Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15#include "radix-tree.h"
16
17/*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
33static inline unsigned int xa_lock_type(const struct xarray *xa)
34{
35 return (__force unsigned int)xa->xa_flags & 3;
36}
37
38static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39{
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46}
47
48static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49{
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56}
57
58static inline bool xa_track_free(const struct xarray *xa)
59{
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61}
62
63static inline bool xa_zero_busy(const struct xarray *xa)
64{
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66}
67
68static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69{
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72}
73
74static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75{
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78}
79
80static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81{
82 return node->marks[(__force unsigned)mark];
83}
84
85static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87{
88 return test_bit(offset, node_marks(node, mark));
89}
90
91/* returns true if the bit was set */
92static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94{
95 return __test_and_set_bit(offset, node_marks(node, mark));
96}
97
98/* returns true if the bit was set */
99static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101{
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103}
104
105static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106{
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108}
109
110static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111{
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113}
114
115#define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117} while (0)
118
119/*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
126static void xas_squash_marks(const struct xa_state *xas)
127{
128 unsigned int mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 if (!xas->xa_sibs)
132 return;
133
134 do {
135 unsigned long *marks = xas->xa_node->marks[mark];
136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 continue;
138 __set_bit(xas->xa_offset, marks);
139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 } while (mark++ != (__force unsigned)XA_MARK_MAX);
141}
142
143/* extracts the offset within this node from the index */
144static unsigned int get_offset(unsigned long index, struct xa_node *node)
145{
146 return (index >> node->shift) & XA_CHUNK_MASK;
147}
148
149static void xas_set_offset(struct xa_state *xas)
150{
151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152}
153
154/* move the index either forwards (find) or backwards (sibling slot) */
155static void xas_move_index(struct xa_state *xas, unsigned long offset)
156{
157 unsigned int shift = xas->xa_node->shift;
158 xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 xas->xa_index += offset << shift;
160}
161
162static void xas_next_offset(struct xa_state *xas)
163{
164 xas->xa_offset++;
165 xas_move_index(xas, xas->xa_offset);
166}
167
168static void *set_bounds(struct xa_state *xas)
169{
170 xas->xa_node = XAS_BOUNDS;
171 return NULL;
172}
173
174/*
175 * Starts a walk. If the @xas is already valid, we assume that it's on
176 * the right path and just return where we've got to. If we're in an
177 * error state, return NULL. If the index is outside the current scope
178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
179 * set @xas->xa_node to NULL and return the current head of the array.
180 */
181static void *xas_start(struct xa_state *xas)
182{
183 void *entry;
184
185 if (xas_valid(xas))
186 return xas_reload(xas);
187 if (xas_error(xas))
188 return NULL;
189
190 entry = xa_head(xas->xa);
191 if (!xa_is_node(entry)) {
192 if (xas->xa_index)
193 return set_bounds(xas);
194 } else {
195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 return set_bounds(xas);
197 }
198
199 xas->xa_node = NULL;
200 return entry;
201}
202
203static void *xas_descend(struct xa_state *xas, struct xa_node *node)
204{
205 unsigned int offset = get_offset(xas->xa_index, node);
206 void *entry = xa_entry(xas->xa, node, offset);
207
208 xas->xa_node = node;
209 while (xa_is_sibling(entry)) {
210 offset = xa_to_sibling(entry);
211 entry = xa_entry(xas->xa, node, offset);
212 if (node->shift && xa_is_node(entry))
213 entry = XA_RETRY_ENTRY;
214 }
215
216 xas->xa_offset = offset;
217 return entry;
218}
219
220/**
221 * xas_load() - Load an entry from the XArray (advanced).
222 * @xas: XArray operation state.
223 *
224 * Usually walks the @xas to the appropriate state to load the entry
225 * stored at xa_index. However, it will do nothing and return %NULL if
226 * @xas is in an error state. xas_load() will never expand the tree.
227 *
228 * If the xa_state is set up to operate on a multi-index entry, xas_load()
229 * may return %NULL or an internal entry, even if there are entries
230 * present within the range specified by @xas.
231 *
232 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
233 * Return: Usually an entry in the XArray, but see description for exceptions.
234 */
235void *xas_load(struct xa_state *xas)
236{
237 void *entry = xas_start(xas);
238
239 while (xa_is_node(entry)) {
240 struct xa_node *node = xa_to_node(entry);
241
242 if (xas->xa_shift > node->shift)
243 break;
244 entry = xas_descend(xas, node);
245 if (node->shift == 0)
246 break;
247 }
248 return entry;
249}
250EXPORT_SYMBOL_GPL(xas_load);
251
252#define XA_RCU_FREE ((struct xarray *)1)
253
254static void xa_node_free(struct xa_node *node)
255{
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259}
260
261/*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * Most users will not need to call this function; it is called for you
266 * by xas_nomem().
267 */
268void xas_destroy(struct xa_state *xas)
269{
270 struct xa_node *next, *node = xas->xa_alloc;
271
272 while (node) {
273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 next = rcu_dereference_raw(node->parent);
275 radix_tree_node_rcu_free(&node->rcu_head);
276 xas->xa_alloc = node = next;
277 }
278}
279
280/**
281 * xas_nomem() - Allocate memory if needed.
282 * @xas: XArray operation state.
283 * @gfp: Memory allocation flags.
284 *
285 * If we need to add new nodes to the XArray, we try to allocate memory
286 * with GFP_NOWAIT while holding the lock, which will usually succeed.
287 * If it fails, @xas is flagged as needing memory to continue. The caller
288 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
289 * the caller should retry the operation.
290 *
291 * Forward progress is guaranteed as one node is allocated here and
292 * stored in the xa_state where it will be found by xas_alloc(). More
293 * nodes will likely be found in the slab allocator, but we do not tie
294 * them up here.
295 *
296 * Return: true if memory was needed, and was successfully allocated.
297 */
298bool xas_nomem(struct xa_state *xas, gfp_t gfp)
299{
300 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
301 xas_destroy(xas);
302 return false;
303 }
304 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
305 gfp |= __GFP_ACCOUNT;
306 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
307 if (!xas->xa_alloc)
308 return false;
309 xas->xa_alloc->parent = NULL;
310 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
311 xas->xa_node = XAS_RESTART;
312 return true;
313}
314EXPORT_SYMBOL_GPL(xas_nomem);
315
316/*
317 * __xas_nomem() - Drop locks and allocate memory if needed.
318 * @xas: XArray operation state.
319 * @gfp: Memory allocation flags.
320 *
321 * Internal variant of xas_nomem().
322 *
323 * Return: true if memory was needed, and was successfully allocated.
324 */
325static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
326 __must_hold(xas->xa->xa_lock)
327{
328 unsigned int lock_type = xa_lock_type(xas->xa);
329
330 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
331 xas_destroy(xas);
332 return false;
333 }
334 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
335 gfp |= __GFP_ACCOUNT;
336 if (gfpflags_allow_blocking(gfp)) {
337 xas_unlock_type(xas, lock_type);
338 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
339 xas_lock_type(xas, lock_type);
340 } else {
341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342 }
343 if (!xas->xa_alloc)
344 return false;
345 xas->xa_alloc->parent = NULL;
346 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
347 xas->xa_node = XAS_RESTART;
348 return true;
349}
350
351static void xas_update(struct xa_state *xas, struct xa_node *node)
352{
353 if (xas->xa_update)
354 xas->xa_update(node);
355 else
356 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
357}
358
359static void *xas_alloc(struct xa_state *xas, unsigned int shift)
360{
361 struct xa_node *parent = xas->xa_node;
362 struct xa_node *node = xas->xa_alloc;
363
364 if (xas_invalid(xas))
365 return NULL;
366
367 if (node) {
368 xas->xa_alloc = NULL;
369 } else {
370 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
371
372 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
373 gfp |= __GFP_ACCOUNT;
374
375 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
376 if (!node) {
377 xas_set_err(xas, -ENOMEM);
378 return NULL;
379 }
380 }
381
382 if (parent) {
383 node->offset = xas->xa_offset;
384 parent->count++;
385 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
386 xas_update(xas, parent);
387 }
388 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
389 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
390 node->shift = shift;
391 node->count = 0;
392 node->nr_values = 0;
393 RCU_INIT_POINTER(node->parent, xas->xa_node);
394 node->array = xas->xa;
395
396 return node;
397}
398
399#ifdef CONFIG_XARRAY_MULTI
400/* Returns the number of indices covered by a given xa_state */
401static unsigned long xas_size(const struct xa_state *xas)
402{
403 return (xas->xa_sibs + 1UL) << xas->xa_shift;
404}
405#endif
406
407/*
408 * Use this to calculate the maximum index that will need to be created
409 * in order to add the entry described by @xas. Because we cannot store a
410 * multi-index entry at index 0, the calculation is a little more complex
411 * than you might expect.
412 */
413static unsigned long xas_max(struct xa_state *xas)
414{
415 unsigned long max = xas->xa_index;
416
417#ifdef CONFIG_XARRAY_MULTI
418 if (xas->xa_shift || xas->xa_sibs) {
419 unsigned long mask = xas_size(xas) - 1;
420 max |= mask;
421 if (mask == max)
422 max++;
423 }
424#endif
425
426 return max;
427}
428
429/* The maximum index that can be contained in the array without expanding it */
430static unsigned long max_index(void *entry)
431{
432 if (!xa_is_node(entry))
433 return 0;
434 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
435}
436
437static void xas_shrink(struct xa_state *xas)
438{
439 struct xarray *xa = xas->xa;
440 struct xa_node *node = xas->xa_node;
441
442 for (;;) {
443 void *entry;
444
445 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
446 if (node->count != 1)
447 break;
448 entry = xa_entry_locked(xa, node, 0);
449 if (!entry)
450 break;
451 if (!xa_is_node(entry) && node->shift)
452 break;
453 if (xa_is_zero(entry) && xa_zero_busy(xa))
454 entry = NULL;
455 xas->xa_node = XAS_BOUNDS;
456
457 RCU_INIT_POINTER(xa->xa_head, entry);
458 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
459 xa_mark_clear(xa, XA_FREE_MARK);
460
461 node->count = 0;
462 node->nr_values = 0;
463 if (!xa_is_node(entry))
464 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
465 xas_update(xas, node);
466 xa_node_free(node);
467 if (!xa_is_node(entry))
468 break;
469 node = xa_to_node(entry);
470 node->parent = NULL;
471 }
472}
473
474/*
475 * xas_delete_node() - Attempt to delete an xa_node
476 * @xas: Array operation state.
477 *
478 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
479 * a non-zero reference count.
480 */
481static void xas_delete_node(struct xa_state *xas)
482{
483 struct xa_node *node = xas->xa_node;
484
485 for (;;) {
486 struct xa_node *parent;
487
488 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
489 if (node->count)
490 break;
491
492 parent = xa_parent_locked(xas->xa, node);
493 xas->xa_node = parent;
494 xas->xa_offset = node->offset;
495 xa_node_free(node);
496
497 if (!parent) {
498 xas->xa->xa_head = NULL;
499 xas->xa_node = XAS_BOUNDS;
500 return;
501 }
502
503 parent->slots[xas->xa_offset] = NULL;
504 parent->count--;
505 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
506 node = parent;
507 xas_update(xas, node);
508 }
509
510 if (!node->parent)
511 xas_shrink(xas);
512}
513
514/**
515 * xas_free_nodes() - Free this node and all nodes that it references
516 * @xas: Array operation state.
517 * @top: Node to free
518 *
519 * This node has been removed from the tree. We must now free it and all
520 * of its subnodes. There may be RCU walkers with references into the tree,
521 * so we must replace all entries with retry markers.
522 */
523static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
524{
525 unsigned int offset = 0;
526 struct xa_node *node = top;
527
528 for (;;) {
529 void *entry = xa_entry_locked(xas->xa, node, offset);
530
531 if (node->shift && xa_is_node(entry)) {
532 node = xa_to_node(entry);
533 offset = 0;
534 continue;
535 }
536 if (entry)
537 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
538 offset++;
539 while (offset == XA_CHUNK_SIZE) {
540 struct xa_node *parent;
541
542 parent = xa_parent_locked(xas->xa, node);
543 offset = node->offset + 1;
544 node->count = 0;
545 node->nr_values = 0;
546 xas_update(xas, node);
547 xa_node_free(node);
548 if (node == top)
549 return;
550 node = parent;
551 }
552 }
553}
554
555/*
556 * xas_expand adds nodes to the head of the tree until it has reached
557 * sufficient height to be able to contain @xas->xa_index
558 */
559static int xas_expand(struct xa_state *xas, void *head)
560{
561 struct xarray *xa = xas->xa;
562 struct xa_node *node = NULL;
563 unsigned int shift = 0;
564 unsigned long max = xas_max(xas);
565
566 if (!head) {
567 if (max == 0)
568 return 0;
569 while ((max >> shift) >= XA_CHUNK_SIZE)
570 shift += XA_CHUNK_SHIFT;
571 return shift + XA_CHUNK_SHIFT;
572 } else if (xa_is_node(head)) {
573 node = xa_to_node(head);
574 shift = node->shift + XA_CHUNK_SHIFT;
575 }
576 xas->xa_node = NULL;
577
578 while (max > max_index(head)) {
579 xa_mark_t mark = 0;
580
581 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
582 node = xas_alloc(xas, shift);
583 if (!node)
584 return -ENOMEM;
585
586 node->count = 1;
587 if (xa_is_value(head))
588 node->nr_values = 1;
589 RCU_INIT_POINTER(node->slots[0], head);
590
591 /* Propagate the aggregated mark info to the new child */
592 for (;;) {
593 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
594 node_mark_all(node, XA_FREE_MARK);
595 if (!xa_marked(xa, XA_FREE_MARK)) {
596 node_clear_mark(node, 0, XA_FREE_MARK);
597 xa_mark_set(xa, XA_FREE_MARK);
598 }
599 } else if (xa_marked(xa, mark)) {
600 node_set_mark(node, 0, mark);
601 }
602 if (mark == XA_MARK_MAX)
603 break;
604 mark_inc(mark);
605 }
606
607 /*
608 * Now that the new node is fully initialised, we can add
609 * it to the tree
610 */
611 if (xa_is_node(head)) {
612 xa_to_node(head)->offset = 0;
613 rcu_assign_pointer(xa_to_node(head)->parent, node);
614 }
615 head = xa_mk_node(node);
616 rcu_assign_pointer(xa->xa_head, head);
617 xas_update(xas, node);
618
619 shift += XA_CHUNK_SHIFT;
620 }
621
622 xas->xa_node = node;
623 return shift;
624}
625
626/*
627 * xas_create() - Create a slot to store an entry in.
628 * @xas: XArray operation state.
629 * @allow_root: %true if we can store the entry in the root directly
630 *
631 * Most users will not need to call this function directly, as it is called
632 * by xas_store(). It is useful for doing conditional store operations
633 * (see the xa_cmpxchg() implementation for an example).
634 *
635 * Return: If the slot already existed, returns the contents of this slot.
636 * If the slot was newly created, returns %NULL. If it failed to create the
637 * slot, returns %NULL and indicates the error in @xas.
638 */
639static void *xas_create(struct xa_state *xas, bool allow_root)
640{
641 struct xarray *xa = xas->xa;
642 void *entry;
643 void __rcu **slot;
644 struct xa_node *node = xas->xa_node;
645 int shift;
646 unsigned int order = xas->xa_shift;
647
648 if (xas_top(node)) {
649 entry = xa_head_locked(xa);
650 xas->xa_node = NULL;
651 if (!entry && xa_zero_busy(xa))
652 entry = XA_ZERO_ENTRY;
653 shift = xas_expand(xas, entry);
654 if (shift < 0)
655 return NULL;
656 if (!shift && !allow_root)
657 shift = XA_CHUNK_SHIFT;
658 entry = xa_head_locked(xa);
659 slot = &xa->xa_head;
660 } else if (xas_error(xas)) {
661 return NULL;
662 } else if (node) {
663 unsigned int offset = xas->xa_offset;
664
665 shift = node->shift;
666 entry = xa_entry_locked(xa, node, offset);
667 slot = &node->slots[offset];
668 } else {
669 shift = 0;
670 entry = xa_head_locked(xa);
671 slot = &xa->xa_head;
672 }
673
674 while (shift > order) {
675 shift -= XA_CHUNK_SHIFT;
676 if (!entry) {
677 node = xas_alloc(xas, shift);
678 if (!node)
679 break;
680 if (xa_track_free(xa))
681 node_mark_all(node, XA_FREE_MARK);
682 rcu_assign_pointer(*slot, xa_mk_node(node));
683 } else if (xa_is_node(entry)) {
684 node = xa_to_node(entry);
685 } else {
686 break;
687 }
688 entry = xas_descend(xas, node);
689 slot = &node->slots[xas->xa_offset];
690 }
691
692 return entry;
693}
694
695/**
696 * xas_create_range() - Ensure that stores to this range will succeed
697 * @xas: XArray operation state.
698 *
699 * Creates all of the slots in the range covered by @xas. Sets @xas to
700 * create single-index entries and positions it at the beginning of the
701 * range. This is for the benefit of users which have not yet been
702 * converted to use multi-index entries.
703 */
704void xas_create_range(struct xa_state *xas)
705{
706 unsigned long index = xas->xa_index;
707 unsigned char shift = xas->xa_shift;
708 unsigned char sibs = xas->xa_sibs;
709
710 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
711 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
712 xas->xa_offset |= sibs;
713 xas->xa_shift = 0;
714 xas->xa_sibs = 0;
715
716 for (;;) {
717 xas_create(xas, true);
718 if (xas_error(xas))
719 goto restore;
720 if (xas->xa_index <= (index | XA_CHUNK_MASK))
721 goto success;
722 xas->xa_index -= XA_CHUNK_SIZE;
723
724 for (;;) {
725 struct xa_node *node = xas->xa_node;
726 if (node->shift >= shift)
727 break;
728 xas->xa_node = xa_parent_locked(xas->xa, node);
729 xas->xa_offset = node->offset - 1;
730 if (node->offset != 0)
731 break;
732 }
733 }
734
735restore:
736 xas->xa_shift = shift;
737 xas->xa_sibs = sibs;
738 xas->xa_index = index;
739 return;
740success:
741 xas->xa_index = index;
742 if (xas->xa_node)
743 xas_set_offset(xas);
744}
745EXPORT_SYMBOL_GPL(xas_create_range);
746
747static void update_node(struct xa_state *xas, struct xa_node *node,
748 int count, int values)
749{
750 if (!node || (!count && !values))
751 return;
752
753 node->count += count;
754 node->nr_values += values;
755 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
756 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
757 xas_update(xas, node);
758 if (count < 0)
759 xas_delete_node(xas);
760}
761
762/**
763 * xas_store() - Store this entry in the XArray.
764 * @xas: XArray operation state.
765 * @entry: New entry.
766 *
767 * If @xas is operating on a multi-index entry, the entry returned by this
768 * function is essentially meaningless (it may be an internal entry or it
769 * may be %NULL, even if there are non-NULL entries at some of the indices
770 * covered by the range). This is not a problem for any current users,
771 * and can be changed if needed.
772 *
773 * Return: The old entry at this index.
774 */
775void *xas_store(struct xa_state *xas, void *entry)
776{
777 struct xa_node *node;
778 void __rcu **slot = &xas->xa->xa_head;
779 unsigned int offset, max;
780 int count = 0;
781 int values = 0;
782 void *first, *next;
783 bool value = xa_is_value(entry);
784
785 if (entry) {
786 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
787 first = xas_create(xas, allow_root);
788 } else {
789 first = xas_load(xas);
790 }
791
792 if (xas_invalid(xas))
793 return first;
794 node = xas->xa_node;
795 if (node && (xas->xa_shift < node->shift))
796 xas->xa_sibs = 0;
797 if ((first == entry) && !xas->xa_sibs)
798 return first;
799
800 next = first;
801 offset = xas->xa_offset;
802 max = xas->xa_offset + xas->xa_sibs;
803 if (node) {
804 slot = &node->slots[offset];
805 if (xas->xa_sibs)
806 xas_squash_marks(xas);
807 }
808 if (!entry)
809 xas_init_marks(xas);
810
811 for (;;) {
812 /*
813 * Must clear the marks before setting the entry to NULL,
814 * otherwise xas_for_each_marked may find a NULL entry and
815 * stop early. rcu_assign_pointer contains a release barrier
816 * so the mark clearing will appear to happen before the
817 * entry is set to NULL.
818 */
819 rcu_assign_pointer(*slot, entry);
820 if (xa_is_node(next) && (!node || node->shift))
821 xas_free_nodes(xas, xa_to_node(next));
822 if (!node)
823 break;
824 count += !next - !entry;
825 values += !xa_is_value(first) - !value;
826 if (entry) {
827 if (offset == max)
828 break;
829 if (!xa_is_sibling(entry))
830 entry = xa_mk_sibling(xas->xa_offset);
831 } else {
832 if (offset == XA_CHUNK_MASK)
833 break;
834 }
835 next = xa_entry_locked(xas->xa, node, ++offset);
836 if (!xa_is_sibling(next)) {
837 if (!entry && (offset > max))
838 break;
839 first = next;
840 }
841 slot++;
842 }
843
844 update_node(xas, node, count, values);
845 return first;
846}
847EXPORT_SYMBOL_GPL(xas_store);
848
849/**
850 * xas_get_mark() - Returns the state of this mark.
851 * @xas: XArray operation state.
852 * @mark: Mark number.
853 *
854 * Return: true if the mark is set, false if the mark is clear or @xas
855 * is in an error state.
856 */
857bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
858{
859 if (xas_invalid(xas))
860 return false;
861 if (!xas->xa_node)
862 return xa_marked(xas->xa, mark);
863 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
864}
865EXPORT_SYMBOL_GPL(xas_get_mark);
866
867/**
868 * xas_set_mark() - Sets the mark on this entry and its parents.
869 * @xas: XArray operation state.
870 * @mark: Mark number.
871 *
872 * Sets the specified mark on this entry, and walks up the tree setting it
873 * on all the ancestor entries. Does nothing if @xas has not been walked to
874 * an entry, or is in an error state.
875 */
876void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
877{
878 struct xa_node *node = xas->xa_node;
879 unsigned int offset = xas->xa_offset;
880
881 if (xas_invalid(xas))
882 return;
883
884 while (node) {
885 if (node_set_mark(node, offset, mark))
886 return;
887 offset = node->offset;
888 node = xa_parent_locked(xas->xa, node);
889 }
890
891 if (!xa_marked(xas->xa, mark))
892 xa_mark_set(xas->xa, mark);
893}
894EXPORT_SYMBOL_GPL(xas_set_mark);
895
896/**
897 * xas_clear_mark() - Clears the mark on this entry and its parents.
898 * @xas: XArray operation state.
899 * @mark: Mark number.
900 *
901 * Clears the specified mark on this entry, and walks back to the head
902 * attempting to clear it on all the ancestor entries. Does nothing if
903 * @xas has not been walked to an entry, or is in an error state.
904 */
905void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
906{
907 struct xa_node *node = xas->xa_node;
908 unsigned int offset = xas->xa_offset;
909
910 if (xas_invalid(xas))
911 return;
912
913 while (node) {
914 if (!node_clear_mark(node, offset, mark))
915 return;
916 if (node_any_mark(node, mark))
917 return;
918
919 offset = node->offset;
920 node = xa_parent_locked(xas->xa, node);
921 }
922
923 if (xa_marked(xas->xa, mark))
924 xa_mark_clear(xas->xa, mark);
925}
926EXPORT_SYMBOL_GPL(xas_clear_mark);
927
928/**
929 * xas_init_marks() - Initialise all marks for the entry
930 * @xas: Array operations state.
931 *
932 * Initialise all marks for the entry specified by @xas. If we're tracking
933 * free entries with a mark, we need to set it on all entries. All other
934 * marks are cleared.
935 *
936 * This implementation is not as efficient as it could be; we may walk
937 * up the tree multiple times.
938 */
939void xas_init_marks(const struct xa_state *xas)
940{
941 xa_mark_t mark = 0;
942
943 for (;;) {
944 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
945 xas_set_mark(xas, mark);
946 else
947 xas_clear_mark(xas, mark);
948 if (mark == XA_MARK_MAX)
949 break;
950 mark_inc(mark);
951 }
952}
953EXPORT_SYMBOL_GPL(xas_init_marks);
954
955#ifdef CONFIG_XARRAY_MULTI
956static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
957{
958 unsigned int marks = 0;
959 xa_mark_t mark = XA_MARK_0;
960
961 for (;;) {
962 if (node_get_mark(node, offset, mark))
963 marks |= 1 << (__force unsigned int)mark;
964 if (mark == XA_MARK_MAX)
965 break;
966 mark_inc(mark);
967 }
968
969 return marks;
970}
971
972static void node_set_marks(struct xa_node *node, unsigned int offset,
973 struct xa_node *child, unsigned int marks)
974{
975 xa_mark_t mark = XA_MARK_0;
976
977 for (;;) {
978 if (marks & (1 << (__force unsigned int)mark)) {
979 node_set_mark(node, offset, mark);
980 if (child)
981 node_mark_all(child, mark);
982 }
983 if (mark == XA_MARK_MAX)
984 break;
985 mark_inc(mark);
986 }
987}
988
989/**
990 * xas_split_alloc() - Allocate memory for splitting an entry.
991 * @xas: XArray operation state.
992 * @entry: New entry which will be stored in the array.
993 * @order: Current entry order.
994 * @gfp: Memory allocation flags.
995 *
996 * This function should be called before calling xas_split().
997 * If necessary, it will allocate new nodes (and fill them with @entry)
998 * to prepare for the upcoming split of an entry of @order size into
999 * entries of the order stored in the @xas.
1000 *
1001 * Context: May sleep if @gfp flags permit.
1002 */
1003void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1004 gfp_t gfp)
1005{
1006 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1007 unsigned int mask = xas->xa_sibs;
1008
1009 /* XXX: no support for splitting really large entries yet */
1010 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1011 goto nomem;
1012 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1013 return;
1014
1015 do {
1016 unsigned int i;
1017 void *sibling = NULL;
1018 struct xa_node *node;
1019
1020 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1021 if (!node)
1022 goto nomem;
1023 node->array = xas->xa;
1024 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1025 if ((i & mask) == 0) {
1026 RCU_INIT_POINTER(node->slots[i], entry);
1027 sibling = xa_mk_sibling(i);
1028 } else {
1029 RCU_INIT_POINTER(node->slots[i], sibling);
1030 }
1031 }
1032 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1033 xas->xa_alloc = node;
1034 } while (sibs-- > 0);
1035
1036 return;
1037nomem:
1038 xas_destroy(xas);
1039 xas_set_err(xas, -ENOMEM);
1040}
1041EXPORT_SYMBOL_GPL(xas_split_alloc);
1042
1043/**
1044 * xas_split() - Split a multi-index entry into smaller entries.
1045 * @xas: XArray operation state.
1046 * @entry: New entry to store in the array.
1047 * @order: Current entry order.
1048 *
1049 * The size of the new entries is set in @xas. The value in @entry is
1050 * copied to all the replacement entries.
1051 *
1052 * Context: Any context. The caller should hold the xa_lock.
1053 */
1054void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1055{
1056 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1057 unsigned int offset, marks;
1058 struct xa_node *node;
1059 void *curr = xas_load(xas);
1060 int values = 0;
1061
1062 node = xas->xa_node;
1063 if (xas_top(node))
1064 return;
1065
1066 marks = node_get_marks(node, xas->xa_offset);
1067
1068 offset = xas->xa_offset + sibs;
1069 do {
1070 if (xas->xa_shift < node->shift) {
1071 struct xa_node *child = xas->xa_alloc;
1072
1073 xas->xa_alloc = rcu_dereference_raw(child->parent);
1074 child->shift = node->shift - XA_CHUNK_SHIFT;
1075 child->offset = offset;
1076 child->count = XA_CHUNK_SIZE;
1077 child->nr_values = xa_is_value(entry) ?
1078 XA_CHUNK_SIZE : 0;
1079 RCU_INIT_POINTER(child->parent, node);
1080 node_set_marks(node, offset, child, marks);
1081 rcu_assign_pointer(node->slots[offset],
1082 xa_mk_node(child));
1083 if (xa_is_value(curr))
1084 values--;
1085 xas_update(xas, child);
1086 } else {
1087 unsigned int canon = offset - xas->xa_sibs;
1088
1089 node_set_marks(node, canon, NULL, marks);
1090 rcu_assign_pointer(node->slots[canon], entry);
1091 while (offset > canon)
1092 rcu_assign_pointer(node->slots[offset--],
1093 xa_mk_sibling(canon));
1094 values += (xa_is_value(entry) - xa_is_value(curr)) *
1095 (xas->xa_sibs + 1);
1096 }
1097 } while (offset-- > xas->xa_offset);
1098
1099 node->nr_values += values;
1100 xas_update(xas, node);
1101}
1102EXPORT_SYMBOL_GPL(xas_split);
1103#endif
1104
1105/**
1106 * xas_pause() - Pause a walk to drop a lock.
1107 * @xas: XArray operation state.
1108 *
1109 * Some users need to pause a walk and drop the lock they're holding in
1110 * order to yield to a higher priority thread or carry out an operation
1111 * on an entry. Those users should call this function before they drop
1112 * the lock. It resets the @xas to be suitable for the next iteration
1113 * of the loop after the user has reacquired the lock. If most entries
1114 * found during a walk require you to call xas_pause(), the xa_for_each()
1115 * iterator may be more appropriate.
1116 *
1117 * Note that xas_pause() only works for forward iteration. If a user needs
1118 * to pause a reverse iteration, we will need a xas_pause_rev().
1119 */
1120void xas_pause(struct xa_state *xas)
1121{
1122 struct xa_node *node = xas->xa_node;
1123
1124 if (xas_invalid(xas))
1125 return;
1126
1127 xas->xa_node = XAS_RESTART;
1128 if (node) {
1129 unsigned long offset = xas->xa_offset;
1130 while (++offset < XA_CHUNK_SIZE) {
1131 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1132 break;
1133 }
1134 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1135 if (xas->xa_index == 0)
1136 xas->xa_node = XAS_BOUNDS;
1137 } else {
1138 xas->xa_index++;
1139 }
1140}
1141EXPORT_SYMBOL_GPL(xas_pause);
1142
1143/*
1144 * __xas_prev() - Find the previous entry in the XArray.
1145 * @xas: XArray operation state.
1146 *
1147 * Helper function for xas_prev() which handles all the complex cases
1148 * out of line.
1149 */
1150void *__xas_prev(struct xa_state *xas)
1151{
1152 void *entry;
1153
1154 if (!xas_frozen(xas->xa_node))
1155 xas->xa_index--;
1156 if (!xas->xa_node)
1157 return set_bounds(xas);
1158 if (xas_not_node(xas->xa_node))
1159 return xas_load(xas);
1160
1161 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1162 xas->xa_offset--;
1163
1164 while (xas->xa_offset == 255) {
1165 xas->xa_offset = xas->xa_node->offset - 1;
1166 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1167 if (!xas->xa_node)
1168 return set_bounds(xas);
1169 }
1170
1171 for (;;) {
1172 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1173 if (!xa_is_node(entry))
1174 return entry;
1175
1176 xas->xa_node = xa_to_node(entry);
1177 xas_set_offset(xas);
1178 }
1179}
1180EXPORT_SYMBOL_GPL(__xas_prev);
1181
1182/*
1183 * __xas_next() - Find the next entry in the XArray.
1184 * @xas: XArray operation state.
1185 *
1186 * Helper function for xas_next() which handles all the complex cases
1187 * out of line.
1188 */
1189void *__xas_next(struct xa_state *xas)
1190{
1191 void *entry;
1192
1193 if (!xas_frozen(xas->xa_node))
1194 xas->xa_index++;
1195 if (!xas->xa_node)
1196 return set_bounds(xas);
1197 if (xas_not_node(xas->xa_node))
1198 return xas_load(xas);
1199
1200 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1201 xas->xa_offset++;
1202
1203 while (xas->xa_offset == XA_CHUNK_SIZE) {
1204 xas->xa_offset = xas->xa_node->offset + 1;
1205 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1206 if (!xas->xa_node)
1207 return set_bounds(xas);
1208 }
1209
1210 for (;;) {
1211 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1212 if (!xa_is_node(entry))
1213 return entry;
1214
1215 xas->xa_node = xa_to_node(entry);
1216 xas_set_offset(xas);
1217 }
1218}
1219EXPORT_SYMBOL_GPL(__xas_next);
1220
1221/**
1222 * xas_find() - Find the next present entry in the XArray.
1223 * @xas: XArray operation state.
1224 * @max: Highest index to return.
1225 *
1226 * If the @xas has not yet been walked to an entry, return the entry
1227 * which has an index >= xas.xa_index. If it has been walked, the entry
1228 * currently being pointed at has been processed, and so we move to the
1229 * next entry.
1230 *
1231 * If no entry is found and the array is smaller than @max, the iterator
1232 * is set to the smallest index not yet in the array. This allows @xas
1233 * to be immediately passed to xas_store().
1234 *
1235 * Return: The entry, if found, otherwise %NULL.
1236 */
1237void *xas_find(struct xa_state *xas, unsigned long max)
1238{
1239 void *entry;
1240
1241 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1242 return NULL;
1243 if (xas->xa_index > max)
1244 return set_bounds(xas);
1245
1246 if (!xas->xa_node) {
1247 xas->xa_index = 1;
1248 return set_bounds(xas);
1249 } else if (xas->xa_node == XAS_RESTART) {
1250 entry = xas_load(xas);
1251 if (entry || xas_not_node(xas->xa_node))
1252 return entry;
1253 } else if (!xas->xa_node->shift &&
1254 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1255 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1256 }
1257
1258 xas_next_offset(xas);
1259
1260 while (xas->xa_node && (xas->xa_index <= max)) {
1261 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1262 xas->xa_offset = xas->xa_node->offset + 1;
1263 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1264 continue;
1265 }
1266
1267 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1268 if (xa_is_node(entry)) {
1269 xas->xa_node = xa_to_node(entry);
1270 xas->xa_offset = 0;
1271 continue;
1272 }
1273 if (entry && !xa_is_sibling(entry))
1274 return entry;
1275
1276 xas_next_offset(xas);
1277 }
1278
1279 if (!xas->xa_node)
1280 xas->xa_node = XAS_BOUNDS;
1281 return NULL;
1282}
1283EXPORT_SYMBOL_GPL(xas_find);
1284
1285/**
1286 * xas_find_marked() - Find the next marked entry in the XArray.
1287 * @xas: XArray operation state.
1288 * @max: Highest index to return.
1289 * @mark: Mark number to search for.
1290 *
1291 * If the @xas has not yet been walked to an entry, return the marked entry
1292 * which has an index >= xas.xa_index. If it has been walked, the entry
1293 * currently being pointed at has been processed, and so we return the
1294 * first marked entry with an index > xas.xa_index.
1295 *
1296 * If no marked entry is found and the array is smaller than @max, @xas is
1297 * set to the bounds state and xas->xa_index is set to the smallest index
1298 * not yet in the array. This allows @xas to be immediately passed to
1299 * xas_store().
1300 *
1301 * If no entry is found before @max is reached, @xas is set to the restart
1302 * state.
1303 *
1304 * Return: The entry, if found, otherwise %NULL.
1305 */
1306void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1307{
1308 bool advance = true;
1309 unsigned int offset;
1310 void *entry;
1311
1312 if (xas_error(xas))
1313 return NULL;
1314 if (xas->xa_index > max)
1315 goto max;
1316
1317 if (!xas->xa_node) {
1318 xas->xa_index = 1;
1319 goto out;
1320 } else if (xas_top(xas->xa_node)) {
1321 advance = false;
1322 entry = xa_head(xas->xa);
1323 xas->xa_node = NULL;
1324 if (xas->xa_index > max_index(entry))
1325 goto out;
1326 if (!xa_is_node(entry)) {
1327 if (xa_marked(xas->xa, mark))
1328 return entry;
1329 xas->xa_index = 1;
1330 goto out;
1331 }
1332 xas->xa_node = xa_to_node(entry);
1333 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1334 }
1335
1336 while (xas->xa_index <= max) {
1337 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1338 xas->xa_offset = xas->xa_node->offset + 1;
1339 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1340 if (!xas->xa_node)
1341 break;
1342 advance = false;
1343 continue;
1344 }
1345
1346 if (!advance) {
1347 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1348 if (xa_is_sibling(entry)) {
1349 xas->xa_offset = xa_to_sibling(entry);
1350 xas_move_index(xas, xas->xa_offset);
1351 }
1352 }
1353
1354 offset = xas_find_chunk(xas, advance, mark);
1355 if (offset > xas->xa_offset) {
1356 advance = false;
1357 xas_move_index(xas, offset);
1358 /* Mind the wrap */
1359 if ((xas->xa_index - 1) >= max)
1360 goto max;
1361 xas->xa_offset = offset;
1362 if (offset == XA_CHUNK_SIZE)
1363 continue;
1364 }
1365
1366 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1367 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1368 continue;
1369 if (!xa_is_node(entry))
1370 return entry;
1371 xas->xa_node = xa_to_node(entry);
1372 xas_set_offset(xas);
1373 }
1374
1375out:
1376 if (xas->xa_index > max)
1377 goto max;
1378 return set_bounds(xas);
1379max:
1380 xas->xa_node = XAS_RESTART;
1381 return NULL;
1382}
1383EXPORT_SYMBOL_GPL(xas_find_marked);
1384
1385/**
1386 * xas_find_conflict() - Find the next present entry in a range.
1387 * @xas: XArray operation state.
1388 *
1389 * The @xas describes both a range and a position within that range.
1390 *
1391 * Context: Any context. Expects xa_lock to be held.
1392 * Return: The next entry in the range covered by @xas or %NULL.
1393 */
1394void *xas_find_conflict(struct xa_state *xas)
1395{
1396 void *curr;
1397
1398 if (xas_error(xas))
1399 return NULL;
1400
1401 if (!xas->xa_node)
1402 return NULL;
1403
1404 if (xas_top(xas->xa_node)) {
1405 curr = xas_start(xas);
1406 if (!curr)
1407 return NULL;
1408 while (xa_is_node(curr)) {
1409 struct xa_node *node = xa_to_node(curr);
1410 curr = xas_descend(xas, node);
1411 }
1412 if (curr)
1413 return curr;
1414 }
1415
1416 if (xas->xa_node->shift > xas->xa_shift)
1417 return NULL;
1418
1419 for (;;) {
1420 if (xas->xa_node->shift == xas->xa_shift) {
1421 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1422 break;
1423 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1424 xas->xa_offset = xas->xa_node->offset;
1425 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1426 if (!xas->xa_node)
1427 break;
1428 continue;
1429 }
1430 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1431 if (xa_is_sibling(curr))
1432 continue;
1433 while (xa_is_node(curr)) {
1434 xas->xa_node = xa_to_node(curr);
1435 xas->xa_offset = 0;
1436 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1437 }
1438 if (curr)
1439 return curr;
1440 }
1441 xas->xa_offset -= xas->xa_sibs;
1442 return NULL;
1443}
1444EXPORT_SYMBOL_GPL(xas_find_conflict);
1445
1446/**
1447 * xa_load() - Load an entry from an XArray.
1448 * @xa: XArray.
1449 * @index: index into array.
1450 *
1451 * Context: Any context. Takes and releases the RCU lock.
1452 * Return: The entry at @index in @xa.
1453 */
1454void *xa_load(struct xarray *xa, unsigned long index)
1455{
1456 XA_STATE(xas, xa, index);
1457 void *entry;
1458
1459 rcu_read_lock();
1460 do {
1461 entry = xas_load(&xas);
1462 if (xa_is_zero(entry))
1463 entry = NULL;
1464 } while (xas_retry(&xas, entry));
1465 rcu_read_unlock();
1466
1467 return entry;
1468}
1469EXPORT_SYMBOL(xa_load);
1470
1471static void *xas_result(struct xa_state *xas, void *curr)
1472{
1473 if (xa_is_zero(curr))
1474 return NULL;
1475 if (xas_error(xas))
1476 curr = xas->xa_node;
1477 return curr;
1478}
1479
1480/**
1481 * __xa_erase() - Erase this entry from the XArray while locked.
1482 * @xa: XArray.
1483 * @index: Index into array.
1484 *
1485 * After this function returns, loading from @index will return %NULL.
1486 * If the index is part of a multi-index entry, all indices will be erased
1487 * and none of the entries will be part of a multi-index entry.
1488 *
1489 * Context: Any context. Expects xa_lock to be held on entry.
1490 * Return: The entry which used to be at this index.
1491 */
1492void *__xa_erase(struct xarray *xa, unsigned long index)
1493{
1494 XA_STATE(xas, xa, index);
1495 return xas_result(&xas, xas_store(&xas, NULL));
1496}
1497EXPORT_SYMBOL(__xa_erase);
1498
1499/**
1500 * xa_erase() - Erase this entry from the XArray.
1501 * @xa: XArray.
1502 * @index: Index of entry.
1503 *
1504 * After this function returns, loading from @index will return %NULL.
1505 * If the index is part of a multi-index entry, all indices will be erased
1506 * and none of the entries will be part of a multi-index entry.
1507 *
1508 * Context: Any context. Takes and releases the xa_lock.
1509 * Return: The entry which used to be at this index.
1510 */
1511void *xa_erase(struct xarray *xa, unsigned long index)
1512{
1513 void *entry;
1514
1515 xa_lock(xa);
1516 entry = __xa_erase(xa, index);
1517 xa_unlock(xa);
1518
1519 return entry;
1520}
1521EXPORT_SYMBOL(xa_erase);
1522
1523/**
1524 * __xa_store() - Store this entry in the XArray.
1525 * @xa: XArray.
1526 * @index: Index into array.
1527 * @entry: New entry.
1528 * @gfp: Memory allocation flags.
1529 *
1530 * You must already be holding the xa_lock when calling this function.
1531 * It will drop the lock if needed to allocate memory, and then reacquire
1532 * it afterwards.
1533 *
1534 * Context: Any context. Expects xa_lock to be held on entry. May
1535 * release and reacquire xa_lock if @gfp flags permit.
1536 * Return: The old entry at this index or xa_err() if an error happened.
1537 */
1538void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1539{
1540 XA_STATE(xas, xa, index);
1541 void *curr;
1542
1543 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1544 return XA_ERROR(-EINVAL);
1545 if (xa_track_free(xa) && !entry)
1546 entry = XA_ZERO_ENTRY;
1547
1548 do {
1549 curr = xas_store(&xas, entry);
1550 if (xa_track_free(xa))
1551 xas_clear_mark(&xas, XA_FREE_MARK);
1552 } while (__xas_nomem(&xas, gfp));
1553
1554 return xas_result(&xas, curr);
1555}
1556EXPORT_SYMBOL(__xa_store);
1557
1558/**
1559 * xa_store() - Store this entry in the XArray.
1560 * @xa: XArray.
1561 * @index: Index into array.
1562 * @entry: New entry.
1563 * @gfp: Memory allocation flags.
1564 *
1565 * After this function returns, loads from this index will return @entry.
1566 * Storing into an existing multi-index entry updates the entry of every index.
1567 * The marks associated with @index are unaffected unless @entry is %NULL.
1568 *
1569 * Context: Any context. Takes and releases the xa_lock.
1570 * May sleep if the @gfp flags permit.
1571 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1572 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1573 * failed.
1574 */
1575void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1576{
1577 void *curr;
1578
1579 xa_lock(xa);
1580 curr = __xa_store(xa, index, entry, gfp);
1581 xa_unlock(xa);
1582
1583 return curr;
1584}
1585EXPORT_SYMBOL(xa_store);
1586
1587/**
1588 * __xa_cmpxchg() - Store this entry in the XArray.
1589 * @xa: XArray.
1590 * @index: Index into array.
1591 * @old: Old value to test against.
1592 * @entry: New entry.
1593 * @gfp: Memory allocation flags.
1594 *
1595 * You must already be holding the xa_lock when calling this function.
1596 * It will drop the lock if needed to allocate memory, and then reacquire
1597 * it afterwards.
1598 *
1599 * Context: Any context. Expects xa_lock to be held on entry. May
1600 * release and reacquire xa_lock if @gfp flags permit.
1601 * Return: The old entry at this index or xa_err() if an error happened.
1602 */
1603void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1604 void *old, void *entry, gfp_t gfp)
1605{
1606 XA_STATE(xas, xa, index);
1607 void *curr;
1608
1609 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1610 return XA_ERROR(-EINVAL);
1611
1612 do {
1613 curr = xas_load(&xas);
1614 if (curr == old) {
1615 xas_store(&xas, entry);
1616 if (xa_track_free(xa) && entry && !curr)
1617 xas_clear_mark(&xas, XA_FREE_MARK);
1618 }
1619 } while (__xas_nomem(&xas, gfp));
1620
1621 return xas_result(&xas, curr);
1622}
1623EXPORT_SYMBOL(__xa_cmpxchg);
1624
1625/**
1626 * __xa_insert() - Store this entry in the XArray if no entry is present.
1627 * @xa: XArray.
1628 * @index: Index into array.
1629 * @entry: New entry.
1630 * @gfp: Memory allocation flags.
1631 *
1632 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1633 * if no entry is present. Inserting will fail if a reserved entry is
1634 * present, even though loading from this index will return NULL.
1635 *
1636 * Context: Any context. Expects xa_lock to be held on entry. May
1637 * release and reacquire xa_lock if @gfp flags permit.
1638 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1639 * -ENOMEM if memory could not be allocated.
1640 */
1641int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1642{
1643 XA_STATE(xas, xa, index);
1644 void *curr;
1645
1646 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1647 return -EINVAL;
1648 if (!entry)
1649 entry = XA_ZERO_ENTRY;
1650
1651 do {
1652 curr = xas_load(&xas);
1653 if (!curr) {
1654 xas_store(&xas, entry);
1655 if (xa_track_free(xa))
1656 xas_clear_mark(&xas, XA_FREE_MARK);
1657 } else {
1658 xas_set_err(&xas, -EBUSY);
1659 }
1660 } while (__xas_nomem(&xas, gfp));
1661
1662 return xas_error(&xas);
1663}
1664EXPORT_SYMBOL(__xa_insert);
1665
1666#ifdef CONFIG_XARRAY_MULTI
1667static void xas_set_range(struct xa_state *xas, unsigned long first,
1668 unsigned long last)
1669{
1670 unsigned int shift = 0;
1671 unsigned long sibs = last - first;
1672 unsigned int offset = XA_CHUNK_MASK;
1673
1674 xas_set(xas, first);
1675
1676 while ((first & XA_CHUNK_MASK) == 0) {
1677 if (sibs < XA_CHUNK_MASK)
1678 break;
1679 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1680 break;
1681 shift += XA_CHUNK_SHIFT;
1682 if (offset == XA_CHUNK_MASK)
1683 offset = sibs & XA_CHUNK_MASK;
1684 sibs >>= XA_CHUNK_SHIFT;
1685 first >>= XA_CHUNK_SHIFT;
1686 }
1687
1688 offset = first & XA_CHUNK_MASK;
1689 if (offset + sibs > XA_CHUNK_MASK)
1690 sibs = XA_CHUNK_MASK - offset;
1691 if ((((first + sibs + 1) << shift) - 1) > last)
1692 sibs -= 1;
1693
1694 xas->xa_shift = shift;
1695 xas->xa_sibs = sibs;
1696}
1697
1698/**
1699 * xa_store_range() - Store this entry at a range of indices in the XArray.
1700 * @xa: XArray.
1701 * @first: First index to affect.
1702 * @last: Last index to affect.
1703 * @entry: New entry.
1704 * @gfp: Memory allocation flags.
1705 *
1706 * After this function returns, loads from any index between @first and @last,
1707 * inclusive will return @entry.
1708 * Storing into an existing multi-index entry updates the entry of every index.
1709 * The marks associated with @index are unaffected unless @entry is %NULL.
1710 *
1711 * Context: Process context. Takes and releases the xa_lock. May sleep
1712 * if the @gfp flags permit.
1713 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1714 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1715 */
1716void *xa_store_range(struct xarray *xa, unsigned long first,
1717 unsigned long last, void *entry, gfp_t gfp)
1718{
1719 XA_STATE(xas, xa, 0);
1720
1721 if (WARN_ON_ONCE(xa_is_internal(entry)))
1722 return XA_ERROR(-EINVAL);
1723 if (last < first)
1724 return XA_ERROR(-EINVAL);
1725
1726 do {
1727 xas_lock(&xas);
1728 if (entry) {
1729 unsigned int order = BITS_PER_LONG;
1730 if (last + 1)
1731 order = __ffs(last + 1);
1732 xas_set_order(&xas, last, order);
1733 xas_create(&xas, true);
1734 if (xas_error(&xas))
1735 goto unlock;
1736 }
1737 do {
1738 xas_set_range(&xas, first, last);
1739 xas_store(&xas, entry);
1740 if (xas_error(&xas))
1741 goto unlock;
1742 first += xas_size(&xas);
1743 } while (first <= last);
1744unlock:
1745 xas_unlock(&xas);
1746 } while (xas_nomem(&xas, gfp));
1747
1748 return xas_result(&xas, NULL);
1749}
1750EXPORT_SYMBOL(xa_store_range);
1751
1752/**
1753 * xa_get_order() - Get the order of an entry.
1754 * @xa: XArray.
1755 * @index: Index of the entry.
1756 *
1757 * Return: A number between 0 and 63 indicating the order of the entry.
1758 */
1759int xa_get_order(struct xarray *xa, unsigned long index)
1760{
1761 XA_STATE(xas, xa, index);
1762 void *entry;
1763 int order = 0;
1764
1765 rcu_read_lock();
1766 entry = xas_load(&xas);
1767
1768 if (!entry)
1769 goto unlock;
1770
1771 if (!xas.xa_node)
1772 goto unlock;
1773
1774 for (;;) {
1775 unsigned int slot = xas.xa_offset + (1 << order);
1776
1777 if (slot >= XA_CHUNK_SIZE)
1778 break;
1779 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1780 break;
1781 order++;
1782 }
1783
1784 order += xas.xa_node->shift;
1785unlock:
1786 rcu_read_unlock();
1787
1788 return order;
1789}
1790EXPORT_SYMBOL(xa_get_order);
1791#endif /* CONFIG_XARRAY_MULTI */
1792
1793/**
1794 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1795 * @xa: XArray.
1796 * @id: Pointer to ID.
1797 * @limit: Range for allocated ID.
1798 * @entry: New entry.
1799 * @gfp: Memory allocation flags.
1800 *
1801 * Finds an empty entry in @xa between @limit.min and @limit.max,
1802 * stores the index into the @id pointer, then stores the entry at
1803 * that index. A concurrent lookup will not see an uninitialised @id.
1804 *
1805 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1806 * in xa_init_flags().
1807 *
1808 * Context: Any context. Expects xa_lock to be held on entry. May
1809 * release and reacquire xa_lock if @gfp flags permit.
1810 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1811 * -EBUSY if there are no free entries in @limit.
1812 */
1813int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1814 struct xa_limit limit, gfp_t gfp)
1815{
1816 XA_STATE(xas, xa, 0);
1817
1818 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1819 return -EINVAL;
1820 if (WARN_ON_ONCE(!xa_track_free(xa)))
1821 return -EINVAL;
1822
1823 if (!entry)
1824 entry = XA_ZERO_ENTRY;
1825
1826 do {
1827 xas.xa_index = limit.min;
1828 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1829 if (xas.xa_node == XAS_RESTART)
1830 xas_set_err(&xas, -EBUSY);
1831 else
1832 *id = xas.xa_index;
1833 xas_store(&xas, entry);
1834 xas_clear_mark(&xas, XA_FREE_MARK);
1835 } while (__xas_nomem(&xas, gfp));
1836
1837 return xas_error(&xas);
1838}
1839EXPORT_SYMBOL(__xa_alloc);
1840
1841/**
1842 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1843 * @xa: XArray.
1844 * @id: Pointer to ID.
1845 * @entry: New entry.
1846 * @limit: Range of allocated ID.
1847 * @next: Pointer to next ID to allocate.
1848 * @gfp: Memory allocation flags.
1849 *
1850 * Finds an empty entry in @xa between @limit.min and @limit.max,
1851 * stores the index into the @id pointer, then stores the entry at
1852 * that index. A concurrent lookup will not see an uninitialised @id.
1853 * The search for an empty entry will start at @next and will wrap
1854 * around if necessary.
1855 *
1856 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1857 * in xa_init_flags().
1858 *
1859 * Context: Any context. Expects xa_lock to be held on entry. May
1860 * release and reacquire xa_lock if @gfp flags permit.
1861 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1862 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1863 * allocated or -EBUSY if there are no free entries in @limit.
1864 */
1865int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1866 struct xa_limit limit, u32 *next, gfp_t gfp)
1867{
1868 u32 min = limit.min;
1869 int ret;
1870
1871 limit.min = max(min, *next);
1872 ret = __xa_alloc(xa, id, entry, limit, gfp);
1873 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1874 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1875 ret = 1;
1876 }
1877
1878 if (ret < 0 && limit.min > min) {
1879 limit.min = min;
1880 ret = __xa_alloc(xa, id, entry, limit, gfp);
1881 if (ret == 0)
1882 ret = 1;
1883 }
1884
1885 if (ret >= 0) {
1886 *next = *id + 1;
1887 if (*next == 0)
1888 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1889 }
1890 return ret;
1891}
1892EXPORT_SYMBOL(__xa_alloc_cyclic);
1893
1894/**
1895 * __xa_set_mark() - Set this mark on this entry while locked.
1896 * @xa: XArray.
1897 * @index: Index of entry.
1898 * @mark: Mark number.
1899 *
1900 * Attempting to set a mark on a %NULL entry does not succeed.
1901 *
1902 * Context: Any context. Expects xa_lock to be held on entry.
1903 */
1904void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1905{
1906 XA_STATE(xas, xa, index);
1907 void *entry = xas_load(&xas);
1908
1909 if (entry)
1910 xas_set_mark(&xas, mark);
1911}
1912EXPORT_SYMBOL(__xa_set_mark);
1913
1914/**
1915 * __xa_clear_mark() - Clear this mark on this entry while locked.
1916 * @xa: XArray.
1917 * @index: Index of entry.
1918 * @mark: Mark number.
1919 *
1920 * Context: Any context. Expects xa_lock to be held on entry.
1921 */
1922void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1923{
1924 XA_STATE(xas, xa, index);
1925 void *entry = xas_load(&xas);
1926
1927 if (entry)
1928 xas_clear_mark(&xas, mark);
1929}
1930EXPORT_SYMBOL(__xa_clear_mark);
1931
1932/**
1933 * xa_get_mark() - Inquire whether this mark is set on this entry.
1934 * @xa: XArray.
1935 * @index: Index of entry.
1936 * @mark: Mark number.
1937 *
1938 * This function uses the RCU read lock, so the result may be out of date
1939 * by the time it returns. If you need the result to be stable, use a lock.
1940 *
1941 * Context: Any context. Takes and releases the RCU lock.
1942 * Return: True if the entry at @index has this mark set, false if it doesn't.
1943 */
1944bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1945{
1946 XA_STATE(xas, xa, index);
1947 void *entry;
1948
1949 rcu_read_lock();
1950 entry = xas_start(&xas);
1951 while (xas_get_mark(&xas, mark)) {
1952 if (!xa_is_node(entry))
1953 goto found;
1954 entry = xas_descend(&xas, xa_to_node(entry));
1955 }
1956 rcu_read_unlock();
1957 return false;
1958 found:
1959 rcu_read_unlock();
1960 return true;
1961}
1962EXPORT_SYMBOL(xa_get_mark);
1963
1964/**
1965 * xa_set_mark() - Set this mark on this entry.
1966 * @xa: XArray.
1967 * @index: Index of entry.
1968 * @mark: Mark number.
1969 *
1970 * Attempting to set a mark on a %NULL entry does not succeed.
1971 *
1972 * Context: Process context. Takes and releases the xa_lock.
1973 */
1974void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1975{
1976 xa_lock(xa);
1977 __xa_set_mark(xa, index, mark);
1978 xa_unlock(xa);
1979}
1980EXPORT_SYMBOL(xa_set_mark);
1981
1982/**
1983 * xa_clear_mark() - Clear this mark on this entry.
1984 * @xa: XArray.
1985 * @index: Index of entry.
1986 * @mark: Mark number.
1987 *
1988 * Clearing a mark always succeeds.
1989 *
1990 * Context: Process context. Takes and releases the xa_lock.
1991 */
1992void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1993{
1994 xa_lock(xa);
1995 __xa_clear_mark(xa, index, mark);
1996 xa_unlock(xa);
1997}
1998EXPORT_SYMBOL(xa_clear_mark);
1999
2000/**
2001 * xa_find() - Search the XArray for an entry.
2002 * @xa: XArray.
2003 * @indexp: Pointer to an index.
2004 * @max: Maximum index to search to.
2005 * @filter: Selection criterion.
2006 *
2007 * Finds the entry in @xa which matches the @filter, and has the lowest
2008 * index that is at least @indexp and no more than @max.
2009 * If an entry is found, @indexp is updated to be the index of the entry.
2010 * This function is protected by the RCU read lock, so it may not find
2011 * entries which are being simultaneously added. It will not return an
2012 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2013 *
2014 * Context: Any context. Takes and releases the RCU lock.
2015 * Return: The entry, if found, otherwise %NULL.
2016 */
2017void *xa_find(struct xarray *xa, unsigned long *indexp,
2018 unsigned long max, xa_mark_t filter)
2019{
2020 XA_STATE(xas, xa, *indexp);
2021 void *entry;
2022
2023 rcu_read_lock();
2024 do {
2025 if ((__force unsigned int)filter < XA_MAX_MARKS)
2026 entry = xas_find_marked(&xas, max, filter);
2027 else
2028 entry = xas_find(&xas, max);
2029 } while (xas_retry(&xas, entry));
2030 rcu_read_unlock();
2031
2032 if (entry)
2033 *indexp = xas.xa_index;
2034 return entry;
2035}
2036EXPORT_SYMBOL(xa_find);
2037
2038static bool xas_sibling(struct xa_state *xas)
2039{
2040 struct xa_node *node = xas->xa_node;
2041 unsigned long mask;
2042
2043 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2044 return false;
2045 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2046 return (xas->xa_index & mask) >
2047 ((unsigned long)xas->xa_offset << node->shift);
2048}
2049
2050/**
2051 * xa_find_after() - Search the XArray for a present entry.
2052 * @xa: XArray.
2053 * @indexp: Pointer to an index.
2054 * @max: Maximum index to search to.
2055 * @filter: Selection criterion.
2056 *
2057 * Finds the entry in @xa which matches the @filter and has the lowest
2058 * index that is above @indexp and no more than @max.
2059 * If an entry is found, @indexp is updated to be the index of the entry.
2060 * This function is protected by the RCU read lock, so it may miss entries
2061 * which are being simultaneously added. It will not return an
2062 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2063 *
2064 * Context: Any context. Takes and releases the RCU lock.
2065 * Return: The pointer, if found, otherwise %NULL.
2066 */
2067void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2068 unsigned long max, xa_mark_t filter)
2069{
2070 XA_STATE(xas, xa, *indexp + 1);
2071 void *entry;
2072
2073 if (xas.xa_index == 0)
2074 return NULL;
2075
2076 rcu_read_lock();
2077 for (;;) {
2078 if ((__force unsigned int)filter < XA_MAX_MARKS)
2079 entry = xas_find_marked(&xas, max, filter);
2080 else
2081 entry = xas_find(&xas, max);
2082
2083 if (xas_invalid(&xas))
2084 break;
2085 if (xas_sibling(&xas))
2086 continue;
2087 if (!xas_retry(&xas, entry))
2088 break;
2089 }
2090 rcu_read_unlock();
2091
2092 if (entry)
2093 *indexp = xas.xa_index;
2094 return entry;
2095}
2096EXPORT_SYMBOL(xa_find_after);
2097
2098static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2099 unsigned long max, unsigned int n)
2100{
2101 void *entry;
2102 unsigned int i = 0;
2103
2104 rcu_read_lock();
2105 xas_for_each(xas, entry, max) {
2106 if (xas_retry(xas, entry))
2107 continue;
2108 dst[i++] = entry;
2109 if (i == n)
2110 break;
2111 }
2112 rcu_read_unlock();
2113
2114 return i;
2115}
2116
2117static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2118 unsigned long max, unsigned int n, xa_mark_t mark)
2119{
2120 void *entry;
2121 unsigned int i = 0;
2122
2123 rcu_read_lock();
2124 xas_for_each_marked(xas, entry, max, mark) {
2125 if (xas_retry(xas, entry))
2126 continue;
2127 dst[i++] = entry;
2128 if (i == n)
2129 break;
2130 }
2131 rcu_read_unlock();
2132
2133 return i;
2134}
2135
2136/**
2137 * xa_extract() - Copy selected entries from the XArray into a normal array.
2138 * @xa: The source XArray to copy from.
2139 * @dst: The buffer to copy entries into.
2140 * @start: The first index in the XArray eligible to be selected.
2141 * @max: The last index in the XArray eligible to be selected.
2142 * @n: The maximum number of entries to copy.
2143 * @filter: Selection criterion.
2144 *
2145 * Copies up to @n entries that match @filter from the XArray. The
2146 * copied entries will have indices between @start and @max, inclusive.
2147 *
2148 * The @filter may be an XArray mark value, in which case entries which are
2149 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2150 * which case all entries which are not %NULL will be copied.
2151 *
2152 * The entries returned may not represent a snapshot of the XArray at a
2153 * moment in time. For example, if another thread stores to index 5, then
2154 * index 10, calling xa_extract() may return the old contents of index 5
2155 * and the new contents of index 10. Indices not modified while this
2156 * function is running will not be skipped.
2157 *
2158 * If you need stronger guarantees, holding the xa_lock across calls to this
2159 * function will prevent concurrent modification.
2160 *
2161 * Context: Any context. Takes and releases the RCU lock.
2162 * Return: The number of entries copied.
2163 */
2164unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2165 unsigned long max, unsigned int n, xa_mark_t filter)
2166{
2167 XA_STATE(xas, xa, start);
2168
2169 if (!n)
2170 return 0;
2171
2172 if ((__force unsigned int)filter < XA_MAX_MARKS)
2173 return xas_extract_marked(&xas, dst, max, n, filter);
2174 return xas_extract_present(&xas, dst, max, n);
2175}
2176EXPORT_SYMBOL(xa_extract);
2177
2178/**
2179 * xa_delete_node() - Private interface for workingset code.
2180 * @node: Node to be removed from the tree.
2181 * @update: Function to call to update ancestor nodes.
2182 *
2183 * Context: xa_lock must be held on entry and will not be released.
2184 */
2185void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2186{
2187 struct xa_state xas = {
2188 .xa = node->array,
2189 .xa_index = (unsigned long)node->offset <<
2190 (node->shift + XA_CHUNK_SHIFT),
2191 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2192 .xa_offset = node->offset,
2193 .xa_node = xa_parent_locked(node->array, node),
2194 .xa_update = update,
2195 };
2196
2197 xas_store(&xas, NULL);
2198}
2199EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2200
2201/**
2202 * xa_destroy() - Free all internal data structures.
2203 * @xa: XArray.
2204 *
2205 * After calling this function, the XArray is empty and has freed all memory
2206 * allocated for its internal data structures. You are responsible for
2207 * freeing the objects referenced by the XArray.
2208 *
2209 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2210 */
2211void xa_destroy(struct xarray *xa)
2212{
2213 XA_STATE(xas, xa, 0);
2214 unsigned long flags;
2215 void *entry;
2216
2217 xas.xa_node = NULL;
2218 xas_lock_irqsave(&xas, flags);
2219 entry = xa_head_locked(xa);
2220 RCU_INIT_POINTER(xa->xa_head, NULL);
2221 xas_init_marks(&xas);
2222 if (xa_zero_busy(xa))
2223 xa_mark_clear(xa, XA_FREE_MARK);
2224 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2225 if (xa_is_node(entry))
2226 xas_free_nodes(&xas, xa_to_node(entry));
2227 xas_unlock_irqrestore(&xas, flags);
2228}
2229EXPORT_SYMBOL(xa_destroy);
2230
2231#ifdef XA_DEBUG
2232void xa_dump_node(const struct xa_node *node)
2233{
2234 unsigned i, j;
2235
2236 if (!node)
2237 return;
2238 if ((unsigned long)node & 3) {
2239 pr_cont("node %px\n", node);
2240 return;
2241 }
2242
2243 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2244 "array %px list %px %px marks",
2245 node, node->parent ? "offset" : "max", node->offset,
2246 node->parent, node->shift, node->count, node->nr_values,
2247 node->array, node->private_list.prev, node->private_list.next);
2248 for (i = 0; i < XA_MAX_MARKS; i++)
2249 for (j = 0; j < XA_MARK_LONGS; j++)
2250 pr_cont(" %lx", node->marks[i][j]);
2251 pr_cont("\n");
2252}
2253
2254void xa_dump_index(unsigned long index, unsigned int shift)
2255{
2256 if (!shift)
2257 pr_info("%lu: ", index);
2258 else if (shift >= BITS_PER_LONG)
2259 pr_info("0-%lu: ", ~0UL);
2260 else
2261 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2262}
2263
2264void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2265{
2266 if (!entry)
2267 return;
2268
2269 xa_dump_index(index, shift);
2270
2271 if (xa_is_node(entry)) {
2272 if (shift == 0) {
2273 pr_cont("%px\n", entry);
2274 } else {
2275 unsigned long i;
2276 struct xa_node *node = xa_to_node(entry);
2277 xa_dump_node(node);
2278 for (i = 0; i < XA_CHUNK_SIZE; i++)
2279 xa_dump_entry(node->slots[i],
2280 index + (i << node->shift), node->shift);
2281 }
2282 } else if (xa_is_value(entry))
2283 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2284 xa_to_value(entry), entry);
2285 else if (!xa_is_internal(entry))
2286 pr_cont("%px\n", entry);
2287 else if (xa_is_retry(entry))
2288 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2289 else if (xa_is_sibling(entry))
2290 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2291 else if (xa_is_zero(entry))
2292 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2293 else
2294 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2295}
2296
2297void xa_dump(const struct xarray *xa)
2298{
2299 void *entry = xa->xa_head;
2300 unsigned int shift = 0;
2301
2302 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2303 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2304 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2305 if (xa_is_node(entry))
2306 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2307 xa_dump_entry(entry, 0, shift);
2308}
2309#endif
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
6 */
7
8#include <linux/bitmap.h>
9#include <linux/export.h>
10#include <linux/list.h>
11#include <linux/slab.h>
12#include <linux/xarray.h>
13
14/*
15 * Coding conventions in this file:
16 *
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
20 * ambiguity.
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
24 * this function.
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
28 */
29
30static inline unsigned int xa_lock_type(const struct xarray *xa)
31{
32 return (__force unsigned int)xa->xa_flags & 3;
33}
34
35static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36{
37 if (lock_type == XA_LOCK_IRQ)
38 xas_lock_irq(xas);
39 else if (lock_type == XA_LOCK_BH)
40 xas_lock_bh(xas);
41 else
42 xas_lock(xas);
43}
44
45static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46{
47 if (lock_type == XA_LOCK_IRQ)
48 xas_unlock_irq(xas);
49 else if (lock_type == XA_LOCK_BH)
50 xas_unlock_bh(xas);
51 else
52 xas_unlock(xas);
53}
54
55static inline bool xa_track_free(const struct xarray *xa)
56{
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58}
59
60static inline bool xa_zero_busy(const struct xarray *xa)
61{
62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
63}
64
65static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
66{
67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 xa->xa_flags |= XA_FLAGS_MARK(mark);
69}
70
71static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
72{
73 if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
75}
76
77static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
78{
79 return node->marks[(__force unsigned)mark];
80}
81
82static inline bool node_get_mark(struct xa_node *node,
83 unsigned int offset, xa_mark_t mark)
84{
85 return test_bit(offset, node_marks(node, mark));
86}
87
88/* returns true if the bit was set */
89static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 xa_mark_t mark)
91{
92 return __test_and_set_bit(offset, node_marks(node, mark));
93}
94
95/* returns true if the bit was set */
96static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 xa_mark_t mark)
98{
99 return __test_and_clear_bit(offset, node_marks(node, mark));
100}
101
102static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
103{
104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
105}
106
107static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
108{
109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
110}
111
112#define mark_inc(mark) do { \
113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114} while (0)
115
116/*
117 * xas_squash_marks() - Merge all marks to the first entry
118 * @xas: Array operation state.
119 *
120 * Set a mark on the first entry if any entry has it set. Clear marks on
121 * all sibling entries.
122 */
123static void xas_squash_marks(const struct xa_state *xas)
124{
125 unsigned int mark = 0;
126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127
128 if (!xas->xa_sibs)
129 return;
130
131 do {
132 unsigned long *marks = xas->xa_node->marks[mark];
133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 continue;
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 } while (mark++ != (__force unsigned)XA_MARK_MAX);
138}
139
140/* extracts the offset within this node from the index */
141static unsigned int get_offset(unsigned long index, struct xa_node *node)
142{
143 return (index >> node->shift) & XA_CHUNK_MASK;
144}
145
146static void xas_set_offset(struct xa_state *xas)
147{
148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
149}
150
151/* move the index either forwards (find) or backwards (sibling slot) */
152static void xas_move_index(struct xa_state *xas, unsigned long offset)
153{
154 unsigned int shift = xas->xa_node->shift;
155 xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 xas->xa_index += offset << shift;
157}
158
159static void xas_advance(struct xa_state *xas)
160{
161 xas->xa_offset++;
162 xas_move_index(xas, xas->xa_offset);
163}
164
165static void *set_bounds(struct xa_state *xas)
166{
167 xas->xa_node = XAS_BOUNDS;
168 return NULL;
169}
170
171/*
172 * Starts a walk. If the @xas is already valid, we assume that it's on
173 * the right path and just return where we've got to. If we're in an
174 * error state, return NULL. If the index is outside the current scope
175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
176 * set @xas->xa_node to NULL and return the current head of the array.
177 */
178static void *xas_start(struct xa_state *xas)
179{
180 void *entry;
181
182 if (xas_valid(xas))
183 return xas_reload(xas);
184 if (xas_error(xas))
185 return NULL;
186
187 entry = xa_head(xas->xa);
188 if (!xa_is_node(entry)) {
189 if (xas->xa_index)
190 return set_bounds(xas);
191 } else {
192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 return set_bounds(xas);
194 }
195
196 xas->xa_node = NULL;
197 return entry;
198}
199
200static void *xas_descend(struct xa_state *xas, struct xa_node *node)
201{
202 unsigned int offset = get_offset(xas->xa_index, node);
203 void *entry = xa_entry(xas->xa, node, offset);
204
205 xas->xa_node = node;
206 if (xa_is_sibling(entry)) {
207 offset = xa_to_sibling(entry);
208 entry = xa_entry(xas->xa, node, offset);
209 }
210
211 xas->xa_offset = offset;
212 return entry;
213}
214
215/**
216 * xas_load() - Load an entry from the XArray (advanced).
217 * @xas: XArray operation state.
218 *
219 * Usually walks the @xas to the appropriate state to load the entry
220 * stored at xa_index. However, it will do nothing and return %NULL if
221 * @xas is in an error state. xas_load() will never expand the tree.
222 *
223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
224 * may return %NULL or an internal entry, even if there are entries
225 * present within the range specified by @xas.
226 *
227 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
228 * Return: Usually an entry in the XArray, but see description for exceptions.
229 */
230void *xas_load(struct xa_state *xas)
231{
232 void *entry = xas_start(xas);
233
234 while (xa_is_node(entry)) {
235 struct xa_node *node = xa_to_node(entry);
236
237 if (xas->xa_shift > node->shift)
238 break;
239 entry = xas_descend(xas, node);
240 if (node->shift == 0)
241 break;
242 }
243 return entry;
244}
245EXPORT_SYMBOL_GPL(xas_load);
246
247/* Move the radix tree node cache here */
248extern struct kmem_cache *radix_tree_node_cachep;
249extern void radix_tree_node_rcu_free(struct rcu_head *head);
250
251#define XA_RCU_FREE ((struct xarray *)1)
252
253static void xa_node_free(struct xa_node *node)
254{
255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 node->array = XA_RCU_FREE;
257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
258}
259
260/*
261 * xas_destroy() - Free any resources allocated during the XArray operation.
262 * @xas: XArray operation state.
263 *
264 * This function is now internal-only.
265 */
266static void xas_destroy(struct xa_state *xas)
267{
268 struct xa_node *node = xas->xa_alloc;
269
270 if (!node)
271 return;
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 kmem_cache_free(radix_tree_node_cachep, node);
274 xas->xa_alloc = NULL;
275}
276
277/**
278 * xas_nomem() - Allocate memory if needed.
279 * @xas: XArray operation state.
280 * @gfp: Memory allocation flags.
281 *
282 * If we need to add new nodes to the XArray, we try to allocate memory
283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
284 * If it fails, @xas is flagged as needing memory to continue. The caller
285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
286 * the caller should retry the operation.
287 *
288 * Forward progress is guaranteed as one node is allocated here and
289 * stored in the xa_state where it will be found by xas_alloc(). More
290 * nodes will likely be found in the slab allocator, but we do not tie
291 * them up here.
292 *
293 * Return: true if memory was needed, and was successfully allocated.
294 */
295bool xas_nomem(struct xa_state *xas, gfp_t gfp)
296{
297 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 xas_destroy(xas);
299 return false;
300 }
301 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
302 gfp |= __GFP_ACCOUNT;
303 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
304 if (!xas->xa_alloc)
305 return false;
306 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
307 xas->xa_node = XAS_RESTART;
308 return true;
309}
310EXPORT_SYMBOL_GPL(xas_nomem);
311
312/*
313 * __xas_nomem() - Drop locks and allocate memory if needed.
314 * @xas: XArray operation state.
315 * @gfp: Memory allocation flags.
316 *
317 * Internal variant of xas_nomem().
318 *
319 * Return: true if memory was needed, and was successfully allocated.
320 */
321static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
322 __must_hold(xas->xa->xa_lock)
323{
324 unsigned int lock_type = xa_lock_type(xas->xa);
325
326 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
327 xas_destroy(xas);
328 return false;
329 }
330 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
331 gfp |= __GFP_ACCOUNT;
332 if (gfpflags_allow_blocking(gfp)) {
333 xas_unlock_type(xas, lock_type);
334 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
335 xas_lock_type(xas, lock_type);
336 } else {
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 }
339 if (!xas->xa_alloc)
340 return false;
341 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
342 xas->xa_node = XAS_RESTART;
343 return true;
344}
345
346static void xas_update(struct xa_state *xas, struct xa_node *node)
347{
348 if (xas->xa_update)
349 xas->xa_update(node);
350 else
351 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
352}
353
354static void *xas_alloc(struct xa_state *xas, unsigned int shift)
355{
356 struct xa_node *parent = xas->xa_node;
357 struct xa_node *node = xas->xa_alloc;
358
359 if (xas_invalid(xas))
360 return NULL;
361
362 if (node) {
363 xas->xa_alloc = NULL;
364 } else {
365 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
366
367 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
368 gfp |= __GFP_ACCOUNT;
369
370 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
371 if (!node) {
372 xas_set_err(xas, -ENOMEM);
373 return NULL;
374 }
375 }
376
377 if (parent) {
378 node->offset = xas->xa_offset;
379 parent->count++;
380 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
381 xas_update(xas, parent);
382 }
383 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
384 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
385 node->shift = shift;
386 node->count = 0;
387 node->nr_values = 0;
388 RCU_INIT_POINTER(node->parent, xas->xa_node);
389 node->array = xas->xa;
390
391 return node;
392}
393
394#ifdef CONFIG_XARRAY_MULTI
395/* Returns the number of indices covered by a given xa_state */
396static unsigned long xas_size(const struct xa_state *xas)
397{
398 return (xas->xa_sibs + 1UL) << xas->xa_shift;
399}
400#endif
401
402/*
403 * Use this to calculate the maximum index that will need to be created
404 * in order to add the entry described by @xas. Because we cannot store a
405 * multiple-index entry at index 0, the calculation is a little more complex
406 * than you might expect.
407 */
408static unsigned long xas_max(struct xa_state *xas)
409{
410 unsigned long max = xas->xa_index;
411
412#ifdef CONFIG_XARRAY_MULTI
413 if (xas->xa_shift || xas->xa_sibs) {
414 unsigned long mask = xas_size(xas) - 1;
415 max |= mask;
416 if (mask == max)
417 max++;
418 }
419#endif
420
421 return max;
422}
423
424/* The maximum index that can be contained in the array without expanding it */
425static unsigned long max_index(void *entry)
426{
427 if (!xa_is_node(entry))
428 return 0;
429 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
430}
431
432static void xas_shrink(struct xa_state *xas)
433{
434 struct xarray *xa = xas->xa;
435 struct xa_node *node = xas->xa_node;
436
437 for (;;) {
438 void *entry;
439
440 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
441 if (node->count != 1)
442 break;
443 entry = xa_entry_locked(xa, node, 0);
444 if (!entry)
445 break;
446 if (!xa_is_node(entry) && node->shift)
447 break;
448 if (xa_is_zero(entry) && xa_zero_busy(xa))
449 entry = NULL;
450 xas->xa_node = XAS_BOUNDS;
451
452 RCU_INIT_POINTER(xa->xa_head, entry);
453 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
454 xa_mark_clear(xa, XA_FREE_MARK);
455
456 node->count = 0;
457 node->nr_values = 0;
458 if (!xa_is_node(entry))
459 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
460 xas_update(xas, node);
461 xa_node_free(node);
462 if (!xa_is_node(entry))
463 break;
464 node = xa_to_node(entry);
465 node->parent = NULL;
466 }
467}
468
469/*
470 * xas_delete_node() - Attempt to delete an xa_node
471 * @xas: Array operation state.
472 *
473 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
474 * a non-zero reference count.
475 */
476static void xas_delete_node(struct xa_state *xas)
477{
478 struct xa_node *node = xas->xa_node;
479
480 for (;;) {
481 struct xa_node *parent;
482
483 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
484 if (node->count)
485 break;
486
487 parent = xa_parent_locked(xas->xa, node);
488 xas->xa_node = parent;
489 xas->xa_offset = node->offset;
490 xa_node_free(node);
491
492 if (!parent) {
493 xas->xa->xa_head = NULL;
494 xas->xa_node = XAS_BOUNDS;
495 return;
496 }
497
498 parent->slots[xas->xa_offset] = NULL;
499 parent->count--;
500 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
501 node = parent;
502 xas_update(xas, node);
503 }
504
505 if (!node->parent)
506 xas_shrink(xas);
507}
508
509/**
510 * xas_free_nodes() - Free this node and all nodes that it references
511 * @xas: Array operation state.
512 * @top: Node to free
513 *
514 * This node has been removed from the tree. We must now free it and all
515 * of its subnodes. There may be RCU walkers with references into the tree,
516 * so we must replace all entries with retry markers.
517 */
518static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
519{
520 unsigned int offset = 0;
521 struct xa_node *node = top;
522
523 for (;;) {
524 void *entry = xa_entry_locked(xas->xa, node, offset);
525
526 if (node->shift && xa_is_node(entry)) {
527 node = xa_to_node(entry);
528 offset = 0;
529 continue;
530 }
531 if (entry)
532 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
533 offset++;
534 while (offset == XA_CHUNK_SIZE) {
535 struct xa_node *parent;
536
537 parent = xa_parent_locked(xas->xa, node);
538 offset = node->offset + 1;
539 node->count = 0;
540 node->nr_values = 0;
541 xas_update(xas, node);
542 xa_node_free(node);
543 if (node == top)
544 return;
545 node = parent;
546 }
547 }
548}
549
550/*
551 * xas_expand adds nodes to the head of the tree until it has reached
552 * sufficient height to be able to contain @xas->xa_index
553 */
554static int xas_expand(struct xa_state *xas, void *head)
555{
556 struct xarray *xa = xas->xa;
557 struct xa_node *node = NULL;
558 unsigned int shift = 0;
559 unsigned long max = xas_max(xas);
560
561 if (!head) {
562 if (max == 0)
563 return 0;
564 while ((max >> shift) >= XA_CHUNK_SIZE)
565 shift += XA_CHUNK_SHIFT;
566 return shift + XA_CHUNK_SHIFT;
567 } else if (xa_is_node(head)) {
568 node = xa_to_node(head);
569 shift = node->shift + XA_CHUNK_SHIFT;
570 }
571 xas->xa_node = NULL;
572
573 while (max > max_index(head)) {
574 xa_mark_t mark = 0;
575
576 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
577 node = xas_alloc(xas, shift);
578 if (!node)
579 return -ENOMEM;
580
581 node->count = 1;
582 if (xa_is_value(head))
583 node->nr_values = 1;
584 RCU_INIT_POINTER(node->slots[0], head);
585
586 /* Propagate the aggregated mark info to the new child */
587 for (;;) {
588 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
589 node_mark_all(node, XA_FREE_MARK);
590 if (!xa_marked(xa, XA_FREE_MARK)) {
591 node_clear_mark(node, 0, XA_FREE_MARK);
592 xa_mark_set(xa, XA_FREE_MARK);
593 }
594 } else if (xa_marked(xa, mark)) {
595 node_set_mark(node, 0, mark);
596 }
597 if (mark == XA_MARK_MAX)
598 break;
599 mark_inc(mark);
600 }
601
602 /*
603 * Now that the new node is fully initialised, we can add
604 * it to the tree
605 */
606 if (xa_is_node(head)) {
607 xa_to_node(head)->offset = 0;
608 rcu_assign_pointer(xa_to_node(head)->parent, node);
609 }
610 head = xa_mk_node(node);
611 rcu_assign_pointer(xa->xa_head, head);
612 xas_update(xas, node);
613
614 shift += XA_CHUNK_SHIFT;
615 }
616
617 xas->xa_node = node;
618 return shift;
619}
620
621/*
622 * xas_create() - Create a slot to store an entry in.
623 * @xas: XArray operation state.
624 * @allow_root: %true if we can store the entry in the root directly
625 *
626 * Most users will not need to call this function directly, as it is called
627 * by xas_store(). It is useful for doing conditional store operations
628 * (see the xa_cmpxchg() implementation for an example).
629 *
630 * Return: If the slot already existed, returns the contents of this slot.
631 * If the slot was newly created, returns %NULL. If it failed to create the
632 * slot, returns %NULL and indicates the error in @xas.
633 */
634static void *xas_create(struct xa_state *xas, bool allow_root)
635{
636 struct xarray *xa = xas->xa;
637 void *entry;
638 void __rcu **slot;
639 struct xa_node *node = xas->xa_node;
640 int shift;
641 unsigned int order = xas->xa_shift;
642
643 if (xas_top(node)) {
644 entry = xa_head_locked(xa);
645 xas->xa_node = NULL;
646 if (!entry && xa_zero_busy(xa))
647 entry = XA_ZERO_ENTRY;
648 shift = xas_expand(xas, entry);
649 if (shift < 0)
650 return NULL;
651 if (!shift && !allow_root)
652 shift = XA_CHUNK_SHIFT;
653 entry = xa_head_locked(xa);
654 slot = &xa->xa_head;
655 } else if (xas_error(xas)) {
656 return NULL;
657 } else if (node) {
658 unsigned int offset = xas->xa_offset;
659
660 shift = node->shift;
661 entry = xa_entry_locked(xa, node, offset);
662 slot = &node->slots[offset];
663 } else {
664 shift = 0;
665 entry = xa_head_locked(xa);
666 slot = &xa->xa_head;
667 }
668
669 while (shift > order) {
670 shift -= XA_CHUNK_SHIFT;
671 if (!entry) {
672 node = xas_alloc(xas, shift);
673 if (!node)
674 break;
675 if (xa_track_free(xa))
676 node_mark_all(node, XA_FREE_MARK);
677 rcu_assign_pointer(*slot, xa_mk_node(node));
678 } else if (xa_is_node(entry)) {
679 node = xa_to_node(entry);
680 } else {
681 break;
682 }
683 entry = xas_descend(xas, node);
684 slot = &node->slots[xas->xa_offset];
685 }
686
687 return entry;
688}
689
690/**
691 * xas_create_range() - Ensure that stores to this range will succeed
692 * @xas: XArray operation state.
693 *
694 * Creates all of the slots in the range covered by @xas. Sets @xas to
695 * create single-index entries and positions it at the beginning of the
696 * range. This is for the benefit of users which have not yet been
697 * converted to use multi-index entries.
698 */
699void xas_create_range(struct xa_state *xas)
700{
701 unsigned long index = xas->xa_index;
702 unsigned char shift = xas->xa_shift;
703 unsigned char sibs = xas->xa_sibs;
704
705 xas->xa_index |= ((sibs + 1) << shift) - 1;
706 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
707 xas->xa_offset |= sibs;
708 xas->xa_shift = 0;
709 xas->xa_sibs = 0;
710
711 for (;;) {
712 xas_create(xas, true);
713 if (xas_error(xas))
714 goto restore;
715 if (xas->xa_index <= (index | XA_CHUNK_MASK))
716 goto success;
717 xas->xa_index -= XA_CHUNK_SIZE;
718
719 for (;;) {
720 struct xa_node *node = xas->xa_node;
721 xas->xa_node = xa_parent_locked(xas->xa, node);
722 xas->xa_offset = node->offset - 1;
723 if (node->offset != 0)
724 break;
725 }
726 }
727
728restore:
729 xas->xa_shift = shift;
730 xas->xa_sibs = sibs;
731 xas->xa_index = index;
732 return;
733success:
734 xas->xa_index = index;
735 if (xas->xa_node)
736 xas_set_offset(xas);
737}
738EXPORT_SYMBOL_GPL(xas_create_range);
739
740static void update_node(struct xa_state *xas, struct xa_node *node,
741 int count, int values)
742{
743 if (!node || (!count && !values))
744 return;
745
746 node->count += count;
747 node->nr_values += values;
748 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
749 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
750 xas_update(xas, node);
751 if (count < 0)
752 xas_delete_node(xas);
753}
754
755/**
756 * xas_store() - Store this entry in the XArray.
757 * @xas: XArray operation state.
758 * @entry: New entry.
759 *
760 * If @xas is operating on a multi-index entry, the entry returned by this
761 * function is essentially meaningless (it may be an internal entry or it
762 * may be %NULL, even if there are non-NULL entries at some of the indices
763 * covered by the range). This is not a problem for any current users,
764 * and can be changed if needed.
765 *
766 * Return: The old entry at this index.
767 */
768void *xas_store(struct xa_state *xas, void *entry)
769{
770 struct xa_node *node;
771 void __rcu **slot = &xas->xa->xa_head;
772 unsigned int offset, max;
773 int count = 0;
774 int values = 0;
775 void *first, *next;
776 bool value = xa_is_value(entry);
777
778 if (entry) {
779 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
780 first = xas_create(xas, allow_root);
781 } else {
782 first = xas_load(xas);
783 }
784
785 if (xas_invalid(xas))
786 return first;
787 node = xas->xa_node;
788 if (node && (xas->xa_shift < node->shift))
789 xas->xa_sibs = 0;
790 if ((first == entry) && !xas->xa_sibs)
791 return first;
792
793 next = first;
794 offset = xas->xa_offset;
795 max = xas->xa_offset + xas->xa_sibs;
796 if (node) {
797 slot = &node->slots[offset];
798 if (xas->xa_sibs)
799 xas_squash_marks(xas);
800 }
801 if (!entry)
802 xas_init_marks(xas);
803
804 for (;;) {
805 /*
806 * Must clear the marks before setting the entry to NULL,
807 * otherwise xas_for_each_marked may find a NULL entry and
808 * stop early. rcu_assign_pointer contains a release barrier
809 * so the mark clearing will appear to happen before the
810 * entry is set to NULL.
811 */
812 rcu_assign_pointer(*slot, entry);
813 if (xa_is_node(next) && (!node || node->shift))
814 xas_free_nodes(xas, xa_to_node(next));
815 if (!node)
816 break;
817 count += !next - !entry;
818 values += !xa_is_value(first) - !value;
819 if (entry) {
820 if (offset == max)
821 break;
822 if (!xa_is_sibling(entry))
823 entry = xa_mk_sibling(xas->xa_offset);
824 } else {
825 if (offset == XA_CHUNK_MASK)
826 break;
827 }
828 next = xa_entry_locked(xas->xa, node, ++offset);
829 if (!xa_is_sibling(next)) {
830 if (!entry && (offset > max))
831 break;
832 first = next;
833 }
834 slot++;
835 }
836
837 update_node(xas, node, count, values);
838 return first;
839}
840EXPORT_SYMBOL_GPL(xas_store);
841
842/**
843 * xas_get_mark() - Returns the state of this mark.
844 * @xas: XArray operation state.
845 * @mark: Mark number.
846 *
847 * Return: true if the mark is set, false if the mark is clear or @xas
848 * is in an error state.
849 */
850bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
851{
852 if (xas_invalid(xas))
853 return false;
854 if (!xas->xa_node)
855 return xa_marked(xas->xa, mark);
856 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
857}
858EXPORT_SYMBOL_GPL(xas_get_mark);
859
860/**
861 * xas_set_mark() - Sets the mark on this entry and its parents.
862 * @xas: XArray operation state.
863 * @mark: Mark number.
864 *
865 * Sets the specified mark on this entry, and walks up the tree setting it
866 * on all the ancestor entries. Does nothing if @xas has not been walked to
867 * an entry, or is in an error state.
868 */
869void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
870{
871 struct xa_node *node = xas->xa_node;
872 unsigned int offset = xas->xa_offset;
873
874 if (xas_invalid(xas))
875 return;
876
877 while (node) {
878 if (node_set_mark(node, offset, mark))
879 return;
880 offset = node->offset;
881 node = xa_parent_locked(xas->xa, node);
882 }
883
884 if (!xa_marked(xas->xa, mark))
885 xa_mark_set(xas->xa, mark);
886}
887EXPORT_SYMBOL_GPL(xas_set_mark);
888
889/**
890 * xas_clear_mark() - Clears the mark on this entry and its parents.
891 * @xas: XArray operation state.
892 * @mark: Mark number.
893 *
894 * Clears the specified mark on this entry, and walks back to the head
895 * attempting to clear it on all the ancestor entries. Does nothing if
896 * @xas has not been walked to an entry, or is in an error state.
897 */
898void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
899{
900 struct xa_node *node = xas->xa_node;
901 unsigned int offset = xas->xa_offset;
902
903 if (xas_invalid(xas))
904 return;
905
906 while (node) {
907 if (!node_clear_mark(node, offset, mark))
908 return;
909 if (node_any_mark(node, mark))
910 return;
911
912 offset = node->offset;
913 node = xa_parent_locked(xas->xa, node);
914 }
915
916 if (xa_marked(xas->xa, mark))
917 xa_mark_clear(xas->xa, mark);
918}
919EXPORT_SYMBOL_GPL(xas_clear_mark);
920
921/**
922 * xas_init_marks() - Initialise all marks for the entry
923 * @xas: Array operations state.
924 *
925 * Initialise all marks for the entry specified by @xas. If we're tracking
926 * free entries with a mark, we need to set it on all entries. All other
927 * marks are cleared.
928 *
929 * This implementation is not as efficient as it could be; we may walk
930 * up the tree multiple times.
931 */
932void xas_init_marks(const struct xa_state *xas)
933{
934 xa_mark_t mark = 0;
935
936 for (;;) {
937 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
938 xas_set_mark(xas, mark);
939 else
940 xas_clear_mark(xas, mark);
941 if (mark == XA_MARK_MAX)
942 break;
943 mark_inc(mark);
944 }
945}
946EXPORT_SYMBOL_GPL(xas_init_marks);
947
948/**
949 * xas_pause() - Pause a walk to drop a lock.
950 * @xas: XArray operation state.
951 *
952 * Some users need to pause a walk and drop the lock they're holding in
953 * order to yield to a higher priority thread or carry out an operation
954 * on an entry. Those users should call this function before they drop
955 * the lock. It resets the @xas to be suitable for the next iteration
956 * of the loop after the user has reacquired the lock. If most entries
957 * found during a walk require you to call xas_pause(), the xa_for_each()
958 * iterator may be more appropriate.
959 *
960 * Note that xas_pause() only works for forward iteration. If a user needs
961 * to pause a reverse iteration, we will need a xas_pause_rev().
962 */
963void xas_pause(struct xa_state *xas)
964{
965 struct xa_node *node = xas->xa_node;
966
967 if (xas_invalid(xas))
968 return;
969
970 if (node) {
971 unsigned int offset = xas->xa_offset;
972 while (++offset < XA_CHUNK_SIZE) {
973 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
974 break;
975 }
976 xas->xa_index += (offset - xas->xa_offset) << node->shift;
977 } else {
978 xas->xa_index++;
979 }
980 xas->xa_node = XAS_RESTART;
981}
982EXPORT_SYMBOL_GPL(xas_pause);
983
984/*
985 * __xas_prev() - Find the previous entry in the XArray.
986 * @xas: XArray operation state.
987 *
988 * Helper function for xas_prev() which handles all the complex cases
989 * out of line.
990 */
991void *__xas_prev(struct xa_state *xas)
992{
993 void *entry;
994
995 if (!xas_frozen(xas->xa_node))
996 xas->xa_index--;
997 if (!xas->xa_node)
998 return set_bounds(xas);
999 if (xas_not_node(xas->xa_node))
1000 return xas_load(xas);
1001
1002 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1003 xas->xa_offset--;
1004
1005 while (xas->xa_offset == 255) {
1006 xas->xa_offset = xas->xa_node->offset - 1;
1007 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1008 if (!xas->xa_node)
1009 return set_bounds(xas);
1010 }
1011
1012 for (;;) {
1013 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1014 if (!xa_is_node(entry))
1015 return entry;
1016
1017 xas->xa_node = xa_to_node(entry);
1018 xas_set_offset(xas);
1019 }
1020}
1021EXPORT_SYMBOL_GPL(__xas_prev);
1022
1023/*
1024 * __xas_next() - Find the next entry in the XArray.
1025 * @xas: XArray operation state.
1026 *
1027 * Helper function for xas_next() which handles all the complex cases
1028 * out of line.
1029 */
1030void *__xas_next(struct xa_state *xas)
1031{
1032 void *entry;
1033
1034 if (!xas_frozen(xas->xa_node))
1035 xas->xa_index++;
1036 if (!xas->xa_node)
1037 return set_bounds(xas);
1038 if (xas_not_node(xas->xa_node))
1039 return xas_load(xas);
1040
1041 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1042 xas->xa_offset++;
1043
1044 while (xas->xa_offset == XA_CHUNK_SIZE) {
1045 xas->xa_offset = xas->xa_node->offset + 1;
1046 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1047 if (!xas->xa_node)
1048 return set_bounds(xas);
1049 }
1050
1051 for (;;) {
1052 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1053 if (!xa_is_node(entry))
1054 return entry;
1055
1056 xas->xa_node = xa_to_node(entry);
1057 xas_set_offset(xas);
1058 }
1059}
1060EXPORT_SYMBOL_GPL(__xas_next);
1061
1062/**
1063 * xas_find() - Find the next present entry in the XArray.
1064 * @xas: XArray operation state.
1065 * @max: Highest index to return.
1066 *
1067 * If the @xas has not yet been walked to an entry, return the entry
1068 * which has an index >= xas.xa_index. If it has been walked, the entry
1069 * currently being pointed at has been processed, and so we move to the
1070 * next entry.
1071 *
1072 * If no entry is found and the array is smaller than @max, the iterator
1073 * is set to the smallest index not yet in the array. This allows @xas
1074 * to be immediately passed to xas_store().
1075 *
1076 * Return: The entry, if found, otherwise %NULL.
1077 */
1078void *xas_find(struct xa_state *xas, unsigned long max)
1079{
1080 void *entry;
1081
1082 if (xas_error(xas))
1083 return NULL;
1084
1085 if (!xas->xa_node) {
1086 xas->xa_index = 1;
1087 return set_bounds(xas);
1088 } else if (xas_top(xas->xa_node)) {
1089 entry = xas_load(xas);
1090 if (entry || xas_not_node(xas->xa_node))
1091 return entry;
1092 } else if (!xas->xa_node->shift &&
1093 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1094 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1095 }
1096
1097 xas_advance(xas);
1098
1099 while (xas->xa_node && (xas->xa_index <= max)) {
1100 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1101 xas->xa_offset = xas->xa_node->offset + 1;
1102 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1103 continue;
1104 }
1105
1106 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1107 if (xa_is_node(entry)) {
1108 xas->xa_node = xa_to_node(entry);
1109 xas->xa_offset = 0;
1110 continue;
1111 }
1112 if (entry && !xa_is_sibling(entry))
1113 return entry;
1114
1115 xas_advance(xas);
1116 }
1117
1118 if (!xas->xa_node)
1119 xas->xa_node = XAS_BOUNDS;
1120 return NULL;
1121}
1122EXPORT_SYMBOL_GPL(xas_find);
1123
1124/**
1125 * xas_find_marked() - Find the next marked entry in the XArray.
1126 * @xas: XArray operation state.
1127 * @max: Highest index to return.
1128 * @mark: Mark number to search for.
1129 *
1130 * If the @xas has not yet been walked to an entry, return the marked entry
1131 * which has an index >= xas.xa_index. If it has been walked, the entry
1132 * currently being pointed at has been processed, and so we return the
1133 * first marked entry with an index > xas.xa_index.
1134 *
1135 * If no marked entry is found and the array is smaller than @max, @xas is
1136 * set to the bounds state and xas->xa_index is set to the smallest index
1137 * not yet in the array. This allows @xas to be immediately passed to
1138 * xas_store().
1139 *
1140 * If no entry is found before @max is reached, @xas is set to the restart
1141 * state.
1142 *
1143 * Return: The entry, if found, otherwise %NULL.
1144 */
1145void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1146{
1147 bool advance = true;
1148 unsigned int offset;
1149 void *entry;
1150
1151 if (xas_error(xas))
1152 return NULL;
1153
1154 if (!xas->xa_node) {
1155 xas->xa_index = 1;
1156 goto out;
1157 } else if (xas_top(xas->xa_node)) {
1158 advance = false;
1159 entry = xa_head(xas->xa);
1160 xas->xa_node = NULL;
1161 if (xas->xa_index > max_index(entry))
1162 goto out;
1163 if (!xa_is_node(entry)) {
1164 if (xa_marked(xas->xa, mark))
1165 return entry;
1166 xas->xa_index = 1;
1167 goto out;
1168 }
1169 xas->xa_node = xa_to_node(entry);
1170 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1171 }
1172
1173 while (xas->xa_index <= max) {
1174 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1175 xas->xa_offset = xas->xa_node->offset + 1;
1176 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1177 if (!xas->xa_node)
1178 break;
1179 advance = false;
1180 continue;
1181 }
1182
1183 if (!advance) {
1184 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1185 if (xa_is_sibling(entry)) {
1186 xas->xa_offset = xa_to_sibling(entry);
1187 xas_move_index(xas, xas->xa_offset);
1188 }
1189 }
1190
1191 offset = xas_find_chunk(xas, advance, mark);
1192 if (offset > xas->xa_offset) {
1193 advance = false;
1194 xas_move_index(xas, offset);
1195 /* Mind the wrap */
1196 if ((xas->xa_index - 1) >= max)
1197 goto max;
1198 xas->xa_offset = offset;
1199 if (offset == XA_CHUNK_SIZE)
1200 continue;
1201 }
1202
1203 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1204 if (!xa_is_node(entry))
1205 return entry;
1206 xas->xa_node = xa_to_node(entry);
1207 xas_set_offset(xas);
1208 }
1209
1210out:
1211 if (xas->xa_index > max)
1212 goto max;
1213 return set_bounds(xas);
1214max:
1215 xas->xa_node = XAS_RESTART;
1216 return NULL;
1217}
1218EXPORT_SYMBOL_GPL(xas_find_marked);
1219
1220/**
1221 * xas_find_conflict() - Find the next present entry in a range.
1222 * @xas: XArray operation state.
1223 *
1224 * The @xas describes both a range and a position within that range.
1225 *
1226 * Context: Any context. Expects xa_lock to be held.
1227 * Return: The next entry in the range covered by @xas or %NULL.
1228 */
1229void *xas_find_conflict(struct xa_state *xas)
1230{
1231 void *curr;
1232
1233 if (xas_error(xas))
1234 return NULL;
1235
1236 if (!xas->xa_node)
1237 return NULL;
1238
1239 if (xas_top(xas->xa_node)) {
1240 curr = xas_start(xas);
1241 if (!curr)
1242 return NULL;
1243 while (xa_is_node(curr)) {
1244 struct xa_node *node = xa_to_node(curr);
1245 curr = xas_descend(xas, node);
1246 }
1247 if (curr)
1248 return curr;
1249 }
1250
1251 if (xas->xa_node->shift > xas->xa_shift)
1252 return NULL;
1253
1254 for (;;) {
1255 if (xas->xa_node->shift == xas->xa_shift) {
1256 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1257 break;
1258 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1259 xas->xa_offset = xas->xa_node->offset;
1260 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1261 if (!xas->xa_node)
1262 break;
1263 continue;
1264 }
1265 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1266 if (xa_is_sibling(curr))
1267 continue;
1268 while (xa_is_node(curr)) {
1269 xas->xa_node = xa_to_node(curr);
1270 xas->xa_offset = 0;
1271 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1272 }
1273 if (curr)
1274 return curr;
1275 }
1276 xas->xa_offset -= xas->xa_sibs;
1277 return NULL;
1278}
1279EXPORT_SYMBOL_GPL(xas_find_conflict);
1280
1281/**
1282 * xa_load() - Load an entry from an XArray.
1283 * @xa: XArray.
1284 * @index: index into array.
1285 *
1286 * Context: Any context. Takes and releases the RCU lock.
1287 * Return: The entry at @index in @xa.
1288 */
1289void *xa_load(struct xarray *xa, unsigned long index)
1290{
1291 XA_STATE(xas, xa, index);
1292 void *entry;
1293
1294 rcu_read_lock();
1295 do {
1296 entry = xas_load(&xas);
1297 if (xa_is_zero(entry))
1298 entry = NULL;
1299 } while (xas_retry(&xas, entry));
1300 rcu_read_unlock();
1301
1302 return entry;
1303}
1304EXPORT_SYMBOL(xa_load);
1305
1306static void *xas_result(struct xa_state *xas, void *curr)
1307{
1308 if (xa_is_zero(curr))
1309 return NULL;
1310 if (xas_error(xas))
1311 curr = xas->xa_node;
1312 return curr;
1313}
1314
1315/**
1316 * __xa_erase() - Erase this entry from the XArray while locked.
1317 * @xa: XArray.
1318 * @index: Index into array.
1319 *
1320 * After this function returns, loading from @index will return %NULL.
1321 * If the index is part of a multi-index entry, all indices will be erased
1322 * and none of the entries will be part of a multi-index entry.
1323 *
1324 * Context: Any context. Expects xa_lock to be held on entry.
1325 * Return: The entry which used to be at this index.
1326 */
1327void *__xa_erase(struct xarray *xa, unsigned long index)
1328{
1329 XA_STATE(xas, xa, index);
1330 return xas_result(&xas, xas_store(&xas, NULL));
1331}
1332EXPORT_SYMBOL(__xa_erase);
1333
1334/**
1335 * xa_erase() - Erase this entry from the XArray.
1336 * @xa: XArray.
1337 * @index: Index of entry.
1338 *
1339 * After this function returns, loading from @index will return %NULL.
1340 * If the index is part of a multi-index entry, all indices will be erased
1341 * and none of the entries will be part of a multi-index entry.
1342 *
1343 * Context: Any context. Takes and releases the xa_lock.
1344 * Return: The entry which used to be at this index.
1345 */
1346void *xa_erase(struct xarray *xa, unsigned long index)
1347{
1348 void *entry;
1349
1350 xa_lock(xa);
1351 entry = __xa_erase(xa, index);
1352 xa_unlock(xa);
1353
1354 return entry;
1355}
1356EXPORT_SYMBOL(xa_erase);
1357
1358/**
1359 * __xa_store() - Store this entry in the XArray.
1360 * @xa: XArray.
1361 * @index: Index into array.
1362 * @entry: New entry.
1363 * @gfp: Memory allocation flags.
1364 *
1365 * You must already be holding the xa_lock when calling this function.
1366 * It will drop the lock if needed to allocate memory, and then reacquire
1367 * it afterwards.
1368 *
1369 * Context: Any context. Expects xa_lock to be held on entry. May
1370 * release and reacquire xa_lock if @gfp flags permit.
1371 * Return: The old entry at this index or xa_err() if an error happened.
1372 */
1373void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1374{
1375 XA_STATE(xas, xa, index);
1376 void *curr;
1377
1378 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1379 return XA_ERROR(-EINVAL);
1380 if (xa_track_free(xa) && !entry)
1381 entry = XA_ZERO_ENTRY;
1382
1383 do {
1384 curr = xas_store(&xas, entry);
1385 if (xa_track_free(xa))
1386 xas_clear_mark(&xas, XA_FREE_MARK);
1387 } while (__xas_nomem(&xas, gfp));
1388
1389 return xas_result(&xas, curr);
1390}
1391EXPORT_SYMBOL(__xa_store);
1392
1393/**
1394 * xa_store() - Store this entry in the XArray.
1395 * @xa: XArray.
1396 * @index: Index into array.
1397 * @entry: New entry.
1398 * @gfp: Memory allocation flags.
1399 *
1400 * After this function returns, loads from this index will return @entry.
1401 * Storing into an existing multislot entry updates the entry of every index.
1402 * The marks associated with @index are unaffected unless @entry is %NULL.
1403 *
1404 * Context: Any context. Takes and releases the xa_lock.
1405 * May sleep if the @gfp flags permit.
1406 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1407 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1408 * failed.
1409 */
1410void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1411{
1412 void *curr;
1413
1414 xa_lock(xa);
1415 curr = __xa_store(xa, index, entry, gfp);
1416 xa_unlock(xa);
1417
1418 return curr;
1419}
1420EXPORT_SYMBOL(xa_store);
1421
1422/**
1423 * __xa_cmpxchg() - Store this entry in the XArray.
1424 * @xa: XArray.
1425 * @index: Index into array.
1426 * @old: Old value to test against.
1427 * @entry: New entry.
1428 * @gfp: Memory allocation flags.
1429 *
1430 * You must already be holding the xa_lock when calling this function.
1431 * It will drop the lock if needed to allocate memory, and then reacquire
1432 * it afterwards.
1433 *
1434 * Context: Any context. Expects xa_lock to be held on entry. May
1435 * release and reacquire xa_lock if @gfp flags permit.
1436 * Return: The old entry at this index or xa_err() if an error happened.
1437 */
1438void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1439 void *old, void *entry, gfp_t gfp)
1440{
1441 XA_STATE(xas, xa, index);
1442 void *curr;
1443
1444 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1445 return XA_ERROR(-EINVAL);
1446
1447 do {
1448 curr = xas_load(&xas);
1449 if (curr == old) {
1450 xas_store(&xas, entry);
1451 if (xa_track_free(xa) && entry && !curr)
1452 xas_clear_mark(&xas, XA_FREE_MARK);
1453 }
1454 } while (__xas_nomem(&xas, gfp));
1455
1456 return xas_result(&xas, curr);
1457}
1458EXPORT_SYMBOL(__xa_cmpxchg);
1459
1460/**
1461 * __xa_insert() - Store this entry in the XArray if no entry is present.
1462 * @xa: XArray.
1463 * @index: Index into array.
1464 * @entry: New entry.
1465 * @gfp: Memory allocation flags.
1466 *
1467 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1468 * if no entry is present. Inserting will fail if a reserved entry is
1469 * present, even though loading from this index will return NULL.
1470 *
1471 * Context: Any context. Expects xa_lock to be held on entry. May
1472 * release and reacquire xa_lock if @gfp flags permit.
1473 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1474 * -ENOMEM if memory could not be allocated.
1475 */
1476int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1477{
1478 XA_STATE(xas, xa, index);
1479 void *curr;
1480
1481 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1482 return -EINVAL;
1483 if (!entry)
1484 entry = XA_ZERO_ENTRY;
1485
1486 do {
1487 curr = xas_load(&xas);
1488 if (!curr) {
1489 xas_store(&xas, entry);
1490 if (xa_track_free(xa))
1491 xas_clear_mark(&xas, XA_FREE_MARK);
1492 } else {
1493 xas_set_err(&xas, -EBUSY);
1494 }
1495 } while (__xas_nomem(&xas, gfp));
1496
1497 return xas_error(&xas);
1498}
1499EXPORT_SYMBOL(__xa_insert);
1500
1501#ifdef CONFIG_XARRAY_MULTI
1502static void xas_set_range(struct xa_state *xas, unsigned long first,
1503 unsigned long last)
1504{
1505 unsigned int shift = 0;
1506 unsigned long sibs = last - first;
1507 unsigned int offset = XA_CHUNK_MASK;
1508
1509 xas_set(xas, first);
1510
1511 while ((first & XA_CHUNK_MASK) == 0) {
1512 if (sibs < XA_CHUNK_MASK)
1513 break;
1514 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1515 break;
1516 shift += XA_CHUNK_SHIFT;
1517 if (offset == XA_CHUNK_MASK)
1518 offset = sibs & XA_CHUNK_MASK;
1519 sibs >>= XA_CHUNK_SHIFT;
1520 first >>= XA_CHUNK_SHIFT;
1521 }
1522
1523 offset = first & XA_CHUNK_MASK;
1524 if (offset + sibs > XA_CHUNK_MASK)
1525 sibs = XA_CHUNK_MASK - offset;
1526 if ((((first + sibs + 1) << shift) - 1) > last)
1527 sibs -= 1;
1528
1529 xas->xa_shift = shift;
1530 xas->xa_sibs = sibs;
1531}
1532
1533/**
1534 * xa_store_range() - Store this entry at a range of indices in the XArray.
1535 * @xa: XArray.
1536 * @first: First index to affect.
1537 * @last: Last index to affect.
1538 * @entry: New entry.
1539 * @gfp: Memory allocation flags.
1540 *
1541 * After this function returns, loads from any index between @first and @last,
1542 * inclusive will return @entry.
1543 * Storing into an existing multislot entry updates the entry of every index.
1544 * The marks associated with @index are unaffected unless @entry is %NULL.
1545 *
1546 * Context: Process context. Takes and releases the xa_lock. May sleep
1547 * if the @gfp flags permit.
1548 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1549 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1550 */
1551void *xa_store_range(struct xarray *xa, unsigned long first,
1552 unsigned long last, void *entry, gfp_t gfp)
1553{
1554 XA_STATE(xas, xa, 0);
1555
1556 if (WARN_ON_ONCE(xa_is_internal(entry)))
1557 return XA_ERROR(-EINVAL);
1558 if (last < first)
1559 return XA_ERROR(-EINVAL);
1560
1561 do {
1562 xas_lock(&xas);
1563 if (entry) {
1564 unsigned int order = BITS_PER_LONG;
1565 if (last + 1)
1566 order = __ffs(last + 1);
1567 xas_set_order(&xas, last, order);
1568 xas_create(&xas, true);
1569 if (xas_error(&xas))
1570 goto unlock;
1571 }
1572 do {
1573 xas_set_range(&xas, first, last);
1574 xas_store(&xas, entry);
1575 if (xas_error(&xas))
1576 goto unlock;
1577 first += xas_size(&xas);
1578 } while (first <= last);
1579unlock:
1580 xas_unlock(&xas);
1581 } while (xas_nomem(&xas, gfp));
1582
1583 return xas_result(&xas, NULL);
1584}
1585EXPORT_SYMBOL(xa_store_range);
1586#endif /* CONFIG_XARRAY_MULTI */
1587
1588/**
1589 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1590 * @xa: XArray.
1591 * @id: Pointer to ID.
1592 * @limit: Range for allocated ID.
1593 * @entry: New entry.
1594 * @gfp: Memory allocation flags.
1595 *
1596 * Finds an empty entry in @xa between @limit.min and @limit.max,
1597 * stores the index into the @id pointer, then stores the entry at
1598 * that index. A concurrent lookup will not see an uninitialised @id.
1599 *
1600 * Context: Any context. Expects xa_lock to be held on entry. May
1601 * release and reacquire xa_lock if @gfp flags permit.
1602 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1603 * -EBUSY if there are no free entries in @limit.
1604 */
1605int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1606 struct xa_limit limit, gfp_t gfp)
1607{
1608 XA_STATE(xas, xa, 0);
1609
1610 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1611 return -EINVAL;
1612 if (WARN_ON_ONCE(!xa_track_free(xa)))
1613 return -EINVAL;
1614
1615 if (!entry)
1616 entry = XA_ZERO_ENTRY;
1617
1618 do {
1619 xas.xa_index = limit.min;
1620 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1621 if (xas.xa_node == XAS_RESTART)
1622 xas_set_err(&xas, -EBUSY);
1623 else
1624 *id = xas.xa_index;
1625 xas_store(&xas, entry);
1626 xas_clear_mark(&xas, XA_FREE_MARK);
1627 } while (__xas_nomem(&xas, gfp));
1628
1629 return xas_error(&xas);
1630}
1631EXPORT_SYMBOL(__xa_alloc);
1632
1633/**
1634 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1635 * @xa: XArray.
1636 * @id: Pointer to ID.
1637 * @entry: New entry.
1638 * @limit: Range of allocated ID.
1639 * @next: Pointer to next ID to allocate.
1640 * @gfp: Memory allocation flags.
1641 *
1642 * Finds an empty entry in @xa between @limit.min and @limit.max,
1643 * stores the index into the @id pointer, then stores the entry at
1644 * that index. A concurrent lookup will not see an uninitialised @id.
1645 * The search for an empty entry will start at @next and will wrap
1646 * around if necessary.
1647 *
1648 * Context: Any context. Expects xa_lock to be held on entry. May
1649 * release and reacquire xa_lock if @gfp flags permit.
1650 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1651 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1652 * allocated or -EBUSY if there are no free entries in @limit.
1653 */
1654int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1655 struct xa_limit limit, u32 *next, gfp_t gfp)
1656{
1657 u32 min = limit.min;
1658 int ret;
1659
1660 limit.min = max(min, *next);
1661 ret = __xa_alloc(xa, id, entry, limit, gfp);
1662 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1663 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1664 ret = 1;
1665 }
1666
1667 if (ret < 0 && limit.min > min) {
1668 limit.min = min;
1669 ret = __xa_alloc(xa, id, entry, limit, gfp);
1670 if (ret == 0)
1671 ret = 1;
1672 }
1673
1674 if (ret >= 0) {
1675 *next = *id + 1;
1676 if (*next == 0)
1677 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1678 }
1679 return ret;
1680}
1681EXPORT_SYMBOL(__xa_alloc_cyclic);
1682
1683/**
1684 * __xa_set_mark() - Set this mark on this entry while locked.
1685 * @xa: XArray.
1686 * @index: Index of entry.
1687 * @mark: Mark number.
1688 *
1689 * Attempting to set a mark on a %NULL entry does not succeed.
1690 *
1691 * Context: Any context. Expects xa_lock to be held on entry.
1692 */
1693void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1694{
1695 XA_STATE(xas, xa, index);
1696 void *entry = xas_load(&xas);
1697
1698 if (entry)
1699 xas_set_mark(&xas, mark);
1700}
1701EXPORT_SYMBOL(__xa_set_mark);
1702
1703/**
1704 * __xa_clear_mark() - Clear this mark on this entry while locked.
1705 * @xa: XArray.
1706 * @index: Index of entry.
1707 * @mark: Mark number.
1708 *
1709 * Context: Any context. Expects xa_lock to be held on entry.
1710 */
1711void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1712{
1713 XA_STATE(xas, xa, index);
1714 void *entry = xas_load(&xas);
1715
1716 if (entry)
1717 xas_clear_mark(&xas, mark);
1718}
1719EXPORT_SYMBOL(__xa_clear_mark);
1720
1721/**
1722 * xa_get_mark() - Inquire whether this mark is set on this entry.
1723 * @xa: XArray.
1724 * @index: Index of entry.
1725 * @mark: Mark number.
1726 *
1727 * This function uses the RCU read lock, so the result may be out of date
1728 * by the time it returns. If you need the result to be stable, use a lock.
1729 *
1730 * Context: Any context. Takes and releases the RCU lock.
1731 * Return: True if the entry at @index has this mark set, false if it doesn't.
1732 */
1733bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1734{
1735 XA_STATE(xas, xa, index);
1736 void *entry;
1737
1738 rcu_read_lock();
1739 entry = xas_start(&xas);
1740 while (xas_get_mark(&xas, mark)) {
1741 if (!xa_is_node(entry))
1742 goto found;
1743 entry = xas_descend(&xas, xa_to_node(entry));
1744 }
1745 rcu_read_unlock();
1746 return false;
1747 found:
1748 rcu_read_unlock();
1749 return true;
1750}
1751EXPORT_SYMBOL(xa_get_mark);
1752
1753/**
1754 * xa_set_mark() - Set this mark on this entry.
1755 * @xa: XArray.
1756 * @index: Index of entry.
1757 * @mark: Mark number.
1758 *
1759 * Attempting to set a mark on a %NULL entry does not succeed.
1760 *
1761 * Context: Process context. Takes and releases the xa_lock.
1762 */
1763void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1764{
1765 xa_lock(xa);
1766 __xa_set_mark(xa, index, mark);
1767 xa_unlock(xa);
1768}
1769EXPORT_SYMBOL(xa_set_mark);
1770
1771/**
1772 * xa_clear_mark() - Clear this mark on this entry.
1773 * @xa: XArray.
1774 * @index: Index of entry.
1775 * @mark: Mark number.
1776 *
1777 * Clearing a mark always succeeds.
1778 *
1779 * Context: Process context. Takes and releases the xa_lock.
1780 */
1781void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1782{
1783 xa_lock(xa);
1784 __xa_clear_mark(xa, index, mark);
1785 xa_unlock(xa);
1786}
1787EXPORT_SYMBOL(xa_clear_mark);
1788
1789/**
1790 * xa_find() - Search the XArray for an entry.
1791 * @xa: XArray.
1792 * @indexp: Pointer to an index.
1793 * @max: Maximum index to search to.
1794 * @filter: Selection criterion.
1795 *
1796 * Finds the entry in @xa which matches the @filter, and has the lowest
1797 * index that is at least @indexp and no more than @max.
1798 * If an entry is found, @indexp is updated to be the index of the entry.
1799 * This function is protected by the RCU read lock, so it may not find
1800 * entries which are being simultaneously added. It will not return an
1801 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1802 *
1803 * Context: Any context. Takes and releases the RCU lock.
1804 * Return: The entry, if found, otherwise %NULL.
1805 */
1806void *xa_find(struct xarray *xa, unsigned long *indexp,
1807 unsigned long max, xa_mark_t filter)
1808{
1809 XA_STATE(xas, xa, *indexp);
1810 void *entry;
1811
1812 rcu_read_lock();
1813 do {
1814 if ((__force unsigned int)filter < XA_MAX_MARKS)
1815 entry = xas_find_marked(&xas, max, filter);
1816 else
1817 entry = xas_find(&xas, max);
1818 } while (xas_retry(&xas, entry));
1819 rcu_read_unlock();
1820
1821 if (entry)
1822 *indexp = xas.xa_index;
1823 return entry;
1824}
1825EXPORT_SYMBOL(xa_find);
1826
1827/**
1828 * xa_find_after() - Search the XArray for a present entry.
1829 * @xa: XArray.
1830 * @indexp: Pointer to an index.
1831 * @max: Maximum index to search to.
1832 * @filter: Selection criterion.
1833 *
1834 * Finds the entry in @xa which matches the @filter and has the lowest
1835 * index that is above @indexp and no more than @max.
1836 * If an entry is found, @indexp is updated to be the index of the entry.
1837 * This function is protected by the RCU read lock, so it may miss entries
1838 * which are being simultaneously added. It will not return an
1839 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1840 *
1841 * Context: Any context. Takes and releases the RCU lock.
1842 * Return: The pointer, if found, otherwise %NULL.
1843 */
1844void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1845 unsigned long max, xa_mark_t filter)
1846{
1847 XA_STATE(xas, xa, *indexp + 1);
1848 void *entry;
1849
1850 rcu_read_lock();
1851 for (;;) {
1852 if ((__force unsigned int)filter < XA_MAX_MARKS)
1853 entry = xas_find_marked(&xas, max, filter);
1854 else
1855 entry = xas_find(&xas, max);
1856 if (xas.xa_node == XAS_BOUNDS)
1857 break;
1858 if (xas.xa_shift) {
1859 if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1860 continue;
1861 } else {
1862 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1863 continue;
1864 }
1865 if (!xas_retry(&xas, entry))
1866 break;
1867 }
1868 rcu_read_unlock();
1869
1870 if (entry)
1871 *indexp = xas.xa_index;
1872 return entry;
1873}
1874EXPORT_SYMBOL(xa_find_after);
1875
1876static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1877 unsigned long max, unsigned int n)
1878{
1879 void *entry;
1880 unsigned int i = 0;
1881
1882 rcu_read_lock();
1883 xas_for_each(xas, entry, max) {
1884 if (xas_retry(xas, entry))
1885 continue;
1886 dst[i++] = entry;
1887 if (i == n)
1888 break;
1889 }
1890 rcu_read_unlock();
1891
1892 return i;
1893}
1894
1895static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1896 unsigned long max, unsigned int n, xa_mark_t mark)
1897{
1898 void *entry;
1899 unsigned int i = 0;
1900
1901 rcu_read_lock();
1902 xas_for_each_marked(xas, entry, max, mark) {
1903 if (xas_retry(xas, entry))
1904 continue;
1905 dst[i++] = entry;
1906 if (i == n)
1907 break;
1908 }
1909 rcu_read_unlock();
1910
1911 return i;
1912}
1913
1914/**
1915 * xa_extract() - Copy selected entries from the XArray into a normal array.
1916 * @xa: The source XArray to copy from.
1917 * @dst: The buffer to copy entries into.
1918 * @start: The first index in the XArray eligible to be selected.
1919 * @max: The last index in the XArray eligible to be selected.
1920 * @n: The maximum number of entries to copy.
1921 * @filter: Selection criterion.
1922 *
1923 * Copies up to @n entries that match @filter from the XArray. The
1924 * copied entries will have indices between @start and @max, inclusive.
1925 *
1926 * The @filter may be an XArray mark value, in which case entries which are
1927 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1928 * which case all entries which are not %NULL will be copied.
1929 *
1930 * The entries returned may not represent a snapshot of the XArray at a
1931 * moment in time. For example, if another thread stores to index 5, then
1932 * index 10, calling xa_extract() may return the old contents of index 5
1933 * and the new contents of index 10. Indices not modified while this
1934 * function is running will not be skipped.
1935 *
1936 * If you need stronger guarantees, holding the xa_lock across calls to this
1937 * function will prevent concurrent modification.
1938 *
1939 * Context: Any context. Takes and releases the RCU lock.
1940 * Return: The number of entries copied.
1941 */
1942unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1943 unsigned long max, unsigned int n, xa_mark_t filter)
1944{
1945 XA_STATE(xas, xa, start);
1946
1947 if (!n)
1948 return 0;
1949
1950 if ((__force unsigned int)filter < XA_MAX_MARKS)
1951 return xas_extract_marked(&xas, dst, max, n, filter);
1952 return xas_extract_present(&xas, dst, max, n);
1953}
1954EXPORT_SYMBOL(xa_extract);
1955
1956/**
1957 * xa_destroy() - Free all internal data structures.
1958 * @xa: XArray.
1959 *
1960 * After calling this function, the XArray is empty and has freed all memory
1961 * allocated for its internal data structures. You are responsible for
1962 * freeing the objects referenced by the XArray.
1963 *
1964 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1965 */
1966void xa_destroy(struct xarray *xa)
1967{
1968 XA_STATE(xas, xa, 0);
1969 unsigned long flags;
1970 void *entry;
1971
1972 xas.xa_node = NULL;
1973 xas_lock_irqsave(&xas, flags);
1974 entry = xa_head_locked(xa);
1975 RCU_INIT_POINTER(xa->xa_head, NULL);
1976 xas_init_marks(&xas);
1977 if (xa_zero_busy(xa))
1978 xa_mark_clear(xa, XA_FREE_MARK);
1979 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1980 if (xa_is_node(entry))
1981 xas_free_nodes(&xas, xa_to_node(entry));
1982 xas_unlock_irqrestore(&xas, flags);
1983}
1984EXPORT_SYMBOL(xa_destroy);
1985
1986#ifdef XA_DEBUG
1987void xa_dump_node(const struct xa_node *node)
1988{
1989 unsigned i, j;
1990
1991 if (!node)
1992 return;
1993 if ((unsigned long)node & 3) {
1994 pr_cont("node %px\n", node);
1995 return;
1996 }
1997
1998 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1999 "array %px list %px %px marks",
2000 node, node->parent ? "offset" : "max", node->offset,
2001 node->parent, node->shift, node->count, node->nr_values,
2002 node->array, node->private_list.prev, node->private_list.next);
2003 for (i = 0; i < XA_MAX_MARKS; i++)
2004 for (j = 0; j < XA_MARK_LONGS; j++)
2005 pr_cont(" %lx", node->marks[i][j]);
2006 pr_cont("\n");
2007}
2008
2009void xa_dump_index(unsigned long index, unsigned int shift)
2010{
2011 if (!shift)
2012 pr_info("%lu: ", index);
2013 else if (shift >= BITS_PER_LONG)
2014 pr_info("0-%lu: ", ~0UL);
2015 else
2016 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2017}
2018
2019void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2020{
2021 if (!entry)
2022 return;
2023
2024 xa_dump_index(index, shift);
2025
2026 if (xa_is_node(entry)) {
2027 if (shift == 0) {
2028 pr_cont("%px\n", entry);
2029 } else {
2030 unsigned long i;
2031 struct xa_node *node = xa_to_node(entry);
2032 xa_dump_node(node);
2033 for (i = 0; i < XA_CHUNK_SIZE; i++)
2034 xa_dump_entry(node->slots[i],
2035 index + (i << node->shift), node->shift);
2036 }
2037 } else if (xa_is_value(entry))
2038 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2039 xa_to_value(entry), entry);
2040 else if (!xa_is_internal(entry))
2041 pr_cont("%px\n", entry);
2042 else if (xa_is_retry(entry))
2043 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2044 else if (xa_is_sibling(entry))
2045 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2046 else if (xa_is_zero(entry))
2047 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2048 else
2049 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2050}
2051
2052void xa_dump(const struct xarray *xa)
2053{
2054 void *entry = xa->xa_head;
2055 unsigned int shift = 0;
2056
2057 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2058 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2059 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2060 if (xa_is_node(entry))
2061 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2062 xa_dump_entry(entry, 0, shift);
2063}
2064#endif