Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked, unsigned long reason)
 
 543{
 544	unsigned long flags;
 545	bool ret, prev;
 546
 547	BUG_ON(!rfkill);
 548
 549	if (WARN(reason &
 550	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 551	    "hw_state reason not supported: 0x%lx", reason))
 552		return blocked;
 553
 554	spin_lock_irqsave(&rfkill->lock, flags);
 555	prev = !!(rfkill->hard_block_reasons & reason);
 556	if (blocked) {
 557		rfkill->state |= RFKILL_BLOCK_HW;
 558		rfkill->hard_block_reasons |= reason;
 559	} else {
 560		rfkill->hard_block_reasons &= ~reason;
 561		if (!rfkill->hard_block_reasons)
 562			rfkill->state &= ~RFKILL_BLOCK_HW;
 563	}
 564	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 565	spin_unlock_irqrestore(&rfkill->lock, flags);
 566
 567	rfkill_led_trigger_event(rfkill);
 568	rfkill_global_led_trigger_event();
 569
 570	if (rfkill->registered && prev != blocked)
 571		schedule_work(&rfkill->uevent_work);
 572
 573	return ret;
 574}
 575EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 576
 577static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 578{
 579	u32 bit = RFKILL_BLOCK_SW;
 580
 581	/* if in a ops->set_block right now, use other bit */
 582	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 583		bit = RFKILL_BLOCK_SW_PREV;
 584
 585	if (blocked)
 586		rfkill->state |= bit;
 587	else
 588		rfkill->state &= ~bit;
 589}
 590
 591bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 592{
 593	unsigned long flags;
 594	bool prev, hwblock;
 595
 596	BUG_ON(!rfkill);
 597
 598	spin_lock_irqsave(&rfkill->lock, flags);
 599	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 602	blocked = blocked || hwblock;
 603	spin_unlock_irqrestore(&rfkill->lock, flags);
 604
 605	if (!rfkill->registered)
 606		return blocked;
 607
 608	if (prev != blocked && !hwblock)
 609		schedule_work(&rfkill->uevent_work);
 610
 611	rfkill_led_trigger_event(rfkill);
 612	rfkill_global_led_trigger_event();
 613
 614	return blocked;
 615}
 616EXPORT_SYMBOL(rfkill_set_sw_state);
 617
 618void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 619{
 620	unsigned long flags;
 621
 622	BUG_ON(!rfkill);
 623	BUG_ON(rfkill->registered);
 624
 625	spin_lock_irqsave(&rfkill->lock, flags);
 626	__rfkill_set_sw_state(rfkill, blocked);
 627	rfkill->persistent = true;
 628	spin_unlock_irqrestore(&rfkill->lock, flags);
 629}
 630EXPORT_SYMBOL(rfkill_init_sw_state);
 631
 632void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 633{
 634	unsigned long flags;
 635	bool swprev, hwprev;
 636
 637	BUG_ON(!rfkill);
 638
 639	spin_lock_irqsave(&rfkill->lock, flags);
 640
 641	/*
 642	 * No need to care about prev/setblock ... this is for uevent only
 643	 * and that will get triggered by rfkill_set_block anyway.
 644	 */
 645	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 646	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 647	__rfkill_set_sw_state(rfkill, sw);
 648	if (hw)
 649		rfkill->state |= RFKILL_BLOCK_HW;
 650	else
 651		rfkill->state &= ~RFKILL_BLOCK_HW;
 652
 653	spin_unlock_irqrestore(&rfkill->lock, flags);
 654
 655	if (!rfkill->registered) {
 656		rfkill->persistent = true;
 657	} else {
 658		if (swprev != sw || hwprev != hw)
 659			schedule_work(&rfkill->uevent_work);
 660
 661		rfkill_led_trigger_event(rfkill);
 662		rfkill_global_led_trigger_event();
 663	}
 664}
 665EXPORT_SYMBOL(rfkill_set_states);
 666
 667static const char * const rfkill_types[] = {
 668	NULL, /* RFKILL_TYPE_ALL */
 669	"wlan",
 670	"bluetooth",
 671	"ultrawideband",
 672	"wimax",
 673	"wwan",
 674	"gps",
 675	"fm",
 676	"nfc",
 677};
 678
 679enum rfkill_type rfkill_find_type(const char *name)
 680{
 681	int i;
 682
 683	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 684
 685	if (!name)
 686		return RFKILL_TYPE_ALL;
 687
 688	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 689		if (!strcmp(name, rfkill_types[i]))
 690			return i;
 691	return RFKILL_TYPE_ALL;
 692}
 693EXPORT_SYMBOL(rfkill_find_type);
 694
 695static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 696			 char *buf)
 697{
 698	struct rfkill *rfkill = to_rfkill(dev);
 699
 700	return sysfs_emit(buf, "%s\n", rfkill->name);
 701}
 702static DEVICE_ATTR_RO(name);
 703
 704static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 705			 char *buf)
 706{
 707	struct rfkill *rfkill = to_rfkill(dev);
 708
 709	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 710}
 711static DEVICE_ATTR_RO(type);
 712
 713static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 714			  char *buf)
 715{
 716	struct rfkill *rfkill = to_rfkill(dev);
 717
 718	return sysfs_emit(buf, "%d\n", rfkill->idx);
 719}
 720static DEVICE_ATTR_RO(index);
 721
 722static ssize_t persistent_show(struct device *dev,
 723			       struct device_attribute *attr, char *buf)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726
 727	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 728}
 729static DEVICE_ATTR_RO(persistent);
 730
 731static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 732			 char *buf)
 733{
 734	struct rfkill *rfkill = to_rfkill(dev);
 735
 736	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 737}
 738static DEVICE_ATTR_RO(hard);
 739
 740static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 741			 char *buf)
 742{
 743	struct rfkill *rfkill = to_rfkill(dev);
 744
 745	mutex_lock(&rfkill_global_mutex);
 746	rfkill_sync(rfkill);
 747	mutex_unlock(&rfkill_global_mutex);
 748
 749	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 750}
 751
 752static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 753			  const char *buf, size_t count)
 754{
 755	struct rfkill *rfkill = to_rfkill(dev);
 756	unsigned long state;
 757	int err;
 758
 759	if (!capable(CAP_NET_ADMIN))
 760		return -EPERM;
 761
 762	err = kstrtoul(buf, 0, &state);
 763	if (err)
 764		return err;
 765
 766	if (state > 1 )
 767		return -EINVAL;
 768
 769	mutex_lock(&rfkill_global_mutex);
 770	rfkill_sync(rfkill);
 771	rfkill_set_block(rfkill, state);
 772	mutex_unlock(&rfkill_global_mutex);
 773
 774	return count;
 775}
 776static DEVICE_ATTR_RW(soft);
 777
 778static ssize_t hard_block_reasons_show(struct device *dev,
 779				       struct device_attribute *attr,
 780				       char *buf)
 781{
 782	struct rfkill *rfkill = to_rfkill(dev);
 783
 784	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 785}
 786static DEVICE_ATTR_RO(hard_block_reasons);
 787
 788static u8 user_state_from_blocked(unsigned long state)
 789{
 790	if (state & RFKILL_BLOCK_HW)
 791		return RFKILL_USER_STATE_HARD_BLOCKED;
 792	if (state & RFKILL_BLOCK_SW)
 793		return RFKILL_USER_STATE_SOFT_BLOCKED;
 794
 795	return RFKILL_USER_STATE_UNBLOCKED;
 796}
 797
 798static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 799			  char *buf)
 800{
 801	struct rfkill *rfkill = to_rfkill(dev);
 802
 803	mutex_lock(&rfkill_global_mutex);
 804	rfkill_sync(rfkill);
 805	mutex_unlock(&rfkill_global_mutex);
 806
 807	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 808}
 809
 810static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 811			   const char *buf, size_t count)
 812{
 813	struct rfkill *rfkill = to_rfkill(dev);
 814	unsigned long state;
 815	int err;
 816
 817	if (!capable(CAP_NET_ADMIN))
 818		return -EPERM;
 819
 820	err = kstrtoul(buf, 0, &state);
 821	if (err)
 822		return err;
 823
 824	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 825	    state != RFKILL_USER_STATE_UNBLOCKED)
 826		return -EINVAL;
 827
 828	mutex_lock(&rfkill_global_mutex);
 829	rfkill_sync(rfkill);
 830	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 831	mutex_unlock(&rfkill_global_mutex);
 832
 833	return count;
 834}
 835static DEVICE_ATTR_RW(state);
 836
 837static struct attribute *rfkill_dev_attrs[] = {
 838	&dev_attr_name.attr,
 839	&dev_attr_type.attr,
 840	&dev_attr_index.attr,
 841	&dev_attr_persistent.attr,
 842	&dev_attr_state.attr,
 843	&dev_attr_soft.attr,
 844	&dev_attr_hard.attr,
 845	&dev_attr_hard_block_reasons.attr,
 846	NULL,
 847};
 848ATTRIBUTE_GROUPS(rfkill_dev);
 849
 850static void rfkill_release(struct device *dev)
 851{
 852	struct rfkill *rfkill = to_rfkill(dev);
 853
 854	kfree(rfkill);
 855}
 856
 857static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 858{
 859	struct rfkill *rfkill = to_rfkill(dev);
 860	unsigned long flags;
 861	unsigned long reasons;
 862	u32 state;
 863	int error;
 864
 865	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 866	if (error)
 867		return error;
 868	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 869			       rfkill_types[rfkill->type]);
 870	if (error)
 871		return error;
 872	spin_lock_irqsave(&rfkill->lock, flags);
 873	state = rfkill->state;
 874	reasons = rfkill->hard_block_reasons;
 875	spin_unlock_irqrestore(&rfkill->lock, flags);
 876	error = add_uevent_var(env, "RFKILL_STATE=%d",
 877			       user_state_from_blocked(state));
 878	if (error)
 879		return error;
 880	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 881}
 882
 883void rfkill_pause_polling(struct rfkill *rfkill)
 884{
 885	BUG_ON(!rfkill);
 886
 887	if (!rfkill->ops->poll)
 888		return;
 889
 890	rfkill->polling_paused = true;
 891	cancel_delayed_work_sync(&rfkill->poll_work);
 892}
 893EXPORT_SYMBOL(rfkill_pause_polling);
 894
 895void rfkill_resume_polling(struct rfkill *rfkill)
 896{
 897	BUG_ON(!rfkill);
 898
 899	if (!rfkill->ops->poll)
 900		return;
 901
 902	rfkill->polling_paused = false;
 903
 904	if (rfkill->suspended)
 905		return;
 906
 907	queue_delayed_work(system_power_efficient_wq,
 908			   &rfkill->poll_work, 0);
 909}
 910EXPORT_SYMBOL(rfkill_resume_polling);
 911
 912#ifdef CONFIG_PM_SLEEP
 913static int rfkill_suspend(struct device *dev)
 914{
 915	struct rfkill *rfkill = to_rfkill(dev);
 916
 917	rfkill->suspended = true;
 918	cancel_delayed_work_sync(&rfkill->poll_work);
 919
 920	return 0;
 921}
 922
 923static int rfkill_resume(struct device *dev)
 924{
 925	struct rfkill *rfkill = to_rfkill(dev);
 926	bool cur;
 927
 928	rfkill->suspended = false;
 929
 930	if (!rfkill->registered)
 931		return 0;
 932
 933	if (!rfkill->persistent) {
 934		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 935		rfkill_set_block(rfkill, cur);
 936	}
 937
 938	if (rfkill->ops->poll && !rfkill->polling_paused)
 939		queue_delayed_work(system_power_efficient_wq,
 940				   &rfkill->poll_work, 0);
 941
 942	return 0;
 943}
 944
 945static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 946#define RFKILL_PM_OPS (&rfkill_pm_ops)
 947#else
 948#define RFKILL_PM_OPS NULL
 949#endif
 950
 951static struct class rfkill_class = {
 952	.name		= "rfkill",
 953	.dev_release	= rfkill_release,
 954	.dev_groups	= rfkill_dev_groups,
 955	.dev_uevent	= rfkill_dev_uevent,
 956	.pm		= RFKILL_PM_OPS,
 957};
 958
 959bool rfkill_blocked(struct rfkill *rfkill)
 960{
 961	unsigned long flags;
 962	u32 state;
 963
 964	spin_lock_irqsave(&rfkill->lock, flags);
 965	state = rfkill->state;
 966	spin_unlock_irqrestore(&rfkill->lock, flags);
 967
 968	return !!(state & RFKILL_BLOCK_ANY);
 969}
 970EXPORT_SYMBOL(rfkill_blocked);
 971
 972bool rfkill_soft_blocked(struct rfkill *rfkill)
 973{
 974	unsigned long flags;
 975	u32 state;
 976
 977	spin_lock_irqsave(&rfkill->lock, flags);
 978	state = rfkill->state;
 979	spin_unlock_irqrestore(&rfkill->lock, flags);
 980
 981	return !!(state & RFKILL_BLOCK_SW);
 982}
 983EXPORT_SYMBOL(rfkill_soft_blocked);
 984
 985struct rfkill * __must_check rfkill_alloc(const char *name,
 986					  struct device *parent,
 987					  const enum rfkill_type type,
 988					  const struct rfkill_ops *ops,
 989					  void *ops_data)
 990{
 991	struct rfkill *rfkill;
 992	struct device *dev;
 993
 994	if (WARN_ON(!ops))
 995		return NULL;
 996
 997	if (WARN_ON(!ops->set_block))
 998		return NULL;
 999
1000	if (WARN_ON(!name))
1001		return NULL;
1002
1003	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1004		return NULL;
1005
1006	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1007	if (!rfkill)
1008		return NULL;
1009
1010	spin_lock_init(&rfkill->lock);
1011	INIT_LIST_HEAD(&rfkill->node);
1012	rfkill->type = type;
1013	strcpy(rfkill->name, name);
1014	rfkill->ops = ops;
1015	rfkill->data = ops_data;
1016
1017	dev = &rfkill->dev;
1018	dev->class = &rfkill_class;
1019	dev->parent = parent;
1020	device_initialize(dev);
1021
1022	return rfkill;
1023}
1024EXPORT_SYMBOL(rfkill_alloc);
1025
1026static void rfkill_poll(struct work_struct *work)
1027{
1028	struct rfkill *rfkill;
1029
1030	rfkill = container_of(work, struct rfkill, poll_work.work);
1031
1032	/*
1033	 * Poll hardware state -- driver will use one of the
1034	 * rfkill_set{,_hw,_sw}_state functions and use its
1035	 * return value to update the current status.
1036	 */
1037	rfkill->ops->poll(rfkill, rfkill->data);
1038
1039	queue_delayed_work(system_power_efficient_wq,
1040		&rfkill->poll_work,
1041		round_jiffies_relative(POLL_INTERVAL));
1042}
1043
1044static void rfkill_uevent_work(struct work_struct *work)
1045{
1046	struct rfkill *rfkill;
1047
1048	rfkill = container_of(work, struct rfkill, uevent_work);
1049
1050	mutex_lock(&rfkill_global_mutex);
1051	rfkill_event(rfkill);
1052	mutex_unlock(&rfkill_global_mutex);
1053}
1054
1055static void rfkill_sync_work(struct work_struct *work)
1056{
1057	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1058
1059	mutex_lock(&rfkill_global_mutex);
1060	rfkill_sync(rfkill);
1061	mutex_unlock(&rfkill_global_mutex);
1062}
1063
1064int __must_check rfkill_register(struct rfkill *rfkill)
1065{
1066	static unsigned long rfkill_no;
1067	struct device *dev;
1068	int error;
1069
1070	if (!rfkill)
1071		return -EINVAL;
1072
1073	dev = &rfkill->dev;
1074
1075	mutex_lock(&rfkill_global_mutex);
1076
1077	if (rfkill->registered) {
1078		error = -EALREADY;
1079		goto unlock;
1080	}
1081
1082	rfkill->idx = rfkill_no;
1083	dev_set_name(dev, "rfkill%lu", rfkill_no);
1084	rfkill_no++;
1085
1086	list_add_tail(&rfkill->node, &rfkill_list);
1087
1088	error = device_add(dev);
1089	if (error)
1090		goto remove;
1091
1092	error = rfkill_led_trigger_register(rfkill);
1093	if (error)
1094		goto devdel;
1095
1096	rfkill->registered = true;
1097
1098	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1099	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1100	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1101
1102	if (rfkill->ops->poll)
1103		queue_delayed_work(system_power_efficient_wq,
1104			&rfkill->poll_work,
1105			round_jiffies_relative(POLL_INTERVAL));
1106
1107	if (!rfkill->persistent || rfkill_epo_lock_active) {
1108		rfkill->need_sync = true;
1109		schedule_work(&rfkill->sync_work);
1110	} else {
1111#ifdef CONFIG_RFKILL_INPUT
1112		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1113
1114		if (!atomic_read(&rfkill_input_disabled))
1115			__rfkill_switch_all(rfkill->type, soft_blocked);
1116#endif
1117	}
1118
1119	rfkill_global_led_trigger_event();
1120	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1121
1122	mutex_unlock(&rfkill_global_mutex);
1123	return 0;
1124
1125 devdel:
1126	device_del(&rfkill->dev);
1127 remove:
1128	list_del_init(&rfkill->node);
1129 unlock:
1130	mutex_unlock(&rfkill_global_mutex);
1131	return error;
1132}
1133EXPORT_SYMBOL(rfkill_register);
1134
1135void rfkill_unregister(struct rfkill *rfkill)
1136{
1137	BUG_ON(!rfkill);
1138
1139	if (rfkill->ops->poll)
1140		cancel_delayed_work_sync(&rfkill->poll_work);
1141
1142	cancel_work_sync(&rfkill->uevent_work);
1143	cancel_work_sync(&rfkill->sync_work);
1144
1145	rfkill->registered = false;
1146
1147	device_del(&rfkill->dev);
1148
1149	mutex_lock(&rfkill_global_mutex);
1150	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1151	list_del_init(&rfkill->node);
1152	rfkill_global_led_trigger_event();
1153	mutex_unlock(&rfkill_global_mutex);
1154
1155	rfkill_led_trigger_unregister(rfkill);
1156}
1157EXPORT_SYMBOL(rfkill_unregister);
1158
1159void rfkill_destroy(struct rfkill *rfkill)
1160{
1161	if (rfkill)
1162		put_device(&rfkill->dev);
1163}
1164EXPORT_SYMBOL(rfkill_destroy);
1165
1166static int rfkill_fop_open(struct inode *inode, struct file *file)
1167{
1168	struct rfkill_data *data;
1169	struct rfkill *rfkill;
1170	struct rfkill_int_event *ev, *tmp;
1171
1172	data = kzalloc(sizeof(*data), GFP_KERNEL);
1173	if (!data)
1174		return -ENOMEM;
1175
1176	data->max_size = RFKILL_EVENT_SIZE_V1;
1177
1178	INIT_LIST_HEAD(&data->events);
1179	mutex_init(&data->mtx);
1180	init_waitqueue_head(&data->read_wait);
1181
1182	mutex_lock(&rfkill_global_mutex);
1183	/*
1184	 * start getting events from elsewhere but hold mtx to get
1185	 * startup events added first
1186	 */
1187
1188	list_for_each_entry(rfkill, &rfkill_list, node) {
1189		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1190		if (!ev)
1191			goto free;
1192		rfkill_sync(rfkill);
1193		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1194		mutex_lock(&data->mtx);
1195		list_add_tail(&ev->list, &data->events);
1196		mutex_unlock(&data->mtx);
1197	}
1198	list_add(&data->list, &rfkill_fds);
1199	mutex_unlock(&rfkill_global_mutex);
1200
1201	file->private_data = data;
1202
1203	return stream_open(inode, file);
1204
1205 free:
1206	mutex_unlock(&rfkill_global_mutex);
1207	mutex_destroy(&data->mtx);
1208	list_for_each_entry_safe(ev, tmp, &data->events, list)
1209		kfree(ev);
1210	kfree(data);
1211	return -ENOMEM;
1212}
1213
1214static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1215{
1216	struct rfkill_data *data = file->private_data;
1217	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1218
1219	poll_wait(file, &data->read_wait, wait);
1220
1221	mutex_lock(&data->mtx);
1222	if (!list_empty(&data->events))
1223		res = EPOLLIN | EPOLLRDNORM;
1224	mutex_unlock(&data->mtx);
1225
1226	return res;
1227}
1228
1229static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1230			       size_t count, loff_t *pos)
1231{
1232	struct rfkill_data *data = file->private_data;
1233	struct rfkill_int_event *ev;
1234	unsigned long sz;
1235	int ret;
1236
1237	mutex_lock(&data->mtx);
1238
1239	while (list_empty(&data->events)) {
1240		if (file->f_flags & O_NONBLOCK) {
1241			ret = -EAGAIN;
1242			goto out;
1243		}
1244		mutex_unlock(&data->mtx);
1245		/* since we re-check and it just compares pointers,
1246		 * using !list_empty() without locking isn't a problem
1247		 */
1248		ret = wait_event_interruptible(data->read_wait,
1249					       !list_empty(&data->events));
1250		mutex_lock(&data->mtx);
1251
1252		if (ret)
1253			goto out;
1254	}
1255
1256	ev = list_first_entry(&data->events, struct rfkill_int_event,
1257				list);
1258
1259	sz = min_t(unsigned long, sizeof(ev->ev), count);
1260	sz = min_t(unsigned long, sz, data->max_size);
1261	ret = sz;
1262	if (copy_to_user(buf, &ev->ev, sz))
1263		ret = -EFAULT;
1264
1265	list_del(&ev->list);
1266	kfree(ev);
1267 out:
1268	mutex_unlock(&data->mtx);
1269	return ret;
1270}
1271
1272static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1273				size_t count, loff_t *pos)
1274{
1275	struct rfkill_data *data = file->private_data;
1276	struct rfkill *rfkill;
1277	struct rfkill_event_ext ev;
1278	int ret;
1279
1280	/* we don't need the 'hard' variable but accept it */
1281	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1282		return -EINVAL;
1283
1284	/*
1285	 * Copy as much data as we can accept into our 'ev' buffer,
1286	 * but tell userspace how much we've copied so it can determine
1287	 * our API version even in a write() call, if it cares.
1288	 */
1289	count = min(count, sizeof(ev));
1290	count = min_t(size_t, count, data->max_size);
1291	if (copy_from_user(&ev, buf, count))
1292		return -EFAULT;
1293
1294	if (ev.type >= NUM_RFKILL_TYPES)
1295		return -EINVAL;
1296
1297	mutex_lock(&rfkill_global_mutex);
1298
1299	switch (ev.op) {
1300	case RFKILL_OP_CHANGE_ALL:
1301		rfkill_update_global_state(ev.type, ev.soft);
1302		list_for_each_entry(rfkill, &rfkill_list, node)
1303			if (rfkill->type == ev.type ||
1304			    ev.type == RFKILL_TYPE_ALL)
1305				rfkill_set_block(rfkill, ev.soft);
1306		ret = 0;
1307		break;
1308	case RFKILL_OP_CHANGE:
1309		list_for_each_entry(rfkill, &rfkill_list, node)
1310			if (rfkill->idx == ev.idx &&
1311			    (rfkill->type == ev.type ||
1312			     ev.type == RFKILL_TYPE_ALL))
1313				rfkill_set_block(rfkill, ev.soft);
1314		ret = 0;
1315		break;
1316	default:
1317		ret = -EINVAL;
1318		break;
1319	}
1320
1321	mutex_unlock(&rfkill_global_mutex);
1322
1323	return ret ?: count;
1324}
1325
1326static int rfkill_fop_release(struct inode *inode, struct file *file)
1327{
1328	struct rfkill_data *data = file->private_data;
1329	struct rfkill_int_event *ev, *tmp;
1330
1331	mutex_lock(&rfkill_global_mutex);
1332	list_del(&data->list);
1333	mutex_unlock(&rfkill_global_mutex);
1334
1335	mutex_destroy(&data->mtx);
1336	list_for_each_entry_safe(ev, tmp, &data->events, list)
1337		kfree(ev);
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340	if (data->input_handler)
1341		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1342			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1343#endif
1344
1345	kfree(data);
1346
1347	return 0;
1348}
1349
1350static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1351			     unsigned long arg)
1352{
1353	struct rfkill_data *data = file->private_data;
1354	int ret = -ENOTTY;
1355	u32 size;
1356
1357	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1358		return -ENOTTY;
1359
1360	mutex_lock(&data->mtx);
1361	switch (_IOC_NR(cmd)) {
1362#ifdef CONFIG_RFKILL_INPUT
1363	case RFKILL_IOC_NOINPUT:
1364		if (!data->input_handler) {
1365			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1366				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1367			data->input_handler = true;
1368		}
1369		ret = 0;
1370		break;
1371#endif
1372	case RFKILL_IOC_MAX_SIZE:
1373		if (get_user(size, (__u32 __user *)arg)) {
1374			ret = -EFAULT;
1375			break;
1376		}
1377		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1378			ret = -EINVAL;
1379			break;
1380		}
1381		data->max_size = size;
1382		ret = 0;
1383		break;
1384	default:
1385		break;
1386	}
1387	mutex_unlock(&data->mtx);
1388
1389	return ret;
1390}
1391
1392static const struct file_operations rfkill_fops = {
1393	.owner		= THIS_MODULE,
1394	.open		= rfkill_fop_open,
1395	.read		= rfkill_fop_read,
1396	.write		= rfkill_fop_write,
1397	.poll		= rfkill_fop_poll,
1398	.release	= rfkill_fop_release,
1399	.unlocked_ioctl	= rfkill_fop_ioctl,
1400	.compat_ioctl	= compat_ptr_ioctl,
1401	.llseek		= no_llseek,
1402};
1403
1404#define RFKILL_NAME "rfkill"
1405
1406static struct miscdevice rfkill_miscdev = {
1407	.fops	= &rfkill_fops,
1408	.name	= RFKILL_NAME,
1409	.minor	= RFKILL_MINOR,
1410};
1411
1412static int __init rfkill_init(void)
1413{
1414	int error;
1415
1416	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1417
1418	error = class_register(&rfkill_class);
1419	if (error)
1420		goto error_class;
1421
1422	error = misc_register(&rfkill_miscdev);
1423	if (error)
1424		goto error_misc;
1425
1426	error = rfkill_global_led_trigger_register();
1427	if (error)
1428		goto error_led_trigger;
1429
1430#ifdef CONFIG_RFKILL_INPUT
1431	error = rfkill_handler_init();
1432	if (error)
1433		goto error_input;
1434#endif
1435
1436	return 0;
1437
1438#ifdef CONFIG_RFKILL_INPUT
1439error_input:
1440	rfkill_global_led_trigger_unregister();
1441#endif
1442error_led_trigger:
1443	misc_deregister(&rfkill_miscdev);
1444error_misc:
1445	class_unregister(&rfkill_class);
1446error_class:
1447	return error;
1448}
1449subsys_initcall(rfkill_init);
1450
1451static void __exit rfkill_exit(void)
1452{
1453#ifdef CONFIG_RFKILL_INPUT
1454	rfkill_handler_exit();
1455#endif
1456	rfkill_global_led_trigger_unregister();
1457	misc_deregister(&rfkill_miscdev);
1458	class_unregister(&rfkill_class);
1459}
1460module_exit(rfkill_exit);
1461
1462MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1463MODULE_ALIAS("devname:" RFKILL_NAME);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked,
 543				enum rfkill_hard_block_reasons reason)
 544{
 545	unsigned long flags;
 546	bool ret, prev;
 547
 548	BUG_ON(!rfkill);
 549
 
 
 
 
 
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551	prev = !!(rfkill->hard_block_reasons & reason);
 552	if (blocked) {
 553		rfkill->state |= RFKILL_BLOCK_HW;
 554		rfkill->hard_block_reasons |= reason;
 555	} else {
 556		rfkill->hard_block_reasons &= ~reason;
 557		if (!rfkill->hard_block_reasons)
 558			rfkill->state &= ~RFKILL_BLOCK_HW;
 559	}
 560	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 561	spin_unlock_irqrestore(&rfkill->lock, flags);
 562
 563	rfkill_led_trigger_event(rfkill);
 564	rfkill_global_led_trigger_event();
 565
 566	if (rfkill->registered && prev != blocked)
 567		schedule_work(&rfkill->uevent_work);
 568
 569	return ret;
 570}
 571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 572
 573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 574{
 575	u32 bit = RFKILL_BLOCK_SW;
 576
 577	/* if in a ops->set_block right now, use other bit */
 578	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 579		bit = RFKILL_BLOCK_SW_PREV;
 580
 581	if (blocked)
 582		rfkill->state |= bit;
 583	else
 584		rfkill->state &= ~bit;
 585}
 586
 587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 588{
 589	unsigned long flags;
 590	bool prev, hwblock;
 591
 592	BUG_ON(!rfkill);
 593
 594	spin_lock_irqsave(&rfkill->lock, flags);
 595	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 596	__rfkill_set_sw_state(rfkill, blocked);
 597	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 598	blocked = blocked || hwblock;
 599	spin_unlock_irqrestore(&rfkill->lock, flags);
 600
 601	if (!rfkill->registered)
 602		return blocked;
 603
 604	if (prev != blocked && !hwblock)
 605		schedule_work(&rfkill->uevent_work);
 606
 607	rfkill_led_trigger_event(rfkill);
 608	rfkill_global_led_trigger_event();
 609
 610	return blocked;
 611}
 612EXPORT_SYMBOL(rfkill_set_sw_state);
 613
 614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 615{
 616	unsigned long flags;
 617
 618	BUG_ON(!rfkill);
 619	BUG_ON(rfkill->registered);
 620
 621	spin_lock_irqsave(&rfkill->lock, flags);
 622	__rfkill_set_sw_state(rfkill, blocked);
 623	rfkill->persistent = true;
 624	spin_unlock_irqrestore(&rfkill->lock, flags);
 625}
 626EXPORT_SYMBOL(rfkill_init_sw_state);
 627
 628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 629{
 630	unsigned long flags;
 631	bool swprev, hwprev;
 632
 633	BUG_ON(!rfkill);
 634
 635	spin_lock_irqsave(&rfkill->lock, flags);
 636
 637	/*
 638	 * No need to care about prev/setblock ... this is for uevent only
 639	 * and that will get triggered by rfkill_set_block anyway.
 640	 */
 641	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 642	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 643	__rfkill_set_sw_state(rfkill, sw);
 644	if (hw)
 645		rfkill->state |= RFKILL_BLOCK_HW;
 646	else
 647		rfkill->state &= ~RFKILL_BLOCK_HW;
 648
 649	spin_unlock_irqrestore(&rfkill->lock, flags);
 650
 651	if (!rfkill->registered) {
 652		rfkill->persistent = true;
 653	} else {
 654		if (swprev != sw || hwprev != hw)
 655			schedule_work(&rfkill->uevent_work);
 656
 657		rfkill_led_trigger_event(rfkill);
 658		rfkill_global_led_trigger_event();
 659	}
 660}
 661EXPORT_SYMBOL(rfkill_set_states);
 662
 663static const char * const rfkill_types[] = {
 664	NULL, /* RFKILL_TYPE_ALL */
 665	"wlan",
 666	"bluetooth",
 667	"ultrawideband",
 668	"wimax",
 669	"wwan",
 670	"gps",
 671	"fm",
 672	"nfc",
 673};
 674
 675enum rfkill_type rfkill_find_type(const char *name)
 676{
 677	int i;
 678
 679	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 680
 681	if (!name)
 682		return RFKILL_TYPE_ALL;
 683
 684	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 685		if (!strcmp(name, rfkill_types[i]))
 686			return i;
 687	return RFKILL_TYPE_ALL;
 688}
 689EXPORT_SYMBOL(rfkill_find_type);
 690
 691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 692			 char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sysfs_emit(buf, "%s\n", rfkill->name);
 697}
 698static DEVICE_ATTR_RO(name);
 699
 700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 701			 char *buf)
 702{
 703	struct rfkill *rfkill = to_rfkill(dev);
 704
 705	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 706}
 707static DEVICE_ATTR_RO(type);
 708
 709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 710			  char *buf)
 711{
 712	struct rfkill *rfkill = to_rfkill(dev);
 713
 714	return sysfs_emit(buf, "%d\n", rfkill->idx);
 715}
 716static DEVICE_ATTR_RO(index);
 717
 718static ssize_t persistent_show(struct device *dev,
 719			       struct device_attribute *attr, char *buf)
 720{
 721	struct rfkill *rfkill = to_rfkill(dev);
 722
 723	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 724}
 725static DEVICE_ATTR_RO(persistent);
 726
 727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 728			 char *buf)
 729{
 730	struct rfkill *rfkill = to_rfkill(dev);
 731
 732	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 733}
 734static DEVICE_ATTR_RO(hard);
 735
 736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 737			 char *buf)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740
 741	mutex_lock(&rfkill_global_mutex);
 742	rfkill_sync(rfkill);
 743	mutex_unlock(&rfkill_global_mutex);
 744
 745	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 746}
 747
 748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 749			  const char *buf, size_t count)
 750{
 751	struct rfkill *rfkill = to_rfkill(dev);
 752	unsigned long state;
 753	int err;
 754
 755	if (!capable(CAP_NET_ADMIN))
 756		return -EPERM;
 757
 758	err = kstrtoul(buf, 0, &state);
 759	if (err)
 760		return err;
 761
 762	if (state > 1 )
 763		return -EINVAL;
 764
 765	mutex_lock(&rfkill_global_mutex);
 766	rfkill_sync(rfkill);
 767	rfkill_set_block(rfkill, state);
 768	mutex_unlock(&rfkill_global_mutex);
 769
 770	return count;
 771}
 772static DEVICE_ATTR_RW(soft);
 773
 774static ssize_t hard_block_reasons_show(struct device *dev,
 775				       struct device_attribute *attr,
 776				       char *buf)
 777{
 778	struct rfkill *rfkill = to_rfkill(dev);
 779
 780	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 781}
 782static DEVICE_ATTR_RO(hard_block_reasons);
 783
 784static u8 user_state_from_blocked(unsigned long state)
 785{
 786	if (state & RFKILL_BLOCK_HW)
 787		return RFKILL_USER_STATE_HARD_BLOCKED;
 788	if (state & RFKILL_BLOCK_SW)
 789		return RFKILL_USER_STATE_SOFT_BLOCKED;
 790
 791	return RFKILL_USER_STATE_UNBLOCKED;
 792}
 793
 794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 795			  char *buf)
 796{
 797	struct rfkill *rfkill = to_rfkill(dev);
 798
 799	mutex_lock(&rfkill_global_mutex);
 800	rfkill_sync(rfkill);
 801	mutex_unlock(&rfkill_global_mutex);
 802
 803	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 804}
 805
 806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 807			   const char *buf, size_t count)
 808{
 809	struct rfkill *rfkill = to_rfkill(dev);
 810	unsigned long state;
 811	int err;
 812
 813	if (!capable(CAP_NET_ADMIN))
 814		return -EPERM;
 815
 816	err = kstrtoul(buf, 0, &state);
 817	if (err)
 818		return err;
 819
 820	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 821	    state != RFKILL_USER_STATE_UNBLOCKED)
 822		return -EINVAL;
 823
 824	mutex_lock(&rfkill_global_mutex);
 825	rfkill_sync(rfkill);
 826	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 827	mutex_unlock(&rfkill_global_mutex);
 828
 829	return count;
 830}
 831static DEVICE_ATTR_RW(state);
 832
 833static struct attribute *rfkill_dev_attrs[] = {
 834	&dev_attr_name.attr,
 835	&dev_attr_type.attr,
 836	&dev_attr_index.attr,
 837	&dev_attr_persistent.attr,
 838	&dev_attr_state.attr,
 839	&dev_attr_soft.attr,
 840	&dev_attr_hard.attr,
 841	&dev_attr_hard_block_reasons.attr,
 842	NULL,
 843};
 844ATTRIBUTE_GROUPS(rfkill_dev);
 845
 846static void rfkill_release(struct device *dev)
 847{
 848	struct rfkill *rfkill = to_rfkill(dev);
 849
 850	kfree(rfkill);
 851}
 852
 853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 854{
 855	struct rfkill *rfkill = to_rfkill(dev);
 856	unsigned long flags;
 857	unsigned long reasons;
 858	u32 state;
 859	int error;
 860
 861	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 862	if (error)
 863		return error;
 864	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 865			       rfkill_types[rfkill->type]);
 866	if (error)
 867		return error;
 868	spin_lock_irqsave(&rfkill->lock, flags);
 869	state = rfkill->state;
 870	reasons = rfkill->hard_block_reasons;
 871	spin_unlock_irqrestore(&rfkill->lock, flags);
 872	error = add_uevent_var(env, "RFKILL_STATE=%d",
 873			       user_state_from_blocked(state));
 874	if (error)
 875		return error;
 876	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 877}
 878
 879void rfkill_pause_polling(struct rfkill *rfkill)
 880{
 881	BUG_ON(!rfkill);
 882
 883	if (!rfkill->ops->poll)
 884		return;
 885
 886	rfkill->polling_paused = true;
 887	cancel_delayed_work_sync(&rfkill->poll_work);
 888}
 889EXPORT_SYMBOL(rfkill_pause_polling);
 890
 891void rfkill_resume_polling(struct rfkill *rfkill)
 892{
 893	BUG_ON(!rfkill);
 894
 895	if (!rfkill->ops->poll)
 896		return;
 897
 898	rfkill->polling_paused = false;
 899
 900	if (rfkill->suspended)
 901		return;
 902
 903	queue_delayed_work(system_power_efficient_wq,
 904			   &rfkill->poll_work, 0);
 905}
 906EXPORT_SYMBOL(rfkill_resume_polling);
 907
 908#ifdef CONFIG_PM_SLEEP
 909static int rfkill_suspend(struct device *dev)
 910{
 911	struct rfkill *rfkill = to_rfkill(dev);
 912
 913	rfkill->suspended = true;
 914	cancel_delayed_work_sync(&rfkill->poll_work);
 915
 916	return 0;
 917}
 918
 919static int rfkill_resume(struct device *dev)
 920{
 921	struct rfkill *rfkill = to_rfkill(dev);
 922	bool cur;
 923
 924	rfkill->suspended = false;
 925
 926	if (!rfkill->registered)
 927		return 0;
 928
 929	if (!rfkill->persistent) {
 930		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 931		rfkill_set_block(rfkill, cur);
 932	}
 933
 934	if (rfkill->ops->poll && !rfkill->polling_paused)
 935		queue_delayed_work(system_power_efficient_wq,
 936				   &rfkill->poll_work, 0);
 937
 938	return 0;
 939}
 940
 941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 942#define RFKILL_PM_OPS (&rfkill_pm_ops)
 943#else
 944#define RFKILL_PM_OPS NULL
 945#endif
 946
 947static struct class rfkill_class = {
 948	.name		= "rfkill",
 949	.dev_release	= rfkill_release,
 950	.dev_groups	= rfkill_dev_groups,
 951	.dev_uevent	= rfkill_dev_uevent,
 952	.pm		= RFKILL_PM_OPS,
 953};
 954
 955bool rfkill_blocked(struct rfkill *rfkill)
 956{
 957	unsigned long flags;
 958	u32 state;
 959
 960	spin_lock_irqsave(&rfkill->lock, flags);
 961	state = rfkill->state;
 962	spin_unlock_irqrestore(&rfkill->lock, flags);
 963
 964	return !!(state & RFKILL_BLOCK_ANY);
 965}
 966EXPORT_SYMBOL(rfkill_blocked);
 967
 968bool rfkill_soft_blocked(struct rfkill *rfkill)
 969{
 970	unsigned long flags;
 971	u32 state;
 972
 973	spin_lock_irqsave(&rfkill->lock, flags);
 974	state = rfkill->state;
 975	spin_unlock_irqrestore(&rfkill->lock, flags);
 976
 977	return !!(state & RFKILL_BLOCK_SW);
 978}
 979EXPORT_SYMBOL(rfkill_soft_blocked);
 980
 981struct rfkill * __must_check rfkill_alloc(const char *name,
 982					  struct device *parent,
 983					  const enum rfkill_type type,
 984					  const struct rfkill_ops *ops,
 985					  void *ops_data)
 986{
 987	struct rfkill *rfkill;
 988	struct device *dev;
 989
 990	if (WARN_ON(!ops))
 991		return NULL;
 992
 993	if (WARN_ON(!ops->set_block))
 994		return NULL;
 995
 996	if (WARN_ON(!name))
 997		return NULL;
 998
 999	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000		return NULL;
1001
1002	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003	if (!rfkill)
1004		return NULL;
1005
1006	spin_lock_init(&rfkill->lock);
1007	INIT_LIST_HEAD(&rfkill->node);
1008	rfkill->type = type;
1009	strcpy(rfkill->name, name);
1010	rfkill->ops = ops;
1011	rfkill->data = ops_data;
1012
1013	dev = &rfkill->dev;
1014	dev->class = &rfkill_class;
1015	dev->parent = parent;
1016	device_initialize(dev);
1017
1018	return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028	/*
1029	 * Poll hardware state -- driver will use one of the
1030	 * rfkill_set{,_hw,_sw}_state functions and use its
1031	 * return value to update the current status.
1032	 */
1033	rfkill->ops->poll(rfkill, rfkill->data);
1034
1035	queue_delayed_work(system_power_efficient_wq,
1036		&rfkill->poll_work,
1037		round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042	struct rfkill *rfkill;
1043
1044	rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046	mutex_lock(&rfkill_global_mutex);
1047	rfkill_event(rfkill);
1048	mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1054
1055	mutex_lock(&rfkill_global_mutex);
1056	rfkill_sync(rfkill);
1057	mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062	static unsigned long rfkill_no;
1063	struct device *dev;
1064	int error;
1065
1066	if (!rfkill)
1067		return -EINVAL;
1068
1069	dev = &rfkill->dev;
1070
1071	mutex_lock(&rfkill_global_mutex);
1072
1073	if (rfkill->registered) {
1074		error = -EALREADY;
1075		goto unlock;
1076	}
1077
1078	rfkill->idx = rfkill_no;
1079	dev_set_name(dev, "rfkill%lu", rfkill_no);
1080	rfkill_no++;
1081
1082	list_add_tail(&rfkill->node, &rfkill_list);
1083
1084	error = device_add(dev);
1085	if (error)
1086		goto remove;
1087
1088	error = rfkill_led_trigger_register(rfkill);
1089	if (error)
1090		goto devdel;
1091
1092	rfkill->registered = true;
1093
1094	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098	if (rfkill->ops->poll)
1099		queue_delayed_work(system_power_efficient_wq,
1100			&rfkill->poll_work,
1101			round_jiffies_relative(POLL_INTERVAL));
1102
1103	if (!rfkill->persistent || rfkill_epo_lock_active) {
1104		rfkill->need_sync = true;
1105		schedule_work(&rfkill->sync_work);
1106	} else {
1107#ifdef CONFIG_RFKILL_INPUT
1108		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110		if (!atomic_read(&rfkill_input_disabled))
1111			__rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113	}
1114
1115	rfkill_global_led_trigger_event();
1116	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118	mutex_unlock(&rfkill_global_mutex);
1119	return 0;
1120
1121 devdel:
1122	device_del(&rfkill->dev);
1123 remove:
1124	list_del_init(&rfkill->node);
1125 unlock:
1126	mutex_unlock(&rfkill_global_mutex);
1127	return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133	BUG_ON(!rfkill);
1134
1135	if (rfkill->ops->poll)
1136		cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138	cancel_work_sync(&rfkill->uevent_work);
1139	cancel_work_sync(&rfkill->sync_work);
1140
1141	rfkill->registered = false;
1142
1143	device_del(&rfkill->dev);
1144
1145	mutex_lock(&rfkill_global_mutex);
1146	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147	list_del_init(&rfkill->node);
1148	rfkill_global_led_trigger_event();
1149	mutex_unlock(&rfkill_global_mutex);
1150
1151	rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157	if (rfkill)
1158		put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164	struct rfkill_data *data;
1165	struct rfkill *rfkill;
1166	struct rfkill_int_event *ev, *tmp;
1167
1168	data = kzalloc(sizeof(*data), GFP_KERNEL);
1169	if (!data)
1170		return -ENOMEM;
1171
1172	data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174	INIT_LIST_HEAD(&data->events);
1175	mutex_init(&data->mtx);
1176	init_waitqueue_head(&data->read_wait);
1177
1178	mutex_lock(&rfkill_global_mutex);
1179	/*
1180	 * start getting events from elsewhere but hold mtx to get
1181	 * startup events added first
1182	 */
1183
1184	list_for_each_entry(rfkill, &rfkill_list, node) {
1185		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186		if (!ev)
1187			goto free;
1188		rfkill_sync(rfkill);
1189		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190		mutex_lock(&data->mtx);
1191		list_add_tail(&ev->list, &data->events);
1192		mutex_unlock(&data->mtx);
1193	}
1194	list_add(&data->list, &rfkill_fds);
1195	mutex_unlock(&rfkill_global_mutex);
1196
1197	file->private_data = data;
1198
1199	return stream_open(inode, file);
1200
1201 free:
1202	mutex_unlock(&rfkill_global_mutex);
1203	mutex_destroy(&data->mtx);
1204	list_for_each_entry_safe(ev, tmp, &data->events, list)
1205		kfree(ev);
1206	kfree(data);
1207	return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212	struct rfkill_data *data = file->private_data;
1213	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215	poll_wait(file, &data->read_wait, wait);
1216
1217	mutex_lock(&data->mtx);
1218	if (!list_empty(&data->events))
1219		res = EPOLLIN | EPOLLRDNORM;
1220	mutex_unlock(&data->mtx);
1221
1222	return res;
1223}
1224
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226			       size_t count, loff_t *pos)
1227{
1228	struct rfkill_data *data = file->private_data;
1229	struct rfkill_int_event *ev;
1230	unsigned long sz;
1231	int ret;
1232
1233	mutex_lock(&data->mtx);
1234
1235	while (list_empty(&data->events)) {
1236		if (file->f_flags & O_NONBLOCK) {
1237			ret = -EAGAIN;
1238			goto out;
1239		}
1240		mutex_unlock(&data->mtx);
1241		/* since we re-check and it just compares pointers,
1242		 * using !list_empty() without locking isn't a problem
1243		 */
1244		ret = wait_event_interruptible(data->read_wait,
1245					       !list_empty(&data->events));
1246		mutex_lock(&data->mtx);
1247
1248		if (ret)
1249			goto out;
1250	}
1251
1252	ev = list_first_entry(&data->events, struct rfkill_int_event,
1253				list);
1254
1255	sz = min_t(unsigned long, sizeof(ev->ev), count);
1256	sz = min_t(unsigned long, sz, data->max_size);
1257	ret = sz;
1258	if (copy_to_user(buf, &ev->ev, sz))
1259		ret = -EFAULT;
1260
1261	list_del(&ev->list);
1262	kfree(ev);
1263 out:
1264	mutex_unlock(&data->mtx);
1265	return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269				size_t count, loff_t *pos)
1270{
1271	struct rfkill_data *data = file->private_data;
1272	struct rfkill *rfkill;
1273	struct rfkill_event_ext ev;
1274	int ret;
1275
1276	/* we don't need the 'hard' variable but accept it */
1277	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278		return -EINVAL;
1279
1280	/*
1281	 * Copy as much data as we can accept into our 'ev' buffer,
1282	 * but tell userspace how much we've copied so it can determine
1283	 * our API version even in a write() call, if it cares.
1284	 */
1285	count = min(count, sizeof(ev));
1286	count = min_t(size_t, count, data->max_size);
1287	if (copy_from_user(&ev, buf, count))
1288		return -EFAULT;
1289
1290	if (ev.type >= NUM_RFKILL_TYPES)
1291		return -EINVAL;
1292
1293	mutex_lock(&rfkill_global_mutex);
1294
1295	switch (ev.op) {
1296	case RFKILL_OP_CHANGE_ALL:
1297		rfkill_update_global_state(ev.type, ev.soft);
1298		list_for_each_entry(rfkill, &rfkill_list, node)
1299			if (rfkill->type == ev.type ||
1300			    ev.type == RFKILL_TYPE_ALL)
1301				rfkill_set_block(rfkill, ev.soft);
1302		ret = 0;
1303		break;
1304	case RFKILL_OP_CHANGE:
1305		list_for_each_entry(rfkill, &rfkill_list, node)
1306			if (rfkill->idx == ev.idx &&
1307			    (rfkill->type == ev.type ||
1308			     ev.type == RFKILL_TYPE_ALL))
1309				rfkill_set_block(rfkill, ev.soft);
1310		ret = 0;
1311		break;
1312	default:
1313		ret = -EINVAL;
1314		break;
1315	}
1316
1317	mutex_unlock(&rfkill_global_mutex);
1318
1319	return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324	struct rfkill_data *data = file->private_data;
1325	struct rfkill_int_event *ev, *tmp;
1326
1327	mutex_lock(&rfkill_global_mutex);
1328	list_del(&data->list);
1329	mutex_unlock(&rfkill_global_mutex);
1330
1331	mutex_destroy(&data->mtx);
1332	list_for_each_entry_safe(ev, tmp, &data->events, list)
1333		kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336	if (data->input_handler)
1337		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341	kfree(data);
1342
1343	return 0;
1344}
1345
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347			     unsigned long arg)
1348{
1349	struct rfkill_data *data = file->private_data;
1350	int ret = -ENOTTY;
1351	u32 size;
1352
1353	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354		return -ENOTTY;
1355
1356	mutex_lock(&data->mtx);
1357	switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359	case RFKILL_IOC_NOINPUT:
1360		if (!data->input_handler) {
1361			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363			data->input_handler = true;
1364		}
1365		ret = 0;
1366		break;
1367#endif
1368	case RFKILL_IOC_MAX_SIZE:
1369		if (get_user(size, (__u32 __user *)arg)) {
1370			ret = -EFAULT;
1371			break;
1372		}
1373		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374			ret = -EINVAL;
1375			break;
1376		}
1377		data->max_size = size;
1378		ret = 0;
1379		break;
1380	default:
1381		break;
1382	}
1383	mutex_unlock(&data->mtx);
1384
1385	return ret;
1386}
1387
1388static const struct file_operations rfkill_fops = {
1389	.owner		= THIS_MODULE,
1390	.open		= rfkill_fop_open,
1391	.read		= rfkill_fop_read,
1392	.write		= rfkill_fop_write,
1393	.poll		= rfkill_fop_poll,
1394	.release	= rfkill_fop_release,
1395	.unlocked_ioctl	= rfkill_fop_ioctl,
1396	.compat_ioctl	= compat_ptr_ioctl,
 
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
1402	.fops	= &rfkill_fops,
1403	.name	= RFKILL_NAME,
1404	.minor	= RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409	int error;
1410
1411	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1412
1413	error = class_register(&rfkill_class);
1414	if (error)
1415		goto error_class;
1416
1417	error = misc_register(&rfkill_miscdev);
1418	if (error)
1419		goto error_misc;
1420
1421	error = rfkill_global_led_trigger_register();
1422	if (error)
1423		goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426	error = rfkill_handler_init();
1427	if (error)
1428		goto error_input;
1429#endif
1430
1431	return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435	rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438	misc_deregister(&rfkill_miscdev);
1439error_misc:
1440	class_unregister(&rfkill_class);
1441error_class:
1442	return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449	rfkill_handler_exit();
1450#endif
1451	rfkill_global_led_trigger_unregister();
1452	misc_deregister(&rfkill_miscdev);
1453	class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);