Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "ctree.h"
  20#include "extent-tree.h"
  21#include "tree-log.h"
  22#include "disk-io.h"
  23#include "print-tree.h"
 
  24#include "volumes.h"
  25#include "raid56.h"
  26#include "locking.h"
  27#include "free-space-cache.h"
  28#include "free-space-tree.h"
  29#include "sysfs.h"
  30#include "qgroup.h"
  31#include "ref-verify.h"
  32#include "space-info.h"
  33#include "block-rsv.h"
  34#include "delalloc-space.h"
  35#include "discard.h"
  36#include "rcu-string.h"
  37#include "zoned.h"
  38#include "dev-replace.h"
  39#include "fs.h"
  40#include "accessors.h"
  41#include "root-tree.h"
  42#include "file-item.h"
  43#include "orphan.h"
  44#include "tree-checker.h"
  45#include "raid-stripe-tree.h"
  46
  47#undef SCRAMBLE_DELAYED_REFS
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
 
 
 
  50static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  51			       struct btrfs_delayed_ref_head *href,
  52			       struct btrfs_delayed_ref_node *node, u64 parent,
  53			       u64 root_objectid, u64 owner_objectid,
  54			       u64 owner_offset,
  55			       struct btrfs_delayed_extent_op *extra_op);
  56static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  57				    struct extent_buffer *leaf,
  58				    struct btrfs_extent_item *ei);
  59static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
  60				      u64 parent, u64 root_objectid,
  61				      u64 flags, u64 owner, u64 offset,
  62				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
  63static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  64				     struct btrfs_delayed_ref_node *node,
  65				     struct btrfs_delayed_extent_op *extent_op);
 
 
 
 
 
  66static int find_next_key(struct btrfs_path *path, int level,
  67			 struct btrfs_key *key);
 
 
 
 
 
 
 
 
 
  68
  69static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
  70{
  71	return (cache->flags & bits) == bits;
  72}
  73
  74/* simple helper to search for an existing data extent at a given offset */
  75int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76{
  77	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
  78	int ret;
  79	struct btrfs_key key;
  80	struct btrfs_path *path;
  81
  82	path = btrfs_alloc_path();
  83	if (!path)
  84		return -ENOMEM;
  85
  86	key.objectid = start;
  87	key.offset = len;
  88	key.type = BTRFS_EXTENT_ITEM_KEY;
  89	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
  90	btrfs_free_path(path);
  91	return ret;
  92}
  93
  94/*
  95 * helper function to lookup reference count and flags of a tree block.
  96 *
  97 * the head node for delayed ref is used to store the sum of all the
  98 * reference count modifications queued up in the rbtree. the head
  99 * node may also store the extent flags to set. This way you can check
 100 * to see what the reference count and extent flags would be if all of
 101 * the delayed refs are not processed.
 102 */
 103int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 104			     struct btrfs_fs_info *fs_info, u64 bytenr,
 105			     u64 offset, int metadata, u64 *refs, u64 *flags,
 106			     u64 *owning_root)
 107{
 108	struct btrfs_root *extent_root;
 109	struct btrfs_delayed_ref_head *head;
 110	struct btrfs_delayed_ref_root *delayed_refs;
 111	struct btrfs_path *path;
 112	struct btrfs_extent_item *ei;
 113	struct extent_buffer *leaf;
 114	struct btrfs_key key;
 115	u32 item_size;
 116	u64 num_refs;
 117	u64 extent_flags;
 118	u64 owner = 0;
 119	int ret;
 120
 121	/*
 122	 * If we don't have skinny metadata, don't bother doing anything
 123	 * different
 124	 */
 125	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 126		offset = fs_info->nodesize;
 127		metadata = 0;
 128	}
 129
 130	path = btrfs_alloc_path();
 131	if (!path)
 132		return -ENOMEM;
 133
 
 
 
 134	if (!trans) {
 135		path->skip_locking = 1;
 136		path->search_commit_root = 1;
 137	}
 138
 139search_again:
 140	key.objectid = bytenr;
 141	key.offset = offset;
 142	if (metadata)
 143		key.type = BTRFS_METADATA_ITEM_KEY;
 144	else
 145		key.type = BTRFS_EXTENT_ITEM_KEY;
 146
 147	extent_root = btrfs_extent_root(fs_info, bytenr);
 148	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 149	if (ret < 0)
 150		goto out_free;
 151
 152	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 153		if (path->slots[0]) {
 154			path->slots[0]--;
 155			btrfs_item_key_to_cpu(path->nodes[0], &key,
 156					      path->slots[0]);
 157			if (key.objectid == bytenr &&
 158			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 159			    key.offset == fs_info->nodesize)
 160				ret = 0;
 161		}
 162	}
 163
 164	if (ret == 0) {
 165		leaf = path->nodes[0];
 166		item_size = btrfs_item_size(leaf, path->slots[0]);
 167		if (item_size >= sizeof(*ei)) {
 168			ei = btrfs_item_ptr(leaf, path->slots[0],
 169					    struct btrfs_extent_item);
 170			num_refs = btrfs_extent_refs(leaf, ei);
 171			extent_flags = btrfs_extent_flags(leaf, ei);
 172			owner = btrfs_get_extent_owner_root(fs_info, leaf,
 173							    path->slots[0]);
 174		} else {
 175			ret = -EUCLEAN;
 176			btrfs_err(fs_info,
 177			"unexpected extent item size, has %u expect >= %zu",
 178				  item_size, sizeof(*ei));
 179			if (trans)
 180				btrfs_abort_transaction(trans, ret);
 181			else
 182				btrfs_handle_fs_error(fs_info, ret, NULL);
 183
 184			goto out_free;
 
 185		}
 186
 187		BUG_ON(num_refs == 0);
 188	} else {
 189		num_refs = 0;
 190		extent_flags = 0;
 191		ret = 0;
 192	}
 193
 194	if (!trans)
 195		goto out;
 196
 197	delayed_refs = &trans->transaction->delayed_refs;
 198	spin_lock(&delayed_refs->lock);
 199	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 200	if (head) {
 201		if (!mutex_trylock(&head->mutex)) {
 202			refcount_inc(&head->refs);
 203			spin_unlock(&delayed_refs->lock);
 204
 205			btrfs_release_path(path);
 206
 207			/*
 208			 * Mutex was contended, block until it's released and try
 209			 * again
 210			 */
 211			mutex_lock(&head->mutex);
 212			mutex_unlock(&head->mutex);
 213			btrfs_put_delayed_ref_head(head);
 214			goto search_again;
 215		}
 216		spin_lock(&head->lock);
 217		if (head->extent_op && head->extent_op->update_flags)
 218			extent_flags |= head->extent_op->flags_to_set;
 219		else
 220			BUG_ON(num_refs == 0);
 221
 222		num_refs += head->ref_mod;
 223		spin_unlock(&head->lock);
 224		mutex_unlock(&head->mutex);
 225	}
 226	spin_unlock(&delayed_refs->lock);
 227out:
 228	WARN_ON(num_refs == 0);
 229	if (refs)
 230		*refs = num_refs;
 231	if (flags)
 232		*flags = extent_flags;
 233	if (owning_root)
 234		*owning_root = owner;
 235out_free:
 236	btrfs_free_path(path);
 237	return ret;
 238}
 239
 240/*
 241 * Back reference rules.  Back refs have three main goals:
 242 *
 243 * 1) differentiate between all holders of references to an extent so that
 244 *    when a reference is dropped we can make sure it was a valid reference
 245 *    before freeing the extent.
 246 *
 247 * 2) Provide enough information to quickly find the holders of an extent
 248 *    if we notice a given block is corrupted or bad.
 249 *
 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 251 *    maintenance.  This is actually the same as #2, but with a slightly
 252 *    different use case.
 253 *
 254 * There are two kinds of back refs. The implicit back refs is optimized
 255 * for pointers in non-shared tree blocks. For a given pointer in a block,
 256 * back refs of this kind provide information about the block's owner tree
 257 * and the pointer's key. These information allow us to find the block by
 258 * b-tree searching. The full back refs is for pointers in tree blocks not
 259 * referenced by their owner trees. The location of tree block is recorded
 260 * in the back refs. Actually the full back refs is generic, and can be
 261 * used in all cases the implicit back refs is used. The major shortcoming
 262 * of the full back refs is its overhead. Every time a tree block gets
 263 * COWed, we have to update back refs entry for all pointers in it.
 264 *
 265 * For a newly allocated tree block, we use implicit back refs for
 266 * pointers in it. This means most tree related operations only involve
 267 * implicit back refs. For a tree block created in old transaction, the
 268 * only way to drop a reference to it is COW it. So we can detect the
 269 * event that tree block loses its owner tree's reference and do the
 270 * back refs conversion.
 271 *
 272 * When a tree block is COWed through a tree, there are four cases:
 273 *
 274 * The reference count of the block is one and the tree is the block's
 275 * owner tree. Nothing to do in this case.
 276 *
 277 * The reference count of the block is one and the tree is not the
 278 * block's owner tree. In this case, full back refs is used for pointers
 279 * in the block. Remove these full back refs, add implicit back refs for
 280 * every pointers in the new block.
 281 *
 282 * The reference count of the block is greater than one and the tree is
 283 * the block's owner tree. In this case, implicit back refs is used for
 284 * pointers in the block. Add full back refs for every pointers in the
 285 * block, increase lower level extents' reference counts. The original
 286 * implicit back refs are entailed to the new block.
 287 *
 288 * The reference count of the block is greater than one and the tree is
 289 * not the block's owner tree. Add implicit back refs for every pointer in
 290 * the new block, increase lower level extents' reference count.
 291 *
 292 * Back Reference Key composing:
 293 *
 294 * The key objectid corresponds to the first byte in the extent,
 295 * The key type is used to differentiate between types of back refs.
 296 * There are different meanings of the key offset for different types
 297 * of back refs.
 298 *
 299 * File extents can be referenced by:
 300 *
 301 * - multiple snapshots, subvolumes, or different generations in one subvol
 302 * - different files inside a single subvolume
 303 * - different offsets inside a file (bookend extents in file.c)
 304 *
 305 * The extent ref structure for the implicit back refs has fields for:
 306 *
 307 * - Objectid of the subvolume root
 308 * - objectid of the file holding the reference
 309 * - original offset in the file
 310 * - how many bookend extents
 311 *
 312 * The key offset for the implicit back refs is hash of the first
 313 * three fields.
 314 *
 315 * The extent ref structure for the full back refs has field for:
 316 *
 317 * - number of pointers in the tree leaf
 318 *
 319 * The key offset for the implicit back refs is the first byte of
 320 * the tree leaf
 321 *
 322 * When a file extent is allocated, The implicit back refs is used.
 323 * the fields are filled in:
 324 *
 325 *     (root_key.objectid, inode objectid, offset in file, 1)
 326 *
 327 * When a file extent is removed file truncation, we find the
 328 * corresponding implicit back refs and check the following fields:
 329 *
 330 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 331 *
 332 * Btree extents can be referenced by:
 333 *
 334 * - Different subvolumes
 335 *
 336 * Both the implicit back refs and the full back refs for tree blocks
 337 * only consist of key. The key offset for the implicit back refs is
 338 * objectid of block's owner tree. The key offset for the full back refs
 339 * is the first byte of parent block.
 340 *
 341 * When implicit back refs is used, information about the lowest key and
 342 * level of the tree block are required. These information are stored in
 343 * tree block info structure.
 344 */
 345
 346/*
 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 350 */
 351int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 352				     struct btrfs_extent_inline_ref *iref,
 353				     enum btrfs_inline_ref_type is_data)
 354{
 355	struct btrfs_fs_info *fs_info = eb->fs_info;
 356	int type = btrfs_extent_inline_ref_type(eb, iref);
 357	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 358
 359	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 360		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 361		return type;
 362	}
 363
 364	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 365	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 366	    type == BTRFS_SHARED_DATA_REF_KEY ||
 367	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 368		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 369			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 370				return type;
 371			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 372				ASSERT(fs_info);
 373				/*
 374				 * Every shared one has parent tree block,
 375				 * which must be aligned to sector size.
 376				 */
 377				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
 378					return type;
 379			}
 380		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 381			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 382				return type;
 383			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 384				ASSERT(fs_info);
 385				/*
 386				 * Every shared one has parent tree block,
 387				 * which must be aligned to sector size.
 388				 */
 389				if (offset &&
 390				    IS_ALIGNED(offset, fs_info->sectorsize))
 391					return type;
 392			}
 393		} else {
 394			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 395			return type;
 
 396		}
 397	}
 
 
 
 
 
 
 
 
 
 
 
 398
 399	WARN_ON(1);
 400	btrfs_print_leaf(eb);
 401	btrfs_err(fs_info,
 402		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
 403		  eb->start, (unsigned long)iref, type);
 404
 405	return BTRFS_REF_TYPE_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 
 407
 408u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 409{
 410	u32 high_crc = ~(u32)0;
 411	u32 low_crc = ~(u32)0;
 412	__le64 lenum;
 413
 414	lenum = cpu_to_le64(root_objectid);
 415	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
 416	lenum = cpu_to_le64(owner);
 417	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 418	lenum = cpu_to_le64(offset);
 419	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 420
 421	return ((u64)high_crc << 31) ^ (u64)low_crc;
 422}
 423
 424static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 425				     struct btrfs_extent_data_ref *ref)
 426{
 427	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 428				    btrfs_extent_data_ref_objectid(leaf, ref),
 429				    btrfs_extent_data_ref_offset(leaf, ref));
 430}
 431
 432static int match_extent_data_ref(struct extent_buffer *leaf,
 433				 struct btrfs_extent_data_ref *ref,
 434				 u64 root_objectid, u64 owner, u64 offset)
 435{
 436	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 437	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 438	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 439		return 0;
 440	return 1;
 441}
 442
 443static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 
 444					   struct btrfs_path *path,
 445					   u64 bytenr, u64 parent,
 446					   u64 root_objectid,
 447					   u64 owner, u64 offset)
 448{
 449	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 450	struct btrfs_key key;
 451	struct btrfs_extent_data_ref *ref;
 452	struct extent_buffer *leaf;
 453	u32 nritems;
 454	int ret;
 455	int recow;
 456	int err = -ENOENT;
 457
 458	key.objectid = bytenr;
 459	if (parent) {
 460		key.type = BTRFS_SHARED_DATA_REF_KEY;
 461		key.offset = parent;
 462	} else {
 463		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 464		key.offset = hash_extent_data_ref(root_objectid,
 465						  owner, offset);
 466	}
 467again:
 468	recow = 0;
 469	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 470	if (ret < 0) {
 471		err = ret;
 472		goto fail;
 473	}
 474
 475	if (parent) {
 476		if (!ret)
 477			return 0;
 
 
 
 
 
 
 
 
 
 
 
 478		goto fail;
 479	}
 480
 481	leaf = path->nodes[0];
 482	nritems = btrfs_header_nritems(leaf);
 483	while (1) {
 484		if (path->slots[0] >= nritems) {
 485			ret = btrfs_next_leaf(root, path);
 486			if (ret < 0)
 487				err = ret;
 488			if (ret)
 489				goto fail;
 490
 491			leaf = path->nodes[0];
 492			nritems = btrfs_header_nritems(leaf);
 493			recow = 1;
 494		}
 495
 496		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 497		if (key.objectid != bytenr ||
 498		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 499			goto fail;
 500
 501		ref = btrfs_item_ptr(leaf, path->slots[0],
 502				     struct btrfs_extent_data_ref);
 503
 504		if (match_extent_data_ref(leaf, ref, root_objectid,
 505					  owner, offset)) {
 506			if (recow) {
 507				btrfs_release_path(path);
 508				goto again;
 509			}
 510			err = 0;
 511			break;
 512		}
 513		path->slots[0]++;
 514	}
 515fail:
 516	return err;
 517}
 518
 519static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 
 520					   struct btrfs_path *path,
 521					   u64 bytenr, u64 parent,
 522					   u64 root_objectid, u64 owner,
 523					   u64 offset, int refs_to_add)
 524{
 525	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 526	struct btrfs_key key;
 527	struct extent_buffer *leaf;
 528	u32 size;
 529	u32 num_refs;
 530	int ret;
 531
 532	key.objectid = bytenr;
 533	if (parent) {
 534		key.type = BTRFS_SHARED_DATA_REF_KEY;
 535		key.offset = parent;
 536		size = sizeof(struct btrfs_shared_data_ref);
 537	} else {
 538		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 539		key.offset = hash_extent_data_ref(root_objectid,
 540						  owner, offset);
 541		size = sizeof(struct btrfs_extent_data_ref);
 542	}
 543
 544	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 545	if (ret && ret != -EEXIST)
 546		goto fail;
 547
 548	leaf = path->nodes[0];
 549	if (parent) {
 550		struct btrfs_shared_data_ref *ref;
 551		ref = btrfs_item_ptr(leaf, path->slots[0],
 552				     struct btrfs_shared_data_ref);
 553		if (ret == 0) {
 554			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 555		} else {
 556			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 557			num_refs += refs_to_add;
 558			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 559		}
 560	} else {
 561		struct btrfs_extent_data_ref *ref;
 562		while (ret == -EEXIST) {
 563			ref = btrfs_item_ptr(leaf, path->slots[0],
 564					     struct btrfs_extent_data_ref);
 565			if (match_extent_data_ref(leaf, ref, root_objectid,
 566						  owner, offset))
 567				break;
 568			btrfs_release_path(path);
 569			key.offset++;
 570			ret = btrfs_insert_empty_item(trans, root, path, &key,
 571						      size);
 572			if (ret && ret != -EEXIST)
 573				goto fail;
 574
 575			leaf = path->nodes[0];
 576		}
 577		ref = btrfs_item_ptr(leaf, path->slots[0],
 578				     struct btrfs_extent_data_ref);
 579		if (ret == 0) {
 580			btrfs_set_extent_data_ref_root(leaf, ref,
 581						       root_objectid);
 582			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 583			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 584			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 585		} else {
 586			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 587			num_refs += refs_to_add;
 588			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 589		}
 590	}
 591	btrfs_mark_buffer_dirty(trans, leaf);
 592	ret = 0;
 593fail:
 594	btrfs_release_path(path);
 595	return ret;
 596}
 597
 598static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 599					   struct btrfs_root *root,
 600					   struct btrfs_path *path,
 601					   int refs_to_drop)
 602{
 603	struct btrfs_key key;
 604	struct btrfs_extent_data_ref *ref1 = NULL;
 605	struct btrfs_shared_data_ref *ref2 = NULL;
 606	struct extent_buffer *leaf;
 607	u32 num_refs = 0;
 608	int ret = 0;
 609
 610	leaf = path->nodes[0];
 611	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 612
 613	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 614		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 615				      struct btrfs_extent_data_ref);
 616		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 617	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 618		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 619				      struct btrfs_shared_data_ref);
 620		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 621	} else {
 622		btrfs_err(trans->fs_info,
 623			  "unrecognized backref key (%llu %u %llu)",
 624			  key.objectid, key.type, key.offset);
 625		btrfs_abort_transaction(trans, -EUCLEAN);
 626		return -EUCLEAN;
 627	}
 628
 629	BUG_ON(num_refs < refs_to_drop);
 630	num_refs -= refs_to_drop;
 631
 632	if (num_refs == 0) {
 633		ret = btrfs_del_item(trans, root, path);
 634	} else {
 635		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 636			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 637		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 638			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 639		btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 640	}
 641	return ret;
 642}
 643
 644static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 
 645					  struct btrfs_extent_inline_ref *iref)
 646{
 647	struct btrfs_key key;
 648	struct extent_buffer *leaf;
 649	struct btrfs_extent_data_ref *ref1;
 650	struct btrfs_shared_data_ref *ref2;
 651	u32 num_refs = 0;
 652	int type;
 653
 654	leaf = path->nodes[0];
 655	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 656
 657	if (iref) {
 658		/*
 659		 * If type is invalid, we should have bailed out earlier than
 660		 * this call.
 661		 */
 662		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 663		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 664		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 665			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 666			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 667		} else {
 668			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 669			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 670		}
 671	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 672		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 673				      struct btrfs_extent_data_ref);
 674		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 675	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 676		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 677				      struct btrfs_shared_data_ref);
 678		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 679	} else {
 680		WARN_ON(1);
 681	}
 682	return num_refs;
 683}
 684
 685static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 
 686					  struct btrfs_path *path,
 687					  u64 bytenr, u64 parent,
 688					  u64 root_objectid)
 689{
 690	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 691	struct btrfs_key key;
 692	int ret;
 693
 694	key.objectid = bytenr;
 695	if (parent) {
 696		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 697		key.offset = parent;
 698	} else {
 699		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 700		key.offset = root_objectid;
 701	}
 702
 703	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 704	if (ret > 0)
 705		ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 706	return ret;
 707}
 708
 709static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 
 710					  struct btrfs_path *path,
 711					  u64 bytenr, u64 parent,
 712					  u64 root_objectid)
 713{
 714	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 715	struct btrfs_key key;
 716	int ret;
 717
 718	key.objectid = bytenr;
 719	if (parent) {
 720		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 721		key.offset = parent;
 722	} else {
 723		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 724		key.offset = root_objectid;
 725	}
 726
 727	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 728	btrfs_release_path(path);
 729	return ret;
 730}
 731
 732static inline int extent_ref_type(u64 parent, u64 owner)
 733{
 734	int type;
 735	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 736		if (parent > 0)
 737			type = BTRFS_SHARED_BLOCK_REF_KEY;
 738		else
 739			type = BTRFS_TREE_BLOCK_REF_KEY;
 740	} else {
 741		if (parent > 0)
 742			type = BTRFS_SHARED_DATA_REF_KEY;
 743		else
 744			type = BTRFS_EXTENT_DATA_REF_KEY;
 745	}
 746	return type;
 747}
 748
 749static int find_next_key(struct btrfs_path *path, int level,
 750			 struct btrfs_key *key)
 751
 752{
 753	for (; level < BTRFS_MAX_LEVEL; level++) {
 754		if (!path->nodes[level])
 755			break;
 756		if (path->slots[level] + 1 >=
 757		    btrfs_header_nritems(path->nodes[level]))
 758			continue;
 759		if (level == 0)
 760			btrfs_item_key_to_cpu(path->nodes[level], key,
 761					      path->slots[level] + 1);
 762		else
 763			btrfs_node_key_to_cpu(path->nodes[level], key,
 764					      path->slots[level] + 1);
 765		return 0;
 766	}
 767	return 1;
 768}
 769
 770/*
 771 * look for inline back ref. if back ref is found, *ref_ret is set
 772 * to the address of inline back ref, and 0 is returned.
 773 *
 774 * if back ref isn't found, *ref_ret is set to the address where it
 775 * should be inserted, and -ENOENT is returned.
 776 *
 777 * if insert is true and there are too many inline back refs, the path
 778 * points to the extent item, and -EAGAIN is returned.
 779 *
 780 * NOTE: inline back refs are ordered in the same way that back ref
 781 *	 items in the tree are ordered.
 782 */
 783static noinline_for_stack
 784int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 
 785				 struct btrfs_path *path,
 786				 struct btrfs_extent_inline_ref **ref_ret,
 787				 u64 bytenr, u64 num_bytes,
 788				 u64 parent, u64 root_objectid,
 789				 u64 owner, u64 offset, int insert)
 790{
 791	struct btrfs_fs_info *fs_info = trans->fs_info;
 792	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
 793	struct btrfs_key key;
 794	struct extent_buffer *leaf;
 795	struct btrfs_extent_item *ei;
 796	struct btrfs_extent_inline_ref *iref;
 797	u64 flags;
 798	u64 item_size;
 799	unsigned long ptr;
 800	unsigned long end;
 801	int extra_size;
 802	int type;
 803	int want;
 804	int ret;
 805	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 806	int needed;
 807
 808	key.objectid = bytenr;
 809	key.type = BTRFS_EXTENT_ITEM_KEY;
 810	key.offset = num_bytes;
 811
 812	want = extent_ref_type(parent, owner);
 813	if (insert) {
 814		extra_size = btrfs_extent_inline_ref_size(want);
 815		path->search_for_extension = 1;
 816		path->keep_locks = 1;
 817	} else
 818		extra_size = -1;
 819
 820	/*
 821	 * Owner is our level, so we can just add one to get the level for the
 822	 * block we are interested in.
 823	 */
 824	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 825		key.type = BTRFS_METADATA_ITEM_KEY;
 826		key.offset = owner;
 827	}
 828
 829again:
 830	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 831	if (ret < 0)
 832		goto out;
 833
 834	/*
 835	 * We may be a newly converted file system which still has the old fat
 836	 * extent entries for metadata, so try and see if we have one of those.
 837	 */
 838	if (ret > 0 && skinny_metadata) {
 839		skinny_metadata = false;
 840		if (path->slots[0]) {
 841			path->slots[0]--;
 842			btrfs_item_key_to_cpu(path->nodes[0], &key,
 843					      path->slots[0]);
 844			if (key.objectid == bytenr &&
 845			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 846			    key.offset == num_bytes)
 847				ret = 0;
 848		}
 849		if (ret) {
 850			key.objectid = bytenr;
 851			key.type = BTRFS_EXTENT_ITEM_KEY;
 852			key.offset = num_bytes;
 853			btrfs_release_path(path);
 854			goto again;
 855		}
 856	}
 857
 858	if (ret && !insert) {
 859		ret = -ENOENT;
 860		goto out;
 861	} else if (WARN_ON(ret)) {
 862		btrfs_print_leaf(path->nodes[0]);
 863		btrfs_err(fs_info,
 864"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
 865			  bytenr, num_bytes, parent, root_objectid, owner,
 866			  offset);
 867		ret = -EUCLEAN;
 868		goto out;
 869	}
 
 870
 871	leaf = path->nodes[0];
 872	item_size = btrfs_item_size(leaf, path->slots[0]);
 873	if (unlikely(item_size < sizeof(*ei))) {
 874		ret = -EUCLEAN;
 875		btrfs_err(fs_info,
 876			  "unexpected extent item size, has %llu expect >= %zu",
 877			  item_size, sizeof(*ei));
 878		btrfs_abort_transaction(trans, ret);
 879		goto out;
 
 
 
 
 
 
 
 880	}
 
 
 881
 882	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 883	flags = btrfs_extent_flags(leaf, ei);
 884
 885	ptr = (unsigned long)(ei + 1);
 886	end = (unsigned long)ei + item_size;
 887
 888	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 889		ptr += sizeof(struct btrfs_tree_block_info);
 890		BUG_ON(ptr > end);
 
 
 891	}
 892
 893	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 894		needed = BTRFS_REF_TYPE_DATA;
 895	else
 896		needed = BTRFS_REF_TYPE_BLOCK;
 897
 898	ret = -ENOENT;
 899	while (ptr < end) {
 900		iref = (struct btrfs_extent_inline_ref *)ptr;
 901		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 902		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 903			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 904			ptr += btrfs_extent_inline_ref_size(type);
 905			continue;
 906		}
 907		if (type == BTRFS_REF_TYPE_INVALID) {
 908			ret = -EUCLEAN;
 909			goto out;
 910		}
 911
 
 912		if (want < type)
 913			break;
 914		if (want > type) {
 915			ptr += btrfs_extent_inline_ref_size(type);
 916			continue;
 917		}
 918
 919		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 920			struct btrfs_extent_data_ref *dref;
 921			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 922			if (match_extent_data_ref(leaf, dref, root_objectid,
 923						  owner, offset)) {
 924				ret = 0;
 925				break;
 926			}
 927			if (hash_extent_data_ref_item(leaf, dref) <
 928			    hash_extent_data_ref(root_objectid, owner, offset))
 929				break;
 930		} else {
 931			u64 ref_offset;
 932			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 933			if (parent > 0) {
 934				if (parent == ref_offset) {
 935					ret = 0;
 936					break;
 937				}
 938				if (ref_offset < parent)
 939					break;
 940			} else {
 941				if (root_objectid == ref_offset) {
 942					ret = 0;
 943					break;
 944				}
 945				if (ref_offset < root_objectid)
 946					break;
 947			}
 948		}
 949		ptr += btrfs_extent_inline_ref_size(type);
 950	}
 951
 952	if (unlikely(ptr > end)) {
 953		ret = -EUCLEAN;
 954		btrfs_print_leaf(path->nodes[0]);
 955		btrfs_crit(fs_info,
 956"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
 957			   path->slots[0], root_objectid, owner, offset, parent);
 958		goto out;
 959	}
 960
 961	if (ret == -ENOENT && insert) {
 962		if (item_size + extra_size >=
 963		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 964			ret = -EAGAIN;
 965			goto out;
 966		}
 967		/*
 968		 * To add new inline back ref, we have to make sure
 969		 * there is no corresponding back ref item.
 970		 * For simplicity, we just do not add new inline back
 971		 * ref if there is any kind of item for this block
 972		 */
 973		if (find_next_key(path, 0, &key) == 0 &&
 974		    key.objectid == bytenr &&
 975		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 976			ret = -EAGAIN;
 977			goto out;
 978		}
 979	}
 980	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 981out:
 982	if (insert) {
 983		path->keep_locks = 0;
 984		path->search_for_extension = 0;
 985		btrfs_unlock_up_safe(path, 1);
 986	}
 987	return ret;
 988}
 989
 990/*
 991 * helper to add new inline back ref
 992 */
 993static noinline_for_stack
 994void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
 995				 struct btrfs_path *path,
 996				 struct btrfs_extent_inline_ref *iref,
 997				 u64 parent, u64 root_objectid,
 998				 u64 owner, u64 offset, int refs_to_add,
 999				 struct btrfs_delayed_extent_op *extent_op)
 
1000{
1001	struct extent_buffer *leaf;
1002	struct btrfs_extent_item *ei;
1003	unsigned long ptr;
1004	unsigned long end;
1005	unsigned long item_offset;
1006	u64 refs;
1007	int size;
1008	int type;
 
1009
1010	leaf = path->nodes[0];
1011	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012	item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014	type = extent_ref_type(parent, owner);
1015	size = btrfs_extent_inline_ref_size(type);
1016
1017	btrfs_extend_item(trans, path, size);
1018
1019	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020	refs = btrfs_extent_refs(leaf, ei);
1021	refs += refs_to_add;
1022	btrfs_set_extent_refs(leaf, ei, refs);
1023	if (extent_op)
1024		__run_delayed_extent_op(extent_op, leaf, ei);
1025
1026	ptr = (unsigned long)ei + item_offset;
1027	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028	if (ptr < end - size)
1029		memmove_extent_buffer(leaf, ptr + size, ptr,
1030				      end - size - ptr);
1031
1032	iref = (struct btrfs_extent_inline_ref *)ptr;
1033	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035		struct btrfs_extent_data_ref *dref;
1036		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042		struct btrfs_shared_data_ref *sref;
1043		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048	} else {
1049		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050	}
1051	btrfs_mark_buffer_dirty(trans, leaf);
 
1052}
1053
1054static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 
1055				 struct btrfs_path *path,
1056				 struct btrfs_extent_inline_ref **ref_ret,
1057				 u64 bytenr, u64 num_bytes, u64 parent,
1058				 u64 root_objectid, u64 owner, u64 offset)
1059{
1060	int ret;
1061
1062	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063					   num_bytes, parent, root_objectid,
1064					   owner, offset, 0);
1065	if (ret != -ENOENT)
1066		return ret;
1067
1068	btrfs_release_path(path);
1069	*ref_ret = NULL;
1070
1071	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073					    root_objectid);
1074	} else {
1075		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076					     root_objectid, owner, offset);
1077	}
1078	return ret;
1079}
1080
1081/*
1082 * helper to update/remove inline back ref
1083 */
1084static noinline_for_stack int update_inline_extent_backref(
1085				  struct btrfs_trans_handle *trans,
1086				  struct btrfs_path *path,
1087				  struct btrfs_extent_inline_ref *iref,
1088				  int refs_to_mod,
1089				  struct btrfs_delayed_extent_op *extent_op)
 
1090{
1091	struct extent_buffer *leaf = path->nodes[0];
1092	struct btrfs_fs_info *fs_info = leaf->fs_info;
1093	struct btrfs_extent_item *ei;
1094	struct btrfs_extent_data_ref *dref = NULL;
1095	struct btrfs_shared_data_ref *sref = NULL;
1096	unsigned long ptr;
1097	unsigned long end;
1098	u32 item_size;
1099	int size;
1100	int type;
 
1101	u64 refs;
1102
 
1103	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104	refs = btrfs_extent_refs(leaf, ei);
1105	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106		struct btrfs_key key;
1107		u32 extent_size;
1108
1109		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110		if (key.type == BTRFS_METADATA_ITEM_KEY)
1111			extent_size = fs_info->nodesize;
1112		else
1113			extent_size = key.offset;
1114		btrfs_print_leaf(leaf);
1115		btrfs_err(fs_info,
1116	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117			  key.objectid, extent_size, refs_to_mod, refs);
1118		return -EUCLEAN;
1119	}
1120	refs += refs_to_mod;
1121	btrfs_set_extent_refs(leaf, ei, refs);
1122	if (extent_op)
1123		__run_delayed_extent_op(extent_op, leaf, ei);
1124
1125	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126	/*
1127	 * Function btrfs_get_extent_inline_ref_type() has already printed
1128	 * error messages.
1129	 */
1130	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131		return -EUCLEAN;
1132
1133	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135		refs = btrfs_extent_data_ref_count(leaf, dref);
1136	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138		refs = btrfs_shared_data_ref_count(leaf, sref);
1139	} else {
1140		refs = 1;
1141		/*
1142		 * For tree blocks we can only drop one ref for it, and tree
1143		 * blocks should not have refs > 1.
1144		 *
1145		 * Furthermore if we're inserting a new inline backref, we
1146		 * won't reach this path either. That would be
1147		 * setup_inline_extent_backref().
1148		 */
1149		if (unlikely(refs_to_mod != -1)) {
1150			struct btrfs_key key;
1151
1152			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153
1154			btrfs_print_leaf(leaf);
1155			btrfs_err(fs_info,
1156			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1157				  key.objectid, refs_to_mod);
1158			return -EUCLEAN;
1159		}
1160	}
1161
1162	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163		struct btrfs_key key;
1164		u32 extent_size;
1165
1166		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167		if (key.type == BTRFS_METADATA_ITEM_KEY)
1168			extent_size = fs_info->nodesize;
1169		else
1170			extent_size = key.offset;
1171		btrfs_print_leaf(leaf);
1172		btrfs_err(fs_info,
1173"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174			  (unsigned long)iref, key.objectid, extent_size,
1175			  refs_to_mod, refs);
1176		return -EUCLEAN;
1177	}
1178	refs += refs_to_mod;
1179
1180	if (refs > 0) {
1181		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183		else
1184			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185	} else {
1186		size =  btrfs_extent_inline_ref_size(type);
1187		item_size = btrfs_item_size(leaf, path->slots[0]);
1188		ptr = (unsigned long)iref;
1189		end = (unsigned long)ei + item_size;
1190		if (ptr + size < end)
1191			memmove_extent_buffer(leaf, ptr, ptr + size,
1192					      end - ptr - size);
1193		item_size -= size;
1194		btrfs_truncate_item(trans, path, item_size, 1);
1195	}
1196	btrfs_mark_buffer_dirty(trans, leaf);
1197	return 0;
1198}
1199
1200static noinline_for_stack
1201int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 
1202				 struct btrfs_path *path,
1203				 u64 bytenr, u64 num_bytes, u64 parent,
1204				 u64 root_objectid, u64 owner,
1205				 u64 offset, int refs_to_add,
1206				 struct btrfs_delayed_extent_op *extent_op)
1207{
1208	struct btrfs_extent_inline_ref *iref;
1209	int ret;
1210
1211	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212					   num_bytes, parent, root_objectid,
1213					   owner, offset, 1);
1214	if (ret == 0) {
1215		/*
1216		 * We're adding refs to a tree block we already own, this
1217		 * should not happen at all.
1218		 */
1219		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220			btrfs_print_leaf(path->nodes[0]);
1221			btrfs_crit(trans->fs_info,
1222"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223				   bytenr, num_bytes, root_objectid, path->slots[0]);
1224			return -EUCLEAN;
1225		}
1226		ret = update_inline_extent_backref(trans, path, iref,
1227						   refs_to_add, extent_op);
1228	} else if (ret == -ENOENT) {
1229		setup_inline_extent_backref(trans, path, iref, parent,
1230					    root_objectid, owner, offset,
1231					    refs_to_add, extent_op);
1232		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233	}
1234	return ret;
1235}
1236
1237static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238				 struct btrfs_root *root,
1239				 struct btrfs_path *path,
1240				 struct btrfs_extent_inline_ref *iref,
1241				 int refs_to_drop, int is_data)
1242{
1243	int ret = 0;
1244
1245	BUG_ON(!is_data && refs_to_drop != 1);
1246	if (iref)
1247		ret = update_inline_extent_backref(trans, path, iref,
1248						   -refs_to_drop, NULL);
1249	else if (is_data)
1250		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251	else
1252		ret = btrfs_del_item(trans, root, path);
1253	return ret;
1254}
1255
1256static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257			       u64 *discarded_bytes)
1258{
1259	int j, ret = 0;
1260	u64 bytes_left, end;
1261	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262
1263	/* Adjust the range to be aligned to 512B sectors if necessary. */
1264	if (start != aligned_start) {
1265		len -= aligned_start - start;
1266		len = round_down(len, 1 << SECTOR_SHIFT);
1267		start = aligned_start;
1268	}
1269
1270	*discarded_bytes = 0;
1271
1272	if (!len)
1273		return 0;
1274
1275	end = start + len;
1276	bytes_left = len;
1277
1278	/* Skip any superblocks on this device. */
1279	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1280		u64 sb_start = btrfs_sb_offset(j);
1281		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1282		u64 size = sb_start - start;
1283
1284		if (!in_range(sb_start, start, bytes_left) &&
1285		    !in_range(sb_end, start, bytes_left) &&
1286		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1287			continue;
1288
1289		/*
1290		 * Superblock spans beginning of range.  Adjust start and
1291		 * try again.
1292		 */
1293		if (sb_start <= start) {
1294			start += sb_end - start;
1295			if (start > end) {
1296				bytes_left = 0;
1297				break;
1298			}
1299			bytes_left = end - start;
1300			continue;
1301		}
1302
1303		if (size) {
1304			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305						   size >> SECTOR_SHIFT,
1306						   GFP_NOFS);
1307			if (!ret)
1308				*discarded_bytes += size;
1309			else if (ret != -EOPNOTSUPP)
1310				return ret;
1311		}
1312
1313		start = sb_end;
1314		if (start > end) {
1315			bytes_left = 0;
1316			break;
1317		}
1318		bytes_left = end - start;
1319	}
1320
1321	if (bytes_left) {
1322		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323					   bytes_left >> SECTOR_SHIFT,
1324					   GFP_NOFS);
1325		if (!ret)
1326			*discarded_bytes += bytes_left;
1327	}
1328	return ret;
1329}
1330
1331static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
 
1332{
1333	struct btrfs_device *dev = stripe->dev;
1334	struct btrfs_fs_info *fs_info = dev->fs_info;
1335	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1336	u64 phys = stripe->physical;
1337	u64 len = stripe->length;
1338	u64 discarded = 0;
1339	int ret = 0;
1340
1341	/* Zone reset on a zoned filesystem */
1342	if (btrfs_can_zone_reset(dev, phys, len)) {
1343		u64 src_disc;
1344
1345		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1346		if (ret)
1347			goto out;
1348
1349		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1350		    dev != dev_replace->srcdev)
1351			goto out;
1352
1353		src_disc = discarded;
1354
1355		/* Send to replace target as well */
1356		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1357					      &discarded);
1358		discarded += src_disc;
1359	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1360		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1361	} else {
1362		ret = 0;
1363		*bytes = 0;
1364	}
1365
1366out:
1367	*bytes = discarded;
1368	return ret;
1369}
1370
1371int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1372			 u64 num_bytes, u64 *actual_bytes)
1373{
1374	int ret = 0;
1375	u64 discarded_bytes = 0;
1376	u64 end = bytenr + num_bytes;
1377	u64 cur = bytenr;
1378
1379	/*
1380	 * Avoid races with device replace and make sure the devices in the
1381	 * stripes don't go away while we are discarding.
1382	 */
1383	btrfs_bio_counter_inc_blocked(fs_info);
1384	while (cur < end) {
1385		struct btrfs_discard_stripe *stripes;
1386		unsigned int num_stripes;
1387		int i;
1388
1389		num_bytes = end - cur;
1390		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1391		if (IS_ERR(stripes)) {
1392			ret = PTR_ERR(stripes);
1393			if (ret == -EOPNOTSUPP)
1394				ret = 0;
1395			break;
1396		}
1397
1398		for (i = 0; i < num_stripes; i++) {
1399			struct btrfs_discard_stripe *stripe = stripes + i;
1400			u64 bytes;
1401
1402			if (!stripe->dev->bdev) {
1403				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1404				continue;
1405			}
1406
1407			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1408					&stripe->dev->dev_state))
1409				continue;
 
 
 
 
1410
1411			ret = do_discard_extent(stripe, &bytes);
1412			if (ret) {
1413				/*
1414				 * Keep going if discard is not supported by the
1415				 * device.
1416				 */
1417				if (ret != -EOPNOTSUPP)
1418					break;
1419				ret = 0;
1420			} else {
1421				discarded_bytes += bytes;
1422			}
1423		}
1424		kfree(stripes);
1425		if (ret)
1426			break;
1427		cur += num_bytes;
1428	}
1429	btrfs_bio_counter_dec(fs_info);
1430	if (actual_bytes)
1431		*actual_bytes = discarded_bytes;
 
 
1432	return ret;
1433}
1434
1435/* Can return -ENOMEM */
1436int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1437			 struct btrfs_ref *generic_ref)
 
 
1438{
1439	struct btrfs_fs_info *fs_info = trans->fs_info;
1440	int ret;
 
 
1441
1442	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1443	       generic_ref->action);
1444	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1445	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1446
1447	if (generic_ref->type == BTRFS_REF_METADATA)
1448		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1449	else
1450		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1451
1452	btrfs_ref_tree_mod(fs_info, generic_ref);
1453
1454	return ret;
1455}
1456
1457/*
1458 * Insert backreference for a given extent.
1459 *
1460 * The counterpart is in __btrfs_free_extent(), with examples and more details
1461 * how it works.
1462 *
1463 * @trans:	    Handle of transaction
1464 *
1465 * @node:	    The delayed ref node used to get the bytenr/length for
1466 *		    extent whose references are incremented.
1467 *
1468 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1469 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1470 *		    bytenr of the parent block. Since new extents are always
1471 *		    created with indirect references, this will only be the case
1472 *		    when relocating a shared extent. In that case, root_objectid
1473 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1474 *		    be 0
1475 *
1476 * @root_objectid:  The id of the root where this modification has originated,
1477 *		    this can be either one of the well-known metadata trees or
1478 *		    the subvolume id which references this extent.
1479 *
1480 * @owner:	    For data extents it is the inode number of the owning file.
1481 *		    For metadata extents this parameter holds the level in the
1482 *		    tree of the extent.
1483 *
1484 * @offset:	    For metadata extents the offset is ignored and is currently
1485 *		    always passed as 0. For data extents it is the fileoffset
1486 *		    this extent belongs to.
1487 *
1488 * @extent_op       Pointer to a structure, holding information necessary when
1489 *                  updating a tree block's flags
1490 *
1491 */
1492static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1493				  struct btrfs_delayed_ref_node *node,
 
1494				  u64 parent, u64 root_objectid,
1495				  u64 owner, u64 offset,
1496				  struct btrfs_delayed_extent_op *extent_op)
1497{
1498	struct btrfs_path *path;
1499	struct extent_buffer *leaf;
1500	struct btrfs_extent_item *item;
1501	struct btrfs_key key;
1502	u64 bytenr = node->bytenr;
1503	u64 num_bytes = node->num_bytes;
1504	u64 refs;
1505	int refs_to_add = node->ref_mod;
1506	int ret;
 
1507
1508	path = btrfs_alloc_path();
1509	if (!path)
1510		return -ENOMEM;
1511
 
 
1512	/* this will setup the path even if it fails to insert the back ref */
1513	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1514					   parent, root_objectid, owner,
1515					   offset, refs_to_add, extent_op);
1516	if ((ret < 0 && ret != -EAGAIN) || !ret)
 
1517		goto out;
1518
1519	/*
1520	 * Ok we had -EAGAIN which means we didn't have space to insert and
1521	 * inline extent ref, so just update the reference count and add a
1522	 * normal backref.
1523	 */
1524	leaf = path->nodes[0];
1525	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1526	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1527	refs = btrfs_extent_refs(leaf, item);
1528	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1529	if (extent_op)
1530		__run_delayed_extent_op(extent_op, leaf, item);
1531
1532	btrfs_mark_buffer_dirty(trans, leaf);
1533	btrfs_release_path(path);
1534
1535	/* now insert the actual backref */
1536	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1537		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1538					    root_objectid);
1539	else
1540		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1541					     root_objectid, owner, offset,
1542					     refs_to_add);
1543
1544	if (ret)
1545		btrfs_abort_transaction(trans, ret);
 
 
 
1546out:
1547	btrfs_free_path(path);
1548	return ret;
1549}
1550
1551static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1552				     struct btrfs_delayed_ref_head *href)
1553{
1554	u64 root = href->owning_root;
1555
1556	/*
1557	 * Don't check must_insert_reserved, as this is called from contexts
1558	 * where it has already been unset.
1559	 */
1560	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1561	    !href->is_data || !is_fstree(root))
1562		return;
1563
1564	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1565				  BTRFS_QGROUP_RSV_DATA);
1566}
1567
1568static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1569				struct btrfs_delayed_ref_head *href,
1570				struct btrfs_delayed_ref_node *node,
1571				struct btrfs_delayed_extent_op *extent_op,
1572				bool insert_reserved)
1573{
1574	int ret = 0;
1575	struct btrfs_delayed_data_ref *ref;
 
1576	u64 parent = 0;
 
1577	u64 flags = 0;
1578
1579	ref = btrfs_delayed_node_to_data_ref(node);
1580	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
 
1581
 
1582	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1583		parent = ref->parent;
 
 
1584
1585	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1586		struct btrfs_key key;
1587		struct btrfs_squota_delta delta = {
1588			.root = href->owning_root,
1589			.num_bytes = node->num_bytes,
1590			.is_data = true,
1591			.is_inc	= true,
1592			.generation = trans->transid,
1593		};
1594
1595		if (extent_op)
1596			flags |= extent_op->flags_to_set;
1597
1598		key.objectid = node->bytenr;
1599		key.type = BTRFS_EXTENT_ITEM_KEY;
1600		key.offset = node->num_bytes;
1601
1602		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1603						 flags, ref->objectid,
1604						 ref->offset, &key,
1605						 node->ref_mod, href->owning_root);
1606		free_head_ref_squota_rsv(trans->fs_info, href);
1607		if (!ret)
1608			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1609	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1610		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1611					     ref->objectid, ref->offset,
 
 
1612					     extent_op);
1613	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1614		ret = __btrfs_free_extent(trans, href, node, parent,
1615					  ref->root, ref->objectid,
1616					  ref->offset, extent_op);
 
 
1617	} else {
1618		BUG();
1619	}
1620	return ret;
1621}
1622
1623static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1624				    struct extent_buffer *leaf,
1625				    struct btrfs_extent_item *ei)
1626{
1627	u64 flags = btrfs_extent_flags(leaf, ei);
1628	if (extent_op->update_flags) {
1629		flags |= extent_op->flags_to_set;
1630		btrfs_set_extent_flags(leaf, ei, flags);
1631	}
1632
1633	if (extent_op->update_key) {
1634		struct btrfs_tree_block_info *bi;
1635		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1636		bi = (struct btrfs_tree_block_info *)(ei + 1);
1637		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1638	}
1639}
1640
1641static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1642				 struct btrfs_delayed_ref_head *head,
 
1643				 struct btrfs_delayed_extent_op *extent_op)
1644{
1645	struct btrfs_fs_info *fs_info = trans->fs_info;
1646	struct btrfs_root *root;
1647	struct btrfs_key key;
1648	struct btrfs_path *path;
1649	struct btrfs_extent_item *ei;
1650	struct extent_buffer *leaf;
1651	u32 item_size;
1652	int ret;
1653	int metadata = 1;
1654
1655	if (TRANS_ABORTED(trans))
1656		return 0;
1657
1658	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1659		metadata = 0;
1660
1661	path = btrfs_alloc_path();
1662	if (!path)
1663		return -ENOMEM;
1664
1665	key.objectid = head->bytenr;
1666
1667	if (metadata) {
1668		key.type = BTRFS_METADATA_ITEM_KEY;
1669		key.offset = extent_op->level;
1670	} else {
1671		key.type = BTRFS_EXTENT_ITEM_KEY;
1672		key.offset = head->num_bytes;
1673	}
1674
1675	root = btrfs_extent_root(fs_info, key.objectid);
1676again:
1677	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
1678	if (ret < 0) {
 
1679		goto out;
1680	} else if (ret > 0) {
1681		if (metadata) {
1682			if (path->slots[0] > 0) {
1683				path->slots[0]--;
1684				btrfs_item_key_to_cpu(path->nodes[0], &key,
1685						      path->slots[0]);
1686				if (key.objectid == head->bytenr &&
1687				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1688				    key.offset == head->num_bytes)
1689					ret = 0;
1690			}
1691			if (ret > 0) {
1692				btrfs_release_path(path);
1693				metadata = 0;
1694
1695				key.objectid = head->bytenr;
1696				key.offset = head->num_bytes;
1697				key.type = BTRFS_EXTENT_ITEM_KEY;
1698				goto again;
1699			}
1700		} else {
1701			ret = -EUCLEAN;
1702			btrfs_err(fs_info,
1703		  "missing extent item for extent %llu num_bytes %llu level %d",
1704				  head->bytenr, head->num_bytes, extent_op->level);
1705			goto out;
1706		}
1707	}
1708
1709	leaf = path->nodes[0];
1710	item_size = btrfs_item_size(leaf, path->slots[0]);
1711
1712	if (unlikely(item_size < sizeof(*ei))) {
1713		ret = -EUCLEAN;
1714		btrfs_err(fs_info,
1715			  "unexpected extent item size, has %u expect >= %zu",
1716			  item_size, sizeof(*ei));
1717		btrfs_abort_transaction(trans, ret);
1718		goto out;
1719	}
1720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722	__run_delayed_extent_op(extent_op, leaf, ei);
1723
1724	btrfs_mark_buffer_dirty(trans, leaf);
1725out:
1726	btrfs_free_path(path);
1727	return ret;
1728}
1729
1730static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1731				struct btrfs_delayed_ref_head *href,
1732				struct btrfs_delayed_ref_node *node,
1733				struct btrfs_delayed_extent_op *extent_op,
1734				bool insert_reserved)
1735{
1736	int ret = 0;
1737	struct btrfs_fs_info *fs_info = trans->fs_info;
1738	struct btrfs_delayed_tree_ref *ref;
 
1739	u64 parent = 0;
1740	u64 ref_root = 0;
1741
1742	ref = btrfs_delayed_node_to_tree_ref(node);
1743	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
 
1744
 
1745	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1746		parent = ref->parent;
1747	ref_root = ref->root;
 
1748
1749	if (unlikely(node->ref_mod != 1)) {
1750		btrfs_err(trans->fs_info,
1751	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1752			  node->bytenr, node->ref_mod, node->action, ref_root,
1753			  parent);
1754		return -EUCLEAN;
1755	}
1756	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1757		struct btrfs_squota_delta delta = {
1758			.root = href->owning_root,
1759			.num_bytes = fs_info->nodesize,
1760			.is_data = false,
1761			.is_inc = true,
1762			.generation = trans->transid,
1763		};
1764
1765		BUG_ON(!extent_op || !extent_op->update_flags);
1766		ret = alloc_reserved_tree_block(trans, node, extent_op);
1767		if (!ret)
1768			btrfs_record_squota_delta(fs_info, &delta);
1769	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1770		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1771					     ref->level, 0, extent_op);
 
1772	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1773		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1774					  ref->level, 0, extent_op);
 
1775	} else {
1776		BUG();
1777	}
1778	return ret;
1779}
1780
1781/* helper function to actually process a single delayed ref entry */
1782static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1783			       struct btrfs_delayed_ref_head *href,
1784			       struct btrfs_delayed_ref_node *node,
1785			       struct btrfs_delayed_extent_op *extent_op,
1786			       bool insert_reserved)
1787{
1788	int ret = 0;
1789
1790	if (TRANS_ABORTED(trans)) {
 
 
 
 
 
 
 
 
1791		if (insert_reserved) {
1792			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1793			free_head_ref_squota_rsv(trans->fs_info, href);
 
 
 
 
 
 
1794		}
 
1795		return 0;
1796	}
1797
1798	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1799	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1800		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1801					   insert_reserved);
1802	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1803		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1804		ret = run_delayed_data_ref(trans, href, node, extent_op,
1805					   insert_reserved);
1806	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1807		ret = 0;
1808	else
1809		BUG();
1810	if (ret && insert_reserved)
1811		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1812	if (ret < 0)
1813		btrfs_err(trans->fs_info,
1814"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1815			  node->bytenr, node->num_bytes, node->type,
1816			  node->action, node->ref_mod, ret);
1817	return ret;
1818}
1819
1820static inline struct btrfs_delayed_ref_node *
1821select_delayed_ref(struct btrfs_delayed_ref_head *head)
1822{
 
1823	struct btrfs_delayed_ref_node *ref;
1824
1825	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1826		return NULL;
1827
1828	/*
1829	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1830	 * This is to prevent a ref count from going down to zero, which deletes
1831	 * the extent item from the extent tree, when there still are references
1832	 * to add, which would fail because they would not find the extent item.
1833	 */
1834	if (!list_empty(&head->ref_add_list))
1835		return list_first_entry(&head->ref_add_list,
1836				struct btrfs_delayed_ref_node, add_list);
1837
1838	ref = rb_entry(rb_first_cached(&head->ref_tree),
1839		       struct btrfs_delayed_ref_node, ref_node);
1840	ASSERT(list_empty(&ref->add_list));
1841	return ref;
1842}
1843
1844static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1845				      struct btrfs_delayed_ref_head *head)
1846{
1847	spin_lock(&delayed_refs->lock);
1848	head->processing = false;
1849	delayed_refs->num_heads_ready++;
1850	spin_unlock(&delayed_refs->lock);
1851	btrfs_delayed_ref_unlock(head);
1852}
1853
1854static struct btrfs_delayed_extent_op *cleanup_extent_op(
1855				struct btrfs_delayed_ref_head *head)
1856{
1857	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1858
1859	if (!extent_op)
1860		return NULL;
1861
1862	if (head->must_insert_reserved) {
1863		head->extent_op = NULL;
1864		btrfs_free_delayed_extent_op(extent_op);
1865		return NULL;
1866	}
1867	return extent_op;
1868}
1869
1870static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1871				     struct btrfs_delayed_ref_head *head)
1872{
1873	struct btrfs_delayed_extent_op *extent_op;
1874	int ret;
1875
1876	extent_op = cleanup_extent_op(head);
1877	if (!extent_op)
1878		return 0;
1879	head->extent_op = NULL;
1880	spin_unlock(&head->lock);
1881	ret = run_delayed_extent_op(trans, head, extent_op);
1882	btrfs_free_delayed_extent_op(extent_op);
1883	return ret ? ret : 1;
1884}
1885
1886u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1887				  struct btrfs_delayed_ref_root *delayed_refs,
1888				  struct btrfs_delayed_ref_head *head)
1889{
1890	u64 ret = 0;
1891
1892	/*
1893	 * We had csum deletions accounted for in our delayed refs rsv, we need
1894	 * to drop the csum leaves for this update from our delayed_refs_rsv.
 
1895	 */
1896	if (head->total_ref_mod < 0 && head->is_data) {
1897		int nr_csums;
1898
1899		spin_lock(&delayed_refs->lock);
1900		delayed_refs->pending_csums -= head->num_bytes;
1901		spin_unlock(&delayed_refs->lock);
1902		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1903
1904		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1905
1906		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1907	}
1908	/* must_insert_reserved can be set only if we didn't run the head ref. */
1909	if (head->must_insert_reserved)
1910		free_head_ref_squota_rsv(fs_info, head);
1911
1912	return ret;
1913}
1914
1915static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1916			    struct btrfs_delayed_ref_head *head,
1917			    u64 *bytes_released)
1918{
1919
1920	struct btrfs_fs_info *fs_info = trans->fs_info;
1921	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
1922	int ret;
 
 
1923
1924	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
1925
1926	ret = run_and_cleanup_extent_op(trans, head);
1927	if (ret < 0) {
1928		unselect_delayed_ref_head(delayed_refs, head);
1929		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1930		return ret;
1931	} else if (ret) {
1932		return ret;
1933	}
1934
1935	/*
1936	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1937	 * and then re-check to make sure nobody got added.
1938	 */
1939	spin_unlock(&head->lock);
1940	spin_lock(&delayed_refs->lock);
1941	spin_lock(&head->lock);
1942	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1943		spin_unlock(&head->lock);
1944		spin_unlock(&delayed_refs->lock);
1945		return 1;
1946	}
1947	btrfs_delete_ref_head(delayed_refs, head);
1948	spin_unlock(&head->lock);
1949	spin_unlock(&delayed_refs->lock);
1950
1951	if (head->must_insert_reserved) {
1952		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1953		if (head->is_data) {
1954			struct btrfs_root *csum_root;
1955
1956			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1957			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1958					      head->num_bytes);
 
 
 
 
 
 
 
 
1959		}
1960	}
1961
1962	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1963
1964	trace_run_delayed_ref_head(fs_info, head, 0);
1965	btrfs_delayed_ref_unlock(head);
1966	btrfs_put_delayed_ref_head(head);
1967	return ret;
1968}
1969
1970static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1971					struct btrfs_trans_handle *trans)
1972{
1973	struct btrfs_delayed_ref_root *delayed_refs =
1974		&trans->transaction->delayed_refs;
1975	struct btrfs_delayed_ref_head *head = NULL;
1976	int ret;
1977
1978	spin_lock(&delayed_refs->lock);
1979	head = btrfs_select_ref_head(delayed_refs);
1980	if (!head) {
1981		spin_unlock(&delayed_refs->lock);
1982		return head;
1983	}
1984
1985	/*
1986	 * Grab the lock that says we are going to process all the refs for
1987	 * this head
1988	 */
1989	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1990	spin_unlock(&delayed_refs->lock);
1991
1992	/*
1993	 * We may have dropped the spin lock to get the head mutex lock, and
1994	 * that might have given someone else time to free the head.  If that's
1995	 * true, it has been removed from our list and we can move on.
1996	 */
1997	if (ret == -EAGAIN)
1998		head = ERR_PTR(-EAGAIN);
1999
2000	return head;
2001}
 
 
 
 
 
 
 
 
 
2002
2003static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2004					   struct btrfs_delayed_ref_head *locked_ref,
2005					   u64 *bytes_released)
2006{
2007	struct btrfs_fs_info *fs_info = trans->fs_info;
2008	struct btrfs_delayed_ref_root *delayed_refs;
2009	struct btrfs_delayed_extent_op *extent_op;
2010	struct btrfs_delayed_ref_node *ref;
2011	bool must_insert_reserved;
2012	int ret;
2013
2014	delayed_refs = &trans->transaction->delayed_refs;
 
2015
2016	lockdep_assert_held(&locked_ref->mutex);
2017	lockdep_assert_held(&locked_ref->lock);
 
 
2018
2019	while ((ref = select_delayed_ref(locked_ref))) {
2020		if (ref->seq &&
2021		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2022			spin_unlock(&locked_ref->lock);
2023			unselect_delayed_ref_head(delayed_refs, locked_ref);
2024			return -EAGAIN;
2025		}
2026
2027		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2028		RB_CLEAR_NODE(&ref->ref_node);
2029		if (!list_empty(&ref->add_list))
2030			list_del(&ref->add_list);
2031		/*
2032		 * When we play the delayed ref, also correct the ref_mod on
2033		 * head
2034		 */
2035		switch (ref->action) {
2036		case BTRFS_ADD_DELAYED_REF:
2037		case BTRFS_ADD_DELAYED_EXTENT:
2038			locked_ref->ref_mod -= ref->ref_mod;
2039			break;
2040		case BTRFS_DROP_DELAYED_REF:
2041			locked_ref->ref_mod += ref->ref_mod;
2042			break;
2043		default:
2044			WARN_ON(1);
2045		}
2046		atomic_dec(&delayed_refs->num_entries);
2047
2048		/*
2049		 * Record the must_insert_reserved flag before we drop the
2050		 * spin lock.
2051		 */
2052		must_insert_reserved = locked_ref->must_insert_reserved;
2053		/*
2054		 * Unsetting this on the head ref relinquishes ownership of
2055		 * the rsv_bytes, so it is critical that every possible code
2056		 * path from here forward frees all reserves including qgroup
2057		 * reserve.
2058		 */
2059		locked_ref->must_insert_reserved = false;
2060
2061		extent_op = locked_ref->extent_op;
2062		locked_ref->extent_op = NULL;
2063		spin_unlock(&locked_ref->lock);
2064
2065		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2066					  must_insert_reserved);
2067		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2068		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2069
2070		btrfs_free_delayed_extent_op(extent_op);
2071		if (ret) {
2072			unselect_delayed_ref_head(delayed_refs, locked_ref);
2073			btrfs_put_delayed_ref(ref);
2074			return ret;
2075		}
2076
2077		btrfs_put_delayed_ref(ref);
2078		cond_resched();
 
2079
2080		spin_lock(&locked_ref->lock);
2081		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2082	}
2083
2084	return 0;
2085}
2086
2087/*
2088 * Returns 0 on success or if called with an already aborted transaction.
2089 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 
 
 
2090 */
2091static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2092					     u64 min_bytes)
2093{
2094	struct btrfs_fs_info *fs_info = trans->fs_info;
2095	struct btrfs_delayed_ref_root *delayed_refs;
2096	struct btrfs_delayed_ref_head *locked_ref = NULL;
 
2097	int ret;
2098	unsigned long count = 0;
2099	unsigned long max_count = 0;
2100	u64 bytes_processed = 0;
 
 
2101
2102	delayed_refs = &trans->transaction->delayed_refs;
2103	if (min_bytes == 0) {
2104		max_count = delayed_refs->num_heads_ready;
2105		min_bytes = U64_MAX;
 
 
 
2106	}
2107
2108	do {
2109		if (!locked_ref) {
2110			locked_ref = btrfs_obtain_ref_head(trans);
2111			if (IS_ERR_OR_NULL(locked_ref)) {
2112				if (PTR_ERR(locked_ref) == -EAGAIN) {
2113					continue;
2114				} else {
2115					break;
2116				}
2117			}
2118			count++;
2119		}
2120		/*
2121		 * We need to try and merge add/drops of the same ref since we
2122		 * can run into issues with relocate dropping the implicit ref
2123		 * and then it being added back again before the drop can
2124		 * finish.  If we merged anything we need to re-loop so we can
2125		 * get a good ref.
2126		 * Or we can get node references of the same type that weren't
2127		 * merged when created due to bumps in the tree mod seq, and
2128		 * we need to merge them to prevent adding an inline extent
2129		 * backref before dropping it (triggering a BUG_ON at
2130		 * insert_inline_extent_backref()).
2131		 */
2132		spin_lock(&locked_ref->lock);
2133		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2134
2135		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2136		if (ret < 0 && ret != -EAGAIN) {
2137			/*
2138			 * Error, btrfs_run_delayed_refs_for_head already
2139			 * unlocked everything so just bail out
2140			 */
2141			return ret;
2142		} else if (!ret) {
2143			/*
2144			 * Success, perform the usual cleanup of a processed
2145			 * head
2146			 */
2147			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2148			if (ret > 0 ) {
2149				/* We dropped our lock, we need to loop. */
2150				ret = 0;
2151				continue;
2152			} else if (ret) {
2153				return ret;
2154			}
2155		}
2156
2157		/*
2158		 * Either success case or btrfs_run_delayed_refs_for_head
2159		 * returned -EAGAIN, meaning we need to select another head
 
 
2160		 */
 
 
 
 
2161
2162		locked_ref = NULL;
2163		cond_resched();
2164	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2165		 (max_count > 0 && count < max_count) ||
2166		 locked_ref);
2167
2168	return 0;
2169}
2170
2171#ifdef SCRAMBLE_DELAYED_REFS
2172/*
2173 * Normally delayed refs get processed in ascending bytenr order. This
2174 * correlates in most cases to the order added. To expose dependencies on this
2175 * order, we start to process the tree in the middle instead of the beginning
2176 */
2177static u64 find_middle(struct rb_root *root)
2178{
2179	struct rb_node *n = root->rb_node;
2180	struct btrfs_delayed_ref_node *entry;
2181	int alt = 1;
2182	u64 middle;
2183	u64 first = 0, last = 0;
2184
2185	n = rb_first(root);
2186	if (n) {
2187		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2188		first = entry->bytenr;
2189	}
2190	n = rb_last(root);
2191	if (n) {
2192		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2193		last = entry->bytenr;
2194	}
2195	n = root->rb_node;
2196
2197	while (n) {
2198		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2199		WARN_ON(!entry->in_tree);
2200
2201		middle = entry->bytenr;
2202
2203		if (alt)
2204			n = n->rb_left;
2205		else
2206			n = n->rb_right;
2207
2208		alt = 1 - alt;
 
2209	}
2210	return middle;
2211}
2212#endif
2213
2214/*
2215 * Start processing the delayed reference count updates and extent insertions
2216 * we have queued up so far.
2217 *
2218 * @trans:	Transaction handle.
2219 * @min_bytes:	How many bytes of delayed references to process. After this
2220 *		many bytes we stop processing delayed references if there are
2221 *		any more. If 0 it means to run all existing delayed references,
2222 *		but not new ones added after running all existing ones.
2223 *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2224 *		plus any new ones that are added.
2225 *
2226 * Returns 0 on success or if called with an aborted transaction
2227 * Returns <0 on error and aborts the transaction
2228 */
2229int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2230{
2231	struct btrfs_fs_info *fs_info = trans->fs_info;
2232	struct btrfs_delayed_ref_root *delayed_refs;
2233	int ret;
2234
2235	/* We'll clean this up in btrfs_cleanup_transaction */
2236	if (TRANS_ABORTED(trans))
2237		return 0;
 
 
2238
2239	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2240		return 0;
 
 
 
2241
2242	delayed_refs = &trans->transaction->delayed_refs;
2243again:
2244#ifdef SCRAMBLE_DELAYED_REFS
2245	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2246#endif
2247	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2248	if (ret < 0) {
2249		btrfs_abort_transaction(trans, ret);
2250		return ret;
2251	}
2252
2253	if (min_bytes == U64_MAX) {
2254		btrfs_create_pending_block_groups(trans);
 
 
 
 
 
2255
2256		spin_lock(&delayed_refs->lock);
2257		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2258			spin_unlock(&delayed_refs->lock);
2259			return 0;
 
2260		}
2261		spin_unlock(&delayed_refs->lock);
2262
2263		cond_resched();
2264		goto again;
2265	}
2266
 
2267	return 0;
2268}
2269
2270int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2271				struct extent_buffer *eb, u64 flags)
 
 
2272{
2273	struct btrfs_delayed_extent_op *extent_op;
2274	int level = btrfs_header_level(eb);
2275	int ret;
2276
2277	extent_op = btrfs_alloc_delayed_extent_op();
2278	if (!extent_op)
2279		return -ENOMEM;
2280
2281	extent_op->flags_to_set = flags;
2282	extent_op->update_flags = true;
2283	extent_op->update_key = false;
2284	extent_op->level = level;
2285
2286	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2287	if (ret)
2288		btrfs_free_delayed_extent_op(extent_op);
2289	return ret;
2290}
2291
2292static noinline int check_delayed_ref(struct btrfs_root *root,
 
2293				      struct btrfs_path *path,
2294				      u64 objectid, u64 offset, u64 bytenr)
2295{
2296	struct btrfs_delayed_ref_head *head;
2297	struct btrfs_delayed_ref_node *ref;
2298	struct btrfs_delayed_data_ref *data_ref;
2299	struct btrfs_delayed_ref_root *delayed_refs;
2300	struct btrfs_transaction *cur_trans;
2301	struct rb_node *node;
2302	int ret = 0;
2303
2304	spin_lock(&root->fs_info->trans_lock);
2305	cur_trans = root->fs_info->running_transaction;
2306	if (cur_trans)
2307		refcount_inc(&cur_trans->use_count);
2308	spin_unlock(&root->fs_info->trans_lock);
2309	if (!cur_trans)
2310		return 0;
2311
2312	delayed_refs = &cur_trans->delayed_refs;
2313	spin_lock(&delayed_refs->lock);
2314	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2315	if (!head) {
2316		spin_unlock(&delayed_refs->lock);
2317		btrfs_put_transaction(cur_trans);
2318		return 0;
2319	}
2320
2321	if (!mutex_trylock(&head->mutex)) {
2322		if (path->nowait) {
2323			spin_unlock(&delayed_refs->lock);
2324			btrfs_put_transaction(cur_trans);
2325			return -EAGAIN;
2326		}
2327
2328		refcount_inc(&head->refs);
2329		spin_unlock(&delayed_refs->lock);
2330
2331		btrfs_release_path(path);
2332
2333		/*
2334		 * Mutex was contended, block until it's released and let
2335		 * caller try again
2336		 */
2337		mutex_lock(&head->mutex);
2338		mutex_unlock(&head->mutex);
2339		btrfs_put_delayed_ref_head(head);
2340		btrfs_put_transaction(cur_trans);
2341		return -EAGAIN;
2342	}
2343	spin_unlock(&delayed_refs->lock);
2344
2345	spin_lock(&head->lock);
2346	/*
2347	 * XXX: We should replace this with a proper search function in the
2348	 * future.
2349	 */
2350	for (node = rb_first_cached(&head->ref_tree); node;
2351	     node = rb_next(node)) {
2352		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2353		/* If it's a shared ref we know a cross reference exists */
2354		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2355			ret = 1;
2356			break;
2357		}
2358
2359		data_ref = btrfs_delayed_node_to_data_ref(ref);
2360
2361		/*
2362		 * If our ref doesn't match the one we're currently looking at
2363		 * then we have a cross reference.
2364		 */
2365		if (data_ref->root != root->root_key.objectid ||
2366		    data_ref->objectid != objectid ||
2367		    data_ref->offset != offset) {
2368			ret = 1;
2369			break;
2370		}
 
 
 
 
2371	}
2372	spin_unlock(&head->lock);
 
 
 
 
 
 
2373	mutex_unlock(&head->mutex);
2374	btrfs_put_transaction(cur_trans);
 
2375	return ret;
2376}
2377
2378static noinline int check_committed_ref(struct btrfs_root *root,
 
2379					struct btrfs_path *path,
2380					u64 objectid, u64 offset, u64 bytenr,
2381					bool strict)
2382{
2383	struct btrfs_fs_info *fs_info = root->fs_info;
2384	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2385	struct extent_buffer *leaf;
2386	struct btrfs_extent_data_ref *ref;
2387	struct btrfs_extent_inline_ref *iref;
2388	struct btrfs_extent_item *ei;
2389	struct btrfs_key key;
2390	u32 item_size;
2391	u32 expected_size;
2392	int type;
2393	int ret;
2394
2395	key.objectid = bytenr;
2396	key.offset = (u64)-1;
2397	key.type = BTRFS_EXTENT_ITEM_KEY;
2398
2399	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2400	if (ret < 0)
2401		goto out;
2402	BUG_ON(ret == 0); /* Corruption */
2403
2404	ret = -ENOENT;
2405	if (path->slots[0] == 0)
2406		goto out;
2407
2408	path->slots[0]--;
2409	leaf = path->nodes[0];
2410	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2411
2412	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2413		goto out;
2414
2415	ret = 1;
2416	item_size = btrfs_item_size(leaf, path->slots[0]);
2417	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2419
2420	/* No inline refs; we need to bail before checking for owner ref. */
2421	if (item_size == sizeof(*ei))
2422		goto out;
2423
2424	/* Check for an owner ref; skip over it to the real inline refs. */
2425	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2426	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2427	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2428		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2429		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2430	}
 
 
2431
2432	/* If extent item has more than 1 inline ref then it's shared */
2433	if (item_size != expected_size)
2434		goto out;
2435
2436	/*
2437	 * If extent created before last snapshot => it's shared unless the
2438	 * snapshot has been deleted. Use the heuristic if strict is false.
2439	 */
2440	if (!strict &&
2441	    (btrfs_extent_generation(leaf, ei) <=
2442	     btrfs_root_last_snapshot(&root->root_item)))
2443		goto out;
2444
2445	/* If this extent has SHARED_DATA_REF then it's shared */
2446	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2447	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2448		goto out;
2449
2450	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2451	if (btrfs_extent_refs(leaf, ei) !=
2452	    btrfs_extent_data_ref_count(leaf, ref) ||
2453	    btrfs_extent_data_ref_root(leaf, ref) !=
2454	    root->root_key.objectid ||
2455	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2456	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2457		goto out;
2458
2459	ret = 0;
2460out:
2461	return ret;
2462}
2463
2464int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2465			  u64 bytenr, bool strict, struct btrfs_path *path)
 
2466{
 
2467	int ret;
 
 
 
 
 
2468
2469	do {
2470		ret = check_committed_ref(root, path, objectid,
2471					  offset, bytenr, strict);
2472		if (ret && ret != -ENOENT)
2473			goto out;
2474
2475		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2476	} while (ret == -EAGAIN);
 
2477
 
 
 
 
 
 
 
2478out:
2479	btrfs_release_path(path);
2480	if (btrfs_is_data_reloc_root(root))
2481		WARN_ON(ret > 0);
2482	return ret;
2483}
2484
2485static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2486			   struct btrfs_root *root,
2487			   struct extent_buffer *buf,
2488			   int full_backref, int inc)
2489{
2490	struct btrfs_fs_info *fs_info = root->fs_info;
2491	u64 bytenr;
2492	u64 num_bytes;
2493	u64 parent;
2494	u64 ref_root;
2495	u32 nritems;
2496	struct btrfs_key key;
2497	struct btrfs_file_extent_item *fi;
2498	struct btrfs_ref generic_ref = { 0 };
2499	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2500	int i;
2501	int action;
2502	int level;
2503	int ret = 0;
2504
2505	if (btrfs_is_testing(fs_info))
2506		return 0;
2507
2508	ref_root = btrfs_header_owner(buf);
2509	nritems = btrfs_header_nritems(buf);
2510	level = btrfs_header_level(buf);
2511
2512	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2513		return 0;
2514
 
 
 
 
 
2515	if (full_backref)
2516		parent = buf->start;
2517	else
2518		parent = 0;
2519	if (inc)
2520		action = BTRFS_ADD_DELAYED_REF;
2521	else
2522		action = BTRFS_DROP_DELAYED_REF;
2523
2524	for (i = 0; i < nritems; i++) {
2525		if (level == 0) {
2526			btrfs_item_key_to_cpu(buf, &key, i);
2527			if (key.type != BTRFS_EXTENT_DATA_KEY)
2528				continue;
2529			fi = btrfs_item_ptr(buf, i,
2530					    struct btrfs_file_extent_item);
2531			if (btrfs_file_extent_type(buf, fi) ==
2532			    BTRFS_FILE_EXTENT_INLINE)
2533				continue;
2534			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2535			if (bytenr == 0)
2536				continue;
2537
2538			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2539			key.offset -= btrfs_file_extent_offset(buf, fi);
2540			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2541					       num_bytes, parent, ref_root);
2542			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2543					    key.offset, root->root_key.objectid,
2544					    for_reloc);
2545			if (inc)
2546				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2547			else
2548				ret = btrfs_free_extent(trans, &generic_ref);
2549			if (ret)
2550				goto fail;
2551		} else {
2552			bytenr = btrfs_node_blockptr(buf, i);
2553			num_bytes = fs_info->nodesize;
2554			/* We don't know the owning_root, use 0. */
2555			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2556					       num_bytes, parent, 0);
2557			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2558					    root->root_key.objectid, for_reloc);
2559			if (inc)
2560				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2561			else
2562				ret = btrfs_free_extent(trans, &generic_ref);
2563			if (ret)
2564				goto fail;
2565		}
2566	}
2567	return 0;
2568fail:
 
2569	return ret;
2570}
2571
2572int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2573		  struct extent_buffer *buf, int full_backref)
2574{
2575	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2576}
2577
2578int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2579		  struct extent_buffer *buf, int full_backref)
2580{
2581	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2582}
2583
2584static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585{
2586	struct btrfs_fs_info *fs_info = root->fs_info;
2587	u64 flags;
2588	u64 ret;
2589
2590	if (data)
2591		flags = BTRFS_BLOCK_GROUP_DATA;
2592	else if (root == fs_info->chunk_root)
2593		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2594	else
2595		flags = BTRFS_BLOCK_GROUP_METADATA;
2596
2597	ret = btrfs_get_alloc_profile(fs_info, flags);
2598	return ret;
 
 
 
 
 
2599}
2600
2601static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
 
 
 
 
2602{
2603	struct rb_node *leftmost;
2604	u64 bytenr = 0;
 
 
2605
2606	read_lock(&fs_info->block_group_cache_lock);
2607	/* Get the block group with the lowest logical start address. */
2608	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2609	if (leftmost) {
2610		struct btrfs_block_group *bg;
2611
2612		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2613		bytenr = bg->start;
 
 
2614	}
2615	read_unlock(&fs_info->block_group_cache_lock);
2616
2617	return bytenr;
2618}
 
2619
2620static int pin_down_extent(struct btrfs_trans_handle *trans,
2621			   struct btrfs_block_group *cache,
2622			   u64 bytenr, u64 num_bytes, int reserved)
2623{
2624	struct btrfs_fs_info *fs_info = cache->fs_info;
 
2625
2626	spin_lock(&cache->space_info->lock);
2627	spin_lock(&cache->lock);
2628	cache->pinned += num_bytes;
2629	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2630					     num_bytes);
2631	if (reserved) {
2632		cache->reserved -= num_bytes;
2633		cache->space_info->bytes_reserved -= num_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634	}
2635	spin_unlock(&cache->lock);
2636	spin_unlock(&cache->space_info->lock);
 
2637
2638	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2639		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2640	return 0;
2641}
2642
2643int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2644		     u64 bytenr, u64 num_bytes, int reserved)
 
 
 
 
2645{
2646	struct btrfs_block_group *cache;
 
2647
2648	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2649	BUG_ON(!cache); /* Logic error */
2650
2651	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
 
 
 
 
 
2652
2653	btrfs_put_block_group(cache);
2654	return 0;
 
 
 
 
 
 
 
 
 
2655}
2656
2657int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2658				    const struct extent_buffer *eb)
 
2659{
2660	struct btrfs_block_group *cache;
2661	int ret;
 
2662
2663	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2664	if (!cache)
2665		return -EINVAL;
2666
2667	/*
2668	 * Fully cache the free space first so that our pin removes the free space
2669	 * from the cache.
2670	 */
2671	ret = btrfs_cache_block_group(cache, true);
2672	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673		goto out;
2674
2675	pin_down_extent(trans, cache, eb->start, eb->len, 0);
 
 
 
 
2676
2677	/* remove us from the free space cache (if we're there at all) */
2678	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
 
2679out:
2680	btrfs_put_block_group(cache);
2681	return ret;
2682}
2683
2684static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2685				   u64 start, u64 num_bytes)
 
 
 
2686{
2687	int ret;
2688	struct btrfs_block_group *block_group;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2689
2690	block_group = btrfs_lookup_block_group(fs_info, start);
2691	if (!block_group)
2692		return -EINVAL;
 
 
 
 
 
 
 
 
 
2693
2694	ret = btrfs_cache_block_group(block_group, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695	if (ret)
2696		goto out;
2697
2698	ret = btrfs_remove_free_space(block_group, start, num_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699out:
2700	btrfs_put_block_group(block_group);
 
 
 
 
 
2701	return ret;
2702}
2703
2704int btrfs_exclude_logged_extents(struct extent_buffer *eb)
 
2705{
2706	struct btrfs_fs_info *fs_info = eb->fs_info;
2707	struct btrfs_file_extent_item *item;
2708	struct btrfs_key key;
2709	int found_type;
2710	int i;
2711	int ret = 0;
2712
2713	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2714		return 0;
2715
2716	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2717		btrfs_item_key_to_cpu(eb, &key, i);
2718		if (key.type != BTRFS_EXTENT_DATA_KEY)
2719			continue;
2720		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2721		found_type = btrfs_file_extent_type(eb, item);
2722		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2723			continue;
2724		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2725			continue;
2726		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2727		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2728		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2729		if (ret)
2730			break;
2731	}
2732
 
 
 
 
 
 
 
 
 
 
 
 
2733	return ret;
2734}
2735
2736static void
2737btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2738{
2739	atomic_inc(&bg->reservations);
 
 
 
 
 
 
2740}
2741
2742/*
2743 * Returns the free cluster for the given space info and sets empty_cluster to
2744 * what it should be based on the mount options.
2745 */
2746static struct btrfs_free_cluster *
2747fetch_cluster_info(struct btrfs_fs_info *fs_info,
2748		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2749{
2750	struct btrfs_free_cluster *ret = NULL;
2751
2752	*empty_cluster = 0;
2753	if (btrfs_mixed_space_info(space_info))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2754		return ret;
2755
2756	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2757		ret = &fs_info->meta_alloc_cluster;
2758		if (btrfs_test_opt(fs_info, SSD))
2759			*empty_cluster = SZ_2M;
2760		else
2761			*empty_cluster = SZ_64K;
2762	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2763		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2764		*empty_cluster = SZ_2M;
2765		ret = &fs_info->data_alloc_cluster;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766	}
 
2767
2768	return ret;
 
 
 
 
 
 
 
 
 
 
 
2769}
2770
2771static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2772			      u64 start, u64 end,
2773			      const bool return_free_space)
 
2774{
2775	struct btrfs_block_group *cache = NULL;
2776	struct btrfs_space_info *space_info;
2777	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2778	struct btrfs_free_cluster *cluster = NULL;
2779	u64 len;
2780	u64 total_unpinned = 0;
2781	u64 empty_cluster = 0;
2782	bool readonly;
2783
2784	while (start <= end) {
2785		readonly = false;
2786		if (!cache ||
2787		    start >= cache->start + cache->length) {
2788			if (cache)
2789				btrfs_put_block_group(cache);
2790			total_unpinned = 0;
2791			cache = btrfs_lookup_block_group(fs_info, start);
2792			BUG_ON(!cache); /* Logic error */
2793
2794			cluster = fetch_cluster_info(fs_info,
2795						     cache->space_info,
2796						     &empty_cluster);
2797			empty_cluster <<= 1;
2798		}
2799
2800		len = cache->start + cache->length - start;
2801		len = min(len, end + 1 - start);
2802
2803		if (return_free_space)
2804			btrfs_add_free_space(cache, start, len);
 
 
 
 
 
 
2805
2806		start += len;
2807		total_unpinned += len;
2808		space_info = cache->space_info;
2809
2810		/*
2811		 * If this space cluster has been marked as fragmented and we've
2812		 * unpinned enough in this block group to potentially allow a
2813		 * cluster to be created inside of it go ahead and clear the
2814		 * fragmented check.
2815		 */
2816		if (cluster && cluster->fragmented &&
2817		    total_unpinned > empty_cluster) {
2818			spin_lock(&cluster->lock);
2819			cluster->fragmented = 0;
2820			spin_unlock(&cluster->lock);
2821		}
2822
2823		spin_lock(&space_info->lock);
2824		spin_lock(&cache->lock);
2825		cache->pinned -= len;
2826		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2827		space_info->max_extent_size = 0;
2828		if (cache->ro) {
2829			space_info->bytes_readonly += len;
2830			readonly = true;
2831		} else if (btrfs_is_zoned(fs_info)) {
2832			/* Need reset before reusing in a zoned block group */
2833			space_info->bytes_zone_unusable += len;
2834			readonly = true;
2835		}
2836		spin_unlock(&cache->lock);
2837		if (!readonly && return_free_space &&
2838		    global_rsv->space_info == space_info) {
2839			spin_lock(&global_rsv->lock);
2840			if (!global_rsv->full) {
2841				u64 to_add = min(len, global_rsv->size -
2842						      global_rsv->reserved);
2843
2844				global_rsv->reserved += to_add;
2845				btrfs_space_info_update_bytes_may_use(fs_info,
2846						space_info, to_add);
2847				if (global_rsv->reserved >= global_rsv->size)
2848					global_rsv->full = 1;
2849				len -= to_add;
2850			}
2851			spin_unlock(&global_rsv->lock);
2852		}
2853		/* Add to any tickets we may have */
2854		if (!readonly && return_free_space && len)
2855			btrfs_try_granting_tickets(fs_info, space_info);
2856		spin_unlock(&space_info->lock);
2857	}
2858
2859	if (cache)
2860		btrfs_put_block_group(cache);
2861	return 0;
 
 
 
 
 
 
 
2862}
2863
2864int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865{
2866	struct btrfs_fs_info *fs_info = trans->fs_info;
2867	struct btrfs_block_group *block_group, *tmp;
2868	struct list_head *deleted_bgs;
2869	struct extent_io_tree *unpin;
2870	u64 start;
2871	u64 end;
2872	int ret;
2873
2874	unpin = &trans->transaction->pinned_extents;
 
 
 
2875
2876	while (!TRANS_ABORTED(trans)) {
2877		struct extent_state *cached_state = NULL;
 
 
 
 
2878
2879		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2880		if (!find_first_extent_bit(unpin, 0, &start, &end,
2881					   EXTENT_DIRTY, &cached_state)) {
2882			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883			break;
2884		}
2885
2886		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2887			ret = btrfs_discard_extent(fs_info, start,
2888						   end + 1 - start, NULL);
2889
2890		clear_extent_dirty(unpin, start, end, &cached_state);
2891		unpin_extent_range(fs_info, start, end, true);
2892		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2893		free_extent_state(cached_state);
2894		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895	}
2896
2897	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2898		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2899		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
 
 
 
2900	}
2901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902	/*
2903	 * Transaction is finished.  We don't need the lock anymore.  We
2904	 * do need to clean up the block groups in case of a transaction
2905	 * abort.
2906	 */
2907	deleted_bgs = &trans->transaction->deleted_bgs;
2908	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2909		u64 trimmed = 0;
2910
2911		ret = -EROFS;
2912		if (!TRANS_ABORTED(trans))
2913			ret = btrfs_discard_extent(fs_info,
2914						   block_group->start,
2915						   block_group->length,
2916						   &trimmed);
2917
2918		list_del_init(&block_group->bg_list);
2919		btrfs_unfreeze_block_group(block_group);
2920		btrfs_put_block_group(block_group);
2921
2922		if (ret) {
2923			const char *errstr = btrfs_decode_error(ret);
2924			btrfs_warn(fs_info,
2925			   "discard failed while removing blockgroup: errno=%d %s",
2926				   ret, errstr);
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933/*
2934 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2935 *
2936 * @fs_info:	the btrfs_fs_info for this mount
2937 * @leaf:	a leaf in the extent tree containing the extent item
2938 * @slot:	the slot in the leaf where the extent item is found
2939 *
2940 * Returns the objectid of the root that originally allocated the extent item
2941 * if the inline owner ref is expected and present, otherwise 0.
2942 *
2943 * If an extent item has an owner ref item, it will be the first inline ref
2944 * item. Therefore the logic is to check whether there are any inline ref
2945 * items, then check the type of the first one.
2946 */
2947u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2948				struct extent_buffer *leaf, int slot)
2949{
2950	struct btrfs_extent_item *ei;
2951	struct btrfs_extent_inline_ref *iref;
2952	struct btrfs_extent_owner_ref *oref;
2953	unsigned long ptr;
2954	unsigned long end;
2955	int type;
2956
2957	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2958		return 0;
 
 
 
2959
2960	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2961	ptr = (unsigned long)(ei + 1);
2962	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
 
 
 
2963
2964	/* No inline ref items of any kind, can't check type. */
2965	if (ptr == end)
2966		return 0;
 
 
 
 
 
2967
2968	iref = (struct btrfs_extent_inline_ref *)ptr;
2969	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
 
 
 
 
2970
2971	/* We found an owner ref, get the root out of it. */
2972	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2973		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2974		return btrfs_extent_owner_ref_root_id(leaf, oref);
2975	}
 
 
 
 
 
 
 
 
 
2976
2977	/* We have inline refs, but not an owner ref. */
2978	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979}
2980
2981static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2982				     u64 bytenr, struct btrfs_squota_delta *delta)
2983{
 
 
 
 
 
 
 
 
 
2984	int ret;
2985	u64 num_bytes = delta->num_bytes;
2986
2987	if (delta->is_data) {
2988		struct btrfs_root *csum_root;
2989
2990		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2991		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2992		if (ret) {
2993			btrfs_abort_transaction(trans, ret);
2994			return ret;
2995		}
2996
2997		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2998		if (ret) {
2999			btrfs_abort_transaction(trans, ret);
3000			return ret;
3001		}
 
 
 
 
 
3002	}
 
3003
3004	ret = btrfs_record_squota_delta(trans->fs_info, delta);
 
3005	if (ret) {
3006		btrfs_abort_transaction(trans, ret);
 
 
 
 
 
 
3007		return ret;
3008	}
3009
3010	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011	if (ret) {
3012		btrfs_abort_transaction(trans, ret);
3013		return ret;
3014	}
3015
3016	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3017	if (ret)
3018		btrfs_abort_transaction(trans, ret);
3019
3020	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021}
3022
3023#define abort_and_dump(trans, path, fmt, args...)	\
3024({							\
3025	btrfs_abort_transaction(trans, -EUCLEAN);	\
3026	btrfs_print_leaf(path->nodes[0]);		\
3027	btrfs_crit(trans->fs_info, fmt, ##args);	\
3028})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029
3030/*
3031 * Drop one or more refs of @node.
3032 *
3033 * 1. Locate the extent refs.
3034 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3035 *    Locate it, then reduce the refs number or remove the ref line completely.
3036 *
3037 * 2. Update the refs count in EXTENT/METADATA_ITEM
3038 *
3039 * Inline backref case:
3040 *
3041 * in extent tree we have:
3042 *
3043 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3044 *		refs 2 gen 6 flags DATA
3045 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3046 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3047 *
3048 * This function gets called with:
3049 *
3050 *    node->bytenr = 13631488
3051 *    node->num_bytes = 1048576
3052 *    root_objectid = FS_TREE
3053 *    owner_objectid = 257
3054 *    owner_offset = 0
3055 *    refs_to_drop = 1
3056 *
3057 * Then we should get some like:
3058 *
3059 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3060 *		refs 1 gen 6 flags DATA
3061 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3062 *
3063 * Keyed backref case:
3064 *
3065 * in extent tree we have:
3066 *
3067 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3068 *		refs 754 gen 6 flags DATA
3069 *	[...]
3070 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3071 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3072 *
3073 * This function get called with:
3074 *
3075 *    node->bytenr = 13631488
3076 *    node->num_bytes = 1048576
3077 *    root_objectid = FS_TREE
3078 *    owner_objectid = 866
3079 *    owner_offset = 0
3080 *    refs_to_drop = 1
3081 *
3082 * Then we should get some like:
3083 *
3084 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3085 *		refs 753 gen 6 flags DATA
3086 *
3087 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3088 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3090			       struct btrfs_delayed_ref_head *href,
3091			       struct btrfs_delayed_ref_node *node, u64 parent,
3092			       u64 root_objectid, u64 owner_objectid,
3093			       u64 owner_offset,
3094			       struct btrfs_delayed_extent_op *extent_op)
3095{
3096	struct btrfs_fs_info *info = trans->fs_info;
3097	struct btrfs_key key;
3098	struct btrfs_path *path;
3099	struct btrfs_root *extent_root;
 
3100	struct extent_buffer *leaf;
3101	struct btrfs_extent_item *ei;
3102	struct btrfs_extent_inline_ref *iref;
3103	int ret;
3104	int is_data;
3105	int extent_slot = 0;
3106	int found_extent = 0;
3107	int num_to_del = 1;
3108	int refs_to_drop = node->ref_mod;
3109	u32 item_size;
3110	u64 refs;
3111	u64 bytenr = node->bytenr;
3112	u64 num_bytes = node->num_bytes;
3113	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3114	u64 delayed_ref_root = href->owning_root;
3115
3116	extent_root = btrfs_extent_root(info, bytenr);
3117	ASSERT(extent_root);
3118
3119	path = btrfs_alloc_path();
3120	if (!path)
3121		return -ENOMEM;
3122
3123	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 
3124
3125	if (!is_data && refs_to_drop != 1) {
3126		btrfs_crit(info,
3127"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3128			   node->bytenr, refs_to_drop);
3129		ret = -EINVAL;
3130		btrfs_abort_transaction(trans, ret);
3131		goto out;
3132	}
3133
3134	if (is_data)
3135		skinny_metadata = false;
3136
3137	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3138				    parent, root_objectid, owner_objectid,
 
3139				    owner_offset);
3140	if (ret == 0) {
3141		/*
3142		 * Either the inline backref or the SHARED_DATA_REF/
3143		 * SHARED_BLOCK_REF is found
3144		 *
3145		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3146		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3147		 */
3148		extent_slot = path->slots[0];
3149		while (extent_slot >= 0) {
3150			btrfs_item_key_to_cpu(path->nodes[0], &key,
3151					      extent_slot);
3152			if (key.objectid != bytenr)
3153				break;
3154			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3155			    key.offset == num_bytes) {
3156				found_extent = 1;
3157				break;
3158			}
3159			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3160			    key.offset == owner_objectid) {
3161				found_extent = 1;
3162				break;
3163			}
3164
3165			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3166			if (path->slots[0] - extent_slot > 5)
3167				break;
3168			extent_slot--;
3169		}
3170
 
 
 
 
3171		if (!found_extent) {
3172			if (iref) {
3173				abort_and_dump(trans, path,
3174"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3175					   path->slots[0]);
3176				ret = -EUCLEAN;
3177				goto out;
3178			}
3179			/* Must be SHARED_* item, remove the backref first */
3180			ret = remove_extent_backref(trans, extent_root, path,
3181						    NULL, refs_to_drop, is_data);
3182			if (ret) {
3183				btrfs_abort_transaction(trans, ret);
3184				goto out;
3185			}
3186			btrfs_release_path(path);
 
3187
3188			/* Slow path to locate EXTENT/METADATA_ITEM */
3189			key.objectid = bytenr;
3190			key.type = BTRFS_EXTENT_ITEM_KEY;
3191			key.offset = num_bytes;
3192
3193			if (!is_data && skinny_metadata) {
3194				key.type = BTRFS_METADATA_ITEM_KEY;
3195				key.offset = owner_objectid;
3196			}
3197
3198			ret = btrfs_search_slot(trans, extent_root,
3199						&key, path, -1, 1);
3200			if (ret > 0 && skinny_metadata && path->slots[0]) {
3201				/*
3202				 * Couldn't find our skinny metadata item,
3203				 * see if we have ye olde extent item.
3204				 */
3205				path->slots[0]--;
3206				btrfs_item_key_to_cpu(path->nodes[0], &key,
3207						      path->slots[0]);
3208				if (key.objectid == bytenr &&
3209				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3210				    key.offset == num_bytes)
3211					ret = 0;
3212			}
3213
3214			if (ret > 0 && skinny_metadata) {
3215				skinny_metadata = false;
3216				key.objectid = bytenr;
3217				key.type = BTRFS_EXTENT_ITEM_KEY;
3218				key.offset = num_bytes;
3219				btrfs_release_path(path);
3220				ret = btrfs_search_slot(trans, extent_root,
3221							&key, path, -1, 1);
3222			}
3223
3224			if (ret) {
 
 
 
3225				if (ret > 0)
3226					btrfs_print_leaf(path->nodes[0]);
3227				btrfs_err(info,
3228			"umm, got %d back from search, was looking for %llu, slot %d",
3229					  ret, bytenr, path->slots[0]);
3230			}
3231			if (ret < 0) {
3232				btrfs_abort_transaction(trans, ret);
3233				goto out;
3234			}
 
3235			extent_slot = path->slots[0];
3236		}
3237	} else if (WARN_ON(ret == -ENOENT)) {
3238		abort_and_dump(trans, path,
3239"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3240			       bytenr, parent, root_objectid, owner_objectid,
3241			       owner_offset, path->slots[0]);
3242		goto out;
3243	} else {
3244		btrfs_abort_transaction(trans, ret);
3245		goto out;
 
 
 
 
 
 
 
3246	}
3247
3248	leaf = path->nodes[0];
3249	item_size = btrfs_item_size(leaf, extent_slot);
3250	if (unlikely(item_size < sizeof(*ei))) {
3251		ret = -EUCLEAN;
3252		btrfs_err(trans->fs_info,
3253			  "unexpected extent item size, has %u expect >= %zu",
3254			  item_size, sizeof(*ei));
3255		btrfs_abort_transaction(trans, ret);
3256		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257	}
 
 
3258	ei = btrfs_item_ptr(leaf, extent_slot,
3259			    struct btrfs_extent_item);
3260	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3261	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3262		struct btrfs_tree_block_info *bi;
3263
3264		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3265			abort_and_dump(trans, path,
3266"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3267				       key.objectid, key.type, key.offset,
3268				       path->slots[0], owner_objectid, item_size,
3269				       sizeof(*ei) + sizeof(*bi));
3270			ret = -EUCLEAN;
3271			goto out;
3272		}
3273		bi = (struct btrfs_tree_block_info *)(ei + 1);
3274		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3275	}
3276
3277	refs = btrfs_extent_refs(leaf, ei);
3278	if (refs < refs_to_drop) {
3279		abort_and_dump(trans, path,
3280		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3281			       refs_to_drop, refs, bytenr, path->slots[0]);
3282		ret = -EUCLEAN;
3283		goto out;
3284	}
3285	refs -= refs_to_drop;
3286
3287	if (refs > 0) {
3288		if (extent_op)
3289			__run_delayed_extent_op(extent_op, leaf, ei);
3290		/*
3291		 * In the case of inline back ref, reference count will
3292		 * be updated by remove_extent_backref
3293		 */
3294		if (iref) {
3295			if (!found_extent) {
3296				abort_and_dump(trans, path,
3297"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3298					       path->slots[0]);
3299				ret = -EUCLEAN;
3300				goto out;
3301			}
3302		} else {
3303			btrfs_set_extent_refs(leaf, ei, refs);
3304			btrfs_mark_buffer_dirty(trans, leaf);
3305		}
3306		if (found_extent) {
3307			ret = remove_extent_backref(trans, extent_root, path,
3308						    iref, refs_to_drop, is_data);
3309			if (ret) {
3310				btrfs_abort_transaction(trans, ret);
3311				goto out;
3312			}
3313		}
3314	} else {
3315		struct btrfs_squota_delta delta = {
3316			.root = delayed_ref_root,
3317			.num_bytes = num_bytes,
3318			.is_data = is_data,
3319			.is_inc = false,
3320			.generation = btrfs_extent_generation(leaf, ei),
3321		};
3322
3323		/* In this branch refs == 1 */
3324		if (found_extent) {
3325			if (is_data && refs_to_drop !=
3326			    extent_data_ref_count(path, iref)) {
3327				abort_and_dump(trans, path,
3328		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3329					       extent_data_ref_count(path, iref),
3330					       refs_to_drop, path->slots[0]);
3331				ret = -EUCLEAN;
3332				goto out;
3333			}
3334			if (iref) {
3335				if (path->slots[0] != extent_slot) {
3336					abort_and_dump(trans, path,
3337"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3338						       key.objectid, key.type,
3339						       key.offset, path->slots[0]);
3340					ret = -EUCLEAN;
3341					goto out;
3342				}
3343			} else {
3344				/*
3345				 * No inline ref, we must be at SHARED_* item,
3346				 * And it's single ref, it must be:
3347				 * |	extent_slot	  ||extent_slot + 1|
3348				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3349				 */
3350				if (path->slots[0] != extent_slot + 1) {
3351					abort_and_dump(trans, path,
3352	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3353						       path->slots[0]);
3354					ret = -EUCLEAN;
3355					goto out;
3356				}
3357				path->slots[0] = extent_slot;
3358				num_to_del = 2;
3359			}
3360		}
3361		/*
3362		 * We can't infer the data owner from the delayed ref, so we need
3363		 * to try to get it from the owning ref item.
3364		 *
3365		 * If it is not present, then that extent was not written under
3366		 * simple quotas mode, so we don't need to account for its deletion.
3367		 */
3368		if (is_data)
3369			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3370								 leaf, extent_slot);
3371
3372		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3373				      num_to_del);
3374		if (ret) {
3375			btrfs_abort_transaction(trans, ret);
3376			goto out;
3377		}
3378		btrfs_release_path(path);
3379
3380		ret = do_free_extent_accounting(trans, bytenr, &delta);
3381	}
3382	btrfs_release_path(path);
 
 
 
 
 
3383
3384out:
 
 
3385	btrfs_free_path(path);
3386	return ret;
3387}
3388
3389/*
3390 * when we free an block, it is possible (and likely) that we free the last
3391 * delayed ref for that extent as well.  This searches the delayed ref tree for
3392 * a given extent, and if there are no other delayed refs to be processed, it
3393 * removes it from the tree.
3394 */
3395static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3396				      u64 bytenr)
3397{
3398	struct btrfs_delayed_ref_head *head;
3399	struct btrfs_delayed_ref_root *delayed_refs;
 
 
3400	int ret = 0;
3401
3402	delayed_refs = &trans->transaction->delayed_refs;
3403	spin_lock(&delayed_refs->lock);
3404	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3405	if (!head)
3406		goto out_delayed_unlock;
3407
3408	spin_lock(&head->lock);
3409	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3410		goto out;
3411
3412	if (cleanup_extent_op(head) != NULL)
 
 
 
3413		goto out;
3414
 
 
 
 
 
 
 
3415	/*
3416	 * waiting for the lock here would deadlock.  If someone else has it
3417	 * locked they are already in the process of dropping it anyway
3418	 */
3419	if (!mutex_trylock(&head->mutex))
3420		goto out;
3421
3422	btrfs_delete_ref_head(delayed_refs, head);
3423	head->processing = false;
 
 
 
 
 
 
3424
3425	spin_unlock(&head->lock);
 
 
 
 
 
 
 
 
3426	spin_unlock(&delayed_refs->lock);
3427
3428	BUG_ON(head->extent_op);
3429	if (head->must_insert_reserved)
3430		ret = 1;
3431
3432	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3433	mutex_unlock(&head->mutex);
3434	btrfs_put_delayed_ref_head(head);
3435	return ret;
3436out:
3437	spin_unlock(&head->lock);
3438
3439out_delayed_unlock:
3440	spin_unlock(&delayed_refs->lock);
3441	return 0;
3442}
3443
3444void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3445			   u64 root_id,
3446			   struct extent_buffer *buf,
3447			   u64 parent, int last_ref)
3448{
3449	struct btrfs_fs_info *fs_info = trans->fs_info;
3450	struct btrfs_ref generic_ref = { 0 };
3451	struct btrfs_block_group *bg;
3452	int ret;
3453
3454	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3455			       buf->start, buf->len, parent, btrfs_header_owner(buf));
3456	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3457			    root_id, 0, false);
3458
3459	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3460		btrfs_ref_tree_mod(fs_info, &generic_ref);
3461		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3462		BUG_ON(ret); /* -ENOMEM */
3463	}
3464
3465	if (!last_ref)
3466		return;
3467
3468	if (btrfs_header_generation(buf) != trans->transid)
 
 
3469		goto out;
3470
3471	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3472		ret = check_ref_cleanup(trans, buf->start);
3473		if (!ret)
3474			goto out;
3475	}
 
3476
3477	bg = btrfs_lookup_block_group(fs_info, buf->start);
 
 
 
3478
3479	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3480		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3481		btrfs_put_block_group(bg);
3482		goto out;
3483	}
3484
3485	/*
3486	 * If there are tree mod log users we may have recorded mod log
3487	 * operations for this node.  If we re-allocate this node we
3488	 * could replay operations on this node that happened when it
3489	 * existed in a completely different root.  For example if it
3490	 * was part of root A, then was reallocated to root B, and we
3491	 * are doing a btrfs_old_search_slot(root b), we could replay
3492	 * operations that happened when the block was part of root A,
3493	 * giving us an inconsistent view of the btree.
3494	 *
3495	 * We are safe from races here because at this point no other
3496	 * node or root points to this extent buffer, so if after this
3497	 * check a new tree mod log user joins we will not have an
3498	 * existing log of operations on this node that we have to
3499	 * contend with.
3500	 */
3501
3502	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3503		     || btrfs_is_zoned(fs_info)) {
3504		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3505		btrfs_put_block_group(bg);
 
 
3506		goto out;
3507	}
 
 
 
 
 
 
 
 
 
3508
3509	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3510
3511	btrfs_add_free_space(bg, buf->start, buf->len);
3512	btrfs_free_reserved_bytes(bg, buf->len, 0);
3513	btrfs_put_block_group(bg);
3514	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3515
3516out:
3517
3518	/*
3519	 * Deleting the buffer, clear the corrupt flag since it doesn't
3520	 * matter anymore.
3521	 */
3522	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
3523}
3524
3525/* Can return -ENOMEM */
3526int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
 
 
3527{
3528	struct btrfs_fs_info *fs_info = trans->fs_info;
3529	int ret;
3530
3531	if (btrfs_is_testing(fs_info))
3532		return 0;
3533
3534	/*
3535	 * tree log blocks never actually go into the extent allocation
3536	 * tree, just update pinning info and exit early.
3537	 */
3538	if ((ref->type == BTRFS_REF_METADATA &&
3539	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3540	    (ref->type == BTRFS_REF_DATA &&
3541	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3542		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3543		ret = 0;
3544	} else if (ref->type == BTRFS_REF_METADATA) {
3545		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
 
 
 
3546	} else {
3547		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
 
 
 
3548	}
3549
3550	if (!((ref->type == BTRFS_REF_METADATA &&
3551	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3552	      (ref->type == BTRFS_REF_DATA &&
3553	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3554		btrfs_ref_tree_mod(fs_info, ref);
3555
3556	return ret;
3557}
3558
3559enum btrfs_loop_type {
3560	/*
3561	 * Start caching block groups but do not wait for progress or for them
3562	 * to be done.
3563	 */
3564	LOOP_CACHING_NOWAIT,
3565
3566	/*
3567	 * Wait for the block group free_space >= the space we're waiting for if
3568	 * the block group isn't cached.
3569	 */
3570	LOOP_CACHING_WAIT,
3571
3572	/*
3573	 * Allow allocations to happen from block groups that do not yet have a
3574	 * size classification.
3575	 */
3576	LOOP_UNSET_SIZE_CLASS,
3577
3578	/*
3579	 * Allocate a chunk and then retry the allocation.
3580	 */
3581	LOOP_ALLOC_CHUNK,
3582
3583	/*
3584	 * Ignore the size class restrictions for this allocation.
3585	 */
3586	LOOP_WRONG_SIZE_CLASS,
3587
3588	/*
3589	 * Ignore the empty size, only try to allocate the number of bytes
3590	 * needed for this allocation.
3591	 */
3592	LOOP_NO_EMPTY_SIZE,
3593};
3594
3595static inline void
3596btrfs_lock_block_group(struct btrfs_block_group *cache,
3597		       int delalloc)
3598{
3599	if (delalloc)
3600		down_read(&cache->data_rwsem);
3601}
3602
3603static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3604		       int delalloc)
3605{
3606	btrfs_get_block_group(cache);
3607	if (delalloc)
3608		down_read(&cache->data_rwsem);
3609}
3610
3611static struct btrfs_block_group *btrfs_lock_cluster(
3612		   struct btrfs_block_group *block_group,
3613		   struct btrfs_free_cluster *cluster,
3614		   int delalloc)
3615	__acquires(&cluster->refill_lock)
3616{
3617	struct btrfs_block_group *used_bg = NULL;
3618
3619	spin_lock(&cluster->refill_lock);
3620	while (1) {
3621		used_bg = cluster->block_group;
3622		if (!used_bg)
3623			return NULL;
3624
3625		if (used_bg == block_group)
3626			return used_bg;
3627
3628		btrfs_get_block_group(used_bg);
3629
3630		if (!delalloc)
3631			return used_bg;
3632
3633		if (down_read_trylock(&used_bg->data_rwsem))
3634			return used_bg;
3635
3636		spin_unlock(&cluster->refill_lock);
3637
3638		/* We should only have one-level nested. */
3639		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3640
3641		spin_lock(&cluster->refill_lock);
3642		if (used_bg == cluster->block_group)
3643			return used_bg;
3644
3645		up_read(&used_bg->data_rwsem);
3646		btrfs_put_block_group(used_bg);
3647	}
3648}
3649
3650static inline void
3651btrfs_release_block_group(struct btrfs_block_group *cache,
3652			 int delalloc)
3653{
3654	if (delalloc)
3655		up_read(&cache->data_rwsem);
3656	btrfs_put_block_group(cache);
3657}
3658
3659/*
3660 * Helper function for find_free_extent().
3661 *
3662 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3663 * Return >0 to inform caller that we find nothing
3664 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3665 */
3666static int find_free_extent_clustered(struct btrfs_block_group *bg,
3667				      struct find_free_extent_ctl *ffe_ctl,
3668				      struct btrfs_block_group **cluster_bg_ret)
3669{
3670	struct btrfs_block_group *cluster_bg;
3671	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3672	u64 aligned_cluster;
3673	u64 offset;
3674	int ret;
3675
3676	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3677	if (!cluster_bg)
3678		goto refill_cluster;
3679	if (cluster_bg != bg && (cluster_bg->ro ||
3680	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3681		goto release_cluster;
3682
3683	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3684			ffe_ctl->num_bytes, cluster_bg->start,
3685			&ffe_ctl->max_extent_size);
3686	if (offset) {
3687		/* We have a block, we're done */
3688		spin_unlock(&last_ptr->refill_lock);
3689		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3690		*cluster_bg_ret = cluster_bg;
3691		ffe_ctl->found_offset = offset;
3692		return 0;
3693	}
3694	WARN_ON(last_ptr->block_group != cluster_bg);
3695
3696release_cluster:
3697	/*
3698	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3699	 * lets just skip it and let the allocator find whatever block it can
3700	 * find. If we reach this point, we will have tried the cluster
3701	 * allocator plenty of times and not have found anything, so we are
3702	 * likely way too fragmented for the clustering stuff to find anything.
3703	 *
3704	 * However, if the cluster is taken from the current block group,
3705	 * release the cluster first, so that we stand a better chance of
3706	 * succeeding in the unclustered allocation.
3707	 */
3708	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3709		spin_unlock(&last_ptr->refill_lock);
3710		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3711		return -ENOENT;
3712	}
3713
3714	/* This cluster didn't work out, free it and start over */
3715	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3716
3717	if (cluster_bg != bg)
3718		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3719
3720refill_cluster:
3721	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3722		spin_unlock(&last_ptr->refill_lock);
3723		return -ENOENT;
3724	}
3725
3726	aligned_cluster = max_t(u64,
3727			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3728			bg->full_stripe_len);
3729	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3730			ffe_ctl->num_bytes, aligned_cluster);
3731	if (ret == 0) {
3732		/* Now pull our allocation out of this cluster */
3733		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3734				ffe_ctl->num_bytes, ffe_ctl->search_start,
3735				&ffe_ctl->max_extent_size);
3736		if (offset) {
3737			/* We found one, proceed */
3738			spin_unlock(&last_ptr->refill_lock);
3739			ffe_ctl->found_offset = offset;
3740			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3741			return 0;
3742		}
3743	}
3744	/*
3745	 * At this point we either didn't find a cluster or we weren't able to
3746	 * allocate a block from our cluster.  Free the cluster we've been
3747	 * trying to use, and go to the next block group.
3748	 */
3749	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3750	spin_unlock(&last_ptr->refill_lock);
3751	return 1;
3752}
3753
3754/*
3755 * Return >0 to inform caller that we find nothing
3756 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
 
 
 
 
 
 
 
3757 */
3758static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3759					struct find_free_extent_ctl *ffe_ctl)
3760{
3761	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3762	u64 offset;
3763
3764	/*
3765	 * We are doing an unclustered allocation, set the fragmented flag so
3766	 * we don't bother trying to setup a cluster again until we get more
3767	 * space.
3768	 */
3769	if (unlikely(last_ptr)) {
3770		spin_lock(&last_ptr->lock);
3771		last_ptr->fragmented = 1;
3772		spin_unlock(&last_ptr->lock);
3773	}
3774	if (ffe_ctl->cached) {
3775		struct btrfs_free_space_ctl *free_space_ctl;
3776
3777		free_space_ctl = bg->free_space_ctl;
3778		spin_lock(&free_space_ctl->tree_lock);
3779		if (free_space_ctl->free_space <
3780		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3781		    ffe_ctl->empty_size) {
3782			ffe_ctl->total_free_space = max_t(u64,
3783					ffe_ctl->total_free_space,
3784					free_space_ctl->free_space);
3785			spin_unlock(&free_space_ctl->tree_lock);
3786			return 1;
3787		}
3788		spin_unlock(&free_space_ctl->tree_lock);
3789	}
3790
3791	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3792			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3793			&ffe_ctl->max_extent_size);
3794	if (!offset)
3795		return 1;
3796	ffe_ctl->found_offset = offset;
3797	return 0;
3798}
3799
3800static int do_allocation_clustered(struct btrfs_block_group *block_group,
3801				   struct find_free_extent_ctl *ffe_ctl,
3802				   struct btrfs_block_group **bg_ret)
3803{
3804	int ret;
3805
3806	/* We want to try and use the cluster allocator, so lets look there */
3807	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3808		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3809		if (ret >= 0)
3810			return ret;
3811		/* ret == -ENOENT case falls through */
3812	}
3813
3814	return find_free_extent_unclustered(block_group, ffe_ctl);
3815}
3816
3817/*
3818 * Tree-log block group locking
3819 * ============================
3820 *
3821 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3822 * indicates the starting address of a block group, which is reserved only
3823 * for tree-log metadata.
3824 *
3825 * Lock nesting
3826 * ============
3827 *
3828 * space_info::lock
3829 *   block_group::lock
3830 *     fs_info::treelog_bg_lock
3831 */
3832
3833/*
3834 * Simple allocator for sequential-only block group. It only allows sequential
3835 * allocation. No need to play with trees. This function also reserves the
3836 * bytes as in btrfs_add_reserved_bytes.
3837 */
3838static int do_allocation_zoned(struct btrfs_block_group *block_group,
3839			       struct find_free_extent_ctl *ffe_ctl,
3840			       struct btrfs_block_group **bg_ret)
3841{
3842	struct btrfs_fs_info *fs_info = block_group->fs_info;
3843	struct btrfs_space_info *space_info = block_group->space_info;
3844	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3845	u64 start = block_group->start;
3846	u64 num_bytes = ffe_ctl->num_bytes;
3847	u64 avail;
3848	u64 bytenr = block_group->start;
3849	u64 log_bytenr;
3850	u64 data_reloc_bytenr;
3851	int ret = 0;
3852	bool skip = false;
3853
3854	ASSERT(btrfs_is_zoned(block_group->fs_info));
3855
3856	/*
3857	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3858	 * group, and vice versa.
3859	 */
3860	spin_lock(&fs_info->treelog_bg_lock);
3861	log_bytenr = fs_info->treelog_bg;
3862	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3863			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3864		skip = true;
3865	spin_unlock(&fs_info->treelog_bg_lock);
3866	if (skip)
3867		return 1;
3868
3869	/*
3870	 * Do not allow non-relocation blocks in the dedicated relocation block
3871	 * group, and vice versa.
3872	 */
3873	spin_lock(&fs_info->relocation_bg_lock);
3874	data_reloc_bytenr = fs_info->data_reloc_bg;
3875	if (data_reloc_bytenr &&
3876	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3877	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3878		skip = true;
3879	spin_unlock(&fs_info->relocation_bg_lock);
3880	if (skip)
3881		return 1;
3882
3883	/* Check RO and no space case before trying to activate it */
3884	spin_lock(&block_group->lock);
3885	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3886		ret = 1;
3887		/*
3888		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3889		 * Return the error after taking the locks.
3890		 */
3891	}
3892	spin_unlock(&block_group->lock);
3893
3894	/* Metadata block group is activated at write time. */
3895	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3896	    !btrfs_zone_activate(block_group)) {
3897		ret = 1;
3898		/*
3899		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3900		 * Return the error after taking the locks.
3901		 */
3902	}
3903
3904	spin_lock(&space_info->lock);
3905	spin_lock(&block_group->lock);
3906	spin_lock(&fs_info->treelog_bg_lock);
3907	spin_lock(&fs_info->relocation_bg_lock);
3908
3909	if (ret)
3910		goto out;
3911
3912	ASSERT(!ffe_ctl->for_treelog ||
3913	       block_group->start == fs_info->treelog_bg ||
3914	       fs_info->treelog_bg == 0);
3915	ASSERT(!ffe_ctl->for_data_reloc ||
3916	       block_group->start == fs_info->data_reloc_bg ||
3917	       fs_info->data_reloc_bg == 0);
3918
3919	if (block_group->ro ||
3920	    (!ffe_ctl->for_data_reloc &&
3921	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3922		ret = 1;
3923		goto out;
3924	}
3925
3926	/*
3927	 * Do not allow currently using block group to be tree-log dedicated
3928	 * block group.
3929	 */
3930	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3931	    (block_group->used || block_group->reserved)) {
3932		ret = 1;
3933		goto out;
3934	}
3935
3936	/*
3937	 * Do not allow currently used block group to be the data relocation
3938	 * dedicated block group.
3939	 */
3940	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3941	    (block_group->used || block_group->reserved)) {
3942		ret = 1;
3943		goto out;
3944	}
3945
3946	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3947	avail = block_group->zone_capacity - block_group->alloc_offset;
3948	if (avail < num_bytes) {
3949		if (ffe_ctl->max_extent_size < avail) {
3950			/*
3951			 * With sequential allocator, free space is always
3952			 * contiguous
3953			 */
3954			ffe_ctl->max_extent_size = avail;
3955			ffe_ctl->total_free_space = avail;
3956		}
3957		ret = 1;
3958		goto out;
3959	}
3960
3961	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3962		fs_info->treelog_bg = block_group->start;
3963
3964	if (ffe_ctl->for_data_reloc) {
3965		if (!fs_info->data_reloc_bg)
3966			fs_info->data_reloc_bg = block_group->start;
3967		/*
3968		 * Do not allow allocations from this block group, unless it is
3969		 * for data relocation. Compared to increasing the ->ro, setting
3970		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3971		 * writers to come in. See btrfs_inc_nocow_writers().
3972		 *
3973		 * We need to disable an allocation to avoid an allocation of
3974		 * regular (non-relocation data) extent. With mix of relocation
3975		 * extents and regular extents, we can dispatch WRITE commands
3976		 * (for relocation extents) and ZONE APPEND commands (for
3977		 * regular extents) at the same time to the same zone, which
3978		 * easily break the write pointer.
3979		 *
3980		 * Also, this flag avoids this block group to be zone finished.
3981		 */
3982		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3983	}
3984
3985	ffe_ctl->found_offset = start + block_group->alloc_offset;
3986	block_group->alloc_offset += num_bytes;
3987	spin_lock(&ctl->tree_lock);
3988	ctl->free_space -= num_bytes;
3989	spin_unlock(&ctl->tree_lock);
3990
3991	/*
3992	 * We do not check if found_offset is aligned to stripesize. The
3993	 * address is anyway rewritten when using zone append writing.
3994	 */
3995
3996	ffe_ctl->search_start = ffe_ctl->found_offset;
3997
3998out:
3999	if (ret && ffe_ctl->for_treelog)
4000		fs_info->treelog_bg = 0;
4001	if (ret && ffe_ctl->for_data_reloc)
4002		fs_info->data_reloc_bg = 0;
4003	spin_unlock(&fs_info->relocation_bg_lock);
4004	spin_unlock(&fs_info->treelog_bg_lock);
4005	spin_unlock(&block_group->lock);
4006	spin_unlock(&space_info->lock);
4007	return ret;
4008}
4009
4010static int do_allocation(struct btrfs_block_group *block_group,
4011			 struct find_free_extent_ctl *ffe_ctl,
4012			 struct btrfs_block_group **bg_ret)
4013{
4014	switch (ffe_ctl->policy) {
4015	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4016		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4017	case BTRFS_EXTENT_ALLOC_ZONED:
4018		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4019	default:
4020		BUG();
4021	}
4022}
4023
4024static void release_block_group(struct btrfs_block_group *block_group,
4025				struct find_free_extent_ctl *ffe_ctl,
4026				int delalloc)
4027{
4028	switch (ffe_ctl->policy) {
4029	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030		ffe_ctl->retry_uncached = false;
4031		break;
4032	case BTRFS_EXTENT_ALLOC_ZONED:
4033		/* Nothing to do */
4034		break;
4035	default:
4036		BUG();
4037	}
4038
4039	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4040	       ffe_ctl->index);
4041	btrfs_release_block_group(block_group, delalloc);
4042}
4043
4044static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4045				   struct btrfs_key *ins)
4046{
4047	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4048
4049	if (!ffe_ctl->use_cluster && last_ptr) {
4050		spin_lock(&last_ptr->lock);
4051		last_ptr->window_start = ins->objectid;
4052		spin_unlock(&last_ptr->lock);
4053	}
4054}
4055
4056static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4057			 struct btrfs_key *ins)
4058{
4059	switch (ffe_ctl->policy) {
4060	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4061		found_extent_clustered(ffe_ctl, ins);
4062		break;
4063	case BTRFS_EXTENT_ALLOC_ZONED:
4064		/* Nothing to do */
4065		break;
4066	default:
4067		BUG();
4068	}
4069}
4070
4071static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4072				    struct find_free_extent_ctl *ffe_ctl)
4073{
4074	/* Block group's activeness is not a requirement for METADATA block groups. */
4075	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4076		return 0;
4077
4078	/* If we can activate new zone, just allocate a chunk and use it */
4079	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4080		return 0;
4081
4082	/*
4083	 * We already reached the max active zones. Try to finish one block
4084	 * group to make a room for a new block group. This is only possible
4085	 * for a data block group because btrfs_zone_finish() may need to wait
4086	 * for a running transaction which can cause a deadlock for metadata
4087	 * allocation.
4088	 */
4089	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4090		int ret = btrfs_zone_finish_one_bg(fs_info);
4091
4092		if (ret == 1)
4093			return 0;
4094		else if (ret < 0)
4095			return ret;
4096	}
4097
4098	/*
4099	 * If we have enough free space left in an already active block group
4100	 * and we can't activate any other zone now, do not allow allocating a
4101	 * new chunk and let find_free_extent() retry with a smaller size.
4102	 */
4103	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4104		return -ENOSPC;
4105
4106	/*
4107	 * Even min_alloc_size is not left in any block groups. Since we cannot
4108	 * activate a new block group, allocating it may not help. Let's tell a
4109	 * caller to try again and hope it progress something by writing some
4110	 * parts of the region. That is only possible for data block groups,
4111	 * where a part of the region can be written.
4112	 */
4113	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4114		return -EAGAIN;
4115
4116	/*
4117	 * We cannot activate a new block group and no enough space left in any
4118	 * block groups. So, allocating a new block group may not help. But,
4119	 * there is nothing to do anyway, so let's go with it.
4120	 */
4121	return 0;
4122}
4123
4124static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4125			      struct find_free_extent_ctl *ffe_ctl)
4126{
4127	switch (ffe_ctl->policy) {
4128	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4129		return 0;
4130	case BTRFS_EXTENT_ALLOC_ZONED:
4131		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4132	default:
4133		BUG();
4134	}
4135}
4136
4137/*
4138 * Return >0 means caller needs to re-search for free extent
4139 * Return 0 means we have the needed free extent.
4140 * Return <0 means we failed to locate any free extent.
4141 */
4142static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4143					struct btrfs_key *ins,
4144					struct find_free_extent_ctl *ffe_ctl,
4145					bool full_search)
4146{
4147	struct btrfs_root *root = fs_info->chunk_root;
4148	int ret;
4149
4150	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152		ffe_ctl->orig_have_caching_bg = true;
4153
4154	if (ins->objectid) {
4155		found_extent(ffe_ctl, ins);
4156		return 0;
4157	}
4158
4159	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160		return 1;
4161
4162	ffe_ctl->index++;
4163	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164		return 1;
4165
4166	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4167	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168		ffe_ctl->index = 0;
4169		/*
4170		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4171		 * any uncached bgs and we've already done a full search
4172		 * through.
4173		 */
4174		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175		    (!ffe_ctl->orig_have_caching_bg && full_search))
4176			ffe_ctl->loop++;
4177		ffe_ctl->loop++;
4178
4179		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180			struct btrfs_trans_handle *trans;
4181			int exist = 0;
4182
4183			/* Check if allocation policy allows to create a new chunk */
4184			ret = can_allocate_chunk(fs_info, ffe_ctl);
4185			if (ret)
4186				return ret;
4187
4188			trans = current->journal_info;
4189			if (trans)
4190				exist = 1;
4191			else
4192				trans = btrfs_join_transaction(root);
4193
4194			if (IS_ERR(trans)) {
4195				ret = PTR_ERR(trans);
4196				return ret;
4197			}
4198
4199			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4200						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201
4202			/* Do not bail out on ENOSPC since we can do more. */
4203			if (ret == -ENOSPC) {
4204				ret = 0;
4205				ffe_ctl->loop++;
4206			}
4207			else if (ret < 0)
4208				btrfs_abort_transaction(trans, ret);
4209			else
4210				ret = 0;
4211			if (!exist)
4212				btrfs_end_transaction(trans);
4213			if (ret)
4214				return ret;
4215		}
4216
4217		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219				return -ENOSPC;
4220
4221			/*
4222			 * Don't loop again if we already have no empty_size and
4223			 * no empty_cluster.
4224			 */
4225			if (ffe_ctl->empty_size == 0 &&
4226			    ffe_ctl->empty_cluster == 0)
4227				return -ENOSPC;
4228			ffe_ctl->empty_size = 0;
4229			ffe_ctl->empty_cluster = 0;
4230		}
4231		return 1;
4232	}
4233	return -ENOSPC;
4234}
4235
4236static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4237					      struct btrfs_block_group *bg)
4238{
4239	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4240		return true;
4241	if (!btrfs_block_group_should_use_size_class(bg))
4242		return true;
4243	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4244		return true;
4245	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4246	    bg->size_class == BTRFS_BG_SZ_NONE)
4247		return true;
4248	return ffe_ctl->size_class == bg->size_class;
4249}
4250
4251static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4252					struct find_free_extent_ctl *ffe_ctl,
4253					struct btrfs_space_info *space_info,
4254					struct btrfs_key *ins)
4255{
4256	/*
4257	 * If our free space is heavily fragmented we may not be able to make
4258	 * big contiguous allocations, so instead of doing the expensive search
4259	 * for free space, simply return ENOSPC with our max_extent_size so we
4260	 * can go ahead and search for a more manageable chunk.
4261	 *
4262	 * If our max_extent_size is large enough for our allocation simply
4263	 * disable clustering since we will likely not be able to find enough
4264	 * space to create a cluster and induce latency trying.
4265	 */
4266	if (space_info->max_extent_size) {
4267		spin_lock(&space_info->lock);
4268		if (space_info->max_extent_size &&
4269		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4270			ins->offset = space_info->max_extent_size;
4271			spin_unlock(&space_info->lock);
4272			return -ENOSPC;
4273		} else if (space_info->max_extent_size) {
4274			ffe_ctl->use_cluster = false;
4275		}
4276		spin_unlock(&space_info->lock);
4277	}
4278
4279	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4280					       &ffe_ctl->empty_cluster);
4281	if (ffe_ctl->last_ptr) {
4282		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4283
4284		spin_lock(&last_ptr->lock);
4285		if (last_ptr->block_group)
4286			ffe_ctl->hint_byte = last_ptr->window_start;
4287		if (last_ptr->fragmented) {
4288			/*
4289			 * We still set window_start so we can keep track of the
4290			 * last place we found an allocation to try and save
4291			 * some time.
4292			 */
4293			ffe_ctl->hint_byte = last_ptr->window_start;
4294			ffe_ctl->use_cluster = false;
4295		}
4296		spin_unlock(&last_ptr->lock);
4297	}
4298
 
4299	return 0;
4300}
4301
4302static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4303				    struct find_free_extent_ctl *ffe_ctl)
4304{
4305	if (ffe_ctl->for_treelog) {
4306		spin_lock(&fs_info->treelog_bg_lock);
4307		if (fs_info->treelog_bg)
4308			ffe_ctl->hint_byte = fs_info->treelog_bg;
4309		spin_unlock(&fs_info->treelog_bg_lock);
4310	} else if (ffe_ctl->for_data_reloc) {
4311		spin_lock(&fs_info->relocation_bg_lock);
4312		if (fs_info->data_reloc_bg)
4313			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4314		spin_unlock(&fs_info->relocation_bg_lock);
4315	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4316		struct btrfs_block_group *block_group;
4317
4318		spin_lock(&fs_info->zone_active_bgs_lock);
4319		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4320			/*
4321			 * No lock is OK here because avail is monotinically
4322			 * decreasing, and this is just a hint.
4323			 */
4324			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4325
4326			if (block_group_bits(block_group, ffe_ctl->flags) &&
4327			    avail >= ffe_ctl->num_bytes) {
4328				ffe_ctl->hint_byte = block_group->start;
4329				break;
4330			}
4331		}
4332		spin_unlock(&fs_info->zone_active_bgs_lock);
4333	}
4334
4335	return 0;
4336}
4337
4338static int prepare_allocation(struct btrfs_fs_info *fs_info,
4339			      struct find_free_extent_ctl *ffe_ctl,
4340			      struct btrfs_space_info *space_info,
4341			      struct btrfs_key *ins)
4342{
4343	switch (ffe_ctl->policy) {
4344	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4345		return prepare_allocation_clustered(fs_info, ffe_ctl,
4346						    space_info, ins);
4347	case BTRFS_EXTENT_ALLOC_ZONED:
4348		return prepare_allocation_zoned(fs_info, ffe_ctl);
4349	default:
4350		BUG();
4351	}
4352}
4353
4354/*
4355 * walks the btree of allocated extents and find a hole of a given size.
4356 * The key ins is changed to record the hole:
4357 * ins->objectid == start position
4358 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4359 * ins->offset == the size of the hole.
4360 * Any available blocks before search_start are skipped.
4361 *
4362 * If there is no suitable free space, we will record the max size of
4363 * the free space extent currently.
4364 *
4365 * The overall logic and call chain:
4366 *
4367 * find_free_extent()
4368 * |- Iterate through all block groups
4369 * |  |- Get a valid block group
4370 * |  |- Try to do clustered allocation in that block group
4371 * |  |- Try to do unclustered allocation in that block group
4372 * |  |- Check if the result is valid
4373 * |  |  |- If valid, then exit
4374 * |  |- Jump to next block group
4375 * |
4376 * |- Push harder to find free extents
4377 *    |- If not found, re-iterate all block groups
4378 */
4379static noinline int find_free_extent(struct btrfs_root *root,
4380				     struct btrfs_key *ins,
4381				     struct find_free_extent_ctl *ffe_ctl)
 
 
 
4382{
4383	struct btrfs_fs_info *fs_info = root->fs_info;
4384	int ret = 0;
4385	int cache_block_group_error = 0;
4386	struct btrfs_block_group *block_group = NULL;
 
 
 
 
4387	struct btrfs_space_info *space_info;
4388	bool full_search = false;
4389
4390	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4391
4392	ffe_ctl->search_start = 0;
4393	/* For clustered allocation */
4394	ffe_ctl->empty_cluster = 0;
4395	ffe_ctl->last_ptr = NULL;
4396	ffe_ctl->use_cluster = true;
4397	ffe_ctl->have_caching_bg = false;
4398	ffe_ctl->orig_have_caching_bg = false;
4399	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4400	ffe_ctl->loop = 0;
4401	ffe_ctl->retry_uncached = false;
4402	ffe_ctl->cached = 0;
4403	ffe_ctl->max_extent_size = 0;
4404	ffe_ctl->total_free_space = 0;
4405	ffe_ctl->found_offset = 0;
4406	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4407	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4408
4409	if (btrfs_is_zoned(fs_info))
4410		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4411
4412	ins->type = BTRFS_EXTENT_ITEM_KEY;
4413	ins->objectid = 0;
4414	ins->offset = 0;
4415
4416	trace_find_free_extent(root, ffe_ctl);
4417
4418	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4419	if (!space_info) {
4420		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4421		return -ENOSPC;
4422	}
4423
4424	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4425	if (ret < 0)
4426		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4427
4428	ffe_ctl->search_start = max(ffe_ctl->search_start,
4429				    first_logical_byte(fs_info));
4430	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4431	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4432		block_group = btrfs_lookup_block_group(fs_info,
4433						       ffe_ctl->search_start);
4434		/*
4435		 * we don't want to use the block group if it doesn't match our
4436		 * allocation bits, or if its not cached.
4437		 *
4438		 * However if we are re-searching with an ideal block group
4439		 * picked out then we don't care that the block group is cached.
4440		 */
4441		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4442		    block_group->cached != BTRFS_CACHE_NO) {
 
4443			down_read(&space_info->groups_sem);
4444			if (list_empty(&block_group->list) ||
4445			    block_group->ro) {
4446				/*
4447				 * someone is removing this block group,
4448				 * we can't jump into the have_block_group
4449				 * target because our list pointers are not
4450				 * valid
4451				 */
4452				btrfs_put_block_group(block_group);
4453				up_read(&space_info->groups_sem);
4454			} else {
4455				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4456							block_group->flags);
4457				btrfs_lock_block_group(block_group,
4458						       ffe_ctl->delalloc);
4459				ffe_ctl->hinted = true;
4460				goto have_block_group;
4461			}
4462		} else if (block_group) {
4463			btrfs_put_block_group(block_group);
4464		}
4465	}
4466search:
4467	trace_find_free_extent_search_loop(root, ffe_ctl);
4468	ffe_ctl->have_caching_bg = false;
4469	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4470	    ffe_ctl->index == 0)
4471		full_search = true;
4472	down_read(&space_info->groups_sem);
4473	list_for_each_entry(block_group,
4474			    &space_info->block_groups[ffe_ctl->index], list) {
4475		struct btrfs_block_group *bg_ret;
4476
4477		ffe_ctl->hinted = false;
4478		/* If the block group is read-only, we can skip it entirely. */
4479		if (unlikely(block_group->ro)) {
4480			if (ffe_ctl->for_treelog)
4481				btrfs_clear_treelog_bg(block_group);
4482			if (ffe_ctl->for_data_reloc)
4483				btrfs_clear_data_reloc_bg(block_group);
4484			continue;
4485		}
4486
4487		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4488		ffe_ctl->search_start = block_group->start;
4489
4490		/*
4491		 * this can happen if we end up cycling through all the
4492		 * raid types, but we want to make sure we only allocate
4493		 * for the proper type.
4494		 */
4495		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4496			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4497				BTRFS_BLOCK_GROUP_RAID1_MASK |
4498				BTRFS_BLOCK_GROUP_RAID56_MASK |
4499				BTRFS_BLOCK_GROUP_RAID10;
4500
4501			/*
4502			 * if they asked for extra copies and this block group
4503			 * doesn't provide them, bail.  This does allow us to
4504			 * fill raid0 from raid1.
4505			 */
4506			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4507				goto loop;
4508
4509			/*
4510			 * This block group has different flags than we want.
4511			 * It's possible that we have MIXED_GROUP flag but no
4512			 * block group is mixed.  Just skip such block group.
4513			 */
4514			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4515			continue;
4516		}
4517
4518have_block_group:
4519		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4520		ffe_ctl->cached = btrfs_block_group_done(block_group);
4521		if (unlikely(!ffe_ctl->cached)) {
4522			ffe_ctl->have_caching_bg = true;
4523			ret = btrfs_cache_block_group(block_group, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
4524
4525			/*
4526			 * If we get ENOMEM here or something else we want to
4527			 * try other block groups, because it may not be fatal.
4528			 * However if we can't find anything else we need to
4529			 * save our return here so that we return the actual
4530			 * error that caused problems, not ENOSPC.
4531			 */
4532			if (ret < 0) {
4533				if (!cache_block_group_error)
4534					cache_block_group_error = ret;
4535				ret = 0;
4536				goto loop;
4537			}
4538			ret = 0;
4539		}
4540
4541		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4542			if (!cache_block_group_error)
4543				cache_block_group_error = -EIO;
4544			goto loop;
 
 
4545		}
4546
4547		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
 
 
 
 
4548			goto loop;
4549
4550		bg_ret = NULL;
4551		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4552		if (ret > 0)
 
 
4553			goto loop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4554
4555		if (bg_ret && bg_ret != block_group) {
4556			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4557			block_group = bg_ret;
 
 
 
 
 
 
4558		}
4559
4560		/* Checks */
4561		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4562						 fs_info->stripesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4563
4564		/* move on to the next group */
4565		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4566		    block_group->start + block_group->length) {
4567			btrfs_add_free_space_unused(block_group,
4568					    ffe_ctl->found_offset,
4569					    ffe_ctl->num_bytes);
4570			goto loop;
4571		}
4572
4573		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4574			btrfs_add_free_space_unused(block_group,
4575					ffe_ctl->found_offset,
4576					ffe_ctl->search_start - ffe_ctl->found_offset);
4577
4578		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4579					       ffe_ctl->num_bytes,
4580					       ffe_ctl->delalloc,
4581					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
 
4582		if (ret == -EAGAIN) {
4583			btrfs_add_free_space_unused(block_group,
4584					ffe_ctl->found_offset,
4585					ffe_ctl->num_bytes);
4586			goto loop;
4587		}
4588		btrfs_inc_block_group_reservations(block_group);
4589
4590		/* we are all good, lets return */
4591		ins->objectid = ffe_ctl->search_start;
4592		ins->offset = ffe_ctl->num_bytes;
4593
4594		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4595		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
 
 
 
4596		break;
4597loop:
4598		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4599		    !ffe_ctl->retry_uncached) {
4600			ffe_ctl->retry_uncached = true;
4601			btrfs_wait_block_group_cache_progress(block_group,
4602						ffe_ctl->num_bytes +
4603						ffe_ctl->empty_cluster +
4604						ffe_ctl->empty_size);
4605			goto have_block_group;
4606		}
4607		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4608		cond_resched();
4609	}
4610	up_read(&space_info->groups_sem);
4611
4612	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4613	if (ret > 0)
4614		goto search;
4615
4616	if (ret == -ENOSPC && !cache_block_group_error) {
4617		/*
4618		 * Use ffe_ctl->total_free_space as fallback if we can't find
4619		 * any contiguous hole.
4620		 */
4621		if (!ffe_ctl->max_extent_size)
4622			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623		spin_lock(&space_info->lock);
4624		space_info->max_extent_size = ffe_ctl->max_extent_size;
4625		spin_unlock(&space_info->lock);
4626		ins->offset = ffe_ctl->max_extent_size;
4627	} else if (ret == -ENOSPC) {
4628		ret = cache_block_group_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4629	}
 
4630	return ret;
4631}
4632
4633/*
4634 * Entry point to the extent allocator. Tries to find a hole that is at least
4635 * as big as @num_bytes.
4636 *
4637 * @root           -	The root that will contain this extent
4638 *
4639 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4640 *			is used for accounting purposes. This value differs
4641 *			from @num_bytes only in the case of compressed extents.
4642 *
4643 * @num_bytes      -	Number of bytes to allocate on-disk.
4644 *
4645 * @min_alloc_size -	Indicates the minimum amount of space that the
4646 *			allocator should try to satisfy. In some cases
4647 *			@num_bytes may be larger than what is required and if
4648 *			the filesystem is fragmented then allocation fails.
4649 *			However, the presence of @min_alloc_size gives a
4650 *			chance to try and satisfy the smaller allocation.
4651 *
4652 * @empty_size     -	A hint that you plan on doing more COW. This is the
4653 *			size in bytes the allocator should try to find free
4654 *			next to the block it returns.  This is just a hint and
4655 *			may be ignored by the allocator.
4656 *
4657 * @hint_byte      -	Hint to the allocator to start searching above the byte
4658 *			address passed. It might be ignored.
4659 *
4660 * @ins            -	This key is modified to record the found hole. It will
4661 *			have the following values:
4662 *			ins->objectid == start position
4663 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4664 *			ins->offset == the size of the hole.
4665 *
4666 * @is_data        -	Boolean flag indicating whether an extent is
4667 *			allocated for data (true) or metadata (false)
4668 *
4669 * @delalloc       -	Boolean flag indicating whether this allocation is for
4670 *			delalloc or not. If 'true' data_rwsem of block groups
4671 *			is going to be acquired.
4672 *
4673 *
4674 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675 * case -ENOSPC is returned then @ins->offset will contain the size of the
4676 * largest available hole the allocator managed to find.
4677 */
4678int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679			 u64 num_bytes, u64 min_alloc_size,
4680			 u64 empty_size, u64 hint_byte,
4681			 struct btrfs_key *ins, int is_data, int delalloc)
4682{
4683	struct btrfs_fs_info *fs_info = root->fs_info;
4684	struct find_free_extent_ctl ffe_ctl = {};
4685	bool final_tried = num_bytes == min_alloc_size;
4686	u64 flags;
4687	int ret;
4688	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4689	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690
4691	flags = get_alloc_profile_by_root(root, is_data);
4692again:
4693	WARN_ON(num_bytes < fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
4694
4695	ffe_ctl.ram_bytes = ram_bytes;
4696	ffe_ctl.num_bytes = num_bytes;
4697	ffe_ctl.min_alloc_size = min_alloc_size;
4698	ffe_ctl.empty_size = empty_size;
4699	ffe_ctl.flags = flags;
4700	ffe_ctl.delalloc = delalloc;
4701	ffe_ctl.hint_byte = hint_byte;
4702	ffe_ctl.for_treelog = for_treelog;
4703	ffe_ctl.for_data_reloc = for_data_reloc;
4704
4705	ret = find_free_extent(root, ins, &ffe_ctl);
4706	if (!ret && !is_data) {
4707		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708	} else if (ret == -ENOSPC) {
4709		if (!final_tried && ins->offset) {
4710			num_bytes = min(num_bytes >> 1, ins->offset);
4711			num_bytes = round_down(num_bytes,
4712					       fs_info->sectorsize);
4713			num_bytes = max(num_bytes, min_alloc_size);
4714			ram_bytes = num_bytes;
4715			if (num_bytes == min_alloc_size)
4716				final_tried = true;
4717			goto again;
4718		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719			struct btrfs_space_info *sinfo;
4720
4721			sinfo = btrfs_find_space_info(fs_info, flags);
4722			btrfs_err(fs_info,
4723	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724				  flags, num_bytes, for_treelog, for_data_reloc);
4725			if (sinfo)
4726				btrfs_dump_space_info(fs_info, sinfo,
4727						      num_bytes, 1);
4728		}
 
 
 
 
 
4729	}
4730
4731	return ret;
 
4732}
4733
4734int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4735			       u64 start, u64 len, int delalloc)
 
 
 
 
4736{
4737	struct btrfs_block_group *cache;
 
4738
4739	cache = btrfs_lookup_block_group(fs_info, start);
4740	if (!cache) {
4741		btrfs_err(fs_info, "Unable to find block group for %llu",
4742			  start);
4743		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4744	}
 
 
4745
4746	btrfs_add_free_space(cache, start, len);
4747	btrfs_free_reserved_bytes(cache, len, delalloc);
4748	trace_btrfs_reserved_extent_free(fs_info, start, len);
 
 
 
4749
4750	btrfs_put_block_group(cache);
4751	return 0;
 
4752}
4753
4754int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4755			      const struct extent_buffer *eb)
4756{
4757	struct btrfs_block_group *cache;
4758	int ret = 0;
4759
4760	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4761	if (!cache) {
4762		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4763			  eb->start);
4764		return -ENOSPC;
4765	}
4766
4767	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4768	btrfs_put_block_group(cache);
4769	return ret;
4770}
4771
4772static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4773				 u64 num_bytes)
4774{
4775	struct btrfs_fs_info *fs_info = trans->fs_info;
4776	int ret;
4777
4778	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4779	if (ret)
4780		return ret;
4781
4782	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4783	if (ret) {
4784		ASSERT(!ret);
4785		btrfs_err(fs_info, "update block group failed for %llu %llu",
4786			  bytenr, num_bytes);
4787		return ret;
4788	}
4789
4790	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4791	return 0;
4792}
4793
4794static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
4795				      u64 parent, u64 root_objectid,
4796				      u64 flags, u64 owner, u64 offset,
4797				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4798{
4799	struct btrfs_fs_info *fs_info = trans->fs_info;
4800	struct btrfs_root *extent_root;
4801	int ret;
 
4802	struct btrfs_extent_item *extent_item;
4803	struct btrfs_extent_owner_ref *oref;
4804	struct btrfs_extent_inline_ref *iref;
4805	struct btrfs_path *path;
4806	struct extent_buffer *leaf;
4807	int type;
4808	u32 size;
4809	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4810
4811	if (parent > 0)
4812		type = BTRFS_SHARED_DATA_REF_KEY;
4813	else
4814		type = BTRFS_EXTENT_DATA_REF_KEY;
4815
4816	size = sizeof(*extent_item);
4817	if (simple_quota)
4818		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4819	size += btrfs_extent_inline_ref_size(type);
4820
4821	path = btrfs_alloc_path();
4822	if (!path)
4823		return -ENOMEM;
4824
4825	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4826	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4827	if (ret) {
4828		btrfs_free_path(path);
4829		return ret;
4830	}
4831
4832	leaf = path->nodes[0];
4833	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4834				     struct btrfs_extent_item);
4835	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4836	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4837	btrfs_set_extent_flags(leaf, extent_item,
4838			       flags | BTRFS_EXTENT_FLAG_DATA);
4839
4840	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4841	if (simple_quota) {
4842		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4843		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4844		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4845		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4846	}
4847	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4848
4849	if (parent > 0) {
4850		struct btrfs_shared_data_ref *ref;
4851		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4852		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4853		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4854	} else {
4855		struct btrfs_extent_data_ref *ref;
4856		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4857		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4858		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4859		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4860		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4861	}
4862
4863	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4864	btrfs_free_path(path);
4865
4866	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
 
 
 
 
 
 
 
4867}
4868
4869static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4870				     struct btrfs_delayed_ref_node *node,
4871				     struct btrfs_delayed_extent_op *extent_op)
 
 
4872{
4873	struct btrfs_fs_info *fs_info = trans->fs_info;
4874	struct btrfs_root *extent_root;
4875	int ret;
 
4876	struct btrfs_extent_item *extent_item;
4877	struct btrfs_key extent_key;
4878	struct btrfs_tree_block_info *block_info;
4879	struct btrfs_extent_inline_ref *iref;
4880	struct btrfs_path *path;
4881	struct extent_buffer *leaf;
4882	struct btrfs_delayed_tree_ref *ref;
4883	u32 size = sizeof(*extent_item) + sizeof(*iref);
4884	u64 flags = extent_op->flags_to_set;
4885	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4886
4887	ref = btrfs_delayed_node_to_tree_ref(node);
4888
4889	extent_key.objectid = node->bytenr;
4890	if (skinny_metadata) {
4891		extent_key.offset = ref->level;
4892		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4893	} else {
4894		extent_key.offset = node->num_bytes;
4895		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4896		size += sizeof(*block_info);
4897	}
4898
4899	path = btrfs_alloc_path();
4900	if (!path)
4901		return -ENOMEM;
4902
4903	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4904	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4905				      size);
4906	if (ret) {
4907		btrfs_free_path(path);
4908		return ret;
4909	}
4910
4911	leaf = path->nodes[0];
4912	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4913				     struct btrfs_extent_item);
4914	btrfs_set_extent_refs(leaf, extent_item, 1);
4915	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4916	btrfs_set_extent_flags(leaf, extent_item,
4917			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 
4918
4919	if (skinny_metadata) {
4920		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4921	} else {
4922		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4923		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4924		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4925		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4926	}
4927
4928	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
 
 
4929		btrfs_set_extent_inline_ref_type(leaf, iref,
4930						 BTRFS_SHARED_BLOCK_REF_KEY);
4931		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4932	} else {
4933		btrfs_set_extent_inline_ref_type(leaf, iref,
4934						 BTRFS_TREE_BLOCK_REF_KEY);
4935		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4936	}
4937
4938	btrfs_mark_buffer_dirty(trans, leaf);
4939	btrfs_free_path(path);
4940
4941	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
 
 
 
 
 
 
 
4942}
4943
4944int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4945				     struct btrfs_root *root, u64 owner,
4946				     u64 offset, u64 ram_bytes,
4947				     struct btrfs_key *ins)
4948{
4949	struct btrfs_ref generic_ref = { 0 };
4950	u64 root_objectid = root->root_key.objectid;
4951	u64 owning_root = root_objectid;
4952
4953	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4954
4955	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4956		owning_root = root->relocation_src_root;
4957
4958	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4959			       ins->objectid, ins->offset, 0, owning_root);
4960	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4961			    offset, 0, false);
4962	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4963
4964	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4965}
4966
4967/*
4968 * this is used by the tree logging recovery code.  It records that
4969 * an extent has been allocated and makes sure to clear the free
4970 * space cache bits as well
4971 */
4972int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 
4973				   u64 root_objectid, u64 owner, u64 offset,
4974				   struct btrfs_key *ins)
4975{
4976	struct btrfs_fs_info *fs_info = trans->fs_info;
4977	int ret;
4978	struct btrfs_block_group *block_group;
4979	struct btrfs_space_info *space_info;
4980	struct btrfs_squota_delta delta = {
4981		.root = root_objectid,
4982		.num_bytes = ins->offset,
4983		.generation = trans->transid,
4984		.is_data = true,
4985		.is_inc = true,
4986	};
 
 
 
 
 
 
4987
4988	/*
4989	 * Mixed block groups will exclude before processing the log so we only
4990	 * need to do the exclude dance if this fs isn't mixed.
4991	 */
4992	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4993		ret = __exclude_logged_extent(fs_info, ins->objectid,
4994					      ins->offset);
4995		if (ret)
4996			return ret;
4997	}
 
 
4998
4999	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5000	if (!block_group)
5001		return -EINVAL;
 
 
 
5002
5003	space_info = block_group->space_info;
5004	spin_lock(&space_info->lock);
5005	spin_lock(&block_group->lock);
5006	space_info->bytes_reserved += ins->offset;
5007	block_group->reserved += ins->offset;
5008	spin_unlock(&block_group->lock);
5009	spin_unlock(&space_info->lock);
5010
5011	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5012					 offset, ins, 1, root_objectid);
5013	if (ret)
5014		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5015	ret = btrfs_record_squota_delta(fs_info, &delta);
5016	btrfs_put_block_group(block_group);
 
 
5017	return ret;
5018}
5019
5020#ifdef CONFIG_BTRFS_DEBUG
5021/*
5022 * Extra safety check in case the extent tree is corrupted and extent allocator
5023 * chooses to use a tree block which is already used and locked.
5024 */
5025static bool check_eb_lock_owner(const struct extent_buffer *eb)
5026{
5027	if (eb->lock_owner == current->pid) {
5028		btrfs_err_rl(eb->fs_info,
5029"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5030			     eb->start, btrfs_header_owner(eb), current->pid);
5031		return true;
5032	}
5033	return false;
5034}
5035#else
5036static bool check_eb_lock_owner(struct extent_buffer *eb)
5037{
5038	return false;
5039}
5040#endif
5041
5042static struct extent_buffer *
5043btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5044		      u64 bytenr, int level, u64 owner,
5045		      enum btrfs_lock_nesting nest)
5046{
5047	struct btrfs_fs_info *fs_info = root->fs_info;
5048	struct extent_buffer *buf;
5049	u64 lockdep_owner = owner;
5050
5051	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5052	if (IS_ERR(buf))
5053		return buf;
5054
5055	if (check_eb_lock_owner(buf)) {
5056		free_extent_buffer(buf);
5057		return ERR_PTR(-EUCLEAN);
5058	}
5059
5060	/*
5061	 * The reloc trees are just snapshots, so we need them to appear to be
5062	 * just like any other fs tree WRT lockdep.
5063	 *
5064	 * The exception however is in replace_path() in relocation, where we
5065	 * hold the lock on the original fs root and then search for the reloc
5066	 * root.  At that point we need to make sure any reloc root buffers are
5067	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5068	 * lockdep happy.
5069	 */
5070	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5071	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5072		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5073
5074	/* btrfs_clear_buffer_dirty() accesses generation field. */
5075	btrfs_set_header_generation(buf, trans->transid);
 
 
 
 
 
 
5076
5077	/*
5078	 * This needs to stay, because we could allocate a freed block from an
5079	 * old tree into a new tree, so we need to make sure this new block is
5080	 * set to the appropriate level and owner.
5081	 */
5082	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5083
5084	__btrfs_tree_lock(buf, nest);
5085	btrfs_clear_buffer_dirty(trans, buf);
5086	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5087	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5088
5089	set_extent_buffer_uptodate(buf);
5090
5091	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5092	btrfs_set_header_level(buf, level);
5093	btrfs_set_header_bytenr(buf, buf->start);
5094	btrfs_set_header_generation(buf, trans->transid);
5095	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5096	btrfs_set_header_owner(buf, owner);
5097	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5098	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5099	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5100		buf->log_index = root->log_transid % 2;
5101		/*
5102		 * we allow two log transactions at a time, use different
5103		 * EXTENT bit to differentiate dirty pages.
5104		 */
5105		if (buf->log_index == 0)
5106			set_extent_bit(&root->dirty_log_pages, buf->start,
5107				       buf->start + buf->len - 1,
5108				       EXTENT_DIRTY, NULL);
5109		else
5110			set_extent_bit(&root->dirty_log_pages, buf->start,
5111				       buf->start + buf->len - 1,
5112				       EXTENT_NEW, NULL);
5113	} else {
5114		buf->log_index = -1;
5115		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5116			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5117	}
 
5118	/* this returns a buffer locked for blocking */
5119	return buf;
5120}
5121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5122/*
5123 * finds a free extent and does all the dirty work required for allocation
5124 * returns the tree buffer or an ERR_PTR on error.
 
 
 
5125 */
5126struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5127					     struct btrfs_root *root,
5128					     u64 parent, u64 root_objectid,
5129					     const struct btrfs_disk_key *key,
5130					     int level, u64 hint,
5131					     u64 empty_size,
5132					     u64 reloc_src_root,
5133					     enum btrfs_lock_nesting nest)
5134{
5135	struct btrfs_fs_info *fs_info = root->fs_info;
5136	struct btrfs_key ins;
5137	struct btrfs_block_rsv *block_rsv;
5138	struct extent_buffer *buf;
5139	struct btrfs_delayed_extent_op *extent_op;
5140	struct btrfs_ref generic_ref = { 0 };
5141	u64 flags = 0;
5142	int ret;
5143	u32 blocksize = fs_info->nodesize;
5144	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5145	u64 owning_root;
5146
5147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5148	if (btrfs_is_testing(fs_info)) {
5149		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5150					    level, root_objectid, nest);
5151		if (!IS_ERR(buf))
5152			root->alloc_bytenr += blocksize;
5153		return buf;
5154	}
5155#endif
5156
5157	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
 
5158	if (IS_ERR(block_rsv))
5159		return ERR_CAST(block_rsv);
5160
5161	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5162				   empty_size, hint, &ins, 0, 0);
5163	if (ret)
5164		goto out_unuse;
5165
5166	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5167				    root_objectid, nest);
5168	if (IS_ERR(buf)) {
5169		ret = PTR_ERR(buf);
5170		goto out_free_reserved;
5171	}
5172	owning_root = btrfs_header_owner(buf);
 
 
 
5173
5174	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5175		if (parent == 0)
5176			parent = ins.objectid;
5177		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5178		owning_root = reloc_src_root;
5179	} else
5180		BUG_ON(parent > 0);
5181
5182	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5183		extent_op = btrfs_alloc_delayed_extent_op();
5184		if (!extent_op) {
5185			ret = -ENOMEM;
5186			goto out_free_buf;
5187		}
5188		if (key)
5189			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5190		else
5191			memset(&extent_op->key, 0, sizeof(extent_op->key));
5192		extent_op->flags_to_set = flags;
5193		extent_op->update_key = skinny_metadata ? false : true;
5194		extent_op->update_flags = true;
5195		extent_op->level = level;
5196
5197		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5198				       ins.objectid, ins.offset, parent, owning_root);
5199		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5200				    root->root_key.objectid, false);
5201		btrfs_ref_tree_mod(fs_info, &generic_ref);
5202		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5203		if (ret)
5204			goto out_free_delayed;
5205	}
5206	return buf;
5207
5208out_free_delayed:
5209	btrfs_free_delayed_extent_op(extent_op);
5210out_free_buf:
5211	btrfs_tree_unlock(buf);
5212	free_extent_buffer(buf);
5213out_free_reserved:
5214	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5215out_unuse:
5216	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5217	return ERR_PTR(ret);
5218}
5219
5220struct walk_control {
5221	u64 refs[BTRFS_MAX_LEVEL];
5222	u64 flags[BTRFS_MAX_LEVEL];
5223	struct btrfs_key update_progress;
5224	struct btrfs_key drop_progress;
5225	int drop_level;
5226	int stage;
5227	int level;
5228	int shared_level;
5229	int update_ref;
5230	int keep_locks;
5231	int reada_slot;
5232	int reada_count;
5233	int restarted;
5234};
5235
5236#define DROP_REFERENCE	1
5237#define UPDATE_BACKREF	2
5238
5239static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5240				     struct btrfs_root *root,
5241				     struct walk_control *wc,
5242				     struct btrfs_path *path)
5243{
5244	struct btrfs_fs_info *fs_info = root->fs_info;
5245	u64 bytenr;
5246	u64 generation;
5247	u64 refs;
5248	u64 flags;
5249	u32 nritems;
 
5250	struct btrfs_key key;
5251	struct extent_buffer *eb;
5252	int ret;
5253	int slot;
5254	int nread = 0;
5255
5256	if (path->slots[wc->level] < wc->reada_slot) {
5257		wc->reada_count = wc->reada_count * 2 / 3;
5258		wc->reada_count = max(wc->reada_count, 2);
5259	} else {
5260		wc->reada_count = wc->reada_count * 3 / 2;
5261		wc->reada_count = min_t(int, wc->reada_count,
5262					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5263	}
5264
5265	eb = path->nodes[wc->level];
5266	nritems = btrfs_header_nritems(eb);
 
5267
5268	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5269		if (nread >= wc->reada_count)
5270			break;
5271
5272		cond_resched();
5273		bytenr = btrfs_node_blockptr(eb, slot);
5274		generation = btrfs_node_ptr_generation(eb, slot);
5275
5276		if (slot == path->slots[wc->level])
5277			goto reada;
5278
5279		if (wc->stage == UPDATE_BACKREF &&
5280		    generation <= root->root_key.offset)
5281			continue;
5282
5283		/* We don't lock the tree block, it's OK to be racy here */
5284		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5285					       wc->level - 1, 1, &refs,
5286					       &flags, NULL);
5287		/* We don't care about errors in readahead. */
5288		if (ret < 0)
5289			continue;
5290		BUG_ON(refs == 0);
5291
5292		if (wc->stage == DROP_REFERENCE) {
5293			if (refs == 1)
5294				goto reada;
5295
5296			if (wc->level == 1 &&
5297			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5298				continue;
5299			if (!wc->update_ref ||
5300			    generation <= root->root_key.offset)
5301				continue;
5302			btrfs_node_key_to_cpu(eb, &key, slot);
5303			ret = btrfs_comp_cpu_keys(&key,
5304						  &wc->update_progress);
5305			if (ret < 0)
5306				continue;
5307		} else {
5308			if (wc->level == 1 &&
5309			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5310				continue;
5311		}
5312reada:
5313		btrfs_readahead_node_child(eb, slot);
 
 
 
5314		nread++;
5315	}
5316	wc->reada_slot = slot;
5317}
5318
5319/*
5320 * helper to process tree block while walking down the tree.
5321 *
5322 * when wc->stage == UPDATE_BACKREF, this function updates
5323 * back refs for pointers in the block.
5324 *
5325 * NOTE: return value 1 means we should stop walking down.
5326 */
5327static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5328				   struct btrfs_root *root,
5329				   struct btrfs_path *path,
5330				   struct walk_control *wc, int lookup_info)
5331{
5332	struct btrfs_fs_info *fs_info = root->fs_info;
5333	int level = wc->level;
5334	struct extent_buffer *eb = path->nodes[level];
5335	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5336	int ret;
5337
5338	if (wc->stage == UPDATE_BACKREF &&
5339	    btrfs_header_owner(eb) != root->root_key.objectid)
5340		return 1;
5341
5342	/*
5343	 * when reference count of tree block is 1, it won't increase
5344	 * again. once full backref flag is set, we never clear it.
5345	 */
5346	if (lookup_info &&
5347	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5348	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5349		BUG_ON(!path->locks[level]);
5350		ret = btrfs_lookup_extent_info(trans, fs_info,
5351					       eb->start, level, 1,
5352					       &wc->refs[level],
5353					       &wc->flags[level],
5354					       NULL);
5355		BUG_ON(ret == -ENOMEM);
5356		if (ret)
5357			return ret;
5358		BUG_ON(wc->refs[level] == 0);
5359	}
5360
5361	if (wc->stage == DROP_REFERENCE) {
5362		if (wc->refs[level] > 1)
5363			return 1;
5364
5365		if (path->locks[level] && !wc->keep_locks) {
5366			btrfs_tree_unlock_rw(eb, path->locks[level]);
5367			path->locks[level] = 0;
5368		}
5369		return 0;
5370	}
5371
5372	/* wc->stage == UPDATE_BACKREF */
5373	if (!(wc->flags[level] & flag)) {
5374		BUG_ON(!path->locks[level]);
5375		ret = btrfs_inc_ref(trans, root, eb, 1);
5376		BUG_ON(ret); /* -ENOMEM */
5377		ret = btrfs_dec_ref(trans, root, eb, 0);
5378		BUG_ON(ret); /* -ENOMEM */
5379		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5380		BUG_ON(ret); /* -ENOMEM */
 
5381		wc->flags[level] |= flag;
5382	}
5383
5384	/*
5385	 * the block is shared by multiple trees, so it's not good to
5386	 * keep the tree lock
5387	 */
5388	if (path->locks[level] && level > 0) {
5389		btrfs_tree_unlock_rw(eb, path->locks[level]);
5390		path->locks[level] = 0;
5391	}
5392	return 0;
5393}
5394
5395/*
5396 * This is used to verify a ref exists for this root to deal with a bug where we
5397 * would have a drop_progress key that hadn't been updated properly.
5398 */
5399static int check_ref_exists(struct btrfs_trans_handle *trans,
5400			    struct btrfs_root *root, u64 bytenr, u64 parent,
5401			    int level)
5402{
5403	struct btrfs_path *path;
5404	struct btrfs_extent_inline_ref *iref;
5405	int ret;
5406
5407	path = btrfs_alloc_path();
5408	if (!path)
5409		return -ENOMEM;
5410
5411	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5412				    root->fs_info->nodesize, parent,
5413				    root->root_key.objectid, level, 0);
5414	btrfs_free_path(path);
5415	if (ret == -ENOENT)
5416		return 0;
5417	if (ret < 0)
5418		return ret;
5419	return 1;
5420}
5421
5422/*
5423 * helper to process tree block pointer.
5424 *
5425 * when wc->stage == DROP_REFERENCE, this function checks
5426 * reference count of the block pointed to. if the block
5427 * is shared and we need update back refs for the subtree
5428 * rooted at the block, this function changes wc->stage to
5429 * UPDATE_BACKREF. if the block is shared and there is no
5430 * need to update back, this function drops the reference
5431 * to the block.
5432 *
5433 * NOTE: return value 1 means we should stop walking down.
5434 */
5435static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5436				 struct btrfs_root *root,
5437				 struct btrfs_path *path,
5438				 struct walk_control *wc, int *lookup_info)
5439{
5440	struct btrfs_fs_info *fs_info = root->fs_info;
5441	u64 bytenr;
5442	u64 generation;
5443	u64 parent;
5444	u64 owner_root = 0;
5445	struct btrfs_tree_parent_check check = { 0 };
5446	struct btrfs_key key;
5447	struct btrfs_ref ref = { 0 };
5448	struct extent_buffer *next;
5449	int level = wc->level;
5450	int reada = 0;
5451	int ret = 0;
5452	bool need_account = false;
5453
5454	generation = btrfs_node_ptr_generation(path->nodes[level],
5455					       path->slots[level]);
5456	/*
5457	 * if the lower level block was created before the snapshot
5458	 * was created, we know there is no need to update back refs
5459	 * for the subtree
5460	 */
5461	if (wc->stage == UPDATE_BACKREF &&
5462	    generation <= root->root_key.offset) {
5463		*lookup_info = 1;
5464		return 1;
5465	}
5466
5467	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 
5468
5469	check.level = level - 1;
5470	check.transid = generation;
5471	check.owner_root = root->root_key.objectid;
5472	check.has_first_key = true;
5473	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5474			      path->slots[level]);
5475
5476	next = find_extent_buffer(fs_info, bytenr);
5477	if (!next) {
5478		next = btrfs_find_create_tree_block(fs_info, bytenr,
5479				root->root_key.objectid, level - 1);
5480		if (IS_ERR(next))
5481			return PTR_ERR(next);
5482		reada = 1;
5483	}
5484	btrfs_tree_lock(next);
 
5485
5486	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5487				       &wc->refs[level - 1],
5488				       &wc->flags[level - 1],
5489				       &owner_root);
5490	if (ret < 0)
5491		goto out_unlock;
5492
5493	if (unlikely(wc->refs[level - 1] == 0)) {
5494		btrfs_err(fs_info, "Missing references.");
5495		ret = -EIO;
5496		goto out_unlock;
5497	}
5498	*lookup_info = 0;
5499
5500	if (wc->stage == DROP_REFERENCE) {
5501		if (wc->refs[level - 1] > 1) {
5502			need_account = true;
5503			if (level == 1 &&
5504			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5505				goto skip;
5506
5507			if (!wc->update_ref ||
5508			    generation <= root->root_key.offset)
5509				goto skip;
5510
5511			btrfs_node_key_to_cpu(path->nodes[level], &key,
5512					      path->slots[level]);
5513			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5514			if (ret < 0)
5515				goto skip;
5516
5517			wc->stage = UPDATE_BACKREF;
5518			wc->shared_level = level - 1;
5519		}
5520	} else {
5521		if (level == 1 &&
5522		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5523			goto skip;
5524	}
5525
5526	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5527		btrfs_tree_unlock(next);
5528		free_extent_buffer(next);
5529		next = NULL;
5530		*lookup_info = 1;
5531	}
5532
5533	if (!next) {
5534		if (reada && level == 1)
5535			reada_walk_down(trans, root, wc, path);
5536		next = read_tree_block(fs_info, bytenr, &check);
5537		if (IS_ERR(next)) {
5538			return PTR_ERR(next);
5539		} else if (!extent_buffer_uptodate(next)) {
5540			free_extent_buffer(next);
5541			return -EIO;
5542		}
5543		btrfs_tree_lock(next);
 
5544	}
5545
5546	level--;
5547	ASSERT(level == btrfs_header_level(next));
5548	if (level != btrfs_header_level(next)) {
5549		btrfs_err(root->fs_info, "mismatched level");
5550		ret = -EIO;
5551		goto out_unlock;
5552	}
5553	path->nodes[level] = next;
5554	path->slots[level] = 0;
5555	path->locks[level] = BTRFS_WRITE_LOCK;
5556	wc->level = level;
5557	if (wc->level == 1)
5558		wc->reada_slot = 0;
5559	return 0;
5560skip:
5561	wc->refs[level - 1] = 0;
5562	wc->flags[level - 1] = 0;
5563	if (wc->stage == DROP_REFERENCE) {
5564		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5565			parent = path->nodes[level]->start;
5566		} else {
5567			ASSERT(root->root_key.objectid ==
5568			       btrfs_header_owner(path->nodes[level]));
5569			if (root->root_key.objectid !=
5570			    btrfs_header_owner(path->nodes[level])) {
5571				btrfs_err(root->fs_info,
5572						"mismatched block owner");
5573				ret = -EIO;
5574				goto out_unlock;
5575			}
5576			parent = 0;
5577		}
5578
5579		/*
5580		 * If we had a drop_progress we need to verify the refs are set
5581		 * as expected.  If we find our ref then we know that from here
5582		 * on out everything should be correct, and we can clear the
5583		 * ->restarted flag.
5584		 */
5585		if (wc->restarted) {
5586			ret = check_ref_exists(trans, root, bytenr, parent,
5587					       level - 1);
5588			if (ret < 0)
5589				goto out_unlock;
5590			if (ret == 0)
5591				goto no_delete;
5592			ret = 0;
5593			wc->restarted = 0;
5594		}
5595
5596		/*
5597		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5598		 * already accounted them at merge time (replace_path),
5599		 * thus we could skip expensive subtree trace here.
5600		 */
5601		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5602		    need_account) {
5603			ret = btrfs_qgroup_trace_subtree(trans, next,
5604							 generation, level - 1);
5605			if (ret) {
5606				btrfs_err_rl(fs_info,
5607					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5608					     ret);
5609			}
5610		}
5611
5612		/*
5613		 * We need to update the next key in our walk control so we can
5614		 * update the drop_progress key accordingly.  We don't care if
5615		 * find_next_key doesn't find a key because that means we're at
5616		 * the end and are going to clean up now.
5617		 */
5618		wc->drop_level = level;
5619		find_next_key(path, level, &wc->drop_progress);
5620
5621		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5622				       fs_info->nodesize, parent, owner_root);
5623		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5624				    0, false);
5625		ret = btrfs_free_extent(trans, &ref);
5626		if (ret)
5627			goto out_unlock;
5628	}
5629no_delete:
5630	*lookup_info = 1;
5631	ret = 1;
5632
5633out_unlock:
5634	btrfs_tree_unlock(next);
5635	free_extent_buffer(next);
5636
5637	return ret;
5638}
5639
5640/*
5641 * helper to process tree block while walking up the tree.
5642 *
5643 * when wc->stage == DROP_REFERENCE, this function drops
5644 * reference count on the block.
5645 *
5646 * when wc->stage == UPDATE_BACKREF, this function changes
5647 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5648 * to UPDATE_BACKREF previously while processing the block.
5649 *
5650 * NOTE: return value 1 means we should stop walking up.
5651 */
5652static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5653				 struct btrfs_root *root,
5654				 struct btrfs_path *path,
5655				 struct walk_control *wc)
5656{
5657	struct btrfs_fs_info *fs_info = root->fs_info;
5658	int ret;
5659	int level = wc->level;
5660	struct extent_buffer *eb = path->nodes[level];
5661	u64 parent = 0;
5662
5663	if (wc->stage == UPDATE_BACKREF) {
5664		BUG_ON(wc->shared_level < level);
5665		if (level < wc->shared_level)
5666			goto out;
5667
5668		ret = find_next_key(path, level + 1, &wc->update_progress);
5669		if (ret > 0)
5670			wc->update_ref = 0;
5671
5672		wc->stage = DROP_REFERENCE;
5673		wc->shared_level = -1;
5674		path->slots[level] = 0;
5675
5676		/*
5677		 * check reference count again if the block isn't locked.
5678		 * we should start walking down the tree again if reference
5679		 * count is one.
5680		 */
5681		if (!path->locks[level]) {
5682			BUG_ON(level == 0);
5683			btrfs_tree_lock(eb);
5684			path->locks[level] = BTRFS_WRITE_LOCK;
 
5685
5686			ret = btrfs_lookup_extent_info(trans, fs_info,
5687						       eb->start, level, 1,
5688						       &wc->refs[level],
5689						       &wc->flags[level],
5690						       NULL);
5691			if (ret < 0) {
5692				btrfs_tree_unlock_rw(eb, path->locks[level]);
5693				path->locks[level] = 0;
5694				return ret;
5695			}
5696			BUG_ON(wc->refs[level] == 0);
5697			if (wc->refs[level] == 1) {
5698				btrfs_tree_unlock_rw(eb, path->locks[level]);
5699				path->locks[level] = 0;
5700				return 1;
5701			}
5702		}
5703	}
5704
5705	/* wc->stage == DROP_REFERENCE */
5706	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5707
5708	if (wc->refs[level] == 1) {
5709		if (level == 0) {
5710			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5711				ret = btrfs_dec_ref(trans, root, eb, 1);
5712			else
5713				ret = btrfs_dec_ref(trans, root, eb, 0);
5714			BUG_ON(ret); /* -ENOMEM */
5715			if (is_fstree(root->root_key.objectid)) {
5716				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5717				if (ret) {
5718					btrfs_err_rl(fs_info,
5719	"error %d accounting leaf items, quota is out of sync, rescan required",
5720					     ret);
5721				}
5722			}
5723		}
5724		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5725		if (!path->locks[level]) {
 
5726			btrfs_tree_lock(eb);
5727			path->locks[level] = BTRFS_WRITE_LOCK;
 
5728		}
5729		btrfs_clear_buffer_dirty(trans, eb);
5730	}
5731
5732	if (eb == root->node) {
5733		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5734			parent = eb->start;
5735		else if (root->root_key.objectid != btrfs_header_owner(eb))
5736			goto owner_mismatch;
 
5737	} else {
5738		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5739			parent = path->nodes[level + 1]->start;
5740		else if (root->root_key.objectid !=
5741			 btrfs_header_owner(path->nodes[level + 1]))
5742			goto owner_mismatch;
5743	}
5744
5745	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5746			      wc->refs[level] == 1);
5747out:
5748	wc->refs[level] = 0;
5749	wc->flags[level] = 0;
5750	return 0;
5751
5752owner_mismatch:
5753	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5754		     btrfs_header_owner(eb), root->root_key.objectid);
5755	return -EUCLEAN;
5756}
5757
5758static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5759				   struct btrfs_root *root,
5760				   struct btrfs_path *path,
5761				   struct walk_control *wc)
5762{
5763	int level = wc->level;
5764	int lookup_info = 1;
5765	int ret = 0;
5766
5767	while (level >= 0) {
5768		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5769		if (ret)
5770			break;
5771
5772		if (level == 0)
5773			break;
5774
5775		if (path->slots[level] >=
5776		    btrfs_header_nritems(path->nodes[level]))
5777			break;
5778
5779		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5780		if (ret > 0) {
5781			path->slots[level]++;
5782			continue;
5783		} else if (ret < 0)
5784			break;
5785		level = wc->level;
5786	}
5787	return (ret == 1) ? 0 : ret;
5788}
5789
5790static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5791				 struct btrfs_root *root,
5792				 struct btrfs_path *path,
5793				 struct walk_control *wc, int max_level)
5794{
5795	int level = wc->level;
5796	int ret;
5797
5798	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5799	while (level < max_level && path->nodes[level]) {
5800		wc->level = level;
5801		if (path->slots[level] + 1 <
5802		    btrfs_header_nritems(path->nodes[level])) {
5803			path->slots[level]++;
5804			return 0;
5805		} else {
5806			ret = walk_up_proc(trans, root, path, wc);
5807			if (ret > 0)
5808				return 0;
5809			if (ret < 0)
5810				return ret;
5811
5812			if (path->locks[level]) {
5813				btrfs_tree_unlock_rw(path->nodes[level],
5814						     path->locks[level]);
5815				path->locks[level] = 0;
5816			}
5817			free_extent_buffer(path->nodes[level]);
5818			path->nodes[level] = NULL;
5819			level++;
5820		}
5821	}
5822	return 1;
5823}
5824
5825/*
5826 * drop a subvolume tree.
5827 *
5828 * this function traverses the tree freeing any blocks that only
5829 * referenced by the tree.
5830 *
5831 * when a shared tree block is found. this function decreases its
5832 * reference count by one. if update_ref is true, this function
5833 * also make sure backrefs for the shared block and all lower level
5834 * blocks are properly updated.
5835 *
5836 * If called with for_reloc == 0, may exit early with -EAGAIN
5837 */
5838int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
 
5839{
5840	const bool is_reloc_root = (root->root_key.objectid ==
5841				    BTRFS_TREE_RELOC_OBJECTID);
5842	struct btrfs_fs_info *fs_info = root->fs_info;
5843	struct btrfs_path *path;
5844	struct btrfs_trans_handle *trans;
5845	struct btrfs_root *tree_root = fs_info->tree_root;
5846	struct btrfs_root_item *root_item = &root->root_item;
5847	struct walk_control *wc;
5848	struct btrfs_key key;
5849	int err = 0;
5850	int ret;
5851	int level;
5852	bool root_dropped = false;
5853	bool unfinished_drop = false;
5854
5855	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5856
5857	path = btrfs_alloc_path();
5858	if (!path) {
5859		err = -ENOMEM;
5860		goto out;
5861	}
5862
5863	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5864	if (!wc) {
5865		btrfs_free_path(path);
5866		err = -ENOMEM;
5867		goto out;
5868	}
5869
5870	/*
5871	 * Use join to avoid potential EINTR from transaction start. See
5872	 * wait_reserve_ticket and the whole reservation callchain.
5873	 */
5874	if (for_reloc)
5875		trans = btrfs_join_transaction(tree_root);
5876	else
5877		trans = btrfs_start_transaction(tree_root, 0);
5878	if (IS_ERR(trans)) {
5879		err = PTR_ERR(trans);
5880		goto out_free;
5881	}
5882
5883	err = btrfs_run_delayed_items(trans);
5884	if (err)
5885		goto out_end_trans;
5886
5887	/*
5888	 * This will help us catch people modifying the fs tree while we're
5889	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5890	 * dropped as we unlock the root node and parent nodes as we walk down
5891	 * the tree, assuming nothing will change.  If something does change
5892	 * then we'll have stale information and drop references to blocks we've
5893	 * already dropped.
5894	 */
5895	set_bit(BTRFS_ROOT_DELETING, &root->state);
5896	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5897
5898	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5899		level = btrfs_header_level(root->node);
5900		path->nodes[level] = btrfs_lock_root_node(root);
 
5901		path->slots[level] = 0;
5902		path->locks[level] = BTRFS_WRITE_LOCK;
5903		memset(&wc->update_progress, 0,
5904		       sizeof(wc->update_progress));
5905	} else {
5906		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5907		memcpy(&wc->update_progress, &key,
5908		       sizeof(wc->update_progress));
5909
5910		level = btrfs_root_drop_level(root_item);
5911		BUG_ON(level == 0);
5912		path->lowest_level = level;
5913		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914		path->lowest_level = 0;
5915		if (ret < 0) {
5916			err = ret;
5917			goto out_end_trans;
5918		}
5919		WARN_ON(ret > 0);
5920
5921		/*
5922		 * unlock our path, this is safe because only this
5923		 * function is allowed to delete this snapshot
5924		 */
5925		btrfs_unlock_up_safe(path, 0);
5926
5927		level = btrfs_header_level(root->node);
5928		while (1) {
5929			btrfs_tree_lock(path->nodes[level]);
5930			path->locks[level] = BTRFS_WRITE_LOCK;
5931
5932			ret = btrfs_lookup_extent_info(trans, fs_info,
5933						path->nodes[level]->start,
5934						level, 1, &wc->refs[level],
5935						&wc->flags[level], NULL);
5936			if (ret < 0) {
5937				err = ret;
5938				goto out_end_trans;
5939			}
5940			BUG_ON(wc->refs[level] == 0);
5941
5942			if (level == btrfs_root_drop_level(root_item))
5943				break;
5944
5945			btrfs_tree_unlock(path->nodes[level]);
5946			path->locks[level] = 0;
5947			WARN_ON(wc->refs[level] != 1);
5948			level--;
5949		}
5950	}
5951
5952	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5953	wc->level = level;
5954	wc->shared_level = -1;
5955	wc->stage = DROP_REFERENCE;
5956	wc->update_ref = update_ref;
5957	wc->keep_locks = 0;
5958	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5959
5960	while (1) {
5961
5962		ret = walk_down_tree(trans, root, path, wc);
5963		if (ret < 0) {
5964			btrfs_abort_transaction(trans, ret);
5965			err = ret;
5966			break;
5967		}
5968
5969		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5970		if (ret < 0) {
5971			btrfs_abort_transaction(trans, ret);
5972			err = ret;
5973			break;
5974		}
5975
5976		if (ret > 0) {
5977			BUG_ON(wc->stage != DROP_REFERENCE);
5978			break;
5979		}
5980
5981		if (wc->stage == DROP_REFERENCE) {
5982			wc->drop_level = wc->level;
5983			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5984					      &wc->drop_progress,
5985					      path->slots[wc->drop_level]);
5986		}
5987		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5988				      &wc->drop_progress);
5989		btrfs_set_root_drop_level(root_item, wc->drop_level);
5990
5991		BUG_ON(wc->level == 0);
5992		if (btrfs_should_end_transaction(trans) ||
5993		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5994			ret = btrfs_update_root(trans, tree_root,
5995						&root->root_key,
5996						root_item);
5997			if (ret) {
5998				btrfs_abort_transaction(trans, ret);
5999				err = ret;
6000				goto out_end_trans;
6001			}
6002
6003			if (!is_reloc_root)
6004				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6005
6006			btrfs_end_transaction_throttle(trans);
6007			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6008				btrfs_debug(fs_info,
6009					    "drop snapshot early exit");
6010				err = -EAGAIN;
6011				goto out_free;
6012			}
6013
6014		       /*
6015			* Use join to avoid potential EINTR from transaction
6016			* start. See wait_reserve_ticket and the whole
6017			* reservation callchain.
6018			*/
6019			if (for_reloc)
6020				trans = btrfs_join_transaction(tree_root);
6021			else
6022				trans = btrfs_start_transaction(tree_root, 0);
6023			if (IS_ERR(trans)) {
6024				err = PTR_ERR(trans);
6025				goto out_free;
6026			}
6027		}
6028	}
6029	btrfs_release_path(path);
6030	if (err)
6031		goto out_end_trans;
6032
6033	ret = btrfs_del_root(trans, &root->root_key);
6034	if (ret) {
6035		btrfs_abort_transaction(trans, ret);
6036		err = ret;
6037		goto out_end_trans;
6038	}
6039
6040	if (!is_reloc_root) {
6041		ret = btrfs_find_root(tree_root, &root->root_key, path,
6042				      NULL, NULL);
6043		if (ret < 0) {
6044			btrfs_abort_transaction(trans, ret);
6045			err = ret;
6046			goto out_end_trans;
6047		} else if (ret > 0) {
6048			/* if we fail to delete the orphan item this time
6049			 * around, it'll get picked up the next time.
6050			 *
6051			 * The most common failure here is just -ENOENT.
6052			 */
6053			btrfs_del_orphan_item(trans, tree_root,
6054					      root->root_key.objectid);
6055		}
6056	}
6057
6058	/*
6059	 * This subvolume is going to be completely dropped, and won't be
6060	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6061	 * commit transaction time.  So free it here manually.
6062	 */
6063	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6064	btrfs_qgroup_free_meta_all_pertrans(root);
6065
6066	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6067		btrfs_add_dropped_root(trans, root);
6068	else
6069		btrfs_put_root(root);
6070	root_dropped = true;
6071out_end_trans:
6072	if (!is_reloc_root)
6073		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6074
6075	btrfs_end_transaction_throttle(trans);
6076out_free:
 
6077	kfree(wc);
6078	btrfs_free_path(path);
6079out:
6080	/*
6081	 * We were an unfinished drop root, check to see if there are any
6082	 * pending, and if not clear and wake up any waiters.
6083	 */
6084	if (!err && unfinished_drop)
6085		btrfs_maybe_wake_unfinished_drop(fs_info);
6086
6087	/*
6088	 * So if we need to stop dropping the snapshot for whatever reason we
6089	 * need to make sure to add it back to the dead root list so that we
6090	 * keep trying to do the work later.  This also cleans up roots if we
6091	 * don't have it in the radix (like when we recover after a power fail
6092	 * or unmount) so we don't leak memory.
6093	 */
6094	if (!for_reloc && !root_dropped)
6095		btrfs_add_dead_root(root);
6096	return err;
6097}
6098
6099/*
6100 * drop subtree rooted at tree block 'node'.
6101 *
6102 * NOTE: this function will unlock and release tree block 'node'
6103 * only used by relocation code
6104 */
6105int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6106			struct btrfs_root *root,
6107			struct extent_buffer *node,
6108			struct extent_buffer *parent)
6109{
6110	struct btrfs_fs_info *fs_info = root->fs_info;
6111	struct btrfs_path *path;
6112	struct walk_control *wc;
6113	int level;
6114	int parent_level;
6115	int ret = 0;
6116	int wret;
6117
6118	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6119
6120	path = btrfs_alloc_path();
6121	if (!path)
6122		return -ENOMEM;
6123
6124	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6125	if (!wc) {
6126		btrfs_free_path(path);
6127		return -ENOMEM;
6128	}
6129
6130	btrfs_assert_tree_write_locked(parent);
6131	parent_level = btrfs_header_level(parent);
6132	atomic_inc(&parent->refs);
6133	path->nodes[parent_level] = parent;
6134	path->slots[parent_level] = btrfs_header_nritems(parent);
6135
6136	btrfs_assert_tree_write_locked(node);
6137	level = btrfs_header_level(node);
6138	path->nodes[level] = node;
6139	path->slots[level] = 0;
6140	path->locks[level] = BTRFS_WRITE_LOCK;
6141
6142	wc->refs[parent_level] = 1;
6143	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6144	wc->level = level;
6145	wc->shared_level = -1;
6146	wc->stage = DROP_REFERENCE;
6147	wc->update_ref = 0;
6148	wc->keep_locks = 1;
6149	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6150
6151	while (1) {
6152		wret = walk_down_tree(trans, root, path, wc);
6153		if (wret < 0) {
6154			ret = wret;
6155			break;
6156		}
6157
6158		wret = walk_up_tree(trans, root, path, wc, parent_level);
6159		if (wret < 0)
6160			ret = wret;
6161		if (wret != 0)
6162			break;
6163	}
6164
6165	kfree(wc);
6166	btrfs_free_path(path);
6167	return ret;
6168}
6169
6170int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6171				   u64 start, u64 end)
6172{
6173	return unpin_extent_range(fs_info, start, end, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6174}
6175
6176/*
6177 * It used to be that old block groups would be left around forever.
6178 * Iterating over them would be enough to trim unused space.  Since we
6179 * now automatically remove them, we also need to iterate over unallocated
6180 * space.
6181 *
6182 * We don't want a transaction for this since the discard may take a
6183 * substantial amount of time.  We don't require that a transaction be
6184 * running, but we do need to take a running transaction into account
6185 * to ensure that we're not discarding chunks that were released or
6186 * allocated in the current transaction.
6187 *
6188 * Holding the chunks lock will prevent other threads from allocating
6189 * or releasing chunks, but it won't prevent a running transaction
6190 * from committing and releasing the memory that the pending chunks
6191 * list head uses.  For that, we need to take a reference to the
6192 * transaction and hold the commit root sem.  We only need to hold
6193 * it while performing the free space search since we have already
6194 * held back allocations.
6195 */
6196static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6197{
6198	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6199	int ret;
 
6200
6201	*trimmed = 0;
 
6202
6203	/* Discard not supported = nothing to do. */
6204	if (!bdev_max_discard_sectors(device->bdev))
6205		return 0;
 
6206
6207	/* Not writable = nothing to do. */
6208	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6209		return 0;
 
 
 
6210
6211	/* No free space = nothing to do. */
6212	if (device->total_bytes <= device->bytes_used)
6213		return 0;
6214
6215	ret = 0;
 
6216
6217	while (1) {
6218		struct btrfs_fs_info *fs_info = device->fs_info;
6219		u64 bytes;
6220
6221		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6222		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6223			break;
 
 
6224
6225		find_first_clear_extent_bit(&device->alloc_state, start,
6226					    &start, &end,
6227					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6228
6229		/* Check if there are any CHUNK_* bits left */
6230		if (start > device->total_bytes) {
6231			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6232			btrfs_warn_in_rcu(fs_info,
6233"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6234					  start, end - start + 1,
6235					  btrfs_dev_name(device),
6236					  device->total_bytes);
6237			mutex_unlock(&fs_info->chunk_mutex);
6238			ret = 0;
6239			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6240		}
6241
6242		/* Ensure we skip the reserved space on each device. */
6243		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6244
6245		/*
6246		 * If find_first_clear_extent_bit find a range that spans the
6247		 * end of the device it will set end to -1, in this case it's up
6248		 * to the caller to trim the value to the size of the device.
6249		 */
6250		end = min(end, device->total_bytes - 1);
 
6251
6252		len = end - start + 1;
 
6253
6254		/* We didn't find any extents */
6255		if (!len) {
6256			mutex_unlock(&fs_info->chunk_mutex);
6257			ret = 0;
6258			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6259		}
 
 
 
 
 
6260
6261		ret = btrfs_issue_discard(device->bdev, start, len,
6262					  &bytes);
6263		if (!ret)
6264			set_extent_bit(&device->alloc_state, start,
6265				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6266		mutex_unlock(&fs_info->chunk_mutex);
6267
6268		if (ret)
6269			break;
 
 
6270
6271		start += len;
6272		*trimmed += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6273
6274		if (fatal_signal_pending(current)) {
6275			ret = -ERESTARTSYS;
 
 
 
 
 
 
 
 
 
 
6276			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6277		}
6278
6279		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6280	}
6281
 
 
 
 
6282	return ret;
6283}
6284
6285/*
6286 * Trim the whole filesystem by:
6287 * 1) trimming the free space in each block group
6288 * 2) trimming the unallocated space on each device
6289 *
6290 * This will also continue trimming even if a block group or device encounters
6291 * an error.  The return value will be the last error, or 0 if nothing bad
6292 * happens.
6293 */
6294int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6295{
6296	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6297	struct btrfs_block_group *cache = NULL;
6298	struct btrfs_device *device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6299	u64 group_trimmed;
6300	u64 range_end = U64_MAX;
6301	u64 start;
6302	u64 end;
6303	u64 trimmed = 0;
6304	u64 bg_failed = 0;
6305	u64 dev_failed = 0;
6306	int bg_ret = 0;
6307	int dev_ret = 0;
6308	int ret = 0;
6309
6310	if (range->start == U64_MAX)
6311		return -EINVAL;
6312
6313	/*
6314	 * Check range overflow if range->len is set.
6315	 * The default range->len is U64_MAX.
6316	 */
6317	if (range->len != U64_MAX &&
6318	    check_add_overflow(range->start, range->len, &range_end))
6319		return -EINVAL;
6320
6321	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6322	for (; cache; cache = btrfs_next_block_group(cache)) {
6323		if (cache->start >= range_end) {
6324			btrfs_put_block_group(cache);
6325			break;
6326		}
6327
6328		start = max(range->start, cache->start);
6329		end = min(range_end, cache->start + cache->length);
 
6330
6331		if (end - start >= range->minlen) {
6332			if (!btrfs_block_group_done(cache)) {
6333				ret = btrfs_cache_block_group(cache, true);
6334				if (ret) {
6335					bg_failed++;
6336					bg_ret = ret;
6337					continue;
6338				}
6339			}
6340			ret = btrfs_trim_block_group(cache,
6341						     &group_trimmed,
6342						     start,
6343						     end,
6344						     range->minlen);
6345
6346			trimmed += group_trimmed;
6347			if (ret) {
6348				bg_failed++;
6349				bg_ret = ret;
6350				continue;
6351			}
6352		}
6353	}
6354
6355	if (bg_failed)
6356		btrfs_warn(fs_info,
6357			"failed to trim %llu block group(s), last error %d",
6358			bg_failed, bg_ret);
6359
6360	mutex_lock(&fs_devices->device_list_mutex);
6361	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6362		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6363			continue;
6364
6365		ret = btrfs_trim_free_extents(device, &group_trimmed);
6366		if (ret) {
6367			dev_failed++;
6368			dev_ret = ret;
6369			break;
6370		}
6371
6372		trimmed += group_trimmed;
6373	}
6374	mutex_unlock(&fs_devices->device_list_mutex);
6375
6376	if (dev_failed)
6377		btrfs_warn(fs_info,
6378			"failed to trim %llu device(s), last error %d",
6379			dev_failed, dev_ret);
6380	range->len = trimmed;
6381	if (bg_ret)
6382		return bg_ret;
6383	return dev_ret;
6384}
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
 
  18#include <linux/sched.h>
 
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include "compat.h"
  27#include "hash.h"
 
 
  28#include "ctree.h"
 
 
  29#include "disk-io.h"
  30#include "print-tree.h"
  31#include "transaction.h"
  32#include "volumes.h"
 
  33#include "locking.h"
  34#include "free-space-cache.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/* control flags for do_chunk_alloc's force field
  37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  38 * if we really need one.
  39 *
  40 * CHUNK_ALLOC_FORCE means it must try to allocate one
  41 *
  42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  43 * if we have very few chunks already allocated.  This is
  44 * used as part of the clustering code to help make sure
  45 * we have a good pool of storage to cluster in, without
  46 * filling the FS with empty chunks
  47 *
  48 */
  49enum {
  50	CHUNK_ALLOC_NO_FORCE = 0,
  51	CHUNK_ALLOC_FORCE = 1,
  52	CHUNK_ALLOC_LIMITED = 2,
  53};
  54
  55static int update_block_group(struct btrfs_trans_handle *trans,
  56			      struct btrfs_root *root,
  57			      u64 bytenr, u64 num_bytes, int alloc);
  58static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  59				struct btrfs_root *root,
  60				u64 bytenr, u64 num_bytes, u64 parent,
  61				u64 root_objectid, u64 owner_objectid,
  62				u64 owner_offset, int refs_to_drop,
  63				struct btrfs_delayed_extent_op *extra_op);
  64static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  65				    struct extent_buffer *leaf,
  66				    struct btrfs_extent_item *ei);
  67static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  68				      struct btrfs_root *root,
  69				      u64 parent, u64 root_objectid,
  70				      u64 flags, u64 owner, u64 offset,
  71				      struct btrfs_key *ins, int ref_mod);
  72static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  73				     struct btrfs_root *root,
  74				     u64 parent, u64 root_objectid,
  75				     u64 flags, struct btrfs_disk_key *key,
  76				     int level, struct btrfs_key *ins);
  77static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  78			  struct btrfs_root *extent_root, u64 alloc_bytes,
  79			  u64 flags, int force);
  80static int find_next_key(struct btrfs_path *path, int level,
  81			 struct btrfs_key *key);
  82static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  83			    int dump_block_groups);
  84
  85static noinline int
  86block_group_cache_done(struct btrfs_block_group_cache *cache)
  87{
  88	smp_mb();
  89	return cache->cached == BTRFS_CACHE_FINISHED;
  90}
  91
  92static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  93{
  94	return (cache->flags & bits) == bits;
  95}
  96
  97static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  98{
  99	atomic_inc(&cache->count);
 100}
 101
 102void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 103{
 104	if (atomic_dec_and_test(&cache->count)) {
 105		WARN_ON(cache->pinned > 0);
 106		WARN_ON(cache->reserved > 0);
 107		WARN_ON(cache->reserved_pinned > 0);
 108		kfree(cache->free_space_ctl);
 109		kfree(cache);
 110	}
 111}
 112
 113/*
 114 * this adds the block group to the fs_info rb tree for the block group
 115 * cache
 116 */
 117static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 118				struct btrfs_block_group_cache *block_group)
 119{
 120	struct rb_node **p;
 121	struct rb_node *parent = NULL;
 122	struct btrfs_block_group_cache *cache;
 123
 124	spin_lock(&info->block_group_cache_lock);
 125	p = &info->block_group_cache_tree.rb_node;
 126
 127	while (*p) {
 128		parent = *p;
 129		cache = rb_entry(parent, struct btrfs_block_group_cache,
 130				 cache_node);
 131		if (block_group->key.objectid < cache->key.objectid) {
 132			p = &(*p)->rb_left;
 133		} else if (block_group->key.objectid > cache->key.objectid) {
 134			p = &(*p)->rb_right;
 135		} else {
 136			spin_unlock(&info->block_group_cache_lock);
 137			return -EEXIST;
 138		}
 139	}
 140
 141	rb_link_node(&block_group->cache_node, parent, p);
 142	rb_insert_color(&block_group->cache_node,
 143			&info->block_group_cache_tree);
 144	spin_unlock(&info->block_group_cache_lock);
 145
 146	return 0;
 147}
 148
 149/*
 150 * This will return the block group at or after bytenr if contains is 0, else
 151 * it will return the block group that contains the bytenr
 152 */
 153static struct btrfs_block_group_cache *
 154block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 155			      int contains)
 156{
 157	struct btrfs_block_group_cache *cache, *ret = NULL;
 158	struct rb_node *n;
 159	u64 end, start;
 160
 161	spin_lock(&info->block_group_cache_lock);
 162	n = info->block_group_cache_tree.rb_node;
 163
 164	while (n) {
 165		cache = rb_entry(n, struct btrfs_block_group_cache,
 166				 cache_node);
 167		end = cache->key.objectid + cache->key.offset - 1;
 168		start = cache->key.objectid;
 169
 170		if (bytenr < start) {
 171			if (!contains && (!ret || start < ret->key.objectid))
 172				ret = cache;
 173			n = n->rb_left;
 174		} else if (bytenr > start) {
 175			if (contains && bytenr <= end) {
 176				ret = cache;
 177				break;
 178			}
 179			n = n->rb_right;
 180		} else {
 181			ret = cache;
 182			break;
 183		}
 184	}
 185	if (ret)
 186		btrfs_get_block_group(ret);
 187	spin_unlock(&info->block_group_cache_lock);
 188
 189	return ret;
 190}
 191
 192static int add_excluded_extent(struct btrfs_root *root,
 193			       u64 start, u64 num_bytes)
 194{
 195	u64 end = start + num_bytes - 1;
 196	set_extent_bits(&root->fs_info->freed_extents[0],
 197			start, end, EXTENT_UPTODATE, GFP_NOFS);
 198	set_extent_bits(&root->fs_info->freed_extents[1],
 199			start, end, EXTENT_UPTODATE, GFP_NOFS);
 200	return 0;
 201}
 202
 203static void free_excluded_extents(struct btrfs_root *root,
 204				  struct btrfs_block_group_cache *cache)
 205{
 206	u64 start, end;
 207
 208	start = cache->key.objectid;
 209	end = start + cache->key.offset - 1;
 210
 211	clear_extent_bits(&root->fs_info->freed_extents[0],
 212			  start, end, EXTENT_UPTODATE, GFP_NOFS);
 213	clear_extent_bits(&root->fs_info->freed_extents[1],
 214			  start, end, EXTENT_UPTODATE, GFP_NOFS);
 215}
 216
 217static int exclude_super_stripes(struct btrfs_root *root,
 218				 struct btrfs_block_group_cache *cache)
 219{
 220	u64 bytenr;
 221	u64 *logical;
 222	int stripe_len;
 223	int i, nr, ret;
 224
 225	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 226		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 227		cache->bytes_super += stripe_len;
 228		ret = add_excluded_extent(root, cache->key.objectid,
 229					  stripe_len);
 230		BUG_ON(ret);
 231	}
 232
 233	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 234		bytenr = btrfs_sb_offset(i);
 235		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 236				       cache->key.objectid, bytenr,
 237				       0, &logical, &nr, &stripe_len);
 238		BUG_ON(ret);
 239
 240		while (nr--) {
 241			cache->bytes_super += stripe_len;
 242			ret = add_excluded_extent(root, logical[nr],
 243						  stripe_len);
 244			BUG_ON(ret);
 245		}
 246
 247		kfree(logical);
 248	}
 249	return 0;
 250}
 251
 252static struct btrfs_caching_control *
 253get_caching_control(struct btrfs_block_group_cache *cache)
 254{
 255	struct btrfs_caching_control *ctl;
 256
 257	spin_lock(&cache->lock);
 258	if (cache->cached != BTRFS_CACHE_STARTED) {
 259		spin_unlock(&cache->lock);
 260		return NULL;
 261	}
 262
 263	/* We're loading it the fast way, so we don't have a caching_ctl. */
 264	if (!cache->caching_ctl) {
 265		spin_unlock(&cache->lock);
 266		return NULL;
 267	}
 268
 269	ctl = cache->caching_ctl;
 270	atomic_inc(&ctl->count);
 271	spin_unlock(&cache->lock);
 272	return ctl;
 273}
 274
 275static void put_caching_control(struct btrfs_caching_control *ctl)
 276{
 277	if (atomic_dec_and_test(&ctl->count))
 278		kfree(ctl);
 279}
 280
 281/*
 282 * this is only called by cache_block_group, since we could have freed extents
 283 * we need to check the pinned_extents for any extents that can't be used yet
 284 * since their free space will be released as soon as the transaction commits.
 285 */
 286static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 287			      struct btrfs_fs_info *info, u64 start, u64 end)
 288{
 289	u64 extent_start, extent_end, size, total_added = 0;
 290	int ret;
 291
 292	while (start < end) {
 293		ret = find_first_extent_bit(info->pinned_extents, start,
 294					    &extent_start, &extent_end,
 295					    EXTENT_DIRTY | EXTENT_UPTODATE);
 296		if (ret)
 297			break;
 298
 299		if (extent_start <= start) {
 300			start = extent_end + 1;
 301		} else if (extent_start > start && extent_start < end) {
 302			size = extent_start - start;
 303			total_added += size;
 304			ret = btrfs_add_free_space(block_group, start,
 305						   size);
 306			BUG_ON(ret);
 307			start = extent_end + 1;
 308		} else {
 309			break;
 310		}
 311	}
 312
 313	if (start < end) {
 314		size = end - start;
 315		total_added += size;
 316		ret = btrfs_add_free_space(block_group, start, size);
 317		BUG_ON(ret);
 318	}
 319
 320	return total_added;
 321}
 322
 323static noinline void caching_thread(struct btrfs_work *work)
 324{
 325	struct btrfs_block_group_cache *block_group;
 326	struct btrfs_fs_info *fs_info;
 327	struct btrfs_caching_control *caching_ctl;
 328	struct btrfs_root *extent_root;
 329	struct btrfs_path *path;
 330	struct extent_buffer *leaf;
 331	struct btrfs_key key;
 332	u64 total_found = 0;
 333	u64 last = 0;
 334	u32 nritems;
 335	int ret = 0;
 336
 337	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 338	block_group = caching_ctl->block_group;
 339	fs_info = block_group->fs_info;
 340	extent_root = fs_info->extent_root;
 341
 342	path = btrfs_alloc_path();
 343	if (!path)
 344		goto out;
 345
 346	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 347
 348	/*
 349	 * We don't want to deadlock with somebody trying to allocate a new
 350	 * extent for the extent root while also trying to search the extent
 351	 * root to add free space.  So we skip locking and search the commit
 352	 * root, since its read-only
 353	 */
 354	path->skip_locking = 1;
 355	path->search_commit_root = 1;
 356	path->reada = 1;
 357
 358	key.objectid = last;
 359	key.offset = 0;
 360	key.type = BTRFS_EXTENT_ITEM_KEY;
 361again:
 362	mutex_lock(&caching_ctl->mutex);
 363	/* need to make sure the commit_root doesn't disappear */
 364	down_read(&fs_info->extent_commit_sem);
 365
 366	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 367	if (ret < 0)
 368		goto err;
 369
 370	leaf = path->nodes[0];
 371	nritems = btrfs_header_nritems(leaf);
 372
 373	while (1) {
 374		if (btrfs_fs_closing(fs_info) > 1) {
 375			last = (u64)-1;
 376			break;
 377		}
 378
 379		if (path->slots[0] < nritems) {
 380			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 381		} else {
 382			ret = find_next_key(path, 0, &key);
 383			if (ret)
 384				break;
 385
 386			if (need_resched() ||
 387			    btrfs_next_leaf(extent_root, path)) {
 388				caching_ctl->progress = last;
 389				btrfs_release_path(path);
 390				up_read(&fs_info->extent_commit_sem);
 391				mutex_unlock(&caching_ctl->mutex);
 392				cond_resched();
 393				goto again;
 394			}
 395			leaf = path->nodes[0];
 396			nritems = btrfs_header_nritems(leaf);
 397			continue;
 398		}
 399
 400		if (key.objectid < block_group->key.objectid) {
 401			path->slots[0]++;
 402			continue;
 403		}
 404
 405		if (key.objectid >= block_group->key.objectid +
 406		    block_group->key.offset)
 407			break;
 408
 409		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 410			total_found += add_new_free_space(block_group,
 411							  fs_info, last,
 412							  key.objectid);
 413			last = key.objectid + key.offset;
 414
 415			if (total_found > (1024 * 1024 * 2)) {
 416				total_found = 0;
 417				wake_up(&caching_ctl->wait);
 418			}
 419		}
 420		path->slots[0]++;
 421	}
 422	ret = 0;
 423
 424	total_found += add_new_free_space(block_group, fs_info, last,
 425					  block_group->key.objectid +
 426					  block_group->key.offset);
 427	caching_ctl->progress = (u64)-1;
 428
 429	spin_lock(&block_group->lock);
 430	block_group->caching_ctl = NULL;
 431	block_group->cached = BTRFS_CACHE_FINISHED;
 432	spin_unlock(&block_group->lock);
 433
 434err:
 435	btrfs_free_path(path);
 436	up_read(&fs_info->extent_commit_sem);
 437
 438	free_excluded_extents(extent_root, block_group);
 439
 440	mutex_unlock(&caching_ctl->mutex);
 441out:
 442	wake_up(&caching_ctl->wait);
 443
 444	put_caching_control(caching_ctl);
 445	btrfs_put_block_group(block_group);
 446}
 447
 448static int cache_block_group(struct btrfs_block_group_cache *cache,
 449			     struct btrfs_trans_handle *trans,
 450			     struct btrfs_root *root,
 451			     int load_cache_only)
 452{
 453	struct btrfs_fs_info *fs_info = cache->fs_info;
 454	struct btrfs_caching_control *caching_ctl;
 455	int ret = 0;
 456
 457	smp_mb();
 458	if (cache->cached != BTRFS_CACHE_NO)
 459		return 0;
 460
 461	/*
 462	 * We can't do the read from on-disk cache during a commit since we need
 463	 * to have the normal tree locking.  Also if we are currently trying to
 464	 * allocate blocks for the tree root we can't do the fast caching since
 465	 * we likely hold important locks.
 466	 */
 467	if (trans && (!trans->transaction->in_commit) &&
 468	    (root && root != root->fs_info->tree_root)) {
 469		spin_lock(&cache->lock);
 470		if (cache->cached != BTRFS_CACHE_NO) {
 471			spin_unlock(&cache->lock);
 472			return 0;
 473		}
 474		cache->cached = BTRFS_CACHE_STARTED;
 475		spin_unlock(&cache->lock);
 476
 477		ret = load_free_space_cache(fs_info, cache);
 478
 479		spin_lock(&cache->lock);
 480		if (ret == 1) {
 481			cache->cached = BTRFS_CACHE_FINISHED;
 482			cache->last_byte_to_unpin = (u64)-1;
 483		} else {
 484			cache->cached = BTRFS_CACHE_NO;
 485		}
 486		spin_unlock(&cache->lock);
 487		if (ret == 1) {
 488			free_excluded_extents(fs_info->extent_root, cache);
 489			return 0;
 490		}
 491	}
 492
 493	if (load_cache_only)
 494		return 0;
 495
 496	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 497	BUG_ON(!caching_ctl);
 498
 499	INIT_LIST_HEAD(&caching_ctl->list);
 500	mutex_init(&caching_ctl->mutex);
 501	init_waitqueue_head(&caching_ctl->wait);
 502	caching_ctl->block_group = cache;
 503	caching_ctl->progress = cache->key.objectid;
 504	/* one for caching kthread, one for caching block group list */
 505	atomic_set(&caching_ctl->count, 2);
 506	caching_ctl->work.func = caching_thread;
 507
 508	spin_lock(&cache->lock);
 509	if (cache->cached != BTRFS_CACHE_NO) {
 510		spin_unlock(&cache->lock);
 511		kfree(caching_ctl);
 512		return 0;
 513	}
 514	cache->caching_ctl = caching_ctl;
 515	cache->cached = BTRFS_CACHE_STARTED;
 516	spin_unlock(&cache->lock);
 517
 518	down_write(&fs_info->extent_commit_sem);
 519	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 520	up_write(&fs_info->extent_commit_sem);
 521
 522	btrfs_get_block_group(cache);
 523
 524	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
 525
 526	return ret;
 527}
 528
 529/*
 530 * return the block group that starts at or after bytenr
 531 */
 532static struct btrfs_block_group_cache *
 533btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 534{
 535	struct btrfs_block_group_cache *cache;
 536
 537	cache = block_group_cache_tree_search(info, bytenr, 0);
 538
 539	return cache;
 540}
 541
 542/*
 543 * return the block group that contains the given bytenr
 544 */
 545struct btrfs_block_group_cache *btrfs_lookup_block_group(
 546						 struct btrfs_fs_info *info,
 547						 u64 bytenr)
 548{
 549	struct btrfs_block_group_cache *cache;
 550
 551	cache = block_group_cache_tree_search(info, bytenr, 1);
 552
 553	return cache;
 554}
 555
 556static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 557						  u64 flags)
 558{
 559	struct list_head *head = &info->space_info;
 560	struct btrfs_space_info *found;
 561
 562	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
 563		 BTRFS_BLOCK_GROUP_METADATA;
 564
 565	rcu_read_lock();
 566	list_for_each_entry_rcu(found, head, list) {
 567		if (found->flags & flags) {
 568			rcu_read_unlock();
 569			return found;
 570		}
 571	}
 572	rcu_read_unlock();
 573	return NULL;
 574}
 575
 576/*
 577 * after adding space to the filesystem, we need to clear the full flags
 578 * on all the space infos.
 579 */
 580void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 581{
 582	struct list_head *head = &info->space_info;
 583	struct btrfs_space_info *found;
 584
 585	rcu_read_lock();
 586	list_for_each_entry_rcu(found, head, list)
 587		found->full = 0;
 588	rcu_read_unlock();
 589}
 590
 591static u64 div_factor(u64 num, int factor)
 592{
 593	if (factor == 10)
 594		return num;
 595	num *= factor;
 596	do_div(num, 10);
 597	return num;
 598}
 599
 600static u64 div_factor_fine(u64 num, int factor)
 601{
 602	if (factor == 100)
 603		return num;
 604	num *= factor;
 605	do_div(num, 100);
 606	return num;
 607}
 608
 609u64 btrfs_find_block_group(struct btrfs_root *root,
 610			   u64 search_start, u64 search_hint, int owner)
 611{
 612	struct btrfs_block_group_cache *cache;
 613	u64 used;
 614	u64 last = max(search_hint, search_start);
 615	u64 group_start = 0;
 616	int full_search = 0;
 617	int factor = 9;
 618	int wrapped = 0;
 619again:
 620	while (1) {
 621		cache = btrfs_lookup_first_block_group(root->fs_info, last);
 622		if (!cache)
 623			break;
 624
 625		spin_lock(&cache->lock);
 626		last = cache->key.objectid + cache->key.offset;
 627		used = btrfs_block_group_used(&cache->item);
 628
 629		if ((full_search || !cache->ro) &&
 630		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
 631			if (used + cache->pinned + cache->reserved <
 632			    div_factor(cache->key.offset, factor)) {
 633				group_start = cache->key.objectid;
 634				spin_unlock(&cache->lock);
 635				btrfs_put_block_group(cache);
 636				goto found;
 637			}
 638		}
 639		spin_unlock(&cache->lock);
 640		btrfs_put_block_group(cache);
 641		cond_resched();
 642	}
 643	if (!wrapped) {
 644		last = search_start;
 645		wrapped = 1;
 646		goto again;
 647	}
 648	if (!full_search && factor < 10) {
 649		last = search_start;
 650		full_search = 1;
 651		factor = 10;
 652		goto again;
 653	}
 654found:
 655	return group_start;
 656}
 657
 658/* simple helper to search for an existing extent at a given offset */
 659int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
 660{
 
 661	int ret;
 662	struct btrfs_key key;
 663	struct btrfs_path *path;
 664
 665	path = btrfs_alloc_path();
 666	if (!path)
 667		return -ENOMEM;
 668
 669	key.objectid = start;
 670	key.offset = len;
 671	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
 672	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 673				0, 0);
 674	btrfs_free_path(path);
 675	return ret;
 676}
 677
 678/*
 679 * helper function to lookup reference count and flags of extent.
 680 *
 681 * the head node for delayed ref is used to store the sum of all the
 682 * reference count modifications queued up in the rbtree. the head
 683 * node may also store the extent flags to set. This way you can check
 684 * to see what the reference count and extent flags would be if all of
 685 * the delayed refs are not processed.
 686 */
 687int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 688			     struct btrfs_root *root, u64 bytenr,
 689			     u64 num_bytes, u64 *refs, u64 *flags)
 
 690{
 
 691	struct btrfs_delayed_ref_head *head;
 692	struct btrfs_delayed_ref_root *delayed_refs;
 693	struct btrfs_path *path;
 694	struct btrfs_extent_item *ei;
 695	struct extent_buffer *leaf;
 696	struct btrfs_key key;
 697	u32 item_size;
 698	u64 num_refs;
 699	u64 extent_flags;
 
 700	int ret;
 701
 
 
 
 
 
 
 
 
 
 702	path = btrfs_alloc_path();
 703	if (!path)
 704		return -ENOMEM;
 705
 706	key.objectid = bytenr;
 707	key.type = BTRFS_EXTENT_ITEM_KEY;
 708	key.offset = num_bytes;
 709	if (!trans) {
 710		path->skip_locking = 1;
 711		path->search_commit_root = 1;
 712	}
 713again:
 714	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 715				&key, path, 0, 0);
 
 
 
 
 
 
 
 
 716	if (ret < 0)
 717		goto out_free;
 718
 
 
 
 
 
 
 
 
 
 
 
 
 719	if (ret == 0) {
 720		leaf = path->nodes[0];
 721		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 722		if (item_size >= sizeof(*ei)) {
 723			ei = btrfs_item_ptr(leaf, path->slots[0],
 724					    struct btrfs_extent_item);
 725			num_refs = btrfs_extent_refs(leaf, ei);
 726			extent_flags = btrfs_extent_flags(leaf, ei);
 
 
 727		} else {
 728#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 729			struct btrfs_extent_item_v0 *ei0;
 730			BUG_ON(item_size != sizeof(*ei0));
 731			ei0 = btrfs_item_ptr(leaf, path->slots[0],
 732					     struct btrfs_extent_item_v0);
 733			num_refs = btrfs_extent_refs_v0(leaf, ei0);
 734			/* FIXME: this isn't correct for data */
 735			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 736#else
 737			BUG();
 738#endif
 739		}
 
 740		BUG_ON(num_refs == 0);
 741	} else {
 742		num_refs = 0;
 743		extent_flags = 0;
 744		ret = 0;
 745	}
 746
 747	if (!trans)
 748		goto out;
 749
 750	delayed_refs = &trans->transaction->delayed_refs;
 751	spin_lock(&delayed_refs->lock);
 752	head = btrfs_find_delayed_ref_head(trans, bytenr);
 753	if (head) {
 754		if (!mutex_trylock(&head->mutex)) {
 755			atomic_inc(&head->node.refs);
 756			spin_unlock(&delayed_refs->lock);
 757
 758			btrfs_release_path(path);
 759
 760			/*
 761			 * Mutex was contended, block until it's released and try
 762			 * again
 763			 */
 764			mutex_lock(&head->mutex);
 765			mutex_unlock(&head->mutex);
 766			btrfs_put_delayed_ref(&head->node);
 767			goto again;
 768		}
 
 769		if (head->extent_op && head->extent_op->update_flags)
 770			extent_flags |= head->extent_op->flags_to_set;
 771		else
 772			BUG_ON(num_refs == 0);
 773
 774		num_refs += head->node.ref_mod;
 
 775		mutex_unlock(&head->mutex);
 776	}
 777	spin_unlock(&delayed_refs->lock);
 778out:
 779	WARN_ON(num_refs == 0);
 780	if (refs)
 781		*refs = num_refs;
 782	if (flags)
 783		*flags = extent_flags;
 
 
 784out_free:
 785	btrfs_free_path(path);
 786	return ret;
 787}
 788
 789/*
 790 * Back reference rules.  Back refs have three main goals:
 791 *
 792 * 1) differentiate between all holders of references to an extent so that
 793 *    when a reference is dropped we can make sure it was a valid reference
 794 *    before freeing the extent.
 795 *
 796 * 2) Provide enough information to quickly find the holders of an extent
 797 *    if we notice a given block is corrupted or bad.
 798 *
 799 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 800 *    maintenance.  This is actually the same as #2, but with a slightly
 801 *    different use case.
 802 *
 803 * There are two kinds of back refs. The implicit back refs is optimized
 804 * for pointers in non-shared tree blocks. For a given pointer in a block,
 805 * back refs of this kind provide information about the block's owner tree
 806 * and the pointer's key. These information allow us to find the block by
 807 * b-tree searching. The full back refs is for pointers in tree blocks not
 808 * referenced by their owner trees. The location of tree block is recorded
 809 * in the back refs. Actually the full back refs is generic, and can be
 810 * used in all cases the implicit back refs is used. The major shortcoming
 811 * of the full back refs is its overhead. Every time a tree block gets
 812 * COWed, we have to update back refs entry for all pointers in it.
 813 *
 814 * For a newly allocated tree block, we use implicit back refs for
 815 * pointers in it. This means most tree related operations only involve
 816 * implicit back refs. For a tree block created in old transaction, the
 817 * only way to drop a reference to it is COW it. So we can detect the
 818 * event that tree block loses its owner tree's reference and do the
 819 * back refs conversion.
 820 *
 821 * When a tree block is COW'd through a tree, there are four cases:
 822 *
 823 * The reference count of the block is one and the tree is the block's
 824 * owner tree. Nothing to do in this case.
 825 *
 826 * The reference count of the block is one and the tree is not the
 827 * block's owner tree. In this case, full back refs is used for pointers
 828 * in the block. Remove these full back refs, add implicit back refs for
 829 * every pointers in the new block.
 830 *
 831 * The reference count of the block is greater than one and the tree is
 832 * the block's owner tree. In this case, implicit back refs is used for
 833 * pointers in the block. Add full back refs for every pointers in the
 834 * block, increase lower level extents' reference counts. The original
 835 * implicit back refs are entailed to the new block.
 836 *
 837 * The reference count of the block is greater than one and the tree is
 838 * not the block's owner tree. Add implicit back refs for every pointer in
 839 * the new block, increase lower level extents' reference count.
 840 *
 841 * Back Reference Key composing:
 842 *
 843 * The key objectid corresponds to the first byte in the extent,
 844 * The key type is used to differentiate between types of back refs.
 845 * There are different meanings of the key offset for different types
 846 * of back refs.
 847 *
 848 * File extents can be referenced by:
 849 *
 850 * - multiple snapshots, subvolumes, or different generations in one subvol
 851 * - different files inside a single subvolume
 852 * - different offsets inside a file (bookend extents in file.c)
 853 *
 854 * The extent ref structure for the implicit back refs has fields for:
 855 *
 856 * - Objectid of the subvolume root
 857 * - objectid of the file holding the reference
 858 * - original offset in the file
 859 * - how many bookend extents
 860 *
 861 * The key offset for the implicit back refs is hash of the first
 862 * three fields.
 863 *
 864 * The extent ref structure for the full back refs has field for:
 865 *
 866 * - number of pointers in the tree leaf
 867 *
 868 * The key offset for the implicit back refs is the first byte of
 869 * the tree leaf
 870 *
 871 * When a file extent is allocated, The implicit back refs is used.
 872 * the fields are filled in:
 873 *
 874 *     (root_key.objectid, inode objectid, offset in file, 1)
 875 *
 876 * When a file extent is removed file truncation, we find the
 877 * corresponding implicit back refs and check the following fields:
 878 *
 879 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 880 *
 881 * Btree extents can be referenced by:
 882 *
 883 * - Different subvolumes
 884 *
 885 * Both the implicit back refs and the full back refs for tree blocks
 886 * only consist of key. The key offset for the implicit back refs is
 887 * objectid of block's owner tree. The key offset for the full back refs
 888 * is the first byte of parent block.
 889 *
 890 * When implicit back refs is used, information about the lowest key and
 891 * level of the tree block are required. These information are stored in
 892 * tree block info structure.
 893 */
 894
 895#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 896static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 897				  struct btrfs_root *root,
 898				  struct btrfs_path *path,
 899				  u64 owner, u32 extra_size)
 900{
 901	struct btrfs_extent_item *item;
 902	struct btrfs_extent_item_v0 *ei0;
 903	struct btrfs_extent_ref_v0 *ref0;
 904	struct btrfs_tree_block_info *bi;
 905	struct extent_buffer *leaf;
 906	struct btrfs_key key;
 907	struct btrfs_key found_key;
 908	u32 new_size = sizeof(*item);
 909	u64 refs;
 910	int ret;
 911
 912	leaf = path->nodes[0];
 913	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 914
 915	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 916	ei0 = btrfs_item_ptr(leaf, path->slots[0],
 917			     struct btrfs_extent_item_v0);
 918	refs = btrfs_extent_refs_v0(leaf, ei0);
 919
 920	if (owner == (u64)-1) {
 921		while (1) {
 922			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 923				ret = btrfs_next_leaf(root, path);
 924				if (ret < 0)
 925					return ret;
 926				BUG_ON(ret > 0);
 927				leaf = path->nodes[0];
 928			}
 929			btrfs_item_key_to_cpu(leaf, &found_key,
 930					      path->slots[0]);
 931			BUG_ON(key.objectid != found_key.objectid);
 932			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 933				path->slots[0]++;
 934				continue;
 
 
 
 
 
 
 935			}
 936			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 937					      struct btrfs_extent_ref_v0);
 938			owner = btrfs_ref_objectid_v0(leaf, ref0);
 939			break;
 940		}
 941	}
 942	btrfs_release_path(path);
 943
 944	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 945		new_size += sizeof(*bi);
 946
 947	new_size -= sizeof(*ei0);
 948	ret = btrfs_search_slot(trans, root, &key, path,
 949				new_size + extra_size, 1);
 950	if (ret < 0)
 951		return ret;
 952	BUG_ON(ret);
 953
 954	ret = btrfs_extend_item(trans, root, path, new_size);
 
 
 
 
 955
 956	leaf = path->nodes[0];
 957	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 958	btrfs_set_extent_refs(leaf, item, refs);
 959	/* FIXME: get real generation */
 960	btrfs_set_extent_generation(leaf, item, 0);
 961	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 962		btrfs_set_extent_flags(leaf, item,
 963				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
 964				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
 965		bi = (struct btrfs_tree_block_info *)(item + 1);
 966		/* FIXME: get first key of the block */
 967		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
 968		btrfs_set_tree_block_level(leaf, bi, (int)owner);
 969	} else {
 970		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
 971	}
 972	btrfs_mark_buffer_dirty(leaf);
 973	return 0;
 974}
 975#endif
 976
 977static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 978{
 979	u32 high_crc = ~(u32)0;
 980	u32 low_crc = ~(u32)0;
 981	__le64 lenum;
 982
 983	lenum = cpu_to_le64(root_objectid);
 984	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
 985	lenum = cpu_to_le64(owner);
 986	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 987	lenum = cpu_to_le64(offset);
 988	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 989
 990	return ((u64)high_crc << 31) ^ (u64)low_crc;
 991}
 992
 993static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 994				     struct btrfs_extent_data_ref *ref)
 995{
 996	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 997				    btrfs_extent_data_ref_objectid(leaf, ref),
 998				    btrfs_extent_data_ref_offset(leaf, ref));
 999}
1000
1001static int match_extent_data_ref(struct extent_buffer *leaf,
1002				 struct btrfs_extent_data_ref *ref,
1003				 u64 root_objectid, u64 owner, u64 offset)
1004{
1005	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1006	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1007	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1008		return 0;
1009	return 1;
1010}
1011
1012static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1013					   struct btrfs_root *root,
1014					   struct btrfs_path *path,
1015					   u64 bytenr, u64 parent,
1016					   u64 root_objectid,
1017					   u64 owner, u64 offset)
1018{
 
1019	struct btrfs_key key;
1020	struct btrfs_extent_data_ref *ref;
1021	struct extent_buffer *leaf;
1022	u32 nritems;
1023	int ret;
1024	int recow;
1025	int err = -ENOENT;
1026
1027	key.objectid = bytenr;
1028	if (parent) {
1029		key.type = BTRFS_SHARED_DATA_REF_KEY;
1030		key.offset = parent;
1031	} else {
1032		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1033		key.offset = hash_extent_data_ref(root_objectid,
1034						  owner, offset);
1035	}
1036again:
1037	recow = 0;
1038	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039	if (ret < 0) {
1040		err = ret;
1041		goto fail;
1042	}
1043
1044	if (parent) {
1045		if (!ret)
1046			return 0;
1047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048		key.type = BTRFS_EXTENT_REF_V0_KEY;
1049		btrfs_release_path(path);
1050		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051		if (ret < 0) {
1052			err = ret;
1053			goto fail;
1054		}
1055		if (!ret)
1056			return 0;
1057#endif
1058		goto fail;
1059	}
1060
1061	leaf = path->nodes[0];
1062	nritems = btrfs_header_nritems(leaf);
1063	while (1) {
1064		if (path->slots[0] >= nritems) {
1065			ret = btrfs_next_leaf(root, path);
1066			if (ret < 0)
1067				err = ret;
1068			if (ret)
1069				goto fail;
1070
1071			leaf = path->nodes[0];
1072			nritems = btrfs_header_nritems(leaf);
1073			recow = 1;
1074		}
1075
1076		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1077		if (key.objectid != bytenr ||
1078		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1079			goto fail;
1080
1081		ref = btrfs_item_ptr(leaf, path->slots[0],
1082				     struct btrfs_extent_data_ref);
1083
1084		if (match_extent_data_ref(leaf, ref, root_objectid,
1085					  owner, offset)) {
1086			if (recow) {
1087				btrfs_release_path(path);
1088				goto again;
1089			}
1090			err = 0;
1091			break;
1092		}
1093		path->slots[0]++;
1094	}
1095fail:
1096	return err;
1097}
1098
1099static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1100					   struct btrfs_root *root,
1101					   struct btrfs_path *path,
1102					   u64 bytenr, u64 parent,
1103					   u64 root_objectid, u64 owner,
1104					   u64 offset, int refs_to_add)
1105{
 
1106	struct btrfs_key key;
1107	struct extent_buffer *leaf;
1108	u32 size;
1109	u32 num_refs;
1110	int ret;
1111
1112	key.objectid = bytenr;
1113	if (parent) {
1114		key.type = BTRFS_SHARED_DATA_REF_KEY;
1115		key.offset = parent;
1116		size = sizeof(struct btrfs_shared_data_ref);
1117	} else {
1118		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1119		key.offset = hash_extent_data_ref(root_objectid,
1120						  owner, offset);
1121		size = sizeof(struct btrfs_extent_data_ref);
1122	}
1123
1124	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1125	if (ret && ret != -EEXIST)
1126		goto fail;
1127
1128	leaf = path->nodes[0];
1129	if (parent) {
1130		struct btrfs_shared_data_ref *ref;
1131		ref = btrfs_item_ptr(leaf, path->slots[0],
1132				     struct btrfs_shared_data_ref);
1133		if (ret == 0) {
1134			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1135		} else {
1136			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1137			num_refs += refs_to_add;
1138			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1139		}
1140	} else {
1141		struct btrfs_extent_data_ref *ref;
1142		while (ret == -EEXIST) {
1143			ref = btrfs_item_ptr(leaf, path->slots[0],
1144					     struct btrfs_extent_data_ref);
1145			if (match_extent_data_ref(leaf, ref, root_objectid,
1146						  owner, offset))
1147				break;
1148			btrfs_release_path(path);
1149			key.offset++;
1150			ret = btrfs_insert_empty_item(trans, root, path, &key,
1151						      size);
1152			if (ret && ret != -EEXIST)
1153				goto fail;
1154
1155			leaf = path->nodes[0];
1156		}
1157		ref = btrfs_item_ptr(leaf, path->slots[0],
1158				     struct btrfs_extent_data_ref);
1159		if (ret == 0) {
1160			btrfs_set_extent_data_ref_root(leaf, ref,
1161						       root_objectid);
1162			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1163			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1164			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1165		} else {
1166			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1167			num_refs += refs_to_add;
1168			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1169		}
1170	}
1171	btrfs_mark_buffer_dirty(leaf);
1172	ret = 0;
1173fail:
1174	btrfs_release_path(path);
1175	return ret;
1176}
1177
1178static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1179					   struct btrfs_root *root,
1180					   struct btrfs_path *path,
1181					   int refs_to_drop)
1182{
1183	struct btrfs_key key;
1184	struct btrfs_extent_data_ref *ref1 = NULL;
1185	struct btrfs_shared_data_ref *ref2 = NULL;
1186	struct extent_buffer *leaf;
1187	u32 num_refs = 0;
1188	int ret = 0;
1189
1190	leaf = path->nodes[0];
1191	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1192
1193	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1194		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1195				      struct btrfs_extent_data_ref);
1196		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1197	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1198		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1199				      struct btrfs_shared_data_ref);
1200		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1201#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1203		struct btrfs_extent_ref_v0 *ref0;
1204		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205				      struct btrfs_extent_ref_v0);
1206		num_refs = btrfs_ref_count_v0(leaf, ref0);
1207#endif
1208	} else {
1209		BUG();
 
 
 
 
1210	}
1211
1212	BUG_ON(num_refs < refs_to_drop);
1213	num_refs -= refs_to_drop;
1214
1215	if (num_refs == 0) {
1216		ret = btrfs_del_item(trans, root, path);
1217	} else {
1218		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1219			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1220		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1221			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1222#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223		else {
1224			struct btrfs_extent_ref_v0 *ref0;
1225			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1226					struct btrfs_extent_ref_v0);
1227			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1228		}
1229#endif
1230		btrfs_mark_buffer_dirty(leaf);
1231	}
1232	return ret;
1233}
1234
1235static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1236					  struct btrfs_path *path,
1237					  struct btrfs_extent_inline_ref *iref)
1238{
1239	struct btrfs_key key;
1240	struct extent_buffer *leaf;
1241	struct btrfs_extent_data_ref *ref1;
1242	struct btrfs_shared_data_ref *ref2;
1243	u32 num_refs = 0;
 
1244
1245	leaf = path->nodes[0];
1246	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 
1247	if (iref) {
1248		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1249		    BTRFS_EXTENT_DATA_REF_KEY) {
 
 
 
 
 
1250			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1251			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1252		} else {
1253			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1254			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1255		}
1256	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1257		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1258				      struct btrfs_extent_data_ref);
1259		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1260	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1261		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1262				      struct btrfs_shared_data_ref);
1263		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1264#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1266		struct btrfs_extent_ref_v0 *ref0;
1267		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268				      struct btrfs_extent_ref_v0);
1269		num_refs = btrfs_ref_count_v0(leaf, ref0);
1270#endif
1271	} else {
1272		WARN_ON(1);
1273	}
1274	return num_refs;
1275}
1276
1277static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1278					  struct btrfs_root *root,
1279					  struct btrfs_path *path,
1280					  u64 bytenr, u64 parent,
1281					  u64 root_objectid)
1282{
 
1283	struct btrfs_key key;
1284	int ret;
1285
1286	key.objectid = bytenr;
1287	if (parent) {
1288		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1289		key.offset = parent;
1290	} else {
1291		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1292		key.offset = root_objectid;
1293	}
1294
1295	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1296	if (ret > 0)
1297		ret = -ENOENT;
1298#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299	if (ret == -ENOENT && parent) {
1300		btrfs_release_path(path);
1301		key.type = BTRFS_EXTENT_REF_V0_KEY;
1302		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1303		if (ret > 0)
1304			ret = -ENOENT;
1305	}
1306#endif
1307	return ret;
1308}
1309
1310static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1311					  struct btrfs_root *root,
1312					  struct btrfs_path *path,
1313					  u64 bytenr, u64 parent,
1314					  u64 root_objectid)
1315{
 
1316	struct btrfs_key key;
1317	int ret;
1318
1319	key.objectid = bytenr;
1320	if (parent) {
1321		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1322		key.offset = parent;
1323	} else {
1324		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1325		key.offset = root_objectid;
1326	}
1327
1328	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1329	btrfs_release_path(path);
1330	return ret;
1331}
1332
1333static inline int extent_ref_type(u64 parent, u64 owner)
1334{
1335	int type;
1336	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1337		if (parent > 0)
1338			type = BTRFS_SHARED_BLOCK_REF_KEY;
1339		else
1340			type = BTRFS_TREE_BLOCK_REF_KEY;
1341	} else {
1342		if (parent > 0)
1343			type = BTRFS_SHARED_DATA_REF_KEY;
1344		else
1345			type = BTRFS_EXTENT_DATA_REF_KEY;
1346	}
1347	return type;
1348}
1349
1350static int find_next_key(struct btrfs_path *path, int level,
1351			 struct btrfs_key *key)
1352
1353{
1354	for (; level < BTRFS_MAX_LEVEL; level++) {
1355		if (!path->nodes[level])
1356			break;
1357		if (path->slots[level] + 1 >=
1358		    btrfs_header_nritems(path->nodes[level]))
1359			continue;
1360		if (level == 0)
1361			btrfs_item_key_to_cpu(path->nodes[level], key,
1362					      path->slots[level] + 1);
1363		else
1364			btrfs_node_key_to_cpu(path->nodes[level], key,
1365					      path->slots[level] + 1);
1366		return 0;
1367	}
1368	return 1;
1369}
1370
1371/*
1372 * look for inline back ref. if back ref is found, *ref_ret is set
1373 * to the address of inline back ref, and 0 is returned.
1374 *
1375 * if back ref isn't found, *ref_ret is set to the address where it
1376 * should be inserted, and -ENOENT is returned.
1377 *
1378 * if insert is true and there are too many inline back refs, the path
1379 * points to the extent item, and -EAGAIN is returned.
1380 *
1381 * NOTE: inline back refs are ordered in the same way that back ref
1382 *	 items in the tree are ordered.
1383 */
1384static noinline_for_stack
1385int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1386				 struct btrfs_root *root,
1387				 struct btrfs_path *path,
1388				 struct btrfs_extent_inline_ref **ref_ret,
1389				 u64 bytenr, u64 num_bytes,
1390				 u64 parent, u64 root_objectid,
1391				 u64 owner, u64 offset, int insert)
1392{
 
 
1393	struct btrfs_key key;
1394	struct extent_buffer *leaf;
1395	struct btrfs_extent_item *ei;
1396	struct btrfs_extent_inline_ref *iref;
1397	u64 flags;
1398	u64 item_size;
1399	unsigned long ptr;
1400	unsigned long end;
1401	int extra_size;
1402	int type;
1403	int want;
1404	int ret;
1405	int err = 0;
 
1406
1407	key.objectid = bytenr;
1408	key.type = BTRFS_EXTENT_ITEM_KEY;
1409	key.offset = num_bytes;
1410
1411	want = extent_ref_type(parent, owner);
1412	if (insert) {
1413		extra_size = btrfs_extent_inline_ref_size(want);
 
1414		path->keep_locks = 1;
1415	} else
1416		extra_size = -1;
 
 
 
 
 
 
 
 
 
 
 
1417	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1418	if (ret < 0) {
1419		err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420		goto out;
1421	}
1422	BUG_ON(ret);
1423
1424	leaf = path->nodes[0];
1425	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427	if (item_size < sizeof(*ei)) {
1428		if (!insert) {
1429			err = -ENOENT;
1430			goto out;
1431		}
1432		ret = convert_extent_item_v0(trans, root, path, owner,
1433					     extra_size);
1434		if (ret < 0) {
1435			err = ret;
1436			goto out;
1437		}
1438		leaf = path->nodes[0];
1439		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1440	}
1441#endif
1442	BUG_ON(item_size < sizeof(*ei));
1443
1444	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1445	flags = btrfs_extent_flags(leaf, ei);
1446
1447	ptr = (unsigned long)(ei + 1);
1448	end = (unsigned long)ei + item_size;
1449
1450	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1451		ptr += sizeof(struct btrfs_tree_block_info);
1452		BUG_ON(ptr > end);
1453	} else {
1454		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1455	}
1456
1457	err = -ENOENT;
1458	while (1) {
1459		if (ptr >= end) {
1460			WARN_ON(ptr > end);
1461			break;
 
 
 
 
 
 
 
 
 
 
 
 
1462		}
1463		iref = (struct btrfs_extent_inline_ref *)ptr;
1464		type = btrfs_extent_inline_ref_type(leaf, iref);
1465		if (want < type)
1466			break;
1467		if (want > type) {
1468			ptr += btrfs_extent_inline_ref_size(type);
1469			continue;
1470		}
1471
1472		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1473			struct btrfs_extent_data_ref *dref;
1474			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1475			if (match_extent_data_ref(leaf, dref, root_objectid,
1476						  owner, offset)) {
1477				err = 0;
1478				break;
1479			}
1480			if (hash_extent_data_ref_item(leaf, dref) <
1481			    hash_extent_data_ref(root_objectid, owner, offset))
1482				break;
1483		} else {
1484			u64 ref_offset;
1485			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1486			if (parent > 0) {
1487				if (parent == ref_offset) {
1488					err = 0;
1489					break;
1490				}
1491				if (ref_offset < parent)
1492					break;
1493			} else {
1494				if (root_objectid == ref_offset) {
1495					err = 0;
1496					break;
1497				}
1498				if (ref_offset < root_objectid)
1499					break;
1500			}
1501		}
1502		ptr += btrfs_extent_inline_ref_size(type);
1503	}
1504	if (err == -ENOENT && insert) {
 
 
 
 
 
 
 
 
 
 
1505		if (item_size + extra_size >=
1506		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1507			err = -EAGAIN;
1508			goto out;
1509		}
1510		/*
1511		 * To add new inline back ref, we have to make sure
1512		 * there is no corresponding back ref item.
1513		 * For simplicity, we just do not add new inline back
1514		 * ref if there is any kind of item for this block
1515		 */
1516		if (find_next_key(path, 0, &key) == 0 &&
1517		    key.objectid == bytenr &&
1518		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1519			err = -EAGAIN;
1520			goto out;
1521		}
1522	}
1523	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1524out:
1525	if (insert) {
1526		path->keep_locks = 0;
 
1527		btrfs_unlock_up_safe(path, 1);
1528	}
1529	return err;
1530}
1531
1532/*
1533 * helper to add new inline back ref
1534 */
1535static noinline_for_stack
1536int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1537				struct btrfs_root *root,
1538				struct btrfs_path *path,
1539				struct btrfs_extent_inline_ref *iref,
1540				u64 parent, u64 root_objectid,
1541				u64 owner, u64 offset, int refs_to_add,
1542				struct btrfs_delayed_extent_op *extent_op)
1543{
1544	struct extent_buffer *leaf;
1545	struct btrfs_extent_item *ei;
1546	unsigned long ptr;
1547	unsigned long end;
1548	unsigned long item_offset;
1549	u64 refs;
1550	int size;
1551	int type;
1552	int ret;
1553
1554	leaf = path->nodes[0];
1555	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1556	item_offset = (unsigned long)iref - (unsigned long)ei;
1557
1558	type = extent_ref_type(parent, owner);
1559	size = btrfs_extent_inline_ref_size(type);
1560
1561	ret = btrfs_extend_item(trans, root, path, size);
1562
1563	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1564	refs = btrfs_extent_refs(leaf, ei);
1565	refs += refs_to_add;
1566	btrfs_set_extent_refs(leaf, ei, refs);
1567	if (extent_op)
1568		__run_delayed_extent_op(extent_op, leaf, ei);
1569
1570	ptr = (unsigned long)ei + item_offset;
1571	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1572	if (ptr < end - size)
1573		memmove_extent_buffer(leaf, ptr + size, ptr,
1574				      end - size - ptr);
1575
1576	iref = (struct btrfs_extent_inline_ref *)ptr;
1577	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1578	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1579		struct btrfs_extent_data_ref *dref;
1580		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1581		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1582		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1583		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1584		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1585	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1586		struct btrfs_shared_data_ref *sref;
1587		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1588		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1589		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1590	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1591		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592	} else {
1593		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1594	}
1595	btrfs_mark_buffer_dirty(leaf);
1596	return 0;
1597}
1598
1599static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1600				 struct btrfs_root *root,
1601				 struct btrfs_path *path,
1602				 struct btrfs_extent_inline_ref **ref_ret,
1603				 u64 bytenr, u64 num_bytes, u64 parent,
1604				 u64 root_objectid, u64 owner, u64 offset)
1605{
1606	int ret;
1607
1608	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1609					   bytenr, num_bytes, parent,
1610					   root_objectid, owner, offset, 0);
1611	if (ret != -ENOENT)
1612		return ret;
1613
1614	btrfs_release_path(path);
1615	*ref_ret = NULL;
1616
1617	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1618		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1619					    root_objectid);
1620	} else {
1621		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1622					     root_objectid, owner, offset);
1623	}
1624	return ret;
1625}
1626
1627/*
1628 * helper to update/remove inline back ref
1629 */
1630static noinline_for_stack
1631int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1632				 struct btrfs_root *root,
1633				 struct btrfs_path *path,
1634				 struct btrfs_extent_inline_ref *iref,
1635				 int refs_to_mod,
1636				 struct btrfs_delayed_extent_op *extent_op)
1637{
1638	struct extent_buffer *leaf;
 
1639	struct btrfs_extent_item *ei;
1640	struct btrfs_extent_data_ref *dref = NULL;
1641	struct btrfs_shared_data_ref *sref = NULL;
1642	unsigned long ptr;
1643	unsigned long end;
1644	u32 item_size;
1645	int size;
1646	int type;
1647	int ret;
1648	u64 refs;
1649
1650	leaf = path->nodes[0];
1651	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1652	refs = btrfs_extent_refs(leaf, ei);
1653	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654	refs += refs_to_mod;
1655	btrfs_set_extent_refs(leaf, ei, refs);
1656	if (extent_op)
1657		__run_delayed_extent_op(extent_op, leaf, ei);
1658
1659	type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 
1660
1661	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663		refs = btrfs_extent_data_ref_count(leaf, dref);
1664	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1665		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1666		refs = btrfs_shared_data_ref_count(leaf, sref);
1667	} else {
1668		refs = 1;
1669		BUG_ON(refs_to_mod != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670	}
1671
1672	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673	refs += refs_to_mod;
1674
1675	if (refs > 0) {
1676		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1677			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1678		else
1679			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1680	} else {
1681		size =  btrfs_extent_inline_ref_size(type);
1682		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1683		ptr = (unsigned long)iref;
1684		end = (unsigned long)ei + item_size;
1685		if (ptr + size < end)
1686			memmove_extent_buffer(leaf, ptr, ptr + size,
1687					      end - ptr - size);
1688		item_size -= size;
1689		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1690	}
1691	btrfs_mark_buffer_dirty(leaf);
1692	return 0;
1693}
1694
1695static noinline_for_stack
1696int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1697				 struct btrfs_root *root,
1698				 struct btrfs_path *path,
1699				 u64 bytenr, u64 num_bytes, u64 parent,
1700				 u64 root_objectid, u64 owner,
1701				 u64 offset, int refs_to_add,
1702				 struct btrfs_delayed_extent_op *extent_op)
1703{
1704	struct btrfs_extent_inline_ref *iref;
1705	int ret;
1706
1707	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1708					   bytenr, num_bytes, parent,
1709					   root_objectid, owner, offset, 1);
1710	if (ret == 0) {
1711		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1712		ret = update_inline_extent_backref(trans, root, path, iref,
 
 
 
 
 
 
 
 
 
 
1713						   refs_to_add, extent_op);
1714	} else if (ret == -ENOENT) {
1715		ret = setup_inline_extent_backref(trans, root, path, iref,
1716						  parent, root_objectid,
1717						  owner, offset, refs_to_add,
1718						  extent_op);
1719	}
1720	return ret;
1721}
1722
1723static int insert_extent_backref(struct btrfs_trans_handle *trans,
1724				 struct btrfs_root *root,
1725				 struct btrfs_path *path,
1726				 u64 bytenr, u64 parent, u64 root_objectid,
1727				 u64 owner, u64 offset, int refs_to_add)
1728{
1729	int ret;
1730	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1731		BUG_ON(refs_to_add != 1);
1732		ret = insert_tree_block_ref(trans, root, path, bytenr,
1733					    parent, root_objectid);
1734	} else {
1735		ret = insert_extent_data_ref(trans, root, path, bytenr,
1736					     parent, root_objectid,
1737					     owner, offset, refs_to_add);
1738	}
1739	return ret;
1740}
1741
1742static int remove_extent_backref(struct btrfs_trans_handle *trans,
1743				 struct btrfs_root *root,
1744				 struct btrfs_path *path,
1745				 struct btrfs_extent_inline_ref *iref,
1746				 int refs_to_drop, int is_data)
1747{
1748	int ret;
1749
1750	BUG_ON(!is_data && refs_to_drop != 1);
1751	if (iref) {
1752		ret = update_inline_extent_backref(trans, root, path, iref,
1753						   -refs_to_drop, NULL);
1754	} else if (is_data) {
1755		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1756	} else {
1757		ret = btrfs_del_item(trans, root, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758	}
1759	return ret;
1760}
1761
1762static int btrfs_issue_discard(struct block_device *bdev,
1763				u64 start, u64 len)
1764{
1765	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766}
1767
1768static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1769				u64 num_bytes, u64 *actual_bytes)
1770{
1771	int ret;
1772	u64 discarded_bytes = 0;
1773	struct btrfs_multi_bio *multi = NULL;
 
1774
 
 
 
 
 
 
 
 
 
1775
1776	/* Tell the block device(s) that the sectors can be discarded */
1777	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1778			      bytenr, &num_bytes, &multi, 0);
1779	if (!ret) {
1780		struct btrfs_bio_stripe *stripe = multi->stripes;
1781		int i;
 
 
1782
 
 
 
1783
1784		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1785			if (!stripe->dev->can_discard)
1786				continue;
 
1787
1788			ret = btrfs_issue_discard(stripe->dev->bdev,
1789						  stripe->physical,
1790						  stripe->length);
1791			if (!ret)
1792				discarded_bytes += stripe->length;
1793			else if (ret != -EOPNOTSUPP)
1794				break;
1795
1796			/*
1797			 * Just in case we get back EOPNOTSUPP for some reason,
1798			 * just ignore the return value so we don't screw up
1799			 * people calling discard_extent.
1800			 */
1801			ret = 0;
 
 
 
 
 
 
1802		}
1803		kfree(multi);
 
 
 
1804	}
1805
1806	if (actual_bytes)
1807		*actual_bytes = discarded_bytes;
1808
1809
1810	return ret;
1811}
1812
 
1813int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1814			 struct btrfs_root *root,
1815			 u64 bytenr, u64 num_bytes, u64 parent,
1816			 u64 root_objectid, u64 owner, u64 offset)
1817{
 
1818	int ret;
1819	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1820	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1821
1822	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1823		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1824					parent, root_objectid, (int)owner,
1825					BTRFS_ADD_DELAYED_REF, NULL);
1826	} else {
1827		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1828					parent, root_objectid, owner, offset,
1829					BTRFS_ADD_DELAYED_REF, NULL);
1830	}
 
 
 
1831	return ret;
1832}
1833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1835				  struct btrfs_root *root,
1836				  u64 bytenr, u64 num_bytes,
1837				  u64 parent, u64 root_objectid,
1838				  u64 owner, u64 offset, int refs_to_add,
1839				  struct btrfs_delayed_extent_op *extent_op)
1840{
1841	struct btrfs_path *path;
1842	struct extent_buffer *leaf;
1843	struct btrfs_extent_item *item;
 
 
 
1844	u64 refs;
 
1845	int ret;
1846	int err = 0;
1847
1848	path = btrfs_alloc_path();
1849	if (!path)
1850		return -ENOMEM;
1851
1852	path->reada = 1;
1853	path->leave_spinning = 1;
1854	/* this will setup the path even if it fails to insert the back ref */
1855	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1856					   path, bytenr, num_bytes, parent,
1857					   root_objectid, owner, offset,
1858					   refs_to_add, extent_op);
1859	if (ret == 0)
1860		goto out;
1861
1862	if (ret != -EAGAIN) {
1863		err = ret;
1864		goto out;
1865	}
1866
1867	leaf = path->nodes[0];
 
1868	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869	refs = btrfs_extent_refs(leaf, item);
1870	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1871	if (extent_op)
1872		__run_delayed_extent_op(extent_op, leaf, item);
1873
1874	btrfs_mark_buffer_dirty(leaf);
1875	btrfs_release_path(path);
1876
1877	path->reada = 1;
1878	path->leave_spinning = 1;
 
 
 
 
 
 
1879
1880	/* now insert the actual backref */
1881	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1882				    path, bytenr, parent, root_objectid,
1883				    owner, offset, refs_to_add);
1884	BUG_ON(ret);
1885out:
1886	btrfs_free_path(path);
1887	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888}
1889
1890static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1891				struct btrfs_root *root,
1892				struct btrfs_delayed_ref_node *node,
1893				struct btrfs_delayed_extent_op *extent_op,
1894				int insert_reserved)
1895{
1896	int ret = 0;
1897	struct btrfs_delayed_data_ref *ref;
1898	struct btrfs_key ins;
1899	u64 parent = 0;
1900	u64 ref_root = 0;
1901	u64 flags = 0;
1902
1903	ins.objectid = node->bytenr;
1904	ins.offset = node->num_bytes;
1905	ins.type = BTRFS_EXTENT_ITEM_KEY;
1906
1907	ref = btrfs_delayed_node_to_data_ref(node);
1908	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1909		parent = ref->parent;
1910	else
1911		ref_root = ref->root;
1912
1913	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1914		if (extent_op) {
1915			BUG_ON(extent_op->update_key);
 
 
 
 
 
 
 
 
1916			flags |= extent_op->flags_to_set;
1917		}
1918		ret = alloc_reserved_file_extent(trans, root,
1919						 parent, ref_root, flags,
1920						 ref->objectid, ref->offset,
1921						 &ins, node->ref_mod);
 
 
 
 
 
 
 
1922	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1923		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1924					     node->num_bytes, parent,
1925					     ref_root, ref->objectid,
1926					     ref->offset, node->ref_mod,
1927					     extent_op);
1928	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1929		ret = __btrfs_free_extent(trans, root, node->bytenr,
1930					  node->num_bytes, parent,
1931					  ref_root, ref->objectid,
1932					  ref->offset, node->ref_mod,
1933					  extent_op);
1934	} else {
1935		BUG();
1936	}
1937	return ret;
1938}
1939
1940static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1941				    struct extent_buffer *leaf,
1942				    struct btrfs_extent_item *ei)
1943{
1944	u64 flags = btrfs_extent_flags(leaf, ei);
1945	if (extent_op->update_flags) {
1946		flags |= extent_op->flags_to_set;
1947		btrfs_set_extent_flags(leaf, ei, flags);
1948	}
1949
1950	if (extent_op->update_key) {
1951		struct btrfs_tree_block_info *bi;
1952		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1953		bi = (struct btrfs_tree_block_info *)(ei + 1);
1954		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1955	}
1956}
1957
1958static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1959				 struct btrfs_root *root,
1960				 struct btrfs_delayed_ref_node *node,
1961				 struct btrfs_delayed_extent_op *extent_op)
1962{
 
 
1963	struct btrfs_key key;
1964	struct btrfs_path *path;
1965	struct btrfs_extent_item *ei;
1966	struct extent_buffer *leaf;
1967	u32 item_size;
1968	int ret;
1969	int err = 0;
 
 
 
 
 
 
1970
1971	path = btrfs_alloc_path();
1972	if (!path)
1973		return -ENOMEM;
1974
1975	key.objectid = node->bytenr;
1976	key.type = BTRFS_EXTENT_ITEM_KEY;
1977	key.offset = node->num_bytes;
 
 
 
 
 
 
1978
1979	path->reada = 1;
1980	path->leave_spinning = 1;
1981	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1982				path, 0, 1);
1983	if (ret < 0) {
1984		err = ret;
1985		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986	}
1987	if (ret > 0) {
1988		err = -EIO;
 
 
 
 
 
 
 
 
1989		goto out;
1990	}
1991
1992	leaf = path->nodes[0];
1993	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1994#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1995	if (item_size < sizeof(*ei)) {
1996		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1997					     path, (u64)-1, 0);
1998		if (ret < 0) {
1999			err = ret;
2000			goto out;
2001		}
2002		leaf = path->nodes[0];
2003		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2004	}
2005#endif
2006	BUG_ON(item_size < sizeof(*ei));
2007	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2008	__run_delayed_extent_op(extent_op, leaf, ei);
2009
2010	btrfs_mark_buffer_dirty(leaf);
2011out:
2012	btrfs_free_path(path);
2013	return err;
2014}
2015
2016static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2017				struct btrfs_root *root,
2018				struct btrfs_delayed_ref_node *node,
2019				struct btrfs_delayed_extent_op *extent_op,
2020				int insert_reserved)
2021{
2022	int ret = 0;
 
2023	struct btrfs_delayed_tree_ref *ref;
2024	struct btrfs_key ins;
2025	u64 parent = 0;
2026	u64 ref_root = 0;
2027
2028	ins.objectid = node->bytenr;
2029	ins.offset = node->num_bytes;
2030	ins.type = BTRFS_EXTENT_ITEM_KEY;
2031
2032	ref = btrfs_delayed_node_to_tree_ref(node);
2033	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2034		parent = ref->parent;
2035	else
2036		ref_root = ref->root;
2037
2038	BUG_ON(node->ref_mod != 1);
 
 
 
 
 
 
2039	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2040		BUG_ON(!extent_op || !extent_op->update_flags ||
2041		       !extent_op->update_key);
2042		ret = alloc_reserved_tree_block(trans, root,
2043						parent, ref_root,
2044						extent_op->flags_to_set,
2045						&extent_op->key,
2046						ref->level, &ins);
 
 
 
 
 
2047	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2048		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2049					     node->num_bytes, parent, ref_root,
2050					     ref->level, 0, 1, extent_op);
2051	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2052		ret = __btrfs_free_extent(trans, root, node->bytenr,
2053					  node->num_bytes, parent, ref_root,
2054					  ref->level, 0, 1, extent_op);
2055	} else {
2056		BUG();
2057	}
2058	return ret;
2059}
2060
2061/* helper function to actually process a single delayed ref entry */
2062static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2063			       struct btrfs_root *root,
2064			       struct btrfs_delayed_ref_node *node,
2065			       struct btrfs_delayed_extent_op *extent_op,
2066			       int insert_reserved)
2067{
2068	int ret;
2069	if (btrfs_delayed_ref_is_head(node)) {
2070		struct btrfs_delayed_ref_head *head;
2071		/*
2072		 * we've hit the end of the chain and we were supposed
2073		 * to insert this extent into the tree.  But, it got
2074		 * deleted before we ever needed to insert it, so all
2075		 * we have to do is clean up the accounting
2076		 */
2077		BUG_ON(extent_op);
2078		head = btrfs_delayed_node_to_head(node);
2079		if (insert_reserved) {
2080			btrfs_pin_extent(root, node->bytenr,
2081					 node->num_bytes, 1);
2082			if (head->is_data) {
2083				ret = btrfs_del_csums(trans, root,
2084						      node->bytenr,
2085						      node->num_bytes);
2086				BUG_ON(ret);
2087			}
2088		}
2089		mutex_unlock(&head->mutex);
2090		return 0;
2091	}
2092
2093	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2094	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2095		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2096					   insert_reserved);
2097	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2098		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2099		ret = run_delayed_data_ref(trans, root, node, extent_op,
2100					   insert_reserved);
 
 
2101	else
2102		BUG();
 
 
 
 
 
 
 
2103	return ret;
2104}
2105
2106static noinline struct btrfs_delayed_ref_node *
2107select_delayed_ref(struct btrfs_delayed_ref_head *head)
2108{
2109	struct rb_node *node;
2110	struct btrfs_delayed_ref_node *ref;
2111	int action = BTRFS_ADD_DELAYED_REF;
2112again:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113	/*
2114	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2115	 * this prevents ref count from going down to zero when
2116	 * there still are pending delayed ref.
2117	 */
2118	node = rb_prev(&head->node.rb_node);
2119	while (1) {
2120		if (!node)
2121			break;
2122		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2123				rb_node);
2124		if (ref->bytenr != head->node.bytenr)
2125			break;
2126		if (ref->action == action)
2127			return ref;
2128		node = rb_prev(node);
2129	}
2130	if (action == BTRFS_ADD_DELAYED_REF) {
2131		action = BTRFS_DROP_DELAYED_REF;
2132		goto again;
2133	}
2134	return NULL;
2135}
2136
2137static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2138				       struct btrfs_root *root,
2139				       struct list_head *cluster)
2140{
 
 
2141	struct btrfs_delayed_ref_root *delayed_refs;
2142	struct btrfs_delayed_ref_node *ref;
2143	struct btrfs_delayed_ref_head *locked_ref = NULL;
2144	struct btrfs_delayed_extent_op *extent_op;
2145	int ret;
2146	int count = 0;
2147	int must_insert_reserved = 0;
2148
2149	delayed_refs = &trans->transaction->delayed_refs;
2150	while (1) {
2151		if (!locked_ref) {
2152			/* pick a new head ref from the cluster list */
2153			if (list_empty(cluster))
2154				break;
2155
2156			locked_ref = list_entry(cluster->next,
2157				     struct btrfs_delayed_ref_head, cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158
2159			/* grab the lock that says we are going to process
2160			 * all the refs for this head */
2161			ret = btrfs_delayed_ref_lock(trans, locked_ref);
 
2162
2163			/*
2164			 * we may have dropped the spin lock to get the head
2165			 * mutex lock, and that might have given someone else
2166			 * time to free the head.  If that's true, it has been
2167			 * removed from our list and we can move on.
2168			 */
2169			if (ret == -EAGAIN) {
2170				locked_ref = NULL;
2171				count++;
2172				continue;
2173			}
2174		}
 
 
 
2175
2176		/*
2177		 * record the must insert reserved flag before we
2178		 * drop the spin lock.
2179		 */
2180		must_insert_reserved = locked_ref->must_insert_reserved;
2181		locked_ref->must_insert_reserved = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183		extent_op = locked_ref->extent_op;
2184		locked_ref->extent_op = NULL;
 
 
 
 
 
2185
2186		/*
2187		 * locked_ref is the head node, so we have to go one
2188		 * node back for any delayed ref updates
2189		 */
2190		ref = select_delayed_ref(locked_ref);
2191		if (!ref) {
2192			/* All delayed refs have been processed, Go ahead
2193			 * and send the head node to run_one_delayed_ref,
2194			 * so that any accounting fixes can happen
2195			 */
2196			ref = &locked_ref->node;
2197
2198			if (extent_op && must_insert_reserved) {
2199				kfree(extent_op);
2200				extent_op = NULL;
2201			}
 
 
 
 
 
 
2202
2203			if (extent_op) {
2204				spin_unlock(&delayed_refs->lock);
2205
2206				ret = run_delayed_extent_op(trans, root,
2207							    ref, extent_op);
2208				BUG_ON(ret);
2209				kfree(extent_op);
2210
2211				cond_resched();
2212				spin_lock(&delayed_refs->lock);
2213				continue;
2214			}
 
 
 
2215
2216			list_del_init(&locked_ref->cluster);
2217			locked_ref = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218		}
 
2219
2220		ref->in_tree = 0;
2221		rb_erase(&ref->rb_node, &delayed_refs->root);
2222		delayed_refs->num_entries--;
 
 
 
 
 
 
 
 
 
2223
2224		spin_unlock(&delayed_refs->lock);
 
 
2225
2226		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2227					  must_insert_reserved);
2228		BUG_ON(ret);
 
 
 
 
 
 
 
 
2229
2230		btrfs_put_delayed_ref(ref);
2231		kfree(extent_op);
2232		count++;
2233
2234		cond_resched();
2235		spin_lock(&delayed_refs->lock);
2236	}
2237	return count;
 
2238}
2239
2240/*
2241 * this starts processing the delayed reference count updates and
2242 * extent insertions we have queued up so far.  count can be
2243 * 0, which means to process everything in the tree at the start
2244 * of the run (but not newly added entries), or it can be some target
2245 * number you'd like to process.
2246 */
2247int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2248			   struct btrfs_root *root, unsigned long count)
2249{
2250	struct rb_node *node;
2251	struct btrfs_delayed_ref_root *delayed_refs;
2252	struct btrfs_delayed_ref_node *ref;
2253	struct list_head cluster;
2254	int ret;
2255	int run_all = count == (unsigned long)-1;
2256	int run_most = 0;
2257
2258	if (root == root->fs_info->extent_root)
2259		root = root->fs_info->tree_root;
2260
2261	delayed_refs = &trans->transaction->delayed_refs;
2262	INIT_LIST_HEAD(&cluster);
2263again:
2264	spin_lock(&delayed_refs->lock);
2265	if (count == 0) {
2266		count = delayed_refs->num_entries * 2;
2267		run_most = 1;
2268	}
2269	while (1) {
2270		if (!(run_all || run_most) &&
2271		    delayed_refs->num_heads_ready < 64)
2272			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2273
2274		/*
2275		 * go find something we can process in the rbtree.  We start at
2276		 * the beginning of the tree, and then build a cluster
2277		 * of refs to process starting at the first one we are able to
2278		 * lock
2279		 */
2280		ret = btrfs_find_ref_cluster(trans, &cluster,
2281					     delayed_refs->run_delayed_start);
2282		if (ret)
2283			break;
2284
2285		ret = run_clustered_refs(trans, root, &cluster);
2286		BUG_ON(ret < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287
2288		count -= min_t(unsigned long, ret, count);
 
 
 
2289
2290		if (count == 0)
2291			break;
2292	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2293
2294	if (run_all) {
2295		node = rb_first(&delayed_refs->root);
2296		if (!node)
2297			goto out;
2298		count = (unsigned long)-1;
2299
2300		while (node) {
2301			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302				       rb_node);
2303			if (btrfs_delayed_ref_is_head(ref)) {
2304				struct btrfs_delayed_ref_head *head;
2305
2306				head = btrfs_delayed_node_to_head(ref);
2307				atomic_inc(&ref->refs);
 
 
 
 
 
 
 
 
2308
2309				spin_unlock(&delayed_refs->lock);
2310				/*
2311				 * Mutex was contended, block until it's
2312				 * released and try again
2313				 */
2314				mutex_lock(&head->mutex);
2315				mutex_unlock(&head->mutex);
2316
2317				btrfs_put_delayed_ref(ref);
2318				cond_resched();
2319				goto again;
2320			}
2321			node = rb_next(node);
2322		}
2323		spin_unlock(&delayed_refs->lock);
2324		schedule_timeout(1);
 
2325		goto again;
2326	}
2327out:
2328	spin_unlock(&delayed_refs->lock);
2329	return 0;
2330}
2331
2332int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2333				struct btrfs_root *root,
2334				u64 bytenr, u64 num_bytes, u64 flags,
2335				int is_data)
2336{
2337	struct btrfs_delayed_extent_op *extent_op;
 
2338	int ret;
2339
2340	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2341	if (!extent_op)
2342		return -ENOMEM;
2343
2344	extent_op->flags_to_set = flags;
2345	extent_op->update_flags = 1;
2346	extent_op->update_key = 0;
2347	extent_op->is_data = is_data ? 1 : 0;
2348
2349	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2350	if (ret)
2351		kfree(extent_op);
2352	return ret;
2353}
2354
2355static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2356				      struct btrfs_root *root,
2357				      struct btrfs_path *path,
2358				      u64 objectid, u64 offset, u64 bytenr)
2359{
2360	struct btrfs_delayed_ref_head *head;
2361	struct btrfs_delayed_ref_node *ref;
2362	struct btrfs_delayed_data_ref *data_ref;
2363	struct btrfs_delayed_ref_root *delayed_refs;
 
2364	struct rb_node *node;
2365	int ret = 0;
2366
2367	ret = -ENOENT;
2368	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
 
 
2369	spin_lock(&delayed_refs->lock);
2370	head = btrfs_find_delayed_ref_head(trans, bytenr);
2371	if (!head)
2372		goto out;
 
 
 
2373
2374	if (!mutex_trylock(&head->mutex)) {
2375		atomic_inc(&head->node.refs);
 
 
 
 
 
 
2376		spin_unlock(&delayed_refs->lock);
2377
2378		btrfs_release_path(path);
2379
2380		/*
2381		 * Mutex was contended, block until it's released and let
2382		 * caller try again
2383		 */
2384		mutex_lock(&head->mutex);
2385		mutex_unlock(&head->mutex);
2386		btrfs_put_delayed_ref(&head->node);
 
2387		return -EAGAIN;
2388	}
 
2389
2390	node = rb_prev(&head->node.rb_node);
2391	if (!node)
2392		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
2393
2394	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2395
2396	if (ref->bytenr != bytenr)
2397		goto out_unlock;
2398
2399	ret = 1;
2400	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2401		goto out_unlock;
2402
2403	data_ref = btrfs_delayed_node_to_data_ref(ref);
2404
2405	node = rb_prev(node);
2406	if (node) {
2407		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2408		if (ref->bytenr == bytenr)
2409			goto out_unlock;
2410	}
2411
2412	if (data_ref->root != root->root_key.objectid ||
2413	    data_ref->objectid != objectid || data_ref->offset != offset)
2414		goto out_unlock;
2415
2416	ret = 0;
2417out_unlock:
2418	mutex_unlock(&head->mutex);
2419out:
2420	spin_unlock(&delayed_refs->lock);
2421	return ret;
2422}
2423
2424static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2425					struct btrfs_root *root,
2426					struct btrfs_path *path,
2427					u64 objectid, u64 offset, u64 bytenr)
 
2428{
2429	struct btrfs_root *extent_root = root->fs_info->extent_root;
 
2430	struct extent_buffer *leaf;
2431	struct btrfs_extent_data_ref *ref;
2432	struct btrfs_extent_inline_ref *iref;
2433	struct btrfs_extent_item *ei;
2434	struct btrfs_key key;
2435	u32 item_size;
 
 
2436	int ret;
2437
2438	key.objectid = bytenr;
2439	key.offset = (u64)-1;
2440	key.type = BTRFS_EXTENT_ITEM_KEY;
2441
2442	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2443	if (ret < 0)
2444		goto out;
2445	BUG_ON(ret == 0);
2446
2447	ret = -ENOENT;
2448	if (path->slots[0] == 0)
2449		goto out;
2450
2451	path->slots[0]--;
2452	leaf = path->nodes[0];
2453	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454
2455	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2456		goto out;
2457
2458	ret = 1;
2459	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2461	if (item_size < sizeof(*ei)) {
2462		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 
 
2463		goto out;
 
 
 
 
 
 
 
2464	}
2465#endif
2466	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2467
2468	if (item_size != sizeof(*ei) +
2469	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2470		goto out;
2471
2472	if (btrfs_extent_generation(leaf, ei) <=
2473	    btrfs_root_last_snapshot(&root->root_item))
 
 
 
 
 
2474		goto out;
2475
2476	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2477	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2478	    BTRFS_EXTENT_DATA_REF_KEY)
2479		goto out;
2480
2481	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2482	if (btrfs_extent_refs(leaf, ei) !=
2483	    btrfs_extent_data_ref_count(leaf, ref) ||
2484	    btrfs_extent_data_ref_root(leaf, ref) !=
2485	    root->root_key.objectid ||
2486	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2487	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2488		goto out;
2489
2490	ret = 0;
2491out:
2492	return ret;
2493}
2494
2495int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2496			  struct btrfs_root *root,
2497			  u64 objectid, u64 offset, u64 bytenr)
2498{
2499	struct btrfs_path *path;
2500	int ret;
2501	int ret2;
2502
2503	path = btrfs_alloc_path();
2504	if (!path)
2505		return -ENOENT;
2506
2507	do {
2508		ret = check_committed_ref(trans, root, path, objectid,
2509					  offset, bytenr);
2510		if (ret && ret != -ENOENT)
2511			goto out;
2512
2513		ret2 = check_delayed_ref(trans, root, path, objectid,
2514					 offset, bytenr);
2515	} while (ret2 == -EAGAIN);
2516
2517	if (ret2 && ret2 != -ENOENT) {
2518		ret = ret2;
2519		goto out;
2520	}
2521
2522	if (ret != -ENOENT || ret2 != -ENOENT)
2523		ret = 0;
2524out:
2525	btrfs_free_path(path);
2526	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2527		WARN_ON(ret > 0);
2528	return ret;
2529}
2530
2531static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2532			   struct btrfs_root *root,
2533			   struct extent_buffer *buf,
2534			   int full_backref, int inc)
2535{
 
2536	u64 bytenr;
2537	u64 num_bytes;
2538	u64 parent;
2539	u64 ref_root;
2540	u32 nritems;
2541	struct btrfs_key key;
2542	struct btrfs_file_extent_item *fi;
 
 
2543	int i;
 
2544	int level;
2545	int ret = 0;
2546	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2547			    u64, u64, u64, u64, u64, u64);
 
2548
2549	ref_root = btrfs_header_owner(buf);
2550	nritems = btrfs_header_nritems(buf);
2551	level = btrfs_header_level(buf);
2552
2553	if (!root->ref_cows && level == 0)
2554		return 0;
2555
2556	if (inc)
2557		process_func = btrfs_inc_extent_ref;
2558	else
2559		process_func = btrfs_free_extent;
2560
2561	if (full_backref)
2562		parent = buf->start;
2563	else
2564		parent = 0;
 
 
 
 
2565
2566	for (i = 0; i < nritems; i++) {
2567		if (level == 0) {
2568			btrfs_item_key_to_cpu(buf, &key, i);
2569			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2570				continue;
2571			fi = btrfs_item_ptr(buf, i,
2572					    struct btrfs_file_extent_item);
2573			if (btrfs_file_extent_type(buf, fi) ==
2574			    BTRFS_FILE_EXTENT_INLINE)
2575				continue;
2576			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2577			if (bytenr == 0)
2578				continue;
2579
2580			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2581			key.offset -= btrfs_file_extent_offset(buf, fi);
2582			ret = process_func(trans, root, bytenr, num_bytes,
2583					   parent, ref_root, key.objectid,
2584					   key.offset);
 
 
 
 
 
 
2585			if (ret)
2586				goto fail;
2587		} else {
2588			bytenr = btrfs_node_blockptr(buf, i);
2589			num_bytes = btrfs_level_size(root, level - 1);
2590			ret = process_func(trans, root, bytenr, num_bytes,
2591					   parent, ref_root, level - 1, 0);
 
 
 
 
 
 
 
2592			if (ret)
2593				goto fail;
2594		}
2595	}
2596	return 0;
2597fail:
2598	BUG();
2599	return ret;
2600}
2601
2602int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603		  struct extent_buffer *buf, int full_backref)
2604{
2605	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2606}
2607
2608int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2609		  struct extent_buffer *buf, int full_backref)
2610{
2611	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2612}
2613
2614static int write_one_cache_group(struct btrfs_trans_handle *trans,
2615				 struct btrfs_root *root,
2616				 struct btrfs_path *path,
2617				 struct btrfs_block_group_cache *cache)
2618{
2619	int ret;
2620	struct btrfs_root *extent_root = root->fs_info->extent_root;
2621	unsigned long bi;
2622	struct extent_buffer *leaf;
2623
2624	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2625	if (ret < 0)
2626		goto fail;
2627	BUG_ON(ret);
2628
2629	leaf = path->nodes[0];
2630	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2631	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2632	btrfs_mark_buffer_dirty(leaf);
2633	btrfs_release_path(path);
2634fail:
2635	if (ret)
2636		return ret;
2637	return 0;
2638
2639}
2640
2641static struct btrfs_block_group_cache *
2642next_block_group(struct btrfs_root *root,
2643		 struct btrfs_block_group_cache *cache)
2644{
2645	struct rb_node *node;
2646	spin_lock(&root->fs_info->block_group_cache_lock);
2647	node = rb_next(&cache->cache_node);
2648	btrfs_put_block_group(cache);
2649	if (node) {
2650		cache = rb_entry(node, struct btrfs_block_group_cache,
2651				 cache_node);
2652		btrfs_get_block_group(cache);
2653	} else
2654		cache = NULL;
2655	spin_unlock(&root->fs_info->block_group_cache_lock);
2656	return cache;
2657}
2658
2659static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2660			    struct btrfs_trans_handle *trans,
2661			    struct btrfs_path *path)
2662{
2663	struct btrfs_root *root = block_group->fs_info->tree_root;
2664	struct inode *inode = NULL;
2665	u64 alloc_hint = 0;
2666	int dcs = BTRFS_DC_ERROR;
2667	int num_pages = 0;
2668	int retries = 0;
2669	int ret = 0;
2670
2671	/*
2672	 * If this block group is smaller than 100 megs don't bother caching the
2673	 * block group.
2674	 */
2675	if (block_group->key.offset < (100 * 1024 * 1024)) {
2676		spin_lock(&block_group->lock);
2677		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2678		spin_unlock(&block_group->lock);
2679		return 0;
2680	}
2681
2682again:
2683	inode = lookup_free_space_inode(root, block_group, path);
2684	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2685		ret = PTR_ERR(inode);
2686		btrfs_release_path(path);
2687		goto out;
2688	}
2689
2690	if (IS_ERR(inode)) {
2691		BUG_ON(retries);
2692		retries++;
2693
2694		if (block_group->ro)
2695			goto out_free;
2696
2697		ret = create_free_space_inode(root, trans, block_group, path);
2698		if (ret)
2699			goto out_free;
2700		goto again;
2701	}
2702
2703	/*
2704	 * We want to set the generation to 0, that way if anything goes wrong
2705	 * from here on out we know not to trust this cache when we load up next
2706	 * time.
2707	 */
2708	BTRFS_I(inode)->generation = 0;
2709	ret = btrfs_update_inode(trans, root, inode);
2710	WARN_ON(ret);
2711
2712	if (i_size_read(inode) > 0) {
2713		ret = btrfs_truncate_free_space_cache(root, trans, path,
2714						      inode);
2715		if (ret)
2716			goto out_put;
2717	}
2718
2719	spin_lock(&block_group->lock);
2720	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2721		/* We're not cached, don't bother trying to write stuff out */
2722		dcs = BTRFS_DC_WRITTEN;
2723		spin_unlock(&block_group->lock);
2724		goto out_put;
2725	}
2726	spin_unlock(&block_group->lock);
2727
2728	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2729	if (!num_pages)
2730		num_pages = 1;
2731
2732	/*
2733	 * Just to make absolutely sure we have enough space, we're going to
2734	 * preallocate 12 pages worth of space for each block group.  In
2735	 * practice we ought to use at most 8, but we need extra space so we can
2736	 * add our header and have a terminator between the extents and the
2737	 * bitmaps.
2738	 */
2739	num_pages *= 16;
2740	num_pages *= PAGE_CACHE_SIZE;
2741
2742	ret = btrfs_check_data_free_space(inode, num_pages);
2743	if (ret)
2744		goto out_put;
2745
2746	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2747					      num_pages, num_pages,
2748					      &alloc_hint);
2749	if (!ret)
2750		dcs = BTRFS_DC_SETUP;
2751	btrfs_free_reserved_data_space(inode, num_pages);
2752out_put:
2753	iput(inode);
2754out_free:
2755	btrfs_release_path(path);
2756out:
2757	spin_lock(&block_group->lock);
2758	block_group->disk_cache_state = dcs;
2759	spin_unlock(&block_group->lock);
2760
2761	return ret;
2762}
2763
2764int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2765				   struct btrfs_root *root)
2766{
2767	struct btrfs_block_group_cache *cache;
2768	int err = 0;
2769	struct btrfs_path *path;
2770	u64 last = 0;
2771
2772	path = btrfs_alloc_path();
2773	if (!path)
2774		return -ENOMEM;
2775
2776again:
2777	while (1) {
2778		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2779		while (cache) {
2780			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2781				break;
2782			cache = next_block_group(root, cache);
2783		}
2784		if (!cache) {
2785			if (last == 0)
2786				break;
2787			last = 0;
2788			continue;
2789		}
2790		err = cache_save_setup(cache, trans, path);
2791		last = cache->key.objectid + cache->key.offset;
2792		btrfs_put_block_group(cache);
2793	}
2794
2795	while (1) {
2796		if (last == 0) {
2797			err = btrfs_run_delayed_refs(trans, root,
2798						     (unsigned long)-1);
2799			BUG_ON(err);
2800		}
2801
2802		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2803		while (cache) {
2804			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2805				btrfs_put_block_group(cache);
2806				goto again;
2807			}
2808
2809			if (cache->dirty)
2810				break;
2811			cache = next_block_group(root, cache);
2812		}
2813		if (!cache) {
2814			if (last == 0)
2815				break;
2816			last = 0;
2817			continue;
2818		}
2819
2820		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2821			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2822		cache->dirty = 0;
2823		last = cache->key.objectid + cache->key.offset;
2824
2825		err = write_one_cache_group(trans, root, path, cache);
2826		BUG_ON(err);
2827		btrfs_put_block_group(cache);
2828	}
2829
2830	while (1) {
2831		/*
2832		 * I don't think this is needed since we're just marking our
2833		 * preallocated extent as written, but just in case it can't
2834		 * hurt.
2835		 */
2836		if (last == 0) {
2837			err = btrfs_run_delayed_refs(trans, root,
2838						     (unsigned long)-1);
2839			BUG_ON(err);
2840		}
2841
2842		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2843		while (cache) {
2844			/*
2845			 * Really this shouldn't happen, but it could if we
2846			 * couldn't write the entire preallocated extent and
2847			 * splitting the extent resulted in a new block.
2848			 */
2849			if (cache->dirty) {
2850				btrfs_put_block_group(cache);
2851				goto again;
2852			}
2853			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2854				break;
2855			cache = next_block_group(root, cache);
2856		}
2857		if (!cache) {
2858			if (last == 0)
2859				break;
2860			last = 0;
2861			continue;
2862		}
2863
2864		btrfs_write_out_cache(root, trans, cache, path);
2865
2866		/*
2867		 * If we didn't have an error then the cache state is still
2868		 * NEED_WRITE, so we can set it to WRITTEN.
2869		 */
2870		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2871			cache->disk_cache_state = BTRFS_DC_WRITTEN;
2872		last = cache->key.objectid + cache->key.offset;
2873		btrfs_put_block_group(cache);
2874	}
2875
2876	btrfs_free_path(path);
2877	return 0;
2878}
2879
2880int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2881{
2882	struct btrfs_block_group_cache *block_group;
2883	int readonly = 0;
2884
2885	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2886	if (!block_group || block_group->ro)
2887		readonly = 1;
2888	if (block_group)
2889		btrfs_put_block_group(block_group);
2890	return readonly;
2891}
2892
2893static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2894			     u64 total_bytes, u64 bytes_used,
2895			     struct btrfs_space_info **space_info)
2896{
2897	struct btrfs_space_info *found;
2898	int i;
2899	int factor;
2900
2901	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2902		     BTRFS_BLOCK_GROUP_RAID10))
2903		factor = 2;
2904	else
2905		factor = 1;
2906
2907	found = __find_space_info(info, flags);
2908	if (found) {
2909		spin_lock(&found->lock);
2910		found->total_bytes += total_bytes;
2911		found->disk_total += total_bytes * factor;
2912		found->bytes_used += bytes_used;
2913		found->disk_used += bytes_used * factor;
2914		found->full = 0;
2915		spin_unlock(&found->lock);
2916		*space_info = found;
2917		return 0;
2918	}
2919	found = kzalloc(sizeof(*found), GFP_NOFS);
2920	if (!found)
2921		return -ENOMEM;
2922
2923	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2924		INIT_LIST_HEAD(&found->block_groups[i]);
2925	init_rwsem(&found->groups_sem);
2926	spin_lock_init(&found->lock);
2927	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2928				BTRFS_BLOCK_GROUP_SYSTEM |
2929				BTRFS_BLOCK_GROUP_METADATA);
2930	found->total_bytes = total_bytes;
2931	found->disk_total = total_bytes * factor;
2932	found->bytes_used = bytes_used;
2933	found->disk_used = bytes_used * factor;
2934	found->bytes_pinned = 0;
2935	found->bytes_reserved = 0;
2936	found->bytes_readonly = 0;
2937	found->bytes_may_use = 0;
2938	found->full = 0;
2939	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2940	found->chunk_alloc = 0;
2941	found->flush = 0;
2942	init_waitqueue_head(&found->wait);
2943	*space_info = found;
2944	list_add_rcu(&found->list, &info->space_info);
2945	return 0;
2946}
2947
2948static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2949{
2950	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2951				   BTRFS_BLOCK_GROUP_RAID1 |
2952				   BTRFS_BLOCK_GROUP_RAID10 |
2953				   BTRFS_BLOCK_GROUP_DUP);
2954	if (extra_flags) {
2955		if (flags & BTRFS_BLOCK_GROUP_DATA)
2956			fs_info->avail_data_alloc_bits |= extra_flags;
2957		if (flags & BTRFS_BLOCK_GROUP_METADATA)
2958			fs_info->avail_metadata_alloc_bits |= extra_flags;
2959		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2960			fs_info->avail_system_alloc_bits |= extra_flags;
2961	}
2962}
2963
2964u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2965{
2966	/*
2967	 * we add in the count of missing devices because we want
2968	 * to make sure that any RAID levels on a degraded FS
2969	 * continue to be honored.
2970	 */
2971	u64 num_devices = root->fs_info->fs_devices->rw_devices +
2972		root->fs_info->fs_devices->missing_devices;
2973
2974	if (num_devices == 1)
2975		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2976	if (num_devices < 4)
2977		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2978
2979	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2980	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2981		      BTRFS_BLOCK_GROUP_RAID10))) {
2982		flags &= ~BTRFS_BLOCK_GROUP_DUP;
2983	}
2984
2985	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2986	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2987		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2988	}
2989
2990	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2991	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2992	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
2993	     (flags & BTRFS_BLOCK_GROUP_DUP)))
2994		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2995	return flags;
2996}
2997
2998static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2999{
3000	if (flags & BTRFS_BLOCK_GROUP_DATA)
3001		flags |= root->fs_info->avail_data_alloc_bits &
3002			 root->fs_info->data_alloc_profile;
3003	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3004		flags |= root->fs_info->avail_system_alloc_bits &
3005			 root->fs_info->system_alloc_profile;
3006	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3007		flags |= root->fs_info->avail_metadata_alloc_bits &
3008			 root->fs_info->metadata_alloc_profile;
3009	return btrfs_reduce_alloc_profile(root, flags);
3010}
3011
3012u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3013{
 
3014	u64 flags;
 
3015
3016	if (data)
3017		flags = BTRFS_BLOCK_GROUP_DATA;
3018	else if (root == root->fs_info->chunk_root)
3019		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3020	else
3021		flags = BTRFS_BLOCK_GROUP_METADATA;
3022
3023	return get_alloc_profile(root, flags);
3024}
3025
3026void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3027{
3028	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3029						       BTRFS_BLOCK_GROUP_DATA);
3030}
3031
3032/*
3033 * This will check the space that the inode allocates from to make sure we have
3034 * enough space for bytes.
3035 */
3036int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3037{
3038	struct btrfs_space_info *data_sinfo;
3039	struct btrfs_root *root = BTRFS_I(inode)->root;
3040	u64 used;
3041	int ret = 0, committed = 0, alloc_chunk = 1;
3042
3043	/* make sure bytes are sectorsize aligned */
3044	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
 
 
 
3045
3046	if (root == root->fs_info->tree_root ||
3047	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3048		alloc_chunk = 0;
3049		committed = 1;
3050	}
 
3051
3052	data_sinfo = BTRFS_I(inode)->space_info;
3053	if (!data_sinfo)
3054		goto alloc;
3055
3056again:
3057	/* make sure we have enough space to handle the data first */
3058	spin_lock(&data_sinfo->lock);
3059	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3060		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3061		data_sinfo->bytes_may_use;
3062
3063	if (used + bytes > data_sinfo->total_bytes) {
3064		struct btrfs_trans_handle *trans;
3065
3066		/*
3067		 * if we don't have enough free bytes in this space then we need
3068		 * to alloc a new chunk.
3069		 */
3070		if (!data_sinfo->full && alloc_chunk) {
3071			u64 alloc_target;
3072
3073			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3074			spin_unlock(&data_sinfo->lock);
3075alloc:
3076			alloc_target = btrfs_get_alloc_profile(root, 1);
3077			trans = btrfs_join_transaction(root);
3078			if (IS_ERR(trans))
3079				return PTR_ERR(trans);
3080
3081			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3082					     bytes + 2 * 1024 * 1024,
3083					     alloc_target,
3084					     CHUNK_ALLOC_NO_FORCE);
3085			btrfs_end_transaction(trans, root);
3086			if (ret < 0) {
3087				if (ret != -ENOSPC)
3088					return ret;
3089				else
3090					goto commit_trans;
3091			}
3092
3093			if (!data_sinfo) {
3094				btrfs_set_inode_space_info(root, inode);
3095				data_sinfo = BTRFS_I(inode)->space_info;
3096			}
3097			goto again;
3098		}
3099
3100		/*
3101		 * If we have less pinned bytes than we want to allocate then
3102		 * don't bother committing the transaction, it won't help us.
3103		 */
3104		if (data_sinfo->bytes_pinned < bytes)
3105			committed = 1;
3106		spin_unlock(&data_sinfo->lock);
3107
3108		/* commit the current transaction and try again */
3109commit_trans:
3110		if (!committed &&
3111		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3112			committed = 1;
3113			trans = btrfs_join_transaction(root);
3114			if (IS_ERR(trans))
3115				return PTR_ERR(trans);
3116			ret = btrfs_commit_transaction(trans, root);
3117			if (ret)
3118				return ret;
3119			goto again;
3120		}
3121
3122		return -ENOSPC;
3123	}
3124	data_sinfo->bytes_may_use += bytes;
3125	BTRFS_I(inode)->reserved_bytes += bytes;
3126	spin_unlock(&data_sinfo->lock);
3127
 
 
3128	return 0;
3129}
3130
3131/*
3132 * called when we are clearing an delalloc extent from the
3133 * inode's io_tree or there was an error for whatever reason
3134 * after calling btrfs_check_data_free_space
3135 */
3136void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3137{
3138	struct btrfs_root *root = BTRFS_I(inode)->root;
3139	struct btrfs_space_info *data_sinfo;
3140
3141	/* make sure bytes are sectorsize aligned */
3142	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3143
3144	data_sinfo = BTRFS_I(inode)->space_info;
3145	spin_lock(&data_sinfo->lock);
3146	data_sinfo->bytes_may_use -= bytes;
3147	BTRFS_I(inode)->reserved_bytes -= bytes;
3148	spin_unlock(&data_sinfo->lock);
3149}
3150
3151static void force_metadata_allocation(struct btrfs_fs_info *info)
3152{
3153	struct list_head *head = &info->space_info;
3154	struct btrfs_space_info *found;
3155
3156	rcu_read_lock();
3157	list_for_each_entry_rcu(found, head, list) {
3158		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3159			found->force_alloc = CHUNK_ALLOC_FORCE;
3160	}
3161	rcu_read_unlock();
3162}
3163
3164static int should_alloc_chunk(struct btrfs_root *root,
3165			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3166			      int force)
3167{
3168	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3169	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3170	u64 thresh;
3171
3172	if (force == CHUNK_ALLOC_FORCE)
3173		return 1;
 
3174
3175	/*
3176	 * in limited mode, we want to have some free space up to
3177	 * about 1% of the FS size.
3178	 */
3179	if (force == CHUNK_ALLOC_LIMITED) {
3180		thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3181		thresh = max_t(u64, 64 * 1024 * 1024,
3182			       div_factor_fine(thresh, 1));
3183
3184		if (num_bytes - num_allocated < thresh)
3185			return 1;
3186	}
3187
3188	/*
3189	 * we have two similar checks here, one based on percentage
3190	 * and once based on a hard number of 256MB.  The idea
3191	 * is that if we have a good amount of free
3192	 * room, don't allocate a chunk.  A good mount is
3193	 * less than 80% utilized of the chunks we have allocated,
3194	 * or more than 256MB free
3195	 */
3196	if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3197		return 0;
3198
3199	if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3200		return 0;
3201
3202	thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3203
3204	/* 256MB or 5% of the FS */
3205	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3206
3207	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3208		return 0;
3209	return 1;
3210}
3211
3212static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3213			  struct btrfs_root *extent_root, u64 alloc_bytes,
3214			  u64 flags, int force)
3215{
3216	struct btrfs_space_info *space_info;
3217	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3218	int wait_for_alloc = 0;
3219	int ret = 0;
3220
3221	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3222
3223	space_info = __find_space_info(extent_root->fs_info, flags);
3224	if (!space_info) {
3225		ret = update_space_info(extent_root->fs_info, flags,
3226					0, 0, &space_info);
3227		BUG_ON(ret);
3228	}
3229	BUG_ON(!space_info);
3230
3231again:
3232	spin_lock(&space_info->lock);
3233	if (space_info->force_alloc)
3234		force = space_info->force_alloc;
3235	if (space_info->full) {
3236		spin_unlock(&space_info->lock);
3237		return 0;
3238	}
3239
3240	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3241		spin_unlock(&space_info->lock);
3242		return 0;
3243	} else if (space_info->chunk_alloc) {
3244		wait_for_alloc = 1;
3245	} else {
3246		space_info->chunk_alloc = 1;
3247	}
3248
3249	spin_unlock(&space_info->lock);
3250
3251	mutex_lock(&fs_info->chunk_mutex);
3252
3253	/*
3254	 * The chunk_mutex is held throughout the entirety of a chunk
3255	 * allocation, so once we've acquired the chunk_mutex we know that the
3256	 * other guy is done and we need to recheck and see if we should
3257	 * allocate.
3258	 */
3259	if (wait_for_alloc) {
3260		mutex_unlock(&fs_info->chunk_mutex);
3261		wait_for_alloc = 0;
3262		goto again;
3263	}
3264
3265	/*
3266	 * If we have mixed data/metadata chunks we want to make sure we keep
3267	 * allocating mixed chunks instead of individual chunks.
3268	 */
3269	if (btrfs_mixed_space_info(space_info))
3270		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3271
3272	/*
3273	 * if we're doing a data chunk, go ahead and make sure that
3274	 * we keep a reasonable number of metadata chunks allocated in the
3275	 * FS as well.
3276	 */
3277	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3278		fs_info->data_chunk_allocations++;
3279		if (!(fs_info->data_chunk_allocations %
3280		      fs_info->metadata_ratio))
3281			force_metadata_allocation(fs_info);
3282	}
3283
3284	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3285	if (ret < 0 && ret != -ENOSPC)
3286		goto out;
3287
3288	spin_lock(&space_info->lock);
3289	if (ret)
3290		space_info->full = 1;
3291	else
3292		ret = 1;
3293
3294	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3295	space_info->chunk_alloc = 0;
3296	spin_unlock(&space_info->lock);
3297out:
3298	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3299	return ret;
3300}
3301
3302/*
3303 * shrink metadata reservation for delalloc
3304 */
3305static int shrink_delalloc(struct btrfs_trans_handle *trans,
3306			   struct btrfs_root *root, u64 to_reclaim, int sync)
3307{
3308	struct btrfs_block_rsv *block_rsv;
3309	struct btrfs_space_info *space_info;
3310	u64 reserved;
3311	u64 max_reclaim;
3312	u64 reclaimed = 0;
3313	long time_left;
3314	int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3315	int loops = 0;
3316	unsigned long progress;
3317
3318	block_rsv = &root->fs_info->delalloc_block_rsv;
3319	space_info = block_rsv->space_info;
3320
3321	smp_mb();
3322	reserved = space_info->bytes_reserved;
3323	progress = space_info->reservation_progress;
3324
3325	if (reserved == 0)
3326		return 0;
3327
3328	smp_mb();
3329	if (root->fs_info->delalloc_bytes == 0) {
3330		if (trans)
3331			return 0;
3332		btrfs_wait_ordered_extents(root, 0, 0);
3333		return 0;
3334	}
3335
3336	max_reclaim = min(reserved, to_reclaim);
3337
3338	while (loops < 1024) {
3339		/* have the flusher threads jump in and do some IO */
3340		smp_mb();
3341		nr_pages = min_t(unsigned long, nr_pages,
3342		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3343		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3344
3345		spin_lock(&space_info->lock);
3346		if (reserved > space_info->bytes_reserved)
3347			reclaimed += reserved - space_info->bytes_reserved;
3348		reserved = space_info->bytes_reserved;
3349		spin_unlock(&space_info->lock);
3350
3351		loops++;
3352
3353		if (reserved == 0 || reclaimed >= max_reclaim)
3354			break;
3355
3356		if (trans && trans->transaction->blocked)
3357			return -EAGAIN;
3358
3359		time_left = schedule_timeout_interruptible(1);
3360
3361		/* We were interrupted, exit */
3362		if (time_left)
3363			break;
3364
3365		/* we've kicked the IO a few times, if anything has been freed,
3366		 * exit.  There is no sense in looping here for a long time
3367		 * when we really need to commit the transaction, or there are
3368		 * just too many writers without enough free space
3369		 */
3370
3371		if (loops > 3) {
3372			smp_mb();
3373			if (progress != space_info->reservation_progress)
3374				break;
3375		}
3376
3377	}
3378	if (reclaimed >= to_reclaim && !trans)
3379		btrfs_wait_ordered_extents(root, 0, 0);
3380	return reclaimed >= to_reclaim;
3381}
3382
3383/*
3384 * Retries tells us how many times we've called reserve_metadata_bytes.  The
3385 * idea is if this is the first call (retries == 0) then we will add to our
3386 * reserved count if we can't make the allocation in order to hold our place
3387 * while we go and try and free up space.  That way for retries > 1 we don't try
3388 * and add space, we just check to see if the amount of unused space is >= the
3389 * total space, meaning that our reservation is valid.
3390 *
3391 * However if we don't intend to retry this reservation, pass -1 as retries so
3392 * that it short circuits this logic.
3393 */
3394static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3395				  struct btrfs_root *root,
3396				  struct btrfs_block_rsv *block_rsv,
3397				  u64 orig_bytes, int flush)
3398{
3399	struct btrfs_space_info *space_info = block_rsv->space_info;
3400	u64 unused;
3401	u64 num_bytes = orig_bytes;
3402	int retries = 0;
3403	int ret = 0;
3404	bool committed = false;
3405	bool flushing = false;
3406
3407again:
3408	ret = 0;
3409	spin_lock(&space_info->lock);
3410	/*
3411	 * We only want to wait if somebody other than us is flushing and we are
3412	 * actually alloed to flush.
3413	 */
3414	while (flush && !flushing && space_info->flush) {
3415		spin_unlock(&space_info->lock);
3416		/*
3417		 * If we have a trans handle we can't wait because the flusher
3418		 * may have to commit the transaction, which would mean we would
3419		 * deadlock since we are waiting for the flusher to finish, but
3420		 * hold the current transaction open.
3421		 */
3422		if (trans)
3423			return -EAGAIN;
3424		ret = wait_event_interruptible(space_info->wait,
3425					       !space_info->flush);
3426		/* Must have been interrupted, return */
3427		if (ret)
3428			return -EINTR;
3429
3430		spin_lock(&space_info->lock);
3431	}
3432
3433	ret = -ENOSPC;
3434	unused = space_info->bytes_used + space_info->bytes_reserved +
3435		 space_info->bytes_pinned + space_info->bytes_readonly +
3436		 space_info->bytes_may_use;
3437
3438	/*
3439	 * The idea here is that we've not already over-reserved the block group
3440	 * then we can go ahead and save our reservation first and then start
3441	 * flushing if we need to.  Otherwise if we've already overcommitted
3442	 * lets start flushing stuff first and then come back and try to make
3443	 * our reservation.
3444	 */
3445	if (unused <= space_info->total_bytes) {
3446		unused = space_info->total_bytes - unused;
3447		if (unused >= num_bytes) {
3448			space_info->bytes_reserved += orig_bytes;
3449			ret = 0;
3450		} else {
3451			/*
3452			 * Ok set num_bytes to orig_bytes since we aren't
3453			 * overocmmitted, this way we only try and reclaim what
3454			 * we need.
3455			 */
3456			num_bytes = orig_bytes;
3457		}
3458	} else {
3459		/*
3460		 * Ok we're over committed, set num_bytes to the overcommitted
3461		 * amount plus the amount of bytes that we need for this
3462		 * reservation.
3463		 */
3464		num_bytes = unused - space_info->total_bytes +
3465			(orig_bytes * (retries + 1));
3466	}
3467
3468	/*
3469	 * Couldn't make our reservation, save our place so while we're trying
3470	 * to reclaim space we can actually use it instead of somebody else
3471	 * stealing it from us.
3472	 */
3473	if (ret && flush) {
3474		flushing = true;
3475		space_info->flush = 1;
3476	}
3477
3478	spin_unlock(&space_info->lock);
3479
3480	if (!ret || !flush)
3481		goto out;
3482
3483	/*
3484	 * We do synchronous shrinking since we don't actually unreserve
3485	 * metadata until after the IO is completed.
3486	 */
3487	ret = shrink_delalloc(trans, root, num_bytes, 1);
3488	if (ret < 0)
3489		goto out;
3490
3491	ret = 0;
3492
3493	/*
3494	 * So if we were overcommitted it's possible that somebody else flushed
3495	 * out enough space and we simply didn't have enough space to reclaim,
3496	 * so go back around and try again.
3497	 */
3498	if (retries < 2) {
3499		retries++;
3500		goto again;
3501	}
3502
3503	/*
3504	 * Not enough space to be reclaimed, don't bother committing the
3505	 * transaction.
3506	 */
3507	spin_lock(&space_info->lock);
3508	if (space_info->bytes_pinned < orig_bytes)
3509		ret = -ENOSPC;
3510	spin_unlock(&space_info->lock);
3511	if (ret)
3512		goto out;
3513
3514	ret = -EAGAIN;
3515	if (trans)
3516		goto out;
3517
3518	ret = -ENOSPC;
3519	if (committed)
3520		goto out;
3521
3522	trans = btrfs_join_transaction(root);
3523	if (IS_ERR(trans))
3524		goto out;
3525	ret = btrfs_commit_transaction(trans, root);
3526	if (!ret) {
3527		trans = NULL;
3528		committed = true;
3529		goto again;
3530	}
3531
3532out:
3533	if (flushing) {
3534		spin_lock(&space_info->lock);
3535		space_info->flush = 0;
3536		wake_up_all(&space_info->wait);
3537		spin_unlock(&space_info->lock);
3538	}
3539	return ret;
3540}
3541
3542static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3543					     struct btrfs_root *root)
3544{
3545	struct btrfs_block_rsv *block_rsv;
3546	if (root->ref_cows)
3547		block_rsv = trans->block_rsv;
3548	else
3549		block_rsv = root->block_rsv;
 
3550
3551	if (!block_rsv)
3552		block_rsv = &root->fs_info->empty_block_rsv;
3553
3554	return block_rsv;
3555}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3556
3557static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3558			       u64 num_bytes)
3559{
3560	int ret = -ENOSPC;
3561	spin_lock(&block_rsv->lock);
3562	if (block_rsv->reserved >= num_bytes) {
3563		block_rsv->reserved -= num_bytes;
3564		if (block_rsv->reserved < block_rsv->size)
3565			block_rsv->full = 0;
3566		ret = 0;
3567	}
3568	spin_unlock(&block_rsv->lock);
3569	return ret;
3570}
3571
3572static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3573				u64 num_bytes, int update_size)
3574{
3575	spin_lock(&block_rsv->lock);
3576	block_rsv->reserved += num_bytes;
3577	if (update_size)
3578		block_rsv->size += num_bytes;
3579	else if (block_rsv->reserved >= block_rsv->size)
3580		block_rsv->full = 1;
3581	spin_unlock(&block_rsv->lock);
3582}
3583
3584static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3585				    struct btrfs_block_rsv *dest, u64 num_bytes)
 
 
 
 
 
3586{
3587	struct btrfs_space_info *space_info = block_rsv->space_info;
3588
3589	spin_lock(&block_rsv->lock);
3590	if (num_bytes == (u64)-1)
3591		num_bytes = block_rsv->size;
3592	block_rsv->size -= num_bytes;
3593	if (block_rsv->reserved >= block_rsv->size) {
3594		num_bytes = block_rsv->reserved - block_rsv->size;
3595		block_rsv->reserved = block_rsv->size;
3596		block_rsv->full = 1;
3597	} else {
3598		num_bytes = 0;
3599	}
3600	spin_unlock(&block_rsv->lock);
3601
3602	if (num_bytes > 0) {
3603		if (dest) {
3604			spin_lock(&dest->lock);
3605			if (!dest->full) {
3606				u64 bytes_to_add;
3607
3608				bytes_to_add = dest->size - dest->reserved;
3609				bytes_to_add = min(num_bytes, bytes_to_add);
3610				dest->reserved += bytes_to_add;
3611				if (dest->reserved >= dest->size)
3612					dest->full = 1;
3613				num_bytes -= bytes_to_add;
3614			}
3615			spin_unlock(&dest->lock);
3616		}
3617		if (num_bytes) {
3618			spin_lock(&space_info->lock);
3619			space_info->bytes_reserved -= num_bytes;
3620			space_info->reservation_progress++;
3621			spin_unlock(&space_info->lock);
3622		}
3623	}
3624}
3625
3626static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3627				   struct btrfs_block_rsv *dst, u64 num_bytes)
3628{
3629	int ret;
3630
3631	ret = block_rsv_use_bytes(src, num_bytes);
3632	if (ret)
3633		return ret;
3634
3635	block_rsv_add_bytes(dst, num_bytes, 1);
3636	return 0;
3637}
3638
3639void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3640{
3641	memset(rsv, 0, sizeof(*rsv));
3642	spin_lock_init(&rsv->lock);
3643	atomic_set(&rsv->usage, 1);
3644	rsv->priority = 6;
3645	INIT_LIST_HEAD(&rsv->list);
3646}
3647
3648struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3649{
3650	struct btrfs_block_rsv *block_rsv;
3651	struct btrfs_fs_info *fs_info = root->fs_info;
3652
3653	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3654	if (!block_rsv)
3655		return NULL;
3656
3657	btrfs_init_block_rsv(block_rsv);
3658	block_rsv->space_info = __find_space_info(fs_info,
3659						  BTRFS_BLOCK_GROUP_METADATA);
3660	return block_rsv;
3661}
3662
3663void btrfs_free_block_rsv(struct btrfs_root *root,
3664			  struct btrfs_block_rsv *rsv)
3665{
3666	if (rsv && atomic_dec_and_test(&rsv->usage)) {
3667		btrfs_block_rsv_release(root, rsv, (u64)-1);
3668		if (!rsv->durable)
3669			kfree(rsv);
3670	}
3671}
3672
3673/*
3674 * make the block_rsv struct be able to capture freed space.
3675 * the captured space will re-add to the the block_rsv struct
3676 * after transaction commit
3677 */
3678void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3679				 struct btrfs_block_rsv *block_rsv)
3680{
3681	block_rsv->durable = 1;
3682	mutex_lock(&fs_info->durable_block_rsv_mutex);
3683	list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3684	mutex_unlock(&fs_info->durable_block_rsv_mutex);
3685}
3686
3687int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3688			struct btrfs_root *root,
3689			struct btrfs_block_rsv *block_rsv,
3690			u64 num_bytes)
3691{
3692	int ret;
 
 
 
 
 
 
 
3693
3694	if (num_bytes == 0)
3695		return 0;
 
 
 
 
 
 
 
3696
3697	ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3698	if (!ret) {
3699		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3700		return 0;
3701	}
3702
3703	return ret;
3704}
3705
3706int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3707			  struct btrfs_root *root,
3708			  struct btrfs_block_rsv *block_rsv,
3709			  u64 min_reserved, int min_factor)
3710{
3711	u64 num_bytes = 0;
3712	int commit_trans = 0;
3713	int ret = -ENOSPC;
3714
3715	if (!block_rsv)
3716		return 0;
 
3717
3718	spin_lock(&block_rsv->lock);
3719	if (min_factor > 0)
3720		num_bytes = div_factor(block_rsv->size, min_factor);
3721	if (min_reserved > num_bytes)
3722		num_bytes = min_reserved;
 
 
 
 
 
 
 
3723
3724	if (block_rsv->reserved >= num_bytes) {
3725		ret = 0;
3726	} else {
3727		num_bytes -= block_rsv->reserved;
3728		if (block_rsv->durable &&
3729		    block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3730			commit_trans = 1;
3731	}
3732	spin_unlock(&block_rsv->lock);
3733	if (!ret)
3734		return 0;
3735
3736	if (block_rsv->refill_used) {
3737		ret = reserve_metadata_bytes(trans, root, block_rsv,
3738					     num_bytes, 0);
3739		if (!ret) {
3740			block_rsv_add_bytes(block_rsv, num_bytes, 0);
3741			return 0;
 
 
 
 
 
 
 
 
 
 
 
3742		}
 
 
 
 
3743	}
3744
3745	if (commit_trans) {
3746		if (trans)
3747			return -EAGAIN;
3748		trans = btrfs_join_transaction(root);
3749		BUG_ON(IS_ERR(trans));
3750		ret = btrfs_commit_transaction(trans, root);
3751		return 0;
3752	}
3753
3754	return -ENOSPC;
3755}
3756
3757int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3758			    struct btrfs_block_rsv *dst_rsv,
3759			    u64 num_bytes)
3760{
3761	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3762}
3763
3764void btrfs_block_rsv_release(struct btrfs_root *root,
3765			     struct btrfs_block_rsv *block_rsv,
3766			     u64 num_bytes)
3767{
3768	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3769	if (global_rsv->full || global_rsv == block_rsv ||
3770	    block_rsv->space_info != global_rsv->space_info)
3771		global_rsv = NULL;
3772	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3773}
3774
3775/*
3776 * helper to calculate size of global block reservation.
3777 * the desired value is sum of space used by extent tree,
3778 * checksum tree and root tree
3779 */
3780static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3781{
3782	struct btrfs_space_info *sinfo;
3783	u64 num_bytes;
3784	u64 meta_used;
3785	u64 data_used;
3786	int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
 
 
3787
3788	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3789	spin_lock(&sinfo->lock);
3790	data_used = sinfo->bytes_used;
3791	spin_unlock(&sinfo->lock);
3792
3793	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3794	spin_lock(&sinfo->lock);
3795	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3796		data_used = 0;
3797	meta_used = sinfo->bytes_used;
3798	spin_unlock(&sinfo->lock);
3799
3800	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3801		    csum_size * 2;
3802	num_bytes += div64_u64(data_used + meta_used, 50);
 
 
 
3803
3804	if (num_bytes * 3 > meta_used)
3805		num_bytes = div64_u64(meta_used, 3);
 
3806
3807	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3808}
3809
3810static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3811{
3812	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3813	struct btrfs_space_info *sinfo = block_rsv->space_info;
3814	u64 num_bytes;
3815
3816	num_bytes = calc_global_metadata_size(fs_info);
3817
3818	spin_lock(&block_rsv->lock);
3819	spin_lock(&sinfo->lock);
3820
3821	block_rsv->size = num_bytes;
3822
3823	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3824		    sinfo->bytes_reserved + sinfo->bytes_readonly +
3825		    sinfo->bytes_may_use;
3826
3827	if (sinfo->total_bytes > num_bytes) {
3828		num_bytes = sinfo->total_bytes - num_bytes;
3829		block_rsv->reserved += num_bytes;
3830		sinfo->bytes_reserved += num_bytes;
3831	}
3832
3833	if (block_rsv->reserved >= block_rsv->size) {
3834		num_bytes = block_rsv->reserved - block_rsv->size;
3835		sinfo->bytes_reserved -= num_bytes;
3836		sinfo->reservation_progress++;
3837		block_rsv->reserved = block_rsv->size;
3838		block_rsv->full = 1;
3839	}
3840
3841	spin_unlock(&sinfo->lock);
3842	spin_unlock(&block_rsv->lock);
3843}
3844
3845static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3846{
3847	struct btrfs_space_info *space_info;
3848
3849	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3850	fs_info->chunk_block_rsv.space_info = space_info;
3851	fs_info->chunk_block_rsv.priority = 10;
3852
3853	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3854	fs_info->global_block_rsv.space_info = space_info;
3855	fs_info->global_block_rsv.priority = 10;
3856	fs_info->global_block_rsv.refill_used = 1;
3857	fs_info->delalloc_block_rsv.space_info = space_info;
3858	fs_info->trans_block_rsv.space_info = space_info;
3859	fs_info->empty_block_rsv.space_info = space_info;
3860	fs_info->empty_block_rsv.priority = 10;
3861
3862	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3863	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3864	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3865	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3866	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3867
3868	btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3869
3870	btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3871
3872	update_global_block_rsv(fs_info);
3873}
3874
3875static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3876{
3877	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3878	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3879	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3880	WARN_ON(fs_info->trans_block_rsv.size > 0);
3881	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3882	WARN_ON(fs_info->chunk_block_rsv.size > 0);
3883	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3884}
3885
3886int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3887				    struct btrfs_root *root,
3888				    struct btrfs_block_rsv *rsv)
3889{
3890	struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3891	u64 num_bytes;
3892	int ret;
3893
3894	/*
3895	 * Truncate should be freeing data, but give us 2 items just in case it
3896	 * needs to use some space.  We may want to be smarter about this in the
3897	 * future.
3898	 */
3899	num_bytes = btrfs_calc_trans_metadata_size(root, 2);
 
 
3900
3901	/* We already have enough bytes, just return */
3902	if (rsv->reserved >= num_bytes)
3903		return 0;
 
 
 
3904
3905	num_bytes -= rsv->reserved;
 
 
3906
3907	/*
3908	 * You should have reserved enough space before hand to do this, so this
3909	 * should not fail.
3910	 */
3911	ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3912	BUG_ON(ret);
 
3913
3914	return 0;
3915}
3916
3917void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3918				  struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3919{
3920	if (!trans->bytes_reserved)
3921		return;
 
 
 
 
3922
3923	BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3924	btrfs_block_rsv_release(root, trans->block_rsv,
3925				trans->bytes_reserved);
3926	trans->bytes_reserved = 0;
3927}
3928
3929int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3930				  struct inode *inode)
3931{
3932	struct btrfs_root *root = BTRFS_I(inode)->root;
3933	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3934	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3935
3936	/*
3937	 * We need to hold space in order to delete our orphan item once we've
3938	 * added it, so this takes the reservation so we can release it later
3939	 * when we are truly done with the orphan item.
3940	 */
3941	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3942	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3943}
3944
3945void btrfs_orphan_release_metadata(struct inode *inode)
3946{
3947	struct btrfs_root *root = BTRFS_I(inode)->root;
3948	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3949	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3950}
3951
3952int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3953				struct btrfs_pending_snapshot *pending)
3954{
3955	struct btrfs_root *root = pending->root;
3956	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3957	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3958	/*
3959	 * two for root back/forward refs, two for directory entries
3960	 * and one for root of the snapshot.
3961	 */
3962	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3963	dst_rsv->space_info = src_rsv->space_info;
3964	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3965}
3966
3967static unsigned drop_outstanding_extent(struct inode *inode)
3968{
3969	unsigned dropped_extents = 0;
3970
3971	spin_lock(&BTRFS_I(inode)->lock);
3972	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3973	BTRFS_I(inode)->outstanding_extents--;
3974
3975	/*
3976	 * If we have more or the same amount of outsanding extents than we have
3977	 * reserved then we need to leave the reserved extents count alone.
3978	 */
3979	if (BTRFS_I(inode)->outstanding_extents >=
3980	    BTRFS_I(inode)->reserved_extents)
3981		goto out;
3982
3983	dropped_extents = BTRFS_I(inode)->reserved_extents -
3984		BTRFS_I(inode)->outstanding_extents;
3985	BTRFS_I(inode)->reserved_extents -= dropped_extents;
3986out:
3987	spin_unlock(&BTRFS_I(inode)->lock);
3988	return dropped_extents;
3989}
3990
3991static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
 
3992{
3993	return num_bytes >>= 3;
3994}
3995
3996int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3997{
3998	struct btrfs_root *root = BTRFS_I(inode)->root;
3999	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4000	u64 to_reserve = 0;
4001	unsigned nr_extents = 0;
4002	int ret;
 
4003
4004	if (btrfs_transaction_in_commit(root->fs_info))
4005		schedule_timeout(1);
4006
4007	num_bytes = ALIGN(num_bytes, root->sectorsize);
 
 
 
 
 
4008
4009	spin_lock(&BTRFS_I(inode)->lock);
4010	BTRFS_I(inode)->outstanding_extents++;
4011
4012	if (BTRFS_I(inode)->outstanding_extents >
4013	    BTRFS_I(inode)->reserved_extents) {
4014		nr_extents = BTRFS_I(inode)->outstanding_extents -
4015			BTRFS_I(inode)->reserved_extents;
4016		BTRFS_I(inode)->reserved_extents += nr_extents;
4017
4018		to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4019	}
4020	spin_unlock(&BTRFS_I(inode)->lock);
4021
4022	to_reserve += calc_csum_metadata_size(inode, num_bytes);
4023	ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4024	if (ret) {
4025		unsigned dropped;
4026		/*
4027		 * We don't need the return value since our reservation failed,
4028		 * we just need to clean up our counter.
4029		 */
4030		dropped = drop_outstanding_extent(inode);
4031		WARN_ON(dropped > 1);
4032		return ret;
4033	}
4034
4035	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4036
4037	return 0;
4038}
4039
4040void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4041{
4042	struct btrfs_root *root = BTRFS_I(inode)->root;
4043	u64 to_free = 0;
4044	unsigned dropped;
4045
4046	num_bytes = ALIGN(num_bytes, root->sectorsize);
4047	dropped = drop_outstanding_extent(inode);
4048
4049	to_free = calc_csum_metadata_size(inode, num_bytes);
4050	if (dropped > 0)
4051		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4052
4053	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4054				to_free);
4055}
4056
4057int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4058{
4059	int ret;
4060
4061	ret = btrfs_check_data_free_space(inode, num_bytes);
4062	if (ret)
4063		return ret;
4064
4065	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4066	if (ret) {
4067		btrfs_free_reserved_data_space(inode, num_bytes);
4068		return ret;
4069	}
4070
4071	return 0;
4072}
 
4073
4074void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4075{
4076	btrfs_delalloc_release_metadata(inode, num_bytes);
4077	btrfs_free_reserved_data_space(inode, num_bytes);
4078}
4079
4080static int update_block_group(struct btrfs_trans_handle *trans,
4081			      struct btrfs_root *root,
4082			      u64 bytenr, u64 num_bytes, int alloc)
4083{
4084	struct btrfs_block_group_cache *cache = NULL;
4085	struct btrfs_fs_info *info = root->fs_info;
4086	u64 total = num_bytes;
4087	u64 old_val;
4088	u64 byte_in_group;
4089	int factor;
4090
4091	/* block accounting for super block */
4092	spin_lock(&info->delalloc_lock);
4093	old_val = btrfs_super_bytes_used(&info->super_copy);
4094	if (alloc)
4095		old_val += num_bytes;
4096	else
4097		old_val -= num_bytes;
4098	btrfs_set_super_bytes_used(&info->super_copy, old_val);
4099	spin_unlock(&info->delalloc_lock);
4100
4101	while (total) {
4102		cache = btrfs_lookup_block_group(info, bytenr);
4103		if (!cache)
4104			return -1;
4105		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4106				    BTRFS_BLOCK_GROUP_RAID1 |
4107				    BTRFS_BLOCK_GROUP_RAID10))
4108			factor = 2;
4109		else
4110			factor = 1;
4111		/*
4112		 * If this block group has free space cache written out, we
4113		 * need to make sure to load it if we are removing space.  This
4114		 * is because we need the unpinning stage to actually add the
4115		 * space back to the block group, otherwise we will leak space.
4116		 */
4117		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4118			cache_block_group(cache, trans, NULL, 1);
4119
4120		byte_in_group = bytenr - cache->key.objectid;
4121		WARN_ON(byte_in_group > cache->key.offset);
4122
4123		spin_lock(&cache->space_info->lock);
4124		spin_lock(&cache->lock);
4125
4126		if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4127		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4128			cache->disk_cache_state = BTRFS_DC_CLEAR;
4129
4130		cache->dirty = 1;
4131		old_val = btrfs_block_group_used(&cache->item);
4132		num_bytes = min(total, cache->key.offset - byte_in_group);
4133		if (alloc) {
4134			old_val += num_bytes;
4135			btrfs_set_block_group_used(&cache->item, old_val);
4136			cache->reserved -= num_bytes;
4137			cache->space_info->bytes_reserved -= num_bytes;
4138			cache->space_info->reservation_progress++;
4139			cache->space_info->bytes_used += num_bytes;
4140			cache->space_info->disk_used += num_bytes * factor;
4141			spin_unlock(&cache->lock);
4142			spin_unlock(&cache->space_info->lock);
4143		} else {
4144			old_val -= num_bytes;
4145			btrfs_set_block_group_used(&cache->item, old_val);
4146			cache->pinned += num_bytes;
4147			cache->space_info->bytes_pinned += num_bytes;
4148			cache->space_info->bytes_used -= num_bytes;
4149			cache->space_info->disk_used -= num_bytes * factor;
4150			spin_unlock(&cache->lock);
4151			spin_unlock(&cache->space_info->lock);
4152
4153			set_extent_dirty(info->pinned_extents,
4154					 bytenr, bytenr + num_bytes - 1,
4155					 GFP_NOFS | __GFP_NOFAIL);
4156		}
4157		btrfs_put_block_group(cache);
4158		total -= num_bytes;
4159		bytenr += num_bytes;
4160	}
4161	return 0;
4162}
4163
4164static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4165{
4166	struct btrfs_block_group_cache *cache;
4167	u64 bytenr;
4168
4169	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4170	if (!cache)
4171		return 0;
4172
4173	bytenr = cache->key.objectid;
4174	btrfs_put_block_group(cache);
4175
4176	return bytenr;
4177}
4178
4179static int pin_down_extent(struct btrfs_root *root,
4180			   struct btrfs_block_group_cache *cache,
4181			   u64 bytenr, u64 num_bytes, int reserved)
4182{
4183	spin_lock(&cache->space_info->lock);
4184	spin_lock(&cache->lock);
4185	cache->pinned += num_bytes;
4186	cache->space_info->bytes_pinned += num_bytes;
4187	if (reserved) {
4188		cache->reserved -= num_bytes;
4189		cache->space_info->bytes_reserved -= num_bytes;
4190		cache->space_info->reservation_progress++;
4191	}
4192	spin_unlock(&cache->lock);
4193	spin_unlock(&cache->space_info->lock);
4194
4195	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4196			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4197	return 0;
4198}
4199
4200/*
4201 * this function must be called within transaction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202 */
4203int btrfs_pin_extent(struct btrfs_root *root,
4204		     u64 bytenr, u64 num_bytes, int reserved)
4205{
4206	struct btrfs_block_group_cache *cache;
4207
4208	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4209	BUG_ON(!cache);
4210
4211	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4212
4213	btrfs_put_block_group(cache);
4214	return 0;
4215}
4216
4217/*
4218 * update size of reserved extents. this function may return -EAGAIN
4219 * if 'reserve' is true or 'sinfo' is false.
4220 */
4221int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4222				u64 num_bytes, int reserve, int sinfo)
4223{
4224	int ret = 0;
4225	if (sinfo) {
4226		struct btrfs_space_info *space_info = cache->space_info;
4227		spin_lock(&space_info->lock);
4228		spin_lock(&cache->lock);
4229		if (reserve) {
4230			if (cache->ro) {
4231				ret = -EAGAIN;
4232			} else {
4233				cache->reserved += num_bytes;
4234				space_info->bytes_reserved += num_bytes;
4235			}
4236		} else {
4237			if (cache->ro)
4238				space_info->bytes_readonly += num_bytes;
4239			cache->reserved -= num_bytes;
4240			space_info->bytes_reserved -= num_bytes;
4241			space_info->reservation_progress++;
4242		}
4243		spin_unlock(&cache->lock);
4244		spin_unlock(&space_info->lock);
4245	} else {
4246		spin_lock(&cache->lock);
4247		if (cache->ro) {
4248			ret = -EAGAIN;
4249		} else {
4250			if (reserve)
4251				cache->reserved += num_bytes;
4252			else
4253				cache->reserved -= num_bytes;
4254		}
4255		spin_unlock(&cache->lock);
4256	}
4257	return ret;
4258}
4259
4260int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4261				struct btrfs_root *root)
4262{
4263	struct btrfs_fs_info *fs_info = root->fs_info;
4264	struct btrfs_caching_control *next;
4265	struct btrfs_caching_control *caching_ctl;
4266	struct btrfs_block_group_cache *cache;
4267
4268	down_write(&fs_info->extent_commit_sem);
4269
4270	list_for_each_entry_safe(caching_ctl, next,
4271				 &fs_info->caching_block_groups, list) {
4272		cache = caching_ctl->block_group;
4273		if (block_group_cache_done(cache)) {
4274			cache->last_byte_to_unpin = (u64)-1;
4275			list_del_init(&caching_ctl->list);
4276			put_caching_control(caching_ctl);
4277		} else {
4278			cache->last_byte_to_unpin = caching_ctl->progress;
4279		}
4280	}
4281
4282	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4283		fs_info->pinned_extents = &fs_info->freed_extents[1];
4284	else
4285		fs_info->pinned_extents = &fs_info->freed_extents[0];
4286
4287	up_write(&fs_info->extent_commit_sem);
4288
4289	update_global_block_rsv(fs_info);
4290	return 0;
4291}
4292
4293static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4294{
4295	struct btrfs_fs_info *fs_info = root->fs_info;
4296	struct btrfs_block_group_cache *cache = NULL;
4297	u64 len;
4298
4299	while (start <= end) {
4300		if (!cache ||
4301		    start >= cache->key.objectid + cache->key.offset) {
4302			if (cache)
4303				btrfs_put_block_group(cache);
4304			cache = btrfs_lookup_block_group(fs_info, start);
4305			BUG_ON(!cache);
4306		}
4307
4308		len = cache->key.objectid + cache->key.offset - start;
4309		len = min(len, end + 1 - start);
4310
4311		if (start < cache->last_byte_to_unpin) {
4312			len = min(len, cache->last_byte_to_unpin - start);
4313			btrfs_add_free_space(cache, start, len);
4314		}
4315
4316		start += len;
4317
4318		spin_lock(&cache->space_info->lock);
4319		spin_lock(&cache->lock);
4320		cache->pinned -= len;
4321		cache->space_info->bytes_pinned -= len;
4322		if (cache->ro) {
4323			cache->space_info->bytes_readonly += len;
4324		} else if (cache->reserved_pinned > 0) {
4325			len = min(len, cache->reserved_pinned);
4326			cache->reserved_pinned -= len;
4327			cache->space_info->bytes_reserved += len;
4328		}
4329		spin_unlock(&cache->lock);
4330		spin_unlock(&cache->space_info->lock);
4331	}
4332
4333	if (cache)
4334		btrfs_put_block_group(cache);
4335	return 0;
4336}
4337
4338int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4339			       struct btrfs_root *root)
4340{
4341	struct btrfs_fs_info *fs_info = root->fs_info;
4342	struct extent_io_tree *unpin;
4343	struct btrfs_block_rsv *block_rsv;
4344	struct btrfs_block_rsv *next_rsv;
4345	u64 start;
4346	u64 end;
4347	int idx;
4348	int ret;
4349
4350	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4351		unpin = &fs_info->freed_extents[1];
4352	else
4353		unpin = &fs_info->freed_extents[0];
4354
4355	while (1) {
4356		ret = find_first_extent_bit(unpin, 0, &start, &end,
4357					    EXTENT_DIRTY);
4358		if (ret)
4359			break;
4360
4361		if (btrfs_test_opt(root, DISCARD))
4362			ret = btrfs_discard_extent(root, start,
4363						   end + 1 - start, NULL);
4364
4365		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4366		unpin_extent_range(root, start, end);
4367		cond_resched();
4368	}
4369
4370	mutex_lock(&fs_info->durable_block_rsv_mutex);
4371	list_for_each_entry_safe(block_rsv, next_rsv,
4372				 &fs_info->durable_block_rsv_list, list) {
4373
4374		idx = trans->transid & 0x1;
4375		if (block_rsv->freed[idx] > 0) {
4376			block_rsv_add_bytes(block_rsv,
4377					    block_rsv->freed[idx], 0);
4378			block_rsv->freed[idx] = 0;
4379		}
4380		if (atomic_read(&block_rsv->usage) == 0) {
4381			btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4382
4383			if (block_rsv->freed[0] == 0 &&
4384			    block_rsv->freed[1] == 0) {
4385				list_del_init(&block_rsv->list);
4386				kfree(block_rsv);
4387			}
4388		} else {
4389			btrfs_block_rsv_release(root, block_rsv, 0);
4390		}
4391	}
4392	mutex_unlock(&fs_info->durable_block_rsv_mutex);
4393
4394	return 0;
4395}
4396
4397static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4398				struct btrfs_root *root,
4399				u64 bytenr, u64 num_bytes, u64 parent,
4400				u64 root_objectid, u64 owner_objectid,
4401				u64 owner_offset, int refs_to_drop,
4402				struct btrfs_delayed_extent_op *extent_op)
4403{
 
4404	struct btrfs_key key;
4405	struct btrfs_path *path;
4406	struct btrfs_fs_info *info = root->fs_info;
4407	struct btrfs_root *extent_root = info->extent_root;
4408	struct extent_buffer *leaf;
4409	struct btrfs_extent_item *ei;
4410	struct btrfs_extent_inline_ref *iref;
4411	int ret;
4412	int is_data;
4413	int extent_slot = 0;
4414	int found_extent = 0;
4415	int num_to_del = 1;
 
4416	u32 item_size;
4417	u64 refs;
 
 
 
 
 
 
 
4418
4419	path = btrfs_alloc_path();
4420	if (!path)
4421		return -ENOMEM;
4422
4423	path->reada = 1;
4424	path->leave_spinning = 1;
4425
4426	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4427	BUG_ON(!is_data && refs_to_drop != 1);
 
 
 
 
 
 
 
 
 
4428
4429	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4430				    bytenr, num_bytes, parent,
4431				    root_objectid, owner_objectid,
4432				    owner_offset);
4433	if (ret == 0) {
 
 
 
 
 
 
 
4434		extent_slot = path->slots[0];
4435		while (extent_slot >= 0) {
4436			btrfs_item_key_to_cpu(path->nodes[0], &key,
4437					      extent_slot);
4438			if (key.objectid != bytenr)
4439				break;
4440			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4441			    key.offset == num_bytes) {
4442				found_extent = 1;
4443				break;
4444			}
 
 
 
 
 
 
 
4445			if (path->slots[0] - extent_slot > 5)
4446				break;
4447			extent_slot--;
4448		}
4449#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4450		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4451		if (found_extent && item_size < sizeof(*ei))
4452			found_extent = 0;
4453#endif
4454		if (!found_extent) {
4455			BUG_ON(iref);
 
 
 
 
 
 
 
4456			ret = remove_extent_backref(trans, extent_root, path,
4457						    NULL, refs_to_drop,
4458						    is_data);
4459			BUG_ON(ret);
 
 
4460			btrfs_release_path(path);
4461			path->leave_spinning = 1;
4462
 
4463			key.objectid = bytenr;
4464			key.type = BTRFS_EXTENT_ITEM_KEY;
4465			key.offset = num_bytes;
4466
 
 
 
 
 
4467			ret = btrfs_search_slot(trans, extent_root,
4468						&key, path, -1, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4469			if (ret) {
4470				printk(KERN_ERR "umm, got %d back from search"
4471				       ", was looking for %llu\n", ret,
4472				       (unsigned long long)bytenr);
4473				if (ret > 0)
4474					btrfs_print_leaf(extent_root,
4475							 path->nodes[0]);
 
 
 
 
 
 
4476			}
4477			BUG_ON(ret);
4478			extent_slot = path->slots[0];
4479		}
 
 
 
 
 
 
4480	} else {
4481		btrfs_print_leaf(extent_root, path->nodes[0]);
4482		WARN_ON(1);
4483		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4484		       "parent %llu root %llu  owner %llu offset %llu\n",
4485		       (unsigned long long)bytenr,
4486		       (unsigned long long)parent,
4487		       (unsigned long long)root_objectid,
4488		       (unsigned long long)owner_objectid,
4489		       (unsigned long long)owner_offset);
4490	}
4491
4492	leaf = path->nodes[0];
4493	item_size = btrfs_item_size_nr(leaf, extent_slot);
4494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4495	if (item_size < sizeof(*ei)) {
4496		BUG_ON(found_extent || extent_slot != path->slots[0]);
4497		ret = convert_extent_item_v0(trans, extent_root, path,
4498					     owner_objectid, 0);
4499		BUG_ON(ret < 0);
4500
4501		btrfs_release_path(path);
4502		path->leave_spinning = 1;
4503
4504		key.objectid = bytenr;
4505		key.type = BTRFS_EXTENT_ITEM_KEY;
4506		key.offset = num_bytes;
4507
4508		ret = btrfs_search_slot(trans, extent_root, &key, path,
4509					-1, 1);
4510		if (ret) {
4511			printk(KERN_ERR "umm, got %d back from search"
4512			       ", was looking for %llu\n", ret,
4513			       (unsigned long long)bytenr);
4514			btrfs_print_leaf(extent_root, path->nodes[0]);
4515		}
4516		BUG_ON(ret);
4517		extent_slot = path->slots[0];
4518		leaf = path->nodes[0];
4519		item_size = btrfs_item_size_nr(leaf, extent_slot);
4520	}
4521#endif
4522	BUG_ON(item_size < sizeof(*ei));
4523	ei = btrfs_item_ptr(leaf, extent_slot,
4524			    struct btrfs_extent_item);
4525	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
 
4526		struct btrfs_tree_block_info *bi;
4527		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 
 
 
 
 
 
 
 
 
4528		bi = (struct btrfs_tree_block_info *)(ei + 1);
4529		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4530	}
4531
4532	refs = btrfs_extent_refs(leaf, ei);
4533	BUG_ON(refs < refs_to_drop);
 
 
 
 
 
 
4534	refs -= refs_to_drop;
4535
4536	if (refs > 0) {
4537		if (extent_op)
4538			__run_delayed_extent_op(extent_op, leaf, ei);
4539		/*
4540		 * In the case of inline back ref, reference count will
4541		 * be updated by remove_extent_backref
4542		 */
4543		if (iref) {
4544			BUG_ON(!found_extent);
 
 
 
 
 
 
4545		} else {
4546			btrfs_set_extent_refs(leaf, ei, refs);
4547			btrfs_mark_buffer_dirty(leaf);
4548		}
4549		if (found_extent) {
4550			ret = remove_extent_backref(trans, extent_root, path,
4551						    iref, refs_to_drop,
4552						    is_data);
4553			BUG_ON(ret);
 
 
4554		}
4555	} else {
 
 
 
 
 
 
 
 
 
4556		if (found_extent) {
4557			BUG_ON(is_data && refs_to_drop !=
4558			       extent_data_ref_count(root, path, iref));
 
 
 
 
 
 
 
4559			if (iref) {
4560				BUG_ON(path->slots[0] != extent_slot);
 
 
 
 
 
 
 
4561			} else {
4562				BUG_ON(path->slots[0] != extent_slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
4563				path->slots[0] = extent_slot;
4564				num_to_del = 2;
4565			}
4566		}
 
 
 
 
 
 
 
 
 
 
4567
4568		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4569				      num_to_del);
4570		BUG_ON(ret);
 
 
 
4571		btrfs_release_path(path);
4572
4573		if (is_data) {
4574			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4575			BUG_ON(ret);
4576		} else {
4577			invalidate_mapping_pages(info->btree_inode->i_mapping,
4578			     bytenr >> PAGE_CACHE_SHIFT,
4579			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4580		}
4581
4582		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4583		BUG_ON(ret);
4584	}
4585	btrfs_free_path(path);
4586	return ret;
4587}
4588
4589/*
4590 * when we free an block, it is possible (and likely) that we free the last
4591 * delayed ref for that extent as well.  This searches the delayed ref tree for
4592 * a given extent, and if there are no other delayed refs to be processed, it
4593 * removes it from the tree.
4594 */
4595static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4596				      struct btrfs_root *root, u64 bytenr)
4597{
4598	struct btrfs_delayed_ref_head *head;
4599	struct btrfs_delayed_ref_root *delayed_refs;
4600	struct btrfs_delayed_ref_node *ref;
4601	struct rb_node *node;
4602	int ret = 0;
4603
4604	delayed_refs = &trans->transaction->delayed_refs;
4605	spin_lock(&delayed_refs->lock);
4606	head = btrfs_find_delayed_ref_head(trans, bytenr);
4607	if (!head)
4608		goto out;
4609
4610	node = rb_prev(&head->node.rb_node);
4611	if (!node)
4612		goto out;
4613
4614	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4615
4616	/* there are still entries for this ref, we can't drop it */
4617	if (ref->bytenr == bytenr)
4618		goto out;
4619
4620	if (head->extent_op) {
4621		if (!head->must_insert_reserved)
4622			goto out;
4623		kfree(head->extent_op);
4624		head->extent_op = NULL;
4625	}
4626
4627	/*
4628	 * waiting for the lock here would deadlock.  If someone else has it
4629	 * locked they are already in the process of dropping it anyway
4630	 */
4631	if (!mutex_trylock(&head->mutex))
4632		goto out;
4633
4634	/*
4635	 * at this point we have a head with no other entries.  Go
4636	 * ahead and process it.
4637	 */
4638	head->node.in_tree = 0;
4639	rb_erase(&head->node.rb_node, &delayed_refs->root);
4640
4641	delayed_refs->num_entries--;
4642
4643	/*
4644	 * we don't take a ref on the node because we're removing it from the
4645	 * tree, so we just steal the ref the tree was holding.
4646	 */
4647	delayed_refs->num_heads--;
4648	if (list_empty(&head->cluster))
4649		delayed_refs->num_heads_ready--;
4650
4651	list_del_init(&head->cluster);
4652	spin_unlock(&delayed_refs->lock);
4653
4654	BUG_ON(head->extent_op);
4655	if (head->must_insert_reserved)
4656		ret = 1;
4657
 
4658	mutex_unlock(&head->mutex);
4659	btrfs_put_delayed_ref(&head->node);
4660	return ret;
4661out:
 
 
 
4662	spin_unlock(&delayed_refs->lock);
4663	return 0;
4664}
4665
4666void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4667			   struct btrfs_root *root,
4668			   struct extent_buffer *buf,
4669			   u64 parent, int last_ref)
4670{
4671	struct btrfs_block_rsv *block_rsv;
4672	struct btrfs_block_group_cache *cache = NULL;
 
4673	int ret;
4674
4675	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4676		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4677						parent, root->root_key.objectid,
4678						btrfs_header_level(buf),
4679						BTRFS_DROP_DELAYED_REF, NULL);
4680		BUG_ON(ret);
 
 
 
4681	}
4682
4683	if (!last_ref)
4684		return;
4685
4686	block_rsv = get_block_rsv(trans, root);
4687	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4688	if (block_rsv->space_info != cache->space_info)
4689		goto out;
4690
4691	if (btrfs_header_generation(buf) == trans->transid) {
4692		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4693			ret = check_ref_cleanup(trans, root, buf->start);
4694			if (!ret)
4695				goto pin;
4696		}
4697
4698		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4699			pin_down_extent(root, cache, buf->start, buf->len, 1);
4700			goto pin;
4701		}
4702
4703		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 
 
 
 
4704
4705		btrfs_add_free_space(cache, buf->start, buf->len);
4706		ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4707		if (ret == -EAGAIN) {
4708			/* block group became read-only */
4709			btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4710			goto out;
4711		}
4712
4713		ret = 1;
4714		spin_lock(&block_rsv->lock);
4715		if (block_rsv->reserved < block_rsv->size) {
4716			block_rsv->reserved += buf->len;
4717			ret = 0;
4718		}
4719		spin_unlock(&block_rsv->lock);
 
4720
4721		if (ret) {
4722			spin_lock(&cache->space_info->lock);
4723			cache->space_info->bytes_reserved -= buf->len;
4724			cache->space_info->reservation_progress++;
4725			spin_unlock(&cache->space_info->lock);
4726		}
4727		goto out;
4728	}
4729pin:
4730	if (block_rsv->durable && !cache->ro) {
4731		ret = 0;
4732		spin_lock(&cache->lock);
4733		if (!cache->ro) {
4734			cache->reserved_pinned += buf->len;
4735			ret = 1;
4736		}
4737		spin_unlock(&cache->lock);
4738
4739		if (ret) {
4740			spin_lock(&block_rsv->lock);
4741			block_rsv->freed[trans->transid & 0x1] += buf->len;
4742			spin_unlock(&block_rsv->lock);
4743		}
4744	}
 
4745out:
 
4746	/*
4747	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4748	 * anymore.
4749	 */
4750	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4751	btrfs_put_block_group(cache);
4752}
4753
4754int btrfs_free_extent(struct btrfs_trans_handle *trans,
4755		      struct btrfs_root *root,
4756		      u64 bytenr, u64 num_bytes, u64 parent,
4757		      u64 root_objectid, u64 owner, u64 offset)
4758{
 
4759	int ret;
4760
 
 
 
4761	/*
4762	 * tree log blocks never actually go into the extent allocation
4763	 * tree, just update pinning info and exit early.
4764	 */
4765	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4766		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4767		/* unlocks the pinned mutex */
4768		btrfs_pin_extent(root, bytenr, num_bytes, 1);
 
4769		ret = 0;
4770	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4771		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4772					parent, root_objectid, (int)owner,
4773					BTRFS_DROP_DELAYED_REF, NULL);
4774		BUG_ON(ret);
4775	} else {
4776		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4777					parent, root_objectid, owner,
4778					offset, BTRFS_DROP_DELAYED_REF, NULL);
4779		BUG_ON(ret);
4780	}
 
 
 
 
 
 
 
4781	return ret;
4782}
4783
4784static u64 stripe_align(struct btrfs_root *root, u64 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4785{
4786	u64 mask = ((u64)root->stripesize - 1);
4787	u64 ret = (val + mask) & ~mask;
4788	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4789}
4790
4791/*
4792 * when we wait for progress in the block group caching, its because
4793 * our allocation attempt failed at least once.  So, we must sleep
4794 * and let some progress happen before we try again.
4795 *
4796 * This function will sleep at least once waiting for new free space to
4797 * show up, and then it will check the block group free space numbers
4798 * for our min num_bytes.  Another option is to have it go ahead
4799 * and look in the rbtree for a free extent of a given size, but this
4800 * is a good start.
4801 */
4802static noinline int
4803wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4804				u64 num_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4805{
4806	struct btrfs_caching_control *caching_ctl;
4807	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4808
4809	caching_ctl = get_caching_control(cache);
4810	if (!caching_ctl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811		return 0;
4812
4813	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4814		   (cache->free_space_ctl->free_space >= num_bytes));
 
4815
4816	put_caching_control(caching_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4817	return 0;
4818}
4819
4820static noinline int
4821wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4822{
4823	struct btrfs_caching_control *caching_ctl;
4824	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
4825
4826	caching_ctl = get_caching_control(cache);
4827	if (!caching_ctl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4828		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4829
4830	wait_event(caching_ctl->wait, block_group_cache_done(cache));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4831
4832	put_caching_control(caching_ctl);
4833	return 0;
4834}
4835
4836static int get_block_group_index(struct btrfs_block_group_cache *cache)
 
4837{
4838	int index;
4839	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4840		index = 0;
4841	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4842		index = 1;
4843	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4844		index = 2;
4845	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4846		index = 3;
4847	else
4848		index = 4;
4849	return index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4850}
4851
4852enum btrfs_loop_type {
4853	LOOP_FIND_IDEAL = 0,
4854	LOOP_CACHING_NOWAIT = 1,
4855	LOOP_CACHING_WAIT = 2,
4856	LOOP_ALLOC_CHUNK = 3,
4857	LOOP_NO_EMPTY_SIZE = 4,
4858};
 
 
 
 
 
 
 
 
4859
4860/*
4861 * walks the btree of allocated extents and find a hole of a given size.
4862 * The key ins is changed to record the hole:
4863 * ins->objectid == block start
4864 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4865 * ins->offset == number of blocks
4866 * Any available blocks before search_start are skipped.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4867 */
4868static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4869				     struct btrfs_root *orig_root,
4870				     u64 num_bytes, u64 empty_size,
4871				     u64 search_start, u64 search_end,
4872				     u64 hint_byte, struct btrfs_key *ins,
4873				     u64 data)
4874{
 
4875	int ret = 0;
4876	struct btrfs_root *root = orig_root->fs_info->extent_root;
4877	struct btrfs_free_cluster *last_ptr = NULL;
4878	struct btrfs_block_group_cache *block_group = NULL;
4879	int empty_cluster = 2 * 1024 * 1024;
4880	int allowed_chunk_alloc = 0;
4881	int done_chunk_alloc = 0;
4882	struct btrfs_space_info *space_info;
4883	int last_ptr_loop = 0;
4884	int loop = 0;
4885	int index = 0;
4886	bool found_uncached_bg = false;
4887	bool failed_cluster_refill = false;
4888	bool failed_alloc = false;
4889	bool use_cluster = true;
4890	u64 ideal_cache_percent = 0;
4891	u64 ideal_cache_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
4892
4893	WARN_ON(num_bytes < root->sectorsize);
4894	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
 
 
4895	ins->objectid = 0;
4896	ins->offset = 0;
4897
4898	space_info = __find_space_info(root->fs_info, data);
 
 
4899	if (!space_info) {
4900		printk(KERN_ERR "No space info for %llu\n", data);
4901		return -ENOSPC;
4902	}
4903
4904	/*
4905	 * If the space info is for both data and metadata it means we have a
4906	 * small filesystem and we can't use the clustering stuff.
4907	 */
4908	if (btrfs_mixed_space_info(space_info))
4909		use_cluster = false;
4910
4911	if (orig_root->ref_cows || empty_size)
4912		allowed_chunk_alloc = 1;
4913
4914	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4915		last_ptr = &root->fs_info->meta_alloc_cluster;
4916		if (!btrfs_test_opt(root, SSD))
4917			empty_cluster = 64 * 1024;
4918	}
4919
4920	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4921	    btrfs_test_opt(root, SSD)) {
4922		last_ptr = &root->fs_info->data_alloc_cluster;
4923	}
4924
4925	if (last_ptr) {
4926		spin_lock(&last_ptr->lock);
4927		if (last_ptr->block_group)
4928			hint_byte = last_ptr->window_start;
4929		spin_unlock(&last_ptr->lock);
4930	}
4931
4932	search_start = max(search_start, first_logical_byte(root, 0));
4933	search_start = max(search_start, hint_byte);
4934
4935	if (!last_ptr)
4936		empty_cluster = 0;
4937
4938	if (search_start == hint_byte) {
4939ideal_cache:
4940		block_group = btrfs_lookup_block_group(root->fs_info,
4941						       search_start);
 
 
4942		/*
4943		 * we don't want to use the block group if it doesn't match our
4944		 * allocation bits, or if its not cached.
4945		 *
4946		 * However if we are re-searching with an ideal block group
4947		 * picked out then we don't care that the block group is cached.
4948		 */
4949		if (block_group && block_group_bits(block_group, data) &&
4950		    (block_group->cached != BTRFS_CACHE_NO ||
4951		     search_start == ideal_cache_offset)) {
4952			down_read(&space_info->groups_sem);
4953			if (list_empty(&block_group->list) ||
4954			    block_group->ro) {
4955				/*
4956				 * someone is removing this block group,
4957				 * we can't jump into the have_block_group
4958				 * target because our list pointers are not
4959				 * valid
4960				 */
4961				btrfs_put_block_group(block_group);
4962				up_read(&space_info->groups_sem);
4963			} else {
4964				index = get_block_group_index(block_group);
 
 
 
 
4965				goto have_block_group;
4966			}
4967		} else if (block_group) {
4968			btrfs_put_block_group(block_group);
4969		}
4970	}
4971search:
 
 
 
 
 
4972	down_read(&space_info->groups_sem);
4973	list_for_each_entry(block_group, &space_info->block_groups[index],
4974			    list) {
4975		u64 offset;
4976		int cached;
 
 
 
 
 
 
 
 
 
4977
4978		btrfs_get_block_group(block_group);
4979		search_start = block_group->key.objectid;
4980
4981		/*
4982		 * this can happen if we end up cycling through all the
4983		 * raid types, but we want to make sure we only allocate
4984		 * for the proper type.
4985		 */
4986		if (!block_group_bits(block_group, data)) {
4987		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
4988				BTRFS_BLOCK_GROUP_RAID1 |
 
4989				BTRFS_BLOCK_GROUP_RAID10;
4990
4991			/*
4992			 * if they asked for extra copies and this block group
4993			 * doesn't provide them, bail.  This does allow us to
4994			 * fill raid0 from raid1.
4995			 */
4996			if ((data & extra) && !(block_group->flags & extra))
4997				goto loop;
 
 
 
 
 
 
 
 
4998		}
4999
5000have_block_group:
5001		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5002			u64 free_percent;
5003
5004			ret = cache_block_group(block_group, trans,
5005						orig_root, 1);
5006			if (block_group->cached == BTRFS_CACHE_FINISHED)
5007				goto have_block_group;
5008
5009			free_percent = btrfs_block_group_used(&block_group->item);
5010			free_percent *= 100;
5011			free_percent = div64_u64(free_percent,
5012						 block_group->key.offset);
5013			free_percent = 100 - free_percent;
5014			if (free_percent > ideal_cache_percent &&
5015			    likely(!block_group->ro)) {
5016				ideal_cache_offset = block_group->key.objectid;
5017				ideal_cache_percent = free_percent;
5018			}
5019
5020			/*
5021			 * The caching workers are limited to 2 threads, so we
5022			 * can queue as much work as we care to.
 
 
 
5023			 */
5024			if (loop > LOOP_FIND_IDEAL) {
5025				ret = cache_block_group(block_group, trans,
5026							orig_root, 0);
5027				BUG_ON(ret);
 
5028			}
5029			found_uncached_bg = true;
 
5030
5031			/*
5032			 * If loop is set for cached only, try the next block
5033			 * group.
5034			 */
5035			if (loop == LOOP_FIND_IDEAL)
5036				goto loop;
5037		}
5038
5039		cached = block_group_cache_done(block_group);
5040		if (unlikely(!cached))
5041			found_uncached_bg = true;
5042
5043		if (unlikely(block_group->ro))
5044			goto loop;
5045
5046		spin_lock(&block_group->free_space_ctl->tree_lock);
5047		if (cached &&
5048		    block_group->free_space_ctl->free_space <
5049		    num_bytes + empty_size) {
5050			spin_unlock(&block_group->free_space_ctl->tree_lock);
5051			goto loop;
5052		}
5053		spin_unlock(&block_group->free_space_ctl->tree_lock);
5054
5055		/*
5056		 * Ok we want to try and use the cluster allocator, so lets look
5057		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5058		 * have tried the cluster allocator plenty of times at this
5059		 * point and not have found anything, so we are likely way too
5060		 * fragmented for the clustering stuff to find anything, so lets
5061		 * just skip it and let the allocator find whatever block it can
5062		 * find
5063		 */
5064		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5065			/*
5066			 * the refill lock keeps out other
5067			 * people trying to start a new cluster
5068			 */
5069			spin_lock(&last_ptr->refill_lock);
5070			if (last_ptr->block_group &&
5071			    (last_ptr->block_group->ro ||
5072			    !block_group_bits(last_ptr->block_group, data))) {
5073				offset = 0;
5074				goto refill_cluster;
5075			}
5076
5077			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5078						 num_bytes, search_start);
5079			if (offset) {
5080				/* we have a block, we're done */
5081				spin_unlock(&last_ptr->refill_lock);
5082				goto checks;
5083			}
5084
5085			spin_lock(&last_ptr->lock);
5086			/*
5087			 * whoops, this cluster doesn't actually point to
5088			 * this block group.  Get a ref on the block
5089			 * group is does point to and try again
5090			 */
5091			if (!last_ptr_loop && last_ptr->block_group &&
5092			    last_ptr->block_group != block_group &&
5093			    index <=
5094				 get_block_group_index(last_ptr->block_group)) {
5095
5096				btrfs_put_block_group(block_group);
5097				block_group = last_ptr->block_group;
5098				btrfs_get_block_group(block_group);
5099				spin_unlock(&last_ptr->lock);
5100				spin_unlock(&last_ptr->refill_lock);
5101
5102				last_ptr_loop = 1;
5103				search_start = block_group->key.objectid;
5104				/*
5105				 * we know this block group is properly
5106				 * in the list because
5107				 * btrfs_remove_block_group, drops the
5108				 * cluster before it removes the block
5109				 * group from the list
5110				 */
5111				goto have_block_group;
5112			}
5113			spin_unlock(&last_ptr->lock);
5114refill_cluster:
5115			/*
5116			 * this cluster didn't work out, free it and
5117			 * start over
5118			 */
5119			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5120
5121			last_ptr_loop = 0;
5122
5123			/* allocate a cluster in this block group */
5124			ret = btrfs_find_space_cluster(trans, root,
5125					       block_group, last_ptr,
5126					       offset, num_bytes,
5127					       empty_cluster + empty_size);
5128			if (ret == 0) {
5129				/*
5130				 * now pull our allocation out of this
5131				 * cluster
5132				 */
5133				offset = btrfs_alloc_from_cluster(block_group,
5134						  last_ptr, num_bytes,
5135						  search_start);
5136				if (offset) {
5137					/* we found one, proceed */
5138					spin_unlock(&last_ptr->refill_lock);
5139					goto checks;
5140				}
5141			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5142				   && !failed_cluster_refill) {
5143				spin_unlock(&last_ptr->refill_lock);
5144
5145				failed_cluster_refill = true;
5146				wait_block_group_cache_progress(block_group,
5147				       num_bytes + empty_cluster + empty_size);
5148				goto have_block_group;
5149			}
5150
5151			/*
5152			 * at this point we either didn't find a cluster
5153			 * or we weren't able to allocate a block from our
5154			 * cluster.  Free the cluster we've been trying
5155			 * to use, and go to the next block group
5156			 */
5157			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5158			spin_unlock(&last_ptr->refill_lock);
5159			goto loop;
5160		}
5161
5162		offset = btrfs_find_space_for_alloc(block_group, search_start,
5163						    num_bytes, empty_size);
5164		/*
5165		 * If we didn't find a chunk, and we haven't failed on this
5166		 * block group before, and this block group is in the middle of
5167		 * caching and we are ok with waiting, then go ahead and wait
5168		 * for progress to be made, and set failed_alloc to true.
5169		 *
5170		 * If failed_alloc is true then we've already waited on this
5171		 * block group once and should move on to the next block group.
5172		 */
5173		if (!offset && !failed_alloc && !cached &&
5174		    loop > LOOP_CACHING_NOWAIT) {
5175			wait_block_group_cache_progress(block_group,
5176						num_bytes + empty_size);
5177			failed_alloc = true;
5178			goto have_block_group;
5179		} else if (!offset) {
5180			goto loop;
5181		}
5182checks:
5183		search_start = stripe_align(root, offset);
5184		/* move on to the next group */
5185		if (search_start + num_bytes >= search_end) {
5186			btrfs_add_free_space(block_group, offset, num_bytes);
5187			goto loop;
5188		}
5189
5190		/* move on to the next group */
5191		if (search_start + num_bytes >
5192		    block_group->key.objectid + block_group->key.offset) {
5193			btrfs_add_free_space(block_group, offset, num_bytes);
 
 
5194			goto loop;
5195		}
5196
5197		ins->objectid = search_start;
5198		ins->offset = num_bytes;
5199
5200		if (offset < search_start)
5201			btrfs_add_free_space(block_group, offset,
5202					     search_start - offset);
5203		BUG_ON(offset > search_start);
5204
5205		ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5206					    (data & BTRFS_BLOCK_GROUP_DATA));
5207		if (ret == -EAGAIN) {
5208			btrfs_add_free_space(block_group, offset, num_bytes);
 
 
5209			goto loop;
5210		}
 
5211
5212		/* we are all good, lets return */
5213		ins->objectid = search_start;
5214		ins->offset = num_bytes;
5215
5216		if (offset < search_start)
5217			btrfs_add_free_space(block_group, offset,
5218					     search_start - offset);
5219		BUG_ON(offset > search_start);
5220		btrfs_put_block_group(block_group);
5221		break;
5222loop:
5223		failed_cluster_refill = false;
5224		failed_alloc = false;
5225		BUG_ON(index != get_block_group_index(block_group));
5226		btrfs_put_block_group(block_group);
 
 
 
 
 
 
 
5227	}
5228	up_read(&space_info->groups_sem);
5229
5230	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
 
5231		goto search;
5232
5233	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5234	 *			for them to make caching progress.  Also
5235	 *			determine the best possible bg to cache
5236	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5237	 *			caching kthreads as we move along
5238	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5239	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5240	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5241	 *			again
5242	 */
5243	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5244		index = 0;
5245		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5246			found_uncached_bg = false;
5247			loop++;
5248			if (!ideal_cache_percent)
5249				goto search;
5250
5251			/*
5252			 * 1 of the following 2 things have happened so far
5253			 *
5254			 * 1) We found an ideal block group for caching that
5255			 * is mostly full and will cache quickly, so we might
5256			 * as well wait for it.
5257			 *
5258			 * 2) We searched for cached only and we didn't find
5259			 * anything, and we didn't start any caching kthreads
5260			 * either, so chances are we will loop through and
5261			 * start a couple caching kthreads, and then come back
5262			 * around and just wait for them.  This will be slower
5263			 * because we will have 2 caching kthreads reading at
5264			 * the same time when we could have just started one
5265			 * and waited for it to get far enough to give us an
5266			 * allocation, so go ahead and go to the wait caching
5267			 * loop.
5268			 */
5269			loop = LOOP_CACHING_WAIT;
5270			search_start = ideal_cache_offset;
5271			ideal_cache_percent = 0;
5272			goto ideal_cache;
5273		} else if (loop == LOOP_FIND_IDEAL) {
5274			/*
5275			 * Didn't find a uncached bg, wait on anything we find
5276			 * next.
5277			 */
5278			loop = LOOP_CACHING_WAIT;
5279			goto search;
5280		}
5281
5282		loop++;
5283
5284		if (loop == LOOP_ALLOC_CHUNK) {
5285		       if (allowed_chunk_alloc) {
5286				ret = do_chunk_alloc(trans, root, num_bytes +
5287						     2 * 1024 * 1024, data,
5288						     CHUNK_ALLOC_LIMITED);
5289				allowed_chunk_alloc = 0;
5290				if (ret == 1)
5291					done_chunk_alloc = 1;
5292			} else if (!done_chunk_alloc &&
5293				   space_info->force_alloc ==
5294				   CHUNK_ALLOC_NO_FORCE) {
5295				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5296			}
5297
5298		       /*
5299			* We didn't allocate a chunk, go ahead and drop the
5300			* empty size and loop again.
5301			*/
5302		       if (!done_chunk_alloc)
5303			       loop = LOOP_NO_EMPTY_SIZE;
5304		}
5305
5306		if (loop == LOOP_NO_EMPTY_SIZE) {
5307			empty_size = 0;
5308			empty_cluster = 0;
5309		}
5310
5311		goto search;
5312	} else if (!ins->objectid) {
5313		ret = -ENOSPC;
5314	} else if (ins->objectid) {
5315		ret = 0;
5316	}
5317
5318	return ret;
5319}
5320
5321static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5322			    int dump_block_groups)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323{
5324	struct btrfs_block_group_cache *cache;
5325	int index = 0;
 
 
 
 
 
5326
5327	spin_lock(&info->lock);
5328	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5329	       (unsigned long long)(info->total_bytes - info->bytes_used -
5330				    info->bytes_pinned - info->bytes_reserved -
5331				    info->bytes_readonly),
5332	       (info->full) ? "" : "not ");
5333	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5334	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5335	       (unsigned long long)info->total_bytes,
5336	       (unsigned long long)info->bytes_used,
5337	       (unsigned long long)info->bytes_pinned,
5338	       (unsigned long long)info->bytes_reserved,
5339	       (unsigned long long)info->bytes_may_use,
5340	       (unsigned long long)info->bytes_readonly);
5341	spin_unlock(&info->lock);
5342
5343	if (!dump_block_groups)
5344		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5345
5346	down_read(&info->groups_sem);
5347again:
5348	list_for_each_entry(cache, &info->block_groups[index], list) {
5349		spin_lock(&cache->lock);
5350		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5351		       "%llu pinned %llu reserved\n",
5352		       (unsigned long long)cache->key.objectid,
5353		       (unsigned long long)cache->key.offset,
5354		       (unsigned long long)btrfs_block_group_used(&cache->item),
5355		       (unsigned long long)cache->pinned,
5356		       (unsigned long long)cache->reserved);
5357		btrfs_dump_free_space(cache, bytes);
5358		spin_unlock(&cache->lock);
5359	}
5360	if (++index < BTRFS_NR_RAID_TYPES)
5361		goto again;
5362	up_read(&info->groups_sem);
5363}
5364
5365int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5366			 struct btrfs_root *root,
5367			 u64 num_bytes, u64 min_alloc_size,
5368			 u64 empty_size, u64 hint_byte,
5369			 u64 search_end, struct btrfs_key *ins,
5370			 u64 data)
5371{
5372	int ret;
5373	u64 search_start = 0;
5374
5375	data = btrfs_get_alloc_profile(root, data);
5376again:
5377	/*
5378	 * the only place that sets empty_size is btrfs_realloc_node, which
5379	 * is not called recursively on allocations
5380	 */
5381	if (empty_size || root->ref_cows)
5382		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5383				     num_bytes + 2 * 1024 * 1024, data,
5384				     CHUNK_ALLOC_NO_FORCE);
5385
5386	WARN_ON(num_bytes < root->sectorsize);
5387	ret = find_free_extent(trans, root, num_bytes, empty_size,
5388			       search_start, search_end, hint_byte,
5389			       ins, data);
5390
5391	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5392		num_bytes = num_bytes >> 1;
5393		num_bytes = num_bytes & ~(root->sectorsize - 1);
5394		num_bytes = max(num_bytes, min_alloc_size);
5395		do_chunk_alloc(trans, root->fs_info->extent_root,
5396			       num_bytes, data, CHUNK_ALLOC_FORCE);
5397		goto again;
5398	}
5399	if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5400		struct btrfs_space_info *sinfo;
5401
5402		sinfo = __find_space_info(root->fs_info, data);
5403		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5404		       "wanted %llu\n", (unsigned long long)data,
5405		       (unsigned long long)num_bytes);
5406		dump_space_info(sinfo, num_bytes, 1);
5407	}
5408
5409	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5410
5411	return ret;
5412}
5413
5414int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
 
5415{
5416	struct btrfs_block_group_cache *cache;
5417	int ret = 0;
5418
5419	cache = btrfs_lookup_block_group(root->fs_info, start);
5420	if (!cache) {
5421		printk(KERN_ERR "Unable to find block group for %llu\n",
5422		       (unsigned long long)start);
5423		return -ENOSPC;
5424	}
5425
5426	if (btrfs_test_opt(root, DISCARD))
5427		ret = btrfs_discard_extent(root, start, len, NULL);
 
 
5428
5429	btrfs_add_free_space(cache, start, len);
5430	btrfs_update_reserved_bytes(cache, len, 0, 1);
5431	btrfs_put_block_group(cache);
 
 
 
 
 
 
5432
5433	trace_btrfs_reserved_extent_free(root, start, len);
 
 
 
 
 
 
5434
5435	return ret;
 
5436}
5437
5438static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5439				      struct btrfs_root *root,
5440				      u64 parent, u64 root_objectid,
5441				      u64 flags, u64 owner, u64 offset,
5442				      struct btrfs_key *ins, int ref_mod)
5443{
 
 
5444	int ret;
5445	struct btrfs_fs_info *fs_info = root->fs_info;
5446	struct btrfs_extent_item *extent_item;
 
5447	struct btrfs_extent_inline_ref *iref;
5448	struct btrfs_path *path;
5449	struct extent_buffer *leaf;
5450	int type;
5451	u32 size;
 
5452
5453	if (parent > 0)
5454		type = BTRFS_SHARED_DATA_REF_KEY;
5455	else
5456		type = BTRFS_EXTENT_DATA_REF_KEY;
5457
5458	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 
 
 
5459
5460	path = btrfs_alloc_path();
5461	if (!path)
5462		return -ENOMEM;
5463
5464	path->leave_spinning = 1;
5465	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5466				      ins, size);
5467	BUG_ON(ret);
 
 
5468
5469	leaf = path->nodes[0];
5470	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5471				     struct btrfs_extent_item);
5472	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5473	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5474	btrfs_set_extent_flags(leaf, extent_item,
5475			       flags | BTRFS_EXTENT_FLAG_DATA);
5476
5477	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
 
 
 
 
 
5478	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 
5479	if (parent > 0) {
5480		struct btrfs_shared_data_ref *ref;
5481		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5482		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5483		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5484	} else {
5485		struct btrfs_extent_data_ref *ref;
5486		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5487		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5488		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5489		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5490		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5491	}
5492
5493	btrfs_mark_buffer_dirty(path->nodes[0]);
5494	btrfs_free_path(path);
5495
5496	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5497	if (ret) {
5498		printk(KERN_ERR "btrfs update block group failed for %llu "
5499		       "%llu\n", (unsigned long long)ins->objectid,
5500		       (unsigned long long)ins->offset);
5501		BUG();
5502	}
5503	return ret;
5504}
5505
5506static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5507				     struct btrfs_root *root,
5508				     u64 parent, u64 root_objectid,
5509				     u64 flags, struct btrfs_disk_key *key,
5510				     int level, struct btrfs_key *ins)
5511{
 
 
5512	int ret;
5513	struct btrfs_fs_info *fs_info = root->fs_info;
5514	struct btrfs_extent_item *extent_item;
 
5515	struct btrfs_tree_block_info *block_info;
5516	struct btrfs_extent_inline_ref *iref;
5517	struct btrfs_path *path;
5518	struct extent_buffer *leaf;
5519	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5520
5521	path = btrfs_alloc_path();
5522	if (!path)
5523		return -ENOMEM;
5524
5525	path->leave_spinning = 1;
5526	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5527				      ins, size);
5528	BUG_ON(ret);
 
 
 
5529
5530	leaf = path->nodes[0];
5531	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5532				     struct btrfs_extent_item);
5533	btrfs_set_extent_refs(leaf, extent_item, 1);
5534	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5535	btrfs_set_extent_flags(leaf, extent_item,
5536			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5537	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5538
5539	btrfs_set_tree_block_key(leaf, block_info, key);
5540	btrfs_set_tree_block_level(leaf, block_info, level);
 
 
 
 
 
 
5541
5542	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5543	if (parent > 0) {
5544		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5545		btrfs_set_extent_inline_ref_type(leaf, iref,
5546						 BTRFS_SHARED_BLOCK_REF_KEY);
5547		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5548	} else {
5549		btrfs_set_extent_inline_ref_type(leaf, iref,
5550						 BTRFS_TREE_BLOCK_REF_KEY);
5551		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5552	}
5553
5554	btrfs_mark_buffer_dirty(leaf);
5555	btrfs_free_path(path);
5556
5557	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5558	if (ret) {
5559		printk(KERN_ERR "btrfs update block group failed for %llu "
5560		       "%llu\n", (unsigned long long)ins->objectid,
5561		       (unsigned long long)ins->offset);
5562		BUG();
5563	}
5564	return ret;
5565}
5566
5567int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5568				     struct btrfs_root *root,
5569				     u64 root_objectid, u64 owner,
5570				     u64 offset, struct btrfs_key *ins)
5571{
5572	int ret;
 
 
5573
5574	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5575
5576	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5577					 0, root_objectid, owner, offset,
5578					 BTRFS_ADD_DELAYED_EXTENT, NULL);
5579	return ret;
 
 
 
 
 
 
5580}
5581
5582/*
5583 * this is used by the tree logging recovery code.  It records that
5584 * an extent has been allocated and makes sure to clear the free
5585 * space cache bits as well
5586 */
5587int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5588				   struct btrfs_root *root,
5589				   u64 root_objectid, u64 owner, u64 offset,
5590				   struct btrfs_key *ins)
5591{
 
5592	int ret;
5593	struct btrfs_block_group_cache *block_group;
5594	struct btrfs_caching_control *caching_ctl;
5595	u64 start = ins->objectid;
5596	u64 num_bytes = ins->offset;
5597
5598	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5599	cache_block_group(block_group, trans, NULL, 0);
5600	caching_ctl = get_caching_control(block_group);
5601
5602	if (!caching_ctl) {
5603		BUG_ON(!block_group_cache_done(block_group));
5604		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5605		BUG_ON(ret);
5606	} else {
5607		mutex_lock(&caching_ctl->mutex);
5608
5609		if (start >= caching_ctl->progress) {
5610			ret = add_excluded_extent(root, start, num_bytes);
5611			BUG_ON(ret);
5612		} else if (start + num_bytes <= caching_ctl->progress) {
5613			ret = btrfs_remove_free_space(block_group,
5614						      start, num_bytes);
5615			BUG_ON(ret);
5616		} else {
5617			num_bytes = caching_ctl->progress - start;
5618			ret = btrfs_remove_free_space(block_group,
5619						      start, num_bytes);
5620			BUG_ON(ret);
5621
5622			start = caching_ctl->progress;
5623			num_bytes = ins->objectid + ins->offset -
5624				    caching_ctl->progress;
5625			ret = add_excluded_extent(root, start, num_bytes);
5626			BUG_ON(ret);
5627		}
5628
5629		mutex_unlock(&caching_ctl->mutex);
5630		put_caching_control(caching_ctl);
5631	}
 
 
 
 
5632
5633	ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5634	BUG_ON(ret);
 
 
 
5635	btrfs_put_block_group(block_group);
5636	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5637					 0, owner, offset, ins, 1);
5638	return ret;
5639}
5640
5641struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5642					    struct btrfs_root *root,
5643					    u64 bytenr, u32 blocksize,
5644					    int level)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5645{
 
5646	struct extent_buffer *buf;
 
 
 
 
 
 
 
 
 
 
5647
5648	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5649	if (!buf)
5650		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
5651	btrfs_set_header_generation(buf, trans->transid);
5652	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5653	btrfs_tree_lock(buf);
5654	clean_tree_block(trans, root, buf);
5655
5656	btrfs_set_lock_blocking(buf);
5657	btrfs_set_buffer_uptodate(buf);
5658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5659	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 
5660		/*
5661		 * we allow two log transactions at a time, use different
5662		 * EXENT bit to differentiate dirty pages.
5663		 */
5664		if (root->log_transid % 2 == 0)
5665			set_extent_dirty(&root->dirty_log_pages, buf->start,
5666					buf->start + buf->len - 1, GFP_NOFS);
 
5667		else
5668			set_extent_new(&root->dirty_log_pages, buf->start,
5669					buf->start + buf->len - 1, GFP_NOFS);
 
5670	} else {
5671		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5672			 buf->start + buf->len - 1, GFP_NOFS);
 
5673	}
5674	trans->blocks_used++;
5675	/* this returns a buffer locked for blocking */
5676	return buf;
5677}
5678
5679static struct btrfs_block_rsv *
5680use_block_rsv(struct btrfs_trans_handle *trans,
5681	      struct btrfs_root *root, u32 blocksize)
5682{
5683	struct btrfs_block_rsv *block_rsv;
5684	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5685	int ret;
5686
5687	block_rsv = get_block_rsv(trans, root);
5688
5689	if (block_rsv->size == 0) {
5690		ret = reserve_metadata_bytes(trans, root, block_rsv,
5691					     blocksize, 0);
5692		/*
5693		 * If we couldn't reserve metadata bytes try and use some from
5694		 * the global reserve.
5695		 */
5696		if (ret && block_rsv != global_rsv) {
5697			ret = block_rsv_use_bytes(global_rsv, blocksize);
5698			if (!ret)
5699				return global_rsv;
5700			return ERR_PTR(ret);
5701		} else if (ret) {
5702			return ERR_PTR(ret);
5703		}
5704		return block_rsv;
5705	}
5706
5707	ret = block_rsv_use_bytes(block_rsv, blocksize);
5708	if (!ret)
5709		return block_rsv;
5710	if (ret) {
5711		WARN_ON(1);
5712		ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5713					     0);
5714		if (!ret) {
5715			spin_lock(&block_rsv->lock);
5716			block_rsv->size += blocksize;
5717			spin_unlock(&block_rsv->lock);
5718			return block_rsv;
5719		} else if (ret && block_rsv != global_rsv) {
5720			ret = block_rsv_use_bytes(global_rsv, blocksize);
5721			if (!ret)
5722				return global_rsv;
5723		}
5724	}
5725
5726	return ERR_PTR(-ENOSPC);
5727}
5728
5729static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5730{
5731	block_rsv_add_bytes(block_rsv, blocksize, 0);
5732	block_rsv_release_bytes(block_rsv, NULL, 0);
5733}
5734
5735/*
5736 * finds a free extent and does all the dirty work required for allocation
5737 * returns the key for the extent through ins, and a tree buffer for
5738 * the first block of the extent through buf.
5739 *
5740 * returns the tree buffer or NULL.
5741 */
5742struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5743					struct btrfs_root *root, u32 blocksize,
5744					u64 parent, u64 root_objectid,
5745					struct btrfs_disk_key *key, int level,
5746					u64 hint, u64 empty_size)
 
 
 
5747{
 
5748	struct btrfs_key ins;
5749	struct btrfs_block_rsv *block_rsv;
5750	struct extent_buffer *buf;
 
 
5751	u64 flags = 0;
5752	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
5753
5754
5755	block_rsv = use_block_rsv(trans, root, blocksize);
5756	if (IS_ERR(block_rsv))
5757		return ERR_CAST(block_rsv);
5758
5759	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5760				   empty_size, hint, (u64)-1, &ins, 0);
5761	if (ret) {
5762		unuse_block_rsv(block_rsv, blocksize);
5763		return ERR_PTR(ret);
 
 
 
 
 
5764	}
5765
5766	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5767				    blocksize, level);
5768	BUG_ON(IS_ERR(buf));
5769
5770	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5771		if (parent == 0)
5772			parent = ins.objectid;
5773		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
5774	} else
5775		BUG_ON(parent > 0);
5776
5777	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5778		struct btrfs_delayed_extent_op *extent_op;
5779		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5780		BUG_ON(!extent_op);
 
 
5781		if (key)
5782			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5783		else
5784			memset(&extent_op->key, 0, sizeof(extent_op->key));
5785		extent_op->flags_to_set = flags;
5786		extent_op->update_key = 1;
5787		extent_op->update_flags = 1;
5788		extent_op->is_data = 0;
5789
5790		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5791					ins.offset, parent, root_objectid,
5792					level, BTRFS_ADD_DELAYED_EXTENT,
5793					extent_op);
5794		BUG_ON(ret);
 
 
 
5795	}
5796	return buf;
 
 
 
 
 
 
 
 
 
 
 
5797}
5798
5799struct walk_control {
5800	u64 refs[BTRFS_MAX_LEVEL];
5801	u64 flags[BTRFS_MAX_LEVEL];
5802	struct btrfs_key update_progress;
 
 
5803	int stage;
5804	int level;
5805	int shared_level;
5806	int update_ref;
5807	int keep_locks;
5808	int reada_slot;
5809	int reada_count;
 
5810};
5811
5812#define DROP_REFERENCE	1
5813#define UPDATE_BACKREF	2
5814
5815static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5816				     struct btrfs_root *root,
5817				     struct walk_control *wc,
5818				     struct btrfs_path *path)
5819{
 
5820	u64 bytenr;
5821	u64 generation;
5822	u64 refs;
5823	u64 flags;
5824	u32 nritems;
5825	u32 blocksize;
5826	struct btrfs_key key;
5827	struct extent_buffer *eb;
5828	int ret;
5829	int slot;
5830	int nread = 0;
5831
5832	if (path->slots[wc->level] < wc->reada_slot) {
5833		wc->reada_count = wc->reada_count * 2 / 3;
5834		wc->reada_count = max(wc->reada_count, 2);
5835	} else {
5836		wc->reada_count = wc->reada_count * 3 / 2;
5837		wc->reada_count = min_t(int, wc->reada_count,
5838					BTRFS_NODEPTRS_PER_BLOCK(root));
5839	}
5840
5841	eb = path->nodes[wc->level];
5842	nritems = btrfs_header_nritems(eb);
5843	blocksize = btrfs_level_size(root, wc->level - 1);
5844
5845	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5846		if (nread >= wc->reada_count)
5847			break;
5848
5849		cond_resched();
5850		bytenr = btrfs_node_blockptr(eb, slot);
5851		generation = btrfs_node_ptr_generation(eb, slot);
5852
5853		if (slot == path->slots[wc->level])
5854			goto reada;
5855
5856		if (wc->stage == UPDATE_BACKREF &&
5857		    generation <= root->root_key.offset)
5858			continue;
5859
5860		/* We don't lock the tree block, it's OK to be racy here */
5861		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5862					       &refs, &flags);
5863		BUG_ON(ret);
 
 
 
5864		BUG_ON(refs == 0);
5865
5866		if (wc->stage == DROP_REFERENCE) {
5867			if (refs == 1)
5868				goto reada;
5869
5870			if (wc->level == 1 &&
5871			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5872				continue;
5873			if (!wc->update_ref ||
5874			    generation <= root->root_key.offset)
5875				continue;
5876			btrfs_node_key_to_cpu(eb, &key, slot);
5877			ret = btrfs_comp_cpu_keys(&key,
5878						  &wc->update_progress);
5879			if (ret < 0)
5880				continue;
5881		} else {
5882			if (wc->level == 1 &&
5883			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5884				continue;
5885		}
5886reada:
5887		ret = readahead_tree_block(root, bytenr, blocksize,
5888					   generation);
5889		if (ret)
5890			break;
5891		nread++;
5892	}
5893	wc->reada_slot = slot;
5894}
5895
5896/*
5897 * hepler to process tree block while walking down the tree.
5898 *
5899 * when wc->stage == UPDATE_BACKREF, this function updates
5900 * back refs for pointers in the block.
5901 *
5902 * NOTE: return value 1 means we should stop walking down.
5903 */
5904static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5905				   struct btrfs_root *root,
5906				   struct btrfs_path *path,
5907				   struct walk_control *wc, int lookup_info)
5908{
 
5909	int level = wc->level;
5910	struct extent_buffer *eb = path->nodes[level];
5911	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5912	int ret;
5913
5914	if (wc->stage == UPDATE_BACKREF &&
5915	    btrfs_header_owner(eb) != root->root_key.objectid)
5916		return 1;
5917
5918	/*
5919	 * when reference count of tree block is 1, it won't increase
5920	 * again. once full backref flag is set, we never clear it.
5921	 */
5922	if (lookup_info &&
5923	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5924	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5925		BUG_ON(!path->locks[level]);
5926		ret = btrfs_lookup_extent_info(trans, root,
5927					       eb->start, eb->len,
5928					       &wc->refs[level],
5929					       &wc->flags[level]);
5930		BUG_ON(ret);
 
 
 
5931		BUG_ON(wc->refs[level] == 0);
5932	}
5933
5934	if (wc->stage == DROP_REFERENCE) {
5935		if (wc->refs[level] > 1)
5936			return 1;
5937
5938		if (path->locks[level] && !wc->keep_locks) {
5939			btrfs_tree_unlock_rw(eb, path->locks[level]);
5940			path->locks[level] = 0;
5941		}
5942		return 0;
5943	}
5944
5945	/* wc->stage == UPDATE_BACKREF */
5946	if (!(wc->flags[level] & flag)) {
5947		BUG_ON(!path->locks[level]);
5948		ret = btrfs_inc_ref(trans, root, eb, 1);
5949		BUG_ON(ret);
5950		ret = btrfs_dec_ref(trans, root, eb, 0);
5951		BUG_ON(ret);
5952		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5953						  eb->len, flag, 0);
5954		BUG_ON(ret);
5955		wc->flags[level] |= flag;
5956	}
5957
5958	/*
5959	 * the block is shared by multiple trees, so it's not good to
5960	 * keep the tree lock
5961	 */
5962	if (path->locks[level] && level > 0) {
5963		btrfs_tree_unlock_rw(eb, path->locks[level]);
5964		path->locks[level] = 0;
5965	}
5966	return 0;
5967}
5968
5969/*
5970 * hepler to process tree block pointer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5971 *
5972 * when wc->stage == DROP_REFERENCE, this function checks
5973 * reference count of the block pointed to. if the block
5974 * is shared and we need update back refs for the subtree
5975 * rooted at the block, this function changes wc->stage to
5976 * UPDATE_BACKREF. if the block is shared and there is no
5977 * need to update back, this function drops the reference
5978 * to the block.
5979 *
5980 * NOTE: return value 1 means we should stop walking down.
5981 */
5982static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5983				 struct btrfs_root *root,
5984				 struct btrfs_path *path,
5985				 struct walk_control *wc, int *lookup_info)
5986{
 
5987	u64 bytenr;
5988	u64 generation;
5989	u64 parent;
5990	u32 blocksize;
 
5991	struct btrfs_key key;
 
5992	struct extent_buffer *next;
5993	int level = wc->level;
5994	int reada = 0;
5995	int ret = 0;
 
5996
5997	generation = btrfs_node_ptr_generation(path->nodes[level],
5998					       path->slots[level]);
5999	/*
6000	 * if the lower level block was created before the snapshot
6001	 * was created, we know there is no need to update back refs
6002	 * for the subtree
6003	 */
6004	if (wc->stage == UPDATE_BACKREF &&
6005	    generation <= root->root_key.offset) {
6006		*lookup_info = 1;
6007		return 1;
6008	}
6009
6010	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6011	blocksize = btrfs_level_size(root, level - 1);
6012
6013	next = btrfs_find_tree_block(root, bytenr, blocksize);
 
 
 
 
 
 
 
6014	if (!next) {
6015		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6016		if (!next)
6017			return -ENOMEM;
 
6018		reada = 1;
6019	}
6020	btrfs_tree_lock(next);
6021	btrfs_set_lock_blocking(next);
6022
6023	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6024				       &wc->refs[level - 1],
6025				       &wc->flags[level - 1]);
6026	BUG_ON(ret);
6027	BUG_ON(wc->refs[level - 1] == 0);
 
 
 
 
 
 
 
6028	*lookup_info = 0;
6029
6030	if (wc->stage == DROP_REFERENCE) {
6031		if (wc->refs[level - 1] > 1) {
 
6032			if (level == 1 &&
6033			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6034				goto skip;
6035
6036			if (!wc->update_ref ||
6037			    generation <= root->root_key.offset)
6038				goto skip;
6039
6040			btrfs_node_key_to_cpu(path->nodes[level], &key,
6041					      path->slots[level]);
6042			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6043			if (ret < 0)
6044				goto skip;
6045
6046			wc->stage = UPDATE_BACKREF;
6047			wc->shared_level = level - 1;
6048		}
6049	} else {
6050		if (level == 1 &&
6051		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6052			goto skip;
6053	}
6054
6055	if (!btrfs_buffer_uptodate(next, generation)) {
6056		btrfs_tree_unlock(next);
6057		free_extent_buffer(next);
6058		next = NULL;
6059		*lookup_info = 1;
6060	}
6061
6062	if (!next) {
6063		if (reada && level == 1)
6064			reada_walk_down(trans, root, wc, path);
6065		next = read_tree_block(root, bytenr, blocksize, generation);
6066		if (!next)
 
 
 
6067			return -EIO;
 
6068		btrfs_tree_lock(next);
6069		btrfs_set_lock_blocking(next);
6070	}
6071
6072	level--;
6073	BUG_ON(level != btrfs_header_level(next));
 
 
 
 
 
6074	path->nodes[level] = next;
6075	path->slots[level] = 0;
6076	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6077	wc->level = level;
6078	if (wc->level == 1)
6079		wc->reada_slot = 0;
6080	return 0;
6081skip:
6082	wc->refs[level - 1] = 0;
6083	wc->flags[level - 1] = 0;
6084	if (wc->stage == DROP_REFERENCE) {
6085		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6086			parent = path->nodes[level]->start;
6087		} else {
6088			BUG_ON(root->root_key.objectid !=
6089			       btrfs_header_owner(path->nodes[level]));
 
 
 
 
 
 
 
6090			parent = 0;
6091		}
6092
6093		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6094					root->root_key.objectid, level - 1, 0);
6095		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6096	}
 
 
 
 
 
6097	btrfs_tree_unlock(next);
6098	free_extent_buffer(next);
6099	*lookup_info = 1;
6100	return 1;
6101}
6102
6103/*
6104 * hepler to process tree block while walking up the tree.
6105 *
6106 * when wc->stage == DROP_REFERENCE, this function drops
6107 * reference count on the block.
6108 *
6109 * when wc->stage == UPDATE_BACKREF, this function changes
6110 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6111 * to UPDATE_BACKREF previously while processing the block.
6112 *
6113 * NOTE: return value 1 means we should stop walking up.
6114 */
6115static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6116				 struct btrfs_root *root,
6117				 struct btrfs_path *path,
6118				 struct walk_control *wc)
6119{
 
6120	int ret;
6121	int level = wc->level;
6122	struct extent_buffer *eb = path->nodes[level];
6123	u64 parent = 0;
6124
6125	if (wc->stage == UPDATE_BACKREF) {
6126		BUG_ON(wc->shared_level < level);
6127		if (level < wc->shared_level)
6128			goto out;
6129
6130		ret = find_next_key(path, level + 1, &wc->update_progress);
6131		if (ret > 0)
6132			wc->update_ref = 0;
6133
6134		wc->stage = DROP_REFERENCE;
6135		wc->shared_level = -1;
6136		path->slots[level] = 0;
6137
6138		/*
6139		 * check reference count again if the block isn't locked.
6140		 * we should start walking down the tree again if reference
6141		 * count is one.
6142		 */
6143		if (!path->locks[level]) {
6144			BUG_ON(level == 0);
6145			btrfs_tree_lock(eb);
6146			btrfs_set_lock_blocking(eb);
6147			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6148
6149			ret = btrfs_lookup_extent_info(trans, root,
6150						       eb->start, eb->len,
6151						       &wc->refs[level],
6152						       &wc->flags[level]);
6153			BUG_ON(ret);
 
 
 
 
 
6154			BUG_ON(wc->refs[level] == 0);
6155			if (wc->refs[level] == 1) {
6156				btrfs_tree_unlock_rw(eb, path->locks[level]);
 
6157				return 1;
6158			}
6159		}
6160	}
6161
6162	/* wc->stage == DROP_REFERENCE */
6163	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6164
6165	if (wc->refs[level] == 1) {
6166		if (level == 0) {
6167			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168				ret = btrfs_dec_ref(trans, root, eb, 1);
6169			else
6170				ret = btrfs_dec_ref(trans, root, eb, 0);
6171			BUG_ON(ret);
 
 
 
 
 
 
 
 
6172		}
6173		/* make block locked assertion in clean_tree_block happy */
6174		if (!path->locks[level] &&
6175		    btrfs_header_generation(eb) == trans->transid) {
6176			btrfs_tree_lock(eb);
6177			btrfs_set_lock_blocking(eb);
6178			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6179		}
6180		clean_tree_block(trans, root, eb);
6181	}
6182
6183	if (eb == root->node) {
6184		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6185			parent = eb->start;
6186		else
6187			BUG_ON(root->root_key.objectid !=
6188			       btrfs_header_owner(eb));
6189	} else {
6190		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6191			parent = path->nodes[level + 1]->start;
6192		else
6193			BUG_ON(root->root_key.objectid !=
6194			       btrfs_header_owner(path->nodes[level + 1]));
6195	}
6196
6197	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 
6198out:
6199	wc->refs[level] = 0;
6200	wc->flags[level] = 0;
6201	return 0;
 
 
 
 
 
6202}
6203
6204static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6205				   struct btrfs_root *root,
6206				   struct btrfs_path *path,
6207				   struct walk_control *wc)
6208{
6209	int level = wc->level;
6210	int lookup_info = 1;
6211	int ret;
6212
6213	while (level >= 0) {
6214		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6215		if (ret > 0)
6216			break;
6217
6218		if (level == 0)
6219			break;
6220
6221		if (path->slots[level] >=
6222		    btrfs_header_nritems(path->nodes[level]))
6223			break;
6224
6225		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6226		if (ret > 0) {
6227			path->slots[level]++;
6228			continue;
6229		} else if (ret < 0)
6230			return ret;
6231		level = wc->level;
6232	}
6233	return 0;
6234}
6235
6236static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6237				 struct btrfs_root *root,
6238				 struct btrfs_path *path,
6239				 struct walk_control *wc, int max_level)
6240{
6241	int level = wc->level;
6242	int ret;
6243
6244	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6245	while (level < max_level && path->nodes[level]) {
6246		wc->level = level;
6247		if (path->slots[level] + 1 <
6248		    btrfs_header_nritems(path->nodes[level])) {
6249			path->slots[level]++;
6250			return 0;
6251		} else {
6252			ret = walk_up_proc(trans, root, path, wc);
6253			if (ret > 0)
6254				return 0;
 
 
6255
6256			if (path->locks[level]) {
6257				btrfs_tree_unlock_rw(path->nodes[level],
6258						     path->locks[level]);
6259				path->locks[level] = 0;
6260			}
6261			free_extent_buffer(path->nodes[level]);
6262			path->nodes[level] = NULL;
6263			level++;
6264		}
6265	}
6266	return 1;
6267}
6268
6269/*
6270 * drop a subvolume tree.
6271 *
6272 * this function traverses the tree freeing any blocks that only
6273 * referenced by the tree.
6274 *
6275 * when a shared tree block is found. this function decreases its
6276 * reference count by one. if update_ref is true, this function
6277 * also make sure backrefs for the shared block and all lower level
6278 * blocks are properly updated.
 
 
6279 */
6280void btrfs_drop_snapshot(struct btrfs_root *root,
6281			 struct btrfs_block_rsv *block_rsv, int update_ref)
6282{
 
 
 
6283	struct btrfs_path *path;
6284	struct btrfs_trans_handle *trans;
6285	struct btrfs_root *tree_root = root->fs_info->tree_root;
6286	struct btrfs_root_item *root_item = &root->root_item;
6287	struct walk_control *wc;
6288	struct btrfs_key key;
6289	int err = 0;
6290	int ret;
6291	int level;
 
 
 
 
6292
6293	path = btrfs_alloc_path();
6294	if (!path) {
6295		err = -ENOMEM;
6296		goto out;
6297	}
6298
6299	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6300	if (!wc) {
6301		btrfs_free_path(path);
6302		err = -ENOMEM;
6303		goto out;
6304	}
6305
6306	trans = btrfs_start_transaction(tree_root, 0);
6307	BUG_ON(IS_ERR(trans));
 
 
 
 
 
 
 
 
 
 
6308
6309	if (block_rsv)
6310		trans->block_rsv = block_rsv;
 
 
 
 
 
 
 
 
 
 
 
 
6311
6312	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6313		level = btrfs_header_level(root->node);
6314		path->nodes[level] = btrfs_lock_root_node(root);
6315		btrfs_set_lock_blocking(path->nodes[level]);
6316		path->slots[level] = 0;
6317		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6318		memset(&wc->update_progress, 0,
6319		       sizeof(wc->update_progress));
6320	} else {
6321		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6322		memcpy(&wc->update_progress, &key,
6323		       sizeof(wc->update_progress));
6324
6325		level = root_item->drop_level;
6326		BUG_ON(level == 0);
6327		path->lowest_level = level;
6328		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6329		path->lowest_level = 0;
6330		if (ret < 0) {
6331			err = ret;
6332			goto out_free;
6333		}
6334		WARN_ON(ret > 0);
6335
6336		/*
6337		 * unlock our path, this is safe because only this
6338		 * function is allowed to delete this snapshot
6339		 */
6340		btrfs_unlock_up_safe(path, 0);
6341
6342		level = btrfs_header_level(root->node);
6343		while (1) {
6344			btrfs_tree_lock(path->nodes[level]);
6345			btrfs_set_lock_blocking(path->nodes[level]);
6346
6347			ret = btrfs_lookup_extent_info(trans, root,
6348						path->nodes[level]->start,
6349						path->nodes[level]->len,
6350						&wc->refs[level],
6351						&wc->flags[level]);
6352			BUG_ON(ret);
 
 
6353			BUG_ON(wc->refs[level] == 0);
6354
6355			if (level == root_item->drop_level)
6356				break;
6357
6358			btrfs_tree_unlock(path->nodes[level]);
 
6359			WARN_ON(wc->refs[level] != 1);
6360			level--;
6361		}
6362	}
6363
 
6364	wc->level = level;
6365	wc->shared_level = -1;
6366	wc->stage = DROP_REFERENCE;
6367	wc->update_ref = update_ref;
6368	wc->keep_locks = 0;
6369	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6370
6371	while (1) {
 
6372		ret = walk_down_tree(trans, root, path, wc);
6373		if (ret < 0) {
 
6374			err = ret;
6375			break;
6376		}
6377
6378		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6379		if (ret < 0) {
 
6380			err = ret;
6381			break;
6382		}
6383
6384		if (ret > 0) {
6385			BUG_ON(wc->stage != DROP_REFERENCE);
6386			break;
6387		}
6388
6389		if (wc->stage == DROP_REFERENCE) {
6390			level = wc->level;
6391			btrfs_node_key(path->nodes[level],
6392				       &root_item->drop_progress,
6393				       path->slots[level]);
6394			root_item->drop_level = level;
6395		}
 
 
6396
6397		BUG_ON(wc->level == 0);
6398		if (btrfs_should_end_transaction(trans, tree_root)) {
 
6399			ret = btrfs_update_root(trans, tree_root,
6400						&root->root_key,
6401						root_item);
6402			BUG_ON(ret);
 
 
 
 
6403
6404			btrfs_end_transaction_throttle(trans, tree_root);
6405			trans = btrfs_start_transaction(tree_root, 0);
6406			BUG_ON(IS_ERR(trans));
6407			if (block_rsv)
6408				trans->block_rsv = block_rsv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6409		}
6410	}
6411	btrfs_release_path(path);
6412	BUG_ON(err);
 
6413
6414	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6415	BUG_ON(ret);
 
 
 
 
6416
6417	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6418		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6419					   NULL, NULL);
6420		BUG_ON(ret < 0);
6421		if (ret > 0) {
 
 
 
6422			/* if we fail to delete the orphan item this time
6423			 * around, it'll get picked up the next time.
6424			 *
6425			 * The most common failure here is just -ENOENT.
6426			 */
6427			btrfs_del_orphan_item(trans, tree_root,
6428					      root->root_key.objectid);
6429		}
6430	}
6431
6432	if (root->in_radix) {
6433		btrfs_free_fs_root(tree_root->fs_info, root);
6434	} else {
6435		free_extent_buffer(root->node);
6436		free_extent_buffer(root->commit_root);
6437		kfree(root);
6438	}
 
 
 
 
 
 
 
 
 
 
 
6439out_free:
6440	btrfs_end_transaction_throttle(trans, tree_root);
6441	kfree(wc);
6442	btrfs_free_path(path);
6443out:
6444	if (err)
6445		btrfs_std_error(root->fs_info, err);
6446	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6447}
6448
6449/*
6450 * drop subtree rooted at tree block 'node'.
6451 *
6452 * NOTE: this function will unlock and release tree block 'node'
 
6453 */
6454int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6455			struct btrfs_root *root,
6456			struct extent_buffer *node,
6457			struct extent_buffer *parent)
6458{
 
6459	struct btrfs_path *path;
6460	struct walk_control *wc;
6461	int level;
6462	int parent_level;
6463	int ret = 0;
6464	int wret;
6465
6466	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6467
6468	path = btrfs_alloc_path();
6469	if (!path)
6470		return -ENOMEM;
6471
6472	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6473	if (!wc) {
6474		btrfs_free_path(path);
6475		return -ENOMEM;
6476	}
6477
6478	btrfs_assert_tree_locked(parent);
6479	parent_level = btrfs_header_level(parent);
6480	extent_buffer_get(parent);
6481	path->nodes[parent_level] = parent;
6482	path->slots[parent_level] = btrfs_header_nritems(parent);
6483
6484	btrfs_assert_tree_locked(node);
6485	level = btrfs_header_level(node);
6486	path->nodes[level] = node;
6487	path->slots[level] = 0;
6488	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6489
6490	wc->refs[parent_level] = 1;
6491	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6492	wc->level = level;
6493	wc->shared_level = -1;
6494	wc->stage = DROP_REFERENCE;
6495	wc->update_ref = 0;
6496	wc->keep_locks = 1;
6497	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6498
6499	while (1) {
6500		wret = walk_down_tree(trans, root, path, wc);
6501		if (wret < 0) {
6502			ret = wret;
6503			break;
6504		}
6505
6506		wret = walk_up_tree(trans, root, path, wc, parent_level);
6507		if (wret < 0)
6508			ret = wret;
6509		if (wret != 0)
6510			break;
6511	}
6512
6513	kfree(wc);
6514	btrfs_free_path(path);
6515	return ret;
6516}
6517
6518static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
 
6519{
6520	u64 num_devices;
6521	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6522		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6523
6524	/*
6525	 * we add in the count of missing devices because we want
6526	 * to make sure that any RAID levels on a degraded FS
6527	 * continue to be honored.
6528	 */
6529	num_devices = root->fs_info->fs_devices->rw_devices +
6530		root->fs_info->fs_devices->missing_devices;
6531
6532	if (num_devices == 1) {
6533		stripped |= BTRFS_BLOCK_GROUP_DUP;
6534		stripped = flags & ~stripped;
6535
6536		/* turn raid0 into single device chunks */
6537		if (flags & BTRFS_BLOCK_GROUP_RAID0)
6538			return stripped;
6539
6540		/* turn mirroring into duplication */
6541		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6542			     BTRFS_BLOCK_GROUP_RAID10))
6543			return stripped | BTRFS_BLOCK_GROUP_DUP;
6544		return flags;
6545	} else {
6546		/* they already had raid on here, just return */
6547		if (flags & stripped)
6548			return flags;
6549
6550		stripped |= BTRFS_BLOCK_GROUP_DUP;
6551		stripped = flags & ~stripped;
6552
6553		/* switch duplicated blocks with raid1 */
6554		if (flags & BTRFS_BLOCK_GROUP_DUP)
6555			return stripped | BTRFS_BLOCK_GROUP_RAID1;
6556
6557		/* turn single device chunks into raid0 */
6558		return stripped | BTRFS_BLOCK_GROUP_RAID0;
6559	}
6560	return flags;
6561}
6562
6563static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6564{
6565	struct btrfs_space_info *sinfo = cache->space_info;
6566	u64 num_bytes;
6567	u64 min_allocable_bytes;
6568	int ret = -ENOSPC;
6569
6570
6571	/*
6572	 * We need some metadata space and system metadata space for
6573	 * allocating chunks in some corner cases until we force to set
6574	 * it to be readonly.
6575	 */
6576	if ((sinfo->flags &
6577	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6578	    !force)
6579		min_allocable_bytes = 1 * 1024 * 1024;
6580	else
6581		min_allocable_bytes = 0;
6582
6583	spin_lock(&sinfo->lock);
6584	spin_lock(&cache->lock);
6585
6586	if (cache->ro) {
6587		ret = 0;
6588		goto out;
6589	}
6590
6591	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6592		    cache->bytes_super - btrfs_block_group_used(&cache->item);
6593
6594	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6595	    sinfo->bytes_may_use + sinfo->bytes_readonly +
6596	    cache->reserved_pinned + num_bytes + min_allocable_bytes <=
6597	    sinfo->total_bytes) {
6598		sinfo->bytes_readonly += num_bytes;
6599		sinfo->bytes_reserved += cache->reserved_pinned;
6600		cache->reserved_pinned = 0;
6601		cache->ro = 1;
6602		ret = 0;
6603	}
6604out:
6605	spin_unlock(&cache->lock);
6606	spin_unlock(&sinfo->lock);
6607	return ret;
6608}
6609
6610int btrfs_set_block_group_ro(struct btrfs_root *root,
6611			     struct btrfs_block_group_cache *cache)
6612
6613{
6614	struct btrfs_trans_handle *trans;
6615	u64 alloc_flags;
6616	int ret;
6617
6618	BUG_ON(cache->ro);
6619
6620	trans = btrfs_join_transaction(root);
6621	BUG_ON(IS_ERR(trans));
6622
6623	alloc_flags = update_block_group_flags(root, cache->flags);
6624	if (alloc_flags != cache->flags)
6625		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6626			       CHUNK_ALLOC_FORCE);
6627
6628	ret = set_block_group_ro(cache, 0);
6629	if (!ret)
6630		goto out;
6631	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6632	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6633			     CHUNK_ALLOC_FORCE);
6634	if (ret < 0)
6635		goto out;
6636	ret = set_block_group_ro(cache, 0);
6637out:
6638	btrfs_end_transaction(trans, root);
6639	return ret;
6640}
6641
6642int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6643			    struct btrfs_root *root, u64 type)
6644{
6645	u64 alloc_flags = get_alloc_profile(root, type);
6646	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6647			      CHUNK_ALLOC_FORCE);
6648}
6649
6650/*
6651 * helper to account the unused space of all the readonly block group in the
6652 * list. takes mirrors into account.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6653 */
6654static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6655{
6656	struct btrfs_block_group_cache *block_group;
6657	u64 free_bytes = 0;
6658	int factor;
6659
6660	list_for_each_entry(block_group, groups_list, list) {
6661		spin_lock(&block_group->lock);
6662
6663		if (!block_group->ro) {
6664			spin_unlock(&block_group->lock);
6665			continue;
6666		}
6667
6668		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6669					  BTRFS_BLOCK_GROUP_RAID10 |
6670					  BTRFS_BLOCK_GROUP_DUP))
6671			factor = 2;
6672		else
6673			factor = 1;
6674
6675		free_bytes += (block_group->key.offset -
6676			       btrfs_block_group_used(&block_group->item)) *
6677			       factor;
6678
6679		spin_unlock(&block_group->lock);
6680	}
6681
6682	return free_bytes;
6683}
 
6684
6685/*
6686 * helper to account the unused space of all the readonly block group in the
6687 * space_info. takes mirrors into account.
6688 */
6689u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6690{
6691	int i;
6692	u64 free_bytes = 0;
6693
6694	spin_lock(&sinfo->lock);
6695
6696	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6697		if (!list_empty(&sinfo->block_groups[i]))
6698			free_bytes += __btrfs_get_ro_block_group_free_space(
6699						&sinfo->block_groups[i]);
6700
6701	spin_unlock(&sinfo->lock);
6702
6703	return free_bytes;
6704}
6705
6706int btrfs_set_block_group_rw(struct btrfs_root *root,
6707			      struct btrfs_block_group_cache *cache)
6708{
6709	struct btrfs_space_info *sinfo = cache->space_info;
6710	u64 num_bytes;
6711
6712	BUG_ON(!cache->ro);
6713
6714	spin_lock(&sinfo->lock);
6715	spin_lock(&cache->lock);
6716	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6717		    cache->bytes_super - btrfs_block_group_used(&cache->item);
6718	sinfo->bytes_readonly -= num_bytes;
6719	cache->ro = 0;
6720	spin_unlock(&cache->lock);
6721	spin_unlock(&sinfo->lock);
6722	return 0;
6723}
6724
6725/*
6726 * checks to see if its even possible to relocate this block group.
6727 *
6728 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6729 * ok to go ahead and try.
6730 */
6731int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6732{
6733	struct btrfs_block_group_cache *block_group;
6734	struct btrfs_space_info *space_info;
6735	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6736	struct btrfs_device *device;
6737	u64 min_free;
6738	u64 dev_min = 1;
6739	u64 dev_nr = 0;
6740	int index;
6741	int full = 0;
6742	int ret = 0;
6743
6744	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6745
6746	/* odd, couldn't find the block group, leave it alone */
6747	if (!block_group)
6748		return -1;
6749
6750	min_free = btrfs_block_group_used(&block_group->item);
6751
6752	/* no bytes used, we're good */
6753	if (!min_free)
6754		goto out;
6755
6756	space_info = block_group->space_info;
6757	spin_lock(&space_info->lock);
6758
6759	full = space_info->full;
6760
6761	/*
6762	 * if this is the last block group we have in this space, we can't
6763	 * relocate it unless we're able to allocate a new chunk below.
6764	 *
6765	 * Otherwise, we need to make sure we have room in the space to handle
6766	 * all of the extents from this block group.  If we can, we're good
6767	 */
6768	if ((space_info->total_bytes != block_group->key.offset) &&
6769	    (space_info->bytes_used + space_info->bytes_reserved +
6770	     space_info->bytes_pinned + space_info->bytes_readonly +
6771	     min_free < space_info->total_bytes)) {
6772		spin_unlock(&space_info->lock);
6773		goto out;
6774	}
6775	spin_unlock(&space_info->lock);
6776
6777	/*
6778	 * ok we don't have enough space, but maybe we have free space on our
6779	 * devices to allocate new chunks for relocation, so loop through our
6780	 * alloc devices and guess if we have enough space.  However, if we
6781	 * were marked as full, then we know there aren't enough chunks, and we
6782	 * can just return.
6783	 */
6784	ret = -1;
6785	if (full)
6786		goto out;
6787
6788	/*
6789	 * index:
6790	 *      0: raid10
6791	 *      1: raid1
6792	 *      2: dup
6793	 *      3: raid0
6794	 *      4: single
6795	 */
6796	index = get_block_group_index(block_group);
6797	if (index == 0) {
6798		dev_min = 4;
6799		/* Divide by 2 */
6800		min_free >>= 1;
6801	} else if (index == 1) {
6802		dev_min = 2;
6803	} else if (index == 2) {
6804		/* Multiply by 2 */
6805		min_free <<= 1;
6806	} else if (index == 3) {
6807		dev_min = fs_devices->rw_devices;
6808		do_div(min_free, dev_min);
6809	}
6810
6811	mutex_lock(&root->fs_info->chunk_mutex);
6812	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6813		u64 dev_offset;
6814
6815		/*
6816		 * check to make sure we can actually find a chunk with enough
6817		 * space to fit our block group in.
6818		 */
6819		if (device->total_bytes > device->bytes_used + min_free) {
6820			ret = find_free_dev_extent(NULL, device, min_free,
6821						   &dev_offset, NULL);
6822			if (!ret)
6823				dev_nr++;
6824
6825			if (dev_nr >= dev_min)
6826				break;
6827
6828			ret = -1;
6829		}
6830	}
6831	mutex_unlock(&root->fs_info->chunk_mutex);
6832out:
6833	btrfs_put_block_group(block_group);
6834	return ret;
6835}
6836
6837static int find_first_block_group(struct btrfs_root *root,
6838		struct btrfs_path *path, struct btrfs_key *key)
6839{
6840	int ret = 0;
6841	struct btrfs_key found_key;
6842	struct extent_buffer *leaf;
6843	int slot;
6844
6845	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6846	if (ret < 0)
6847		goto out;
6848
6849	while (1) {
6850		slot = path->slots[0];
6851		leaf = path->nodes[0];
6852		if (slot >= btrfs_header_nritems(leaf)) {
6853			ret = btrfs_next_leaf(root, path);
6854			if (ret == 0)
6855				continue;
6856			if (ret < 0)
6857				goto out;
6858			break;
6859		}
6860		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6861
6862		if (found_key.objectid >= key->objectid &&
6863		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
 
 
 
 
 
 
 
 
 
 
 
6864			ret = 0;
6865			goto out;
6866		}
6867		path->slots[0]++;
6868	}
6869out:
6870	return ret;
6871}
6872
6873void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6874{
6875	struct btrfs_block_group_cache *block_group;
6876	u64 last = 0;
6877
6878	while (1) {
6879		struct inode *inode;
6880
6881		block_group = btrfs_lookup_first_block_group(info, last);
6882		while (block_group) {
6883			spin_lock(&block_group->lock);
6884			if (block_group->iref)
6885				break;
6886			spin_unlock(&block_group->lock);
6887			block_group = next_block_group(info->tree_root,
6888						       block_group);
6889		}
6890		if (!block_group) {
6891			if (last == 0)
6892				break;
6893			last = 0;
6894			continue;
6895		}
6896
6897		inode = block_group->inode;
6898		block_group->iref = 0;
6899		block_group->inode = NULL;
6900		spin_unlock(&block_group->lock);
6901		iput(inode);
6902		last = block_group->key.objectid + block_group->key.offset;
6903		btrfs_put_block_group(block_group);
6904	}
6905}
6906
6907int btrfs_free_block_groups(struct btrfs_fs_info *info)
6908{
6909	struct btrfs_block_group_cache *block_group;
6910	struct btrfs_space_info *space_info;
6911	struct btrfs_caching_control *caching_ctl;
6912	struct rb_node *n;
6913
6914	down_write(&info->extent_commit_sem);
6915	while (!list_empty(&info->caching_block_groups)) {
6916		caching_ctl = list_entry(info->caching_block_groups.next,
6917					 struct btrfs_caching_control, list);
6918		list_del(&caching_ctl->list);
6919		put_caching_control(caching_ctl);
6920	}
6921	up_write(&info->extent_commit_sem);
6922
6923	spin_lock(&info->block_group_cache_lock);
6924	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6925		block_group = rb_entry(n, struct btrfs_block_group_cache,
6926				       cache_node);
6927		rb_erase(&block_group->cache_node,
6928			 &info->block_group_cache_tree);
6929		spin_unlock(&info->block_group_cache_lock);
6930
6931		down_write(&block_group->space_info->groups_sem);
6932		list_del(&block_group->list);
6933		up_write(&block_group->space_info->groups_sem);
6934
6935		if (block_group->cached == BTRFS_CACHE_STARTED)
6936			wait_block_group_cache_done(block_group);
6937
6938		/*
6939		 * We haven't cached this block group, which means we could
6940		 * possibly have excluded extents on this block group.
 
6941		 */
6942		if (block_group->cached == BTRFS_CACHE_NO)
6943			free_excluded_extents(info->extent_root, block_group);
6944
6945		btrfs_remove_free_space_cache(block_group);
6946		btrfs_put_block_group(block_group);
6947
6948		spin_lock(&info->block_group_cache_lock);
6949	}
6950	spin_unlock(&info->block_group_cache_lock);
6951
6952	/* now that all the block groups are freed, go through and
6953	 * free all the space_info structs.  This is only called during
6954	 * the final stages of unmount, and so we know nobody is
6955	 * using them.  We call synchronize_rcu() once before we start,
6956	 * just to be on the safe side.
6957	 */
6958	synchronize_rcu();
6959
6960	release_global_block_rsv(info);
6961
6962	while(!list_empty(&info->space_info)) {
6963		space_info = list_entry(info->space_info.next,
6964					struct btrfs_space_info,
6965					list);
6966		if (space_info->bytes_pinned > 0 ||
6967		    space_info->bytes_reserved > 0) {
6968			WARN_ON(1);
6969			dump_space_info(space_info, 0, 0);
6970		}
6971		list_del(&space_info->list);
6972		kfree(space_info);
6973	}
6974	return 0;
6975}
6976
6977static void __link_block_group(struct btrfs_space_info *space_info,
6978			       struct btrfs_block_group_cache *cache)
6979{
6980	int index = get_block_group_index(cache);
 
 
6981
6982	down_write(&space_info->groups_sem);
6983	list_add_tail(&cache->list, &space_info->block_groups[index]);
6984	up_write(&space_info->groups_sem);
6985}
6986
6987int btrfs_read_block_groups(struct btrfs_root *root)
6988{
6989	struct btrfs_path *path;
6990	int ret;
6991	struct btrfs_block_group_cache *cache;
6992	struct btrfs_fs_info *info = root->fs_info;
6993	struct btrfs_space_info *space_info;
6994	struct btrfs_key key;
6995	struct btrfs_key found_key;
6996	struct extent_buffer *leaf;
6997	int need_clear = 0;
6998	u64 cache_gen;
6999
7000	root = info->extent_root;
7001	key.objectid = 0;
7002	key.offset = 0;
7003	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7004	path = btrfs_alloc_path();
7005	if (!path)
7006		return -ENOMEM;
7007	path->reada = 1;
7008
7009	cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7010	if (cache_gen != 0 &&
7011	    btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7012		need_clear = 1;
7013	if (btrfs_test_opt(root, CLEAR_CACHE))
7014		need_clear = 1;
7015	if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7016		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7017
7018	while (1) {
7019		ret = find_first_block_group(root, path, &key);
7020		if (ret > 0)
7021			break;
7022		if (ret != 0)
7023			goto error;
7024		leaf = path->nodes[0];
7025		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7026		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7027		if (!cache) {
7028			ret = -ENOMEM;
7029			goto error;
7030		}
7031		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7032						GFP_NOFS);
7033		if (!cache->free_space_ctl) {
7034			kfree(cache);
7035			ret = -ENOMEM;
7036			goto error;
7037		}
7038
7039		atomic_set(&cache->count, 1);
7040		spin_lock_init(&cache->lock);
7041		cache->fs_info = info;
7042		INIT_LIST_HEAD(&cache->list);
7043		INIT_LIST_HEAD(&cache->cluster_list);
7044
7045		if (need_clear)
7046			cache->disk_cache_state = BTRFS_DC_CLEAR;
7047
7048		read_extent_buffer(leaf, &cache->item,
7049				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7050				   sizeof(cache->item));
7051		memcpy(&cache->key, &found_key, sizeof(found_key));
7052
7053		key.objectid = found_key.objectid + found_key.offset;
7054		btrfs_release_path(path);
7055		cache->flags = btrfs_block_group_flags(&cache->item);
7056		cache->sectorsize = root->sectorsize;
7057
7058		btrfs_init_free_space_ctl(cache);
7059
7060		/*
7061		 * We need to exclude the super stripes now so that the space
7062		 * info has super bytes accounted for, otherwise we'll think
7063		 * we have more space than we actually do.
7064		 */
7065		exclude_super_stripes(root, cache);
7066
7067		/*
7068		 * check for two cases, either we are full, and therefore
7069		 * don't need to bother with the caching work since we won't
7070		 * find any space, or we are empty, and we can just add all
7071		 * the space in and be done with it.  This saves us _alot_ of
7072		 * time, particularly in the full case.
7073		 */
7074		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7075			cache->last_byte_to_unpin = (u64)-1;
7076			cache->cached = BTRFS_CACHE_FINISHED;
7077			free_excluded_extents(root, cache);
7078		} else if (btrfs_block_group_used(&cache->item) == 0) {
7079			cache->last_byte_to_unpin = (u64)-1;
7080			cache->cached = BTRFS_CACHE_FINISHED;
7081			add_new_free_space(cache, root->fs_info,
7082					   found_key.objectid,
7083					   found_key.objectid +
7084					   found_key.offset);
7085			free_excluded_extents(root, cache);
7086		}
7087
7088		ret = update_space_info(info, cache->flags, found_key.offset,
7089					btrfs_block_group_used(&cache->item),
7090					&space_info);
7091		BUG_ON(ret);
7092		cache->space_info = space_info;
7093		spin_lock(&cache->space_info->lock);
7094		cache->space_info->bytes_readonly += cache->bytes_super;
7095		spin_unlock(&cache->space_info->lock);
7096
7097		__link_block_group(space_info, cache);
7098
7099		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7100		BUG_ON(ret);
7101
7102		set_avail_alloc_bits(root->fs_info, cache->flags);
7103		if (btrfs_chunk_readonly(root, cache->key.objectid))
7104			set_block_group_ro(cache, 1);
7105	}
7106
7107	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7108		if (!(get_alloc_profile(root, space_info->flags) &
7109		      (BTRFS_BLOCK_GROUP_RAID10 |
7110		       BTRFS_BLOCK_GROUP_RAID1 |
7111		       BTRFS_BLOCK_GROUP_DUP)))
7112			continue;
7113		/*
7114		 * avoid allocating from un-mirrored block group if there are
7115		 * mirrored block groups.
7116		 */
7117		list_for_each_entry(cache, &space_info->block_groups[3], list)
7118			set_block_group_ro(cache, 1);
7119		list_for_each_entry(cache, &space_info->block_groups[4], list)
7120			set_block_group_ro(cache, 1);
7121	}
7122
7123	init_global_block_rsv(info);
7124	ret = 0;
7125error:
7126	btrfs_free_path(path);
7127	return ret;
7128}
7129
7130int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7131			   struct btrfs_root *root, u64 bytes_used,
7132			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7133			   u64 size)
 
 
 
 
 
 
7134{
7135	int ret;
7136	struct btrfs_root *extent_root;
7137	struct btrfs_block_group_cache *cache;
7138
7139	extent_root = root->fs_info->extent_root;
7140
7141	root->fs_info->last_trans_log_full_commit = trans->transid;
7142
7143	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7144	if (!cache)
7145		return -ENOMEM;
7146	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7147					GFP_NOFS);
7148	if (!cache->free_space_ctl) {
7149		kfree(cache);
7150		return -ENOMEM;
7151	}
7152
7153	cache->key.objectid = chunk_offset;
7154	cache->key.offset = size;
7155	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7156	cache->sectorsize = root->sectorsize;
7157	cache->fs_info = root->fs_info;
7158
7159	atomic_set(&cache->count, 1);
7160	spin_lock_init(&cache->lock);
7161	INIT_LIST_HEAD(&cache->list);
7162	INIT_LIST_HEAD(&cache->cluster_list);
7163
7164	btrfs_init_free_space_ctl(cache);
7165
7166	btrfs_set_block_group_used(&cache->item, bytes_used);
7167	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7168	cache->flags = type;
7169	btrfs_set_block_group_flags(&cache->item, type);
7170
7171	cache->last_byte_to_unpin = (u64)-1;
7172	cache->cached = BTRFS_CACHE_FINISHED;
7173	exclude_super_stripes(root, cache);
7174
7175	add_new_free_space(cache, root->fs_info, chunk_offset,
7176			   chunk_offset + size);
7177
7178	free_excluded_extents(root, cache);
7179
7180	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7181				&cache->space_info);
7182	BUG_ON(ret);
7183
7184	spin_lock(&cache->space_info->lock);
7185	cache->space_info->bytes_readonly += cache->bytes_super;
7186	spin_unlock(&cache->space_info->lock);
7187
7188	__link_block_group(cache->space_info, cache);
7189
7190	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7191	BUG_ON(ret);
7192
7193	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7194				sizeof(cache->item));
7195	BUG_ON(ret);
7196
7197	set_avail_alloc_bits(extent_root->fs_info, type);
7198
7199	return 0;
7200}
7201
7202int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7203			     struct btrfs_root *root, u64 group_start)
7204{
7205	struct btrfs_path *path;
7206	struct btrfs_block_group_cache *block_group;
7207	struct btrfs_free_cluster *cluster;
7208	struct btrfs_root *tree_root = root->fs_info->tree_root;
7209	struct btrfs_key key;
7210	struct inode *inode;
7211	int ret;
7212	int factor;
7213
7214	root = root->fs_info->extent_root;
7215
7216	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7217	BUG_ON(!block_group);
7218	BUG_ON(!block_group->ro);
7219
7220	/*
7221	 * Free the reserved super bytes from this block group before
7222	 * remove it.
7223	 */
7224	free_excluded_extents(root, block_group);
7225
7226	memcpy(&key, &block_group->key, sizeof(key));
7227	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7228				  BTRFS_BLOCK_GROUP_RAID1 |
7229				  BTRFS_BLOCK_GROUP_RAID10))
7230		factor = 2;
7231	else
7232		factor = 1;
7233
7234	/* make sure this block group isn't part of an allocation cluster */
7235	cluster = &root->fs_info->data_alloc_cluster;
7236	spin_lock(&cluster->refill_lock);
7237	btrfs_return_cluster_to_free_space(block_group, cluster);
7238	spin_unlock(&cluster->refill_lock);
7239
7240	/*
7241	 * make sure this block group isn't part of a metadata
7242	 * allocation cluster
7243	 */
7244	cluster = &root->fs_info->meta_alloc_cluster;
7245	spin_lock(&cluster->refill_lock);
7246	btrfs_return_cluster_to_free_space(block_group, cluster);
7247	spin_unlock(&cluster->refill_lock);
7248
7249	path = btrfs_alloc_path();
7250	if (!path) {
7251		ret = -ENOMEM;
7252		goto out;
7253	}
7254
7255	inode = lookup_free_space_inode(root, block_group, path);
7256	if (!IS_ERR(inode)) {
7257		ret = btrfs_orphan_add(trans, inode);
7258		BUG_ON(ret);
7259		clear_nlink(inode);
7260		/* One for the block groups ref */
7261		spin_lock(&block_group->lock);
7262		if (block_group->iref) {
7263			block_group->iref = 0;
7264			block_group->inode = NULL;
7265			spin_unlock(&block_group->lock);
7266			iput(inode);
7267		} else {
7268			spin_unlock(&block_group->lock);
7269		}
7270		/* One for our lookup ref */
7271		iput(inode);
7272	}
7273
7274	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7275	key.offset = block_group->key.objectid;
7276	key.type = 0;
7277
7278	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7279	if (ret < 0)
7280		goto out;
7281	if (ret > 0)
7282		btrfs_release_path(path);
7283	if (ret == 0) {
7284		ret = btrfs_del_item(trans, tree_root, path);
7285		if (ret)
7286			goto out;
7287		btrfs_release_path(path);
7288	}
7289
7290	spin_lock(&root->fs_info->block_group_cache_lock);
7291	rb_erase(&block_group->cache_node,
7292		 &root->fs_info->block_group_cache_tree);
7293	spin_unlock(&root->fs_info->block_group_cache_lock);
7294
7295	down_write(&block_group->space_info->groups_sem);
7296	/*
7297	 * we must use list_del_init so people can check to see if they
7298	 * are still on the list after taking the semaphore
7299	 */
7300	list_del_init(&block_group->list);
7301	up_write(&block_group->space_info->groups_sem);
7302
7303	if (block_group->cached == BTRFS_CACHE_STARTED)
7304		wait_block_group_cache_done(block_group);
7305
7306	btrfs_remove_free_space_cache(block_group);
7307
7308	spin_lock(&block_group->space_info->lock);
7309	block_group->space_info->total_bytes -= block_group->key.offset;
7310	block_group->space_info->bytes_readonly -= block_group->key.offset;
7311	block_group->space_info->disk_total -= block_group->key.offset * factor;
7312	spin_unlock(&block_group->space_info->lock);
7313
7314	memcpy(&key, &block_group->key, sizeof(key));
7315
7316	btrfs_clear_space_info_full(root->fs_info);
7317
7318	btrfs_put_block_group(block_group);
7319	btrfs_put_block_group(block_group);
7320
7321	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7322	if (ret > 0)
7323		ret = -EIO;
7324	if (ret < 0)
7325		goto out;
7326
7327	ret = btrfs_del_item(trans, root, path);
7328out:
7329	btrfs_free_path(path);
7330	return ret;
7331}
7332
7333int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7334{
7335	struct btrfs_space_info *space_info;
7336	struct btrfs_super_block *disk_super;
7337	u64 features;
7338	u64 flags;
7339	int mixed = 0;
7340	int ret;
7341
7342	disk_super = &fs_info->super_copy;
7343	if (!btrfs_super_root(disk_super))
7344		return 1;
7345
7346	features = btrfs_super_incompat_flags(disk_super);
7347	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7348		mixed = 1;
7349
7350	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7351	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7352	if (ret)
7353		goto out;
7354
7355	if (mixed) {
7356		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7357		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7358	} else {
7359		flags = BTRFS_BLOCK_GROUP_METADATA;
7360		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7361		if (ret)
7362			goto out;
7363
7364		flags = BTRFS_BLOCK_GROUP_DATA;
7365		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7366	}
7367out:
7368	return ret;
7369}
7370
7371int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7372{
7373	return unpin_extent_range(root, start, end);
7374}
7375
7376int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7377			       u64 num_bytes, u64 *actual_bytes)
7378{
7379	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7380}
7381
7382int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7383{
7384	struct btrfs_fs_info *fs_info = root->fs_info;
7385	struct btrfs_block_group_cache *cache = NULL;
7386	u64 group_trimmed;
 
7387	u64 start;
7388	u64 end;
7389	u64 trimmed = 0;
 
 
 
 
7390	int ret = 0;
7391
7392	cache = btrfs_lookup_block_group(fs_info, range->start);
 
7393
7394	while (cache) {
7395		if (cache->key.objectid >= (range->start + range->len)) {
 
 
 
 
 
 
 
 
 
7396			btrfs_put_block_group(cache);
7397			break;
7398		}
7399
7400		start = max(range->start, cache->key.objectid);
7401		end = min(range->start + range->len,
7402				cache->key.objectid + cache->key.offset);
7403
7404		if (end - start >= range->minlen) {
7405			if (!block_group_cache_done(cache)) {
7406				ret = cache_block_group(cache, NULL, root, 0);
7407				if (!ret)
7408					wait_block_group_cache_done(cache);
 
 
 
7409			}
7410			ret = btrfs_trim_block_group(cache,
7411						     &group_trimmed,
7412						     start,
7413						     end,
7414						     range->minlen);
7415
7416			trimmed += group_trimmed;
7417			if (ret) {
7418				btrfs_put_block_group(cache);
7419				break;
 
7420			}
7421		}
 
 
 
 
 
 
 
 
 
 
 
7422
7423		cache = next_block_group(fs_info->tree_root, cache);
 
 
 
 
 
 
 
7424	}
 
7425
 
 
 
 
7426	range->len = trimmed;
7427	return ret;
 
 
7428}