Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15#include "radix-tree.h"
16
17/*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
33static inline unsigned int xa_lock_type(const struct xarray *xa)
34{
35 return (__force unsigned int)xa->xa_flags & 3;
36}
37
38static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39{
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46}
47
48static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49{
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56}
57
58static inline bool xa_track_free(const struct xarray *xa)
59{
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61}
62
63static inline bool xa_zero_busy(const struct xarray *xa)
64{
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66}
67
68static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69{
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72}
73
74static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75{
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78}
79
80static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81{
82 return node->marks[(__force unsigned)mark];
83}
84
85static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87{
88 return test_bit(offset, node_marks(node, mark));
89}
90
91/* returns true if the bit was set */
92static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94{
95 return __test_and_set_bit(offset, node_marks(node, mark));
96}
97
98/* returns true if the bit was set */
99static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101{
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103}
104
105static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106{
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108}
109
110static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111{
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113}
114
115#define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117} while (0)
118
119/*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
126static void xas_squash_marks(const struct xa_state *xas)
127{
128 unsigned int mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 if (!xas->xa_sibs)
132 return;
133
134 do {
135 unsigned long *marks = xas->xa_node->marks[mark];
136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 continue;
138 __set_bit(xas->xa_offset, marks);
139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 } while (mark++ != (__force unsigned)XA_MARK_MAX);
141}
142
143/* extracts the offset within this node from the index */
144static unsigned int get_offset(unsigned long index, struct xa_node *node)
145{
146 return (index >> node->shift) & XA_CHUNK_MASK;
147}
148
149static void xas_set_offset(struct xa_state *xas)
150{
151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152}
153
154/* move the index either forwards (find) or backwards (sibling slot) */
155static void xas_move_index(struct xa_state *xas, unsigned long offset)
156{
157 unsigned int shift = xas->xa_node->shift;
158 xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 xas->xa_index += offset << shift;
160}
161
162static void xas_next_offset(struct xa_state *xas)
163{
164 xas->xa_offset++;
165 xas_move_index(xas, xas->xa_offset);
166}
167
168static void *set_bounds(struct xa_state *xas)
169{
170 xas->xa_node = XAS_BOUNDS;
171 return NULL;
172}
173
174/*
175 * Starts a walk. If the @xas is already valid, we assume that it's on
176 * the right path and just return where we've got to. If we're in an
177 * error state, return NULL. If the index is outside the current scope
178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
179 * set @xas->xa_node to NULL and return the current head of the array.
180 */
181static void *xas_start(struct xa_state *xas)
182{
183 void *entry;
184
185 if (xas_valid(xas))
186 return xas_reload(xas);
187 if (xas_error(xas))
188 return NULL;
189
190 entry = xa_head(xas->xa);
191 if (!xa_is_node(entry)) {
192 if (xas->xa_index)
193 return set_bounds(xas);
194 } else {
195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 return set_bounds(xas);
197 }
198
199 xas->xa_node = NULL;
200 return entry;
201}
202
203static void *xas_descend(struct xa_state *xas, struct xa_node *node)
204{
205 unsigned int offset = get_offset(xas->xa_index, node);
206 void *entry = xa_entry(xas->xa, node, offset);
207
208 xas->xa_node = node;
209 while (xa_is_sibling(entry)) {
210 offset = xa_to_sibling(entry);
211 entry = xa_entry(xas->xa, node, offset);
212 if (node->shift && xa_is_node(entry))
213 entry = XA_RETRY_ENTRY;
214 }
215
216 xas->xa_offset = offset;
217 return entry;
218}
219
220/**
221 * xas_load() - Load an entry from the XArray (advanced).
222 * @xas: XArray operation state.
223 *
224 * Usually walks the @xas to the appropriate state to load the entry
225 * stored at xa_index. However, it will do nothing and return %NULL if
226 * @xas is in an error state. xas_load() will never expand the tree.
227 *
228 * If the xa_state is set up to operate on a multi-index entry, xas_load()
229 * may return %NULL or an internal entry, even if there are entries
230 * present within the range specified by @xas.
231 *
232 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
233 * Return: Usually an entry in the XArray, but see description for exceptions.
234 */
235void *xas_load(struct xa_state *xas)
236{
237 void *entry = xas_start(xas);
238
239 while (xa_is_node(entry)) {
240 struct xa_node *node = xa_to_node(entry);
241
242 if (xas->xa_shift > node->shift)
243 break;
244 entry = xas_descend(xas, node);
245 if (node->shift == 0)
246 break;
247 }
248 return entry;
249}
250EXPORT_SYMBOL_GPL(xas_load);
251
252#define XA_RCU_FREE ((struct xarray *)1)
253
254static void xa_node_free(struct xa_node *node)
255{
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259}
260
261/*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * Most users will not need to call this function; it is called for you
266 * by xas_nomem().
267 */
268void xas_destroy(struct xa_state *xas)
269{
270 struct xa_node *next, *node = xas->xa_alloc;
271
272 while (node) {
273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 next = rcu_dereference_raw(node->parent);
275 radix_tree_node_rcu_free(&node->rcu_head);
276 xas->xa_alloc = node = next;
277 }
278}
279
280/**
281 * xas_nomem() - Allocate memory if needed.
282 * @xas: XArray operation state.
283 * @gfp: Memory allocation flags.
284 *
285 * If we need to add new nodes to the XArray, we try to allocate memory
286 * with GFP_NOWAIT while holding the lock, which will usually succeed.
287 * If it fails, @xas is flagged as needing memory to continue. The caller
288 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
289 * the caller should retry the operation.
290 *
291 * Forward progress is guaranteed as one node is allocated here and
292 * stored in the xa_state where it will be found by xas_alloc(). More
293 * nodes will likely be found in the slab allocator, but we do not tie
294 * them up here.
295 *
296 * Return: true if memory was needed, and was successfully allocated.
297 */
298bool xas_nomem(struct xa_state *xas, gfp_t gfp)
299{
300 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
301 xas_destroy(xas);
302 return false;
303 }
304 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
305 gfp |= __GFP_ACCOUNT;
306 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
307 if (!xas->xa_alloc)
308 return false;
309 xas->xa_alloc->parent = NULL;
310 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
311 xas->xa_node = XAS_RESTART;
312 return true;
313}
314EXPORT_SYMBOL_GPL(xas_nomem);
315
316/*
317 * __xas_nomem() - Drop locks and allocate memory if needed.
318 * @xas: XArray operation state.
319 * @gfp: Memory allocation flags.
320 *
321 * Internal variant of xas_nomem().
322 *
323 * Return: true if memory was needed, and was successfully allocated.
324 */
325static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
326 __must_hold(xas->xa->xa_lock)
327{
328 unsigned int lock_type = xa_lock_type(xas->xa);
329
330 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
331 xas_destroy(xas);
332 return false;
333 }
334 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
335 gfp |= __GFP_ACCOUNT;
336 if (gfpflags_allow_blocking(gfp)) {
337 xas_unlock_type(xas, lock_type);
338 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
339 xas_lock_type(xas, lock_type);
340 } else {
341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342 }
343 if (!xas->xa_alloc)
344 return false;
345 xas->xa_alloc->parent = NULL;
346 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
347 xas->xa_node = XAS_RESTART;
348 return true;
349}
350
351static void xas_update(struct xa_state *xas, struct xa_node *node)
352{
353 if (xas->xa_update)
354 xas->xa_update(node);
355 else
356 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
357}
358
359static void *xas_alloc(struct xa_state *xas, unsigned int shift)
360{
361 struct xa_node *parent = xas->xa_node;
362 struct xa_node *node = xas->xa_alloc;
363
364 if (xas_invalid(xas))
365 return NULL;
366
367 if (node) {
368 xas->xa_alloc = NULL;
369 } else {
370 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
371
372 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
373 gfp |= __GFP_ACCOUNT;
374
375 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
376 if (!node) {
377 xas_set_err(xas, -ENOMEM);
378 return NULL;
379 }
380 }
381
382 if (parent) {
383 node->offset = xas->xa_offset;
384 parent->count++;
385 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
386 xas_update(xas, parent);
387 }
388 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
389 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
390 node->shift = shift;
391 node->count = 0;
392 node->nr_values = 0;
393 RCU_INIT_POINTER(node->parent, xas->xa_node);
394 node->array = xas->xa;
395
396 return node;
397}
398
399#ifdef CONFIG_XARRAY_MULTI
400/* Returns the number of indices covered by a given xa_state */
401static unsigned long xas_size(const struct xa_state *xas)
402{
403 return (xas->xa_sibs + 1UL) << xas->xa_shift;
404}
405#endif
406
407/*
408 * Use this to calculate the maximum index that will need to be created
409 * in order to add the entry described by @xas. Because we cannot store a
410 * multi-index entry at index 0, the calculation is a little more complex
411 * than you might expect.
412 */
413static unsigned long xas_max(struct xa_state *xas)
414{
415 unsigned long max = xas->xa_index;
416
417#ifdef CONFIG_XARRAY_MULTI
418 if (xas->xa_shift || xas->xa_sibs) {
419 unsigned long mask = xas_size(xas) - 1;
420 max |= mask;
421 if (mask == max)
422 max++;
423 }
424#endif
425
426 return max;
427}
428
429/* The maximum index that can be contained in the array without expanding it */
430static unsigned long max_index(void *entry)
431{
432 if (!xa_is_node(entry))
433 return 0;
434 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
435}
436
437static void xas_shrink(struct xa_state *xas)
438{
439 struct xarray *xa = xas->xa;
440 struct xa_node *node = xas->xa_node;
441
442 for (;;) {
443 void *entry;
444
445 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
446 if (node->count != 1)
447 break;
448 entry = xa_entry_locked(xa, node, 0);
449 if (!entry)
450 break;
451 if (!xa_is_node(entry) && node->shift)
452 break;
453 if (xa_is_zero(entry) && xa_zero_busy(xa))
454 entry = NULL;
455 xas->xa_node = XAS_BOUNDS;
456
457 RCU_INIT_POINTER(xa->xa_head, entry);
458 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
459 xa_mark_clear(xa, XA_FREE_MARK);
460
461 node->count = 0;
462 node->nr_values = 0;
463 if (!xa_is_node(entry))
464 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
465 xas_update(xas, node);
466 xa_node_free(node);
467 if (!xa_is_node(entry))
468 break;
469 node = xa_to_node(entry);
470 node->parent = NULL;
471 }
472}
473
474/*
475 * xas_delete_node() - Attempt to delete an xa_node
476 * @xas: Array operation state.
477 *
478 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
479 * a non-zero reference count.
480 */
481static void xas_delete_node(struct xa_state *xas)
482{
483 struct xa_node *node = xas->xa_node;
484
485 for (;;) {
486 struct xa_node *parent;
487
488 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
489 if (node->count)
490 break;
491
492 parent = xa_parent_locked(xas->xa, node);
493 xas->xa_node = parent;
494 xas->xa_offset = node->offset;
495 xa_node_free(node);
496
497 if (!parent) {
498 xas->xa->xa_head = NULL;
499 xas->xa_node = XAS_BOUNDS;
500 return;
501 }
502
503 parent->slots[xas->xa_offset] = NULL;
504 parent->count--;
505 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
506 node = parent;
507 xas_update(xas, node);
508 }
509
510 if (!node->parent)
511 xas_shrink(xas);
512}
513
514/**
515 * xas_free_nodes() - Free this node and all nodes that it references
516 * @xas: Array operation state.
517 * @top: Node to free
518 *
519 * This node has been removed from the tree. We must now free it and all
520 * of its subnodes. There may be RCU walkers with references into the tree,
521 * so we must replace all entries with retry markers.
522 */
523static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
524{
525 unsigned int offset = 0;
526 struct xa_node *node = top;
527
528 for (;;) {
529 void *entry = xa_entry_locked(xas->xa, node, offset);
530
531 if (node->shift && xa_is_node(entry)) {
532 node = xa_to_node(entry);
533 offset = 0;
534 continue;
535 }
536 if (entry)
537 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
538 offset++;
539 while (offset == XA_CHUNK_SIZE) {
540 struct xa_node *parent;
541
542 parent = xa_parent_locked(xas->xa, node);
543 offset = node->offset + 1;
544 node->count = 0;
545 node->nr_values = 0;
546 xas_update(xas, node);
547 xa_node_free(node);
548 if (node == top)
549 return;
550 node = parent;
551 }
552 }
553}
554
555/*
556 * xas_expand adds nodes to the head of the tree until it has reached
557 * sufficient height to be able to contain @xas->xa_index
558 */
559static int xas_expand(struct xa_state *xas, void *head)
560{
561 struct xarray *xa = xas->xa;
562 struct xa_node *node = NULL;
563 unsigned int shift = 0;
564 unsigned long max = xas_max(xas);
565
566 if (!head) {
567 if (max == 0)
568 return 0;
569 while ((max >> shift) >= XA_CHUNK_SIZE)
570 shift += XA_CHUNK_SHIFT;
571 return shift + XA_CHUNK_SHIFT;
572 } else if (xa_is_node(head)) {
573 node = xa_to_node(head);
574 shift = node->shift + XA_CHUNK_SHIFT;
575 }
576 xas->xa_node = NULL;
577
578 while (max > max_index(head)) {
579 xa_mark_t mark = 0;
580
581 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
582 node = xas_alloc(xas, shift);
583 if (!node)
584 return -ENOMEM;
585
586 node->count = 1;
587 if (xa_is_value(head))
588 node->nr_values = 1;
589 RCU_INIT_POINTER(node->slots[0], head);
590
591 /* Propagate the aggregated mark info to the new child */
592 for (;;) {
593 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
594 node_mark_all(node, XA_FREE_MARK);
595 if (!xa_marked(xa, XA_FREE_MARK)) {
596 node_clear_mark(node, 0, XA_FREE_MARK);
597 xa_mark_set(xa, XA_FREE_MARK);
598 }
599 } else if (xa_marked(xa, mark)) {
600 node_set_mark(node, 0, mark);
601 }
602 if (mark == XA_MARK_MAX)
603 break;
604 mark_inc(mark);
605 }
606
607 /*
608 * Now that the new node is fully initialised, we can add
609 * it to the tree
610 */
611 if (xa_is_node(head)) {
612 xa_to_node(head)->offset = 0;
613 rcu_assign_pointer(xa_to_node(head)->parent, node);
614 }
615 head = xa_mk_node(node);
616 rcu_assign_pointer(xa->xa_head, head);
617 xas_update(xas, node);
618
619 shift += XA_CHUNK_SHIFT;
620 }
621
622 xas->xa_node = node;
623 return shift;
624}
625
626/*
627 * xas_create() - Create a slot to store an entry in.
628 * @xas: XArray operation state.
629 * @allow_root: %true if we can store the entry in the root directly
630 *
631 * Most users will not need to call this function directly, as it is called
632 * by xas_store(). It is useful for doing conditional store operations
633 * (see the xa_cmpxchg() implementation for an example).
634 *
635 * Return: If the slot already existed, returns the contents of this slot.
636 * If the slot was newly created, returns %NULL. If it failed to create the
637 * slot, returns %NULL and indicates the error in @xas.
638 */
639static void *xas_create(struct xa_state *xas, bool allow_root)
640{
641 struct xarray *xa = xas->xa;
642 void *entry;
643 void __rcu **slot;
644 struct xa_node *node = xas->xa_node;
645 int shift;
646 unsigned int order = xas->xa_shift;
647
648 if (xas_top(node)) {
649 entry = xa_head_locked(xa);
650 xas->xa_node = NULL;
651 if (!entry && xa_zero_busy(xa))
652 entry = XA_ZERO_ENTRY;
653 shift = xas_expand(xas, entry);
654 if (shift < 0)
655 return NULL;
656 if (!shift && !allow_root)
657 shift = XA_CHUNK_SHIFT;
658 entry = xa_head_locked(xa);
659 slot = &xa->xa_head;
660 } else if (xas_error(xas)) {
661 return NULL;
662 } else if (node) {
663 unsigned int offset = xas->xa_offset;
664
665 shift = node->shift;
666 entry = xa_entry_locked(xa, node, offset);
667 slot = &node->slots[offset];
668 } else {
669 shift = 0;
670 entry = xa_head_locked(xa);
671 slot = &xa->xa_head;
672 }
673
674 while (shift > order) {
675 shift -= XA_CHUNK_SHIFT;
676 if (!entry) {
677 node = xas_alloc(xas, shift);
678 if (!node)
679 break;
680 if (xa_track_free(xa))
681 node_mark_all(node, XA_FREE_MARK);
682 rcu_assign_pointer(*slot, xa_mk_node(node));
683 } else if (xa_is_node(entry)) {
684 node = xa_to_node(entry);
685 } else {
686 break;
687 }
688 entry = xas_descend(xas, node);
689 slot = &node->slots[xas->xa_offset];
690 }
691
692 return entry;
693}
694
695/**
696 * xas_create_range() - Ensure that stores to this range will succeed
697 * @xas: XArray operation state.
698 *
699 * Creates all of the slots in the range covered by @xas. Sets @xas to
700 * create single-index entries and positions it at the beginning of the
701 * range. This is for the benefit of users which have not yet been
702 * converted to use multi-index entries.
703 */
704void xas_create_range(struct xa_state *xas)
705{
706 unsigned long index = xas->xa_index;
707 unsigned char shift = xas->xa_shift;
708 unsigned char sibs = xas->xa_sibs;
709
710 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
711 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
712 xas->xa_offset |= sibs;
713 xas->xa_shift = 0;
714 xas->xa_sibs = 0;
715
716 for (;;) {
717 xas_create(xas, true);
718 if (xas_error(xas))
719 goto restore;
720 if (xas->xa_index <= (index | XA_CHUNK_MASK))
721 goto success;
722 xas->xa_index -= XA_CHUNK_SIZE;
723
724 for (;;) {
725 struct xa_node *node = xas->xa_node;
726 if (node->shift >= shift)
727 break;
728 xas->xa_node = xa_parent_locked(xas->xa, node);
729 xas->xa_offset = node->offset - 1;
730 if (node->offset != 0)
731 break;
732 }
733 }
734
735restore:
736 xas->xa_shift = shift;
737 xas->xa_sibs = sibs;
738 xas->xa_index = index;
739 return;
740success:
741 xas->xa_index = index;
742 if (xas->xa_node)
743 xas_set_offset(xas);
744}
745EXPORT_SYMBOL_GPL(xas_create_range);
746
747static void update_node(struct xa_state *xas, struct xa_node *node,
748 int count, int values)
749{
750 if (!node || (!count && !values))
751 return;
752
753 node->count += count;
754 node->nr_values += values;
755 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
756 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
757 xas_update(xas, node);
758 if (count < 0)
759 xas_delete_node(xas);
760}
761
762/**
763 * xas_store() - Store this entry in the XArray.
764 * @xas: XArray operation state.
765 * @entry: New entry.
766 *
767 * If @xas is operating on a multi-index entry, the entry returned by this
768 * function is essentially meaningless (it may be an internal entry or it
769 * may be %NULL, even if there are non-NULL entries at some of the indices
770 * covered by the range). This is not a problem for any current users,
771 * and can be changed if needed.
772 *
773 * Return: The old entry at this index.
774 */
775void *xas_store(struct xa_state *xas, void *entry)
776{
777 struct xa_node *node;
778 void __rcu **slot = &xas->xa->xa_head;
779 unsigned int offset, max;
780 int count = 0;
781 int values = 0;
782 void *first, *next;
783 bool value = xa_is_value(entry);
784
785 if (entry) {
786 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
787 first = xas_create(xas, allow_root);
788 } else {
789 first = xas_load(xas);
790 }
791
792 if (xas_invalid(xas))
793 return first;
794 node = xas->xa_node;
795 if (node && (xas->xa_shift < node->shift))
796 xas->xa_sibs = 0;
797 if ((first == entry) && !xas->xa_sibs)
798 return first;
799
800 next = first;
801 offset = xas->xa_offset;
802 max = xas->xa_offset + xas->xa_sibs;
803 if (node) {
804 slot = &node->slots[offset];
805 if (xas->xa_sibs)
806 xas_squash_marks(xas);
807 }
808 if (!entry)
809 xas_init_marks(xas);
810
811 for (;;) {
812 /*
813 * Must clear the marks before setting the entry to NULL,
814 * otherwise xas_for_each_marked may find a NULL entry and
815 * stop early. rcu_assign_pointer contains a release barrier
816 * so the mark clearing will appear to happen before the
817 * entry is set to NULL.
818 */
819 rcu_assign_pointer(*slot, entry);
820 if (xa_is_node(next) && (!node || node->shift))
821 xas_free_nodes(xas, xa_to_node(next));
822 if (!node)
823 break;
824 count += !next - !entry;
825 values += !xa_is_value(first) - !value;
826 if (entry) {
827 if (offset == max)
828 break;
829 if (!xa_is_sibling(entry))
830 entry = xa_mk_sibling(xas->xa_offset);
831 } else {
832 if (offset == XA_CHUNK_MASK)
833 break;
834 }
835 next = xa_entry_locked(xas->xa, node, ++offset);
836 if (!xa_is_sibling(next)) {
837 if (!entry && (offset > max))
838 break;
839 first = next;
840 }
841 slot++;
842 }
843
844 update_node(xas, node, count, values);
845 return first;
846}
847EXPORT_SYMBOL_GPL(xas_store);
848
849/**
850 * xas_get_mark() - Returns the state of this mark.
851 * @xas: XArray operation state.
852 * @mark: Mark number.
853 *
854 * Return: true if the mark is set, false if the mark is clear or @xas
855 * is in an error state.
856 */
857bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
858{
859 if (xas_invalid(xas))
860 return false;
861 if (!xas->xa_node)
862 return xa_marked(xas->xa, mark);
863 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
864}
865EXPORT_SYMBOL_GPL(xas_get_mark);
866
867/**
868 * xas_set_mark() - Sets the mark on this entry and its parents.
869 * @xas: XArray operation state.
870 * @mark: Mark number.
871 *
872 * Sets the specified mark on this entry, and walks up the tree setting it
873 * on all the ancestor entries. Does nothing if @xas has not been walked to
874 * an entry, or is in an error state.
875 */
876void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
877{
878 struct xa_node *node = xas->xa_node;
879 unsigned int offset = xas->xa_offset;
880
881 if (xas_invalid(xas))
882 return;
883
884 while (node) {
885 if (node_set_mark(node, offset, mark))
886 return;
887 offset = node->offset;
888 node = xa_parent_locked(xas->xa, node);
889 }
890
891 if (!xa_marked(xas->xa, mark))
892 xa_mark_set(xas->xa, mark);
893}
894EXPORT_SYMBOL_GPL(xas_set_mark);
895
896/**
897 * xas_clear_mark() - Clears the mark on this entry and its parents.
898 * @xas: XArray operation state.
899 * @mark: Mark number.
900 *
901 * Clears the specified mark on this entry, and walks back to the head
902 * attempting to clear it on all the ancestor entries. Does nothing if
903 * @xas has not been walked to an entry, or is in an error state.
904 */
905void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
906{
907 struct xa_node *node = xas->xa_node;
908 unsigned int offset = xas->xa_offset;
909
910 if (xas_invalid(xas))
911 return;
912
913 while (node) {
914 if (!node_clear_mark(node, offset, mark))
915 return;
916 if (node_any_mark(node, mark))
917 return;
918
919 offset = node->offset;
920 node = xa_parent_locked(xas->xa, node);
921 }
922
923 if (xa_marked(xas->xa, mark))
924 xa_mark_clear(xas->xa, mark);
925}
926EXPORT_SYMBOL_GPL(xas_clear_mark);
927
928/**
929 * xas_init_marks() - Initialise all marks for the entry
930 * @xas: Array operations state.
931 *
932 * Initialise all marks for the entry specified by @xas. If we're tracking
933 * free entries with a mark, we need to set it on all entries. All other
934 * marks are cleared.
935 *
936 * This implementation is not as efficient as it could be; we may walk
937 * up the tree multiple times.
938 */
939void xas_init_marks(const struct xa_state *xas)
940{
941 xa_mark_t mark = 0;
942
943 for (;;) {
944 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
945 xas_set_mark(xas, mark);
946 else
947 xas_clear_mark(xas, mark);
948 if (mark == XA_MARK_MAX)
949 break;
950 mark_inc(mark);
951 }
952}
953EXPORT_SYMBOL_GPL(xas_init_marks);
954
955#ifdef CONFIG_XARRAY_MULTI
956static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
957{
958 unsigned int marks = 0;
959 xa_mark_t mark = XA_MARK_0;
960
961 for (;;) {
962 if (node_get_mark(node, offset, mark))
963 marks |= 1 << (__force unsigned int)mark;
964 if (mark == XA_MARK_MAX)
965 break;
966 mark_inc(mark);
967 }
968
969 return marks;
970}
971
972static void node_set_marks(struct xa_node *node, unsigned int offset,
973 struct xa_node *child, unsigned int marks)
974{
975 xa_mark_t mark = XA_MARK_0;
976
977 for (;;) {
978 if (marks & (1 << (__force unsigned int)mark)) {
979 node_set_mark(node, offset, mark);
980 if (child)
981 node_mark_all(child, mark);
982 }
983 if (mark == XA_MARK_MAX)
984 break;
985 mark_inc(mark);
986 }
987}
988
989/**
990 * xas_split_alloc() - Allocate memory for splitting an entry.
991 * @xas: XArray operation state.
992 * @entry: New entry which will be stored in the array.
993 * @order: Current entry order.
994 * @gfp: Memory allocation flags.
995 *
996 * This function should be called before calling xas_split().
997 * If necessary, it will allocate new nodes (and fill them with @entry)
998 * to prepare for the upcoming split of an entry of @order size into
999 * entries of the order stored in the @xas.
1000 *
1001 * Context: May sleep if @gfp flags permit.
1002 */
1003void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1004 gfp_t gfp)
1005{
1006 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1007 unsigned int mask = xas->xa_sibs;
1008
1009 /* XXX: no support for splitting really large entries yet */
1010 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1011 goto nomem;
1012 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1013 return;
1014
1015 do {
1016 unsigned int i;
1017 void *sibling = NULL;
1018 struct xa_node *node;
1019
1020 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1021 if (!node)
1022 goto nomem;
1023 node->array = xas->xa;
1024 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1025 if ((i & mask) == 0) {
1026 RCU_INIT_POINTER(node->slots[i], entry);
1027 sibling = xa_mk_sibling(i);
1028 } else {
1029 RCU_INIT_POINTER(node->slots[i], sibling);
1030 }
1031 }
1032 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1033 xas->xa_alloc = node;
1034 } while (sibs-- > 0);
1035
1036 return;
1037nomem:
1038 xas_destroy(xas);
1039 xas_set_err(xas, -ENOMEM);
1040}
1041EXPORT_SYMBOL_GPL(xas_split_alloc);
1042
1043/**
1044 * xas_split() - Split a multi-index entry into smaller entries.
1045 * @xas: XArray operation state.
1046 * @entry: New entry to store in the array.
1047 * @order: Current entry order.
1048 *
1049 * The size of the new entries is set in @xas. The value in @entry is
1050 * copied to all the replacement entries.
1051 *
1052 * Context: Any context. The caller should hold the xa_lock.
1053 */
1054void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1055{
1056 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1057 unsigned int offset, marks;
1058 struct xa_node *node;
1059 void *curr = xas_load(xas);
1060 int values = 0;
1061
1062 node = xas->xa_node;
1063 if (xas_top(node))
1064 return;
1065
1066 marks = node_get_marks(node, xas->xa_offset);
1067
1068 offset = xas->xa_offset + sibs;
1069 do {
1070 if (xas->xa_shift < node->shift) {
1071 struct xa_node *child = xas->xa_alloc;
1072
1073 xas->xa_alloc = rcu_dereference_raw(child->parent);
1074 child->shift = node->shift - XA_CHUNK_SHIFT;
1075 child->offset = offset;
1076 child->count = XA_CHUNK_SIZE;
1077 child->nr_values = xa_is_value(entry) ?
1078 XA_CHUNK_SIZE : 0;
1079 RCU_INIT_POINTER(child->parent, node);
1080 node_set_marks(node, offset, child, marks);
1081 rcu_assign_pointer(node->slots[offset],
1082 xa_mk_node(child));
1083 if (xa_is_value(curr))
1084 values--;
1085 xas_update(xas, child);
1086 } else {
1087 unsigned int canon = offset - xas->xa_sibs;
1088
1089 node_set_marks(node, canon, NULL, marks);
1090 rcu_assign_pointer(node->slots[canon], entry);
1091 while (offset > canon)
1092 rcu_assign_pointer(node->slots[offset--],
1093 xa_mk_sibling(canon));
1094 values += (xa_is_value(entry) - xa_is_value(curr)) *
1095 (xas->xa_sibs + 1);
1096 }
1097 } while (offset-- > xas->xa_offset);
1098
1099 node->nr_values += values;
1100 xas_update(xas, node);
1101}
1102EXPORT_SYMBOL_GPL(xas_split);
1103#endif
1104
1105/**
1106 * xas_pause() - Pause a walk to drop a lock.
1107 * @xas: XArray operation state.
1108 *
1109 * Some users need to pause a walk and drop the lock they're holding in
1110 * order to yield to a higher priority thread or carry out an operation
1111 * on an entry. Those users should call this function before they drop
1112 * the lock. It resets the @xas to be suitable for the next iteration
1113 * of the loop after the user has reacquired the lock. If most entries
1114 * found during a walk require you to call xas_pause(), the xa_for_each()
1115 * iterator may be more appropriate.
1116 *
1117 * Note that xas_pause() only works for forward iteration. If a user needs
1118 * to pause a reverse iteration, we will need a xas_pause_rev().
1119 */
1120void xas_pause(struct xa_state *xas)
1121{
1122 struct xa_node *node = xas->xa_node;
1123
1124 if (xas_invalid(xas))
1125 return;
1126
1127 xas->xa_node = XAS_RESTART;
1128 if (node) {
1129 unsigned long offset = xas->xa_offset;
1130 while (++offset < XA_CHUNK_SIZE) {
1131 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1132 break;
1133 }
1134 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1135 if (xas->xa_index == 0)
1136 xas->xa_node = XAS_BOUNDS;
1137 } else {
1138 xas->xa_index++;
1139 }
1140}
1141EXPORT_SYMBOL_GPL(xas_pause);
1142
1143/*
1144 * __xas_prev() - Find the previous entry in the XArray.
1145 * @xas: XArray operation state.
1146 *
1147 * Helper function for xas_prev() which handles all the complex cases
1148 * out of line.
1149 */
1150void *__xas_prev(struct xa_state *xas)
1151{
1152 void *entry;
1153
1154 if (!xas_frozen(xas->xa_node))
1155 xas->xa_index--;
1156 if (!xas->xa_node)
1157 return set_bounds(xas);
1158 if (xas_not_node(xas->xa_node))
1159 return xas_load(xas);
1160
1161 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1162 xas->xa_offset--;
1163
1164 while (xas->xa_offset == 255) {
1165 xas->xa_offset = xas->xa_node->offset - 1;
1166 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1167 if (!xas->xa_node)
1168 return set_bounds(xas);
1169 }
1170
1171 for (;;) {
1172 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1173 if (!xa_is_node(entry))
1174 return entry;
1175
1176 xas->xa_node = xa_to_node(entry);
1177 xas_set_offset(xas);
1178 }
1179}
1180EXPORT_SYMBOL_GPL(__xas_prev);
1181
1182/*
1183 * __xas_next() - Find the next entry in the XArray.
1184 * @xas: XArray operation state.
1185 *
1186 * Helper function for xas_next() which handles all the complex cases
1187 * out of line.
1188 */
1189void *__xas_next(struct xa_state *xas)
1190{
1191 void *entry;
1192
1193 if (!xas_frozen(xas->xa_node))
1194 xas->xa_index++;
1195 if (!xas->xa_node)
1196 return set_bounds(xas);
1197 if (xas_not_node(xas->xa_node))
1198 return xas_load(xas);
1199
1200 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1201 xas->xa_offset++;
1202
1203 while (xas->xa_offset == XA_CHUNK_SIZE) {
1204 xas->xa_offset = xas->xa_node->offset + 1;
1205 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1206 if (!xas->xa_node)
1207 return set_bounds(xas);
1208 }
1209
1210 for (;;) {
1211 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1212 if (!xa_is_node(entry))
1213 return entry;
1214
1215 xas->xa_node = xa_to_node(entry);
1216 xas_set_offset(xas);
1217 }
1218}
1219EXPORT_SYMBOL_GPL(__xas_next);
1220
1221/**
1222 * xas_find() - Find the next present entry in the XArray.
1223 * @xas: XArray operation state.
1224 * @max: Highest index to return.
1225 *
1226 * If the @xas has not yet been walked to an entry, return the entry
1227 * which has an index >= xas.xa_index. If it has been walked, the entry
1228 * currently being pointed at has been processed, and so we move to the
1229 * next entry.
1230 *
1231 * If no entry is found and the array is smaller than @max, the iterator
1232 * is set to the smallest index not yet in the array. This allows @xas
1233 * to be immediately passed to xas_store().
1234 *
1235 * Return: The entry, if found, otherwise %NULL.
1236 */
1237void *xas_find(struct xa_state *xas, unsigned long max)
1238{
1239 void *entry;
1240
1241 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1242 return NULL;
1243 if (xas->xa_index > max)
1244 return set_bounds(xas);
1245
1246 if (!xas->xa_node) {
1247 xas->xa_index = 1;
1248 return set_bounds(xas);
1249 } else if (xas->xa_node == XAS_RESTART) {
1250 entry = xas_load(xas);
1251 if (entry || xas_not_node(xas->xa_node))
1252 return entry;
1253 } else if (!xas->xa_node->shift &&
1254 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1255 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1256 }
1257
1258 xas_next_offset(xas);
1259
1260 while (xas->xa_node && (xas->xa_index <= max)) {
1261 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1262 xas->xa_offset = xas->xa_node->offset + 1;
1263 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1264 continue;
1265 }
1266
1267 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1268 if (xa_is_node(entry)) {
1269 xas->xa_node = xa_to_node(entry);
1270 xas->xa_offset = 0;
1271 continue;
1272 }
1273 if (entry && !xa_is_sibling(entry))
1274 return entry;
1275
1276 xas_next_offset(xas);
1277 }
1278
1279 if (!xas->xa_node)
1280 xas->xa_node = XAS_BOUNDS;
1281 return NULL;
1282}
1283EXPORT_SYMBOL_GPL(xas_find);
1284
1285/**
1286 * xas_find_marked() - Find the next marked entry in the XArray.
1287 * @xas: XArray operation state.
1288 * @max: Highest index to return.
1289 * @mark: Mark number to search for.
1290 *
1291 * If the @xas has not yet been walked to an entry, return the marked entry
1292 * which has an index >= xas.xa_index. If it has been walked, the entry
1293 * currently being pointed at has been processed, and so we return the
1294 * first marked entry with an index > xas.xa_index.
1295 *
1296 * If no marked entry is found and the array is smaller than @max, @xas is
1297 * set to the bounds state and xas->xa_index is set to the smallest index
1298 * not yet in the array. This allows @xas to be immediately passed to
1299 * xas_store().
1300 *
1301 * If no entry is found before @max is reached, @xas is set to the restart
1302 * state.
1303 *
1304 * Return: The entry, if found, otherwise %NULL.
1305 */
1306void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1307{
1308 bool advance = true;
1309 unsigned int offset;
1310 void *entry;
1311
1312 if (xas_error(xas))
1313 return NULL;
1314 if (xas->xa_index > max)
1315 goto max;
1316
1317 if (!xas->xa_node) {
1318 xas->xa_index = 1;
1319 goto out;
1320 } else if (xas_top(xas->xa_node)) {
1321 advance = false;
1322 entry = xa_head(xas->xa);
1323 xas->xa_node = NULL;
1324 if (xas->xa_index > max_index(entry))
1325 goto out;
1326 if (!xa_is_node(entry)) {
1327 if (xa_marked(xas->xa, mark))
1328 return entry;
1329 xas->xa_index = 1;
1330 goto out;
1331 }
1332 xas->xa_node = xa_to_node(entry);
1333 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1334 }
1335
1336 while (xas->xa_index <= max) {
1337 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1338 xas->xa_offset = xas->xa_node->offset + 1;
1339 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1340 if (!xas->xa_node)
1341 break;
1342 advance = false;
1343 continue;
1344 }
1345
1346 if (!advance) {
1347 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1348 if (xa_is_sibling(entry)) {
1349 xas->xa_offset = xa_to_sibling(entry);
1350 xas_move_index(xas, xas->xa_offset);
1351 }
1352 }
1353
1354 offset = xas_find_chunk(xas, advance, mark);
1355 if (offset > xas->xa_offset) {
1356 advance = false;
1357 xas_move_index(xas, offset);
1358 /* Mind the wrap */
1359 if ((xas->xa_index - 1) >= max)
1360 goto max;
1361 xas->xa_offset = offset;
1362 if (offset == XA_CHUNK_SIZE)
1363 continue;
1364 }
1365
1366 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1367 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1368 continue;
1369 if (!xa_is_node(entry))
1370 return entry;
1371 xas->xa_node = xa_to_node(entry);
1372 xas_set_offset(xas);
1373 }
1374
1375out:
1376 if (xas->xa_index > max)
1377 goto max;
1378 return set_bounds(xas);
1379max:
1380 xas->xa_node = XAS_RESTART;
1381 return NULL;
1382}
1383EXPORT_SYMBOL_GPL(xas_find_marked);
1384
1385/**
1386 * xas_find_conflict() - Find the next present entry in a range.
1387 * @xas: XArray operation state.
1388 *
1389 * The @xas describes both a range and a position within that range.
1390 *
1391 * Context: Any context. Expects xa_lock to be held.
1392 * Return: The next entry in the range covered by @xas or %NULL.
1393 */
1394void *xas_find_conflict(struct xa_state *xas)
1395{
1396 void *curr;
1397
1398 if (xas_error(xas))
1399 return NULL;
1400
1401 if (!xas->xa_node)
1402 return NULL;
1403
1404 if (xas_top(xas->xa_node)) {
1405 curr = xas_start(xas);
1406 if (!curr)
1407 return NULL;
1408 while (xa_is_node(curr)) {
1409 struct xa_node *node = xa_to_node(curr);
1410 curr = xas_descend(xas, node);
1411 }
1412 if (curr)
1413 return curr;
1414 }
1415
1416 if (xas->xa_node->shift > xas->xa_shift)
1417 return NULL;
1418
1419 for (;;) {
1420 if (xas->xa_node->shift == xas->xa_shift) {
1421 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1422 break;
1423 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1424 xas->xa_offset = xas->xa_node->offset;
1425 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1426 if (!xas->xa_node)
1427 break;
1428 continue;
1429 }
1430 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1431 if (xa_is_sibling(curr))
1432 continue;
1433 while (xa_is_node(curr)) {
1434 xas->xa_node = xa_to_node(curr);
1435 xas->xa_offset = 0;
1436 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1437 }
1438 if (curr)
1439 return curr;
1440 }
1441 xas->xa_offset -= xas->xa_sibs;
1442 return NULL;
1443}
1444EXPORT_SYMBOL_GPL(xas_find_conflict);
1445
1446/**
1447 * xa_load() - Load an entry from an XArray.
1448 * @xa: XArray.
1449 * @index: index into array.
1450 *
1451 * Context: Any context. Takes and releases the RCU lock.
1452 * Return: The entry at @index in @xa.
1453 */
1454void *xa_load(struct xarray *xa, unsigned long index)
1455{
1456 XA_STATE(xas, xa, index);
1457 void *entry;
1458
1459 rcu_read_lock();
1460 do {
1461 entry = xas_load(&xas);
1462 if (xa_is_zero(entry))
1463 entry = NULL;
1464 } while (xas_retry(&xas, entry));
1465 rcu_read_unlock();
1466
1467 return entry;
1468}
1469EXPORT_SYMBOL(xa_load);
1470
1471static void *xas_result(struct xa_state *xas, void *curr)
1472{
1473 if (xa_is_zero(curr))
1474 return NULL;
1475 if (xas_error(xas))
1476 curr = xas->xa_node;
1477 return curr;
1478}
1479
1480/**
1481 * __xa_erase() - Erase this entry from the XArray while locked.
1482 * @xa: XArray.
1483 * @index: Index into array.
1484 *
1485 * After this function returns, loading from @index will return %NULL.
1486 * If the index is part of a multi-index entry, all indices will be erased
1487 * and none of the entries will be part of a multi-index entry.
1488 *
1489 * Context: Any context. Expects xa_lock to be held on entry.
1490 * Return: The entry which used to be at this index.
1491 */
1492void *__xa_erase(struct xarray *xa, unsigned long index)
1493{
1494 XA_STATE(xas, xa, index);
1495 return xas_result(&xas, xas_store(&xas, NULL));
1496}
1497EXPORT_SYMBOL(__xa_erase);
1498
1499/**
1500 * xa_erase() - Erase this entry from the XArray.
1501 * @xa: XArray.
1502 * @index: Index of entry.
1503 *
1504 * After this function returns, loading from @index will return %NULL.
1505 * If the index is part of a multi-index entry, all indices will be erased
1506 * and none of the entries will be part of a multi-index entry.
1507 *
1508 * Context: Any context. Takes and releases the xa_lock.
1509 * Return: The entry which used to be at this index.
1510 */
1511void *xa_erase(struct xarray *xa, unsigned long index)
1512{
1513 void *entry;
1514
1515 xa_lock(xa);
1516 entry = __xa_erase(xa, index);
1517 xa_unlock(xa);
1518
1519 return entry;
1520}
1521EXPORT_SYMBOL(xa_erase);
1522
1523/**
1524 * __xa_store() - Store this entry in the XArray.
1525 * @xa: XArray.
1526 * @index: Index into array.
1527 * @entry: New entry.
1528 * @gfp: Memory allocation flags.
1529 *
1530 * You must already be holding the xa_lock when calling this function.
1531 * It will drop the lock if needed to allocate memory, and then reacquire
1532 * it afterwards.
1533 *
1534 * Context: Any context. Expects xa_lock to be held on entry. May
1535 * release and reacquire xa_lock if @gfp flags permit.
1536 * Return: The old entry at this index or xa_err() if an error happened.
1537 */
1538void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1539{
1540 XA_STATE(xas, xa, index);
1541 void *curr;
1542
1543 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1544 return XA_ERROR(-EINVAL);
1545 if (xa_track_free(xa) && !entry)
1546 entry = XA_ZERO_ENTRY;
1547
1548 do {
1549 curr = xas_store(&xas, entry);
1550 if (xa_track_free(xa))
1551 xas_clear_mark(&xas, XA_FREE_MARK);
1552 } while (__xas_nomem(&xas, gfp));
1553
1554 return xas_result(&xas, curr);
1555}
1556EXPORT_SYMBOL(__xa_store);
1557
1558/**
1559 * xa_store() - Store this entry in the XArray.
1560 * @xa: XArray.
1561 * @index: Index into array.
1562 * @entry: New entry.
1563 * @gfp: Memory allocation flags.
1564 *
1565 * After this function returns, loads from this index will return @entry.
1566 * Storing into an existing multi-index entry updates the entry of every index.
1567 * The marks associated with @index are unaffected unless @entry is %NULL.
1568 *
1569 * Context: Any context. Takes and releases the xa_lock.
1570 * May sleep if the @gfp flags permit.
1571 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1572 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1573 * failed.
1574 */
1575void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1576{
1577 void *curr;
1578
1579 xa_lock(xa);
1580 curr = __xa_store(xa, index, entry, gfp);
1581 xa_unlock(xa);
1582
1583 return curr;
1584}
1585EXPORT_SYMBOL(xa_store);
1586
1587/**
1588 * __xa_cmpxchg() - Store this entry in the XArray.
1589 * @xa: XArray.
1590 * @index: Index into array.
1591 * @old: Old value to test against.
1592 * @entry: New entry.
1593 * @gfp: Memory allocation flags.
1594 *
1595 * You must already be holding the xa_lock when calling this function.
1596 * It will drop the lock if needed to allocate memory, and then reacquire
1597 * it afterwards.
1598 *
1599 * Context: Any context. Expects xa_lock to be held on entry. May
1600 * release and reacquire xa_lock if @gfp flags permit.
1601 * Return: The old entry at this index or xa_err() if an error happened.
1602 */
1603void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1604 void *old, void *entry, gfp_t gfp)
1605{
1606 XA_STATE(xas, xa, index);
1607 void *curr;
1608
1609 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1610 return XA_ERROR(-EINVAL);
1611
1612 do {
1613 curr = xas_load(&xas);
1614 if (curr == old) {
1615 xas_store(&xas, entry);
1616 if (xa_track_free(xa) && entry && !curr)
1617 xas_clear_mark(&xas, XA_FREE_MARK);
1618 }
1619 } while (__xas_nomem(&xas, gfp));
1620
1621 return xas_result(&xas, curr);
1622}
1623EXPORT_SYMBOL(__xa_cmpxchg);
1624
1625/**
1626 * __xa_insert() - Store this entry in the XArray if no entry is present.
1627 * @xa: XArray.
1628 * @index: Index into array.
1629 * @entry: New entry.
1630 * @gfp: Memory allocation flags.
1631 *
1632 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1633 * if no entry is present. Inserting will fail if a reserved entry is
1634 * present, even though loading from this index will return NULL.
1635 *
1636 * Context: Any context. Expects xa_lock to be held on entry. May
1637 * release and reacquire xa_lock if @gfp flags permit.
1638 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1639 * -ENOMEM if memory could not be allocated.
1640 */
1641int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1642{
1643 XA_STATE(xas, xa, index);
1644 void *curr;
1645
1646 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1647 return -EINVAL;
1648 if (!entry)
1649 entry = XA_ZERO_ENTRY;
1650
1651 do {
1652 curr = xas_load(&xas);
1653 if (!curr) {
1654 xas_store(&xas, entry);
1655 if (xa_track_free(xa))
1656 xas_clear_mark(&xas, XA_FREE_MARK);
1657 } else {
1658 xas_set_err(&xas, -EBUSY);
1659 }
1660 } while (__xas_nomem(&xas, gfp));
1661
1662 return xas_error(&xas);
1663}
1664EXPORT_SYMBOL(__xa_insert);
1665
1666#ifdef CONFIG_XARRAY_MULTI
1667static void xas_set_range(struct xa_state *xas, unsigned long first,
1668 unsigned long last)
1669{
1670 unsigned int shift = 0;
1671 unsigned long sibs = last - first;
1672 unsigned int offset = XA_CHUNK_MASK;
1673
1674 xas_set(xas, first);
1675
1676 while ((first & XA_CHUNK_MASK) == 0) {
1677 if (sibs < XA_CHUNK_MASK)
1678 break;
1679 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1680 break;
1681 shift += XA_CHUNK_SHIFT;
1682 if (offset == XA_CHUNK_MASK)
1683 offset = sibs & XA_CHUNK_MASK;
1684 sibs >>= XA_CHUNK_SHIFT;
1685 first >>= XA_CHUNK_SHIFT;
1686 }
1687
1688 offset = first & XA_CHUNK_MASK;
1689 if (offset + sibs > XA_CHUNK_MASK)
1690 sibs = XA_CHUNK_MASK - offset;
1691 if ((((first + sibs + 1) << shift) - 1) > last)
1692 sibs -= 1;
1693
1694 xas->xa_shift = shift;
1695 xas->xa_sibs = sibs;
1696}
1697
1698/**
1699 * xa_store_range() - Store this entry at a range of indices in the XArray.
1700 * @xa: XArray.
1701 * @first: First index to affect.
1702 * @last: Last index to affect.
1703 * @entry: New entry.
1704 * @gfp: Memory allocation flags.
1705 *
1706 * After this function returns, loads from any index between @first and @last,
1707 * inclusive will return @entry.
1708 * Storing into an existing multi-index entry updates the entry of every index.
1709 * The marks associated with @index are unaffected unless @entry is %NULL.
1710 *
1711 * Context: Process context. Takes and releases the xa_lock. May sleep
1712 * if the @gfp flags permit.
1713 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1714 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1715 */
1716void *xa_store_range(struct xarray *xa, unsigned long first,
1717 unsigned long last, void *entry, gfp_t gfp)
1718{
1719 XA_STATE(xas, xa, 0);
1720
1721 if (WARN_ON_ONCE(xa_is_internal(entry)))
1722 return XA_ERROR(-EINVAL);
1723 if (last < first)
1724 return XA_ERROR(-EINVAL);
1725
1726 do {
1727 xas_lock(&xas);
1728 if (entry) {
1729 unsigned int order = BITS_PER_LONG;
1730 if (last + 1)
1731 order = __ffs(last + 1);
1732 xas_set_order(&xas, last, order);
1733 xas_create(&xas, true);
1734 if (xas_error(&xas))
1735 goto unlock;
1736 }
1737 do {
1738 xas_set_range(&xas, first, last);
1739 xas_store(&xas, entry);
1740 if (xas_error(&xas))
1741 goto unlock;
1742 first += xas_size(&xas);
1743 } while (first <= last);
1744unlock:
1745 xas_unlock(&xas);
1746 } while (xas_nomem(&xas, gfp));
1747
1748 return xas_result(&xas, NULL);
1749}
1750EXPORT_SYMBOL(xa_store_range);
1751
1752/**
1753 * xa_get_order() - Get the order of an entry.
1754 * @xa: XArray.
1755 * @index: Index of the entry.
1756 *
1757 * Return: A number between 0 and 63 indicating the order of the entry.
1758 */
1759int xa_get_order(struct xarray *xa, unsigned long index)
1760{
1761 XA_STATE(xas, xa, index);
1762 void *entry;
1763 int order = 0;
1764
1765 rcu_read_lock();
1766 entry = xas_load(&xas);
1767
1768 if (!entry)
1769 goto unlock;
1770
1771 if (!xas.xa_node)
1772 goto unlock;
1773
1774 for (;;) {
1775 unsigned int slot = xas.xa_offset + (1 << order);
1776
1777 if (slot >= XA_CHUNK_SIZE)
1778 break;
1779 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1780 break;
1781 order++;
1782 }
1783
1784 order += xas.xa_node->shift;
1785unlock:
1786 rcu_read_unlock();
1787
1788 return order;
1789}
1790EXPORT_SYMBOL(xa_get_order);
1791#endif /* CONFIG_XARRAY_MULTI */
1792
1793/**
1794 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1795 * @xa: XArray.
1796 * @id: Pointer to ID.
1797 * @limit: Range for allocated ID.
1798 * @entry: New entry.
1799 * @gfp: Memory allocation flags.
1800 *
1801 * Finds an empty entry in @xa between @limit.min and @limit.max,
1802 * stores the index into the @id pointer, then stores the entry at
1803 * that index. A concurrent lookup will not see an uninitialised @id.
1804 *
1805 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1806 * in xa_init_flags().
1807 *
1808 * Context: Any context. Expects xa_lock to be held on entry. May
1809 * release and reacquire xa_lock if @gfp flags permit.
1810 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1811 * -EBUSY if there are no free entries in @limit.
1812 */
1813int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1814 struct xa_limit limit, gfp_t gfp)
1815{
1816 XA_STATE(xas, xa, 0);
1817
1818 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1819 return -EINVAL;
1820 if (WARN_ON_ONCE(!xa_track_free(xa)))
1821 return -EINVAL;
1822
1823 if (!entry)
1824 entry = XA_ZERO_ENTRY;
1825
1826 do {
1827 xas.xa_index = limit.min;
1828 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1829 if (xas.xa_node == XAS_RESTART)
1830 xas_set_err(&xas, -EBUSY);
1831 else
1832 *id = xas.xa_index;
1833 xas_store(&xas, entry);
1834 xas_clear_mark(&xas, XA_FREE_MARK);
1835 } while (__xas_nomem(&xas, gfp));
1836
1837 return xas_error(&xas);
1838}
1839EXPORT_SYMBOL(__xa_alloc);
1840
1841/**
1842 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1843 * @xa: XArray.
1844 * @id: Pointer to ID.
1845 * @entry: New entry.
1846 * @limit: Range of allocated ID.
1847 * @next: Pointer to next ID to allocate.
1848 * @gfp: Memory allocation flags.
1849 *
1850 * Finds an empty entry in @xa between @limit.min and @limit.max,
1851 * stores the index into the @id pointer, then stores the entry at
1852 * that index. A concurrent lookup will not see an uninitialised @id.
1853 * The search for an empty entry will start at @next and will wrap
1854 * around if necessary.
1855 *
1856 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1857 * in xa_init_flags().
1858 *
1859 * Context: Any context. Expects xa_lock to be held on entry. May
1860 * release and reacquire xa_lock if @gfp flags permit.
1861 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1862 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1863 * allocated or -EBUSY if there are no free entries in @limit.
1864 */
1865int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1866 struct xa_limit limit, u32 *next, gfp_t gfp)
1867{
1868 u32 min = limit.min;
1869 int ret;
1870
1871 limit.min = max(min, *next);
1872 ret = __xa_alloc(xa, id, entry, limit, gfp);
1873 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1874 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1875 ret = 1;
1876 }
1877
1878 if (ret < 0 && limit.min > min) {
1879 limit.min = min;
1880 ret = __xa_alloc(xa, id, entry, limit, gfp);
1881 if (ret == 0)
1882 ret = 1;
1883 }
1884
1885 if (ret >= 0) {
1886 *next = *id + 1;
1887 if (*next == 0)
1888 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1889 }
1890 return ret;
1891}
1892EXPORT_SYMBOL(__xa_alloc_cyclic);
1893
1894/**
1895 * __xa_set_mark() - Set this mark on this entry while locked.
1896 * @xa: XArray.
1897 * @index: Index of entry.
1898 * @mark: Mark number.
1899 *
1900 * Attempting to set a mark on a %NULL entry does not succeed.
1901 *
1902 * Context: Any context. Expects xa_lock to be held on entry.
1903 */
1904void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1905{
1906 XA_STATE(xas, xa, index);
1907 void *entry = xas_load(&xas);
1908
1909 if (entry)
1910 xas_set_mark(&xas, mark);
1911}
1912EXPORT_SYMBOL(__xa_set_mark);
1913
1914/**
1915 * __xa_clear_mark() - Clear this mark on this entry while locked.
1916 * @xa: XArray.
1917 * @index: Index of entry.
1918 * @mark: Mark number.
1919 *
1920 * Context: Any context. Expects xa_lock to be held on entry.
1921 */
1922void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1923{
1924 XA_STATE(xas, xa, index);
1925 void *entry = xas_load(&xas);
1926
1927 if (entry)
1928 xas_clear_mark(&xas, mark);
1929}
1930EXPORT_SYMBOL(__xa_clear_mark);
1931
1932/**
1933 * xa_get_mark() - Inquire whether this mark is set on this entry.
1934 * @xa: XArray.
1935 * @index: Index of entry.
1936 * @mark: Mark number.
1937 *
1938 * This function uses the RCU read lock, so the result may be out of date
1939 * by the time it returns. If you need the result to be stable, use a lock.
1940 *
1941 * Context: Any context. Takes and releases the RCU lock.
1942 * Return: True if the entry at @index has this mark set, false if it doesn't.
1943 */
1944bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1945{
1946 XA_STATE(xas, xa, index);
1947 void *entry;
1948
1949 rcu_read_lock();
1950 entry = xas_start(&xas);
1951 while (xas_get_mark(&xas, mark)) {
1952 if (!xa_is_node(entry))
1953 goto found;
1954 entry = xas_descend(&xas, xa_to_node(entry));
1955 }
1956 rcu_read_unlock();
1957 return false;
1958 found:
1959 rcu_read_unlock();
1960 return true;
1961}
1962EXPORT_SYMBOL(xa_get_mark);
1963
1964/**
1965 * xa_set_mark() - Set this mark on this entry.
1966 * @xa: XArray.
1967 * @index: Index of entry.
1968 * @mark: Mark number.
1969 *
1970 * Attempting to set a mark on a %NULL entry does not succeed.
1971 *
1972 * Context: Process context. Takes and releases the xa_lock.
1973 */
1974void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1975{
1976 xa_lock(xa);
1977 __xa_set_mark(xa, index, mark);
1978 xa_unlock(xa);
1979}
1980EXPORT_SYMBOL(xa_set_mark);
1981
1982/**
1983 * xa_clear_mark() - Clear this mark on this entry.
1984 * @xa: XArray.
1985 * @index: Index of entry.
1986 * @mark: Mark number.
1987 *
1988 * Clearing a mark always succeeds.
1989 *
1990 * Context: Process context. Takes and releases the xa_lock.
1991 */
1992void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1993{
1994 xa_lock(xa);
1995 __xa_clear_mark(xa, index, mark);
1996 xa_unlock(xa);
1997}
1998EXPORT_SYMBOL(xa_clear_mark);
1999
2000/**
2001 * xa_find() - Search the XArray for an entry.
2002 * @xa: XArray.
2003 * @indexp: Pointer to an index.
2004 * @max: Maximum index to search to.
2005 * @filter: Selection criterion.
2006 *
2007 * Finds the entry in @xa which matches the @filter, and has the lowest
2008 * index that is at least @indexp and no more than @max.
2009 * If an entry is found, @indexp is updated to be the index of the entry.
2010 * This function is protected by the RCU read lock, so it may not find
2011 * entries which are being simultaneously added. It will not return an
2012 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2013 *
2014 * Context: Any context. Takes and releases the RCU lock.
2015 * Return: The entry, if found, otherwise %NULL.
2016 */
2017void *xa_find(struct xarray *xa, unsigned long *indexp,
2018 unsigned long max, xa_mark_t filter)
2019{
2020 XA_STATE(xas, xa, *indexp);
2021 void *entry;
2022
2023 rcu_read_lock();
2024 do {
2025 if ((__force unsigned int)filter < XA_MAX_MARKS)
2026 entry = xas_find_marked(&xas, max, filter);
2027 else
2028 entry = xas_find(&xas, max);
2029 } while (xas_retry(&xas, entry));
2030 rcu_read_unlock();
2031
2032 if (entry)
2033 *indexp = xas.xa_index;
2034 return entry;
2035}
2036EXPORT_SYMBOL(xa_find);
2037
2038static bool xas_sibling(struct xa_state *xas)
2039{
2040 struct xa_node *node = xas->xa_node;
2041 unsigned long mask;
2042
2043 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2044 return false;
2045 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2046 return (xas->xa_index & mask) >
2047 ((unsigned long)xas->xa_offset << node->shift);
2048}
2049
2050/**
2051 * xa_find_after() - Search the XArray for a present entry.
2052 * @xa: XArray.
2053 * @indexp: Pointer to an index.
2054 * @max: Maximum index to search to.
2055 * @filter: Selection criterion.
2056 *
2057 * Finds the entry in @xa which matches the @filter and has the lowest
2058 * index that is above @indexp and no more than @max.
2059 * If an entry is found, @indexp is updated to be the index of the entry.
2060 * This function is protected by the RCU read lock, so it may miss entries
2061 * which are being simultaneously added. It will not return an
2062 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2063 *
2064 * Context: Any context. Takes and releases the RCU lock.
2065 * Return: The pointer, if found, otherwise %NULL.
2066 */
2067void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2068 unsigned long max, xa_mark_t filter)
2069{
2070 XA_STATE(xas, xa, *indexp + 1);
2071 void *entry;
2072
2073 if (xas.xa_index == 0)
2074 return NULL;
2075
2076 rcu_read_lock();
2077 for (;;) {
2078 if ((__force unsigned int)filter < XA_MAX_MARKS)
2079 entry = xas_find_marked(&xas, max, filter);
2080 else
2081 entry = xas_find(&xas, max);
2082
2083 if (xas_invalid(&xas))
2084 break;
2085 if (xas_sibling(&xas))
2086 continue;
2087 if (!xas_retry(&xas, entry))
2088 break;
2089 }
2090 rcu_read_unlock();
2091
2092 if (entry)
2093 *indexp = xas.xa_index;
2094 return entry;
2095}
2096EXPORT_SYMBOL(xa_find_after);
2097
2098static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2099 unsigned long max, unsigned int n)
2100{
2101 void *entry;
2102 unsigned int i = 0;
2103
2104 rcu_read_lock();
2105 xas_for_each(xas, entry, max) {
2106 if (xas_retry(xas, entry))
2107 continue;
2108 dst[i++] = entry;
2109 if (i == n)
2110 break;
2111 }
2112 rcu_read_unlock();
2113
2114 return i;
2115}
2116
2117static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2118 unsigned long max, unsigned int n, xa_mark_t mark)
2119{
2120 void *entry;
2121 unsigned int i = 0;
2122
2123 rcu_read_lock();
2124 xas_for_each_marked(xas, entry, max, mark) {
2125 if (xas_retry(xas, entry))
2126 continue;
2127 dst[i++] = entry;
2128 if (i == n)
2129 break;
2130 }
2131 rcu_read_unlock();
2132
2133 return i;
2134}
2135
2136/**
2137 * xa_extract() - Copy selected entries from the XArray into a normal array.
2138 * @xa: The source XArray to copy from.
2139 * @dst: The buffer to copy entries into.
2140 * @start: The first index in the XArray eligible to be selected.
2141 * @max: The last index in the XArray eligible to be selected.
2142 * @n: The maximum number of entries to copy.
2143 * @filter: Selection criterion.
2144 *
2145 * Copies up to @n entries that match @filter from the XArray. The
2146 * copied entries will have indices between @start and @max, inclusive.
2147 *
2148 * The @filter may be an XArray mark value, in which case entries which are
2149 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2150 * which case all entries which are not %NULL will be copied.
2151 *
2152 * The entries returned may not represent a snapshot of the XArray at a
2153 * moment in time. For example, if another thread stores to index 5, then
2154 * index 10, calling xa_extract() may return the old contents of index 5
2155 * and the new contents of index 10. Indices not modified while this
2156 * function is running will not be skipped.
2157 *
2158 * If you need stronger guarantees, holding the xa_lock across calls to this
2159 * function will prevent concurrent modification.
2160 *
2161 * Context: Any context. Takes and releases the RCU lock.
2162 * Return: The number of entries copied.
2163 */
2164unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2165 unsigned long max, unsigned int n, xa_mark_t filter)
2166{
2167 XA_STATE(xas, xa, start);
2168
2169 if (!n)
2170 return 0;
2171
2172 if ((__force unsigned int)filter < XA_MAX_MARKS)
2173 return xas_extract_marked(&xas, dst, max, n, filter);
2174 return xas_extract_present(&xas, dst, max, n);
2175}
2176EXPORT_SYMBOL(xa_extract);
2177
2178/**
2179 * xa_delete_node() - Private interface for workingset code.
2180 * @node: Node to be removed from the tree.
2181 * @update: Function to call to update ancestor nodes.
2182 *
2183 * Context: xa_lock must be held on entry and will not be released.
2184 */
2185void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2186{
2187 struct xa_state xas = {
2188 .xa = node->array,
2189 .xa_index = (unsigned long)node->offset <<
2190 (node->shift + XA_CHUNK_SHIFT),
2191 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2192 .xa_offset = node->offset,
2193 .xa_node = xa_parent_locked(node->array, node),
2194 .xa_update = update,
2195 };
2196
2197 xas_store(&xas, NULL);
2198}
2199EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2200
2201/**
2202 * xa_destroy() - Free all internal data structures.
2203 * @xa: XArray.
2204 *
2205 * After calling this function, the XArray is empty and has freed all memory
2206 * allocated for its internal data structures. You are responsible for
2207 * freeing the objects referenced by the XArray.
2208 *
2209 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2210 */
2211void xa_destroy(struct xarray *xa)
2212{
2213 XA_STATE(xas, xa, 0);
2214 unsigned long flags;
2215 void *entry;
2216
2217 xas.xa_node = NULL;
2218 xas_lock_irqsave(&xas, flags);
2219 entry = xa_head_locked(xa);
2220 RCU_INIT_POINTER(xa->xa_head, NULL);
2221 xas_init_marks(&xas);
2222 if (xa_zero_busy(xa))
2223 xa_mark_clear(xa, XA_FREE_MARK);
2224 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2225 if (xa_is_node(entry))
2226 xas_free_nodes(&xas, xa_to_node(entry));
2227 xas_unlock_irqrestore(&xas, flags);
2228}
2229EXPORT_SYMBOL(xa_destroy);
2230
2231#ifdef XA_DEBUG
2232void xa_dump_node(const struct xa_node *node)
2233{
2234 unsigned i, j;
2235
2236 if (!node)
2237 return;
2238 if ((unsigned long)node & 3) {
2239 pr_cont("node %px\n", node);
2240 return;
2241 }
2242
2243 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2244 "array %px list %px %px marks",
2245 node, node->parent ? "offset" : "max", node->offset,
2246 node->parent, node->shift, node->count, node->nr_values,
2247 node->array, node->private_list.prev, node->private_list.next);
2248 for (i = 0; i < XA_MAX_MARKS; i++)
2249 for (j = 0; j < XA_MARK_LONGS; j++)
2250 pr_cont(" %lx", node->marks[i][j]);
2251 pr_cont("\n");
2252}
2253
2254void xa_dump_index(unsigned long index, unsigned int shift)
2255{
2256 if (!shift)
2257 pr_info("%lu: ", index);
2258 else if (shift >= BITS_PER_LONG)
2259 pr_info("0-%lu: ", ~0UL);
2260 else
2261 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2262}
2263
2264void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2265{
2266 if (!entry)
2267 return;
2268
2269 xa_dump_index(index, shift);
2270
2271 if (xa_is_node(entry)) {
2272 if (shift == 0) {
2273 pr_cont("%px\n", entry);
2274 } else {
2275 unsigned long i;
2276 struct xa_node *node = xa_to_node(entry);
2277 xa_dump_node(node);
2278 for (i = 0; i < XA_CHUNK_SIZE; i++)
2279 xa_dump_entry(node->slots[i],
2280 index + (i << node->shift), node->shift);
2281 }
2282 } else if (xa_is_value(entry))
2283 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2284 xa_to_value(entry), entry);
2285 else if (!xa_is_internal(entry))
2286 pr_cont("%px\n", entry);
2287 else if (xa_is_retry(entry))
2288 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2289 else if (xa_is_sibling(entry))
2290 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2291 else if (xa_is_zero(entry))
2292 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2293 else
2294 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2295}
2296
2297void xa_dump(const struct xarray *xa)
2298{
2299 void *entry = xa->xa_head;
2300 unsigned int shift = 0;
2301
2302 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2303 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2304 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2305 if (xa_is_node(entry))
2306 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2307 xa_dump_entry(entry, 0, shift);
2308}
2309#endif
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15#include "radix-tree.h"
16
17/*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
33static inline unsigned int xa_lock_type(const struct xarray *xa)
34{
35 return (__force unsigned int)xa->xa_flags & 3;
36}
37
38static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39{
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46}
47
48static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49{
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56}
57
58static inline bool xa_track_free(const struct xarray *xa)
59{
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61}
62
63static inline bool xa_zero_busy(const struct xarray *xa)
64{
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66}
67
68static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69{
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72}
73
74static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75{
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78}
79
80static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81{
82 return node->marks[(__force unsigned)mark];
83}
84
85static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87{
88 return test_bit(offset, node_marks(node, mark));
89}
90
91/* returns true if the bit was set */
92static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94{
95 return __test_and_set_bit(offset, node_marks(node, mark));
96}
97
98/* returns true if the bit was set */
99static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101{
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103}
104
105static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106{
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108}
109
110static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111{
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113}
114
115#define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117} while (0)
118
119/*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
126static void xas_squash_marks(const struct xa_state *xas)
127{
128 unsigned int mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 if (!xas->xa_sibs)
132 return;
133
134 do {
135 unsigned long *marks = xas->xa_node->marks[mark];
136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 continue;
138 __set_bit(xas->xa_offset, marks);
139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 } while (mark++ != (__force unsigned)XA_MARK_MAX);
141}
142
143/* extracts the offset within this node from the index */
144static unsigned int get_offset(unsigned long index, struct xa_node *node)
145{
146 return (index >> node->shift) & XA_CHUNK_MASK;
147}
148
149static void xas_set_offset(struct xa_state *xas)
150{
151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152}
153
154/* move the index either forwards (find) or backwards (sibling slot) */
155static void xas_move_index(struct xa_state *xas, unsigned long offset)
156{
157 unsigned int shift = xas->xa_node->shift;
158 xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 xas->xa_index += offset << shift;
160}
161
162static void xas_next_offset(struct xa_state *xas)
163{
164 xas->xa_offset++;
165 xas_move_index(xas, xas->xa_offset);
166}
167
168static void *set_bounds(struct xa_state *xas)
169{
170 xas->xa_node = XAS_BOUNDS;
171 return NULL;
172}
173
174/*
175 * Starts a walk. If the @xas is already valid, we assume that it's on
176 * the right path and just return where we've got to. If we're in an
177 * error state, return NULL. If the index is outside the current scope
178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
179 * set @xas->xa_node to NULL and return the current head of the array.
180 */
181static void *xas_start(struct xa_state *xas)
182{
183 void *entry;
184
185 if (xas_valid(xas))
186 return xas_reload(xas);
187 if (xas_error(xas))
188 return NULL;
189
190 entry = xa_head(xas->xa);
191 if (!xa_is_node(entry)) {
192 if (xas->xa_index)
193 return set_bounds(xas);
194 } else {
195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 return set_bounds(xas);
197 }
198
199 xas->xa_node = NULL;
200 return entry;
201}
202
203static __always_inline void *xas_descend(struct xa_state *xas,
204 struct xa_node *node)
205{
206 unsigned int offset = get_offset(xas->xa_index, node);
207 void *entry = xa_entry(xas->xa, node, offset);
208
209 xas->xa_node = node;
210 while (xa_is_sibling(entry)) {
211 offset = xa_to_sibling(entry);
212 entry = xa_entry(xas->xa, node, offset);
213 if (node->shift && xa_is_node(entry))
214 entry = XA_RETRY_ENTRY;
215 }
216
217 xas->xa_offset = offset;
218 return entry;
219}
220
221/**
222 * xas_load() - Load an entry from the XArray (advanced).
223 * @xas: XArray operation state.
224 *
225 * Usually walks the @xas to the appropriate state to load the entry
226 * stored at xa_index. However, it will do nothing and return %NULL if
227 * @xas is in an error state. xas_load() will never expand the tree.
228 *
229 * If the xa_state is set up to operate on a multi-index entry, xas_load()
230 * may return %NULL or an internal entry, even if there are entries
231 * present within the range specified by @xas.
232 *
233 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
234 * Return: Usually an entry in the XArray, but see description for exceptions.
235 */
236void *xas_load(struct xa_state *xas)
237{
238 void *entry = xas_start(xas);
239
240 while (xa_is_node(entry)) {
241 struct xa_node *node = xa_to_node(entry);
242
243 if (xas->xa_shift > node->shift)
244 break;
245 entry = xas_descend(xas, node);
246 if (node->shift == 0)
247 break;
248 }
249 return entry;
250}
251EXPORT_SYMBOL_GPL(xas_load);
252
253#define XA_RCU_FREE ((struct xarray *)1)
254
255static void xa_node_free(struct xa_node *node)
256{
257 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
258 node->array = XA_RCU_FREE;
259 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
260}
261
262/*
263 * xas_destroy() - Free any resources allocated during the XArray operation.
264 * @xas: XArray operation state.
265 *
266 * Most users will not need to call this function; it is called for you
267 * by xas_nomem().
268 */
269void xas_destroy(struct xa_state *xas)
270{
271 struct xa_node *next, *node = xas->xa_alloc;
272
273 while (node) {
274 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
275 next = rcu_dereference_raw(node->parent);
276 radix_tree_node_rcu_free(&node->rcu_head);
277 xas->xa_alloc = node = next;
278 }
279}
280
281/**
282 * xas_nomem() - Allocate memory if needed.
283 * @xas: XArray operation state.
284 * @gfp: Memory allocation flags.
285 *
286 * If we need to add new nodes to the XArray, we try to allocate memory
287 * with GFP_NOWAIT while holding the lock, which will usually succeed.
288 * If it fails, @xas is flagged as needing memory to continue. The caller
289 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
290 * the caller should retry the operation.
291 *
292 * Forward progress is guaranteed as one node is allocated here and
293 * stored in the xa_state where it will be found by xas_alloc(). More
294 * nodes will likely be found in the slab allocator, but we do not tie
295 * them up here.
296 *
297 * Return: true if memory was needed, and was successfully allocated.
298 */
299bool xas_nomem(struct xa_state *xas, gfp_t gfp)
300{
301 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
302 xas_destroy(xas);
303 return false;
304 }
305 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
306 gfp |= __GFP_ACCOUNT;
307 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
308 if (!xas->xa_alloc)
309 return false;
310 xas->xa_alloc->parent = NULL;
311 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
312 xas->xa_node = XAS_RESTART;
313 return true;
314}
315EXPORT_SYMBOL_GPL(xas_nomem);
316
317/*
318 * __xas_nomem() - Drop locks and allocate memory if needed.
319 * @xas: XArray operation state.
320 * @gfp: Memory allocation flags.
321 *
322 * Internal variant of xas_nomem().
323 *
324 * Return: true if memory was needed, and was successfully allocated.
325 */
326static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
327 __must_hold(xas->xa->xa_lock)
328{
329 unsigned int lock_type = xa_lock_type(xas->xa);
330
331 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
332 xas_destroy(xas);
333 return false;
334 }
335 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
336 gfp |= __GFP_ACCOUNT;
337 if (gfpflags_allow_blocking(gfp)) {
338 xas_unlock_type(xas, lock_type);
339 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
340 xas_lock_type(xas, lock_type);
341 } else {
342 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
343 }
344 if (!xas->xa_alloc)
345 return false;
346 xas->xa_alloc->parent = NULL;
347 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
348 xas->xa_node = XAS_RESTART;
349 return true;
350}
351
352static void xas_update(struct xa_state *xas, struct xa_node *node)
353{
354 if (xas->xa_update)
355 xas->xa_update(node);
356 else
357 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
358}
359
360static void *xas_alloc(struct xa_state *xas, unsigned int shift)
361{
362 struct xa_node *parent = xas->xa_node;
363 struct xa_node *node = xas->xa_alloc;
364
365 if (xas_invalid(xas))
366 return NULL;
367
368 if (node) {
369 xas->xa_alloc = NULL;
370 } else {
371 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
372
373 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
374 gfp |= __GFP_ACCOUNT;
375
376 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
377 if (!node) {
378 xas_set_err(xas, -ENOMEM);
379 return NULL;
380 }
381 }
382
383 if (parent) {
384 node->offset = xas->xa_offset;
385 parent->count++;
386 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
387 xas_update(xas, parent);
388 }
389 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
390 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
391 node->shift = shift;
392 node->count = 0;
393 node->nr_values = 0;
394 RCU_INIT_POINTER(node->parent, xas->xa_node);
395 node->array = xas->xa;
396
397 return node;
398}
399
400#ifdef CONFIG_XARRAY_MULTI
401/* Returns the number of indices covered by a given xa_state */
402static unsigned long xas_size(const struct xa_state *xas)
403{
404 return (xas->xa_sibs + 1UL) << xas->xa_shift;
405}
406#endif
407
408/*
409 * Use this to calculate the maximum index that will need to be created
410 * in order to add the entry described by @xas. Because we cannot store a
411 * multi-index entry at index 0, the calculation is a little more complex
412 * than you might expect.
413 */
414static unsigned long xas_max(struct xa_state *xas)
415{
416 unsigned long max = xas->xa_index;
417
418#ifdef CONFIG_XARRAY_MULTI
419 if (xas->xa_shift || xas->xa_sibs) {
420 unsigned long mask = xas_size(xas) - 1;
421 max |= mask;
422 if (mask == max)
423 max++;
424 }
425#endif
426
427 return max;
428}
429
430/* The maximum index that can be contained in the array without expanding it */
431static unsigned long max_index(void *entry)
432{
433 if (!xa_is_node(entry))
434 return 0;
435 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
436}
437
438static void xas_shrink(struct xa_state *xas)
439{
440 struct xarray *xa = xas->xa;
441 struct xa_node *node = xas->xa_node;
442
443 for (;;) {
444 void *entry;
445
446 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
447 if (node->count != 1)
448 break;
449 entry = xa_entry_locked(xa, node, 0);
450 if (!entry)
451 break;
452 if (!xa_is_node(entry) && node->shift)
453 break;
454 if (xa_is_zero(entry) && xa_zero_busy(xa))
455 entry = NULL;
456 xas->xa_node = XAS_BOUNDS;
457
458 RCU_INIT_POINTER(xa->xa_head, entry);
459 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
460 xa_mark_clear(xa, XA_FREE_MARK);
461
462 node->count = 0;
463 node->nr_values = 0;
464 if (!xa_is_node(entry))
465 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
466 xas_update(xas, node);
467 xa_node_free(node);
468 if (!xa_is_node(entry))
469 break;
470 node = xa_to_node(entry);
471 node->parent = NULL;
472 }
473}
474
475/*
476 * xas_delete_node() - Attempt to delete an xa_node
477 * @xas: Array operation state.
478 *
479 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
480 * a non-zero reference count.
481 */
482static void xas_delete_node(struct xa_state *xas)
483{
484 struct xa_node *node = xas->xa_node;
485
486 for (;;) {
487 struct xa_node *parent;
488
489 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
490 if (node->count)
491 break;
492
493 parent = xa_parent_locked(xas->xa, node);
494 xas->xa_node = parent;
495 xas->xa_offset = node->offset;
496 xa_node_free(node);
497
498 if (!parent) {
499 xas->xa->xa_head = NULL;
500 xas->xa_node = XAS_BOUNDS;
501 return;
502 }
503
504 parent->slots[xas->xa_offset] = NULL;
505 parent->count--;
506 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
507 node = parent;
508 xas_update(xas, node);
509 }
510
511 if (!node->parent)
512 xas_shrink(xas);
513}
514
515/**
516 * xas_free_nodes() - Free this node and all nodes that it references
517 * @xas: Array operation state.
518 * @top: Node to free
519 *
520 * This node has been removed from the tree. We must now free it and all
521 * of its subnodes. There may be RCU walkers with references into the tree,
522 * so we must replace all entries with retry markers.
523 */
524static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
525{
526 unsigned int offset = 0;
527 struct xa_node *node = top;
528
529 for (;;) {
530 void *entry = xa_entry_locked(xas->xa, node, offset);
531
532 if (node->shift && xa_is_node(entry)) {
533 node = xa_to_node(entry);
534 offset = 0;
535 continue;
536 }
537 if (entry)
538 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
539 offset++;
540 while (offset == XA_CHUNK_SIZE) {
541 struct xa_node *parent;
542
543 parent = xa_parent_locked(xas->xa, node);
544 offset = node->offset + 1;
545 node->count = 0;
546 node->nr_values = 0;
547 xas_update(xas, node);
548 xa_node_free(node);
549 if (node == top)
550 return;
551 node = parent;
552 }
553 }
554}
555
556/*
557 * xas_expand adds nodes to the head of the tree until it has reached
558 * sufficient height to be able to contain @xas->xa_index
559 */
560static int xas_expand(struct xa_state *xas, void *head)
561{
562 struct xarray *xa = xas->xa;
563 struct xa_node *node = NULL;
564 unsigned int shift = 0;
565 unsigned long max = xas_max(xas);
566
567 if (!head) {
568 if (max == 0)
569 return 0;
570 while ((max >> shift) >= XA_CHUNK_SIZE)
571 shift += XA_CHUNK_SHIFT;
572 return shift + XA_CHUNK_SHIFT;
573 } else if (xa_is_node(head)) {
574 node = xa_to_node(head);
575 shift = node->shift + XA_CHUNK_SHIFT;
576 }
577 xas->xa_node = NULL;
578
579 while (max > max_index(head)) {
580 xa_mark_t mark = 0;
581
582 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
583 node = xas_alloc(xas, shift);
584 if (!node)
585 return -ENOMEM;
586
587 node->count = 1;
588 if (xa_is_value(head))
589 node->nr_values = 1;
590 RCU_INIT_POINTER(node->slots[0], head);
591
592 /* Propagate the aggregated mark info to the new child */
593 for (;;) {
594 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
595 node_mark_all(node, XA_FREE_MARK);
596 if (!xa_marked(xa, XA_FREE_MARK)) {
597 node_clear_mark(node, 0, XA_FREE_MARK);
598 xa_mark_set(xa, XA_FREE_MARK);
599 }
600 } else if (xa_marked(xa, mark)) {
601 node_set_mark(node, 0, mark);
602 }
603 if (mark == XA_MARK_MAX)
604 break;
605 mark_inc(mark);
606 }
607
608 /*
609 * Now that the new node is fully initialised, we can add
610 * it to the tree
611 */
612 if (xa_is_node(head)) {
613 xa_to_node(head)->offset = 0;
614 rcu_assign_pointer(xa_to_node(head)->parent, node);
615 }
616 head = xa_mk_node(node);
617 rcu_assign_pointer(xa->xa_head, head);
618 xas_update(xas, node);
619
620 shift += XA_CHUNK_SHIFT;
621 }
622
623 xas->xa_node = node;
624 return shift;
625}
626
627/*
628 * xas_create() - Create a slot to store an entry in.
629 * @xas: XArray operation state.
630 * @allow_root: %true if we can store the entry in the root directly
631 *
632 * Most users will not need to call this function directly, as it is called
633 * by xas_store(). It is useful for doing conditional store operations
634 * (see the xa_cmpxchg() implementation for an example).
635 *
636 * Return: If the slot already existed, returns the contents of this slot.
637 * If the slot was newly created, returns %NULL. If it failed to create the
638 * slot, returns %NULL and indicates the error in @xas.
639 */
640static void *xas_create(struct xa_state *xas, bool allow_root)
641{
642 struct xarray *xa = xas->xa;
643 void *entry;
644 void __rcu **slot;
645 struct xa_node *node = xas->xa_node;
646 int shift;
647 unsigned int order = xas->xa_shift;
648
649 if (xas_top(node)) {
650 entry = xa_head_locked(xa);
651 xas->xa_node = NULL;
652 if (!entry && xa_zero_busy(xa))
653 entry = XA_ZERO_ENTRY;
654 shift = xas_expand(xas, entry);
655 if (shift < 0)
656 return NULL;
657 if (!shift && !allow_root)
658 shift = XA_CHUNK_SHIFT;
659 entry = xa_head_locked(xa);
660 slot = &xa->xa_head;
661 } else if (xas_error(xas)) {
662 return NULL;
663 } else if (node) {
664 unsigned int offset = xas->xa_offset;
665
666 shift = node->shift;
667 entry = xa_entry_locked(xa, node, offset);
668 slot = &node->slots[offset];
669 } else {
670 shift = 0;
671 entry = xa_head_locked(xa);
672 slot = &xa->xa_head;
673 }
674
675 while (shift > order) {
676 shift -= XA_CHUNK_SHIFT;
677 if (!entry) {
678 node = xas_alloc(xas, shift);
679 if (!node)
680 break;
681 if (xa_track_free(xa))
682 node_mark_all(node, XA_FREE_MARK);
683 rcu_assign_pointer(*slot, xa_mk_node(node));
684 } else if (xa_is_node(entry)) {
685 node = xa_to_node(entry);
686 } else {
687 break;
688 }
689 entry = xas_descend(xas, node);
690 slot = &node->slots[xas->xa_offset];
691 }
692
693 return entry;
694}
695
696/**
697 * xas_create_range() - Ensure that stores to this range will succeed
698 * @xas: XArray operation state.
699 *
700 * Creates all of the slots in the range covered by @xas. Sets @xas to
701 * create single-index entries and positions it at the beginning of the
702 * range. This is for the benefit of users which have not yet been
703 * converted to use multi-index entries.
704 */
705void xas_create_range(struct xa_state *xas)
706{
707 unsigned long index = xas->xa_index;
708 unsigned char shift = xas->xa_shift;
709 unsigned char sibs = xas->xa_sibs;
710
711 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
712 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
713 xas->xa_offset |= sibs;
714 xas->xa_shift = 0;
715 xas->xa_sibs = 0;
716
717 for (;;) {
718 xas_create(xas, true);
719 if (xas_error(xas))
720 goto restore;
721 if (xas->xa_index <= (index | XA_CHUNK_MASK))
722 goto success;
723 xas->xa_index -= XA_CHUNK_SIZE;
724
725 for (;;) {
726 struct xa_node *node = xas->xa_node;
727 if (node->shift >= shift)
728 break;
729 xas->xa_node = xa_parent_locked(xas->xa, node);
730 xas->xa_offset = node->offset - 1;
731 if (node->offset != 0)
732 break;
733 }
734 }
735
736restore:
737 xas->xa_shift = shift;
738 xas->xa_sibs = sibs;
739 xas->xa_index = index;
740 return;
741success:
742 xas->xa_index = index;
743 if (xas->xa_node)
744 xas_set_offset(xas);
745}
746EXPORT_SYMBOL_GPL(xas_create_range);
747
748static void update_node(struct xa_state *xas, struct xa_node *node,
749 int count, int values)
750{
751 if (!node || (!count && !values))
752 return;
753
754 node->count += count;
755 node->nr_values += values;
756 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
757 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
758 xas_update(xas, node);
759 if (count < 0)
760 xas_delete_node(xas);
761}
762
763/**
764 * xas_store() - Store this entry in the XArray.
765 * @xas: XArray operation state.
766 * @entry: New entry.
767 *
768 * If @xas is operating on a multi-index entry, the entry returned by this
769 * function is essentially meaningless (it may be an internal entry or it
770 * may be %NULL, even if there are non-NULL entries at some of the indices
771 * covered by the range). This is not a problem for any current users,
772 * and can be changed if needed.
773 *
774 * Return: The old entry at this index.
775 */
776void *xas_store(struct xa_state *xas, void *entry)
777{
778 struct xa_node *node;
779 void __rcu **slot = &xas->xa->xa_head;
780 unsigned int offset, max;
781 int count = 0;
782 int values = 0;
783 void *first, *next;
784 bool value = xa_is_value(entry);
785
786 if (entry) {
787 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
788 first = xas_create(xas, allow_root);
789 } else {
790 first = xas_load(xas);
791 }
792
793 if (xas_invalid(xas))
794 return first;
795 node = xas->xa_node;
796 if (node && (xas->xa_shift < node->shift))
797 xas->xa_sibs = 0;
798 if ((first == entry) && !xas->xa_sibs)
799 return first;
800
801 next = first;
802 offset = xas->xa_offset;
803 max = xas->xa_offset + xas->xa_sibs;
804 if (node) {
805 slot = &node->slots[offset];
806 if (xas->xa_sibs)
807 xas_squash_marks(xas);
808 }
809 if (!entry)
810 xas_init_marks(xas);
811
812 for (;;) {
813 /*
814 * Must clear the marks before setting the entry to NULL,
815 * otherwise xas_for_each_marked may find a NULL entry and
816 * stop early. rcu_assign_pointer contains a release barrier
817 * so the mark clearing will appear to happen before the
818 * entry is set to NULL.
819 */
820 rcu_assign_pointer(*slot, entry);
821 if (xa_is_node(next) && (!node || node->shift))
822 xas_free_nodes(xas, xa_to_node(next));
823 if (!node)
824 break;
825 count += !next - !entry;
826 values += !xa_is_value(first) - !value;
827 if (entry) {
828 if (offset == max)
829 break;
830 if (!xa_is_sibling(entry))
831 entry = xa_mk_sibling(xas->xa_offset);
832 } else {
833 if (offset == XA_CHUNK_MASK)
834 break;
835 }
836 next = xa_entry_locked(xas->xa, node, ++offset);
837 if (!xa_is_sibling(next)) {
838 if (!entry && (offset > max))
839 break;
840 first = next;
841 }
842 slot++;
843 }
844
845 update_node(xas, node, count, values);
846 return first;
847}
848EXPORT_SYMBOL_GPL(xas_store);
849
850/**
851 * xas_get_mark() - Returns the state of this mark.
852 * @xas: XArray operation state.
853 * @mark: Mark number.
854 *
855 * Return: true if the mark is set, false if the mark is clear or @xas
856 * is in an error state.
857 */
858bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
859{
860 if (xas_invalid(xas))
861 return false;
862 if (!xas->xa_node)
863 return xa_marked(xas->xa, mark);
864 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
865}
866EXPORT_SYMBOL_GPL(xas_get_mark);
867
868/**
869 * xas_set_mark() - Sets the mark on this entry and its parents.
870 * @xas: XArray operation state.
871 * @mark: Mark number.
872 *
873 * Sets the specified mark on this entry, and walks up the tree setting it
874 * on all the ancestor entries. Does nothing if @xas has not been walked to
875 * an entry, or is in an error state.
876 */
877void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
878{
879 struct xa_node *node = xas->xa_node;
880 unsigned int offset = xas->xa_offset;
881
882 if (xas_invalid(xas))
883 return;
884
885 while (node) {
886 if (node_set_mark(node, offset, mark))
887 return;
888 offset = node->offset;
889 node = xa_parent_locked(xas->xa, node);
890 }
891
892 if (!xa_marked(xas->xa, mark))
893 xa_mark_set(xas->xa, mark);
894}
895EXPORT_SYMBOL_GPL(xas_set_mark);
896
897/**
898 * xas_clear_mark() - Clears the mark on this entry and its parents.
899 * @xas: XArray operation state.
900 * @mark: Mark number.
901 *
902 * Clears the specified mark on this entry, and walks back to the head
903 * attempting to clear it on all the ancestor entries. Does nothing if
904 * @xas has not been walked to an entry, or is in an error state.
905 */
906void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
907{
908 struct xa_node *node = xas->xa_node;
909 unsigned int offset = xas->xa_offset;
910
911 if (xas_invalid(xas))
912 return;
913
914 while (node) {
915 if (!node_clear_mark(node, offset, mark))
916 return;
917 if (node_any_mark(node, mark))
918 return;
919
920 offset = node->offset;
921 node = xa_parent_locked(xas->xa, node);
922 }
923
924 if (xa_marked(xas->xa, mark))
925 xa_mark_clear(xas->xa, mark);
926}
927EXPORT_SYMBOL_GPL(xas_clear_mark);
928
929/**
930 * xas_init_marks() - Initialise all marks for the entry
931 * @xas: Array operations state.
932 *
933 * Initialise all marks for the entry specified by @xas. If we're tracking
934 * free entries with a mark, we need to set it on all entries. All other
935 * marks are cleared.
936 *
937 * This implementation is not as efficient as it could be; we may walk
938 * up the tree multiple times.
939 */
940void xas_init_marks(const struct xa_state *xas)
941{
942 xa_mark_t mark = 0;
943
944 for (;;) {
945 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
946 xas_set_mark(xas, mark);
947 else
948 xas_clear_mark(xas, mark);
949 if (mark == XA_MARK_MAX)
950 break;
951 mark_inc(mark);
952 }
953}
954EXPORT_SYMBOL_GPL(xas_init_marks);
955
956#ifdef CONFIG_XARRAY_MULTI
957static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
958{
959 unsigned int marks = 0;
960 xa_mark_t mark = XA_MARK_0;
961
962 for (;;) {
963 if (node_get_mark(node, offset, mark))
964 marks |= 1 << (__force unsigned int)mark;
965 if (mark == XA_MARK_MAX)
966 break;
967 mark_inc(mark);
968 }
969
970 return marks;
971}
972
973static inline void node_mark_slots(struct xa_node *node, unsigned int sibs,
974 xa_mark_t mark)
975{
976 int i;
977
978 if (sibs == 0)
979 node_mark_all(node, mark);
980 else {
981 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1)
982 node_set_mark(node, i, mark);
983 }
984}
985
986static void node_set_marks(struct xa_node *node, unsigned int offset,
987 struct xa_node *child, unsigned int sibs,
988 unsigned int marks)
989{
990 xa_mark_t mark = XA_MARK_0;
991
992 for (;;) {
993 if (marks & (1 << (__force unsigned int)mark)) {
994 node_set_mark(node, offset, mark);
995 if (child)
996 node_mark_slots(child, sibs, mark);
997 }
998 if (mark == XA_MARK_MAX)
999 break;
1000 mark_inc(mark);
1001 }
1002}
1003
1004/**
1005 * xas_split_alloc() - Allocate memory for splitting an entry.
1006 * @xas: XArray operation state.
1007 * @entry: New entry which will be stored in the array.
1008 * @order: Current entry order.
1009 * @gfp: Memory allocation flags.
1010 *
1011 * This function should be called before calling xas_split().
1012 * If necessary, it will allocate new nodes (and fill them with @entry)
1013 * to prepare for the upcoming split of an entry of @order size into
1014 * entries of the order stored in the @xas.
1015 *
1016 * Context: May sleep if @gfp flags permit.
1017 */
1018void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1019 gfp_t gfp)
1020{
1021 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1022 unsigned int mask = xas->xa_sibs;
1023
1024 /* XXX: no support for splitting really large entries yet */
1025 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1026 goto nomem;
1027 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1028 return;
1029
1030 do {
1031 unsigned int i;
1032 void *sibling = NULL;
1033 struct xa_node *node;
1034
1035 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1036 if (!node)
1037 goto nomem;
1038 node->array = xas->xa;
1039 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1040 if ((i & mask) == 0) {
1041 RCU_INIT_POINTER(node->slots[i], entry);
1042 sibling = xa_mk_sibling(i);
1043 } else {
1044 RCU_INIT_POINTER(node->slots[i], sibling);
1045 }
1046 }
1047 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1048 xas->xa_alloc = node;
1049 } while (sibs-- > 0);
1050
1051 return;
1052nomem:
1053 xas_destroy(xas);
1054 xas_set_err(xas, -ENOMEM);
1055}
1056EXPORT_SYMBOL_GPL(xas_split_alloc);
1057
1058/**
1059 * xas_split() - Split a multi-index entry into smaller entries.
1060 * @xas: XArray operation state.
1061 * @entry: New entry to store in the array.
1062 * @order: Current entry order.
1063 *
1064 * The size of the new entries is set in @xas. The value in @entry is
1065 * copied to all the replacement entries.
1066 *
1067 * Context: Any context. The caller should hold the xa_lock.
1068 */
1069void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1070{
1071 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1072 unsigned int offset, marks;
1073 struct xa_node *node;
1074 void *curr = xas_load(xas);
1075 int values = 0;
1076
1077 node = xas->xa_node;
1078 if (xas_top(node))
1079 return;
1080
1081 marks = node_get_marks(node, xas->xa_offset);
1082
1083 offset = xas->xa_offset + sibs;
1084 do {
1085 if (xas->xa_shift < node->shift) {
1086 struct xa_node *child = xas->xa_alloc;
1087
1088 xas->xa_alloc = rcu_dereference_raw(child->parent);
1089 child->shift = node->shift - XA_CHUNK_SHIFT;
1090 child->offset = offset;
1091 child->count = XA_CHUNK_SIZE;
1092 child->nr_values = xa_is_value(entry) ?
1093 XA_CHUNK_SIZE : 0;
1094 RCU_INIT_POINTER(child->parent, node);
1095 node_set_marks(node, offset, child, xas->xa_sibs,
1096 marks);
1097 rcu_assign_pointer(node->slots[offset],
1098 xa_mk_node(child));
1099 if (xa_is_value(curr))
1100 values--;
1101 xas_update(xas, child);
1102 } else {
1103 unsigned int canon = offset - xas->xa_sibs;
1104
1105 node_set_marks(node, canon, NULL, 0, marks);
1106 rcu_assign_pointer(node->slots[canon], entry);
1107 while (offset > canon)
1108 rcu_assign_pointer(node->slots[offset--],
1109 xa_mk_sibling(canon));
1110 values += (xa_is_value(entry) - xa_is_value(curr)) *
1111 (xas->xa_sibs + 1);
1112 }
1113 } while (offset-- > xas->xa_offset);
1114
1115 node->nr_values += values;
1116 xas_update(xas, node);
1117}
1118EXPORT_SYMBOL_GPL(xas_split);
1119#endif
1120
1121/**
1122 * xas_pause() - Pause a walk to drop a lock.
1123 * @xas: XArray operation state.
1124 *
1125 * Some users need to pause a walk and drop the lock they're holding in
1126 * order to yield to a higher priority thread or carry out an operation
1127 * on an entry. Those users should call this function before they drop
1128 * the lock. It resets the @xas to be suitable for the next iteration
1129 * of the loop after the user has reacquired the lock. If most entries
1130 * found during a walk require you to call xas_pause(), the xa_for_each()
1131 * iterator may be more appropriate.
1132 *
1133 * Note that xas_pause() only works for forward iteration. If a user needs
1134 * to pause a reverse iteration, we will need a xas_pause_rev().
1135 */
1136void xas_pause(struct xa_state *xas)
1137{
1138 struct xa_node *node = xas->xa_node;
1139
1140 if (xas_invalid(xas))
1141 return;
1142
1143 xas->xa_node = XAS_RESTART;
1144 if (node) {
1145 unsigned long offset = xas->xa_offset;
1146 while (++offset < XA_CHUNK_SIZE) {
1147 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1148 break;
1149 }
1150 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1151 if (xas->xa_index == 0)
1152 xas->xa_node = XAS_BOUNDS;
1153 } else {
1154 xas->xa_index++;
1155 }
1156}
1157EXPORT_SYMBOL_GPL(xas_pause);
1158
1159/*
1160 * __xas_prev() - Find the previous entry in the XArray.
1161 * @xas: XArray operation state.
1162 *
1163 * Helper function for xas_prev() which handles all the complex cases
1164 * out of line.
1165 */
1166void *__xas_prev(struct xa_state *xas)
1167{
1168 void *entry;
1169
1170 if (!xas_frozen(xas->xa_node))
1171 xas->xa_index--;
1172 if (!xas->xa_node)
1173 return set_bounds(xas);
1174 if (xas_not_node(xas->xa_node))
1175 return xas_load(xas);
1176
1177 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1178 xas->xa_offset--;
1179
1180 while (xas->xa_offset == 255) {
1181 xas->xa_offset = xas->xa_node->offset - 1;
1182 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1183 if (!xas->xa_node)
1184 return set_bounds(xas);
1185 }
1186
1187 for (;;) {
1188 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1189 if (!xa_is_node(entry))
1190 return entry;
1191
1192 xas->xa_node = xa_to_node(entry);
1193 xas_set_offset(xas);
1194 }
1195}
1196EXPORT_SYMBOL_GPL(__xas_prev);
1197
1198/*
1199 * __xas_next() - Find the next entry in the XArray.
1200 * @xas: XArray operation state.
1201 *
1202 * Helper function for xas_next() which handles all the complex cases
1203 * out of line.
1204 */
1205void *__xas_next(struct xa_state *xas)
1206{
1207 void *entry;
1208
1209 if (!xas_frozen(xas->xa_node))
1210 xas->xa_index++;
1211 if (!xas->xa_node)
1212 return set_bounds(xas);
1213 if (xas_not_node(xas->xa_node))
1214 return xas_load(xas);
1215
1216 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1217 xas->xa_offset++;
1218
1219 while (xas->xa_offset == XA_CHUNK_SIZE) {
1220 xas->xa_offset = xas->xa_node->offset + 1;
1221 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1222 if (!xas->xa_node)
1223 return set_bounds(xas);
1224 }
1225
1226 for (;;) {
1227 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1228 if (!xa_is_node(entry))
1229 return entry;
1230
1231 xas->xa_node = xa_to_node(entry);
1232 xas_set_offset(xas);
1233 }
1234}
1235EXPORT_SYMBOL_GPL(__xas_next);
1236
1237/**
1238 * xas_find() - Find the next present entry in the XArray.
1239 * @xas: XArray operation state.
1240 * @max: Highest index to return.
1241 *
1242 * If the @xas has not yet been walked to an entry, return the entry
1243 * which has an index >= xas.xa_index. If it has been walked, the entry
1244 * currently being pointed at has been processed, and so we move to the
1245 * next entry.
1246 *
1247 * If no entry is found and the array is smaller than @max, the iterator
1248 * is set to the smallest index not yet in the array. This allows @xas
1249 * to be immediately passed to xas_store().
1250 *
1251 * Return: The entry, if found, otherwise %NULL.
1252 */
1253void *xas_find(struct xa_state *xas, unsigned long max)
1254{
1255 void *entry;
1256
1257 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1258 return NULL;
1259 if (xas->xa_index > max)
1260 return set_bounds(xas);
1261
1262 if (!xas->xa_node) {
1263 xas->xa_index = 1;
1264 return set_bounds(xas);
1265 } else if (xas->xa_node == XAS_RESTART) {
1266 entry = xas_load(xas);
1267 if (entry || xas_not_node(xas->xa_node))
1268 return entry;
1269 } else if (!xas->xa_node->shift &&
1270 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1271 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1272 }
1273
1274 xas_next_offset(xas);
1275
1276 while (xas->xa_node && (xas->xa_index <= max)) {
1277 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1278 xas->xa_offset = xas->xa_node->offset + 1;
1279 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1280 continue;
1281 }
1282
1283 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1284 if (xa_is_node(entry)) {
1285 xas->xa_node = xa_to_node(entry);
1286 xas->xa_offset = 0;
1287 continue;
1288 }
1289 if (entry && !xa_is_sibling(entry))
1290 return entry;
1291
1292 xas_next_offset(xas);
1293 }
1294
1295 if (!xas->xa_node)
1296 xas->xa_node = XAS_BOUNDS;
1297 return NULL;
1298}
1299EXPORT_SYMBOL_GPL(xas_find);
1300
1301/**
1302 * xas_find_marked() - Find the next marked entry in the XArray.
1303 * @xas: XArray operation state.
1304 * @max: Highest index to return.
1305 * @mark: Mark number to search for.
1306 *
1307 * If the @xas has not yet been walked to an entry, return the marked entry
1308 * which has an index >= xas.xa_index. If it has been walked, the entry
1309 * currently being pointed at has been processed, and so we return the
1310 * first marked entry with an index > xas.xa_index.
1311 *
1312 * If no marked entry is found and the array is smaller than @max, @xas is
1313 * set to the bounds state and xas->xa_index is set to the smallest index
1314 * not yet in the array. This allows @xas to be immediately passed to
1315 * xas_store().
1316 *
1317 * If no entry is found before @max is reached, @xas is set to the restart
1318 * state.
1319 *
1320 * Return: The entry, if found, otherwise %NULL.
1321 */
1322void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1323{
1324 bool advance = true;
1325 unsigned int offset;
1326 void *entry;
1327
1328 if (xas_error(xas))
1329 return NULL;
1330 if (xas->xa_index > max)
1331 goto max;
1332
1333 if (!xas->xa_node) {
1334 xas->xa_index = 1;
1335 goto out;
1336 } else if (xas_top(xas->xa_node)) {
1337 advance = false;
1338 entry = xa_head(xas->xa);
1339 xas->xa_node = NULL;
1340 if (xas->xa_index > max_index(entry))
1341 goto out;
1342 if (!xa_is_node(entry)) {
1343 if (xa_marked(xas->xa, mark))
1344 return entry;
1345 xas->xa_index = 1;
1346 goto out;
1347 }
1348 xas->xa_node = xa_to_node(entry);
1349 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1350 }
1351
1352 while (xas->xa_index <= max) {
1353 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1354 xas->xa_offset = xas->xa_node->offset + 1;
1355 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1356 if (!xas->xa_node)
1357 break;
1358 advance = false;
1359 continue;
1360 }
1361
1362 if (!advance) {
1363 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1364 if (xa_is_sibling(entry)) {
1365 xas->xa_offset = xa_to_sibling(entry);
1366 xas_move_index(xas, xas->xa_offset);
1367 }
1368 }
1369
1370 offset = xas_find_chunk(xas, advance, mark);
1371 if (offset > xas->xa_offset) {
1372 advance = false;
1373 xas_move_index(xas, offset);
1374 /* Mind the wrap */
1375 if ((xas->xa_index - 1) >= max)
1376 goto max;
1377 xas->xa_offset = offset;
1378 if (offset == XA_CHUNK_SIZE)
1379 continue;
1380 }
1381
1382 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1383 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1384 continue;
1385 if (!xa_is_node(entry))
1386 return entry;
1387 xas->xa_node = xa_to_node(entry);
1388 xas_set_offset(xas);
1389 }
1390
1391out:
1392 if (xas->xa_index > max)
1393 goto max;
1394 return set_bounds(xas);
1395max:
1396 xas->xa_node = XAS_RESTART;
1397 return NULL;
1398}
1399EXPORT_SYMBOL_GPL(xas_find_marked);
1400
1401/**
1402 * xas_find_conflict() - Find the next present entry in a range.
1403 * @xas: XArray operation state.
1404 *
1405 * The @xas describes both a range and a position within that range.
1406 *
1407 * Context: Any context. Expects xa_lock to be held.
1408 * Return: The next entry in the range covered by @xas or %NULL.
1409 */
1410void *xas_find_conflict(struct xa_state *xas)
1411{
1412 void *curr;
1413
1414 if (xas_error(xas))
1415 return NULL;
1416
1417 if (!xas->xa_node)
1418 return NULL;
1419
1420 if (xas_top(xas->xa_node)) {
1421 curr = xas_start(xas);
1422 if (!curr)
1423 return NULL;
1424 while (xa_is_node(curr)) {
1425 struct xa_node *node = xa_to_node(curr);
1426 curr = xas_descend(xas, node);
1427 }
1428 if (curr)
1429 return curr;
1430 }
1431
1432 if (xas->xa_node->shift > xas->xa_shift)
1433 return NULL;
1434
1435 for (;;) {
1436 if (xas->xa_node->shift == xas->xa_shift) {
1437 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1438 break;
1439 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1440 xas->xa_offset = xas->xa_node->offset;
1441 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1442 if (!xas->xa_node)
1443 break;
1444 continue;
1445 }
1446 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1447 if (xa_is_sibling(curr))
1448 continue;
1449 while (xa_is_node(curr)) {
1450 xas->xa_node = xa_to_node(curr);
1451 xas->xa_offset = 0;
1452 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1453 }
1454 if (curr)
1455 return curr;
1456 }
1457 xas->xa_offset -= xas->xa_sibs;
1458 return NULL;
1459}
1460EXPORT_SYMBOL_GPL(xas_find_conflict);
1461
1462/**
1463 * xa_load() - Load an entry from an XArray.
1464 * @xa: XArray.
1465 * @index: index into array.
1466 *
1467 * Context: Any context. Takes and releases the RCU lock.
1468 * Return: The entry at @index in @xa.
1469 */
1470void *xa_load(struct xarray *xa, unsigned long index)
1471{
1472 XA_STATE(xas, xa, index);
1473 void *entry;
1474
1475 rcu_read_lock();
1476 do {
1477 entry = xas_load(&xas);
1478 if (xa_is_zero(entry))
1479 entry = NULL;
1480 } while (xas_retry(&xas, entry));
1481 rcu_read_unlock();
1482
1483 return entry;
1484}
1485EXPORT_SYMBOL(xa_load);
1486
1487static void *xas_result(struct xa_state *xas, void *curr)
1488{
1489 if (xa_is_zero(curr))
1490 return NULL;
1491 if (xas_error(xas))
1492 curr = xas->xa_node;
1493 return curr;
1494}
1495
1496/**
1497 * __xa_erase() - Erase this entry from the XArray while locked.
1498 * @xa: XArray.
1499 * @index: Index into array.
1500 *
1501 * After this function returns, loading from @index will return %NULL.
1502 * If the index is part of a multi-index entry, all indices will be erased
1503 * and none of the entries will be part of a multi-index entry.
1504 *
1505 * Context: Any context. Expects xa_lock to be held on entry.
1506 * Return: The entry which used to be at this index.
1507 */
1508void *__xa_erase(struct xarray *xa, unsigned long index)
1509{
1510 XA_STATE(xas, xa, index);
1511 return xas_result(&xas, xas_store(&xas, NULL));
1512}
1513EXPORT_SYMBOL(__xa_erase);
1514
1515/**
1516 * xa_erase() - Erase this entry from the XArray.
1517 * @xa: XArray.
1518 * @index: Index of entry.
1519 *
1520 * After this function returns, loading from @index will return %NULL.
1521 * If the index is part of a multi-index entry, all indices will be erased
1522 * and none of the entries will be part of a multi-index entry.
1523 *
1524 * Context: Any context. Takes and releases the xa_lock.
1525 * Return: The entry which used to be at this index.
1526 */
1527void *xa_erase(struct xarray *xa, unsigned long index)
1528{
1529 void *entry;
1530
1531 xa_lock(xa);
1532 entry = __xa_erase(xa, index);
1533 xa_unlock(xa);
1534
1535 return entry;
1536}
1537EXPORT_SYMBOL(xa_erase);
1538
1539/**
1540 * __xa_store() - Store this entry in the XArray.
1541 * @xa: XArray.
1542 * @index: Index into array.
1543 * @entry: New entry.
1544 * @gfp: Memory allocation flags.
1545 *
1546 * You must already be holding the xa_lock when calling this function.
1547 * It will drop the lock if needed to allocate memory, and then reacquire
1548 * it afterwards.
1549 *
1550 * Context: Any context. Expects xa_lock to be held on entry. May
1551 * release and reacquire xa_lock if @gfp flags permit.
1552 * Return: The old entry at this index or xa_err() if an error happened.
1553 */
1554void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1555{
1556 XA_STATE(xas, xa, index);
1557 void *curr;
1558
1559 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1560 return XA_ERROR(-EINVAL);
1561 if (xa_track_free(xa) && !entry)
1562 entry = XA_ZERO_ENTRY;
1563
1564 do {
1565 curr = xas_store(&xas, entry);
1566 if (xa_track_free(xa))
1567 xas_clear_mark(&xas, XA_FREE_MARK);
1568 } while (__xas_nomem(&xas, gfp));
1569
1570 return xas_result(&xas, curr);
1571}
1572EXPORT_SYMBOL(__xa_store);
1573
1574/**
1575 * xa_store() - Store this entry in the XArray.
1576 * @xa: XArray.
1577 * @index: Index into array.
1578 * @entry: New entry.
1579 * @gfp: Memory allocation flags.
1580 *
1581 * After this function returns, loads from this index will return @entry.
1582 * Storing into an existing multi-index entry updates the entry of every index.
1583 * The marks associated with @index are unaffected unless @entry is %NULL.
1584 *
1585 * Context: Any context. Takes and releases the xa_lock.
1586 * May sleep if the @gfp flags permit.
1587 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1588 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1589 * failed.
1590 */
1591void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1592{
1593 void *curr;
1594
1595 xa_lock(xa);
1596 curr = __xa_store(xa, index, entry, gfp);
1597 xa_unlock(xa);
1598
1599 return curr;
1600}
1601EXPORT_SYMBOL(xa_store);
1602
1603/**
1604 * __xa_cmpxchg() - Store this entry in the XArray.
1605 * @xa: XArray.
1606 * @index: Index into array.
1607 * @old: Old value to test against.
1608 * @entry: New entry.
1609 * @gfp: Memory allocation flags.
1610 *
1611 * You must already be holding the xa_lock when calling this function.
1612 * It will drop the lock if needed to allocate memory, and then reacquire
1613 * it afterwards.
1614 *
1615 * Context: Any context. Expects xa_lock to be held on entry. May
1616 * release and reacquire xa_lock if @gfp flags permit.
1617 * Return: The old entry at this index or xa_err() if an error happened.
1618 */
1619void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1620 void *old, void *entry, gfp_t gfp)
1621{
1622 XA_STATE(xas, xa, index);
1623 void *curr;
1624
1625 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1626 return XA_ERROR(-EINVAL);
1627
1628 do {
1629 curr = xas_load(&xas);
1630 if (curr == old) {
1631 xas_store(&xas, entry);
1632 if (xa_track_free(xa) && entry && !curr)
1633 xas_clear_mark(&xas, XA_FREE_MARK);
1634 }
1635 } while (__xas_nomem(&xas, gfp));
1636
1637 return xas_result(&xas, curr);
1638}
1639EXPORT_SYMBOL(__xa_cmpxchg);
1640
1641/**
1642 * __xa_insert() - Store this entry in the XArray if no entry is present.
1643 * @xa: XArray.
1644 * @index: Index into array.
1645 * @entry: New entry.
1646 * @gfp: Memory allocation flags.
1647 *
1648 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1649 * if no entry is present. Inserting will fail if a reserved entry is
1650 * present, even though loading from this index will return NULL.
1651 *
1652 * Context: Any context. Expects xa_lock to be held on entry. May
1653 * release and reacquire xa_lock if @gfp flags permit.
1654 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1655 * -ENOMEM if memory could not be allocated.
1656 */
1657int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1658{
1659 XA_STATE(xas, xa, index);
1660 void *curr;
1661
1662 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1663 return -EINVAL;
1664 if (!entry)
1665 entry = XA_ZERO_ENTRY;
1666
1667 do {
1668 curr = xas_load(&xas);
1669 if (!curr) {
1670 xas_store(&xas, entry);
1671 if (xa_track_free(xa))
1672 xas_clear_mark(&xas, XA_FREE_MARK);
1673 } else {
1674 xas_set_err(&xas, -EBUSY);
1675 }
1676 } while (__xas_nomem(&xas, gfp));
1677
1678 return xas_error(&xas);
1679}
1680EXPORT_SYMBOL(__xa_insert);
1681
1682#ifdef CONFIG_XARRAY_MULTI
1683static void xas_set_range(struct xa_state *xas, unsigned long first,
1684 unsigned long last)
1685{
1686 unsigned int shift = 0;
1687 unsigned long sibs = last - first;
1688 unsigned int offset = XA_CHUNK_MASK;
1689
1690 xas_set(xas, first);
1691
1692 while ((first & XA_CHUNK_MASK) == 0) {
1693 if (sibs < XA_CHUNK_MASK)
1694 break;
1695 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1696 break;
1697 shift += XA_CHUNK_SHIFT;
1698 if (offset == XA_CHUNK_MASK)
1699 offset = sibs & XA_CHUNK_MASK;
1700 sibs >>= XA_CHUNK_SHIFT;
1701 first >>= XA_CHUNK_SHIFT;
1702 }
1703
1704 offset = first & XA_CHUNK_MASK;
1705 if (offset + sibs > XA_CHUNK_MASK)
1706 sibs = XA_CHUNK_MASK - offset;
1707 if ((((first + sibs + 1) << shift) - 1) > last)
1708 sibs -= 1;
1709
1710 xas->xa_shift = shift;
1711 xas->xa_sibs = sibs;
1712}
1713
1714/**
1715 * xa_store_range() - Store this entry at a range of indices in the XArray.
1716 * @xa: XArray.
1717 * @first: First index to affect.
1718 * @last: Last index to affect.
1719 * @entry: New entry.
1720 * @gfp: Memory allocation flags.
1721 *
1722 * After this function returns, loads from any index between @first and @last,
1723 * inclusive will return @entry.
1724 * Storing into an existing multi-index entry updates the entry of every index.
1725 * The marks associated with @index are unaffected unless @entry is %NULL.
1726 *
1727 * Context: Process context. Takes and releases the xa_lock. May sleep
1728 * if the @gfp flags permit.
1729 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1730 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1731 */
1732void *xa_store_range(struct xarray *xa, unsigned long first,
1733 unsigned long last, void *entry, gfp_t gfp)
1734{
1735 XA_STATE(xas, xa, 0);
1736
1737 if (WARN_ON_ONCE(xa_is_internal(entry)))
1738 return XA_ERROR(-EINVAL);
1739 if (last < first)
1740 return XA_ERROR(-EINVAL);
1741
1742 do {
1743 xas_lock(&xas);
1744 if (entry) {
1745 unsigned int order = BITS_PER_LONG;
1746 if (last + 1)
1747 order = __ffs(last + 1);
1748 xas_set_order(&xas, last, order);
1749 xas_create(&xas, true);
1750 if (xas_error(&xas))
1751 goto unlock;
1752 }
1753 do {
1754 xas_set_range(&xas, first, last);
1755 xas_store(&xas, entry);
1756 if (xas_error(&xas))
1757 goto unlock;
1758 first += xas_size(&xas);
1759 } while (first <= last);
1760unlock:
1761 xas_unlock(&xas);
1762 } while (xas_nomem(&xas, gfp));
1763
1764 return xas_result(&xas, NULL);
1765}
1766EXPORT_SYMBOL(xa_store_range);
1767
1768/**
1769 * xas_get_order() - Get the order of an entry.
1770 * @xas: XArray operation state.
1771 *
1772 * Called after xas_load, the xas should not be in an error state.
1773 *
1774 * Return: A number between 0 and 63 indicating the order of the entry.
1775 */
1776int xas_get_order(struct xa_state *xas)
1777{
1778 int order = 0;
1779
1780 if (!xas->xa_node)
1781 return 0;
1782
1783 for (;;) {
1784 unsigned int slot = xas->xa_offset + (1 << order);
1785
1786 if (slot >= XA_CHUNK_SIZE)
1787 break;
1788 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1789 break;
1790 order++;
1791 }
1792
1793 order += xas->xa_node->shift;
1794 return order;
1795}
1796EXPORT_SYMBOL_GPL(xas_get_order);
1797
1798/**
1799 * xa_get_order() - Get the order of an entry.
1800 * @xa: XArray.
1801 * @index: Index of the entry.
1802 *
1803 * Return: A number between 0 and 63 indicating the order of the entry.
1804 */
1805int xa_get_order(struct xarray *xa, unsigned long index)
1806{
1807 XA_STATE(xas, xa, index);
1808 int order = 0;
1809 void *entry;
1810
1811 rcu_read_lock();
1812 entry = xas_load(&xas);
1813 if (entry)
1814 order = xas_get_order(&xas);
1815 rcu_read_unlock();
1816
1817 return order;
1818}
1819EXPORT_SYMBOL(xa_get_order);
1820#endif /* CONFIG_XARRAY_MULTI */
1821
1822/**
1823 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1824 * @xa: XArray.
1825 * @id: Pointer to ID.
1826 * @limit: Range for allocated ID.
1827 * @entry: New entry.
1828 * @gfp: Memory allocation flags.
1829 *
1830 * Finds an empty entry in @xa between @limit.min and @limit.max,
1831 * stores the index into the @id pointer, then stores the entry at
1832 * that index. A concurrent lookup will not see an uninitialised @id.
1833 *
1834 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1835 * in xa_init_flags().
1836 *
1837 * Context: Any context. Expects xa_lock to be held on entry. May
1838 * release and reacquire xa_lock if @gfp flags permit.
1839 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1840 * -EBUSY if there are no free entries in @limit.
1841 */
1842int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1843 struct xa_limit limit, gfp_t gfp)
1844{
1845 XA_STATE(xas, xa, 0);
1846
1847 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1848 return -EINVAL;
1849 if (WARN_ON_ONCE(!xa_track_free(xa)))
1850 return -EINVAL;
1851
1852 if (!entry)
1853 entry = XA_ZERO_ENTRY;
1854
1855 do {
1856 xas.xa_index = limit.min;
1857 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1858 if (xas.xa_node == XAS_RESTART)
1859 xas_set_err(&xas, -EBUSY);
1860 else
1861 *id = xas.xa_index;
1862 xas_store(&xas, entry);
1863 xas_clear_mark(&xas, XA_FREE_MARK);
1864 } while (__xas_nomem(&xas, gfp));
1865
1866 return xas_error(&xas);
1867}
1868EXPORT_SYMBOL(__xa_alloc);
1869
1870/**
1871 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1872 * @xa: XArray.
1873 * @id: Pointer to ID.
1874 * @entry: New entry.
1875 * @limit: Range of allocated ID.
1876 * @next: Pointer to next ID to allocate.
1877 * @gfp: Memory allocation flags.
1878 *
1879 * Finds an empty entry in @xa between @limit.min and @limit.max,
1880 * stores the index into the @id pointer, then stores the entry at
1881 * that index. A concurrent lookup will not see an uninitialised @id.
1882 * The search for an empty entry will start at @next and will wrap
1883 * around if necessary.
1884 *
1885 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1886 * in xa_init_flags().
1887 *
1888 * Context: Any context. Expects xa_lock to be held on entry. May
1889 * release and reacquire xa_lock if @gfp flags permit.
1890 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1891 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1892 * allocated or -EBUSY if there are no free entries in @limit.
1893 */
1894int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1895 struct xa_limit limit, u32 *next, gfp_t gfp)
1896{
1897 u32 min = limit.min;
1898 int ret;
1899
1900 limit.min = max(min, *next);
1901 ret = __xa_alloc(xa, id, entry, limit, gfp);
1902 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1903 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1904 ret = 1;
1905 }
1906
1907 if (ret < 0 && limit.min > min) {
1908 limit.min = min;
1909 ret = __xa_alloc(xa, id, entry, limit, gfp);
1910 if (ret == 0)
1911 ret = 1;
1912 }
1913
1914 if (ret >= 0) {
1915 *next = *id + 1;
1916 if (*next == 0)
1917 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1918 }
1919 return ret;
1920}
1921EXPORT_SYMBOL(__xa_alloc_cyclic);
1922
1923/**
1924 * __xa_set_mark() - Set this mark on this entry while locked.
1925 * @xa: XArray.
1926 * @index: Index of entry.
1927 * @mark: Mark number.
1928 *
1929 * Attempting to set a mark on a %NULL entry does not succeed.
1930 *
1931 * Context: Any context. Expects xa_lock to be held on entry.
1932 */
1933void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1934{
1935 XA_STATE(xas, xa, index);
1936 void *entry = xas_load(&xas);
1937
1938 if (entry)
1939 xas_set_mark(&xas, mark);
1940}
1941EXPORT_SYMBOL(__xa_set_mark);
1942
1943/**
1944 * __xa_clear_mark() - Clear this mark on this entry while locked.
1945 * @xa: XArray.
1946 * @index: Index of entry.
1947 * @mark: Mark number.
1948 *
1949 * Context: Any context. Expects xa_lock to be held on entry.
1950 */
1951void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1952{
1953 XA_STATE(xas, xa, index);
1954 void *entry = xas_load(&xas);
1955
1956 if (entry)
1957 xas_clear_mark(&xas, mark);
1958}
1959EXPORT_SYMBOL(__xa_clear_mark);
1960
1961/**
1962 * xa_get_mark() - Inquire whether this mark is set on this entry.
1963 * @xa: XArray.
1964 * @index: Index of entry.
1965 * @mark: Mark number.
1966 *
1967 * This function uses the RCU read lock, so the result may be out of date
1968 * by the time it returns. If you need the result to be stable, use a lock.
1969 *
1970 * Context: Any context. Takes and releases the RCU lock.
1971 * Return: True if the entry at @index has this mark set, false if it doesn't.
1972 */
1973bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1974{
1975 XA_STATE(xas, xa, index);
1976 void *entry;
1977
1978 rcu_read_lock();
1979 entry = xas_start(&xas);
1980 while (xas_get_mark(&xas, mark)) {
1981 if (!xa_is_node(entry))
1982 goto found;
1983 entry = xas_descend(&xas, xa_to_node(entry));
1984 }
1985 rcu_read_unlock();
1986 return false;
1987 found:
1988 rcu_read_unlock();
1989 return true;
1990}
1991EXPORT_SYMBOL(xa_get_mark);
1992
1993/**
1994 * xa_set_mark() - Set this mark on this entry.
1995 * @xa: XArray.
1996 * @index: Index of entry.
1997 * @mark: Mark number.
1998 *
1999 * Attempting to set a mark on a %NULL entry does not succeed.
2000 *
2001 * Context: Process context. Takes and releases the xa_lock.
2002 */
2003void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2004{
2005 xa_lock(xa);
2006 __xa_set_mark(xa, index, mark);
2007 xa_unlock(xa);
2008}
2009EXPORT_SYMBOL(xa_set_mark);
2010
2011/**
2012 * xa_clear_mark() - Clear this mark on this entry.
2013 * @xa: XArray.
2014 * @index: Index of entry.
2015 * @mark: Mark number.
2016 *
2017 * Clearing a mark always succeeds.
2018 *
2019 * Context: Process context. Takes and releases the xa_lock.
2020 */
2021void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2022{
2023 xa_lock(xa);
2024 __xa_clear_mark(xa, index, mark);
2025 xa_unlock(xa);
2026}
2027EXPORT_SYMBOL(xa_clear_mark);
2028
2029/**
2030 * xa_find() - Search the XArray for an entry.
2031 * @xa: XArray.
2032 * @indexp: Pointer to an index.
2033 * @max: Maximum index to search to.
2034 * @filter: Selection criterion.
2035 *
2036 * Finds the entry in @xa which matches the @filter, and has the lowest
2037 * index that is at least @indexp and no more than @max.
2038 * If an entry is found, @indexp is updated to be the index of the entry.
2039 * This function is protected by the RCU read lock, so it may not find
2040 * entries which are being simultaneously added. It will not return an
2041 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2042 *
2043 * Context: Any context. Takes and releases the RCU lock.
2044 * Return: The entry, if found, otherwise %NULL.
2045 */
2046void *xa_find(struct xarray *xa, unsigned long *indexp,
2047 unsigned long max, xa_mark_t filter)
2048{
2049 XA_STATE(xas, xa, *indexp);
2050 void *entry;
2051
2052 rcu_read_lock();
2053 do {
2054 if ((__force unsigned int)filter < XA_MAX_MARKS)
2055 entry = xas_find_marked(&xas, max, filter);
2056 else
2057 entry = xas_find(&xas, max);
2058 } while (xas_retry(&xas, entry));
2059 rcu_read_unlock();
2060
2061 if (entry)
2062 *indexp = xas.xa_index;
2063 return entry;
2064}
2065EXPORT_SYMBOL(xa_find);
2066
2067static bool xas_sibling(struct xa_state *xas)
2068{
2069 struct xa_node *node = xas->xa_node;
2070 unsigned long mask;
2071
2072 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2073 return false;
2074 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2075 return (xas->xa_index & mask) >
2076 ((unsigned long)xas->xa_offset << node->shift);
2077}
2078
2079/**
2080 * xa_find_after() - Search the XArray for a present entry.
2081 * @xa: XArray.
2082 * @indexp: Pointer to an index.
2083 * @max: Maximum index to search to.
2084 * @filter: Selection criterion.
2085 *
2086 * Finds the entry in @xa which matches the @filter and has the lowest
2087 * index that is above @indexp and no more than @max.
2088 * If an entry is found, @indexp is updated to be the index of the entry.
2089 * This function is protected by the RCU read lock, so it may miss entries
2090 * which are being simultaneously added. It will not return an
2091 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2092 *
2093 * Context: Any context. Takes and releases the RCU lock.
2094 * Return: The pointer, if found, otherwise %NULL.
2095 */
2096void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2097 unsigned long max, xa_mark_t filter)
2098{
2099 XA_STATE(xas, xa, *indexp + 1);
2100 void *entry;
2101
2102 if (xas.xa_index == 0)
2103 return NULL;
2104
2105 rcu_read_lock();
2106 for (;;) {
2107 if ((__force unsigned int)filter < XA_MAX_MARKS)
2108 entry = xas_find_marked(&xas, max, filter);
2109 else
2110 entry = xas_find(&xas, max);
2111
2112 if (xas_invalid(&xas))
2113 break;
2114 if (xas_sibling(&xas))
2115 continue;
2116 if (!xas_retry(&xas, entry))
2117 break;
2118 }
2119 rcu_read_unlock();
2120
2121 if (entry)
2122 *indexp = xas.xa_index;
2123 return entry;
2124}
2125EXPORT_SYMBOL(xa_find_after);
2126
2127static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2128 unsigned long max, unsigned int n)
2129{
2130 void *entry;
2131 unsigned int i = 0;
2132
2133 rcu_read_lock();
2134 xas_for_each(xas, entry, max) {
2135 if (xas_retry(xas, entry))
2136 continue;
2137 dst[i++] = entry;
2138 if (i == n)
2139 break;
2140 }
2141 rcu_read_unlock();
2142
2143 return i;
2144}
2145
2146static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2147 unsigned long max, unsigned int n, xa_mark_t mark)
2148{
2149 void *entry;
2150 unsigned int i = 0;
2151
2152 rcu_read_lock();
2153 xas_for_each_marked(xas, entry, max, mark) {
2154 if (xas_retry(xas, entry))
2155 continue;
2156 dst[i++] = entry;
2157 if (i == n)
2158 break;
2159 }
2160 rcu_read_unlock();
2161
2162 return i;
2163}
2164
2165/**
2166 * xa_extract() - Copy selected entries from the XArray into a normal array.
2167 * @xa: The source XArray to copy from.
2168 * @dst: The buffer to copy entries into.
2169 * @start: The first index in the XArray eligible to be selected.
2170 * @max: The last index in the XArray eligible to be selected.
2171 * @n: The maximum number of entries to copy.
2172 * @filter: Selection criterion.
2173 *
2174 * Copies up to @n entries that match @filter from the XArray. The
2175 * copied entries will have indices between @start and @max, inclusive.
2176 *
2177 * The @filter may be an XArray mark value, in which case entries which are
2178 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2179 * which case all entries which are not %NULL will be copied.
2180 *
2181 * The entries returned may not represent a snapshot of the XArray at a
2182 * moment in time. For example, if another thread stores to index 5, then
2183 * index 10, calling xa_extract() may return the old contents of index 5
2184 * and the new contents of index 10. Indices not modified while this
2185 * function is running will not be skipped.
2186 *
2187 * If you need stronger guarantees, holding the xa_lock across calls to this
2188 * function will prevent concurrent modification.
2189 *
2190 * Context: Any context. Takes and releases the RCU lock.
2191 * Return: The number of entries copied.
2192 */
2193unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2194 unsigned long max, unsigned int n, xa_mark_t filter)
2195{
2196 XA_STATE(xas, xa, start);
2197
2198 if (!n)
2199 return 0;
2200
2201 if ((__force unsigned int)filter < XA_MAX_MARKS)
2202 return xas_extract_marked(&xas, dst, max, n, filter);
2203 return xas_extract_present(&xas, dst, max, n);
2204}
2205EXPORT_SYMBOL(xa_extract);
2206
2207/**
2208 * xa_delete_node() - Private interface for workingset code.
2209 * @node: Node to be removed from the tree.
2210 * @update: Function to call to update ancestor nodes.
2211 *
2212 * Context: xa_lock must be held on entry and will not be released.
2213 */
2214void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2215{
2216 struct xa_state xas = {
2217 .xa = node->array,
2218 .xa_index = (unsigned long)node->offset <<
2219 (node->shift + XA_CHUNK_SHIFT),
2220 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2221 .xa_offset = node->offset,
2222 .xa_node = xa_parent_locked(node->array, node),
2223 .xa_update = update,
2224 };
2225
2226 xas_store(&xas, NULL);
2227}
2228EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2229
2230/**
2231 * xa_destroy() - Free all internal data structures.
2232 * @xa: XArray.
2233 *
2234 * After calling this function, the XArray is empty and has freed all memory
2235 * allocated for its internal data structures. You are responsible for
2236 * freeing the objects referenced by the XArray.
2237 *
2238 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2239 */
2240void xa_destroy(struct xarray *xa)
2241{
2242 XA_STATE(xas, xa, 0);
2243 unsigned long flags;
2244 void *entry;
2245
2246 xas.xa_node = NULL;
2247 xas_lock_irqsave(&xas, flags);
2248 entry = xa_head_locked(xa);
2249 RCU_INIT_POINTER(xa->xa_head, NULL);
2250 xas_init_marks(&xas);
2251 if (xa_zero_busy(xa))
2252 xa_mark_clear(xa, XA_FREE_MARK);
2253 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2254 if (xa_is_node(entry))
2255 xas_free_nodes(&xas, xa_to_node(entry));
2256 xas_unlock_irqrestore(&xas, flags);
2257}
2258EXPORT_SYMBOL(xa_destroy);
2259
2260#ifdef XA_DEBUG
2261void xa_dump_node(const struct xa_node *node)
2262{
2263 unsigned i, j;
2264
2265 if (!node)
2266 return;
2267 if ((unsigned long)node & 3) {
2268 pr_cont("node %px\n", node);
2269 return;
2270 }
2271
2272 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2273 "array %px list %px %px marks",
2274 node, node->parent ? "offset" : "max", node->offset,
2275 node->parent, node->shift, node->count, node->nr_values,
2276 node->array, node->private_list.prev, node->private_list.next);
2277 for (i = 0; i < XA_MAX_MARKS; i++)
2278 for (j = 0; j < XA_MARK_LONGS; j++)
2279 pr_cont(" %lx", node->marks[i][j]);
2280 pr_cont("\n");
2281}
2282
2283void xa_dump_index(unsigned long index, unsigned int shift)
2284{
2285 if (!shift)
2286 pr_info("%lu: ", index);
2287 else if (shift >= BITS_PER_LONG)
2288 pr_info("0-%lu: ", ~0UL);
2289 else
2290 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2291}
2292
2293void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2294{
2295 if (!entry)
2296 return;
2297
2298 xa_dump_index(index, shift);
2299
2300 if (xa_is_node(entry)) {
2301 if (shift == 0) {
2302 pr_cont("%px\n", entry);
2303 } else {
2304 unsigned long i;
2305 struct xa_node *node = xa_to_node(entry);
2306 xa_dump_node(node);
2307 for (i = 0; i < XA_CHUNK_SIZE; i++)
2308 xa_dump_entry(node->slots[i],
2309 index + (i << node->shift), node->shift);
2310 }
2311 } else if (xa_is_value(entry))
2312 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2313 xa_to_value(entry), entry);
2314 else if (!xa_is_internal(entry))
2315 pr_cont("%px\n", entry);
2316 else if (xa_is_retry(entry))
2317 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2318 else if (xa_is_sibling(entry))
2319 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2320 else if (xa_is_zero(entry))
2321 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2322 else
2323 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2324}
2325
2326void xa_dump(const struct xarray *xa)
2327{
2328 void *entry = xa->xa_head;
2329 unsigned int shift = 0;
2330
2331 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2332 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2333 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2334 if (xa_is_node(entry))
2335 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2336 xa_dump_entry(entry, 0, shift);
2337}
2338#endif