Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51 bool need_sync;
52
53 const struct rfkill_ops *ops;
54 void *data;
55
56#ifdef CONFIG_RFKILL_LEDS
57 struct led_trigger led_trigger;
58 const char *ledtrigname;
59#endif
60
61 struct device dev;
62 struct list_head node;
63
64 struct delayed_work poll_work;
65 struct work_struct uevent_work;
66 struct work_struct sync_work;
67 char name[];
68};
69#define to_rfkill(d) container_of(d, struct rfkill, dev)
70
71struct rfkill_int_event {
72 struct list_head list;
73 struct rfkill_event_ext ev;
74};
75
76struct rfkill_data {
77 struct list_head list;
78 struct list_head events;
79 struct mutex mtx;
80 wait_queue_head_t read_wait;
81 bool input_handler;
82 u8 max_size;
83};
84
85
86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
88MODULE_DESCRIPTION("RF switch support");
89MODULE_LICENSE("GPL");
90
91
92/*
93 * The locking here should be made much smarter, we currently have
94 * a bit of a stupid situation because drivers might want to register
95 * the rfkill struct under their own lock, and take this lock during
96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
97 *
98 * To fix that, we need to rework this code here to be mostly lock-free
99 * and only use the mutex for list manipulations, not to protect the
100 * various other global variables. Then we can avoid holding the mutex
101 * around driver operations, and all is happy.
102 */
103static LIST_HEAD(rfkill_list); /* list of registered rf switches */
104static DEFINE_MUTEX(rfkill_global_mutex);
105static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
106
107static unsigned int rfkill_default_state = 1;
108module_param_named(default_state, rfkill_default_state, uint, 0444);
109MODULE_PARM_DESC(default_state,
110 "Default initial state for all radio types, 0 = radio off");
111
112static struct {
113 bool cur, sav;
114} rfkill_global_states[NUM_RFKILL_TYPES];
115
116static bool rfkill_epo_lock_active;
117
118
119#ifdef CONFIG_RFKILL_LEDS
120static void rfkill_led_trigger_event(struct rfkill *rfkill)
121{
122 struct led_trigger *trigger;
123
124 if (!rfkill->registered)
125 return;
126
127 trigger = &rfkill->led_trigger;
128
129 if (rfkill->state & RFKILL_BLOCK_ANY)
130 led_trigger_event(trigger, LED_OFF);
131 else
132 led_trigger_event(trigger, LED_FULL);
133}
134
135static int rfkill_led_trigger_activate(struct led_classdev *led)
136{
137 struct rfkill *rfkill;
138
139 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
140
141 rfkill_led_trigger_event(rfkill);
142
143 return 0;
144}
145
146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
147{
148 return rfkill->led_trigger.name;
149}
150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
151
152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
153{
154 BUG_ON(!rfkill);
155
156 rfkill->ledtrigname = name;
157}
158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
159
160static int rfkill_led_trigger_register(struct rfkill *rfkill)
161{
162 rfkill->led_trigger.name = rfkill->ledtrigname
163 ? : dev_name(&rfkill->dev);
164 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
165 return led_trigger_register(&rfkill->led_trigger);
166}
167
168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
169{
170 led_trigger_unregister(&rfkill->led_trigger);
171}
172
173static struct led_trigger rfkill_any_led_trigger;
174static struct led_trigger rfkill_none_led_trigger;
175static struct work_struct rfkill_global_led_trigger_work;
176
177static void rfkill_global_led_trigger_worker(struct work_struct *work)
178{
179 enum led_brightness brightness = LED_OFF;
180 struct rfkill *rfkill;
181
182 mutex_lock(&rfkill_global_mutex);
183 list_for_each_entry(rfkill, &rfkill_list, node) {
184 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
185 brightness = LED_FULL;
186 break;
187 }
188 }
189 mutex_unlock(&rfkill_global_mutex);
190
191 led_trigger_event(&rfkill_any_led_trigger, brightness);
192 led_trigger_event(&rfkill_none_led_trigger,
193 brightness == LED_OFF ? LED_FULL : LED_OFF);
194}
195
196static void rfkill_global_led_trigger_event(void)
197{
198 schedule_work(&rfkill_global_led_trigger_work);
199}
200
201static int rfkill_global_led_trigger_register(void)
202{
203 int ret;
204
205 INIT_WORK(&rfkill_global_led_trigger_work,
206 rfkill_global_led_trigger_worker);
207
208 rfkill_any_led_trigger.name = "rfkill-any";
209 ret = led_trigger_register(&rfkill_any_led_trigger);
210 if (ret)
211 return ret;
212
213 rfkill_none_led_trigger.name = "rfkill-none";
214 ret = led_trigger_register(&rfkill_none_led_trigger);
215 if (ret)
216 led_trigger_unregister(&rfkill_any_led_trigger);
217 else
218 /* Delay activation until all global triggers are registered */
219 rfkill_global_led_trigger_event();
220
221 return ret;
222}
223
224static void rfkill_global_led_trigger_unregister(void)
225{
226 led_trigger_unregister(&rfkill_none_led_trigger);
227 led_trigger_unregister(&rfkill_any_led_trigger);
228 cancel_work_sync(&rfkill_global_led_trigger_work);
229}
230#else
231static void rfkill_led_trigger_event(struct rfkill *rfkill)
232{
233}
234
235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
236{
237 return 0;
238}
239
240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
241{
242}
243
244static void rfkill_global_led_trigger_event(void)
245{
246}
247
248static int rfkill_global_led_trigger_register(void)
249{
250 return 0;
251}
252
253static void rfkill_global_led_trigger_unregister(void)
254{
255}
256#endif /* CONFIG_RFKILL_LEDS */
257
258static void rfkill_fill_event(struct rfkill_event_ext *ev,
259 struct rfkill *rfkill,
260 enum rfkill_operation op)
261{
262 unsigned long flags;
263
264 ev->idx = rfkill->idx;
265 ev->type = rfkill->type;
266 ev->op = op;
267
268 spin_lock_irqsave(&rfkill->lock, flags);
269 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
270 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
271 RFKILL_BLOCK_SW_PREV));
272 ev->hard_block_reasons = rfkill->hard_block_reasons;
273 spin_unlock_irqrestore(&rfkill->lock, flags);
274}
275
276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
277{
278 struct rfkill_data *data;
279 struct rfkill_int_event *ev;
280
281 list_for_each_entry(data, &rfkill_fds, list) {
282 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
283 if (!ev)
284 continue;
285 rfkill_fill_event(&ev->ev, rfkill, op);
286 mutex_lock(&data->mtx);
287 list_add_tail(&ev->list, &data->events);
288 mutex_unlock(&data->mtx);
289 wake_up_interruptible(&data->read_wait);
290 }
291}
292
293static void rfkill_event(struct rfkill *rfkill)
294{
295 if (!rfkill->registered)
296 return;
297
298 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
299
300 /* also send event to /dev/rfkill */
301 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
302}
303
304/**
305 * rfkill_set_block - wrapper for set_block method
306 *
307 * @rfkill: the rfkill struct to use
308 * @blocked: the new software state
309 *
310 * Calls the set_block method (when applicable) and handles notifications
311 * etc. as well.
312 */
313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
314{
315 unsigned long flags;
316 bool prev, curr;
317 int err;
318
319 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
320 return;
321
322 /*
323 * Some platforms (...!) generate input events which affect the
324 * _hard_ kill state -- whenever something tries to change the
325 * current software state query the hardware state too.
326 */
327 if (rfkill->ops->query)
328 rfkill->ops->query(rfkill, rfkill->data);
329
330 spin_lock_irqsave(&rfkill->lock, flags);
331 prev = rfkill->state & RFKILL_BLOCK_SW;
332
333 if (prev)
334 rfkill->state |= RFKILL_BLOCK_SW_PREV;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
337
338 if (blocked)
339 rfkill->state |= RFKILL_BLOCK_SW;
340 else
341 rfkill->state &= ~RFKILL_BLOCK_SW;
342
343 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
344 spin_unlock_irqrestore(&rfkill->lock, flags);
345
346 err = rfkill->ops->set_block(rfkill->data, blocked);
347
348 spin_lock_irqsave(&rfkill->lock, flags);
349 if (err) {
350 /*
351 * Failed -- reset status to _PREV, which may be different
352 * from what we have set _PREV to earlier in this function
353 * if rfkill_set_sw_state was invoked.
354 */
355 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
356 rfkill->state |= RFKILL_BLOCK_SW;
357 else
358 rfkill->state &= ~RFKILL_BLOCK_SW;
359 }
360 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
361 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
362 curr = rfkill->state & RFKILL_BLOCK_SW;
363 spin_unlock_irqrestore(&rfkill->lock, flags);
364
365 rfkill_led_trigger_event(rfkill);
366 rfkill_global_led_trigger_event();
367
368 if (prev != curr)
369 rfkill_event(rfkill);
370}
371
372static void rfkill_sync(struct rfkill *rfkill)
373{
374 lockdep_assert_held(&rfkill_global_mutex);
375
376 if (!rfkill->need_sync)
377 return;
378
379 rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
380 rfkill->need_sync = false;
381}
382
383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
384{
385 int i;
386
387 if (type != RFKILL_TYPE_ALL) {
388 rfkill_global_states[type].cur = blocked;
389 return;
390 }
391
392 for (i = 0; i < NUM_RFKILL_TYPES; i++)
393 rfkill_global_states[i].cur = blocked;
394}
395
396#ifdef CONFIG_RFKILL_INPUT
397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
398
399/**
400 * __rfkill_switch_all - Toggle state of all switches of given type
401 * @type: type of interfaces to be affected
402 * @blocked: the new state
403 *
404 * This function sets the state of all switches of given type,
405 * unless a specific switch is suspended.
406 *
407 * Caller must have acquired rfkill_global_mutex.
408 */
409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
410{
411 struct rfkill *rfkill;
412
413 rfkill_update_global_state(type, blocked);
414 list_for_each_entry(rfkill, &rfkill_list, node) {
415 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
416 continue;
417
418 rfkill_set_block(rfkill, blocked);
419 }
420}
421
422/**
423 * rfkill_switch_all - Toggle state of all switches of given type
424 * @type: type of interfaces to be affected
425 * @blocked: the new state
426 *
427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
428 * Please refer to __rfkill_switch_all() for details.
429 *
430 * Does nothing if the EPO lock is active.
431 */
432void rfkill_switch_all(enum rfkill_type type, bool blocked)
433{
434 if (atomic_read(&rfkill_input_disabled))
435 return;
436
437 mutex_lock(&rfkill_global_mutex);
438
439 if (!rfkill_epo_lock_active)
440 __rfkill_switch_all(type, blocked);
441
442 mutex_unlock(&rfkill_global_mutex);
443}
444
445/**
446 * rfkill_epo - emergency power off all transmitters
447 *
448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
450 *
451 * The global state before the EPO is saved and can be restored later
452 * using rfkill_restore_states().
453 */
454void rfkill_epo(void)
455{
456 struct rfkill *rfkill;
457 int i;
458
459 if (atomic_read(&rfkill_input_disabled))
460 return;
461
462 mutex_lock(&rfkill_global_mutex);
463
464 rfkill_epo_lock_active = true;
465 list_for_each_entry(rfkill, &rfkill_list, node)
466 rfkill_set_block(rfkill, true);
467
468 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
469 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
470 rfkill_global_states[i].cur = true;
471 }
472
473 mutex_unlock(&rfkill_global_mutex);
474}
475
476/**
477 * rfkill_restore_states - restore global states
478 *
479 * Restore (and sync switches to) the global state from the
480 * states in rfkill_default_states. This can undo the effects of
481 * a call to rfkill_epo().
482 */
483void rfkill_restore_states(void)
484{
485 int i;
486
487 if (atomic_read(&rfkill_input_disabled))
488 return;
489
490 mutex_lock(&rfkill_global_mutex);
491
492 rfkill_epo_lock_active = false;
493 for (i = 0; i < NUM_RFKILL_TYPES; i++)
494 __rfkill_switch_all(i, rfkill_global_states[i].sav);
495 mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_remove_epo_lock - unlock state changes
500 *
501 * Used by rfkill-input manually unlock state changes, when
502 * the EPO switch is deactivated.
503 */
504void rfkill_remove_epo_lock(void)
505{
506 if (atomic_read(&rfkill_input_disabled))
507 return;
508
509 mutex_lock(&rfkill_global_mutex);
510 rfkill_epo_lock_active = false;
511 mutex_unlock(&rfkill_global_mutex);
512}
513
514/**
515 * rfkill_is_epo_lock_active - returns true EPO is active
516 *
517 * Returns 0 (false) if there is NOT an active EPO condition,
518 * and 1 (true) if there is an active EPO condition, which
519 * locks all radios in one of the BLOCKED states.
520 *
521 * Can be called in atomic context.
522 */
523bool rfkill_is_epo_lock_active(void)
524{
525 return rfkill_epo_lock_active;
526}
527
528/**
529 * rfkill_get_global_sw_state - returns global state for a type
530 * @type: the type to get the global state of
531 *
532 * Returns the current global state for a given wireless
533 * device type.
534 */
535bool rfkill_get_global_sw_state(const enum rfkill_type type)
536{
537 return rfkill_global_states[type].cur;
538}
539#endif
540
541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
542 bool blocked, unsigned long reason)
543{
544 unsigned long flags;
545 bool ret, prev;
546
547 BUG_ON(!rfkill);
548
549 if (WARN(reason &
550 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
551 "hw_state reason not supported: 0x%lx", reason))
552 return blocked;
553
554 spin_lock_irqsave(&rfkill->lock, flags);
555 prev = !!(rfkill->hard_block_reasons & reason);
556 if (blocked) {
557 rfkill->state |= RFKILL_BLOCK_HW;
558 rfkill->hard_block_reasons |= reason;
559 } else {
560 rfkill->hard_block_reasons &= ~reason;
561 if (!rfkill->hard_block_reasons)
562 rfkill->state &= ~RFKILL_BLOCK_HW;
563 }
564 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
565 spin_unlock_irqrestore(&rfkill->lock, flags);
566
567 rfkill_led_trigger_event(rfkill);
568 rfkill_global_led_trigger_event();
569
570 if (rfkill->registered && prev != blocked)
571 schedule_work(&rfkill->uevent_work);
572
573 return ret;
574}
575EXPORT_SYMBOL(rfkill_set_hw_state_reason);
576
577static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
578{
579 u32 bit = RFKILL_BLOCK_SW;
580
581 /* if in a ops->set_block right now, use other bit */
582 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
583 bit = RFKILL_BLOCK_SW_PREV;
584
585 if (blocked)
586 rfkill->state |= bit;
587 else
588 rfkill->state &= ~bit;
589}
590
591bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
592{
593 unsigned long flags;
594 bool prev, hwblock;
595
596 BUG_ON(!rfkill);
597
598 spin_lock_irqsave(&rfkill->lock, flags);
599 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
600 __rfkill_set_sw_state(rfkill, blocked);
601 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
602 blocked = blocked || hwblock;
603 spin_unlock_irqrestore(&rfkill->lock, flags);
604
605 if (!rfkill->registered)
606 return blocked;
607
608 if (prev != blocked && !hwblock)
609 schedule_work(&rfkill->uevent_work);
610
611 rfkill_led_trigger_event(rfkill);
612 rfkill_global_led_trigger_event();
613
614 return blocked;
615}
616EXPORT_SYMBOL(rfkill_set_sw_state);
617
618void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
619{
620 unsigned long flags;
621
622 BUG_ON(!rfkill);
623 BUG_ON(rfkill->registered);
624
625 spin_lock_irqsave(&rfkill->lock, flags);
626 __rfkill_set_sw_state(rfkill, blocked);
627 rfkill->persistent = true;
628 spin_unlock_irqrestore(&rfkill->lock, flags);
629}
630EXPORT_SYMBOL(rfkill_init_sw_state);
631
632void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
633{
634 unsigned long flags;
635 bool swprev, hwprev;
636
637 BUG_ON(!rfkill);
638
639 spin_lock_irqsave(&rfkill->lock, flags);
640
641 /*
642 * No need to care about prev/setblock ... this is for uevent only
643 * and that will get triggered by rfkill_set_block anyway.
644 */
645 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
646 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
647 __rfkill_set_sw_state(rfkill, sw);
648 if (hw)
649 rfkill->state |= RFKILL_BLOCK_HW;
650 else
651 rfkill->state &= ~RFKILL_BLOCK_HW;
652
653 spin_unlock_irqrestore(&rfkill->lock, flags);
654
655 if (!rfkill->registered) {
656 rfkill->persistent = true;
657 } else {
658 if (swprev != sw || hwprev != hw)
659 schedule_work(&rfkill->uevent_work);
660
661 rfkill_led_trigger_event(rfkill);
662 rfkill_global_led_trigger_event();
663 }
664}
665EXPORT_SYMBOL(rfkill_set_states);
666
667static const char * const rfkill_types[] = {
668 NULL, /* RFKILL_TYPE_ALL */
669 "wlan",
670 "bluetooth",
671 "ultrawideband",
672 "wimax",
673 "wwan",
674 "gps",
675 "fm",
676 "nfc",
677};
678
679enum rfkill_type rfkill_find_type(const char *name)
680{
681 int i;
682
683 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
684
685 if (!name)
686 return RFKILL_TYPE_ALL;
687
688 for (i = 1; i < NUM_RFKILL_TYPES; i++)
689 if (!strcmp(name, rfkill_types[i]))
690 return i;
691 return RFKILL_TYPE_ALL;
692}
693EXPORT_SYMBOL(rfkill_find_type);
694
695static ssize_t name_show(struct device *dev, struct device_attribute *attr,
696 char *buf)
697{
698 struct rfkill *rfkill = to_rfkill(dev);
699
700 return sysfs_emit(buf, "%s\n", rfkill->name);
701}
702static DEVICE_ATTR_RO(name);
703
704static ssize_t type_show(struct device *dev, struct device_attribute *attr,
705 char *buf)
706{
707 struct rfkill *rfkill = to_rfkill(dev);
708
709 return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
710}
711static DEVICE_ATTR_RO(type);
712
713static ssize_t index_show(struct device *dev, struct device_attribute *attr,
714 char *buf)
715{
716 struct rfkill *rfkill = to_rfkill(dev);
717
718 return sysfs_emit(buf, "%d\n", rfkill->idx);
719}
720static DEVICE_ATTR_RO(index);
721
722static ssize_t persistent_show(struct device *dev,
723 struct device_attribute *attr, char *buf)
724{
725 struct rfkill *rfkill = to_rfkill(dev);
726
727 return sysfs_emit(buf, "%d\n", rfkill->persistent);
728}
729static DEVICE_ATTR_RO(persistent);
730
731static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
732 char *buf)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
737}
738static DEVICE_ATTR_RO(hard);
739
740static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
741 char *buf)
742{
743 struct rfkill *rfkill = to_rfkill(dev);
744
745 mutex_lock(&rfkill_global_mutex);
746 rfkill_sync(rfkill);
747 mutex_unlock(&rfkill_global_mutex);
748
749 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
750}
751
752static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
753 const char *buf, size_t count)
754{
755 struct rfkill *rfkill = to_rfkill(dev);
756 unsigned long state;
757 int err;
758
759 if (!capable(CAP_NET_ADMIN))
760 return -EPERM;
761
762 err = kstrtoul(buf, 0, &state);
763 if (err)
764 return err;
765
766 if (state > 1 )
767 return -EINVAL;
768
769 mutex_lock(&rfkill_global_mutex);
770 rfkill_sync(rfkill);
771 rfkill_set_block(rfkill, state);
772 mutex_unlock(&rfkill_global_mutex);
773
774 return count;
775}
776static DEVICE_ATTR_RW(soft);
777
778static ssize_t hard_block_reasons_show(struct device *dev,
779 struct device_attribute *attr,
780 char *buf)
781{
782 struct rfkill *rfkill = to_rfkill(dev);
783
784 return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
785}
786static DEVICE_ATTR_RO(hard_block_reasons);
787
788static u8 user_state_from_blocked(unsigned long state)
789{
790 if (state & RFKILL_BLOCK_HW)
791 return RFKILL_USER_STATE_HARD_BLOCKED;
792 if (state & RFKILL_BLOCK_SW)
793 return RFKILL_USER_STATE_SOFT_BLOCKED;
794
795 return RFKILL_USER_STATE_UNBLOCKED;
796}
797
798static ssize_t state_show(struct device *dev, struct device_attribute *attr,
799 char *buf)
800{
801 struct rfkill *rfkill = to_rfkill(dev);
802
803 mutex_lock(&rfkill_global_mutex);
804 rfkill_sync(rfkill);
805 mutex_unlock(&rfkill_global_mutex);
806
807 return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
808}
809
810static ssize_t state_store(struct device *dev, struct device_attribute *attr,
811 const char *buf, size_t count)
812{
813 struct rfkill *rfkill = to_rfkill(dev);
814 unsigned long state;
815 int err;
816
817 if (!capable(CAP_NET_ADMIN))
818 return -EPERM;
819
820 err = kstrtoul(buf, 0, &state);
821 if (err)
822 return err;
823
824 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
825 state != RFKILL_USER_STATE_UNBLOCKED)
826 return -EINVAL;
827
828 mutex_lock(&rfkill_global_mutex);
829 rfkill_sync(rfkill);
830 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
831 mutex_unlock(&rfkill_global_mutex);
832
833 return count;
834}
835static DEVICE_ATTR_RW(state);
836
837static struct attribute *rfkill_dev_attrs[] = {
838 &dev_attr_name.attr,
839 &dev_attr_type.attr,
840 &dev_attr_index.attr,
841 &dev_attr_persistent.attr,
842 &dev_attr_state.attr,
843 &dev_attr_soft.attr,
844 &dev_attr_hard.attr,
845 &dev_attr_hard_block_reasons.attr,
846 NULL,
847};
848ATTRIBUTE_GROUPS(rfkill_dev);
849
850static void rfkill_release(struct device *dev)
851{
852 struct rfkill *rfkill = to_rfkill(dev);
853
854 kfree(rfkill);
855}
856
857static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
858{
859 struct rfkill *rfkill = to_rfkill(dev);
860 unsigned long flags;
861 unsigned long reasons;
862 u32 state;
863 int error;
864
865 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
866 if (error)
867 return error;
868 error = add_uevent_var(env, "RFKILL_TYPE=%s",
869 rfkill_types[rfkill->type]);
870 if (error)
871 return error;
872 spin_lock_irqsave(&rfkill->lock, flags);
873 state = rfkill->state;
874 reasons = rfkill->hard_block_reasons;
875 spin_unlock_irqrestore(&rfkill->lock, flags);
876 error = add_uevent_var(env, "RFKILL_STATE=%d",
877 user_state_from_blocked(state));
878 if (error)
879 return error;
880 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
881}
882
883void rfkill_pause_polling(struct rfkill *rfkill)
884{
885 BUG_ON(!rfkill);
886
887 if (!rfkill->ops->poll)
888 return;
889
890 rfkill->polling_paused = true;
891 cancel_delayed_work_sync(&rfkill->poll_work);
892}
893EXPORT_SYMBOL(rfkill_pause_polling);
894
895void rfkill_resume_polling(struct rfkill *rfkill)
896{
897 BUG_ON(!rfkill);
898
899 if (!rfkill->ops->poll)
900 return;
901
902 rfkill->polling_paused = false;
903
904 if (rfkill->suspended)
905 return;
906
907 queue_delayed_work(system_power_efficient_wq,
908 &rfkill->poll_work, 0);
909}
910EXPORT_SYMBOL(rfkill_resume_polling);
911
912#ifdef CONFIG_PM_SLEEP
913static int rfkill_suspend(struct device *dev)
914{
915 struct rfkill *rfkill = to_rfkill(dev);
916
917 rfkill->suspended = true;
918 cancel_delayed_work_sync(&rfkill->poll_work);
919
920 return 0;
921}
922
923static int rfkill_resume(struct device *dev)
924{
925 struct rfkill *rfkill = to_rfkill(dev);
926 bool cur;
927
928 rfkill->suspended = false;
929
930 if (!rfkill->registered)
931 return 0;
932
933 if (!rfkill->persistent) {
934 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
935 rfkill_set_block(rfkill, cur);
936 }
937
938 if (rfkill->ops->poll && !rfkill->polling_paused)
939 queue_delayed_work(system_power_efficient_wq,
940 &rfkill->poll_work, 0);
941
942 return 0;
943}
944
945static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
946#define RFKILL_PM_OPS (&rfkill_pm_ops)
947#else
948#define RFKILL_PM_OPS NULL
949#endif
950
951static struct class rfkill_class = {
952 .name = "rfkill",
953 .dev_release = rfkill_release,
954 .dev_groups = rfkill_dev_groups,
955 .dev_uevent = rfkill_dev_uevent,
956 .pm = RFKILL_PM_OPS,
957};
958
959bool rfkill_blocked(struct rfkill *rfkill)
960{
961 unsigned long flags;
962 u32 state;
963
964 spin_lock_irqsave(&rfkill->lock, flags);
965 state = rfkill->state;
966 spin_unlock_irqrestore(&rfkill->lock, flags);
967
968 return !!(state & RFKILL_BLOCK_ANY);
969}
970EXPORT_SYMBOL(rfkill_blocked);
971
972bool rfkill_soft_blocked(struct rfkill *rfkill)
973{
974 unsigned long flags;
975 u32 state;
976
977 spin_lock_irqsave(&rfkill->lock, flags);
978 state = rfkill->state;
979 spin_unlock_irqrestore(&rfkill->lock, flags);
980
981 return !!(state & RFKILL_BLOCK_SW);
982}
983EXPORT_SYMBOL(rfkill_soft_blocked);
984
985struct rfkill * __must_check rfkill_alloc(const char *name,
986 struct device *parent,
987 const enum rfkill_type type,
988 const struct rfkill_ops *ops,
989 void *ops_data)
990{
991 struct rfkill *rfkill;
992 struct device *dev;
993
994 if (WARN_ON(!ops))
995 return NULL;
996
997 if (WARN_ON(!ops->set_block))
998 return NULL;
999
1000 if (WARN_ON(!name))
1001 return NULL;
1002
1003 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1004 return NULL;
1005
1006 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1007 if (!rfkill)
1008 return NULL;
1009
1010 spin_lock_init(&rfkill->lock);
1011 INIT_LIST_HEAD(&rfkill->node);
1012 rfkill->type = type;
1013 strcpy(rfkill->name, name);
1014 rfkill->ops = ops;
1015 rfkill->data = ops_data;
1016
1017 dev = &rfkill->dev;
1018 dev->class = &rfkill_class;
1019 dev->parent = parent;
1020 device_initialize(dev);
1021
1022 return rfkill;
1023}
1024EXPORT_SYMBOL(rfkill_alloc);
1025
1026static void rfkill_poll(struct work_struct *work)
1027{
1028 struct rfkill *rfkill;
1029
1030 rfkill = container_of(work, struct rfkill, poll_work.work);
1031
1032 /*
1033 * Poll hardware state -- driver will use one of the
1034 * rfkill_set{,_hw,_sw}_state functions and use its
1035 * return value to update the current status.
1036 */
1037 rfkill->ops->poll(rfkill, rfkill->data);
1038
1039 queue_delayed_work(system_power_efficient_wq,
1040 &rfkill->poll_work,
1041 round_jiffies_relative(POLL_INTERVAL));
1042}
1043
1044static void rfkill_uevent_work(struct work_struct *work)
1045{
1046 struct rfkill *rfkill;
1047
1048 rfkill = container_of(work, struct rfkill, uevent_work);
1049
1050 mutex_lock(&rfkill_global_mutex);
1051 rfkill_event(rfkill);
1052 mutex_unlock(&rfkill_global_mutex);
1053}
1054
1055static void rfkill_sync_work(struct work_struct *work)
1056{
1057 struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1058
1059 mutex_lock(&rfkill_global_mutex);
1060 rfkill_sync(rfkill);
1061 mutex_unlock(&rfkill_global_mutex);
1062}
1063
1064int __must_check rfkill_register(struct rfkill *rfkill)
1065{
1066 static unsigned long rfkill_no;
1067 struct device *dev;
1068 int error;
1069
1070 if (!rfkill)
1071 return -EINVAL;
1072
1073 dev = &rfkill->dev;
1074
1075 mutex_lock(&rfkill_global_mutex);
1076
1077 if (rfkill->registered) {
1078 error = -EALREADY;
1079 goto unlock;
1080 }
1081
1082 rfkill->idx = rfkill_no;
1083 dev_set_name(dev, "rfkill%lu", rfkill_no);
1084 rfkill_no++;
1085
1086 list_add_tail(&rfkill->node, &rfkill_list);
1087
1088 error = device_add(dev);
1089 if (error)
1090 goto remove;
1091
1092 error = rfkill_led_trigger_register(rfkill);
1093 if (error)
1094 goto devdel;
1095
1096 rfkill->registered = true;
1097
1098 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1099 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1100 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1101
1102 if (rfkill->ops->poll)
1103 queue_delayed_work(system_power_efficient_wq,
1104 &rfkill->poll_work,
1105 round_jiffies_relative(POLL_INTERVAL));
1106
1107 if (!rfkill->persistent || rfkill_epo_lock_active) {
1108 rfkill->need_sync = true;
1109 schedule_work(&rfkill->sync_work);
1110 } else {
1111#ifdef CONFIG_RFKILL_INPUT
1112 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1113
1114 if (!atomic_read(&rfkill_input_disabled))
1115 __rfkill_switch_all(rfkill->type, soft_blocked);
1116#endif
1117 }
1118
1119 rfkill_global_led_trigger_event();
1120 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1121
1122 mutex_unlock(&rfkill_global_mutex);
1123 return 0;
1124
1125 devdel:
1126 device_del(&rfkill->dev);
1127 remove:
1128 list_del_init(&rfkill->node);
1129 unlock:
1130 mutex_unlock(&rfkill_global_mutex);
1131 return error;
1132}
1133EXPORT_SYMBOL(rfkill_register);
1134
1135void rfkill_unregister(struct rfkill *rfkill)
1136{
1137 BUG_ON(!rfkill);
1138
1139 if (rfkill->ops->poll)
1140 cancel_delayed_work_sync(&rfkill->poll_work);
1141
1142 cancel_work_sync(&rfkill->uevent_work);
1143 cancel_work_sync(&rfkill->sync_work);
1144
1145 rfkill->registered = false;
1146
1147 device_del(&rfkill->dev);
1148
1149 mutex_lock(&rfkill_global_mutex);
1150 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1151 list_del_init(&rfkill->node);
1152 rfkill_global_led_trigger_event();
1153 mutex_unlock(&rfkill_global_mutex);
1154
1155 rfkill_led_trigger_unregister(rfkill);
1156}
1157EXPORT_SYMBOL(rfkill_unregister);
1158
1159void rfkill_destroy(struct rfkill *rfkill)
1160{
1161 if (rfkill)
1162 put_device(&rfkill->dev);
1163}
1164EXPORT_SYMBOL(rfkill_destroy);
1165
1166static int rfkill_fop_open(struct inode *inode, struct file *file)
1167{
1168 struct rfkill_data *data;
1169 struct rfkill *rfkill;
1170 struct rfkill_int_event *ev, *tmp;
1171
1172 data = kzalloc(sizeof(*data), GFP_KERNEL);
1173 if (!data)
1174 return -ENOMEM;
1175
1176 data->max_size = RFKILL_EVENT_SIZE_V1;
1177
1178 INIT_LIST_HEAD(&data->events);
1179 mutex_init(&data->mtx);
1180 init_waitqueue_head(&data->read_wait);
1181
1182 mutex_lock(&rfkill_global_mutex);
1183 /*
1184 * start getting events from elsewhere but hold mtx to get
1185 * startup events added first
1186 */
1187
1188 list_for_each_entry(rfkill, &rfkill_list, node) {
1189 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1190 if (!ev)
1191 goto free;
1192 rfkill_sync(rfkill);
1193 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1194 mutex_lock(&data->mtx);
1195 list_add_tail(&ev->list, &data->events);
1196 mutex_unlock(&data->mtx);
1197 }
1198 list_add(&data->list, &rfkill_fds);
1199 mutex_unlock(&rfkill_global_mutex);
1200
1201 file->private_data = data;
1202
1203 return stream_open(inode, file);
1204
1205 free:
1206 mutex_unlock(&rfkill_global_mutex);
1207 mutex_destroy(&data->mtx);
1208 list_for_each_entry_safe(ev, tmp, &data->events, list)
1209 kfree(ev);
1210 kfree(data);
1211 return -ENOMEM;
1212}
1213
1214static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1215{
1216 struct rfkill_data *data = file->private_data;
1217 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1218
1219 poll_wait(file, &data->read_wait, wait);
1220
1221 mutex_lock(&data->mtx);
1222 if (!list_empty(&data->events))
1223 res = EPOLLIN | EPOLLRDNORM;
1224 mutex_unlock(&data->mtx);
1225
1226 return res;
1227}
1228
1229static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1230 size_t count, loff_t *pos)
1231{
1232 struct rfkill_data *data = file->private_data;
1233 struct rfkill_int_event *ev;
1234 unsigned long sz;
1235 int ret;
1236
1237 mutex_lock(&data->mtx);
1238
1239 while (list_empty(&data->events)) {
1240 if (file->f_flags & O_NONBLOCK) {
1241 ret = -EAGAIN;
1242 goto out;
1243 }
1244 mutex_unlock(&data->mtx);
1245 /* since we re-check and it just compares pointers,
1246 * using !list_empty() without locking isn't a problem
1247 */
1248 ret = wait_event_interruptible(data->read_wait,
1249 !list_empty(&data->events));
1250 mutex_lock(&data->mtx);
1251
1252 if (ret)
1253 goto out;
1254 }
1255
1256 ev = list_first_entry(&data->events, struct rfkill_int_event,
1257 list);
1258
1259 sz = min_t(unsigned long, sizeof(ev->ev), count);
1260 sz = min_t(unsigned long, sz, data->max_size);
1261 ret = sz;
1262 if (copy_to_user(buf, &ev->ev, sz))
1263 ret = -EFAULT;
1264
1265 list_del(&ev->list);
1266 kfree(ev);
1267 out:
1268 mutex_unlock(&data->mtx);
1269 return ret;
1270}
1271
1272static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1273 size_t count, loff_t *pos)
1274{
1275 struct rfkill_data *data = file->private_data;
1276 struct rfkill *rfkill;
1277 struct rfkill_event_ext ev;
1278 int ret;
1279
1280 /* we don't need the 'hard' variable but accept it */
1281 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1282 return -EINVAL;
1283
1284 /*
1285 * Copy as much data as we can accept into our 'ev' buffer,
1286 * but tell userspace how much we've copied so it can determine
1287 * our API version even in a write() call, if it cares.
1288 */
1289 count = min(count, sizeof(ev));
1290 count = min_t(size_t, count, data->max_size);
1291 if (copy_from_user(&ev, buf, count))
1292 return -EFAULT;
1293
1294 if (ev.type >= NUM_RFKILL_TYPES)
1295 return -EINVAL;
1296
1297 mutex_lock(&rfkill_global_mutex);
1298
1299 switch (ev.op) {
1300 case RFKILL_OP_CHANGE_ALL:
1301 rfkill_update_global_state(ev.type, ev.soft);
1302 list_for_each_entry(rfkill, &rfkill_list, node)
1303 if (rfkill->type == ev.type ||
1304 ev.type == RFKILL_TYPE_ALL)
1305 rfkill_set_block(rfkill, ev.soft);
1306 ret = 0;
1307 break;
1308 case RFKILL_OP_CHANGE:
1309 list_for_each_entry(rfkill, &rfkill_list, node)
1310 if (rfkill->idx == ev.idx &&
1311 (rfkill->type == ev.type ||
1312 ev.type == RFKILL_TYPE_ALL))
1313 rfkill_set_block(rfkill, ev.soft);
1314 ret = 0;
1315 break;
1316 default:
1317 ret = -EINVAL;
1318 break;
1319 }
1320
1321 mutex_unlock(&rfkill_global_mutex);
1322
1323 return ret ?: count;
1324}
1325
1326static int rfkill_fop_release(struct inode *inode, struct file *file)
1327{
1328 struct rfkill_data *data = file->private_data;
1329 struct rfkill_int_event *ev, *tmp;
1330
1331 mutex_lock(&rfkill_global_mutex);
1332 list_del(&data->list);
1333 mutex_unlock(&rfkill_global_mutex);
1334
1335 mutex_destroy(&data->mtx);
1336 list_for_each_entry_safe(ev, tmp, &data->events, list)
1337 kfree(ev);
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340 if (data->input_handler)
1341 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1342 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1343#endif
1344
1345 kfree(data);
1346
1347 return 0;
1348}
1349
1350static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1351 unsigned long arg)
1352{
1353 struct rfkill_data *data = file->private_data;
1354 int ret = -ENOTTY;
1355 u32 size;
1356
1357 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1358 return -ENOTTY;
1359
1360 mutex_lock(&data->mtx);
1361 switch (_IOC_NR(cmd)) {
1362#ifdef CONFIG_RFKILL_INPUT
1363 case RFKILL_IOC_NOINPUT:
1364 if (!data->input_handler) {
1365 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1366 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1367 data->input_handler = true;
1368 }
1369 ret = 0;
1370 break;
1371#endif
1372 case RFKILL_IOC_MAX_SIZE:
1373 if (get_user(size, (__u32 __user *)arg)) {
1374 ret = -EFAULT;
1375 break;
1376 }
1377 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1378 ret = -EINVAL;
1379 break;
1380 }
1381 data->max_size = size;
1382 ret = 0;
1383 break;
1384 default:
1385 break;
1386 }
1387 mutex_unlock(&data->mtx);
1388
1389 return ret;
1390}
1391
1392static const struct file_operations rfkill_fops = {
1393 .owner = THIS_MODULE,
1394 .open = rfkill_fop_open,
1395 .read = rfkill_fop_read,
1396 .write = rfkill_fop_write,
1397 .poll = rfkill_fop_poll,
1398 .release = rfkill_fop_release,
1399 .unlocked_ioctl = rfkill_fop_ioctl,
1400 .compat_ioctl = compat_ptr_ioctl,
1401 .llseek = no_llseek,
1402};
1403
1404#define RFKILL_NAME "rfkill"
1405
1406static struct miscdevice rfkill_miscdev = {
1407 .fops = &rfkill_fops,
1408 .name = RFKILL_NAME,
1409 .minor = RFKILL_MINOR,
1410};
1411
1412static int __init rfkill_init(void)
1413{
1414 int error;
1415
1416 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1417
1418 error = class_register(&rfkill_class);
1419 if (error)
1420 goto error_class;
1421
1422 error = misc_register(&rfkill_miscdev);
1423 if (error)
1424 goto error_misc;
1425
1426 error = rfkill_global_led_trigger_register();
1427 if (error)
1428 goto error_led_trigger;
1429
1430#ifdef CONFIG_RFKILL_INPUT
1431 error = rfkill_handler_init();
1432 if (error)
1433 goto error_input;
1434#endif
1435
1436 return 0;
1437
1438#ifdef CONFIG_RFKILL_INPUT
1439error_input:
1440 rfkill_global_led_trigger_unregister();
1441#endif
1442error_led_trigger:
1443 misc_deregister(&rfkill_miscdev);
1444error_misc:
1445 class_unregister(&rfkill_class);
1446error_class:
1447 return error;
1448}
1449subsys_initcall(rfkill_init);
1450
1451static void __exit rfkill_exit(void)
1452{
1453#ifdef CONFIG_RFKILL_INPUT
1454 rfkill_handler_exit();
1455#endif
1456 rfkill_global_led_trigger_unregister();
1457 misc_deregister(&rfkill_miscdev);
1458 class_unregister(&rfkill_class);
1459}
1460module_exit(rfkill_exit);
1461
1462MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1463MODULE_ALIAS("devname:" RFKILL_NAME);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82};
83
84
85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87MODULE_DESCRIPTION("RF switch support");
88MODULE_LICENSE("GPL");
89
90
91/*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103static DEFINE_MUTEX(rfkill_global_mutex);
104static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106static unsigned int rfkill_default_state = 1;
107module_param_named(default_state, rfkill_default_state, uint, 0444);
108MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111static struct {
112 bool cur, sav;
113} rfkill_global_states[NUM_RFKILL_TYPES];
114
115static bool rfkill_epo_lock_active;
116
117
118#ifdef CONFIG_RFKILL_LEDS
119static void rfkill_led_trigger_event(struct rfkill *rfkill)
120{
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132}
133
134static int rfkill_led_trigger_activate(struct led_classdev *led)
135{
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143}
144
145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146{
147 return rfkill->led_trigger.name;
148}
149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152{
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156}
157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159static int rfkill_led_trigger_register(struct rfkill *rfkill)
160{
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165}
166
167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168{
169 led_trigger_unregister(&rfkill->led_trigger);
170}
171
172static struct led_trigger rfkill_any_led_trigger;
173static struct led_trigger rfkill_none_led_trigger;
174static struct work_struct rfkill_global_led_trigger_work;
175
176static void rfkill_global_led_trigger_worker(struct work_struct *work)
177{
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193}
194
195static void rfkill_global_led_trigger_event(void)
196{
197 schedule_work(&rfkill_global_led_trigger_work);
198}
199
200static int rfkill_global_led_trigger_register(void)
201{
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221}
222
223static void rfkill_global_led_trigger_unregister(void)
224{
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228}
229#else
230static void rfkill_led_trigger_event(struct rfkill *rfkill)
231{
232}
233
234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235{
236 return 0;
237}
238
239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240{
241}
242
243static void rfkill_global_led_trigger_event(void)
244{
245}
246
247static int rfkill_global_led_trigger_register(void)
248{
249 return 0;
250}
251
252static void rfkill_global_led_trigger_unregister(void)
253{
254}
255#endif /* CONFIG_RFKILL_LEDS */
256
257static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260{
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273}
274
275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276{
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290}
291
292static void rfkill_event(struct rfkill *rfkill)
293{
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301}
302
303/**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313{
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369}
370
371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372{
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382}
383
384#ifdef CONFIG_RFKILL_INPUT
385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387/**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398{
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408}
409
410/**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420void rfkill_switch_all(enum rfkill_type type, bool blocked)
421{
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431}
432
433/**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442void rfkill_epo(void)
443{
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462}
463
464/**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471void rfkill_restore_states(void)
472{
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484}
485
486/**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492void rfkill_remove_epo_lock(void)
493{
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500}
501
502/**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511bool rfkill_is_epo_lock_active(void)
512{
513 return rfkill_epo_lock_active;
514}
515
516/**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523bool rfkill_get_global_sw_state(const enum rfkill_type type)
524{
525 return rfkill_global_states[type].cur;
526}
527#endif
528
529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531{
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562}
563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577}
578
579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580{
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603}
604EXPORT_SYMBOL(rfkill_set_sw_state);
605
606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607{
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617}
618EXPORT_SYMBOL(rfkill_init_sw_state);
619
620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621{
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652}
653EXPORT_SYMBOL(rfkill_set_states);
654
655static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665};
666
667enum rfkill_type rfkill_find_type(const char *name)
668{
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680}
681EXPORT_SYMBOL(rfkill_find_type);
682
683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689}
690static DEVICE_ATTR_RO(name);
691
692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698}
699static DEVICE_ATTR_RO(type);
700
701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707}
708static DEVICE_ATTR_RO(index);
709
710static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716}
717static DEVICE_ATTR_RO(persistent);
718
719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725}
726static DEVICE_ATTR_RO(hard);
727
728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730{
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734}
735
736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758}
759static DEVICE_ATTR_RW(soft);
760
761static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768}
769static DEVICE_ATTR_RO(hard_block_reasons);
770
771static u8 user_state_from_blocked(unsigned long state)
772{
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779}
780
781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787}
788
789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791{
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812}
813static DEVICE_ATTR_RW(state);
814
815static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825};
826ATTRIBUTE_GROUPS(rfkill_dev);
827
828static void rfkill_release(struct device *dev)
829{
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833}
834
835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
836{
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859}
860
861void rfkill_pause_polling(struct rfkill *rfkill)
862{
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870}
871EXPORT_SYMBOL(rfkill_pause_polling);
872
873void rfkill_resume_polling(struct rfkill *rfkill)
874{
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887}
888EXPORT_SYMBOL(rfkill_resume_polling);
889
890#ifdef CONFIG_PM_SLEEP
891static int rfkill_suspend(struct device *dev)
892{
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899}
900
901static int rfkill_resume(struct device *dev)
902{
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921}
922
923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924#define RFKILL_PM_OPS (&rfkill_pm_ops)
925#else
926#define RFKILL_PM_OPS NULL
927#endif
928
929static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935};
936
937bool rfkill_blocked(struct rfkill *rfkill)
938{
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947}
948EXPORT_SYMBOL(rfkill_blocked);
949
950bool rfkill_soft_blocked(struct rfkill *rfkill)
951{
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960}
961EXPORT_SYMBOL(rfkill_soft_blocked);
962
963struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968{
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092#ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212{
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255{
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326 kfree(data);
1327
1328 return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333{
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352#endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415#endif
1416
1417 return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421 rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425error_misc:
1426 class_unregister(&rfkill_class);
1427error_class:
1428 return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436#endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);