Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
 
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked, unsigned long reason)
 543{
 544	unsigned long flags;
 545	bool ret, prev;
 546
 547	BUG_ON(!rfkill);
 548
 549	if (WARN(reason &
 550	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 551	    "hw_state reason not supported: 0x%lx", reason))
 552		return blocked;
 553
 554	spin_lock_irqsave(&rfkill->lock, flags);
 555	prev = !!(rfkill->hard_block_reasons & reason);
 556	if (blocked) {
 557		rfkill->state |= RFKILL_BLOCK_HW;
 558		rfkill->hard_block_reasons |= reason;
 559	} else {
 560		rfkill->hard_block_reasons &= ~reason;
 561		if (!rfkill->hard_block_reasons)
 562			rfkill->state &= ~RFKILL_BLOCK_HW;
 563	}
 564	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 565	spin_unlock_irqrestore(&rfkill->lock, flags);
 566
 567	rfkill_led_trigger_event(rfkill);
 568	rfkill_global_led_trigger_event();
 569
 570	if (rfkill->registered && prev != blocked)
 571		schedule_work(&rfkill->uevent_work);
 572
 573	return ret;
 574}
 575EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 576
 577static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 578{
 579	u32 bit = RFKILL_BLOCK_SW;
 580
 581	/* if in a ops->set_block right now, use other bit */
 582	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 583		bit = RFKILL_BLOCK_SW_PREV;
 584
 585	if (blocked)
 586		rfkill->state |= bit;
 587	else
 588		rfkill->state &= ~bit;
 589}
 590
 591bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 592{
 593	unsigned long flags;
 594	bool prev, hwblock;
 595
 596	BUG_ON(!rfkill);
 597
 598	spin_lock_irqsave(&rfkill->lock, flags);
 599	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 602	blocked = blocked || hwblock;
 603	spin_unlock_irqrestore(&rfkill->lock, flags);
 604
 605	if (!rfkill->registered)
 606		return blocked;
 607
 608	if (prev != blocked && !hwblock)
 609		schedule_work(&rfkill->uevent_work);
 610
 611	rfkill_led_trigger_event(rfkill);
 612	rfkill_global_led_trigger_event();
 613
 614	return blocked;
 615}
 616EXPORT_SYMBOL(rfkill_set_sw_state);
 617
 618void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 619{
 620	unsigned long flags;
 621
 622	BUG_ON(!rfkill);
 623	BUG_ON(rfkill->registered);
 624
 625	spin_lock_irqsave(&rfkill->lock, flags);
 626	__rfkill_set_sw_state(rfkill, blocked);
 627	rfkill->persistent = true;
 628	spin_unlock_irqrestore(&rfkill->lock, flags);
 629}
 630EXPORT_SYMBOL(rfkill_init_sw_state);
 631
 632void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 633{
 634	unsigned long flags;
 635	bool swprev, hwprev;
 636
 637	BUG_ON(!rfkill);
 638
 639	spin_lock_irqsave(&rfkill->lock, flags);
 640
 641	/*
 642	 * No need to care about prev/setblock ... this is for uevent only
 643	 * and that will get triggered by rfkill_set_block anyway.
 644	 */
 645	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 646	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 647	__rfkill_set_sw_state(rfkill, sw);
 648	if (hw)
 649		rfkill->state |= RFKILL_BLOCK_HW;
 650	else
 651		rfkill->state &= ~RFKILL_BLOCK_HW;
 652
 653	spin_unlock_irqrestore(&rfkill->lock, flags);
 654
 655	if (!rfkill->registered) {
 656		rfkill->persistent = true;
 657	} else {
 658		if (swprev != sw || hwprev != hw)
 659			schedule_work(&rfkill->uevent_work);
 660
 661		rfkill_led_trigger_event(rfkill);
 662		rfkill_global_led_trigger_event();
 663	}
 664}
 665EXPORT_SYMBOL(rfkill_set_states);
 666
 667static const char * const rfkill_types[] = {
 668	NULL, /* RFKILL_TYPE_ALL */
 669	"wlan",
 670	"bluetooth",
 671	"ultrawideband",
 672	"wimax",
 673	"wwan",
 674	"gps",
 675	"fm",
 676	"nfc",
 677};
 678
 679enum rfkill_type rfkill_find_type(const char *name)
 680{
 681	int i;
 682
 683	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 684
 685	if (!name)
 686		return RFKILL_TYPE_ALL;
 687
 688	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 689		if (!strcmp(name, rfkill_types[i]))
 690			return i;
 691	return RFKILL_TYPE_ALL;
 692}
 693EXPORT_SYMBOL(rfkill_find_type);
 694
 695static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 696			 char *buf)
 697{
 698	struct rfkill *rfkill = to_rfkill(dev);
 699
 700	return sysfs_emit(buf, "%s\n", rfkill->name);
 701}
 702static DEVICE_ATTR_RO(name);
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 705			 char *buf)
 706{
 707	struct rfkill *rfkill = to_rfkill(dev);
 708
 709	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 710}
 711static DEVICE_ATTR_RO(type);
 712
 713static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 714			  char *buf)
 715{
 716	struct rfkill *rfkill = to_rfkill(dev);
 717
 718	return sysfs_emit(buf, "%d\n", rfkill->idx);
 719}
 720static DEVICE_ATTR_RO(index);
 721
 722static ssize_t persistent_show(struct device *dev,
 723			       struct device_attribute *attr, char *buf)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726
 727	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 728}
 729static DEVICE_ATTR_RO(persistent);
 730
 731static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 732			 char *buf)
 733{
 734	struct rfkill *rfkill = to_rfkill(dev);
 735
 736	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 737}
 738static DEVICE_ATTR_RO(hard);
 739
 740static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 741			 char *buf)
 742{
 743	struct rfkill *rfkill = to_rfkill(dev);
 744
 745	mutex_lock(&rfkill_global_mutex);
 746	rfkill_sync(rfkill);
 747	mutex_unlock(&rfkill_global_mutex);
 748
 749	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 750}
 751
 752static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 753			  const char *buf, size_t count)
 754{
 755	struct rfkill *rfkill = to_rfkill(dev);
 756	unsigned long state;
 757	int err;
 758
 759	if (!capable(CAP_NET_ADMIN))
 760		return -EPERM;
 761
 762	err = kstrtoul(buf, 0, &state);
 763	if (err)
 764		return err;
 765
 766	if (state > 1 )
 767		return -EINVAL;
 768
 769	mutex_lock(&rfkill_global_mutex);
 770	rfkill_sync(rfkill);
 771	rfkill_set_block(rfkill, state);
 772	mutex_unlock(&rfkill_global_mutex);
 773
 774	return count;
 775}
 776static DEVICE_ATTR_RW(soft);
 777
 778static ssize_t hard_block_reasons_show(struct device *dev,
 779				       struct device_attribute *attr,
 780				       char *buf)
 781{
 782	struct rfkill *rfkill = to_rfkill(dev);
 783
 784	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 785}
 786static DEVICE_ATTR_RO(hard_block_reasons);
 787
 788static u8 user_state_from_blocked(unsigned long state)
 789{
 790	if (state & RFKILL_BLOCK_HW)
 791		return RFKILL_USER_STATE_HARD_BLOCKED;
 792	if (state & RFKILL_BLOCK_SW)
 793		return RFKILL_USER_STATE_SOFT_BLOCKED;
 794
 795	return RFKILL_USER_STATE_UNBLOCKED;
 796}
 797
 798static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 799			  char *buf)
 800{
 801	struct rfkill *rfkill = to_rfkill(dev);
 802
 803	mutex_lock(&rfkill_global_mutex);
 804	rfkill_sync(rfkill);
 805	mutex_unlock(&rfkill_global_mutex);
 806
 807	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 808}
 809
 810static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 811			   const char *buf, size_t count)
 812{
 813	struct rfkill *rfkill = to_rfkill(dev);
 814	unsigned long state;
 815	int err;
 816
 817	if (!capable(CAP_NET_ADMIN))
 818		return -EPERM;
 819
 820	err = kstrtoul(buf, 0, &state);
 821	if (err)
 822		return err;
 823
 824	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 825	    state != RFKILL_USER_STATE_UNBLOCKED)
 826		return -EINVAL;
 827
 828	mutex_lock(&rfkill_global_mutex);
 829	rfkill_sync(rfkill);
 830	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 831	mutex_unlock(&rfkill_global_mutex);
 832
 833	return count;
 834}
 835static DEVICE_ATTR_RW(state);
 836
 
 
 
 
 
 
 
 837static struct attribute *rfkill_dev_attrs[] = {
 838	&dev_attr_name.attr,
 839	&dev_attr_type.attr,
 840	&dev_attr_index.attr,
 841	&dev_attr_persistent.attr,
 842	&dev_attr_state.attr,
 
 843	&dev_attr_soft.attr,
 844	&dev_attr_hard.attr,
 845	&dev_attr_hard_block_reasons.attr,
 846	NULL,
 847};
 848ATTRIBUTE_GROUPS(rfkill_dev);
 849
 850static void rfkill_release(struct device *dev)
 851{
 852	struct rfkill *rfkill = to_rfkill(dev);
 853
 854	kfree(rfkill);
 855}
 856
 857static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 858{
 859	struct rfkill *rfkill = to_rfkill(dev);
 860	unsigned long flags;
 861	unsigned long reasons;
 862	u32 state;
 863	int error;
 864
 865	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 866	if (error)
 867		return error;
 868	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 869			       rfkill_types[rfkill->type]);
 870	if (error)
 871		return error;
 872	spin_lock_irqsave(&rfkill->lock, flags);
 873	state = rfkill->state;
 874	reasons = rfkill->hard_block_reasons;
 875	spin_unlock_irqrestore(&rfkill->lock, flags);
 876	error = add_uevent_var(env, "RFKILL_STATE=%d",
 877			       user_state_from_blocked(state));
 878	if (error)
 879		return error;
 880	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 881}
 882
 883void rfkill_pause_polling(struct rfkill *rfkill)
 884{
 885	BUG_ON(!rfkill);
 886
 887	if (!rfkill->ops->poll)
 888		return;
 889
 890	rfkill->polling_paused = true;
 891	cancel_delayed_work_sync(&rfkill->poll_work);
 892}
 893EXPORT_SYMBOL(rfkill_pause_polling);
 894
 895void rfkill_resume_polling(struct rfkill *rfkill)
 896{
 897	BUG_ON(!rfkill);
 898
 899	if (!rfkill->ops->poll)
 900		return;
 901
 902	rfkill->polling_paused = false;
 903
 904	if (rfkill->suspended)
 905		return;
 906
 907	queue_delayed_work(system_power_efficient_wq,
 908			   &rfkill->poll_work, 0);
 909}
 910EXPORT_SYMBOL(rfkill_resume_polling);
 911
 912#ifdef CONFIG_PM_SLEEP
 913static int rfkill_suspend(struct device *dev)
 914{
 915	struct rfkill *rfkill = to_rfkill(dev);
 916
 917	rfkill->suspended = true;
 918	cancel_delayed_work_sync(&rfkill->poll_work);
 919
 920	return 0;
 921}
 922
 923static int rfkill_resume(struct device *dev)
 924{
 925	struct rfkill *rfkill = to_rfkill(dev);
 926	bool cur;
 927
 928	rfkill->suspended = false;
 929
 930	if (!rfkill->registered)
 931		return 0;
 932
 933	if (!rfkill->persistent) {
 934		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 935		rfkill_set_block(rfkill, cur);
 936	}
 937
 938	if (rfkill->ops->poll && !rfkill->polling_paused)
 939		queue_delayed_work(system_power_efficient_wq,
 940				   &rfkill->poll_work, 0);
 941
 942	return 0;
 943}
 944
 945static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 946#define RFKILL_PM_OPS (&rfkill_pm_ops)
 947#else
 948#define RFKILL_PM_OPS NULL
 949#endif
 950
 951static struct class rfkill_class = {
 952	.name		= "rfkill",
 953	.dev_release	= rfkill_release,
 954	.dev_groups	= rfkill_dev_groups,
 955	.dev_uevent	= rfkill_dev_uevent,
 956	.pm		= RFKILL_PM_OPS,
 
 957};
 958
 959bool rfkill_blocked(struct rfkill *rfkill)
 960{
 961	unsigned long flags;
 962	u32 state;
 963
 964	spin_lock_irqsave(&rfkill->lock, flags);
 965	state = rfkill->state;
 966	spin_unlock_irqrestore(&rfkill->lock, flags);
 967
 968	return !!(state & RFKILL_BLOCK_ANY);
 969}
 970EXPORT_SYMBOL(rfkill_blocked);
 971
 972bool rfkill_soft_blocked(struct rfkill *rfkill)
 973{
 974	unsigned long flags;
 975	u32 state;
 976
 977	spin_lock_irqsave(&rfkill->lock, flags);
 978	state = rfkill->state;
 979	spin_unlock_irqrestore(&rfkill->lock, flags);
 980
 981	return !!(state & RFKILL_BLOCK_SW);
 982}
 983EXPORT_SYMBOL(rfkill_soft_blocked);
 984
 985struct rfkill * __must_check rfkill_alloc(const char *name,
 986					  struct device *parent,
 987					  const enum rfkill_type type,
 988					  const struct rfkill_ops *ops,
 989					  void *ops_data)
 990{
 991	struct rfkill *rfkill;
 992	struct device *dev;
 993
 994	if (WARN_ON(!ops))
 995		return NULL;
 996
 997	if (WARN_ON(!ops->set_block))
 998		return NULL;
 999
1000	if (WARN_ON(!name))
1001		return NULL;
1002
1003	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1004		return NULL;
1005
1006	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1007	if (!rfkill)
1008		return NULL;
1009
1010	spin_lock_init(&rfkill->lock);
1011	INIT_LIST_HEAD(&rfkill->node);
1012	rfkill->type = type;
1013	strcpy(rfkill->name, name);
1014	rfkill->ops = ops;
1015	rfkill->data = ops_data;
1016
1017	dev = &rfkill->dev;
1018	dev->class = &rfkill_class;
1019	dev->parent = parent;
1020	device_initialize(dev);
1021
1022	return rfkill;
1023}
1024EXPORT_SYMBOL(rfkill_alloc);
1025
1026static void rfkill_poll(struct work_struct *work)
1027{
1028	struct rfkill *rfkill;
1029
1030	rfkill = container_of(work, struct rfkill, poll_work.work);
1031
1032	/*
1033	 * Poll hardware state -- driver will use one of the
1034	 * rfkill_set{,_hw,_sw}_state functions and use its
1035	 * return value to update the current status.
1036	 */
1037	rfkill->ops->poll(rfkill, rfkill->data);
1038
1039	queue_delayed_work(system_power_efficient_wq,
1040		&rfkill->poll_work,
1041		round_jiffies_relative(POLL_INTERVAL));
1042}
1043
1044static void rfkill_uevent_work(struct work_struct *work)
1045{
1046	struct rfkill *rfkill;
1047
1048	rfkill = container_of(work, struct rfkill, uevent_work);
1049
1050	mutex_lock(&rfkill_global_mutex);
1051	rfkill_event(rfkill);
1052	mutex_unlock(&rfkill_global_mutex);
1053}
1054
1055static void rfkill_sync_work(struct work_struct *work)
1056{
1057	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
 
 
 
1058
1059	mutex_lock(&rfkill_global_mutex);
1060	rfkill_sync(rfkill);
 
1061	mutex_unlock(&rfkill_global_mutex);
1062}
1063
1064int __must_check rfkill_register(struct rfkill *rfkill)
1065{
1066	static unsigned long rfkill_no;
1067	struct device *dev;
1068	int error;
1069
1070	if (!rfkill)
1071		return -EINVAL;
1072
1073	dev = &rfkill->dev;
1074
1075	mutex_lock(&rfkill_global_mutex);
1076
1077	if (rfkill->registered) {
1078		error = -EALREADY;
1079		goto unlock;
1080	}
1081
1082	rfkill->idx = rfkill_no;
1083	dev_set_name(dev, "rfkill%lu", rfkill_no);
1084	rfkill_no++;
1085
1086	list_add_tail(&rfkill->node, &rfkill_list);
1087
1088	error = device_add(dev);
1089	if (error)
1090		goto remove;
1091
1092	error = rfkill_led_trigger_register(rfkill);
1093	if (error)
1094		goto devdel;
1095
1096	rfkill->registered = true;
1097
1098	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1099	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1100	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1101
1102	if (rfkill->ops->poll)
1103		queue_delayed_work(system_power_efficient_wq,
1104			&rfkill->poll_work,
1105			round_jiffies_relative(POLL_INTERVAL));
1106
1107	if (!rfkill->persistent || rfkill_epo_lock_active) {
1108		rfkill->need_sync = true;
1109		schedule_work(&rfkill->sync_work);
1110	} else {
1111#ifdef CONFIG_RFKILL_INPUT
1112		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1113
1114		if (!atomic_read(&rfkill_input_disabled))
1115			__rfkill_switch_all(rfkill->type, soft_blocked);
1116#endif
1117	}
1118
1119	rfkill_global_led_trigger_event();
1120	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1121
1122	mutex_unlock(&rfkill_global_mutex);
1123	return 0;
1124
1125 devdel:
1126	device_del(&rfkill->dev);
1127 remove:
1128	list_del_init(&rfkill->node);
1129 unlock:
1130	mutex_unlock(&rfkill_global_mutex);
1131	return error;
1132}
1133EXPORT_SYMBOL(rfkill_register);
1134
1135void rfkill_unregister(struct rfkill *rfkill)
1136{
1137	BUG_ON(!rfkill);
1138
1139	if (rfkill->ops->poll)
1140		cancel_delayed_work_sync(&rfkill->poll_work);
1141
1142	cancel_work_sync(&rfkill->uevent_work);
1143	cancel_work_sync(&rfkill->sync_work);
1144
1145	rfkill->registered = false;
1146
1147	device_del(&rfkill->dev);
1148
1149	mutex_lock(&rfkill_global_mutex);
1150	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1151	list_del_init(&rfkill->node);
1152	rfkill_global_led_trigger_event();
1153	mutex_unlock(&rfkill_global_mutex);
1154
1155	rfkill_led_trigger_unregister(rfkill);
1156}
1157EXPORT_SYMBOL(rfkill_unregister);
1158
1159void rfkill_destroy(struct rfkill *rfkill)
1160{
1161	if (rfkill)
1162		put_device(&rfkill->dev);
1163}
1164EXPORT_SYMBOL(rfkill_destroy);
1165
1166static int rfkill_fop_open(struct inode *inode, struct file *file)
1167{
1168	struct rfkill_data *data;
1169	struct rfkill *rfkill;
1170	struct rfkill_int_event *ev, *tmp;
1171
1172	data = kzalloc(sizeof(*data), GFP_KERNEL);
1173	if (!data)
1174		return -ENOMEM;
1175
1176	data->max_size = RFKILL_EVENT_SIZE_V1;
1177
1178	INIT_LIST_HEAD(&data->events);
1179	mutex_init(&data->mtx);
1180	init_waitqueue_head(&data->read_wait);
1181
1182	mutex_lock(&rfkill_global_mutex);
 
1183	/*
1184	 * start getting events from elsewhere but hold mtx to get
1185	 * startup events added first
1186	 */
1187
1188	list_for_each_entry(rfkill, &rfkill_list, node) {
1189		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1190		if (!ev)
1191			goto free;
1192		rfkill_sync(rfkill);
1193		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1194		mutex_lock(&data->mtx);
1195		list_add_tail(&ev->list, &data->events);
1196		mutex_unlock(&data->mtx);
1197	}
1198	list_add(&data->list, &rfkill_fds);
 
1199	mutex_unlock(&rfkill_global_mutex);
1200
1201	file->private_data = data;
1202
1203	return stream_open(inode, file);
1204
1205 free:
 
1206	mutex_unlock(&rfkill_global_mutex);
1207	mutex_destroy(&data->mtx);
1208	list_for_each_entry_safe(ev, tmp, &data->events, list)
1209		kfree(ev);
1210	kfree(data);
1211	return -ENOMEM;
1212}
1213
1214static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1215{
1216	struct rfkill_data *data = file->private_data;
1217	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1218
1219	poll_wait(file, &data->read_wait, wait);
1220
1221	mutex_lock(&data->mtx);
1222	if (!list_empty(&data->events))
1223		res = EPOLLIN | EPOLLRDNORM;
1224	mutex_unlock(&data->mtx);
1225
1226	return res;
1227}
1228
 
 
 
 
 
 
 
 
 
 
 
1229static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1230			       size_t count, loff_t *pos)
1231{
1232	struct rfkill_data *data = file->private_data;
1233	struct rfkill_int_event *ev;
1234	unsigned long sz;
1235	int ret;
1236
1237	mutex_lock(&data->mtx);
1238
1239	while (list_empty(&data->events)) {
1240		if (file->f_flags & O_NONBLOCK) {
1241			ret = -EAGAIN;
1242			goto out;
1243		}
1244		mutex_unlock(&data->mtx);
1245		/* since we re-check and it just compares pointers,
1246		 * using !list_empty() without locking isn't a problem
1247		 */
1248		ret = wait_event_interruptible(data->read_wait,
1249					       !list_empty(&data->events));
1250		mutex_lock(&data->mtx);
1251
1252		if (ret)
1253			goto out;
1254	}
1255
1256	ev = list_first_entry(&data->events, struct rfkill_int_event,
1257				list);
1258
1259	sz = min_t(unsigned long, sizeof(ev->ev), count);
1260	sz = min_t(unsigned long, sz, data->max_size);
1261	ret = sz;
1262	if (copy_to_user(buf, &ev->ev, sz))
1263		ret = -EFAULT;
1264
1265	list_del(&ev->list);
1266	kfree(ev);
1267 out:
1268	mutex_unlock(&data->mtx);
1269	return ret;
1270}
1271
1272static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1273				size_t count, loff_t *pos)
1274{
1275	struct rfkill_data *data = file->private_data;
1276	struct rfkill *rfkill;
1277	struct rfkill_event_ext ev;
1278	int ret;
1279
1280	/* we don't need the 'hard' variable but accept it */
1281	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1282		return -EINVAL;
1283
1284	/*
1285	 * Copy as much data as we can accept into our 'ev' buffer,
1286	 * but tell userspace how much we've copied so it can determine
1287	 * our API version even in a write() call, if it cares.
1288	 */
1289	count = min(count, sizeof(ev));
1290	count = min_t(size_t, count, data->max_size);
1291	if (copy_from_user(&ev, buf, count))
1292		return -EFAULT;
1293
 
 
 
1294	if (ev.type >= NUM_RFKILL_TYPES)
1295		return -EINVAL;
1296
1297	mutex_lock(&rfkill_global_mutex);
1298
1299	switch (ev.op) {
1300	case RFKILL_OP_CHANGE_ALL:
1301		rfkill_update_global_state(ev.type, ev.soft);
1302		list_for_each_entry(rfkill, &rfkill_list, node)
1303			if (rfkill->type == ev.type ||
1304			    ev.type == RFKILL_TYPE_ALL)
1305				rfkill_set_block(rfkill, ev.soft);
1306		ret = 0;
1307		break;
1308	case RFKILL_OP_CHANGE:
1309		list_for_each_entry(rfkill, &rfkill_list, node)
1310			if (rfkill->idx == ev.idx &&
1311			    (rfkill->type == ev.type ||
1312			     ev.type == RFKILL_TYPE_ALL))
1313				rfkill_set_block(rfkill, ev.soft);
1314		ret = 0;
1315		break;
1316	default:
1317		ret = -EINVAL;
1318		break;
1319	}
1320
 
 
 
 
 
 
 
 
 
1321	mutex_unlock(&rfkill_global_mutex);
1322
1323	return ret ?: count;
1324}
1325
1326static int rfkill_fop_release(struct inode *inode, struct file *file)
1327{
1328	struct rfkill_data *data = file->private_data;
1329	struct rfkill_int_event *ev, *tmp;
1330
1331	mutex_lock(&rfkill_global_mutex);
1332	list_del(&data->list);
1333	mutex_unlock(&rfkill_global_mutex);
1334
1335	mutex_destroy(&data->mtx);
1336	list_for_each_entry_safe(ev, tmp, &data->events, list)
1337		kfree(ev);
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340	if (data->input_handler)
1341		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1342			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1343#endif
1344
1345	kfree(data);
1346
1347	return 0;
1348}
1349
 
1350static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1351			     unsigned long arg)
1352{
1353	struct rfkill_data *data = file->private_data;
1354	int ret = -ENOTTY;
1355	u32 size;
1356
1357	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1358		return -ENOTTY;
 
 
 
1359
1360	mutex_lock(&data->mtx);
1361	switch (_IOC_NR(cmd)) {
1362#ifdef CONFIG_RFKILL_INPUT
1363	case RFKILL_IOC_NOINPUT:
1364		if (!data->input_handler) {
1365			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1366				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1367			data->input_handler = true;
1368		}
1369		ret = 0;
1370		break;
1371#endif
1372	case RFKILL_IOC_MAX_SIZE:
1373		if (get_user(size, (__u32 __user *)arg)) {
1374			ret = -EFAULT;
1375			break;
1376		}
1377		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1378			ret = -EINVAL;
1379			break;
1380		}
1381		data->max_size = size;
1382		ret = 0;
1383		break;
1384	default:
1385		break;
1386	}
 
1387	mutex_unlock(&data->mtx);
1388
1389	return ret;
1390}
 
1391
1392static const struct file_operations rfkill_fops = {
1393	.owner		= THIS_MODULE,
1394	.open		= rfkill_fop_open,
1395	.read		= rfkill_fop_read,
1396	.write		= rfkill_fop_write,
1397	.poll		= rfkill_fop_poll,
1398	.release	= rfkill_fop_release,
 
1399	.unlocked_ioctl	= rfkill_fop_ioctl,
1400	.compat_ioctl	= compat_ptr_ioctl,
 
1401	.llseek		= no_llseek,
1402};
1403
1404#define RFKILL_NAME "rfkill"
1405
1406static struct miscdevice rfkill_miscdev = {
 
1407	.fops	= &rfkill_fops,
1408	.name	= RFKILL_NAME,
1409	.minor	= RFKILL_MINOR,
1410};
1411
1412static int __init rfkill_init(void)
1413{
1414	int error;
 
1415
1416	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
 
1417
1418	error = class_register(&rfkill_class);
1419	if (error)
1420		goto error_class;
1421
1422	error = misc_register(&rfkill_miscdev);
1423	if (error)
1424		goto error_misc;
1425
1426	error = rfkill_global_led_trigger_register();
1427	if (error)
1428		goto error_led_trigger;
1429
1430#ifdef CONFIG_RFKILL_INPUT
1431	error = rfkill_handler_init();
1432	if (error)
1433		goto error_input;
 
 
 
1434#endif
1435
1436	return 0;
1437
1438#ifdef CONFIG_RFKILL_INPUT
1439error_input:
1440	rfkill_global_led_trigger_unregister();
1441#endif
1442error_led_trigger:
1443	misc_deregister(&rfkill_miscdev);
1444error_misc:
1445	class_unregister(&rfkill_class);
1446error_class:
1447	return error;
1448}
1449subsys_initcall(rfkill_init);
1450
1451static void __exit rfkill_exit(void)
1452{
1453#ifdef CONFIG_RFKILL_INPUT
1454	rfkill_handler_exit();
1455#endif
1456	rfkill_global_led_trigger_unregister();
1457	misc_deregister(&rfkill_miscdev);
1458	class_unregister(&rfkill_class);
1459}
1460module_exit(rfkill_exit);
1461
1462MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1463MODULE_ALIAS("devname:" RFKILL_NAME);
v3.15
 
   1/*
   2 * Copyright (C) 2006 - 2007 Ivo van Doorn
   3 * Copyright (C) 2007 Dmitry Torokhov
   4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23#include <linux/workqueue.h>
  24#include <linux/capability.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/rfkill.h>
  28#include <linux/sched.h>
  29#include <linux/spinlock.h>
  30#include <linux/device.h>
  31#include <linux/miscdevice.h>
  32#include <linux/wait.h>
  33#include <linux/poll.h>
  34#include <linux/fs.h>
  35#include <linux/slab.h>
  36
  37#include "rfkill.h"
  38
  39#define POLL_INTERVAL		(5 * HZ)
  40
  41#define RFKILL_BLOCK_HW		BIT(0)
  42#define RFKILL_BLOCK_SW		BIT(1)
  43#define RFKILL_BLOCK_SW_PREV	BIT(2)
  44#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  45				 RFKILL_BLOCK_SW |\
  46				 RFKILL_BLOCK_SW_PREV)
  47#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  48
  49struct rfkill {
  50	spinlock_t		lock;
  51
  52	const char		*name;
  53	enum rfkill_type	type;
  54
  55	unsigned long		state;
 
  56
  57	u32			idx;
  58
  59	bool			registered;
  60	bool			persistent;
 
 
 
  61
  62	const struct rfkill_ops	*ops;
  63	void			*data;
  64
  65#ifdef CONFIG_RFKILL_LEDS
  66	struct led_trigger	led_trigger;
  67	const char		*ledtrigname;
  68#endif
  69
  70	struct device		dev;
  71	struct list_head	node;
  72
  73	struct delayed_work	poll_work;
  74	struct work_struct	uevent_work;
  75	struct work_struct	sync_work;
 
  76};
  77#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  78
  79struct rfkill_int_event {
  80	struct list_head	list;
  81	struct rfkill_event	ev;
  82};
  83
  84struct rfkill_data {
  85	struct list_head	list;
  86	struct list_head	events;
  87	struct mutex		mtx;
  88	wait_queue_head_t	read_wait;
  89	bool			input_handler;
 
  90};
  91
  92
  93MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  94MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  95MODULE_DESCRIPTION("RF switch support");
  96MODULE_LICENSE("GPL");
  97
  98
  99/*
 100 * The locking here should be made much smarter, we currently have
 101 * a bit of a stupid situation because drivers might want to register
 102 * the rfkill struct under their own lock, and take this lock during
 103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
 104 *
 105 * To fix that, we need to rework this code here to be mostly lock-free
 106 * and only use the mutex for list manipulations, not to protect the
 107 * various other global variables. Then we can avoid holding the mutex
 108 * around driver operations, and all is happy.
 109 */
 110static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 111static DEFINE_MUTEX(rfkill_global_mutex);
 112static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 113
 114static unsigned int rfkill_default_state = 1;
 115module_param_named(default_state, rfkill_default_state, uint, 0444);
 116MODULE_PARM_DESC(default_state,
 117		 "Default initial state for all radio types, 0 = radio off");
 118
 119static struct {
 120	bool cur, sav;
 121} rfkill_global_states[NUM_RFKILL_TYPES];
 122
 123static bool rfkill_epo_lock_active;
 124
 125
 126#ifdef CONFIG_RFKILL_LEDS
 127static void rfkill_led_trigger_event(struct rfkill *rfkill)
 128{
 129	struct led_trigger *trigger;
 130
 131	if (!rfkill->registered)
 132		return;
 133
 134	trigger = &rfkill->led_trigger;
 135
 136	if (rfkill->state & RFKILL_BLOCK_ANY)
 137		led_trigger_event(trigger, LED_OFF);
 138	else
 139		led_trigger_event(trigger, LED_FULL);
 140}
 141
 142static void rfkill_led_trigger_activate(struct led_classdev *led)
 143{
 144	struct rfkill *rfkill;
 145
 146	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 147
 148	rfkill_led_trigger_event(rfkill);
 
 
 149}
 150
 151const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 152{
 153	return rfkill->led_trigger.name;
 154}
 155EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 156
 157void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 158{
 159	BUG_ON(!rfkill);
 160
 161	rfkill->ledtrigname = name;
 162}
 163EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 164
 165static int rfkill_led_trigger_register(struct rfkill *rfkill)
 166{
 167	rfkill->led_trigger.name = rfkill->ledtrigname
 168					? : dev_name(&rfkill->dev);
 169	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 170	return led_trigger_register(&rfkill->led_trigger);
 171}
 172
 173static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 174{
 175	led_trigger_unregister(&rfkill->led_trigger);
 176}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177#else
 178static void rfkill_led_trigger_event(struct rfkill *rfkill)
 179{
 180}
 181
 182static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 183{
 184	return 0;
 185}
 186
 187static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 188{
 189}
 
 
 
 
 
 
 
 
 
 
 
 
 
 190#endif /* CONFIG_RFKILL_LEDS */
 191
 192static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 193			      enum rfkill_operation op)
 194{
 195	unsigned long flags;
 196
 197	ev->idx = rfkill->idx;
 198	ev->type = rfkill->type;
 199	ev->op = op;
 200
 201	spin_lock_irqsave(&rfkill->lock, flags);
 202	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 203	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 204					RFKILL_BLOCK_SW_PREV));
 
 205	spin_unlock_irqrestore(&rfkill->lock, flags);
 206}
 207
 208static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 209{
 210	struct rfkill_data *data;
 211	struct rfkill_int_event *ev;
 212
 213	list_for_each_entry(data, &rfkill_fds, list) {
 214		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 215		if (!ev)
 216			continue;
 217		rfkill_fill_event(&ev->ev, rfkill, op);
 218		mutex_lock(&data->mtx);
 219		list_add_tail(&ev->list, &data->events);
 220		mutex_unlock(&data->mtx);
 221		wake_up_interruptible(&data->read_wait);
 222	}
 223}
 224
 225static void rfkill_event(struct rfkill *rfkill)
 226{
 227	if (!rfkill->registered)
 228		return;
 229
 230	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 231
 232	/* also send event to /dev/rfkill */
 233	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 234}
 235
 236static bool __rfkill_set_hw_state(struct rfkill *rfkill,
 237				  bool blocked, bool *change)
 238{
 239	unsigned long flags;
 240	bool prev, any;
 241
 242	BUG_ON(!rfkill);
 243
 244	spin_lock_irqsave(&rfkill->lock, flags);
 245	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 246	if (blocked)
 247		rfkill->state |= RFKILL_BLOCK_HW;
 248	else
 249		rfkill->state &= ~RFKILL_BLOCK_HW;
 250	*change = prev != blocked;
 251	any = !!(rfkill->state & RFKILL_BLOCK_ANY);
 252	spin_unlock_irqrestore(&rfkill->lock, flags);
 253
 254	rfkill_led_trigger_event(rfkill);
 255
 256	return any;
 257}
 258
 259/**
 260 * rfkill_set_block - wrapper for set_block method
 261 *
 262 * @rfkill: the rfkill struct to use
 263 * @blocked: the new software state
 264 *
 265 * Calls the set_block method (when applicable) and handles notifications
 266 * etc. as well.
 267 */
 268static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 269{
 270	unsigned long flags;
 271	bool prev, curr;
 272	int err;
 273
 274	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 275		return;
 276
 277	/*
 278	 * Some platforms (...!) generate input events which affect the
 279	 * _hard_ kill state -- whenever something tries to change the
 280	 * current software state query the hardware state too.
 281	 */
 282	if (rfkill->ops->query)
 283		rfkill->ops->query(rfkill, rfkill->data);
 284
 285	spin_lock_irqsave(&rfkill->lock, flags);
 286	prev = rfkill->state & RFKILL_BLOCK_SW;
 287
 288	if (rfkill->state & RFKILL_BLOCK_SW)
 289		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 290	else
 291		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 292
 293	if (blocked)
 294		rfkill->state |= RFKILL_BLOCK_SW;
 295	else
 296		rfkill->state &= ~RFKILL_BLOCK_SW;
 297
 298	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 299	spin_unlock_irqrestore(&rfkill->lock, flags);
 300
 301	err = rfkill->ops->set_block(rfkill->data, blocked);
 302
 303	spin_lock_irqsave(&rfkill->lock, flags);
 304	if (err) {
 305		/*
 306		 * Failed -- reset status to _prev, this may be different
 307		 * from what set set _PREV to earlier in this function
 308		 * if rfkill_set_sw_state was invoked.
 309		 */
 310		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 311			rfkill->state |= RFKILL_BLOCK_SW;
 312		else
 313			rfkill->state &= ~RFKILL_BLOCK_SW;
 314	}
 315	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 316	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 317	curr = rfkill->state & RFKILL_BLOCK_SW;
 318	spin_unlock_irqrestore(&rfkill->lock, flags);
 319
 320	rfkill_led_trigger_event(rfkill);
 
 321
 322	if (prev != curr)
 323		rfkill_event(rfkill);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326#ifdef CONFIG_RFKILL_INPUT
 327static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 328
 329/**
 330 * __rfkill_switch_all - Toggle state of all switches of given type
 331 * @type: type of interfaces to be affected
 332 * @state: the new state
 333 *
 334 * This function sets the state of all switches of given type,
 335 * unless a specific switch is claimed by userspace (in which case,
 336 * that switch is left alone) or suspended.
 337 *
 338 * Caller must have acquired rfkill_global_mutex.
 339 */
 340static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 341{
 342	struct rfkill *rfkill;
 343
 344	rfkill_global_states[type].cur = blocked;
 345	list_for_each_entry(rfkill, &rfkill_list, node) {
 346		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 347			continue;
 348
 349		rfkill_set_block(rfkill, blocked);
 350	}
 351}
 352
 353/**
 354 * rfkill_switch_all - Toggle state of all switches of given type
 355 * @type: type of interfaces to be affected
 356 * @state: the new state
 357 *
 358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 359 * Please refer to __rfkill_switch_all() for details.
 360 *
 361 * Does nothing if the EPO lock is active.
 362 */
 363void rfkill_switch_all(enum rfkill_type type, bool blocked)
 364{
 365	if (atomic_read(&rfkill_input_disabled))
 366		return;
 367
 368	mutex_lock(&rfkill_global_mutex);
 369
 370	if (!rfkill_epo_lock_active)
 371		__rfkill_switch_all(type, blocked);
 372
 373	mutex_unlock(&rfkill_global_mutex);
 374}
 375
 376/**
 377 * rfkill_epo - emergency power off all transmitters
 378 *
 379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 381 *
 382 * The global state before the EPO is saved and can be restored later
 383 * using rfkill_restore_states().
 384 */
 385void rfkill_epo(void)
 386{
 387	struct rfkill *rfkill;
 388	int i;
 389
 390	if (atomic_read(&rfkill_input_disabled))
 391		return;
 392
 393	mutex_lock(&rfkill_global_mutex);
 394
 395	rfkill_epo_lock_active = true;
 396	list_for_each_entry(rfkill, &rfkill_list, node)
 397		rfkill_set_block(rfkill, true);
 398
 399	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 400		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 401		rfkill_global_states[i].cur = true;
 402	}
 403
 404	mutex_unlock(&rfkill_global_mutex);
 405}
 406
 407/**
 408 * rfkill_restore_states - restore global states
 409 *
 410 * Restore (and sync switches to) the global state from the
 411 * states in rfkill_default_states.  This can undo the effects of
 412 * a call to rfkill_epo().
 413 */
 414void rfkill_restore_states(void)
 415{
 416	int i;
 417
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	rfkill_epo_lock_active = false;
 424	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 425		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_remove_epo_lock - unlock state changes
 431 *
 432 * Used by rfkill-input manually unlock state changes, when
 433 * the EPO switch is deactivated.
 434 */
 435void rfkill_remove_epo_lock(void)
 436{
 437	if (atomic_read(&rfkill_input_disabled))
 438		return;
 439
 440	mutex_lock(&rfkill_global_mutex);
 441	rfkill_epo_lock_active = false;
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_is_epo_lock_active - returns true EPO is active
 447 *
 448 * Returns 0 (false) if there is NOT an active EPO contidion,
 449 * and 1 (true) if there is an active EPO contition, which
 450 * locks all radios in one of the BLOCKED states.
 451 *
 452 * Can be called in atomic context.
 453 */
 454bool rfkill_is_epo_lock_active(void)
 455{
 456	return rfkill_epo_lock_active;
 457}
 458
 459/**
 460 * rfkill_get_global_sw_state - returns global state for a type
 461 * @type: the type to get the global state of
 462 *
 463 * Returns the current global state for a given wireless
 464 * device type.
 465 */
 466bool rfkill_get_global_sw_state(const enum rfkill_type type)
 467{
 468	return rfkill_global_states[type].cur;
 469}
 470#endif
 471
 
 
 
 
 
 
 
 472
 473bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 474{
 475	bool ret, change;
 
 476
 477	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
 
 
 
 
 
 
 
 
 
 
 
 478
 479	if (!rfkill->registered)
 480		return ret;
 481
 482	if (change)
 483		schedule_work(&rfkill->uevent_work);
 484
 485	return ret;
 486}
 487EXPORT_SYMBOL(rfkill_set_hw_state);
 488
 489static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 490{
 491	u32 bit = RFKILL_BLOCK_SW;
 492
 493	/* if in a ops->set_block right now, use other bit */
 494	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 495		bit = RFKILL_BLOCK_SW_PREV;
 496
 497	if (blocked)
 498		rfkill->state |= bit;
 499	else
 500		rfkill->state &= ~bit;
 501}
 502
 503bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 504{
 505	unsigned long flags;
 506	bool prev, hwblock;
 507
 508	BUG_ON(!rfkill);
 509
 510	spin_lock_irqsave(&rfkill->lock, flags);
 511	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 512	__rfkill_set_sw_state(rfkill, blocked);
 513	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 514	blocked = blocked || hwblock;
 515	spin_unlock_irqrestore(&rfkill->lock, flags);
 516
 517	if (!rfkill->registered)
 518		return blocked;
 519
 520	if (prev != blocked && !hwblock)
 521		schedule_work(&rfkill->uevent_work);
 522
 523	rfkill_led_trigger_event(rfkill);
 
 524
 525	return blocked;
 526}
 527EXPORT_SYMBOL(rfkill_set_sw_state);
 528
 529void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 530{
 531	unsigned long flags;
 532
 533	BUG_ON(!rfkill);
 534	BUG_ON(rfkill->registered);
 535
 536	spin_lock_irqsave(&rfkill->lock, flags);
 537	__rfkill_set_sw_state(rfkill, blocked);
 538	rfkill->persistent = true;
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540}
 541EXPORT_SYMBOL(rfkill_init_sw_state);
 542
 543void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 544{
 545	unsigned long flags;
 546	bool swprev, hwprev;
 547
 548	BUG_ON(!rfkill);
 549
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551
 552	/*
 553	 * No need to care about prev/setblock ... this is for uevent only
 554	 * and that will get triggered by rfkill_set_block anyway.
 555	 */
 556	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 557	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 558	__rfkill_set_sw_state(rfkill, sw);
 559	if (hw)
 560		rfkill->state |= RFKILL_BLOCK_HW;
 561	else
 562		rfkill->state &= ~RFKILL_BLOCK_HW;
 563
 564	spin_unlock_irqrestore(&rfkill->lock, flags);
 565
 566	if (!rfkill->registered) {
 567		rfkill->persistent = true;
 568	} else {
 569		if (swprev != sw || hwprev != hw)
 570			schedule_work(&rfkill->uevent_work);
 571
 572		rfkill_led_trigger_event(rfkill);
 
 573	}
 574}
 575EXPORT_SYMBOL(rfkill_set_states);
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 578			 char *buf)
 579{
 580	struct rfkill *rfkill = to_rfkill(dev);
 581
 582	return sprintf(buf, "%s\n", rfkill->name);
 583}
 584static DEVICE_ATTR_RO(name);
 585
 586static const char *rfkill_get_type_str(enum rfkill_type type)
 587{
 588	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
 589
 590	switch (type) {
 591	case RFKILL_TYPE_WLAN:
 592		return "wlan";
 593	case RFKILL_TYPE_BLUETOOTH:
 594		return "bluetooth";
 595	case RFKILL_TYPE_UWB:
 596		return "ultrawideband";
 597	case RFKILL_TYPE_WIMAX:
 598		return "wimax";
 599	case RFKILL_TYPE_WWAN:
 600		return "wwan";
 601	case RFKILL_TYPE_GPS:
 602		return "gps";
 603	case RFKILL_TYPE_FM:
 604		return "fm";
 605	case RFKILL_TYPE_NFC:
 606		return "nfc";
 607	default:
 608		BUG();
 609	}
 610}
 611
 612static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 613			 char *buf)
 614{
 615	struct rfkill *rfkill = to_rfkill(dev);
 616
 617	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
 618}
 619static DEVICE_ATTR_RO(type);
 620
 621static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 622			  char *buf)
 623{
 624	struct rfkill *rfkill = to_rfkill(dev);
 625
 626	return sprintf(buf, "%d\n", rfkill->idx);
 627}
 628static DEVICE_ATTR_RO(index);
 629
 630static ssize_t persistent_show(struct device *dev,
 631			       struct device_attribute *attr, char *buf)
 632{
 633	struct rfkill *rfkill = to_rfkill(dev);
 634
 635	return sprintf(buf, "%d\n", rfkill->persistent);
 636}
 637static DEVICE_ATTR_RO(persistent);
 638
 639static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 640			 char *buf)
 641{
 642	struct rfkill *rfkill = to_rfkill(dev);
 643
 644	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 645}
 646static DEVICE_ATTR_RO(hard);
 647
 648static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 649			 char *buf)
 650{
 651	struct rfkill *rfkill = to_rfkill(dev);
 652
 653	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 
 
 
 
 654}
 655
 656static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 657			  const char *buf, size_t count)
 658{
 659	struct rfkill *rfkill = to_rfkill(dev);
 660	unsigned long state;
 661	int err;
 662
 663	if (!capable(CAP_NET_ADMIN))
 664		return -EPERM;
 665
 666	err = kstrtoul(buf, 0, &state);
 667	if (err)
 668		return err;
 669
 670	if (state > 1 )
 671		return -EINVAL;
 672
 673	mutex_lock(&rfkill_global_mutex);
 
 674	rfkill_set_block(rfkill, state);
 675	mutex_unlock(&rfkill_global_mutex);
 676
 677	return count;
 678}
 679static DEVICE_ATTR_RW(soft);
 680
 
 
 
 
 
 
 
 
 
 
 681static u8 user_state_from_blocked(unsigned long state)
 682{
 683	if (state & RFKILL_BLOCK_HW)
 684		return RFKILL_USER_STATE_HARD_BLOCKED;
 685	if (state & RFKILL_BLOCK_SW)
 686		return RFKILL_USER_STATE_SOFT_BLOCKED;
 687
 688	return RFKILL_USER_STATE_UNBLOCKED;
 689}
 690
 691static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 692			  char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 
 
 
 
 697}
 698
 699static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 700			   const char *buf, size_t count)
 701{
 702	struct rfkill *rfkill = to_rfkill(dev);
 703	unsigned long state;
 704	int err;
 705
 706	if (!capable(CAP_NET_ADMIN))
 707		return -EPERM;
 708
 709	err = kstrtoul(buf, 0, &state);
 710	if (err)
 711		return err;
 712
 713	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 714	    state != RFKILL_USER_STATE_UNBLOCKED)
 715		return -EINVAL;
 716
 717	mutex_lock(&rfkill_global_mutex);
 
 718	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 719	mutex_unlock(&rfkill_global_mutex);
 720
 721	return count;
 722}
 723static DEVICE_ATTR_RW(state);
 724
 725static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
 726			  char *buf)
 727{
 728	return sprintf(buf, "%d\n", 0);
 729}
 730static DEVICE_ATTR_RO(claim);
 731
 732static struct attribute *rfkill_dev_attrs[] = {
 733	&dev_attr_name.attr,
 734	&dev_attr_type.attr,
 735	&dev_attr_index.attr,
 736	&dev_attr_persistent.attr,
 737	&dev_attr_state.attr,
 738	&dev_attr_claim.attr,
 739	&dev_attr_soft.attr,
 740	&dev_attr_hard.attr,
 
 741	NULL,
 742};
 743ATTRIBUTE_GROUPS(rfkill_dev);
 744
 745static void rfkill_release(struct device *dev)
 746{
 747	struct rfkill *rfkill = to_rfkill(dev);
 748
 749	kfree(rfkill);
 750}
 751
 752static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 753{
 754	struct rfkill *rfkill = to_rfkill(dev);
 755	unsigned long flags;
 
 756	u32 state;
 757	int error;
 758
 759	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 760	if (error)
 761		return error;
 762	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 763			       rfkill_get_type_str(rfkill->type));
 764	if (error)
 765		return error;
 766	spin_lock_irqsave(&rfkill->lock, flags);
 767	state = rfkill->state;
 
 768	spin_unlock_irqrestore(&rfkill->lock, flags);
 769	error = add_uevent_var(env, "RFKILL_STATE=%d",
 770			       user_state_from_blocked(state));
 771	return error;
 
 
 772}
 773
 774void rfkill_pause_polling(struct rfkill *rfkill)
 775{
 776	BUG_ON(!rfkill);
 777
 778	if (!rfkill->ops->poll)
 779		return;
 780
 
 781	cancel_delayed_work_sync(&rfkill->poll_work);
 782}
 783EXPORT_SYMBOL(rfkill_pause_polling);
 784
 785void rfkill_resume_polling(struct rfkill *rfkill)
 786{
 787	BUG_ON(!rfkill);
 788
 789	if (!rfkill->ops->poll)
 790		return;
 791
 
 
 
 
 
 792	queue_delayed_work(system_power_efficient_wq,
 793			   &rfkill->poll_work, 0);
 794}
 795EXPORT_SYMBOL(rfkill_resume_polling);
 796
 797static int rfkill_suspend(struct device *dev, pm_message_t state)
 
 798{
 799	struct rfkill *rfkill = to_rfkill(dev);
 800
 801	rfkill_pause_polling(rfkill);
 
 802
 803	return 0;
 804}
 805
 806static int rfkill_resume(struct device *dev)
 807{
 808	struct rfkill *rfkill = to_rfkill(dev);
 809	bool cur;
 810
 
 
 
 
 
 811	if (!rfkill->persistent) {
 812		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 813		rfkill_set_block(rfkill, cur);
 814	}
 815
 816	rfkill_resume_polling(rfkill);
 
 
 817
 818	return 0;
 819}
 820
 
 
 
 
 
 
 821static struct class rfkill_class = {
 822	.name		= "rfkill",
 823	.dev_release	= rfkill_release,
 824	.dev_groups	= rfkill_dev_groups,
 825	.dev_uevent	= rfkill_dev_uevent,
 826	.suspend	= rfkill_suspend,
 827	.resume		= rfkill_resume,
 828};
 829
 830bool rfkill_blocked(struct rfkill *rfkill)
 831{
 832	unsigned long flags;
 833	u32 state;
 834
 835	spin_lock_irqsave(&rfkill->lock, flags);
 836	state = rfkill->state;
 837	spin_unlock_irqrestore(&rfkill->lock, flags);
 838
 839	return !!(state & RFKILL_BLOCK_ANY);
 840}
 841EXPORT_SYMBOL(rfkill_blocked);
 842
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844struct rfkill * __must_check rfkill_alloc(const char *name,
 845					  struct device *parent,
 846					  const enum rfkill_type type,
 847					  const struct rfkill_ops *ops,
 848					  void *ops_data)
 849{
 850	struct rfkill *rfkill;
 851	struct device *dev;
 852
 853	if (WARN_ON(!ops))
 854		return NULL;
 855
 856	if (WARN_ON(!ops->set_block))
 857		return NULL;
 858
 859	if (WARN_ON(!name))
 860		return NULL;
 861
 862	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 863		return NULL;
 864
 865	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
 866	if (!rfkill)
 867		return NULL;
 868
 869	spin_lock_init(&rfkill->lock);
 870	INIT_LIST_HEAD(&rfkill->node);
 871	rfkill->type = type;
 872	rfkill->name = name;
 873	rfkill->ops = ops;
 874	rfkill->data = ops_data;
 875
 876	dev = &rfkill->dev;
 877	dev->class = &rfkill_class;
 878	dev->parent = parent;
 879	device_initialize(dev);
 880
 881	return rfkill;
 882}
 883EXPORT_SYMBOL(rfkill_alloc);
 884
 885static void rfkill_poll(struct work_struct *work)
 886{
 887	struct rfkill *rfkill;
 888
 889	rfkill = container_of(work, struct rfkill, poll_work.work);
 890
 891	/*
 892	 * Poll hardware state -- driver will use one of the
 893	 * rfkill_set{,_hw,_sw}_state functions and use its
 894	 * return value to update the current status.
 895	 */
 896	rfkill->ops->poll(rfkill, rfkill->data);
 897
 898	queue_delayed_work(system_power_efficient_wq,
 899		&rfkill->poll_work,
 900		round_jiffies_relative(POLL_INTERVAL));
 901}
 902
 903static void rfkill_uevent_work(struct work_struct *work)
 904{
 905	struct rfkill *rfkill;
 906
 907	rfkill = container_of(work, struct rfkill, uevent_work);
 908
 909	mutex_lock(&rfkill_global_mutex);
 910	rfkill_event(rfkill);
 911	mutex_unlock(&rfkill_global_mutex);
 912}
 913
 914static void rfkill_sync_work(struct work_struct *work)
 915{
 916	struct rfkill *rfkill;
 917	bool cur;
 918
 919	rfkill = container_of(work, struct rfkill, sync_work);
 920
 921	mutex_lock(&rfkill_global_mutex);
 922	cur = rfkill_global_states[rfkill->type].cur;
 923	rfkill_set_block(rfkill, cur);
 924	mutex_unlock(&rfkill_global_mutex);
 925}
 926
 927int __must_check rfkill_register(struct rfkill *rfkill)
 928{
 929	static unsigned long rfkill_no;
 930	struct device *dev = &rfkill->dev;
 931	int error;
 932
 933	BUG_ON(!rfkill);
 
 
 
 934
 935	mutex_lock(&rfkill_global_mutex);
 936
 937	if (rfkill->registered) {
 938		error = -EALREADY;
 939		goto unlock;
 940	}
 941
 942	rfkill->idx = rfkill_no;
 943	dev_set_name(dev, "rfkill%lu", rfkill_no);
 944	rfkill_no++;
 945
 946	list_add_tail(&rfkill->node, &rfkill_list);
 947
 948	error = device_add(dev);
 949	if (error)
 950		goto remove;
 951
 952	error = rfkill_led_trigger_register(rfkill);
 953	if (error)
 954		goto devdel;
 955
 956	rfkill->registered = true;
 957
 958	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
 959	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
 960	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
 961
 962	if (rfkill->ops->poll)
 963		queue_delayed_work(system_power_efficient_wq,
 964			&rfkill->poll_work,
 965			round_jiffies_relative(POLL_INTERVAL));
 966
 967	if (!rfkill->persistent || rfkill_epo_lock_active) {
 
 968		schedule_work(&rfkill->sync_work);
 969	} else {
 970#ifdef CONFIG_RFKILL_INPUT
 971		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
 972
 973		if (!atomic_read(&rfkill_input_disabled))
 974			__rfkill_switch_all(rfkill->type, soft_blocked);
 975#endif
 976	}
 977
 
 978	rfkill_send_events(rfkill, RFKILL_OP_ADD);
 979
 980	mutex_unlock(&rfkill_global_mutex);
 981	return 0;
 982
 983 devdel:
 984	device_del(&rfkill->dev);
 985 remove:
 986	list_del_init(&rfkill->node);
 987 unlock:
 988	mutex_unlock(&rfkill_global_mutex);
 989	return error;
 990}
 991EXPORT_SYMBOL(rfkill_register);
 992
 993void rfkill_unregister(struct rfkill *rfkill)
 994{
 995	BUG_ON(!rfkill);
 996
 997	if (rfkill->ops->poll)
 998		cancel_delayed_work_sync(&rfkill->poll_work);
 999
1000	cancel_work_sync(&rfkill->uevent_work);
1001	cancel_work_sync(&rfkill->sync_work);
1002
1003	rfkill->registered = false;
1004
1005	device_del(&rfkill->dev);
1006
1007	mutex_lock(&rfkill_global_mutex);
1008	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1009	list_del_init(&rfkill->node);
 
1010	mutex_unlock(&rfkill_global_mutex);
1011
1012	rfkill_led_trigger_unregister(rfkill);
1013}
1014EXPORT_SYMBOL(rfkill_unregister);
1015
1016void rfkill_destroy(struct rfkill *rfkill)
1017{
1018	if (rfkill)
1019		put_device(&rfkill->dev);
1020}
1021EXPORT_SYMBOL(rfkill_destroy);
1022
1023static int rfkill_fop_open(struct inode *inode, struct file *file)
1024{
1025	struct rfkill_data *data;
1026	struct rfkill *rfkill;
1027	struct rfkill_int_event *ev, *tmp;
1028
1029	data = kzalloc(sizeof(*data), GFP_KERNEL);
1030	if (!data)
1031		return -ENOMEM;
1032
 
 
1033	INIT_LIST_HEAD(&data->events);
1034	mutex_init(&data->mtx);
1035	init_waitqueue_head(&data->read_wait);
1036
1037	mutex_lock(&rfkill_global_mutex);
1038	mutex_lock(&data->mtx);
1039	/*
1040	 * start getting events from elsewhere but hold mtx to get
1041	 * startup events added first
1042	 */
1043
1044	list_for_each_entry(rfkill, &rfkill_list, node) {
1045		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1046		if (!ev)
1047			goto free;
 
1048		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
 
1049		list_add_tail(&ev->list, &data->events);
 
1050	}
1051	list_add(&data->list, &rfkill_fds);
1052	mutex_unlock(&data->mtx);
1053	mutex_unlock(&rfkill_global_mutex);
1054
1055	file->private_data = data;
1056
1057	return nonseekable_open(inode, file);
1058
1059 free:
1060	mutex_unlock(&data->mtx);
1061	mutex_unlock(&rfkill_global_mutex);
1062	mutex_destroy(&data->mtx);
1063	list_for_each_entry_safe(ev, tmp, &data->events, list)
1064		kfree(ev);
1065	kfree(data);
1066	return -ENOMEM;
1067}
1068
1069static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1070{
1071	struct rfkill_data *data = file->private_data;
1072	unsigned int res = POLLOUT | POLLWRNORM;
1073
1074	poll_wait(file, &data->read_wait, wait);
1075
1076	mutex_lock(&data->mtx);
1077	if (!list_empty(&data->events))
1078		res = POLLIN | POLLRDNORM;
1079	mutex_unlock(&data->mtx);
1080
1081	return res;
1082}
1083
1084static bool rfkill_readable(struct rfkill_data *data)
1085{
1086	bool r;
1087
1088	mutex_lock(&data->mtx);
1089	r = !list_empty(&data->events);
1090	mutex_unlock(&data->mtx);
1091
1092	return r;
1093}
1094
1095static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1096			       size_t count, loff_t *pos)
1097{
1098	struct rfkill_data *data = file->private_data;
1099	struct rfkill_int_event *ev;
1100	unsigned long sz;
1101	int ret;
1102
1103	mutex_lock(&data->mtx);
1104
1105	while (list_empty(&data->events)) {
1106		if (file->f_flags & O_NONBLOCK) {
1107			ret = -EAGAIN;
1108			goto out;
1109		}
1110		mutex_unlock(&data->mtx);
 
 
 
1111		ret = wait_event_interruptible(data->read_wait,
1112					       rfkill_readable(data));
1113		mutex_lock(&data->mtx);
1114
1115		if (ret)
1116			goto out;
1117	}
1118
1119	ev = list_first_entry(&data->events, struct rfkill_int_event,
1120				list);
1121
1122	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1123	ret = sz;
1124	if (copy_to_user(buf, &ev->ev, sz))
1125		ret = -EFAULT;
1126
1127	list_del(&ev->list);
1128	kfree(ev);
1129 out:
1130	mutex_unlock(&data->mtx);
1131	return ret;
1132}
1133
1134static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1135				size_t count, loff_t *pos)
1136{
 
1137	struct rfkill *rfkill;
1138	struct rfkill_event ev;
 
1139
1140	/* we don't need the 'hard' variable but accept it */
1141	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1142		return -EINVAL;
1143
1144	/*
1145	 * Copy as much data as we can accept into our 'ev' buffer,
1146	 * but tell userspace how much we've copied so it can determine
1147	 * our API version even in a write() call, if it cares.
1148	 */
1149	count = min(count, sizeof(ev));
 
1150	if (copy_from_user(&ev, buf, count))
1151		return -EFAULT;
1152
1153	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1154		return -EINVAL;
1155
1156	if (ev.type >= NUM_RFKILL_TYPES)
1157		return -EINVAL;
1158
1159	mutex_lock(&rfkill_global_mutex);
1160
1161	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1162		if (ev.type == RFKILL_TYPE_ALL) {
1163			enum rfkill_type i;
1164			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1165				rfkill_global_states[i].cur = ev.soft;
1166		} else {
1167			rfkill_global_states[ev.type].cur = ev.soft;
1168		}
 
 
 
 
 
 
 
 
 
 
 
 
1169	}
1170
1171	list_for_each_entry(rfkill, &rfkill_list, node) {
1172		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1173			continue;
1174
1175		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1176			continue;
1177
1178		rfkill_set_block(rfkill, ev.soft);
1179	}
1180	mutex_unlock(&rfkill_global_mutex);
1181
1182	return count;
1183}
1184
1185static int rfkill_fop_release(struct inode *inode, struct file *file)
1186{
1187	struct rfkill_data *data = file->private_data;
1188	struct rfkill_int_event *ev, *tmp;
1189
1190	mutex_lock(&rfkill_global_mutex);
1191	list_del(&data->list);
1192	mutex_unlock(&rfkill_global_mutex);
1193
1194	mutex_destroy(&data->mtx);
1195	list_for_each_entry_safe(ev, tmp, &data->events, list)
1196		kfree(ev);
1197
1198#ifdef CONFIG_RFKILL_INPUT
1199	if (data->input_handler)
1200		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1201			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1202#endif
1203
1204	kfree(data);
1205
1206	return 0;
1207}
1208
1209#ifdef CONFIG_RFKILL_INPUT
1210static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1211			     unsigned long arg)
1212{
1213	struct rfkill_data *data = file->private_data;
 
 
1214
1215	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1216		return -ENOSYS;
1217
1218	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1219		return -ENOSYS;
1220
1221	mutex_lock(&data->mtx);
1222
1223	if (!data->input_handler) {
1224		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1225			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1226		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	}
1228
1229	mutex_unlock(&data->mtx);
1230
1231	return 0;
1232}
1233#endif
1234
1235static const struct file_operations rfkill_fops = {
1236	.owner		= THIS_MODULE,
1237	.open		= rfkill_fop_open,
1238	.read		= rfkill_fop_read,
1239	.write		= rfkill_fop_write,
1240	.poll		= rfkill_fop_poll,
1241	.release	= rfkill_fop_release,
1242#ifdef CONFIG_RFKILL_INPUT
1243	.unlocked_ioctl	= rfkill_fop_ioctl,
1244	.compat_ioctl	= rfkill_fop_ioctl,
1245#endif
1246	.llseek		= no_llseek,
1247};
1248
 
 
1249static struct miscdevice rfkill_miscdev = {
1250	.name	= "rfkill",
1251	.fops	= &rfkill_fops,
1252	.minor	= MISC_DYNAMIC_MINOR,
 
1253};
1254
1255static int __init rfkill_init(void)
1256{
1257	int error;
1258	int i;
1259
1260	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1261		rfkill_global_states[i].cur = !rfkill_default_state;
1262
1263	error = class_register(&rfkill_class);
1264	if (error)
1265		goto out;
1266
1267	error = misc_register(&rfkill_miscdev);
1268	if (error) {
1269		class_unregister(&rfkill_class);
1270		goto out;
1271	}
 
 
1272
1273#ifdef CONFIG_RFKILL_INPUT
1274	error = rfkill_handler_init();
1275	if (error) {
1276		misc_deregister(&rfkill_miscdev);
1277		class_unregister(&rfkill_class);
1278		goto out;
1279	}
1280#endif
1281
1282 out:
 
 
 
 
 
 
 
 
 
 
1283	return error;
1284}
1285subsys_initcall(rfkill_init);
1286
1287static void __exit rfkill_exit(void)
1288{
1289#ifdef CONFIG_RFKILL_INPUT
1290	rfkill_handler_exit();
1291#endif
 
1292	misc_deregister(&rfkill_miscdev);
1293	class_unregister(&rfkill_class);
1294}
1295module_exit(rfkill_exit);