Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "ctree.h"
20#include "extent-tree.h"
21#include "tree-log.h"
22#include "disk-io.h"
23#include "print-tree.h"
24#include "volumes.h"
25#include "raid56.h"
26#include "locking.h"
27#include "free-space-cache.h"
28#include "free-space-tree.h"
29#include "sysfs.h"
30#include "qgroup.h"
31#include "ref-verify.h"
32#include "space-info.h"
33#include "block-rsv.h"
34#include "delalloc-space.h"
35#include "discard.h"
36#include "rcu-string.h"
37#include "zoned.h"
38#include "dev-replace.h"
39#include "fs.h"
40#include "accessors.h"
41#include "root-tree.h"
42#include "file-item.h"
43#include "orphan.h"
44#include "tree-checker.h"
45#include "raid-stripe-tree.h"
46
47#undef SCRAMBLE_DELAYED_REFS
48
49
50static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_delayed_ref_head *href,
52 struct btrfs_delayed_ref_node *node, u64 parent,
53 u64 root_objectid, u64 owner_objectid,
54 u64 owner_offset,
55 struct btrfs_delayed_extent_op *extra_op);
56static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
57 struct extent_buffer *leaf,
58 struct btrfs_extent_item *ei);
59static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
60 u64 parent, u64 root_objectid,
61 u64 flags, u64 owner, u64 offset,
62 struct btrfs_key *ins, int ref_mod, u64 oref_root);
63static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
64 struct btrfs_delayed_ref_node *node,
65 struct btrfs_delayed_extent_op *extent_op);
66static int find_next_key(struct btrfs_path *path, int level,
67 struct btrfs_key *key);
68
69static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70{
71 return (cache->flags & bits) == bits;
72}
73
74/* simple helper to search for an existing data extent at a given offset */
75int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
76{
77 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
78 int ret;
79 struct btrfs_key key;
80 struct btrfs_path *path;
81
82 path = btrfs_alloc_path();
83 if (!path)
84 return -ENOMEM;
85
86 key.objectid = start;
87 key.offset = len;
88 key.type = BTRFS_EXTENT_ITEM_KEY;
89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
90 btrfs_free_path(path);
91 return ret;
92}
93
94/*
95 * helper function to lookup reference count and flags of a tree block.
96 *
97 * the head node for delayed ref is used to store the sum of all the
98 * reference count modifications queued up in the rbtree. the head
99 * node may also store the extent flags to set. This way you can check
100 * to see what the reference count and extent flags would be if all of
101 * the delayed refs are not processed.
102 */
103int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
104 struct btrfs_fs_info *fs_info, u64 bytenr,
105 u64 offset, int metadata, u64 *refs, u64 *flags,
106 u64 *owning_root)
107{
108 struct btrfs_root *extent_root;
109 struct btrfs_delayed_ref_head *head;
110 struct btrfs_delayed_ref_root *delayed_refs;
111 struct btrfs_path *path;
112 struct btrfs_extent_item *ei;
113 struct extent_buffer *leaf;
114 struct btrfs_key key;
115 u32 item_size;
116 u64 num_refs;
117 u64 extent_flags;
118 u64 owner = 0;
119 int ret;
120
121 /*
122 * If we don't have skinny metadata, don't bother doing anything
123 * different
124 */
125 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
126 offset = fs_info->nodesize;
127 metadata = 0;
128 }
129
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
133
134 if (!trans) {
135 path->skip_locking = 1;
136 path->search_commit_root = 1;
137 }
138
139search_again:
140 key.objectid = bytenr;
141 key.offset = offset;
142 if (metadata)
143 key.type = BTRFS_METADATA_ITEM_KEY;
144 else
145 key.type = BTRFS_EXTENT_ITEM_KEY;
146
147 extent_root = btrfs_extent_root(fs_info, bytenr);
148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
149 if (ret < 0)
150 goto out_free;
151
152 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
153 if (path->slots[0]) {
154 path->slots[0]--;
155 btrfs_item_key_to_cpu(path->nodes[0], &key,
156 path->slots[0]);
157 if (key.objectid == bytenr &&
158 key.type == BTRFS_EXTENT_ITEM_KEY &&
159 key.offset == fs_info->nodesize)
160 ret = 0;
161 }
162 }
163
164 if (ret == 0) {
165 leaf = path->nodes[0];
166 item_size = btrfs_item_size(leaf, path->slots[0]);
167 if (item_size >= sizeof(*ei)) {
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_extent_item);
170 num_refs = btrfs_extent_refs(leaf, ei);
171 extent_flags = btrfs_extent_flags(leaf, ei);
172 owner = btrfs_get_extent_owner_root(fs_info, leaf,
173 path->slots[0]);
174 } else {
175 ret = -EUCLEAN;
176 btrfs_err(fs_info,
177 "unexpected extent item size, has %u expect >= %zu",
178 item_size, sizeof(*ei));
179 if (trans)
180 btrfs_abort_transaction(trans, ret);
181 else
182 btrfs_handle_fs_error(fs_info, ret, NULL);
183
184 goto out_free;
185 }
186
187 BUG_ON(num_refs == 0);
188 } else {
189 num_refs = 0;
190 extent_flags = 0;
191 ret = 0;
192 }
193
194 if (!trans)
195 goto out;
196
197 delayed_refs = &trans->transaction->delayed_refs;
198 spin_lock(&delayed_refs->lock);
199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
200 if (head) {
201 if (!mutex_trylock(&head->mutex)) {
202 refcount_inc(&head->refs);
203 spin_unlock(&delayed_refs->lock);
204
205 btrfs_release_path(path);
206
207 /*
208 * Mutex was contended, block until it's released and try
209 * again
210 */
211 mutex_lock(&head->mutex);
212 mutex_unlock(&head->mutex);
213 btrfs_put_delayed_ref_head(head);
214 goto search_again;
215 }
216 spin_lock(&head->lock);
217 if (head->extent_op && head->extent_op->update_flags)
218 extent_flags |= head->extent_op->flags_to_set;
219 else
220 BUG_ON(num_refs == 0);
221
222 num_refs += head->ref_mod;
223 spin_unlock(&head->lock);
224 mutex_unlock(&head->mutex);
225 }
226 spin_unlock(&delayed_refs->lock);
227out:
228 WARN_ON(num_refs == 0);
229 if (refs)
230 *refs = num_refs;
231 if (flags)
232 *flags = extent_flags;
233 if (owning_root)
234 *owning_root = owner;
235out_free:
236 btrfs_free_path(path);
237 return ret;
238}
239
240/*
241 * Back reference rules. Back refs have three main goals:
242 *
243 * 1) differentiate between all holders of references to an extent so that
244 * when a reference is dropped we can make sure it was a valid reference
245 * before freeing the extent.
246 *
247 * 2) Provide enough information to quickly find the holders of an extent
248 * if we notice a given block is corrupted or bad.
249 *
250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251 * maintenance. This is actually the same as #2, but with a slightly
252 * different use case.
253 *
254 * There are two kinds of back refs. The implicit back refs is optimized
255 * for pointers in non-shared tree blocks. For a given pointer in a block,
256 * back refs of this kind provide information about the block's owner tree
257 * and the pointer's key. These information allow us to find the block by
258 * b-tree searching. The full back refs is for pointers in tree blocks not
259 * referenced by their owner trees. The location of tree block is recorded
260 * in the back refs. Actually the full back refs is generic, and can be
261 * used in all cases the implicit back refs is used. The major shortcoming
262 * of the full back refs is its overhead. Every time a tree block gets
263 * COWed, we have to update back refs entry for all pointers in it.
264 *
265 * For a newly allocated tree block, we use implicit back refs for
266 * pointers in it. This means most tree related operations only involve
267 * implicit back refs. For a tree block created in old transaction, the
268 * only way to drop a reference to it is COW it. So we can detect the
269 * event that tree block loses its owner tree's reference and do the
270 * back refs conversion.
271 *
272 * When a tree block is COWed through a tree, there are four cases:
273 *
274 * The reference count of the block is one and the tree is the block's
275 * owner tree. Nothing to do in this case.
276 *
277 * The reference count of the block is one and the tree is not the
278 * block's owner tree. In this case, full back refs is used for pointers
279 * in the block. Remove these full back refs, add implicit back refs for
280 * every pointers in the new block.
281 *
282 * The reference count of the block is greater than one and the tree is
283 * the block's owner tree. In this case, implicit back refs is used for
284 * pointers in the block. Add full back refs for every pointers in the
285 * block, increase lower level extents' reference counts. The original
286 * implicit back refs are entailed to the new block.
287 *
288 * The reference count of the block is greater than one and the tree is
289 * not the block's owner tree. Add implicit back refs for every pointer in
290 * the new block, increase lower level extents' reference count.
291 *
292 * Back Reference Key composing:
293 *
294 * The key objectid corresponds to the first byte in the extent,
295 * The key type is used to differentiate between types of back refs.
296 * There are different meanings of the key offset for different types
297 * of back refs.
298 *
299 * File extents can be referenced by:
300 *
301 * - multiple snapshots, subvolumes, or different generations in one subvol
302 * - different files inside a single subvolume
303 * - different offsets inside a file (bookend extents in file.c)
304 *
305 * The extent ref structure for the implicit back refs has fields for:
306 *
307 * - Objectid of the subvolume root
308 * - objectid of the file holding the reference
309 * - original offset in the file
310 * - how many bookend extents
311 *
312 * The key offset for the implicit back refs is hash of the first
313 * three fields.
314 *
315 * The extent ref structure for the full back refs has field for:
316 *
317 * - number of pointers in the tree leaf
318 *
319 * The key offset for the implicit back refs is the first byte of
320 * the tree leaf
321 *
322 * When a file extent is allocated, The implicit back refs is used.
323 * the fields are filled in:
324 *
325 * (root_key.objectid, inode objectid, offset in file, 1)
326 *
327 * When a file extent is removed file truncation, we find the
328 * corresponding implicit back refs and check the following fields:
329 *
330 * (btrfs_header_owner(leaf), inode objectid, offset in file)
331 *
332 * Btree extents can be referenced by:
333 *
334 * - Different subvolumes
335 *
336 * Both the implicit back refs and the full back refs for tree blocks
337 * only consist of key. The key offset for the implicit back refs is
338 * objectid of block's owner tree. The key offset for the full back refs
339 * is the first byte of parent block.
340 *
341 * When implicit back refs is used, information about the lowest key and
342 * level of the tree block are required. These information are stored in
343 * tree block info structure.
344 */
345
346/*
347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350 */
351int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 struct btrfs_extent_inline_ref *iref,
353 enum btrfs_inline_ref_type is_data)
354{
355 struct btrfs_fs_info *fs_info = eb->fs_info;
356 int type = btrfs_extent_inline_ref_type(eb, iref);
357 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
358
359 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
360 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
361 return type;
362 }
363
364 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
365 type == BTRFS_SHARED_BLOCK_REF_KEY ||
366 type == BTRFS_SHARED_DATA_REF_KEY ||
367 type == BTRFS_EXTENT_DATA_REF_KEY) {
368 if (is_data == BTRFS_REF_TYPE_BLOCK) {
369 if (type == BTRFS_TREE_BLOCK_REF_KEY)
370 return type;
371 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
372 ASSERT(fs_info);
373 /*
374 * Every shared one has parent tree block,
375 * which must be aligned to sector size.
376 */
377 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
378 return type;
379 }
380 } else if (is_data == BTRFS_REF_TYPE_DATA) {
381 if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 return type;
383 if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 ASSERT(fs_info);
385 /*
386 * Every shared one has parent tree block,
387 * which must be aligned to sector size.
388 */
389 if (offset &&
390 IS_ALIGNED(offset, fs_info->sectorsize))
391 return type;
392 }
393 } else {
394 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 return type;
396 }
397 }
398
399 WARN_ON(1);
400 btrfs_print_leaf(eb);
401 btrfs_err(fs_info,
402 "eb %llu iref 0x%lx invalid extent inline ref type %d",
403 eb->start, (unsigned long)iref, type);
404
405 return BTRFS_REF_TYPE_INVALID;
406}
407
408u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409{
410 u32 high_crc = ~(u32)0;
411 u32 low_crc = ~(u32)0;
412 __le64 lenum;
413
414 lenum = cpu_to_le64(root_objectid);
415 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
416 lenum = cpu_to_le64(owner);
417 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
418 lenum = cpu_to_le64(offset);
419 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
420
421 return ((u64)high_crc << 31) ^ (u64)low_crc;
422}
423
424static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 struct btrfs_extent_data_ref *ref)
426{
427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 btrfs_extent_data_ref_objectid(leaf, ref),
429 btrfs_extent_data_ref_offset(leaf, ref));
430}
431
432static int match_extent_data_ref(struct extent_buffer *leaf,
433 struct btrfs_extent_data_ref *ref,
434 u64 root_objectid, u64 owner, u64 offset)
435{
436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 return 0;
440 return 1;
441}
442
443static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 struct btrfs_path *path,
445 u64 bytenr, u64 parent,
446 u64 root_objectid,
447 u64 owner, u64 offset)
448{
449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 struct btrfs_key key;
451 struct btrfs_extent_data_ref *ref;
452 struct extent_buffer *leaf;
453 u32 nritems;
454 int ret;
455 int recow;
456 int err = -ENOENT;
457
458 key.objectid = bytenr;
459 if (parent) {
460 key.type = BTRFS_SHARED_DATA_REF_KEY;
461 key.offset = parent;
462 } else {
463 key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 key.offset = hash_extent_data_ref(root_objectid,
465 owner, offset);
466 }
467again:
468 recow = 0;
469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 if (ret < 0) {
471 err = ret;
472 goto fail;
473 }
474
475 if (parent) {
476 if (!ret)
477 return 0;
478 goto fail;
479 }
480
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 while (1) {
484 if (path->slots[0] >= nritems) {
485 ret = btrfs_next_leaf(root, path);
486 if (ret < 0)
487 err = ret;
488 if (ret)
489 goto fail;
490
491 leaf = path->nodes[0];
492 nritems = btrfs_header_nritems(leaf);
493 recow = 1;
494 }
495
496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 if (key.objectid != bytenr ||
498 key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 goto fail;
500
501 ref = btrfs_item_ptr(leaf, path->slots[0],
502 struct btrfs_extent_data_ref);
503
504 if (match_extent_data_ref(leaf, ref, root_objectid,
505 owner, offset)) {
506 if (recow) {
507 btrfs_release_path(path);
508 goto again;
509 }
510 err = 0;
511 break;
512 }
513 path->slots[0]++;
514 }
515fail:
516 return err;
517}
518
519static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 struct btrfs_path *path,
521 u64 bytenr, u64 parent,
522 u64 root_objectid, u64 owner,
523 u64 offset, int refs_to_add)
524{
525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 struct btrfs_key key;
527 struct extent_buffer *leaf;
528 u32 size;
529 u32 num_refs;
530 int ret;
531
532 key.objectid = bytenr;
533 if (parent) {
534 key.type = BTRFS_SHARED_DATA_REF_KEY;
535 key.offset = parent;
536 size = sizeof(struct btrfs_shared_data_ref);
537 } else {
538 key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 key.offset = hash_extent_data_ref(root_objectid,
540 owner, offset);
541 size = sizeof(struct btrfs_extent_data_ref);
542 }
543
544 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 if (ret && ret != -EEXIST)
546 goto fail;
547
548 leaf = path->nodes[0];
549 if (parent) {
550 struct btrfs_shared_data_ref *ref;
551 ref = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_shared_data_ref);
553 if (ret == 0) {
554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 } else {
556 num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 num_refs += refs_to_add;
558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 }
560 } else {
561 struct btrfs_extent_data_ref *ref;
562 while (ret == -EEXIST) {
563 ref = btrfs_item_ptr(leaf, path->slots[0],
564 struct btrfs_extent_data_ref);
565 if (match_extent_data_ref(leaf, ref, root_objectid,
566 owner, offset))
567 break;
568 btrfs_release_path(path);
569 key.offset++;
570 ret = btrfs_insert_empty_item(trans, root, path, &key,
571 size);
572 if (ret && ret != -EEXIST)
573 goto fail;
574
575 leaf = path->nodes[0];
576 }
577 ref = btrfs_item_ptr(leaf, path->slots[0],
578 struct btrfs_extent_data_ref);
579 if (ret == 0) {
580 btrfs_set_extent_data_ref_root(leaf, ref,
581 root_objectid);
582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 } else {
586 num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 num_refs += refs_to_add;
588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 }
590 }
591 btrfs_mark_buffer_dirty(trans, leaf);
592 ret = 0;
593fail:
594 btrfs_release_path(path);
595 return ret;
596}
597
598static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_path *path,
601 int refs_to_drop)
602{
603 struct btrfs_key key;
604 struct btrfs_extent_data_ref *ref1 = NULL;
605 struct btrfs_shared_data_ref *ref2 = NULL;
606 struct extent_buffer *leaf;
607 u32 num_refs = 0;
608 int ret = 0;
609
610 leaf = path->nodes[0];
611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612
613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 struct btrfs_extent_data_ref);
616 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 struct btrfs_shared_data_ref);
620 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 } else {
622 btrfs_err(trans->fs_info,
623 "unrecognized backref key (%llu %u %llu)",
624 key.objectid, key.type, key.offset);
625 btrfs_abort_transaction(trans, -EUCLEAN);
626 return -EUCLEAN;
627 }
628
629 BUG_ON(num_refs < refs_to_drop);
630 num_refs -= refs_to_drop;
631
632 if (num_refs == 0) {
633 ret = btrfs_del_item(trans, root, path);
634 } else {
635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 btrfs_mark_buffer_dirty(trans, leaf);
640 }
641 return ret;
642}
643
644static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 struct btrfs_extent_inline_ref *iref)
646{
647 struct btrfs_key key;
648 struct extent_buffer *leaf;
649 struct btrfs_extent_data_ref *ref1;
650 struct btrfs_shared_data_ref *ref2;
651 u32 num_refs = 0;
652 int type;
653
654 leaf = path->nodes[0];
655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656
657 if (iref) {
658 /*
659 * If type is invalid, we should have bailed out earlier than
660 * this call.
661 */
662 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
663 ASSERT(type != BTRFS_REF_TYPE_INVALID);
664 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
665 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
666 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
667 } else {
668 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
669 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
670 }
671 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
672 ref1 = btrfs_item_ptr(leaf, path->slots[0],
673 struct btrfs_extent_data_ref);
674 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
676 ref2 = btrfs_item_ptr(leaf, path->slots[0],
677 struct btrfs_shared_data_ref);
678 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
679 } else {
680 WARN_ON(1);
681 }
682 return num_refs;
683}
684
685static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
686 struct btrfs_path *path,
687 u64 bytenr, u64 parent,
688 u64 root_objectid)
689{
690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 struct btrfs_key key;
692 int ret;
693
694 key.objectid = bytenr;
695 if (parent) {
696 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 key.offset = parent;
698 } else {
699 key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 key.offset = root_objectid;
701 }
702
703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
704 if (ret > 0)
705 ret = -ENOENT;
706 return ret;
707}
708
709static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
710 struct btrfs_path *path,
711 u64 bytenr, u64 parent,
712 u64 root_objectid)
713{
714 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
715 struct btrfs_key key;
716 int ret;
717
718 key.objectid = bytenr;
719 if (parent) {
720 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
721 key.offset = parent;
722 } else {
723 key.type = BTRFS_TREE_BLOCK_REF_KEY;
724 key.offset = root_objectid;
725 }
726
727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
728 btrfs_release_path(path);
729 return ret;
730}
731
732static inline int extent_ref_type(u64 parent, u64 owner)
733{
734 int type;
735 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
736 if (parent > 0)
737 type = BTRFS_SHARED_BLOCK_REF_KEY;
738 else
739 type = BTRFS_TREE_BLOCK_REF_KEY;
740 } else {
741 if (parent > 0)
742 type = BTRFS_SHARED_DATA_REF_KEY;
743 else
744 type = BTRFS_EXTENT_DATA_REF_KEY;
745 }
746 return type;
747}
748
749static int find_next_key(struct btrfs_path *path, int level,
750 struct btrfs_key *key)
751
752{
753 for (; level < BTRFS_MAX_LEVEL; level++) {
754 if (!path->nodes[level])
755 break;
756 if (path->slots[level] + 1 >=
757 btrfs_header_nritems(path->nodes[level]))
758 continue;
759 if (level == 0)
760 btrfs_item_key_to_cpu(path->nodes[level], key,
761 path->slots[level] + 1);
762 else
763 btrfs_node_key_to_cpu(path->nodes[level], key,
764 path->slots[level] + 1);
765 return 0;
766 }
767 return 1;
768}
769
770/*
771 * look for inline back ref. if back ref is found, *ref_ret is set
772 * to the address of inline back ref, and 0 is returned.
773 *
774 * if back ref isn't found, *ref_ret is set to the address where it
775 * should be inserted, and -ENOENT is returned.
776 *
777 * if insert is true and there are too many inline back refs, the path
778 * points to the extent item, and -EAGAIN is returned.
779 *
780 * NOTE: inline back refs are ordered in the same way that back ref
781 * items in the tree are ordered.
782 */
783static noinline_for_stack
784int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
785 struct btrfs_path *path,
786 struct btrfs_extent_inline_ref **ref_ret,
787 u64 bytenr, u64 num_bytes,
788 u64 parent, u64 root_objectid,
789 u64 owner, u64 offset, int insert)
790{
791 struct btrfs_fs_info *fs_info = trans->fs_info;
792 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
793 struct btrfs_key key;
794 struct extent_buffer *leaf;
795 struct btrfs_extent_item *ei;
796 struct btrfs_extent_inline_ref *iref;
797 u64 flags;
798 u64 item_size;
799 unsigned long ptr;
800 unsigned long end;
801 int extra_size;
802 int type;
803 int want;
804 int ret;
805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
806 int needed;
807
808 key.objectid = bytenr;
809 key.type = BTRFS_EXTENT_ITEM_KEY;
810 key.offset = num_bytes;
811
812 want = extent_ref_type(parent, owner);
813 if (insert) {
814 extra_size = btrfs_extent_inline_ref_size(want);
815 path->search_for_extension = 1;
816 path->keep_locks = 1;
817 } else
818 extra_size = -1;
819
820 /*
821 * Owner is our level, so we can just add one to get the level for the
822 * block we are interested in.
823 */
824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
825 key.type = BTRFS_METADATA_ITEM_KEY;
826 key.offset = owner;
827 }
828
829again:
830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
831 if (ret < 0)
832 goto out;
833
834 /*
835 * We may be a newly converted file system which still has the old fat
836 * extent entries for metadata, so try and see if we have one of those.
837 */
838 if (ret > 0 && skinny_metadata) {
839 skinny_metadata = false;
840 if (path->slots[0]) {
841 path->slots[0]--;
842 btrfs_item_key_to_cpu(path->nodes[0], &key,
843 path->slots[0]);
844 if (key.objectid == bytenr &&
845 key.type == BTRFS_EXTENT_ITEM_KEY &&
846 key.offset == num_bytes)
847 ret = 0;
848 }
849 if (ret) {
850 key.objectid = bytenr;
851 key.type = BTRFS_EXTENT_ITEM_KEY;
852 key.offset = num_bytes;
853 btrfs_release_path(path);
854 goto again;
855 }
856 }
857
858 if (ret && !insert) {
859 ret = -ENOENT;
860 goto out;
861 } else if (WARN_ON(ret)) {
862 btrfs_print_leaf(path->nodes[0]);
863 btrfs_err(fs_info,
864"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
865 bytenr, num_bytes, parent, root_objectid, owner,
866 offset);
867 ret = -EUCLEAN;
868 goto out;
869 }
870
871 leaf = path->nodes[0];
872 item_size = btrfs_item_size(leaf, path->slots[0]);
873 if (unlikely(item_size < sizeof(*ei))) {
874 ret = -EUCLEAN;
875 btrfs_err(fs_info,
876 "unexpected extent item size, has %llu expect >= %zu",
877 item_size, sizeof(*ei));
878 btrfs_abort_transaction(trans, ret);
879 goto out;
880 }
881
882 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
883 flags = btrfs_extent_flags(leaf, ei);
884
885 ptr = (unsigned long)(ei + 1);
886 end = (unsigned long)ei + item_size;
887
888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
889 ptr += sizeof(struct btrfs_tree_block_info);
890 BUG_ON(ptr > end);
891 }
892
893 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
894 needed = BTRFS_REF_TYPE_DATA;
895 else
896 needed = BTRFS_REF_TYPE_BLOCK;
897
898 ret = -ENOENT;
899 while (ptr < end) {
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
903 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
904 ptr += btrfs_extent_inline_ref_size(type);
905 continue;
906 }
907 if (type == BTRFS_REF_TYPE_INVALID) {
908 ret = -EUCLEAN;
909 goto out;
910 }
911
912 if (want < type)
913 break;
914 if (want > type) {
915 ptr += btrfs_extent_inline_ref_size(type);
916 continue;
917 }
918
919 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
920 struct btrfs_extent_data_ref *dref;
921 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
922 if (match_extent_data_ref(leaf, dref, root_objectid,
923 owner, offset)) {
924 ret = 0;
925 break;
926 }
927 if (hash_extent_data_ref_item(leaf, dref) <
928 hash_extent_data_ref(root_objectid, owner, offset))
929 break;
930 } else {
931 u64 ref_offset;
932 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
933 if (parent > 0) {
934 if (parent == ref_offset) {
935 ret = 0;
936 break;
937 }
938 if (ref_offset < parent)
939 break;
940 } else {
941 if (root_objectid == ref_offset) {
942 ret = 0;
943 break;
944 }
945 if (ref_offset < root_objectid)
946 break;
947 }
948 }
949 ptr += btrfs_extent_inline_ref_size(type);
950 }
951
952 if (unlikely(ptr > end)) {
953 ret = -EUCLEAN;
954 btrfs_print_leaf(path->nodes[0]);
955 btrfs_crit(fs_info,
956"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
957 path->slots[0], root_objectid, owner, offset, parent);
958 goto out;
959 }
960
961 if (ret == -ENOENT && insert) {
962 if (item_size + extra_size >=
963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
964 ret = -EAGAIN;
965 goto out;
966 }
967 /*
968 * To add new inline back ref, we have to make sure
969 * there is no corresponding back ref item.
970 * For simplicity, we just do not add new inline back
971 * ref if there is any kind of item for this block
972 */
973 if (find_next_key(path, 0, &key) == 0 &&
974 key.objectid == bytenr &&
975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 ret = -EAGAIN;
977 goto out;
978 }
979 }
980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981out:
982 if (insert) {
983 path->keep_locks = 0;
984 path->search_for_extension = 0;
985 btrfs_unlock_up_safe(path, 1);
986 }
987 return ret;
988}
989
990/*
991 * helper to add new inline back ref
992 */
993static noinline_for_stack
994void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 struct btrfs_path *path,
996 struct btrfs_extent_inline_ref *iref,
997 u64 parent, u64 root_objectid,
998 u64 owner, u64 offset, int refs_to_add,
999 struct btrfs_delayed_extent_op *extent_op)
1000{
1001 struct extent_buffer *leaf;
1002 struct btrfs_extent_item *ei;
1003 unsigned long ptr;
1004 unsigned long end;
1005 unsigned long item_offset;
1006 u64 refs;
1007 int size;
1008 int type;
1009
1010 leaf = path->nodes[0];
1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014 type = extent_ref_type(parent, owner);
1015 size = btrfs_extent_inline_ref_size(type);
1016
1017 btrfs_extend_item(trans, path, size);
1018
1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 refs = btrfs_extent_refs(leaf, ei);
1021 refs += refs_to_add;
1022 btrfs_set_extent_refs(leaf, ei, refs);
1023 if (extent_op)
1024 __run_delayed_extent_op(extent_op, leaf, ei);
1025
1026 ptr = (unsigned long)ei + item_offset;
1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 if (ptr < end - size)
1029 memmove_extent_buffer(leaf, ptr + size, ptr,
1030 end - size - ptr);
1031
1032 iref = (struct btrfs_extent_inline_ref *)ptr;
1033 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 struct btrfs_extent_data_ref *dref;
1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 struct btrfs_shared_data_ref *sref;
1043 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 }
1051 btrfs_mark_buffer_dirty(trans, leaf);
1052}
1053
1054static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055 struct btrfs_path *path,
1056 struct btrfs_extent_inline_ref **ref_ret,
1057 u64 bytenr, u64 num_bytes, u64 parent,
1058 u64 root_objectid, u64 owner, u64 offset)
1059{
1060 int ret;
1061
1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063 num_bytes, parent, root_objectid,
1064 owner, offset, 0);
1065 if (ret != -ENOENT)
1066 return ret;
1067
1068 btrfs_release_path(path);
1069 *ref_ret = NULL;
1070
1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 root_objectid);
1074 } else {
1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076 root_objectid, owner, offset);
1077 }
1078 return ret;
1079}
1080
1081/*
1082 * helper to update/remove inline back ref
1083 */
1084static noinline_for_stack int update_inline_extent_backref(
1085 struct btrfs_trans_handle *trans,
1086 struct btrfs_path *path,
1087 struct btrfs_extent_inline_ref *iref,
1088 int refs_to_mod,
1089 struct btrfs_delayed_extent_op *extent_op)
1090{
1091 struct extent_buffer *leaf = path->nodes[0];
1092 struct btrfs_fs_info *fs_info = leaf->fs_info;
1093 struct btrfs_extent_item *ei;
1094 struct btrfs_extent_data_ref *dref = NULL;
1095 struct btrfs_shared_data_ref *sref = NULL;
1096 unsigned long ptr;
1097 unsigned long end;
1098 u32 item_size;
1099 int size;
1100 int type;
1101 u64 refs;
1102
1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 refs = btrfs_extent_refs(leaf, ei);
1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106 struct btrfs_key key;
1107 u32 extent_size;
1108
1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110 if (key.type == BTRFS_METADATA_ITEM_KEY)
1111 extent_size = fs_info->nodesize;
1112 else
1113 extent_size = key.offset;
1114 btrfs_print_leaf(leaf);
1115 btrfs_err(fs_info,
1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117 key.objectid, extent_size, refs_to_mod, refs);
1118 return -EUCLEAN;
1119 }
1120 refs += refs_to_mod;
1121 btrfs_set_extent_refs(leaf, ei, refs);
1122 if (extent_op)
1123 __run_delayed_extent_op(extent_op, leaf, ei);
1124
1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126 /*
1127 * Function btrfs_get_extent_inline_ref_type() has already printed
1128 * error messages.
1129 */
1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131 return -EUCLEAN;
1132
1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 refs = btrfs_extent_data_ref_count(leaf, dref);
1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 refs = btrfs_shared_data_ref_count(leaf, sref);
1139 } else {
1140 refs = 1;
1141 /*
1142 * For tree blocks we can only drop one ref for it, and tree
1143 * blocks should not have refs > 1.
1144 *
1145 * Furthermore if we're inserting a new inline backref, we
1146 * won't reach this path either. That would be
1147 * setup_inline_extent_backref().
1148 */
1149 if (unlikely(refs_to_mod != -1)) {
1150 struct btrfs_key key;
1151
1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153
1154 btrfs_print_leaf(leaf);
1155 btrfs_err(fs_info,
1156 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1157 key.objectid, refs_to_mod);
1158 return -EUCLEAN;
1159 }
1160 }
1161
1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163 struct btrfs_key key;
1164 u32 extent_size;
1165
1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 if (key.type == BTRFS_METADATA_ITEM_KEY)
1168 extent_size = fs_info->nodesize;
1169 else
1170 extent_size = key.offset;
1171 btrfs_print_leaf(leaf);
1172 btrfs_err(fs_info,
1173"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174 (unsigned long)iref, key.objectid, extent_size,
1175 refs_to_mod, refs);
1176 return -EUCLEAN;
1177 }
1178 refs += refs_to_mod;
1179
1180 if (refs > 0) {
1181 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183 else
1184 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185 } else {
1186 size = btrfs_extent_inline_ref_size(type);
1187 item_size = btrfs_item_size(leaf, path->slots[0]);
1188 ptr = (unsigned long)iref;
1189 end = (unsigned long)ei + item_size;
1190 if (ptr + size < end)
1191 memmove_extent_buffer(leaf, ptr, ptr + size,
1192 end - ptr - size);
1193 item_size -= size;
1194 btrfs_truncate_item(trans, path, item_size, 1);
1195 }
1196 btrfs_mark_buffer_dirty(trans, leaf);
1197 return 0;
1198}
1199
1200static noinline_for_stack
1201int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202 struct btrfs_path *path,
1203 u64 bytenr, u64 num_bytes, u64 parent,
1204 u64 root_objectid, u64 owner,
1205 u64 offset, int refs_to_add,
1206 struct btrfs_delayed_extent_op *extent_op)
1207{
1208 struct btrfs_extent_inline_ref *iref;
1209 int ret;
1210
1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212 num_bytes, parent, root_objectid,
1213 owner, offset, 1);
1214 if (ret == 0) {
1215 /*
1216 * We're adding refs to a tree block we already own, this
1217 * should not happen at all.
1218 */
1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220 btrfs_print_leaf(path->nodes[0]);
1221 btrfs_crit(trans->fs_info,
1222"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223 bytenr, num_bytes, root_objectid, path->slots[0]);
1224 return -EUCLEAN;
1225 }
1226 ret = update_inline_extent_backref(trans, path, iref,
1227 refs_to_add, extent_op);
1228 } else if (ret == -ENOENT) {
1229 setup_inline_extent_backref(trans, path, iref, parent,
1230 root_objectid, owner, offset,
1231 refs_to_add, extent_op);
1232 ret = 0;
1233 }
1234 return ret;
1235}
1236
1237static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 struct btrfs_extent_inline_ref *iref,
1241 int refs_to_drop, int is_data)
1242{
1243 int ret = 0;
1244
1245 BUG_ON(!is_data && refs_to_drop != 1);
1246 if (iref)
1247 ret = update_inline_extent_backref(trans, path, iref,
1248 -refs_to_drop, NULL);
1249 else if (is_data)
1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251 else
1252 ret = btrfs_del_item(trans, root, path);
1253 return ret;
1254}
1255
1256static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257 u64 *discarded_bytes)
1258{
1259 int j, ret = 0;
1260 u64 bytes_left, end;
1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262
1263 /* Adjust the range to be aligned to 512B sectors if necessary. */
1264 if (start != aligned_start) {
1265 len -= aligned_start - start;
1266 len = round_down(len, 1 << SECTOR_SHIFT);
1267 start = aligned_start;
1268 }
1269
1270 *discarded_bytes = 0;
1271
1272 if (!len)
1273 return 0;
1274
1275 end = start + len;
1276 bytes_left = len;
1277
1278 /* Skip any superblocks on this device. */
1279 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1280 u64 sb_start = btrfs_sb_offset(j);
1281 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1282 u64 size = sb_start - start;
1283
1284 if (!in_range(sb_start, start, bytes_left) &&
1285 !in_range(sb_end, start, bytes_left) &&
1286 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1287 continue;
1288
1289 /*
1290 * Superblock spans beginning of range. Adjust start and
1291 * try again.
1292 */
1293 if (sb_start <= start) {
1294 start += sb_end - start;
1295 if (start > end) {
1296 bytes_left = 0;
1297 break;
1298 }
1299 bytes_left = end - start;
1300 continue;
1301 }
1302
1303 if (size) {
1304 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305 size >> SECTOR_SHIFT,
1306 GFP_NOFS);
1307 if (!ret)
1308 *discarded_bytes += size;
1309 else if (ret != -EOPNOTSUPP)
1310 return ret;
1311 }
1312
1313 start = sb_end;
1314 if (start > end) {
1315 bytes_left = 0;
1316 break;
1317 }
1318 bytes_left = end - start;
1319 }
1320
1321 if (bytes_left) {
1322 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323 bytes_left >> SECTOR_SHIFT,
1324 GFP_NOFS);
1325 if (!ret)
1326 *discarded_bytes += bytes_left;
1327 }
1328 return ret;
1329}
1330
1331static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1332{
1333 struct btrfs_device *dev = stripe->dev;
1334 struct btrfs_fs_info *fs_info = dev->fs_info;
1335 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1336 u64 phys = stripe->physical;
1337 u64 len = stripe->length;
1338 u64 discarded = 0;
1339 int ret = 0;
1340
1341 /* Zone reset on a zoned filesystem */
1342 if (btrfs_can_zone_reset(dev, phys, len)) {
1343 u64 src_disc;
1344
1345 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1346 if (ret)
1347 goto out;
1348
1349 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1350 dev != dev_replace->srcdev)
1351 goto out;
1352
1353 src_disc = discarded;
1354
1355 /* Send to replace target as well */
1356 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1357 &discarded);
1358 discarded += src_disc;
1359 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1360 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1361 } else {
1362 ret = 0;
1363 *bytes = 0;
1364 }
1365
1366out:
1367 *bytes = discarded;
1368 return ret;
1369}
1370
1371int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1372 u64 num_bytes, u64 *actual_bytes)
1373{
1374 int ret = 0;
1375 u64 discarded_bytes = 0;
1376 u64 end = bytenr + num_bytes;
1377 u64 cur = bytenr;
1378
1379 /*
1380 * Avoid races with device replace and make sure the devices in the
1381 * stripes don't go away while we are discarding.
1382 */
1383 btrfs_bio_counter_inc_blocked(fs_info);
1384 while (cur < end) {
1385 struct btrfs_discard_stripe *stripes;
1386 unsigned int num_stripes;
1387 int i;
1388
1389 num_bytes = end - cur;
1390 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1391 if (IS_ERR(stripes)) {
1392 ret = PTR_ERR(stripes);
1393 if (ret == -EOPNOTSUPP)
1394 ret = 0;
1395 break;
1396 }
1397
1398 for (i = 0; i < num_stripes; i++) {
1399 struct btrfs_discard_stripe *stripe = stripes + i;
1400 u64 bytes;
1401
1402 if (!stripe->dev->bdev) {
1403 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1404 continue;
1405 }
1406
1407 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1408 &stripe->dev->dev_state))
1409 continue;
1410
1411 ret = do_discard_extent(stripe, &bytes);
1412 if (ret) {
1413 /*
1414 * Keep going if discard is not supported by the
1415 * device.
1416 */
1417 if (ret != -EOPNOTSUPP)
1418 break;
1419 ret = 0;
1420 } else {
1421 discarded_bytes += bytes;
1422 }
1423 }
1424 kfree(stripes);
1425 if (ret)
1426 break;
1427 cur += num_bytes;
1428 }
1429 btrfs_bio_counter_dec(fs_info);
1430 if (actual_bytes)
1431 *actual_bytes = discarded_bytes;
1432 return ret;
1433}
1434
1435/* Can return -ENOMEM */
1436int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1437 struct btrfs_ref *generic_ref)
1438{
1439 struct btrfs_fs_info *fs_info = trans->fs_info;
1440 int ret;
1441
1442 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1443 generic_ref->action);
1444 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1445 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1446
1447 if (generic_ref->type == BTRFS_REF_METADATA)
1448 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1449 else
1450 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1451
1452 btrfs_ref_tree_mod(fs_info, generic_ref);
1453
1454 return ret;
1455}
1456
1457/*
1458 * Insert backreference for a given extent.
1459 *
1460 * The counterpart is in __btrfs_free_extent(), with examples and more details
1461 * how it works.
1462 *
1463 * @trans: Handle of transaction
1464 *
1465 * @node: The delayed ref node used to get the bytenr/length for
1466 * extent whose references are incremented.
1467 *
1468 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1469 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1470 * bytenr of the parent block. Since new extents are always
1471 * created with indirect references, this will only be the case
1472 * when relocating a shared extent. In that case, root_objectid
1473 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1474 * be 0
1475 *
1476 * @root_objectid: The id of the root where this modification has originated,
1477 * this can be either one of the well-known metadata trees or
1478 * the subvolume id which references this extent.
1479 *
1480 * @owner: For data extents it is the inode number of the owning file.
1481 * For metadata extents this parameter holds the level in the
1482 * tree of the extent.
1483 *
1484 * @offset: For metadata extents the offset is ignored and is currently
1485 * always passed as 0. For data extents it is the fileoffset
1486 * this extent belongs to.
1487 *
1488 * @extent_op Pointer to a structure, holding information necessary when
1489 * updating a tree block's flags
1490 *
1491 */
1492static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1493 struct btrfs_delayed_ref_node *node,
1494 u64 parent, u64 root_objectid,
1495 u64 owner, u64 offset,
1496 struct btrfs_delayed_extent_op *extent_op)
1497{
1498 struct btrfs_path *path;
1499 struct extent_buffer *leaf;
1500 struct btrfs_extent_item *item;
1501 struct btrfs_key key;
1502 u64 bytenr = node->bytenr;
1503 u64 num_bytes = node->num_bytes;
1504 u64 refs;
1505 int refs_to_add = node->ref_mod;
1506 int ret;
1507
1508 path = btrfs_alloc_path();
1509 if (!path)
1510 return -ENOMEM;
1511
1512 /* this will setup the path even if it fails to insert the back ref */
1513 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1514 parent, root_objectid, owner,
1515 offset, refs_to_add, extent_op);
1516 if ((ret < 0 && ret != -EAGAIN) || !ret)
1517 goto out;
1518
1519 /*
1520 * Ok we had -EAGAIN which means we didn't have space to insert and
1521 * inline extent ref, so just update the reference count and add a
1522 * normal backref.
1523 */
1524 leaf = path->nodes[0];
1525 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1526 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1527 refs = btrfs_extent_refs(leaf, item);
1528 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1529 if (extent_op)
1530 __run_delayed_extent_op(extent_op, leaf, item);
1531
1532 btrfs_mark_buffer_dirty(trans, leaf);
1533 btrfs_release_path(path);
1534
1535 /* now insert the actual backref */
1536 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1537 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1538 root_objectid);
1539 else
1540 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1541 root_objectid, owner, offset,
1542 refs_to_add);
1543
1544 if (ret)
1545 btrfs_abort_transaction(trans, ret);
1546out:
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
1551static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1552 struct btrfs_delayed_ref_head *href)
1553{
1554 u64 root = href->owning_root;
1555
1556 /*
1557 * Don't check must_insert_reserved, as this is called from contexts
1558 * where it has already been unset.
1559 */
1560 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1561 !href->is_data || !is_fstree(root))
1562 return;
1563
1564 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1565 BTRFS_QGROUP_RSV_DATA);
1566}
1567
1568static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1569 struct btrfs_delayed_ref_head *href,
1570 struct btrfs_delayed_ref_node *node,
1571 struct btrfs_delayed_extent_op *extent_op,
1572 bool insert_reserved)
1573{
1574 int ret = 0;
1575 struct btrfs_delayed_data_ref *ref;
1576 u64 parent = 0;
1577 u64 flags = 0;
1578
1579 ref = btrfs_delayed_node_to_data_ref(node);
1580 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1581
1582 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1583 parent = ref->parent;
1584
1585 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1586 struct btrfs_key key;
1587 struct btrfs_squota_delta delta = {
1588 .root = href->owning_root,
1589 .num_bytes = node->num_bytes,
1590 .is_data = true,
1591 .is_inc = true,
1592 .generation = trans->transid,
1593 };
1594
1595 if (extent_op)
1596 flags |= extent_op->flags_to_set;
1597
1598 key.objectid = node->bytenr;
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 key.offset = node->num_bytes;
1601
1602 ret = alloc_reserved_file_extent(trans, parent, ref->root,
1603 flags, ref->objectid,
1604 ref->offset, &key,
1605 node->ref_mod, href->owning_root);
1606 free_head_ref_squota_rsv(trans->fs_info, href);
1607 if (!ret)
1608 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1609 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1610 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1611 ref->objectid, ref->offset,
1612 extent_op);
1613 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1614 ret = __btrfs_free_extent(trans, href, node, parent,
1615 ref->root, ref->objectid,
1616 ref->offset, extent_op);
1617 } else {
1618 BUG();
1619 }
1620 return ret;
1621}
1622
1623static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1624 struct extent_buffer *leaf,
1625 struct btrfs_extent_item *ei)
1626{
1627 u64 flags = btrfs_extent_flags(leaf, ei);
1628 if (extent_op->update_flags) {
1629 flags |= extent_op->flags_to_set;
1630 btrfs_set_extent_flags(leaf, ei, flags);
1631 }
1632
1633 if (extent_op->update_key) {
1634 struct btrfs_tree_block_info *bi;
1635 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1636 bi = (struct btrfs_tree_block_info *)(ei + 1);
1637 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1638 }
1639}
1640
1641static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1642 struct btrfs_delayed_ref_head *head,
1643 struct btrfs_delayed_extent_op *extent_op)
1644{
1645 struct btrfs_fs_info *fs_info = trans->fs_info;
1646 struct btrfs_root *root;
1647 struct btrfs_key key;
1648 struct btrfs_path *path;
1649 struct btrfs_extent_item *ei;
1650 struct extent_buffer *leaf;
1651 u32 item_size;
1652 int ret;
1653 int metadata = 1;
1654
1655 if (TRANS_ABORTED(trans))
1656 return 0;
1657
1658 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1659 metadata = 0;
1660
1661 path = btrfs_alloc_path();
1662 if (!path)
1663 return -ENOMEM;
1664
1665 key.objectid = head->bytenr;
1666
1667 if (metadata) {
1668 key.type = BTRFS_METADATA_ITEM_KEY;
1669 key.offset = extent_op->level;
1670 } else {
1671 key.type = BTRFS_EXTENT_ITEM_KEY;
1672 key.offset = head->num_bytes;
1673 }
1674
1675 root = btrfs_extent_root(fs_info, key.objectid);
1676again:
1677 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1678 if (ret < 0) {
1679 goto out;
1680 } else if (ret > 0) {
1681 if (metadata) {
1682 if (path->slots[0] > 0) {
1683 path->slots[0]--;
1684 btrfs_item_key_to_cpu(path->nodes[0], &key,
1685 path->slots[0]);
1686 if (key.objectid == head->bytenr &&
1687 key.type == BTRFS_EXTENT_ITEM_KEY &&
1688 key.offset == head->num_bytes)
1689 ret = 0;
1690 }
1691 if (ret > 0) {
1692 btrfs_release_path(path);
1693 metadata = 0;
1694
1695 key.objectid = head->bytenr;
1696 key.offset = head->num_bytes;
1697 key.type = BTRFS_EXTENT_ITEM_KEY;
1698 goto again;
1699 }
1700 } else {
1701 ret = -EUCLEAN;
1702 btrfs_err(fs_info,
1703 "missing extent item for extent %llu num_bytes %llu level %d",
1704 head->bytenr, head->num_bytes, extent_op->level);
1705 goto out;
1706 }
1707 }
1708
1709 leaf = path->nodes[0];
1710 item_size = btrfs_item_size(leaf, path->slots[0]);
1711
1712 if (unlikely(item_size < sizeof(*ei))) {
1713 ret = -EUCLEAN;
1714 btrfs_err(fs_info,
1715 "unexpected extent item size, has %u expect >= %zu",
1716 item_size, sizeof(*ei));
1717 btrfs_abort_transaction(trans, ret);
1718 goto out;
1719 }
1720
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 __run_delayed_extent_op(extent_op, leaf, ei);
1723
1724 btrfs_mark_buffer_dirty(trans, leaf);
1725out:
1726 btrfs_free_path(path);
1727 return ret;
1728}
1729
1730static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1731 struct btrfs_delayed_ref_head *href,
1732 struct btrfs_delayed_ref_node *node,
1733 struct btrfs_delayed_extent_op *extent_op,
1734 bool insert_reserved)
1735{
1736 int ret = 0;
1737 struct btrfs_fs_info *fs_info = trans->fs_info;
1738 struct btrfs_delayed_tree_ref *ref;
1739 u64 parent = 0;
1740 u64 ref_root = 0;
1741
1742 ref = btrfs_delayed_node_to_tree_ref(node);
1743 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1744
1745 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1746 parent = ref->parent;
1747 ref_root = ref->root;
1748
1749 if (unlikely(node->ref_mod != 1)) {
1750 btrfs_err(trans->fs_info,
1751 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1752 node->bytenr, node->ref_mod, node->action, ref_root,
1753 parent);
1754 return -EUCLEAN;
1755 }
1756 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1757 struct btrfs_squota_delta delta = {
1758 .root = href->owning_root,
1759 .num_bytes = fs_info->nodesize,
1760 .is_data = false,
1761 .is_inc = true,
1762 .generation = trans->transid,
1763 };
1764
1765 BUG_ON(!extent_op || !extent_op->update_flags);
1766 ret = alloc_reserved_tree_block(trans, node, extent_op);
1767 if (!ret)
1768 btrfs_record_squota_delta(fs_info, &delta);
1769 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1770 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1771 ref->level, 0, extent_op);
1772 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1773 ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1774 ref->level, 0, extent_op);
1775 } else {
1776 BUG();
1777 }
1778 return ret;
1779}
1780
1781/* helper function to actually process a single delayed ref entry */
1782static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1783 struct btrfs_delayed_ref_head *href,
1784 struct btrfs_delayed_ref_node *node,
1785 struct btrfs_delayed_extent_op *extent_op,
1786 bool insert_reserved)
1787{
1788 int ret = 0;
1789
1790 if (TRANS_ABORTED(trans)) {
1791 if (insert_reserved) {
1792 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1793 free_head_ref_squota_rsv(trans->fs_info, href);
1794 }
1795 return 0;
1796 }
1797
1798 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1799 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1800 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1801 insert_reserved);
1802 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1803 node->type == BTRFS_SHARED_DATA_REF_KEY)
1804 ret = run_delayed_data_ref(trans, href, node, extent_op,
1805 insert_reserved);
1806 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1807 ret = 0;
1808 else
1809 BUG();
1810 if (ret && insert_reserved)
1811 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1812 if (ret < 0)
1813 btrfs_err(trans->fs_info,
1814"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1815 node->bytenr, node->num_bytes, node->type,
1816 node->action, node->ref_mod, ret);
1817 return ret;
1818}
1819
1820static inline struct btrfs_delayed_ref_node *
1821select_delayed_ref(struct btrfs_delayed_ref_head *head)
1822{
1823 struct btrfs_delayed_ref_node *ref;
1824
1825 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1826 return NULL;
1827
1828 /*
1829 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1830 * This is to prevent a ref count from going down to zero, which deletes
1831 * the extent item from the extent tree, when there still are references
1832 * to add, which would fail because they would not find the extent item.
1833 */
1834 if (!list_empty(&head->ref_add_list))
1835 return list_first_entry(&head->ref_add_list,
1836 struct btrfs_delayed_ref_node, add_list);
1837
1838 ref = rb_entry(rb_first_cached(&head->ref_tree),
1839 struct btrfs_delayed_ref_node, ref_node);
1840 ASSERT(list_empty(&ref->add_list));
1841 return ref;
1842}
1843
1844static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1845 struct btrfs_delayed_ref_head *head)
1846{
1847 spin_lock(&delayed_refs->lock);
1848 head->processing = false;
1849 delayed_refs->num_heads_ready++;
1850 spin_unlock(&delayed_refs->lock);
1851 btrfs_delayed_ref_unlock(head);
1852}
1853
1854static struct btrfs_delayed_extent_op *cleanup_extent_op(
1855 struct btrfs_delayed_ref_head *head)
1856{
1857 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1858
1859 if (!extent_op)
1860 return NULL;
1861
1862 if (head->must_insert_reserved) {
1863 head->extent_op = NULL;
1864 btrfs_free_delayed_extent_op(extent_op);
1865 return NULL;
1866 }
1867 return extent_op;
1868}
1869
1870static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1871 struct btrfs_delayed_ref_head *head)
1872{
1873 struct btrfs_delayed_extent_op *extent_op;
1874 int ret;
1875
1876 extent_op = cleanup_extent_op(head);
1877 if (!extent_op)
1878 return 0;
1879 head->extent_op = NULL;
1880 spin_unlock(&head->lock);
1881 ret = run_delayed_extent_op(trans, head, extent_op);
1882 btrfs_free_delayed_extent_op(extent_op);
1883 return ret ? ret : 1;
1884}
1885
1886u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1887 struct btrfs_delayed_ref_root *delayed_refs,
1888 struct btrfs_delayed_ref_head *head)
1889{
1890 u64 ret = 0;
1891
1892 /*
1893 * We had csum deletions accounted for in our delayed refs rsv, we need
1894 * to drop the csum leaves for this update from our delayed_refs_rsv.
1895 */
1896 if (head->total_ref_mod < 0 && head->is_data) {
1897 int nr_csums;
1898
1899 spin_lock(&delayed_refs->lock);
1900 delayed_refs->pending_csums -= head->num_bytes;
1901 spin_unlock(&delayed_refs->lock);
1902 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1903
1904 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1905
1906 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1907 }
1908 /* must_insert_reserved can be set only if we didn't run the head ref. */
1909 if (head->must_insert_reserved)
1910 free_head_ref_squota_rsv(fs_info, head);
1911
1912 return ret;
1913}
1914
1915static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1916 struct btrfs_delayed_ref_head *head,
1917 u64 *bytes_released)
1918{
1919
1920 struct btrfs_fs_info *fs_info = trans->fs_info;
1921 struct btrfs_delayed_ref_root *delayed_refs;
1922 int ret;
1923
1924 delayed_refs = &trans->transaction->delayed_refs;
1925
1926 ret = run_and_cleanup_extent_op(trans, head);
1927 if (ret < 0) {
1928 unselect_delayed_ref_head(delayed_refs, head);
1929 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1930 return ret;
1931 } else if (ret) {
1932 return ret;
1933 }
1934
1935 /*
1936 * Need to drop our head ref lock and re-acquire the delayed ref lock
1937 * and then re-check to make sure nobody got added.
1938 */
1939 spin_unlock(&head->lock);
1940 spin_lock(&delayed_refs->lock);
1941 spin_lock(&head->lock);
1942 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1943 spin_unlock(&head->lock);
1944 spin_unlock(&delayed_refs->lock);
1945 return 1;
1946 }
1947 btrfs_delete_ref_head(delayed_refs, head);
1948 spin_unlock(&head->lock);
1949 spin_unlock(&delayed_refs->lock);
1950
1951 if (head->must_insert_reserved) {
1952 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1953 if (head->is_data) {
1954 struct btrfs_root *csum_root;
1955
1956 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1957 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1958 head->num_bytes);
1959 }
1960 }
1961
1962 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1963
1964 trace_run_delayed_ref_head(fs_info, head, 0);
1965 btrfs_delayed_ref_unlock(head);
1966 btrfs_put_delayed_ref_head(head);
1967 return ret;
1968}
1969
1970static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1971 struct btrfs_trans_handle *trans)
1972{
1973 struct btrfs_delayed_ref_root *delayed_refs =
1974 &trans->transaction->delayed_refs;
1975 struct btrfs_delayed_ref_head *head = NULL;
1976 int ret;
1977
1978 spin_lock(&delayed_refs->lock);
1979 head = btrfs_select_ref_head(delayed_refs);
1980 if (!head) {
1981 spin_unlock(&delayed_refs->lock);
1982 return head;
1983 }
1984
1985 /*
1986 * Grab the lock that says we are going to process all the refs for
1987 * this head
1988 */
1989 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1990 spin_unlock(&delayed_refs->lock);
1991
1992 /*
1993 * We may have dropped the spin lock to get the head mutex lock, and
1994 * that might have given someone else time to free the head. If that's
1995 * true, it has been removed from our list and we can move on.
1996 */
1997 if (ret == -EAGAIN)
1998 head = ERR_PTR(-EAGAIN);
1999
2000 return head;
2001}
2002
2003static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2004 struct btrfs_delayed_ref_head *locked_ref,
2005 u64 *bytes_released)
2006{
2007 struct btrfs_fs_info *fs_info = trans->fs_info;
2008 struct btrfs_delayed_ref_root *delayed_refs;
2009 struct btrfs_delayed_extent_op *extent_op;
2010 struct btrfs_delayed_ref_node *ref;
2011 bool must_insert_reserved;
2012 int ret;
2013
2014 delayed_refs = &trans->transaction->delayed_refs;
2015
2016 lockdep_assert_held(&locked_ref->mutex);
2017 lockdep_assert_held(&locked_ref->lock);
2018
2019 while ((ref = select_delayed_ref(locked_ref))) {
2020 if (ref->seq &&
2021 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2022 spin_unlock(&locked_ref->lock);
2023 unselect_delayed_ref_head(delayed_refs, locked_ref);
2024 return -EAGAIN;
2025 }
2026
2027 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2028 RB_CLEAR_NODE(&ref->ref_node);
2029 if (!list_empty(&ref->add_list))
2030 list_del(&ref->add_list);
2031 /*
2032 * When we play the delayed ref, also correct the ref_mod on
2033 * head
2034 */
2035 switch (ref->action) {
2036 case BTRFS_ADD_DELAYED_REF:
2037 case BTRFS_ADD_DELAYED_EXTENT:
2038 locked_ref->ref_mod -= ref->ref_mod;
2039 break;
2040 case BTRFS_DROP_DELAYED_REF:
2041 locked_ref->ref_mod += ref->ref_mod;
2042 break;
2043 default:
2044 WARN_ON(1);
2045 }
2046 atomic_dec(&delayed_refs->num_entries);
2047
2048 /*
2049 * Record the must_insert_reserved flag before we drop the
2050 * spin lock.
2051 */
2052 must_insert_reserved = locked_ref->must_insert_reserved;
2053 /*
2054 * Unsetting this on the head ref relinquishes ownership of
2055 * the rsv_bytes, so it is critical that every possible code
2056 * path from here forward frees all reserves including qgroup
2057 * reserve.
2058 */
2059 locked_ref->must_insert_reserved = false;
2060
2061 extent_op = locked_ref->extent_op;
2062 locked_ref->extent_op = NULL;
2063 spin_unlock(&locked_ref->lock);
2064
2065 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2066 must_insert_reserved);
2067 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2068 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2069
2070 btrfs_free_delayed_extent_op(extent_op);
2071 if (ret) {
2072 unselect_delayed_ref_head(delayed_refs, locked_ref);
2073 btrfs_put_delayed_ref(ref);
2074 return ret;
2075 }
2076
2077 btrfs_put_delayed_ref(ref);
2078 cond_resched();
2079
2080 spin_lock(&locked_ref->lock);
2081 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2082 }
2083
2084 return 0;
2085}
2086
2087/*
2088 * Returns 0 on success or if called with an already aborted transaction.
2089 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2090 */
2091static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2092 u64 min_bytes)
2093{
2094 struct btrfs_fs_info *fs_info = trans->fs_info;
2095 struct btrfs_delayed_ref_root *delayed_refs;
2096 struct btrfs_delayed_ref_head *locked_ref = NULL;
2097 int ret;
2098 unsigned long count = 0;
2099 unsigned long max_count = 0;
2100 u64 bytes_processed = 0;
2101
2102 delayed_refs = &trans->transaction->delayed_refs;
2103 if (min_bytes == 0) {
2104 max_count = delayed_refs->num_heads_ready;
2105 min_bytes = U64_MAX;
2106 }
2107
2108 do {
2109 if (!locked_ref) {
2110 locked_ref = btrfs_obtain_ref_head(trans);
2111 if (IS_ERR_OR_NULL(locked_ref)) {
2112 if (PTR_ERR(locked_ref) == -EAGAIN) {
2113 continue;
2114 } else {
2115 break;
2116 }
2117 }
2118 count++;
2119 }
2120 /*
2121 * We need to try and merge add/drops of the same ref since we
2122 * can run into issues with relocate dropping the implicit ref
2123 * and then it being added back again before the drop can
2124 * finish. If we merged anything we need to re-loop so we can
2125 * get a good ref.
2126 * Or we can get node references of the same type that weren't
2127 * merged when created due to bumps in the tree mod seq, and
2128 * we need to merge them to prevent adding an inline extent
2129 * backref before dropping it (triggering a BUG_ON at
2130 * insert_inline_extent_backref()).
2131 */
2132 spin_lock(&locked_ref->lock);
2133 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2134
2135 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2136 if (ret < 0 && ret != -EAGAIN) {
2137 /*
2138 * Error, btrfs_run_delayed_refs_for_head already
2139 * unlocked everything so just bail out
2140 */
2141 return ret;
2142 } else if (!ret) {
2143 /*
2144 * Success, perform the usual cleanup of a processed
2145 * head
2146 */
2147 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2148 if (ret > 0 ) {
2149 /* We dropped our lock, we need to loop. */
2150 ret = 0;
2151 continue;
2152 } else if (ret) {
2153 return ret;
2154 }
2155 }
2156
2157 /*
2158 * Either success case or btrfs_run_delayed_refs_for_head
2159 * returned -EAGAIN, meaning we need to select another head
2160 */
2161
2162 locked_ref = NULL;
2163 cond_resched();
2164 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2165 (max_count > 0 && count < max_count) ||
2166 locked_ref);
2167
2168 return 0;
2169}
2170
2171#ifdef SCRAMBLE_DELAYED_REFS
2172/*
2173 * Normally delayed refs get processed in ascending bytenr order. This
2174 * correlates in most cases to the order added. To expose dependencies on this
2175 * order, we start to process the tree in the middle instead of the beginning
2176 */
2177static u64 find_middle(struct rb_root *root)
2178{
2179 struct rb_node *n = root->rb_node;
2180 struct btrfs_delayed_ref_node *entry;
2181 int alt = 1;
2182 u64 middle;
2183 u64 first = 0, last = 0;
2184
2185 n = rb_first(root);
2186 if (n) {
2187 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2188 first = entry->bytenr;
2189 }
2190 n = rb_last(root);
2191 if (n) {
2192 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2193 last = entry->bytenr;
2194 }
2195 n = root->rb_node;
2196
2197 while (n) {
2198 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2199 WARN_ON(!entry->in_tree);
2200
2201 middle = entry->bytenr;
2202
2203 if (alt)
2204 n = n->rb_left;
2205 else
2206 n = n->rb_right;
2207
2208 alt = 1 - alt;
2209 }
2210 return middle;
2211}
2212#endif
2213
2214/*
2215 * Start processing the delayed reference count updates and extent insertions
2216 * we have queued up so far.
2217 *
2218 * @trans: Transaction handle.
2219 * @min_bytes: How many bytes of delayed references to process. After this
2220 * many bytes we stop processing delayed references if there are
2221 * any more. If 0 it means to run all existing delayed references,
2222 * but not new ones added after running all existing ones.
2223 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2224 * plus any new ones that are added.
2225 *
2226 * Returns 0 on success or if called with an aborted transaction
2227 * Returns <0 on error and aborts the transaction
2228 */
2229int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2230{
2231 struct btrfs_fs_info *fs_info = trans->fs_info;
2232 struct btrfs_delayed_ref_root *delayed_refs;
2233 int ret;
2234
2235 /* We'll clean this up in btrfs_cleanup_transaction */
2236 if (TRANS_ABORTED(trans))
2237 return 0;
2238
2239 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2240 return 0;
2241
2242 delayed_refs = &trans->transaction->delayed_refs;
2243again:
2244#ifdef SCRAMBLE_DELAYED_REFS
2245 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2246#endif
2247 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2248 if (ret < 0) {
2249 btrfs_abort_transaction(trans, ret);
2250 return ret;
2251 }
2252
2253 if (min_bytes == U64_MAX) {
2254 btrfs_create_pending_block_groups(trans);
2255
2256 spin_lock(&delayed_refs->lock);
2257 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2258 spin_unlock(&delayed_refs->lock);
2259 return 0;
2260 }
2261 spin_unlock(&delayed_refs->lock);
2262
2263 cond_resched();
2264 goto again;
2265 }
2266
2267 return 0;
2268}
2269
2270int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2271 struct extent_buffer *eb, u64 flags)
2272{
2273 struct btrfs_delayed_extent_op *extent_op;
2274 int level = btrfs_header_level(eb);
2275 int ret;
2276
2277 extent_op = btrfs_alloc_delayed_extent_op();
2278 if (!extent_op)
2279 return -ENOMEM;
2280
2281 extent_op->flags_to_set = flags;
2282 extent_op->update_flags = true;
2283 extent_op->update_key = false;
2284 extent_op->level = level;
2285
2286 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2287 if (ret)
2288 btrfs_free_delayed_extent_op(extent_op);
2289 return ret;
2290}
2291
2292static noinline int check_delayed_ref(struct btrfs_root *root,
2293 struct btrfs_path *path,
2294 u64 objectid, u64 offset, u64 bytenr)
2295{
2296 struct btrfs_delayed_ref_head *head;
2297 struct btrfs_delayed_ref_node *ref;
2298 struct btrfs_delayed_data_ref *data_ref;
2299 struct btrfs_delayed_ref_root *delayed_refs;
2300 struct btrfs_transaction *cur_trans;
2301 struct rb_node *node;
2302 int ret = 0;
2303
2304 spin_lock(&root->fs_info->trans_lock);
2305 cur_trans = root->fs_info->running_transaction;
2306 if (cur_trans)
2307 refcount_inc(&cur_trans->use_count);
2308 spin_unlock(&root->fs_info->trans_lock);
2309 if (!cur_trans)
2310 return 0;
2311
2312 delayed_refs = &cur_trans->delayed_refs;
2313 spin_lock(&delayed_refs->lock);
2314 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2315 if (!head) {
2316 spin_unlock(&delayed_refs->lock);
2317 btrfs_put_transaction(cur_trans);
2318 return 0;
2319 }
2320
2321 if (!mutex_trylock(&head->mutex)) {
2322 if (path->nowait) {
2323 spin_unlock(&delayed_refs->lock);
2324 btrfs_put_transaction(cur_trans);
2325 return -EAGAIN;
2326 }
2327
2328 refcount_inc(&head->refs);
2329 spin_unlock(&delayed_refs->lock);
2330
2331 btrfs_release_path(path);
2332
2333 /*
2334 * Mutex was contended, block until it's released and let
2335 * caller try again
2336 */
2337 mutex_lock(&head->mutex);
2338 mutex_unlock(&head->mutex);
2339 btrfs_put_delayed_ref_head(head);
2340 btrfs_put_transaction(cur_trans);
2341 return -EAGAIN;
2342 }
2343 spin_unlock(&delayed_refs->lock);
2344
2345 spin_lock(&head->lock);
2346 /*
2347 * XXX: We should replace this with a proper search function in the
2348 * future.
2349 */
2350 for (node = rb_first_cached(&head->ref_tree); node;
2351 node = rb_next(node)) {
2352 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2353 /* If it's a shared ref we know a cross reference exists */
2354 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2355 ret = 1;
2356 break;
2357 }
2358
2359 data_ref = btrfs_delayed_node_to_data_ref(ref);
2360
2361 /*
2362 * If our ref doesn't match the one we're currently looking at
2363 * then we have a cross reference.
2364 */
2365 if (data_ref->root != root->root_key.objectid ||
2366 data_ref->objectid != objectid ||
2367 data_ref->offset != offset) {
2368 ret = 1;
2369 break;
2370 }
2371 }
2372 spin_unlock(&head->lock);
2373 mutex_unlock(&head->mutex);
2374 btrfs_put_transaction(cur_trans);
2375 return ret;
2376}
2377
2378static noinline int check_committed_ref(struct btrfs_root *root,
2379 struct btrfs_path *path,
2380 u64 objectid, u64 offset, u64 bytenr,
2381 bool strict)
2382{
2383 struct btrfs_fs_info *fs_info = root->fs_info;
2384 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2385 struct extent_buffer *leaf;
2386 struct btrfs_extent_data_ref *ref;
2387 struct btrfs_extent_inline_ref *iref;
2388 struct btrfs_extent_item *ei;
2389 struct btrfs_key key;
2390 u32 item_size;
2391 u32 expected_size;
2392 int type;
2393 int ret;
2394
2395 key.objectid = bytenr;
2396 key.offset = (u64)-1;
2397 key.type = BTRFS_EXTENT_ITEM_KEY;
2398
2399 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2400 if (ret < 0)
2401 goto out;
2402 BUG_ON(ret == 0); /* Corruption */
2403
2404 ret = -ENOENT;
2405 if (path->slots[0] == 0)
2406 goto out;
2407
2408 path->slots[0]--;
2409 leaf = path->nodes[0];
2410 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2411
2412 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2413 goto out;
2414
2415 ret = 1;
2416 item_size = btrfs_item_size(leaf, path->slots[0]);
2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2419
2420 /* No inline refs; we need to bail before checking for owner ref. */
2421 if (item_size == sizeof(*ei))
2422 goto out;
2423
2424 /* Check for an owner ref; skip over it to the real inline refs. */
2425 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2426 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2427 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2428 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2429 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2430 }
2431
2432 /* If extent item has more than 1 inline ref then it's shared */
2433 if (item_size != expected_size)
2434 goto out;
2435
2436 /*
2437 * If extent created before last snapshot => it's shared unless the
2438 * snapshot has been deleted. Use the heuristic if strict is false.
2439 */
2440 if (!strict &&
2441 (btrfs_extent_generation(leaf, ei) <=
2442 btrfs_root_last_snapshot(&root->root_item)))
2443 goto out;
2444
2445 /* If this extent has SHARED_DATA_REF then it's shared */
2446 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2447 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2448 goto out;
2449
2450 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2451 if (btrfs_extent_refs(leaf, ei) !=
2452 btrfs_extent_data_ref_count(leaf, ref) ||
2453 btrfs_extent_data_ref_root(leaf, ref) !=
2454 root->root_key.objectid ||
2455 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2456 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2457 goto out;
2458
2459 ret = 0;
2460out:
2461 return ret;
2462}
2463
2464int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2465 u64 bytenr, bool strict, struct btrfs_path *path)
2466{
2467 int ret;
2468
2469 do {
2470 ret = check_committed_ref(root, path, objectid,
2471 offset, bytenr, strict);
2472 if (ret && ret != -ENOENT)
2473 goto out;
2474
2475 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2476 } while (ret == -EAGAIN);
2477
2478out:
2479 btrfs_release_path(path);
2480 if (btrfs_is_data_reloc_root(root))
2481 WARN_ON(ret > 0);
2482 return ret;
2483}
2484
2485static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2486 struct btrfs_root *root,
2487 struct extent_buffer *buf,
2488 int full_backref, int inc)
2489{
2490 struct btrfs_fs_info *fs_info = root->fs_info;
2491 u64 bytenr;
2492 u64 num_bytes;
2493 u64 parent;
2494 u64 ref_root;
2495 u32 nritems;
2496 struct btrfs_key key;
2497 struct btrfs_file_extent_item *fi;
2498 struct btrfs_ref generic_ref = { 0 };
2499 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2500 int i;
2501 int action;
2502 int level;
2503 int ret = 0;
2504
2505 if (btrfs_is_testing(fs_info))
2506 return 0;
2507
2508 ref_root = btrfs_header_owner(buf);
2509 nritems = btrfs_header_nritems(buf);
2510 level = btrfs_header_level(buf);
2511
2512 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2513 return 0;
2514
2515 if (full_backref)
2516 parent = buf->start;
2517 else
2518 parent = 0;
2519 if (inc)
2520 action = BTRFS_ADD_DELAYED_REF;
2521 else
2522 action = BTRFS_DROP_DELAYED_REF;
2523
2524 for (i = 0; i < nritems; i++) {
2525 if (level == 0) {
2526 btrfs_item_key_to_cpu(buf, &key, i);
2527 if (key.type != BTRFS_EXTENT_DATA_KEY)
2528 continue;
2529 fi = btrfs_item_ptr(buf, i,
2530 struct btrfs_file_extent_item);
2531 if (btrfs_file_extent_type(buf, fi) ==
2532 BTRFS_FILE_EXTENT_INLINE)
2533 continue;
2534 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2535 if (bytenr == 0)
2536 continue;
2537
2538 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2539 key.offset -= btrfs_file_extent_offset(buf, fi);
2540 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2541 num_bytes, parent, ref_root);
2542 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2543 key.offset, root->root_key.objectid,
2544 for_reloc);
2545 if (inc)
2546 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2547 else
2548 ret = btrfs_free_extent(trans, &generic_ref);
2549 if (ret)
2550 goto fail;
2551 } else {
2552 bytenr = btrfs_node_blockptr(buf, i);
2553 num_bytes = fs_info->nodesize;
2554 /* We don't know the owning_root, use 0. */
2555 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2556 num_bytes, parent, 0);
2557 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2558 root->root_key.objectid, for_reloc);
2559 if (inc)
2560 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2561 else
2562 ret = btrfs_free_extent(trans, &generic_ref);
2563 if (ret)
2564 goto fail;
2565 }
2566 }
2567 return 0;
2568fail:
2569 return ret;
2570}
2571
2572int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2573 struct extent_buffer *buf, int full_backref)
2574{
2575 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2576}
2577
2578int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2579 struct extent_buffer *buf, int full_backref)
2580{
2581 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2582}
2583
2584static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2585{
2586 struct btrfs_fs_info *fs_info = root->fs_info;
2587 u64 flags;
2588 u64 ret;
2589
2590 if (data)
2591 flags = BTRFS_BLOCK_GROUP_DATA;
2592 else if (root == fs_info->chunk_root)
2593 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2594 else
2595 flags = BTRFS_BLOCK_GROUP_METADATA;
2596
2597 ret = btrfs_get_alloc_profile(fs_info, flags);
2598 return ret;
2599}
2600
2601static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2602{
2603 struct rb_node *leftmost;
2604 u64 bytenr = 0;
2605
2606 read_lock(&fs_info->block_group_cache_lock);
2607 /* Get the block group with the lowest logical start address. */
2608 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2609 if (leftmost) {
2610 struct btrfs_block_group *bg;
2611
2612 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2613 bytenr = bg->start;
2614 }
2615 read_unlock(&fs_info->block_group_cache_lock);
2616
2617 return bytenr;
2618}
2619
2620static int pin_down_extent(struct btrfs_trans_handle *trans,
2621 struct btrfs_block_group *cache,
2622 u64 bytenr, u64 num_bytes, int reserved)
2623{
2624 struct btrfs_fs_info *fs_info = cache->fs_info;
2625
2626 spin_lock(&cache->space_info->lock);
2627 spin_lock(&cache->lock);
2628 cache->pinned += num_bytes;
2629 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2630 num_bytes);
2631 if (reserved) {
2632 cache->reserved -= num_bytes;
2633 cache->space_info->bytes_reserved -= num_bytes;
2634 }
2635 spin_unlock(&cache->lock);
2636 spin_unlock(&cache->space_info->lock);
2637
2638 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2639 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2640 return 0;
2641}
2642
2643int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2644 u64 bytenr, u64 num_bytes, int reserved)
2645{
2646 struct btrfs_block_group *cache;
2647
2648 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2649 BUG_ON(!cache); /* Logic error */
2650
2651 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2652
2653 btrfs_put_block_group(cache);
2654 return 0;
2655}
2656
2657int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2658 const struct extent_buffer *eb)
2659{
2660 struct btrfs_block_group *cache;
2661 int ret;
2662
2663 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2664 if (!cache)
2665 return -EINVAL;
2666
2667 /*
2668 * Fully cache the free space first so that our pin removes the free space
2669 * from the cache.
2670 */
2671 ret = btrfs_cache_block_group(cache, true);
2672 if (ret)
2673 goto out;
2674
2675 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2676
2677 /* remove us from the free space cache (if we're there at all) */
2678 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2679out:
2680 btrfs_put_block_group(cache);
2681 return ret;
2682}
2683
2684static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2685 u64 start, u64 num_bytes)
2686{
2687 int ret;
2688 struct btrfs_block_group *block_group;
2689
2690 block_group = btrfs_lookup_block_group(fs_info, start);
2691 if (!block_group)
2692 return -EINVAL;
2693
2694 ret = btrfs_cache_block_group(block_group, true);
2695 if (ret)
2696 goto out;
2697
2698 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2699out:
2700 btrfs_put_block_group(block_group);
2701 return ret;
2702}
2703
2704int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2705{
2706 struct btrfs_fs_info *fs_info = eb->fs_info;
2707 struct btrfs_file_extent_item *item;
2708 struct btrfs_key key;
2709 int found_type;
2710 int i;
2711 int ret = 0;
2712
2713 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2714 return 0;
2715
2716 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2717 btrfs_item_key_to_cpu(eb, &key, i);
2718 if (key.type != BTRFS_EXTENT_DATA_KEY)
2719 continue;
2720 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2721 found_type = btrfs_file_extent_type(eb, item);
2722 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2723 continue;
2724 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2725 continue;
2726 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2727 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2728 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2729 if (ret)
2730 break;
2731 }
2732
2733 return ret;
2734}
2735
2736static void
2737btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2738{
2739 atomic_inc(&bg->reservations);
2740}
2741
2742/*
2743 * Returns the free cluster for the given space info and sets empty_cluster to
2744 * what it should be based on the mount options.
2745 */
2746static struct btrfs_free_cluster *
2747fetch_cluster_info(struct btrfs_fs_info *fs_info,
2748 struct btrfs_space_info *space_info, u64 *empty_cluster)
2749{
2750 struct btrfs_free_cluster *ret = NULL;
2751
2752 *empty_cluster = 0;
2753 if (btrfs_mixed_space_info(space_info))
2754 return ret;
2755
2756 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2757 ret = &fs_info->meta_alloc_cluster;
2758 if (btrfs_test_opt(fs_info, SSD))
2759 *empty_cluster = SZ_2M;
2760 else
2761 *empty_cluster = SZ_64K;
2762 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2763 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2764 *empty_cluster = SZ_2M;
2765 ret = &fs_info->data_alloc_cluster;
2766 }
2767
2768 return ret;
2769}
2770
2771static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2772 u64 start, u64 end,
2773 const bool return_free_space)
2774{
2775 struct btrfs_block_group *cache = NULL;
2776 struct btrfs_space_info *space_info;
2777 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2778 struct btrfs_free_cluster *cluster = NULL;
2779 u64 len;
2780 u64 total_unpinned = 0;
2781 u64 empty_cluster = 0;
2782 bool readonly;
2783
2784 while (start <= end) {
2785 readonly = false;
2786 if (!cache ||
2787 start >= cache->start + cache->length) {
2788 if (cache)
2789 btrfs_put_block_group(cache);
2790 total_unpinned = 0;
2791 cache = btrfs_lookup_block_group(fs_info, start);
2792 BUG_ON(!cache); /* Logic error */
2793
2794 cluster = fetch_cluster_info(fs_info,
2795 cache->space_info,
2796 &empty_cluster);
2797 empty_cluster <<= 1;
2798 }
2799
2800 len = cache->start + cache->length - start;
2801 len = min(len, end + 1 - start);
2802
2803 if (return_free_space)
2804 btrfs_add_free_space(cache, start, len);
2805
2806 start += len;
2807 total_unpinned += len;
2808 space_info = cache->space_info;
2809
2810 /*
2811 * If this space cluster has been marked as fragmented and we've
2812 * unpinned enough in this block group to potentially allow a
2813 * cluster to be created inside of it go ahead and clear the
2814 * fragmented check.
2815 */
2816 if (cluster && cluster->fragmented &&
2817 total_unpinned > empty_cluster) {
2818 spin_lock(&cluster->lock);
2819 cluster->fragmented = 0;
2820 spin_unlock(&cluster->lock);
2821 }
2822
2823 spin_lock(&space_info->lock);
2824 spin_lock(&cache->lock);
2825 cache->pinned -= len;
2826 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2827 space_info->max_extent_size = 0;
2828 if (cache->ro) {
2829 space_info->bytes_readonly += len;
2830 readonly = true;
2831 } else if (btrfs_is_zoned(fs_info)) {
2832 /* Need reset before reusing in a zoned block group */
2833 space_info->bytes_zone_unusable += len;
2834 readonly = true;
2835 }
2836 spin_unlock(&cache->lock);
2837 if (!readonly && return_free_space &&
2838 global_rsv->space_info == space_info) {
2839 spin_lock(&global_rsv->lock);
2840 if (!global_rsv->full) {
2841 u64 to_add = min(len, global_rsv->size -
2842 global_rsv->reserved);
2843
2844 global_rsv->reserved += to_add;
2845 btrfs_space_info_update_bytes_may_use(fs_info,
2846 space_info, to_add);
2847 if (global_rsv->reserved >= global_rsv->size)
2848 global_rsv->full = 1;
2849 len -= to_add;
2850 }
2851 spin_unlock(&global_rsv->lock);
2852 }
2853 /* Add to any tickets we may have */
2854 if (!readonly && return_free_space && len)
2855 btrfs_try_granting_tickets(fs_info, space_info);
2856 spin_unlock(&space_info->lock);
2857 }
2858
2859 if (cache)
2860 btrfs_put_block_group(cache);
2861 return 0;
2862}
2863
2864int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2865{
2866 struct btrfs_fs_info *fs_info = trans->fs_info;
2867 struct btrfs_block_group *block_group, *tmp;
2868 struct list_head *deleted_bgs;
2869 struct extent_io_tree *unpin;
2870 u64 start;
2871 u64 end;
2872 int ret;
2873
2874 unpin = &trans->transaction->pinned_extents;
2875
2876 while (!TRANS_ABORTED(trans)) {
2877 struct extent_state *cached_state = NULL;
2878
2879 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2880 if (!find_first_extent_bit(unpin, 0, &start, &end,
2881 EXTENT_DIRTY, &cached_state)) {
2882 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883 break;
2884 }
2885
2886 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2887 ret = btrfs_discard_extent(fs_info, start,
2888 end + 1 - start, NULL);
2889
2890 clear_extent_dirty(unpin, start, end, &cached_state);
2891 unpin_extent_range(fs_info, start, end, true);
2892 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2893 free_extent_state(cached_state);
2894 cond_resched();
2895 }
2896
2897 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2898 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2899 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2900 }
2901
2902 /*
2903 * Transaction is finished. We don't need the lock anymore. We
2904 * do need to clean up the block groups in case of a transaction
2905 * abort.
2906 */
2907 deleted_bgs = &trans->transaction->deleted_bgs;
2908 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2909 u64 trimmed = 0;
2910
2911 ret = -EROFS;
2912 if (!TRANS_ABORTED(trans))
2913 ret = btrfs_discard_extent(fs_info,
2914 block_group->start,
2915 block_group->length,
2916 &trimmed);
2917
2918 list_del_init(&block_group->bg_list);
2919 btrfs_unfreeze_block_group(block_group);
2920 btrfs_put_block_group(block_group);
2921
2922 if (ret) {
2923 const char *errstr = btrfs_decode_error(ret);
2924 btrfs_warn(fs_info,
2925 "discard failed while removing blockgroup: errno=%d %s",
2926 ret, errstr);
2927 }
2928 }
2929
2930 return 0;
2931}
2932
2933/*
2934 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2935 *
2936 * @fs_info: the btrfs_fs_info for this mount
2937 * @leaf: a leaf in the extent tree containing the extent item
2938 * @slot: the slot in the leaf where the extent item is found
2939 *
2940 * Returns the objectid of the root that originally allocated the extent item
2941 * if the inline owner ref is expected and present, otherwise 0.
2942 *
2943 * If an extent item has an owner ref item, it will be the first inline ref
2944 * item. Therefore the logic is to check whether there are any inline ref
2945 * items, then check the type of the first one.
2946 */
2947u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2948 struct extent_buffer *leaf, int slot)
2949{
2950 struct btrfs_extent_item *ei;
2951 struct btrfs_extent_inline_ref *iref;
2952 struct btrfs_extent_owner_ref *oref;
2953 unsigned long ptr;
2954 unsigned long end;
2955 int type;
2956
2957 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2958 return 0;
2959
2960 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2961 ptr = (unsigned long)(ei + 1);
2962 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2963
2964 /* No inline ref items of any kind, can't check type. */
2965 if (ptr == end)
2966 return 0;
2967
2968 iref = (struct btrfs_extent_inline_ref *)ptr;
2969 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2970
2971 /* We found an owner ref, get the root out of it. */
2972 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2973 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2974 return btrfs_extent_owner_ref_root_id(leaf, oref);
2975 }
2976
2977 /* We have inline refs, but not an owner ref. */
2978 return 0;
2979}
2980
2981static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2982 u64 bytenr, struct btrfs_squota_delta *delta)
2983{
2984 int ret;
2985 u64 num_bytes = delta->num_bytes;
2986
2987 if (delta->is_data) {
2988 struct btrfs_root *csum_root;
2989
2990 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2991 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2992 if (ret) {
2993 btrfs_abort_transaction(trans, ret);
2994 return ret;
2995 }
2996
2997 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2998 if (ret) {
2999 btrfs_abort_transaction(trans, ret);
3000 return ret;
3001 }
3002 }
3003
3004 ret = btrfs_record_squota_delta(trans->fs_info, delta);
3005 if (ret) {
3006 btrfs_abort_transaction(trans, ret);
3007 return ret;
3008 }
3009
3010 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3011 if (ret) {
3012 btrfs_abort_transaction(trans, ret);
3013 return ret;
3014 }
3015
3016 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3017 if (ret)
3018 btrfs_abort_transaction(trans, ret);
3019
3020 return ret;
3021}
3022
3023#define abort_and_dump(trans, path, fmt, args...) \
3024({ \
3025 btrfs_abort_transaction(trans, -EUCLEAN); \
3026 btrfs_print_leaf(path->nodes[0]); \
3027 btrfs_crit(trans->fs_info, fmt, ##args); \
3028})
3029
3030/*
3031 * Drop one or more refs of @node.
3032 *
3033 * 1. Locate the extent refs.
3034 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3035 * Locate it, then reduce the refs number or remove the ref line completely.
3036 *
3037 * 2. Update the refs count in EXTENT/METADATA_ITEM
3038 *
3039 * Inline backref case:
3040 *
3041 * in extent tree we have:
3042 *
3043 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3044 * refs 2 gen 6 flags DATA
3045 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3046 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3047 *
3048 * This function gets called with:
3049 *
3050 * node->bytenr = 13631488
3051 * node->num_bytes = 1048576
3052 * root_objectid = FS_TREE
3053 * owner_objectid = 257
3054 * owner_offset = 0
3055 * refs_to_drop = 1
3056 *
3057 * Then we should get some like:
3058 *
3059 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3060 * refs 1 gen 6 flags DATA
3061 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3062 *
3063 * Keyed backref case:
3064 *
3065 * in extent tree we have:
3066 *
3067 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3068 * refs 754 gen 6 flags DATA
3069 * [...]
3070 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3071 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3072 *
3073 * This function get called with:
3074 *
3075 * node->bytenr = 13631488
3076 * node->num_bytes = 1048576
3077 * root_objectid = FS_TREE
3078 * owner_objectid = 866
3079 * owner_offset = 0
3080 * refs_to_drop = 1
3081 *
3082 * Then we should get some like:
3083 *
3084 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3085 * refs 753 gen 6 flags DATA
3086 *
3087 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3088 */
3089static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3090 struct btrfs_delayed_ref_head *href,
3091 struct btrfs_delayed_ref_node *node, u64 parent,
3092 u64 root_objectid, u64 owner_objectid,
3093 u64 owner_offset,
3094 struct btrfs_delayed_extent_op *extent_op)
3095{
3096 struct btrfs_fs_info *info = trans->fs_info;
3097 struct btrfs_key key;
3098 struct btrfs_path *path;
3099 struct btrfs_root *extent_root;
3100 struct extent_buffer *leaf;
3101 struct btrfs_extent_item *ei;
3102 struct btrfs_extent_inline_ref *iref;
3103 int ret;
3104 int is_data;
3105 int extent_slot = 0;
3106 int found_extent = 0;
3107 int num_to_del = 1;
3108 int refs_to_drop = node->ref_mod;
3109 u32 item_size;
3110 u64 refs;
3111 u64 bytenr = node->bytenr;
3112 u64 num_bytes = node->num_bytes;
3113 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3114 u64 delayed_ref_root = href->owning_root;
3115
3116 extent_root = btrfs_extent_root(info, bytenr);
3117 ASSERT(extent_root);
3118
3119 path = btrfs_alloc_path();
3120 if (!path)
3121 return -ENOMEM;
3122
3123 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3124
3125 if (!is_data && refs_to_drop != 1) {
3126 btrfs_crit(info,
3127"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3128 node->bytenr, refs_to_drop);
3129 ret = -EINVAL;
3130 btrfs_abort_transaction(trans, ret);
3131 goto out;
3132 }
3133
3134 if (is_data)
3135 skinny_metadata = false;
3136
3137 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3138 parent, root_objectid, owner_objectid,
3139 owner_offset);
3140 if (ret == 0) {
3141 /*
3142 * Either the inline backref or the SHARED_DATA_REF/
3143 * SHARED_BLOCK_REF is found
3144 *
3145 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3146 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3147 */
3148 extent_slot = path->slots[0];
3149 while (extent_slot >= 0) {
3150 btrfs_item_key_to_cpu(path->nodes[0], &key,
3151 extent_slot);
3152 if (key.objectid != bytenr)
3153 break;
3154 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3155 key.offset == num_bytes) {
3156 found_extent = 1;
3157 break;
3158 }
3159 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3160 key.offset == owner_objectid) {
3161 found_extent = 1;
3162 break;
3163 }
3164
3165 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3166 if (path->slots[0] - extent_slot > 5)
3167 break;
3168 extent_slot--;
3169 }
3170
3171 if (!found_extent) {
3172 if (iref) {
3173 abort_and_dump(trans, path,
3174"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3175 path->slots[0]);
3176 ret = -EUCLEAN;
3177 goto out;
3178 }
3179 /* Must be SHARED_* item, remove the backref first */
3180 ret = remove_extent_backref(trans, extent_root, path,
3181 NULL, refs_to_drop, is_data);
3182 if (ret) {
3183 btrfs_abort_transaction(trans, ret);
3184 goto out;
3185 }
3186 btrfs_release_path(path);
3187
3188 /* Slow path to locate EXTENT/METADATA_ITEM */
3189 key.objectid = bytenr;
3190 key.type = BTRFS_EXTENT_ITEM_KEY;
3191 key.offset = num_bytes;
3192
3193 if (!is_data && skinny_metadata) {
3194 key.type = BTRFS_METADATA_ITEM_KEY;
3195 key.offset = owner_objectid;
3196 }
3197
3198 ret = btrfs_search_slot(trans, extent_root,
3199 &key, path, -1, 1);
3200 if (ret > 0 && skinny_metadata && path->slots[0]) {
3201 /*
3202 * Couldn't find our skinny metadata item,
3203 * see if we have ye olde extent item.
3204 */
3205 path->slots[0]--;
3206 btrfs_item_key_to_cpu(path->nodes[0], &key,
3207 path->slots[0]);
3208 if (key.objectid == bytenr &&
3209 key.type == BTRFS_EXTENT_ITEM_KEY &&
3210 key.offset == num_bytes)
3211 ret = 0;
3212 }
3213
3214 if (ret > 0 && skinny_metadata) {
3215 skinny_metadata = false;
3216 key.objectid = bytenr;
3217 key.type = BTRFS_EXTENT_ITEM_KEY;
3218 key.offset = num_bytes;
3219 btrfs_release_path(path);
3220 ret = btrfs_search_slot(trans, extent_root,
3221 &key, path, -1, 1);
3222 }
3223
3224 if (ret) {
3225 if (ret > 0)
3226 btrfs_print_leaf(path->nodes[0]);
3227 btrfs_err(info,
3228 "umm, got %d back from search, was looking for %llu, slot %d",
3229 ret, bytenr, path->slots[0]);
3230 }
3231 if (ret < 0) {
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235 extent_slot = path->slots[0];
3236 }
3237 } else if (WARN_ON(ret == -ENOENT)) {
3238 abort_and_dump(trans, path,
3239"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3240 bytenr, parent, root_objectid, owner_objectid,
3241 owner_offset, path->slots[0]);
3242 goto out;
3243 } else {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247
3248 leaf = path->nodes[0];
3249 item_size = btrfs_item_size(leaf, extent_slot);
3250 if (unlikely(item_size < sizeof(*ei))) {
3251 ret = -EUCLEAN;
3252 btrfs_err(trans->fs_info,
3253 "unexpected extent item size, has %u expect >= %zu",
3254 item_size, sizeof(*ei));
3255 btrfs_abort_transaction(trans, ret);
3256 goto out;
3257 }
3258 ei = btrfs_item_ptr(leaf, extent_slot,
3259 struct btrfs_extent_item);
3260 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3261 key.type == BTRFS_EXTENT_ITEM_KEY) {
3262 struct btrfs_tree_block_info *bi;
3263
3264 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3265 abort_and_dump(trans, path,
3266"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3267 key.objectid, key.type, key.offset,
3268 path->slots[0], owner_objectid, item_size,
3269 sizeof(*ei) + sizeof(*bi));
3270 ret = -EUCLEAN;
3271 goto out;
3272 }
3273 bi = (struct btrfs_tree_block_info *)(ei + 1);
3274 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3275 }
3276
3277 refs = btrfs_extent_refs(leaf, ei);
3278 if (refs < refs_to_drop) {
3279 abort_and_dump(trans, path,
3280 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3281 refs_to_drop, refs, bytenr, path->slots[0]);
3282 ret = -EUCLEAN;
3283 goto out;
3284 }
3285 refs -= refs_to_drop;
3286
3287 if (refs > 0) {
3288 if (extent_op)
3289 __run_delayed_extent_op(extent_op, leaf, ei);
3290 /*
3291 * In the case of inline back ref, reference count will
3292 * be updated by remove_extent_backref
3293 */
3294 if (iref) {
3295 if (!found_extent) {
3296 abort_and_dump(trans, path,
3297"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3298 path->slots[0]);
3299 ret = -EUCLEAN;
3300 goto out;
3301 }
3302 } else {
3303 btrfs_set_extent_refs(leaf, ei, refs);
3304 btrfs_mark_buffer_dirty(trans, leaf);
3305 }
3306 if (found_extent) {
3307 ret = remove_extent_backref(trans, extent_root, path,
3308 iref, refs_to_drop, is_data);
3309 if (ret) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313 }
3314 } else {
3315 struct btrfs_squota_delta delta = {
3316 .root = delayed_ref_root,
3317 .num_bytes = num_bytes,
3318 .is_data = is_data,
3319 .is_inc = false,
3320 .generation = btrfs_extent_generation(leaf, ei),
3321 };
3322
3323 /* In this branch refs == 1 */
3324 if (found_extent) {
3325 if (is_data && refs_to_drop !=
3326 extent_data_ref_count(path, iref)) {
3327 abort_and_dump(trans, path,
3328 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3329 extent_data_ref_count(path, iref),
3330 refs_to_drop, path->slots[0]);
3331 ret = -EUCLEAN;
3332 goto out;
3333 }
3334 if (iref) {
3335 if (path->slots[0] != extent_slot) {
3336 abort_and_dump(trans, path,
3337"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3338 key.objectid, key.type,
3339 key.offset, path->slots[0]);
3340 ret = -EUCLEAN;
3341 goto out;
3342 }
3343 } else {
3344 /*
3345 * No inline ref, we must be at SHARED_* item,
3346 * And it's single ref, it must be:
3347 * | extent_slot ||extent_slot + 1|
3348 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3349 */
3350 if (path->slots[0] != extent_slot + 1) {
3351 abort_and_dump(trans, path,
3352 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3353 path->slots[0]);
3354 ret = -EUCLEAN;
3355 goto out;
3356 }
3357 path->slots[0] = extent_slot;
3358 num_to_del = 2;
3359 }
3360 }
3361 /*
3362 * We can't infer the data owner from the delayed ref, so we need
3363 * to try to get it from the owning ref item.
3364 *
3365 * If it is not present, then that extent was not written under
3366 * simple quotas mode, so we don't need to account for its deletion.
3367 */
3368 if (is_data)
3369 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3370 leaf, extent_slot);
3371
3372 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3373 num_to_del);
3374 if (ret) {
3375 btrfs_abort_transaction(trans, ret);
3376 goto out;
3377 }
3378 btrfs_release_path(path);
3379
3380 ret = do_free_extent_accounting(trans, bytenr, &delta);
3381 }
3382 btrfs_release_path(path);
3383
3384out:
3385 btrfs_free_path(path);
3386 return ret;
3387}
3388
3389/*
3390 * when we free an block, it is possible (and likely) that we free the last
3391 * delayed ref for that extent as well. This searches the delayed ref tree for
3392 * a given extent, and if there are no other delayed refs to be processed, it
3393 * removes it from the tree.
3394 */
3395static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3396 u64 bytenr)
3397{
3398 struct btrfs_delayed_ref_head *head;
3399 struct btrfs_delayed_ref_root *delayed_refs;
3400 int ret = 0;
3401
3402 delayed_refs = &trans->transaction->delayed_refs;
3403 spin_lock(&delayed_refs->lock);
3404 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3405 if (!head)
3406 goto out_delayed_unlock;
3407
3408 spin_lock(&head->lock);
3409 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3410 goto out;
3411
3412 if (cleanup_extent_op(head) != NULL)
3413 goto out;
3414
3415 /*
3416 * waiting for the lock here would deadlock. If someone else has it
3417 * locked they are already in the process of dropping it anyway
3418 */
3419 if (!mutex_trylock(&head->mutex))
3420 goto out;
3421
3422 btrfs_delete_ref_head(delayed_refs, head);
3423 head->processing = false;
3424
3425 spin_unlock(&head->lock);
3426 spin_unlock(&delayed_refs->lock);
3427
3428 BUG_ON(head->extent_op);
3429 if (head->must_insert_reserved)
3430 ret = 1;
3431
3432 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3433 mutex_unlock(&head->mutex);
3434 btrfs_put_delayed_ref_head(head);
3435 return ret;
3436out:
3437 spin_unlock(&head->lock);
3438
3439out_delayed_unlock:
3440 spin_unlock(&delayed_refs->lock);
3441 return 0;
3442}
3443
3444void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3445 u64 root_id,
3446 struct extent_buffer *buf,
3447 u64 parent, int last_ref)
3448{
3449 struct btrfs_fs_info *fs_info = trans->fs_info;
3450 struct btrfs_ref generic_ref = { 0 };
3451 struct btrfs_block_group *bg;
3452 int ret;
3453
3454 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3455 buf->start, buf->len, parent, btrfs_header_owner(buf));
3456 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3457 root_id, 0, false);
3458
3459 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3460 btrfs_ref_tree_mod(fs_info, &generic_ref);
3461 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3462 BUG_ON(ret); /* -ENOMEM */
3463 }
3464
3465 if (!last_ref)
3466 return;
3467
3468 if (btrfs_header_generation(buf) != trans->transid)
3469 goto out;
3470
3471 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3472 ret = check_ref_cleanup(trans, buf->start);
3473 if (!ret)
3474 goto out;
3475 }
3476
3477 bg = btrfs_lookup_block_group(fs_info, buf->start);
3478
3479 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3480 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3481 btrfs_put_block_group(bg);
3482 goto out;
3483 }
3484
3485 /*
3486 * If there are tree mod log users we may have recorded mod log
3487 * operations for this node. If we re-allocate this node we
3488 * could replay operations on this node that happened when it
3489 * existed in a completely different root. For example if it
3490 * was part of root A, then was reallocated to root B, and we
3491 * are doing a btrfs_old_search_slot(root b), we could replay
3492 * operations that happened when the block was part of root A,
3493 * giving us an inconsistent view of the btree.
3494 *
3495 * We are safe from races here because at this point no other
3496 * node or root points to this extent buffer, so if after this
3497 * check a new tree mod log user joins we will not have an
3498 * existing log of operations on this node that we have to
3499 * contend with.
3500 */
3501
3502 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3503 || btrfs_is_zoned(fs_info)) {
3504 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3505 btrfs_put_block_group(bg);
3506 goto out;
3507 }
3508
3509 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3510
3511 btrfs_add_free_space(bg, buf->start, buf->len);
3512 btrfs_free_reserved_bytes(bg, buf->len, 0);
3513 btrfs_put_block_group(bg);
3514 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3515
3516out:
3517
3518 /*
3519 * Deleting the buffer, clear the corrupt flag since it doesn't
3520 * matter anymore.
3521 */
3522 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3523}
3524
3525/* Can return -ENOMEM */
3526int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3527{
3528 struct btrfs_fs_info *fs_info = trans->fs_info;
3529 int ret;
3530
3531 if (btrfs_is_testing(fs_info))
3532 return 0;
3533
3534 /*
3535 * tree log blocks never actually go into the extent allocation
3536 * tree, just update pinning info and exit early.
3537 */
3538 if ((ref->type == BTRFS_REF_METADATA &&
3539 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3540 (ref->type == BTRFS_REF_DATA &&
3541 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3542 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3543 ret = 0;
3544 } else if (ref->type == BTRFS_REF_METADATA) {
3545 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3546 } else {
3547 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3548 }
3549
3550 if (!((ref->type == BTRFS_REF_METADATA &&
3551 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3552 (ref->type == BTRFS_REF_DATA &&
3553 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3554 btrfs_ref_tree_mod(fs_info, ref);
3555
3556 return ret;
3557}
3558
3559enum btrfs_loop_type {
3560 /*
3561 * Start caching block groups but do not wait for progress or for them
3562 * to be done.
3563 */
3564 LOOP_CACHING_NOWAIT,
3565
3566 /*
3567 * Wait for the block group free_space >= the space we're waiting for if
3568 * the block group isn't cached.
3569 */
3570 LOOP_CACHING_WAIT,
3571
3572 /*
3573 * Allow allocations to happen from block groups that do not yet have a
3574 * size classification.
3575 */
3576 LOOP_UNSET_SIZE_CLASS,
3577
3578 /*
3579 * Allocate a chunk and then retry the allocation.
3580 */
3581 LOOP_ALLOC_CHUNK,
3582
3583 /*
3584 * Ignore the size class restrictions for this allocation.
3585 */
3586 LOOP_WRONG_SIZE_CLASS,
3587
3588 /*
3589 * Ignore the empty size, only try to allocate the number of bytes
3590 * needed for this allocation.
3591 */
3592 LOOP_NO_EMPTY_SIZE,
3593};
3594
3595static inline void
3596btrfs_lock_block_group(struct btrfs_block_group *cache,
3597 int delalloc)
3598{
3599 if (delalloc)
3600 down_read(&cache->data_rwsem);
3601}
3602
3603static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3604 int delalloc)
3605{
3606 btrfs_get_block_group(cache);
3607 if (delalloc)
3608 down_read(&cache->data_rwsem);
3609}
3610
3611static struct btrfs_block_group *btrfs_lock_cluster(
3612 struct btrfs_block_group *block_group,
3613 struct btrfs_free_cluster *cluster,
3614 int delalloc)
3615 __acquires(&cluster->refill_lock)
3616{
3617 struct btrfs_block_group *used_bg = NULL;
3618
3619 spin_lock(&cluster->refill_lock);
3620 while (1) {
3621 used_bg = cluster->block_group;
3622 if (!used_bg)
3623 return NULL;
3624
3625 if (used_bg == block_group)
3626 return used_bg;
3627
3628 btrfs_get_block_group(used_bg);
3629
3630 if (!delalloc)
3631 return used_bg;
3632
3633 if (down_read_trylock(&used_bg->data_rwsem))
3634 return used_bg;
3635
3636 spin_unlock(&cluster->refill_lock);
3637
3638 /* We should only have one-level nested. */
3639 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3640
3641 spin_lock(&cluster->refill_lock);
3642 if (used_bg == cluster->block_group)
3643 return used_bg;
3644
3645 up_read(&used_bg->data_rwsem);
3646 btrfs_put_block_group(used_bg);
3647 }
3648}
3649
3650static inline void
3651btrfs_release_block_group(struct btrfs_block_group *cache,
3652 int delalloc)
3653{
3654 if (delalloc)
3655 up_read(&cache->data_rwsem);
3656 btrfs_put_block_group(cache);
3657}
3658
3659/*
3660 * Helper function for find_free_extent().
3661 *
3662 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3663 * Return >0 to inform caller that we find nothing
3664 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3665 */
3666static int find_free_extent_clustered(struct btrfs_block_group *bg,
3667 struct find_free_extent_ctl *ffe_ctl,
3668 struct btrfs_block_group **cluster_bg_ret)
3669{
3670 struct btrfs_block_group *cluster_bg;
3671 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3672 u64 aligned_cluster;
3673 u64 offset;
3674 int ret;
3675
3676 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3677 if (!cluster_bg)
3678 goto refill_cluster;
3679 if (cluster_bg != bg && (cluster_bg->ro ||
3680 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3681 goto release_cluster;
3682
3683 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3684 ffe_ctl->num_bytes, cluster_bg->start,
3685 &ffe_ctl->max_extent_size);
3686 if (offset) {
3687 /* We have a block, we're done */
3688 spin_unlock(&last_ptr->refill_lock);
3689 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3690 *cluster_bg_ret = cluster_bg;
3691 ffe_ctl->found_offset = offset;
3692 return 0;
3693 }
3694 WARN_ON(last_ptr->block_group != cluster_bg);
3695
3696release_cluster:
3697 /*
3698 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3699 * lets just skip it and let the allocator find whatever block it can
3700 * find. If we reach this point, we will have tried the cluster
3701 * allocator plenty of times and not have found anything, so we are
3702 * likely way too fragmented for the clustering stuff to find anything.
3703 *
3704 * However, if the cluster is taken from the current block group,
3705 * release the cluster first, so that we stand a better chance of
3706 * succeeding in the unclustered allocation.
3707 */
3708 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3709 spin_unlock(&last_ptr->refill_lock);
3710 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3711 return -ENOENT;
3712 }
3713
3714 /* This cluster didn't work out, free it and start over */
3715 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3716
3717 if (cluster_bg != bg)
3718 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3719
3720refill_cluster:
3721 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3722 spin_unlock(&last_ptr->refill_lock);
3723 return -ENOENT;
3724 }
3725
3726 aligned_cluster = max_t(u64,
3727 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3728 bg->full_stripe_len);
3729 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3730 ffe_ctl->num_bytes, aligned_cluster);
3731 if (ret == 0) {
3732 /* Now pull our allocation out of this cluster */
3733 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3734 ffe_ctl->num_bytes, ffe_ctl->search_start,
3735 &ffe_ctl->max_extent_size);
3736 if (offset) {
3737 /* We found one, proceed */
3738 spin_unlock(&last_ptr->refill_lock);
3739 ffe_ctl->found_offset = offset;
3740 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3741 return 0;
3742 }
3743 }
3744 /*
3745 * At this point we either didn't find a cluster or we weren't able to
3746 * allocate a block from our cluster. Free the cluster we've been
3747 * trying to use, and go to the next block group.
3748 */
3749 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3750 spin_unlock(&last_ptr->refill_lock);
3751 return 1;
3752}
3753
3754/*
3755 * Return >0 to inform caller that we find nothing
3756 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3757 */
3758static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3759 struct find_free_extent_ctl *ffe_ctl)
3760{
3761 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3762 u64 offset;
3763
3764 /*
3765 * We are doing an unclustered allocation, set the fragmented flag so
3766 * we don't bother trying to setup a cluster again until we get more
3767 * space.
3768 */
3769 if (unlikely(last_ptr)) {
3770 spin_lock(&last_ptr->lock);
3771 last_ptr->fragmented = 1;
3772 spin_unlock(&last_ptr->lock);
3773 }
3774 if (ffe_ctl->cached) {
3775 struct btrfs_free_space_ctl *free_space_ctl;
3776
3777 free_space_ctl = bg->free_space_ctl;
3778 spin_lock(&free_space_ctl->tree_lock);
3779 if (free_space_ctl->free_space <
3780 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3781 ffe_ctl->empty_size) {
3782 ffe_ctl->total_free_space = max_t(u64,
3783 ffe_ctl->total_free_space,
3784 free_space_ctl->free_space);
3785 spin_unlock(&free_space_ctl->tree_lock);
3786 return 1;
3787 }
3788 spin_unlock(&free_space_ctl->tree_lock);
3789 }
3790
3791 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3792 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3793 &ffe_ctl->max_extent_size);
3794 if (!offset)
3795 return 1;
3796 ffe_ctl->found_offset = offset;
3797 return 0;
3798}
3799
3800static int do_allocation_clustered(struct btrfs_block_group *block_group,
3801 struct find_free_extent_ctl *ffe_ctl,
3802 struct btrfs_block_group **bg_ret)
3803{
3804 int ret;
3805
3806 /* We want to try and use the cluster allocator, so lets look there */
3807 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3808 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3809 if (ret >= 0)
3810 return ret;
3811 /* ret == -ENOENT case falls through */
3812 }
3813
3814 return find_free_extent_unclustered(block_group, ffe_ctl);
3815}
3816
3817/*
3818 * Tree-log block group locking
3819 * ============================
3820 *
3821 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3822 * indicates the starting address of a block group, which is reserved only
3823 * for tree-log metadata.
3824 *
3825 * Lock nesting
3826 * ============
3827 *
3828 * space_info::lock
3829 * block_group::lock
3830 * fs_info::treelog_bg_lock
3831 */
3832
3833/*
3834 * Simple allocator for sequential-only block group. It only allows sequential
3835 * allocation. No need to play with trees. This function also reserves the
3836 * bytes as in btrfs_add_reserved_bytes.
3837 */
3838static int do_allocation_zoned(struct btrfs_block_group *block_group,
3839 struct find_free_extent_ctl *ffe_ctl,
3840 struct btrfs_block_group **bg_ret)
3841{
3842 struct btrfs_fs_info *fs_info = block_group->fs_info;
3843 struct btrfs_space_info *space_info = block_group->space_info;
3844 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3845 u64 start = block_group->start;
3846 u64 num_bytes = ffe_ctl->num_bytes;
3847 u64 avail;
3848 u64 bytenr = block_group->start;
3849 u64 log_bytenr;
3850 u64 data_reloc_bytenr;
3851 int ret = 0;
3852 bool skip = false;
3853
3854 ASSERT(btrfs_is_zoned(block_group->fs_info));
3855
3856 /*
3857 * Do not allow non-tree-log blocks in the dedicated tree-log block
3858 * group, and vice versa.
3859 */
3860 spin_lock(&fs_info->treelog_bg_lock);
3861 log_bytenr = fs_info->treelog_bg;
3862 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3863 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3864 skip = true;
3865 spin_unlock(&fs_info->treelog_bg_lock);
3866 if (skip)
3867 return 1;
3868
3869 /*
3870 * Do not allow non-relocation blocks in the dedicated relocation block
3871 * group, and vice versa.
3872 */
3873 spin_lock(&fs_info->relocation_bg_lock);
3874 data_reloc_bytenr = fs_info->data_reloc_bg;
3875 if (data_reloc_bytenr &&
3876 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3877 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3878 skip = true;
3879 spin_unlock(&fs_info->relocation_bg_lock);
3880 if (skip)
3881 return 1;
3882
3883 /* Check RO and no space case before trying to activate it */
3884 spin_lock(&block_group->lock);
3885 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3886 ret = 1;
3887 /*
3888 * May need to clear fs_info->{treelog,data_reloc}_bg.
3889 * Return the error after taking the locks.
3890 */
3891 }
3892 spin_unlock(&block_group->lock);
3893
3894 /* Metadata block group is activated at write time. */
3895 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3896 !btrfs_zone_activate(block_group)) {
3897 ret = 1;
3898 /*
3899 * May need to clear fs_info->{treelog,data_reloc}_bg.
3900 * Return the error after taking the locks.
3901 */
3902 }
3903
3904 spin_lock(&space_info->lock);
3905 spin_lock(&block_group->lock);
3906 spin_lock(&fs_info->treelog_bg_lock);
3907 spin_lock(&fs_info->relocation_bg_lock);
3908
3909 if (ret)
3910 goto out;
3911
3912 ASSERT(!ffe_ctl->for_treelog ||
3913 block_group->start == fs_info->treelog_bg ||
3914 fs_info->treelog_bg == 0);
3915 ASSERT(!ffe_ctl->for_data_reloc ||
3916 block_group->start == fs_info->data_reloc_bg ||
3917 fs_info->data_reloc_bg == 0);
3918
3919 if (block_group->ro ||
3920 (!ffe_ctl->for_data_reloc &&
3921 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3922 ret = 1;
3923 goto out;
3924 }
3925
3926 /*
3927 * Do not allow currently using block group to be tree-log dedicated
3928 * block group.
3929 */
3930 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3931 (block_group->used || block_group->reserved)) {
3932 ret = 1;
3933 goto out;
3934 }
3935
3936 /*
3937 * Do not allow currently used block group to be the data relocation
3938 * dedicated block group.
3939 */
3940 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3941 (block_group->used || block_group->reserved)) {
3942 ret = 1;
3943 goto out;
3944 }
3945
3946 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3947 avail = block_group->zone_capacity - block_group->alloc_offset;
3948 if (avail < num_bytes) {
3949 if (ffe_ctl->max_extent_size < avail) {
3950 /*
3951 * With sequential allocator, free space is always
3952 * contiguous
3953 */
3954 ffe_ctl->max_extent_size = avail;
3955 ffe_ctl->total_free_space = avail;
3956 }
3957 ret = 1;
3958 goto out;
3959 }
3960
3961 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3962 fs_info->treelog_bg = block_group->start;
3963
3964 if (ffe_ctl->for_data_reloc) {
3965 if (!fs_info->data_reloc_bg)
3966 fs_info->data_reloc_bg = block_group->start;
3967 /*
3968 * Do not allow allocations from this block group, unless it is
3969 * for data relocation. Compared to increasing the ->ro, setting
3970 * the ->zoned_data_reloc_ongoing flag still allows nocow
3971 * writers to come in. See btrfs_inc_nocow_writers().
3972 *
3973 * We need to disable an allocation to avoid an allocation of
3974 * regular (non-relocation data) extent. With mix of relocation
3975 * extents and regular extents, we can dispatch WRITE commands
3976 * (for relocation extents) and ZONE APPEND commands (for
3977 * regular extents) at the same time to the same zone, which
3978 * easily break the write pointer.
3979 *
3980 * Also, this flag avoids this block group to be zone finished.
3981 */
3982 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3983 }
3984
3985 ffe_ctl->found_offset = start + block_group->alloc_offset;
3986 block_group->alloc_offset += num_bytes;
3987 spin_lock(&ctl->tree_lock);
3988 ctl->free_space -= num_bytes;
3989 spin_unlock(&ctl->tree_lock);
3990
3991 /*
3992 * We do not check if found_offset is aligned to stripesize. The
3993 * address is anyway rewritten when using zone append writing.
3994 */
3995
3996 ffe_ctl->search_start = ffe_ctl->found_offset;
3997
3998out:
3999 if (ret && ffe_ctl->for_treelog)
4000 fs_info->treelog_bg = 0;
4001 if (ret && ffe_ctl->for_data_reloc)
4002 fs_info->data_reloc_bg = 0;
4003 spin_unlock(&fs_info->relocation_bg_lock);
4004 spin_unlock(&fs_info->treelog_bg_lock);
4005 spin_unlock(&block_group->lock);
4006 spin_unlock(&space_info->lock);
4007 return ret;
4008}
4009
4010static int do_allocation(struct btrfs_block_group *block_group,
4011 struct find_free_extent_ctl *ffe_ctl,
4012 struct btrfs_block_group **bg_ret)
4013{
4014 switch (ffe_ctl->policy) {
4015 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4016 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4017 case BTRFS_EXTENT_ALLOC_ZONED:
4018 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4019 default:
4020 BUG();
4021 }
4022}
4023
4024static void release_block_group(struct btrfs_block_group *block_group,
4025 struct find_free_extent_ctl *ffe_ctl,
4026 int delalloc)
4027{
4028 switch (ffe_ctl->policy) {
4029 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030 ffe_ctl->retry_uncached = false;
4031 break;
4032 case BTRFS_EXTENT_ALLOC_ZONED:
4033 /* Nothing to do */
4034 break;
4035 default:
4036 BUG();
4037 }
4038
4039 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4040 ffe_ctl->index);
4041 btrfs_release_block_group(block_group, delalloc);
4042}
4043
4044static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4045 struct btrfs_key *ins)
4046{
4047 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4048
4049 if (!ffe_ctl->use_cluster && last_ptr) {
4050 spin_lock(&last_ptr->lock);
4051 last_ptr->window_start = ins->objectid;
4052 spin_unlock(&last_ptr->lock);
4053 }
4054}
4055
4056static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4057 struct btrfs_key *ins)
4058{
4059 switch (ffe_ctl->policy) {
4060 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4061 found_extent_clustered(ffe_ctl, ins);
4062 break;
4063 case BTRFS_EXTENT_ALLOC_ZONED:
4064 /* Nothing to do */
4065 break;
4066 default:
4067 BUG();
4068 }
4069}
4070
4071static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4072 struct find_free_extent_ctl *ffe_ctl)
4073{
4074 /* Block group's activeness is not a requirement for METADATA block groups. */
4075 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4076 return 0;
4077
4078 /* If we can activate new zone, just allocate a chunk and use it */
4079 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4080 return 0;
4081
4082 /*
4083 * We already reached the max active zones. Try to finish one block
4084 * group to make a room for a new block group. This is only possible
4085 * for a data block group because btrfs_zone_finish() may need to wait
4086 * for a running transaction which can cause a deadlock for metadata
4087 * allocation.
4088 */
4089 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4090 int ret = btrfs_zone_finish_one_bg(fs_info);
4091
4092 if (ret == 1)
4093 return 0;
4094 else if (ret < 0)
4095 return ret;
4096 }
4097
4098 /*
4099 * If we have enough free space left in an already active block group
4100 * and we can't activate any other zone now, do not allow allocating a
4101 * new chunk and let find_free_extent() retry with a smaller size.
4102 */
4103 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4104 return -ENOSPC;
4105
4106 /*
4107 * Even min_alloc_size is not left in any block groups. Since we cannot
4108 * activate a new block group, allocating it may not help. Let's tell a
4109 * caller to try again and hope it progress something by writing some
4110 * parts of the region. That is only possible for data block groups,
4111 * where a part of the region can be written.
4112 */
4113 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4114 return -EAGAIN;
4115
4116 /*
4117 * We cannot activate a new block group and no enough space left in any
4118 * block groups. So, allocating a new block group may not help. But,
4119 * there is nothing to do anyway, so let's go with it.
4120 */
4121 return 0;
4122}
4123
4124static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4125 struct find_free_extent_ctl *ffe_ctl)
4126{
4127 switch (ffe_ctl->policy) {
4128 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4129 return 0;
4130 case BTRFS_EXTENT_ALLOC_ZONED:
4131 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4132 default:
4133 BUG();
4134 }
4135}
4136
4137/*
4138 * Return >0 means caller needs to re-search for free extent
4139 * Return 0 means we have the needed free extent.
4140 * Return <0 means we failed to locate any free extent.
4141 */
4142static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4143 struct btrfs_key *ins,
4144 struct find_free_extent_ctl *ffe_ctl,
4145 bool full_search)
4146{
4147 struct btrfs_root *root = fs_info->chunk_root;
4148 int ret;
4149
4150 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152 ffe_ctl->orig_have_caching_bg = true;
4153
4154 if (ins->objectid) {
4155 found_extent(ffe_ctl, ins);
4156 return 0;
4157 }
4158
4159 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160 return 1;
4161
4162 ffe_ctl->index++;
4163 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164 return 1;
4165
4166 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4167 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168 ffe_ctl->index = 0;
4169 /*
4170 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4171 * any uncached bgs and we've already done a full search
4172 * through.
4173 */
4174 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175 (!ffe_ctl->orig_have_caching_bg && full_search))
4176 ffe_ctl->loop++;
4177 ffe_ctl->loop++;
4178
4179 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180 struct btrfs_trans_handle *trans;
4181 int exist = 0;
4182
4183 /* Check if allocation policy allows to create a new chunk */
4184 ret = can_allocate_chunk(fs_info, ffe_ctl);
4185 if (ret)
4186 return ret;
4187
4188 trans = current->journal_info;
4189 if (trans)
4190 exist = 1;
4191 else
4192 trans = btrfs_join_transaction(root);
4193
4194 if (IS_ERR(trans)) {
4195 ret = PTR_ERR(trans);
4196 return ret;
4197 }
4198
4199 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4200 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201
4202 /* Do not bail out on ENOSPC since we can do more. */
4203 if (ret == -ENOSPC) {
4204 ret = 0;
4205 ffe_ctl->loop++;
4206 }
4207 else if (ret < 0)
4208 btrfs_abort_transaction(trans, ret);
4209 else
4210 ret = 0;
4211 if (!exist)
4212 btrfs_end_transaction(trans);
4213 if (ret)
4214 return ret;
4215 }
4216
4217 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219 return -ENOSPC;
4220
4221 /*
4222 * Don't loop again if we already have no empty_size and
4223 * no empty_cluster.
4224 */
4225 if (ffe_ctl->empty_size == 0 &&
4226 ffe_ctl->empty_cluster == 0)
4227 return -ENOSPC;
4228 ffe_ctl->empty_size = 0;
4229 ffe_ctl->empty_cluster = 0;
4230 }
4231 return 1;
4232 }
4233 return -ENOSPC;
4234}
4235
4236static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4237 struct btrfs_block_group *bg)
4238{
4239 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4240 return true;
4241 if (!btrfs_block_group_should_use_size_class(bg))
4242 return true;
4243 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4244 return true;
4245 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4246 bg->size_class == BTRFS_BG_SZ_NONE)
4247 return true;
4248 return ffe_ctl->size_class == bg->size_class;
4249}
4250
4251static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4252 struct find_free_extent_ctl *ffe_ctl,
4253 struct btrfs_space_info *space_info,
4254 struct btrfs_key *ins)
4255{
4256 /*
4257 * If our free space is heavily fragmented we may not be able to make
4258 * big contiguous allocations, so instead of doing the expensive search
4259 * for free space, simply return ENOSPC with our max_extent_size so we
4260 * can go ahead and search for a more manageable chunk.
4261 *
4262 * If our max_extent_size is large enough for our allocation simply
4263 * disable clustering since we will likely not be able to find enough
4264 * space to create a cluster and induce latency trying.
4265 */
4266 if (space_info->max_extent_size) {
4267 spin_lock(&space_info->lock);
4268 if (space_info->max_extent_size &&
4269 ffe_ctl->num_bytes > space_info->max_extent_size) {
4270 ins->offset = space_info->max_extent_size;
4271 spin_unlock(&space_info->lock);
4272 return -ENOSPC;
4273 } else if (space_info->max_extent_size) {
4274 ffe_ctl->use_cluster = false;
4275 }
4276 spin_unlock(&space_info->lock);
4277 }
4278
4279 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4280 &ffe_ctl->empty_cluster);
4281 if (ffe_ctl->last_ptr) {
4282 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4283
4284 spin_lock(&last_ptr->lock);
4285 if (last_ptr->block_group)
4286 ffe_ctl->hint_byte = last_ptr->window_start;
4287 if (last_ptr->fragmented) {
4288 /*
4289 * We still set window_start so we can keep track of the
4290 * last place we found an allocation to try and save
4291 * some time.
4292 */
4293 ffe_ctl->hint_byte = last_ptr->window_start;
4294 ffe_ctl->use_cluster = false;
4295 }
4296 spin_unlock(&last_ptr->lock);
4297 }
4298
4299 return 0;
4300}
4301
4302static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4303 struct find_free_extent_ctl *ffe_ctl)
4304{
4305 if (ffe_ctl->for_treelog) {
4306 spin_lock(&fs_info->treelog_bg_lock);
4307 if (fs_info->treelog_bg)
4308 ffe_ctl->hint_byte = fs_info->treelog_bg;
4309 spin_unlock(&fs_info->treelog_bg_lock);
4310 } else if (ffe_ctl->for_data_reloc) {
4311 spin_lock(&fs_info->relocation_bg_lock);
4312 if (fs_info->data_reloc_bg)
4313 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4314 spin_unlock(&fs_info->relocation_bg_lock);
4315 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4316 struct btrfs_block_group *block_group;
4317
4318 spin_lock(&fs_info->zone_active_bgs_lock);
4319 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4320 /*
4321 * No lock is OK here because avail is monotinically
4322 * decreasing, and this is just a hint.
4323 */
4324 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4325
4326 if (block_group_bits(block_group, ffe_ctl->flags) &&
4327 avail >= ffe_ctl->num_bytes) {
4328 ffe_ctl->hint_byte = block_group->start;
4329 break;
4330 }
4331 }
4332 spin_unlock(&fs_info->zone_active_bgs_lock);
4333 }
4334
4335 return 0;
4336}
4337
4338static int prepare_allocation(struct btrfs_fs_info *fs_info,
4339 struct find_free_extent_ctl *ffe_ctl,
4340 struct btrfs_space_info *space_info,
4341 struct btrfs_key *ins)
4342{
4343 switch (ffe_ctl->policy) {
4344 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4345 return prepare_allocation_clustered(fs_info, ffe_ctl,
4346 space_info, ins);
4347 case BTRFS_EXTENT_ALLOC_ZONED:
4348 return prepare_allocation_zoned(fs_info, ffe_ctl);
4349 default:
4350 BUG();
4351 }
4352}
4353
4354/*
4355 * walks the btree of allocated extents and find a hole of a given size.
4356 * The key ins is changed to record the hole:
4357 * ins->objectid == start position
4358 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4359 * ins->offset == the size of the hole.
4360 * Any available blocks before search_start are skipped.
4361 *
4362 * If there is no suitable free space, we will record the max size of
4363 * the free space extent currently.
4364 *
4365 * The overall logic and call chain:
4366 *
4367 * find_free_extent()
4368 * |- Iterate through all block groups
4369 * | |- Get a valid block group
4370 * | |- Try to do clustered allocation in that block group
4371 * | |- Try to do unclustered allocation in that block group
4372 * | |- Check if the result is valid
4373 * | | |- If valid, then exit
4374 * | |- Jump to next block group
4375 * |
4376 * |- Push harder to find free extents
4377 * |- If not found, re-iterate all block groups
4378 */
4379static noinline int find_free_extent(struct btrfs_root *root,
4380 struct btrfs_key *ins,
4381 struct find_free_extent_ctl *ffe_ctl)
4382{
4383 struct btrfs_fs_info *fs_info = root->fs_info;
4384 int ret = 0;
4385 int cache_block_group_error = 0;
4386 struct btrfs_block_group *block_group = NULL;
4387 struct btrfs_space_info *space_info;
4388 bool full_search = false;
4389
4390 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4391
4392 ffe_ctl->search_start = 0;
4393 /* For clustered allocation */
4394 ffe_ctl->empty_cluster = 0;
4395 ffe_ctl->last_ptr = NULL;
4396 ffe_ctl->use_cluster = true;
4397 ffe_ctl->have_caching_bg = false;
4398 ffe_ctl->orig_have_caching_bg = false;
4399 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4400 ffe_ctl->loop = 0;
4401 ffe_ctl->retry_uncached = false;
4402 ffe_ctl->cached = 0;
4403 ffe_ctl->max_extent_size = 0;
4404 ffe_ctl->total_free_space = 0;
4405 ffe_ctl->found_offset = 0;
4406 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4407 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4408
4409 if (btrfs_is_zoned(fs_info))
4410 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4411
4412 ins->type = BTRFS_EXTENT_ITEM_KEY;
4413 ins->objectid = 0;
4414 ins->offset = 0;
4415
4416 trace_find_free_extent(root, ffe_ctl);
4417
4418 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4419 if (!space_info) {
4420 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4421 return -ENOSPC;
4422 }
4423
4424 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4425 if (ret < 0)
4426 return ret;
4427
4428 ffe_ctl->search_start = max(ffe_ctl->search_start,
4429 first_logical_byte(fs_info));
4430 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4431 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4432 block_group = btrfs_lookup_block_group(fs_info,
4433 ffe_ctl->search_start);
4434 /*
4435 * we don't want to use the block group if it doesn't match our
4436 * allocation bits, or if its not cached.
4437 *
4438 * However if we are re-searching with an ideal block group
4439 * picked out then we don't care that the block group is cached.
4440 */
4441 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4442 block_group->cached != BTRFS_CACHE_NO) {
4443 down_read(&space_info->groups_sem);
4444 if (list_empty(&block_group->list) ||
4445 block_group->ro) {
4446 /*
4447 * someone is removing this block group,
4448 * we can't jump into the have_block_group
4449 * target because our list pointers are not
4450 * valid
4451 */
4452 btrfs_put_block_group(block_group);
4453 up_read(&space_info->groups_sem);
4454 } else {
4455 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4456 block_group->flags);
4457 btrfs_lock_block_group(block_group,
4458 ffe_ctl->delalloc);
4459 ffe_ctl->hinted = true;
4460 goto have_block_group;
4461 }
4462 } else if (block_group) {
4463 btrfs_put_block_group(block_group);
4464 }
4465 }
4466search:
4467 trace_find_free_extent_search_loop(root, ffe_ctl);
4468 ffe_ctl->have_caching_bg = false;
4469 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4470 ffe_ctl->index == 0)
4471 full_search = true;
4472 down_read(&space_info->groups_sem);
4473 list_for_each_entry(block_group,
4474 &space_info->block_groups[ffe_ctl->index], list) {
4475 struct btrfs_block_group *bg_ret;
4476
4477 ffe_ctl->hinted = false;
4478 /* If the block group is read-only, we can skip it entirely. */
4479 if (unlikely(block_group->ro)) {
4480 if (ffe_ctl->for_treelog)
4481 btrfs_clear_treelog_bg(block_group);
4482 if (ffe_ctl->for_data_reloc)
4483 btrfs_clear_data_reloc_bg(block_group);
4484 continue;
4485 }
4486
4487 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4488 ffe_ctl->search_start = block_group->start;
4489
4490 /*
4491 * this can happen if we end up cycling through all the
4492 * raid types, but we want to make sure we only allocate
4493 * for the proper type.
4494 */
4495 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4496 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4497 BTRFS_BLOCK_GROUP_RAID1_MASK |
4498 BTRFS_BLOCK_GROUP_RAID56_MASK |
4499 BTRFS_BLOCK_GROUP_RAID10;
4500
4501 /*
4502 * if they asked for extra copies and this block group
4503 * doesn't provide them, bail. This does allow us to
4504 * fill raid0 from raid1.
4505 */
4506 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4507 goto loop;
4508
4509 /*
4510 * This block group has different flags than we want.
4511 * It's possible that we have MIXED_GROUP flag but no
4512 * block group is mixed. Just skip such block group.
4513 */
4514 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4515 continue;
4516 }
4517
4518have_block_group:
4519 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4520 ffe_ctl->cached = btrfs_block_group_done(block_group);
4521 if (unlikely(!ffe_ctl->cached)) {
4522 ffe_ctl->have_caching_bg = true;
4523 ret = btrfs_cache_block_group(block_group, false);
4524
4525 /*
4526 * If we get ENOMEM here or something else we want to
4527 * try other block groups, because it may not be fatal.
4528 * However if we can't find anything else we need to
4529 * save our return here so that we return the actual
4530 * error that caused problems, not ENOSPC.
4531 */
4532 if (ret < 0) {
4533 if (!cache_block_group_error)
4534 cache_block_group_error = ret;
4535 ret = 0;
4536 goto loop;
4537 }
4538 ret = 0;
4539 }
4540
4541 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4542 if (!cache_block_group_error)
4543 cache_block_group_error = -EIO;
4544 goto loop;
4545 }
4546
4547 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4548 goto loop;
4549
4550 bg_ret = NULL;
4551 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4552 if (ret > 0)
4553 goto loop;
4554
4555 if (bg_ret && bg_ret != block_group) {
4556 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4557 block_group = bg_ret;
4558 }
4559
4560 /* Checks */
4561 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4562 fs_info->stripesize);
4563
4564 /* move on to the next group */
4565 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4566 block_group->start + block_group->length) {
4567 btrfs_add_free_space_unused(block_group,
4568 ffe_ctl->found_offset,
4569 ffe_ctl->num_bytes);
4570 goto loop;
4571 }
4572
4573 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4574 btrfs_add_free_space_unused(block_group,
4575 ffe_ctl->found_offset,
4576 ffe_ctl->search_start - ffe_ctl->found_offset);
4577
4578 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4579 ffe_ctl->num_bytes,
4580 ffe_ctl->delalloc,
4581 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4582 if (ret == -EAGAIN) {
4583 btrfs_add_free_space_unused(block_group,
4584 ffe_ctl->found_offset,
4585 ffe_ctl->num_bytes);
4586 goto loop;
4587 }
4588 btrfs_inc_block_group_reservations(block_group);
4589
4590 /* we are all good, lets return */
4591 ins->objectid = ffe_ctl->search_start;
4592 ins->offset = ffe_ctl->num_bytes;
4593
4594 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4595 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4596 break;
4597loop:
4598 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4599 !ffe_ctl->retry_uncached) {
4600 ffe_ctl->retry_uncached = true;
4601 btrfs_wait_block_group_cache_progress(block_group,
4602 ffe_ctl->num_bytes +
4603 ffe_ctl->empty_cluster +
4604 ffe_ctl->empty_size);
4605 goto have_block_group;
4606 }
4607 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4608 cond_resched();
4609 }
4610 up_read(&space_info->groups_sem);
4611
4612 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4613 if (ret > 0)
4614 goto search;
4615
4616 if (ret == -ENOSPC && !cache_block_group_error) {
4617 /*
4618 * Use ffe_ctl->total_free_space as fallback if we can't find
4619 * any contiguous hole.
4620 */
4621 if (!ffe_ctl->max_extent_size)
4622 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623 spin_lock(&space_info->lock);
4624 space_info->max_extent_size = ffe_ctl->max_extent_size;
4625 spin_unlock(&space_info->lock);
4626 ins->offset = ffe_ctl->max_extent_size;
4627 } else if (ret == -ENOSPC) {
4628 ret = cache_block_group_error;
4629 }
4630 return ret;
4631}
4632
4633/*
4634 * Entry point to the extent allocator. Tries to find a hole that is at least
4635 * as big as @num_bytes.
4636 *
4637 * @root - The root that will contain this extent
4638 *
4639 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4640 * is used for accounting purposes. This value differs
4641 * from @num_bytes only in the case of compressed extents.
4642 *
4643 * @num_bytes - Number of bytes to allocate on-disk.
4644 *
4645 * @min_alloc_size - Indicates the minimum amount of space that the
4646 * allocator should try to satisfy. In some cases
4647 * @num_bytes may be larger than what is required and if
4648 * the filesystem is fragmented then allocation fails.
4649 * However, the presence of @min_alloc_size gives a
4650 * chance to try and satisfy the smaller allocation.
4651 *
4652 * @empty_size - A hint that you plan on doing more COW. This is the
4653 * size in bytes the allocator should try to find free
4654 * next to the block it returns. This is just a hint and
4655 * may be ignored by the allocator.
4656 *
4657 * @hint_byte - Hint to the allocator to start searching above the byte
4658 * address passed. It might be ignored.
4659 *
4660 * @ins - This key is modified to record the found hole. It will
4661 * have the following values:
4662 * ins->objectid == start position
4663 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4664 * ins->offset == the size of the hole.
4665 *
4666 * @is_data - Boolean flag indicating whether an extent is
4667 * allocated for data (true) or metadata (false)
4668 *
4669 * @delalloc - Boolean flag indicating whether this allocation is for
4670 * delalloc or not. If 'true' data_rwsem of block groups
4671 * is going to be acquired.
4672 *
4673 *
4674 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675 * case -ENOSPC is returned then @ins->offset will contain the size of the
4676 * largest available hole the allocator managed to find.
4677 */
4678int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679 u64 num_bytes, u64 min_alloc_size,
4680 u64 empty_size, u64 hint_byte,
4681 struct btrfs_key *ins, int is_data, int delalloc)
4682{
4683 struct btrfs_fs_info *fs_info = root->fs_info;
4684 struct find_free_extent_ctl ffe_ctl = {};
4685 bool final_tried = num_bytes == min_alloc_size;
4686 u64 flags;
4687 int ret;
4688 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4689 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690
4691 flags = get_alloc_profile_by_root(root, is_data);
4692again:
4693 WARN_ON(num_bytes < fs_info->sectorsize);
4694
4695 ffe_ctl.ram_bytes = ram_bytes;
4696 ffe_ctl.num_bytes = num_bytes;
4697 ffe_ctl.min_alloc_size = min_alloc_size;
4698 ffe_ctl.empty_size = empty_size;
4699 ffe_ctl.flags = flags;
4700 ffe_ctl.delalloc = delalloc;
4701 ffe_ctl.hint_byte = hint_byte;
4702 ffe_ctl.for_treelog = for_treelog;
4703 ffe_ctl.for_data_reloc = for_data_reloc;
4704
4705 ret = find_free_extent(root, ins, &ffe_ctl);
4706 if (!ret && !is_data) {
4707 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708 } else if (ret == -ENOSPC) {
4709 if (!final_tried && ins->offset) {
4710 num_bytes = min(num_bytes >> 1, ins->offset);
4711 num_bytes = round_down(num_bytes,
4712 fs_info->sectorsize);
4713 num_bytes = max(num_bytes, min_alloc_size);
4714 ram_bytes = num_bytes;
4715 if (num_bytes == min_alloc_size)
4716 final_tried = true;
4717 goto again;
4718 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719 struct btrfs_space_info *sinfo;
4720
4721 sinfo = btrfs_find_space_info(fs_info, flags);
4722 btrfs_err(fs_info,
4723 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724 flags, num_bytes, for_treelog, for_data_reloc);
4725 if (sinfo)
4726 btrfs_dump_space_info(fs_info, sinfo,
4727 num_bytes, 1);
4728 }
4729 }
4730
4731 return ret;
4732}
4733
4734int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4735 u64 start, u64 len, int delalloc)
4736{
4737 struct btrfs_block_group *cache;
4738
4739 cache = btrfs_lookup_block_group(fs_info, start);
4740 if (!cache) {
4741 btrfs_err(fs_info, "Unable to find block group for %llu",
4742 start);
4743 return -ENOSPC;
4744 }
4745
4746 btrfs_add_free_space(cache, start, len);
4747 btrfs_free_reserved_bytes(cache, len, delalloc);
4748 trace_btrfs_reserved_extent_free(fs_info, start, len);
4749
4750 btrfs_put_block_group(cache);
4751 return 0;
4752}
4753
4754int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4755 const struct extent_buffer *eb)
4756{
4757 struct btrfs_block_group *cache;
4758 int ret = 0;
4759
4760 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4761 if (!cache) {
4762 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4763 eb->start);
4764 return -ENOSPC;
4765 }
4766
4767 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4768 btrfs_put_block_group(cache);
4769 return ret;
4770}
4771
4772static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4773 u64 num_bytes)
4774{
4775 struct btrfs_fs_info *fs_info = trans->fs_info;
4776 int ret;
4777
4778 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4779 if (ret)
4780 return ret;
4781
4782 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4783 if (ret) {
4784 ASSERT(!ret);
4785 btrfs_err(fs_info, "update block group failed for %llu %llu",
4786 bytenr, num_bytes);
4787 return ret;
4788 }
4789
4790 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4791 return 0;
4792}
4793
4794static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4795 u64 parent, u64 root_objectid,
4796 u64 flags, u64 owner, u64 offset,
4797 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4798{
4799 struct btrfs_fs_info *fs_info = trans->fs_info;
4800 struct btrfs_root *extent_root;
4801 int ret;
4802 struct btrfs_extent_item *extent_item;
4803 struct btrfs_extent_owner_ref *oref;
4804 struct btrfs_extent_inline_ref *iref;
4805 struct btrfs_path *path;
4806 struct extent_buffer *leaf;
4807 int type;
4808 u32 size;
4809 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4810
4811 if (parent > 0)
4812 type = BTRFS_SHARED_DATA_REF_KEY;
4813 else
4814 type = BTRFS_EXTENT_DATA_REF_KEY;
4815
4816 size = sizeof(*extent_item);
4817 if (simple_quota)
4818 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4819 size += btrfs_extent_inline_ref_size(type);
4820
4821 path = btrfs_alloc_path();
4822 if (!path)
4823 return -ENOMEM;
4824
4825 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4826 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4827 if (ret) {
4828 btrfs_free_path(path);
4829 return ret;
4830 }
4831
4832 leaf = path->nodes[0];
4833 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4834 struct btrfs_extent_item);
4835 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4836 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4837 btrfs_set_extent_flags(leaf, extent_item,
4838 flags | BTRFS_EXTENT_FLAG_DATA);
4839
4840 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4841 if (simple_quota) {
4842 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4843 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4844 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4845 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4846 }
4847 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4848
4849 if (parent > 0) {
4850 struct btrfs_shared_data_ref *ref;
4851 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4852 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4853 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4854 } else {
4855 struct btrfs_extent_data_ref *ref;
4856 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4857 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4858 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4859 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4860 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4861 }
4862
4863 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4864 btrfs_free_path(path);
4865
4866 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4867}
4868
4869static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4870 struct btrfs_delayed_ref_node *node,
4871 struct btrfs_delayed_extent_op *extent_op)
4872{
4873 struct btrfs_fs_info *fs_info = trans->fs_info;
4874 struct btrfs_root *extent_root;
4875 int ret;
4876 struct btrfs_extent_item *extent_item;
4877 struct btrfs_key extent_key;
4878 struct btrfs_tree_block_info *block_info;
4879 struct btrfs_extent_inline_ref *iref;
4880 struct btrfs_path *path;
4881 struct extent_buffer *leaf;
4882 struct btrfs_delayed_tree_ref *ref;
4883 u32 size = sizeof(*extent_item) + sizeof(*iref);
4884 u64 flags = extent_op->flags_to_set;
4885 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4886
4887 ref = btrfs_delayed_node_to_tree_ref(node);
4888
4889 extent_key.objectid = node->bytenr;
4890 if (skinny_metadata) {
4891 extent_key.offset = ref->level;
4892 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4893 } else {
4894 extent_key.offset = node->num_bytes;
4895 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4896 size += sizeof(*block_info);
4897 }
4898
4899 path = btrfs_alloc_path();
4900 if (!path)
4901 return -ENOMEM;
4902
4903 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4904 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4905 size);
4906 if (ret) {
4907 btrfs_free_path(path);
4908 return ret;
4909 }
4910
4911 leaf = path->nodes[0];
4912 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4913 struct btrfs_extent_item);
4914 btrfs_set_extent_refs(leaf, extent_item, 1);
4915 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4916 btrfs_set_extent_flags(leaf, extent_item,
4917 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4918
4919 if (skinny_metadata) {
4920 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4921 } else {
4922 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4923 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4924 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4925 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4926 }
4927
4928 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4929 btrfs_set_extent_inline_ref_type(leaf, iref,
4930 BTRFS_SHARED_BLOCK_REF_KEY);
4931 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4932 } else {
4933 btrfs_set_extent_inline_ref_type(leaf, iref,
4934 BTRFS_TREE_BLOCK_REF_KEY);
4935 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4936 }
4937
4938 btrfs_mark_buffer_dirty(trans, leaf);
4939 btrfs_free_path(path);
4940
4941 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4942}
4943
4944int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4945 struct btrfs_root *root, u64 owner,
4946 u64 offset, u64 ram_bytes,
4947 struct btrfs_key *ins)
4948{
4949 struct btrfs_ref generic_ref = { 0 };
4950 u64 root_objectid = root->root_key.objectid;
4951 u64 owning_root = root_objectid;
4952
4953 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4954
4955 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4956 owning_root = root->relocation_src_root;
4957
4958 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4959 ins->objectid, ins->offset, 0, owning_root);
4960 btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4961 offset, 0, false);
4962 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4963
4964 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4965}
4966
4967/*
4968 * this is used by the tree logging recovery code. It records that
4969 * an extent has been allocated and makes sure to clear the free
4970 * space cache bits as well
4971 */
4972int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4973 u64 root_objectid, u64 owner, u64 offset,
4974 struct btrfs_key *ins)
4975{
4976 struct btrfs_fs_info *fs_info = trans->fs_info;
4977 int ret;
4978 struct btrfs_block_group *block_group;
4979 struct btrfs_space_info *space_info;
4980 struct btrfs_squota_delta delta = {
4981 .root = root_objectid,
4982 .num_bytes = ins->offset,
4983 .generation = trans->transid,
4984 .is_data = true,
4985 .is_inc = true,
4986 };
4987
4988 /*
4989 * Mixed block groups will exclude before processing the log so we only
4990 * need to do the exclude dance if this fs isn't mixed.
4991 */
4992 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4993 ret = __exclude_logged_extent(fs_info, ins->objectid,
4994 ins->offset);
4995 if (ret)
4996 return ret;
4997 }
4998
4999 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5000 if (!block_group)
5001 return -EINVAL;
5002
5003 space_info = block_group->space_info;
5004 spin_lock(&space_info->lock);
5005 spin_lock(&block_group->lock);
5006 space_info->bytes_reserved += ins->offset;
5007 block_group->reserved += ins->offset;
5008 spin_unlock(&block_group->lock);
5009 spin_unlock(&space_info->lock);
5010
5011 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5012 offset, ins, 1, root_objectid);
5013 if (ret)
5014 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5015 ret = btrfs_record_squota_delta(fs_info, &delta);
5016 btrfs_put_block_group(block_group);
5017 return ret;
5018}
5019
5020#ifdef CONFIG_BTRFS_DEBUG
5021/*
5022 * Extra safety check in case the extent tree is corrupted and extent allocator
5023 * chooses to use a tree block which is already used and locked.
5024 */
5025static bool check_eb_lock_owner(const struct extent_buffer *eb)
5026{
5027 if (eb->lock_owner == current->pid) {
5028 btrfs_err_rl(eb->fs_info,
5029"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5030 eb->start, btrfs_header_owner(eb), current->pid);
5031 return true;
5032 }
5033 return false;
5034}
5035#else
5036static bool check_eb_lock_owner(struct extent_buffer *eb)
5037{
5038 return false;
5039}
5040#endif
5041
5042static struct extent_buffer *
5043btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5044 u64 bytenr, int level, u64 owner,
5045 enum btrfs_lock_nesting nest)
5046{
5047 struct btrfs_fs_info *fs_info = root->fs_info;
5048 struct extent_buffer *buf;
5049 u64 lockdep_owner = owner;
5050
5051 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5052 if (IS_ERR(buf))
5053 return buf;
5054
5055 if (check_eb_lock_owner(buf)) {
5056 free_extent_buffer(buf);
5057 return ERR_PTR(-EUCLEAN);
5058 }
5059
5060 /*
5061 * The reloc trees are just snapshots, so we need them to appear to be
5062 * just like any other fs tree WRT lockdep.
5063 *
5064 * The exception however is in replace_path() in relocation, where we
5065 * hold the lock on the original fs root and then search for the reloc
5066 * root. At that point we need to make sure any reloc root buffers are
5067 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5068 * lockdep happy.
5069 */
5070 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5071 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5072 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5073
5074 /* btrfs_clear_buffer_dirty() accesses generation field. */
5075 btrfs_set_header_generation(buf, trans->transid);
5076
5077 /*
5078 * This needs to stay, because we could allocate a freed block from an
5079 * old tree into a new tree, so we need to make sure this new block is
5080 * set to the appropriate level and owner.
5081 */
5082 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5083
5084 __btrfs_tree_lock(buf, nest);
5085 btrfs_clear_buffer_dirty(trans, buf);
5086 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5087 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5088
5089 set_extent_buffer_uptodate(buf);
5090
5091 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5092 btrfs_set_header_level(buf, level);
5093 btrfs_set_header_bytenr(buf, buf->start);
5094 btrfs_set_header_generation(buf, trans->transid);
5095 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5096 btrfs_set_header_owner(buf, owner);
5097 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5098 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5099 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5100 buf->log_index = root->log_transid % 2;
5101 /*
5102 * we allow two log transactions at a time, use different
5103 * EXTENT bit to differentiate dirty pages.
5104 */
5105 if (buf->log_index == 0)
5106 set_extent_bit(&root->dirty_log_pages, buf->start,
5107 buf->start + buf->len - 1,
5108 EXTENT_DIRTY, NULL);
5109 else
5110 set_extent_bit(&root->dirty_log_pages, buf->start,
5111 buf->start + buf->len - 1,
5112 EXTENT_NEW, NULL);
5113 } else {
5114 buf->log_index = -1;
5115 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5116 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5117 }
5118 /* this returns a buffer locked for blocking */
5119 return buf;
5120}
5121
5122/*
5123 * finds a free extent and does all the dirty work required for allocation
5124 * returns the tree buffer or an ERR_PTR on error.
5125 */
5126struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5127 struct btrfs_root *root,
5128 u64 parent, u64 root_objectid,
5129 const struct btrfs_disk_key *key,
5130 int level, u64 hint,
5131 u64 empty_size,
5132 u64 reloc_src_root,
5133 enum btrfs_lock_nesting nest)
5134{
5135 struct btrfs_fs_info *fs_info = root->fs_info;
5136 struct btrfs_key ins;
5137 struct btrfs_block_rsv *block_rsv;
5138 struct extent_buffer *buf;
5139 struct btrfs_delayed_extent_op *extent_op;
5140 struct btrfs_ref generic_ref = { 0 };
5141 u64 flags = 0;
5142 int ret;
5143 u32 blocksize = fs_info->nodesize;
5144 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5145 u64 owning_root;
5146
5147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5148 if (btrfs_is_testing(fs_info)) {
5149 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5150 level, root_objectid, nest);
5151 if (!IS_ERR(buf))
5152 root->alloc_bytenr += blocksize;
5153 return buf;
5154 }
5155#endif
5156
5157 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5158 if (IS_ERR(block_rsv))
5159 return ERR_CAST(block_rsv);
5160
5161 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5162 empty_size, hint, &ins, 0, 0);
5163 if (ret)
5164 goto out_unuse;
5165
5166 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5167 root_objectid, nest);
5168 if (IS_ERR(buf)) {
5169 ret = PTR_ERR(buf);
5170 goto out_free_reserved;
5171 }
5172 owning_root = btrfs_header_owner(buf);
5173
5174 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5175 if (parent == 0)
5176 parent = ins.objectid;
5177 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5178 owning_root = reloc_src_root;
5179 } else
5180 BUG_ON(parent > 0);
5181
5182 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5183 extent_op = btrfs_alloc_delayed_extent_op();
5184 if (!extent_op) {
5185 ret = -ENOMEM;
5186 goto out_free_buf;
5187 }
5188 if (key)
5189 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5190 else
5191 memset(&extent_op->key, 0, sizeof(extent_op->key));
5192 extent_op->flags_to_set = flags;
5193 extent_op->update_key = skinny_metadata ? false : true;
5194 extent_op->update_flags = true;
5195 extent_op->level = level;
5196
5197 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5198 ins.objectid, ins.offset, parent, owning_root);
5199 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5200 root->root_key.objectid, false);
5201 btrfs_ref_tree_mod(fs_info, &generic_ref);
5202 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5203 if (ret)
5204 goto out_free_delayed;
5205 }
5206 return buf;
5207
5208out_free_delayed:
5209 btrfs_free_delayed_extent_op(extent_op);
5210out_free_buf:
5211 btrfs_tree_unlock(buf);
5212 free_extent_buffer(buf);
5213out_free_reserved:
5214 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5215out_unuse:
5216 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5217 return ERR_PTR(ret);
5218}
5219
5220struct walk_control {
5221 u64 refs[BTRFS_MAX_LEVEL];
5222 u64 flags[BTRFS_MAX_LEVEL];
5223 struct btrfs_key update_progress;
5224 struct btrfs_key drop_progress;
5225 int drop_level;
5226 int stage;
5227 int level;
5228 int shared_level;
5229 int update_ref;
5230 int keep_locks;
5231 int reada_slot;
5232 int reada_count;
5233 int restarted;
5234};
5235
5236#define DROP_REFERENCE 1
5237#define UPDATE_BACKREF 2
5238
5239static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5240 struct btrfs_root *root,
5241 struct walk_control *wc,
5242 struct btrfs_path *path)
5243{
5244 struct btrfs_fs_info *fs_info = root->fs_info;
5245 u64 bytenr;
5246 u64 generation;
5247 u64 refs;
5248 u64 flags;
5249 u32 nritems;
5250 struct btrfs_key key;
5251 struct extent_buffer *eb;
5252 int ret;
5253 int slot;
5254 int nread = 0;
5255
5256 if (path->slots[wc->level] < wc->reada_slot) {
5257 wc->reada_count = wc->reada_count * 2 / 3;
5258 wc->reada_count = max(wc->reada_count, 2);
5259 } else {
5260 wc->reada_count = wc->reada_count * 3 / 2;
5261 wc->reada_count = min_t(int, wc->reada_count,
5262 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5263 }
5264
5265 eb = path->nodes[wc->level];
5266 nritems = btrfs_header_nritems(eb);
5267
5268 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5269 if (nread >= wc->reada_count)
5270 break;
5271
5272 cond_resched();
5273 bytenr = btrfs_node_blockptr(eb, slot);
5274 generation = btrfs_node_ptr_generation(eb, slot);
5275
5276 if (slot == path->slots[wc->level])
5277 goto reada;
5278
5279 if (wc->stage == UPDATE_BACKREF &&
5280 generation <= root->root_key.offset)
5281 continue;
5282
5283 /* We don't lock the tree block, it's OK to be racy here */
5284 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5285 wc->level - 1, 1, &refs,
5286 &flags, NULL);
5287 /* We don't care about errors in readahead. */
5288 if (ret < 0)
5289 continue;
5290 BUG_ON(refs == 0);
5291
5292 if (wc->stage == DROP_REFERENCE) {
5293 if (refs == 1)
5294 goto reada;
5295
5296 if (wc->level == 1 &&
5297 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5298 continue;
5299 if (!wc->update_ref ||
5300 generation <= root->root_key.offset)
5301 continue;
5302 btrfs_node_key_to_cpu(eb, &key, slot);
5303 ret = btrfs_comp_cpu_keys(&key,
5304 &wc->update_progress);
5305 if (ret < 0)
5306 continue;
5307 } else {
5308 if (wc->level == 1 &&
5309 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5310 continue;
5311 }
5312reada:
5313 btrfs_readahead_node_child(eb, slot);
5314 nread++;
5315 }
5316 wc->reada_slot = slot;
5317}
5318
5319/*
5320 * helper to process tree block while walking down the tree.
5321 *
5322 * when wc->stage == UPDATE_BACKREF, this function updates
5323 * back refs for pointers in the block.
5324 *
5325 * NOTE: return value 1 means we should stop walking down.
5326 */
5327static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5328 struct btrfs_root *root,
5329 struct btrfs_path *path,
5330 struct walk_control *wc, int lookup_info)
5331{
5332 struct btrfs_fs_info *fs_info = root->fs_info;
5333 int level = wc->level;
5334 struct extent_buffer *eb = path->nodes[level];
5335 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5336 int ret;
5337
5338 if (wc->stage == UPDATE_BACKREF &&
5339 btrfs_header_owner(eb) != root->root_key.objectid)
5340 return 1;
5341
5342 /*
5343 * when reference count of tree block is 1, it won't increase
5344 * again. once full backref flag is set, we never clear it.
5345 */
5346 if (lookup_info &&
5347 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5348 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5349 BUG_ON(!path->locks[level]);
5350 ret = btrfs_lookup_extent_info(trans, fs_info,
5351 eb->start, level, 1,
5352 &wc->refs[level],
5353 &wc->flags[level],
5354 NULL);
5355 BUG_ON(ret == -ENOMEM);
5356 if (ret)
5357 return ret;
5358 BUG_ON(wc->refs[level] == 0);
5359 }
5360
5361 if (wc->stage == DROP_REFERENCE) {
5362 if (wc->refs[level] > 1)
5363 return 1;
5364
5365 if (path->locks[level] && !wc->keep_locks) {
5366 btrfs_tree_unlock_rw(eb, path->locks[level]);
5367 path->locks[level] = 0;
5368 }
5369 return 0;
5370 }
5371
5372 /* wc->stage == UPDATE_BACKREF */
5373 if (!(wc->flags[level] & flag)) {
5374 BUG_ON(!path->locks[level]);
5375 ret = btrfs_inc_ref(trans, root, eb, 1);
5376 BUG_ON(ret); /* -ENOMEM */
5377 ret = btrfs_dec_ref(trans, root, eb, 0);
5378 BUG_ON(ret); /* -ENOMEM */
5379 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5380 BUG_ON(ret); /* -ENOMEM */
5381 wc->flags[level] |= flag;
5382 }
5383
5384 /*
5385 * the block is shared by multiple trees, so it's not good to
5386 * keep the tree lock
5387 */
5388 if (path->locks[level] && level > 0) {
5389 btrfs_tree_unlock_rw(eb, path->locks[level]);
5390 path->locks[level] = 0;
5391 }
5392 return 0;
5393}
5394
5395/*
5396 * This is used to verify a ref exists for this root to deal with a bug where we
5397 * would have a drop_progress key that hadn't been updated properly.
5398 */
5399static int check_ref_exists(struct btrfs_trans_handle *trans,
5400 struct btrfs_root *root, u64 bytenr, u64 parent,
5401 int level)
5402{
5403 struct btrfs_path *path;
5404 struct btrfs_extent_inline_ref *iref;
5405 int ret;
5406
5407 path = btrfs_alloc_path();
5408 if (!path)
5409 return -ENOMEM;
5410
5411 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5412 root->fs_info->nodesize, parent,
5413 root->root_key.objectid, level, 0);
5414 btrfs_free_path(path);
5415 if (ret == -ENOENT)
5416 return 0;
5417 if (ret < 0)
5418 return ret;
5419 return 1;
5420}
5421
5422/*
5423 * helper to process tree block pointer.
5424 *
5425 * when wc->stage == DROP_REFERENCE, this function checks
5426 * reference count of the block pointed to. if the block
5427 * is shared and we need update back refs for the subtree
5428 * rooted at the block, this function changes wc->stage to
5429 * UPDATE_BACKREF. if the block is shared and there is no
5430 * need to update back, this function drops the reference
5431 * to the block.
5432 *
5433 * NOTE: return value 1 means we should stop walking down.
5434 */
5435static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5436 struct btrfs_root *root,
5437 struct btrfs_path *path,
5438 struct walk_control *wc, int *lookup_info)
5439{
5440 struct btrfs_fs_info *fs_info = root->fs_info;
5441 u64 bytenr;
5442 u64 generation;
5443 u64 parent;
5444 u64 owner_root = 0;
5445 struct btrfs_tree_parent_check check = { 0 };
5446 struct btrfs_key key;
5447 struct btrfs_ref ref = { 0 };
5448 struct extent_buffer *next;
5449 int level = wc->level;
5450 int reada = 0;
5451 int ret = 0;
5452 bool need_account = false;
5453
5454 generation = btrfs_node_ptr_generation(path->nodes[level],
5455 path->slots[level]);
5456 /*
5457 * if the lower level block was created before the snapshot
5458 * was created, we know there is no need to update back refs
5459 * for the subtree
5460 */
5461 if (wc->stage == UPDATE_BACKREF &&
5462 generation <= root->root_key.offset) {
5463 *lookup_info = 1;
5464 return 1;
5465 }
5466
5467 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5468
5469 check.level = level - 1;
5470 check.transid = generation;
5471 check.owner_root = root->root_key.objectid;
5472 check.has_first_key = true;
5473 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5474 path->slots[level]);
5475
5476 next = find_extent_buffer(fs_info, bytenr);
5477 if (!next) {
5478 next = btrfs_find_create_tree_block(fs_info, bytenr,
5479 root->root_key.objectid, level - 1);
5480 if (IS_ERR(next))
5481 return PTR_ERR(next);
5482 reada = 1;
5483 }
5484 btrfs_tree_lock(next);
5485
5486 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5487 &wc->refs[level - 1],
5488 &wc->flags[level - 1],
5489 &owner_root);
5490 if (ret < 0)
5491 goto out_unlock;
5492
5493 if (unlikely(wc->refs[level - 1] == 0)) {
5494 btrfs_err(fs_info, "Missing references.");
5495 ret = -EIO;
5496 goto out_unlock;
5497 }
5498 *lookup_info = 0;
5499
5500 if (wc->stage == DROP_REFERENCE) {
5501 if (wc->refs[level - 1] > 1) {
5502 need_account = true;
5503 if (level == 1 &&
5504 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5505 goto skip;
5506
5507 if (!wc->update_ref ||
5508 generation <= root->root_key.offset)
5509 goto skip;
5510
5511 btrfs_node_key_to_cpu(path->nodes[level], &key,
5512 path->slots[level]);
5513 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5514 if (ret < 0)
5515 goto skip;
5516
5517 wc->stage = UPDATE_BACKREF;
5518 wc->shared_level = level - 1;
5519 }
5520 } else {
5521 if (level == 1 &&
5522 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5523 goto skip;
5524 }
5525
5526 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5527 btrfs_tree_unlock(next);
5528 free_extent_buffer(next);
5529 next = NULL;
5530 *lookup_info = 1;
5531 }
5532
5533 if (!next) {
5534 if (reada && level == 1)
5535 reada_walk_down(trans, root, wc, path);
5536 next = read_tree_block(fs_info, bytenr, &check);
5537 if (IS_ERR(next)) {
5538 return PTR_ERR(next);
5539 } else if (!extent_buffer_uptodate(next)) {
5540 free_extent_buffer(next);
5541 return -EIO;
5542 }
5543 btrfs_tree_lock(next);
5544 }
5545
5546 level--;
5547 ASSERT(level == btrfs_header_level(next));
5548 if (level != btrfs_header_level(next)) {
5549 btrfs_err(root->fs_info, "mismatched level");
5550 ret = -EIO;
5551 goto out_unlock;
5552 }
5553 path->nodes[level] = next;
5554 path->slots[level] = 0;
5555 path->locks[level] = BTRFS_WRITE_LOCK;
5556 wc->level = level;
5557 if (wc->level == 1)
5558 wc->reada_slot = 0;
5559 return 0;
5560skip:
5561 wc->refs[level - 1] = 0;
5562 wc->flags[level - 1] = 0;
5563 if (wc->stage == DROP_REFERENCE) {
5564 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5565 parent = path->nodes[level]->start;
5566 } else {
5567 ASSERT(root->root_key.objectid ==
5568 btrfs_header_owner(path->nodes[level]));
5569 if (root->root_key.objectid !=
5570 btrfs_header_owner(path->nodes[level])) {
5571 btrfs_err(root->fs_info,
5572 "mismatched block owner");
5573 ret = -EIO;
5574 goto out_unlock;
5575 }
5576 parent = 0;
5577 }
5578
5579 /*
5580 * If we had a drop_progress we need to verify the refs are set
5581 * as expected. If we find our ref then we know that from here
5582 * on out everything should be correct, and we can clear the
5583 * ->restarted flag.
5584 */
5585 if (wc->restarted) {
5586 ret = check_ref_exists(trans, root, bytenr, parent,
5587 level - 1);
5588 if (ret < 0)
5589 goto out_unlock;
5590 if (ret == 0)
5591 goto no_delete;
5592 ret = 0;
5593 wc->restarted = 0;
5594 }
5595
5596 /*
5597 * Reloc tree doesn't contribute to qgroup numbers, and we have
5598 * already accounted them at merge time (replace_path),
5599 * thus we could skip expensive subtree trace here.
5600 */
5601 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5602 need_account) {
5603 ret = btrfs_qgroup_trace_subtree(trans, next,
5604 generation, level - 1);
5605 if (ret) {
5606 btrfs_err_rl(fs_info,
5607 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5608 ret);
5609 }
5610 }
5611
5612 /*
5613 * We need to update the next key in our walk control so we can
5614 * update the drop_progress key accordingly. We don't care if
5615 * find_next_key doesn't find a key because that means we're at
5616 * the end and are going to clean up now.
5617 */
5618 wc->drop_level = level;
5619 find_next_key(path, level, &wc->drop_progress);
5620
5621 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5622 fs_info->nodesize, parent, owner_root);
5623 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5624 0, false);
5625 ret = btrfs_free_extent(trans, &ref);
5626 if (ret)
5627 goto out_unlock;
5628 }
5629no_delete:
5630 *lookup_info = 1;
5631 ret = 1;
5632
5633out_unlock:
5634 btrfs_tree_unlock(next);
5635 free_extent_buffer(next);
5636
5637 return ret;
5638}
5639
5640/*
5641 * helper to process tree block while walking up the tree.
5642 *
5643 * when wc->stage == DROP_REFERENCE, this function drops
5644 * reference count on the block.
5645 *
5646 * when wc->stage == UPDATE_BACKREF, this function changes
5647 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5648 * to UPDATE_BACKREF previously while processing the block.
5649 *
5650 * NOTE: return value 1 means we should stop walking up.
5651 */
5652static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5653 struct btrfs_root *root,
5654 struct btrfs_path *path,
5655 struct walk_control *wc)
5656{
5657 struct btrfs_fs_info *fs_info = root->fs_info;
5658 int ret;
5659 int level = wc->level;
5660 struct extent_buffer *eb = path->nodes[level];
5661 u64 parent = 0;
5662
5663 if (wc->stage == UPDATE_BACKREF) {
5664 BUG_ON(wc->shared_level < level);
5665 if (level < wc->shared_level)
5666 goto out;
5667
5668 ret = find_next_key(path, level + 1, &wc->update_progress);
5669 if (ret > 0)
5670 wc->update_ref = 0;
5671
5672 wc->stage = DROP_REFERENCE;
5673 wc->shared_level = -1;
5674 path->slots[level] = 0;
5675
5676 /*
5677 * check reference count again if the block isn't locked.
5678 * we should start walking down the tree again if reference
5679 * count is one.
5680 */
5681 if (!path->locks[level]) {
5682 BUG_ON(level == 0);
5683 btrfs_tree_lock(eb);
5684 path->locks[level] = BTRFS_WRITE_LOCK;
5685
5686 ret = btrfs_lookup_extent_info(trans, fs_info,
5687 eb->start, level, 1,
5688 &wc->refs[level],
5689 &wc->flags[level],
5690 NULL);
5691 if (ret < 0) {
5692 btrfs_tree_unlock_rw(eb, path->locks[level]);
5693 path->locks[level] = 0;
5694 return ret;
5695 }
5696 BUG_ON(wc->refs[level] == 0);
5697 if (wc->refs[level] == 1) {
5698 btrfs_tree_unlock_rw(eb, path->locks[level]);
5699 path->locks[level] = 0;
5700 return 1;
5701 }
5702 }
5703 }
5704
5705 /* wc->stage == DROP_REFERENCE */
5706 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5707
5708 if (wc->refs[level] == 1) {
5709 if (level == 0) {
5710 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5711 ret = btrfs_dec_ref(trans, root, eb, 1);
5712 else
5713 ret = btrfs_dec_ref(trans, root, eb, 0);
5714 BUG_ON(ret); /* -ENOMEM */
5715 if (is_fstree(root->root_key.objectid)) {
5716 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5717 if (ret) {
5718 btrfs_err_rl(fs_info,
5719 "error %d accounting leaf items, quota is out of sync, rescan required",
5720 ret);
5721 }
5722 }
5723 }
5724 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5725 if (!path->locks[level]) {
5726 btrfs_tree_lock(eb);
5727 path->locks[level] = BTRFS_WRITE_LOCK;
5728 }
5729 btrfs_clear_buffer_dirty(trans, eb);
5730 }
5731
5732 if (eb == root->node) {
5733 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5734 parent = eb->start;
5735 else if (root->root_key.objectid != btrfs_header_owner(eb))
5736 goto owner_mismatch;
5737 } else {
5738 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5739 parent = path->nodes[level + 1]->start;
5740 else if (root->root_key.objectid !=
5741 btrfs_header_owner(path->nodes[level + 1]))
5742 goto owner_mismatch;
5743 }
5744
5745 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5746 wc->refs[level] == 1);
5747out:
5748 wc->refs[level] = 0;
5749 wc->flags[level] = 0;
5750 return 0;
5751
5752owner_mismatch:
5753 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5754 btrfs_header_owner(eb), root->root_key.objectid);
5755 return -EUCLEAN;
5756}
5757
5758static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5759 struct btrfs_root *root,
5760 struct btrfs_path *path,
5761 struct walk_control *wc)
5762{
5763 int level = wc->level;
5764 int lookup_info = 1;
5765 int ret = 0;
5766
5767 while (level >= 0) {
5768 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5769 if (ret)
5770 break;
5771
5772 if (level == 0)
5773 break;
5774
5775 if (path->slots[level] >=
5776 btrfs_header_nritems(path->nodes[level]))
5777 break;
5778
5779 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5780 if (ret > 0) {
5781 path->slots[level]++;
5782 continue;
5783 } else if (ret < 0)
5784 break;
5785 level = wc->level;
5786 }
5787 return (ret == 1) ? 0 : ret;
5788}
5789
5790static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5791 struct btrfs_root *root,
5792 struct btrfs_path *path,
5793 struct walk_control *wc, int max_level)
5794{
5795 int level = wc->level;
5796 int ret;
5797
5798 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5799 while (level < max_level && path->nodes[level]) {
5800 wc->level = level;
5801 if (path->slots[level] + 1 <
5802 btrfs_header_nritems(path->nodes[level])) {
5803 path->slots[level]++;
5804 return 0;
5805 } else {
5806 ret = walk_up_proc(trans, root, path, wc);
5807 if (ret > 0)
5808 return 0;
5809 if (ret < 0)
5810 return ret;
5811
5812 if (path->locks[level]) {
5813 btrfs_tree_unlock_rw(path->nodes[level],
5814 path->locks[level]);
5815 path->locks[level] = 0;
5816 }
5817 free_extent_buffer(path->nodes[level]);
5818 path->nodes[level] = NULL;
5819 level++;
5820 }
5821 }
5822 return 1;
5823}
5824
5825/*
5826 * drop a subvolume tree.
5827 *
5828 * this function traverses the tree freeing any blocks that only
5829 * referenced by the tree.
5830 *
5831 * when a shared tree block is found. this function decreases its
5832 * reference count by one. if update_ref is true, this function
5833 * also make sure backrefs for the shared block and all lower level
5834 * blocks are properly updated.
5835 *
5836 * If called with for_reloc == 0, may exit early with -EAGAIN
5837 */
5838int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5839{
5840 const bool is_reloc_root = (root->root_key.objectid ==
5841 BTRFS_TREE_RELOC_OBJECTID);
5842 struct btrfs_fs_info *fs_info = root->fs_info;
5843 struct btrfs_path *path;
5844 struct btrfs_trans_handle *trans;
5845 struct btrfs_root *tree_root = fs_info->tree_root;
5846 struct btrfs_root_item *root_item = &root->root_item;
5847 struct walk_control *wc;
5848 struct btrfs_key key;
5849 int err = 0;
5850 int ret;
5851 int level;
5852 bool root_dropped = false;
5853 bool unfinished_drop = false;
5854
5855 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5856
5857 path = btrfs_alloc_path();
5858 if (!path) {
5859 err = -ENOMEM;
5860 goto out;
5861 }
5862
5863 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5864 if (!wc) {
5865 btrfs_free_path(path);
5866 err = -ENOMEM;
5867 goto out;
5868 }
5869
5870 /*
5871 * Use join to avoid potential EINTR from transaction start. See
5872 * wait_reserve_ticket and the whole reservation callchain.
5873 */
5874 if (for_reloc)
5875 trans = btrfs_join_transaction(tree_root);
5876 else
5877 trans = btrfs_start_transaction(tree_root, 0);
5878 if (IS_ERR(trans)) {
5879 err = PTR_ERR(trans);
5880 goto out_free;
5881 }
5882
5883 err = btrfs_run_delayed_items(trans);
5884 if (err)
5885 goto out_end_trans;
5886
5887 /*
5888 * This will help us catch people modifying the fs tree while we're
5889 * dropping it. It is unsafe to mess with the fs tree while it's being
5890 * dropped as we unlock the root node and parent nodes as we walk down
5891 * the tree, assuming nothing will change. If something does change
5892 * then we'll have stale information and drop references to blocks we've
5893 * already dropped.
5894 */
5895 set_bit(BTRFS_ROOT_DELETING, &root->state);
5896 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5897
5898 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5899 level = btrfs_header_level(root->node);
5900 path->nodes[level] = btrfs_lock_root_node(root);
5901 path->slots[level] = 0;
5902 path->locks[level] = BTRFS_WRITE_LOCK;
5903 memset(&wc->update_progress, 0,
5904 sizeof(wc->update_progress));
5905 } else {
5906 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5907 memcpy(&wc->update_progress, &key,
5908 sizeof(wc->update_progress));
5909
5910 level = btrfs_root_drop_level(root_item);
5911 BUG_ON(level == 0);
5912 path->lowest_level = level;
5913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914 path->lowest_level = 0;
5915 if (ret < 0) {
5916 err = ret;
5917 goto out_end_trans;
5918 }
5919 WARN_ON(ret > 0);
5920
5921 /*
5922 * unlock our path, this is safe because only this
5923 * function is allowed to delete this snapshot
5924 */
5925 btrfs_unlock_up_safe(path, 0);
5926
5927 level = btrfs_header_level(root->node);
5928 while (1) {
5929 btrfs_tree_lock(path->nodes[level]);
5930 path->locks[level] = BTRFS_WRITE_LOCK;
5931
5932 ret = btrfs_lookup_extent_info(trans, fs_info,
5933 path->nodes[level]->start,
5934 level, 1, &wc->refs[level],
5935 &wc->flags[level], NULL);
5936 if (ret < 0) {
5937 err = ret;
5938 goto out_end_trans;
5939 }
5940 BUG_ON(wc->refs[level] == 0);
5941
5942 if (level == btrfs_root_drop_level(root_item))
5943 break;
5944
5945 btrfs_tree_unlock(path->nodes[level]);
5946 path->locks[level] = 0;
5947 WARN_ON(wc->refs[level] != 1);
5948 level--;
5949 }
5950 }
5951
5952 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5953 wc->level = level;
5954 wc->shared_level = -1;
5955 wc->stage = DROP_REFERENCE;
5956 wc->update_ref = update_ref;
5957 wc->keep_locks = 0;
5958 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5959
5960 while (1) {
5961
5962 ret = walk_down_tree(trans, root, path, wc);
5963 if (ret < 0) {
5964 btrfs_abort_transaction(trans, ret);
5965 err = ret;
5966 break;
5967 }
5968
5969 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5970 if (ret < 0) {
5971 btrfs_abort_transaction(trans, ret);
5972 err = ret;
5973 break;
5974 }
5975
5976 if (ret > 0) {
5977 BUG_ON(wc->stage != DROP_REFERENCE);
5978 break;
5979 }
5980
5981 if (wc->stage == DROP_REFERENCE) {
5982 wc->drop_level = wc->level;
5983 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5984 &wc->drop_progress,
5985 path->slots[wc->drop_level]);
5986 }
5987 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5988 &wc->drop_progress);
5989 btrfs_set_root_drop_level(root_item, wc->drop_level);
5990
5991 BUG_ON(wc->level == 0);
5992 if (btrfs_should_end_transaction(trans) ||
5993 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5994 ret = btrfs_update_root(trans, tree_root,
5995 &root->root_key,
5996 root_item);
5997 if (ret) {
5998 btrfs_abort_transaction(trans, ret);
5999 err = ret;
6000 goto out_end_trans;
6001 }
6002
6003 if (!is_reloc_root)
6004 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6005
6006 btrfs_end_transaction_throttle(trans);
6007 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6008 btrfs_debug(fs_info,
6009 "drop snapshot early exit");
6010 err = -EAGAIN;
6011 goto out_free;
6012 }
6013
6014 /*
6015 * Use join to avoid potential EINTR from transaction
6016 * start. See wait_reserve_ticket and the whole
6017 * reservation callchain.
6018 */
6019 if (for_reloc)
6020 trans = btrfs_join_transaction(tree_root);
6021 else
6022 trans = btrfs_start_transaction(tree_root, 0);
6023 if (IS_ERR(trans)) {
6024 err = PTR_ERR(trans);
6025 goto out_free;
6026 }
6027 }
6028 }
6029 btrfs_release_path(path);
6030 if (err)
6031 goto out_end_trans;
6032
6033 ret = btrfs_del_root(trans, &root->root_key);
6034 if (ret) {
6035 btrfs_abort_transaction(trans, ret);
6036 err = ret;
6037 goto out_end_trans;
6038 }
6039
6040 if (!is_reloc_root) {
6041 ret = btrfs_find_root(tree_root, &root->root_key, path,
6042 NULL, NULL);
6043 if (ret < 0) {
6044 btrfs_abort_transaction(trans, ret);
6045 err = ret;
6046 goto out_end_trans;
6047 } else if (ret > 0) {
6048 /* if we fail to delete the orphan item this time
6049 * around, it'll get picked up the next time.
6050 *
6051 * The most common failure here is just -ENOENT.
6052 */
6053 btrfs_del_orphan_item(trans, tree_root,
6054 root->root_key.objectid);
6055 }
6056 }
6057
6058 /*
6059 * This subvolume is going to be completely dropped, and won't be
6060 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6061 * commit transaction time. So free it here manually.
6062 */
6063 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6064 btrfs_qgroup_free_meta_all_pertrans(root);
6065
6066 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6067 btrfs_add_dropped_root(trans, root);
6068 else
6069 btrfs_put_root(root);
6070 root_dropped = true;
6071out_end_trans:
6072 if (!is_reloc_root)
6073 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6074
6075 btrfs_end_transaction_throttle(trans);
6076out_free:
6077 kfree(wc);
6078 btrfs_free_path(path);
6079out:
6080 /*
6081 * We were an unfinished drop root, check to see if there are any
6082 * pending, and if not clear and wake up any waiters.
6083 */
6084 if (!err && unfinished_drop)
6085 btrfs_maybe_wake_unfinished_drop(fs_info);
6086
6087 /*
6088 * So if we need to stop dropping the snapshot for whatever reason we
6089 * need to make sure to add it back to the dead root list so that we
6090 * keep trying to do the work later. This also cleans up roots if we
6091 * don't have it in the radix (like when we recover after a power fail
6092 * or unmount) so we don't leak memory.
6093 */
6094 if (!for_reloc && !root_dropped)
6095 btrfs_add_dead_root(root);
6096 return err;
6097}
6098
6099/*
6100 * drop subtree rooted at tree block 'node'.
6101 *
6102 * NOTE: this function will unlock and release tree block 'node'
6103 * only used by relocation code
6104 */
6105int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6106 struct btrfs_root *root,
6107 struct extent_buffer *node,
6108 struct extent_buffer *parent)
6109{
6110 struct btrfs_fs_info *fs_info = root->fs_info;
6111 struct btrfs_path *path;
6112 struct walk_control *wc;
6113 int level;
6114 int parent_level;
6115 int ret = 0;
6116 int wret;
6117
6118 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6119
6120 path = btrfs_alloc_path();
6121 if (!path)
6122 return -ENOMEM;
6123
6124 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6125 if (!wc) {
6126 btrfs_free_path(path);
6127 return -ENOMEM;
6128 }
6129
6130 btrfs_assert_tree_write_locked(parent);
6131 parent_level = btrfs_header_level(parent);
6132 atomic_inc(&parent->refs);
6133 path->nodes[parent_level] = parent;
6134 path->slots[parent_level] = btrfs_header_nritems(parent);
6135
6136 btrfs_assert_tree_write_locked(node);
6137 level = btrfs_header_level(node);
6138 path->nodes[level] = node;
6139 path->slots[level] = 0;
6140 path->locks[level] = BTRFS_WRITE_LOCK;
6141
6142 wc->refs[parent_level] = 1;
6143 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6144 wc->level = level;
6145 wc->shared_level = -1;
6146 wc->stage = DROP_REFERENCE;
6147 wc->update_ref = 0;
6148 wc->keep_locks = 1;
6149 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6150
6151 while (1) {
6152 wret = walk_down_tree(trans, root, path, wc);
6153 if (wret < 0) {
6154 ret = wret;
6155 break;
6156 }
6157
6158 wret = walk_up_tree(trans, root, path, wc, parent_level);
6159 if (wret < 0)
6160 ret = wret;
6161 if (wret != 0)
6162 break;
6163 }
6164
6165 kfree(wc);
6166 btrfs_free_path(path);
6167 return ret;
6168}
6169
6170int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6171 u64 start, u64 end)
6172{
6173 return unpin_extent_range(fs_info, start, end, false);
6174}
6175
6176/*
6177 * It used to be that old block groups would be left around forever.
6178 * Iterating over them would be enough to trim unused space. Since we
6179 * now automatically remove them, we also need to iterate over unallocated
6180 * space.
6181 *
6182 * We don't want a transaction for this since the discard may take a
6183 * substantial amount of time. We don't require that a transaction be
6184 * running, but we do need to take a running transaction into account
6185 * to ensure that we're not discarding chunks that were released or
6186 * allocated in the current transaction.
6187 *
6188 * Holding the chunks lock will prevent other threads from allocating
6189 * or releasing chunks, but it won't prevent a running transaction
6190 * from committing and releasing the memory that the pending chunks
6191 * list head uses. For that, we need to take a reference to the
6192 * transaction and hold the commit root sem. We only need to hold
6193 * it while performing the free space search since we have already
6194 * held back allocations.
6195 */
6196static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6197{
6198 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6199 int ret;
6200
6201 *trimmed = 0;
6202
6203 /* Discard not supported = nothing to do. */
6204 if (!bdev_max_discard_sectors(device->bdev))
6205 return 0;
6206
6207 /* Not writable = nothing to do. */
6208 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6209 return 0;
6210
6211 /* No free space = nothing to do. */
6212 if (device->total_bytes <= device->bytes_used)
6213 return 0;
6214
6215 ret = 0;
6216
6217 while (1) {
6218 struct btrfs_fs_info *fs_info = device->fs_info;
6219 u64 bytes;
6220
6221 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6222 if (ret)
6223 break;
6224
6225 find_first_clear_extent_bit(&device->alloc_state, start,
6226 &start, &end,
6227 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6228
6229 /* Check if there are any CHUNK_* bits left */
6230 if (start > device->total_bytes) {
6231 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6232 btrfs_warn_in_rcu(fs_info,
6233"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6234 start, end - start + 1,
6235 btrfs_dev_name(device),
6236 device->total_bytes);
6237 mutex_unlock(&fs_info->chunk_mutex);
6238 ret = 0;
6239 break;
6240 }
6241
6242 /* Ensure we skip the reserved space on each device. */
6243 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6244
6245 /*
6246 * If find_first_clear_extent_bit find a range that spans the
6247 * end of the device it will set end to -1, in this case it's up
6248 * to the caller to trim the value to the size of the device.
6249 */
6250 end = min(end, device->total_bytes - 1);
6251
6252 len = end - start + 1;
6253
6254 /* We didn't find any extents */
6255 if (!len) {
6256 mutex_unlock(&fs_info->chunk_mutex);
6257 ret = 0;
6258 break;
6259 }
6260
6261 ret = btrfs_issue_discard(device->bdev, start, len,
6262 &bytes);
6263 if (!ret)
6264 set_extent_bit(&device->alloc_state, start,
6265 start + bytes - 1, CHUNK_TRIMMED, NULL);
6266 mutex_unlock(&fs_info->chunk_mutex);
6267
6268 if (ret)
6269 break;
6270
6271 start += len;
6272 *trimmed += bytes;
6273
6274 if (fatal_signal_pending(current)) {
6275 ret = -ERESTARTSYS;
6276 break;
6277 }
6278
6279 cond_resched();
6280 }
6281
6282 return ret;
6283}
6284
6285/*
6286 * Trim the whole filesystem by:
6287 * 1) trimming the free space in each block group
6288 * 2) trimming the unallocated space on each device
6289 *
6290 * This will also continue trimming even if a block group or device encounters
6291 * an error. The return value will be the last error, or 0 if nothing bad
6292 * happens.
6293 */
6294int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6295{
6296 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6297 struct btrfs_block_group *cache = NULL;
6298 struct btrfs_device *device;
6299 u64 group_trimmed;
6300 u64 range_end = U64_MAX;
6301 u64 start;
6302 u64 end;
6303 u64 trimmed = 0;
6304 u64 bg_failed = 0;
6305 u64 dev_failed = 0;
6306 int bg_ret = 0;
6307 int dev_ret = 0;
6308 int ret = 0;
6309
6310 if (range->start == U64_MAX)
6311 return -EINVAL;
6312
6313 /*
6314 * Check range overflow if range->len is set.
6315 * The default range->len is U64_MAX.
6316 */
6317 if (range->len != U64_MAX &&
6318 check_add_overflow(range->start, range->len, &range_end))
6319 return -EINVAL;
6320
6321 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6322 for (; cache; cache = btrfs_next_block_group(cache)) {
6323 if (cache->start >= range_end) {
6324 btrfs_put_block_group(cache);
6325 break;
6326 }
6327
6328 start = max(range->start, cache->start);
6329 end = min(range_end, cache->start + cache->length);
6330
6331 if (end - start >= range->minlen) {
6332 if (!btrfs_block_group_done(cache)) {
6333 ret = btrfs_cache_block_group(cache, true);
6334 if (ret) {
6335 bg_failed++;
6336 bg_ret = ret;
6337 continue;
6338 }
6339 }
6340 ret = btrfs_trim_block_group(cache,
6341 &group_trimmed,
6342 start,
6343 end,
6344 range->minlen);
6345
6346 trimmed += group_trimmed;
6347 if (ret) {
6348 bg_failed++;
6349 bg_ret = ret;
6350 continue;
6351 }
6352 }
6353 }
6354
6355 if (bg_failed)
6356 btrfs_warn(fs_info,
6357 "failed to trim %llu block group(s), last error %d",
6358 bg_failed, bg_ret);
6359
6360 mutex_lock(&fs_devices->device_list_mutex);
6361 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6362 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6363 continue;
6364
6365 ret = btrfs_trim_free_extents(device, &group_trimmed);
6366 if (ret) {
6367 dev_failed++;
6368 dev_ret = ret;
6369 break;
6370 }
6371
6372 trimmed += group_trimmed;
6373 }
6374 mutex_unlock(&fs_devices->device_list_mutex);
6375
6376 if (dev_failed)
6377 btrfs_warn(fs_info,
6378 "failed to trim %llu device(s), last error %d",
6379 dev_failed, dev_ret);
6380 range->len = trimmed;
6381 if (bg_ret)
6382 return bg_ret;
6383 return dev_ret;
6384}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "misc.h"
20#include "tree-log.h"
21#include "disk-io.h"
22#include "print-tree.h"
23#include "volumes.h"
24#include "raid56.h"
25#include "locking.h"
26#include "free-space-cache.h"
27#include "free-space-tree.h"
28#include "sysfs.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31#include "space-info.h"
32#include "block-rsv.h"
33#include "delalloc-space.h"
34#include "block-group.h"
35#include "discard.h"
36#include "rcu-string.h"
37
38#undef SCRAMBLE_DELAYED_REFS
39
40
41static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_delayed_ref_node *node, u64 parent,
43 u64 root_objectid, u64 owner_objectid,
44 u64 owner_offset, int refs_to_drop,
45 struct btrfs_delayed_extent_op *extra_op);
46static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 struct extent_buffer *leaf,
48 struct btrfs_extent_item *ei);
49static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 u64 parent, u64 root_objectid,
51 u64 flags, u64 owner, u64 offset,
52 struct btrfs_key *ins, int ref_mod);
53static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 struct btrfs_delayed_ref_node *node,
55 struct btrfs_delayed_extent_op *extent_op);
56static int find_next_key(struct btrfs_path *path, int level,
57 struct btrfs_key *key);
58
59static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60{
61 return (cache->flags & bits) == bits;
62}
63
64int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 u64 start, u64 num_bytes)
66{
67 u64 end = start + num_bytes - 1;
68 set_extent_bits(&fs_info->excluded_extents, start, end,
69 EXTENT_UPTODATE);
70 return 0;
71}
72
73void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74{
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->start;
79 end = start + cache->length - 1;
80
81 clear_extent_bits(&fs_info->excluded_extents, start, end,
82 EXTENT_UPTODATE);
83}
84
85static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
86{
87 if (ref->type == BTRFS_REF_METADATA) {
88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
89 return BTRFS_BLOCK_GROUP_SYSTEM;
90 else
91 return BTRFS_BLOCK_GROUP_METADATA;
92 }
93 return BTRFS_BLOCK_GROUP_DATA;
94}
95
96static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_ref *ref)
98{
99 struct btrfs_space_info *space_info;
100 u64 flags = generic_ref_to_space_flags(ref);
101
102 space_info = btrfs_find_space_info(fs_info, flags);
103 ASSERT(space_info);
104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
105 BTRFS_TOTAL_BYTES_PINNED_BATCH);
106}
107
108static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_ref *ref)
110{
111 struct btrfs_space_info *space_info;
112 u64 flags = generic_ref_to_space_flags(ref);
113
114 space_info = btrfs_find_space_info(fs_info, flags);
115 ASSERT(space_info);
116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
117 BTRFS_TOTAL_BYTES_PINNED_BATCH);
118}
119
120/* simple helper to search for an existing data extent at a given offset */
121int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
122{
123 int ret;
124 struct btrfs_key key;
125 struct btrfs_path *path;
126
127 path = btrfs_alloc_path();
128 if (!path)
129 return -ENOMEM;
130
131 key.objectid = start;
132 key.offset = len;
133 key.type = BTRFS_EXTENT_ITEM_KEY;
134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
135 btrfs_free_path(path);
136 return ret;
137}
138
139/*
140 * helper function to lookup reference count and flags of a tree block.
141 *
142 * the head node for delayed ref is used to store the sum of all the
143 * reference count modifications queued up in the rbtree. the head
144 * node may also store the extent flags to set. This way you can check
145 * to see what the reference count and extent flags would be if all of
146 * the delayed refs are not processed.
147 */
148int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
149 struct btrfs_fs_info *fs_info, u64 bytenr,
150 u64 offset, int metadata, u64 *refs, u64 *flags)
151{
152 struct btrfs_delayed_ref_head *head;
153 struct btrfs_delayed_ref_root *delayed_refs;
154 struct btrfs_path *path;
155 struct btrfs_extent_item *ei;
156 struct extent_buffer *leaf;
157 struct btrfs_key key;
158 u32 item_size;
159 u64 num_refs;
160 u64 extent_flags;
161 int ret;
162
163 /*
164 * If we don't have skinny metadata, don't bother doing anything
165 * different
166 */
167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
168 offset = fs_info->nodesize;
169 metadata = 0;
170 }
171
172 path = btrfs_alloc_path();
173 if (!path)
174 return -ENOMEM;
175
176 if (!trans) {
177 path->skip_locking = 1;
178 path->search_commit_root = 1;
179 }
180
181search_again:
182 key.objectid = bytenr;
183 key.offset = offset;
184 if (metadata)
185 key.type = BTRFS_METADATA_ITEM_KEY;
186 else
187 key.type = BTRFS_EXTENT_ITEM_KEY;
188
189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
190 if (ret < 0)
191 goto out_free;
192
193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
194 if (path->slots[0]) {
195 path->slots[0]--;
196 btrfs_item_key_to_cpu(path->nodes[0], &key,
197 path->slots[0]);
198 if (key.objectid == bytenr &&
199 key.type == BTRFS_EXTENT_ITEM_KEY &&
200 key.offset == fs_info->nodesize)
201 ret = 0;
202 }
203 }
204
205 if (ret == 0) {
206 leaf = path->nodes[0];
207 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
208 if (item_size >= sizeof(*ei)) {
209 ei = btrfs_item_ptr(leaf, path->slots[0],
210 struct btrfs_extent_item);
211 num_refs = btrfs_extent_refs(leaf, ei);
212 extent_flags = btrfs_extent_flags(leaf, ei);
213 } else {
214 ret = -EINVAL;
215 btrfs_print_v0_err(fs_info);
216 if (trans)
217 btrfs_abort_transaction(trans, ret);
218 else
219 btrfs_handle_fs_error(fs_info, ret, NULL);
220
221 goto out_free;
222 }
223
224 BUG_ON(num_refs == 0);
225 } else {
226 num_refs = 0;
227 extent_flags = 0;
228 ret = 0;
229 }
230
231 if (!trans)
232 goto out;
233
234 delayed_refs = &trans->transaction->delayed_refs;
235 spin_lock(&delayed_refs->lock);
236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
237 if (head) {
238 if (!mutex_trylock(&head->mutex)) {
239 refcount_inc(&head->refs);
240 spin_unlock(&delayed_refs->lock);
241
242 btrfs_release_path(path);
243
244 /*
245 * Mutex was contended, block until it's released and try
246 * again
247 */
248 mutex_lock(&head->mutex);
249 mutex_unlock(&head->mutex);
250 btrfs_put_delayed_ref_head(head);
251 goto search_again;
252 }
253 spin_lock(&head->lock);
254 if (head->extent_op && head->extent_op->update_flags)
255 extent_flags |= head->extent_op->flags_to_set;
256 else
257 BUG_ON(num_refs == 0);
258
259 num_refs += head->ref_mod;
260 spin_unlock(&head->lock);
261 mutex_unlock(&head->mutex);
262 }
263 spin_unlock(&delayed_refs->lock);
264out:
265 WARN_ON(num_refs == 0);
266 if (refs)
267 *refs = num_refs;
268 if (flags)
269 *flags = extent_flags;
270out_free:
271 btrfs_free_path(path);
272 return ret;
273}
274
275/*
276 * Back reference rules. Back refs have three main goals:
277 *
278 * 1) differentiate between all holders of references to an extent so that
279 * when a reference is dropped we can make sure it was a valid reference
280 * before freeing the extent.
281 *
282 * 2) Provide enough information to quickly find the holders of an extent
283 * if we notice a given block is corrupted or bad.
284 *
285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286 * maintenance. This is actually the same as #2, but with a slightly
287 * different use case.
288 *
289 * There are two kinds of back refs. The implicit back refs is optimized
290 * for pointers in non-shared tree blocks. For a given pointer in a block,
291 * back refs of this kind provide information about the block's owner tree
292 * and the pointer's key. These information allow us to find the block by
293 * b-tree searching. The full back refs is for pointers in tree blocks not
294 * referenced by their owner trees. The location of tree block is recorded
295 * in the back refs. Actually the full back refs is generic, and can be
296 * used in all cases the implicit back refs is used. The major shortcoming
297 * of the full back refs is its overhead. Every time a tree block gets
298 * COWed, we have to update back refs entry for all pointers in it.
299 *
300 * For a newly allocated tree block, we use implicit back refs for
301 * pointers in it. This means most tree related operations only involve
302 * implicit back refs. For a tree block created in old transaction, the
303 * only way to drop a reference to it is COW it. So we can detect the
304 * event that tree block loses its owner tree's reference and do the
305 * back refs conversion.
306 *
307 * When a tree block is COWed through a tree, there are four cases:
308 *
309 * The reference count of the block is one and the tree is the block's
310 * owner tree. Nothing to do in this case.
311 *
312 * The reference count of the block is one and the tree is not the
313 * block's owner tree. In this case, full back refs is used for pointers
314 * in the block. Remove these full back refs, add implicit back refs for
315 * every pointers in the new block.
316 *
317 * The reference count of the block is greater than one and the tree is
318 * the block's owner tree. In this case, implicit back refs is used for
319 * pointers in the block. Add full back refs for every pointers in the
320 * block, increase lower level extents' reference counts. The original
321 * implicit back refs are entailed to the new block.
322 *
323 * The reference count of the block is greater than one and the tree is
324 * not the block's owner tree. Add implicit back refs for every pointer in
325 * the new block, increase lower level extents' reference count.
326 *
327 * Back Reference Key composing:
328 *
329 * The key objectid corresponds to the first byte in the extent,
330 * The key type is used to differentiate between types of back refs.
331 * There are different meanings of the key offset for different types
332 * of back refs.
333 *
334 * File extents can be referenced by:
335 *
336 * - multiple snapshots, subvolumes, or different generations in one subvol
337 * - different files inside a single subvolume
338 * - different offsets inside a file (bookend extents in file.c)
339 *
340 * The extent ref structure for the implicit back refs has fields for:
341 *
342 * - Objectid of the subvolume root
343 * - objectid of the file holding the reference
344 * - original offset in the file
345 * - how many bookend extents
346 *
347 * The key offset for the implicit back refs is hash of the first
348 * three fields.
349 *
350 * The extent ref structure for the full back refs has field for:
351 *
352 * - number of pointers in the tree leaf
353 *
354 * The key offset for the implicit back refs is the first byte of
355 * the tree leaf
356 *
357 * When a file extent is allocated, The implicit back refs is used.
358 * the fields are filled in:
359 *
360 * (root_key.objectid, inode objectid, offset in file, 1)
361 *
362 * When a file extent is removed file truncation, we find the
363 * corresponding implicit back refs and check the following fields:
364 *
365 * (btrfs_header_owner(leaf), inode objectid, offset in file)
366 *
367 * Btree extents can be referenced by:
368 *
369 * - Different subvolumes
370 *
371 * Both the implicit back refs and the full back refs for tree blocks
372 * only consist of key. The key offset for the implicit back refs is
373 * objectid of block's owner tree. The key offset for the full back refs
374 * is the first byte of parent block.
375 *
376 * When implicit back refs is used, information about the lowest key and
377 * level of the tree block are required. These information are stored in
378 * tree block info structure.
379 */
380
381/*
382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385 */
386int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
387 struct btrfs_extent_inline_ref *iref,
388 enum btrfs_inline_ref_type is_data)
389{
390 int type = btrfs_extent_inline_ref_type(eb, iref);
391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
392
393 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
394 type == BTRFS_SHARED_BLOCK_REF_KEY ||
395 type == BTRFS_SHARED_DATA_REF_KEY ||
396 type == BTRFS_EXTENT_DATA_REF_KEY) {
397 if (is_data == BTRFS_REF_TYPE_BLOCK) {
398 if (type == BTRFS_TREE_BLOCK_REF_KEY)
399 return type;
400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
401 ASSERT(eb->fs_info);
402 /*
403 * Every shared one has parent tree block,
404 * which must be aligned to sector size.
405 */
406 if (offset &&
407 IS_ALIGNED(offset, eb->fs_info->sectorsize))
408 return type;
409 }
410 } else if (is_data == BTRFS_REF_TYPE_DATA) {
411 if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 return type;
413 if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 ASSERT(eb->fs_info);
415 /*
416 * Every shared one has parent tree block,
417 * which must be aligned to sector size.
418 */
419 if (offset &&
420 IS_ALIGNED(offset, eb->fs_info->sectorsize))
421 return type;
422 }
423 } else {
424 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
425 return type;
426 }
427 }
428
429 btrfs_print_leaf((struct extent_buffer *)eb);
430 btrfs_err(eb->fs_info,
431 "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 eb->start, (unsigned long)iref, type);
433 WARN_ON(1);
434
435 return BTRFS_REF_TYPE_INVALID;
436}
437
438u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439{
440 u32 high_crc = ~(u32)0;
441 u32 low_crc = ~(u32)0;
442 __le64 lenum;
443
444 lenum = cpu_to_le64(root_objectid);
445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 lenum = cpu_to_le64(owner);
447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 lenum = cpu_to_le64(offset);
449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450
451 return ((u64)high_crc << 31) ^ (u64)low_crc;
452}
453
454static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 struct btrfs_extent_data_ref *ref)
456{
457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 btrfs_extent_data_ref_objectid(leaf, ref),
459 btrfs_extent_data_ref_offset(leaf, ref));
460}
461
462static int match_extent_data_ref(struct extent_buffer *leaf,
463 struct btrfs_extent_data_ref *ref,
464 u64 root_objectid, u64 owner, u64 offset)
465{
466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 return 0;
470 return 1;
471}
472
473static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 struct btrfs_path *path,
475 u64 bytenr, u64 parent,
476 u64 root_objectid,
477 u64 owner, u64 offset)
478{
479 struct btrfs_root *root = trans->fs_info->extent_root;
480 struct btrfs_key key;
481 struct btrfs_extent_data_ref *ref;
482 struct extent_buffer *leaf;
483 u32 nritems;
484 int ret;
485 int recow;
486 int err = -ENOENT;
487
488 key.objectid = bytenr;
489 if (parent) {
490 key.type = BTRFS_SHARED_DATA_REF_KEY;
491 key.offset = parent;
492 } else {
493 key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 key.offset = hash_extent_data_ref(root_objectid,
495 owner, offset);
496 }
497again:
498 recow = 0;
499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 if (ret < 0) {
501 err = ret;
502 goto fail;
503 }
504
505 if (parent) {
506 if (!ret)
507 return 0;
508 goto fail;
509 }
510
511 leaf = path->nodes[0];
512 nritems = btrfs_header_nritems(leaf);
513 while (1) {
514 if (path->slots[0] >= nritems) {
515 ret = btrfs_next_leaf(root, path);
516 if (ret < 0)
517 err = ret;
518 if (ret)
519 goto fail;
520
521 leaf = path->nodes[0];
522 nritems = btrfs_header_nritems(leaf);
523 recow = 1;
524 }
525
526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 if (key.objectid != bytenr ||
528 key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 goto fail;
530
531 ref = btrfs_item_ptr(leaf, path->slots[0],
532 struct btrfs_extent_data_ref);
533
534 if (match_extent_data_ref(leaf, ref, root_objectid,
535 owner, offset)) {
536 if (recow) {
537 btrfs_release_path(path);
538 goto again;
539 }
540 err = 0;
541 break;
542 }
543 path->slots[0]++;
544 }
545fail:
546 return err;
547}
548
549static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 struct btrfs_path *path,
551 u64 bytenr, u64 parent,
552 u64 root_objectid, u64 owner,
553 u64 offset, int refs_to_add)
554{
555 struct btrfs_root *root = trans->fs_info->extent_root;
556 struct btrfs_key key;
557 struct extent_buffer *leaf;
558 u32 size;
559 u32 num_refs;
560 int ret;
561
562 key.objectid = bytenr;
563 if (parent) {
564 key.type = BTRFS_SHARED_DATA_REF_KEY;
565 key.offset = parent;
566 size = sizeof(struct btrfs_shared_data_ref);
567 } else {
568 key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 key.offset = hash_extent_data_ref(root_objectid,
570 owner, offset);
571 size = sizeof(struct btrfs_extent_data_ref);
572 }
573
574 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 if (ret && ret != -EEXIST)
576 goto fail;
577
578 leaf = path->nodes[0];
579 if (parent) {
580 struct btrfs_shared_data_ref *ref;
581 ref = btrfs_item_ptr(leaf, path->slots[0],
582 struct btrfs_shared_data_ref);
583 if (ret == 0) {
584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 } else {
586 num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 num_refs += refs_to_add;
588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 }
590 } else {
591 struct btrfs_extent_data_ref *ref;
592 while (ret == -EEXIST) {
593 ref = btrfs_item_ptr(leaf, path->slots[0],
594 struct btrfs_extent_data_ref);
595 if (match_extent_data_ref(leaf, ref, root_objectid,
596 owner, offset))
597 break;
598 btrfs_release_path(path);
599 key.offset++;
600 ret = btrfs_insert_empty_item(trans, root, path, &key,
601 size);
602 if (ret && ret != -EEXIST)
603 goto fail;
604
605 leaf = path->nodes[0];
606 }
607 ref = btrfs_item_ptr(leaf, path->slots[0],
608 struct btrfs_extent_data_ref);
609 if (ret == 0) {
610 btrfs_set_extent_data_ref_root(leaf, ref,
611 root_objectid);
612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 } else {
616 num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 num_refs += refs_to_add;
618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 }
620 }
621 btrfs_mark_buffer_dirty(leaf);
622 ret = 0;
623fail:
624 btrfs_release_path(path);
625 return ret;
626}
627
628static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 struct btrfs_path *path,
630 int refs_to_drop, int *last_ref)
631{
632 struct btrfs_key key;
633 struct btrfs_extent_data_ref *ref1 = NULL;
634 struct btrfs_shared_data_ref *ref2 = NULL;
635 struct extent_buffer *leaf;
636 u32 num_refs = 0;
637 int ret = 0;
638
639 leaf = path->nodes[0];
640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641
642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_extent_data_ref);
645 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_shared_data_ref);
649 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 btrfs_print_v0_err(trans->fs_info);
652 btrfs_abort_transaction(trans, -EINVAL);
653 return -EINVAL;
654 } else {
655 BUG();
656 }
657
658 BUG_ON(num_refs < refs_to_drop);
659 num_refs -= refs_to_drop;
660
661 if (num_refs == 0) {
662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 *last_ref = 1;
664 } else {
665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 btrfs_mark_buffer_dirty(leaf);
670 }
671 return ret;
672}
673
674static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 struct btrfs_extent_inline_ref *iref)
676{
677 struct btrfs_key key;
678 struct extent_buffer *leaf;
679 struct btrfs_extent_data_ref *ref1;
680 struct btrfs_shared_data_ref *ref2;
681 u32 num_refs = 0;
682 int type;
683
684 leaf = path->nodes[0];
685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686
687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 if (iref) {
689 /*
690 * If type is invalid, we should have bailed out earlier than
691 * this call.
692 */
693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 } else {
699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 }
702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_extent_data_ref);
705 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 struct btrfs_shared_data_ref);
709 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 } else {
711 WARN_ON(1);
712 }
713 return num_refs;
714}
715
716static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 struct btrfs_path *path,
718 u64 bytenr, u64 parent,
719 u64 root_objectid)
720{
721 struct btrfs_root *root = trans->fs_info->extent_root;
722 struct btrfs_key key;
723 int ret;
724
725 key.objectid = bytenr;
726 if (parent) {
727 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 key.offset = parent;
729 } else {
730 key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 key.offset = root_objectid;
732 }
733
734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 if (ret > 0)
736 ret = -ENOENT;
737 return ret;
738}
739
740static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 struct btrfs_path *path,
742 u64 bytenr, u64 parent,
743 u64 root_objectid)
744{
745 struct btrfs_key key;
746 int ret;
747
748 key.objectid = bytenr;
749 if (parent) {
750 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 key.offset = parent;
752 } else {
753 key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 key.offset = root_objectid;
755 }
756
757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 path, &key, 0);
759 btrfs_release_path(path);
760 return ret;
761}
762
763static inline int extent_ref_type(u64 parent, u64 owner)
764{
765 int type;
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (parent > 0)
768 type = BTRFS_SHARED_BLOCK_REF_KEY;
769 else
770 type = BTRFS_TREE_BLOCK_REF_KEY;
771 } else {
772 if (parent > 0)
773 type = BTRFS_SHARED_DATA_REF_KEY;
774 else
775 type = BTRFS_EXTENT_DATA_REF_KEY;
776 }
777 return type;
778}
779
780static int find_next_key(struct btrfs_path *path, int level,
781 struct btrfs_key *key)
782
783{
784 for (; level < BTRFS_MAX_LEVEL; level++) {
785 if (!path->nodes[level])
786 break;
787 if (path->slots[level] + 1 >=
788 btrfs_header_nritems(path->nodes[level]))
789 continue;
790 if (level == 0)
791 btrfs_item_key_to_cpu(path->nodes[level], key,
792 path->slots[level] + 1);
793 else
794 btrfs_node_key_to_cpu(path->nodes[level], key,
795 path->slots[level] + 1);
796 return 0;
797 }
798 return 1;
799}
800
801/*
802 * look for inline back ref. if back ref is found, *ref_ret is set
803 * to the address of inline back ref, and 0 is returned.
804 *
805 * if back ref isn't found, *ref_ret is set to the address where it
806 * should be inserted, and -ENOENT is returned.
807 *
808 * if insert is true and there are too many inline back refs, the path
809 * points to the extent item, and -EAGAIN is returned.
810 *
811 * NOTE: inline back refs are ordered in the same way that back ref
812 * items in the tree are ordered.
813 */
814static noinline_for_stack
815int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 struct btrfs_path *path,
817 struct btrfs_extent_inline_ref **ref_ret,
818 u64 bytenr, u64 num_bytes,
819 u64 parent, u64 root_objectid,
820 u64 owner, u64 offset, int insert)
821{
822 struct btrfs_fs_info *fs_info = trans->fs_info;
823 struct btrfs_root *root = fs_info->extent_root;
824 struct btrfs_key key;
825 struct extent_buffer *leaf;
826 struct btrfs_extent_item *ei;
827 struct btrfs_extent_inline_ref *iref;
828 u64 flags;
829 u64 item_size;
830 unsigned long ptr;
831 unsigned long end;
832 int extra_size;
833 int type;
834 int want;
835 int ret;
836 int err = 0;
837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 int needed;
839
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843
844 want = extent_ref_type(parent, owner);
845 if (insert) {
846 extra_size = btrfs_extent_inline_ref_size(want);
847 path->keep_locks = 1;
848 } else
849 extra_size = -1;
850
851 /*
852 * Owner is our level, so we can just add one to get the level for the
853 * block we are interested in.
854 */
855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
856 key.type = BTRFS_METADATA_ITEM_KEY;
857 key.offset = owner;
858 }
859
860again:
861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
862 if (ret < 0) {
863 err = ret;
864 goto out;
865 }
866
867 /*
868 * We may be a newly converted file system which still has the old fat
869 * extent entries for metadata, so try and see if we have one of those.
870 */
871 if (ret > 0 && skinny_metadata) {
872 skinny_metadata = false;
873 if (path->slots[0]) {
874 path->slots[0]--;
875 btrfs_item_key_to_cpu(path->nodes[0], &key,
876 path->slots[0]);
877 if (key.objectid == bytenr &&
878 key.type == BTRFS_EXTENT_ITEM_KEY &&
879 key.offset == num_bytes)
880 ret = 0;
881 }
882 if (ret) {
883 key.objectid = bytenr;
884 key.type = BTRFS_EXTENT_ITEM_KEY;
885 key.offset = num_bytes;
886 btrfs_release_path(path);
887 goto again;
888 }
889 }
890
891 if (ret && !insert) {
892 err = -ENOENT;
893 goto out;
894 } else if (WARN_ON(ret)) {
895 err = -EIO;
896 goto out;
897 }
898
899 leaf = path->nodes[0];
900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
901 if (unlikely(item_size < sizeof(*ei))) {
902 err = -EINVAL;
903 btrfs_print_v0_err(fs_info);
904 btrfs_abort_transaction(trans, err);
905 goto out;
906 }
907
908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
909 flags = btrfs_extent_flags(leaf, ei);
910
911 ptr = (unsigned long)(ei + 1);
912 end = (unsigned long)ei + item_size;
913
914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
915 ptr += sizeof(struct btrfs_tree_block_info);
916 BUG_ON(ptr > end);
917 }
918
919 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
920 needed = BTRFS_REF_TYPE_DATA;
921 else
922 needed = BTRFS_REF_TYPE_BLOCK;
923
924 err = -ENOENT;
925 while (1) {
926 if (ptr >= end) {
927 WARN_ON(ptr > end);
928 break;
929 }
930 iref = (struct btrfs_extent_inline_ref *)ptr;
931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
932 if (type == BTRFS_REF_TYPE_INVALID) {
933 err = -EUCLEAN;
934 goto out;
935 }
936
937 if (want < type)
938 break;
939 if (want > type) {
940 ptr += btrfs_extent_inline_ref_size(type);
941 continue;
942 }
943
944 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
945 struct btrfs_extent_data_ref *dref;
946 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
947 if (match_extent_data_ref(leaf, dref, root_objectid,
948 owner, offset)) {
949 err = 0;
950 break;
951 }
952 if (hash_extent_data_ref_item(leaf, dref) <
953 hash_extent_data_ref(root_objectid, owner, offset))
954 break;
955 } else {
956 u64 ref_offset;
957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
958 if (parent > 0) {
959 if (parent == ref_offset) {
960 err = 0;
961 break;
962 }
963 if (ref_offset < parent)
964 break;
965 } else {
966 if (root_objectid == ref_offset) {
967 err = 0;
968 break;
969 }
970 if (ref_offset < root_objectid)
971 break;
972 }
973 }
974 ptr += btrfs_extent_inline_ref_size(type);
975 }
976 if (err == -ENOENT && insert) {
977 if (item_size + extra_size >=
978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
979 err = -EAGAIN;
980 goto out;
981 }
982 /*
983 * To add new inline back ref, we have to make sure
984 * there is no corresponding back ref item.
985 * For simplicity, we just do not add new inline back
986 * ref if there is any kind of item for this block
987 */
988 if (find_next_key(path, 0, &key) == 0 &&
989 key.objectid == bytenr &&
990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
991 err = -EAGAIN;
992 goto out;
993 }
994 }
995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
996out:
997 if (insert) {
998 path->keep_locks = 0;
999 btrfs_unlock_up_safe(path, 1);
1000 }
1001 return err;
1002}
1003
1004/*
1005 * helper to add new inline back ref
1006 */
1007static noinline_for_stack
1008void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1009 struct btrfs_path *path,
1010 struct btrfs_extent_inline_ref *iref,
1011 u64 parent, u64 root_objectid,
1012 u64 owner, u64 offset, int refs_to_add,
1013 struct btrfs_delayed_extent_op *extent_op)
1014{
1015 struct extent_buffer *leaf;
1016 struct btrfs_extent_item *ei;
1017 unsigned long ptr;
1018 unsigned long end;
1019 unsigned long item_offset;
1020 u64 refs;
1021 int size;
1022 int type;
1023
1024 leaf = path->nodes[0];
1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1026 item_offset = (unsigned long)iref - (unsigned long)ei;
1027
1028 type = extent_ref_type(parent, owner);
1029 size = btrfs_extent_inline_ref_size(type);
1030
1031 btrfs_extend_item(path, size);
1032
1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1034 refs = btrfs_extent_refs(leaf, ei);
1035 refs += refs_to_add;
1036 btrfs_set_extent_refs(leaf, ei, refs);
1037 if (extent_op)
1038 __run_delayed_extent_op(extent_op, leaf, ei);
1039
1040 ptr = (unsigned long)ei + item_offset;
1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1042 if (ptr < end - size)
1043 memmove_extent_buffer(leaf, ptr + size, ptr,
1044 end - size - ptr);
1045
1046 iref = (struct btrfs_extent_inline_ref *)ptr;
1047 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1049 struct btrfs_extent_data_ref *dref;
1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1056 struct btrfs_shared_data_ref *sref;
1057 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 } else {
1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066}
1067
1068static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1069 struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref **ref_ret,
1071 u64 bytenr, u64 num_bytes, u64 parent,
1072 u64 root_objectid, u64 owner, u64 offset)
1073{
1074 int ret;
1075
1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1077 num_bytes, parent, root_objectid,
1078 owner, offset, 0);
1079 if (ret != -ENOENT)
1080 return ret;
1081
1082 btrfs_release_path(path);
1083 *ref_ret = NULL;
1084
1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1087 root_objectid);
1088 } else {
1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1090 root_objectid, owner, offset);
1091 }
1092 return ret;
1093}
1094
1095/*
1096 * helper to update/remove inline back ref
1097 */
1098static noinline_for_stack
1099void update_inline_extent_backref(struct btrfs_path *path,
1100 struct btrfs_extent_inline_ref *iref,
1101 int refs_to_mod,
1102 struct btrfs_delayed_extent_op *extent_op,
1103 int *last_ref)
1104{
1105 struct extent_buffer *leaf = path->nodes[0];
1106 struct btrfs_extent_item *ei;
1107 struct btrfs_extent_data_ref *dref = NULL;
1108 struct btrfs_shared_data_ref *sref = NULL;
1109 unsigned long ptr;
1110 unsigned long end;
1111 u32 item_size;
1112 int size;
1113 int type;
1114 u64 refs;
1115
1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1117 refs = btrfs_extent_refs(leaf, ei);
1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1119 refs += refs_to_mod;
1120 btrfs_set_extent_refs(leaf, ei, refs);
1121 if (extent_op)
1122 __run_delayed_extent_op(extent_op, leaf, ei);
1123
1124 /*
1125 * If type is invalid, we should have bailed out after
1126 * lookup_inline_extent_backref().
1127 */
1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1129 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1130
1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1133 refs = btrfs_extent_data_ref_count(leaf, dref);
1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1135 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1136 refs = btrfs_shared_data_ref_count(leaf, sref);
1137 } else {
1138 refs = 1;
1139 BUG_ON(refs_to_mod != -1);
1140 }
1141
1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1143 refs += refs_to_mod;
1144
1145 if (refs > 0) {
1146 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1147 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1148 else
1149 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1150 } else {
1151 *last_ref = 1;
1152 size = btrfs_extent_inline_ref_size(type);
1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1154 ptr = (unsigned long)iref;
1155 end = (unsigned long)ei + item_size;
1156 if (ptr + size < end)
1157 memmove_extent_buffer(leaf, ptr, ptr + size,
1158 end - ptr - size);
1159 item_size -= size;
1160 btrfs_truncate_item(path, item_size, 1);
1161 }
1162 btrfs_mark_buffer_dirty(leaf);
1163}
1164
1165static noinline_for_stack
1166int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 num_bytes, u64 parent,
1169 u64 root_objectid, u64 owner,
1170 u64 offset, int refs_to_add,
1171 struct btrfs_delayed_extent_op *extent_op)
1172{
1173 struct btrfs_extent_inline_ref *iref;
1174 int ret;
1175
1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1177 num_bytes, parent, root_objectid,
1178 owner, offset, 1);
1179 if (ret == 0) {
1180 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1181 update_inline_extent_backref(path, iref, refs_to_add,
1182 extent_op, NULL);
1183 } else if (ret == -ENOENT) {
1184 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1185 root_objectid, owner, offset,
1186 refs_to_add, extent_op);
1187 ret = 0;
1188 }
1189 return ret;
1190}
1191
1192static int remove_extent_backref(struct btrfs_trans_handle *trans,
1193 struct btrfs_path *path,
1194 struct btrfs_extent_inline_ref *iref,
1195 int refs_to_drop, int is_data, int *last_ref)
1196{
1197 int ret = 0;
1198
1199 BUG_ON(!is_data && refs_to_drop != 1);
1200 if (iref) {
1201 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1202 last_ref);
1203 } else if (is_data) {
1204 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1205 last_ref);
1206 } else {
1207 *last_ref = 1;
1208 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1209 }
1210 return ret;
1211}
1212
1213static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1214 u64 *discarded_bytes)
1215{
1216 int j, ret = 0;
1217 u64 bytes_left, end;
1218 u64 aligned_start = ALIGN(start, 1 << 9);
1219
1220 if (WARN_ON(start != aligned_start)) {
1221 len -= aligned_start - start;
1222 len = round_down(len, 1 << 9);
1223 start = aligned_start;
1224 }
1225
1226 *discarded_bytes = 0;
1227
1228 if (!len)
1229 return 0;
1230
1231 end = start + len;
1232 bytes_left = len;
1233
1234 /* Skip any superblocks on this device. */
1235 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1236 u64 sb_start = btrfs_sb_offset(j);
1237 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1238 u64 size = sb_start - start;
1239
1240 if (!in_range(sb_start, start, bytes_left) &&
1241 !in_range(sb_end, start, bytes_left) &&
1242 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1243 continue;
1244
1245 /*
1246 * Superblock spans beginning of range. Adjust start and
1247 * try again.
1248 */
1249 if (sb_start <= start) {
1250 start += sb_end - start;
1251 if (start > end) {
1252 bytes_left = 0;
1253 break;
1254 }
1255 bytes_left = end - start;
1256 continue;
1257 }
1258
1259 if (size) {
1260 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1261 GFP_NOFS, 0);
1262 if (!ret)
1263 *discarded_bytes += size;
1264 else if (ret != -EOPNOTSUPP)
1265 return ret;
1266 }
1267
1268 start = sb_end;
1269 if (start > end) {
1270 bytes_left = 0;
1271 break;
1272 }
1273 bytes_left = end - start;
1274 }
1275
1276 if (bytes_left) {
1277 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1278 GFP_NOFS, 0);
1279 if (!ret)
1280 *discarded_bytes += bytes_left;
1281 }
1282 return ret;
1283}
1284
1285int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1286 u64 num_bytes, u64 *actual_bytes)
1287{
1288 int ret = 0;
1289 u64 discarded_bytes = 0;
1290 u64 end = bytenr + num_bytes;
1291 u64 cur = bytenr;
1292 struct btrfs_bio *bbio = NULL;
1293
1294
1295 /*
1296 * Avoid races with device replace and make sure our bbio has devices
1297 * associated to its stripes that don't go away while we are discarding.
1298 */
1299 btrfs_bio_counter_inc_blocked(fs_info);
1300 while (cur < end) {
1301 struct btrfs_bio_stripe *stripe;
1302 int i;
1303
1304 num_bytes = end - cur;
1305 /* Tell the block device(s) that the sectors can be discarded */
1306 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1307 &num_bytes, &bbio, 0);
1308 /*
1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1311 * thus we can't continue anyway.
1312 */
1313 if (ret < 0)
1314 goto out;
1315
1316 stripe = bbio->stripes;
1317 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1318 u64 bytes;
1319 struct request_queue *req_q;
1320
1321 if (!stripe->dev->bdev) {
1322 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1323 continue;
1324 }
1325 req_q = bdev_get_queue(stripe->dev->bdev);
1326 if (!blk_queue_discard(req_q))
1327 continue;
1328
1329 ret = btrfs_issue_discard(stripe->dev->bdev,
1330 stripe->physical,
1331 stripe->length,
1332 &bytes);
1333 if (!ret) {
1334 discarded_bytes += bytes;
1335 } else if (ret != -EOPNOTSUPP) {
1336 /*
1337 * Logic errors or -ENOMEM, or -EIO, but
1338 * unlikely to happen.
1339 *
1340 * And since there are two loops, explicitly
1341 * go to out to avoid confusion.
1342 */
1343 btrfs_put_bbio(bbio);
1344 goto out;
1345 }
1346
1347 /*
1348 * Just in case we get back EOPNOTSUPP for some reason,
1349 * just ignore the return value so we don't screw up
1350 * people calling discard_extent.
1351 */
1352 ret = 0;
1353 }
1354 btrfs_put_bbio(bbio);
1355 cur += num_bytes;
1356 }
1357out:
1358 btrfs_bio_counter_dec(fs_info);
1359
1360 if (actual_bytes)
1361 *actual_bytes = discarded_bytes;
1362
1363
1364 if (ret == -EOPNOTSUPP)
1365 ret = 0;
1366 return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_ref *generic_ref)
1372{
1373 struct btrfs_fs_info *fs_info = trans->fs_info;
1374 int old_ref_mod, new_ref_mod;
1375 int ret;
1376
1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 generic_ref->action);
1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382 if (generic_ref->type == BTRFS_REF_METADATA)
1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 NULL, &old_ref_mod, &new_ref_mod);
1385 else
1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 &old_ref_mod, &new_ref_mod);
1388
1389 btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 sub_pinned_bytes(fs_info, generic_ref);
1393
1394 return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans: Handle of transaction
1401 *
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1404 *
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 * be 0
1412 *
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1416 *
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1420 *
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1424 *
1425 * @refs_to_add Number of references to add
1426 *
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 struct btrfs_delayed_ref_node *node,
1433 u64 parent, u64 root_objectid,
1434 u64 owner, u64 offset, int refs_to_add,
1435 struct btrfs_delayed_extent_op *extent_op)
1436{
1437 struct btrfs_path *path;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *item;
1440 struct btrfs_key key;
1441 u64 bytenr = node->bytenr;
1442 u64 num_bytes = node->num_bytes;
1443 u64 refs;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 path->leave_spinning = 1;
1451 /* this will setup the path even if it fails to insert the back ref */
1452 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1453 parent, root_objectid, owner,
1454 offset, refs_to_add, extent_op);
1455 if ((ret < 0 && ret != -EAGAIN) || !ret)
1456 goto out;
1457
1458 /*
1459 * Ok we had -EAGAIN which means we didn't have space to insert and
1460 * inline extent ref, so just update the reference count and add a
1461 * normal backref.
1462 */
1463 leaf = path->nodes[0];
1464 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1465 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1466 refs = btrfs_extent_refs(leaf, item);
1467 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1468 if (extent_op)
1469 __run_delayed_extent_op(extent_op, leaf, item);
1470
1471 btrfs_mark_buffer_dirty(leaf);
1472 btrfs_release_path(path);
1473
1474 path->leave_spinning = 1;
1475 /* now insert the actual backref */
1476 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1477 BUG_ON(refs_to_add != 1);
1478 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1479 root_objectid);
1480 } else {
1481 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1482 root_objectid, owner, offset,
1483 refs_to_add);
1484 }
1485 if (ret)
1486 btrfs_abort_transaction(trans, ret);
1487out:
1488 btrfs_free_path(path);
1489 return ret;
1490}
1491
1492static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1493 struct btrfs_delayed_ref_node *node,
1494 struct btrfs_delayed_extent_op *extent_op,
1495 int insert_reserved)
1496{
1497 int ret = 0;
1498 struct btrfs_delayed_data_ref *ref;
1499 struct btrfs_key ins;
1500 u64 parent = 0;
1501 u64 ref_root = 0;
1502 u64 flags = 0;
1503
1504 ins.objectid = node->bytenr;
1505 ins.offset = node->num_bytes;
1506 ins.type = BTRFS_EXTENT_ITEM_KEY;
1507
1508 ref = btrfs_delayed_node_to_data_ref(node);
1509 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1510
1511 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1512 parent = ref->parent;
1513 ref_root = ref->root;
1514
1515 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1516 if (extent_op)
1517 flags |= extent_op->flags_to_set;
1518 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1519 flags, ref->objectid,
1520 ref->offset, &ins,
1521 node->ref_mod);
1522 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1523 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1524 ref->objectid, ref->offset,
1525 node->ref_mod, extent_op);
1526 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1527 ret = __btrfs_free_extent(trans, node, parent,
1528 ref_root, ref->objectid,
1529 ref->offset, node->ref_mod,
1530 extent_op);
1531 } else {
1532 BUG();
1533 }
1534 return ret;
1535}
1536
1537static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1538 struct extent_buffer *leaf,
1539 struct btrfs_extent_item *ei)
1540{
1541 u64 flags = btrfs_extent_flags(leaf, ei);
1542 if (extent_op->update_flags) {
1543 flags |= extent_op->flags_to_set;
1544 btrfs_set_extent_flags(leaf, ei, flags);
1545 }
1546
1547 if (extent_op->update_key) {
1548 struct btrfs_tree_block_info *bi;
1549 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1550 bi = (struct btrfs_tree_block_info *)(ei + 1);
1551 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1552 }
1553}
1554
1555static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1556 struct btrfs_delayed_ref_head *head,
1557 struct btrfs_delayed_extent_op *extent_op)
1558{
1559 struct btrfs_fs_info *fs_info = trans->fs_info;
1560 struct btrfs_key key;
1561 struct btrfs_path *path;
1562 struct btrfs_extent_item *ei;
1563 struct extent_buffer *leaf;
1564 u32 item_size;
1565 int ret;
1566 int err = 0;
1567 int metadata = !extent_op->is_data;
1568
1569 if (TRANS_ABORTED(trans))
1570 return 0;
1571
1572 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1573 metadata = 0;
1574
1575 path = btrfs_alloc_path();
1576 if (!path)
1577 return -ENOMEM;
1578
1579 key.objectid = head->bytenr;
1580
1581 if (metadata) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = extent_op->level;
1584 } else {
1585 key.type = BTRFS_EXTENT_ITEM_KEY;
1586 key.offset = head->num_bytes;
1587 }
1588
1589again:
1590 path->leave_spinning = 1;
1591 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1592 if (ret < 0) {
1593 err = ret;
1594 goto out;
1595 }
1596 if (ret > 0) {
1597 if (metadata) {
1598 if (path->slots[0] > 0) {
1599 path->slots[0]--;
1600 btrfs_item_key_to_cpu(path->nodes[0], &key,
1601 path->slots[0]);
1602 if (key.objectid == head->bytenr &&
1603 key.type == BTRFS_EXTENT_ITEM_KEY &&
1604 key.offset == head->num_bytes)
1605 ret = 0;
1606 }
1607 if (ret > 0) {
1608 btrfs_release_path(path);
1609 metadata = 0;
1610
1611 key.objectid = head->bytenr;
1612 key.offset = head->num_bytes;
1613 key.type = BTRFS_EXTENT_ITEM_KEY;
1614 goto again;
1615 }
1616 } else {
1617 err = -EIO;
1618 goto out;
1619 }
1620 }
1621
1622 leaf = path->nodes[0];
1623 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1624
1625 if (unlikely(item_size < sizeof(*ei))) {
1626 err = -EINVAL;
1627 btrfs_print_v0_err(fs_info);
1628 btrfs_abort_transaction(trans, err);
1629 goto out;
1630 }
1631
1632 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1633 __run_delayed_extent_op(extent_op, leaf, ei);
1634
1635 btrfs_mark_buffer_dirty(leaf);
1636out:
1637 btrfs_free_path(path);
1638 return err;
1639}
1640
1641static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1642 struct btrfs_delayed_ref_node *node,
1643 struct btrfs_delayed_extent_op *extent_op,
1644 int insert_reserved)
1645{
1646 int ret = 0;
1647 struct btrfs_delayed_tree_ref *ref;
1648 u64 parent = 0;
1649 u64 ref_root = 0;
1650
1651 ref = btrfs_delayed_node_to_tree_ref(node);
1652 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1653
1654 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1655 parent = ref->parent;
1656 ref_root = ref->root;
1657
1658 if (node->ref_mod != 1) {
1659 btrfs_err(trans->fs_info,
1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1661 node->bytenr, node->ref_mod, node->action, ref_root,
1662 parent);
1663 return -EIO;
1664 }
1665 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1666 BUG_ON(!extent_op || !extent_op->update_flags);
1667 ret = alloc_reserved_tree_block(trans, node, extent_op);
1668 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1669 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1670 ref->level, 0, 1, extent_op);
1671 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1672 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1673 ref->level, 0, 1, extent_op);
1674 } else {
1675 BUG();
1676 }
1677 return ret;
1678}
1679
1680/* helper function to actually process a single delayed ref entry */
1681static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1682 struct btrfs_delayed_ref_node *node,
1683 struct btrfs_delayed_extent_op *extent_op,
1684 int insert_reserved)
1685{
1686 int ret = 0;
1687
1688 if (TRANS_ABORTED(trans)) {
1689 if (insert_reserved)
1690 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1691 return 0;
1692 }
1693
1694 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1695 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1696 ret = run_delayed_tree_ref(trans, node, extent_op,
1697 insert_reserved);
1698 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1699 node->type == BTRFS_SHARED_DATA_REF_KEY)
1700 ret = run_delayed_data_ref(trans, node, extent_op,
1701 insert_reserved);
1702 else
1703 BUG();
1704 if (ret && insert_reserved)
1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 return ret;
1707}
1708
1709static inline struct btrfs_delayed_ref_node *
1710select_delayed_ref(struct btrfs_delayed_ref_head *head)
1711{
1712 struct btrfs_delayed_ref_node *ref;
1713
1714 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1715 return NULL;
1716
1717 /*
1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1719 * This is to prevent a ref count from going down to zero, which deletes
1720 * the extent item from the extent tree, when there still are references
1721 * to add, which would fail because they would not find the extent item.
1722 */
1723 if (!list_empty(&head->ref_add_list))
1724 return list_first_entry(&head->ref_add_list,
1725 struct btrfs_delayed_ref_node, add_list);
1726
1727 ref = rb_entry(rb_first_cached(&head->ref_tree),
1728 struct btrfs_delayed_ref_node, ref_node);
1729 ASSERT(list_empty(&ref->add_list));
1730 return ref;
1731}
1732
1733static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1734 struct btrfs_delayed_ref_head *head)
1735{
1736 spin_lock(&delayed_refs->lock);
1737 head->processing = 0;
1738 delayed_refs->num_heads_ready++;
1739 spin_unlock(&delayed_refs->lock);
1740 btrfs_delayed_ref_unlock(head);
1741}
1742
1743static struct btrfs_delayed_extent_op *cleanup_extent_op(
1744 struct btrfs_delayed_ref_head *head)
1745{
1746 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1747
1748 if (!extent_op)
1749 return NULL;
1750
1751 if (head->must_insert_reserved) {
1752 head->extent_op = NULL;
1753 btrfs_free_delayed_extent_op(extent_op);
1754 return NULL;
1755 }
1756 return extent_op;
1757}
1758
1759static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1760 struct btrfs_delayed_ref_head *head)
1761{
1762 struct btrfs_delayed_extent_op *extent_op;
1763 int ret;
1764
1765 extent_op = cleanup_extent_op(head);
1766 if (!extent_op)
1767 return 0;
1768 head->extent_op = NULL;
1769 spin_unlock(&head->lock);
1770 ret = run_delayed_extent_op(trans, head, extent_op);
1771 btrfs_free_delayed_extent_op(extent_op);
1772 return ret ? ret : 1;
1773}
1774
1775void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1776 struct btrfs_delayed_ref_root *delayed_refs,
1777 struct btrfs_delayed_ref_head *head)
1778{
1779 int nr_items = 1; /* Dropping this ref head update. */
1780
1781 if (head->total_ref_mod < 0) {
1782 struct btrfs_space_info *space_info;
1783 u64 flags;
1784
1785 if (head->is_data)
1786 flags = BTRFS_BLOCK_GROUP_DATA;
1787 else if (head->is_system)
1788 flags = BTRFS_BLOCK_GROUP_SYSTEM;
1789 else
1790 flags = BTRFS_BLOCK_GROUP_METADATA;
1791 space_info = btrfs_find_space_info(fs_info, flags);
1792 ASSERT(space_info);
1793 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1794 -head->num_bytes,
1795 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1796
1797 /*
1798 * We had csum deletions accounted for in our delayed refs rsv,
1799 * we need to drop the csum leaves for this update from our
1800 * delayed_refs_rsv.
1801 */
1802 if (head->is_data) {
1803 spin_lock(&delayed_refs->lock);
1804 delayed_refs->pending_csums -= head->num_bytes;
1805 spin_unlock(&delayed_refs->lock);
1806 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1807 head->num_bytes);
1808 }
1809 }
1810
1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1812}
1813
1814static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 struct btrfs_delayed_ref_head *head)
1816{
1817
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_delayed_ref_root *delayed_refs;
1820 int ret;
1821
1822 delayed_refs = &trans->transaction->delayed_refs;
1823
1824 ret = run_and_cleanup_extent_op(trans, head);
1825 if (ret < 0) {
1826 unselect_delayed_ref_head(delayed_refs, head);
1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1828 return ret;
1829 } else if (ret) {
1830 return ret;
1831 }
1832
1833 /*
1834 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 * and then re-check to make sure nobody got added.
1836 */
1837 spin_unlock(&head->lock);
1838 spin_lock(&delayed_refs->lock);
1839 spin_lock(&head->lock);
1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 spin_unlock(&head->lock);
1842 spin_unlock(&delayed_refs->lock);
1843 return 1;
1844 }
1845 btrfs_delete_ref_head(delayed_refs, head);
1846 spin_unlock(&head->lock);
1847 spin_unlock(&delayed_refs->lock);
1848
1849 if (head->must_insert_reserved) {
1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 if (head->is_data) {
1852 ret = btrfs_del_csums(trans, fs_info->csum_root,
1853 head->bytenr, head->num_bytes);
1854 }
1855 }
1856
1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1858
1859 trace_run_delayed_ref_head(fs_info, head, 0);
1860 btrfs_delayed_ref_unlock(head);
1861 btrfs_put_delayed_ref_head(head);
1862 return 0;
1863}
1864
1865static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1866 struct btrfs_trans_handle *trans)
1867{
1868 struct btrfs_delayed_ref_root *delayed_refs =
1869 &trans->transaction->delayed_refs;
1870 struct btrfs_delayed_ref_head *head = NULL;
1871 int ret;
1872
1873 spin_lock(&delayed_refs->lock);
1874 head = btrfs_select_ref_head(delayed_refs);
1875 if (!head) {
1876 spin_unlock(&delayed_refs->lock);
1877 return head;
1878 }
1879
1880 /*
1881 * Grab the lock that says we are going to process all the refs for
1882 * this head
1883 */
1884 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1885 spin_unlock(&delayed_refs->lock);
1886
1887 /*
1888 * We may have dropped the spin lock to get the head mutex lock, and
1889 * that might have given someone else time to free the head. If that's
1890 * true, it has been removed from our list and we can move on.
1891 */
1892 if (ret == -EAGAIN)
1893 head = ERR_PTR(-EAGAIN);
1894
1895 return head;
1896}
1897
1898static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1899 struct btrfs_delayed_ref_head *locked_ref,
1900 unsigned long *run_refs)
1901{
1902 struct btrfs_fs_info *fs_info = trans->fs_info;
1903 struct btrfs_delayed_ref_root *delayed_refs;
1904 struct btrfs_delayed_extent_op *extent_op;
1905 struct btrfs_delayed_ref_node *ref;
1906 int must_insert_reserved = 0;
1907 int ret;
1908
1909 delayed_refs = &trans->transaction->delayed_refs;
1910
1911 lockdep_assert_held(&locked_ref->mutex);
1912 lockdep_assert_held(&locked_ref->lock);
1913
1914 while ((ref = select_delayed_ref(locked_ref))) {
1915 if (ref->seq &&
1916 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1917 spin_unlock(&locked_ref->lock);
1918 unselect_delayed_ref_head(delayed_refs, locked_ref);
1919 return -EAGAIN;
1920 }
1921
1922 (*run_refs)++;
1923 ref->in_tree = 0;
1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1925 RB_CLEAR_NODE(&ref->ref_node);
1926 if (!list_empty(&ref->add_list))
1927 list_del(&ref->add_list);
1928 /*
1929 * When we play the delayed ref, also correct the ref_mod on
1930 * head
1931 */
1932 switch (ref->action) {
1933 case BTRFS_ADD_DELAYED_REF:
1934 case BTRFS_ADD_DELAYED_EXTENT:
1935 locked_ref->ref_mod -= ref->ref_mod;
1936 break;
1937 case BTRFS_DROP_DELAYED_REF:
1938 locked_ref->ref_mod += ref->ref_mod;
1939 break;
1940 default:
1941 WARN_ON(1);
1942 }
1943 atomic_dec(&delayed_refs->num_entries);
1944
1945 /*
1946 * Record the must_insert_reserved flag before we drop the
1947 * spin lock.
1948 */
1949 must_insert_reserved = locked_ref->must_insert_reserved;
1950 locked_ref->must_insert_reserved = 0;
1951
1952 extent_op = locked_ref->extent_op;
1953 locked_ref->extent_op = NULL;
1954 spin_unlock(&locked_ref->lock);
1955
1956 ret = run_one_delayed_ref(trans, ref, extent_op,
1957 must_insert_reserved);
1958
1959 btrfs_free_delayed_extent_op(extent_op);
1960 if (ret) {
1961 unselect_delayed_ref_head(delayed_refs, locked_ref);
1962 btrfs_put_delayed_ref(ref);
1963 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1964 ret);
1965 return ret;
1966 }
1967
1968 btrfs_put_delayed_ref(ref);
1969 cond_resched();
1970
1971 spin_lock(&locked_ref->lock);
1972 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1973 }
1974
1975 return 0;
1976}
1977
1978/*
1979 * Returns 0 on success or if called with an already aborted transaction.
1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1981 */
1982static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1983 unsigned long nr)
1984{
1985 struct btrfs_fs_info *fs_info = trans->fs_info;
1986 struct btrfs_delayed_ref_root *delayed_refs;
1987 struct btrfs_delayed_ref_head *locked_ref = NULL;
1988 ktime_t start = ktime_get();
1989 int ret;
1990 unsigned long count = 0;
1991 unsigned long actual_count = 0;
1992
1993 delayed_refs = &trans->transaction->delayed_refs;
1994 do {
1995 if (!locked_ref) {
1996 locked_ref = btrfs_obtain_ref_head(trans);
1997 if (IS_ERR_OR_NULL(locked_ref)) {
1998 if (PTR_ERR(locked_ref) == -EAGAIN) {
1999 continue;
2000 } else {
2001 break;
2002 }
2003 }
2004 count++;
2005 }
2006 /*
2007 * We need to try and merge add/drops of the same ref since we
2008 * can run into issues with relocate dropping the implicit ref
2009 * and then it being added back again before the drop can
2010 * finish. If we merged anything we need to re-loop so we can
2011 * get a good ref.
2012 * Or we can get node references of the same type that weren't
2013 * merged when created due to bumps in the tree mod seq, and
2014 * we need to merge them to prevent adding an inline extent
2015 * backref before dropping it (triggering a BUG_ON at
2016 * insert_inline_extent_backref()).
2017 */
2018 spin_lock(&locked_ref->lock);
2019 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2020
2021 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2022 &actual_count);
2023 if (ret < 0 && ret != -EAGAIN) {
2024 /*
2025 * Error, btrfs_run_delayed_refs_for_head already
2026 * unlocked everything so just bail out
2027 */
2028 return ret;
2029 } else if (!ret) {
2030 /*
2031 * Success, perform the usual cleanup of a processed
2032 * head
2033 */
2034 ret = cleanup_ref_head(trans, locked_ref);
2035 if (ret > 0 ) {
2036 /* We dropped our lock, we need to loop. */
2037 ret = 0;
2038 continue;
2039 } else if (ret) {
2040 return ret;
2041 }
2042 }
2043
2044 /*
2045 * Either success case or btrfs_run_delayed_refs_for_head
2046 * returned -EAGAIN, meaning we need to select another head
2047 */
2048
2049 locked_ref = NULL;
2050 cond_resched();
2051 } while ((nr != -1 && count < nr) || locked_ref);
2052
2053 /*
2054 * We don't want to include ref heads since we can have empty ref heads
2055 * and those will drastically skew our runtime down since we just do
2056 * accounting, no actual extent tree updates.
2057 */
2058 if (actual_count > 0) {
2059 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2060 u64 avg;
2061
2062 /*
2063 * We weigh the current average higher than our current runtime
2064 * to avoid large swings in the average.
2065 */
2066 spin_lock(&delayed_refs->lock);
2067 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2068 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2069 spin_unlock(&delayed_refs->lock);
2070 }
2071 return 0;
2072}
2073
2074#ifdef SCRAMBLE_DELAYED_REFS
2075/*
2076 * Normally delayed refs get processed in ascending bytenr order. This
2077 * correlates in most cases to the order added. To expose dependencies on this
2078 * order, we start to process the tree in the middle instead of the beginning
2079 */
2080static u64 find_middle(struct rb_root *root)
2081{
2082 struct rb_node *n = root->rb_node;
2083 struct btrfs_delayed_ref_node *entry;
2084 int alt = 1;
2085 u64 middle;
2086 u64 first = 0, last = 0;
2087
2088 n = rb_first(root);
2089 if (n) {
2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2091 first = entry->bytenr;
2092 }
2093 n = rb_last(root);
2094 if (n) {
2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 last = entry->bytenr;
2097 }
2098 n = root->rb_node;
2099
2100 while (n) {
2101 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2102 WARN_ON(!entry->in_tree);
2103
2104 middle = entry->bytenr;
2105
2106 if (alt)
2107 n = n->rb_left;
2108 else
2109 n = n->rb_right;
2110
2111 alt = 1 - alt;
2112 }
2113 return middle;
2114}
2115#endif
2116
2117/*
2118 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2119 * would require to store the csums for that many bytes.
2120 */
2121u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2122{
2123 u64 csum_size;
2124 u64 num_csums_per_leaf;
2125 u64 num_csums;
2126
2127 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2128 num_csums_per_leaf = div64_u64(csum_size,
2129 (u64)btrfs_super_csum_size(fs_info->super_copy));
2130 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2131 num_csums += num_csums_per_leaf - 1;
2132 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2133 return num_csums;
2134}
2135
2136/*
2137 * this starts processing the delayed reference count updates and
2138 * extent insertions we have queued up so far. count can be
2139 * 0, which means to process everything in the tree at the start
2140 * of the run (but not newly added entries), or it can be some target
2141 * number you'd like to process.
2142 *
2143 * Returns 0 on success or if called with an aborted transaction
2144 * Returns <0 on error and aborts the transaction
2145 */
2146int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2147 unsigned long count)
2148{
2149 struct btrfs_fs_info *fs_info = trans->fs_info;
2150 struct rb_node *node;
2151 struct btrfs_delayed_ref_root *delayed_refs;
2152 struct btrfs_delayed_ref_head *head;
2153 int ret;
2154 int run_all = count == (unsigned long)-1;
2155
2156 /* We'll clean this up in btrfs_cleanup_transaction */
2157 if (TRANS_ABORTED(trans))
2158 return 0;
2159
2160 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2161 return 0;
2162
2163 delayed_refs = &trans->transaction->delayed_refs;
2164 if (count == 0)
2165 count = atomic_read(&delayed_refs->num_entries) * 2;
2166
2167again:
2168#ifdef SCRAMBLE_DELAYED_REFS
2169 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2170#endif
2171 ret = __btrfs_run_delayed_refs(trans, count);
2172 if (ret < 0) {
2173 btrfs_abort_transaction(trans, ret);
2174 return ret;
2175 }
2176
2177 if (run_all) {
2178 btrfs_create_pending_block_groups(trans);
2179
2180 spin_lock(&delayed_refs->lock);
2181 node = rb_first_cached(&delayed_refs->href_root);
2182 if (!node) {
2183 spin_unlock(&delayed_refs->lock);
2184 goto out;
2185 }
2186 head = rb_entry(node, struct btrfs_delayed_ref_head,
2187 href_node);
2188 refcount_inc(&head->refs);
2189 spin_unlock(&delayed_refs->lock);
2190
2191 /* Mutex was contended, block until it's released and retry. */
2192 mutex_lock(&head->mutex);
2193 mutex_unlock(&head->mutex);
2194
2195 btrfs_put_delayed_ref_head(head);
2196 cond_resched();
2197 goto again;
2198 }
2199out:
2200 return 0;
2201}
2202
2203int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2204 struct extent_buffer *eb, u64 flags,
2205 int level, int is_data)
2206{
2207 struct btrfs_delayed_extent_op *extent_op;
2208 int ret;
2209
2210 extent_op = btrfs_alloc_delayed_extent_op();
2211 if (!extent_op)
2212 return -ENOMEM;
2213
2214 extent_op->flags_to_set = flags;
2215 extent_op->update_flags = true;
2216 extent_op->update_key = false;
2217 extent_op->is_data = is_data ? true : false;
2218 extent_op->level = level;
2219
2220 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2221 if (ret)
2222 btrfs_free_delayed_extent_op(extent_op);
2223 return ret;
2224}
2225
2226static noinline int check_delayed_ref(struct btrfs_root *root,
2227 struct btrfs_path *path,
2228 u64 objectid, u64 offset, u64 bytenr)
2229{
2230 struct btrfs_delayed_ref_head *head;
2231 struct btrfs_delayed_ref_node *ref;
2232 struct btrfs_delayed_data_ref *data_ref;
2233 struct btrfs_delayed_ref_root *delayed_refs;
2234 struct btrfs_transaction *cur_trans;
2235 struct rb_node *node;
2236 int ret = 0;
2237
2238 spin_lock(&root->fs_info->trans_lock);
2239 cur_trans = root->fs_info->running_transaction;
2240 if (cur_trans)
2241 refcount_inc(&cur_trans->use_count);
2242 spin_unlock(&root->fs_info->trans_lock);
2243 if (!cur_trans)
2244 return 0;
2245
2246 delayed_refs = &cur_trans->delayed_refs;
2247 spin_lock(&delayed_refs->lock);
2248 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2249 if (!head) {
2250 spin_unlock(&delayed_refs->lock);
2251 btrfs_put_transaction(cur_trans);
2252 return 0;
2253 }
2254
2255 if (!mutex_trylock(&head->mutex)) {
2256 refcount_inc(&head->refs);
2257 spin_unlock(&delayed_refs->lock);
2258
2259 btrfs_release_path(path);
2260
2261 /*
2262 * Mutex was contended, block until it's released and let
2263 * caller try again
2264 */
2265 mutex_lock(&head->mutex);
2266 mutex_unlock(&head->mutex);
2267 btrfs_put_delayed_ref_head(head);
2268 btrfs_put_transaction(cur_trans);
2269 return -EAGAIN;
2270 }
2271 spin_unlock(&delayed_refs->lock);
2272
2273 spin_lock(&head->lock);
2274 /*
2275 * XXX: We should replace this with a proper search function in the
2276 * future.
2277 */
2278 for (node = rb_first_cached(&head->ref_tree); node;
2279 node = rb_next(node)) {
2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2281 /* If it's a shared ref we know a cross reference exists */
2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2283 ret = 1;
2284 break;
2285 }
2286
2287 data_ref = btrfs_delayed_node_to_data_ref(ref);
2288
2289 /*
2290 * If our ref doesn't match the one we're currently looking at
2291 * then we have a cross reference.
2292 */
2293 if (data_ref->root != root->root_key.objectid ||
2294 data_ref->objectid != objectid ||
2295 data_ref->offset != offset) {
2296 ret = 1;
2297 break;
2298 }
2299 }
2300 spin_unlock(&head->lock);
2301 mutex_unlock(&head->mutex);
2302 btrfs_put_transaction(cur_trans);
2303 return ret;
2304}
2305
2306static noinline int check_committed_ref(struct btrfs_root *root,
2307 struct btrfs_path *path,
2308 u64 objectid, u64 offset, u64 bytenr,
2309 bool strict)
2310{
2311 struct btrfs_fs_info *fs_info = root->fs_info;
2312 struct btrfs_root *extent_root = fs_info->extent_root;
2313 struct extent_buffer *leaf;
2314 struct btrfs_extent_data_ref *ref;
2315 struct btrfs_extent_inline_ref *iref;
2316 struct btrfs_extent_item *ei;
2317 struct btrfs_key key;
2318 u32 item_size;
2319 int type;
2320 int ret;
2321
2322 key.objectid = bytenr;
2323 key.offset = (u64)-1;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325
2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2327 if (ret < 0)
2328 goto out;
2329 BUG_ON(ret == 0); /* Corruption */
2330
2331 ret = -ENOENT;
2332 if (path->slots[0] == 0)
2333 goto out;
2334
2335 path->slots[0]--;
2336 leaf = path->nodes[0];
2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2338
2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2340 goto out;
2341
2342 ret = 1;
2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2345
2346 /* If extent item has more than 1 inline ref then it's shared */
2347 if (item_size != sizeof(*ei) +
2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2349 goto out;
2350
2351 /*
2352 * If extent created before last snapshot => it's shared unless the
2353 * snapshot has been deleted. Use the heuristic if strict is false.
2354 */
2355 if (!strict &&
2356 (btrfs_extent_generation(leaf, ei) <=
2357 btrfs_root_last_snapshot(&root->root_item)))
2358 goto out;
2359
2360 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2361
2362 /* If this extent has SHARED_DATA_REF then it's shared */
2363 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2364 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2365 goto out;
2366
2367 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2368 if (btrfs_extent_refs(leaf, ei) !=
2369 btrfs_extent_data_ref_count(leaf, ref) ||
2370 btrfs_extent_data_ref_root(leaf, ref) !=
2371 root->root_key.objectid ||
2372 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2373 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2374 goto out;
2375
2376 ret = 0;
2377out:
2378 return ret;
2379}
2380
2381int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2382 u64 bytenr, bool strict)
2383{
2384 struct btrfs_path *path;
2385 int ret;
2386
2387 path = btrfs_alloc_path();
2388 if (!path)
2389 return -ENOMEM;
2390
2391 do {
2392 ret = check_committed_ref(root, path, objectid,
2393 offset, bytenr, strict);
2394 if (ret && ret != -ENOENT)
2395 goto out;
2396
2397 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2398 } while (ret == -EAGAIN);
2399
2400out:
2401 btrfs_free_path(path);
2402 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2403 WARN_ON(ret > 0);
2404 return ret;
2405}
2406
2407static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root,
2409 struct extent_buffer *buf,
2410 int full_backref, int inc)
2411{
2412 struct btrfs_fs_info *fs_info = root->fs_info;
2413 u64 bytenr;
2414 u64 num_bytes;
2415 u64 parent;
2416 u64 ref_root;
2417 u32 nritems;
2418 struct btrfs_key key;
2419 struct btrfs_file_extent_item *fi;
2420 struct btrfs_ref generic_ref = { 0 };
2421 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2422 int i;
2423 int action;
2424 int level;
2425 int ret = 0;
2426
2427 if (btrfs_is_testing(fs_info))
2428 return 0;
2429
2430 ref_root = btrfs_header_owner(buf);
2431 nritems = btrfs_header_nritems(buf);
2432 level = btrfs_header_level(buf);
2433
2434 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2435 return 0;
2436
2437 if (full_backref)
2438 parent = buf->start;
2439 else
2440 parent = 0;
2441 if (inc)
2442 action = BTRFS_ADD_DELAYED_REF;
2443 else
2444 action = BTRFS_DROP_DELAYED_REF;
2445
2446 for (i = 0; i < nritems; i++) {
2447 if (level == 0) {
2448 btrfs_item_key_to_cpu(buf, &key, i);
2449 if (key.type != BTRFS_EXTENT_DATA_KEY)
2450 continue;
2451 fi = btrfs_item_ptr(buf, i,
2452 struct btrfs_file_extent_item);
2453 if (btrfs_file_extent_type(buf, fi) ==
2454 BTRFS_FILE_EXTENT_INLINE)
2455 continue;
2456 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2457 if (bytenr == 0)
2458 continue;
2459
2460 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2461 key.offset -= btrfs_file_extent_offset(buf, fi);
2462 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2463 num_bytes, parent);
2464 generic_ref.real_root = root->root_key.objectid;
2465 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2466 key.offset);
2467 generic_ref.skip_qgroup = for_reloc;
2468 if (inc)
2469 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2470 else
2471 ret = btrfs_free_extent(trans, &generic_ref);
2472 if (ret)
2473 goto fail;
2474 } else {
2475 bytenr = btrfs_node_blockptr(buf, i);
2476 num_bytes = fs_info->nodesize;
2477 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2478 num_bytes, parent);
2479 generic_ref.real_root = root->root_key.objectid;
2480 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2481 generic_ref.skip_qgroup = for_reloc;
2482 if (inc)
2483 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2484 else
2485 ret = btrfs_free_extent(trans, &generic_ref);
2486 if (ret)
2487 goto fail;
2488 }
2489 }
2490 return 0;
2491fail:
2492 return ret;
2493}
2494
2495int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2496 struct extent_buffer *buf, int full_backref)
2497{
2498 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2499}
2500
2501int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2502 struct extent_buffer *buf, int full_backref)
2503{
2504 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2505}
2506
2507int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2508{
2509 struct btrfs_block_group *block_group;
2510 int readonly = 0;
2511
2512 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2513 if (!block_group || block_group->ro)
2514 readonly = 1;
2515 if (block_group)
2516 btrfs_put_block_group(block_group);
2517 return readonly;
2518}
2519
2520static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2521{
2522 struct btrfs_fs_info *fs_info = root->fs_info;
2523 u64 flags;
2524 u64 ret;
2525
2526 if (data)
2527 flags = BTRFS_BLOCK_GROUP_DATA;
2528 else if (root == fs_info->chunk_root)
2529 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2530 else
2531 flags = BTRFS_BLOCK_GROUP_METADATA;
2532
2533 ret = btrfs_get_alloc_profile(fs_info, flags);
2534 return ret;
2535}
2536
2537static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2538{
2539 struct btrfs_block_group *cache;
2540 u64 bytenr;
2541
2542 spin_lock(&fs_info->block_group_cache_lock);
2543 bytenr = fs_info->first_logical_byte;
2544 spin_unlock(&fs_info->block_group_cache_lock);
2545
2546 if (bytenr < (u64)-1)
2547 return bytenr;
2548
2549 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2550 if (!cache)
2551 return 0;
2552
2553 bytenr = cache->start;
2554 btrfs_put_block_group(cache);
2555
2556 return bytenr;
2557}
2558
2559static int pin_down_extent(struct btrfs_trans_handle *trans,
2560 struct btrfs_block_group *cache,
2561 u64 bytenr, u64 num_bytes, int reserved)
2562{
2563 struct btrfs_fs_info *fs_info = cache->fs_info;
2564
2565 spin_lock(&cache->space_info->lock);
2566 spin_lock(&cache->lock);
2567 cache->pinned += num_bytes;
2568 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2569 num_bytes);
2570 if (reserved) {
2571 cache->reserved -= num_bytes;
2572 cache->space_info->bytes_reserved -= num_bytes;
2573 }
2574 spin_unlock(&cache->lock);
2575 spin_unlock(&cache->space_info->lock);
2576
2577 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2578 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2579 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2580 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2581 return 0;
2582}
2583
2584int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2585 u64 bytenr, u64 num_bytes, int reserved)
2586{
2587 struct btrfs_block_group *cache;
2588
2589 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2590 BUG_ON(!cache); /* Logic error */
2591
2592 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2593
2594 btrfs_put_block_group(cache);
2595 return 0;
2596}
2597
2598/*
2599 * this function must be called within transaction
2600 */
2601int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2602 u64 bytenr, u64 num_bytes)
2603{
2604 struct btrfs_block_group *cache;
2605 int ret;
2606
2607 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2608
2609 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2610 if (!cache)
2611 return -EINVAL;
2612
2613 /*
2614 * pull in the free space cache (if any) so that our pin
2615 * removes the free space from the cache. We have load_only set
2616 * to one because the slow code to read in the free extents does check
2617 * the pinned extents.
2618 */
2619 btrfs_cache_block_group(cache, 1);
2620
2621 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2622
2623 /* remove us from the free space cache (if we're there at all) */
2624 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2625 btrfs_put_block_group(cache);
2626 return ret;
2627}
2628
2629static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2630 u64 start, u64 num_bytes)
2631{
2632 int ret;
2633 struct btrfs_block_group *block_group;
2634 struct btrfs_caching_control *caching_ctl;
2635
2636 block_group = btrfs_lookup_block_group(fs_info, start);
2637 if (!block_group)
2638 return -EINVAL;
2639
2640 btrfs_cache_block_group(block_group, 0);
2641 caching_ctl = btrfs_get_caching_control(block_group);
2642
2643 if (!caching_ctl) {
2644 /* Logic error */
2645 BUG_ON(!btrfs_block_group_done(block_group));
2646 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2647 } else {
2648 mutex_lock(&caching_ctl->mutex);
2649
2650 if (start >= caching_ctl->progress) {
2651 ret = btrfs_add_excluded_extent(fs_info, start,
2652 num_bytes);
2653 } else if (start + num_bytes <= caching_ctl->progress) {
2654 ret = btrfs_remove_free_space(block_group,
2655 start, num_bytes);
2656 } else {
2657 num_bytes = caching_ctl->progress - start;
2658 ret = btrfs_remove_free_space(block_group,
2659 start, num_bytes);
2660 if (ret)
2661 goto out_lock;
2662
2663 num_bytes = (start + num_bytes) -
2664 caching_ctl->progress;
2665 start = caching_ctl->progress;
2666 ret = btrfs_add_excluded_extent(fs_info, start,
2667 num_bytes);
2668 }
2669out_lock:
2670 mutex_unlock(&caching_ctl->mutex);
2671 btrfs_put_caching_control(caching_ctl);
2672 }
2673 btrfs_put_block_group(block_group);
2674 return ret;
2675}
2676
2677int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2678{
2679 struct btrfs_fs_info *fs_info = eb->fs_info;
2680 struct btrfs_file_extent_item *item;
2681 struct btrfs_key key;
2682 int found_type;
2683 int i;
2684 int ret = 0;
2685
2686 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2687 return 0;
2688
2689 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2690 btrfs_item_key_to_cpu(eb, &key, i);
2691 if (key.type != BTRFS_EXTENT_DATA_KEY)
2692 continue;
2693 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2694 found_type = btrfs_file_extent_type(eb, item);
2695 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2696 continue;
2697 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2698 continue;
2699 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2700 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2701 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2702 if (ret)
2703 break;
2704 }
2705
2706 return ret;
2707}
2708
2709static void
2710btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2711{
2712 atomic_inc(&bg->reservations);
2713}
2714
2715void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2716{
2717 struct btrfs_caching_control *next;
2718 struct btrfs_caching_control *caching_ctl;
2719 struct btrfs_block_group *cache;
2720
2721 down_write(&fs_info->commit_root_sem);
2722
2723 list_for_each_entry_safe(caching_ctl, next,
2724 &fs_info->caching_block_groups, list) {
2725 cache = caching_ctl->block_group;
2726 if (btrfs_block_group_done(cache)) {
2727 cache->last_byte_to_unpin = (u64)-1;
2728 list_del_init(&caching_ctl->list);
2729 btrfs_put_caching_control(caching_ctl);
2730 } else {
2731 cache->last_byte_to_unpin = caching_ctl->progress;
2732 }
2733 }
2734
2735 up_write(&fs_info->commit_root_sem);
2736
2737 btrfs_update_global_block_rsv(fs_info);
2738}
2739
2740/*
2741 * Returns the free cluster for the given space info and sets empty_cluster to
2742 * what it should be based on the mount options.
2743 */
2744static struct btrfs_free_cluster *
2745fetch_cluster_info(struct btrfs_fs_info *fs_info,
2746 struct btrfs_space_info *space_info, u64 *empty_cluster)
2747{
2748 struct btrfs_free_cluster *ret = NULL;
2749
2750 *empty_cluster = 0;
2751 if (btrfs_mixed_space_info(space_info))
2752 return ret;
2753
2754 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2755 ret = &fs_info->meta_alloc_cluster;
2756 if (btrfs_test_opt(fs_info, SSD))
2757 *empty_cluster = SZ_2M;
2758 else
2759 *empty_cluster = SZ_64K;
2760 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2761 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2762 *empty_cluster = SZ_2M;
2763 ret = &fs_info->data_alloc_cluster;
2764 }
2765
2766 return ret;
2767}
2768
2769static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2770 u64 start, u64 end,
2771 const bool return_free_space)
2772{
2773 struct btrfs_block_group *cache = NULL;
2774 struct btrfs_space_info *space_info;
2775 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2776 struct btrfs_free_cluster *cluster = NULL;
2777 u64 len;
2778 u64 total_unpinned = 0;
2779 u64 empty_cluster = 0;
2780 bool readonly;
2781
2782 while (start <= end) {
2783 readonly = false;
2784 if (!cache ||
2785 start >= cache->start + cache->length) {
2786 if (cache)
2787 btrfs_put_block_group(cache);
2788 total_unpinned = 0;
2789 cache = btrfs_lookup_block_group(fs_info, start);
2790 BUG_ON(!cache); /* Logic error */
2791
2792 cluster = fetch_cluster_info(fs_info,
2793 cache->space_info,
2794 &empty_cluster);
2795 empty_cluster <<= 1;
2796 }
2797
2798 len = cache->start + cache->length - start;
2799 len = min(len, end + 1 - start);
2800
2801 if (start < cache->last_byte_to_unpin) {
2802 len = min(len, cache->last_byte_to_unpin - start);
2803 if (return_free_space)
2804 btrfs_add_free_space(cache, start, len);
2805 }
2806
2807 start += len;
2808 total_unpinned += len;
2809 space_info = cache->space_info;
2810
2811 /*
2812 * If this space cluster has been marked as fragmented and we've
2813 * unpinned enough in this block group to potentially allow a
2814 * cluster to be created inside of it go ahead and clear the
2815 * fragmented check.
2816 */
2817 if (cluster && cluster->fragmented &&
2818 total_unpinned > empty_cluster) {
2819 spin_lock(&cluster->lock);
2820 cluster->fragmented = 0;
2821 spin_unlock(&cluster->lock);
2822 }
2823
2824 spin_lock(&space_info->lock);
2825 spin_lock(&cache->lock);
2826 cache->pinned -= len;
2827 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2828 space_info->max_extent_size = 0;
2829 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2830 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2831 if (cache->ro) {
2832 space_info->bytes_readonly += len;
2833 readonly = true;
2834 }
2835 spin_unlock(&cache->lock);
2836 if (!readonly && return_free_space &&
2837 global_rsv->space_info == space_info) {
2838 u64 to_add = len;
2839
2840 spin_lock(&global_rsv->lock);
2841 if (!global_rsv->full) {
2842 to_add = min(len, global_rsv->size -
2843 global_rsv->reserved);
2844 global_rsv->reserved += to_add;
2845 btrfs_space_info_update_bytes_may_use(fs_info,
2846 space_info, to_add);
2847 if (global_rsv->reserved >= global_rsv->size)
2848 global_rsv->full = 1;
2849 len -= to_add;
2850 }
2851 spin_unlock(&global_rsv->lock);
2852 /* Add to any tickets we may have */
2853 if (len)
2854 btrfs_try_granting_tickets(fs_info,
2855 space_info);
2856 }
2857 spin_unlock(&space_info->lock);
2858 }
2859
2860 if (cache)
2861 btrfs_put_block_group(cache);
2862 return 0;
2863}
2864
2865int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2866{
2867 struct btrfs_fs_info *fs_info = trans->fs_info;
2868 struct btrfs_block_group *block_group, *tmp;
2869 struct list_head *deleted_bgs;
2870 struct extent_io_tree *unpin;
2871 u64 start;
2872 u64 end;
2873 int ret;
2874
2875 unpin = &trans->transaction->pinned_extents;
2876
2877 while (!TRANS_ABORTED(trans)) {
2878 struct extent_state *cached_state = NULL;
2879
2880 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2881 ret = find_first_extent_bit(unpin, 0, &start, &end,
2882 EXTENT_DIRTY, &cached_state);
2883 if (ret) {
2884 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2885 break;
2886 }
2887 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2888 clear_extent_bits(&fs_info->excluded_extents, start,
2889 end, EXTENT_UPTODATE);
2890
2891 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2892 ret = btrfs_discard_extent(fs_info, start,
2893 end + 1 - start, NULL);
2894
2895 clear_extent_dirty(unpin, start, end, &cached_state);
2896 unpin_extent_range(fs_info, start, end, true);
2897 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2898 free_extent_state(cached_state);
2899 cond_resched();
2900 }
2901
2902 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2903 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2904 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2905 }
2906
2907 /*
2908 * Transaction is finished. We don't need the lock anymore. We
2909 * do need to clean up the block groups in case of a transaction
2910 * abort.
2911 */
2912 deleted_bgs = &trans->transaction->deleted_bgs;
2913 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2914 u64 trimmed = 0;
2915
2916 ret = -EROFS;
2917 if (!TRANS_ABORTED(trans))
2918 ret = btrfs_discard_extent(fs_info,
2919 block_group->start,
2920 block_group->length,
2921 &trimmed);
2922
2923 list_del_init(&block_group->bg_list);
2924 btrfs_unfreeze_block_group(block_group);
2925 btrfs_put_block_group(block_group);
2926
2927 if (ret) {
2928 const char *errstr = btrfs_decode_error(ret);
2929 btrfs_warn(fs_info,
2930 "discard failed while removing blockgroup: errno=%d %s",
2931 ret, errstr);
2932 }
2933 }
2934
2935 return 0;
2936}
2937
2938static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2939 struct btrfs_delayed_ref_node *node, u64 parent,
2940 u64 root_objectid, u64 owner_objectid,
2941 u64 owner_offset, int refs_to_drop,
2942 struct btrfs_delayed_extent_op *extent_op)
2943{
2944 struct btrfs_fs_info *info = trans->fs_info;
2945 struct btrfs_key key;
2946 struct btrfs_path *path;
2947 struct btrfs_root *extent_root = info->extent_root;
2948 struct extent_buffer *leaf;
2949 struct btrfs_extent_item *ei;
2950 struct btrfs_extent_inline_ref *iref;
2951 int ret;
2952 int is_data;
2953 int extent_slot = 0;
2954 int found_extent = 0;
2955 int num_to_del = 1;
2956 u32 item_size;
2957 u64 refs;
2958 u64 bytenr = node->bytenr;
2959 u64 num_bytes = node->num_bytes;
2960 int last_ref = 0;
2961 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2962
2963 path = btrfs_alloc_path();
2964 if (!path)
2965 return -ENOMEM;
2966
2967 path->leave_spinning = 1;
2968
2969 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2970 BUG_ON(!is_data && refs_to_drop != 1);
2971
2972 if (is_data)
2973 skinny_metadata = false;
2974
2975 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2976 parent, root_objectid, owner_objectid,
2977 owner_offset);
2978 if (ret == 0) {
2979 extent_slot = path->slots[0];
2980 while (extent_slot >= 0) {
2981 btrfs_item_key_to_cpu(path->nodes[0], &key,
2982 extent_slot);
2983 if (key.objectid != bytenr)
2984 break;
2985 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2986 key.offset == num_bytes) {
2987 found_extent = 1;
2988 break;
2989 }
2990 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2991 key.offset == owner_objectid) {
2992 found_extent = 1;
2993 break;
2994 }
2995 if (path->slots[0] - extent_slot > 5)
2996 break;
2997 extent_slot--;
2998 }
2999
3000 if (!found_extent) {
3001 BUG_ON(iref);
3002 ret = remove_extent_backref(trans, path, NULL,
3003 refs_to_drop,
3004 is_data, &last_ref);
3005 if (ret) {
3006 btrfs_abort_transaction(trans, ret);
3007 goto out;
3008 }
3009 btrfs_release_path(path);
3010 path->leave_spinning = 1;
3011
3012 key.objectid = bytenr;
3013 key.type = BTRFS_EXTENT_ITEM_KEY;
3014 key.offset = num_bytes;
3015
3016 if (!is_data && skinny_metadata) {
3017 key.type = BTRFS_METADATA_ITEM_KEY;
3018 key.offset = owner_objectid;
3019 }
3020
3021 ret = btrfs_search_slot(trans, extent_root,
3022 &key, path, -1, 1);
3023 if (ret > 0 && skinny_metadata && path->slots[0]) {
3024 /*
3025 * Couldn't find our skinny metadata item,
3026 * see if we have ye olde extent item.
3027 */
3028 path->slots[0]--;
3029 btrfs_item_key_to_cpu(path->nodes[0], &key,
3030 path->slots[0]);
3031 if (key.objectid == bytenr &&
3032 key.type == BTRFS_EXTENT_ITEM_KEY &&
3033 key.offset == num_bytes)
3034 ret = 0;
3035 }
3036
3037 if (ret > 0 && skinny_metadata) {
3038 skinny_metadata = false;
3039 key.objectid = bytenr;
3040 key.type = BTRFS_EXTENT_ITEM_KEY;
3041 key.offset = num_bytes;
3042 btrfs_release_path(path);
3043 ret = btrfs_search_slot(trans, extent_root,
3044 &key, path, -1, 1);
3045 }
3046
3047 if (ret) {
3048 btrfs_err(info,
3049 "umm, got %d back from search, was looking for %llu",
3050 ret, bytenr);
3051 if (ret > 0)
3052 btrfs_print_leaf(path->nodes[0]);
3053 }
3054 if (ret < 0) {
3055 btrfs_abort_transaction(trans, ret);
3056 goto out;
3057 }
3058 extent_slot = path->slots[0];
3059 }
3060 } else if (WARN_ON(ret == -ENOENT)) {
3061 btrfs_print_leaf(path->nodes[0]);
3062 btrfs_err(info,
3063 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3064 bytenr, parent, root_objectid, owner_objectid,
3065 owner_offset);
3066 btrfs_abort_transaction(trans, ret);
3067 goto out;
3068 } else {
3069 btrfs_abort_transaction(trans, ret);
3070 goto out;
3071 }
3072
3073 leaf = path->nodes[0];
3074 item_size = btrfs_item_size_nr(leaf, extent_slot);
3075 if (unlikely(item_size < sizeof(*ei))) {
3076 ret = -EINVAL;
3077 btrfs_print_v0_err(info);
3078 btrfs_abort_transaction(trans, ret);
3079 goto out;
3080 }
3081 ei = btrfs_item_ptr(leaf, extent_slot,
3082 struct btrfs_extent_item);
3083 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3084 key.type == BTRFS_EXTENT_ITEM_KEY) {
3085 struct btrfs_tree_block_info *bi;
3086 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3087 bi = (struct btrfs_tree_block_info *)(ei + 1);
3088 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3089 }
3090
3091 refs = btrfs_extent_refs(leaf, ei);
3092 if (refs < refs_to_drop) {
3093 btrfs_err(info,
3094 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3095 refs_to_drop, refs, bytenr);
3096 ret = -EINVAL;
3097 btrfs_abort_transaction(trans, ret);
3098 goto out;
3099 }
3100 refs -= refs_to_drop;
3101
3102 if (refs > 0) {
3103 if (extent_op)
3104 __run_delayed_extent_op(extent_op, leaf, ei);
3105 /*
3106 * In the case of inline back ref, reference count will
3107 * be updated by remove_extent_backref
3108 */
3109 if (iref) {
3110 BUG_ON(!found_extent);
3111 } else {
3112 btrfs_set_extent_refs(leaf, ei, refs);
3113 btrfs_mark_buffer_dirty(leaf);
3114 }
3115 if (found_extent) {
3116 ret = remove_extent_backref(trans, path, iref,
3117 refs_to_drop, is_data,
3118 &last_ref);
3119 if (ret) {
3120 btrfs_abort_transaction(trans, ret);
3121 goto out;
3122 }
3123 }
3124 } else {
3125 if (found_extent) {
3126 BUG_ON(is_data && refs_to_drop !=
3127 extent_data_ref_count(path, iref));
3128 if (iref) {
3129 BUG_ON(path->slots[0] != extent_slot);
3130 } else {
3131 BUG_ON(path->slots[0] != extent_slot + 1);
3132 path->slots[0] = extent_slot;
3133 num_to_del = 2;
3134 }
3135 }
3136
3137 last_ref = 1;
3138 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3139 num_to_del);
3140 if (ret) {
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
3144 btrfs_release_path(path);
3145
3146 if (is_data) {
3147 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3148 num_bytes);
3149 if (ret) {
3150 btrfs_abort_transaction(trans, ret);
3151 goto out;
3152 }
3153 }
3154
3155 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3156 if (ret) {
3157 btrfs_abort_transaction(trans, ret);
3158 goto out;
3159 }
3160
3161 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3162 if (ret) {
3163 btrfs_abort_transaction(trans, ret);
3164 goto out;
3165 }
3166 }
3167 btrfs_release_path(path);
3168
3169out:
3170 btrfs_free_path(path);
3171 return ret;
3172}
3173
3174/*
3175 * when we free an block, it is possible (and likely) that we free the last
3176 * delayed ref for that extent as well. This searches the delayed ref tree for
3177 * a given extent, and if there are no other delayed refs to be processed, it
3178 * removes it from the tree.
3179 */
3180static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3181 u64 bytenr)
3182{
3183 struct btrfs_delayed_ref_head *head;
3184 struct btrfs_delayed_ref_root *delayed_refs;
3185 int ret = 0;
3186
3187 delayed_refs = &trans->transaction->delayed_refs;
3188 spin_lock(&delayed_refs->lock);
3189 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3190 if (!head)
3191 goto out_delayed_unlock;
3192
3193 spin_lock(&head->lock);
3194 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3195 goto out;
3196
3197 if (cleanup_extent_op(head) != NULL)
3198 goto out;
3199
3200 /*
3201 * waiting for the lock here would deadlock. If someone else has it
3202 * locked they are already in the process of dropping it anyway
3203 */
3204 if (!mutex_trylock(&head->mutex))
3205 goto out;
3206
3207 btrfs_delete_ref_head(delayed_refs, head);
3208 head->processing = 0;
3209
3210 spin_unlock(&head->lock);
3211 spin_unlock(&delayed_refs->lock);
3212
3213 BUG_ON(head->extent_op);
3214 if (head->must_insert_reserved)
3215 ret = 1;
3216
3217 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3218 mutex_unlock(&head->mutex);
3219 btrfs_put_delayed_ref_head(head);
3220 return ret;
3221out:
3222 spin_unlock(&head->lock);
3223
3224out_delayed_unlock:
3225 spin_unlock(&delayed_refs->lock);
3226 return 0;
3227}
3228
3229void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3230 struct btrfs_root *root,
3231 struct extent_buffer *buf,
3232 u64 parent, int last_ref)
3233{
3234 struct btrfs_fs_info *fs_info = root->fs_info;
3235 struct btrfs_ref generic_ref = { 0 };
3236 int pin = 1;
3237 int ret;
3238
3239 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3240 buf->start, buf->len, parent);
3241 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3242 root->root_key.objectid);
3243
3244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3245 int old_ref_mod, new_ref_mod;
3246
3247 btrfs_ref_tree_mod(fs_info, &generic_ref);
3248 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3249 &old_ref_mod, &new_ref_mod);
3250 BUG_ON(ret); /* -ENOMEM */
3251 pin = old_ref_mod >= 0 && new_ref_mod < 0;
3252 }
3253
3254 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3255 struct btrfs_block_group *cache;
3256
3257 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3258 ret = check_ref_cleanup(trans, buf->start);
3259 if (!ret)
3260 goto out;
3261 }
3262
3263 pin = 0;
3264 cache = btrfs_lookup_block_group(fs_info, buf->start);
3265
3266 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3267 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3268 btrfs_put_block_group(cache);
3269 goto out;
3270 }
3271
3272 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3273
3274 btrfs_add_free_space(cache, buf->start, buf->len);
3275 btrfs_free_reserved_bytes(cache, buf->len, 0);
3276 btrfs_put_block_group(cache);
3277 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3278 }
3279out:
3280 if (pin)
3281 add_pinned_bytes(fs_info, &generic_ref);
3282
3283 if (last_ref) {
3284 /*
3285 * Deleting the buffer, clear the corrupt flag since it doesn't
3286 * matter anymore.
3287 */
3288 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3289 }
3290}
3291
3292/* Can return -ENOMEM */
3293int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3294{
3295 struct btrfs_fs_info *fs_info = trans->fs_info;
3296 int old_ref_mod, new_ref_mod;
3297 int ret;
3298
3299 if (btrfs_is_testing(fs_info))
3300 return 0;
3301
3302 /*
3303 * tree log blocks never actually go into the extent allocation
3304 * tree, just update pinning info and exit early.
3305 */
3306 if ((ref->type == BTRFS_REF_METADATA &&
3307 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3308 (ref->type == BTRFS_REF_DATA &&
3309 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3310 /* unlocks the pinned mutex */
3311 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3312 old_ref_mod = new_ref_mod = 0;
3313 ret = 0;
3314 } else if (ref->type == BTRFS_REF_METADATA) {
3315 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3316 &old_ref_mod, &new_ref_mod);
3317 } else {
3318 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3319 &old_ref_mod, &new_ref_mod);
3320 }
3321
3322 if (!((ref->type == BTRFS_REF_METADATA &&
3323 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3324 (ref->type == BTRFS_REF_DATA &&
3325 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3326 btrfs_ref_tree_mod(fs_info, ref);
3327
3328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3329 add_pinned_bytes(fs_info, ref);
3330
3331 return ret;
3332}
3333
3334enum btrfs_loop_type {
3335 LOOP_CACHING_NOWAIT,
3336 LOOP_CACHING_WAIT,
3337 LOOP_ALLOC_CHUNK,
3338 LOOP_NO_EMPTY_SIZE,
3339};
3340
3341static inline void
3342btrfs_lock_block_group(struct btrfs_block_group *cache,
3343 int delalloc)
3344{
3345 if (delalloc)
3346 down_read(&cache->data_rwsem);
3347}
3348
3349static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3350 int delalloc)
3351{
3352 btrfs_get_block_group(cache);
3353 if (delalloc)
3354 down_read(&cache->data_rwsem);
3355}
3356
3357static struct btrfs_block_group *btrfs_lock_cluster(
3358 struct btrfs_block_group *block_group,
3359 struct btrfs_free_cluster *cluster,
3360 int delalloc)
3361 __acquires(&cluster->refill_lock)
3362{
3363 struct btrfs_block_group *used_bg = NULL;
3364
3365 spin_lock(&cluster->refill_lock);
3366 while (1) {
3367 used_bg = cluster->block_group;
3368 if (!used_bg)
3369 return NULL;
3370
3371 if (used_bg == block_group)
3372 return used_bg;
3373
3374 btrfs_get_block_group(used_bg);
3375
3376 if (!delalloc)
3377 return used_bg;
3378
3379 if (down_read_trylock(&used_bg->data_rwsem))
3380 return used_bg;
3381
3382 spin_unlock(&cluster->refill_lock);
3383
3384 /* We should only have one-level nested. */
3385 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3386
3387 spin_lock(&cluster->refill_lock);
3388 if (used_bg == cluster->block_group)
3389 return used_bg;
3390
3391 up_read(&used_bg->data_rwsem);
3392 btrfs_put_block_group(used_bg);
3393 }
3394}
3395
3396static inline void
3397btrfs_release_block_group(struct btrfs_block_group *cache,
3398 int delalloc)
3399{
3400 if (delalloc)
3401 up_read(&cache->data_rwsem);
3402 btrfs_put_block_group(cache);
3403}
3404
3405enum btrfs_extent_allocation_policy {
3406 BTRFS_EXTENT_ALLOC_CLUSTERED,
3407};
3408
3409/*
3410 * Structure used internally for find_free_extent() function. Wraps needed
3411 * parameters.
3412 */
3413struct find_free_extent_ctl {
3414 /* Basic allocation info */
3415 u64 num_bytes;
3416 u64 empty_size;
3417 u64 flags;
3418 int delalloc;
3419
3420 /* Where to start the search inside the bg */
3421 u64 search_start;
3422
3423 /* For clustered allocation */
3424 u64 empty_cluster;
3425 struct btrfs_free_cluster *last_ptr;
3426 bool use_cluster;
3427
3428 bool have_caching_bg;
3429 bool orig_have_caching_bg;
3430
3431 /* RAID index, converted from flags */
3432 int index;
3433
3434 /*
3435 * Current loop number, check find_free_extent_update_loop() for details
3436 */
3437 int loop;
3438
3439 /*
3440 * Whether we're refilling a cluster, if true we need to re-search
3441 * current block group but don't try to refill the cluster again.
3442 */
3443 bool retry_clustered;
3444
3445 /*
3446 * Whether we're updating free space cache, if true we need to re-search
3447 * current block group but don't try updating free space cache again.
3448 */
3449 bool retry_unclustered;
3450
3451 /* If current block group is cached */
3452 int cached;
3453
3454 /* Max contiguous hole found */
3455 u64 max_extent_size;
3456
3457 /* Total free space from free space cache, not always contiguous */
3458 u64 total_free_space;
3459
3460 /* Found result */
3461 u64 found_offset;
3462
3463 /* Hint where to start looking for an empty space */
3464 u64 hint_byte;
3465
3466 /* Allocation policy */
3467 enum btrfs_extent_allocation_policy policy;
3468};
3469
3470
3471/*
3472 * Helper function for find_free_extent().
3473 *
3474 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3475 * Return -EAGAIN to inform caller that we need to re-search this block group
3476 * Return >0 to inform caller that we find nothing
3477 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3478 */
3479static int find_free_extent_clustered(struct btrfs_block_group *bg,
3480 struct find_free_extent_ctl *ffe_ctl,
3481 struct btrfs_block_group **cluster_bg_ret)
3482{
3483 struct btrfs_block_group *cluster_bg;
3484 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3485 u64 aligned_cluster;
3486 u64 offset;
3487 int ret;
3488
3489 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3490 if (!cluster_bg)
3491 goto refill_cluster;
3492 if (cluster_bg != bg && (cluster_bg->ro ||
3493 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3494 goto release_cluster;
3495
3496 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3497 ffe_ctl->num_bytes, cluster_bg->start,
3498 &ffe_ctl->max_extent_size);
3499 if (offset) {
3500 /* We have a block, we're done */
3501 spin_unlock(&last_ptr->refill_lock);
3502 trace_btrfs_reserve_extent_cluster(cluster_bg,
3503 ffe_ctl->search_start, ffe_ctl->num_bytes);
3504 *cluster_bg_ret = cluster_bg;
3505 ffe_ctl->found_offset = offset;
3506 return 0;
3507 }
3508 WARN_ON(last_ptr->block_group != cluster_bg);
3509
3510release_cluster:
3511 /*
3512 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3513 * lets just skip it and let the allocator find whatever block it can
3514 * find. If we reach this point, we will have tried the cluster
3515 * allocator plenty of times and not have found anything, so we are
3516 * likely way too fragmented for the clustering stuff to find anything.
3517 *
3518 * However, if the cluster is taken from the current block group,
3519 * release the cluster first, so that we stand a better chance of
3520 * succeeding in the unclustered allocation.
3521 */
3522 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3523 spin_unlock(&last_ptr->refill_lock);
3524 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3525 return -ENOENT;
3526 }
3527
3528 /* This cluster didn't work out, free it and start over */
3529 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3530
3531 if (cluster_bg != bg)
3532 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3533
3534refill_cluster:
3535 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3536 spin_unlock(&last_ptr->refill_lock);
3537 return -ENOENT;
3538 }
3539
3540 aligned_cluster = max_t(u64,
3541 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3542 bg->full_stripe_len);
3543 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3544 ffe_ctl->num_bytes, aligned_cluster);
3545 if (ret == 0) {
3546 /* Now pull our allocation out of this cluster */
3547 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3548 ffe_ctl->num_bytes, ffe_ctl->search_start,
3549 &ffe_ctl->max_extent_size);
3550 if (offset) {
3551 /* We found one, proceed */
3552 spin_unlock(&last_ptr->refill_lock);
3553 trace_btrfs_reserve_extent_cluster(bg,
3554 ffe_ctl->search_start,
3555 ffe_ctl->num_bytes);
3556 ffe_ctl->found_offset = offset;
3557 return 0;
3558 }
3559 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3560 !ffe_ctl->retry_clustered) {
3561 spin_unlock(&last_ptr->refill_lock);
3562
3563 ffe_ctl->retry_clustered = true;
3564 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3565 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3566 return -EAGAIN;
3567 }
3568 /*
3569 * At this point we either didn't find a cluster or we weren't able to
3570 * allocate a block from our cluster. Free the cluster we've been
3571 * trying to use, and go to the next block group.
3572 */
3573 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3574 spin_unlock(&last_ptr->refill_lock);
3575 return 1;
3576}
3577
3578/*
3579 * Return >0 to inform caller that we find nothing
3580 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3581 * Return -EAGAIN to inform caller that we need to re-search this block group
3582 */
3583static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3584 struct find_free_extent_ctl *ffe_ctl)
3585{
3586 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3587 u64 offset;
3588
3589 /*
3590 * We are doing an unclustered allocation, set the fragmented flag so
3591 * we don't bother trying to setup a cluster again until we get more
3592 * space.
3593 */
3594 if (unlikely(last_ptr)) {
3595 spin_lock(&last_ptr->lock);
3596 last_ptr->fragmented = 1;
3597 spin_unlock(&last_ptr->lock);
3598 }
3599 if (ffe_ctl->cached) {
3600 struct btrfs_free_space_ctl *free_space_ctl;
3601
3602 free_space_ctl = bg->free_space_ctl;
3603 spin_lock(&free_space_ctl->tree_lock);
3604 if (free_space_ctl->free_space <
3605 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3606 ffe_ctl->empty_size) {
3607 ffe_ctl->total_free_space = max_t(u64,
3608 ffe_ctl->total_free_space,
3609 free_space_ctl->free_space);
3610 spin_unlock(&free_space_ctl->tree_lock);
3611 return 1;
3612 }
3613 spin_unlock(&free_space_ctl->tree_lock);
3614 }
3615
3616 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3617 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3618 &ffe_ctl->max_extent_size);
3619
3620 /*
3621 * If we didn't find a chunk, and we haven't failed on this block group
3622 * before, and this block group is in the middle of caching and we are
3623 * ok with waiting, then go ahead and wait for progress to be made, and
3624 * set @retry_unclustered to true.
3625 *
3626 * If @retry_unclustered is true then we've already waited on this
3627 * block group once and should move on to the next block group.
3628 */
3629 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3630 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3631 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3632 ffe_ctl->empty_size);
3633 ffe_ctl->retry_unclustered = true;
3634 return -EAGAIN;
3635 } else if (!offset) {
3636 return 1;
3637 }
3638 ffe_ctl->found_offset = offset;
3639 return 0;
3640}
3641
3642static int do_allocation_clustered(struct btrfs_block_group *block_group,
3643 struct find_free_extent_ctl *ffe_ctl,
3644 struct btrfs_block_group **bg_ret)
3645{
3646 int ret;
3647
3648 /* We want to try and use the cluster allocator, so lets look there */
3649 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3650 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3651 if (ret >= 0 || ret == -EAGAIN)
3652 return ret;
3653 /* ret == -ENOENT case falls through */
3654 }
3655
3656 return find_free_extent_unclustered(block_group, ffe_ctl);
3657}
3658
3659static int do_allocation(struct btrfs_block_group *block_group,
3660 struct find_free_extent_ctl *ffe_ctl,
3661 struct btrfs_block_group **bg_ret)
3662{
3663 switch (ffe_ctl->policy) {
3664 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3665 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3666 default:
3667 BUG();
3668 }
3669}
3670
3671static void release_block_group(struct btrfs_block_group *block_group,
3672 struct find_free_extent_ctl *ffe_ctl,
3673 int delalloc)
3674{
3675 switch (ffe_ctl->policy) {
3676 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3677 ffe_ctl->retry_clustered = false;
3678 ffe_ctl->retry_unclustered = false;
3679 break;
3680 default:
3681 BUG();
3682 }
3683
3684 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3685 ffe_ctl->index);
3686 btrfs_release_block_group(block_group, delalloc);
3687}
3688
3689static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3690 struct btrfs_key *ins)
3691{
3692 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3693
3694 if (!ffe_ctl->use_cluster && last_ptr) {
3695 spin_lock(&last_ptr->lock);
3696 last_ptr->window_start = ins->objectid;
3697 spin_unlock(&last_ptr->lock);
3698 }
3699}
3700
3701static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3702 struct btrfs_key *ins)
3703{
3704 switch (ffe_ctl->policy) {
3705 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3706 found_extent_clustered(ffe_ctl, ins);
3707 break;
3708 default:
3709 BUG();
3710 }
3711}
3712
3713static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3714{
3715 switch (ffe_ctl->policy) {
3716 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3717 /*
3718 * If we can't allocate a new chunk we've already looped through
3719 * at least once, move on to the NO_EMPTY_SIZE case.
3720 */
3721 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3722 return 0;
3723 default:
3724 BUG();
3725 }
3726}
3727
3728/*
3729 * Return >0 means caller needs to re-search for free extent
3730 * Return 0 means we have the needed free extent.
3731 * Return <0 means we failed to locate any free extent.
3732 */
3733static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3734 struct btrfs_key *ins,
3735 struct find_free_extent_ctl *ffe_ctl,
3736 bool full_search)
3737{
3738 struct btrfs_root *root = fs_info->extent_root;
3739 int ret;
3740
3741 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3742 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3743 ffe_ctl->orig_have_caching_bg = true;
3744
3745 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3746 ffe_ctl->have_caching_bg)
3747 return 1;
3748
3749 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3750 return 1;
3751
3752 if (ins->objectid) {
3753 found_extent(ffe_ctl, ins);
3754 return 0;
3755 }
3756
3757 /*
3758 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3759 * caching kthreads as we move along
3760 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3761 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3762 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3763 * again
3764 */
3765 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3766 ffe_ctl->index = 0;
3767 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3768 /*
3769 * We want to skip the LOOP_CACHING_WAIT step if we
3770 * don't have any uncached bgs and we've already done a
3771 * full search through.
3772 */
3773 if (ffe_ctl->orig_have_caching_bg || !full_search)
3774 ffe_ctl->loop = LOOP_CACHING_WAIT;
3775 else
3776 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3777 } else {
3778 ffe_ctl->loop++;
3779 }
3780
3781 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3782 struct btrfs_trans_handle *trans;
3783 int exist = 0;
3784
3785 trans = current->journal_info;
3786 if (trans)
3787 exist = 1;
3788 else
3789 trans = btrfs_join_transaction(root);
3790
3791 if (IS_ERR(trans)) {
3792 ret = PTR_ERR(trans);
3793 return ret;
3794 }
3795
3796 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3797 CHUNK_ALLOC_FORCE);
3798
3799 /* Do not bail out on ENOSPC since we can do more. */
3800 if (ret == -ENOSPC)
3801 ret = chunk_allocation_failed(ffe_ctl);
3802 else if (ret < 0)
3803 btrfs_abort_transaction(trans, ret);
3804 else
3805 ret = 0;
3806 if (!exist)
3807 btrfs_end_transaction(trans);
3808 if (ret)
3809 return ret;
3810 }
3811
3812 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3813 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3814 return -ENOSPC;
3815
3816 /*
3817 * Don't loop again if we already have no empty_size and
3818 * no empty_cluster.
3819 */
3820 if (ffe_ctl->empty_size == 0 &&
3821 ffe_ctl->empty_cluster == 0)
3822 return -ENOSPC;
3823 ffe_ctl->empty_size = 0;
3824 ffe_ctl->empty_cluster = 0;
3825 }
3826 return 1;
3827 }
3828 return -ENOSPC;
3829}
3830
3831static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3832 struct find_free_extent_ctl *ffe_ctl,
3833 struct btrfs_space_info *space_info,
3834 struct btrfs_key *ins)
3835{
3836 /*
3837 * If our free space is heavily fragmented we may not be able to make
3838 * big contiguous allocations, so instead of doing the expensive search
3839 * for free space, simply return ENOSPC with our max_extent_size so we
3840 * can go ahead and search for a more manageable chunk.
3841 *
3842 * If our max_extent_size is large enough for our allocation simply
3843 * disable clustering since we will likely not be able to find enough
3844 * space to create a cluster and induce latency trying.
3845 */
3846 if (space_info->max_extent_size) {
3847 spin_lock(&space_info->lock);
3848 if (space_info->max_extent_size &&
3849 ffe_ctl->num_bytes > space_info->max_extent_size) {
3850 ins->offset = space_info->max_extent_size;
3851 spin_unlock(&space_info->lock);
3852 return -ENOSPC;
3853 } else if (space_info->max_extent_size) {
3854 ffe_ctl->use_cluster = false;
3855 }
3856 spin_unlock(&space_info->lock);
3857 }
3858
3859 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3860 &ffe_ctl->empty_cluster);
3861 if (ffe_ctl->last_ptr) {
3862 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3863
3864 spin_lock(&last_ptr->lock);
3865 if (last_ptr->block_group)
3866 ffe_ctl->hint_byte = last_ptr->window_start;
3867 if (last_ptr->fragmented) {
3868 /*
3869 * We still set window_start so we can keep track of the
3870 * last place we found an allocation to try and save
3871 * some time.
3872 */
3873 ffe_ctl->hint_byte = last_ptr->window_start;
3874 ffe_ctl->use_cluster = false;
3875 }
3876 spin_unlock(&last_ptr->lock);
3877 }
3878
3879 return 0;
3880}
3881
3882static int prepare_allocation(struct btrfs_fs_info *fs_info,
3883 struct find_free_extent_ctl *ffe_ctl,
3884 struct btrfs_space_info *space_info,
3885 struct btrfs_key *ins)
3886{
3887 switch (ffe_ctl->policy) {
3888 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3889 return prepare_allocation_clustered(fs_info, ffe_ctl,
3890 space_info, ins);
3891 default:
3892 BUG();
3893 }
3894}
3895
3896/*
3897 * walks the btree of allocated extents and find a hole of a given size.
3898 * The key ins is changed to record the hole:
3899 * ins->objectid == start position
3900 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3901 * ins->offset == the size of the hole.
3902 * Any available blocks before search_start are skipped.
3903 *
3904 * If there is no suitable free space, we will record the max size of
3905 * the free space extent currently.
3906 *
3907 * The overall logic and call chain:
3908 *
3909 * find_free_extent()
3910 * |- Iterate through all block groups
3911 * | |- Get a valid block group
3912 * | |- Try to do clustered allocation in that block group
3913 * | |- Try to do unclustered allocation in that block group
3914 * | |- Check if the result is valid
3915 * | | |- If valid, then exit
3916 * | |- Jump to next block group
3917 * |
3918 * |- Push harder to find free extents
3919 * |- If not found, re-iterate all block groups
3920 */
3921static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3922 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3923 u64 hint_byte_orig, struct btrfs_key *ins,
3924 u64 flags, int delalloc)
3925{
3926 int ret = 0;
3927 int cache_block_group_error = 0;
3928 struct btrfs_block_group *block_group = NULL;
3929 struct find_free_extent_ctl ffe_ctl = {0};
3930 struct btrfs_space_info *space_info;
3931 bool full_search = false;
3932
3933 WARN_ON(num_bytes < fs_info->sectorsize);
3934
3935 ffe_ctl.num_bytes = num_bytes;
3936 ffe_ctl.empty_size = empty_size;
3937 ffe_ctl.flags = flags;
3938 ffe_ctl.search_start = 0;
3939 ffe_ctl.delalloc = delalloc;
3940 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3941 ffe_ctl.have_caching_bg = false;
3942 ffe_ctl.orig_have_caching_bg = false;
3943 ffe_ctl.found_offset = 0;
3944 ffe_ctl.hint_byte = hint_byte_orig;
3945 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
3946
3947 /* For clustered allocation */
3948 ffe_ctl.retry_clustered = false;
3949 ffe_ctl.retry_unclustered = false;
3950 ffe_ctl.last_ptr = NULL;
3951 ffe_ctl.use_cluster = true;
3952
3953 ins->type = BTRFS_EXTENT_ITEM_KEY;
3954 ins->objectid = 0;
3955 ins->offset = 0;
3956
3957 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3958
3959 space_info = btrfs_find_space_info(fs_info, flags);
3960 if (!space_info) {
3961 btrfs_err(fs_info, "No space info for %llu", flags);
3962 return -ENOSPC;
3963 }
3964
3965 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
3966 if (ret < 0)
3967 return ret;
3968
3969 ffe_ctl.search_start = max(ffe_ctl.search_start,
3970 first_logical_byte(fs_info, 0));
3971 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
3972 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
3973 block_group = btrfs_lookup_block_group(fs_info,
3974 ffe_ctl.search_start);
3975 /*
3976 * we don't want to use the block group if it doesn't match our
3977 * allocation bits, or if its not cached.
3978 *
3979 * However if we are re-searching with an ideal block group
3980 * picked out then we don't care that the block group is cached.
3981 */
3982 if (block_group && block_group_bits(block_group, flags) &&
3983 block_group->cached != BTRFS_CACHE_NO) {
3984 down_read(&space_info->groups_sem);
3985 if (list_empty(&block_group->list) ||
3986 block_group->ro) {
3987 /*
3988 * someone is removing this block group,
3989 * we can't jump into the have_block_group
3990 * target because our list pointers are not
3991 * valid
3992 */
3993 btrfs_put_block_group(block_group);
3994 up_read(&space_info->groups_sem);
3995 } else {
3996 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3997 block_group->flags);
3998 btrfs_lock_block_group(block_group, delalloc);
3999 goto have_block_group;
4000 }
4001 } else if (block_group) {
4002 btrfs_put_block_group(block_group);
4003 }
4004 }
4005search:
4006 ffe_ctl.have_caching_bg = false;
4007 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4008 ffe_ctl.index == 0)
4009 full_search = true;
4010 down_read(&space_info->groups_sem);
4011 list_for_each_entry(block_group,
4012 &space_info->block_groups[ffe_ctl.index], list) {
4013 struct btrfs_block_group *bg_ret;
4014
4015 /* If the block group is read-only, we can skip it entirely. */
4016 if (unlikely(block_group->ro))
4017 continue;
4018
4019 btrfs_grab_block_group(block_group, delalloc);
4020 ffe_ctl.search_start = block_group->start;
4021
4022 /*
4023 * this can happen if we end up cycling through all the
4024 * raid types, but we want to make sure we only allocate
4025 * for the proper type.
4026 */
4027 if (!block_group_bits(block_group, flags)) {
4028 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4029 BTRFS_BLOCK_GROUP_RAID1_MASK |
4030 BTRFS_BLOCK_GROUP_RAID56_MASK |
4031 BTRFS_BLOCK_GROUP_RAID10;
4032
4033 /*
4034 * if they asked for extra copies and this block group
4035 * doesn't provide them, bail. This does allow us to
4036 * fill raid0 from raid1.
4037 */
4038 if ((flags & extra) && !(block_group->flags & extra))
4039 goto loop;
4040
4041 /*
4042 * This block group has different flags than we want.
4043 * It's possible that we have MIXED_GROUP flag but no
4044 * block group is mixed. Just skip such block group.
4045 */
4046 btrfs_release_block_group(block_group, delalloc);
4047 continue;
4048 }
4049
4050have_block_group:
4051 ffe_ctl.cached = btrfs_block_group_done(block_group);
4052 if (unlikely(!ffe_ctl.cached)) {
4053 ffe_ctl.have_caching_bg = true;
4054 ret = btrfs_cache_block_group(block_group, 0);
4055
4056 /*
4057 * If we get ENOMEM here or something else we want to
4058 * try other block groups, because it may not be fatal.
4059 * However if we can't find anything else we need to
4060 * save our return here so that we return the actual
4061 * error that caused problems, not ENOSPC.
4062 */
4063 if (ret < 0) {
4064 if (!cache_block_group_error)
4065 cache_block_group_error = ret;
4066 ret = 0;
4067 goto loop;
4068 }
4069 ret = 0;
4070 }
4071
4072 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4073 goto loop;
4074
4075 bg_ret = NULL;
4076 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4077 if (ret == 0) {
4078 if (bg_ret && bg_ret != block_group) {
4079 btrfs_release_block_group(block_group, delalloc);
4080 block_group = bg_ret;
4081 }
4082 } else if (ret == -EAGAIN) {
4083 goto have_block_group;
4084 } else if (ret > 0) {
4085 goto loop;
4086 }
4087
4088 /* Checks */
4089 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4090 fs_info->stripesize);
4091
4092 /* move on to the next group */
4093 if (ffe_ctl.search_start + num_bytes >
4094 block_group->start + block_group->length) {
4095 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4096 num_bytes);
4097 goto loop;
4098 }
4099
4100 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4101 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4102 ffe_ctl.search_start - ffe_ctl.found_offset);
4103
4104 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4105 num_bytes, delalloc);
4106 if (ret == -EAGAIN) {
4107 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4108 num_bytes);
4109 goto loop;
4110 }
4111 btrfs_inc_block_group_reservations(block_group);
4112
4113 /* we are all good, lets return */
4114 ins->objectid = ffe_ctl.search_start;
4115 ins->offset = num_bytes;
4116
4117 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4118 num_bytes);
4119 btrfs_release_block_group(block_group, delalloc);
4120 break;
4121loop:
4122 release_block_group(block_group, &ffe_ctl, delalloc);
4123 cond_resched();
4124 }
4125 up_read(&space_info->groups_sem);
4126
4127 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4128 if (ret > 0)
4129 goto search;
4130
4131 if (ret == -ENOSPC && !cache_block_group_error) {
4132 /*
4133 * Use ffe_ctl->total_free_space as fallback if we can't find
4134 * any contiguous hole.
4135 */
4136 if (!ffe_ctl.max_extent_size)
4137 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4138 spin_lock(&space_info->lock);
4139 space_info->max_extent_size = ffe_ctl.max_extent_size;
4140 spin_unlock(&space_info->lock);
4141 ins->offset = ffe_ctl.max_extent_size;
4142 } else if (ret == -ENOSPC) {
4143 ret = cache_block_group_error;
4144 }
4145 return ret;
4146}
4147
4148/*
4149 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4150 * hole that is at least as big as @num_bytes.
4151 *
4152 * @root - The root that will contain this extent
4153 *
4154 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4155 * is used for accounting purposes. This value differs
4156 * from @num_bytes only in the case of compressed extents.
4157 *
4158 * @num_bytes - Number of bytes to allocate on-disk.
4159 *
4160 * @min_alloc_size - Indicates the minimum amount of space that the
4161 * allocator should try to satisfy. In some cases
4162 * @num_bytes may be larger than what is required and if
4163 * the filesystem is fragmented then allocation fails.
4164 * However, the presence of @min_alloc_size gives a
4165 * chance to try and satisfy the smaller allocation.
4166 *
4167 * @empty_size - A hint that you plan on doing more COW. This is the
4168 * size in bytes the allocator should try to find free
4169 * next to the block it returns. This is just a hint and
4170 * may be ignored by the allocator.
4171 *
4172 * @hint_byte - Hint to the allocator to start searching above the byte
4173 * address passed. It might be ignored.
4174 *
4175 * @ins - This key is modified to record the found hole. It will
4176 * have the following values:
4177 * ins->objectid == start position
4178 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4179 * ins->offset == the size of the hole.
4180 *
4181 * @is_data - Boolean flag indicating whether an extent is
4182 * allocated for data (true) or metadata (false)
4183 *
4184 * @delalloc - Boolean flag indicating whether this allocation is for
4185 * delalloc or not. If 'true' data_rwsem of block groups
4186 * is going to be acquired.
4187 *
4188 *
4189 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4190 * case -ENOSPC is returned then @ins->offset will contain the size of the
4191 * largest available hole the allocator managed to find.
4192 */
4193int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4194 u64 num_bytes, u64 min_alloc_size,
4195 u64 empty_size, u64 hint_byte,
4196 struct btrfs_key *ins, int is_data, int delalloc)
4197{
4198 struct btrfs_fs_info *fs_info = root->fs_info;
4199 bool final_tried = num_bytes == min_alloc_size;
4200 u64 flags;
4201 int ret;
4202
4203 flags = get_alloc_profile_by_root(root, is_data);
4204again:
4205 WARN_ON(num_bytes < fs_info->sectorsize);
4206 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4207 hint_byte, ins, flags, delalloc);
4208 if (!ret && !is_data) {
4209 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4210 } else if (ret == -ENOSPC) {
4211 if (!final_tried && ins->offset) {
4212 num_bytes = min(num_bytes >> 1, ins->offset);
4213 num_bytes = round_down(num_bytes,
4214 fs_info->sectorsize);
4215 num_bytes = max(num_bytes, min_alloc_size);
4216 ram_bytes = num_bytes;
4217 if (num_bytes == min_alloc_size)
4218 final_tried = true;
4219 goto again;
4220 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4221 struct btrfs_space_info *sinfo;
4222
4223 sinfo = btrfs_find_space_info(fs_info, flags);
4224 btrfs_err(fs_info,
4225 "allocation failed flags %llu, wanted %llu",
4226 flags, num_bytes);
4227 if (sinfo)
4228 btrfs_dump_space_info(fs_info, sinfo,
4229 num_bytes, 1);
4230 }
4231 }
4232
4233 return ret;
4234}
4235
4236int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4237 u64 start, u64 len, int delalloc)
4238{
4239 struct btrfs_block_group *cache;
4240
4241 cache = btrfs_lookup_block_group(fs_info, start);
4242 if (!cache) {
4243 btrfs_err(fs_info, "Unable to find block group for %llu",
4244 start);
4245 return -ENOSPC;
4246 }
4247
4248 btrfs_add_free_space(cache, start, len);
4249 btrfs_free_reserved_bytes(cache, len, delalloc);
4250 trace_btrfs_reserved_extent_free(fs_info, start, len);
4251
4252 btrfs_put_block_group(cache);
4253 return 0;
4254}
4255
4256int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4257 u64 len)
4258{
4259 struct btrfs_block_group *cache;
4260 int ret = 0;
4261
4262 cache = btrfs_lookup_block_group(trans->fs_info, start);
4263 if (!cache) {
4264 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4265 start);
4266 return -ENOSPC;
4267 }
4268
4269 ret = pin_down_extent(trans, cache, start, len, 1);
4270 btrfs_put_block_group(cache);
4271 return ret;
4272}
4273
4274static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4275 u64 parent, u64 root_objectid,
4276 u64 flags, u64 owner, u64 offset,
4277 struct btrfs_key *ins, int ref_mod)
4278{
4279 struct btrfs_fs_info *fs_info = trans->fs_info;
4280 int ret;
4281 struct btrfs_extent_item *extent_item;
4282 struct btrfs_extent_inline_ref *iref;
4283 struct btrfs_path *path;
4284 struct extent_buffer *leaf;
4285 int type;
4286 u32 size;
4287
4288 if (parent > 0)
4289 type = BTRFS_SHARED_DATA_REF_KEY;
4290 else
4291 type = BTRFS_EXTENT_DATA_REF_KEY;
4292
4293 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4294
4295 path = btrfs_alloc_path();
4296 if (!path)
4297 return -ENOMEM;
4298
4299 path->leave_spinning = 1;
4300 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4301 ins, size);
4302 if (ret) {
4303 btrfs_free_path(path);
4304 return ret;
4305 }
4306
4307 leaf = path->nodes[0];
4308 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4309 struct btrfs_extent_item);
4310 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4311 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4312 btrfs_set_extent_flags(leaf, extent_item,
4313 flags | BTRFS_EXTENT_FLAG_DATA);
4314
4315 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4316 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4317 if (parent > 0) {
4318 struct btrfs_shared_data_ref *ref;
4319 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4320 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4321 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4322 } else {
4323 struct btrfs_extent_data_ref *ref;
4324 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4325 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4326 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4327 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4328 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4329 }
4330
4331 btrfs_mark_buffer_dirty(path->nodes[0]);
4332 btrfs_free_path(path);
4333
4334 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4335 if (ret)
4336 return ret;
4337
4338 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4339 if (ret) { /* -ENOENT, logic error */
4340 btrfs_err(fs_info, "update block group failed for %llu %llu",
4341 ins->objectid, ins->offset);
4342 BUG();
4343 }
4344 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4345 return ret;
4346}
4347
4348static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4349 struct btrfs_delayed_ref_node *node,
4350 struct btrfs_delayed_extent_op *extent_op)
4351{
4352 struct btrfs_fs_info *fs_info = trans->fs_info;
4353 int ret;
4354 struct btrfs_extent_item *extent_item;
4355 struct btrfs_key extent_key;
4356 struct btrfs_tree_block_info *block_info;
4357 struct btrfs_extent_inline_ref *iref;
4358 struct btrfs_path *path;
4359 struct extent_buffer *leaf;
4360 struct btrfs_delayed_tree_ref *ref;
4361 u32 size = sizeof(*extent_item) + sizeof(*iref);
4362 u64 num_bytes;
4363 u64 flags = extent_op->flags_to_set;
4364 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4365
4366 ref = btrfs_delayed_node_to_tree_ref(node);
4367
4368 extent_key.objectid = node->bytenr;
4369 if (skinny_metadata) {
4370 extent_key.offset = ref->level;
4371 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4372 num_bytes = fs_info->nodesize;
4373 } else {
4374 extent_key.offset = node->num_bytes;
4375 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4376 size += sizeof(*block_info);
4377 num_bytes = node->num_bytes;
4378 }
4379
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383
4384 path->leave_spinning = 1;
4385 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4386 &extent_key, size);
4387 if (ret) {
4388 btrfs_free_path(path);
4389 return ret;
4390 }
4391
4392 leaf = path->nodes[0];
4393 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4394 struct btrfs_extent_item);
4395 btrfs_set_extent_refs(leaf, extent_item, 1);
4396 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4397 btrfs_set_extent_flags(leaf, extent_item,
4398 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4399
4400 if (skinny_metadata) {
4401 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4402 } else {
4403 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4404 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4405 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4406 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4407 }
4408
4409 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4410 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4411 btrfs_set_extent_inline_ref_type(leaf, iref,
4412 BTRFS_SHARED_BLOCK_REF_KEY);
4413 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4414 } else {
4415 btrfs_set_extent_inline_ref_type(leaf, iref,
4416 BTRFS_TREE_BLOCK_REF_KEY);
4417 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4418 }
4419
4420 btrfs_mark_buffer_dirty(leaf);
4421 btrfs_free_path(path);
4422
4423 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4424 num_bytes);
4425 if (ret)
4426 return ret;
4427
4428 ret = btrfs_update_block_group(trans, extent_key.objectid,
4429 fs_info->nodesize, 1);
4430 if (ret) { /* -ENOENT, logic error */
4431 btrfs_err(fs_info, "update block group failed for %llu %llu",
4432 extent_key.objectid, extent_key.offset);
4433 BUG();
4434 }
4435
4436 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4437 fs_info->nodesize);
4438 return ret;
4439}
4440
4441int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4442 struct btrfs_root *root, u64 owner,
4443 u64 offset, u64 ram_bytes,
4444 struct btrfs_key *ins)
4445{
4446 struct btrfs_ref generic_ref = { 0 };
4447 int ret;
4448
4449 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4450
4451 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4452 ins->objectid, ins->offset, 0);
4453 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4454 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4455 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4456 ram_bytes, NULL, NULL);
4457 return ret;
4458}
4459
4460/*
4461 * this is used by the tree logging recovery code. It records that
4462 * an extent has been allocated and makes sure to clear the free
4463 * space cache bits as well
4464 */
4465int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4466 u64 root_objectid, u64 owner, u64 offset,
4467 struct btrfs_key *ins)
4468{
4469 struct btrfs_fs_info *fs_info = trans->fs_info;
4470 int ret;
4471 struct btrfs_block_group *block_group;
4472 struct btrfs_space_info *space_info;
4473
4474 /*
4475 * Mixed block groups will exclude before processing the log so we only
4476 * need to do the exclude dance if this fs isn't mixed.
4477 */
4478 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4479 ret = __exclude_logged_extent(fs_info, ins->objectid,
4480 ins->offset);
4481 if (ret)
4482 return ret;
4483 }
4484
4485 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4486 if (!block_group)
4487 return -EINVAL;
4488
4489 space_info = block_group->space_info;
4490 spin_lock(&space_info->lock);
4491 spin_lock(&block_group->lock);
4492 space_info->bytes_reserved += ins->offset;
4493 block_group->reserved += ins->offset;
4494 spin_unlock(&block_group->lock);
4495 spin_unlock(&space_info->lock);
4496
4497 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4498 offset, ins, 1);
4499 if (ret)
4500 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4501 btrfs_put_block_group(block_group);
4502 return ret;
4503}
4504
4505static struct extent_buffer *
4506btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4507 u64 bytenr, int level, u64 owner)
4508{
4509 struct btrfs_fs_info *fs_info = root->fs_info;
4510 struct extent_buffer *buf;
4511
4512 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4513 if (IS_ERR(buf))
4514 return buf;
4515
4516 /*
4517 * Extra safety check in case the extent tree is corrupted and extent
4518 * allocator chooses to use a tree block which is already used and
4519 * locked.
4520 */
4521 if (buf->lock_owner == current->pid) {
4522 btrfs_err_rl(fs_info,
4523"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4524 buf->start, btrfs_header_owner(buf), current->pid);
4525 free_extent_buffer(buf);
4526 return ERR_PTR(-EUCLEAN);
4527 }
4528
4529 btrfs_set_buffer_lockdep_class(owner, buf, level);
4530 btrfs_tree_lock(buf);
4531 btrfs_clean_tree_block(buf);
4532 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4533
4534 btrfs_set_lock_blocking_write(buf);
4535 set_extent_buffer_uptodate(buf);
4536
4537 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4538 btrfs_set_header_level(buf, level);
4539 btrfs_set_header_bytenr(buf, buf->start);
4540 btrfs_set_header_generation(buf, trans->transid);
4541 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4542 btrfs_set_header_owner(buf, owner);
4543 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4544 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4545 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4546 buf->log_index = root->log_transid % 2;
4547 /*
4548 * we allow two log transactions at a time, use different
4549 * EXTENT bit to differentiate dirty pages.
4550 */
4551 if (buf->log_index == 0)
4552 set_extent_dirty(&root->dirty_log_pages, buf->start,
4553 buf->start + buf->len - 1, GFP_NOFS);
4554 else
4555 set_extent_new(&root->dirty_log_pages, buf->start,
4556 buf->start + buf->len - 1);
4557 } else {
4558 buf->log_index = -1;
4559 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4560 buf->start + buf->len - 1, GFP_NOFS);
4561 }
4562 trans->dirty = true;
4563 /* this returns a buffer locked for blocking */
4564 return buf;
4565}
4566
4567/*
4568 * finds a free extent and does all the dirty work required for allocation
4569 * returns the tree buffer or an ERR_PTR on error.
4570 */
4571struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4572 struct btrfs_root *root,
4573 u64 parent, u64 root_objectid,
4574 const struct btrfs_disk_key *key,
4575 int level, u64 hint,
4576 u64 empty_size)
4577{
4578 struct btrfs_fs_info *fs_info = root->fs_info;
4579 struct btrfs_key ins;
4580 struct btrfs_block_rsv *block_rsv;
4581 struct extent_buffer *buf;
4582 struct btrfs_delayed_extent_op *extent_op;
4583 struct btrfs_ref generic_ref = { 0 };
4584 u64 flags = 0;
4585 int ret;
4586 u32 blocksize = fs_info->nodesize;
4587 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4588
4589#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4590 if (btrfs_is_testing(fs_info)) {
4591 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4592 level, root_objectid);
4593 if (!IS_ERR(buf))
4594 root->alloc_bytenr += blocksize;
4595 return buf;
4596 }
4597#endif
4598
4599 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4600 if (IS_ERR(block_rsv))
4601 return ERR_CAST(block_rsv);
4602
4603 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4604 empty_size, hint, &ins, 0, 0);
4605 if (ret)
4606 goto out_unuse;
4607
4608 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4609 root_objectid);
4610 if (IS_ERR(buf)) {
4611 ret = PTR_ERR(buf);
4612 goto out_free_reserved;
4613 }
4614
4615 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4616 if (parent == 0)
4617 parent = ins.objectid;
4618 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4619 } else
4620 BUG_ON(parent > 0);
4621
4622 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4623 extent_op = btrfs_alloc_delayed_extent_op();
4624 if (!extent_op) {
4625 ret = -ENOMEM;
4626 goto out_free_buf;
4627 }
4628 if (key)
4629 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4630 else
4631 memset(&extent_op->key, 0, sizeof(extent_op->key));
4632 extent_op->flags_to_set = flags;
4633 extent_op->update_key = skinny_metadata ? false : true;
4634 extent_op->update_flags = true;
4635 extent_op->is_data = false;
4636 extent_op->level = level;
4637
4638 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4639 ins.objectid, ins.offset, parent);
4640 generic_ref.real_root = root->root_key.objectid;
4641 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4642 btrfs_ref_tree_mod(fs_info, &generic_ref);
4643 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4644 extent_op, NULL, NULL);
4645 if (ret)
4646 goto out_free_delayed;
4647 }
4648 return buf;
4649
4650out_free_delayed:
4651 btrfs_free_delayed_extent_op(extent_op);
4652out_free_buf:
4653 free_extent_buffer(buf);
4654out_free_reserved:
4655 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4656out_unuse:
4657 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4658 return ERR_PTR(ret);
4659}
4660
4661struct walk_control {
4662 u64 refs[BTRFS_MAX_LEVEL];
4663 u64 flags[BTRFS_MAX_LEVEL];
4664 struct btrfs_key update_progress;
4665 struct btrfs_key drop_progress;
4666 int drop_level;
4667 int stage;
4668 int level;
4669 int shared_level;
4670 int update_ref;
4671 int keep_locks;
4672 int reada_slot;
4673 int reada_count;
4674 int restarted;
4675};
4676
4677#define DROP_REFERENCE 1
4678#define UPDATE_BACKREF 2
4679
4680static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4681 struct btrfs_root *root,
4682 struct walk_control *wc,
4683 struct btrfs_path *path)
4684{
4685 struct btrfs_fs_info *fs_info = root->fs_info;
4686 u64 bytenr;
4687 u64 generation;
4688 u64 refs;
4689 u64 flags;
4690 u32 nritems;
4691 struct btrfs_key key;
4692 struct extent_buffer *eb;
4693 int ret;
4694 int slot;
4695 int nread = 0;
4696
4697 if (path->slots[wc->level] < wc->reada_slot) {
4698 wc->reada_count = wc->reada_count * 2 / 3;
4699 wc->reada_count = max(wc->reada_count, 2);
4700 } else {
4701 wc->reada_count = wc->reada_count * 3 / 2;
4702 wc->reada_count = min_t(int, wc->reada_count,
4703 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4704 }
4705
4706 eb = path->nodes[wc->level];
4707 nritems = btrfs_header_nritems(eb);
4708
4709 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4710 if (nread >= wc->reada_count)
4711 break;
4712
4713 cond_resched();
4714 bytenr = btrfs_node_blockptr(eb, slot);
4715 generation = btrfs_node_ptr_generation(eb, slot);
4716
4717 if (slot == path->slots[wc->level])
4718 goto reada;
4719
4720 if (wc->stage == UPDATE_BACKREF &&
4721 generation <= root->root_key.offset)
4722 continue;
4723
4724 /* We don't lock the tree block, it's OK to be racy here */
4725 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4726 wc->level - 1, 1, &refs,
4727 &flags);
4728 /* We don't care about errors in readahead. */
4729 if (ret < 0)
4730 continue;
4731 BUG_ON(refs == 0);
4732
4733 if (wc->stage == DROP_REFERENCE) {
4734 if (refs == 1)
4735 goto reada;
4736
4737 if (wc->level == 1 &&
4738 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4739 continue;
4740 if (!wc->update_ref ||
4741 generation <= root->root_key.offset)
4742 continue;
4743 btrfs_node_key_to_cpu(eb, &key, slot);
4744 ret = btrfs_comp_cpu_keys(&key,
4745 &wc->update_progress);
4746 if (ret < 0)
4747 continue;
4748 } else {
4749 if (wc->level == 1 &&
4750 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4751 continue;
4752 }
4753reada:
4754 readahead_tree_block(fs_info, bytenr);
4755 nread++;
4756 }
4757 wc->reada_slot = slot;
4758}
4759
4760/*
4761 * helper to process tree block while walking down the tree.
4762 *
4763 * when wc->stage == UPDATE_BACKREF, this function updates
4764 * back refs for pointers in the block.
4765 *
4766 * NOTE: return value 1 means we should stop walking down.
4767 */
4768static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4769 struct btrfs_root *root,
4770 struct btrfs_path *path,
4771 struct walk_control *wc, int lookup_info)
4772{
4773 struct btrfs_fs_info *fs_info = root->fs_info;
4774 int level = wc->level;
4775 struct extent_buffer *eb = path->nodes[level];
4776 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4777 int ret;
4778
4779 if (wc->stage == UPDATE_BACKREF &&
4780 btrfs_header_owner(eb) != root->root_key.objectid)
4781 return 1;
4782
4783 /*
4784 * when reference count of tree block is 1, it won't increase
4785 * again. once full backref flag is set, we never clear it.
4786 */
4787 if (lookup_info &&
4788 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4789 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4790 BUG_ON(!path->locks[level]);
4791 ret = btrfs_lookup_extent_info(trans, fs_info,
4792 eb->start, level, 1,
4793 &wc->refs[level],
4794 &wc->flags[level]);
4795 BUG_ON(ret == -ENOMEM);
4796 if (ret)
4797 return ret;
4798 BUG_ON(wc->refs[level] == 0);
4799 }
4800
4801 if (wc->stage == DROP_REFERENCE) {
4802 if (wc->refs[level] > 1)
4803 return 1;
4804
4805 if (path->locks[level] && !wc->keep_locks) {
4806 btrfs_tree_unlock_rw(eb, path->locks[level]);
4807 path->locks[level] = 0;
4808 }
4809 return 0;
4810 }
4811
4812 /* wc->stage == UPDATE_BACKREF */
4813 if (!(wc->flags[level] & flag)) {
4814 BUG_ON(!path->locks[level]);
4815 ret = btrfs_inc_ref(trans, root, eb, 1);
4816 BUG_ON(ret); /* -ENOMEM */
4817 ret = btrfs_dec_ref(trans, root, eb, 0);
4818 BUG_ON(ret); /* -ENOMEM */
4819 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4820 btrfs_header_level(eb), 0);
4821 BUG_ON(ret); /* -ENOMEM */
4822 wc->flags[level] |= flag;
4823 }
4824
4825 /*
4826 * the block is shared by multiple trees, so it's not good to
4827 * keep the tree lock
4828 */
4829 if (path->locks[level] && level > 0) {
4830 btrfs_tree_unlock_rw(eb, path->locks[level]);
4831 path->locks[level] = 0;
4832 }
4833 return 0;
4834}
4835
4836/*
4837 * This is used to verify a ref exists for this root to deal with a bug where we
4838 * would have a drop_progress key that hadn't been updated properly.
4839 */
4840static int check_ref_exists(struct btrfs_trans_handle *trans,
4841 struct btrfs_root *root, u64 bytenr, u64 parent,
4842 int level)
4843{
4844 struct btrfs_path *path;
4845 struct btrfs_extent_inline_ref *iref;
4846 int ret;
4847
4848 path = btrfs_alloc_path();
4849 if (!path)
4850 return -ENOMEM;
4851
4852 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4853 root->fs_info->nodesize, parent,
4854 root->root_key.objectid, level, 0);
4855 btrfs_free_path(path);
4856 if (ret == -ENOENT)
4857 return 0;
4858 if (ret < 0)
4859 return ret;
4860 return 1;
4861}
4862
4863/*
4864 * helper to process tree block pointer.
4865 *
4866 * when wc->stage == DROP_REFERENCE, this function checks
4867 * reference count of the block pointed to. if the block
4868 * is shared and we need update back refs for the subtree
4869 * rooted at the block, this function changes wc->stage to
4870 * UPDATE_BACKREF. if the block is shared and there is no
4871 * need to update back, this function drops the reference
4872 * to the block.
4873 *
4874 * NOTE: return value 1 means we should stop walking down.
4875 */
4876static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4877 struct btrfs_root *root,
4878 struct btrfs_path *path,
4879 struct walk_control *wc, int *lookup_info)
4880{
4881 struct btrfs_fs_info *fs_info = root->fs_info;
4882 u64 bytenr;
4883 u64 generation;
4884 u64 parent;
4885 struct btrfs_key key;
4886 struct btrfs_key first_key;
4887 struct btrfs_ref ref = { 0 };
4888 struct extent_buffer *next;
4889 int level = wc->level;
4890 int reada = 0;
4891 int ret = 0;
4892 bool need_account = false;
4893
4894 generation = btrfs_node_ptr_generation(path->nodes[level],
4895 path->slots[level]);
4896 /*
4897 * if the lower level block was created before the snapshot
4898 * was created, we know there is no need to update back refs
4899 * for the subtree
4900 */
4901 if (wc->stage == UPDATE_BACKREF &&
4902 generation <= root->root_key.offset) {
4903 *lookup_info = 1;
4904 return 1;
4905 }
4906
4907 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4908 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4909 path->slots[level]);
4910
4911 next = find_extent_buffer(fs_info, bytenr);
4912 if (!next) {
4913 next = btrfs_find_create_tree_block(fs_info, bytenr);
4914 if (IS_ERR(next))
4915 return PTR_ERR(next);
4916
4917 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4918 level - 1);
4919 reada = 1;
4920 }
4921 btrfs_tree_lock(next);
4922 btrfs_set_lock_blocking_write(next);
4923
4924 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4925 &wc->refs[level - 1],
4926 &wc->flags[level - 1]);
4927 if (ret < 0)
4928 goto out_unlock;
4929
4930 if (unlikely(wc->refs[level - 1] == 0)) {
4931 btrfs_err(fs_info, "Missing references.");
4932 ret = -EIO;
4933 goto out_unlock;
4934 }
4935 *lookup_info = 0;
4936
4937 if (wc->stage == DROP_REFERENCE) {
4938 if (wc->refs[level - 1] > 1) {
4939 need_account = true;
4940 if (level == 1 &&
4941 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4942 goto skip;
4943
4944 if (!wc->update_ref ||
4945 generation <= root->root_key.offset)
4946 goto skip;
4947
4948 btrfs_node_key_to_cpu(path->nodes[level], &key,
4949 path->slots[level]);
4950 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4951 if (ret < 0)
4952 goto skip;
4953
4954 wc->stage = UPDATE_BACKREF;
4955 wc->shared_level = level - 1;
4956 }
4957 } else {
4958 if (level == 1 &&
4959 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4960 goto skip;
4961 }
4962
4963 if (!btrfs_buffer_uptodate(next, generation, 0)) {
4964 btrfs_tree_unlock(next);
4965 free_extent_buffer(next);
4966 next = NULL;
4967 *lookup_info = 1;
4968 }
4969
4970 if (!next) {
4971 if (reada && level == 1)
4972 reada_walk_down(trans, root, wc, path);
4973 next = read_tree_block(fs_info, bytenr, generation, level - 1,
4974 &first_key);
4975 if (IS_ERR(next)) {
4976 return PTR_ERR(next);
4977 } else if (!extent_buffer_uptodate(next)) {
4978 free_extent_buffer(next);
4979 return -EIO;
4980 }
4981 btrfs_tree_lock(next);
4982 btrfs_set_lock_blocking_write(next);
4983 }
4984
4985 level--;
4986 ASSERT(level == btrfs_header_level(next));
4987 if (level != btrfs_header_level(next)) {
4988 btrfs_err(root->fs_info, "mismatched level");
4989 ret = -EIO;
4990 goto out_unlock;
4991 }
4992 path->nodes[level] = next;
4993 path->slots[level] = 0;
4994 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4995 wc->level = level;
4996 if (wc->level == 1)
4997 wc->reada_slot = 0;
4998 return 0;
4999skip:
5000 wc->refs[level - 1] = 0;
5001 wc->flags[level - 1] = 0;
5002 if (wc->stage == DROP_REFERENCE) {
5003 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5004 parent = path->nodes[level]->start;
5005 } else {
5006 ASSERT(root->root_key.objectid ==
5007 btrfs_header_owner(path->nodes[level]));
5008 if (root->root_key.objectid !=
5009 btrfs_header_owner(path->nodes[level])) {
5010 btrfs_err(root->fs_info,
5011 "mismatched block owner");
5012 ret = -EIO;
5013 goto out_unlock;
5014 }
5015 parent = 0;
5016 }
5017
5018 /*
5019 * If we had a drop_progress we need to verify the refs are set
5020 * as expected. If we find our ref then we know that from here
5021 * on out everything should be correct, and we can clear the
5022 * ->restarted flag.
5023 */
5024 if (wc->restarted) {
5025 ret = check_ref_exists(trans, root, bytenr, parent,
5026 level - 1);
5027 if (ret < 0)
5028 goto out_unlock;
5029 if (ret == 0)
5030 goto no_delete;
5031 ret = 0;
5032 wc->restarted = 0;
5033 }
5034
5035 /*
5036 * Reloc tree doesn't contribute to qgroup numbers, and we have
5037 * already accounted them at merge time (replace_path),
5038 * thus we could skip expensive subtree trace here.
5039 */
5040 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5041 need_account) {
5042 ret = btrfs_qgroup_trace_subtree(trans, next,
5043 generation, level - 1);
5044 if (ret) {
5045 btrfs_err_rl(fs_info,
5046 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5047 ret);
5048 }
5049 }
5050
5051 /*
5052 * We need to update the next key in our walk control so we can
5053 * update the drop_progress key accordingly. We don't care if
5054 * find_next_key doesn't find a key because that means we're at
5055 * the end and are going to clean up now.
5056 */
5057 wc->drop_level = level;
5058 find_next_key(path, level, &wc->drop_progress);
5059
5060 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5061 fs_info->nodesize, parent);
5062 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5063 ret = btrfs_free_extent(trans, &ref);
5064 if (ret)
5065 goto out_unlock;
5066 }
5067no_delete:
5068 *lookup_info = 1;
5069 ret = 1;
5070
5071out_unlock:
5072 btrfs_tree_unlock(next);
5073 free_extent_buffer(next);
5074
5075 return ret;
5076}
5077
5078/*
5079 * helper to process tree block while walking up the tree.
5080 *
5081 * when wc->stage == DROP_REFERENCE, this function drops
5082 * reference count on the block.
5083 *
5084 * when wc->stage == UPDATE_BACKREF, this function changes
5085 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5086 * to UPDATE_BACKREF previously while processing the block.
5087 *
5088 * NOTE: return value 1 means we should stop walking up.
5089 */
5090static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5091 struct btrfs_root *root,
5092 struct btrfs_path *path,
5093 struct walk_control *wc)
5094{
5095 struct btrfs_fs_info *fs_info = root->fs_info;
5096 int ret;
5097 int level = wc->level;
5098 struct extent_buffer *eb = path->nodes[level];
5099 u64 parent = 0;
5100
5101 if (wc->stage == UPDATE_BACKREF) {
5102 BUG_ON(wc->shared_level < level);
5103 if (level < wc->shared_level)
5104 goto out;
5105
5106 ret = find_next_key(path, level + 1, &wc->update_progress);
5107 if (ret > 0)
5108 wc->update_ref = 0;
5109
5110 wc->stage = DROP_REFERENCE;
5111 wc->shared_level = -1;
5112 path->slots[level] = 0;
5113
5114 /*
5115 * check reference count again if the block isn't locked.
5116 * we should start walking down the tree again if reference
5117 * count is one.
5118 */
5119 if (!path->locks[level]) {
5120 BUG_ON(level == 0);
5121 btrfs_tree_lock(eb);
5122 btrfs_set_lock_blocking_write(eb);
5123 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5124
5125 ret = btrfs_lookup_extent_info(trans, fs_info,
5126 eb->start, level, 1,
5127 &wc->refs[level],
5128 &wc->flags[level]);
5129 if (ret < 0) {
5130 btrfs_tree_unlock_rw(eb, path->locks[level]);
5131 path->locks[level] = 0;
5132 return ret;
5133 }
5134 BUG_ON(wc->refs[level] == 0);
5135 if (wc->refs[level] == 1) {
5136 btrfs_tree_unlock_rw(eb, path->locks[level]);
5137 path->locks[level] = 0;
5138 return 1;
5139 }
5140 }
5141 }
5142
5143 /* wc->stage == DROP_REFERENCE */
5144 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5145
5146 if (wc->refs[level] == 1) {
5147 if (level == 0) {
5148 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5149 ret = btrfs_dec_ref(trans, root, eb, 1);
5150 else
5151 ret = btrfs_dec_ref(trans, root, eb, 0);
5152 BUG_ON(ret); /* -ENOMEM */
5153 if (is_fstree(root->root_key.objectid)) {
5154 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5155 if (ret) {
5156 btrfs_err_rl(fs_info,
5157 "error %d accounting leaf items, quota is out of sync, rescan required",
5158 ret);
5159 }
5160 }
5161 }
5162 /* make block locked assertion in btrfs_clean_tree_block happy */
5163 if (!path->locks[level] &&
5164 btrfs_header_generation(eb) == trans->transid) {
5165 btrfs_tree_lock(eb);
5166 btrfs_set_lock_blocking_write(eb);
5167 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5168 }
5169 btrfs_clean_tree_block(eb);
5170 }
5171
5172 if (eb == root->node) {
5173 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5174 parent = eb->start;
5175 else if (root->root_key.objectid != btrfs_header_owner(eb))
5176 goto owner_mismatch;
5177 } else {
5178 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5179 parent = path->nodes[level + 1]->start;
5180 else if (root->root_key.objectid !=
5181 btrfs_header_owner(path->nodes[level + 1]))
5182 goto owner_mismatch;
5183 }
5184
5185 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5186out:
5187 wc->refs[level] = 0;
5188 wc->flags[level] = 0;
5189 return 0;
5190
5191owner_mismatch:
5192 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5193 btrfs_header_owner(eb), root->root_key.objectid);
5194 return -EUCLEAN;
5195}
5196
5197static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5198 struct btrfs_root *root,
5199 struct btrfs_path *path,
5200 struct walk_control *wc)
5201{
5202 int level = wc->level;
5203 int lookup_info = 1;
5204 int ret;
5205
5206 while (level >= 0) {
5207 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5208 if (ret > 0)
5209 break;
5210
5211 if (level == 0)
5212 break;
5213
5214 if (path->slots[level] >=
5215 btrfs_header_nritems(path->nodes[level]))
5216 break;
5217
5218 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5219 if (ret > 0) {
5220 path->slots[level]++;
5221 continue;
5222 } else if (ret < 0)
5223 return ret;
5224 level = wc->level;
5225 }
5226 return 0;
5227}
5228
5229static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5230 struct btrfs_root *root,
5231 struct btrfs_path *path,
5232 struct walk_control *wc, int max_level)
5233{
5234 int level = wc->level;
5235 int ret;
5236
5237 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5238 while (level < max_level && path->nodes[level]) {
5239 wc->level = level;
5240 if (path->slots[level] + 1 <
5241 btrfs_header_nritems(path->nodes[level])) {
5242 path->slots[level]++;
5243 return 0;
5244 } else {
5245 ret = walk_up_proc(trans, root, path, wc);
5246 if (ret > 0)
5247 return 0;
5248 if (ret < 0)
5249 return ret;
5250
5251 if (path->locks[level]) {
5252 btrfs_tree_unlock_rw(path->nodes[level],
5253 path->locks[level]);
5254 path->locks[level] = 0;
5255 }
5256 free_extent_buffer(path->nodes[level]);
5257 path->nodes[level] = NULL;
5258 level++;
5259 }
5260 }
5261 return 1;
5262}
5263
5264/*
5265 * drop a subvolume tree.
5266 *
5267 * this function traverses the tree freeing any blocks that only
5268 * referenced by the tree.
5269 *
5270 * when a shared tree block is found. this function decreases its
5271 * reference count by one. if update_ref is true, this function
5272 * also make sure backrefs for the shared block and all lower level
5273 * blocks are properly updated.
5274 *
5275 * If called with for_reloc == 0, may exit early with -EAGAIN
5276 */
5277int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5278{
5279 struct btrfs_fs_info *fs_info = root->fs_info;
5280 struct btrfs_path *path;
5281 struct btrfs_trans_handle *trans;
5282 struct btrfs_root *tree_root = fs_info->tree_root;
5283 struct btrfs_root_item *root_item = &root->root_item;
5284 struct walk_control *wc;
5285 struct btrfs_key key;
5286 int err = 0;
5287 int ret;
5288 int level;
5289 bool root_dropped = false;
5290
5291 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5292
5293 path = btrfs_alloc_path();
5294 if (!path) {
5295 err = -ENOMEM;
5296 goto out;
5297 }
5298
5299 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5300 if (!wc) {
5301 btrfs_free_path(path);
5302 err = -ENOMEM;
5303 goto out;
5304 }
5305
5306 /*
5307 * Use join to avoid potential EINTR from transaction start. See
5308 * wait_reserve_ticket and the whole reservation callchain.
5309 */
5310 if (for_reloc)
5311 trans = btrfs_join_transaction(tree_root);
5312 else
5313 trans = btrfs_start_transaction(tree_root, 0);
5314 if (IS_ERR(trans)) {
5315 err = PTR_ERR(trans);
5316 goto out_free;
5317 }
5318
5319 err = btrfs_run_delayed_items(trans);
5320 if (err)
5321 goto out_end_trans;
5322
5323 /*
5324 * This will help us catch people modifying the fs tree while we're
5325 * dropping it. It is unsafe to mess with the fs tree while it's being
5326 * dropped as we unlock the root node and parent nodes as we walk down
5327 * the tree, assuming nothing will change. If something does change
5328 * then we'll have stale information and drop references to blocks we've
5329 * already dropped.
5330 */
5331 set_bit(BTRFS_ROOT_DELETING, &root->state);
5332 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5333 level = btrfs_header_level(root->node);
5334 path->nodes[level] = btrfs_lock_root_node(root);
5335 btrfs_set_lock_blocking_write(path->nodes[level]);
5336 path->slots[level] = 0;
5337 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5338 memset(&wc->update_progress, 0,
5339 sizeof(wc->update_progress));
5340 } else {
5341 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5342 memcpy(&wc->update_progress, &key,
5343 sizeof(wc->update_progress));
5344
5345 level = root_item->drop_level;
5346 BUG_ON(level == 0);
5347 path->lowest_level = level;
5348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5349 path->lowest_level = 0;
5350 if (ret < 0) {
5351 err = ret;
5352 goto out_end_trans;
5353 }
5354 WARN_ON(ret > 0);
5355
5356 /*
5357 * unlock our path, this is safe because only this
5358 * function is allowed to delete this snapshot
5359 */
5360 btrfs_unlock_up_safe(path, 0);
5361
5362 level = btrfs_header_level(root->node);
5363 while (1) {
5364 btrfs_tree_lock(path->nodes[level]);
5365 btrfs_set_lock_blocking_write(path->nodes[level]);
5366 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5367
5368 ret = btrfs_lookup_extent_info(trans, fs_info,
5369 path->nodes[level]->start,
5370 level, 1, &wc->refs[level],
5371 &wc->flags[level]);
5372 if (ret < 0) {
5373 err = ret;
5374 goto out_end_trans;
5375 }
5376 BUG_ON(wc->refs[level] == 0);
5377
5378 if (level == root_item->drop_level)
5379 break;
5380
5381 btrfs_tree_unlock(path->nodes[level]);
5382 path->locks[level] = 0;
5383 WARN_ON(wc->refs[level] != 1);
5384 level--;
5385 }
5386 }
5387
5388 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5389 wc->level = level;
5390 wc->shared_level = -1;
5391 wc->stage = DROP_REFERENCE;
5392 wc->update_ref = update_ref;
5393 wc->keep_locks = 0;
5394 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5395
5396 while (1) {
5397
5398 ret = walk_down_tree(trans, root, path, wc);
5399 if (ret < 0) {
5400 err = ret;
5401 break;
5402 }
5403
5404 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5405 if (ret < 0) {
5406 err = ret;
5407 break;
5408 }
5409
5410 if (ret > 0) {
5411 BUG_ON(wc->stage != DROP_REFERENCE);
5412 break;
5413 }
5414
5415 if (wc->stage == DROP_REFERENCE) {
5416 wc->drop_level = wc->level;
5417 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5418 &wc->drop_progress,
5419 path->slots[wc->drop_level]);
5420 }
5421 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5422 &wc->drop_progress);
5423 root_item->drop_level = wc->drop_level;
5424
5425 BUG_ON(wc->level == 0);
5426 if (btrfs_should_end_transaction(trans) ||
5427 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5428 ret = btrfs_update_root(trans, tree_root,
5429 &root->root_key,
5430 root_item);
5431 if (ret) {
5432 btrfs_abort_transaction(trans, ret);
5433 err = ret;
5434 goto out_end_trans;
5435 }
5436
5437 btrfs_end_transaction_throttle(trans);
5438 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5439 btrfs_debug(fs_info,
5440 "drop snapshot early exit");
5441 err = -EAGAIN;
5442 goto out_free;
5443 }
5444
5445 trans = btrfs_start_transaction(tree_root, 0);
5446 if (IS_ERR(trans)) {
5447 err = PTR_ERR(trans);
5448 goto out_free;
5449 }
5450 }
5451 }
5452 btrfs_release_path(path);
5453 if (err)
5454 goto out_end_trans;
5455
5456 ret = btrfs_del_root(trans, &root->root_key);
5457 if (ret) {
5458 btrfs_abort_transaction(trans, ret);
5459 err = ret;
5460 goto out_end_trans;
5461 }
5462
5463 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5464 ret = btrfs_find_root(tree_root, &root->root_key, path,
5465 NULL, NULL);
5466 if (ret < 0) {
5467 btrfs_abort_transaction(trans, ret);
5468 err = ret;
5469 goto out_end_trans;
5470 } else if (ret > 0) {
5471 /* if we fail to delete the orphan item this time
5472 * around, it'll get picked up the next time.
5473 *
5474 * The most common failure here is just -ENOENT.
5475 */
5476 btrfs_del_orphan_item(trans, tree_root,
5477 root->root_key.objectid);
5478 }
5479 }
5480
5481 /*
5482 * This subvolume is going to be completely dropped, and won't be
5483 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5484 * commit transaction time. So free it here manually.
5485 */
5486 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5487 btrfs_qgroup_free_meta_all_pertrans(root);
5488
5489 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5490 btrfs_add_dropped_root(trans, root);
5491 else
5492 btrfs_put_root(root);
5493 root_dropped = true;
5494out_end_trans:
5495 btrfs_end_transaction_throttle(trans);
5496out_free:
5497 kfree(wc);
5498 btrfs_free_path(path);
5499out:
5500 /*
5501 * So if we need to stop dropping the snapshot for whatever reason we
5502 * need to make sure to add it back to the dead root list so that we
5503 * keep trying to do the work later. This also cleans up roots if we
5504 * don't have it in the radix (like when we recover after a power fail
5505 * or unmount) so we don't leak memory.
5506 */
5507 if (!for_reloc && !root_dropped)
5508 btrfs_add_dead_root(root);
5509 return err;
5510}
5511
5512/*
5513 * drop subtree rooted at tree block 'node'.
5514 *
5515 * NOTE: this function will unlock and release tree block 'node'
5516 * only used by relocation code
5517 */
5518int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5519 struct btrfs_root *root,
5520 struct extent_buffer *node,
5521 struct extent_buffer *parent)
5522{
5523 struct btrfs_fs_info *fs_info = root->fs_info;
5524 struct btrfs_path *path;
5525 struct walk_control *wc;
5526 int level;
5527 int parent_level;
5528 int ret = 0;
5529 int wret;
5530
5531 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5532
5533 path = btrfs_alloc_path();
5534 if (!path)
5535 return -ENOMEM;
5536
5537 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5538 if (!wc) {
5539 btrfs_free_path(path);
5540 return -ENOMEM;
5541 }
5542
5543 btrfs_assert_tree_locked(parent);
5544 parent_level = btrfs_header_level(parent);
5545 atomic_inc(&parent->refs);
5546 path->nodes[parent_level] = parent;
5547 path->slots[parent_level] = btrfs_header_nritems(parent);
5548
5549 btrfs_assert_tree_locked(node);
5550 level = btrfs_header_level(node);
5551 path->nodes[level] = node;
5552 path->slots[level] = 0;
5553 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5554
5555 wc->refs[parent_level] = 1;
5556 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5557 wc->level = level;
5558 wc->shared_level = -1;
5559 wc->stage = DROP_REFERENCE;
5560 wc->update_ref = 0;
5561 wc->keep_locks = 1;
5562 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5563
5564 while (1) {
5565 wret = walk_down_tree(trans, root, path, wc);
5566 if (wret < 0) {
5567 ret = wret;
5568 break;
5569 }
5570
5571 wret = walk_up_tree(trans, root, path, wc, parent_level);
5572 if (wret < 0)
5573 ret = wret;
5574 if (wret != 0)
5575 break;
5576 }
5577
5578 kfree(wc);
5579 btrfs_free_path(path);
5580 return ret;
5581}
5582
5583/*
5584 * helper to account the unused space of all the readonly block group in the
5585 * space_info. takes mirrors into account.
5586 */
5587u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5588{
5589 struct btrfs_block_group *block_group;
5590 u64 free_bytes = 0;
5591 int factor;
5592
5593 /* It's df, we don't care if it's racy */
5594 if (list_empty(&sinfo->ro_bgs))
5595 return 0;
5596
5597 spin_lock(&sinfo->lock);
5598 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5599 spin_lock(&block_group->lock);
5600
5601 if (!block_group->ro) {
5602 spin_unlock(&block_group->lock);
5603 continue;
5604 }
5605
5606 factor = btrfs_bg_type_to_factor(block_group->flags);
5607 free_bytes += (block_group->length -
5608 block_group->used) * factor;
5609
5610 spin_unlock(&block_group->lock);
5611 }
5612 spin_unlock(&sinfo->lock);
5613
5614 return free_bytes;
5615}
5616
5617int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5618 u64 start, u64 end)
5619{
5620 return unpin_extent_range(fs_info, start, end, false);
5621}
5622
5623/*
5624 * It used to be that old block groups would be left around forever.
5625 * Iterating over them would be enough to trim unused space. Since we
5626 * now automatically remove them, we also need to iterate over unallocated
5627 * space.
5628 *
5629 * We don't want a transaction for this since the discard may take a
5630 * substantial amount of time. We don't require that a transaction be
5631 * running, but we do need to take a running transaction into account
5632 * to ensure that we're not discarding chunks that were released or
5633 * allocated in the current transaction.
5634 *
5635 * Holding the chunks lock will prevent other threads from allocating
5636 * or releasing chunks, but it won't prevent a running transaction
5637 * from committing and releasing the memory that the pending chunks
5638 * list head uses. For that, we need to take a reference to the
5639 * transaction and hold the commit root sem. We only need to hold
5640 * it while performing the free space search since we have already
5641 * held back allocations.
5642 */
5643static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5644{
5645 u64 start = SZ_1M, len = 0, end = 0;
5646 int ret;
5647
5648 *trimmed = 0;
5649
5650 /* Discard not supported = nothing to do. */
5651 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5652 return 0;
5653
5654 /* Not writable = nothing to do. */
5655 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5656 return 0;
5657
5658 /* No free space = nothing to do. */
5659 if (device->total_bytes <= device->bytes_used)
5660 return 0;
5661
5662 ret = 0;
5663
5664 while (1) {
5665 struct btrfs_fs_info *fs_info = device->fs_info;
5666 u64 bytes;
5667
5668 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5669 if (ret)
5670 break;
5671
5672 find_first_clear_extent_bit(&device->alloc_state, start,
5673 &start, &end,
5674 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5675
5676 /* Check if there are any CHUNK_* bits left */
5677 if (start > device->total_bytes) {
5678 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5679 btrfs_warn_in_rcu(fs_info,
5680"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5681 start, end - start + 1,
5682 rcu_str_deref(device->name),
5683 device->total_bytes);
5684 mutex_unlock(&fs_info->chunk_mutex);
5685 ret = 0;
5686 break;
5687 }
5688
5689 /* Ensure we skip the reserved area in the first 1M */
5690 start = max_t(u64, start, SZ_1M);
5691
5692 /*
5693 * If find_first_clear_extent_bit find a range that spans the
5694 * end of the device it will set end to -1, in this case it's up
5695 * to the caller to trim the value to the size of the device.
5696 */
5697 end = min(end, device->total_bytes - 1);
5698
5699 len = end - start + 1;
5700
5701 /* We didn't find any extents */
5702 if (!len) {
5703 mutex_unlock(&fs_info->chunk_mutex);
5704 ret = 0;
5705 break;
5706 }
5707
5708 ret = btrfs_issue_discard(device->bdev, start, len,
5709 &bytes);
5710 if (!ret)
5711 set_extent_bits(&device->alloc_state, start,
5712 start + bytes - 1,
5713 CHUNK_TRIMMED);
5714 mutex_unlock(&fs_info->chunk_mutex);
5715
5716 if (ret)
5717 break;
5718
5719 start += len;
5720 *trimmed += bytes;
5721
5722 if (fatal_signal_pending(current)) {
5723 ret = -ERESTARTSYS;
5724 break;
5725 }
5726
5727 cond_resched();
5728 }
5729
5730 return ret;
5731}
5732
5733/*
5734 * Trim the whole filesystem by:
5735 * 1) trimming the free space in each block group
5736 * 2) trimming the unallocated space on each device
5737 *
5738 * This will also continue trimming even if a block group or device encounters
5739 * an error. The return value will be the last error, or 0 if nothing bad
5740 * happens.
5741 */
5742int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5743{
5744 struct btrfs_block_group *cache = NULL;
5745 struct btrfs_device *device;
5746 struct list_head *devices;
5747 u64 group_trimmed;
5748 u64 range_end = U64_MAX;
5749 u64 start;
5750 u64 end;
5751 u64 trimmed = 0;
5752 u64 bg_failed = 0;
5753 u64 dev_failed = 0;
5754 int bg_ret = 0;
5755 int dev_ret = 0;
5756 int ret = 0;
5757
5758 /*
5759 * Check range overflow if range->len is set.
5760 * The default range->len is U64_MAX.
5761 */
5762 if (range->len != U64_MAX &&
5763 check_add_overflow(range->start, range->len, &range_end))
5764 return -EINVAL;
5765
5766 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5767 for (; cache; cache = btrfs_next_block_group(cache)) {
5768 if (cache->start >= range_end) {
5769 btrfs_put_block_group(cache);
5770 break;
5771 }
5772
5773 start = max(range->start, cache->start);
5774 end = min(range_end, cache->start + cache->length);
5775
5776 if (end - start >= range->minlen) {
5777 if (!btrfs_block_group_done(cache)) {
5778 ret = btrfs_cache_block_group(cache, 0);
5779 if (ret) {
5780 bg_failed++;
5781 bg_ret = ret;
5782 continue;
5783 }
5784 ret = btrfs_wait_block_group_cache_done(cache);
5785 if (ret) {
5786 bg_failed++;
5787 bg_ret = ret;
5788 continue;
5789 }
5790 }
5791 ret = btrfs_trim_block_group(cache,
5792 &group_trimmed,
5793 start,
5794 end,
5795 range->minlen);
5796
5797 trimmed += group_trimmed;
5798 if (ret) {
5799 bg_failed++;
5800 bg_ret = ret;
5801 continue;
5802 }
5803 }
5804 }
5805
5806 if (bg_failed)
5807 btrfs_warn(fs_info,
5808 "failed to trim %llu block group(s), last error %d",
5809 bg_failed, bg_ret);
5810 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5811 devices = &fs_info->fs_devices->devices;
5812 list_for_each_entry(device, devices, dev_list) {
5813 ret = btrfs_trim_free_extents(device, &group_trimmed);
5814 if (ret) {
5815 dev_failed++;
5816 dev_ret = ret;
5817 break;
5818 }
5819
5820 trimmed += group_trimmed;
5821 }
5822 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5823
5824 if (dev_failed)
5825 btrfs_warn(fs_info,
5826 "failed to trim %llu device(s), last error %d",
5827 dev_failed, dev_ret);
5828 range->len = trimmed;
5829 if (bg_ret)
5830 return bg_ret;
5831 return dev_ret;
5832}