5919
5920 /* Free pulled out fragments. */
5921 while ((list = shinfo->frag_list) != insp) {
5922 shinfo->frag_list = list->next;
5923 kfree_skb(list);
5924 }
5925 /* And insert new clone at head. */
5926 if (clone) {
5927 clone->next = list;
5928 shinfo->frag_list = clone;
5929 }
5930 return 0;
5931}
5932
5933/* carve off first len bytes from skb. Split line (off) is in the
5934 * non-linear part of skb
5935 */
5936static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5937 int pos, gfp_t gfp_mask)
5938{
5939 int i, k = 0;
5940 int size = skb_end_offset(skb);
5941 u8 *data;
5942 const int nfrags = skb_shinfo(skb)->nr_frags;
5943 struct skb_shared_info *shinfo;
5944
5945 size = SKB_DATA_ALIGN(size);
5946
5947 if (skb_pfmemalloc(skb))
5948 gfp_mask |= __GFP_MEMALLOC;
5949 data = kmalloc_reserve(size +
5950 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5951 gfp_mask, NUMA_NO_NODE, NULL);
5952 if (!data)
5953 return -ENOMEM;
5954
5955 size = SKB_WITH_OVERHEAD(ksize(data));
5956
5957 memcpy((struct skb_shared_info *)(data + size),
5958 skb_shinfo(skb), offsetof(struct skb_shared_info,
5959 frags[skb_shinfo(skb)->nr_frags]));
5960 if (skb_orphan_frags(skb, gfp_mask)) {
5961 kfree(data);
5962 return -ENOMEM;
5963 }
5964 shinfo = (struct skb_shared_info *)(data + size);
5965 for (i = 0; i < nfrags; i++) {
5966 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5967
5968 if (pos + fsize > off) {
5969 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5970
5971 if (pos < off) {
5972 /* Split frag.
5973 * We have two variants in this case:
5974 * 1. Move all the frag to the second
5975 * part, if it is possible. F.e.
5976 * this approach is mandatory for TUX,
5977 * where splitting is expensive.
5978 * 2. Split is accurately. We make this.
5979 */
5980 skb_frag_off_add(&shinfo->frags[0], off - pos);
5981 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5982 }
5983 skb_frag_ref(skb, i);
5984 k++;
5985 }
5986 pos += fsize;
5987 }
5988 shinfo->nr_frags = k;
5989 if (skb_has_frag_list(skb))
5990 skb_clone_fraglist(skb);
5991
5992 /* split line is in frag list */
5993 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5994 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5995 if (skb_has_frag_list(skb))
5996 kfree_skb_list(skb_shinfo(skb)->frag_list);
5997 kfree(data);
5998 return -ENOMEM;
5999 }
6000 skb_release_data(skb);
6001
6002 skb->head = data;
6003 skb->head_frag = 0;
6004 skb->data = data;
6005#ifdef NET_SKBUFF_DATA_USES_OFFSET
6006 skb->end = size;
6007#else
6008 skb->end = skb->head + size;
6009#endif
6010 skb_reset_tail_pointer(skb);
6011 skb_headers_offset_update(skb, 0);
6012 skb->cloned = 0;
6013 skb->hdr_len = 0;
6014 skb->nohdr = 0;
6015 skb->len -= off;
6016 skb->data_len = skb->len;
6017 atomic_set(&skb_shinfo(skb)->dataref, 1);
6018 return 0;
6019}
6020
6021/* remove len bytes from the beginning of the skb */
6022static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6023{
6024 int headlen = skb_headlen(skb);
6025
6026 if (len < headlen)
6027 return pskb_carve_inside_header(skb, len, headlen, gfp);
6028 else
6029 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6030}
6031
6032/* Extract to_copy bytes starting at off from skb, and return this in
6033 * a new skb
6034 */
6035struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6036 int to_copy, gfp_t gfp)
6037{
6038 struct sk_buff *clone = skb_clone(skb, gfp);
6039
6040 if (!clone)
6041 return NULL;
6042
6043 if (pskb_carve(clone, off, gfp) < 0 ||
6044 pskb_trim(clone, to_copy)) {
6045 kfree_skb(clone);
6046 return NULL;
6047 }
6048 return clone;
6049}
6050EXPORT_SYMBOL(pskb_extract);
6051
6052/**
6053 * skb_condense - try to get rid of fragments/frag_list if possible
6054 * @skb: buffer
6055 *
6056 * Can be used to save memory before skb is added to a busy queue.
6057 * If packet has bytes in frags and enough tail room in skb->head,
6058 * pull all of them, so that we can free the frags right now and adjust
6059 * truesize.
6060 * Notes:
6061 * We do not reallocate skb->head thus can not fail.
6062 * Caller must re-evaluate skb->truesize if needed.
6063 */
6064void skb_condense(struct sk_buff *skb)
6065{
6066 if (skb->data_len) {
6067 if (skb->data_len > skb->end - skb->tail ||
6068 skb_cloned(skb))
6069 return;
6070
6071 /* Nice, we can free page frag(s) right now */
6072 __pskb_pull_tail(skb, skb->data_len);
6073 }
6074 /* At this point, skb->truesize might be over estimated,
6075 * because skb had a fragment, and fragments do not tell
6076 * their truesize.
6077 * When we pulled its content into skb->head, fragment
6078 * was freed, but __pskb_pull_tail() could not possibly
6079 * adjust skb->truesize, not knowing the frag truesize.
6080 */
6081 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6082}
6083
6084#ifdef CONFIG_SKB_EXTENSIONS
6085static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6086{
6087 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088}
6089
6090/**
6091 * __skb_ext_alloc - allocate a new skb extensions storage
6092 *
6093 * @flags: See kmalloc().
6094 *
6095 * Returns the newly allocated pointer. The pointer can later attached to a
6096 * skb via __skb_ext_set().
6097 * Note: caller must handle the skb_ext as an opaque data.
6098 */
6099struct skb_ext *__skb_ext_alloc(gfp_t flags)
6100{
6101 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6102
6103 if (new) {
6104 memset(new->offset, 0, sizeof(new->offset));
6105 refcount_set(&new->refcnt, 1);
6106 }
6107
6108 return new;
6109}
6110
6111static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6112 unsigned int old_active)
6113{
6114 struct skb_ext *new;
6115
6116 if (refcount_read(&old->refcnt) == 1)
6117 return old;
6118
6119 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6120 if (!new)
6121 return NULL;
6122
6123 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6124 refcount_set(&new->refcnt, 1);
6125
6126#ifdef CONFIG_XFRM
6127 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6128 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6129 unsigned int i;
6130
6131 for (i = 0; i < sp->len; i++)
6132 xfrm_state_hold(sp->xvec[i]);
6133 }
6134#endif
6135 __skb_ext_put(old);
6136 return new;
6137}
6138
6139/**
6140 * __skb_ext_set - attach the specified extension storage to this skb
6141 * @skb: buffer
6142 * @id: extension id
6143 * @ext: extension storage previously allocated via __skb_ext_alloc()
6144 *
6145 * Existing extensions, if any, are cleared.
6146 *
6147 * Returns the pointer to the extension.
6148 */
6149void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6150 struct skb_ext *ext)
6151{
6152 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6153
6154 skb_ext_put(skb);
6155 newlen = newoff + skb_ext_type_len[id];
6156 ext->chunks = newlen;
6157 ext->offset[id] = newoff;
6158 skb->extensions = ext;
6159 skb->active_extensions = 1 << id;
6160 return skb_ext_get_ptr(ext, id);
6161}
6162
6163/**
6164 * skb_ext_add - allocate space for given extension, COW if needed
6165 * @skb: buffer
6166 * @id: extension to allocate space for
6167 *
6168 * Allocates enough space for the given extension.
6169 * If the extension is already present, a pointer to that extension
6170 * is returned.
6171 *
6172 * If the skb was cloned, COW applies and the returned memory can be
6173 * modified without changing the extension space of clones buffers.
6174 *
6175 * Returns pointer to the extension or NULL on allocation failure.
6176 */
6177void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6178{
6179 struct skb_ext *new, *old = NULL;
6180 unsigned int newlen, newoff;
6181
6182 if (skb->active_extensions) {
6183 old = skb->extensions;
6184
6185 new = skb_ext_maybe_cow(old, skb->active_extensions);
6186 if (!new)
6187 return NULL;
6188
6189 if (__skb_ext_exist(new, id))
6190 goto set_active;
6191
6192 newoff = new->chunks;
6193 } else {
6194 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6195
6196 new = __skb_ext_alloc(GFP_ATOMIC);
6197 if (!new)
6198 return NULL;
6199 }
6200
6201 newlen = newoff + skb_ext_type_len[id];
6202 new->chunks = newlen;
6203 new->offset[id] = newoff;
6204set_active:
6205 skb->extensions = new;
6206 skb->active_extensions |= 1 << id;
6207 return skb_ext_get_ptr(new, id);
6208}
6209EXPORT_SYMBOL(skb_ext_add);
6210
6211#ifdef CONFIG_XFRM
6212static void skb_ext_put_sp(struct sec_path *sp)
6213{
6214 unsigned int i;
6215
6216 for (i = 0; i < sp->len; i++)
6217 xfrm_state_put(sp->xvec[i]);
6218}
6219#endif
6220
6221void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6222{
6223 struct skb_ext *ext = skb->extensions;
6224
6225 skb->active_extensions &= ~(1 << id);
6226 if (skb->active_extensions == 0) {
6227 skb->extensions = NULL;
6228 __skb_ext_put(ext);
6229#ifdef CONFIG_XFRM
6230 } else if (id == SKB_EXT_SEC_PATH &&
6231 refcount_read(&ext->refcnt) == 1) {
6232 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6233
6234 skb_ext_put_sp(sp);
6235 sp->len = 0;
6236#endif
6237 }
6238}
6239EXPORT_SYMBOL(__skb_ext_del);
6240
6241void __skb_ext_put(struct skb_ext *ext)
6242{
6243 /* If this is last clone, nothing can increment
6244 * it after check passes. Avoids one atomic op.
6245 */
6246 if (refcount_read(&ext->refcnt) == 1)
6247 goto free_now;
6248
6249 if (!refcount_dec_and_test(&ext->refcnt))
6250 return;
6251free_now:
6252#ifdef CONFIG_XFRM
6253 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6254 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6255#endif
6256
6257 kmem_cache_free(skbuff_ext_cache, ext);
6258}
6259EXPORT_SYMBOL(__skb_ext_put);
6260#endif /* CONFIG_SKB_EXTENSIONS */