Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "ctree.h"
  20#include "extent-tree.h"
  21#include "tree-log.h"
  22#include "disk-io.h"
  23#include "print-tree.h"
  24#include "volumes.h"
  25#include "raid56.h"
  26#include "locking.h"
  27#include "free-space-cache.h"
  28#include "free-space-tree.h"
  29#include "sysfs.h"
  30#include "qgroup.h"
  31#include "ref-verify.h"
  32#include "space-info.h"
  33#include "block-rsv.h"
  34#include "delalloc-space.h"
 
  35#include "discard.h"
  36#include "rcu-string.h"
  37#include "zoned.h"
  38#include "dev-replace.h"
  39#include "fs.h"
  40#include "accessors.h"
 
  41#include "root-tree.h"
  42#include "file-item.h"
  43#include "orphan.h"
  44#include "tree-checker.h"
  45#include "raid-stripe-tree.h"
  46
  47#undef SCRAMBLE_DELAYED_REFS
  48
  49
  50static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  51			       struct btrfs_delayed_ref_head *href,
  52			       struct btrfs_delayed_ref_node *node, u64 parent,
  53			       u64 root_objectid, u64 owner_objectid,
  54			       u64 owner_offset,
  55			       struct btrfs_delayed_extent_op *extra_op);
  56static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  57				    struct extent_buffer *leaf,
  58				    struct btrfs_extent_item *ei);
  59static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  60				      u64 parent, u64 root_objectid,
  61				      u64 flags, u64 owner, u64 offset,
  62				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
  63static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  64				     struct btrfs_delayed_ref_node *node,
  65				     struct btrfs_delayed_extent_op *extent_op);
  66static int find_next_key(struct btrfs_path *path, int level,
  67			 struct btrfs_key *key);
  68
  69static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
  70{
  71	return (cache->flags & bits) == bits;
  72}
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74/* simple helper to search for an existing data extent at a given offset */
  75int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  76{
  77	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
  78	int ret;
  79	struct btrfs_key key;
  80	struct btrfs_path *path;
  81
  82	path = btrfs_alloc_path();
  83	if (!path)
  84		return -ENOMEM;
  85
  86	key.objectid = start;
  87	key.offset = len;
  88	key.type = BTRFS_EXTENT_ITEM_KEY;
  89	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  90	btrfs_free_path(path);
  91	return ret;
  92}
  93
  94/*
  95 * helper function to lookup reference count and flags of a tree block.
  96 *
  97 * the head node for delayed ref is used to store the sum of all the
  98 * reference count modifications queued up in the rbtree. the head
  99 * node may also store the extent flags to set. This way you can check
 100 * to see what the reference count and extent flags would be if all of
 101 * the delayed refs are not processed.
 102 */
 103int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 104			     struct btrfs_fs_info *fs_info, u64 bytenr,
 105			     u64 offset, int metadata, u64 *refs, u64 *flags,
 106			     u64 *owning_root)
 107{
 108	struct btrfs_root *extent_root;
 109	struct btrfs_delayed_ref_head *head;
 110	struct btrfs_delayed_ref_root *delayed_refs;
 111	struct btrfs_path *path;
 112	struct btrfs_extent_item *ei;
 113	struct extent_buffer *leaf;
 114	struct btrfs_key key;
 115	u32 item_size;
 116	u64 num_refs;
 117	u64 extent_flags;
 118	u64 owner = 0;
 119	int ret;
 120
 121	/*
 122	 * If we don't have skinny metadata, don't bother doing anything
 123	 * different
 124	 */
 125	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 126		offset = fs_info->nodesize;
 127		metadata = 0;
 128	}
 129
 130	path = btrfs_alloc_path();
 131	if (!path)
 132		return -ENOMEM;
 133
 134	if (!trans) {
 135		path->skip_locking = 1;
 136		path->search_commit_root = 1;
 137	}
 138
 139search_again:
 140	key.objectid = bytenr;
 141	key.offset = offset;
 142	if (metadata)
 143		key.type = BTRFS_METADATA_ITEM_KEY;
 144	else
 145		key.type = BTRFS_EXTENT_ITEM_KEY;
 146
 147	extent_root = btrfs_extent_root(fs_info, bytenr);
 148	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 149	if (ret < 0)
 150		goto out_free;
 151
 152	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 153		if (path->slots[0]) {
 154			path->slots[0]--;
 155			btrfs_item_key_to_cpu(path->nodes[0], &key,
 156					      path->slots[0]);
 157			if (key.objectid == bytenr &&
 158			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 159			    key.offset == fs_info->nodesize)
 160				ret = 0;
 161		}
 162	}
 163
 164	if (ret == 0) {
 165		leaf = path->nodes[0];
 166		item_size = btrfs_item_size(leaf, path->slots[0]);
 167		if (item_size >= sizeof(*ei)) {
 168			ei = btrfs_item_ptr(leaf, path->slots[0],
 169					    struct btrfs_extent_item);
 170			num_refs = btrfs_extent_refs(leaf, ei);
 171			extent_flags = btrfs_extent_flags(leaf, ei);
 172			owner = btrfs_get_extent_owner_root(fs_info, leaf,
 173							    path->slots[0]);
 174		} else {
 175			ret = -EUCLEAN;
 176			btrfs_err(fs_info,
 177			"unexpected extent item size, has %u expect >= %zu",
 178				  item_size, sizeof(*ei));
 179			if (trans)
 180				btrfs_abort_transaction(trans, ret);
 181			else
 182				btrfs_handle_fs_error(fs_info, ret, NULL);
 183
 184			goto out_free;
 185		}
 186
 187		BUG_ON(num_refs == 0);
 188	} else {
 189		num_refs = 0;
 190		extent_flags = 0;
 191		ret = 0;
 192	}
 193
 194	if (!trans)
 195		goto out;
 196
 197	delayed_refs = &trans->transaction->delayed_refs;
 198	spin_lock(&delayed_refs->lock);
 199	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 200	if (head) {
 201		if (!mutex_trylock(&head->mutex)) {
 202			refcount_inc(&head->refs);
 203			spin_unlock(&delayed_refs->lock);
 204
 205			btrfs_release_path(path);
 206
 207			/*
 208			 * Mutex was contended, block until it's released and try
 209			 * again
 210			 */
 211			mutex_lock(&head->mutex);
 212			mutex_unlock(&head->mutex);
 213			btrfs_put_delayed_ref_head(head);
 214			goto search_again;
 215		}
 216		spin_lock(&head->lock);
 217		if (head->extent_op && head->extent_op->update_flags)
 218			extent_flags |= head->extent_op->flags_to_set;
 219		else
 220			BUG_ON(num_refs == 0);
 221
 222		num_refs += head->ref_mod;
 223		spin_unlock(&head->lock);
 224		mutex_unlock(&head->mutex);
 225	}
 226	spin_unlock(&delayed_refs->lock);
 227out:
 228	WARN_ON(num_refs == 0);
 229	if (refs)
 230		*refs = num_refs;
 231	if (flags)
 232		*flags = extent_flags;
 233	if (owning_root)
 234		*owning_root = owner;
 235out_free:
 236	btrfs_free_path(path);
 237	return ret;
 238}
 239
 240/*
 241 * Back reference rules.  Back refs have three main goals:
 242 *
 243 * 1) differentiate between all holders of references to an extent so that
 244 *    when a reference is dropped we can make sure it was a valid reference
 245 *    before freeing the extent.
 246 *
 247 * 2) Provide enough information to quickly find the holders of an extent
 248 *    if we notice a given block is corrupted or bad.
 249 *
 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 251 *    maintenance.  This is actually the same as #2, but with a slightly
 252 *    different use case.
 253 *
 254 * There are two kinds of back refs. The implicit back refs is optimized
 255 * for pointers in non-shared tree blocks. For a given pointer in a block,
 256 * back refs of this kind provide information about the block's owner tree
 257 * and the pointer's key. These information allow us to find the block by
 258 * b-tree searching. The full back refs is for pointers in tree blocks not
 259 * referenced by their owner trees. The location of tree block is recorded
 260 * in the back refs. Actually the full back refs is generic, and can be
 261 * used in all cases the implicit back refs is used. The major shortcoming
 262 * of the full back refs is its overhead. Every time a tree block gets
 263 * COWed, we have to update back refs entry for all pointers in it.
 264 *
 265 * For a newly allocated tree block, we use implicit back refs for
 266 * pointers in it. This means most tree related operations only involve
 267 * implicit back refs. For a tree block created in old transaction, the
 268 * only way to drop a reference to it is COW it. So we can detect the
 269 * event that tree block loses its owner tree's reference and do the
 270 * back refs conversion.
 271 *
 272 * When a tree block is COWed through a tree, there are four cases:
 273 *
 274 * The reference count of the block is one and the tree is the block's
 275 * owner tree. Nothing to do in this case.
 276 *
 277 * The reference count of the block is one and the tree is not the
 278 * block's owner tree. In this case, full back refs is used for pointers
 279 * in the block. Remove these full back refs, add implicit back refs for
 280 * every pointers in the new block.
 281 *
 282 * The reference count of the block is greater than one and the tree is
 283 * the block's owner tree. In this case, implicit back refs is used for
 284 * pointers in the block. Add full back refs for every pointers in the
 285 * block, increase lower level extents' reference counts. The original
 286 * implicit back refs are entailed to the new block.
 287 *
 288 * The reference count of the block is greater than one and the tree is
 289 * not the block's owner tree. Add implicit back refs for every pointer in
 290 * the new block, increase lower level extents' reference count.
 291 *
 292 * Back Reference Key composing:
 293 *
 294 * The key objectid corresponds to the first byte in the extent,
 295 * The key type is used to differentiate between types of back refs.
 296 * There are different meanings of the key offset for different types
 297 * of back refs.
 298 *
 299 * File extents can be referenced by:
 300 *
 301 * - multiple snapshots, subvolumes, or different generations in one subvol
 302 * - different files inside a single subvolume
 303 * - different offsets inside a file (bookend extents in file.c)
 304 *
 305 * The extent ref structure for the implicit back refs has fields for:
 306 *
 307 * - Objectid of the subvolume root
 308 * - objectid of the file holding the reference
 309 * - original offset in the file
 310 * - how many bookend extents
 311 *
 312 * The key offset for the implicit back refs is hash of the first
 313 * three fields.
 314 *
 315 * The extent ref structure for the full back refs has field for:
 316 *
 317 * - number of pointers in the tree leaf
 318 *
 319 * The key offset for the implicit back refs is the first byte of
 320 * the tree leaf
 321 *
 322 * When a file extent is allocated, The implicit back refs is used.
 323 * the fields are filled in:
 324 *
 325 *     (root_key.objectid, inode objectid, offset in file, 1)
 326 *
 327 * When a file extent is removed file truncation, we find the
 328 * corresponding implicit back refs and check the following fields:
 329 *
 330 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 331 *
 332 * Btree extents can be referenced by:
 333 *
 334 * - Different subvolumes
 335 *
 336 * Both the implicit back refs and the full back refs for tree blocks
 337 * only consist of key. The key offset for the implicit back refs is
 338 * objectid of block's owner tree. The key offset for the full back refs
 339 * is the first byte of parent block.
 340 *
 341 * When implicit back refs is used, information about the lowest key and
 342 * level of the tree block are required. These information are stored in
 343 * tree block info structure.
 344 */
 345
 346/*
 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 350 */
 351int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 352				     struct btrfs_extent_inline_ref *iref,
 353				     enum btrfs_inline_ref_type is_data)
 354{
 355	struct btrfs_fs_info *fs_info = eb->fs_info;
 356	int type = btrfs_extent_inline_ref_type(eb, iref);
 357	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 358
 359	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 360		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 361		return type;
 362	}
 363
 364	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 365	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 366	    type == BTRFS_SHARED_DATA_REF_KEY ||
 367	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 368		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 369			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 370				return type;
 371			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 372				ASSERT(fs_info);
 373				/*
 374				 * Every shared one has parent tree block,
 375				 * which must be aligned to sector size.
 376				 */
 377				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
 
 378					return type;
 379			}
 380		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 381			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 382				return type;
 383			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 384				ASSERT(fs_info);
 385				/*
 386				 * Every shared one has parent tree block,
 387				 * which must be aligned to sector size.
 388				 */
 389				if (offset &&
 390				    IS_ALIGNED(offset, fs_info->sectorsize))
 391					return type;
 392			}
 393		} else {
 394			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 395			return type;
 396		}
 397	}
 398
 399	WARN_ON(1);
 400	btrfs_print_leaf(eb);
 401	btrfs_err(fs_info,
 402		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
 403		  eb->start, (unsigned long)iref, type);
 
 404
 405	return BTRFS_REF_TYPE_INVALID;
 406}
 407
 408u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 409{
 410	u32 high_crc = ~(u32)0;
 411	u32 low_crc = ~(u32)0;
 412	__le64 lenum;
 413
 414	lenum = cpu_to_le64(root_objectid);
 415	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
 416	lenum = cpu_to_le64(owner);
 417	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 418	lenum = cpu_to_le64(offset);
 419	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 420
 421	return ((u64)high_crc << 31) ^ (u64)low_crc;
 422}
 423
 424static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 425				     struct btrfs_extent_data_ref *ref)
 426{
 427	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 428				    btrfs_extent_data_ref_objectid(leaf, ref),
 429				    btrfs_extent_data_ref_offset(leaf, ref));
 430}
 431
 432static int match_extent_data_ref(struct extent_buffer *leaf,
 433				 struct btrfs_extent_data_ref *ref,
 434				 u64 root_objectid, u64 owner, u64 offset)
 435{
 436	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 437	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 438	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 439		return 0;
 440	return 1;
 441}
 442
 443static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 444					   struct btrfs_path *path,
 445					   u64 bytenr, u64 parent,
 446					   u64 root_objectid,
 447					   u64 owner, u64 offset)
 448{
 449	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 450	struct btrfs_key key;
 451	struct btrfs_extent_data_ref *ref;
 452	struct extent_buffer *leaf;
 453	u32 nritems;
 454	int ret;
 455	int recow;
 456	int err = -ENOENT;
 457
 458	key.objectid = bytenr;
 459	if (parent) {
 460		key.type = BTRFS_SHARED_DATA_REF_KEY;
 461		key.offset = parent;
 462	} else {
 463		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 464		key.offset = hash_extent_data_ref(root_objectid,
 465						  owner, offset);
 466	}
 467again:
 468	recow = 0;
 469	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 470	if (ret < 0) {
 471		err = ret;
 472		goto fail;
 473	}
 474
 475	if (parent) {
 476		if (!ret)
 477			return 0;
 478		goto fail;
 479	}
 480
 481	leaf = path->nodes[0];
 482	nritems = btrfs_header_nritems(leaf);
 483	while (1) {
 484		if (path->slots[0] >= nritems) {
 485			ret = btrfs_next_leaf(root, path);
 486			if (ret < 0)
 487				err = ret;
 488			if (ret)
 489				goto fail;
 490
 491			leaf = path->nodes[0];
 492			nritems = btrfs_header_nritems(leaf);
 493			recow = 1;
 494		}
 495
 496		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 497		if (key.objectid != bytenr ||
 498		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 499			goto fail;
 500
 501		ref = btrfs_item_ptr(leaf, path->slots[0],
 502				     struct btrfs_extent_data_ref);
 503
 504		if (match_extent_data_ref(leaf, ref, root_objectid,
 505					  owner, offset)) {
 506			if (recow) {
 507				btrfs_release_path(path);
 508				goto again;
 509			}
 510			err = 0;
 511			break;
 512		}
 513		path->slots[0]++;
 514	}
 515fail:
 516	return err;
 517}
 518
 519static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 520					   struct btrfs_path *path,
 521					   u64 bytenr, u64 parent,
 522					   u64 root_objectid, u64 owner,
 523					   u64 offset, int refs_to_add)
 524{
 525	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 526	struct btrfs_key key;
 527	struct extent_buffer *leaf;
 528	u32 size;
 529	u32 num_refs;
 530	int ret;
 531
 532	key.objectid = bytenr;
 533	if (parent) {
 534		key.type = BTRFS_SHARED_DATA_REF_KEY;
 535		key.offset = parent;
 536		size = sizeof(struct btrfs_shared_data_ref);
 537	} else {
 538		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 539		key.offset = hash_extent_data_ref(root_objectid,
 540						  owner, offset);
 541		size = sizeof(struct btrfs_extent_data_ref);
 542	}
 543
 544	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 545	if (ret && ret != -EEXIST)
 546		goto fail;
 547
 548	leaf = path->nodes[0];
 549	if (parent) {
 550		struct btrfs_shared_data_ref *ref;
 551		ref = btrfs_item_ptr(leaf, path->slots[0],
 552				     struct btrfs_shared_data_ref);
 553		if (ret == 0) {
 554			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 555		} else {
 556			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 557			num_refs += refs_to_add;
 558			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 559		}
 560	} else {
 561		struct btrfs_extent_data_ref *ref;
 562		while (ret == -EEXIST) {
 563			ref = btrfs_item_ptr(leaf, path->slots[0],
 564					     struct btrfs_extent_data_ref);
 565			if (match_extent_data_ref(leaf, ref, root_objectid,
 566						  owner, offset))
 567				break;
 568			btrfs_release_path(path);
 569			key.offset++;
 570			ret = btrfs_insert_empty_item(trans, root, path, &key,
 571						      size);
 572			if (ret && ret != -EEXIST)
 573				goto fail;
 574
 575			leaf = path->nodes[0];
 576		}
 577		ref = btrfs_item_ptr(leaf, path->slots[0],
 578				     struct btrfs_extent_data_ref);
 579		if (ret == 0) {
 580			btrfs_set_extent_data_ref_root(leaf, ref,
 581						       root_objectid);
 582			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 583			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 584			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 585		} else {
 586			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 587			num_refs += refs_to_add;
 588			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 589		}
 590	}
 591	btrfs_mark_buffer_dirty(trans, leaf);
 592	ret = 0;
 593fail:
 594	btrfs_release_path(path);
 595	return ret;
 596}
 597
 598static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 599					   struct btrfs_root *root,
 600					   struct btrfs_path *path,
 601					   int refs_to_drop)
 602{
 603	struct btrfs_key key;
 604	struct btrfs_extent_data_ref *ref1 = NULL;
 605	struct btrfs_shared_data_ref *ref2 = NULL;
 606	struct extent_buffer *leaf;
 607	u32 num_refs = 0;
 608	int ret = 0;
 609
 610	leaf = path->nodes[0];
 611	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 612
 613	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 614		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 615				      struct btrfs_extent_data_ref);
 616		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 617	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 618		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 619				      struct btrfs_shared_data_ref);
 620		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 621	} else {
 622		btrfs_err(trans->fs_info,
 623			  "unrecognized backref key (%llu %u %llu)",
 624			  key.objectid, key.type, key.offset);
 625		btrfs_abort_transaction(trans, -EUCLEAN);
 626		return -EUCLEAN;
 627	}
 628
 629	BUG_ON(num_refs < refs_to_drop);
 630	num_refs -= refs_to_drop;
 631
 632	if (num_refs == 0) {
 633		ret = btrfs_del_item(trans, root, path);
 634	} else {
 635		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 636			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 637		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 638			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 639		btrfs_mark_buffer_dirty(trans, leaf);
 640	}
 641	return ret;
 642}
 643
 644static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 645					  struct btrfs_extent_inline_ref *iref)
 646{
 647	struct btrfs_key key;
 648	struct extent_buffer *leaf;
 649	struct btrfs_extent_data_ref *ref1;
 650	struct btrfs_shared_data_ref *ref2;
 651	u32 num_refs = 0;
 652	int type;
 653
 654	leaf = path->nodes[0];
 655	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 656
 
 657	if (iref) {
 658		/*
 659		 * If type is invalid, we should have bailed out earlier than
 660		 * this call.
 661		 */
 662		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 663		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 664		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 665			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 666			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 667		} else {
 668			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 669			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 670		}
 671	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 672		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 673				      struct btrfs_extent_data_ref);
 674		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 675	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 676		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 677				      struct btrfs_shared_data_ref);
 678		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 679	} else {
 680		WARN_ON(1);
 681	}
 682	return num_refs;
 683}
 684
 685static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 686					  struct btrfs_path *path,
 687					  u64 bytenr, u64 parent,
 688					  u64 root_objectid)
 689{
 690	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 691	struct btrfs_key key;
 692	int ret;
 693
 694	key.objectid = bytenr;
 695	if (parent) {
 696		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 697		key.offset = parent;
 698	} else {
 699		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 700		key.offset = root_objectid;
 701	}
 702
 703	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 704	if (ret > 0)
 705		ret = -ENOENT;
 706	return ret;
 707}
 708
 709static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 710					  struct btrfs_path *path,
 711					  u64 bytenr, u64 parent,
 712					  u64 root_objectid)
 713{
 714	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 715	struct btrfs_key key;
 716	int ret;
 717
 718	key.objectid = bytenr;
 719	if (parent) {
 720		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 721		key.offset = parent;
 722	} else {
 723		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 724		key.offset = root_objectid;
 725	}
 726
 727	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 728	btrfs_release_path(path);
 729	return ret;
 730}
 731
 732static inline int extent_ref_type(u64 parent, u64 owner)
 733{
 734	int type;
 735	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 736		if (parent > 0)
 737			type = BTRFS_SHARED_BLOCK_REF_KEY;
 738		else
 739			type = BTRFS_TREE_BLOCK_REF_KEY;
 740	} else {
 741		if (parent > 0)
 742			type = BTRFS_SHARED_DATA_REF_KEY;
 743		else
 744			type = BTRFS_EXTENT_DATA_REF_KEY;
 745	}
 746	return type;
 747}
 748
 749static int find_next_key(struct btrfs_path *path, int level,
 750			 struct btrfs_key *key)
 751
 752{
 753	for (; level < BTRFS_MAX_LEVEL; level++) {
 754		if (!path->nodes[level])
 755			break;
 756		if (path->slots[level] + 1 >=
 757		    btrfs_header_nritems(path->nodes[level]))
 758			continue;
 759		if (level == 0)
 760			btrfs_item_key_to_cpu(path->nodes[level], key,
 761					      path->slots[level] + 1);
 762		else
 763			btrfs_node_key_to_cpu(path->nodes[level], key,
 764					      path->slots[level] + 1);
 765		return 0;
 766	}
 767	return 1;
 768}
 769
 770/*
 771 * look for inline back ref. if back ref is found, *ref_ret is set
 772 * to the address of inline back ref, and 0 is returned.
 773 *
 774 * if back ref isn't found, *ref_ret is set to the address where it
 775 * should be inserted, and -ENOENT is returned.
 776 *
 777 * if insert is true and there are too many inline back refs, the path
 778 * points to the extent item, and -EAGAIN is returned.
 779 *
 780 * NOTE: inline back refs are ordered in the same way that back ref
 781 *	 items in the tree are ordered.
 782 */
 783static noinline_for_stack
 784int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 785				 struct btrfs_path *path,
 786				 struct btrfs_extent_inline_ref **ref_ret,
 787				 u64 bytenr, u64 num_bytes,
 788				 u64 parent, u64 root_objectid,
 789				 u64 owner, u64 offset, int insert)
 790{
 791	struct btrfs_fs_info *fs_info = trans->fs_info;
 792	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
 793	struct btrfs_key key;
 794	struct extent_buffer *leaf;
 795	struct btrfs_extent_item *ei;
 796	struct btrfs_extent_inline_ref *iref;
 797	u64 flags;
 798	u64 item_size;
 799	unsigned long ptr;
 800	unsigned long end;
 801	int extra_size;
 802	int type;
 803	int want;
 804	int ret;
 
 805	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 806	int needed;
 807
 808	key.objectid = bytenr;
 809	key.type = BTRFS_EXTENT_ITEM_KEY;
 810	key.offset = num_bytes;
 811
 812	want = extent_ref_type(parent, owner);
 813	if (insert) {
 814		extra_size = btrfs_extent_inline_ref_size(want);
 815		path->search_for_extension = 1;
 816		path->keep_locks = 1;
 817	} else
 818		extra_size = -1;
 819
 820	/*
 821	 * Owner is our level, so we can just add one to get the level for the
 822	 * block we are interested in.
 823	 */
 824	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 825		key.type = BTRFS_METADATA_ITEM_KEY;
 826		key.offset = owner;
 827	}
 828
 829again:
 830	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 831	if (ret < 0)
 
 832		goto out;
 
 833
 834	/*
 835	 * We may be a newly converted file system which still has the old fat
 836	 * extent entries for metadata, so try and see if we have one of those.
 837	 */
 838	if (ret > 0 && skinny_metadata) {
 839		skinny_metadata = false;
 840		if (path->slots[0]) {
 841			path->slots[0]--;
 842			btrfs_item_key_to_cpu(path->nodes[0], &key,
 843					      path->slots[0]);
 844			if (key.objectid == bytenr &&
 845			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 846			    key.offset == num_bytes)
 847				ret = 0;
 848		}
 849		if (ret) {
 850			key.objectid = bytenr;
 851			key.type = BTRFS_EXTENT_ITEM_KEY;
 852			key.offset = num_bytes;
 853			btrfs_release_path(path);
 854			goto again;
 855		}
 856	}
 857
 858	if (ret && !insert) {
 859		ret = -ENOENT;
 860		goto out;
 861	} else if (WARN_ON(ret)) {
 862		btrfs_print_leaf(path->nodes[0]);
 863		btrfs_err(fs_info,
 864"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
 865			  bytenr, num_bytes, parent, root_objectid, owner,
 866			  offset);
 867		ret = -EUCLEAN;
 868		goto out;
 869	}
 870
 871	leaf = path->nodes[0];
 872	item_size = btrfs_item_size(leaf, path->slots[0]);
 873	if (unlikely(item_size < sizeof(*ei))) {
 874		ret = -EUCLEAN;
 875		btrfs_err(fs_info,
 876			  "unexpected extent item size, has %llu expect >= %zu",
 877			  item_size, sizeof(*ei));
 878		btrfs_abort_transaction(trans, ret);
 879		goto out;
 880	}
 881
 882	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 883	flags = btrfs_extent_flags(leaf, ei);
 884
 885	ptr = (unsigned long)(ei + 1);
 886	end = (unsigned long)ei + item_size;
 887
 888	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 889		ptr += sizeof(struct btrfs_tree_block_info);
 890		BUG_ON(ptr > end);
 891	}
 892
 893	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 894		needed = BTRFS_REF_TYPE_DATA;
 895	else
 896		needed = BTRFS_REF_TYPE_BLOCK;
 897
 898	ret = -ENOENT;
 899	while (ptr < end) {
 
 
 
 
 
 
 
 
 
 
 900		iref = (struct btrfs_extent_inline_ref *)ptr;
 901		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 902		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 903			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 904			ptr += btrfs_extent_inline_ref_size(type);
 905			continue;
 906		}
 907		if (type == BTRFS_REF_TYPE_INVALID) {
 908			ret = -EUCLEAN;
 909			goto out;
 910		}
 911
 912		if (want < type)
 913			break;
 914		if (want > type) {
 915			ptr += btrfs_extent_inline_ref_size(type);
 916			continue;
 917		}
 918
 919		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 920			struct btrfs_extent_data_ref *dref;
 921			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 922			if (match_extent_data_ref(leaf, dref, root_objectid,
 923						  owner, offset)) {
 924				ret = 0;
 925				break;
 926			}
 927			if (hash_extent_data_ref_item(leaf, dref) <
 928			    hash_extent_data_ref(root_objectid, owner, offset))
 929				break;
 930		} else {
 931			u64 ref_offset;
 932			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 933			if (parent > 0) {
 934				if (parent == ref_offset) {
 935					ret = 0;
 936					break;
 937				}
 938				if (ref_offset < parent)
 939					break;
 940			} else {
 941				if (root_objectid == ref_offset) {
 942					ret = 0;
 943					break;
 944				}
 945				if (ref_offset < root_objectid)
 946					break;
 947			}
 948		}
 949		ptr += btrfs_extent_inline_ref_size(type);
 950	}
 951
 952	if (unlikely(ptr > end)) {
 953		ret = -EUCLEAN;
 954		btrfs_print_leaf(path->nodes[0]);
 955		btrfs_crit(fs_info,
 956"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
 957			   path->slots[0], root_objectid, owner, offset, parent);
 958		goto out;
 959	}
 960
 961	if (ret == -ENOENT && insert) {
 962		if (item_size + extra_size >=
 963		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 964			ret = -EAGAIN;
 965			goto out;
 966		}
 967		/*
 968		 * To add new inline back ref, we have to make sure
 969		 * there is no corresponding back ref item.
 970		 * For simplicity, we just do not add new inline back
 971		 * ref if there is any kind of item for this block
 972		 */
 973		if (find_next_key(path, 0, &key) == 0 &&
 974		    key.objectid == bytenr &&
 975		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 976			ret = -EAGAIN;
 977			goto out;
 978		}
 979	}
 980	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 981out:
 982	if (insert) {
 983		path->keep_locks = 0;
 984		path->search_for_extension = 0;
 985		btrfs_unlock_up_safe(path, 1);
 986	}
 987	return ret;
 988}
 989
 990/*
 991 * helper to add new inline back ref
 992 */
 993static noinline_for_stack
 994void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
 995				 struct btrfs_path *path,
 996				 struct btrfs_extent_inline_ref *iref,
 997				 u64 parent, u64 root_objectid,
 998				 u64 owner, u64 offset, int refs_to_add,
 999				 struct btrfs_delayed_extent_op *extent_op)
1000{
1001	struct extent_buffer *leaf;
1002	struct btrfs_extent_item *ei;
1003	unsigned long ptr;
1004	unsigned long end;
1005	unsigned long item_offset;
1006	u64 refs;
1007	int size;
1008	int type;
1009
1010	leaf = path->nodes[0];
1011	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012	item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014	type = extent_ref_type(parent, owner);
1015	size = btrfs_extent_inline_ref_size(type);
1016
1017	btrfs_extend_item(trans, path, size);
1018
1019	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020	refs = btrfs_extent_refs(leaf, ei);
1021	refs += refs_to_add;
1022	btrfs_set_extent_refs(leaf, ei, refs);
1023	if (extent_op)
1024		__run_delayed_extent_op(extent_op, leaf, ei);
1025
1026	ptr = (unsigned long)ei + item_offset;
1027	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028	if (ptr < end - size)
1029		memmove_extent_buffer(leaf, ptr + size, ptr,
1030				      end - size - ptr);
1031
1032	iref = (struct btrfs_extent_inline_ref *)ptr;
1033	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035		struct btrfs_extent_data_ref *dref;
1036		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042		struct btrfs_shared_data_ref *sref;
1043		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048	} else {
1049		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050	}
1051	btrfs_mark_buffer_dirty(trans, leaf);
1052}
1053
1054static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055				 struct btrfs_path *path,
1056				 struct btrfs_extent_inline_ref **ref_ret,
1057				 u64 bytenr, u64 num_bytes, u64 parent,
1058				 u64 root_objectid, u64 owner, u64 offset)
1059{
1060	int ret;
1061
1062	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063					   num_bytes, parent, root_objectid,
1064					   owner, offset, 0);
1065	if (ret != -ENOENT)
1066		return ret;
1067
1068	btrfs_release_path(path);
1069	*ref_ret = NULL;
1070
1071	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073					    root_objectid);
1074	} else {
1075		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076					     root_objectid, owner, offset);
1077	}
1078	return ret;
1079}
1080
1081/*
1082 * helper to update/remove inline back ref
1083 */
1084static noinline_for_stack int update_inline_extent_backref(
1085				  struct btrfs_trans_handle *trans,
1086				  struct btrfs_path *path,
1087				  struct btrfs_extent_inline_ref *iref,
1088				  int refs_to_mod,
1089				  struct btrfs_delayed_extent_op *extent_op)
1090{
1091	struct extent_buffer *leaf = path->nodes[0];
1092	struct btrfs_fs_info *fs_info = leaf->fs_info;
1093	struct btrfs_extent_item *ei;
1094	struct btrfs_extent_data_ref *dref = NULL;
1095	struct btrfs_shared_data_ref *sref = NULL;
1096	unsigned long ptr;
1097	unsigned long end;
1098	u32 item_size;
1099	int size;
1100	int type;
1101	u64 refs;
1102
1103	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104	refs = btrfs_extent_refs(leaf, ei);
1105	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106		struct btrfs_key key;
1107		u32 extent_size;
1108
1109		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110		if (key.type == BTRFS_METADATA_ITEM_KEY)
1111			extent_size = fs_info->nodesize;
1112		else
1113			extent_size = key.offset;
1114		btrfs_print_leaf(leaf);
1115		btrfs_err(fs_info,
1116	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117			  key.objectid, extent_size, refs_to_mod, refs);
1118		return -EUCLEAN;
1119	}
1120	refs += refs_to_mod;
1121	btrfs_set_extent_refs(leaf, ei, refs);
1122	if (extent_op)
1123		__run_delayed_extent_op(extent_op, leaf, ei);
1124
1125	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126	/*
1127	 * Function btrfs_get_extent_inline_ref_type() has already printed
1128	 * error messages.
1129	 */
1130	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131		return -EUCLEAN;
1132
1133	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135		refs = btrfs_extent_data_ref_count(leaf, dref);
1136	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138		refs = btrfs_shared_data_ref_count(leaf, sref);
1139	} else {
1140		refs = 1;
1141		/*
1142		 * For tree blocks we can only drop one ref for it, and tree
1143		 * blocks should not have refs > 1.
1144		 *
1145		 * Furthermore if we're inserting a new inline backref, we
1146		 * won't reach this path either. That would be
1147		 * setup_inline_extent_backref().
1148		 */
1149		if (unlikely(refs_to_mod != -1)) {
1150			struct btrfs_key key;
1151
1152			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153
1154			btrfs_print_leaf(leaf);
1155			btrfs_err(fs_info,
1156			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1157				  key.objectid, refs_to_mod);
1158			return -EUCLEAN;
1159		}
1160	}
1161
1162	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163		struct btrfs_key key;
1164		u32 extent_size;
1165
1166		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167		if (key.type == BTRFS_METADATA_ITEM_KEY)
1168			extent_size = fs_info->nodesize;
1169		else
1170			extent_size = key.offset;
1171		btrfs_print_leaf(leaf);
1172		btrfs_err(fs_info,
1173"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174			  (unsigned long)iref, key.objectid, extent_size,
1175			  refs_to_mod, refs);
1176		return -EUCLEAN;
1177	}
1178	refs += refs_to_mod;
1179
1180	if (refs > 0) {
1181		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183		else
1184			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185	} else {
1186		size =  btrfs_extent_inline_ref_size(type);
1187		item_size = btrfs_item_size(leaf, path->slots[0]);
1188		ptr = (unsigned long)iref;
1189		end = (unsigned long)ei + item_size;
1190		if (ptr + size < end)
1191			memmove_extent_buffer(leaf, ptr, ptr + size,
1192					      end - ptr - size);
1193		item_size -= size;
1194		btrfs_truncate_item(trans, path, item_size, 1);
1195	}
1196	btrfs_mark_buffer_dirty(trans, leaf);
1197	return 0;
1198}
1199
1200static noinline_for_stack
1201int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202				 struct btrfs_path *path,
1203				 u64 bytenr, u64 num_bytes, u64 parent,
1204				 u64 root_objectid, u64 owner,
1205				 u64 offset, int refs_to_add,
1206				 struct btrfs_delayed_extent_op *extent_op)
1207{
1208	struct btrfs_extent_inline_ref *iref;
1209	int ret;
1210
1211	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212					   num_bytes, parent, root_objectid,
1213					   owner, offset, 1);
1214	if (ret == 0) {
1215		/*
1216		 * We're adding refs to a tree block we already own, this
1217		 * should not happen at all.
1218		 */
1219		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220			btrfs_print_leaf(path->nodes[0]);
1221			btrfs_crit(trans->fs_info,
1222"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223				   bytenr, num_bytes, root_objectid, path->slots[0]);
 
 
 
 
 
 
1224			return -EUCLEAN;
1225		}
1226		ret = update_inline_extent_backref(trans, path, iref,
1227						   refs_to_add, extent_op);
1228	} else if (ret == -ENOENT) {
1229		setup_inline_extent_backref(trans, path, iref, parent,
1230					    root_objectid, owner, offset,
1231					    refs_to_add, extent_op);
1232		ret = 0;
1233	}
1234	return ret;
1235}
1236
1237static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238				 struct btrfs_root *root,
1239				 struct btrfs_path *path,
1240				 struct btrfs_extent_inline_ref *iref,
1241				 int refs_to_drop, int is_data)
1242{
1243	int ret = 0;
1244
1245	BUG_ON(!is_data && refs_to_drop != 1);
1246	if (iref)
1247		ret = update_inline_extent_backref(trans, path, iref,
1248						   -refs_to_drop, NULL);
1249	else if (is_data)
1250		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251	else
1252		ret = btrfs_del_item(trans, root, path);
1253	return ret;
1254}
1255
1256static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257			       u64 *discarded_bytes)
1258{
1259	int j, ret = 0;
1260	u64 bytes_left, end;
1261	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262
1263	/* Adjust the range to be aligned to 512B sectors if necessary. */
1264	if (start != aligned_start) {
1265		len -= aligned_start - start;
1266		len = round_down(len, 1 << SECTOR_SHIFT);
1267		start = aligned_start;
1268	}
1269
1270	*discarded_bytes = 0;
1271
1272	if (!len)
1273		return 0;
1274
1275	end = start + len;
1276	bytes_left = len;
1277
1278	/* Skip any superblocks on this device. */
1279	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1280		u64 sb_start = btrfs_sb_offset(j);
1281		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1282		u64 size = sb_start - start;
1283
1284		if (!in_range(sb_start, start, bytes_left) &&
1285		    !in_range(sb_end, start, bytes_left) &&
1286		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1287			continue;
1288
1289		/*
1290		 * Superblock spans beginning of range.  Adjust start and
1291		 * try again.
1292		 */
1293		if (sb_start <= start) {
1294			start += sb_end - start;
1295			if (start > end) {
1296				bytes_left = 0;
1297				break;
1298			}
1299			bytes_left = end - start;
1300			continue;
1301		}
1302
1303		if (size) {
1304			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305						   size >> SECTOR_SHIFT,
1306						   GFP_NOFS);
1307			if (!ret)
1308				*discarded_bytes += size;
1309			else if (ret != -EOPNOTSUPP)
1310				return ret;
1311		}
1312
1313		start = sb_end;
1314		if (start > end) {
1315			bytes_left = 0;
1316			break;
1317		}
1318		bytes_left = end - start;
1319	}
1320
1321	if (bytes_left) {
1322		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323					   bytes_left >> SECTOR_SHIFT,
1324					   GFP_NOFS);
1325		if (!ret)
1326			*discarded_bytes += bytes_left;
1327	}
1328	return ret;
1329}
1330
1331static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1332{
1333	struct btrfs_device *dev = stripe->dev;
1334	struct btrfs_fs_info *fs_info = dev->fs_info;
1335	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1336	u64 phys = stripe->physical;
1337	u64 len = stripe->length;
1338	u64 discarded = 0;
1339	int ret = 0;
1340
1341	/* Zone reset on a zoned filesystem */
1342	if (btrfs_can_zone_reset(dev, phys, len)) {
1343		u64 src_disc;
1344
1345		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1346		if (ret)
1347			goto out;
1348
1349		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1350		    dev != dev_replace->srcdev)
1351			goto out;
1352
1353		src_disc = discarded;
1354
1355		/* Send to replace target as well */
1356		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1357					      &discarded);
1358		discarded += src_disc;
1359	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1360		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1361	} else {
1362		ret = 0;
1363		*bytes = 0;
1364	}
1365
1366out:
1367	*bytes = discarded;
1368	return ret;
1369}
1370
1371int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1372			 u64 num_bytes, u64 *actual_bytes)
1373{
1374	int ret = 0;
1375	u64 discarded_bytes = 0;
1376	u64 end = bytenr + num_bytes;
1377	u64 cur = bytenr;
1378
1379	/*
1380	 * Avoid races with device replace and make sure the devices in the
1381	 * stripes don't go away while we are discarding.
1382	 */
1383	btrfs_bio_counter_inc_blocked(fs_info);
1384	while (cur < end) {
1385		struct btrfs_discard_stripe *stripes;
1386		unsigned int num_stripes;
1387		int i;
1388
1389		num_bytes = end - cur;
1390		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1391		if (IS_ERR(stripes)) {
1392			ret = PTR_ERR(stripes);
1393			if (ret == -EOPNOTSUPP)
1394				ret = 0;
1395			break;
1396		}
1397
1398		for (i = 0; i < num_stripes; i++) {
1399			struct btrfs_discard_stripe *stripe = stripes + i;
1400			u64 bytes;
1401
1402			if (!stripe->dev->bdev) {
1403				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1404				continue;
1405			}
1406
1407			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1408					&stripe->dev->dev_state))
1409				continue;
1410
1411			ret = do_discard_extent(stripe, &bytes);
1412			if (ret) {
1413				/*
1414				 * Keep going if discard is not supported by the
1415				 * device.
1416				 */
1417				if (ret != -EOPNOTSUPP)
1418					break;
1419				ret = 0;
1420			} else {
1421				discarded_bytes += bytes;
1422			}
1423		}
1424		kfree(stripes);
1425		if (ret)
1426			break;
1427		cur += num_bytes;
1428	}
1429	btrfs_bio_counter_dec(fs_info);
1430	if (actual_bytes)
1431		*actual_bytes = discarded_bytes;
1432	return ret;
1433}
1434
1435/* Can return -ENOMEM */
1436int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1437			 struct btrfs_ref *generic_ref)
1438{
1439	struct btrfs_fs_info *fs_info = trans->fs_info;
1440	int ret;
1441
1442	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1443	       generic_ref->action);
1444	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1445	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1446
1447	if (generic_ref->type == BTRFS_REF_METADATA)
1448		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1449	else
1450		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1451
1452	btrfs_ref_tree_mod(fs_info, generic_ref);
1453
1454	return ret;
1455}
1456
1457/*
1458 * Insert backreference for a given extent.
1459 *
1460 * The counterpart is in __btrfs_free_extent(), with examples and more details
1461 * how it works.
1462 *
1463 * @trans:	    Handle of transaction
1464 *
1465 * @node:	    The delayed ref node used to get the bytenr/length for
1466 *		    extent whose references are incremented.
1467 *
1468 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1469 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1470 *		    bytenr of the parent block. Since new extents are always
1471 *		    created with indirect references, this will only be the case
1472 *		    when relocating a shared extent. In that case, root_objectid
1473 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1474 *		    be 0
1475 *
1476 * @root_objectid:  The id of the root where this modification has originated,
1477 *		    this can be either one of the well-known metadata trees or
1478 *		    the subvolume id which references this extent.
1479 *
1480 * @owner:	    For data extents it is the inode number of the owning file.
1481 *		    For metadata extents this parameter holds the level in the
1482 *		    tree of the extent.
1483 *
1484 * @offset:	    For metadata extents the offset is ignored and is currently
1485 *		    always passed as 0. For data extents it is the fileoffset
1486 *		    this extent belongs to.
1487 *
 
 
1488 * @extent_op       Pointer to a structure, holding information necessary when
1489 *                  updating a tree block's flags
1490 *
1491 */
1492static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1493				  struct btrfs_delayed_ref_node *node,
1494				  u64 parent, u64 root_objectid,
1495				  u64 owner, u64 offset,
1496				  struct btrfs_delayed_extent_op *extent_op)
1497{
1498	struct btrfs_path *path;
1499	struct extent_buffer *leaf;
1500	struct btrfs_extent_item *item;
1501	struct btrfs_key key;
1502	u64 bytenr = node->bytenr;
1503	u64 num_bytes = node->num_bytes;
1504	u64 refs;
1505	int refs_to_add = node->ref_mod;
1506	int ret;
1507
1508	path = btrfs_alloc_path();
1509	if (!path)
1510		return -ENOMEM;
1511
1512	/* this will setup the path even if it fails to insert the back ref */
1513	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1514					   parent, root_objectid, owner,
1515					   offset, refs_to_add, extent_op);
1516	if ((ret < 0 && ret != -EAGAIN) || !ret)
1517		goto out;
1518
1519	/*
1520	 * Ok we had -EAGAIN which means we didn't have space to insert and
1521	 * inline extent ref, so just update the reference count and add a
1522	 * normal backref.
1523	 */
1524	leaf = path->nodes[0];
1525	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1526	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1527	refs = btrfs_extent_refs(leaf, item);
1528	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1529	if (extent_op)
1530		__run_delayed_extent_op(extent_op, leaf, item);
1531
1532	btrfs_mark_buffer_dirty(trans, leaf);
1533	btrfs_release_path(path);
1534
1535	/* now insert the actual backref */
1536	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 
1537		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1538					    root_objectid);
1539	else
1540		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1541					     root_objectid, owner, offset,
1542					     refs_to_add);
1543
1544	if (ret)
1545		btrfs_abort_transaction(trans, ret);
1546out:
1547	btrfs_free_path(path);
1548	return ret;
1549}
1550
1551static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1552				     struct btrfs_delayed_ref_head *href)
1553{
1554	u64 root = href->owning_root;
1555
1556	/*
1557	 * Don't check must_insert_reserved, as this is called from contexts
1558	 * where it has already been unset.
1559	 */
1560	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1561	    !href->is_data || !is_fstree(root))
1562		return;
1563
1564	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1565				  BTRFS_QGROUP_RSV_DATA);
1566}
1567
1568static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1569				struct btrfs_delayed_ref_head *href,
1570				struct btrfs_delayed_ref_node *node,
1571				struct btrfs_delayed_extent_op *extent_op,
1572				bool insert_reserved)
1573{
1574	int ret = 0;
1575	struct btrfs_delayed_data_ref *ref;
 
1576	u64 parent = 0;
 
1577	u64 flags = 0;
1578
 
 
 
 
1579	ref = btrfs_delayed_node_to_data_ref(node);
1580	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1581
1582	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1583		parent = ref->parent;
 
1584
1585	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1586		struct btrfs_key key;
1587		struct btrfs_squota_delta delta = {
1588			.root = href->owning_root,
1589			.num_bytes = node->num_bytes,
1590			.is_data = true,
1591			.is_inc	= true,
1592			.generation = trans->transid,
1593		};
1594
1595		if (extent_op)
1596			flags |= extent_op->flags_to_set;
1597
1598		key.objectid = node->bytenr;
1599		key.type = BTRFS_EXTENT_ITEM_KEY;
1600		key.offset = node->num_bytes;
1601
1602		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1603						 flags, ref->objectid,
1604						 ref->offset, &key,
1605						 node->ref_mod, href->owning_root);
1606		free_head_ref_squota_rsv(trans->fs_info, href);
1607		if (!ret)
1608			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1609	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1610		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1611					     ref->objectid, ref->offset,
1612					     extent_op);
1613	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1614		ret = __btrfs_free_extent(trans, href, node, parent,
1615					  ref->root, ref->objectid,
1616					  ref->offset, extent_op);
 
1617	} else {
1618		BUG();
1619	}
1620	return ret;
1621}
1622
1623static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1624				    struct extent_buffer *leaf,
1625				    struct btrfs_extent_item *ei)
1626{
1627	u64 flags = btrfs_extent_flags(leaf, ei);
1628	if (extent_op->update_flags) {
1629		flags |= extent_op->flags_to_set;
1630		btrfs_set_extent_flags(leaf, ei, flags);
1631	}
1632
1633	if (extent_op->update_key) {
1634		struct btrfs_tree_block_info *bi;
1635		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1636		bi = (struct btrfs_tree_block_info *)(ei + 1);
1637		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1638	}
1639}
1640
1641static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1642				 struct btrfs_delayed_ref_head *head,
1643				 struct btrfs_delayed_extent_op *extent_op)
1644{
1645	struct btrfs_fs_info *fs_info = trans->fs_info;
1646	struct btrfs_root *root;
1647	struct btrfs_key key;
1648	struct btrfs_path *path;
1649	struct btrfs_extent_item *ei;
1650	struct extent_buffer *leaf;
1651	u32 item_size;
1652	int ret;
 
1653	int metadata = 1;
1654
1655	if (TRANS_ABORTED(trans))
1656		return 0;
1657
1658	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1659		metadata = 0;
1660
1661	path = btrfs_alloc_path();
1662	if (!path)
1663		return -ENOMEM;
1664
1665	key.objectid = head->bytenr;
1666
1667	if (metadata) {
1668		key.type = BTRFS_METADATA_ITEM_KEY;
1669		key.offset = extent_op->level;
1670	} else {
1671		key.type = BTRFS_EXTENT_ITEM_KEY;
1672		key.offset = head->num_bytes;
1673	}
1674
1675	root = btrfs_extent_root(fs_info, key.objectid);
1676again:
1677	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1678	if (ret < 0) {
 
1679		goto out;
1680	} else if (ret > 0) {
 
1681		if (metadata) {
1682			if (path->slots[0] > 0) {
1683				path->slots[0]--;
1684				btrfs_item_key_to_cpu(path->nodes[0], &key,
1685						      path->slots[0]);
1686				if (key.objectid == head->bytenr &&
1687				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1688				    key.offset == head->num_bytes)
1689					ret = 0;
1690			}
1691			if (ret > 0) {
1692				btrfs_release_path(path);
1693				metadata = 0;
1694
1695				key.objectid = head->bytenr;
1696				key.offset = head->num_bytes;
1697				key.type = BTRFS_EXTENT_ITEM_KEY;
1698				goto again;
1699			}
1700		} else {
1701			ret = -EUCLEAN;
1702			btrfs_err(fs_info,
1703		  "missing extent item for extent %llu num_bytes %llu level %d",
1704				  head->bytenr, head->num_bytes, extent_op->level);
1705			goto out;
1706		}
1707	}
1708
1709	leaf = path->nodes[0];
1710	item_size = btrfs_item_size(leaf, path->slots[0]);
1711
1712	if (unlikely(item_size < sizeof(*ei))) {
1713		ret = -EUCLEAN;
1714		btrfs_err(fs_info,
1715			  "unexpected extent item size, has %u expect >= %zu",
1716			  item_size, sizeof(*ei));
1717		btrfs_abort_transaction(trans, ret);
1718		goto out;
1719	}
1720
1721	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722	__run_delayed_extent_op(extent_op, leaf, ei);
1723
1724	btrfs_mark_buffer_dirty(trans, leaf);
1725out:
1726	btrfs_free_path(path);
1727	return ret;
1728}
1729
1730static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1731				struct btrfs_delayed_ref_head *href,
1732				struct btrfs_delayed_ref_node *node,
1733				struct btrfs_delayed_extent_op *extent_op,
1734				bool insert_reserved)
1735{
1736	int ret = 0;
1737	struct btrfs_fs_info *fs_info = trans->fs_info;
1738	struct btrfs_delayed_tree_ref *ref;
1739	u64 parent = 0;
1740	u64 ref_root = 0;
1741
1742	ref = btrfs_delayed_node_to_tree_ref(node);
1743	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1744
1745	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1746		parent = ref->parent;
1747	ref_root = ref->root;
1748
1749	if (unlikely(node->ref_mod != 1)) {
1750		btrfs_err(trans->fs_info,
1751	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1752			  node->bytenr, node->ref_mod, node->action, ref_root,
1753			  parent);
1754		return -EUCLEAN;
1755	}
1756	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1757		struct btrfs_squota_delta delta = {
1758			.root = href->owning_root,
1759			.num_bytes = fs_info->nodesize,
1760			.is_data = false,
1761			.is_inc = true,
1762			.generation = trans->transid,
1763		};
1764
1765		BUG_ON(!extent_op || !extent_op->update_flags);
1766		ret = alloc_reserved_tree_block(trans, node, extent_op);
1767		if (!ret)
1768			btrfs_record_squota_delta(fs_info, &delta);
1769	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1770		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1771					     ref->level, 0, extent_op);
1772	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1773		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1774					  ref->level, 0, extent_op);
1775	} else {
1776		BUG();
1777	}
1778	return ret;
1779}
1780
1781/* helper function to actually process a single delayed ref entry */
1782static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1783			       struct btrfs_delayed_ref_head *href,
1784			       struct btrfs_delayed_ref_node *node,
1785			       struct btrfs_delayed_extent_op *extent_op,
1786			       bool insert_reserved)
1787{
1788	int ret = 0;
1789
1790	if (TRANS_ABORTED(trans)) {
1791		if (insert_reserved) {
1792			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1793			free_head_ref_squota_rsv(trans->fs_info, href);
1794		}
1795		return 0;
1796	}
1797
1798	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1799	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1800		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1801					   insert_reserved);
1802	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1803		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1804		ret = run_delayed_data_ref(trans, href, node, extent_op,
1805					   insert_reserved);
1806	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1807		ret = 0;
1808	else
1809		BUG();
1810	if (ret && insert_reserved)
1811		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1812	if (ret < 0)
1813		btrfs_err(trans->fs_info,
1814"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1815			  node->bytenr, node->num_bytes, node->type,
1816			  node->action, node->ref_mod, ret);
1817	return ret;
1818}
1819
1820static inline struct btrfs_delayed_ref_node *
1821select_delayed_ref(struct btrfs_delayed_ref_head *head)
1822{
1823	struct btrfs_delayed_ref_node *ref;
1824
1825	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1826		return NULL;
1827
1828	/*
1829	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1830	 * This is to prevent a ref count from going down to zero, which deletes
1831	 * the extent item from the extent tree, when there still are references
1832	 * to add, which would fail because they would not find the extent item.
1833	 */
1834	if (!list_empty(&head->ref_add_list))
1835		return list_first_entry(&head->ref_add_list,
1836				struct btrfs_delayed_ref_node, add_list);
1837
1838	ref = rb_entry(rb_first_cached(&head->ref_tree),
1839		       struct btrfs_delayed_ref_node, ref_node);
1840	ASSERT(list_empty(&ref->add_list));
1841	return ref;
1842}
1843
1844static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1845				      struct btrfs_delayed_ref_head *head)
1846{
1847	spin_lock(&delayed_refs->lock);
1848	head->processing = false;
1849	delayed_refs->num_heads_ready++;
1850	spin_unlock(&delayed_refs->lock);
1851	btrfs_delayed_ref_unlock(head);
1852}
1853
1854static struct btrfs_delayed_extent_op *cleanup_extent_op(
1855				struct btrfs_delayed_ref_head *head)
1856{
1857	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1858
1859	if (!extent_op)
1860		return NULL;
1861
1862	if (head->must_insert_reserved) {
1863		head->extent_op = NULL;
1864		btrfs_free_delayed_extent_op(extent_op);
1865		return NULL;
1866	}
1867	return extent_op;
1868}
1869
1870static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1871				     struct btrfs_delayed_ref_head *head)
1872{
1873	struct btrfs_delayed_extent_op *extent_op;
1874	int ret;
1875
1876	extent_op = cleanup_extent_op(head);
1877	if (!extent_op)
1878		return 0;
1879	head->extent_op = NULL;
1880	spin_unlock(&head->lock);
1881	ret = run_delayed_extent_op(trans, head, extent_op);
1882	btrfs_free_delayed_extent_op(extent_op);
1883	return ret ? ret : 1;
1884}
1885
1886u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1887				  struct btrfs_delayed_ref_root *delayed_refs,
1888				  struct btrfs_delayed_ref_head *head)
1889{
1890	u64 ret = 0;
1891
1892	/*
1893	 * We had csum deletions accounted for in our delayed refs rsv, we need
1894	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1895	 */
1896	if (head->total_ref_mod < 0 && head->is_data) {
1897		int nr_csums;
1898
1899		spin_lock(&delayed_refs->lock);
1900		delayed_refs->pending_csums -= head->num_bytes;
1901		spin_unlock(&delayed_refs->lock);
1902		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1903
1904		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1905
1906		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1907	}
1908	/* must_insert_reserved can be set only if we didn't run the head ref. */
1909	if (head->must_insert_reserved)
1910		free_head_ref_squota_rsv(fs_info, head);
1911
1912	return ret;
1913}
1914
1915static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1916			    struct btrfs_delayed_ref_head *head,
1917			    u64 *bytes_released)
1918{
1919
1920	struct btrfs_fs_info *fs_info = trans->fs_info;
1921	struct btrfs_delayed_ref_root *delayed_refs;
1922	int ret;
1923
1924	delayed_refs = &trans->transaction->delayed_refs;
1925
1926	ret = run_and_cleanup_extent_op(trans, head);
1927	if (ret < 0) {
1928		unselect_delayed_ref_head(delayed_refs, head);
1929		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1930		return ret;
1931	} else if (ret) {
1932		return ret;
1933	}
1934
1935	/*
1936	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1937	 * and then re-check to make sure nobody got added.
1938	 */
1939	spin_unlock(&head->lock);
1940	spin_lock(&delayed_refs->lock);
1941	spin_lock(&head->lock);
1942	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1943		spin_unlock(&head->lock);
1944		spin_unlock(&delayed_refs->lock);
1945		return 1;
1946	}
1947	btrfs_delete_ref_head(delayed_refs, head);
1948	spin_unlock(&head->lock);
1949	spin_unlock(&delayed_refs->lock);
1950
1951	if (head->must_insert_reserved) {
1952		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1953		if (head->is_data) {
1954			struct btrfs_root *csum_root;
1955
1956			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1957			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1958					      head->num_bytes);
1959		}
1960	}
1961
1962	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1963
1964	trace_run_delayed_ref_head(fs_info, head, 0);
1965	btrfs_delayed_ref_unlock(head);
1966	btrfs_put_delayed_ref_head(head);
1967	return ret;
1968}
1969
1970static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1971					struct btrfs_trans_handle *trans)
1972{
1973	struct btrfs_delayed_ref_root *delayed_refs =
1974		&trans->transaction->delayed_refs;
1975	struct btrfs_delayed_ref_head *head = NULL;
1976	int ret;
1977
1978	spin_lock(&delayed_refs->lock);
1979	head = btrfs_select_ref_head(delayed_refs);
1980	if (!head) {
1981		spin_unlock(&delayed_refs->lock);
1982		return head;
1983	}
1984
1985	/*
1986	 * Grab the lock that says we are going to process all the refs for
1987	 * this head
1988	 */
1989	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1990	spin_unlock(&delayed_refs->lock);
1991
1992	/*
1993	 * We may have dropped the spin lock to get the head mutex lock, and
1994	 * that might have given someone else time to free the head.  If that's
1995	 * true, it has been removed from our list and we can move on.
1996	 */
1997	if (ret == -EAGAIN)
1998		head = ERR_PTR(-EAGAIN);
1999
2000	return head;
2001}
2002
2003static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2004					   struct btrfs_delayed_ref_head *locked_ref,
2005					   u64 *bytes_released)
2006{
2007	struct btrfs_fs_info *fs_info = trans->fs_info;
2008	struct btrfs_delayed_ref_root *delayed_refs;
2009	struct btrfs_delayed_extent_op *extent_op;
2010	struct btrfs_delayed_ref_node *ref;
2011	bool must_insert_reserved;
2012	int ret;
2013
2014	delayed_refs = &trans->transaction->delayed_refs;
2015
2016	lockdep_assert_held(&locked_ref->mutex);
2017	lockdep_assert_held(&locked_ref->lock);
2018
2019	while ((ref = select_delayed_ref(locked_ref))) {
2020		if (ref->seq &&
2021		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2022			spin_unlock(&locked_ref->lock);
2023			unselect_delayed_ref_head(delayed_refs, locked_ref);
2024			return -EAGAIN;
2025		}
2026
 
 
2027		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2028		RB_CLEAR_NODE(&ref->ref_node);
2029		if (!list_empty(&ref->add_list))
2030			list_del(&ref->add_list);
2031		/*
2032		 * When we play the delayed ref, also correct the ref_mod on
2033		 * head
2034		 */
2035		switch (ref->action) {
2036		case BTRFS_ADD_DELAYED_REF:
2037		case BTRFS_ADD_DELAYED_EXTENT:
2038			locked_ref->ref_mod -= ref->ref_mod;
2039			break;
2040		case BTRFS_DROP_DELAYED_REF:
2041			locked_ref->ref_mod += ref->ref_mod;
2042			break;
2043		default:
2044			WARN_ON(1);
2045		}
2046		atomic_dec(&delayed_refs->num_entries);
2047
2048		/*
2049		 * Record the must_insert_reserved flag before we drop the
2050		 * spin lock.
2051		 */
2052		must_insert_reserved = locked_ref->must_insert_reserved;
2053		/*
2054		 * Unsetting this on the head ref relinquishes ownership of
2055		 * the rsv_bytes, so it is critical that every possible code
2056		 * path from here forward frees all reserves including qgroup
2057		 * reserve.
2058		 */
2059		locked_ref->must_insert_reserved = false;
2060
2061		extent_op = locked_ref->extent_op;
2062		locked_ref->extent_op = NULL;
2063		spin_unlock(&locked_ref->lock);
2064
2065		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2066					  must_insert_reserved);
2067		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2068		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2069
2070		btrfs_free_delayed_extent_op(extent_op);
2071		if (ret) {
2072			unselect_delayed_ref_head(delayed_refs, locked_ref);
2073			btrfs_put_delayed_ref(ref);
2074			return ret;
2075		}
2076
2077		btrfs_put_delayed_ref(ref);
2078		cond_resched();
2079
2080		spin_lock(&locked_ref->lock);
2081		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2082	}
2083
2084	return 0;
2085}
2086
2087/*
2088 * Returns 0 on success or if called with an already aborted transaction.
2089 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2090 */
2091static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2092					     u64 min_bytes)
2093{
2094	struct btrfs_fs_info *fs_info = trans->fs_info;
2095	struct btrfs_delayed_ref_root *delayed_refs;
2096	struct btrfs_delayed_ref_head *locked_ref = NULL;
 
2097	int ret;
2098	unsigned long count = 0;
2099	unsigned long max_count = 0;
2100	u64 bytes_processed = 0;
2101
2102	delayed_refs = &trans->transaction->delayed_refs;
2103	if (min_bytes == 0) {
2104		max_count = delayed_refs->num_heads_ready;
2105		min_bytes = U64_MAX;
2106	}
2107
2108	do {
2109		if (!locked_ref) {
2110			locked_ref = btrfs_obtain_ref_head(trans);
2111			if (IS_ERR_OR_NULL(locked_ref)) {
2112				if (PTR_ERR(locked_ref) == -EAGAIN) {
2113					continue;
2114				} else {
2115					break;
2116				}
2117			}
2118			count++;
2119		}
2120		/*
2121		 * We need to try and merge add/drops of the same ref since we
2122		 * can run into issues with relocate dropping the implicit ref
2123		 * and then it being added back again before the drop can
2124		 * finish.  If we merged anything we need to re-loop so we can
2125		 * get a good ref.
2126		 * Or we can get node references of the same type that weren't
2127		 * merged when created due to bumps in the tree mod seq, and
2128		 * we need to merge them to prevent adding an inline extent
2129		 * backref before dropping it (triggering a BUG_ON at
2130		 * insert_inline_extent_backref()).
2131		 */
2132		spin_lock(&locked_ref->lock);
2133		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2134
2135		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
 
2136		if (ret < 0 && ret != -EAGAIN) {
2137			/*
2138			 * Error, btrfs_run_delayed_refs_for_head already
2139			 * unlocked everything so just bail out
2140			 */
2141			return ret;
2142		} else if (!ret) {
2143			/*
2144			 * Success, perform the usual cleanup of a processed
2145			 * head
2146			 */
2147			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2148			if (ret > 0 ) {
2149				/* We dropped our lock, we need to loop. */
2150				ret = 0;
2151				continue;
2152			} else if (ret) {
2153				return ret;
2154			}
2155		}
2156
2157		/*
2158		 * Either success case or btrfs_run_delayed_refs_for_head
2159		 * returned -EAGAIN, meaning we need to select another head
2160		 */
2161
2162		locked_ref = NULL;
2163		cond_resched();
2164	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2165		 (max_count > 0 && count < max_count) ||
2166		 locked_ref);
2167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168	return 0;
2169}
2170
2171#ifdef SCRAMBLE_DELAYED_REFS
2172/*
2173 * Normally delayed refs get processed in ascending bytenr order. This
2174 * correlates in most cases to the order added. To expose dependencies on this
2175 * order, we start to process the tree in the middle instead of the beginning
2176 */
2177static u64 find_middle(struct rb_root *root)
2178{
2179	struct rb_node *n = root->rb_node;
2180	struct btrfs_delayed_ref_node *entry;
2181	int alt = 1;
2182	u64 middle;
2183	u64 first = 0, last = 0;
2184
2185	n = rb_first(root);
2186	if (n) {
2187		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2188		first = entry->bytenr;
2189	}
2190	n = rb_last(root);
2191	if (n) {
2192		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2193		last = entry->bytenr;
2194	}
2195	n = root->rb_node;
2196
2197	while (n) {
2198		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2199		WARN_ON(!entry->in_tree);
2200
2201		middle = entry->bytenr;
2202
2203		if (alt)
2204			n = n->rb_left;
2205		else
2206			n = n->rb_right;
2207
2208		alt = 1 - alt;
2209	}
2210	return middle;
2211}
2212#endif
2213
2214/*
2215 * Start processing the delayed reference count updates and extent insertions
2216 * we have queued up so far.
2217 *
2218 * @trans:	Transaction handle.
2219 * @min_bytes:	How many bytes of delayed references to process. After this
2220 *		many bytes we stop processing delayed references if there are
2221 *		any more. If 0 it means to run all existing delayed references,
2222 *		but not new ones added after running all existing ones.
2223 *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2224 *		plus any new ones that are added.
2225 *
2226 * Returns 0 on success or if called with an aborted transaction
2227 * Returns <0 on error and aborts the transaction
2228 */
2229int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
 
2230{
2231	struct btrfs_fs_info *fs_info = trans->fs_info;
 
2232	struct btrfs_delayed_ref_root *delayed_refs;
 
2233	int ret;
 
2234
2235	/* We'll clean this up in btrfs_cleanup_transaction */
2236	if (TRANS_ABORTED(trans))
2237		return 0;
2238
2239	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2240		return 0;
2241
2242	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
2243again:
2244#ifdef SCRAMBLE_DELAYED_REFS
2245	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2246#endif
2247	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2248	if (ret < 0) {
2249		btrfs_abort_transaction(trans, ret);
2250		return ret;
2251	}
2252
2253	if (min_bytes == U64_MAX) {
2254		btrfs_create_pending_block_groups(trans);
2255
2256		spin_lock(&delayed_refs->lock);
2257		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
 
2258			spin_unlock(&delayed_refs->lock);
2259			return 0;
2260		}
 
 
 
2261		spin_unlock(&delayed_refs->lock);
2262
 
 
 
 
 
2263		cond_resched();
2264		goto again;
2265	}
2266
2267	return 0;
2268}
2269
2270int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2271				struct extent_buffer *eb, u64 flags)
 
2272{
2273	struct btrfs_delayed_extent_op *extent_op;
2274	int level = btrfs_header_level(eb);
2275	int ret;
2276
2277	extent_op = btrfs_alloc_delayed_extent_op();
2278	if (!extent_op)
2279		return -ENOMEM;
2280
2281	extent_op->flags_to_set = flags;
2282	extent_op->update_flags = true;
2283	extent_op->update_key = false;
2284	extent_op->level = level;
2285
2286	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2287	if (ret)
2288		btrfs_free_delayed_extent_op(extent_op);
2289	return ret;
2290}
2291
2292static noinline int check_delayed_ref(struct btrfs_root *root,
2293				      struct btrfs_path *path,
2294				      u64 objectid, u64 offset, u64 bytenr)
2295{
2296	struct btrfs_delayed_ref_head *head;
2297	struct btrfs_delayed_ref_node *ref;
2298	struct btrfs_delayed_data_ref *data_ref;
2299	struct btrfs_delayed_ref_root *delayed_refs;
2300	struct btrfs_transaction *cur_trans;
2301	struct rb_node *node;
2302	int ret = 0;
2303
2304	spin_lock(&root->fs_info->trans_lock);
2305	cur_trans = root->fs_info->running_transaction;
2306	if (cur_trans)
2307		refcount_inc(&cur_trans->use_count);
2308	spin_unlock(&root->fs_info->trans_lock);
2309	if (!cur_trans)
2310		return 0;
2311
2312	delayed_refs = &cur_trans->delayed_refs;
2313	spin_lock(&delayed_refs->lock);
2314	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2315	if (!head) {
2316		spin_unlock(&delayed_refs->lock);
2317		btrfs_put_transaction(cur_trans);
2318		return 0;
2319	}
2320
2321	if (!mutex_trylock(&head->mutex)) {
2322		if (path->nowait) {
2323			spin_unlock(&delayed_refs->lock);
2324			btrfs_put_transaction(cur_trans);
2325			return -EAGAIN;
2326		}
2327
2328		refcount_inc(&head->refs);
2329		spin_unlock(&delayed_refs->lock);
2330
2331		btrfs_release_path(path);
2332
2333		/*
2334		 * Mutex was contended, block until it's released and let
2335		 * caller try again
2336		 */
2337		mutex_lock(&head->mutex);
2338		mutex_unlock(&head->mutex);
2339		btrfs_put_delayed_ref_head(head);
2340		btrfs_put_transaction(cur_trans);
2341		return -EAGAIN;
2342	}
2343	spin_unlock(&delayed_refs->lock);
2344
2345	spin_lock(&head->lock);
2346	/*
2347	 * XXX: We should replace this with a proper search function in the
2348	 * future.
2349	 */
2350	for (node = rb_first_cached(&head->ref_tree); node;
2351	     node = rb_next(node)) {
2352		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2353		/* If it's a shared ref we know a cross reference exists */
2354		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2355			ret = 1;
2356			break;
2357		}
2358
2359		data_ref = btrfs_delayed_node_to_data_ref(ref);
2360
2361		/*
2362		 * If our ref doesn't match the one we're currently looking at
2363		 * then we have a cross reference.
2364		 */
2365		if (data_ref->root != root->root_key.objectid ||
2366		    data_ref->objectid != objectid ||
2367		    data_ref->offset != offset) {
2368			ret = 1;
2369			break;
2370		}
2371	}
2372	spin_unlock(&head->lock);
2373	mutex_unlock(&head->mutex);
2374	btrfs_put_transaction(cur_trans);
2375	return ret;
2376}
2377
2378static noinline int check_committed_ref(struct btrfs_root *root,
2379					struct btrfs_path *path,
2380					u64 objectid, u64 offset, u64 bytenr,
2381					bool strict)
2382{
2383	struct btrfs_fs_info *fs_info = root->fs_info;
2384	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2385	struct extent_buffer *leaf;
2386	struct btrfs_extent_data_ref *ref;
2387	struct btrfs_extent_inline_ref *iref;
2388	struct btrfs_extent_item *ei;
2389	struct btrfs_key key;
2390	u32 item_size;
2391	u32 expected_size;
2392	int type;
2393	int ret;
2394
2395	key.objectid = bytenr;
2396	key.offset = (u64)-1;
2397	key.type = BTRFS_EXTENT_ITEM_KEY;
2398
2399	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2400	if (ret < 0)
2401		goto out;
2402	BUG_ON(ret == 0); /* Corruption */
2403
2404	ret = -ENOENT;
2405	if (path->slots[0] == 0)
2406		goto out;
2407
2408	path->slots[0]--;
2409	leaf = path->nodes[0];
2410	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2411
2412	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2413		goto out;
2414
2415	ret = 1;
2416	item_size = btrfs_item_size(leaf, path->slots[0]);
2417	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2419
2420	/* No inline refs; we need to bail before checking for owner ref. */
2421	if (item_size == sizeof(*ei))
2422		goto out;
2423
2424	/* Check for an owner ref; skip over it to the real inline refs. */
2425	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2426	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2427	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2428		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2429		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2430	}
2431
2432	/* If extent item has more than 1 inline ref then it's shared */
2433	if (item_size != expected_size)
 
2434		goto out;
2435
2436	/*
2437	 * If extent created before last snapshot => it's shared unless the
2438	 * snapshot has been deleted. Use the heuristic if strict is false.
2439	 */
2440	if (!strict &&
2441	    (btrfs_extent_generation(leaf, ei) <=
2442	     btrfs_root_last_snapshot(&root->root_item)))
2443		goto out;
2444
 
 
2445	/* If this extent has SHARED_DATA_REF then it's shared */
2446	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2447	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2448		goto out;
2449
2450	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2451	if (btrfs_extent_refs(leaf, ei) !=
2452	    btrfs_extent_data_ref_count(leaf, ref) ||
2453	    btrfs_extent_data_ref_root(leaf, ref) !=
2454	    root->root_key.objectid ||
2455	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2456	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2457		goto out;
2458
2459	ret = 0;
2460out:
2461	return ret;
2462}
2463
2464int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2465			  u64 bytenr, bool strict, struct btrfs_path *path)
2466{
2467	int ret;
2468
2469	do {
2470		ret = check_committed_ref(root, path, objectid,
2471					  offset, bytenr, strict);
2472		if (ret && ret != -ENOENT)
2473			goto out;
2474
2475		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2476	} while (ret == -EAGAIN);
2477
2478out:
2479	btrfs_release_path(path);
2480	if (btrfs_is_data_reloc_root(root))
2481		WARN_ON(ret > 0);
2482	return ret;
2483}
2484
2485static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2486			   struct btrfs_root *root,
2487			   struct extent_buffer *buf,
2488			   int full_backref, int inc)
2489{
2490	struct btrfs_fs_info *fs_info = root->fs_info;
2491	u64 bytenr;
2492	u64 num_bytes;
2493	u64 parent;
2494	u64 ref_root;
2495	u32 nritems;
2496	struct btrfs_key key;
2497	struct btrfs_file_extent_item *fi;
2498	struct btrfs_ref generic_ref = { 0 };
2499	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2500	int i;
2501	int action;
2502	int level;
2503	int ret = 0;
2504
2505	if (btrfs_is_testing(fs_info))
2506		return 0;
2507
2508	ref_root = btrfs_header_owner(buf);
2509	nritems = btrfs_header_nritems(buf);
2510	level = btrfs_header_level(buf);
2511
2512	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2513		return 0;
2514
2515	if (full_backref)
2516		parent = buf->start;
2517	else
2518		parent = 0;
2519	if (inc)
2520		action = BTRFS_ADD_DELAYED_REF;
2521	else
2522		action = BTRFS_DROP_DELAYED_REF;
2523
2524	for (i = 0; i < nritems; i++) {
2525		if (level == 0) {
2526			btrfs_item_key_to_cpu(buf, &key, i);
2527			if (key.type != BTRFS_EXTENT_DATA_KEY)
2528				continue;
2529			fi = btrfs_item_ptr(buf, i,
2530					    struct btrfs_file_extent_item);
2531			if (btrfs_file_extent_type(buf, fi) ==
2532			    BTRFS_FILE_EXTENT_INLINE)
2533				continue;
2534			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2535			if (bytenr == 0)
2536				continue;
2537
2538			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2539			key.offset -= btrfs_file_extent_offset(buf, fi);
2540			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2541					       num_bytes, parent, ref_root);
2542			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2543					    key.offset, root->root_key.objectid,
2544					    for_reloc);
2545			if (inc)
2546				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2547			else
2548				ret = btrfs_free_extent(trans, &generic_ref);
2549			if (ret)
2550				goto fail;
2551		} else {
2552			bytenr = btrfs_node_blockptr(buf, i);
2553			num_bytes = fs_info->nodesize;
2554			/* We don't know the owning_root, use 0. */
2555			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2556					       num_bytes, parent, 0);
2557			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2558					    root->root_key.objectid, for_reloc);
2559			if (inc)
2560				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2561			else
2562				ret = btrfs_free_extent(trans, &generic_ref);
2563			if (ret)
2564				goto fail;
2565		}
2566	}
2567	return 0;
2568fail:
2569	return ret;
2570}
2571
2572int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2573		  struct extent_buffer *buf, int full_backref)
2574{
2575	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2576}
2577
2578int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2579		  struct extent_buffer *buf, int full_backref)
2580{
2581	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2582}
2583
2584static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2585{
2586	struct btrfs_fs_info *fs_info = root->fs_info;
2587	u64 flags;
2588	u64 ret;
2589
2590	if (data)
2591		flags = BTRFS_BLOCK_GROUP_DATA;
2592	else if (root == fs_info->chunk_root)
2593		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2594	else
2595		flags = BTRFS_BLOCK_GROUP_METADATA;
2596
2597	ret = btrfs_get_alloc_profile(fs_info, flags);
2598	return ret;
2599}
2600
2601static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2602{
2603	struct rb_node *leftmost;
2604	u64 bytenr = 0;
2605
2606	read_lock(&fs_info->block_group_cache_lock);
2607	/* Get the block group with the lowest logical start address. */
2608	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2609	if (leftmost) {
2610		struct btrfs_block_group *bg;
2611
2612		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2613		bytenr = bg->start;
2614	}
2615	read_unlock(&fs_info->block_group_cache_lock);
2616
2617	return bytenr;
2618}
2619
2620static int pin_down_extent(struct btrfs_trans_handle *trans,
2621			   struct btrfs_block_group *cache,
2622			   u64 bytenr, u64 num_bytes, int reserved)
2623{
2624	struct btrfs_fs_info *fs_info = cache->fs_info;
2625
2626	spin_lock(&cache->space_info->lock);
2627	spin_lock(&cache->lock);
2628	cache->pinned += num_bytes;
2629	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2630					     num_bytes);
2631	if (reserved) {
2632		cache->reserved -= num_bytes;
2633		cache->space_info->bytes_reserved -= num_bytes;
2634	}
2635	spin_unlock(&cache->lock);
2636	spin_unlock(&cache->space_info->lock);
2637
2638	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2639		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2640	return 0;
2641}
2642
2643int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2644		     u64 bytenr, u64 num_bytes, int reserved)
2645{
2646	struct btrfs_block_group *cache;
2647
2648	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2649	BUG_ON(!cache); /* Logic error */
2650
2651	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2652
2653	btrfs_put_block_group(cache);
2654	return 0;
2655}
2656
 
 
 
2657int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2658				    const struct extent_buffer *eb)
2659{
2660	struct btrfs_block_group *cache;
2661	int ret;
2662
2663	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2664	if (!cache)
2665		return -EINVAL;
2666
2667	/*
2668	 * Fully cache the free space first so that our pin removes the free space
2669	 * from the cache.
2670	 */
2671	ret = btrfs_cache_block_group(cache, true);
2672	if (ret)
2673		goto out;
2674
2675	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2676
2677	/* remove us from the free space cache (if we're there at all) */
2678	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2679out:
2680	btrfs_put_block_group(cache);
2681	return ret;
2682}
2683
2684static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2685				   u64 start, u64 num_bytes)
2686{
2687	int ret;
2688	struct btrfs_block_group *block_group;
2689
2690	block_group = btrfs_lookup_block_group(fs_info, start);
2691	if (!block_group)
2692		return -EINVAL;
2693
2694	ret = btrfs_cache_block_group(block_group, true);
2695	if (ret)
2696		goto out;
2697
2698	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2699out:
2700	btrfs_put_block_group(block_group);
2701	return ret;
2702}
2703
2704int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2705{
2706	struct btrfs_fs_info *fs_info = eb->fs_info;
2707	struct btrfs_file_extent_item *item;
2708	struct btrfs_key key;
2709	int found_type;
2710	int i;
2711	int ret = 0;
2712
2713	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2714		return 0;
2715
2716	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2717		btrfs_item_key_to_cpu(eb, &key, i);
2718		if (key.type != BTRFS_EXTENT_DATA_KEY)
2719			continue;
2720		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2721		found_type = btrfs_file_extent_type(eb, item);
2722		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2723			continue;
2724		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2725			continue;
2726		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2727		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2728		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2729		if (ret)
2730			break;
2731	}
2732
2733	return ret;
2734}
2735
2736static void
2737btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2738{
2739	atomic_inc(&bg->reservations);
2740}
2741
2742/*
2743 * Returns the free cluster for the given space info and sets empty_cluster to
2744 * what it should be based on the mount options.
2745 */
2746static struct btrfs_free_cluster *
2747fetch_cluster_info(struct btrfs_fs_info *fs_info,
2748		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2749{
2750	struct btrfs_free_cluster *ret = NULL;
2751
2752	*empty_cluster = 0;
2753	if (btrfs_mixed_space_info(space_info))
2754		return ret;
2755
2756	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2757		ret = &fs_info->meta_alloc_cluster;
2758		if (btrfs_test_opt(fs_info, SSD))
2759			*empty_cluster = SZ_2M;
2760		else
2761			*empty_cluster = SZ_64K;
2762	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2763		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2764		*empty_cluster = SZ_2M;
2765		ret = &fs_info->data_alloc_cluster;
2766	}
2767
2768	return ret;
2769}
2770
2771static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2772			      u64 start, u64 end,
2773			      const bool return_free_space)
2774{
2775	struct btrfs_block_group *cache = NULL;
2776	struct btrfs_space_info *space_info;
2777	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2778	struct btrfs_free_cluster *cluster = NULL;
2779	u64 len;
2780	u64 total_unpinned = 0;
2781	u64 empty_cluster = 0;
2782	bool readonly;
2783
2784	while (start <= end) {
2785		readonly = false;
2786		if (!cache ||
2787		    start >= cache->start + cache->length) {
2788			if (cache)
2789				btrfs_put_block_group(cache);
2790			total_unpinned = 0;
2791			cache = btrfs_lookup_block_group(fs_info, start);
2792			BUG_ON(!cache); /* Logic error */
2793
2794			cluster = fetch_cluster_info(fs_info,
2795						     cache->space_info,
2796						     &empty_cluster);
2797			empty_cluster <<= 1;
2798		}
2799
2800		len = cache->start + cache->length - start;
2801		len = min(len, end + 1 - start);
2802
2803		if (return_free_space)
2804			btrfs_add_free_space(cache, start, len);
2805
2806		start += len;
2807		total_unpinned += len;
2808		space_info = cache->space_info;
2809
2810		/*
2811		 * If this space cluster has been marked as fragmented and we've
2812		 * unpinned enough in this block group to potentially allow a
2813		 * cluster to be created inside of it go ahead and clear the
2814		 * fragmented check.
2815		 */
2816		if (cluster && cluster->fragmented &&
2817		    total_unpinned > empty_cluster) {
2818			spin_lock(&cluster->lock);
2819			cluster->fragmented = 0;
2820			spin_unlock(&cluster->lock);
2821		}
2822
2823		spin_lock(&space_info->lock);
2824		spin_lock(&cache->lock);
2825		cache->pinned -= len;
2826		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2827		space_info->max_extent_size = 0;
2828		if (cache->ro) {
2829			space_info->bytes_readonly += len;
2830			readonly = true;
2831		} else if (btrfs_is_zoned(fs_info)) {
2832			/* Need reset before reusing in a zoned block group */
2833			space_info->bytes_zone_unusable += len;
2834			readonly = true;
2835		}
2836		spin_unlock(&cache->lock);
2837		if (!readonly && return_free_space &&
2838		    global_rsv->space_info == space_info) {
2839			spin_lock(&global_rsv->lock);
2840			if (!global_rsv->full) {
2841				u64 to_add = min(len, global_rsv->size -
2842						      global_rsv->reserved);
2843
2844				global_rsv->reserved += to_add;
2845				btrfs_space_info_update_bytes_may_use(fs_info,
2846						space_info, to_add);
2847				if (global_rsv->reserved >= global_rsv->size)
2848					global_rsv->full = 1;
2849				len -= to_add;
2850			}
2851			spin_unlock(&global_rsv->lock);
2852		}
2853		/* Add to any tickets we may have */
2854		if (!readonly && return_free_space && len)
2855			btrfs_try_granting_tickets(fs_info, space_info);
2856		spin_unlock(&space_info->lock);
2857	}
2858
2859	if (cache)
2860		btrfs_put_block_group(cache);
2861	return 0;
2862}
2863
2864int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2865{
2866	struct btrfs_fs_info *fs_info = trans->fs_info;
2867	struct btrfs_block_group *block_group, *tmp;
2868	struct list_head *deleted_bgs;
2869	struct extent_io_tree *unpin;
2870	u64 start;
2871	u64 end;
2872	int ret;
2873
2874	unpin = &trans->transaction->pinned_extents;
2875
2876	while (!TRANS_ABORTED(trans)) {
2877		struct extent_state *cached_state = NULL;
2878
2879		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2880		if (!find_first_extent_bit(unpin, 0, &start, &end,
2881					   EXTENT_DIRTY, &cached_state)) {
 
2882			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883			break;
2884		}
2885
2886		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2887			ret = btrfs_discard_extent(fs_info, start,
2888						   end + 1 - start, NULL);
2889
2890		clear_extent_dirty(unpin, start, end, &cached_state);
2891		unpin_extent_range(fs_info, start, end, true);
2892		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2893		free_extent_state(cached_state);
2894		cond_resched();
2895	}
2896
2897	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2898		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2899		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2900	}
2901
2902	/*
2903	 * Transaction is finished.  We don't need the lock anymore.  We
2904	 * do need to clean up the block groups in case of a transaction
2905	 * abort.
2906	 */
2907	deleted_bgs = &trans->transaction->deleted_bgs;
2908	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2909		u64 trimmed = 0;
2910
2911		ret = -EROFS;
2912		if (!TRANS_ABORTED(trans))
2913			ret = btrfs_discard_extent(fs_info,
2914						   block_group->start,
2915						   block_group->length,
2916						   &trimmed);
2917
2918		list_del_init(&block_group->bg_list);
2919		btrfs_unfreeze_block_group(block_group);
2920		btrfs_put_block_group(block_group);
2921
2922		if (ret) {
2923			const char *errstr = btrfs_decode_error(ret);
2924			btrfs_warn(fs_info,
2925			   "discard failed while removing blockgroup: errno=%d %s",
2926				   ret, errstr);
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933/*
2934 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2935 *
2936 * @fs_info:	the btrfs_fs_info for this mount
2937 * @leaf:	a leaf in the extent tree containing the extent item
2938 * @slot:	the slot in the leaf where the extent item is found
2939 *
2940 * Returns the objectid of the root that originally allocated the extent item
2941 * if the inline owner ref is expected and present, otherwise 0.
2942 *
2943 * If an extent item has an owner ref item, it will be the first inline ref
2944 * item. Therefore the logic is to check whether there are any inline ref
2945 * items, then check the type of the first one.
2946 */
2947u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2948				struct extent_buffer *leaf, int slot)
2949{
2950	struct btrfs_extent_item *ei;
2951	struct btrfs_extent_inline_ref *iref;
2952	struct btrfs_extent_owner_ref *oref;
2953	unsigned long ptr;
2954	unsigned long end;
2955	int type;
2956
2957	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2958		return 0;
2959
2960	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2961	ptr = (unsigned long)(ei + 1);
2962	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2963
2964	/* No inline ref items of any kind, can't check type. */
2965	if (ptr == end)
2966		return 0;
2967
2968	iref = (struct btrfs_extent_inline_ref *)ptr;
2969	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2970
2971	/* We found an owner ref, get the root out of it. */
2972	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2973		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2974		return btrfs_extent_owner_ref_root_id(leaf, oref);
2975	}
2976
2977	/* We have inline refs, but not an owner ref. */
2978	return 0;
2979}
2980
2981static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2982				     u64 bytenr, struct btrfs_squota_delta *delta)
2983{
2984	int ret;
2985	u64 num_bytes = delta->num_bytes;
2986
2987	if (delta->is_data) {
2988		struct btrfs_root *csum_root;
2989
2990		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2991		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2992		if (ret) {
2993			btrfs_abort_transaction(trans, ret);
2994			return ret;
2995		}
2996
2997		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2998		if (ret) {
2999			btrfs_abort_transaction(trans, ret);
3000			return ret;
3001		}
3002	}
3003
3004	ret = btrfs_record_squota_delta(trans->fs_info, delta);
3005	if (ret) {
3006		btrfs_abort_transaction(trans, ret);
3007		return ret;
3008	}
3009
3010	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3011	if (ret) {
3012		btrfs_abort_transaction(trans, ret);
3013		return ret;
3014	}
3015
3016	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3017	if (ret)
3018		btrfs_abort_transaction(trans, ret);
3019
3020	return ret;
3021}
3022
3023#define abort_and_dump(trans, path, fmt, args...)	\
3024({							\
3025	btrfs_abort_transaction(trans, -EUCLEAN);	\
3026	btrfs_print_leaf(path->nodes[0]);		\
3027	btrfs_crit(trans->fs_info, fmt, ##args);	\
3028})
3029
3030/*
3031 * Drop one or more refs of @node.
3032 *
3033 * 1. Locate the extent refs.
3034 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3035 *    Locate it, then reduce the refs number or remove the ref line completely.
3036 *
3037 * 2. Update the refs count in EXTENT/METADATA_ITEM
3038 *
3039 * Inline backref case:
3040 *
3041 * in extent tree we have:
3042 *
3043 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3044 *		refs 2 gen 6 flags DATA
3045 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3046 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3047 *
3048 * This function gets called with:
3049 *
3050 *    node->bytenr = 13631488
3051 *    node->num_bytes = 1048576
3052 *    root_objectid = FS_TREE
3053 *    owner_objectid = 257
3054 *    owner_offset = 0
3055 *    refs_to_drop = 1
3056 *
3057 * Then we should get some like:
3058 *
3059 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3060 *		refs 1 gen 6 flags DATA
3061 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3062 *
3063 * Keyed backref case:
3064 *
3065 * in extent tree we have:
3066 *
3067 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3068 *		refs 754 gen 6 flags DATA
3069 *	[...]
3070 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3071 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3072 *
3073 * This function get called with:
3074 *
3075 *    node->bytenr = 13631488
3076 *    node->num_bytes = 1048576
3077 *    root_objectid = FS_TREE
3078 *    owner_objectid = 866
3079 *    owner_offset = 0
3080 *    refs_to_drop = 1
3081 *
3082 * Then we should get some like:
3083 *
3084 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3085 *		refs 753 gen 6 flags DATA
3086 *
3087 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3088 */
3089static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3090			       struct btrfs_delayed_ref_head *href,
3091			       struct btrfs_delayed_ref_node *node, u64 parent,
3092			       u64 root_objectid, u64 owner_objectid,
3093			       u64 owner_offset,
3094			       struct btrfs_delayed_extent_op *extent_op)
3095{
3096	struct btrfs_fs_info *info = trans->fs_info;
3097	struct btrfs_key key;
3098	struct btrfs_path *path;
3099	struct btrfs_root *extent_root;
3100	struct extent_buffer *leaf;
3101	struct btrfs_extent_item *ei;
3102	struct btrfs_extent_inline_ref *iref;
3103	int ret;
3104	int is_data;
3105	int extent_slot = 0;
3106	int found_extent = 0;
3107	int num_to_del = 1;
3108	int refs_to_drop = node->ref_mod;
3109	u32 item_size;
3110	u64 refs;
3111	u64 bytenr = node->bytenr;
3112	u64 num_bytes = node->num_bytes;
3113	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3114	u64 delayed_ref_root = href->owning_root;
3115
3116	extent_root = btrfs_extent_root(info, bytenr);
3117	ASSERT(extent_root);
3118
3119	path = btrfs_alloc_path();
3120	if (!path)
3121		return -ENOMEM;
3122
3123	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3124
3125	if (!is_data && refs_to_drop != 1) {
3126		btrfs_crit(info,
3127"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3128			   node->bytenr, refs_to_drop);
3129		ret = -EINVAL;
3130		btrfs_abort_transaction(trans, ret);
3131		goto out;
3132	}
3133
3134	if (is_data)
3135		skinny_metadata = false;
3136
3137	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3138				    parent, root_objectid, owner_objectid,
3139				    owner_offset);
3140	if (ret == 0) {
3141		/*
3142		 * Either the inline backref or the SHARED_DATA_REF/
3143		 * SHARED_BLOCK_REF is found
3144		 *
3145		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3146		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3147		 */
3148		extent_slot = path->slots[0];
3149		while (extent_slot >= 0) {
3150			btrfs_item_key_to_cpu(path->nodes[0], &key,
3151					      extent_slot);
3152			if (key.objectid != bytenr)
3153				break;
3154			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3155			    key.offset == num_bytes) {
3156				found_extent = 1;
3157				break;
3158			}
3159			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3160			    key.offset == owner_objectid) {
3161				found_extent = 1;
3162				break;
3163			}
3164
3165			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3166			if (path->slots[0] - extent_slot > 5)
3167				break;
3168			extent_slot--;
3169		}
3170
3171		if (!found_extent) {
3172			if (iref) {
3173				abort_and_dump(trans, path,
3174"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3175					   path->slots[0]);
3176				ret = -EUCLEAN;
3177				goto out;
3178			}
3179			/* Must be SHARED_* item, remove the backref first */
3180			ret = remove_extent_backref(trans, extent_root, path,
3181						    NULL, refs_to_drop, is_data);
3182			if (ret) {
3183				btrfs_abort_transaction(trans, ret);
3184				goto out;
3185			}
3186			btrfs_release_path(path);
3187
3188			/* Slow path to locate EXTENT/METADATA_ITEM */
3189			key.objectid = bytenr;
3190			key.type = BTRFS_EXTENT_ITEM_KEY;
3191			key.offset = num_bytes;
3192
3193			if (!is_data && skinny_metadata) {
3194				key.type = BTRFS_METADATA_ITEM_KEY;
3195				key.offset = owner_objectid;
3196			}
3197
3198			ret = btrfs_search_slot(trans, extent_root,
3199						&key, path, -1, 1);
3200			if (ret > 0 && skinny_metadata && path->slots[0]) {
3201				/*
3202				 * Couldn't find our skinny metadata item,
3203				 * see if we have ye olde extent item.
3204				 */
3205				path->slots[0]--;
3206				btrfs_item_key_to_cpu(path->nodes[0], &key,
3207						      path->slots[0]);
3208				if (key.objectid == bytenr &&
3209				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3210				    key.offset == num_bytes)
3211					ret = 0;
3212			}
3213
3214			if (ret > 0 && skinny_metadata) {
3215				skinny_metadata = false;
3216				key.objectid = bytenr;
3217				key.type = BTRFS_EXTENT_ITEM_KEY;
3218				key.offset = num_bytes;
3219				btrfs_release_path(path);
3220				ret = btrfs_search_slot(trans, extent_root,
3221							&key, path, -1, 1);
3222			}
3223
3224			if (ret) {
 
 
 
3225				if (ret > 0)
3226					btrfs_print_leaf(path->nodes[0]);
3227				btrfs_err(info,
3228			"umm, got %d back from search, was looking for %llu, slot %d",
3229					  ret, bytenr, path->slots[0]);
3230			}
3231			if (ret < 0) {
3232				btrfs_abort_transaction(trans, ret);
3233				goto out;
3234			}
3235			extent_slot = path->slots[0];
3236		}
3237	} else if (WARN_ON(ret == -ENOENT)) {
3238		abort_and_dump(trans, path,
3239"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3240			       bytenr, parent, root_objectid, owner_objectid,
3241			       owner_offset, path->slots[0]);
 
 
3242		goto out;
3243	} else {
3244		btrfs_abort_transaction(trans, ret);
3245		goto out;
3246	}
3247
3248	leaf = path->nodes[0];
3249	item_size = btrfs_item_size(leaf, extent_slot);
3250	if (unlikely(item_size < sizeof(*ei))) {
3251		ret = -EUCLEAN;
3252		btrfs_err(trans->fs_info,
3253			  "unexpected extent item size, has %u expect >= %zu",
3254			  item_size, sizeof(*ei));
3255		btrfs_abort_transaction(trans, ret);
3256		goto out;
3257	}
3258	ei = btrfs_item_ptr(leaf, extent_slot,
3259			    struct btrfs_extent_item);
3260	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3261	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3262		struct btrfs_tree_block_info *bi;
3263
3264		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3265			abort_and_dump(trans, path,
3266"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3267				       key.objectid, key.type, key.offset,
3268				       path->slots[0], owner_objectid, item_size,
3269				       sizeof(*ei) + sizeof(*bi));
3270			ret = -EUCLEAN;
3271			goto out;
3272		}
3273		bi = (struct btrfs_tree_block_info *)(ei + 1);
3274		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3275	}
3276
3277	refs = btrfs_extent_refs(leaf, ei);
3278	if (refs < refs_to_drop) {
3279		abort_and_dump(trans, path,
3280		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3281			       refs_to_drop, refs, bytenr, path->slots[0]);
3282		ret = -EUCLEAN;
3283		goto out;
3284	}
3285	refs -= refs_to_drop;
3286
3287	if (refs > 0) {
3288		if (extent_op)
3289			__run_delayed_extent_op(extent_op, leaf, ei);
3290		/*
3291		 * In the case of inline back ref, reference count will
3292		 * be updated by remove_extent_backref
3293		 */
3294		if (iref) {
3295			if (!found_extent) {
3296				abort_and_dump(trans, path,
3297"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3298					       path->slots[0]);
3299				ret = -EUCLEAN;
3300				goto out;
3301			}
3302		} else {
3303			btrfs_set_extent_refs(leaf, ei, refs);
3304			btrfs_mark_buffer_dirty(trans, leaf);
3305		}
3306		if (found_extent) {
3307			ret = remove_extent_backref(trans, extent_root, path,
3308						    iref, refs_to_drop, is_data);
3309			if (ret) {
3310				btrfs_abort_transaction(trans, ret);
3311				goto out;
3312			}
3313		}
3314	} else {
3315		struct btrfs_squota_delta delta = {
3316			.root = delayed_ref_root,
3317			.num_bytes = num_bytes,
3318			.is_data = is_data,
3319			.is_inc = false,
3320			.generation = btrfs_extent_generation(leaf, ei),
3321		};
3322
3323		/* In this branch refs == 1 */
3324		if (found_extent) {
3325			if (is_data && refs_to_drop !=
3326			    extent_data_ref_count(path, iref)) {
3327				abort_and_dump(trans, path,
3328		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3329					       extent_data_ref_count(path, iref),
3330					       refs_to_drop, path->slots[0]);
3331				ret = -EUCLEAN;
3332				goto out;
3333			}
3334			if (iref) {
3335				if (path->slots[0] != extent_slot) {
3336					abort_and_dump(trans, path,
3337"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3338						       key.objectid, key.type,
3339						       key.offset, path->slots[0]);
3340					ret = -EUCLEAN;
3341					goto out;
3342				}
3343			} else {
3344				/*
3345				 * No inline ref, we must be at SHARED_* item,
3346				 * And it's single ref, it must be:
3347				 * |	extent_slot	  ||extent_slot + 1|
3348				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3349				 */
3350				if (path->slots[0] != extent_slot + 1) {
3351					abort_and_dump(trans, path,
3352	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3353						       path->slots[0]);
3354					ret = -EUCLEAN;
3355					goto out;
3356				}
3357				path->slots[0] = extent_slot;
3358				num_to_del = 2;
3359			}
3360		}
3361		/*
3362		 * We can't infer the data owner from the delayed ref, so we need
3363		 * to try to get it from the owning ref item.
3364		 *
3365		 * If it is not present, then that extent was not written under
3366		 * simple quotas mode, so we don't need to account for its deletion.
3367		 */
3368		if (is_data)
3369			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3370								 leaf, extent_slot);
3371
3372		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3373				      num_to_del);
3374		if (ret) {
3375			btrfs_abort_transaction(trans, ret);
3376			goto out;
3377		}
3378		btrfs_release_path(path);
3379
3380		ret = do_free_extent_accounting(trans, bytenr, &delta);
3381	}
3382	btrfs_release_path(path);
3383
3384out:
3385	btrfs_free_path(path);
3386	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3387}
3388
3389/*
3390 * when we free an block, it is possible (and likely) that we free the last
3391 * delayed ref for that extent as well.  This searches the delayed ref tree for
3392 * a given extent, and if there are no other delayed refs to be processed, it
3393 * removes it from the tree.
3394 */
3395static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3396				      u64 bytenr)
3397{
3398	struct btrfs_delayed_ref_head *head;
3399	struct btrfs_delayed_ref_root *delayed_refs;
3400	int ret = 0;
3401
3402	delayed_refs = &trans->transaction->delayed_refs;
3403	spin_lock(&delayed_refs->lock);
3404	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3405	if (!head)
3406		goto out_delayed_unlock;
3407
3408	spin_lock(&head->lock);
3409	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3410		goto out;
3411
3412	if (cleanup_extent_op(head) != NULL)
3413		goto out;
3414
3415	/*
3416	 * waiting for the lock here would deadlock.  If someone else has it
3417	 * locked they are already in the process of dropping it anyway
3418	 */
3419	if (!mutex_trylock(&head->mutex))
3420		goto out;
3421
3422	btrfs_delete_ref_head(delayed_refs, head);
3423	head->processing = false;
3424
3425	spin_unlock(&head->lock);
3426	spin_unlock(&delayed_refs->lock);
3427
3428	BUG_ON(head->extent_op);
3429	if (head->must_insert_reserved)
3430		ret = 1;
3431
3432	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3433	mutex_unlock(&head->mutex);
3434	btrfs_put_delayed_ref_head(head);
3435	return ret;
3436out:
3437	spin_unlock(&head->lock);
3438
3439out_delayed_unlock:
3440	spin_unlock(&delayed_refs->lock);
3441	return 0;
3442}
3443
3444void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3445			   u64 root_id,
3446			   struct extent_buffer *buf,
3447			   u64 parent, int last_ref)
3448{
3449	struct btrfs_fs_info *fs_info = trans->fs_info;
3450	struct btrfs_ref generic_ref = { 0 };
3451	struct btrfs_block_group *bg;
3452	int ret;
3453
3454	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3455			       buf->start, buf->len, parent, btrfs_header_owner(buf));
3456	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3457			    root_id, 0, false);
3458
3459	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3460		btrfs_ref_tree_mod(fs_info, &generic_ref);
3461		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3462		BUG_ON(ret); /* -ENOMEM */
3463	}
3464
3465	if (!last_ref)
3466		return;
 
 
 
 
 
 
 
 
 
3467
3468	if (btrfs_header_generation(buf) != trans->transid)
3469		goto out;
3470
3471	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3472		ret = check_ref_cleanup(trans, buf->start);
3473		if (!ret)
3474			goto out;
3475	}
3476
3477	bg = btrfs_lookup_block_group(fs_info, buf->start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3478
3479	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3480		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3481		btrfs_put_block_group(bg);
3482		goto out;
3483	}
 
3484
3485	/*
3486	 * If there are tree mod log users we may have recorded mod log
3487	 * operations for this node.  If we re-allocate this node we
3488	 * could replay operations on this node that happened when it
3489	 * existed in a completely different root.  For example if it
3490	 * was part of root A, then was reallocated to root B, and we
3491	 * are doing a btrfs_old_search_slot(root b), we could replay
3492	 * operations that happened when the block was part of root A,
3493	 * giving us an inconsistent view of the btree.
3494	 *
3495	 * We are safe from races here because at this point no other
3496	 * node or root points to this extent buffer, so if after this
3497	 * check a new tree mod log user joins we will not have an
3498	 * existing log of operations on this node that we have to
3499	 * contend with.
3500	 */
3501
3502	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3503		     || btrfs_is_zoned(fs_info)) {
3504		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3505		btrfs_put_block_group(bg);
3506		goto out;
3507	}
3508
3509	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3510
3511	btrfs_add_free_space(bg, buf->start, buf->len);
3512	btrfs_free_reserved_bytes(bg, buf->len, 0);
3513	btrfs_put_block_group(bg);
3514	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3515
3516out:
3517
3518	/*
3519	 * Deleting the buffer, clear the corrupt flag since it doesn't
3520	 * matter anymore.
3521	 */
3522	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
3523}
3524
3525/* Can return -ENOMEM */
3526int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3527{
3528	struct btrfs_fs_info *fs_info = trans->fs_info;
3529	int ret;
3530
3531	if (btrfs_is_testing(fs_info))
3532		return 0;
3533
3534	/*
3535	 * tree log blocks never actually go into the extent allocation
3536	 * tree, just update pinning info and exit early.
3537	 */
3538	if ((ref->type == BTRFS_REF_METADATA &&
3539	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3540	    (ref->type == BTRFS_REF_DATA &&
3541	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
 
3542		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3543		ret = 0;
3544	} else if (ref->type == BTRFS_REF_METADATA) {
3545		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3546	} else {
3547		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3548	}
3549
3550	if (!((ref->type == BTRFS_REF_METADATA &&
3551	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3552	      (ref->type == BTRFS_REF_DATA &&
3553	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3554		btrfs_ref_tree_mod(fs_info, ref);
3555
3556	return ret;
3557}
3558
3559enum btrfs_loop_type {
3560	/*
3561	 * Start caching block groups but do not wait for progress or for them
3562	 * to be done.
3563	 */
3564	LOOP_CACHING_NOWAIT,
3565
3566	/*
3567	 * Wait for the block group free_space >= the space we're waiting for if
3568	 * the block group isn't cached.
3569	 */
3570	LOOP_CACHING_WAIT,
3571
3572	/*
3573	 * Allow allocations to happen from block groups that do not yet have a
3574	 * size classification.
3575	 */
3576	LOOP_UNSET_SIZE_CLASS,
3577
3578	/*
3579	 * Allocate a chunk and then retry the allocation.
3580	 */
3581	LOOP_ALLOC_CHUNK,
3582
3583	/*
3584	 * Ignore the size class restrictions for this allocation.
3585	 */
3586	LOOP_WRONG_SIZE_CLASS,
3587
3588	/*
3589	 * Ignore the empty size, only try to allocate the number of bytes
3590	 * needed for this allocation.
3591	 */
3592	LOOP_NO_EMPTY_SIZE,
3593};
3594
3595static inline void
3596btrfs_lock_block_group(struct btrfs_block_group *cache,
3597		       int delalloc)
3598{
3599	if (delalloc)
3600		down_read(&cache->data_rwsem);
3601}
3602
3603static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3604		       int delalloc)
3605{
3606	btrfs_get_block_group(cache);
3607	if (delalloc)
3608		down_read(&cache->data_rwsem);
3609}
3610
3611static struct btrfs_block_group *btrfs_lock_cluster(
3612		   struct btrfs_block_group *block_group,
3613		   struct btrfs_free_cluster *cluster,
3614		   int delalloc)
3615	__acquires(&cluster->refill_lock)
3616{
3617	struct btrfs_block_group *used_bg = NULL;
3618
3619	spin_lock(&cluster->refill_lock);
3620	while (1) {
3621		used_bg = cluster->block_group;
3622		if (!used_bg)
3623			return NULL;
3624
3625		if (used_bg == block_group)
3626			return used_bg;
3627
3628		btrfs_get_block_group(used_bg);
3629
3630		if (!delalloc)
3631			return used_bg;
3632
3633		if (down_read_trylock(&used_bg->data_rwsem))
3634			return used_bg;
3635
3636		spin_unlock(&cluster->refill_lock);
3637
3638		/* We should only have one-level nested. */
3639		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3640
3641		spin_lock(&cluster->refill_lock);
3642		if (used_bg == cluster->block_group)
3643			return used_bg;
3644
3645		up_read(&used_bg->data_rwsem);
3646		btrfs_put_block_group(used_bg);
3647	}
3648}
3649
3650static inline void
3651btrfs_release_block_group(struct btrfs_block_group *cache,
3652			 int delalloc)
3653{
3654	if (delalloc)
3655		up_read(&cache->data_rwsem);
3656	btrfs_put_block_group(cache);
3657}
3658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3659/*
3660 * Helper function for find_free_extent().
3661 *
3662 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
 
3663 * Return >0 to inform caller that we find nothing
3664 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3665 */
3666static int find_free_extent_clustered(struct btrfs_block_group *bg,
3667				      struct find_free_extent_ctl *ffe_ctl,
3668				      struct btrfs_block_group **cluster_bg_ret)
3669{
3670	struct btrfs_block_group *cluster_bg;
3671	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3672	u64 aligned_cluster;
3673	u64 offset;
3674	int ret;
3675
3676	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3677	if (!cluster_bg)
3678		goto refill_cluster;
3679	if (cluster_bg != bg && (cluster_bg->ro ||
3680	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3681		goto release_cluster;
3682
3683	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3684			ffe_ctl->num_bytes, cluster_bg->start,
3685			&ffe_ctl->max_extent_size);
3686	if (offset) {
3687		/* We have a block, we're done */
3688		spin_unlock(&last_ptr->refill_lock);
3689		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
 
3690		*cluster_bg_ret = cluster_bg;
3691		ffe_ctl->found_offset = offset;
3692		return 0;
3693	}
3694	WARN_ON(last_ptr->block_group != cluster_bg);
3695
3696release_cluster:
3697	/*
3698	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3699	 * lets just skip it and let the allocator find whatever block it can
3700	 * find. If we reach this point, we will have tried the cluster
3701	 * allocator plenty of times and not have found anything, so we are
3702	 * likely way too fragmented for the clustering stuff to find anything.
3703	 *
3704	 * However, if the cluster is taken from the current block group,
3705	 * release the cluster first, so that we stand a better chance of
3706	 * succeeding in the unclustered allocation.
3707	 */
3708	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3709		spin_unlock(&last_ptr->refill_lock);
3710		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3711		return -ENOENT;
3712	}
3713
3714	/* This cluster didn't work out, free it and start over */
3715	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3716
3717	if (cluster_bg != bg)
3718		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3719
3720refill_cluster:
3721	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3722		spin_unlock(&last_ptr->refill_lock);
3723		return -ENOENT;
3724	}
3725
3726	aligned_cluster = max_t(u64,
3727			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3728			bg->full_stripe_len);
3729	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3730			ffe_ctl->num_bytes, aligned_cluster);
3731	if (ret == 0) {
3732		/* Now pull our allocation out of this cluster */
3733		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3734				ffe_ctl->num_bytes, ffe_ctl->search_start,
3735				&ffe_ctl->max_extent_size);
3736		if (offset) {
3737			/* We found one, proceed */
3738			spin_unlock(&last_ptr->refill_lock);
 
 
 
3739			ffe_ctl->found_offset = offset;
3740			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3741			return 0;
3742		}
 
 
 
 
 
 
 
 
3743	}
3744	/*
3745	 * At this point we either didn't find a cluster or we weren't able to
3746	 * allocate a block from our cluster.  Free the cluster we've been
3747	 * trying to use, and go to the next block group.
3748	 */
3749	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3750	spin_unlock(&last_ptr->refill_lock);
3751	return 1;
3752}
3753
3754/*
3755 * Return >0 to inform caller that we find nothing
3756 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
 
3757 */
3758static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3759					struct find_free_extent_ctl *ffe_ctl)
3760{
3761	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3762	u64 offset;
3763
3764	/*
3765	 * We are doing an unclustered allocation, set the fragmented flag so
3766	 * we don't bother trying to setup a cluster again until we get more
3767	 * space.
3768	 */
3769	if (unlikely(last_ptr)) {
3770		spin_lock(&last_ptr->lock);
3771		last_ptr->fragmented = 1;
3772		spin_unlock(&last_ptr->lock);
3773	}
3774	if (ffe_ctl->cached) {
3775		struct btrfs_free_space_ctl *free_space_ctl;
3776
3777		free_space_ctl = bg->free_space_ctl;
3778		spin_lock(&free_space_ctl->tree_lock);
3779		if (free_space_ctl->free_space <
3780		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3781		    ffe_ctl->empty_size) {
3782			ffe_ctl->total_free_space = max_t(u64,
3783					ffe_ctl->total_free_space,
3784					free_space_ctl->free_space);
3785			spin_unlock(&free_space_ctl->tree_lock);
3786			return 1;
3787		}
3788		spin_unlock(&free_space_ctl->tree_lock);
3789	}
3790
3791	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3792			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3793			&ffe_ctl->max_extent_size);
3794	if (!offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795		return 1;
 
3796	ffe_ctl->found_offset = offset;
3797	return 0;
3798}
3799
3800static int do_allocation_clustered(struct btrfs_block_group *block_group,
3801				   struct find_free_extent_ctl *ffe_ctl,
3802				   struct btrfs_block_group **bg_ret)
3803{
3804	int ret;
3805
3806	/* We want to try and use the cluster allocator, so lets look there */
3807	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3808		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3809		if (ret >= 0)
3810			return ret;
3811		/* ret == -ENOENT case falls through */
3812	}
3813
3814	return find_free_extent_unclustered(block_group, ffe_ctl);
3815}
3816
3817/*
3818 * Tree-log block group locking
3819 * ============================
3820 *
3821 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3822 * indicates the starting address of a block group, which is reserved only
3823 * for tree-log metadata.
3824 *
3825 * Lock nesting
3826 * ============
3827 *
3828 * space_info::lock
3829 *   block_group::lock
3830 *     fs_info::treelog_bg_lock
3831 */
3832
3833/*
3834 * Simple allocator for sequential-only block group. It only allows sequential
3835 * allocation. No need to play with trees. This function also reserves the
3836 * bytes as in btrfs_add_reserved_bytes.
3837 */
3838static int do_allocation_zoned(struct btrfs_block_group *block_group,
3839			       struct find_free_extent_ctl *ffe_ctl,
3840			       struct btrfs_block_group **bg_ret)
3841{
3842	struct btrfs_fs_info *fs_info = block_group->fs_info;
3843	struct btrfs_space_info *space_info = block_group->space_info;
3844	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3845	u64 start = block_group->start;
3846	u64 num_bytes = ffe_ctl->num_bytes;
3847	u64 avail;
3848	u64 bytenr = block_group->start;
3849	u64 log_bytenr;
3850	u64 data_reloc_bytenr;
3851	int ret = 0;
3852	bool skip = false;
3853
3854	ASSERT(btrfs_is_zoned(block_group->fs_info));
3855
3856	/*
3857	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3858	 * group, and vice versa.
3859	 */
3860	spin_lock(&fs_info->treelog_bg_lock);
3861	log_bytenr = fs_info->treelog_bg;
3862	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3863			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3864		skip = true;
3865	spin_unlock(&fs_info->treelog_bg_lock);
3866	if (skip)
3867		return 1;
3868
3869	/*
3870	 * Do not allow non-relocation blocks in the dedicated relocation block
3871	 * group, and vice versa.
3872	 */
3873	spin_lock(&fs_info->relocation_bg_lock);
3874	data_reloc_bytenr = fs_info->data_reloc_bg;
3875	if (data_reloc_bytenr &&
3876	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3877	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3878		skip = true;
3879	spin_unlock(&fs_info->relocation_bg_lock);
3880	if (skip)
3881		return 1;
3882
3883	/* Check RO and no space case before trying to activate it */
3884	spin_lock(&block_group->lock);
3885	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3886		ret = 1;
3887		/*
3888		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3889		 * Return the error after taking the locks.
3890		 */
3891	}
3892	spin_unlock(&block_group->lock);
3893
3894	/* Metadata block group is activated at write time. */
3895	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3896	    !btrfs_zone_activate(block_group)) {
3897		ret = 1;
3898		/*
3899		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3900		 * Return the error after taking the locks.
3901		 */
3902	}
3903
3904	spin_lock(&space_info->lock);
3905	spin_lock(&block_group->lock);
3906	spin_lock(&fs_info->treelog_bg_lock);
3907	spin_lock(&fs_info->relocation_bg_lock);
3908
3909	if (ret)
3910		goto out;
3911
3912	ASSERT(!ffe_ctl->for_treelog ||
3913	       block_group->start == fs_info->treelog_bg ||
3914	       fs_info->treelog_bg == 0);
3915	ASSERT(!ffe_ctl->for_data_reloc ||
3916	       block_group->start == fs_info->data_reloc_bg ||
3917	       fs_info->data_reloc_bg == 0);
3918
3919	if (block_group->ro ||
3920	    (!ffe_ctl->for_data_reloc &&
3921	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3922		ret = 1;
3923		goto out;
3924	}
3925
3926	/*
3927	 * Do not allow currently using block group to be tree-log dedicated
3928	 * block group.
3929	 */
3930	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3931	    (block_group->used || block_group->reserved)) {
3932		ret = 1;
3933		goto out;
3934	}
3935
3936	/*
3937	 * Do not allow currently used block group to be the data relocation
3938	 * dedicated block group.
3939	 */
3940	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3941	    (block_group->used || block_group->reserved)) {
3942		ret = 1;
3943		goto out;
3944	}
3945
3946	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3947	avail = block_group->zone_capacity - block_group->alloc_offset;
3948	if (avail < num_bytes) {
3949		if (ffe_ctl->max_extent_size < avail) {
3950			/*
3951			 * With sequential allocator, free space is always
3952			 * contiguous
3953			 */
3954			ffe_ctl->max_extent_size = avail;
3955			ffe_ctl->total_free_space = avail;
3956		}
3957		ret = 1;
3958		goto out;
3959	}
3960
3961	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3962		fs_info->treelog_bg = block_group->start;
3963
3964	if (ffe_ctl->for_data_reloc) {
3965		if (!fs_info->data_reloc_bg)
3966			fs_info->data_reloc_bg = block_group->start;
3967		/*
3968		 * Do not allow allocations from this block group, unless it is
3969		 * for data relocation. Compared to increasing the ->ro, setting
3970		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3971		 * writers to come in. See btrfs_inc_nocow_writers().
3972		 *
3973		 * We need to disable an allocation to avoid an allocation of
3974		 * regular (non-relocation data) extent. With mix of relocation
3975		 * extents and regular extents, we can dispatch WRITE commands
3976		 * (for relocation extents) and ZONE APPEND commands (for
3977		 * regular extents) at the same time to the same zone, which
3978		 * easily break the write pointer.
3979		 *
3980		 * Also, this flag avoids this block group to be zone finished.
3981		 */
3982		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3983	}
3984
3985	ffe_ctl->found_offset = start + block_group->alloc_offset;
3986	block_group->alloc_offset += num_bytes;
3987	spin_lock(&ctl->tree_lock);
3988	ctl->free_space -= num_bytes;
3989	spin_unlock(&ctl->tree_lock);
3990
3991	/*
3992	 * We do not check if found_offset is aligned to stripesize. The
3993	 * address is anyway rewritten when using zone append writing.
3994	 */
3995
3996	ffe_ctl->search_start = ffe_ctl->found_offset;
3997
3998out:
3999	if (ret && ffe_ctl->for_treelog)
4000		fs_info->treelog_bg = 0;
4001	if (ret && ffe_ctl->for_data_reloc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4002		fs_info->data_reloc_bg = 0;
 
4003	spin_unlock(&fs_info->relocation_bg_lock);
4004	spin_unlock(&fs_info->treelog_bg_lock);
4005	spin_unlock(&block_group->lock);
4006	spin_unlock(&space_info->lock);
4007	return ret;
4008}
4009
4010static int do_allocation(struct btrfs_block_group *block_group,
4011			 struct find_free_extent_ctl *ffe_ctl,
4012			 struct btrfs_block_group **bg_ret)
4013{
4014	switch (ffe_ctl->policy) {
4015	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4016		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4017	case BTRFS_EXTENT_ALLOC_ZONED:
4018		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4019	default:
4020		BUG();
4021	}
4022}
4023
4024static void release_block_group(struct btrfs_block_group *block_group,
4025				struct find_free_extent_ctl *ffe_ctl,
4026				int delalloc)
4027{
4028	switch (ffe_ctl->policy) {
4029	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030		ffe_ctl->retry_uncached = false;
 
4031		break;
4032	case BTRFS_EXTENT_ALLOC_ZONED:
4033		/* Nothing to do */
4034		break;
4035	default:
4036		BUG();
4037	}
4038
4039	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4040	       ffe_ctl->index);
4041	btrfs_release_block_group(block_group, delalloc);
4042}
4043
4044static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4045				   struct btrfs_key *ins)
4046{
4047	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4048
4049	if (!ffe_ctl->use_cluster && last_ptr) {
4050		spin_lock(&last_ptr->lock);
4051		last_ptr->window_start = ins->objectid;
4052		spin_unlock(&last_ptr->lock);
4053	}
4054}
4055
4056static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4057			 struct btrfs_key *ins)
4058{
4059	switch (ffe_ctl->policy) {
4060	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4061		found_extent_clustered(ffe_ctl, ins);
4062		break;
4063	case BTRFS_EXTENT_ALLOC_ZONED:
4064		/* Nothing to do */
4065		break;
4066	default:
4067		BUG();
4068	}
4069}
4070
4071static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4072				    struct find_free_extent_ctl *ffe_ctl)
4073{
4074	/* Block group's activeness is not a requirement for METADATA block groups. */
4075	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4076		return 0;
4077
4078	/* If we can activate new zone, just allocate a chunk and use it */
4079	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4080		return 0;
4081
4082	/*
4083	 * We already reached the max active zones. Try to finish one block
4084	 * group to make a room for a new block group. This is only possible
4085	 * for a data block group because btrfs_zone_finish() may need to wait
4086	 * for a running transaction which can cause a deadlock for metadata
4087	 * allocation.
4088	 */
4089	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4090		int ret = btrfs_zone_finish_one_bg(fs_info);
4091
4092		if (ret == 1)
4093			return 0;
4094		else if (ret < 0)
4095			return ret;
4096	}
4097
4098	/*
4099	 * If we have enough free space left in an already active block group
4100	 * and we can't activate any other zone now, do not allow allocating a
4101	 * new chunk and let find_free_extent() retry with a smaller size.
4102	 */
4103	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4104		return -ENOSPC;
4105
4106	/*
4107	 * Even min_alloc_size is not left in any block groups. Since we cannot
4108	 * activate a new block group, allocating it may not help. Let's tell a
4109	 * caller to try again and hope it progress something by writing some
4110	 * parts of the region. That is only possible for data block groups,
4111	 * where a part of the region can be written.
4112	 */
4113	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4114		return -EAGAIN;
4115
4116	/*
4117	 * We cannot activate a new block group and no enough space left in any
4118	 * block groups. So, allocating a new block group may not help. But,
4119	 * there is nothing to do anyway, so let's go with it.
4120	 */
4121	return 0;
4122}
4123
4124static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4125			      struct find_free_extent_ctl *ffe_ctl)
4126{
4127	switch (ffe_ctl->policy) {
4128	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4129		return 0;
4130	case BTRFS_EXTENT_ALLOC_ZONED:
4131		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4132	default:
4133		BUG();
4134	}
4135}
4136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4137/*
4138 * Return >0 means caller needs to re-search for free extent
4139 * Return 0 means we have the needed free extent.
4140 * Return <0 means we failed to locate any free extent.
4141 */
4142static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4143					struct btrfs_key *ins,
4144					struct find_free_extent_ctl *ffe_ctl,
4145					bool full_search)
4146{
4147	struct btrfs_root *root = fs_info->chunk_root;
4148	int ret;
4149
4150	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152		ffe_ctl->orig_have_caching_bg = true;
4153
4154	if (ins->objectid) {
4155		found_extent(ffe_ctl, ins);
4156		return 0;
4157	}
4158
4159	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160		return 1;
4161
4162	ffe_ctl->index++;
4163	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164		return 1;
4165
4166	/* See the comments for btrfs_loop_type for an explanation of the phases. */
 
 
 
 
 
 
 
4167	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168		ffe_ctl->index = 0;
4169		/*
4170		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4171		 * any uncached bgs and we've already done a full search
4172		 * through.
4173		 */
4174		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175		    (!ffe_ctl->orig_have_caching_bg && full_search))
 
 
 
 
4176			ffe_ctl->loop++;
4177		ffe_ctl->loop++;
4178
4179		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180			struct btrfs_trans_handle *trans;
4181			int exist = 0;
4182
4183			/* Check if allocation policy allows to create a new chunk */
4184			ret = can_allocate_chunk(fs_info, ffe_ctl);
4185			if (ret)
4186				return ret;
4187
4188			trans = current->journal_info;
4189			if (trans)
4190				exist = 1;
4191			else
4192				trans = btrfs_join_transaction(root);
4193
4194			if (IS_ERR(trans)) {
4195				ret = PTR_ERR(trans);
4196				return ret;
4197			}
4198
4199			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4200						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201
4202			/* Do not bail out on ENOSPC since we can do more. */
4203			if (ret == -ENOSPC) {
4204				ret = 0;
4205				ffe_ctl->loop++;
4206			}
4207			else if (ret < 0)
4208				btrfs_abort_transaction(trans, ret);
4209			else
4210				ret = 0;
4211			if (!exist)
4212				btrfs_end_transaction(trans);
4213			if (ret)
4214				return ret;
4215		}
4216
4217		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219				return -ENOSPC;
4220
4221			/*
4222			 * Don't loop again if we already have no empty_size and
4223			 * no empty_cluster.
4224			 */
4225			if (ffe_ctl->empty_size == 0 &&
4226			    ffe_ctl->empty_cluster == 0)
4227				return -ENOSPC;
4228			ffe_ctl->empty_size = 0;
4229			ffe_ctl->empty_cluster = 0;
4230		}
4231		return 1;
4232	}
4233	return -ENOSPC;
4234}
4235
4236static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4237					      struct btrfs_block_group *bg)
4238{
4239	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4240		return true;
4241	if (!btrfs_block_group_should_use_size_class(bg))
4242		return true;
4243	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4244		return true;
4245	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4246	    bg->size_class == BTRFS_BG_SZ_NONE)
4247		return true;
4248	return ffe_ctl->size_class == bg->size_class;
4249}
4250
4251static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4252					struct find_free_extent_ctl *ffe_ctl,
4253					struct btrfs_space_info *space_info,
4254					struct btrfs_key *ins)
4255{
4256	/*
4257	 * If our free space is heavily fragmented we may not be able to make
4258	 * big contiguous allocations, so instead of doing the expensive search
4259	 * for free space, simply return ENOSPC with our max_extent_size so we
4260	 * can go ahead and search for a more manageable chunk.
4261	 *
4262	 * If our max_extent_size is large enough for our allocation simply
4263	 * disable clustering since we will likely not be able to find enough
4264	 * space to create a cluster and induce latency trying.
4265	 */
4266	if (space_info->max_extent_size) {
4267		spin_lock(&space_info->lock);
4268		if (space_info->max_extent_size &&
4269		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4270			ins->offset = space_info->max_extent_size;
4271			spin_unlock(&space_info->lock);
4272			return -ENOSPC;
4273		} else if (space_info->max_extent_size) {
4274			ffe_ctl->use_cluster = false;
4275		}
4276		spin_unlock(&space_info->lock);
4277	}
4278
4279	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4280					       &ffe_ctl->empty_cluster);
4281	if (ffe_ctl->last_ptr) {
4282		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4283
4284		spin_lock(&last_ptr->lock);
4285		if (last_ptr->block_group)
4286			ffe_ctl->hint_byte = last_ptr->window_start;
4287		if (last_ptr->fragmented) {
4288			/*
4289			 * We still set window_start so we can keep track of the
4290			 * last place we found an allocation to try and save
4291			 * some time.
4292			 */
4293			ffe_ctl->hint_byte = last_ptr->window_start;
4294			ffe_ctl->use_cluster = false;
4295		}
4296		spin_unlock(&last_ptr->lock);
4297	}
4298
4299	return 0;
4300}
4301
4302static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4303				    struct find_free_extent_ctl *ffe_ctl)
4304{
4305	if (ffe_ctl->for_treelog) {
4306		spin_lock(&fs_info->treelog_bg_lock);
4307		if (fs_info->treelog_bg)
4308			ffe_ctl->hint_byte = fs_info->treelog_bg;
4309		spin_unlock(&fs_info->treelog_bg_lock);
4310	} else if (ffe_ctl->for_data_reloc) {
4311		spin_lock(&fs_info->relocation_bg_lock);
4312		if (fs_info->data_reloc_bg)
4313			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4314		spin_unlock(&fs_info->relocation_bg_lock);
4315	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4316		struct btrfs_block_group *block_group;
4317
4318		spin_lock(&fs_info->zone_active_bgs_lock);
4319		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4320			/*
4321			 * No lock is OK here because avail is monotinically
4322			 * decreasing, and this is just a hint.
4323			 */
4324			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4325
4326			if (block_group_bits(block_group, ffe_ctl->flags) &&
4327			    avail >= ffe_ctl->num_bytes) {
4328				ffe_ctl->hint_byte = block_group->start;
4329				break;
4330			}
4331		}
4332		spin_unlock(&fs_info->zone_active_bgs_lock);
4333	}
4334
4335	return 0;
4336}
4337
4338static int prepare_allocation(struct btrfs_fs_info *fs_info,
4339			      struct find_free_extent_ctl *ffe_ctl,
4340			      struct btrfs_space_info *space_info,
4341			      struct btrfs_key *ins)
4342{
4343	switch (ffe_ctl->policy) {
4344	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4345		return prepare_allocation_clustered(fs_info, ffe_ctl,
4346						    space_info, ins);
4347	case BTRFS_EXTENT_ALLOC_ZONED:
4348		return prepare_allocation_zoned(fs_info, ffe_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
4349	default:
4350		BUG();
4351	}
4352}
4353
4354/*
4355 * walks the btree of allocated extents and find a hole of a given size.
4356 * The key ins is changed to record the hole:
4357 * ins->objectid == start position
4358 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4359 * ins->offset == the size of the hole.
4360 * Any available blocks before search_start are skipped.
4361 *
4362 * If there is no suitable free space, we will record the max size of
4363 * the free space extent currently.
4364 *
4365 * The overall logic and call chain:
4366 *
4367 * find_free_extent()
4368 * |- Iterate through all block groups
4369 * |  |- Get a valid block group
4370 * |  |- Try to do clustered allocation in that block group
4371 * |  |- Try to do unclustered allocation in that block group
4372 * |  |- Check if the result is valid
4373 * |  |  |- If valid, then exit
4374 * |  |- Jump to next block group
4375 * |
4376 * |- Push harder to find free extents
4377 *    |- If not found, re-iterate all block groups
4378 */
4379static noinline int find_free_extent(struct btrfs_root *root,
4380				     struct btrfs_key *ins,
4381				     struct find_free_extent_ctl *ffe_ctl)
4382{
4383	struct btrfs_fs_info *fs_info = root->fs_info;
4384	int ret = 0;
4385	int cache_block_group_error = 0;
4386	struct btrfs_block_group *block_group = NULL;
4387	struct btrfs_space_info *space_info;
4388	bool full_search = false;
4389
4390	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4391
4392	ffe_ctl->search_start = 0;
4393	/* For clustered allocation */
4394	ffe_ctl->empty_cluster = 0;
4395	ffe_ctl->last_ptr = NULL;
4396	ffe_ctl->use_cluster = true;
4397	ffe_ctl->have_caching_bg = false;
4398	ffe_ctl->orig_have_caching_bg = false;
4399	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4400	ffe_ctl->loop = 0;
4401	ffe_ctl->retry_uncached = false;
 
 
4402	ffe_ctl->cached = 0;
4403	ffe_ctl->max_extent_size = 0;
4404	ffe_ctl->total_free_space = 0;
4405	ffe_ctl->found_offset = 0;
4406	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4407	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4408
4409	if (btrfs_is_zoned(fs_info))
4410		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4411
4412	ins->type = BTRFS_EXTENT_ITEM_KEY;
4413	ins->objectid = 0;
4414	ins->offset = 0;
4415
4416	trace_find_free_extent(root, ffe_ctl);
 
4417
4418	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4419	if (!space_info) {
4420		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4421		return -ENOSPC;
4422	}
4423
4424	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4425	if (ret < 0)
4426		return ret;
4427
4428	ffe_ctl->search_start = max(ffe_ctl->search_start,
4429				    first_logical_byte(fs_info));
4430	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4431	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4432		block_group = btrfs_lookup_block_group(fs_info,
4433						       ffe_ctl->search_start);
4434		/*
4435		 * we don't want to use the block group if it doesn't match our
4436		 * allocation bits, or if its not cached.
4437		 *
4438		 * However if we are re-searching with an ideal block group
4439		 * picked out then we don't care that the block group is cached.
4440		 */
4441		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4442		    block_group->cached != BTRFS_CACHE_NO) {
4443			down_read(&space_info->groups_sem);
4444			if (list_empty(&block_group->list) ||
4445			    block_group->ro) {
4446				/*
4447				 * someone is removing this block group,
4448				 * we can't jump into the have_block_group
4449				 * target because our list pointers are not
4450				 * valid
4451				 */
4452				btrfs_put_block_group(block_group);
4453				up_read(&space_info->groups_sem);
4454			} else {
4455				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4456							block_group->flags);
4457				btrfs_lock_block_group(block_group,
4458						       ffe_ctl->delalloc);
4459				ffe_ctl->hinted = true;
4460				goto have_block_group;
4461			}
4462		} else if (block_group) {
4463			btrfs_put_block_group(block_group);
4464		}
4465	}
4466search:
4467	trace_find_free_extent_search_loop(root, ffe_ctl);
4468	ffe_ctl->have_caching_bg = false;
4469	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4470	    ffe_ctl->index == 0)
4471		full_search = true;
4472	down_read(&space_info->groups_sem);
4473	list_for_each_entry(block_group,
4474			    &space_info->block_groups[ffe_ctl->index], list) {
4475		struct btrfs_block_group *bg_ret;
4476
4477		ffe_ctl->hinted = false;
4478		/* If the block group is read-only, we can skip it entirely. */
4479		if (unlikely(block_group->ro)) {
4480			if (ffe_ctl->for_treelog)
4481				btrfs_clear_treelog_bg(block_group);
4482			if (ffe_ctl->for_data_reloc)
4483				btrfs_clear_data_reloc_bg(block_group);
4484			continue;
4485		}
4486
4487		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4488		ffe_ctl->search_start = block_group->start;
4489
4490		/*
4491		 * this can happen if we end up cycling through all the
4492		 * raid types, but we want to make sure we only allocate
4493		 * for the proper type.
4494		 */
4495		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4496			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4497				BTRFS_BLOCK_GROUP_RAID1_MASK |
4498				BTRFS_BLOCK_GROUP_RAID56_MASK |
4499				BTRFS_BLOCK_GROUP_RAID10;
4500
4501			/*
4502			 * if they asked for extra copies and this block group
4503			 * doesn't provide them, bail.  This does allow us to
4504			 * fill raid0 from raid1.
4505			 */
4506			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4507				goto loop;
4508
4509			/*
4510			 * This block group has different flags than we want.
4511			 * It's possible that we have MIXED_GROUP flag but no
4512			 * block group is mixed.  Just skip such block group.
4513			 */
4514			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4515			continue;
4516		}
4517
4518have_block_group:
4519		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4520		ffe_ctl->cached = btrfs_block_group_done(block_group);
4521		if (unlikely(!ffe_ctl->cached)) {
4522			ffe_ctl->have_caching_bg = true;
4523			ret = btrfs_cache_block_group(block_group, false);
4524
4525			/*
4526			 * If we get ENOMEM here or something else we want to
4527			 * try other block groups, because it may not be fatal.
4528			 * However if we can't find anything else we need to
4529			 * save our return here so that we return the actual
4530			 * error that caused problems, not ENOSPC.
4531			 */
4532			if (ret < 0) {
4533				if (!cache_block_group_error)
4534					cache_block_group_error = ret;
4535				ret = 0;
4536				goto loop;
4537			}
4538			ret = 0;
4539		}
4540
4541		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4542			if (!cache_block_group_error)
4543				cache_block_group_error = -EIO;
4544			goto loop;
4545		}
4546
4547		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4548			goto loop;
4549
4550		bg_ret = NULL;
4551		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4552		if (ret > 0)
 
 
 
 
 
 
 
 
4553			goto loop;
4554
4555		if (bg_ret && bg_ret != block_group) {
4556			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4557			block_group = bg_ret;
4558		}
4559
4560		/* Checks */
4561		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4562						 fs_info->stripesize);
4563
4564		/* move on to the next group */
4565		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4566		    block_group->start + block_group->length) {
4567			btrfs_add_free_space_unused(block_group,
4568					    ffe_ctl->found_offset,
4569					    ffe_ctl->num_bytes);
4570			goto loop;
4571		}
4572
4573		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4574			btrfs_add_free_space_unused(block_group,
4575					ffe_ctl->found_offset,
4576					ffe_ctl->search_start - ffe_ctl->found_offset);
4577
4578		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4579					       ffe_ctl->num_bytes,
4580					       ffe_ctl->delalloc,
4581					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4582		if (ret == -EAGAIN) {
4583			btrfs_add_free_space_unused(block_group,
4584					ffe_ctl->found_offset,
4585					ffe_ctl->num_bytes);
4586			goto loop;
4587		}
4588		btrfs_inc_block_group_reservations(block_group);
4589
4590		/* we are all good, lets return */
4591		ins->objectid = ffe_ctl->search_start;
4592		ins->offset = ffe_ctl->num_bytes;
4593
4594		trace_btrfs_reserve_extent(block_group, ffe_ctl);
 
4595		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4596		break;
4597loop:
4598		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4599		    !ffe_ctl->retry_uncached) {
4600			ffe_ctl->retry_uncached = true;
4601			btrfs_wait_block_group_cache_progress(block_group,
4602						ffe_ctl->num_bytes +
4603						ffe_ctl->empty_cluster +
4604						ffe_ctl->empty_size);
4605			goto have_block_group;
4606		}
4607		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4608		cond_resched();
4609	}
4610	up_read(&space_info->groups_sem);
4611
4612	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4613	if (ret > 0)
4614		goto search;
4615
4616	if (ret == -ENOSPC && !cache_block_group_error) {
4617		/*
4618		 * Use ffe_ctl->total_free_space as fallback if we can't find
4619		 * any contiguous hole.
4620		 */
4621		if (!ffe_ctl->max_extent_size)
4622			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623		spin_lock(&space_info->lock);
4624		space_info->max_extent_size = ffe_ctl->max_extent_size;
4625		spin_unlock(&space_info->lock);
4626		ins->offset = ffe_ctl->max_extent_size;
4627	} else if (ret == -ENOSPC) {
4628		ret = cache_block_group_error;
4629	}
4630	return ret;
4631}
4632
4633/*
4634 * Entry point to the extent allocator. Tries to find a hole that is at least
4635 * as big as @num_bytes.
4636 *
4637 * @root           -	The root that will contain this extent
4638 *
4639 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4640 *			is used for accounting purposes. This value differs
4641 *			from @num_bytes only in the case of compressed extents.
4642 *
4643 * @num_bytes      -	Number of bytes to allocate on-disk.
4644 *
4645 * @min_alloc_size -	Indicates the minimum amount of space that the
4646 *			allocator should try to satisfy. In some cases
4647 *			@num_bytes may be larger than what is required and if
4648 *			the filesystem is fragmented then allocation fails.
4649 *			However, the presence of @min_alloc_size gives a
4650 *			chance to try and satisfy the smaller allocation.
4651 *
4652 * @empty_size     -	A hint that you plan on doing more COW. This is the
4653 *			size in bytes the allocator should try to find free
4654 *			next to the block it returns.  This is just a hint and
4655 *			may be ignored by the allocator.
4656 *
4657 * @hint_byte      -	Hint to the allocator to start searching above the byte
4658 *			address passed. It might be ignored.
4659 *
4660 * @ins            -	This key is modified to record the found hole. It will
4661 *			have the following values:
4662 *			ins->objectid == start position
4663 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4664 *			ins->offset == the size of the hole.
4665 *
4666 * @is_data        -	Boolean flag indicating whether an extent is
4667 *			allocated for data (true) or metadata (false)
4668 *
4669 * @delalloc       -	Boolean flag indicating whether this allocation is for
4670 *			delalloc or not. If 'true' data_rwsem of block groups
4671 *			is going to be acquired.
4672 *
4673 *
4674 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675 * case -ENOSPC is returned then @ins->offset will contain the size of the
4676 * largest available hole the allocator managed to find.
4677 */
4678int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679			 u64 num_bytes, u64 min_alloc_size,
4680			 u64 empty_size, u64 hint_byte,
4681			 struct btrfs_key *ins, int is_data, int delalloc)
4682{
4683	struct btrfs_fs_info *fs_info = root->fs_info;
4684	struct find_free_extent_ctl ffe_ctl = {};
4685	bool final_tried = num_bytes == min_alloc_size;
4686	u64 flags;
4687	int ret;
4688	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4689	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690
4691	flags = get_alloc_profile_by_root(root, is_data);
4692again:
4693	WARN_ON(num_bytes < fs_info->sectorsize);
4694
4695	ffe_ctl.ram_bytes = ram_bytes;
4696	ffe_ctl.num_bytes = num_bytes;
4697	ffe_ctl.min_alloc_size = min_alloc_size;
4698	ffe_ctl.empty_size = empty_size;
4699	ffe_ctl.flags = flags;
4700	ffe_ctl.delalloc = delalloc;
4701	ffe_ctl.hint_byte = hint_byte;
4702	ffe_ctl.for_treelog = for_treelog;
4703	ffe_ctl.for_data_reloc = for_data_reloc;
4704
4705	ret = find_free_extent(root, ins, &ffe_ctl);
4706	if (!ret && !is_data) {
4707		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708	} else if (ret == -ENOSPC) {
4709		if (!final_tried && ins->offset) {
4710			num_bytes = min(num_bytes >> 1, ins->offset);
4711			num_bytes = round_down(num_bytes,
4712					       fs_info->sectorsize);
4713			num_bytes = max(num_bytes, min_alloc_size);
4714			ram_bytes = num_bytes;
4715			if (num_bytes == min_alloc_size)
4716				final_tried = true;
4717			goto again;
4718		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719			struct btrfs_space_info *sinfo;
4720
4721			sinfo = btrfs_find_space_info(fs_info, flags);
4722			btrfs_err(fs_info,
4723	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724				  flags, num_bytes, for_treelog, for_data_reloc);
4725			if (sinfo)
4726				btrfs_dump_space_info(fs_info, sinfo,
4727						      num_bytes, 1);
4728		}
4729	}
4730
4731	return ret;
4732}
4733
4734int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4735			       u64 start, u64 len, int delalloc)
4736{
4737	struct btrfs_block_group *cache;
4738
4739	cache = btrfs_lookup_block_group(fs_info, start);
4740	if (!cache) {
4741		btrfs_err(fs_info, "Unable to find block group for %llu",
4742			  start);
4743		return -ENOSPC;
4744	}
4745
4746	btrfs_add_free_space(cache, start, len);
4747	btrfs_free_reserved_bytes(cache, len, delalloc);
4748	trace_btrfs_reserved_extent_free(fs_info, start, len);
4749
4750	btrfs_put_block_group(cache);
4751	return 0;
4752}
4753
4754int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4755			      const struct extent_buffer *eb)
4756{
4757	struct btrfs_block_group *cache;
4758	int ret = 0;
4759
4760	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4761	if (!cache) {
4762		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4763			  eb->start);
4764		return -ENOSPC;
4765	}
4766
4767	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4768	btrfs_put_block_group(cache);
4769	return ret;
4770}
4771
4772static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4773				 u64 num_bytes)
4774{
4775	struct btrfs_fs_info *fs_info = trans->fs_info;
4776	int ret;
4777
4778	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4779	if (ret)
4780		return ret;
4781
4782	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4783	if (ret) {
4784		ASSERT(!ret);
4785		btrfs_err(fs_info, "update block group failed for %llu %llu",
4786			  bytenr, num_bytes);
4787		return ret;
4788	}
4789
4790	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4791	return 0;
4792}
4793
4794static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4795				      u64 parent, u64 root_objectid,
4796				      u64 flags, u64 owner, u64 offset,
4797				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4798{
4799	struct btrfs_fs_info *fs_info = trans->fs_info;
4800	struct btrfs_root *extent_root;
4801	int ret;
4802	struct btrfs_extent_item *extent_item;
4803	struct btrfs_extent_owner_ref *oref;
4804	struct btrfs_extent_inline_ref *iref;
4805	struct btrfs_path *path;
4806	struct extent_buffer *leaf;
4807	int type;
4808	u32 size;
4809	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4810
4811	if (parent > 0)
4812		type = BTRFS_SHARED_DATA_REF_KEY;
4813	else
4814		type = BTRFS_EXTENT_DATA_REF_KEY;
4815
4816	size = sizeof(*extent_item);
4817	if (simple_quota)
4818		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4819	size += btrfs_extent_inline_ref_size(type);
4820
4821	path = btrfs_alloc_path();
4822	if (!path)
4823		return -ENOMEM;
4824
4825	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4826	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4827	if (ret) {
4828		btrfs_free_path(path);
4829		return ret;
4830	}
4831
4832	leaf = path->nodes[0];
4833	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4834				     struct btrfs_extent_item);
4835	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4836	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4837	btrfs_set_extent_flags(leaf, extent_item,
4838			       flags | BTRFS_EXTENT_FLAG_DATA);
4839
4840	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4841	if (simple_quota) {
4842		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4843		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4844		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4845		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4846	}
4847	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4848
4849	if (parent > 0) {
4850		struct btrfs_shared_data_ref *ref;
4851		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4852		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4853		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4854	} else {
4855		struct btrfs_extent_data_ref *ref;
4856		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4857		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4858		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4859		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4860		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4861	}
4862
4863	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4864	btrfs_free_path(path);
4865
4866	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4867}
4868
4869static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4870				     struct btrfs_delayed_ref_node *node,
4871				     struct btrfs_delayed_extent_op *extent_op)
4872{
4873	struct btrfs_fs_info *fs_info = trans->fs_info;
4874	struct btrfs_root *extent_root;
4875	int ret;
4876	struct btrfs_extent_item *extent_item;
4877	struct btrfs_key extent_key;
4878	struct btrfs_tree_block_info *block_info;
4879	struct btrfs_extent_inline_ref *iref;
4880	struct btrfs_path *path;
4881	struct extent_buffer *leaf;
4882	struct btrfs_delayed_tree_ref *ref;
4883	u32 size = sizeof(*extent_item) + sizeof(*iref);
4884	u64 flags = extent_op->flags_to_set;
4885	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4886
4887	ref = btrfs_delayed_node_to_tree_ref(node);
4888
4889	extent_key.objectid = node->bytenr;
4890	if (skinny_metadata) {
4891		extent_key.offset = ref->level;
4892		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4893	} else {
4894		extent_key.offset = node->num_bytes;
4895		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4896		size += sizeof(*block_info);
4897	}
4898
4899	path = btrfs_alloc_path();
4900	if (!path)
4901		return -ENOMEM;
4902
4903	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4904	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4905				      size);
4906	if (ret) {
4907		btrfs_free_path(path);
4908		return ret;
4909	}
4910
4911	leaf = path->nodes[0];
4912	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4913				     struct btrfs_extent_item);
4914	btrfs_set_extent_refs(leaf, extent_item, 1);
4915	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4916	btrfs_set_extent_flags(leaf, extent_item,
4917			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4918
4919	if (skinny_metadata) {
4920		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4921	} else {
4922		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4923		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4924		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4925		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4926	}
4927
4928	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4929		btrfs_set_extent_inline_ref_type(leaf, iref,
4930						 BTRFS_SHARED_BLOCK_REF_KEY);
4931		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4932	} else {
4933		btrfs_set_extent_inline_ref_type(leaf, iref,
4934						 BTRFS_TREE_BLOCK_REF_KEY);
4935		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4936	}
4937
4938	btrfs_mark_buffer_dirty(trans, leaf);
4939	btrfs_free_path(path);
4940
4941	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4942}
4943
4944int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4945				     struct btrfs_root *root, u64 owner,
4946				     u64 offset, u64 ram_bytes,
4947				     struct btrfs_key *ins)
4948{
4949	struct btrfs_ref generic_ref = { 0 };
4950	u64 root_objectid = root->root_key.objectid;
4951	u64 owning_root = root_objectid;
4952
4953	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4954
4955	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4956		owning_root = root->relocation_src_root;
4957
4958	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4959			       ins->objectid, ins->offset, 0, owning_root);
4960	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4961			    offset, 0, false);
4962	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4963
4964	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4965}
4966
4967/*
4968 * this is used by the tree logging recovery code.  It records that
4969 * an extent has been allocated and makes sure to clear the free
4970 * space cache bits as well
4971 */
4972int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4973				   u64 root_objectid, u64 owner, u64 offset,
4974				   struct btrfs_key *ins)
4975{
4976	struct btrfs_fs_info *fs_info = trans->fs_info;
4977	int ret;
4978	struct btrfs_block_group *block_group;
4979	struct btrfs_space_info *space_info;
4980	struct btrfs_squota_delta delta = {
4981		.root = root_objectid,
4982		.num_bytes = ins->offset,
4983		.generation = trans->transid,
4984		.is_data = true,
4985		.is_inc = true,
4986	};
4987
4988	/*
4989	 * Mixed block groups will exclude before processing the log so we only
4990	 * need to do the exclude dance if this fs isn't mixed.
4991	 */
4992	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4993		ret = __exclude_logged_extent(fs_info, ins->objectid,
4994					      ins->offset);
4995		if (ret)
4996			return ret;
4997	}
4998
4999	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5000	if (!block_group)
5001		return -EINVAL;
5002
5003	space_info = block_group->space_info;
5004	spin_lock(&space_info->lock);
5005	spin_lock(&block_group->lock);
5006	space_info->bytes_reserved += ins->offset;
5007	block_group->reserved += ins->offset;
5008	spin_unlock(&block_group->lock);
5009	spin_unlock(&space_info->lock);
5010
5011	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5012					 offset, ins, 1, root_objectid);
5013	if (ret)
5014		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5015	ret = btrfs_record_squota_delta(fs_info, &delta);
5016	btrfs_put_block_group(block_group);
5017	return ret;
5018}
5019
5020#ifdef CONFIG_BTRFS_DEBUG
5021/*
5022 * Extra safety check in case the extent tree is corrupted and extent allocator
5023 * chooses to use a tree block which is already used and locked.
5024 */
5025static bool check_eb_lock_owner(const struct extent_buffer *eb)
5026{
5027	if (eb->lock_owner == current->pid) {
5028		btrfs_err_rl(eb->fs_info,
5029"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5030			     eb->start, btrfs_header_owner(eb), current->pid);
5031		return true;
5032	}
5033	return false;
5034}
5035#else
5036static bool check_eb_lock_owner(struct extent_buffer *eb)
5037{
5038	return false;
5039}
5040#endif
5041
5042static struct extent_buffer *
5043btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5044		      u64 bytenr, int level, u64 owner,
5045		      enum btrfs_lock_nesting nest)
5046{
5047	struct btrfs_fs_info *fs_info = root->fs_info;
5048	struct extent_buffer *buf;
5049	u64 lockdep_owner = owner;
5050
5051	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5052	if (IS_ERR(buf))
5053		return buf;
5054
5055	if (check_eb_lock_owner(buf)) {
 
 
 
 
 
 
 
 
5056		free_extent_buffer(buf);
5057		return ERR_PTR(-EUCLEAN);
5058	}
5059
5060	/*
5061	 * The reloc trees are just snapshots, so we need them to appear to be
5062	 * just like any other fs tree WRT lockdep.
5063	 *
5064	 * The exception however is in replace_path() in relocation, where we
5065	 * hold the lock on the original fs root and then search for the reloc
5066	 * root.  At that point we need to make sure any reloc root buffers are
5067	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5068	 * lockdep happy.
5069	 */
5070	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5071	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5072		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5073
5074	/* btrfs_clear_buffer_dirty() accesses generation field. */
5075	btrfs_set_header_generation(buf, trans->transid);
5076
5077	/*
5078	 * This needs to stay, because we could allocate a freed block from an
5079	 * old tree into a new tree, so we need to make sure this new block is
5080	 * set to the appropriate level and owner.
5081	 */
5082	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5083
5084	__btrfs_tree_lock(buf, nest);
5085	btrfs_clear_buffer_dirty(trans, buf);
5086	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5087	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5088
5089	set_extent_buffer_uptodate(buf);
5090
5091	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5092	btrfs_set_header_level(buf, level);
5093	btrfs_set_header_bytenr(buf, buf->start);
5094	btrfs_set_header_generation(buf, trans->transid);
5095	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5096	btrfs_set_header_owner(buf, owner);
5097	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5098	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5099	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5100		buf->log_index = root->log_transid % 2;
5101		/*
5102		 * we allow two log transactions at a time, use different
5103		 * EXTENT bit to differentiate dirty pages.
5104		 */
5105		if (buf->log_index == 0)
5106			set_extent_bit(&root->dirty_log_pages, buf->start,
5107				       buf->start + buf->len - 1,
5108				       EXTENT_DIRTY, NULL);
5109		else
5110			set_extent_bit(&root->dirty_log_pages, buf->start,
5111				       buf->start + buf->len - 1,
5112				       EXTENT_NEW, NULL);
5113	} else {
5114		buf->log_index = -1;
5115		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5116			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5117	}
5118	/* this returns a buffer locked for blocking */
5119	return buf;
5120}
5121
5122/*
5123 * finds a free extent and does all the dirty work required for allocation
5124 * returns the tree buffer or an ERR_PTR on error.
5125 */
5126struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5127					     struct btrfs_root *root,
5128					     u64 parent, u64 root_objectid,
5129					     const struct btrfs_disk_key *key,
5130					     int level, u64 hint,
5131					     u64 empty_size,
5132					     u64 reloc_src_root,
5133					     enum btrfs_lock_nesting nest)
5134{
5135	struct btrfs_fs_info *fs_info = root->fs_info;
5136	struct btrfs_key ins;
5137	struct btrfs_block_rsv *block_rsv;
5138	struct extent_buffer *buf;
5139	struct btrfs_delayed_extent_op *extent_op;
5140	struct btrfs_ref generic_ref = { 0 };
5141	u64 flags = 0;
5142	int ret;
5143	u32 blocksize = fs_info->nodesize;
5144	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5145	u64 owning_root;
5146
5147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5148	if (btrfs_is_testing(fs_info)) {
5149		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5150					    level, root_objectid, nest);
5151		if (!IS_ERR(buf))
5152			root->alloc_bytenr += blocksize;
5153		return buf;
5154	}
5155#endif
5156
5157	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5158	if (IS_ERR(block_rsv))
5159		return ERR_CAST(block_rsv);
5160
5161	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5162				   empty_size, hint, &ins, 0, 0);
5163	if (ret)
5164		goto out_unuse;
5165
5166	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5167				    root_objectid, nest);
5168	if (IS_ERR(buf)) {
5169		ret = PTR_ERR(buf);
5170		goto out_free_reserved;
5171	}
5172	owning_root = btrfs_header_owner(buf);
5173
5174	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5175		if (parent == 0)
5176			parent = ins.objectid;
5177		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5178		owning_root = reloc_src_root;
5179	} else
5180		BUG_ON(parent > 0);
5181
5182	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5183		extent_op = btrfs_alloc_delayed_extent_op();
5184		if (!extent_op) {
5185			ret = -ENOMEM;
5186			goto out_free_buf;
5187		}
5188		if (key)
5189			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5190		else
5191			memset(&extent_op->key, 0, sizeof(extent_op->key));
5192		extent_op->flags_to_set = flags;
5193		extent_op->update_key = skinny_metadata ? false : true;
5194		extent_op->update_flags = true;
5195		extent_op->level = level;
5196
5197		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5198				       ins.objectid, ins.offset, parent, owning_root);
5199		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5200				    root->root_key.objectid, false);
5201		btrfs_ref_tree_mod(fs_info, &generic_ref);
5202		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5203		if (ret)
5204			goto out_free_delayed;
5205	}
5206	return buf;
5207
5208out_free_delayed:
5209	btrfs_free_delayed_extent_op(extent_op);
5210out_free_buf:
5211	btrfs_tree_unlock(buf);
5212	free_extent_buffer(buf);
5213out_free_reserved:
5214	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5215out_unuse:
5216	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5217	return ERR_PTR(ret);
5218}
5219
5220struct walk_control {
5221	u64 refs[BTRFS_MAX_LEVEL];
5222	u64 flags[BTRFS_MAX_LEVEL];
5223	struct btrfs_key update_progress;
5224	struct btrfs_key drop_progress;
5225	int drop_level;
5226	int stage;
5227	int level;
5228	int shared_level;
5229	int update_ref;
5230	int keep_locks;
5231	int reada_slot;
5232	int reada_count;
5233	int restarted;
5234};
5235
5236#define DROP_REFERENCE	1
5237#define UPDATE_BACKREF	2
5238
5239static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5240				     struct btrfs_root *root,
5241				     struct walk_control *wc,
5242				     struct btrfs_path *path)
5243{
5244	struct btrfs_fs_info *fs_info = root->fs_info;
5245	u64 bytenr;
5246	u64 generation;
5247	u64 refs;
5248	u64 flags;
5249	u32 nritems;
5250	struct btrfs_key key;
5251	struct extent_buffer *eb;
5252	int ret;
5253	int slot;
5254	int nread = 0;
5255
5256	if (path->slots[wc->level] < wc->reada_slot) {
5257		wc->reada_count = wc->reada_count * 2 / 3;
5258		wc->reada_count = max(wc->reada_count, 2);
5259	} else {
5260		wc->reada_count = wc->reada_count * 3 / 2;
5261		wc->reada_count = min_t(int, wc->reada_count,
5262					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5263	}
5264
5265	eb = path->nodes[wc->level];
5266	nritems = btrfs_header_nritems(eb);
5267
5268	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5269		if (nread >= wc->reada_count)
5270			break;
5271
5272		cond_resched();
5273		bytenr = btrfs_node_blockptr(eb, slot);
5274		generation = btrfs_node_ptr_generation(eb, slot);
5275
5276		if (slot == path->slots[wc->level])
5277			goto reada;
5278
5279		if (wc->stage == UPDATE_BACKREF &&
5280		    generation <= root->root_key.offset)
5281			continue;
5282
5283		/* We don't lock the tree block, it's OK to be racy here */
5284		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5285					       wc->level - 1, 1, &refs,
5286					       &flags, NULL);
5287		/* We don't care about errors in readahead. */
5288		if (ret < 0)
5289			continue;
5290		BUG_ON(refs == 0);
5291
5292		if (wc->stage == DROP_REFERENCE) {
5293			if (refs == 1)
5294				goto reada;
5295
5296			if (wc->level == 1 &&
5297			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5298				continue;
5299			if (!wc->update_ref ||
5300			    generation <= root->root_key.offset)
5301				continue;
5302			btrfs_node_key_to_cpu(eb, &key, slot);
5303			ret = btrfs_comp_cpu_keys(&key,
5304						  &wc->update_progress);
5305			if (ret < 0)
5306				continue;
5307		} else {
5308			if (wc->level == 1 &&
5309			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5310				continue;
5311		}
5312reada:
5313		btrfs_readahead_node_child(eb, slot);
5314		nread++;
5315	}
5316	wc->reada_slot = slot;
5317}
5318
5319/*
5320 * helper to process tree block while walking down the tree.
5321 *
5322 * when wc->stage == UPDATE_BACKREF, this function updates
5323 * back refs for pointers in the block.
5324 *
5325 * NOTE: return value 1 means we should stop walking down.
5326 */
5327static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5328				   struct btrfs_root *root,
5329				   struct btrfs_path *path,
5330				   struct walk_control *wc, int lookup_info)
5331{
5332	struct btrfs_fs_info *fs_info = root->fs_info;
5333	int level = wc->level;
5334	struct extent_buffer *eb = path->nodes[level];
5335	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5336	int ret;
5337
5338	if (wc->stage == UPDATE_BACKREF &&
5339	    btrfs_header_owner(eb) != root->root_key.objectid)
5340		return 1;
5341
5342	/*
5343	 * when reference count of tree block is 1, it won't increase
5344	 * again. once full backref flag is set, we never clear it.
5345	 */
5346	if (lookup_info &&
5347	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5348	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5349		BUG_ON(!path->locks[level]);
5350		ret = btrfs_lookup_extent_info(trans, fs_info,
5351					       eb->start, level, 1,
5352					       &wc->refs[level],
5353					       &wc->flags[level],
5354					       NULL);
5355		BUG_ON(ret == -ENOMEM);
5356		if (ret)
5357			return ret;
5358		BUG_ON(wc->refs[level] == 0);
5359	}
5360
5361	if (wc->stage == DROP_REFERENCE) {
5362		if (wc->refs[level] > 1)
5363			return 1;
5364
5365		if (path->locks[level] && !wc->keep_locks) {
5366			btrfs_tree_unlock_rw(eb, path->locks[level]);
5367			path->locks[level] = 0;
5368		}
5369		return 0;
5370	}
5371
5372	/* wc->stage == UPDATE_BACKREF */
5373	if (!(wc->flags[level] & flag)) {
5374		BUG_ON(!path->locks[level]);
5375		ret = btrfs_inc_ref(trans, root, eb, 1);
5376		BUG_ON(ret); /* -ENOMEM */
5377		ret = btrfs_dec_ref(trans, root, eb, 0);
5378		BUG_ON(ret); /* -ENOMEM */
5379		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
 
5380		BUG_ON(ret); /* -ENOMEM */
5381		wc->flags[level] |= flag;
5382	}
5383
5384	/*
5385	 * the block is shared by multiple trees, so it's not good to
5386	 * keep the tree lock
5387	 */
5388	if (path->locks[level] && level > 0) {
5389		btrfs_tree_unlock_rw(eb, path->locks[level]);
5390		path->locks[level] = 0;
5391	}
5392	return 0;
5393}
5394
5395/*
5396 * This is used to verify a ref exists for this root to deal with a bug where we
5397 * would have a drop_progress key that hadn't been updated properly.
5398 */
5399static int check_ref_exists(struct btrfs_trans_handle *trans,
5400			    struct btrfs_root *root, u64 bytenr, u64 parent,
5401			    int level)
5402{
5403	struct btrfs_path *path;
5404	struct btrfs_extent_inline_ref *iref;
5405	int ret;
5406
5407	path = btrfs_alloc_path();
5408	if (!path)
5409		return -ENOMEM;
5410
5411	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5412				    root->fs_info->nodesize, parent,
5413				    root->root_key.objectid, level, 0);
5414	btrfs_free_path(path);
5415	if (ret == -ENOENT)
5416		return 0;
5417	if (ret < 0)
5418		return ret;
5419	return 1;
5420}
5421
5422/*
5423 * helper to process tree block pointer.
5424 *
5425 * when wc->stage == DROP_REFERENCE, this function checks
5426 * reference count of the block pointed to. if the block
5427 * is shared and we need update back refs for the subtree
5428 * rooted at the block, this function changes wc->stage to
5429 * UPDATE_BACKREF. if the block is shared and there is no
5430 * need to update back, this function drops the reference
5431 * to the block.
5432 *
5433 * NOTE: return value 1 means we should stop walking down.
5434 */
5435static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5436				 struct btrfs_root *root,
5437				 struct btrfs_path *path,
5438				 struct walk_control *wc, int *lookup_info)
5439{
5440	struct btrfs_fs_info *fs_info = root->fs_info;
5441	u64 bytenr;
5442	u64 generation;
5443	u64 parent;
5444	u64 owner_root = 0;
5445	struct btrfs_tree_parent_check check = { 0 };
5446	struct btrfs_key key;
5447	struct btrfs_ref ref = { 0 };
5448	struct extent_buffer *next;
5449	int level = wc->level;
5450	int reada = 0;
5451	int ret = 0;
5452	bool need_account = false;
5453
5454	generation = btrfs_node_ptr_generation(path->nodes[level],
5455					       path->slots[level]);
5456	/*
5457	 * if the lower level block was created before the snapshot
5458	 * was created, we know there is no need to update back refs
5459	 * for the subtree
5460	 */
5461	if (wc->stage == UPDATE_BACKREF &&
5462	    generation <= root->root_key.offset) {
5463		*lookup_info = 1;
5464		return 1;
5465	}
5466
5467	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5468
5469	check.level = level - 1;
5470	check.transid = generation;
5471	check.owner_root = root->root_key.objectid;
5472	check.has_first_key = true;
5473	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5474			      path->slots[level]);
5475
5476	next = find_extent_buffer(fs_info, bytenr);
5477	if (!next) {
5478		next = btrfs_find_create_tree_block(fs_info, bytenr,
5479				root->root_key.objectid, level - 1);
5480		if (IS_ERR(next))
5481			return PTR_ERR(next);
5482		reada = 1;
5483	}
5484	btrfs_tree_lock(next);
5485
5486	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5487				       &wc->refs[level - 1],
5488				       &wc->flags[level - 1],
5489				       &owner_root);
5490	if (ret < 0)
5491		goto out_unlock;
5492
5493	if (unlikely(wc->refs[level - 1] == 0)) {
5494		btrfs_err(fs_info, "Missing references.");
5495		ret = -EIO;
5496		goto out_unlock;
5497	}
5498	*lookup_info = 0;
5499
5500	if (wc->stage == DROP_REFERENCE) {
5501		if (wc->refs[level - 1] > 1) {
5502			need_account = true;
5503			if (level == 1 &&
5504			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5505				goto skip;
5506
5507			if (!wc->update_ref ||
5508			    generation <= root->root_key.offset)
5509				goto skip;
5510
5511			btrfs_node_key_to_cpu(path->nodes[level], &key,
5512					      path->slots[level]);
5513			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5514			if (ret < 0)
5515				goto skip;
5516
5517			wc->stage = UPDATE_BACKREF;
5518			wc->shared_level = level - 1;
5519		}
5520	} else {
5521		if (level == 1 &&
5522		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5523			goto skip;
5524	}
5525
5526	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5527		btrfs_tree_unlock(next);
5528		free_extent_buffer(next);
5529		next = NULL;
5530		*lookup_info = 1;
5531	}
5532
5533	if (!next) {
5534		if (reada && level == 1)
5535			reada_walk_down(trans, root, wc, path);
5536		next = read_tree_block(fs_info, bytenr, &check);
5537		if (IS_ERR(next)) {
5538			return PTR_ERR(next);
5539		} else if (!extent_buffer_uptodate(next)) {
5540			free_extent_buffer(next);
5541			return -EIO;
5542		}
5543		btrfs_tree_lock(next);
5544	}
5545
5546	level--;
5547	ASSERT(level == btrfs_header_level(next));
5548	if (level != btrfs_header_level(next)) {
5549		btrfs_err(root->fs_info, "mismatched level");
5550		ret = -EIO;
5551		goto out_unlock;
5552	}
5553	path->nodes[level] = next;
5554	path->slots[level] = 0;
5555	path->locks[level] = BTRFS_WRITE_LOCK;
5556	wc->level = level;
5557	if (wc->level == 1)
5558		wc->reada_slot = 0;
5559	return 0;
5560skip:
5561	wc->refs[level - 1] = 0;
5562	wc->flags[level - 1] = 0;
5563	if (wc->stage == DROP_REFERENCE) {
5564		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5565			parent = path->nodes[level]->start;
5566		} else {
5567			ASSERT(root->root_key.objectid ==
5568			       btrfs_header_owner(path->nodes[level]));
5569			if (root->root_key.objectid !=
5570			    btrfs_header_owner(path->nodes[level])) {
5571				btrfs_err(root->fs_info,
5572						"mismatched block owner");
5573				ret = -EIO;
5574				goto out_unlock;
5575			}
5576			parent = 0;
5577		}
5578
5579		/*
5580		 * If we had a drop_progress we need to verify the refs are set
5581		 * as expected.  If we find our ref then we know that from here
5582		 * on out everything should be correct, and we can clear the
5583		 * ->restarted flag.
5584		 */
5585		if (wc->restarted) {
5586			ret = check_ref_exists(trans, root, bytenr, parent,
5587					       level - 1);
5588			if (ret < 0)
5589				goto out_unlock;
5590			if (ret == 0)
5591				goto no_delete;
5592			ret = 0;
5593			wc->restarted = 0;
5594		}
5595
5596		/*
5597		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5598		 * already accounted them at merge time (replace_path),
5599		 * thus we could skip expensive subtree trace here.
5600		 */
5601		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5602		    need_account) {
5603			ret = btrfs_qgroup_trace_subtree(trans, next,
5604							 generation, level - 1);
5605			if (ret) {
5606				btrfs_err_rl(fs_info,
5607					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5608					     ret);
5609			}
5610		}
5611
5612		/*
5613		 * We need to update the next key in our walk control so we can
5614		 * update the drop_progress key accordingly.  We don't care if
5615		 * find_next_key doesn't find a key because that means we're at
5616		 * the end and are going to clean up now.
5617		 */
5618		wc->drop_level = level;
5619		find_next_key(path, level, &wc->drop_progress);
5620
5621		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5622				       fs_info->nodesize, parent, owner_root);
5623		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5624				    0, false);
5625		ret = btrfs_free_extent(trans, &ref);
5626		if (ret)
5627			goto out_unlock;
5628	}
5629no_delete:
5630	*lookup_info = 1;
5631	ret = 1;
5632
5633out_unlock:
5634	btrfs_tree_unlock(next);
5635	free_extent_buffer(next);
5636
5637	return ret;
5638}
5639
5640/*
5641 * helper to process tree block while walking up the tree.
5642 *
5643 * when wc->stage == DROP_REFERENCE, this function drops
5644 * reference count on the block.
5645 *
5646 * when wc->stage == UPDATE_BACKREF, this function changes
5647 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5648 * to UPDATE_BACKREF previously while processing the block.
5649 *
5650 * NOTE: return value 1 means we should stop walking up.
5651 */
5652static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5653				 struct btrfs_root *root,
5654				 struct btrfs_path *path,
5655				 struct walk_control *wc)
5656{
5657	struct btrfs_fs_info *fs_info = root->fs_info;
5658	int ret;
5659	int level = wc->level;
5660	struct extent_buffer *eb = path->nodes[level];
5661	u64 parent = 0;
5662
5663	if (wc->stage == UPDATE_BACKREF) {
5664		BUG_ON(wc->shared_level < level);
5665		if (level < wc->shared_level)
5666			goto out;
5667
5668		ret = find_next_key(path, level + 1, &wc->update_progress);
5669		if (ret > 0)
5670			wc->update_ref = 0;
5671
5672		wc->stage = DROP_REFERENCE;
5673		wc->shared_level = -1;
5674		path->slots[level] = 0;
5675
5676		/*
5677		 * check reference count again if the block isn't locked.
5678		 * we should start walking down the tree again if reference
5679		 * count is one.
5680		 */
5681		if (!path->locks[level]) {
5682			BUG_ON(level == 0);
5683			btrfs_tree_lock(eb);
5684			path->locks[level] = BTRFS_WRITE_LOCK;
5685
5686			ret = btrfs_lookup_extent_info(trans, fs_info,
5687						       eb->start, level, 1,
5688						       &wc->refs[level],
5689						       &wc->flags[level],
5690						       NULL);
5691			if (ret < 0) {
5692				btrfs_tree_unlock_rw(eb, path->locks[level]);
5693				path->locks[level] = 0;
5694				return ret;
5695			}
5696			BUG_ON(wc->refs[level] == 0);
5697			if (wc->refs[level] == 1) {
5698				btrfs_tree_unlock_rw(eb, path->locks[level]);
5699				path->locks[level] = 0;
5700				return 1;
5701			}
5702		}
5703	}
5704
5705	/* wc->stage == DROP_REFERENCE */
5706	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5707
5708	if (wc->refs[level] == 1) {
5709		if (level == 0) {
5710			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5711				ret = btrfs_dec_ref(trans, root, eb, 1);
5712			else
5713				ret = btrfs_dec_ref(trans, root, eb, 0);
5714			BUG_ON(ret); /* -ENOMEM */
5715			if (is_fstree(root->root_key.objectid)) {
5716				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5717				if (ret) {
5718					btrfs_err_rl(fs_info,
5719	"error %d accounting leaf items, quota is out of sync, rescan required",
5720					     ret);
5721				}
5722			}
5723		}
5724		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5725		if (!path->locks[level]) {
 
5726			btrfs_tree_lock(eb);
5727			path->locks[level] = BTRFS_WRITE_LOCK;
5728		}
5729		btrfs_clear_buffer_dirty(trans, eb);
5730	}
5731
5732	if (eb == root->node) {
5733		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5734			parent = eb->start;
5735		else if (root->root_key.objectid != btrfs_header_owner(eb))
5736			goto owner_mismatch;
5737	} else {
5738		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5739			parent = path->nodes[level + 1]->start;
5740		else if (root->root_key.objectid !=
5741			 btrfs_header_owner(path->nodes[level + 1]))
5742			goto owner_mismatch;
5743	}
5744
5745	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5746			      wc->refs[level] == 1);
5747out:
5748	wc->refs[level] = 0;
5749	wc->flags[level] = 0;
5750	return 0;
5751
5752owner_mismatch:
5753	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5754		     btrfs_header_owner(eb), root->root_key.objectid);
5755	return -EUCLEAN;
5756}
5757
5758static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5759				   struct btrfs_root *root,
5760				   struct btrfs_path *path,
5761				   struct walk_control *wc)
5762{
5763	int level = wc->level;
5764	int lookup_info = 1;
5765	int ret = 0;
5766
5767	while (level >= 0) {
5768		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5769		if (ret)
5770			break;
5771
5772		if (level == 0)
5773			break;
5774
5775		if (path->slots[level] >=
5776		    btrfs_header_nritems(path->nodes[level]))
5777			break;
5778
5779		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5780		if (ret > 0) {
5781			path->slots[level]++;
5782			continue;
5783		} else if (ret < 0)
5784			break;
5785		level = wc->level;
5786	}
5787	return (ret == 1) ? 0 : ret;
5788}
5789
5790static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5791				 struct btrfs_root *root,
5792				 struct btrfs_path *path,
5793				 struct walk_control *wc, int max_level)
5794{
5795	int level = wc->level;
5796	int ret;
5797
5798	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5799	while (level < max_level && path->nodes[level]) {
5800		wc->level = level;
5801		if (path->slots[level] + 1 <
5802		    btrfs_header_nritems(path->nodes[level])) {
5803			path->slots[level]++;
5804			return 0;
5805		} else {
5806			ret = walk_up_proc(trans, root, path, wc);
5807			if (ret > 0)
5808				return 0;
5809			if (ret < 0)
5810				return ret;
5811
5812			if (path->locks[level]) {
5813				btrfs_tree_unlock_rw(path->nodes[level],
5814						     path->locks[level]);
5815				path->locks[level] = 0;
5816			}
5817			free_extent_buffer(path->nodes[level]);
5818			path->nodes[level] = NULL;
5819			level++;
5820		}
5821	}
5822	return 1;
5823}
5824
5825/*
5826 * drop a subvolume tree.
5827 *
5828 * this function traverses the tree freeing any blocks that only
5829 * referenced by the tree.
5830 *
5831 * when a shared tree block is found. this function decreases its
5832 * reference count by one. if update_ref is true, this function
5833 * also make sure backrefs for the shared block and all lower level
5834 * blocks are properly updated.
5835 *
5836 * If called with for_reloc == 0, may exit early with -EAGAIN
5837 */
5838int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5839{
5840	const bool is_reloc_root = (root->root_key.objectid ==
5841				    BTRFS_TREE_RELOC_OBJECTID);
5842	struct btrfs_fs_info *fs_info = root->fs_info;
5843	struct btrfs_path *path;
5844	struct btrfs_trans_handle *trans;
5845	struct btrfs_root *tree_root = fs_info->tree_root;
5846	struct btrfs_root_item *root_item = &root->root_item;
5847	struct walk_control *wc;
5848	struct btrfs_key key;
5849	int err = 0;
5850	int ret;
5851	int level;
5852	bool root_dropped = false;
5853	bool unfinished_drop = false;
5854
5855	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5856
5857	path = btrfs_alloc_path();
5858	if (!path) {
5859		err = -ENOMEM;
5860		goto out;
5861	}
5862
5863	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5864	if (!wc) {
5865		btrfs_free_path(path);
5866		err = -ENOMEM;
5867		goto out;
5868	}
5869
5870	/*
5871	 * Use join to avoid potential EINTR from transaction start. See
5872	 * wait_reserve_ticket and the whole reservation callchain.
5873	 */
5874	if (for_reloc)
5875		trans = btrfs_join_transaction(tree_root);
5876	else
5877		trans = btrfs_start_transaction(tree_root, 0);
5878	if (IS_ERR(trans)) {
5879		err = PTR_ERR(trans);
5880		goto out_free;
5881	}
5882
5883	err = btrfs_run_delayed_items(trans);
5884	if (err)
5885		goto out_end_trans;
5886
5887	/*
5888	 * This will help us catch people modifying the fs tree while we're
5889	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5890	 * dropped as we unlock the root node and parent nodes as we walk down
5891	 * the tree, assuming nothing will change.  If something does change
5892	 * then we'll have stale information and drop references to blocks we've
5893	 * already dropped.
5894	 */
5895	set_bit(BTRFS_ROOT_DELETING, &root->state);
5896	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5897
5898	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5899		level = btrfs_header_level(root->node);
5900		path->nodes[level] = btrfs_lock_root_node(root);
5901		path->slots[level] = 0;
5902		path->locks[level] = BTRFS_WRITE_LOCK;
5903		memset(&wc->update_progress, 0,
5904		       sizeof(wc->update_progress));
5905	} else {
5906		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5907		memcpy(&wc->update_progress, &key,
5908		       sizeof(wc->update_progress));
5909
5910		level = btrfs_root_drop_level(root_item);
5911		BUG_ON(level == 0);
5912		path->lowest_level = level;
5913		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914		path->lowest_level = 0;
5915		if (ret < 0) {
5916			err = ret;
5917			goto out_end_trans;
5918		}
5919		WARN_ON(ret > 0);
5920
5921		/*
5922		 * unlock our path, this is safe because only this
5923		 * function is allowed to delete this snapshot
5924		 */
5925		btrfs_unlock_up_safe(path, 0);
5926
5927		level = btrfs_header_level(root->node);
5928		while (1) {
5929			btrfs_tree_lock(path->nodes[level]);
5930			path->locks[level] = BTRFS_WRITE_LOCK;
5931
5932			ret = btrfs_lookup_extent_info(trans, fs_info,
5933						path->nodes[level]->start,
5934						level, 1, &wc->refs[level],
5935						&wc->flags[level], NULL);
5936			if (ret < 0) {
5937				err = ret;
5938				goto out_end_trans;
5939			}
5940			BUG_ON(wc->refs[level] == 0);
5941
5942			if (level == btrfs_root_drop_level(root_item))
5943				break;
5944
5945			btrfs_tree_unlock(path->nodes[level]);
5946			path->locks[level] = 0;
5947			WARN_ON(wc->refs[level] != 1);
5948			level--;
5949		}
5950	}
5951
5952	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5953	wc->level = level;
5954	wc->shared_level = -1;
5955	wc->stage = DROP_REFERENCE;
5956	wc->update_ref = update_ref;
5957	wc->keep_locks = 0;
5958	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5959
5960	while (1) {
5961
5962		ret = walk_down_tree(trans, root, path, wc);
5963		if (ret < 0) {
5964			btrfs_abort_transaction(trans, ret);
5965			err = ret;
5966			break;
5967		}
5968
5969		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5970		if (ret < 0) {
5971			btrfs_abort_transaction(trans, ret);
5972			err = ret;
5973			break;
5974		}
5975
5976		if (ret > 0) {
5977			BUG_ON(wc->stage != DROP_REFERENCE);
5978			break;
5979		}
5980
5981		if (wc->stage == DROP_REFERENCE) {
5982			wc->drop_level = wc->level;
5983			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5984					      &wc->drop_progress,
5985					      path->slots[wc->drop_level]);
5986		}
5987		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5988				      &wc->drop_progress);
5989		btrfs_set_root_drop_level(root_item, wc->drop_level);
5990
5991		BUG_ON(wc->level == 0);
5992		if (btrfs_should_end_transaction(trans) ||
5993		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5994			ret = btrfs_update_root(trans, tree_root,
5995						&root->root_key,
5996						root_item);
5997			if (ret) {
5998				btrfs_abort_transaction(trans, ret);
5999				err = ret;
6000				goto out_end_trans;
6001			}
6002
6003			if (!is_reloc_root)
6004				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6005
6006			btrfs_end_transaction_throttle(trans);
6007			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6008				btrfs_debug(fs_info,
6009					    "drop snapshot early exit");
6010				err = -EAGAIN;
6011				goto out_free;
6012			}
6013
6014		       /*
6015			* Use join to avoid potential EINTR from transaction
6016			* start. See wait_reserve_ticket and the whole
6017			* reservation callchain.
6018			*/
6019			if (for_reloc)
6020				trans = btrfs_join_transaction(tree_root);
6021			else
6022				trans = btrfs_start_transaction(tree_root, 0);
6023			if (IS_ERR(trans)) {
6024				err = PTR_ERR(trans);
6025				goto out_free;
6026			}
6027		}
6028	}
6029	btrfs_release_path(path);
6030	if (err)
6031		goto out_end_trans;
6032
6033	ret = btrfs_del_root(trans, &root->root_key);
6034	if (ret) {
6035		btrfs_abort_transaction(trans, ret);
6036		err = ret;
6037		goto out_end_trans;
6038	}
6039
6040	if (!is_reloc_root) {
6041		ret = btrfs_find_root(tree_root, &root->root_key, path,
6042				      NULL, NULL);
6043		if (ret < 0) {
6044			btrfs_abort_transaction(trans, ret);
6045			err = ret;
6046			goto out_end_trans;
6047		} else if (ret > 0) {
6048			/* if we fail to delete the orphan item this time
6049			 * around, it'll get picked up the next time.
6050			 *
6051			 * The most common failure here is just -ENOENT.
6052			 */
6053			btrfs_del_orphan_item(trans, tree_root,
6054					      root->root_key.objectid);
6055		}
6056	}
6057
6058	/*
6059	 * This subvolume is going to be completely dropped, and won't be
6060	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6061	 * commit transaction time.  So free it here manually.
6062	 */
6063	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6064	btrfs_qgroup_free_meta_all_pertrans(root);
6065
6066	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6067		btrfs_add_dropped_root(trans, root);
6068	else
6069		btrfs_put_root(root);
6070	root_dropped = true;
6071out_end_trans:
6072	if (!is_reloc_root)
6073		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6074
6075	btrfs_end_transaction_throttle(trans);
6076out_free:
6077	kfree(wc);
6078	btrfs_free_path(path);
6079out:
6080	/*
6081	 * We were an unfinished drop root, check to see if there are any
6082	 * pending, and if not clear and wake up any waiters.
6083	 */
6084	if (!err && unfinished_drop)
6085		btrfs_maybe_wake_unfinished_drop(fs_info);
6086
6087	/*
6088	 * So if we need to stop dropping the snapshot for whatever reason we
6089	 * need to make sure to add it back to the dead root list so that we
6090	 * keep trying to do the work later.  This also cleans up roots if we
6091	 * don't have it in the radix (like when we recover after a power fail
6092	 * or unmount) so we don't leak memory.
6093	 */
6094	if (!for_reloc && !root_dropped)
6095		btrfs_add_dead_root(root);
6096	return err;
6097}
6098
6099/*
6100 * drop subtree rooted at tree block 'node'.
6101 *
6102 * NOTE: this function will unlock and release tree block 'node'
6103 * only used by relocation code
6104 */
6105int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6106			struct btrfs_root *root,
6107			struct extent_buffer *node,
6108			struct extent_buffer *parent)
6109{
6110	struct btrfs_fs_info *fs_info = root->fs_info;
6111	struct btrfs_path *path;
6112	struct walk_control *wc;
6113	int level;
6114	int parent_level;
6115	int ret = 0;
6116	int wret;
6117
6118	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6119
6120	path = btrfs_alloc_path();
6121	if (!path)
6122		return -ENOMEM;
6123
6124	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6125	if (!wc) {
6126		btrfs_free_path(path);
6127		return -ENOMEM;
6128	}
6129
6130	btrfs_assert_tree_write_locked(parent);
6131	parent_level = btrfs_header_level(parent);
6132	atomic_inc(&parent->refs);
6133	path->nodes[parent_level] = parent;
6134	path->slots[parent_level] = btrfs_header_nritems(parent);
6135
6136	btrfs_assert_tree_write_locked(node);
6137	level = btrfs_header_level(node);
6138	path->nodes[level] = node;
6139	path->slots[level] = 0;
6140	path->locks[level] = BTRFS_WRITE_LOCK;
6141
6142	wc->refs[parent_level] = 1;
6143	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6144	wc->level = level;
6145	wc->shared_level = -1;
6146	wc->stage = DROP_REFERENCE;
6147	wc->update_ref = 0;
6148	wc->keep_locks = 1;
6149	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6150
6151	while (1) {
6152		wret = walk_down_tree(trans, root, path, wc);
6153		if (wret < 0) {
6154			ret = wret;
6155			break;
6156		}
6157
6158		wret = walk_up_tree(trans, root, path, wc, parent_level);
6159		if (wret < 0)
6160			ret = wret;
6161		if (wret != 0)
6162			break;
6163	}
6164
6165	kfree(wc);
6166	btrfs_free_path(path);
6167	return ret;
6168}
6169
6170int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6171				   u64 start, u64 end)
6172{
6173	return unpin_extent_range(fs_info, start, end, false);
6174}
6175
6176/*
6177 * It used to be that old block groups would be left around forever.
6178 * Iterating over them would be enough to trim unused space.  Since we
6179 * now automatically remove them, we also need to iterate over unallocated
6180 * space.
6181 *
6182 * We don't want a transaction for this since the discard may take a
6183 * substantial amount of time.  We don't require that a transaction be
6184 * running, but we do need to take a running transaction into account
6185 * to ensure that we're not discarding chunks that were released or
6186 * allocated in the current transaction.
6187 *
6188 * Holding the chunks lock will prevent other threads from allocating
6189 * or releasing chunks, but it won't prevent a running transaction
6190 * from committing and releasing the memory that the pending chunks
6191 * list head uses.  For that, we need to take a reference to the
6192 * transaction and hold the commit root sem.  We only need to hold
6193 * it while performing the free space search since we have already
6194 * held back allocations.
6195 */
6196static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6197{
6198	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6199	int ret;
6200
6201	*trimmed = 0;
6202
6203	/* Discard not supported = nothing to do. */
6204	if (!bdev_max_discard_sectors(device->bdev))
6205		return 0;
6206
6207	/* Not writable = nothing to do. */
6208	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6209		return 0;
6210
6211	/* No free space = nothing to do. */
6212	if (device->total_bytes <= device->bytes_used)
6213		return 0;
6214
6215	ret = 0;
6216
6217	while (1) {
6218		struct btrfs_fs_info *fs_info = device->fs_info;
6219		u64 bytes;
6220
6221		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6222		if (ret)
6223			break;
6224
6225		find_first_clear_extent_bit(&device->alloc_state, start,
6226					    &start, &end,
6227					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6228
6229		/* Check if there are any CHUNK_* bits left */
6230		if (start > device->total_bytes) {
6231			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6232			btrfs_warn_in_rcu(fs_info,
6233"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6234					  start, end - start + 1,
6235					  btrfs_dev_name(device),
6236					  device->total_bytes);
6237			mutex_unlock(&fs_info->chunk_mutex);
6238			ret = 0;
6239			break;
6240		}
6241
6242		/* Ensure we skip the reserved space on each device. */
6243		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6244
6245		/*
6246		 * If find_first_clear_extent_bit find a range that spans the
6247		 * end of the device it will set end to -1, in this case it's up
6248		 * to the caller to trim the value to the size of the device.
6249		 */
6250		end = min(end, device->total_bytes - 1);
6251
6252		len = end - start + 1;
6253
6254		/* We didn't find any extents */
6255		if (!len) {
6256			mutex_unlock(&fs_info->chunk_mutex);
6257			ret = 0;
6258			break;
6259		}
6260
6261		ret = btrfs_issue_discard(device->bdev, start, len,
6262					  &bytes);
6263		if (!ret)
6264			set_extent_bit(&device->alloc_state, start,
6265				       start + bytes - 1, CHUNK_TRIMMED, NULL);
 
6266		mutex_unlock(&fs_info->chunk_mutex);
6267
6268		if (ret)
6269			break;
6270
6271		start += len;
6272		*trimmed += bytes;
6273
6274		if (fatal_signal_pending(current)) {
6275			ret = -ERESTARTSYS;
6276			break;
6277		}
6278
6279		cond_resched();
6280	}
6281
6282	return ret;
6283}
6284
6285/*
6286 * Trim the whole filesystem by:
6287 * 1) trimming the free space in each block group
6288 * 2) trimming the unallocated space on each device
6289 *
6290 * This will also continue trimming even if a block group or device encounters
6291 * an error.  The return value will be the last error, or 0 if nothing bad
6292 * happens.
6293 */
6294int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6295{
6296	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6297	struct btrfs_block_group *cache = NULL;
6298	struct btrfs_device *device;
6299	u64 group_trimmed;
6300	u64 range_end = U64_MAX;
6301	u64 start;
6302	u64 end;
6303	u64 trimmed = 0;
6304	u64 bg_failed = 0;
6305	u64 dev_failed = 0;
6306	int bg_ret = 0;
6307	int dev_ret = 0;
6308	int ret = 0;
6309
6310	if (range->start == U64_MAX)
6311		return -EINVAL;
6312
6313	/*
6314	 * Check range overflow if range->len is set.
6315	 * The default range->len is U64_MAX.
6316	 */
6317	if (range->len != U64_MAX &&
6318	    check_add_overflow(range->start, range->len, &range_end))
6319		return -EINVAL;
6320
6321	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6322	for (; cache; cache = btrfs_next_block_group(cache)) {
6323		if (cache->start >= range_end) {
6324			btrfs_put_block_group(cache);
6325			break;
6326		}
6327
6328		start = max(range->start, cache->start);
6329		end = min(range_end, cache->start + cache->length);
6330
6331		if (end - start >= range->minlen) {
6332			if (!btrfs_block_group_done(cache)) {
6333				ret = btrfs_cache_block_group(cache, true);
6334				if (ret) {
6335					bg_failed++;
6336					bg_ret = ret;
6337					continue;
6338				}
6339			}
6340			ret = btrfs_trim_block_group(cache,
6341						     &group_trimmed,
6342						     start,
6343						     end,
6344						     range->minlen);
6345
6346			trimmed += group_trimmed;
6347			if (ret) {
6348				bg_failed++;
6349				bg_ret = ret;
6350				continue;
6351			}
6352		}
6353	}
6354
6355	if (bg_failed)
6356		btrfs_warn(fs_info,
6357			"failed to trim %llu block group(s), last error %d",
6358			bg_failed, bg_ret);
6359
6360	mutex_lock(&fs_devices->device_list_mutex);
6361	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6362		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6363			continue;
6364
6365		ret = btrfs_trim_free_extents(device, &group_trimmed);
6366		if (ret) {
6367			dev_failed++;
6368			dev_ret = ret;
6369			break;
6370		}
6371
6372		trimmed += group_trimmed;
6373	}
6374	mutex_unlock(&fs_devices->device_list_mutex);
6375
6376	if (dev_failed)
6377		btrfs_warn(fs_info,
6378			"failed to trim %llu device(s), last error %d",
6379			dev_failed, dev_ret);
6380	range->len = trimmed;
6381	if (bg_ret)
6382		return bg_ret;
6383	return dev_ret;
6384}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "misc.h"
 
  20#include "tree-log.h"
  21#include "disk-io.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "locking.h"
  26#include "free-space-cache.h"
  27#include "free-space-tree.h"
  28#include "sysfs.h"
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "delalloc-space.h"
  34#include "block-group.h"
  35#include "discard.h"
  36#include "rcu-string.h"
  37#include "zoned.h"
  38#include "dev-replace.h"
  39#include "fs.h"
  40#include "accessors.h"
  41#include "extent-tree.h"
  42#include "root-tree.h"
  43#include "file-item.h"
  44#include "orphan.h"
  45#include "tree-checker.h"
 
  46
  47#undef SCRAMBLE_DELAYED_REFS
  48
  49
  50static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 
  51			       struct btrfs_delayed_ref_node *node, u64 parent,
  52			       u64 root_objectid, u64 owner_objectid,
  53			       u64 owner_offset, int refs_to_drop,
  54			       struct btrfs_delayed_extent_op *extra_op);
  55static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  56				    struct extent_buffer *leaf,
  57				    struct btrfs_extent_item *ei);
  58static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  59				      u64 parent, u64 root_objectid,
  60				      u64 flags, u64 owner, u64 offset,
  61				      struct btrfs_key *ins, int ref_mod);
  62static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  63				     struct btrfs_delayed_ref_node *node,
  64				     struct btrfs_delayed_extent_op *extent_op);
  65static int find_next_key(struct btrfs_path *path, int level,
  66			 struct btrfs_key *key);
  67
  68static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
  69{
  70	return (cache->flags & bits) == bits;
  71}
  72
  73int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
  74			      u64 start, u64 num_bytes)
  75{
  76	u64 end = start + num_bytes - 1;
  77	set_extent_bits(&fs_info->excluded_extents, start, end,
  78			EXTENT_UPTODATE);
  79	return 0;
  80}
  81
  82void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
  83{
  84	struct btrfs_fs_info *fs_info = cache->fs_info;
  85	u64 start, end;
  86
  87	start = cache->start;
  88	end = start + cache->length - 1;
  89
  90	clear_extent_bits(&fs_info->excluded_extents, start, end,
  91			  EXTENT_UPTODATE);
  92}
  93
  94/* simple helper to search for an existing data extent at a given offset */
  95int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  96{
  97	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
  98	int ret;
  99	struct btrfs_key key;
 100	struct btrfs_path *path;
 101
 102	path = btrfs_alloc_path();
 103	if (!path)
 104		return -ENOMEM;
 105
 106	key.objectid = start;
 107	key.offset = len;
 108	key.type = BTRFS_EXTENT_ITEM_KEY;
 109	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 110	btrfs_free_path(path);
 111	return ret;
 112}
 113
 114/*
 115 * helper function to lookup reference count and flags of a tree block.
 116 *
 117 * the head node for delayed ref is used to store the sum of all the
 118 * reference count modifications queued up in the rbtree. the head
 119 * node may also store the extent flags to set. This way you can check
 120 * to see what the reference count and extent flags would be if all of
 121 * the delayed refs are not processed.
 122 */
 123int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 124			     struct btrfs_fs_info *fs_info, u64 bytenr,
 125			     u64 offset, int metadata, u64 *refs, u64 *flags)
 
 126{
 127	struct btrfs_root *extent_root;
 128	struct btrfs_delayed_ref_head *head;
 129	struct btrfs_delayed_ref_root *delayed_refs;
 130	struct btrfs_path *path;
 131	struct btrfs_extent_item *ei;
 132	struct extent_buffer *leaf;
 133	struct btrfs_key key;
 134	u32 item_size;
 135	u64 num_refs;
 136	u64 extent_flags;
 
 137	int ret;
 138
 139	/*
 140	 * If we don't have skinny metadata, don't bother doing anything
 141	 * different
 142	 */
 143	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 144		offset = fs_info->nodesize;
 145		metadata = 0;
 146	}
 147
 148	path = btrfs_alloc_path();
 149	if (!path)
 150		return -ENOMEM;
 151
 152	if (!trans) {
 153		path->skip_locking = 1;
 154		path->search_commit_root = 1;
 155	}
 156
 157search_again:
 158	key.objectid = bytenr;
 159	key.offset = offset;
 160	if (metadata)
 161		key.type = BTRFS_METADATA_ITEM_KEY;
 162	else
 163		key.type = BTRFS_EXTENT_ITEM_KEY;
 164
 165	extent_root = btrfs_extent_root(fs_info, bytenr);
 166	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 167	if (ret < 0)
 168		goto out_free;
 169
 170	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 171		if (path->slots[0]) {
 172			path->slots[0]--;
 173			btrfs_item_key_to_cpu(path->nodes[0], &key,
 174					      path->slots[0]);
 175			if (key.objectid == bytenr &&
 176			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 177			    key.offset == fs_info->nodesize)
 178				ret = 0;
 179		}
 180	}
 181
 182	if (ret == 0) {
 183		leaf = path->nodes[0];
 184		item_size = btrfs_item_size(leaf, path->slots[0]);
 185		if (item_size >= sizeof(*ei)) {
 186			ei = btrfs_item_ptr(leaf, path->slots[0],
 187					    struct btrfs_extent_item);
 188			num_refs = btrfs_extent_refs(leaf, ei);
 189			extent_flags = btrfs_extent_flags(leaf, ei);
 
 
 190		} else {
 191			ret = -EINVAL;
 192			btrfs_print_v0_err(fs_info);
 
 
 193			if (trans)
 194				btrfs_abort_transaction(trans, ret);
 195			else
 196				btrfs_handle_fs_error(fs_info, ret, NULL);
 197
 198			goto out_free;
 199		}
 200
 201		BUG_ON(num_refs == 0);
 202	} else {
 203		num_refs = 0;
 204		extent_flags = 0;
 205		ret = 0;
 206	}
 207
 208	if (!trans)
 209		goto out;
 210
 211	delayed_refs = &trans->transaction->delayed_refs;
 212	spin_lock(&delayed_refs->lock);
 213	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 214	if (head) {
 215		if (!mutex_trylock(&head->mutex)) {
 216			refcount_inc(&head->refs);
 217			spin_unlock(&delayed_refs->lock);
 218
 219			btrfs_release_path(path);
 220
 221			/*
 222			 * Mutex was contended, block until it's released and try
 223			 * again
 224			 */
 225			mutex_lock(&head->mutex);
 226			mutex_unlock(&head->mutex);
 227			btrfs_put_delayed_ref_head(head);
 228			goto search_again;
 229		}
 230		spin_lock(&head->lock);
 231		if (head->extent_op && head->extent_op->update_flags)
 232			extent_flags |= head->extent_op->flags_to_set;
 233		else
 234			BUG_ON(num_refs == 0);
 235
 236		num_refs += head->ref_mod;
 237		spin_unlock(&head->lock);
 238		mutex_unlock(&head->mutex);
 239	}
 240	spin_unlock(&delayed_refs->lock);
 241out:
 242	WARN_ON(num_refs == 0);
 243	if (refs)
 244		*refs = num_refs;
 245	if (flags)
 246		*flags = extent_flags;
 
 
 247out_free:
 248	btrfs_free_path(path);
 249	return ret;
 250}
 251
 252/*
 253 * Back reference rules.  Back refs have three main goals:
 254 *
 255 * 1) differentiate between all holders of references to an extent so that
 256 *    when a reference is dropped we can make sure it was a valid reference
 257 *    before freeing the extent.
 258 *
 259 * 2) Provide enough information to quickly find the holders of an extent
 260 *    if we notice a given block is corrupted or bad.
 261 *
 262 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 263 *    maintenance.  This is actually the same as #2, but with a slightly
 264 *    different use case.
 265 *
 266 * There are two kinds of back refs. The implicit back refs is optimized
 267 * for pointers in non-shared tree blocks. For a given pointer in a block,
 268 * back refs of this kind provide information about the block's owner tree
 269 * and the pointer's key. These information allow us to find the block by
 270 * b-tree searching. The full back refs is for pointers in tree blocks not
 271 * referenced by their owner trees. The location of tree block is recorded
 272 * in the back refs. Actually the full back refs is generic, and can be
 273 * used in all cases the implicit back refs is used. The major shortcoming
 274 * of the full back refs is its overhead. Every time a tree block gets
 275 * COWed, we have to update back refs entry for all pointers in it.
 276 *
 277 * For a newly allocated tree block, we use implicit back refs for
 278 * pointers in it. This means most tree related operations only involve
 279 * implicit back refs. For a tree block created in old transaction, the
 280 * only way to drop a reference to it is COW it. So we can detect the
 281 * event that tree block loses its owner tree's reference and do the
 282 * back refs conversion.
 283 *
 284 * When a tree block is COWed through a tree, there are four cases:
 285 *
 286 * The reference count of the block is one and the tree is the block's
 287 * owner tree. Nothing to do in this case.
 288 *
 289 * The reference count of the block is one and the tree is not the
 290 * block's owner tree. In this case, full back refs is used for pointers
 291 * in the block. Remove these full back refs, add implicit back refs for
 292 * every pointers in the new block.
 293 *
 294 * The reference count of the block is greater than one and the tree is
 295 * the block's owner tree. In this case, implicit back refs is used for
 296 * pointers in the block. Add full back refs for every pointers in the
 297 * block, increase lower level extents' reference counts. The original
 298 * implicit back refs are entailed to the new block.
 299 *
 300 * The reference count of the block is greater than one and the tree is
 301 * not the block's owner tree. Add implicit back refs for every pointer in
 302 * the new block, increase lower level extents' reference count.
 303 *
 304 * Back Reference Key composing:
 305 *
 306 * The key objectid corresponds to the first byte in the extent,
 307 * The key type is used to differentiate between types of back refs.
 308 * There are different meanings of the key offset for different types
 309 * of back refs.
 310 *
 311 * File extents can be referenced by:
 312 *
 313 * - multiple snapshots, subvolumes, or different generations in one subvol
 314 * - different files inside a single subvolume
 315 * - different offsets inside a file (bookend extents in file.c)
 316 *
 317 * The extent ref structure for the implicit back refs has fields for:
 318 *
 319 * - Objectid of the subvolume root
 320 * - objectid of the file holding the reference
 321 * - original offset in the file
 322 * - how many bookend extents
 323 *
 324 * The key offset for the implicit back refs is hash of the first
 325 * three fields.
 326 *
 327 * The extent ref structure for the full back refs has field for:
 328 *
 329 * - number of pointers in the tree leaf
 330 *
 331 * The key offset for the implicit back refs is the first byte of
 332 * the tree leaf
 333 *
 334 * When a file extent is allocated, The implicit back refs is used.
 335 * the fields are filled in:
 336 *
 337 *     (root_key.objectid, inode objectid, offset in file, 1)
 338 *
 339 * When a file extent is removed file truncation, we find the
 340 * corresponding implicit back refs and check the following fields:
 341 *
 342 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 343 *
 344 * Btree extents can be referenced by:
 345 *
 346 * - Different subvolumes
 347 *
 348 * Both the implicit back refs and the full back refs for tree blocks
 349 * only consist of key. The key offset for the implicit back refs is
 350 * objectid of block's owner tree. The key offset for the full back refs
 351 * is the first byte of parent block.
 352 *
 353 * When implicit back refs is used, information about the lowest key and
 354 * level of the tree block are required. These information are stored in
 355 * tree block info structure.
 356 */
 357
 358/*
 359 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 360 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 361 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 362 */
 363int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 364				     struct btrfs_extent_inline_ref *iref,
 365				     enum btrfs_inline_ref_type is_data)
 366{
 
 367	int type = btrfs_extent_inline_ref_type(eb, iref);
 368	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 369
 
 
 
 
 
 370	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 371	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 372	    type == BTRFS_SHARED_DATA_REF_KEY ||
 373	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 374		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 375			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 376				return type;
 377			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 378				ASSERT(eb->fs_info);
 379				/*
 380				 * Every shared one has parent tree block,
 381				 * which must be aligned to sector size.
 382				 */
 383				if (offset &&
 384				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
 385					return type;
 386			}
 387		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 388			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 389				return type;
 390			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 391				ASSERT(eb->fs_info);
 392				/*
 393				 * Every shared one has parent tree block,
 394				 * which must be aligned to sector size.
 395				 */
 396				if (offset &&
 397				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
 398					return type;
 399			}
 400		} else {
 401			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 402			return type;
 403		}
 404	}
 405
 406	btrfs_print_leaf((struct extent_buffer *)eb);
 407	btrfs_err(eb->fs_info,
 
 408		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
 409		  eb->start, (unsigned long)iref, type);
 410	WARN_ON(1);
 411
 412	return BTRFS_REF_TYPE_INVALID;
 413}
 414
 415u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 416{
 417	u32 high_crc = ~(u32)0;
 418	u32 low_crc = ~(u32)0;
 419	__le64 lenum;
 420
 421	lenum = cpu_to_le64(root_objectid);
 422	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 423	lenum = cpu_to_le64(owner);
 424	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 425	lenum = cpu_to_le64(offset);
 426	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 427
 428	return ((u64)high_crc << 31) ^ (u64)low_crc;
 429}
 430
 431static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 432				     struct btrfs_extent_data_ref *ref)
 433{
 434	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 435				    btrfs_extent_data_ref_objectid(leaf, ref),
 436				    btrfs_extent_data_ref_offset(leaf, ref));
 437}
 438
 439static int match_extent_data_ref(struct extent_buffer *leaf,
 440				 struct btrfs_extent_data_ref *ref,
 441				 u64 root_objectid, u64 owner, u64 offset)
 442{
 443	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 444	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 445	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 446		return 0;
 447	return 1;
 448}
 449
 450static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 451					   struct btrfs_path *path,
 452					   u64 bytenr, u64 parent,
 453					   u64 root_objectid,
 454					   u64 owner, u64 offset)
 455{
 456	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 457	struct btrfs_key key;
 458	struct btrfs_extent_data_ref *ref;
 459	struct extent_buffer *leaf;
 460	u32 nritems;
 461	int ret;
 462	int recow;
 463	int err = -ENOENT;
 464
 465	key.objectid = bytenr;
 466	if (parent) {
 467		key.type = BTRFS_SHARED_DATA_REF_KEY;
 468		key.offset = parent;
 469	} else {
 470		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 471		key.offset = hash_extent_data_ref(root_objectid,
 472						  owner, offset);
 473	}
 474again:
 475	recow = 0;
 476	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 477	if (ret < 0) {
 478		err = ret;
 479		goto fail;
 480	}
 481
 482	if (parent) {
 483		if (!ret)
 484			return 0;
 485		goto fail;
 486	}
 487
 488	leaf = path->nodes[0];
 489	nritems = btrfs_header_nritems(leaf);
 490	while (1) {
 491		if (path->slots[0] >= nritems) {
 492			ret = btrfs_next_leaf(root, path);
 493			if (ret < 0)
 494				err = ret;
 495			if (ret)
 496				goto fail;
 497
 498			leaf = path->nodes[0];
 499			nritems = btrfs_header_nritems(leaf);
 500			recow = 1;
 501		}
 502
 503		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 504		if (key.objectid != bytenr ||
 505		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 506			goto fail;
 507
 508		ref = btrfs_item_ptr(leaf, path->slots[0],
 509				     struct btrfs_extent_data_ref);
 510
 511		if (match_extent_data_ref(leaf, ref, root_objectid,
 512					  owner, offset)) {
 513			if (recow) {
 514				btrfs_release_path(path);
 515				goto again;
 516			}
 517			err = 0;
 518			break;
 519		}
 520		path->slots[0]++;
 521	}
 522fail:
 523	return err;
 524}
 525
 526static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 527					   struct btrfs_path *path,
 528					   u64 bytenr, u64 parent,
 529					   u64 root_objectid, u64 owner,
 530					   u64 offset, int refs_to_add)
 531{
 532	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 533	struct btrfs_key key;
 534	struct extent_buffer *leaf;
 535	u32 size;
 536	u32 num_refs;
 537	int ret;
 538
 539	key.objectid = bytenr;
 540	if (parent) {
 541		key.type = BTRFS_SHARED_DATA_REF_KEY;
 542		key.offset = parent;
 543		size = sizeof(struct btrfs_shared_data_ref);
 544	} else {
 545		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 546		key.offset = hash_extent_data_ref(root_objectid,
 547						  owner, offset);
 548		size = sizeof(struct btrfs_extent_data_ref);
 549	}
 550
 551	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 552	if (ret && ret != -EEXIST)
 553		goto fail;
 554
 555	leaf = path->nodes[0];
 556	if (parent) {
 557		struct btrfs_shared_data_ref *ref;
 558		ref = btrfs_item_ptr(leaf, path->slots[0],
 559				     struct btrfs_shared_data_ref);
 560		if (ret == 0) {
 561			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 562		} else {
 563			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 564			num_refs += refs_to_add;
 565			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 566		}
 567	} else {
 568		struct btrfs_extent_data_ref *ref;
 569		while (ret == -EEXIST) {
 570			ref = btrfs_item_ptr(leaf, path->slots[0],
 571					     struct btrfs_extent_data_ref);
 572			if (match_extent_data_ref(leaf, ref, root_objectid,
 573						  owner, offset))
 574				break;
 575			btrfs_release_path(path);
 576			key.offset++;
 577			ret = btrfs_insert_empty_item(trans, root, path, &key,
 578						      size);
 579			if (ret && ret != -EEXIST)
 580				goto fail;
 581
 582			leaf = path->nodes[0];
 583		}
 584		ref = btrfs_item_ptr(leaf, path->slots[0],
 585				     struct btrfs_extent_data_ref);
 586		if (ret == 0) {
 587			btrfs_set_extent_data_ref_root(leaf, ref,
 588						       root_objectid);
 589			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 590			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 591			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 592		} else {
 593			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 594			num_refs += refs_to_add;
 595			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 596		}
 597	}
 598	btrfs_mark_buffer_dirty(leaf);
 599	ret = 0;
 600fail:
 601	btrfs_release_path(path);
 602	return ret;
 603}
 604
 605static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 606					   struct btrfs_root *root,
 607					   struct btrfs_path *path,
 608					   int refs_to_drop)
 609{
 610	struct btrfs_key key;
 611	struct btrfs_extent_data_ref *ref1 = NULL;
 612	struct btrfs_shared_data_ref *ref2 = NULL;
 613	struct extent_buffer *leaf;
 614	u32 num_refs = 0;
 615	int ret = 0;
 616
 617	leaf = path->nodes[0];
 618	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 619
 620	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 621		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 622				      struct btrfs_extent_data_ref);
 623		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 624	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 625		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 626				      struct btrfs_shared_data_ref);
 627		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 628	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 629		btrfs_print_v0_err(trans->fs_info);
 630		btrfs_abort_transaction(trans, -EINVAL);
 631		return -EINVAL;
 632	} else {
 633		BUG();
 
 
 
 
 634	}
 635
 636	BUG_ON(num_refs < refs_to_drop);
 637	num_refs -= refs_to_drop;
 638
 639	if (num_refs == 0) {
 640		ret = btrfs_del_item(trans, root, path);
 641	} else {
 642		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 643			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 644		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 645			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 646		btrfs_mark_buffer_dirty(leaf);
 647	}
 648	return ret;
 649}
 650
 651static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 652					  struct btrfs_extent_inline_ref *iref)
 653{
 654	struct btrfs_key key;
 655	struct extent_buffer *leaf;
 656	struct btrfs_extent_data_ref *ref1;
 657	struct btrfs_shared_data_ref *ref2;
 658	u32 num_refs = 0;
 659	int type;
 660
 661	leaf = path->nodes[0];
 662	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 663
 664	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 665	if (iref) {
 666		/*
 667		 * If type is invalid, we should have bailed out earlier than
 668		 * this call.
 669		 */
 670		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 671		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 672		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 673			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 674			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 675		} else {
 676			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 677			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 678		}
 679	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 680		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 681				      struct btrfs_extent_data_ref);
 682		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 683	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 684		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 685				      struct btrfs_shared_data_ref);
 686		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 687	} else {
 688		WARN_ON(1);
 689	}
 690	return num_refs;
 691}
 692
 693static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 694					  struct btrfs_path *path,
 695					  u64 bytenr, u64 parent,
 696					  u64 root_objectid)
 697{
 698	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 699	struct btrfs_key key;
 700	int ret;
 701
 702	key.objectid = bytenr;
 703	if (parent) {
 704		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 705		key.offset = parent;
 706	} else {
 707		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 708		key.offset = root_objectid;
 709	}
 710
 711	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 712	if (ret > 0)
 713		ret = -ENOENT;
 714	return ret;
 715}
 716
 717static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 718					  struct btrfs_path *path,
 719					  u64 bytenr, u64 parent,
 720					  u64 root_objectid)
 721{
 722	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 723	struct btrfs_key key;
 724	int ret;
 725
 726	key.objectid = bytenr;
 727	if (parent) {
 728		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 729		key.offset = parent;
 730	} else {
 731		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 732		key.offset = root_objectid;
 733	}
 734
 735	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 736	btrfs_release_path(path);
 737	return ret;
 738}
 739
 740static inline int extent_ref_type(u64 parent, u64 owner)
 741{
 742	int type;
 743	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 744		if (parent > 0)
 745			type = BTRFS_SHARED_BLOCK_REF_KEY;
 746		else
 747			type = BTRFS_TREE_BLOCK_REF_KEY;
 748	} else {
 749		if (parent > 0)
 750			type = BTRFS_SHARED_DATA_REF_KEY;
 751		else
 752			type = BTRFS_EXTENT_DATA_REF_KEY;
 753	}
 754	return type;
 755}
 756
 757static int find_next_key(struct btrfs_path *path, int level,
 758			 struct btrfs_key *key)
 759
 760{
 761	for (; level < BTRFS_MAX_LEVEL; level++) {
 762		if (!path->nodes[level])
 763			break;
 764		if (path->slots[level] + 1 >=
 765		    btrfs_header_nritems(path->nodes[level]))
 766			continue;
 767		if (level == 0)
 768			btrfs_item_key_to_cpu(path->nodes[level], key,
 769					      path->slots[level] + 1);
 770		else
 771			btrfs_node_key_to_cpu(path->nodes[level], key,
 772					      path->slots[level] + 1);
 773		return 0;
 774	}
 775	return 1;
 776}
 777
 778/*
 779 * look for inline back ref. if back ref is found, *ref_ret is set
 780 * to the address of inline back ref, and 0 is returned.
 781 *
 782 * if back ref isn't found, *ref_ret is set to the address where it
 783 * should be inserted, and -ENOENT is returned.
 784 *
 785 * if insert is true and there are too many inline back refs, the path
 786 * points to the extent item, and -EAGAIN is returned.
 787 *
 788 * NOTE: inline back refs are ordered in the same way that back ref
 789 *	 items in the tree are ordered.
 790 */
 791static noinline_for_stack
 792int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 793				 struct btrfs_path *path,
 794				 struct btrfs_extent_inline_ref **ref_ret,
 795				 u64 bytenr, u64 num_bytes,
 796				 u64 parent, u64 root_objectid,
 797				 u64 owner, u64 offset, int insert)
 798{
 799	struct btrfs_fs_info *fs_info = trans->fs_info;
 800	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
 801	struct btrfs_key key;
 802	struct extent_buffer *leaf;
 803	struct btrfs_extent_item *ei;
 804	struct btrfs_extent_inline_ref *iref;
 805	u64 flags;
 806	u64 item_size;
 807	unsigned long ptr;
 808	unsigned long end;
 809	int extra_size;
 810	int type;
 811	int want;
 812	int ret;
 813	int err = 0;
 814	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 815	int needed;
 816
 817	key.objectid = bytenr;
 818	key.type = BTRFS_EXTENT_ITEM_KEY;
 819	key.offset = num_bytes;
 820
 821	want = extent_ref_type(parent, owner);
 822	if (insert) {
 823		extra_size = btrfs_extent_inline_ref_size(want);
 824		path->search_for_extension = 1;
 825		path->keep_locks = 1;
 826	} else
 827		extra_size = -1;
 828
 829	/*
 830	 * Owner is our level, so we can just add one to get the level for the
 831	 * block we are interested in.
 832	 */
 833	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 834		key.type = BTRFS_METADATA_ITEM_KEY;
 835		key.offset = owner;
 836	}
 837
 838again:
 839	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 840	if (ret < 0) {
 841		err = ret;
 842		goto out;
 843	}
 844
 845	/*
 846	 * We may be a newly converted file system which still has the old fat
 847	 * extent entries for metadata, so try and see if we have one of those.
 848	 */
 849	if (ret > 0 && skinny_metadata) {
 850		skinny_metadata = false;
 851		if (path->slots[0]) {
 852			path->slots[0]--;
 853			btrfs_item_key_to_cpu(path->nodes[0], &key,
 854					      path->slots[0]);
 855			if (key.objectid == bytenr &&
 856			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 857			    key.offset == num_bytes)
 858				ret = 0;
 859		}
 860		if (ret) {
 861			key.objectid = bytenr;
 862			key.type = BTRFS_EXTENT_ITEM_KEY;
 863			key.offset = num_bytes;
 864			btrfs_release_path(path);
 865			goto again;
 866		}
 867	}
 868
 869	if (ret && !insert) {
 870		err = -ENOENT;
 871		goto out;
 872	} else if (WARN_ON(ret)) {
 873		err = -EIO;
 
 
 
 
 
 874		goto out;
 875	}
 876
 877	leaf = path->nodes[0];
 878	item_size = btrfs_item_size(leaf, path->slots[0]);
 879	if (unlikely(item_size < sizeof(*ei))) {
 880		err = -EINVAL;
 881		btrfs_print_v0_err(fs_info);
 882		btrfs_abort_transaction(trans, err);
 
 
 883		goto out;
 884	}
 885
 886	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 887	flags = btrfs_extent_flags(leaf, ei);
 888
 889	ptr = (unsigned long)(ei + 1);
 890	end = (unsigned long)ei + item_size;
 891
 892	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 893		ptr += sizeof(struct btrfs_tree_block_info);
 894		BUG_ON(ptr > end);
 895	}
 896
 897	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 898		needed = BTRFS_REF_TYPE_DATA;
 899	else
 900		needed = BTRFS_REF_TYPE_BLOCK;
 901
 902	err = -ENOENT;
 903	while (1) {
 904		if (ptr >= end) {
 905			if (ptr > end) {
 906				err = -EUCLEAN;
 907				btrfs_print_leaf(path->nodes[0]);
 908				btrfs_crit(fs_info,
 909"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
 910					path->slots[0], root_objectid, owner, offset, parent);
 911			}
 912			break;
 913		}
 914		iref = (struct btrfs_extent_inline_ref *)ptr;
 915		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 
 
 
 
 
 916		if (type == BTRFS_REF_TYPE_INVALID) {
 917			err = -EUCLEAN;
 918			goto out;
 919		}
 920
 921		if (want < type)
 922			break;
 923		if (want > type) {
 924			ptr += btrfs_extent_inline_ref_size(type);
 925			continue;
 926		}
 927
 928		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 929			struct btrfs_extent_data_ref *dref;
 930			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 931			if (match_extent_data_ref(leaf, dref, root_objectid,
 932						  owner, offset)) {
 933				err = 0;
 934				break;
 935			}
 936			if (hash_extent_data_ref_item(leaf, dref) <
 937			    hash_extent_data_ref(root_objectid, owner, offset))
 938				break;
 939		} else {
 940			u64 ref_offset;
 941			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 942			if (parent > 0) {
 943				if (parent == ref_offset) {
 944					err = 0;
 945					break;
 946				}
 947				if (ref_offset < parent)
 948					break;
 949			} else {
 950				if (root_objectid == ref_offset) {
 951					err = 0;
 952					break;
 953				}
 954				if (ref_offset < root_objectid)
 955					break;
 956			}
 957		}
 958		ptr += btrfs_extent_inline_ref_size(type);
 959	}
 960	if (err == -ENOENT && insert) {
 
 
 
 
 
 
 
 
 
 
 961		if (item_size + extra_size >=
 962		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 963			err = -EAGAIN;
 964			goto out;
 965		}
 966		/*
 967		 * To add new inline back ref, we have to make sure
 968		 * there is no corresponding back ref item.
 969		 * For simplicity, we just do not add new inline back
 970		 * ref if there is any kind of item for this block
 971		 */
 972		if (find_next_key(path, 0, &key) == 0 &&
 973		    key.objectid == bytenr &&
 974		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 975			err = -EAGAIN;
 976			goto out;
 977		}
 978	}
 979	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 980out:
 981	if (insert) {
 982		path->keep_locks = 0;
 983		path->search_for_extension = 0;
 984		btrfs_unlock_up_safe(path, 1);
 985	}
 986	return err;
 987}
 988
 989/*
 990 * helper to add new inline back ref
 991 */
 992static noinline_for_stack
 993void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
 994				 struct btrfs_path *path,
 995				 struct btrfs_extent_inline_ref *iref,
 996				 u64 parent, u64 root_objectid,
 997				 u64 owner, u64 offset, int refs_to_add,
 998				 struct btrfs_delayed_extent_op *extent_op)
 999{
1000	struct extent_buffer *leaf;
1001	struct btrfs_extent_item *ei;
1002	unsigned long ptr;
1003	unsigned long end;
1004	unsigned long item_offset;
1005	u64 refs;
1006	int size;
1007	int type;
1008
1009	leaf = path->nodes[0];
1010	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1011	item_offset = (unsigned long)iref - (unsigned long)ei;
1012
1013	type = extent_ref_type(parent, owner);
1014	size = btrfs_extent_inline_ref_size(type);
1015
1016	btrfs_extend_item(path, size);
1017
1018	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019	refs = btrfs_extent_refs(leaf, ei);
1020	refs += refs_to_add;
1021	btrfs_set_extent_refs(leaf, ei, refs);
1022	if (extent_op)
1023		__run_delayed_extent_op(extent_op, leaf, ei);
1024
1025	ptr = (unsigned long)ei + item_offset;
1026	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1027	if (ptr < end - size)
1028		memmove_extent_buffer(leaf, ptr + size, ptr,
1029				      end - size - ptr);
1030
1031	iref = (struct btrfs_extent_inline_ref *)ptr;
1032	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1033	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1034		struct btrfs_extent_data_ref *dref;
1035		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1036		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1037		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1038		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1039		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1040	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1041		struct btrfs_shared_data_ref *sref;
1042		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1043		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1044		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1046		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1047	} else {
1048		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1049	}
1050	btrfs_mark_buffer_dirty(leaf);
1051}
1052
1053static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054				 struct btrfs_path *path,
1055				 struct btrfs_extent_inline_ref **ref_ret,
1056				 u64 bytenr, u64 num_bytes, u64 parent,
1057				 u64 root_objectid, u64 owner, u64 offset)
1058{
1059	int ret;
1060
1061	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062					   num_bytes, parent, root_objectid,
1063					   owner, offset, 0);
1064	if (ret != -ENOENT)
1065		return ret;
1066
1067	btrfs_release_path(path);
1068	*ref_ret = NULL;
1069
1070	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1072					    root_objectid);
1073	} else {
1074		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075					     root_objectid, owner, offset);
1076	}
1077	return ret;
1078}
1079
1080/*
1081 * helper to update/remove inline back ref
1082 */
1083static noinline_for_stack
1084void update_inline_extent_backref(struct btrfs_path *path,
 
1085				  struct btrfs_extent_inline_ref *iref,
1086				  int refs_to_mod,
1087				  struct btrfs_delayed_extent_op *extent_op)
1088{
1089	struct extent_buffer *leaf = path->nodes[0];
 
1090	struct btrfs_extent_item *ei;
1091	struct btrfs_extent_data_ref *dref = NULL;
1092	struct btrfs_shared_data_ref *sref = NULL;
1093	unsigned long ptr;
1094	unsigned long end;
1095	u32 item_size;
1096	int size;
1097	int type;
1098	u64 refs;
1099
1100	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101	refs = btrfs_extent_refs(leaf, ei);
1102	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	refs += refs_to_mod;
1104	btrfs_set_extent_refs(leaf, ei, refs);
1105	if (extent_op)
1106		__run_delayed_extent_op(extent_op, leaf, ei);
1107
 
1108	/*
1109	 * If type is invalid, we should have bailed out after
1110	 * lookup_inline_extent_backref().
1111	 */
1112	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1113	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1114
1115	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1116		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1117		refs = btrfs_extent_data_ref_count(leaf, dref);
1118	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1119		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1120		refs = btrfs_shared_data_ref_count(leaf, sref);
1121	} else {
1122		refs = 1;
1123		BUG_ON(refs_to_mod != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124	}
1125
1126	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127	refs += refs_to_mod;
1128
1129	if (refs > 0) {
1130		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1131			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1132		else
1133			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1134	} else {
1135		size =  btrfs_extent_inline_ref_size(type);
1136		item_size = btrfs_item_size(leaf, path->slots[0]);
1137		ptr = (unsigned long)iref;
1138		end = (unsigned long)ei + item_size;
1139		if (ptr + size < end)
1140			memmove_extent_buffer(leaf, ptr, ptr + size,
1141					      end - ptr - size);
1142		item_size -= size;
1143		btrfs_truncate_item(path, item_size, 1);
1144	}
1145	btrfs_mark_buffer_dirty(leaf);
 
1146}
1147
1148static noinline_for_stack
1149int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1150				 struct btrfs_path *path,
1151				 u64 bytenr, u64 num_bytes, u64 parent,
1152				 u64 root_objectid, u64 owner,
1153				 u64 offset, int refs_to_add,
1154				 struct btrfs_delayed_extent_op *extent_op)
1155{
1156	struct btrfs_extent_inline_ref *iref;
1157	int ret;
1158
1159	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1160					   num_bytes, parent, root_objectid,
1161					   owner, offset, 1);
1162	if (ret == 0) {
1163		/*
1164		 * We're adding refs to a tree block we already own, this
1165		 * should not happen at all.
1166		 */
1167		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 
1168			btrfs_crit(trans->fs_info,
1169"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1170				   bytenr, num_bytes, root_objectid);
1171			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1172				WARN_ON(1);
1173				btrfs_crit(trans->fs_info,
1174			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1175				btrfs_print_leaf(path->nodes[0]);
1176			}
1177			return -EUCLEAN;
1178		}
1179		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
 
1180	} else if (ret == -ENOENT) {
1181		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1182					    root_objectid, owner, offset,
1183					    refs_to_add, extent_op);
1184		ret = 0;
1185	}
1186	return ret;
1187}
1188
1189static int remove_extent_backref(struct btrfs_trans_handle *trans,
1190				 struct btrfs_root *root,
1191				 struct btrfs_path *path,
1192				 struct btrfs_extent_inline_ref *iref,
1193				 int refs_to_drop, int is_data)
1194{
1195	int ret = 0;
1196
1197	BUG_ON(!is_data && refs_to_drop != 1);
1198	if (iref)
1199		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
 
1200	else if (is_data)
1201		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1202	else
1203		ret = btrfs_del_item(trans, root, path);
1204	return ret;
1205}
1206
1207static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1208			       u64 *discarded_bytes)
1209{
1210	int j, ret = 0;
1211	u64 bytes_left, end;
1212	u64 aligned_start = ALIGN(start, 1 << 9);
1213
1214	if (WARN_ON(start != aligned_start)) {
 
1215		len -= aligned_start - start;
1216		len = round_down(len, 1 << 9);
1217		start = aligned_start;
1218	}
1219
1220	*discarded_bytes = 0;
1221
1222	if (!len)
1223		return 0;
1224
1225	end = start + len;
1226	bytes_left = len;
1227
1228	/* Skip any superblocks on this device. */
1229	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1230		u64 sb_start = btrfs_sb_offset(j);
1231		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1232		u64 size = sb_start - start;
1233
1234		if (!in_range(sb_start, start, bytes_left) &&
1235		    !in_range(sb_end, start, bytes_left) &&
1236		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1237			continue;
1238
1239		/*
1240		 * Superblock spans beginning of range.  Adjust start and
1241		 * try again.
1242		 */
1243		if (sb_start <= start) {
1244			start += sb_end - start;
1245			if (start > end) {
1246				bytes_left = 0;
1247				break;
1248			}
1249			bytes_left = end - start;
1250			continue;
1251		}
1252
1253		if (size) {
1254			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
 
1255						   GFP_NOFS);
1256			if (!ret)
1257				*discarded_bytes += size;
1258			else if (ret != -EOPNOTSUPP)
1259				return ret;
1260		}
1261
1262		start = sb_end;
1263		if (start > end) {
1264			bytes_left = 0;
1265			break;
1266		}
1267		bytes_left = end - start;
1268	}
1269
1270	if (bytes_left) {
1271		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
 
1272					   GFP_NOFS);
1273		if (!ret)
1274			*discarded_bytes += bytes_left;
1275	}
1276	return ret;
1277}
1278
1279static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1280{
1281	struct btrfs_device *dev = stripe->dev;
1282	struct btrfs_fs_info *fs_info = dev->fs_info;
1283	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1284	u64 phys = stripe->physical;
1285	u64 len = stripe->length;
1286	u64 discarded = 0;
1287	int ret = 0;
1288
1289	/* Zone reset on a zoned filesystem */
1290	if (btrfs_can_zone_reset(dev, phys, len)) {
1291		u64 src_disc;
1292
1293		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1294		if (ret)
1295			goto out;
1296
1297		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1298		    dev != dev_replace->srcdev)
1299			goto out;
1300
1301		src_disc = discarded;
1302
1303		/* Send to replace target as well */
1304		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1305					      &discarded);
1306		discarded += src_disc;
1307	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1308		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1309	} else {
1310		ret = 0;
1311		*bytes = 0;
1312	}
1313
1314out:
1315	*bytes = discarded;
1316	return ret;
1317}
1318
1319int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1320			 u64 num_bytes, u64 *actual_bytes)
1321{
1322	int ret = 0;
1323	u64 discarded_bytes = 0;
1324	u64 end = bytenr + num_bytes;
1325	u64 cur = bytenr;
1326
1327	/*
1328	 * Avoid races with device replace and make sure the devices in the
1329	 * stripes don't go away while we are discarding.
1330	 */
1331	btrfs_bio_counter_inc_blocked(fs_info);
1332	while (cur < end) {
1333		struct btrfs_discard_stripe *stripes;
1334		unsigned int num_stripes;
1335		int i;
1336
1337		num_bytes = end - cur;
1338		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1339		if (IS_ERR(stripes)) {
1340			ret = PTR_ERR(stripes);
1341			if (ret == -EOPNOTSUPP)
1342				ret = 0;
1343			break;
1344		}
1345
1346		for (i = 0; i < num_stripes; i++) {
1347			struct btrfs_discard_stripe *stripe = stripes + i;
1348			u64 bytes;
1349
1350			if (!stripe->dev->bdev) {
1351				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1352				continue;
1353			}
1354
1355			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1356					&stripe->dev->dev_state))
1357				continue;
1358
1359			ret = do_discard_extent(stripe, &bytes);
1360			if (ret) {
1361				/*
1362				 * Keep going if discard is not supported by the
1363				 * device.
1364				 */
1365				if (ret != -EOPNOTSUPP)
1366					break;
1367				ret = 0;
1368			} else {
1369				discarded_bytes += bytes;
1370			}
1371		}
1372		kfree(stripes);
1373		if (ret)
1374			break;
1375		cur += num_bytes;
1376	}
1377	btrfs_bio_counter_dec(fs_info);
1378	if (actual_bytes)
1379		*actual_bytes = discarded_bytes;
1380	return ret;
1381}
1382
1383/* Can return -ENOMEM */
1384int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1385			 struct btrfs_ref *generic_ref)
1386{
1387	struct btrfs_fs_info *fs_info = trans->fs_info;
1388	int ret;
1389
1390	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1391	       generic_ref->action);
1392	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1393	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1394
1395	if (generic_ref->type == BTRFS_REF_METADATA)
1396		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1397	else
1398		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1399
1400	btrfs_ref_tree_mod(fs_info, generic_ref);
1401
1402	return ret;
1403}
1404
1405/*
1406 * __btrfs_inc_extent_ref - insert backreference for a given extent
1407 *
1408 * The counterpart is in __btrfs_free_extent(), with examples and more details
1409 * how it works.
1410 *
1411 * @trans:	    Handle of transaction
1412 *
1413 * @node:	    The delayed ref node used to get the bytenr/length for
1414 *		    extent whose references are incremented.
1415 *
1416 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1417 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1418 *		    bytenr of the parent block. Since new extents are always
1419 *		    created with indirect references, this will only be the case
1420 *		    when relocating a shared extent. In that case, root_objectid
1421 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1422 *		    be 0
1423 *
1424 * @root_objectid:  The id of the root where this modification has originated,
1425 *		    this can be either one of the well-known metadata trees or
1426 *		    the subvolume id which references this extent.
1427 *
1428 * @owner:	    For data extents it is the inode number of the owning file.
1429 *		    For metadata extents this parameter holds the level in the
1430 *		    tree of the extent.
1431 *
1432 * @offset:	    For metadata extents the offset is ignored and is currently
1433 *		    always passed as 0. For data extents it is the fileoffset
1434 *		    this extent belongs to.
1435 *
1436 * @refs_to_add     Number of references to add
1437 *
1438 * @extent_op       Pointer to a structure, holding information necessary when
1439 *                  updating a tree block's flags
1440 *
1441 */
1442static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1443				  struct btrfs_delayed_ref_node *node,
1444				  u64 parent, u64 root_objectid,
1445				  u64 owner, u64 offset, int refs_to_add,
1446				  struct btrfs_delayed_extent_op *extent_op)
1447{
1448	struct btrfs_path *path;
1449	struct extent_buffer *leaf;
1450	struct btrfs_extent_item *item;
1451	struct btrfs_key key;
1452	u64 bytenr = node->bytenr;
1453	u64 num_bytes = node->num_bytes;
1454	u64 refs;
 
1455	int ret;
1456
1457	path = btrfs_alloc_path();
1458	if (!path)
1459		return -ENOMEM;
1460
1461	/* this will setup the path even if it fails to insert the back ref */
1462	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1463					   parent, root_objectid, owner,
1464					   offset, refs_to_add, extent_op);
1465	if ((ret < 0 && ret != -EAGAIN) || !ret)
1466		goto out;
1467
1468	/*
1469	 * Ok we had -EAGAIN which means we didn't have space to insert and
1470	 * inline extent ref, so just update the reference count and add a
1471	 * normal backref.
1472	 */
1473	leaf = path->nodes[0];
1474	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1475	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1476	refs = btrfs_extent_refs(leaf, item);
1477	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1478	if (extent_op)
1479		__run_delayed_extent_op(extent_op, leaf, item);
1480
1481	btrfs_mark_buffer_dirty(leaf);
1482	btrfs_release_path(path);
1483
1484	/* now insert the actual backref */
1485	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1486		BUG_ON(refs_to_add != 1);
1487		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1488					    root_objectid);
1489	} else {
1490		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1491					     root_objectid, owner, offset,
1492					     refs_to_add);
1493	}
1494	if (ret)
1495		btrfs_abort_transaction(trans, ret);
1496out:
1497	btrfs_free_path(path);
1498	return ret;
1499}
1500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 
1502				struct btrfs_delayed_ref_node *node,
1503				struct btrfs_delayed_extent_op *extent_op,
1504				int insert_reserved)
1505{
1506	int ret = 0;
1507	struct btrfs_delayed_data_ref *ref;
1508	struct btrfs_key ins;
1509	u64 parent = 0;
1510	u64 ref_root = 0;
1511	u64 flags = 0;
1512
1513	ins.objectid = node->bytenr;
1514	ins.offset = node->num_bytes;
1515	ins.type = BTRFS_EXTENT_ITEM_KEY;
1516
1517	ref = btrfs_delayed_node_to_data_ref(node);
1518	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1519
1520	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1521		parent = ref->parent;
1522	ref_root = ref->root;
1523
1524	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 
 
 
 
 
 
 
 
 
1525		if (extent_op)
1526			flags |= extent_op->flags_to_set;
1527		ret = alloc_reserved_file_extent(trans, parent, ref_root,
 
 
 
 
 
1528						 flags, ref->objectid,
1529						 ref->offset, &ins,
1530						 node->ref_mod);
 
 
 
1531	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1532		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1533					     ref->objectid, ref->offset,
1534					     node->ref_mod, extent_op);
1535	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1536		ret = __btrfs_free_extent(trans, node, parent,
1537					  ref_root, ref->objectid,
1538					  ref->offset, node->ref_mod,
1539					  extent_op);
1540	} else {
1541		BUG();
1542	}
1543	return ret;
1544}
1545
1546static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1547				    struct extent_buffer *leaf,
1548				    struct btrfs_extent_item *ei)
1549{
1550	u64 flags = btrfs_extent_flags(leaf, ei);
1551	if (extent_op->update_flags) {
1552		flags |= extent_op->flags_to_set;
1553		btrfs_set_extent_flags(leaf, ei, flags);
1554	}
1555
1556	if (extent_op->update_key) {
1557		struct btrfs_tree_block_info *bi;
1558		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1559		bi = (struct btrfs_tree_block_info *)(ei + 1);
1560		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1561	}
1562}
1563
1564static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1565				 struct btrfs_delayed_ref_head *head,
1566				 struct btrfs_delayed_extent_op *extent_op)
1567{
1568	struct btrfs_fs_info *fs_info = trans->fs_info;
1569	struct btrfs_root *root;
1570	struct btrfs_key key;
1571	struct btrfs_path *path;
1572	struct btrfs_extent_item *ei;
1573	struct extent_buffer *leaf;
1574	u32 item_size;
1575	int ret;
1576	int err = 0;
1577	int metadata = 1;
1578
1579	if (TRANS_ABORTED(trans))
1580		return 0;
1581
1582	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1583		metadata = 0;
1584
1585	path = btrfs_alloc_path();
1586	if (!path)
1587		return -ENOMEM;
1588
1589	key.objectid = head->bytenr;
1590
1591	if (metadata) {
1592		key.type = BTRFS_METADATA_ITEM_KEY;
1593		key.offset = extent_op->level;
1594	} else {
1595		key.type = BTRFS_EXTENT_ITEM_KEY;
1596		key.offset = head->num_bytes;
1597	}
1598
1599	root = btrfs_extent_root(fs_info, key.objectid);
1600again:
1601	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602	if (ret < 0) {
1603		err = ret;
1604		goto out;
1605	}
1606	if (ret > 0) {
1607		if (metadata) {
1608			if (path->slots[0] > 0) {
1609				path->slots[0]--;
1610				btrfs_item_key_to_cpu(path->nodes[0], &key,
1611						      path->slots[0]);
1612				if (key.objectid == head->bytenr &&
1613				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1614				    key.offset == head->num_bytes)
1615					ret = 0;
1616			}
1617			if (ret > 0) {
1618				btrfs_release_path(path);
1619				metadata = 0;
1620
1621				key.objectid = head->bytenr;
1622				key.offset = head->num_bytes;
1623				key.type = BTRFS_EXTENT_ITEM_KEY;
1624				goto again;
1625			}
1626		} else {
1627			err = -EIO;
 
 
 
1628			goto out;
1629		}
1630	}
1631
1632	leaf = path->nodes[0];
1633	item_size = btrfs_item_size(leaf, path->slots[0]);
1634
1635	if (unlikely(item_size < sizeof(*ei))) {
1636		err = -EINVAL;
1637		btrfs_print_v0_err(fs_info);
1638		btrfs_abort_transaction(trans, err);
 
 
1639		goto out;
1640	}
1641
1642	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1643	__run_delayed_extent_op(extent_op, leaf, ei);
1644
1645	btrfs_mark_buffer_dirty(leaf);
1646out:
1647	btrfs_free_path(path);
1648	return err;
1649}
1650
1651static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 
1652				struct btrfs_delayed_ref_node *node,
1653				struct btrfs_delayed_extent_op *extent_op,
1654				int insert_reserved)
1655{
1656	int ret = 0;
 
1657	struct btrfs_delayed_tree_ref *ref;
1658	u64 parent = 0;
1659	u64 ref_root = 0;
1660
1661	ref = btrfs_delayed_node_to_tree_ref(node);
1662	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1663
1664	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1665		parent = ref->parent;
1666	ref_root = ref->root;
1667
1668	if (node->ref_mod != 1) {
1669		btrfs_err(trans->fs_info,
1670	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1671			  node->bytenr, node->ref_mod, node->action, ref_root,
1672			  parent);
1673		return -EIO;
1674	}
1675	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 
 
 
 
 
 
 
 
1676		BUG_ON(!extent_op || !extent_op->update_flags);
1677		ret = alloc_reserved_tree_block(trans, node, extent_op);
 
 
1678	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1679		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1680					     ref->level, 0, 1, extent_op);
1681	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1682		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1683					  ref->level, 0, 1, extent_op);
1684	} else {
1685		BUG();
1686	}
1687	return ret;
1688}
1689
1690/* helper function to actually process a single delayed ref entry */
1691static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 
1692			       struct btrfs_delayed_ref_node *node,
1693			       struct btrfs_delayed_extent_op *extent_op,
1694			       int insert_reserved)
1695{
1696	int ret = 0;
1697
1698	if (TRANS_ABORTED(trans)) {
1699		if (insert_reserved)
1700			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
 
 
1701		return 0;
1702	}
1703
1704	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1705	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706		ret = run_delayed_tree_ref(trans, node, extent_op,
1707					   insert_reserved);
1708	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1709		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1710		ret = run_delayed_data_ref(trans, node, extent_op,
1711					   insert_reserved);
 
 
1712	else
1713		BUG();
1714	if (ret && insert_reserved)
1715		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1716	if (ret < 0)
1717		btrfs_err(trans->fs_info,
1718"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1719			  node->bytenr, node->num_bytes, node->type,
1720			  node->action, node->ref_mod, ret);
1721	return ret;
1722}
1723
1724static inline struct btrfs_delayed_ref_node *
1725select_delayed_ref(struct btrfs_delayed_ref_head *head)
1726{
1727	struct btrfs_delayed_ref_node *ref;
1728
1729	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1730		return NULL;
1731
1732	/*
1733	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1734	 * This is to prevent a ref count from going down to zero, which deletes
1735	 * the extent item from the extent tree, when there still are references
1736	 * to add, which would fail because they would not find the extent item.
1737	 */
1738	if (!list_empty(&head->ref_add_list))
1739		return list_first_entry(&head->ref_add_list,
1740				struct btrfs_delayed_ref_node, add_list);
1741
1742	ref = rb_entry(rb_first_cached(&head->ref_tree),
1743		       struct btrfs_delayed_ref_node, ref_node);
1744	ASSERT(list_empty(&ref->add_list));
1745	return ref;
1746}
1747
1748static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1749				      struct btrfs_delayed_ref_head *head)
1750{
1751	spin_lock(&delayed_refs->lock);
1752	head->processing = 0;
1753	delayed_refs->num_heads_ready++;
1754	spin_unlock(&delayed_refs->lock);
1755	btrfs_delayed_ref_unlock(head);
1756}
1757
1758static struct btrfs_delayed_extent_op *cleanup_extent_op(
1759				struct btrfs_delayed_ref_head *head)
1760{
1761	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1762
1763	if (!extent_op)
1764		return NULL;
1765
1766	if (head->must_insert_reserved) {
1767		head->extent_op = NULL;
1768		btrfs_free_delayed_extent_op(extent_op);
1769		return NULL;
1770	}
1771	return extent_op;
1772}
1773
1774static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1775				     struct btrfs_delayed_ref_head *head)
1776{
1777	struct btrfs_delayed_extent_op *extent_op;
1778	int ret;
1779
1780	extent_op = cleanup_extent_op(head);
1781	if (!extent_op)
1782		return 0;
1783	head->extent_op = NULL;
1784	spin_unlock(&head->lock);
1785	ret = run_delayed_extent_op(trans, head, extent_op);
1786	btrfs_free_delayed_extent_op(extent_op);
1787	return ret ? ret : 1;
1788}
1789
1790void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1791				  struct btrfs_delayed_ref_root *delayed_refs,
1792				  struct btrfs_delayed_ref_head *head)
1793{
1794	int nr_items = 1;	/* Dropping this ref head update. */
1795
1796	/*
1797	 * We had csum deletions accounted for in our delayed refs rsv, we need
1798	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1799	 */
1800	if (head->total_ref_mod < 0 && head->is_data) {
 
 
1801		spin_lock(&delayed_refs->lock);
1802		delayed_refs->pending_csums -= head->num_bytes;
1803		spin_unlock(&delayed_refs->lock);
1804		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
 
 
 
 
1805	}
 
 
 
1806
1807	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1808}
1809
1810static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1811			    struct btrfs_delayed_ref_head *head)
 
1812{
1813
1814	struct btrfs_fs_info *fs_info = trans->fs_info;
1815	struct btrfs_delayed_ref_root *delayed_refs;
1816	int ret;
1817
1818	delayed_refs = &trans->transaction->delayed_refs;
1819
1820	ret = run_and_cleanup_extent_op(trans, head);
1821	if (ret < 0) {
1822		unselect_delayed_ref_head(delayed_refs, head);
1823		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1824		return ret;
1825	} else if (ret) {
1826		return ret;
1827	}
1828
1829	/*
1830	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1831	 * and then re-check to make sure nobody got added.
1832	 */
1833	spin_unlock(&head->lock);
1834	spin_lock(&delayed_refs->lock);
1835	spin_lock(&head->lock);
1836	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1837		spin_unlock(&head->lock);
1838		spin_unlock(&delayed_refs->lock);
1839		return 1;
1840	}
1841	btrfs_delete_ref_head(delayed_refs, head);
1842	spin_unlock(&head->lock);
1843	spin_unlock(&delayed_refs->lock);
1844
1845	if (head->must_insert_reserved) {
1846		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1847		if (head->is_data) {
1848			struct btrfs_root *csum_root;
1849
1850			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1851			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1852					      head->num_bytes);
1853		}
1854	}
1855
1856	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858	trace_run_delayed_ref_head(fs_info, head, 0);
1859	btrfs_delayed_ref_unlock(head);
1860	btrfs_put_delayed_ref_head(head);
1861	return ret;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865					struct btrfs_trans_handle *trans)
1866{
1867	struct btrfs_delayed_ref_root *delayed_refs =
1868		&trans->transaction->delayed_refs;
1869	struct btrfs_delayed_ref_head *head = NULL;
1870	int ret;
1871
1872	spin_lock(&delayed_refs->lock);
1873	head = btrfs_select_ref_head(delayed_refs);
1874	if (!head) {
1875		spin_unlock(&delayed_refs->lock);
1876		return head;
1877	}
1878
1879	/*
1880	 * Grab the lock that says we are going to process all the refs for
1881	 * this head
1882	 */
1883	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884	spin_unlock(&delayed_refs->lock);
1885
1886	/*
1887	 * We may have dropped the spin lock to get the head mutex lock, and
1888	 * that might have given someone else time to free the head.  If that's
1889	 * true, it has been removed from our list and we can move on.
1890	 */
1891	if (ret == -EAGAIN)
1892		head = ERR_PTR(-EAGAIN);
1893
1894	return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898				    struct btrfs_delayed_ref_head *locked_ref,
1899				    unsigned long *run_refs)
1900{
1901	struct btrfs_fs_info *fs_info = trans->fs_info;
1902	struct btrfs_delayed_ref_root *delayed_refs;
1903	struct btrfs_delayed_extent_op *extent_op;
1904	struct btrfs_delayed_ref_node *ref;
1905	int must_insert_reserved = 0;
1906	int ret;
1907
1908	delayed_refs = &trans->transaction->delayed_refs;
1909
1910	lockdep_assert_held(&locked_ref->mutex);
1911	lockdep_assert_held(&locked_ref->lock);
1912
1913	while ((ref = select_delayed_ref(locked_ref))) {
1914		if (ref->seq &&
1915		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916			spin_unlock(&locked_ref->lock);
1917			unselect_delayed_ref_head(delayed_refs, locked_ref);
1918			return -EAGAIN;
1919		}
1920
1921		(*run_refs)++;
1922		ref->in_tree = 0;
1923		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924		RB_CLEAR_NODE(&ref->ref_node);
1925		if (!list_empty(&ref->add_list))
1926			list_del(&ref->add_list);
1927		/*
1928		 * When we play the delayed ref, also correct the ref_mod on
1929		 * head
1930		 */
1931		switch (ref->action) {
1932		case BTRFS_ADD_DELAYED_REF:
1933		case BTRFS_ADD_DELAYED_EXTENT:
1934			locked_ref->ref_mod -= ref->ref_mod;
1935			break;
1936		case BTRFS_DROP_DELAYED_REF:
1937			locked_ref->ref_mod += ref->ref_mod;
1938			break;
1939		default:
1940			WARN_ON(1);
1941		}
1942		atomic_dec(&delayed_refs->num_entries);
1943
1944		/*
1945		 * Record the must_insert_reserved flag before we drop the
1946		 * spin lock.
1947		 */
1948		must_insert_reserved = locked_ref->must_insert_reserved;
1949		locked_ref->must_insert_reserved = 0;
 
 
 
 
 
 
1950
1951		extent_op = locked_ref->extent_op;
1952		locked_ref->extent_op = NULL;
1953		spin_unlock(&locked_ref->lock);
1954
1955		ret = run_one_delayed_ref(trans, ref, extent_op,
1956					  must_insert_reserved);
 
 
1957
1958		btrfs_free_delayed_extent_op(extent_op);
1959		if (ret) {
1960			unselect_delayed_ref_head(delayed_refs, locked_ref);
1961			btrfs_put_delayed_ref(ref);
1962			return ret;
1963		}
1964
1965		btrfs_put_delayed_ref(ref);
1966		cond_resched();
1967
1968		spin_lock(&locked_ref->lock);
1969		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1970	}
1971
1972	return 0;
1973}
1974
1975/*
1976 * Returns 0 on success or if called with an already aborted transaction.
1977 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1978 */
1979static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1980					     unsigned long nr)
1981{
1982	struct btrfs_fs_info *fs_info = trans->fs_info;
1983	struct btrfs_delayed_ref_root *delayed_refs;
1984	struct btrfs_delayed_ref_head *locked_ref = NULL;
1985	ktime_t start = ktime_get();
1986	int ret;
1987	unsigned long count = 0;
1988	unsigned long actual_count = 0;
 
1989
1990	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
1991	do {
1992		if (!locked_ref) {
1993			locked_ref = btrfs_obtain_ref_head(trans);
1994			if (IS_ERR_OR_NULL(locked_ref)) {
1995				if (PTR_ERR(locked_ref) == -EAGAIN) {
1996					continue;
1997				} else {
1998					break;
1999				}
2000			}
2001			count++;
2002		}
2003		/*
2004		 * We need to try and merge add/drops of the same ref since we
2005		 * can run into issues with relocate dropping the implicit ref
2006		 * and then it being added back again before the drop can
2007		 * finish.  If we merged anything we need to re-loop so we can
2008		 * get a good ref.
2009		 * Or we can get node references of the same type that weren't
2010		 * merged when created due to bumps in the tree mod seq, and
2011		 * we need to merge them to prevent adding an inline extent
2012		 * backref before dropping it (triggering a BUG_ON at
2013		 * insert_inline_extent_backref()).
2014		 */
2015		spin_lock(&locked_ref->lock);
2016		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2017
2018		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2019						      &actual_count);
2020		if (ret < 0 && ret != -EAGAIN) {
2021			/*
2022			 * Error, btrfs_run_delayed_refs_for_head already
2023			 * unlocked everything so just bail out
2024			 */
2025			return ret;
2026		} else if (!ret) {
2027			/*
2028			 * Success, perform the usual cleanup of a processed
2029			 * head
2030			 */
2031			ret = cleanup_ref_head(trans, locked_ref);
2032			if (ret > 0 ) {
2033				/* We dropped our lock, we need to loop. */
2034				ret = 0;
2035				continue;
2036			} else if (ret) {
2037				return ret;
2038			}
2039		}
2040
2041		/*
2042		 * Either success case or btrfs_run_delayed_refs_for_head
2043		 * returned -EAGAIN, meaning we need to select another head
2044		 */
2045
2046		locked_ref = NULL;
2047		cond_resched();
2048	} while ((nr != -1 && count < nr) || locked_ref);
 
 
2049
2050	/*
2051	 * We don't want to include ref heads since we can have empty ref heads
2052	 * and those will drastically skew our runtime down since we just do
2053	 * accounting, no actual extent tree updates.
2054	 */
2055	if (actual_count > 0) {
2056		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2057		u64 avg;
2058
2059		/*
2060		 * We weigh the current average higher than our current runtime
2061		 * to avoid large swings in the average.
2062		 */
2063		spin_lock(&delayed_refs->lock);
2064		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2065		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2066		spin_unlock(&delayed_refs->lock);
2067	}
2068	return 0;
2069}
2070
2071#ifdef SCRAMBLE_DELAYED_REFS
2072/*
2073 * Normally delayed refs get processed in ascending bytenr order. This
2074 * correlates in most cases to the order added. To expose dependencies on this
2075 * order, we start to process the tree in the middle instead of the beginning
2076 */
2077static u64 find_middle(struct rb_root *root)
2078{
2079	struct rb_node *n = root->rb_node;
2080	struct btrfs_delayed_ref_node *entry;
2081	int alt = 1;
2082	u64 middle;
2083	u64 first = 0, last = 0;
2084
2085	n = rb_first(root);
2086	if (n) {
2087		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2088		first = entry->bytenr;
2089	}
2090	n = rb_last(root);
2091	if (n) {
2092		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2093		last = entry->bytenr;
2094	}
2095	n = root->rb_node;
2096
2097	while (n) {
2098		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099		WARN_ON(!entry->in_tree);
2100
2101		middle = entry->bytenr;
2102
2103		if (alt)
2104			n = n->rb_left;
2105		else
2106			n = n->rb_right;
2107
2108		alt = 1 - alt;
2109	}
2110	return middle;
2111}
2112#endif
2113
2114/*
2115 * this starts processing the delayed reference count updates and
2116 * extent insertions we have queued up so far.  count can be
2117 * 0, which means to process everything in the tree at the start
2118 * of the run (but not newly added entries), or it can be some target
2119 * number you'd like to process.
 
 
 
 
 
2120 *
2121 * Returns 0 on success or if called with an aborted transaction
2122 * Returns <0 on error and aborts the transaction
2123 */
2124int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2125			   unsigned long count)
2126{
2127	struct btrfs_fs_info *fs_info = trans->fs_info;
2128	struct rb_node *node;
2129	struct btrfs_delayed_ref_root *delayed_refs;
2130	struct btrfs_delayed_ref_head *head;
2131	int ret;
2132	int run_all = count == (unsigned long)-1;
2133
2134	/* We'll clean this up in btrfs_cleanup_transaction */
2135	if (TRANS_ABORTED(trans))
2136		return 0;
2137
2138	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2139		return 0;
2140
2141	delayed_refs = &trans->transaction->delayed_refs;
2142	if (count == 0)
2143		count = delayed_refs->num_heads_ready;
2144
2145again:
2146#ifdef SCRAMBLE_DELAYED_REFS
2147	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2148#endif
2149	ret = __btrfs_run_delayed_refs(trans, count);
2150	if (ret < 0) {
2151		btrfs_abort_transaction(trans, ret);
2152		return ret;
2153	}
2154
2155	if (run_all) {
2156		btrfs_create_pending_block_groups(trans);
2157
2158		spin_lock(&delayed_refs->lock);
2159		node = rb_first_cached(&delayed_refs->href_root);
2160		if (!node) {
2161			spin_unlock(&delayed_refs->lock);
2162			goto out;
2163		}
2164		head = rb_entry(node, struct btrfs_delayed_ref_head,
2165				href_node);
2166		refcount_inc(&head->refs);
2167		spin_unlock(&delayed_refs->lock);
2168
2169		/* Mutex was contended, block until it's released and retry. */
2170		mutex_lock(&head->mutex);
2171		mutex_unlock(&head->mutex);
2172
2173		btrfs_put_delayed_ref_head(head);
2174		cond_resched();
2175		goto again;
2176	}
2177out:
2178	return 0;
2179}
2180
2181int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182				struct extent_buffer *eb, u64 flags,
2183				int level)
2184{
2185	struct btrfs_delayed_extent_op *extent_op;
 
2186	int ret;
2187
2188	extent_op = btrfs_alloc_delayed_extent_op();
2189	if (!extent_op)
2190		return -ENOMEM;
2191
2192	extent_op->flags_to_set = flags;
2193	extent_op->update_flags = true;
2194	extent_op->update_key = false;
2195	extent_op->level = level;
2196
2197	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2198	if (ret)
2199		btrfs_free_delayed_extent_op(extent_op);
2200	return ret;
2201}
2202
2203static noinline int check_delayed_ref(struct btrfs_root *root,
2204				      struct btrfs_path *path,
2205				      u64 objectid, u64 offset, u64 bytenr)
2206{
2207	struct btrfs_delayed_ref_head *head;
2208	struct btrfs_delayed_ref_node *ref;
2209	struct btrfs_delayed_data_ref *data_ref;
2210	struct btrfs_delayed_ref_root *delayed_refs;
2211	struct btrfs_transaction *cur_trans;
2212	struct rb_node *node;
2213	int ret = 0;
2214
2215	spin_lock(&root->fs_info->trans_lock);
2216	cur_trans = root->fs_info->running_transaction;
2217	if (cur_trans)
2218		refcount_inc(&cur_trans->use_count);
2219	spin_unlock(&root->fs_info->trans_lock);
2220	if (!cur_trans)
2221		return 0;
2222
2223	delayed_refs = &cur_trans->delayed_refs;
2224	spin_lock(&delayed_refs->lock);
2225	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2226	if (!head) {
2227		spin_unlock(&delayed_refs->lock);
2228		btrfs_put_transaction(cur_trans);
2229		return 0;
2230	}
2231
2232	if (!mutex_trylock(&head->mutex)) {
2233		if (path->nowait) {
2234			spin_unlock(&delayed_refs->lock);
2235			btrfs_put_transaction(cur_trans);
2236			return -EAGAIN;
2237		}
2238
2239		refcount_inc(&head->refs);
2240		spin_unlock(&delayed_refs->lock);
2241
2242		btrfs_release_path(path);
2243
2244		/*
2245		 * Mutex was contended, block until it's released and let
2246		 * caller try again
2247		 */
2248		mutex_lock(&head->mutex);
2249		mutex_unlock(&head->mutex);
2250		btrfs_put_delayed_ref_head(head);
2251		btrfs_put_transaction(cur_trans);
2252		return -EAGAIN;
2253	}
2254	spin_unlock(&delayed_refs->lock);
2255
2256	spin_lock(&head->lock);
2257	/*
2258	 * XXX: We should replace this with a proper search function in the
2259	 * future.
2260	 */
2261	for (node = rb_first_cached(&head->ref_tree); node;
2262	     node = rb_next(node)) {
2263		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2264		/* If it's a shared ref we know a cross reference exists */
2265		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2266			ret = 1;
2267			break;
2268		}
2269
2270		data_ref = btrfs_delayed_node_to_data_ref(ref);
2271
2272		/*
2273		 * If our ref doesn't match the one we're currently looking at
2274		 * then we have a cross reference.
2275		 */
2276		if (data_ref->root != root->root_key.objectid ||
2277		    data_ref->objectid != objectid ||
2278		    data_ref->offset != offset) {
2279			ret = 1;
2280			break;
2281		}
2282	}
2283	spin_unlock(&head->lock);
2284	mutex_unlock(&head->mutex);
2285	btrfs_put_transaction(cur_trans);
2286	return ret;
2287}
2288
2289static noinline int check_committed_ref(struct btrfs_root *root,
2290					struct btrfs_path *path,
2291					u64 objectid, u64 offset, u64 bytenr,
2292					bool strict)
2293{
2294	struct btrfs_fs_info *fs_info = root->fs_info;
2295	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2296	struct extent_buffer *leaf;
2297	struct btrfs_extent_data_ref *ref;
2298	struct btrfs_extent_inline_ref *iref;
2299	struct btrfs_extent_item *ei;
2300	struct btrfs_key key;
2301	u32 item_size;
 
2302	int type;
2303	int ret;
2304
2305	key.objectid = bytenr;
2306	key.offset = (u64)-1;
2307	key.type = BTRFS_EXTENT_ITEM_KEY;
2308
2309	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2310	if (ret < 0)
2311		goto out;
2312	BUG_ON(ret == 0); /* Corruption */
2313
2314	ret = -ENOENT;
2315	if (path->slots[0] == 0)
2316		goto out;
2317
2318	path->slots[0]--;
2319	leaf = path->nodes[0];
2320	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2321
2322	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2323		goto out;
2324
2325	ret = 1;
2326	item_size = btrfs_item_size(leaf, path->slots[0]);
2327	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
2328
2329	/* If extent item has more than 1 inline ref then it's shared */
2330	if (item_size != sizeof(*ei) +
2331	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2332		goto out;
2333
2334	/*
2335	 * If extent created before last snapshot => it's shared unless the
2336	 * snapshot has been deleted. Use the heuristic if strict is false.
2337	 */
2338	if (!strict &&
2339	    (btrfs_extent_generation(leaf, ei) <=
2340	     btrfs_root_last_snapshot(&root->root_item)))
2341		goto out;
2342
2343	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2344
2345	/* If this extent has SHARED_DATA_REF then it's shared */
2346	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2347	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2348		goto out;
2349
2350	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2351	if (btrfs_extent_refs(leaf, ei) !=
2352	    btrfs_extent_data_ref_count(leaf, ref) ||
2353	    btrfs_extent_data_ref_root(leaf, ref) !=
2354	    root->root_key.objectid ||
2355	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2356	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2357		goto out;
2358
2359	ret = 0;
2360out:
2361	return ret;
2362}
2363
2364int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2365			  u64 bytenr, bool strict, struct btrfs_path *path)
2366{
2367	int ret;
2368
2369	do {
2370		ret = check_committed_ref(root, path, objectid,
2371					  offset, bytenr, strict);
2372		if (ret && ret != -ENOENT)
2373			goto out;
2374
2375		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2376	} while (ret == -EAGAIN);
2377
2378out:
2379	btrfs_release_path(path);
2380	if (btrfs_is_data_reloc_root(root))
2381		WARN_ON(ret > 0);
2382	return ret;
2383}
2384
2385static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2386			   struct btrfs_root *root,
2387			   struct extent_buffer *buf,
2388			   int full_backref, int inc)
2389{
2390	struct btrfs_fs_info *fs_info = root->fs_info;
2391	u64 bytenr;
2392	u64 num_bytes;
2393	u64 parent;
2394	u64 ref_root;
2395	u32 nritems;
2396	struct btrfs_key key;
2397	struct btrfs_file_extent_item *fi;
2398	struct btrfs_ref generic_ref = { 0 };
2399	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2400	int i;
2401	int action;
2402	int level;
2403	int ret = 0;
2404
2405	if (btrfs_is_testing(fs_info))
2406		return 0;
2407
2408	ref_root = btrfs_header_owner(buf);
2409	nritems = btrfs_header_nritems(buf);
2410	level = btrfs_header_level(buf);
2411
2412	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413		return 0;
2414
2415	if (full_backref)
2416		parent = buf->start;
2417	else
2418		parent = 0;
2419	if (inc)
2420		action = BTRFS_ADD_DELAYED_REF;
2421	else
2422		action = BTRFS_DROP_DELAYED_REF;
2423
2424	for (i = 0; i < nritems; i++) {
2425		if (level == 0) {
2426			btrfs_item_key_to_cpu(buf, &key, i);
2427			if (key.type != BTRFS_EXTENT_DATA_KEY)
2428				continue;
2429			fi = btrfs_item_ptr(buf, i,
2430					    struct btrfs_file_extent_item);
2431			if (btrfs_file_extent_type(buf, fi) ==
2432			    BTRFS_FILE_EXTENT_INLINE)
2433				continue;
2434			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435			if (bytenr == 0)
2436				continue;
2437
2438			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2439			key.offset -= btrfs_file_extent_offset(buf, fi);
2440			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2441					       num_bytes, parent);
2442			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2443					    key.offset, root->root_key.objectid,
2444					    for_reloc);
2445			if (inc)
2446				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2447			else
2448				ret = btrfs_free_extent(trans, &generic_ref);
2449			if (ret)
2450				goto fail;
2451		} else {
2452			bytenr = btrfs_node_blockptr(buf, i);
2453			num_bytes = fs_info->nodesize;
 
2454			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2455					       num_bytes, parent);
2456			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2457					    root->root_key.objectid, for_reloc);
2458			if (inc)
2459				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2460			else
2461				ret = btrfs_free_extent(trans, &generic_ref);
2462			if (ret)
2463				goto fail;
2464		}
2465	}
2466	return 0;
2467fail:
2468	return ret;
2469}
2470
2471int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2472		  struct extent_buffer *buf, int full_backref)
2473{
2474	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2475}
2476
2477int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2478		  struct extent_buffer *buf, int full_backref)
2479{
2480	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2481}
2482
2483static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2484{
2485	struct btrfs_fs_info *fs_info = root->fs_info;
2486	u64 flags;
2487	u64 ret;
2488
2489	if (data)
2490		flags = BTRFS_BLOCK_GROUP_DATA;
2491	else if (root == fs_info->chunk_root)
2492		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2493	else
2494		flags = BTRFS_BLOCK_GROUP_METADATA;
2495
2496	ret = btrfs_get_alloc_profile(fs_info, flags);
2497	return ret;
2498}
2499
2500static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2501{
2502	struct rb_node *leftmost;
2503	u64 bytenr = 0;
2504
2505	read_lock(&fs_info->block_group_cache_lock);
2506	/* Get the block group with the lowest logical start address. */
2507	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2508	if (leftmost) {
2509		struct btrfs_block_group *bg;
2510
2511		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2512		bytenr = bg->start;
2513	}
2514	read_unlock(&fs_info->block_group_cache_lock);
2515
2516	return bytenr;
2517}
2518
2519static int pin_down_extent(struct btrfs_trans_handle *trans,
2520			   struct btrfs_block_group *cache,
2521			   u64 bytenr, u64 num_bytes, int reserved)
2522{
2523	struct btrfs_fs_info *fs_info = cache->fs_info;
2524
2525	spin_lock(&cache->space_info->lock);
2526	spin_lock(&cache->lock);
2527	cache->pinned += num_bytes;
2528	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2529					     num_bytes);
2530	if (reserved) {
2531		cache->reserved -= num_bytes;
2532		cache->space_info->bytes_reserved -= num_bytes;
2533	}
2534	spin_unlock(&cache->lock);
2535	spin_unlock(&cache->space_info->lock);
2536
2537	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2538			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2539	return 0;
2540}
2541
2542int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2543		     u64 bytenr, u64 num_bytes, int reserved)
2544{
2545	struct btrfs_block_group *cache;
2546
2547	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2548	BUG_ON(!cache); /* Logic error */
2549
2550	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2551
2552	btrfs_put_block_group(cache);
2553	return 0;
2554}
2555
2556/*
2557 * this function must be called within transaction
2558 */
2559int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2560				    u64 bytenr, u64 num_bytes)
2561{
2562	struct btrfs_block_group *cache;
2563	int ret;
2564
2565	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2566	if (!cache)
2567		return -EINVAL;
2568
2569	/*
2570	 * Fully cache the free space first so that our pin removes the free space
2571	 * from the cache.
2572	 */
2573	ret = btrfs_cache_block_group(cache, true);
2574	if (ret)
2575		goto out;
2576
2577	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2578
2579	/* remove us from the free space cache (if we're there at all) */
2580	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2581out:
2582	btrfs_put_block_group(cache);
2583	return ret;
2584}
2585
2586static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2587				   u64 start, u64 num_bytes)
2588{
2589	int ret;
2590	struct btrfs_block_group *block_group;
2591
2592	block_group = btrfs_lookup_block_group(fs_info, start);
2593	if (!block_group)
2594		return -EINVAL;
2595
2596	ret = btrfs_cache_block_group(block_group, true);
2597	if (ret)
2598		goto out;
2599
2600	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2601out:
2602	btrfs_put_block_group(block_group);
2603	return ret;
2604}
2605
2606int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2607{
2608	struct btrfs_fs_info *fs_info = eb->fs_info;
2609	struct btrfs_file_extent_item *item;
2610	struct btrfs_key key;
2611	int found_type;
2612	int i;
2613	int ret = 0;
2614
2615	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2616		return 0;
2617
2618	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2619		btrfs_item_key_to_cpu(eb, &key, i);
2620		if (key.type != BTRFS_EXTENT_DATA_KEY)
2621			continue;
2622		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2623		found_type = btrfs_file_extent_type(eb, item);
2624		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2625			continue;
2626		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2627			continue;
2628		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2629		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2630		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2631		if (ret)
2632			break;
2633	}
2634
2635	return ret;
2636}
2637
2638static void
2639btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2640{
2641	atomic_inc(&bg->reservations);
2642}
2643
2644/*
2645 * Returns the free cluster for the given space info and sets empty_cluster to
2646 * what it should be based on the mount options.
2647 */
2648static struct btrfs_free_cluster *
2649fetch_cluster_info(struct btrfs_fs_info *fs_info,
2650		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2651{
2652	struct btrfs_free_cluster *ret = NULL;
2653
2654	*empty_cluster = 0;
2655	if (btrfs_mixed_space_info(space_info))
2656		return ret;
2657
2658	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2659		ret = &fs_info->meta_alloc_cluster;
2660		if (btrfs_test_opt(fs_info, SSD))
2661			*empty_cluster = SZ_2M;
2662		else
2663			*empty_cluster = SZ_64K;
2664	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2665		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2666		*empty_cluster = SZ_2M;
2667		ret = &fs_info->data_alloc_cluster;
2668	}
2669
2670	return ret;
2671}
2672
2673static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2674			      u64 start, u64 end,
2675			      const bool return_free_space)
2676{
2677	struct btrfs_block_group *cache = NULL;
2678	struct btrfs_space_info *space_info;
2679	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2680	struct btrfs_free_cluster *cluster = NULL;
2681	u64 len;
2682	u64 total_unpinned = 0;
2683	u64 empty_cluster = 0;
2684	bool readonly;
2685
2686	while (start <= end) {
2687		readonly = false;
2688		if (!cache ||
2689		    start >= cache->start + cache->length) {
2690			if (cache)
2691				btrfs_put_block_group(cache);
2692			total_unpinned = 0;
2693			cache = btrfs_lookup_block_group(fs_info, start);
2694			BUG_ON(!cache); /* Logic error */
2695
2696			cluster = fetch_cluster_info(fs_info,
2697						     cache->space_info,
2698						     &empty_cluster);
2699			empty_cluster <<= 1;
2700		}
2701
2702		len = cache->start + cache->length - start;
2703		len = min(len, end + 1 - start);
2704
2705		if (return_free_space)
2706			btrfs_add_free_space(cache, start, len);
2707
2708		start += len;
2709		total_unpinned += len;
2710		space_info = cache->space_info;
2711
2712		/*
2713		 * If this space cluster has been marked as fragmented and we've
2714		 * unpinned enough in this block group to potentially allow a
2715		 * cluster to be created inside of it go ahead and clear the
2716		 * fragmented check.
2717		 */
2718		if (cluster && cluster->fragmented &&
2719		    total_unpinned > empty_cluster) {
2720			spin_lock(&cluster->lock);
2721			cluster->fragmented = 0;
2722			spin_unlock(&cluster->lock);
2723		}
2724
2725		spin_lock(&space_info->lock);
2726		spin_lock(&cache->lock);
2727		cache->pinned -= len;
2728		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2729		space_info->max_extent_size = 0;
2730		if (cache->ro) {
2731			space_info->bytes_readonly += len;
2732			readonly = true;
2733		} else if (btrfs_is_zoned(fs_info)) {
2734			/* Need reset before reusing in a zoned block group */
2735			space_info->bytes_zone_unusable += len;
2736			readonly = true;
2737		}
2738		spin_unlock(&cache->lock);
2739		if (!readonly && return_free_space &&
2740		    global_rsv->space_info == space_info) {
2741			spin_lock(&global_rsv->lock);
2742			if (!global_rsv->full) {
2743				u64 to_add = min(len, global_rsv->size -
2744						      global_rsv->reserved);
2745
2746				global_rsv->reserved += to_add;
2747				btrfs_space_info_update_bytes_may_use(fs_info,
2748						space_info, to_add);
2749				if (global_rsv->reserved >= global_rsv->size)
2750					global_rsv->full = 1;
2751				len -= to_add;
2752			}
2753			spin_unlock(&global_rsv->lock);
2754		}
2755		/* Add to any tickets we may have */
2756		if (!readonly && return_free_space && len)
2757			btrfs_try_granting_tickets(fs_info, space_info);
2758		spin_unlock(&space_info->lock);
2759	}
2760
2761	if (cache)
2762		btrfs_put_block_group(cache);
2763	return 0;
2764}
2765
2766int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2767{
2768	struct btrfs_fs_info *fs_info = trans->fs_info;
2769	struct btrfs_block_group *block_group, *tmp;
2770	struct list_head *deleted_bgs;
2771	struct extent_io_tree *unpin;
2772	u64 start;
2773	u64 end;
2774	int ret;
2775
2776	unpin = &trans->transaction->pinned_extents;
2777
2778	while (!TRANS_ABORTED(trans)) {
2779		struct extent_state *cached_state = NULL;
2780
2781		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2782		ret = find_first_extent_bit(unpin, 0, &start, &end,
2783					    EXTENT_DIRTY, &cached_state);
2784		if (ret) {
2785			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2786			break;
2787		}
2788
2789		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2790			ret = btrfs_discard_extent(fs_info, start,
2791						   end + 1 - start, NULL);
2792
2793		clear_extent_dirty(unpin, start, end, &cached_state);
2794		unpin_extent_range(fs_info, start, end, true);
2795		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2796		free_extent_state(cached_state);
2797		cond_resched();
2798	}
2799
2800	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2801		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2802		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2803	}
2804
2805	/*
2806	 * Transaction is finished.  We don't need the lock anymore.  We
2807	 * do need to clean up the block groups in case of a transaction
2808	 * abort.
2809	 */
2810	deleted_bgs = &trans->transaction->deleted_bgs;
2811	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2812		u64 trimmed = 0;
2813
2814		ret = -EROFS;
2815		if (!TRANS_ABORTED(trans))
2816			ret = btrfs_discard_extent(fs_info,
2817						   block_group->start,
2818						   block_group->length,
2819						   &trimmed);
2820
2821		list_del_init(&block_group->bg_list);
2822		btrfs_unfreeze_block_group(block_group);
2823		btrfs_put_block_group(block_group);
2824
2825		if (ret) {
2826			const char *errstr = btrfs_decode_error(ret);
2827			btrfs_warn(fs_info,
2828			   "discard failed while removing blockgroup: errno=%d %s",
2829				   ret, errstr);
2830		}
2831	}
2832
2833	return 0;
2834}
2835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2837				     u64 bytenr, u64 num_bytes, bool is_data)
2838{
2839	int ret;
 
2840
2841	if (is_data) {
2842		struct btrfs_root *csum_root;
2843
2844		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2845		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2846		if (ret) {
2847			btrfs_abort_transaction(trans, ret);
2848			return ret;
2849		}
 
 
 
 
 
 
 
 
 
 
 
 
2850	}
2851
2852	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2853	if (ret) {
2854		btrfs_abort_transaction(trans, ret);
2855		return ret;
2856	}
2857
2858	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2859	if (ret)
2860		btrfs_abort_transaction(trans, ret);
2861
2862	return ret;
2863}
2864
 
 
 
 
 
 
 
2865/*
2866 * Drop one or more refs of @node.
2867 *
2868 * 1. Locate the extent refs.
2869 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2870 *    Locate it, then reduce the refs number or remove the ref line completely.
2871 *
2872 * 2. Update the refs count in EXTENT/METADATA_ITEM
2873 *
2874 * Inline backref case:
2875 *
2876 * in extent tree we have:
2877 *
2878 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2879 *		refs 2 gen 6 flags DATA
2880 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2881 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2882 *
2883 * This function gets called with:
2884 *
2885 *    node->bytenr = 13631488
2886 *    node->num_bytes = 1048576
2887 *    root_objectid = FS_TREE
2888 *    owner_objectid = 257
2889 *    owner_offset = 0
2890 *    refs_to_drop = 1
2891 *
2892 * Then we should get some like:
2893 *
2894 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2895 *		refs 1 gen 6 flags DATA
2896 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2897 *
2898 * Keyed backref case:
2899 *
2900 * in extent tree we have:
2901 *
2902 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2903 *		refs 754 gen 6 flags DATA
2904 *	[...]
2905 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2906 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2907 *
2908 * This function get called with:
2909 *
2910 *    node->bytenr = 13631488
2911 *    node->num_bytes = 1048576
2912 *    root_objectid = FS_TREE
2913 *    owner_objectid = 866
2914 *    owner_offset = 0
2915 *    refs_to_drop = 1
2916 *
2917 * Then we should get some like:
2918 *
2919 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2920 *		refs 753 gen 6 flags DATA
2921 *
2922 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2923 */
2924static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 
2925			       struct btrfs_delayed_ref_node *node, u64 parent,
2926			       u64 root_objectid, u64 owner_objectid,
2927			       u64 owner_offset, int refs_to_drop,
2928			       struct btrfs_delayed_extent_op *extent_op)
2929{
2930	struct btrfs_fs_info *info = trans->fs_info;
2931	struct btrfs_key key;
2932	struct btrfs_path *path;
2933	struct btrfs_root *extent_root;
2934	struct extent_buffer *leaf;
2935	struct btrfs_extent_item *ei;
2936	struct btrfs_extent_inline_ref *iref;
2937	int ret;
2938	int is_data;
2939	int extent_slot = 0;
2940	int found_extent = 0;
2941	int num_to_del = 1;
 
2942	u32 item_size;
2943	u64 refs;
2944	u64 bytenr = node->bytenr;
2945	u64 num_bytes = node->num_bytes;
2946	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 
2947
2948	extent_root = btrfs_extent_root(info, bytenr);
2949	ASSERT(extent_root);
2950
2951	path = btrfs_alloc_path();
2952	if (!path)
2953		return -ENOMEM;
2954
2955	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2956
2957	if (!is_data && refs_to_drop != 1) {
2958		btrfs_crit(info,
2959"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2960			   node->bytenr, refs_to_drop);
2961		ret = -EINVAL;
2962		btrfs_abort_transaction(trans, ret);
2963		goto out;
2964	}
2965
2966	if (is_data)
2967		skinny_metadata = false;
2968
2969	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2970				    parent, root_objectid, owner_objectid,
2971				    owner_offset);
2972	if (ret == 0) {
2973		/*
2974		 * Either the inline backref or the SHARED_DATA_REF/
2975		 * SHARED_BLOCK_REF is found
2976		 *
2977		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2978		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2979		 */
2980		extent_slot = path->slots[0];
2981		while (extent_slot >= 0) {
2982			btrfs_item_key_to_cpu(path->nodes[0], &key,
2983					      extent_slot);
2984			if (key.objectid != bytenr)
2985				break;
2986			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2987			    key.offset == num_bytes) {
2988				found_extent = 1;
2989				break;
2990			}
2991			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2992			    key.offset == owner_objectid) {
2993				found_extent = 1;
2994				break;
2995			}
2996
2997			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2998			if (path->slots[0] - extent_slot > 5)
2999				break;
3000			extent_slot--;
3001		}
3002
3003		if (!found_extent) {
3004			if (iref) {
3005				btrfs_crit(info,
3006"invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3007				btrfs_abort_transaction(trans, -EUCLEAN);
3008				goto err_dump;
 
3009			}
3010			/* Must be SHARED_* item, remove the backref first */
3011			ret = remove_extent_backref(trans, extent_root, path,
3012						    NULL, refs_to_drop, is_data);
3013			if (ret) {
3014				btrfs_abort_transaction(trans, ret);
3015				goto out;
3016			}
3017			btrfs_release_path(path);
3018
3019			/* Slow path to locate EXTENT/METADATA_ITEM */
3020			key.objectid = bytenr;
3021			key.type = BTRFS_EXTENT_ITEM_KEY;
3022			key.offset = num_bytes;
3023
3024			if (!is_data && skinny_metadata) {
3025				key.type = BTRFS_METADATA_ITEM_KEY;
3026				key.offset = owner_objectid;
3027			}
3028
3029			ret = btrfs_search_slot(trans, extent_root,
3030						&key, path, -1, 1);
3031			if (ret > 0 && skinny_metadata && path->slots[0]) {
3032				/*
3033				 * Couldn't find our skinny metadata item,
3034				 * see if we have ye olde extent item.
3035				 */
3036				path->slots[0]--;
3037				btrfs_item_key_to_cpu(path->nodes[0], &key,
3038						      path->slots[0]);
3039				if (key.objectid == bytenr &&
3040				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3041				    key.offset == num_bytes)
3042					ret = 0;
3043			}
3044
3045			if (ret > 0 && skinny_metadata) {
3046				skinny_metadata = false;
3047				key.objectid = bytenr;
3048				key.type = BTRFS_EXTENT_ITEM_KEY;
3049				key.offset = num_bytes;
3050				btrfs_release_path(path);
3051				ret = btrfs_search_slot(trans, extent_root,
3052							&key, path, -1, 1);
3053			}
3054
3055			if (ret) {
3056				btrfs_err(info,
3057					  "umm, got %d back from search, was looking for %llu",
3058					  ret, bytenr);
3059				if (ret > 0)
3060					btrfs_print_leaf(path->nodes[0]);
 
 
 
3061			}
3062			if (ret < 0) {
3063				btrfs_abort_transaction(trans, ret);
3064				goto out;
3065			}
3066			extent_slot = path->slots[0];
3067		}
3068	} else if (WARN_ON(ret == -ENOENT)) {
3069		btrfs_print_leaf(path->nodes[0]);
3070		btrfs_err(info,
3071			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3072			bytenr, parent, root_objectid, owner_objectid,
3073			owner_offset);
3074		btrfs_abort_transaction(trans, ret);
3075		goto out;
3076	} else {
3077		btrfs_abort_transaction(trans, ret);
3078		goto out;
3079	}
3080
3081	leaf = path->nodes[0];
3082	item_size = btrfs_item_size(leaf, extent_slot);
3083	if (unlikely(item_size < sizeof(*ei))) {
3084		ret = -EINVAL;
3085		btrfs_print_v0_err(info);
 
 
3086		btrfs_abort_transaction(trans, ret);
3087		goto out;
3088	}
3089	ei = btrfs_item_ptr(leaf, extent_slot,
3090			    struct btrfs_extent_item);
3091	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3092	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3093		struct btrfs_tree_block_info *bi;
 
3094		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3095			btrfs_crit(info,
3096"invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3097				   key.objectid, key.type, key.offset,
3098				   owner_objectid, item_size,
3099				   sizeof(*ei) + sizeof(*bi));
3100			btrfs_abort_transaction(trans, -EUCLEAN);
3101			goto err_dump;
3102		}
3103		bi = (struct btrfs_tree_block_info *)(ei + 1);
3104		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3105	}
3106
3107	refs = btrfs_extent_refs(leaf, ei);
3108	if (refs < refs_to_drop) {
3109		btrfs_crit(info,
3110		"trying to drop %d refs but we only have %llu for bytenr %llu",
3111			  refs_to_drop, refs, bytenr);
3112		btrfs_abort_transaction(trans, -EUCLEAN);
3113		goto err_dump;
3114	}
3115	refs -= refs_to_drop;
3116
3117	if (refs > 0) {
3118		if (extent_op)
3119			__run_delayed_extent_op(extent_op, leaf, ei);
3120		/*
3121		 * In the case of inline back ref, reference count will
3122		 * be updated by remove_extent_backref
3123		 */
3124		if (iref) {
3125			if (!found_extent) {
3126				btrfs_crit(info,
3127"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3128				btrfs_abort_transaction(trans, -EUCLEAN);
3129				goto err_dump;
 
3130			}
3131		} else {
3132			btrfs_set_extent_refs(leaf, ei, refs);
3133			btrfs_mark_buffer_dirty(leaf);
3134		}
3135		if (found_extent) {
3136			ret = remove_extent_backref(trans, extent_root, path,
3137						    iref, refs_to_drop, is_data);
3138			if (ret) {
3139				btrfs_abort_transaction(trans, ret);
3140				goto out;
3141			}
3142		}
3143	} else {
 
 
 
 
 
 
 
 
3144		/* In this branch refs == 1 */
3145		if (found_extent) {
3146			if (is_data && refs_to_drop !=
3147			    extent_data_ref_count(path, iref)) {
3148				btrfs_crit(info,
3149		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3150					   extent_data_ref_count(path, iref),
3151					   refs_to_drop);
3152				btrfs_abort_transaction(trans, -EUCLEAN);
3153				goto err_dump;
3154			}
3155			if (iref) {
3156				if (path->slots[0] != extent_slot) {
3157					btrfs_crit(info,
3158"invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3159						   key.objectid, key.type,
3160						   key.offset);
3161					btrfs_abort_transaction(trans, -EUCLEAN);
3162					goto err_dump;
3163				}
3164			} else {
3165				/*
3166				 * No inline ref, we must be at SHARED_* item,
3167				 * And it's single ref, it must be:
3168				 * |	extent_slot	  ||extent_slot + 1|
3169				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3170				 */
3171				if (path->slots[0] != extent_slot + 1) {
3172					btrfs_crit(info,
3173	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3174					btrfs_abort_transaction(trans, -EUCLEAN);
3175					goto err_dump;
 
3176				}
3177				path->slots[0] = extent_slot;
3178				num_to_del = 2;
3179			}
3180		}
 
 
 
 
 
 
 
 
 
 
3181
3182		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3183				      num_to_del);
3184		if (ret) {
3185			btrfs_abort_transaction(trans, ret);
3186			goto out;
3187		}
3188		btrfs_release_path(path);
3189
3190		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3191	}
3192	btrfs_release_path(path);
3193
3194out:
3195	btrfs_free_path(path);
3196	return ret;
3197err_dump:
3198	/*
3199	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3200	 * dump for debug build.
3201	 */
3202	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3203		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3204			   path->slots[0], extent_slot);
3205		btrfs_print_leaf(path->nodes[0]);
3206	}
3207
3208	btrfs_free_path(path);
3209	return -EUCLEAN;
3210}
3211
3212/*
3213 * when we free an block, it is possible (and likely) that we free the last
3214 * delayed ref for that extent as well.  This searches the delayed ref tree for
3215 * a given extent, and if there are no other delayed refs to be processed, it
3216 * removes it from the tree.
3217 */
3218static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3219				      u64 bytenr)
3220{
3221	struct btrfs_delayed_ref_head *head;
3222	struct btrfs_delayed_ref_root *delayed_refs;
3223	int ret = 0;
3224
3225	delayed_refs = &trans->transaction->delayed_refs;
3226	spin_lock(&delayed_refs->lock);
3227	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3228	if (!head)
3229		goto out_delayed_unlock;
3230
3231	spin_lock(&head->lock);
3232	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3233		goto out;
3234
3235	if (cleanup_extent_op(head) != NULL)
3236		goto out;
3237
3238	/*
3239	 * waiting for the lock here would deadlock.  If someone else has it
3240	 * locked they are already in the process of dropping it anyway
3241	 */
3242	if (!mutex_trylock(&head->mutex))
3243		goto out;
3244
3245	btrfs_delete_ref_head(delayed_refs, head);
3246	head->processing = 0;
3247
3248	spin_unlock(&head->lock);
3249	spin_unlock(&delayed_refs->lock);
3250
3251	BUG_ON(head->extent_op);
3252	if (head->must_insert_reserved)
3253		ret = 1;
3254
3255	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3256	mutex_unlock(&head->mutex);
3257	btrfs_put_delayed_ref_head(head);
3258	return ret;
3259out:
3260	spin_unlock(&head->lock);
3261
3262out_delayed_unlock:
3263	spin_unlock(&delayed_refs->lock);
3264	return 0;
3265}
3266
3267void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3268			   u64 root_id,
3269			   struct extent_buffer *buf,
3270			   u64 parent, int last_ref)
3271{
3272	struct btrfs_fs_info *fs_info = trans->fs_info;
3273	struct btrfs_ref generic_ref = { 0 };
 
3274	int ret;
3275
3276	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3277			       buf->start, buf->len, parent);
3278	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3279			    root_id, 0, false);
3280
3281	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3282		btrfs_ref_tree_mod(fs_info, &generic_ref);
3283		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3284		BUG_ON(ret); /* -ENOMEM */
3285	}
3286
3287	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3288		struct btrfs_block_group *cache;
3289		bool must_pin = false;
3290
3291		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3292			ret = check_ref_cleanup(trans, buf->start);
3293			if (!ret) {
3294				btrfs_redirty_list_add(trans->transaction, buf);
3295				goto out;
3296			}
3297		}
3298
3299		cache = btrfs_lookup_block_group(fs_info, buf->start);
 
3300
3301		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3302			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3303			btrfs_put_block_group(cache);
3304			goto out;
3305		}
3306
3307		/*
3308		 * If there are tree mod log users we may have recorded mod log
3309		 * operations for this node.  If we re-allocate this node we
3310		 * could replay operations on this node that happened when it
3311		 * existed in a completely different root.  For example if it
3312		 * was part of root A, then was reallocated to root B, and we
3313		 * are doing a btrfs_old_search_slot(root b), we could replay
3314		 * operations that happened when the block was part of root A,
3315		 * giving us an inconsistent view of the btree.
3316		 *
3317		 * We are safe from races here because at this point no other
3318		 * node or root points to this extent buffer, so if after this
3319		 * check a new tree mod log user joins we will not have an
3320		 * existing log of operations on this node that we have to
3321		 * contend with.
3322		 */
3323		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3324			must_pin = true;
3325
3326		if (must_pin || btrfs_is_zoned(fs_info)) {
3327			btrfs_redirty_list_add(trans->transaction, buf);
3328			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3329			btrfs_put_block_group(cache);
3330			goto out;
3331		}
3332
3333		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3334
3335		btrfs_add_free_space(cache, buf->start, buf->len);
3336		btrfs_free_reserved_bytes(cache, buf->len, 0);
3337		btrfs_put_block_group(cache);
3338		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 
3339	}
 
 
 
 
 
 
 
 
3340out:
3341	if (last_ref) {
3342		/*
3343		 * Deleting the buffer, clear the corrupt flag since it doesn't
3344		 * matter anymore.
3345		 */
3346		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3347	}
3348}
3349
3350/* Can return -ENOMEM */
3351int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3352{
3353	struct btrfs_fs_info *fs_info = trans->fs_info;
3354	int ret;
3355
3356	if (btrfs_is_testing(fs_info))
3357		return 0;
3358
3359	/*
3360	 * tree log blocks never actually go into the extent allocation
3361	 * tree, just update pinning info and exit early.
3362	 */
3363	if ((ref->type == BTRFS_REF_METADATA &&
3364	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3365	    (ref->type == BTRFS_REF_DATA &&
3366	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3367		/* unlocks the pinned mutex */
3368		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3369		ret = 0;
3370	} else if (ref->type == BTRFS_REF_METADATA) {
3371		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3372	} else {
3373		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3374	}
3375
3376	if (!((ref->type == BTRFS_REF_METADATA &&
3377	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3378	      (ref->type == BTRFS_REF_DATA &&
3379	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3380		btrfs_ref_tree_mod(fs_info, ref);
3381
3382	return ret;
3383}
3384
3385enum btrfs_loop_type {
 
 
 
 
3386	LOOP_CACHING_NOWAIT,
 
 
 
 
 
3387	LOOP_CACHING_WAIT,
 
 
 
 
 
 
 
 
 
 
3388	LOOP_ALLOC_CHUNK,
 
 
 
 
 
 
 
 
 
 
3389	LOOP_NO_EMPTY_SIZE,
3390};
3391
3392static inline void
3393btrfs_lock_block_group(struct btrfs_block_group *cache,
3394		       int delalloc)
3395{
3396	if (delalloc)
3397		down_read(&cache->data_rwsem);
3398}
3399
3400static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3401		       int delalloc)
3402{
3403	btrfs_get_block_group(cache);
3404	if (delalloc)
3405		down_read(&cache->data_rwsem);
3406}
3407
3408static struct btrfs_block_group *btrfs_lock_cluster(
3409		   struct btrfs_block_group *block_group,
3410		   struct btrfs_free_cluster *cluster,
3411		   int delalloc)
3412	__acquires(&cluster->refill_lock)
3413{
3414	struct btrfs_block_group *used_bg = NULL;
3415
3416	spin_lock(&cluster->refill_lock);
3417	while (1) {
3418		used_bg = cluster->block_group;
3419		if (!used_bg)
3420			return NULL;
3421
3422		if (used_bg == block_group)
3423			return used_bg;
3424
3425		btrfs_get_block_group(used_bg);
3426
3427		if (!delalloc)
3428			return used_bg;
3429
3430		if (down_read_trylock(&used_bg->data_rwsem))
3431			return used_bg;
3432
3433		spin_unlock(&cluster->refill_lock);
3434
3435		/* We should only have one-level nested. */
3436		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3437
3438		spin_lock(&cluster->refill_lock);
3439		if (used_bg == cluster->block_group)
3440			return used_bg;
3441
3442		up_read(&used_bg->data_rwsem);
3443		btrfs_put_block_group(used_bg);
3444	}
3445}
3446
3447static inline void
3448btrfs_release_block_group(struct btrfs_block_group *cache,
3449			 int delalloc)
3450{
3451	if (delalloc)
3452		up_read(&cache->data_rwsem);
3453	btrfs_put_block_group(cache);
3454}
3455
3456enum btrfs_extent_allocation_policy {
3457	BTRFS_EXTENT_ALLOC_CLUSTERED,
3458	BTRFS_EXTENT_ALLOC_ZONED,
3459};
3460
3461/*
3462 * Structure used internally for find_free_extent() function.  Wraps needed
3463 * parameters.
3464 */
3465struct find_free_extent_ctl {
3466	/* Basic allocation info */
3467	u64 ram_bytes;
3468	u64 num_bytes;
3469	u64 min_alloc_size;
3470	u64 empty_size;
3471	u64 flags;
3472	int delalloc;
3473
3474	/* Where to start the search inside the bg */
3475	u64 search_start;
3476
3477	/* For clustered allocation */
3478	u64 empty_cluster;
3479	struct btrfs_free_cluster *last_ptr;
3480	bool use_cluster;
3481
3482	bool have_caching_bg;
3483	bool orig_have_caching_bg;
3484
3485	/* Allocation is called for tree-log */
3486	bool for_treelog;
3487
3488	/* Allocation is called for data relocation */
3489	bool for_data_reloc;
3490
3491	/* RAID index, converted from flags */
3492	int index;
3493
3494	/*
3495	 * Current loop number, check find_free_extent_update_loop() for details
3496	 */
3497	int loop;
3498
3499	/*
3500	 * Whether we're refilling a cluster, if true we need to re-search
3501	 * current block group but don't try to refill the cluster again.
3502	 */
3503	bool retry_clustered;
3504
3505	/*
3506	 * Whether we're updating free space cache, if true we need to re-search
3507	 * current block group but don't try updating free space cache again.
3508	 */
3509	bool retry_unclustered;
3510
3511	/* If current block group is cached */
3512	int cached;
3513
3514	/* Max contiguous hole found */
3515	u64 max_extent_size;
3516
3517	/* Total free space from free space cache, not always contiguous */
3518	u64 total_free_space;
3519
3520	/* Found result */
3521	u64 found_offset;
3522
3523	/* Hint where to start looking for an empty space */
3524	u64 hint_byte;
3525
3526	/* Allocation policy */
3527	enum btrfs_extent_allocation_policy policy;
3528};
3529
3530
3531/*
3532 * Helper function for find_free_extent().
3533 *
3534 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3535 * Return -EAGAIN to inform caller that we need to re-search this block group
3536 * Return >0 to inform caller that we find nothing
3537 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3538 */
3539static int find_free_extent_clustered(struct btrfs_block_group *bg,
3540				      struct find_free_extent_ctl *ffe_ctl,
3541				      struct btrfs_block_group **cluster_bg_ret)
3542{
3543	struct btrfs_block_group *cluster_bg;
3544	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3545	u64 aligned_cluster;
3546	u64 offset;
3547	int ret;
3548
3549	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3550	if (!cluster_bg)
3551		goto refill_cluster;
3552	if (cluster_bg != bg && (cluster_bg->ro ||
3553	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3554		goto release_cluster;
3555
3556	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3557			ffe_ctl->num_bytes, cluster_bg->start,
3558			&ffe_ctl->max_extent_size);
3559	if (offset) {
3560		/* We have a block, we're done */
3561		spin_unlock(&last_ptr->refill_lock);
3562		trace_btrfs_reserve_extent_cluster(cluster_bg,
3563				ffe_ctl->search_start, ffe_ctl->num_bytes);
3564		*cluster_bg_ret = cluster_bg;
3565		ffe_ctl->found_offset = offset;
3566		return 0;
3567	}
3568	WARN_ON(last_ptr->block_group != cluster_bg);
3569
3570release_cluster:
3571	/*
3572	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3573	 * lets just skip it and let the allocator find whatever block it can
3574	 * find. If we reach this point, we will have tried the cluster
3575	 * allocator plenty of times and not have found anything, so we are
3576	 * likely way too fragmented for the clustering stuff to find anything.
3577	 *
3578	 * However, if the cluster is taken from the current block group,
3579	 * release the cluster first, so that we stand a better chance of
3580	 * succeeding in the unclustered allocation.
3581	 */
3582	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3583		spin_unlock(&last_ptr->refill_lock);
3584		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3585		return -ENOENT;
3586	}
3587
3588	/* This cluster didn't work out, free it and start over */
3589	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590
3591	if (cluster_bg != bg)
3592		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3593
3594refill_cluster:
3595	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3596		spin_unlock(&last_ptr->refill_lock);
3597		return -ENOENT;
3598	}
3599
3600	aligned_cluster = max_t(u64,
3601			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3602			bg->full_stripe_len);
3603	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3604			ffe_ctl->num_bytes, aligned_cluster);
3605	if (ret == 0) {
3606		/* Now pull our allocation out of this cluster */
3607		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3608				ffe_ctl->num_bytes, ffe_ctl->search_start,
3609				&ffe_ctl->max_extent_size);
3610		if (offset) {
3611			/* We found one, proceed */
3612			spin_unlock(&last_ptr->refill_lock);
3613			trace_btrfs_reserve_extent_cluster(bg,
3614					ffe_ctl->search_start,
3615					ffe_ctl->num_bytes);
3616			ffe_ctl->found_offset = offset;
 
3617			return 0;
3618		}
3619	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3620		   !ffe_ctl->retry_clustered) {
3621		spin_unlock(&last_ptr->refill_lock);
3622
3623		ffe_ctl->retry_clustered = true;
3624		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3625				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3626		return -EAGAIN;
3627	}
3628	/*
3629	 * At this point we either didn't find a cluster or we weren't able to
3630	 * allocate a block from our cluster.  Free the cluster we've been
3631	 * trying to use, and go to the next block group.
3632	 */
3633	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3634	spin_unlock(&last_ptr->refill_lock);
3635	return 1;
3636}
3637
3638/*
3639 * Return >0 to inform caller that we find nothing
3640 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3641 * Return -EAGAIN to inform caller that we need to re-search this block group
3642 */
3643static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3644					struct find_free_extent_ctl *ffe_ctl)
3645{
3646	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3647	u64 offset;
3648
3649	/*
3650	 * We are doing an unclustered allocation, set the fragmented flag so
3651	 * we don't bother trying to setup a cluster again until we get more
3652	 * space.
3653	 */
3654	if (unlikely(last_ptr)) {
3655		spin_lock(&last_ptr->lock);
3656		last_ptr->fragmented = 1;
3657		spin_unlock(&last_ptr->lock);
3658	}
3659	if (ffe_ctl->cached) {
3660		struct btrfs_free_space_ctl *free_space_ctl;
3661
3662		free_space_ctl = bg->free_space_ctl;
3663		spin_lock(&free_space_ctl->tree_lock);
3664		if (free_space_ctl->free_space <
3665		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3666		    ffe_ctl->empty_size) {
3667			ffe_ctl->total_free_space = max_t(u64,
3668					ffe_ctl->total_free_space,
3669					free_space_ctl->free_space);
3670			spin_unlock(&free_space_ctl->tree_lock);
3671			return 1;
3672		}
3673		spin_unlock(&free_space_ctl->tree_lock);
3674	}
3675
3676	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3677			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3678			&ffe_ctl->max_extent_size);
3679
3680	/*
3681	 * If we didn't find a chunk, and we haven't failed on this block group
3682	 * before, and this block group is in the middle of caching and we are
3683	 * ok with waiting, then go ahead and wait for progress to be made, and
3684	 * set @retry_unclustered to true.
3685	 *
3686	 * If @retry_unclustered is true then we've already waited on this
3687	 * block group once and should move on to the next block group.
3688	 */
3689	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3690	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3691		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3692						      ffe_ctl->empty_size);
3693		ffe_ctl->retry_unclustered = true;
3694		return -EAGAIN;
3695	} else if (!offset) {
3696		return 1;
3697	}
3698	ffe_ctl->found_offset = offset;
3699	return 0;
3700}
3701
3702static int do_allocation_clustered(struct btrfs_block_group *block_group,
3703				   struct find_free_extent_ctl *ffe_ctl,
3704				   struct btrfs_block_group **bg_ret)
3705{
3706	int ret;
3707
3708	/* We want to try and use the cluster allocator, so lets look there */
3709	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3710		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3711		if (ret >= 0 || ret == -EAGAIN)
3712			return ret;
3713		/* ret == -ENOENT case falls through */
3714	}
3715
3716	return find_free_extent_unclustered(block_group, ffe_ctl);
3717}
3718
3719/*
3720 * Tree-log block group locking
3721 * ============================
3722 *
3723 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3724 * indicates the starting address of a block group, which is reserved only
3725 * for tree-log metadata.
3726 *
3727 * Lock nesting
3728 * ============
3729 *
3730 * space_info::lock
3731 *   block_group::lock
3732 *     fs_info::treelog_bg_lock
3733 */
3734
3735/*
3736 * Simple allocator for sequential-only block group. It only allows sequential
3737 * allocation. No need to play with trees. This function also reserves the
3738 * bytes as in btrfs_add_reserved_bytes.
3739 */
3740static int do_allocation_zoned(struct btrfs_block_group *block_group,
3741			       struct find_free_extent_ctl *ffe_ctl,
3742			       struct btrfs_block_group **bg_ret)
3743{
3744	struct btrfs_fs_info *fs_info = block_group->fs_info;
3745	struct btrfs_space_info *space_info = block_group->space_info;
3746	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3747	u64 start = block_group->start;
3748	u64 num_bytes = ffe_ctl->num_bytes;
3749	u64 avail;
3750	u64 bytenr = block_group->start;
3751	u64 log_bytenr;
3752	u64 data_reloc_bytenr;
3753	int ret = 0;
3754	bool skip = false;
3755
3756	ASSERT(btrfs_is_zoned(block_group->fs_info));
3757
3758	/*
3759	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3760	 * group, and vice versa.
3761	 */
3762	spin_lock(&fs_info->treelog_bg_lock);
3763	log_bytenr = fs_info->treelog_bg;
3764	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3765			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3766		skip = true;
3767	spin_unlock(&fs_info->treelog_bg_lock);
3768	if (skip)
3769		return 1;
3770
3771	/*
3772	 * Do not allow non-relocation blocks in the dedicated relocation block
3773	 * group, and vice versa.
3774	 */
3775	spin_lock(&fs_info->relocation_bg_lock);
3776	data_reloc_bytenr = fs_info->data_reloc_bg;
3777	if (data_reloc_bytenr &&
3778	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3779	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3780		skip = true;
3781	spin_unlock(&fs_info->relocation_bg_lock);
3782	if (skip)
3783		return 1;
3784
3785	/* Check RO and no space case before trying to activate it */
3786	spin_lock(&block_group->lock);
3787	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3788		ret = 1;
3789		/*
3790		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3791		 * Return the error after taking the locks.
3792		 */
3793	}
3794	spin_unlock(&block_group->lock);
3795
3796	if (!ret && !btrfs_zone_activate(block_group)) {
 
 
3797		ret = 1;
3798		/*
3799		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3800		 * Return the error after taking the locks.
3801		 */
3802	}
3803
3804	spin_lock(&space_info->lock);
3805	spin_lock(&block_group->lock);
3806	spin_lock(&fs_info->treelog_bg_lock);
3807	spin_lock(&fs_info->relocation_bg_lock);
3808
3809	if (ret)
3810		goto out;
3811
3812	ASSERT(!ffe_ctl->for_treelog ||
3813	       block_group->start == fs_info->treelog_bg ||
3814	       fs_info->treelog_bg == 0);
3815	ASSERT(!ffe_ctl->for_data_reloc ||
3816	       block_group->start == fs_info->data_reloc_bg ||
3817	       fs_info->data_reloc_bg == 0);
3818
3819	if (block_group->ro ||
3820	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
 
3821		ret = 1;
3822		goto out;
3823	}
3824
3825	/*
3826	 * Do not allow currently using block group to be tree-log dedicated
3827	 * block group.
3828	 */
3829	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3830	    (block_group->used || block_group->reserved)) {
3831		ret = 1;
3832		goto out;
3833	}
3834
3835	/*
3836	 * Do not allow currently used block group to be the data relocation
3837	 * dedicated block group.
3838	 */
3839	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3840	    (block_group->used || block_group->reserved)) {
3841		ret = 1;
3842		goto out;
3843	}
3844
3845	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3846	avail = block_group->zone_capacity - block_group->alloc_offset;
3847	if (avail < num_bytes) {
3848		if (ffe_ctl->max_extent_size < avail) {
3849			/*
3850			 * With sequential allocator, free space is always
3851			 * contiguous
3852			 */
3853			ffe_ctl->max_extent_size = avail;
3854			ffe_ctl->total_free_space = avail;
3855		}
3856		ret = 1;
3857		goto out;
3858	}
3859
3860	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3861		fs_info->treelog_bg = block_group->start;
3862
3863	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3864		fs_info->data_reloc_bg = block_group->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865
3866	ffe_ctl->found_offset = start + block_group->alloc_offset;
3867	block_group->alloc_offset += num_bytes;
3868	spin_lock(&ctl->tree_lock);
3869	ctl->free_space -= num_bytes;
3870	spin_unlock(&ctl->tree_lock);
3871
3872	/*
3873	 * We do not check if found_offset is aligned to stripesize. The
3874	 * address is anyway rewritten when using zone append writing.
3875	 */
3876
3877	ffe_ctl->search_start = ffe_ctl->found_offset;
3878
3879out:
3880	if (ret && ffe_ctl->for_treelog)
3881		fs_info->treelog_bg = 0;
3882	if (ret && ffe_ctl->for_data_reloc &&
3883	    fs_info->data_reloc_bg == block_group->start) {
3884		/*
3885		 * Do not allow further allocations from this block group.
3886		 * Compared to increasing the ->ro, setting the
3887		 * ->zoned_data_reloc_ongoing flag still allows nocow
3888		 *  writers to come in. See btrfs_inc_nocow_writers().
3889		 *
3890		 * We need to disable an allocation to avoid an allocation of
3891		 * regular (non-relocation data) extent. With mix of relocation
3892		 * extents and regular extents, we can dispatch WRITE commands
3893		 * (for relocation extents) and ZONE APPEND commands (for
3894		 * regular extents) at the same time to the same zone, which
3895		 * easily break the write pointer.
3896		 */
3897		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3898		fs_info->data_reloc_bg = 0;
3899	}
3900	spin_unlock(&fs_info->relocation_bg_lock);
3901	spin_unlock(&fs_info->treelog_bg_lock);
3902	spin_unlock(&block_group->lock);
3903	spin_unlock(&space_info->lock);
3904	return ret;
3905}
3906
3907static int do_allocation(struct btrfs_block_group *block_group,
3908			 struct find_free_extent_ctl *ffe_ctl,
3909			 struct btrfs_block_group **bg_ret)
3910{
3911	switch (ffe_ctl->policy) {
3912	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3913		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3914	case BTRFS_EXTENT_ALLOC_ZONED:
3915		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3916	default:
3917		BUG();
3918	}
3919}
3920
3921static void release_block_group(struct btrfs_block_group *block_group,
3922				struct find_free_extent_ctl *ffe_ctl,
3923				int delalloc)
3924{
3925	switch (ffe_ctl->policy) {
3926	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3927		ffe_ctl->retry_clustered = false;
3928		ffe_ctl->retry_unclustered = false;
3929		break;
3930	case BTRFS_EXTENT_ALLOC_ZONED:
3931		/* Nothing to do */
3932		break;
3933	default:
3934		BUG();
3935	}
3936
3937	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3938	       ffe_ctl->index);
3939	btrfs_release_block_group(block_group, delalloc);
3940}
3941
3942static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3943				   struct btrfs_key *ins)
3944{
3945	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3946
3947	if (!ffe_ctl->use_cluster && last_ptr) {
3948		spin_lock(&last_ptr->lock);
3949		last_ptr->window_start = ins->objectid;
3950		spin_unlock(&last_ptr->lock);
3951	}
3952}
3953
3954static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3955			 struct btrfs_key *ins)
3956{
3957	switch (ffe_ctl->policy) {
3958	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3959		found_extent_clustered(ffe_ctl, ins);
3960		break;
3961	case BTRFS_EXTENT_ALLOC_ZONED:
3962		/* Nothing to do */
3963		break;
3964	default:
3965		BUG();
3966	}
3967}
3968
3969static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3970				    struct find_free_extent_ctl *ffe_ctl)
3971{
 
 
 
 
3972	/* If we can activate new zone, just allocate a chunk and use it */
3973	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3974		return 0;
3975
3976	/*
3977	 * We already reached the max active zones. Try to finish one block
3978	 * group to make a room for a new block group. This is only possible
3979	 * for a data block group because btrfs_zone_finish() may need to wait
3980	 * for a running transaction which can cause a deadlock for metadata
3981	 * allocation.
3982	 */
3983	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3984		int ret = btrfs_zone_finish_one_bg(fs_info);
3985
3986		if (ret == 1)
3987			return 0;
3988		else if (ret < 0)
3989			return ret;
3990	}
3991
3992	/*
3993	 * If we have enough free space left in an already active block group
3994	 * and we can't activate any other zone now, do not allow allocating a
3995	 * new chunk and let find_free_extent() retry with a smaller size.
3996	 */
3997	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3998		return -ENOSPC;
3999
4000	/*
4001	 * Even min_alloc_size is not left in any block groups. Since we cannot
4002	 * activate a new block group, allocating it may not help. Let's tell a
4003	 * caller to try again and hope it progress something by writing some
4004	 * parts of the region. That is only possible for data block groups,
4005	 * where a part of the region can be written.
4006	 */
4007	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4008		return -EAGAIN;
4009
4010	/*
4011	 * We cannot activate a new block group and no enough space left in any
4012	 * block groups. So, allocating a new block group may not help. But,
4013	 * there is nothing to do anyway, so let's go with it.
4014	 */
4015	return 0;
4016}
4017
4018static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4019			      struct find_free_extent_ctl *ffe_ctl)
4020{
4021	switch (ffe_ctl->policy) {
4022	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4023		return 0;
4024	case BTRFS_EXTENT_ALLOC_ZONED:
4025		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4026	default:
4027		BUG();
4028	}
4029}
4030
4031static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4032{
4033	switch (ffe_ctl->policy) {
4034	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4035		/*
4036		 * If we can't allocate a new chunk we've already looped through
4037		 * at least once, move on to the NO_EMPTY_SIZE case.
4038		 */
4039		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4040		return 0;
4041	case BTRFS_EXTENT_ALLOC_ZONED:
4042		/* Give up here */
4043		return -ENOSPC;
4044	default:
4045		BUG();
4046	}
4047}
4048
4049/*
4050 * Return >0 means caller needs to re-search for free extent
4051 * Return 0 means we have the needed free extent.
4052 * Return <0 means we failed to locate any free extent.
4053 */
4054static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4055					struct btrfs_key *ins,
4056					struct find_free_extent_ctl *ffe_ctl,
4057					bool full_search)
4058{
4059	struct btrfs_root *root = fs_info->chunk_root;
4060	int ret;
4061
4062	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4063	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4064		ffe_ctl->orig_have_caching_bg = true;
4065
4066	if (ins->objectid) {
4067		found_extent(ffe_ctl, ins);
4068		return 0;
4069	}
4070
4071	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4072		return 1;
4073
4074	ffe_ctl->index++;
4075	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4076		return 1;
4077
4078	/*
4079	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4080	 *			caching kthreads as we move along
4081	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4082	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4083	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4084	 *		       again
4085	 */
4086	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4087		ffe_ctl->index = 0;
4088		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4089			/*
4090			 * We want to skip the LOOP_CACHING_WAIT step if we
4091			 * don't have any uncached bgs and we've already done a
4092			 * full search through.
4093			 */
4094			if (ffe_ctl->orig_have_caching_bg || !full_search)
4095				ffe_ctl->loop = LOOP_CACHING_WAIT;
4096			else
4097				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4098		} else {
4099			ffe_ctl->loop++;
4100		}
4101
4102		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4103			struct btrfs_trans_handle *trans;
4104			int exist = 0;
4105
4106			/*Check if allocation policy allows to create a new chunk */
4107			ret = can_allocate_chunk(fs_info, ffe_ctl);
4108			if (ret)
4109				return ret;
4110
4111			trans = current->journal_info;
4112			if (trans)
4113				exist = 1;
4114			else
4115				trans = btrfs_join_transaction(root);
4116
4117			if (IS_ERR(trans)) {
4118				ret = PTR_ERR(trans);
4119				return ret;
4120			}
4121
4122			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4123						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4124
4125			/* Do not bail out on ENOSPC since we can do more. */
4126			if (ret == -ENOSPC)
4127				ret = chunk_allocation_failed(ffe_ctl);
 
 
4128			else if (ret < 0)
4129				btrfs_abort_transaction(trans, ret);
4130			else
4131				ret = 0;
4132			if (!exist)
4133				btrfs_end_transaction(trans);
4134			if (ret)
4135				return ret;
4136		}
4137
4138		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4139			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4140				return -ENOSPC;
4141
4142			/*
4143			 * Don't loop again if we already have no empty_size and
4144			 * no empty_cluster.
4145			 */
4146			if (ffe_ctl->empty_size == 0 &&
4147			    ffe_ctl->empty_cluster == 0)
4148				return -ENOSPC;
4149			ffe_ctl->empty_size = 0;
4150			ffe_ctl->empty_cluster = 0;
4151		}
4152		return 1;
4153	}
4154	return -ENOSPC;
4155}
4156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4157static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4158					struct find_free_extent_ctl *ffe_ctl,
4159					struct btrfs_space_info *space_info,
4160					struct btrfs_key *ins)
4161{
4162	/*
4163	 * If our free space is heavily fragmented we may not be able to make
4164	 * big contiguous allocations, so instead of doing the expensive search
4165	 * for free space, simply return ENOSPC with our max_extent_size so we
4166	 * can go ahead and search for a more manageable chunk.
4167	 *
4168	 * If our max_extent_size is large enough for our allocation simply
4169	 * disable clustering since we will likely not be able to find enough
4170	 * space to create a cluster and induce latency trying.
4171	 */
4172	if (space_info->max_extent_size) {
4173		spin_lock(&space_info->lock);
4174		if (space_info->max_extent_size &&
4175		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4176			ins->offset = space_info->max_extent_size;
4177			spin_unlock(&space_info->lock);
4178			return -ENOSPC;
4179		} else if (space_info->max_extent_size) {
4180			ffe_ctl->use_cluster = false;
4181		}
4182		spin_unlock(&space_info->lock);
4183	}
4184
4185	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4186					       &ffe_ctl->empty_cluster);
4187	if (ffe_ctl->last_ptr) {
4188		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4189
4190		spin_lock(&last_ptr->lock);
4191		if (last_ptr->block_group)
4192			ffe_ctl->hint_byte = last_ptr->window_start;
4193		if (last_ptr->fragmented) {
4194			/*
4195			 * We still set window_start so we can keep track of the
4196			 * last place we found an allocation to try and save
4197			 * some time.
4198			 */
4199			ffe_ctl->hint_byte = last_ptr->window_start;
4200			ffe_ctl->use_cluster = false;
4201		}
4202		spin_unlock(&last_ptr->lock);
4203	}
4204
4205	return 0;
4206}
4207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4208static int prepare_allocation(struct btrfs_fs_info *fs_info,
4209			      struct find_free_extent_ctl *ffe_ctl,
4210			      struct btrfs_space_info *space_info,
4211			      struct btrfs_key *ins)
4212{
4213	switch (ffe_ctl->policy) {
4214	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4215		return prepare_allocation_clustered(fs_info, ffe_ctl,
4216						    space_info, ins);
4217	case BTRFS_EXTENT_ALLOC_ZONED:
4218		if (ffe_ctl->for_treelog) {
4219			spin_lock(&fs_info->treelog_bg_lock);
4220			if (fs_info->treelog_bg)
4221				ffe_ctl->hint_byte = fs_info->treelog_bg;
4222			spin_unlock(&fs_info->treelog_bg_lock);
4223		}
4224		if (ffe_ctl->for_data_reloc) {
4225			spin_lock(&fs_info->relocation_bg_lock);
4226			if (fs_info->data_reloc_bg)
4227				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4228			spin_unlock(&fs_info->relocation_bg_lock);
4229		}
4230		return 0;
4231	default:
4232		BUG();
4233	}
4234}
4235
4236/*
4237 * walks the btree of allocated extents and find a hole of a given size.
4238 * The key ins is changed to record the hole:
4239 * ins->objectid == start position
4240 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4241 * ins->offset == the size of the hole.
4242 * Any available blocks before search_start are skipped.
4243 *
4244 * If there is no suitable free space, we will record the max size of
4245 * the free space extent currently.
4246 *
4247 * The overall logic and call chain:
4248 *
4249 * find_free_extent()
4250 * |- Iterate through all block groups
4251 * |  |- Get a valid block group
4252 * |  |- Try to do clustered allocation in that block group
4253 * |  |- Try to do unclustered allocation in that block group
4254 * |  |- Check if the result is valid
4255 * |  |  |- If valid, then exit
4256 * |  |- Jump to next block group
4257 * |
4258 * |- Push harder to find free extents
4259 *    |- If not found, re-iterate all block groups
4260 */
4261static noinline int find_free_extent(struct btrfs_root *root,
4262				     struct btrfs_key *ins,
4263				     struct find_free_extent_ctl *ffe_ctl)
4264{
4265	struct btrfs_fs_info *fs_info = root->fs_info;
4266	int ret = 0;
4267	int cache_block_group_error = 0;
4268	struct btrfs_block_group *block_group = NULL;
4269	struct btrfs_space_info *space_info;
4270	bool full_search = false;
4271
4272	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4273
4274	ffe_ctl->search_start = 0;
4275	/* For clustered allocation */
4276	ffe_ctl->empty_cluster = 0;
4277	ffe_ctl->last_ptr = NULL;
4278	ffe_ctl->use_cluster = true;
4279	ffe_ctl->have_caching_bg = false;
4280	ffe_ctl->orig_have_caching_bg = false;
4281	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4282	ffe_ctl->loop = 0;
4283	/* For clustered allocation */
4284	ffe_ctl->retry_clustered = false;
4285	ffe_ctl->retry_unclustered = false;
4286	ffe_ctl->cached = 0;
4287	ffe_ctl->max_extent_size = 0;
4288	ffe_ctl->total_free_space = 0;
4289	ffe_ctl->found_offset = 0;
4290	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
 
4291
4292	if (btrfs_is_zoned(fs_info))
4293		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4294
4295	ins->type = BTRFS_EXTENT_ITEM_KEY;
4296	ins->objectid = 0;
4297	ins->offset = 0;
4298
4299	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4300			       ffe_ctl->flags);
4301
4302	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4303	if (!space_info) {
4304		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4305		return -ENOSPC;
4306	}
4307
4308	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4309	if (ret < 0)
4310		return ret;
4311
4312	ffe_ctl->search_start = max(ffe_ctl->search_start,
4313				    first_logical_byte(fs_info));
4314	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4315	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4316		block_group = btrfs_lookup_block_group(fs_info,
4317						       ffe_ctl->search_start);
4318		/*
4319		 * we don't want to use the block group if it doesn't match our
4320		 * allocation bits, or if its not cached.
4321		 *
4322		 * However if we are re-searching with an ideal block group
4323		 * picked out then we don't care that the block group is cached.
4324		 */
4325		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4326		    block_group->cached != BTRFS_CACHE_NO) {
4327			down_read(&space_info->groups_sem);
4328			if (list_empty(&block_group->list) ||
4329			    block_group->ro) {
4330				/*
4331				 * someone is removing this block group,
4332				 * we can't jump into the have_block_group
4333				 * target because our list pointers are not
4334				 * valid
4335				 */
4336				btrfs_put_block_group(block_group);
4337				up_read(&space_info->groups_sem);
4338			} else {
4339				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4340							block_group->flags);
4341				btrfs_lock_block_group(block_group,
4342						       ffe_ctl->delalloc);
 
4343				goto have_block_group;
4344			}
4345		} else if (block_group) {
4346			btrfs_put_block_group(block_group);
4347		}
4348	}
4349search:
 
4350	ffe_ctl->have_caching_bg = false;
4351	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4352	    ffe_ctl->index == 0)
4353		full_search = true;
4354	down_read(&space_info->groups_sem);
4355	list_for_each_entry(block_group,
4356			    &space_info->block_groups[ffe_ctl->index], list) {
4357		struct btrfs_block_group *bg_ret;
4358
 
4359		/* If the block group is read-only, we can skip it entirely. */
4360		if (unlikely(block_group->ro)) {
4361			if (ffe_ctl->for_treelog)
4362				btrfs_clear_treelog_bg(block_group);
4363			if (ffe_ctl->for_data_reloc)
4364				btrfs_clear_data_reloc_bg(block_group);
4365			continue;
4366		}
4367
4368		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4369		ffe_ctl->search_start = block_group->start;
4370
4371		/*
4372		 * this can happen if we end up cycling through all the
4373		 * raid types, but we want to make sure we only allocate
4374		 * for the proper type.
4375		 */
4376		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4377			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4378				BTRFS_BLOCK_GROUP_RAID1_MASK |
4379				BTRFS_BLOCK_GROUP_RAID56_MASK |
4380				BTRFS_BLOCK_GROUP_RAID10;
4381
4382			/*
4383			 * if they asked for extra copies and this block group
4384			 * doesn't provide them, bail.  This does allow us to
4385			 * fill raid0 from raid1.
4386			 */
4387			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4388				goto loop;
4389
4390			/*
4391			 * This block group has different flags than we want.
4392			 * It's possible that we have MIXED_GROUP flag but no
4393			 * block group is mixed.  Just skip such block group.
4394			 */
4395			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4396			continue;
4397		}
4398
4399have_block_group:
 
4400		ffe_ctl->cached = btrfs_block_group_done(block_group);
4401		if (unlikely(!ffe_ctl->cached)) {
4402			ffe_ctl->have_caching_bg = true;
4403			ret = btrfs_cache_block_group(block_group, false);
4404
4405			/*
4406			 * If we get ENOMEM here or something else we want to
4407			 * try other block groups, because it may not be fatal.
4408			 * However if we can't find anything else we need to
4409			 * save our return here so that we return the actual
4410			 * error that caused problems, not ENOSPC.
4411			 */
4412			if (ret < 0) {
4413				if (!cache_block_group_error)
4414					cache_block_group_error = ret;
4415				ret = 0;
4416				goto loop;
4417			}
4418			ret = 0;
4419		}
4420
4421		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 
 
 
 
 
 
4422			goto loop;
4423
4424		bg_ret = NULL;
4425		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4426		if (ret == 0) {
4427			if (bg_ret && bg_ret != block_group) {
4428				btrfs_release_block_group(block_group,
4429							  ffe_ctl->delalloc);
4430				block_group = bg_ret;
4431			}
4432		} else if (ret == -EAGAIN) {
4433			goto have_block_group;
4434		} else if (ret > 0) {
4435			goto loop;
 
 
 
 
4436		}
4437
4438		/* Checks */
4439		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4440						 fs_info->stripesize);
4441
4442		/* move on to the next group */
4443		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4444		    block_group->start + block_group->length) {
4445			btrfs_add_free_space_unused(block_group,
4446					    ffe_ctl->found_offset,
4447					    ffe_ctl->num_bytes);
4448			goto loop;
4449		}
4450
4451		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4452			btrfs_add_free_space_unused(block_group,
4453					ffe_ctl->found_offset,
4454					ffe_ctl->search_start - ffe_ctl->found_offset);
4455
4456		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4457					       ffe_ctl->num_bytes,
4458					       ffe_ctl->delalloc);
 
4459		if (ret == -EAGAIN) {
4460			btrfs_add_free_space_unused(block_group,
4461					ffe_ctl->found_offset,
4462					ffe_ctl->num_bytes);
4463			goto loop;
4464		}
4465		btrfs_inc_block_group_reservations(block_group);
4466
4467		/* we are all good, lets return */
4468		ins->objectid = ffe_ctl->search_start;
4469		ins->offset = ffe_ctl->num_bytes;
4470
4471		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4472					   ffe_ctl->num_bytes);
4473		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4474		break;
4475loop:
 
 
 
 
 
 
 
 
 
4476		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4477		cond_resched();
4478	}
4479	up_read(&space_info->groups_sem);
4480
4481	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4482	if (ret > 0)
4483		goto search;
4484
4485	if (ret == -ENOSPC && !cache_block_group_error) {
4486		/*
4487		 * Use ffe_ctl->total_free_space as fallback if we can't find
4488		 * any contiguous hole.
4489		 */
4490		if (!ffe_ctl->max_extent_size)
4491			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4492		spin_lock(&space_info->lock);
4493		space_info->max_extent_size = ffe_ctl->max_extent_size;
4494		spin_unlock(&space_info->lock);
4495		ins->offset = ffe_ctl->max_extent_size;
4496	} else if (ret == -ENOSPC) {
4497		ret = cache_block_group_error;
4498	}
4499	return ret;
4500}
4501
4502/*
4503 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4504 *			  hole that is at least as big as @num_bytes.
4505 *
4506 * @root           -	The root that will contain this extent
4507 *
4508 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4509 *			is used for accounting purposes. This value differs
4510 *			from @num_bytes only in the case of compressed extents.
4511 *
4512 * @num_bytes      -	Number of bytes to allocate on-disk.
4513 *
4514 * @min_alloc_size -	Indicates the minimum amount of space that the
4515 *			allocator should try to satisfy. In some cases
4516 *			@num_bytes may be larger than what is required and if
4517 *			the filesystem is fragmented then allocation fails.
4518 *			However, the presence of @min_alloc_size gives a
4519 *			chance to try and satisfy the smaller allocation.
4520 *
4521 * @empty_size     -	A hint that you plan on doing more COW. This is the
4522 *			size in bytes the allocator should try to find free
4523 *			next to the block it returns.  This is just a hint and
4524 *			may be ignored by the allocator.
4525 *
4526 * @hint_byte      -	Hint to the allocator to start searching above the byte
4527 *			address passed. It might be ignored.
4528 *
4529 * @ins            -	This key is modified to record the found hole. It will
4530 *			have the following values:
4531 *			ins->objectid == start position
4532 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4533 *			ins->offset == the size of the hole.
4534 *
4535 * @is_data        -	Boolean flag indicating whether an extent is
4536 *			allocated for data (true) or metadata (false)
4537 *
4538 * @delalloc       -	Boolean flag indicating whether this allocation is for
4539 *			delalloc or not. If 'true' data_rwsem of block groups
4540 *			is going to be acquired.
4541 *
4542 *
4543 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4544 * case -ENOSPC is returned then @ins->offset will contain the size of the
4545 * largest available hole the allocator managed to find.
4546 */
4547int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4548			 u64 num_bytes, u64 min_alloc_size,
4549			 u64 empty_size, u64 hint_byte,
4550			 struct btrfs_key *ins, int is_data, int delalloc)
4551{
4552	struct btrfs_fs_info *fs_info = root->fs_info;
4553	struct find_free_extent_ctl ffe_ctl = {};
4554	bool final_tried = num_bytes == min_alloc_size;
4555	u64 flags;
4556	int ret;
4557	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4558	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4559
4560	flags = get_alloc_profile_by_root(root, is_data);
4561again:
4562	WARN_ON(num_bytes < fs_info->sectorsize);
4563
4564	ffe_ctl.ram_bytes = ram_bytes;
4565	ffe_ctl.num_bytes = num_bytes;
4566	ffe_ctl.min_alloc_size = min_alloc_size;
4567	ffe_ctl.empty_size = empty_size;
4568	ffe_ctl.flags = flags;
4569	ffe_ctl.delalloc = delalloc;
4570	ffe_ctl.hint_byte = hint_byte;
4571	ffe_ctl.for_treelog = for_treelog;
4572	ffe_ctl.for_data_reloc = for_data_reloc;
4573
4574	ret = find_free_extent(root, ins, &ffe_ctl);
4575	if (!ret && !is_data) {
4576		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4577	} else if (ret == -ENOSPC) {
4578		if (!final_tried && ins->offset) {
4579			num_bytes = min(num_bytes >> 1, ins->offset);
4580			num_bytes = round_down(num_bytes,
4581					       fs_info->sectorsize);
4582			num_bytes = max(num_bytes, min_alloc_size);
4583			ram_bytes = num_bytes;
4584			if (num_bytes == min_alloc_size)
4585				final_tried = true;
4586			goto again;
4587		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4588			struct btrfs_space_info *sinfo;
4589
4590			sinfo = btrfs_find_space_info(fs_info, flags);
4591			btrfs_err(fs_info,
4592	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4593				  flags, num_bytes, for_treelog, for_data_reloc);
4594			if (sinfo)
4595				btrfs_dump_space_info(fs_info, sinfo,
4596						      num_bytes, 1);
4597		}
4598	}
4599
4600	return ret;
4601}
4602
4603int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4604			       u64 start, u64 len, int delalloc)
4605{
4606	struct btrfs_block_group *cache;
4607
4608	cache = btrfs_lookup_block_group(fs_info, start);
4609	if (!cache) {
4610		btrfs_err(fs_info, "Unable to find block group for %llu",
4611			  start);
4612		return -ENOSPC;
4613	}
4614
4615	btrfs_add_free_space(cache, start, len);
4616	btrfs_free_reserved_bytes(cache, len, delalloc);
4617	trace_btrfs_reserved_extent_free(fs_info, start, len);
4618
4619	btrfs_put_block_group(cache);
4620	return 0;
4621}
4622
4623int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4624			      u64 len)
4625{
4626	struct btrfs_block_group *cache;
4627	int ret = 0;
4628
4629	cache = btrfs_lookup_block_group(trans->fs_info, start);
4630	if (!cache) {
4631		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4632			  start);
4633		return -ENOSPC;
4634	}
4635
4636	ret = pin_down_extent(trans, cache, start, len, 1);
4637	btrfs_put_block_group(cache);
4638	return ret;
4639}
4640
4641static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4642				 u64 num_bytes)
4643{
4644	struct btrfs_fs_info *fs_info = trans->fs_info;
4645	int ret;
4646
4647	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4648	if (ret)
4649		return ret;
4650
4651	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4652	if (ret) {
4653		ASSERT(!ret);
4654		btrfs_err(fs_info, "update block group failed for %llu %llu",
4655			  bytenr, num_bytes);
4656		return ret;
4657	}
4658
4659	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4660	return 0;
4661}
4662
4663static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4664				      u64 parent, u64 root_objectid,
4665				      u64 flags, u64 owner, u64 offset,
4666				      struct btrfs_key *ins, int ref_mod)
4667{
4668	struct btrfs_fs_info *fs_info = trans->fs_info;
4669	struct btrfs_root *extent_root;
4670	int ret;
4671	struct btrfs_extent_item *extent_item;
 
4672	struct btrfs_extent_inline_ref *iref;
4673	struct btrfs_path *path;
4674	struct extent_buffer *leaf;
4675	int type;
4676	u32 size;
 
4677
4678	if (parent > 0)
4679		type = BTRFS_SHARED_DATA_REF_KEY;
4680	else
4681		type = BTRFS_EXTENT_DATA_REF_KEY;
4682
4683	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 
 
 
4684
4685	path = btrfs_alloc_path();
4686	if (!path)
4687		return -ENOMEM;
4688
4689	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4690	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4691	if (ret) {
4692		btrfs_free_path(path);
4693		return ret;
4694	}
4695
4696	leaf = path->nodes[0];
4697	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4698				     struct btrfs_extent_item);
4699	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4700	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4701	btrfs_set_extent_flags(leaf, extent_item,
4702			       flags | BTRFS_EXTENT_FLAG_DATA);
4703
4704	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
 
 
 
 
 
4705	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 
4706	if (parent > 0) {
4707		struct btrfs_shared_data_ref *ref;
4708		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4709		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4710		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4711	} else {
4712		struct btrfs_extent_data_ref *ref;
4713		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4714		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4715		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4716		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4717		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4718	}
4719
4720	btrfs_mark_buffer_dirty(path->nodes[0]);
4721	btrfs_free_path(path);
4722
4723	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4724}
4725
4726static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4727				     struct btrfs_delayed_ref_node *node,
4728				     struct btrfs_delayed_extent_op *extent_op)
4729{
4730	struct btrfs_fs_info *fs_info = trans->fs_info;
4731	struct btrfs_root *extent_root;
4732	int ret;
4733	struct btrfs_extent_item *extent_item;
4734	struct btrfs_key extent_key;
4735	struct btrfs_tree_block_info *block_info;
4736	struct btrfs_extent_inline_ref *iref;
4737	struct btrfs_path *path;
4738	struct extent_buffer *leaf;
4739	struct btrfs_delayed_tree_ref *ref;
4740	u32 size = sizeof(*extent_item) + sizeof(*iref);
4741	u64 flags = extent_op->flags_to_set;
4742	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4743
4744	ref = btrfs_delayed_node_to_tree_ref(node);
4745
4746	extent_key.objectid = node->bytenr;
4747	if (skinny_metadata) {
4748		extent_key.offset = ref->level;
4749		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4750	} else {
4751		extent_key.offset = node->num_bytes;
4752		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4753		size += sizeof(*block_info);
4754	}
4755
4756	path = btrfs_alloc_path();
4757	if (!path)
4758		return -ENOMEM;
4759
4760	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4761	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4762				      size);
4763	if (ret) {
4764		btrfs_free_path(path);
4765		return ret;
4766	}
4767
4768	leaf = path->nodes[0];
4769	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4770				     struct btrfs_extent_item);
4771	btrfs_set_extent_refs(leaf, extent_item, 1);
4772	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4773	btrfs_set_extent_flags(leaf, extent_item,
4774			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4775
4776	if (skinny_metadata) {
4777		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4778	} else {
4779		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4780		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4781		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4782		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4783	}
4784
4785	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4786		btrfs_set_extent_inline_ref_type(leaf, iref,
4787						 BTRFS_SHARED_BLOCK_REF_KEY);
4788		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4789	} else {
4790		btrfs_set_extent_inline_ref_type(leaf, iref,
4791						 BTRFS_TREE_BLOCK_REF_KEY);
4792		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4793	}
4794
4795	btrfs_mark_buffer_dirty(leaf);
4796	btrfs_free_path(path);
4797
4798	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4799}
4800
4801int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4802				     struct btrfs_root *root, u64 owner,
4803				     u64 offset, u64 ram_bytes,
4804				     struct btrfs_key *ins)
4805{
4806	struct btrfs_ref generic_ref = { 0 };
 
 
 
 
4807
4808	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 
4809
4810	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4811			       ins->objectid, ins->offset, 0);
4812	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4813			    offset, 0, false);
4814	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4815
4816	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4817}
4818
4819/*
4820 * this is used by the tree logging recovery code.  It records that
4821 * an extent has been allocated and makes sure to clear the free
4822 * space cache bits as well
4823 */
4824int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4825				   u64 root_objectid, u64 owner, u64 offset,
4826				   struct btrfs_key *ins)
4827{
4828	struct btrfs_fs_info *fs_info = trans->fs_info;
4829	int ret;
4830	struct btrfs_block_group *block_group;
4831	struct btrfs_space_info *space_info;
 
 
 
 
 
 
 
4832
4833	/*
4834	 * Mixed block groups will exclude before processing the log so we only
4835	 * need to do the exclude dance if this fs isn't mixed.
4836	 */
4837	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4838		ret = __exclude_logged_extent(fs_info, ins->objectid,
4839					      ins->offset);
4840		if (ret)
4841			return ret;
4842	}
4843
4844	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4845	if (!block_group)
4846		return -EINVAL;
4847
4848	space_info = block_group->space_info;
4849	spin_lock(&space_info->lock);
4850	spin_lock(&block_group->lock);
4851	space_info->bytes_reserved += ins->offset;
4852	block_group->reserved += ins->offset;
4853	spin_unlock(&block_group->lock);
4854	spin_unlock(&space_info->lock);
4855
4856	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4857					 offset, ins, 1);
4858	if (ret)
4859		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
 
4860	btrfs_put_block_group(block_group);
4861	return ret;
4862}
4863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4864static struct extent_buffer *
4865btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4866		      u64 bytenr, int level, u64 owner,
4867		      enum btrfs_lock_nesting nest)
4868{
4869	struct btrfs_fs_info *fs_info = root->fs_info;
4870	struct extent_buffer *buf;
4871	u64 lockdep_owner = owner;
4872
4873	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4874	if (IS_ERR(buf))
4875		return buf;
4876
4877	/*
4878	 * Extra safety check in case the extent tree is corrupted and extent
4879	 * allocator chooses to use a tree block which is already used and
4880	 * locked.
4881	 */
4882	if (buf->lock_owner == current->pid) {
4883		btrfs_err_rl(fs_info,
4884"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4885			buf->start, btrfs_header_owner(buf), current->pid);
4886		free_extent_buffer(buf);
4887		return ERR_PTR(-EUCLEAN);
4888	}
4889
4890	/*
4891	 * The reloc trees are just snapshots, so we need them to appear to be
4892	 * just like any other fs tree WRT lockdep.
4893	 *
4894	 * The exception however is in replace_path() in relocation, where we
4895	 * hold the lock on the original fs root and then search for the reloc
4896	 * root.  At that point we need to make sure any reloc root buffers are
4897	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4898	 * lockdep happy.
4899	 */
4900	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4901	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4902		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4903
4904	/* btrfs_clean_tree_block() accesses generation field. */
4905	btrfs_set_header_generation(buf, trans->transid);
4906
4907	/*
4908	 * This needs to stay, because we could allocate a freed block from an
4909	 * old tree into a new tree, so we need to make sure this new block is
4910	 * set to the appropriate level and owner.
4911	 */
4912	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4913
4914	__btrfs_tree_lock(buf, nest);
4915	btrfs_clean_tree_block(buf);
4916	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4917	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4918
4919	set_extent_buffer_uptodate(buf);
4920
4921	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4922	btrfs_set_header_level(buf, level);
4923	btrfs_set_header_bytenr(buf, buf->start);
4924	btrfs_set_header_generation(buf, trans->transid);
4925	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4926	btrfs_set_header_owner(buf, owner);
4927	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4928	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4929	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4930		buf->log_index = root->log_transid % 2;
4931		/*
4932		 * we allow two log transactions at a time, use different
4933		 * EXTENT bit to differentiate dirty pages.
4934		 */
4935		if (buf->log_index == 0)
4936			set_extent_dirty(&root->dirty_log_pages, buf->start,
4937					buf->start + buf->len - 1, GFP_NOFS);
 
4938		else
4939			set_extent_new(&root->dirty_log_pages, buf->start,
4940					buf->start + buf->len - 1);
 
4941	} else {
4942		buf->log_index = -1;
4943		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4944			 buf->start + buf->len - 1, GFP_NOFS);
4945	}
4946	/* this returns a buffer locked for blocking */
4947	return buf;
4948}
4949
4950/*
4951 * finds a free extent and does all the dirty work required for allocation
4952 * returns the tree buffer or an ERR_PTR on error.
4953 */
4954struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4955					     struct btrfs_root *root,
4956					     u64 parent, u64 root_objectid,
4957					     const struct btrfs_disk_key *key,
4958					     int level, u64 hint,
4959					     u64 empty_size,
 
4960					     enum btrfs_lock_nesting nest)
4961{
4962	struct btrfs_fs_info *fs_info = root->fs_info;
4963	struct btrfs_key ins;
4964	struct btrfs_block_rsv *block_rsv;
4965	struct extent_buffer *buf;
4966	struct btrfs_delayed_extent_op *extent_op;
4967	struct btrfs_ref generic_ref = { 0 };
4968	u64 flags = 0;
4969	int ret;
4970	u32 blocksize = fs_info->nodesize;
4971	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
4972
4973#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4974	if (btrfs_is_testing(fs_info)) {
4975		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4976					    level, root_objectid, nest);
4977		if (!IS_ERR(buf))
4978			root->alloc_bytenr += blocksize;
4979		return buf;
4980	}
4981#endif
4982
4983	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4984	if (IS_ERR(block_rsv))
4985		return ERR_CAST(block_rsv);
4986
4987	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4988				   empty_size, hint, &ins, 0, 0);
4989	if (ret)
4990		goto out_unuse;
4991
4992	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4993				    root_objectid, nest);
4994	if (IS_ERR(buf)) {
4995		ret = PTR_ERR(buf);
4996		goto out_free_reserved;
4997	}
 
4998
4999	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5000		if (parent == 0)
5001			parent = ins.objectid;
5002		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
5003	} else
5004		BUG_ON(parent > 0);
5005
5006	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5007		extent_op = btrfs_alloc_delayed_extent_op();
5008		if (!extent_op) {
5009			ret = -ENOMEM;
5010			goto out_free_buf;
5011		}
5012		if (key)
5013			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5014		else
5015			memset(&extent_op->key, 0, sizeof(extent_op->key));
5016		extent_op->flags_to_set = flags;
5017		extent_op->update_key = skinny_metadata ? false : true;
5018		extent_op->update_flags = true;
5019		extent_op->level = level;
5020
5021		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5022				       ins.objectid, ins.offset, parent);
5023		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5024				    root->root_key.objectid, false);
5025		btrfs_ref_tree_mod(fs_info, &generic_ref);
5026		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5027		if (ret)
5028			goto out_free_delayed;
5029	}
5030	return buf;
5031
5032out_free_delayed:
5033	btrfs_free_delayed_extent_op(extent_op);
5034out_free_buf:
5035	btrfs_tree_unlock(buf);
5036	free_extent_buffer(buf);
5037out_free_reserved:
5038	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5039out_unuse:
5040	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5041	return ERR_PTR(ret);
5042}
5043
5044struct walk_control {
5045	u64 refs[BTRFS_MAX_LEVEL];
5046	u64 flags[BTRFS_MAX_LEVEL];
5047	struct btrfs_key update_progress;
5048	struct btrfs_key drop_progress;
5049	int drop_level;
5050	int stage;
5051	int level;
5052	int shared_level;
5053	int update_ref;
5054	int keep_locks;
5055	int reada_slot;
5056	int reada_count;
5057	int restarted;
5058};
5059
5060#define DROP_REFERENCE	1
5061#define UPDATE_BACKREF	2
5062
5063static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5064				     struct btrfs_root *root,
5065				     struct walk_control *wc,
5066				     struct btrfs_path *path)
5067{
5068	struct btrfs_fs_info *fs_info = root->fs_info;
5069	u64 bytenr;
5070	u64 generation;
5071	u64 refs;
5072	u64 flags;
5073	u32 nritems;
5074	struct btrfs_key key;
5075	struct extent_buffer *eb;
5076	int ret;
5077	int slot;
5078	int nread = 0;
5079
5080	if (path->slots[wc->level] < wc->reada_slot) {
5081		wc->reada_count = wc->reada_count * 2 / 3;
5082		wc->reada_count = max(wc->reada_count, 2);
5083	} else {
5084		wc->reada_count = wc->reada_count * 3 / 2;
5085		wc->reada_count = min_t(int, wc->reada_count,
5086					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5087	}
5088
5089	eb = path->nodes[wc->level];
5090	nritems = btrfs_header_nritems(eb);
5091
5092	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5093		if (nread >= wc->reada_count)
5094			break;
5095
5096		cond_resched();
5097		bytenr = btrfs_node_blockptr(eb, slot);
5098		generation = btrfs_node_ptr_generation(eb, slot);
5099
5100		if (slot == path->slots[wc->level])
5101			goto reada;
5102
5103		if (wc->stage == UPDATE_BACKREF &&
5104		    generation <= root->root_key.offset)
5105			continue;
5106
5107		/* We don't lock the tree block, it's OK to be racy here */
5108		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5109					       wc->level - 1, 1, &refs,
5110					       &flags);
5111		/* We don't care about errors in readahead. */
5112		if (ret < 0)
5113			continue;
5114		BUG_ON(refs == 0);
5115
5116		if (wc->stage == DROP_REFERENCE) {
5117			if (refs == 1)
5118				goto reada;
5119
5120			if (wc->level == 1 &&
5121			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5122				continue;
5123			if (!wc->update_ref ||
5124			    generation <= root->root_key.offset)
5125				continue;
5126			btrfs_node_key_to_cpu(eb, &key, slot);
5127			ret = btrfs_comp_cpu_keys(&key,
5128						  &wc->update_progress);
5129			if (ret < 0)
5130				continue;
5131		} else {
5132			if (wc->level == 1 &&
5133			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5134				continue;
5135		}
5136reada:
5137		btrfs_readahead_node_child(eb, slot);
5138		nread++;
5139	}
5140	wc->reada_slot = slot;
5141}
5142
5143/*
5144 * helper to process tree block while walking down the tree.
5145 *
5146 * when wc->stage == UPDATE_BACKREF, this function updates
5147 * back refs for pointers in the block.
5148 *
5149 * NOTE: return value 1 means we should stop walking down.
5150 */
5151static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5152				   struct btrfs_root *root,
5153				   struct btrfs_path *path,
5154				   struct walk_control *wc, int lookup_info)
5155{
5156	struct btrfs_fs_info *fs_info = root->fs_info;
5157	int level = wc->level;
5158	struct extent_buffer *eb = path->nodes[level];
5159	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5160	int ret;
5161
5162	if (wc->stage == UPDATE_BACKREF &&
5163	    btrfs_header_owner(eb) != root->root_key.objectid)
5164		return 1;
5165
5166	/*
5167	 * when reference count of tree block is 1, it won't increase
5168	 * again. once full backref flag is set, we never clear it.
5169	 */
5170	if (lookup_info &&
5171	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5172	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5173		BUG_ON(!path->locks[level]);
5174		ret = btrfs_lookup_extent_info(trans, fs_info,
5175					       eb->start, level, 1,
5176					       &wc->refs[level],
5177					       &wc->flags[level]);
 
5178		BUG_ON(ret == -ENOMEM);
5179		if (ret)
5180			return ret;
5181		BUG_ON(wc->refs[level] == 0);
5182	}
5183
5184	if (wc->stage == DROP_REFERENCE) {
5185		if (wc->refs[level] > 1)
5186			return 1;
5187
5188		if (path->locks[level] && !wc->keep_locks) {
5189			btrfs_tree_unlock_rw(eb, path->locks[level]);
5190			path->locks[level] = 0;
5191		}
5192		return 0;
5193	}
5194
5195	/* wc->stage == UPDATE_BACKREF */
5196	if (!(wc->flags[level] & flag)) {
5197		BUG_ON(!path->locks[level]);
5198		ret = btrfs_inc_ref(trans, root, eb, 1);
5199		BUG_ON(ret); /* -ENOMEM */
5200		ret = btrfs_dec_ref(trans, root, eb, 0);
5201		BUG_ON(ret); /* -ENOMEM */
5202		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5203						  btrfs_header_level(eb));
5204		BUG_ON(ret); /* -ENOMEM */
5205		wc->flags[level] |= flag;
5206	}
5207
5208	/*
5209	 * the block is shared by multiple trees, so it's not good to
5210	 * keep the tree lock
5211	 */
5212	if (path->locks[level] && level > 0) {
5213		btrfs_tree_unlock_rw(eb, path->locks[level]);
5214		path->locks[level] = 0;
5215	}
5216	return 0;
5217}
5218
5219/*
5220 * This is used to verify a ref exists for this root to deal with a bug where we
5221 * would have a drop_progress key that hadn't been updated properly.
5222 */
5223static int check_ref_exists(struct btrfs_trans_handle *trans,
5224			    struct btrfs_root *root, u64 bytenr, u64 parent,
5225			    int level)
5226{
5227	struct btrfs_path *path;
5228	struct btrfs_extent_inline_ref *iref;
5229	int ret;
5230
5231	path = btrfs_alloc_path();
5232	if (!path)
5233		return -ENOMEM;
5234
5235	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5236				    root->fs_info->nodesize, parent,
5237				    root->root_key.objectid, level, 0);
5238	btrfs_free_path(path);
5239	if (ret == -ENOENT)
5240		return 0;
5241	if (ret < 0)
5242		return ret;
5243	return 1;
5244}
5245
5246/*
5247 * helper to process tree block pointer.
5248 *
5249 * when wc->stage == DROP_REFERENCE, this function checks
5250 * reference count of the block pointed to. if the block
5251 * is shared and we need update back refs for the subtree
5252 * rooted at the block, this function changes wc->stage to
5253 * UPDATE_BACKREF. if the block is shared and there is no
5254 * need to update back, this function drops the reference
5255 * to the block.
5256 *
5257 * NOTE: return value 1 means we should stop walking down.
5258 */
5259static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5260				 struct btrfs_root *root,
5261				 struct btrfs_path *path,
5262				 struct walk_control *wc, int *lookup_info)
5263{
5264	struct btrfs_fs_info *fs_info = root->fs_info;
5265	u64 bytenr;
5266	u64 generation;
5267	u64 parent;
 
5268	struct btrfs_tree_parent_check check = { 0 };
5269	struct btrfs_key key;
5270	struct btrfs_ref ref = { 0 };
5271	struct extent_buffer *next;
5272	int level = wc->level;
5273	int reada = 0;
5274	int ret = 0;
5275	bool need_account = false;
5276
5277	generation = btrfs_node_ptr_generation(path->nodes[level],
5278					       path->slots[level]);
5279	/*
5280	 * if the lower level block was created before the snapshot
5281	 * was created, we know there is no need to update back refs
5282	 * for the subtree
5283	 */
5284	if (wc->stage == UPDATE_BACKREF &&
5285	    generation <= root->root_key.offset) {
5286		*lookup_info = 1;
5287		return 1;
5288	}
5289
5290	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5291
5292	check.level = level - 1;
5293	check.transid = generation;
5294	check.owner_root = root->root_key.objectid;
5295	check.has_first_key = true;
5296	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5297			      path->slots[level]);
5298
5299	next = find_extent_buffer(fs_info, bytenr);
5300	if (!next) {
5301		next = btrfs_find_create_tree_block(fs_info, bytenr,
5302				root->root_key.objectid, level - 1);
5303		if (IS_ERR(next))
5304			return PTR_ERR(next);
5305		reada = 1;
5306	}
5307	btrfs_tree_lock(next);
5308
5309	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5310				       &wc->refs[level - 1],
5311				       &wc->flags[level - 1]);
 
5312	if (ret < 0)
5313		goto out_unlock;
5314
5315	if (unlikely(wc->refs[level - 1] == 0)) {
5316		btrfs_err(fs_info, "Missing references.");
5317		ret = -EIO;
5318		goto out_unlock;
5319	}
5320	*lookup_info = 0;
5321
5322	if (wc->stage == DROP_REFERENCE) {
5323		if (wc->refs[level - 1] > 1) {
5324			need_account = true;
5325			if (level == 1 &&
5326			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5327				goto skip;
5328
5329			if (!wc->update_ref ||
5330			    generation <= root->root_key.offset)
5331				goto skip;
5332
5333			btrfs_node_key_to_cpu(path->nodes[level], &key,
5334					      path->slots[level]);
5335			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5336			if (ret < 0)
5337				goto skip;
5338
5339			wc->stage = UPDATE_BACKREF;
5340			wc->shared_level = level - 1;
5341		}
5342	} else {
5343		if (level == 1 &&
5344		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5345			goto skip;
5346	}
5347
5348	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5349		btrfs_tree_unlock(next);
5350		free_extent_buffer(next);
5351		next = NULL;
5352		*lookup_info = 1;
5353	}
5354
5355	if (!next) {
5356		if (reada && level == 1)
5357			reada_walk_down(trans, root, wc, path);
5358		next = read_tree_block(fs_info, bytenr, &check);
5359		if (IS_ERR(next)) {
5360			return PTR_ERR(next);
5361		} else if (!extent_buffer_uptodate(next)) {
5362			free_extent_buffer(next);
5363			return -EIO;
5364		}
5365		btrfs_tree_lock(next);
5366	}
5367
5368	level--;
5369	ASSERT(level == btrfs_header_level(next));
5370	if (level != btrfs_header_level(next)) {
5371		btrfs_err(root->fs_info, "mismatched level");
5372		ret = -EIO;
5373		goto out_unlock;
5374	}
5375	path->nodes[level] = next;
5376	path->slots[level] = 0;
5377	path->locks[level] = BTRFS_WRITE_LOCK;
5378	wc->level = level;
5379	if (wc->level == 1)
5380		wc->reada_slot = 0;
5381	return 0;
5382skip:
5383	wc->refs[level - 1] = 0;
5384	wc->flags[level - 1] = 0;
5385	if (wc->stage == DROP_REFERENCE) {
5386		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5387			parent = path->nodes[level]->start;
5388		} else {
5389			ASSERT(root->root_key.objectid ==
5390			       btrfs_header_owner(path->nodes[level]));
5391			if (root->root_key.objectid !=
5392			    btrfs_header_owner(path->nodes[level])) {
5393				btrfs_err(root->fs_info,
5394						"mismatched block owner");
5395				ret = -EIO;
5396				goto out_unlock;
5397			}
5398			parent = 0;
5399		}
5400
5401		/*
5402		 * If we had a drop_progress we need to verify the refs are set
5403		 * as expected.  If we find our ref then we know that from here
5404		 * on out everything should be correct, and we can clear the
5405		 * ->restarted flag.
5406		 */
5407		if (wc->restarted) {
5408			ret = check_ref_exists(trans, root, bytenr, parent,
5409					       level - 1);
5410			if (ret < 0)
5411				goto out_unlock;
5412			if (ret == 0)
5413				goto no_delete;
5414			ret = 0;
5415			wc->restarted = 0;
5416		}
5417
5418		/*
5419		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5420		 * already accounted them at merge time (replace_path),
5421		 * thus we could skip expensive subtree trace here.
5422		 */
5423		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5424		    need_account) {
5425			ret = btrfs_qgroup_trace_subtree(trans, next,
5426							 generation, level - 1);
5427			if (ret) {
5428				btrfs_err_rl(fs_info,
5429					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5430					     ret);
5431			}
5432		}
5433
5434		/*
5435		 * We need to update the next key in our walk control so we can
5436		 * update the drop_progress key accordingly.  We don't care if
5437		 * find_next_key doesn't find a key because that means we're at
5438		 * the end and are going to clean up now.
5439		 */
5440		wc->drop_level = level;
5441		find_next_key(path, level, &wc->drop_progress);
5442
5443		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5444				       fs_info->nodesize, parent);
5445		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5446				    0, false);
5447		ret = btrfs_free_extent(trans, &ref);
5448		if (ret)
5449			goto out_unlock;
5450	}
5451no_delete:
5452	*lookup_info = 1;
5453	ret = 1;
5454
5455out_unlock:
5456	btrfs_tree_unlock(next);
5457	free_extent_buffer(next);
5458
5459	return ret;
5460}
5461
5462/*
5463 * helper to process tree block while walking up the tree.
5464 *
5465 * when wc->stage == DROP_REFERENCE, this function drops
5466 * reference count on the block.
5467 *
5468 * when wc->stage == UPDATE_BACKREF, this function changes
5469 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5470 * to UPDATE_BACKREF previously while processing the block.
5471 *
5472 * NOTE: return value 1 means we should stop walking up.
5473 */
5474static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5475				 struct btrfs_root *root,
5476				 struct btrfs_path *path,
5477				 struct walk_control *wc)
5478{
5479	struct btrfs_fs_info *fs_info = root->fs_info;
5480	int ret;
5481	int level = wc->level;
5482	struct extent_buffer *eb = path->nodes[level];
5483	u64 parent = 0;
5484
5485	if (wc->stage == UPDATE_BACKREF) {
5486		BUG_ON(wc->shared_level < level);
5487		if (level < wc->shared_level)
5488			goto out;
5489
5490		ret = find_next_key(path, level + 1, &wc->update_progress);
5491		if (ret > 0)
5492			wc->update_ref = 0;
5493
5494		wc->stage = DROP_REFERENCE;
5495		wc->shared_level = -1;
5496		path->slots[level] = 0;
5497
5498		/*
5499		 * check reference count again if the block isn't locked.
5500		 * we should start walking down the tree again if reference
5501		 * count is one.
5502		 */
5503		if (!path->locks[level]) {
5504			BUG_ON(level == 0);
5505			btrfs_tree_lock(eb);
5506			path->locks[level] = BTRFS_WRITE_LOCK;
5507
5508			ret = btrfs_lookup_extent_info(trans, fs_info,
5509						       eb->start, level, 1,
5510						       &wc->refs[level],
5511						       &wc->flags[level]);
 
5512			if (ret < 0) {
5513				btrfs_tree_unlock_rw(eb, path->locks[level]);
5514				path->locks[level] = 0;
5515				return ret;
5516			}
5517			BUG_ON(wc->refs[level] == 0);
5518			if (wc->refs[level] == 1) {
5519				btrfs_tree_unlock_rw(eb, path->locks[level]);
5520				path->locks[level] = 0;
5521				return 1;
5522			}
5523		}
5524	}
5525
5526	/* wc->stage == DROP_REFERENCE */
5527	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5528
5529	if (wc->refs[level] == 1) {
5530		if (level == 0) {
5531			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5532				ret = btrfs_dec_ref(trans, root, eb, 1);
5533			else
5534				ret = btrfs_dec_ref(trans, root, eb, 0);
5535			BUG_ON(ret); /* -ENOMEM */
5536			if (is_fstree(root->root_key.objectid)) {
5537				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5538				if (ret) {
5539					btrfs_err_rl(fs_info,
5540	"error %d accounting leaf items, quota is out of sync, rescan required",
5541					     ret);
5542				}
5543			}
5544		}
5545		/* make block locked assertion in btrfs_clean_tree_block happy */
5546		if (!path->locks[level] &&
5547		    btrfs_header_generation(eb) == trans->transid) {
5548			btrfs_tree_lock(eb);
5549			path->locks[level] = BTRFS_WRITE_LOCK;
5550		}
5551		btrfs_clean_tree_block(eb);
5552	}
5553
5554	if (eb == root->node) {
5555		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5556			parent = eb->start;
5557		else if (root->root_key.objectid != btrfs_header_owner(eb))
5558			goto owner_mismatch;
5559	} else {
5560		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5561			parent = path->nodes[level + 1]->start;
5562		else if (root->root_key.objectid !=
5563			 btrfs_header_owner(path->nodes[level + 1]))
5564			goto owner_mismatch;
5565	}
5566
5567	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5568			      wc->refs[level] == 1);
5569out:
5570	wc->refs[level] = 0;
5571	wc->flags[level] = 0;
5572	return 0;
5573
5574owner_mismatch:
5575	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5576		     btrfs_header_owner(eb), root->root_key.objectid);
5577	return -EUCLEAN;
5578}
5579
5580static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5581				   struct btrfs_root *root,
5582				   struct btrfs_path *path,
5583				   struct walk_control *wc)
5584{
5585	int level = wc->level;
5586	int lookup_info = 1;
5587	int ret;
5588
5589	while (level >= 0) {
5590		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5591		if (ret > 0)
5592			break;
5593
5594		if (level == 0)
5595			break;
5596
5597		if (path->slots[level] >=
5598		    btrfs_header_nritems(path->nodes[level]))
5599			break;
5600
5601		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5602		if (ret > 0) {
5603			path->slots[level]++;
5604			continue;
5605		} else if (ret < 0)
5606			return ret;
5607		level = wc->level;
5608	}
5609	return 0;
5610}
5611
5612static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5613				 struct btrfs_root *root,
5614				 struct btrfs_path *path,
5615				 struct walk_control *wc, int max_level)
5616{
5617	int level = wc->level;
5618	int ret;
5619
5620	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5621	while (level < max_level && path->nodes[level]) {
5622		wc->level = level;
5623		if (path->slots[level] + 1 <
5624		    btrfs_header_nritems(path->nodes[level])) {
5625			path->slots[level]++;
5626			return 0;
5627		} else {
5628			ret = walk_up_proc(trans, root, path, wc);
5629			if (ret > 0)
5630				return 0;
5631			if (ret < 0)
5632				return ret;
5633
5634			if (path->locks[level]) {
5635				btrfs_tree_unlock_rw(path->nodes[level],
5636						     path->locks[level]);
5637				path->locks[level] = 0;
5638			}
5639			free_extent_buffer(path->nodes[level]);
5640			path->nodes[level] = NULL;
5641			level++;
5642		}
5643	}
5644	return 1;
5645}
5646
5647/*
5648 * drop a subvolume tree.
5649 *
5650 * this function traverses the tree freeing any blocks that only
5651 * referenced by the tree.
5652 *
5653 * when a shared tree block is found. this function decreases its
5654 * reference count by one. if update_ref is true, this function
5655 * also make sure backrefs for the shared block and all lower level
5656 * blocks are properly updated.
5657 *
5658 * If called with for_reloc == 0, may exit early with -EAGAIN
5659 */
5660int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5661{
5662	const bool is_reloc_root = (root->root_key.objectid ==
5663				    BTRFS_TREE_RELOC_OBJECTID);
5664	struct btrfs_fs_info *fs_info = root->fs_info;
5665	struct btrfs_path *path;
5666	struct btrfs_trans_handle *trans;
5667	struct btrfs_root *tree_root = fs_info->tree_root;
5668	struct btrfs_root_item *root_item = &root->root_item;
5669	struct walk_control *wc;
5670	struct btrfs_key key;
5671	int err = 0;
5672	int ret;
5673	int level;
5674	bool root_dropped = false;
5675	bool unfinished_drop = false;
5676
5677	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5678
5679	path = btrfs_alloc_path();
5680	if (!path) {
5681		err = -ENOMEM;
5682		goto out;
5683	}
5684
5685	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5686	if (!wc) {
5687		btrfs_free_path(path);
5688		err = -ENOMEM;
5689		goto out;
5690	}
5691
5692	/*
5693	 * Use join to avoid potential EINTR from transaction start. See
5694	 * wait_reserve_ticket and the whole reservation callchain.
5695	 */
5696	if (for_reloc)
5697		trans = btrfs_join_transaction(tree_root);
5698	else
5699		trans = btrfs_start_transaction(tree_root, 0);
5700	if (IS_ERR(trans)) {
5701		err = PTR_ERR(trans);
5702		goto out_free;
5703	}
5704
5705	err = btrfs_run_delayed_items(trans);
5706	if (err)
5707		goto out_end_trans;
5708
5709	/*
5710	 * This will help us catch people modifying the fs tree while we're
5711	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5712	 * dropped as we unlock the root node and parent nodes as we walk down
5713	 * the tree, assuming nothing will change.  If something does change
5714	 * then we'll have stale information and drop references to blocks we've
5715	 * already dropped.
5716	 */
5717	set_bit(BTRFS_ROOT_DELETING, &root->state);
5718	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5719
5720	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5721		level = btrfs_header_level(root->node);
5722		path->nodes[level] = btrfs_lock_root_node(root);
5723		path->slots[level] = 0;
5724		path->locks[level] = BTRFS_WRITE_LOCK;
5725		memset(&wc->update_progress, 0,
5726		       sizeof(wc->update_progress));
5727	} else {
5728		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5729		memcpy(&wc->update_progress, &key,
5730		       sizeof(wc->update_progress));
5731
5732		level = btrfs_root_drop_level(root_item);
5733		BUG_ON(level == 0);
5734		path->lowest_level = level;
5735		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5736		path->lowest_level = 0;
5737		if (ret < 0) {
5738			err = ret;
5739			goto out_end_trans;
5740		}
5741		WARN_ON(ret > 0);
5742
5743		/*
5744		 * unlock our path, this is safe because only this
5745		 * function is allowed to delete this snapshot
5746		 */
5747		btrfs_unlock_up_safe(path, 0);
5748
5749		level = btrfs_header_level(root->node);
5750		while (1) {
5751			btrfs_tree_lock(path->nodes[level]);
5752			path->locks[level] = BTRFS_WRITE_LOCK;
5753
5754			ret = btrfs_lookup_extent_info(trans, fs_info,
5755						path->nodes[level]->start,
5756						level, 1, &wc->refs[level],
5757						&wc->flags[level]);
5758			if (ret < 0) {
5759				err = ret;
5760				goto out_end_trans;
5761			}
5762			BUG_ON(wc->refs[level] == 0);
5763
5764			if (level == btrfs_root_drop_level(root_item))
5765				break;
5766
5767			btrfs_tree_unlock(path->nodes[level]);
5768			path->locks[level] = 0;
5769			WARN_ON(wc->refs[level] != 1);
5770			level--;
5771		}
5772	}
5773
5774	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5775	wc->level = level;
5776	wc->shared_level = -1;
5777	wc->stage = DROP_REFERENCE;
5778	wc->update_ref = update_ref;
5779	wc->keep_locks = 0;
5780	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5781
5782	while (1) {
5783
5784		ret = walk_down_tree(trans, root, path, wc);
5785		if (ret < 0) {
 
5786			err = ret;
5787			break;
5788		}
5789
5790		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5791		if (ret < 0) {
 
5792			err = ret;
5793			break;
5794		}
5795
5796		if (ret > 0) {
5797			BUG_ON(wc->stage != DROP_REFERENCE);
5798			break;
5799		}
5800
5801		if (wc->stage == DROP_REFERENCE) {
5802			wc->drop_level = wc->level;
5803			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5804					      &wc->drop_progress,
5805					      path->slots[wc->drop_level]);
5806		}
5807		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5808				      &wc->drop_progress);
5809		btrfs_set_root_drop_level(root_item, wc->drop_level);
5810
5811		BUG_ON(wc->level == 0);
5812		if (btrfs_should_end_transaction(trans) ||
5813		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5814			ret = btrfs_update_root(trans, tree_root,
5815						&root->root_key,
5816						root_item);
5817			if (ret) {
5818				btrfs_abort_transaction(trans, ret);
5819				err = ret;
5820				goto out_end_trans;
5821			}
5822
5823			if (!is_reloc_root)
5824				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5825
5826			btrfs_end_transaction_throttle(trans);
5827			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5828				btrfs_debug(fs_info,
5829					    "drop snapshot early exit");
5830				err = -EAGAIN;
5831				goto out_free;
5832			}
5833
5834		       /*
5835			* Use join to avoid potential EINTR from transaction
5836			* start. See wait_reserve_ticket and the whole
5837			* reservation callchain.
5838			*/
5839			if (for_reloc)
5840				trans = btrfs_join_transaction(tree_root);
5841			else
5842				trans = btrfs_start_transaction(tree_root, 0);
5843			if (IS_ERR(trans)) {
5844				err = PTR_ERR(trans);
5845				goto out_free;
5846			}
5847		}
5848	}
5849	btrfs_release_path(path);
5850	if (err)
5851		goto out_end_trans;
5852
5853	ret = btrfs_del_root(trans, &root->root_key);
5854	if (ret) {
5855		btrfs_abort_transaction(trans, ret);
5856		err = ret;
5857		goto out_end_trans;
5858	}
5859
5860	if (!is_reloc_root) {
5861		ret = btrfs_find_root(tree_root, &root->root_key, path,
5862				      NULL, NULL);
5863		if (ret < 0) {
5864			btrfs_abort_transaction(trans, ret);
5865			err = ret;
5866			goto out_end_trans;
5867		} else if (ret > 0) {
5868			/* if we fail to delete the orphan item this time
5869			 * around, it'll get picked up the next time.
5870			 *
5871			 * The most common failure here is just -ENOENT.
5872			 */
5873			btrfs_del_orphan_item(trans, tree_root,
5874					      root->root_key.objectid);
5875		}
5876	}
5877
5878	/*
5879	 * This subvolume is going to be completely dropped, and won't be
5880	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5881	 * commit transaction time.  So free it here manually.
5882	 */
5883	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5884	btrfs_qgroup_free_meta_all_pertrans(root);
5885
5886	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5887		btrfs_add_dropped_root(trans, root);
5888	else
5889		btrfs_put_root(root);
5890	root_dropped = true;
5891out_end_trans:
5892	if (!is_reloc_root)
5893		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5894
5895	btrfs_end_transaction_throttle(trans);
5896out_free:
5897	kfree(wc);
5898	btrfs_free_path(path);
5899out:
5900	/*
5901	 * We were an unfinished drop root, check to see if there are any
5902	 * pending, and if not clear and wake up any waiters.
5903	 */
5904	if (!err && unfinished_drop)
5905		btrfs_maybe_wake_unfinished_drop(fs_info);
5906
5907	/*
5908	 * So if we need to stop dropping the snapshot for whatever reason we
5909	 * need to make sure to add it back to the dead root list so that we
5910	 * keep trying to do the work later.  This also cleans up roots if we
5911	 * don't have it in the radix (like when we recover after a power fail
5912	 * or unmount) so we don't leak memory.
5913	 */
5914	if (!for_reloc && !root_dropped)
5915		btrfs_add_dead_root(root);
5916	return err;
5917}
5918
5919/*
5920 * drop subtree rooted at tree block 'node'.
5921 *
5922 * NOTE: this function will unlock and release tree block 'node'
5923 * only used by relocation code
5924 */
5925int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5926			struct btrfs_root *root,
5927			struct extent_buffer *node,
5928			struct extent_buffer *parent)
5929{
5930	struct btrfs_fs_info *fs_info = root->fs_info;
5931	struct btrfs_path *path;
5932	struct walk_control *wc;
5933	int level;
5934	int parent_level;
5935	int ret = 0;
5936	int wret;
5937
5938	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5939
5940	path = btrfs_alloc_path();
5941	if (!path)
5942		return -ENOMEM;
5943
5944	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5945	if (!wc) {
5946		btrfs_free_path(path);
5947		return -ENOMEM;
5948	}
5949
5950	btrfs_assert_tree_write_locked(parent);
5951	parent_level = btrfs_header_level(parent);
5952	atomic_inc(&parent->refs);
5953	path->nodes[parent_level] = parent;
5954	path->slots[parent_level] = btrfs_header_nritems(parent);
5955
5956	btrfs_assert_tree_write_locked(node);
5957	level = btrfs_header_level(node);
5958	path->nodes[level] = node;
5959	path->slots[level] = 0;
5960	path->locks[level] = BTRFS_WRITE_LOCK;
5961
5962	wc->refs[parent_level] = 1;
5963	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5964	wc->level = level;
5965	wc->shared_level = -1;
5966	wc->stage = DROP_REFERENCE;
5967	wc->update_ref = 0;
5968	wc->keep_locks = 1;
5969	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5970
5971	while (1) {
5972		wret = walk_down_tree(trans, root, path, wc);
5973		if (wret < 0) {
5974			ret = wret;
5975			break;
5976		}
5977
5978		wret = walk_up_tree(trans, root, path, wc, parent_level);
5979		if (wret < 0)
5980			ret = wret;
5981		if (wret != 0)
5982			break;
5983	}
5984
5985	kfree(wc);
5986	btrfs_free_path(path);
5987	return ret;
5988}
5989
5990int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5991				   u64 start, u64 end)
5992{
5993	return unpin_extent_range(fs_info, start, end, false);
5994}
5995
5996/*
5997 * It used to be that old block groups would be left around forever.
5998 * Iterating over them would be enough to trim unused space.  Since we
5999 * now automatically remove them, we also need to iterate over unallocated
6000 * space.
6001 *
6002 * We don't want a transaction for this since the discard may take a
6003 * substantial amount of time.  We don't require that a transaction be
6004 * running, but we do need to take a running transaction into account
6005 * to ensure that we're not discarding chunks that were released or
6006 * allocated in the current transaction.
6007 *
6008 * Holding the chunks lock will prevent other threads from allocating
6009 * or releasing chunks, but it won't prevent a running transaction
6010 * from committing and releasing the memory that the pending chunks
6011 * list head uses.  For that, we need to take a reference to the
6012 * transaction and hold the commit root sem.  We only need to hold
6013 * it while performing the free space search since we have already
6014 * held back allocations.
6015 */
6016static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6017{
6018	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6019	int ret;
6020
6021	*trimmed = 0;
6022
6023	/* Discard not supported = nothing to do. */
6024	if (!bdev_max_discard_sectors(device->bdev))
6025		return 0;
6026
6027	/* Not writable = nothing to do. */
6028	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6029		return 0;
6030
6031	/* No free space = nothing to do. */
6032	if (device->total_bytes <= device->bytes_used)
6033		return 0;
6034
6035	ret = 0;
6036
6037	while (1) {
6038		struct btrfs_fs_info *fs_info = device->fs_info;
6039		u64 bytes;
6040
6041		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6042		if (ret)
6043			break;
6044
6045		find_first_clear_extent_bit(&device->alloc_state, start,
6046					    &start, &end,
6047					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6048
6049		/* Check if there are any CHUNK_* bits left */
6050		if (start > device->total_bytes) {
6051			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6052			btrfs_warn_in_rcu(fs_info,
6053"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6054					  start, end - start + 1,
6055					  btrfs_dev_name(device),
6056					  device->total_bytes);
6057			mutex_unlock(&fs_info->chunk_mutex);
6058			ret = 0;
6059			break;
6060		}
6061
6062		/* Ensure we skip the reserved space on each device. */
6063		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6064
6065		/*
6066		 * If find_first_clear_extent_bit find a range that spans the
6067		 * end of the device it will set end to -1, in this case it's up
6068		 * to the caller to trim the value to the size of the device.
6069		 */
6070		end = min(end, device->total_bytes - 1);
6071
6072		len = end - start + 1;
6073
6074		/* We didn't find any extents */
6075		if (!len) {
6076			mutex_unlock(&fs_info->chunk_mutex);
6077			ret = 0;
6078			break;
6079		}
6080
6081		ret = btrfs_issue_discard(device->bdev, start, len,
6082					  &bytes);
6083		if (!ret)
6084			set_extent_bits(&device->alloc_state, start,
6085					start + bytes - 1,
6086					CHUNK_TRIMMED);
6087		mutex_unlock(&fs_info->chunk_mutex);
6088
6089		if (ret)
6090			break;
6091
6092		start += len;
6093		*trimmed += bytes;
6094
6095		if (fatal_signal_pending(current)) {
6096			ret = -ERESTARTSYS;
6097			break;
6098		}
6099
6100		cond_resched();
6101	}
6102
6103	return ret;
6104}
6105
6106/*
6107 * Trim the whole filesystem by:
6108 * 1) trimming the free space in each block group
6109 * 2) trimming the unallocated space on each device
6110 *
6111 * This will also continue trimming even if a block group or device encounters
6112 * an error.  The return value will be the last error, or 0 if nothing bad
6113 * happens.
6114 */
6115int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6116{
6117	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6118	struct btrfs_block_group *cache = NULL;
6119	struct btrfs_device *device;
6120	u64 group_trimmed;
6121	u64 range_end = U64_MAX;
6122	u64 start;
6123	u64 end;
6124	u64 trimmed = 0;
6125	u64 bg_failed = 0;
6126	u64 dev_failed = 0;
6127	int bg_ret = 0;
6128	int dev_ret = 0;
6129	int ret = 0;
6130
6131	if (range->start == U64_MAX)
6132		return -EINVAL;
6133
6134	/*
6135	 * Check range overflow if range->len is set.
6136	 * The default range->len is U64_MAX.
6137	 */
6138	if (range->len != U64_MAX &&
6139	    check_add_overflow(range->start, range->len, &range_end))
6140		return -EINVAL;
6141
6142	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6143	for (; cache; cache = btrfs_next_block_group(cache)) {
6144		if (cache->start >= range_end) {
6145			btrfs_put_block_group(cache);
6146			break;
6147		}
6148
6149		start = max(range->start, cache->start);
6150		end = min(range_end, cache->start + cache->length);
6151
6152		if (end - start >= range->minlen) {
6153			if (!btrfs_block_group_done(cache)) {
6154				ret = btrfs_cache_block_group(cache, true);
6155				if (ret) {
6156					bg_failed++;
6157					bg_ret = ret;
6158					continue;
6159				}
6160			}
6161			ret = btrfs_trim_block_group(cache,
6162						     &group_trimmed,
6163						     start,
6164						     end,
6165						     range->minlen);
6166
6167			trimmed += group_trimmed;
6168			if (ret) {
6169				bg_failed++;
6170				bg_ret = ret;
6171				continue;
6172			}
6173		}
6174	}
6175
6176	if (bg_failed)
6177		btrfs_warn(fs_info,
6178			"failed to trim %llu block group(s), last error %d",
6179			bg_failed, bg_ret);
6180
6181	mutex_lock(&fs_devices->device_list_mutex);
6182	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6183		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6184			continue;
6185
6186		ret = btrfs_trim_free_extents(device, &group_trimmed);
6187		if (ret) {
6188			dev_failed++;
6189			dev_ret = ret;
6190			break;
6191		}
6192
6193		trimmed += group_trimmed;
6194	}
6195	mutex_unlock(&fs_devices->device_list_mutex);
6196
6197	if (dev_failed)
6198		btrfs_warn(fs_info,
6199			"failed to trim %llu device(s), last error %d",
6200			dev_failed, dev_ret);
6201	range->len = trimmed;
6202	if (bg_ret)
6203		return bg_ret;
6204	return dev_ret;
6205}