Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15#include "radix-tree.h"
16
17/*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
33static inline unsigned int xa_lock_type(const struct xarray *xa)
34{
35 return (__force unsigned int)xa->xa_flags & 3;
36}
37
38static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39{
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46}
47
48static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49{
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56}
57
58static inline bool xa_track_free(const struct xarray *xa)
59{
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61}
62
63static inline bool xa_zero_busy(const struct xarray *xa)
64{
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66}
67
68static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69{
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72}
73
74static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75{
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78}
79
80static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81{
82 return node->marks[(__force unsigned)mark];
83}
84
85static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87{
88 return test_bit(offset, node_marks(node, mark));
89}
90
91/* returns true if the bit was set */
92static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94{
95 return __test_and_set_bit(offset, node_marks(node, mark));
96}
97
98/* returns true if the bit was set */
99static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101{
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103}
104
105static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106{
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108}
109
110static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111{
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113}
114
115#define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117} while (0)
118
119/*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
126static void xas_squash_marks(const struct xa_state *xas)
127{
128 unsigned int mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 if (!xas->xa_sibs)
132 return;
133
134 do {
135 unsigned long *marks = xas->xa_node->marks[mark];
136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 continue;
138 __set_bit(xas->xa_offset, marks);
139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 } while (mark++ != (__force unsigned)XA_MARK_MAX);
141}
142
143/* extracts the offset within this node from the index */
144static unsigned int get_offset(unsigned long index, struct xa_node *node)
145{
146 return (index >> node->shift) & XA_CHUNK_MASK;
147}
148
149static void xas_set_offset(struct xa_state *xas)
150{
151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152}
153
154/* move the index either forwards (find) or backwards (sibling slot) */
155static void xas_move_index(struct xa_state *xas, unsigned long offset)
156{
157 unsigned int shift = xas->xa_node->shift;
158 xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 xas->xa_index += offset << shift;
160}
161
162static void xas_next_offset(struct xa_state *xas)
163{
164 xas->xa_offset++;
165 xas_move_index(xas, xas->xa_offset);
166}
167
168static void *set_bounds(struct xa_state *xas)
169{
170 xas->xa_node = XAS_BOUNDS;
171 return NULL;
172}
173
174/*
175 * Starts a walk. If the @xas is already valid, we assume that it's on
176 * the right path and just return where we've got to. If we're in an
177 * error state, return NULL. If the index is outside the current scope
178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
179 * set @xas->xa_node to NULL and return the current head of the array.
180 */
181static void *xas_start(struct xa_state *xas)
182{
183 void *entry;
184
185 if (xas_valid(xas))
186 return xas_reload(xas);
187 if (xas_error(xas))
188 return NULL;
189
190 entry = xa_head(xas->xa);
191 if (!xa_is_node(entry)) {
192 if (xas->xa_index)
193 return set_bounds(xas);
194 } else {
195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 return set_bounds(xas);
197 }
198
199 xas->xa_node = NULL;
200 return entry;
201}
202
203static void *xas_descend(struct xa_state *xas, struct xa_node *node)
204{
205 unsigned int offset = get_offset(xas->xa_index, node);
206 void *entry = xa_entry(xas->xa, node, offset);
207
208 xas->xa_node = node;
209 while (xa_is_sibling(entry)) {
210 offset = xa_to_sibling(entry);
211 entry = xa_entry(xas->xa, node, offset);
212 if (node->shift && xa_is_node(entry))
213 entry = XA_RETRY_ENTRY;
214 }
215
216 xas->xa_offset = offset;
217 return entry;
218}
219
220/**
221 * xas_load() - Load an entry from the XArray (advanced).
222 * @xas: XArray operation state.
223 *
224 * Usually walks the @xas to the appropriate state to load the entry
225 * stored at xa_index. However, it will do nothing and return %NULL if
226 * @xas is in an error state. xas_load() will never expand the tree.
227 *
228 * If the xa_state is set up to operate on a multi-index entry, xas_load()
229 * may return %NULL or an internal entry, even if there are entries
230 * present within the range specified by @xas.
231 *
232 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
233 * Return: Usually an entry in the XArray, but see description for exceptions.
234 */
235void *xas_load(struct xa_state *xas)
236{
237 void *entry = xas_start(xas);
238
239 while (xa_is_node(entry)) {
240 struct xa_node *node = xa_to_node(entry);
241
242 if (xas->xa_shift > node->shift)
243 break;
244 entry = xas_descend(xas, node);
245 if (node->shift == 0)
246 break;
247 }
248 return entry;
249}
250EXPORT_SYMBOL_GPL(xas_load);
251
252#define XA_RCU_FREE ((struct xarray *)1)
253
254static void xa_node_free(struct xa_node *node)
255{
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259}
260
261/*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * Most users will not need to call this function; it is called for you
266 * by xas_nomem().
267 */
268void xas_destroy(struct xa_state *xas)
269{
270 struct xa_node *next, *node = xas->xa_alloc;
271
272 while (node) {
273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 next = rcu_dereference_raw(node->parent);
275 radix_tree_node_rcu_free(&node->rcu_head);
276 xas->xa_alloc = node = next;
277 }
278}
279
280/**
281 * xas_nomem() - Allocate memory if needed.
282 * @xas: XArray operation state.
283 * @gfp: Memory allocation flags.
284 *
285 * If we need to add new nodes to the XArray, we try to allocate memory
286 * with GFP_NOWAIT while holding the lock, which will usually succeed.
287 * If it fails, @xas is flagged as needing memory to continue. The caller
288 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
289 * the caller should retry the operation.
290 *
291 * Forward progress is guaranteed as one node is allocated here and
292 * stored in the xa_state where it will be found by xas_alloc(). More
293 * nodes will likely be found in the slab allocator, but we do not tie
294 * them up here.
295 *
296 * Return: true if memory was needed, and was successfully allocated.
297 */
298bool xas_nomem(struct xa_state *xas, gfp_t gfp)
299{
300 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
301 xas_destroy(xas);
302 return false;
303 }
304 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
305 gfp |= __GFP_ACCOUNT;
306 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
307 if (!xas->xa_alloc)
308 return false;
309 xas->xa_alloc->parent = NULL;
310 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
311 xas->xa_node = XAS_RESTART;
312 return true;
313}
314EXPORT_SYMBOL_GPL(xas_nomem);
315
316/*
317 * __xas_nomem() - Drop locks and allocate memory if needed.
318 * @xas: XArray operation state.
319 * @gfp: Memory allocation flags.
320 *
321 * Internal variant of xas_nomem().
322 *
323 * Return: true if memory was needed, and was successfully allocated.
324 */
325static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
326 __must_hold(xas->xa->xa_lock)
327{
328 unsigned int lock_type = xa_lock_type(xas->xa);
329
330 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
331 xas_destroy(xas);
332 return false;
333 }
334 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
335 gfp |= __GFP_ACCOUNT;
336 if (gfpflags_allow_blocking(gfp)) {
337 xas_unlock_type(xas, lock_type);
338 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
339 xas_lock_type(xas, lock_type);
340 } else {
341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342 }
343 if (!xas->xa_alloc)
344 return false;
345 xas->xa_alloc->parent = NULL;
346 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
347 xas->xa_node = XAS_RESTART;
348 return true;
349}
350
351static void xas_update(struct xa_state *xas, struct xa_node *node)
352{
353 if (xas->xa_update)
354 xas->xa_update(node);
355 else
356 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
357}
358
359static void *xas_alloc(struct xa_state *xas, unsigned int shift)
360{
361 struct xa_node *parent = xas->xa_node;
362 struct xa_node *node = xas->xa_alloc;
363
364 if (xas_invalid(xas))
365 return NULL;
366
367 if (node) {
368 xas->xa_alloc = NULL;
369 } else {
370 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
371
372 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
373 gfp |= __GFP_ACCOUNT;
374
375 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
376 if (!node) {
377 xas_set_err(xas, -ENOMEM);
378 return NULL;
379 }
380 }
381
382 if (parent) {
383 node->offset = xas->xa_offset;
384 parent->count++;
385 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
386 xas_update(xas, parent);
387 }
388 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
389 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
390 node->shift = shift;
391 node->count = 0;
392 node->nr_values = 0;
393 RCU_INIT_POINTER(node->parent, xas->xa_node);
394 node->array = xas->xa;
395
396 return node;
397}
398
399#ifdef CONFIG_XARRAY_MULTI
400/* Returns the number of indices covered by a given xa_state */
401static unsigned long xas_size(const struct xa_state *xas)
402{
403 return (xas->xa_sibs + 1UL) << xas->xa_shift;
404}
405#endif
406
407/*
408 * Use this to calculate the maximum index that will need to be created
409 * in order to add the entry described by @xas. Because we cannot store a
410 * multi-index entry at index 0, the calculation is a little more complex
411 * than you might expect.
412 */
413static unsigned long xas_max(struct xa_state *xas)
414{
415 unsigned long max = xas->xa_index;
416
417#ifdef CONFIG_XARRAY_MULTI
418 if (xas->xa_shift || xas->xa_sibs) {
419 unsigned long mask = xas_size(xas) - 1;
420 max |= mask;
421 if (mask == max)
422 max++;
423 }
424#endif
425
426 return max;
427}
428
429/* The maximum index that can be contained in the array without expanding it */
430static unsigned long max_index(void *entry)
431{
432 if (!xa_is_node(entry))
433 return 0;
434 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
435}
436
437static void xas_shrink(struct xa_state *xas)
438{
439 struct xarray *xa = xas->xa;
440 struct xa_node *node = xas->xa_node;
441
442 for (;;) {
443 void *entry;
444
445 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
446 if (node->count != 1)
447 break;
448 entry = xa_entry_locked(xa, node, 0);
449 if (!entry)
450 break;
451 if (!xa_is_node(entry) && node->shift)
452 break;
453 if (xa_is_zero(entry) && xa_zero_busy(xa))
454 entry = NULL;
455 xas->xa_node = XAS_BOUNDS;
456
457 RCU_INIT_POINTER(xa->xa_head, entry);
458 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
459 xa_mark_clear(xa, XA_FREE_MARK);
460
461 node->count = 0;
462 node->nr_values = 0;
463 if (!xa_is_node(entry))
464 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
465 xas_update(xas, node);
466 xa_node_free(node);
467 if (!xa_is_node(entry))
468 break;
469 node = xa_to_node(entry);
470 node->parent = NULL;
471 }
472}
473
474/*
475 * xas_delete_node() - Attempt to delete an xa_node
476 * @xas: Array operation state.
477 *
478 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
479 * a non-zero reference count.
480 */
481static void xas_delete_node(struct xa_state *xas)
482{
483 struct xa_node *node = xas->xa_node;
484
485 for (;;) {
486 struct xa_node *parent;
487
488 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
489 if (node->count)
490 break;
491
492 parent = xa_parent_locked(xas->xa, node);
493 xas->xa_node = parent;
494 xas->xa_offset = node->offset;
495 xa_node_free(node);
496
497 if (!parent) {
498 xas->xa->xa_head = NULL;
499 xas->xa_node = XAS_BOUNDS;
500 return;
501 }
502
503 parent->slots[xas->xa_offset] = NULL;
504 parent->count--;
505 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
506 node = parent;
507 xas_update(xas, node);
508 }
509
510 if (!node->parent)
511 xas_shrink(xas);
512}
513
514/**
515 * xas_free_nodes() - Free this node and all nodes that it references
516 * @xas: Array operation state.
517 * @top: Node to free
518 *
519 * This node has been removed from the tree. We must now free it and all
520 * of its subnodes. There may be RCU walkers with references into the tree,
521 * so we must replace all entries with retry markers.
522 */
523static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
524{
525 unsigned int offset = 0;
526 struct xa_node *node = top;
527
528 for (;;) {
529 void *entry = xa_entry_locked(xas->xa, node, offset);
530
531 if (node->shift && xa_is_node(entry)) {
532 node = xa_to_node(entry);
533 offset = 0;
534 continue;
535 }
536 if (entry)
537 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
538 offset++;
539 while (offset == XA_CHUNK_SIZE) {
540 struct xa_node *parent;
541
542 parent = xa_parent_locked(xas->xa, node);
543 offset = node->offset + 1;
544 node->count = 0;
545 node->nr_values = 0;
546 xas_update(xas, node);
547 xa_node_free(node);
548 if (node == top)
549 return;
550 node = parent;
551 }
552 }
553}
554
555/*
556 * xas_expand adds nodes to the head of the tree until it has reached
557 * sufficient height to be able to contain @xas->xa_index
558 */
559static int xas_expand(struct xa_state *xas, void *head)
560{
561 struct xarray *xa = xas->xa;
562 struct xa_node *node = NULL;
563 unsigned int shift = 0;
564 unsigned long max = xas_max(xas);
565
566 if (!head) {
567 if (max == 0)
568 return 0;
569 while ((max >> shift) >= XA_CHUNK_SIZE)
570 shift += XA_CHUNK_SHIFT;
571 return shift + XA_CHUNK_SHIFT;
572 } else if (xa_is_node(head)) {
573 node = xa_to_node(head);
574 shift = node->shift + XA_CHUNK_SHIFT;
575 }
576 xas->xa_node = NULL;
577
578 while (max > max_index(head)) {
579 xa_mark_t mark = 0;
580
581 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
582 node = xas_alloc(xas, shift);
583 if (!node)
584 return -ENOMEM;
585
586 node->count = 1;
587 if (xa_is_value(head))
588 node->nr_values = 1;
589 RCU_INIT_POINTER(node->slots[0], head);
590
591 /* Propagate the aggregated mark info to the new child */
592 for (;;) {
593 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
594 node_mark_all(node, XA_FREE_MARK);
595 if (!xa_marked(xa, XA_FREE_MARK)) {
596 node_clear_mark(node, 0, XA_FREE_MARK);
597 xa_mark_set(xa, XA_FREE_MARK);
598 }
599 } else if (xa_marked(xa, mark)) {
600 node_set_mark(node, 0, mark);
601 }
602 if (mark == XA_MARK_MAX)
603 break;
604 mark_inc(mark);
605 }
606
607 /*
608 * Now that the new node is fully initialised, we can add
609 * it to the tree
610 */
611 if (xa_is_node(head)) {
612 xa_to_node(head)->offset = 0;
613 rcu_assign_pointer(xa_to_node(head)->parent, node);
614 }
615 head = xa_mk_node(node);
616 rcu_assign_pointer(xa->xa_head, head);
617 xas_update(xas, node);
618
619 shift += XA_CHUNK_SHIFT;
620 }
621
622 xas->xa_node = node;
623 return shift;
624}
625
626/*
627 * xas_create() - Create a slot to store an entry in.
628 * @xas: XArray operation state.
629 * @allow_root: %true if we can store the entry in the root directly
630 *
631 * Most users will not need to call this function directly, as it is called
632 * by xas_store(). It is useful for doing conditional store operations
633 * (see the xa_cmpxchg() implementation for an example).
634 *
635 * Return: If the slot already existed, returns the contents of this slot.
636 * If the slot was newly created, returns %NULL. If it failed to create the
637 * slot, returns %NULL and indicates the error in @xas.
638 */
639static void *xas_create(struct xa_state *xas, bool allow_root)
640{
641 struct xarray *xa = xas->xa;
642 void *entry;
643 void __rcu **slot;
644 struct xa_node *node = xas->xa_node;
645 int shift;
646 unsigned int order = xas->xa_shift;
647
648 if (xas_top(node)) {
649 entry = xa_head_locked(xa);
650 xas->xa_node = NULL;
651 if (!entry && xa_zero_busy(xa))
652 entry = XA_ZERO_ENTRY;
653 shift = xas_expand(xas, entry);
654 if (shift < 0)
655 return NULL;
656 if (!shift && !allow_root)
657 shift = XA_CHUNK_SHIFT;
658 entry = xa_head_locked(xa);
659 slot = &xa->xa_head;
660 } else if (xas_error(xas)) {
661 return NULL;
662 } else if (node) {
663 unsigned int offset = xas->xa_offset;
664
665 shift = node->shift;
666 entry = xa_entry_locked(xa, node, offset);
667 slot = &node->slots[offset];
668 } else {
669 shift = 0;
670 entry = xa_head_locked(xa);
671 slot = &xa->xa_head;
672 }
673
674 while (shift > order) {
675 shift -= XA_CHUNK_SHIFT;
676 if (!entry) {
677 node = xas_alloc(xas, shift);
678 if (!node)
679 break;
680 if (xa_track_free(xa))
681 node_mark_all(node, XA_FREE_MARK);
682 rcu_assign_pointer(*slot, xa_mk_node(node));
683 } else if (xa_is_node(entry)) {
684 node = xa_to_node(entry);
685 } else {
686 break;
687 }
688 entry = xas_descend(xas, node);
689 slot = &node->slots[xas->xa_offset];
690 }
691
692 return entry;
693}
694
695/**
696 * xas_create_range() - Ensure that stores to this range will succeed
697 * @xas: XArray operation state.
698 *
699 * Creates all of the slots in the range covered by @xas. Sets @xas to
700 * create single-index entries and positions it at the beginning of the
701 * range. This is for the benefit of users which have not yet been
702 * converted to use multi-index entries.
703 */
704void xas_create_range(struct xa_state *xas)
705{
706 unsigned long index = xas->xa_index;
707 unsigned char shift = xas->xa_shift;
708 unsigned char sibs = xas->xa_sibs;
709
710 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
711 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
712 xas->xa_offset |= sibs;
713 xas->xa_shift = 0;
714 xas->xa_sibs = 0;
715
716 for (;;) {
717 xas_create(xas, true);
718 if (xas_error(xas))
719 goto restore;
720 if (xas->xa_index <= (index | XA_CHUNK_MASK))
721 goto success;
722 xas->xa_index -= XA_CHUNK_SIZE;
723
724 for (;;) {
725 struct xa_node *node = xas->xa_node;
726 if (node->shift >= shift)
727 break;
728 xas->xa_node = xa_parent_locked(xas->xa, node);
729 xas->xa_offset = node->offset - 1;
730 if (node->offset != 0)
731 break;
732 }
733 }
734
735restore:
736 xas->xa_shift = shift;
737 xas->xa_sibs = sibs;
738 xas->xa_index = index;
739 return;
740success:
741 xas->xa_index = index;
742 if (xas->xa_node)
743 xas_set_offset(xas);
744}
745EXPORT_SYMBOL_GPL(xas_create_range);
746
747static void update_node(struct xa_state *xas, struct xa_node *node,
748 int count, int values)
749{
750 if (!node || (!count && !values))
751 return;
752
753 node->count += count;
754 node->nr_values += values;
755 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
756 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
757 xas_update(xas, node);
758 if (count < 0)
759 xas_delete_node(xas);
760}
761
762/**
763 * xas_store() - Store this entry in the XArray.
764 * @xas: XArray operation state.
765 * @entry: New entry.
766 *
767 * If @xas is operating on a multi-index entry, the entry returned by this
768 * function is essentially meaningless (it may be an internal entry or it
769 * may be %NULL, even if there are non-NULL entries at some of the indices
770 * covered by the range). This is not a problem for any current users,
771 * and can be changed if needed.
772 *
773 * Return: The old entry at this index.
774 */
775void *xas_store(struct xa_state *xas, void *entry)
776{
777 struct xa_node *node;
778 void __rcu **slot = &xas->xa->xa_head;
779 unsigned int offset, max;
780 int count = 0;
781 int values = 0;
782 void *first, *next;
783 bool value = xa_is_value(entry);
784
785 if (entry) {
786 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
787 first = xas_create(xas, allow_root);
788 } else {
789 first = xas_load(xas);
790 }
791
792 if (xas_invalid(xas))
793 return first;
794 node = xas->xa_node;
795 if (node && (xas->xa_shift < node->shift))
796 xas->xa_sibs = 0;
797 if ((first == entry) && !xas->xa_sibs)
798 return first;
799
800 next = first;
801 offset = xas->xa_offset;
802 max = xas->xa_offset + xas->xa_sibs;
803 if (node) {
804 slot = &node->slots[offset];
805 if (xas->xa_sibs)
806 xas_squash_marks(xas);
807 }
808 if (!entry)
809 xas_init_marks(xas);
810
811 for (;;) {
812 /*
813 * Must clear the marks before setting the entry to NULL,
814 * otherwise xas_for_each_marked may find a NULL entry and
815 * stop early. rcu_assign_pointer contains a release barrier
816 * so the mark clearing will appear to happen before the
817 * entry is set to NULL.
818 */
819 rcu_assign_pointer(*slot, entry);
820 if (xa_is_node(next) && (!node || node->shift))
821 xas_free_nodes(xas, xa_to_node(next));
822 if (!node)
823 break;
824 count += !next - !entry;
825 values += !xa_is_value(first) - !value;
826 if (entry) {
827 if (offset == max)
828 break;
829 if (!xa_is_sibling(entry))
830 entry = xa_mk_sibling(xas->xa_offset);
831 } else {
832 if (offset == XA_CHUNK_MASK)
833 break;
834 }
835 next = xa_entry_locked(xas->xa, node, ++offset);
836 if (!xa_is_sibling(next)) {
837 if (!entry && (offset > max))
838 break;
839 first = next;
840 }
841 slot++;
842 }
843
844 update_node(xas, node, count, values);
845 return first;
846}
847EXPORT_SYMBOL_GPL(xas_store);
848
849/**
850 * xas_get_mark() - Returns the state of this mark.
851 * @xas: XArray operation state.
852 * @mark: Mark number.
853 *
854 * Return: true if the mark is set, false if the mark is clear or @xas
855 * is in an error state.
856 */
857bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
858{
859 if (xas_invalid(xas))
860 return false;
861 if (!xas->xa_node)
862 return xa_marked(xas->xa, mark);
863 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
864}
865EXPORT_SYMBOL_GPL(xas_get_mark);
866
867/**
868 * xas_set_mark() - Sets the mark on this entry and its parents.
869 * @xas: XArray operation state.
870 * @mark: Mark number.
871 *
872 * Sets the specified mark on this entry, and walks up the tree setting it
873 * on all the ancestor entries. Does nothing if @xas has not been walked to
874 * an entry, or is in an error state.
875 */
876void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
877{
878 struct xa_node *node = xas->xa_node;
879 unsigned int offset = xas->xa_offset;
880
881 if (xas_invalid(xas))
882 return;
883
884 while (node) {
885 if (node_set_mark(node, offset, mark))
886 return;
887 offset = node->offset;
888 node = xa_parent_locked(xas->xa, node);
889 }
890
891 if (!xa_marked(xas->xa, mark))
892 xa_mark_set(xas->xa, mark);
893}
894EXPORT_SYMBOL_GPL(xas_set_mark);
895
896/**
897 * xas_clear_mark() - Clears the mark on this entry and its parents.
898 * @xas: XArray operation state.
899 * @mark: Mark number.
900 *
901 * Clears the specified mark on this entry, and walks back to the head
902 * attempting to clear it on all the ancestor entries. Does nothing if
903 * @xas has not been walked to an entry, or is in an error state.
904 */
905void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
906{
907 struct xa_node *node = xas->xa_node;
908 unsigned int offset = xas->xa_offset;
909
910 if (xas_invalid(xas))
911 return;
912
913 while (node) {
914 if (!node_clear_mark(node, offset, mark))
915 return;
916 if (node_any_mark(node, mark))
917 return;
918
919 offset = node->offset;
920 node = xa_parent_locked(xas->xa, node);
921 }
922
923 if (xa_marked(xas->xa, mark))
924 xa_mark_clear(xas->xa, mark);
925}
926EXPORT_SYMBOL_GPL(xas_clear_mark);
927
928/**
929 * xas_init_marks() - Initialise all marks for the entry
930 * @xas: Array operations state.
931 *
932 * Initialise all marks for the entry specified by @xas. If we're tracking
933 * free entries with a mark, we need to set it on all entries. All other
934 * marks are cleared.
935 *
936 * This implementation is not as efficient as it could be; we may walk
937 * up the tree multiple times.
938 */
939void xas_init_marks(const struct xa_state *xas)
940{
941 xa_mark_t mark = 0;
942
943 for (;;) {
944 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
945 xas_set_mark(xas, mark);
946 else
947 xas_clear_mark(xas, mark);
948 if (mark == XA_MARK_MAX)
949 break;
950 mark_inc(mark);
951 }
952}
953EXPORT_SYMBOL_GPL(xas_init_marks);
954
955#ifdef CONFIG_XARRAY_MULTI
956static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
957{
958 unsigned int marks = 0;
959 xa_mark_t mark = XA_MARK_0;
960
961 for (;;) {
962 if (node_get_mark(node, offset, mark))
963 marks |= 1 << (__force unsigned int)mark;
964 if (mark == XA_MARK_MAX)
965 break;
966 mark_inc(mark);
967 }
968
969 return marks;
970}
971
972static void node_set_marks(struct xa_node *node, unsigned int offset,
973 struct xa_node *child, unsigned int marks)
974{
975 xa_mark_t mark = XA_MARK_0;
976
977 for (;;) {
978 if (marks & (1 << (__force unsigned int)mark)) {
979 node_set_mark(node, offset, mark);
980 if (child)
981 node_mark_all(child, mark);
982 }
983 if (mark == XA_MARK_MAX)
984 break;
985 mark_inc(mark);
986 }
987}
988
989/**
990 * xas_split_alloc() - Allocate memory for splitting an entry.
991 * @xas: XArray operation state.
992 * @entry: New entry which will be stored in the array.
993 * @order: Current entry order.
994 * @gfp: Memory allocation flags.
995 *
996 * This function should be called before calling xas_split().
997 * If necessary, it will allocate new nodes (and fill them with @entry)
998 * to prepare for the upcoming split of an entry of @order size into
999 * entries of the order stored in the @xas.
1000 *
1001 * Context: May sleep if @gfp flags permit.
1002 */
1003void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1004 gfp_t gfp)
1005{
1006 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1007 unsigned int mask = xas->xa_sibs;
1008
1009 /* XXX: no support for splitting really large entries yet */
1010 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1011 goto nomem;
1012 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1013 return;
1014
1015 do {
1016 unsigned int i;
1017 void *sibling = NULL;
1018 struct xa_node *node;
1019
1020 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1021 if (!node)
1022 goto nomem;
1023 node->array = xas->xa;
1024 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1025 if ((i & mask) == 0) {
1026 RCU_INIT_POINTER(node->slots[i], entry);
1027 sibling = xa_mk_sibling(i);
1028 } else {
1029 RCU_INIT_POINTER(node->slots[i], sibling);
1030 }
1031 }
1032 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1033 xas->xa_alloc = node;
1034 } while (sibs-- > 0);
1035
1036 return;
1037nomem:
1038 xas_destroy(xas);
1039 xas_set_err(xas, -ENOMEM);
1040}
1041EXPORT_SYMBOL_GPL(xas_split_alloc);
1042
1043/**
1044 * xas_split() - Split a multi-index entry into smaller entries.
1045 * @xas: XArray operation state.
1046 * @entry: New entry to store in the array.
1047 * @order: Current entry order.
1048 *
1049 * The size of the new entries is set in @xas. The value in @entry is
1050 * copied to all the replacement entries.
1051 *
1052 * Context: Any context. The caller should hold the xa_lock.
1053 */
1054void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1055{
1056 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1057 unsigned int offset, marks;
1058 struct xa_node *node;
1059 void *curr = xas_load(xas);
1060 int values = 0;
1061
1062 node = xas->xa_node;
1063 if (xas_top(node))
1064 return;
1065
1066 marks = node_get_marks(node, xas->xa_offset);
1067
1068 offset = xas->xa_offset + sibs;
1069 do {
1070 if (xas->xa_shift < node->shift) {
1071 struct xa_node *child = xas->xa_alloc;
1072
1073 xas->xa_alloc = rcu_dereference_raw(child->parent);
1074 child->shift = node->shift - XA_CHUNK_SHIFT;
1075 child->offset = offset;
1076 child->count = XA_CHUNK_SIZE;
1077 child->nr_values = xa_is_value(entry) ?
1078 XA_CHUNK_SIZE : 0;
1079 RCU_INIT_POINTER(child->parent, node);
1080 node_set_marks(node, offset, child, marks);
1081 rcu_assign_pointer(node->slots[offset],
1082 xa_mk_node(child));
1083 if (xa_is_value(curr))
1084 values--;
1085 xas_update(xas, child);
1086 } else {
1087 unsigned int canon = offset - xas->xa_sibs;
1088
1089 node_set_marks(node, canon, NULL, marks);
1090 rcu_assign_pointer(node->slots[canon], entry);
1091 while (offset > canon)
1092 rcu_assign_pointer(node->slots[offset--],
1093 xa_mk_sibling(canon));
1094 values += (xa_is_value(entry) - xa_is_value(curr)) *
1095 (xas->xa_sibs + 1);
1096 }
1097 } while (offset-- > xas->xa_offset);
1098
1099 node->nr_values += values;
1100 xas_update(xas, node);
1101}
1102EXPORT_SYMBOL_GPL(xas_split);
1103#endif
1104
1105/**
1106 * xas_pause() - Pause a walk to drop a lock.
1107 * @xas: XArray operation state.
1108 *
1109 * Some users need to pause a walk and drop the lock they're holding in
1110 * order to yield to a higher priority thread or carry out an operation
1111 * on an entry. Those users should call this function before they drop
1112 * the lock. It resets the @xas to be suitable for the next iteration
1113 * of the loop after the user has reacquired the lock. If most entries
1114 * found during a walk require you to call xas_pause(), the xa_for_each()
1115 * iterator may be more appropriate.
1116 *
1117 * Note that xas_pause() only works for forward iteration. If a user needs
1118 * to pause a reverse iteration, we will need a xas_pause_rev().
1119 */
1120void xas_pause(struct xa_state *xas)
1121{
1122 struct xa_node *node = xas->xa_node;
1123
1124 if (xas_invalid(xas))
1125 return;
1126
1127 xas->xa_node = XAS_RESTART;
1128 if (node) {
1129 unsigned long offset = xas->xa_offset;
1130 while (++offset < XA_CHUNK_SIZE) {
1131 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1132 break;
1133 }
1134 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1135 if (xas->xa_index == 0)
1136 xas->xa_node = XAS_BOUNDS;
1137 } else {
1138 xas->xa_index++;
1139 }
1140}
1141EXPORT_SYMBOL_GPL(xas_pause);
1142
1143/*
1144 * __xas_prev() - Find the previous entry in the XArray.
1145 * @xas: XArray operation state.
1146 *
1147 * Helper function for xas_prev() which handles all the complex cases
1148 * out of line.
1149 */
1150void *__xas_prev(struct xa_state *xas)
1151{
1152 void *entry;
1153
1154 if (!xas_frozen(xas->xa_node))
1155 xas->xa_index--;
1156 if (!xas->xa_node)
1157 return set_bounds(xas);
1158 if (xas_not_node(xas->xa_node))
1159 return xas_load(xas);
1160
1161 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1162 xas->xa_offset--;
1163
1164 while (xas->xa_offset == 255) {
1165 xas->xa_offset = xas->xa_node->offset - 1;
1166 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1167 if (!xas->xa_node)
1168 return set_bounds(xas);
1169 }
1170
1171 for (;;) {
1172 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1173 if (!xa_is_node(entry))
1174 return entry;
1175
1176 xas->xa_node = xa_to_node(entry);
1177 xas_set_offset(xas);
1178 }
1179}
1180EXPORT_SYMBOL_GPL(__xas_prev);
1181
1182/*
1183 * __xas_next() - Find the next entry in the XArray.
1184 * @xas: XArray operation state.
1185 *
1186 * Helper function for xas_next() which handles all the complex cases
1187 * out of line.
1188 */
1189void *__xas_next(struct xa_state *xas)
1190{
1191 void *entry;
1192
1193 if (!xas_frozen(xas->xa_node))
1194 xas->xa_index++;
1195 if (!xas->xa_node)
1196 return set_bounds(xas);
1197 if (xas_not_node(xas->xa_node))
1198 return xas_load(xas);
1199
1200 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1201 xas->xa_offset++;
1202
1203 while (xas->xa_offset == XA_CHUNK_SIZE) {
1204 xas->xa_offset = xas->xa_node->offset + 1;
1205 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1206 if (!xas->xa_node)
1207 return set_bounds(xas);
1208 }
1209
1210 for (;;) {
1211 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1212 if (!xa_is_node(entry))
1213 return entry;
1214
1215 xas->xa_node = xa_to_node(entry);
1216 xas_set_offset(xas);
1217 }
1218}
1219EXPORT_SYMBOL_GPL(__xas_next);
1220
1221/**
1222 * xas_find() - Find the next present entry in the XArray.
1223 * @xas: XArray operation state.
1224 * @max: Highest index to return.
1225 *
1226 * If the @xas has not yet been walked to an entry, return the entry
1227 * which has an index >= xas.xa_index. If it has been walked, the entry
1228 * currently being pointed at has been processed, and so we move to the
1229 * next entry.
1230 *
1231 * If no entry is found and the array is smaller than @max, the iterator
1232 * is set to the smallest index not yet in the array. This allows @xas
1233 * to be immediately passed to xas_store().
1234 *
1235 * Return: The entry, if found, otherwise %NULL.
1236 */
1237void *xas_find(struct xa_state *xas, unsigned long max)
1238{
1239 void *entry;
1240
1241 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1242 return NULL;
1243 if (xas->xa_index > max)
1244 return set_bounds(xas);
1245
1246 if (!xas->xa_node) {
1247 xas->xa_index = 1;
1248 return set_bounds(xas);
1249 } else if (xas->xa_node == XAS_RESTART) {
1250 entry = xas_load(xas);
1251 if (entry || xas_not_node(xas->xa_node))
1252 return entry;
1253 } else if (!xas->xa_node->shift &&
1254 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1255 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1256 }
1257
1258 xas_next_offset(xas);
1259
1260 while (xas->xa_node && (xas->xa_index <= max)) {
1261 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1262 xas->xa_offset = xas->xa_node->offset + 1;
1263 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1264 continue;
1265 }
1266
1267 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1268 if (xa_is_node(entry)) {
1269 xas->xa_node = xa_to_node(entry);
1270 xas->xa_offset = 0;
1271 continue;
1272 }
1273 if (entry && !xa_is_sibling(entry))
1274 return entry;
1275
1276 xas_next_offset(xas);
1277 }
1278
1279 if (!xas->xa_node)
1280 xas->xa_node = XAS_BOUNDS;
1281 return NULL;
1282}
1283EXPORT_SYMBOL_GPL(xas_find);
1284
1285/**
1286 * xas_find_marked() - Find the next marked entry in the XArray.
1287 * @xas: XArray operation state.
1288 * @max: Highest index to return.
1289 * @mark: Mark number to search for.
1290 *
1291 * If the @xas has not yet been walked to an entry, return the marked entry
1292 * which has an index >= xas.xa_index. If it has been walked, the entry
1293 * currently being pointed at has been processed, and so we return the
1294 * first marked entry with an index > xas.xa_index.
1295 *
1296 * If no marked entry is found and the array is smaller than @max, @xas is
1297 * set to the bounds state and xas->xa_index is set to the smallest index
1298 * not yet in the array. This allows @xas to be immediately passed to
1299 * xas_store().
1300 *
1301 * If no entry is found before @max is reached, @xas is set to the restart
1302 * state.
1303 *
1304 * Return: The entry, if found, otherwise %NULL.
1305 */
1306void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1307{
1308 bool advance = true;
1309 unsigned int offset;
1310 void *entry;
1311
1312 if (xas_error(xas))
1313 return NULL;
1314 if (xas->xa_index > max)
1315 goto max;
1316
1317 if (!xas->xa_node) {
1318 xas->xa_index = 1;
1319 goto out;
1320 } else if (xas_top(xas->xa_node)) {
1321 advance = false;
1322 entry = xa_head(xas->xa);
1323 xas->xa_node = NULL;
1324 if (xas->xa_index > max_index(entry))
1325 goto out;
1326 if (!xa_is_node(entry)) {
1327 if (xa_marked(xas->xa, mark))
1328 return entry;
1329 xas->xa_index = 1;
1330 goto out;
1331 }
1332 xas->xa_node = xa_to_node(entry);
1333 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1334 }
1335
1336 while (xas->xa_index <= max) {
1337 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1338 xas->xa_offset = xas->xa_node->offset + 1;
1339 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1340 if (!xas->xa_node)
1341 break;
1342 advance = false;
1343 continue;
1344 }
1345
1346 if (!advance) {
1347 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1348 if (xa_is_sibling(entry)) {
1349 xas->xa_offset = xa_to_sibling(entry);
1350 xas_move_index(xas, xas->xa_offset);
1351 }
1352 }
1353
1354 offset = xas_find_chunk(xas, advance, mark);
1355 if (offset > xas->xa_offset) {
1356 advance = false;
1357 xas_move_index(xas, offset);
1358 /* Mind the wrap */
1359 if ((xas->xa_index - 1) >= max)
1360 goto max;
1361 xas->xa_offset = offset;
1362 if (offset == XA_CHUNK_SIZE)
1363 continue;
1364 }
1365
1366 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1367 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1368 continue;
1369 if (!xa_is_node(entry))
1370 return entry;
1371 xas->xa_node = xa_to_node(entry);
1372 xas_set_offset(xas);
1373 }
1374
1375out:
1376 if (xas->xa_index > max)
1377 goto max;
1378 return set_bounds(xas);
1379max:
1380 xas->xa_node = XAS_RESTART;
1381 return NULL;
1382}
1383EXPORT_SYMBOL_GPL(xas_find_marked);
1384
1385/**
1386 * xas_find_conflict() - Find the next present entry in a range.
1387 * @xas: XArray operation state.
1388 *
1389 * The @xas describes both a range and a position within that range.
1390 *
1391 * Context: Any context. Expects xa_lock to be held.
1392 * Return: The next entry in the range covered by @xas or %NULL.
1393 */
1394void *xas_find_conflict(struct xa_state *xas)
1395{
1396 void *curr;
1397
1398 if (xas_error(xas))
1399 return NULL;
1400
1401 if (!xas->xa_node)
1402 return NULL;
1403
1404 if (xas_top(xas->xa_node)) {
1405 curr = xas_start(xas);
1406 if (!curr)
1407 return NULL;
1408 while (xa_is_node(curr)) {
1409 struct xa_node *node = xa_to_node(curr);
1410 curr = xas_descend(xas, node);
1411 }
1412 if (curr)
1413 return curr;
1414 }
1415
1416 if (xas->xa_node->shift > xas->xa_shift)
1417 return NULL;
1418
1419 for (;;) {
1420 if (xas->xa_node->shift == xas->xa_shift) {
1421 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1422 break;
1423 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1424 xas->xa_offset = xas->xa_node->offset;
1425 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1426 if (!xas->xa_node)
1427 break;
1428 continue;
1429 }
1430 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1431 if (xa_is_sibling(curr))
1432 continue;
1433 while (xa_is_node(curr)) {
1434 xas->xa_node = xa_to_node(curr);
1435 xas->xa_offset = 0;
1436 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1437 }
1438 if (curr)
1439 return curr;
1440 }
1441 xas->xa_offset -= xas->xa_sibs;
1442 return NULL;
1443}
1444EXPORT_SYMBOL_GPL(xas_find_conflict);
1445
1446/**
1447 * xa_load() - Load an entry from an XArray.
1448 * @xa: XArray.
1449 * @index: index into array.
1450 *
1451 * Context: Any context. Takes and releases the RCU lock.
1452 * Return: The entry at @index in @xa.
1453 */
1454void *xa_load(struct xarray *xa, unsigned long index)
1455{
1456 XA_STATE(xas, xa, index);
1457 void *entry;
1458
1459 rcu_read_lock();
1460 do {
1461 entry = xas_load(&xas);
1462 if (xa_is_zero(entry))
1463 entry = NULL;
1464 } while (xas_retry(&xas, entry));
1465 rcu_read_unlock();
1466
1467 return entry;
1468}
1469EXPORT_SYMBOL(xa_load);
1470
1471static void *xas_result(struct xa_state *xas, void *curr)
1472{
1473 if (xa_is_zero(curr))
1474 return NULL;
1475 if (xas_error(xas))
1476 curr = xas->xa_node;
1477 return curr;
1478}
1479
1480/**
1481 * __xa_erase() - Erase this entry from the XArray while locked.
1482 * @xa: XArray.
1483 * @index: Index into array.
1484 *
1485 * After this function returns, loading from @index will return %NULL.
1486 * If the index is part of a multi-index entry, all indices will be erased
1487 * and none of the entries will be part of a multi-index entry.
1488 *
1489 * Context: Any context. Expects xa_lock to be held on entry.
1490 * Return: The entry which used to be at this index.
1491 */
1492void *__xa_erase(struct xarray *xa, unsigned long index)
1493{
1494 XA_STATE(xas, xa, index);
1495 return xas_result(&xas, xas_store(&xas, NULL));
1496}
1497EXPORT_SYMBOL(__xa_erase);
1498
1499/**
1500 * xa_erase() - Erase this entry from the XArray.
1501 * @xa: XArray.
1502 * @index: Index of entry.
1503 *
1504 * After this function returns, loading from @index will return %NULL.
1505 * If the index is part of a multi-index entry, all indices will be erased
1506 * and none of the entries will be part of a multi-index entry.
1507 *
1508 * Context: Any context. Takes and releases the xa_lock.
1509 * Return: The entry which used to be at this index.
1510 */
1511void *xa_erase(struct xarray *xa, unsigned long index)
1512{
1513 void *entry;
1514
1515 xa_lock(xa);
1516 entry = __xa_erase(xa, index);
1517 xa_unlock(xa);
1518
1519 return entry;
1520}
1521EXPORT_SYMBOL(xa_erase);
1522
1523/**
1524 * __xa_store() - Store this entry in the XArray.
1525 * @xa: XArray.
1526 * @index: Index into array.
1527 * @entry: New entry.
1528 * @gfp: Memory allocation flags.
1529 *
1530 * You must already be holding the xa_lock when calling this function.
1531 * It will drop the lock if needed to allocate memory, and then reacquire
1532 * it afterwards.
1533 *
1534 * Context: Any context. Expects xa_lock to be held on entry. May
1535 * release and reacquire xa_lock if @gfp flags permit.
1536 * Return: The old entry at this index or xa_err() if an error happened.
1537 */
1538void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1539{
1540 XA_STATE(xas, xa, index);
1541 void *curr;
1542
1543 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1544 return XA_ERROR(-EINVAL);
1545 if (xa_track_free(xa) && !entry)
1546 entry = XA_ZERO_ENTRY;
1547
1548 do {
1549 curr = xas_store(&xas, entry);
1550 if (xa_track_free(xa))
1551 xas_clear_mark(&xas, XA_FREE_MARK);
1552 } while (__xas_nomem(&xas, gfp));
1553
1554 return xas_result(&xas, curr);
1555}
1556EXPORT_SYMBOL(__xa_store);
1557
1558/**
1559 * xa_store() - Store this entry in the XArray.
1560 * @xa: XArray.
1561 * @index: Index into array.
1562 * @entry: New entry.
1563 * @gfp: Memory allocation flags.
1564 *
1565 * After this function returns, loads from this index will return @entry.
1566 * Storing into an existing multi-index entry updates the entry of every index.
1567 * The marks associated with @index are unaffected unless @entry is %NULL.
1568 *
1569 * Context: Any context. Takes and releases the xa_lock.
1570 * May sleep if the @gfp flags permit.
1571 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1572 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1573 * failed.
1574 */
1575void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1576{
1577 void *curr;
1578
1579 xa_lock(xa);
1580 curr = __xa_store(xa, index, entry, gfp);
1581 xa_unlock(xa);
1582
1583 return curr;
1584}
1585EXPORT_SYMBOL(xa_store);
1586
1587/**
1588 * __xa_cmpxchg() - Store this entry in the XArray.
1589 * @xa: XArray.
1590 * @index: Index into array.
1591 * @old: Old value to test against.
1592 * @entry: New entry.
1593 * @gfp: Memory allocation flags.
1594 *
1595 * You must already be holding the xa_lock when calling this function.
1596 * It will drop the lock if needed to allocate memory, and then reacquire
1597 * it afterwards.
1598 *
1599 * Context: Any context. Expects xa_lock to be held on entry. May
1600 * release and reacquire xa_lock if @gfp flags permit.
1601 * Return: The old entry at this index or xa_err() if an error happened.
1602 */
1603void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1604 void *old, void *entry, gfp_t gfp)
1605{
1606 XA_STATE(xas, xa, index);
1607 void *curr;
1608
1609 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1610 return XA_ERROR(-EINVAL);
1611
1612 do {
1613 curr = xas_load(&xas);
1614 if (curr == old) {
1615 xas_store(&xas, entry);
1616 if (xa_track_free(xa) && entry && !curr)
1617 xas_clear_mark(&xas, XA_FREE_MARK);
1618 }
1619 } while (__xas_nomem(&xas, gfp));
1620
1621 return xas_result(&xas, curr);
1622}
1623EXPORT_SYMBOL(__xa_cmpxchg);
1624
1625/**
1626 * __xa_insert() - Store this entry in the XArray if no entry is present.
1627 * @xa: XArray.
1628 * @index: Index into array.
1629 * @entry: New entry.
1630 * @gfp: Memory allocation flags.
1631 *
1632 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1633 * if no entry is present. Inserting will fail if a reserved entry is
1634 * present, even though loading from this index will return NULL.
1635 *
1636 * Context: Any context. Expects xa_lock to be held on entry. May
1637 * release and reacquire xa_lock if @gfp flags permit.
1638 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1639 * -ENOMEM if memory could not be allocated.
1640 */
1641int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1642{
1643 XA_STATE(xas, xa, index);
1644 void *curr;
1645
1646 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1647 return -EINVAL;
1648 if (!entry)
1649 entry = XA_ZERO_ENTRY;
1650
1651 do {
1652 curr = xas_load(&xas);
1653 if (!curr) {
1654 xas_store(&xas, entry);
1655 if (xa_track_free(xa))
1656 xas_clear_mark(&xas, XA_FREE_MARK);
1657 } else {
1658 xas_set_err(&xas, -EBUSY);
1659 }
1660 } while (__xas_nomem(&xas, gfp));
1661
1662 return xas_error(&xas);
1663}
1664EXPORT_SYMBOL(__xa_insert);
1665
1666#ifdef CONFIG_XARRAY_MULTI
1667static void xas_set_range(struct xa_state *xas, unsigned long first,
1668 unsigned long last)
1669{
1670 unsigned int shift = 0;
1671 unsigned long sibs = last - first;
1672 unsigned int offset = XA_CHUNK_MASK;
1673
1674 xas_set(xas, first);
1675
1676 while ((first & XA_CHUNK_MASK) == 0) {
1677 if (sibs < XA_CHUNK_MASK)
1678 break;
1679 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1680 break;
1681 shift += XA_CHUNK_SHIFT;
1682 if (offset == XA_CHUNK_MASK)
1683 offset = sibs & XA_CHUNK_MASK;
1684 sibs >>= XA_CHUNK_SHIFT;
1685 first >>= XA_CHUNK_SHIFT;
1686 }
1687
1688 offset = first & XA_CHUNK_MASK;
1689 if (offset + sibs > XA_CHUNK_MASK)
1690 sibs = XA_CHUNK_MASK - offset;
1691 if ((((first + sibs + 1) << shift) - 1) > last)
1692 sibs -= 1;
1693
1694 xas->xa_shift = shift;
1695 xas->xa_sibs = sibs;
1696}
1697
1698/**
1699 * xa_store_range() - Store this entry at a range of indices in the XArray.
1700 * @xa: XArray.
1701 * @first: First index to affect.
1702 * @last: Last index to affect.
1703 * @entry: New entry.
1704 * @gfp: Memory allocation flags.
1705 *
1706 * After this function returns, loads from any index between @first and @last,
1707 * inclusive will return @entry.
1708 * Storing into an existing multi-index entry updates the entry of every index.
1709 * The marks associated with @index are unaffected unless @entry is %NULL.
1710 *
1711 * Context: Process context. Takes and releases the xa_lock. May sleep
1712 * if the @gfp flags permit.
1713 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1714 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1715 */
1716void *xa_store_range(struct xarray *xa, unsigned long first,
1717 unsigned long last, void *entry, gfp_t gfp)
1718{
1719 XA_STATE(xas, xa, 0);
1720
1721 if (WARN_ON_ONCE(xa_is_internal(entry)))
1722 return XA_ERROR(-EINVAL);
1723 if (last < first)
1724 return XA_ERROR(-EINVAL);
1725
1726 do {
1727 xas_lock(&xas);
1728 if (entry) {
1729 unsigned int order = BITS_PER_LONG;
1730 if (last + 1)
1731 order = __ffs(last + 1);
1732 xas_set_order(&xas, last, order);
1733 xas_create(&xas, true);
1734 if (xas_error(&xas))
1735 goto unlock;
1736 }
1737 do {
1738 xas_set_range(&xas, first, last);
1739 xas_store(&xas, entry);
1740 if (xas_error(&xas))
1741 goto unlock;
1742 first += xas_size(&xas);
1743 } while (first <= last);
1744unlock:
1745 xas_unlock(&xas);
1746 } while (xas_nomem(&xas, gfp));
1747
1748 return xas_result(&xas, NULL);
1749}
1750EXPORT_SYMBOL(xa_store_range);
1751
1752/**
1753 * xa_get_order() - Get the order of an entry.
1754 * @xa: XArray.
1755 * @index: Index of the entry.
1756 *
1757 * Return: A number between 0 and 63 indicating the order of the entry.
1758 */
1759int xa_get_order(struct xarray *xa, unsigned long index)
1760{
1761 XA_STATE(xas, xa, index);
1762 void *entry;
1763 int order = 0;
1764
1765 rcu_read_lock();
1766 entry = xas_load(&xas);
1767
1768 if (!entry)
1769 goto unlock;
1770
1771 if (!xas.xa_node)
1772 goto unlock;
1773
1774 for (;;) {
1775 unsigned int slot = xas.xa_offset + (1 << order);
1776
1777 if (slot >= XA_CHUNK_SIZE)
1778 break;
1779 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1780 break;
1781 order++;
1782 }
1783
1784 order += xas.xa_node->shift;
1785unlock:
1786 rcu_read_unlock();
1787
1788 return order;
1789}
1790EXPORT_SYMBOL(xa_get_order);
1791#endif /* CONFIG_XARRAY_MULTI */
1792
1793/**
1794 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1795 * @xa: XArray.
1796 * @id: Pointer to ID.
1797 * @limit: Range for allocated ID.
1798 * @entry: New entry.
1799 * @gfp: Memory allocation flags.
1800 *
1801 * Finds an empty entry in @xa between @limit.min and @limit.max,
1802 * stores the index into the @id pointer, then stores the entry at
1803 * that index. A concurrent lookup will not see an uninitialised @id.
1804 *
1805 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1806 * in xa_init_flags().
1807 *
1808 * Context: Any context. Expects xa_lock to be held on entry. May
1809 * release and reacquire xa_lock if @gfp flags permit.
1810 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1811 * -EBUSY if there are no free entries in @limit.
1812 */
1813int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1814 struct xa_limit limit, gfp_t gfp)
1815{
1816 XA_STATE(xas, xa, 0);
1817
1818 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1819 return -EINVAL;
1820 if (WARN_ON_ONCE(!xa_track_free(xa)))
1821 return -EINVAL;
1822
1823 if (!entry)
1824 entry = XA_ZERO_ENTRY;
1825
1826 do {
1827 xas.xa_index = limit.min;
1828 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1829 if (xas.xa_node == XAS_RESTART)
1830 xas_set_err(&xas, -EBUSY);
1831 else
1832 *id = xas.xa_index;
1833 xas_store(&xas, entry);
1834 xas_clear_mark(&xas, XA_FREE_MARK);
1835 } while (__xas_nomem(&xas, gfp));
1836
1837 return xas_error(&xas);
1838}
1839EXPORT_SYMBOL(__xa_alloc);
1840
1841/**
1842 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1843 * @xa: XArray.
1844 * @id: Pointer to ID.
1845 * @entry: New entry.
1846 * @limit: Range of allocated ID.
1847 * @next: Pointer to next ID to allocate.
1848 * @gfp: Memory allocation flags.
1849 *
1850 * Finds an empty entry in @xa between @limit.min and @limit.max,
1851 * stores the index into the @id pointer, then stores the entry at
1852 * that index. A concurrent lookup will not see an uninitialised @id.
1853 * The search for an empty entry will start at @next and will wrap
1854 * around if necessary.
1855 *
1856 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1857 * in xa_init_flags().
1858 *
1859 * Context: Any context. Expects xa_lock to be held on entry. May
1860 * release and reacquire xa_lock if @gfp flags permit.
1861 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1862 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1863 * allocated or -EBUSY if there are no free entries in @limit.
1864 */
1865int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1866 struct xa_limit limit, u32 *next, gfp_t gfp)
1867{
1868 u32 min = limit.min;
1869 int ret;
1870
1871 limit.min = max(min, *next);
1872 ret = __xa_alloc(xa, id, entry, limit, gfp);
1873 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1874 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1875 ret = 1;
1876 }
1877
1878 if (ret < 0 && limit.min > min) {
1879 limit.min = min;
1880 ret = __xa_alloc(xa, id, entry, limit, gfp);
1881 if (ret == 0)
1882 ret = 1;
1883 }
1884
1885 if (ret >= 0) {
1886 *next = *id + 1;
1887 if (*next == 0)
1888 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1889 }
1890 return ret;
1891}
1892EXPORT_SYMBOL(__xa_alloc_cyclic);
1893
1894/**
1895 * __xa_set_mark() - Set this mark on this entry while locked.
1896 * @xa: XArray.
1897 * @index: Index of entry.
1898 * @mark: Mark number.
1899 *
1900 * Attempting to set a mark on a %NULL entry does not succeed.
1901 *
1902 * Context: Any context. Expects xa_lock to be held on entry.
1903 */
1904void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1905{
1906 XA_STATE(xas, xa, index);
1907 void *entry = xas_load(&xas);
1908
1909 if (entry)
1910 xas_set_mark(&xas, mark);
1911}
1912EXPORT_SYMBOL(__xa_set_mark);
1913
1914/**
1915 * __xa_clear_mark() - Clear this mark on this entry while locked.
1916 * @xa: XArray.
1917 * @index: Index of entry.
1918 * @mark: Mark number.
1919 *
1920 * Context: Any context. Expects xa_lock to be held on entry.
1921 */
1922void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1923{
1924 XA_STATE(xas, xa, index);
1925 void *entry = xas_load(&xas);
1926
1927 if (entry)
1928 xas_clear_mark(&xas, mark);
1929}
1930EXPORT_SYMBOL(__xa_clear_mark);
1931
1932/**
1933 * xa_get_mark() - Inquire whether this mark is set on this entry.
1934 * @xa: XArray.
1935 * @index: Index of entry.
1936 * @mark: Mark number.
1937 *
1938 * This function uses the RCU read lock, so the result may be out of date
1939 * by the time it returns. If you need the result to be stable, use a lock.
1940 *
1941 * Context: Any context. Takes and releases the RCU lock.
1942 * Return: True if the entry at @index has this mark set, false if it doesn't.
1943 */
1944bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1945{
1946 XA_STATE(xas, xa, index);
1947 void *entry;
1948
1949 rcu_read_lock();
1950 entry = xas_start(&xas);
1951 while (xas_get_mark(&xas, mark)) {
1952 if (!xa_is_node(entry))
1953 goto found;
1954 entry = xas_descend(&xas, xa_to_node(entry));
1955 }
1956 rcu_read_unlock();
1957 return false;
1958 found:
1959 rcu_read_unlock();
1960 return true;
1961}
1962EXPORT_SYMBOL(xa_get_mark);
1963
1964/**
1965 * xa_set_mark() - Set this mark on this entry.
1966 * @xa: XArray.
1967 * @index: Index of entry.
1968 * @mark: Mark number.
1969 *
1970 * Attempting to set a mark on a %NULL entry does not succeed.
1971 *
1972 * Context: Process context. Takes and releases the xa_lock.
1973 */
1974void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1975{
1976 xa_lock(xa);
1977 __xa_set_mark(xa, index, mark);
1978 xa_unlock(xa);
1979}
1980EXPORT_SYMBOL(xa_set_mark);
1981
1982/**
1983 * xa_clear_mark() - Clear this mark on this entry.
1984 * @xa: XArray.
1985 * @index: Index of entry.
1986 * @mark: Mark number.
1987 *
1988 * Clearing a mark always succeeds.
1989 *
1990 * Context: Process context. Takes and releases the xa_lock.
1991 */
1992void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1993{
1994 xa_lock(xa);
1995 __xa_clear_mark(xa, index, mark);
1996 xa_unlock(xa);
1997}
1998EXPORT_SYMBOL(xa_clear_mark);
1999
2000/**
2001 * xa_find() - Search the XArray for an entry.
2002 * @xa: XArray.
2003 * @indexp: Pointer to an index.
2004 * @max: Maximum index to search to.
2005 * @filter: Selection criterion.
2006 *
2007 * Finds the entry in @xa which matches the @filter, and has the lowest
2008 * index that is at least @indexp and no more than @max.
2009 * If an entry is found, @indexp is updated to be the index of the entry.
2010 * This function is protected by the RCU read lock, so it may not find
2011 * entries which are being simultaneously added. It will not return an
2012 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2013 *
2014 * Context: Any context. Takes and releases the RCU lock.
2015 * Return: The entry, if found, otherwise %NULL.
2016 */
2017void *xa_find(struct xarray *xa, unsigned long *indexp,
2018 unsigned long max, xa_mark_t filter)
2019{
2020 XA_STATE(xas, xa, *indexp);
2021 void *entry;
2022
2023 rcu_read_lock();
2024 do {
2025 if ((__force unsigned int)filter < XA_MAX_MARKS)
2026 entry = xas_find_marked(&xas, max, filter);
2027 else
2028 entry = xas_find(&xas, max);
2029 } while (xas_retry(&xas, entry));
2030 rcu_read_unlock();
2031
2032 if (entry)
2033 *indexp = xas.xa_index;
2034 return entry;
2035}
2036EXPORT_SYMBOL(xa_find);
2037
2038static bool xas_sibling(struct xa_state *xas)
2039{
2040 struct xa_node *node = xas->xa_node;
2041 unsigned long mask;
2042
2043 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2044 return false;
2045 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2046 return (xas->xa_index & mask) >
2047 ((unsigned long)xas->xa_offset << node->shift);
2048}
2049
2050/**
2051 * xa_find_after() - Search the XArray for a present entry.
2052 * @xa: XArray.
2053 * @indexp: Pointer to an index.
2054 * @max: Maximum index to search to.
2055 * @filter: Selection criterion.
2056 *
2057 * Finds the entry in @xa which matches the @filter and has the lowest
2058 * index that is above @indexp and no more than @max.
2059 * If an entry is found, @indexp is updated to be the index of the entry.
2060 * This function is protected by the RCU read lock, so it may miss entries
2061 * which are being simultaneously added. It will not return an
2062 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2063 *
2064 * Context: Any context. Takes and releases the RCU lock.
2065 * Return: The pointer, if found, otherwise %NULL.
2066 */
2067void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2068 unsigned long max, xa_mark_t filter)
2069{
2070 XA_STATE(xas, xa, *indexp + 1);
2071 void *entry;
2072
2073 if (xas.xa_index == 0)
2074 return NULL;
2075
2076 rcu_read_lock();
2077 for (;;) {
2078 if ((__force unsigned int)filter < XA_MAX_MARKS)
2079 entry = xas_find_marked(&xas, max, filter);
2080 else
2081 entry = xas_find(&xas, max);
2082
2083 if (xas_invalid(&xas))
2084 break;
2085 if (xas_sibling(&xas))
2086 continue;
2087 if (!xas_retry(&xas, entry))
2088 break;
2089 }
2090 rcu_read_unlock();
2091
2092 if (entry)
2093 *indexp = xas.xa_index;
2094 return entry;
2095}
2096EXPORT_SYMBOL(xa_find_after);
2097
2098static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2099 unsigned long max, unsigned int n)
2100{
2101 void *entry;
2102 unsigned int i = 0;
2103
2104 rcu_read_lock();
2105 xas_for_each(xas, entry, max) {
2106 if (xas_retry(xas, entry))
2107 continue;
2108 dst[i++] = entry;
2109 if (i == n)
2110 break;
2111 }
2112 rcu_read_unlock();
2113
2114 return i;
2115}
2116
2117static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2118 unsigned long max, unsigned int n, xa_mark_t mark)
2119{
2120 void *entry;
2121 unsigned int i = 0;
2122
2123 rcu_read_lock();
2124 xas_for_each_marked(xas, entry, max, mark) {
2125 if (xas_retry(xas, entry))
2126 continue;
2127 dst[i++] = entry;
2128 if (i == n)
2129 break;
2130 }
2131 rcu_read_unlock();
2132
2133 return i;
2134}
2135
2136/**
2137 * xa_extract() - Copy selected entries from the XArray into a normal array.
2138 * @xa: The source XArray to copy from.
2139 * @dst: The buffer to copy entries into.
2140 * @start: The first index in the XArray eligible to be selected.
2141 * @max: The last index in the XArray eligible to be selected.
2142 * @n: The maximum number of entries to copy.
2143 * @filter: Selection criterion.
2144 *
2145 * Copies up to @n entries that match @filter from the XArray. The
2146 * copied entries will have indices between @start and @max, inclusive.
2147 *
2148 * The @filter may be an XArray mark value, in which case entries which are
2149 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2150 * which case all entries which are not %NULL will be copied.
2151 *
2152 * The entries returned may not represent a snapshot of the XArray at a
2153 * moment in time. For example, if another thread stores to index 5, then
2154 * index 10, calling xa_extract() may return the old contents of index 5
2155 * and the new contents of index 10. Indices not modified while this
2156 * function is running will not be skipped.
2157 *
2158 * If you need stronger guarantees, holding the xa_lock across calls to this
2159 * function will prevent concurrent modification.
2160 *
2161 * Context: Any context. Takes and releases the RCU lock.
2162 * Return: The number of entries copied.
2163 */
2164unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2165 unsigned long max, unsigned int n, xa_mark_t filter)
2166{
2167 XA_STATE(xas, xa, start);
2168
2169 if (!n)
2170 return 0;
2171
2172 if ((__force unsigned int)filter < XA_MAX_MARKS)
2173 return xas_extract_marked(&xas, dst, max, n, filter);
2174 return xas_extract_present(&xas, dst, max, n);
2175}
2176EXPORT_SYMBOL(xa_extract);
2177
2178/**
2179 * xa_delete_node() - Private interface for workingset code.
2180 * @node: Node to be removed from the tree.
2181 * @update: Function to call to update ancestor nodes.
2182 *
2183 * Context: xa_lock must be held on entry and will not be released.
2184 */
2185void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2186{
2187 struct xa_state xas = {
2188 .xa = node->array,
2189 .xa_index = (unsigned long)node->offset <<
2190 (node->shift + XA_CHUNK_SHIFT),
2191 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2192 .xa_offset = node->offset,
2193 .xa_node = xa_parent_locked(node->array, node),
2194 .xa_update = update,
2195 };
2196
2197 xas_store(&xas, NULL);
2198}
2199EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2200
2201/**
2202 * xa_destroy() - Free all internal data structures.
2203 * @xa: XArray.
2204 *
2205 * After calling this function, the XArray is empty and has freed all memory
2206 * allocated for its internal data structures. You are responsible for
2207 * freeing the objects referenced by the XArray.
2208 *
2209 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2210 */
2211void xa_destroy(struct xarray *xa)
2212{
2213 XA_STATE(xas, xa, 0);
2214 unsigned long flags;
2215 void *entry;
2216
2217 xas.xa_node = NULL;
2218 xas_lock_irqsave(&xas, flags);
2219 entry = xa_head_locked(xa);
2220 RCU_INIT_POINTER(xa->xa_head, NULL);
2221 xas_init_marks(&xas);
2222 if (xa_zero_busy(xa))
2223 xa_mark_clear(xa, XA_FREE_MARK);
2224 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2225 if (xa_is_node(entry))
2226 xas_free_nodes(&xas, xa_to_node(entry));
2227 xas_unlock_irqrestore(&xas, flags);
2228}
2229EXPORT_SYMBOL(xa_destroy);
2230
2231#ifdef XA_DEBUG
2232void xa_dump_node(const struct xa_node *node)
2233{
2234 unsigned i, j;
2235
2236 if (!node)
2237 return;
2238 if ((unsigned long)node & 3) {
2239 pr_cont("node %px\n", node);
2240 return;
2241 }
2242
2243 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2244 "array %px list %px %px marks",
2245 node, node->parent ? "offset" : "max", node->offset,
2246 node->parent, node->shift, node->count, node->nr_values,
2247 node->array, node->private_list.prev, node->private_list.next);
2248 for (i = 0; i < XA_MAX_MARKS; i++)
2249 for (j = 0; j < XA_MARK_LONGS; j++)
2250 pr_cont(" %lx", node->marks[i][j]);
2251 pr_cont("\n");
2252}
2253
2254void xa_dump_index(unsigned long index, unsigned int shift)
2255{
2256 if (!shift)
2257 pr_info("%lu: ", index);
2258 else if (shift >= BITS_PER_LONG)
2259 pr_info("0-%lu: ", ~0UL);
2260 else
2261 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2262}
2263
2264void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2265{
2266 if (!entry)
2267 return;
2268
2269 xa_dump_index(index, shift);
2270
2271 if (xa_is_node(entry)) {
2272 if (shift == 0) {
2273 pr_cont("%px\n", entry);
2274 } else {
2275 unsigned long i;
2276 struct xa_node *node = xa_to_node(entry);
2277 xa_dump_node(node);
2278 for (i = 0; i < XA_CHUNK_SIZE; i++)
2279 xa_dump_entry(node->slots[i],
2280 index + (i << node->shift), node->shift);
2281 }
2282 } else if (xa_is_value(entry))
2283 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2284 xa_to_value(entry), entry);
2285 else if (!xa_is_internal(entry))
2286 pr_cont("%px\n", entry);
2287 else if (xa_is_retry(entry))
2288 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2289 else if (xa_is_sibling(entry))
2290 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2291 else if (xa_is_zero(entry))
2292 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2293 else
2294 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2295}
2296
2297void xa_dump(const struct xarray *xa)
2298{
2299 void *entry = xa->xa_head;
2300 unsigned int shift = 0;
2301
2302 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2303 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2304 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2305 if (xa_is_node(entry))
2306 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2307 xa_dump_entry(entry, 0, shift);
2308}
2309#endif
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15/*
16 * Coding conventions in this file:
17 *
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * ambiguity.
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
25 * this function.
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
29 */
30
31static inline unsigned int xa_lock_type(const struct xarray *xa)
32{
33 return (__force unsigned int)xa->xa_flags & 3;
34}
35
36static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37{
38 if (lock_type == XA_LOCK_IRQ)
39 xas_lock_irq(xas);
40 else if (lock_type == XA_LOCK_BH)
41 xas_lock_bh(xas);
42 else
43 xas_lock(xas);
44}
45
46static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47{
48 if (lock_type == XA_LOCK_IRQ)
49 xas_unlock_irq(xas);
50 else if (lock_type == XA_LOCK_BH)
51 xas_unlock_bh(xas);
52 else
53 xas_unlock(xas);
54}
55
56static inline bool xa_track_free(const struct xarray *xa)
57{
58 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59}
60
61static inline bool xa_zero_busy(const struct xarray *xa)
62{
63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64}
65
66static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67{
68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 xa->xa_flags |= XA_FLAGS_MARK(mark);
70}
71
72static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73{
74 if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76}
77
78static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79{
80 return node->marks[(__force unsigned)mark];
81}
82
83static inline bool node_get_mark(struct xa_node *node,
84 unsigned int offset, xa_mark_t mark)
85{
86 return test_bit(offset, node_marks(node, mark));
87}
88
89/* returns true if the bit was set */
90static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 xa_mark_t mark)
92{
93 return __test_and_set_bit(offset, node_marks(node, mark));
94}
95
96/* returns true if the bit was set */
97static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 xa_mark_t mark)
99{
100 return __test_and_clear_bit(offset, node_marks(node, mark));
101}
102
103static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104{
105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106}
107
108static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109{
110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111}
112
113#define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115} while (0)
116
117/*
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
120 *
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
123 */
124static void xas_squash_marks(const struct xa_state *xas)
125{
126 unsigned int mark = 0;
127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128
129 if (!xas->xa_sibs)
130 return;
131
132 do {
133 unsigned long *marks = xas->xa_node->marks[mark];
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 continue;
136 __set_bit(xas->xa_offset, marks);
137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 } while (mark++ != (__force unsigned)XA_MARK_MAX);
139}
140
141/* extracts the offset within this node from the index */
142static unsigned int get_offset(unsigned long index, struct xa_node *node)
143{
144 return (index >> node->shift) & XA_CHUNK_MASK;
145}
146
147static void xas_set_offset(struct xa_state *xas)
148{
149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150}
151
152/* move the index either forwards (find) or backwards (sibling slot) */
153static void xas_move_index(struct xa_state *xas, unsigned long offset)
154{
155 unsigned int shift = xas->xa_node->shift;
156 xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 xas->xa_index += offset << shift;
158}
159
160static void xas_advance(struct xa_state *xas)
161{
162 xas->xa_offset++;
163 xas_move_index(xas, xas->xa_offset);
164}
165
166static void *set_bounds(struct xa_state *xas)
167{
168 xas->xa_node = XAS_BOUNDS;
169 return NULL;
170}
171
172/*
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
178 */
179static void *xas_start(struct xa_state *xas)
180{
181 void *entry;
182
183 if (xas_valid(xas))
184 return xas_reload(xas);
185 if (xas_error(xas))
186 return NULL;
187
188 entry = xa_head(xas->xa);
189 if (!xa_is_node(entry)) {
190 if (xas->xa_index)
191 return set_bounds(xas);
192 } else {
193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 return set_bounds(xas);
195 }
196
197 xas->xa_node = NULL;
198 return entry;
199}
200
201static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202{
203 unsigned int offset = get_offset(xas->xa_index, node);
204 void *entry = xa_entry(xas->xa, node, offset);
205
206 xas->xa_node = node;
207 if (xa_is_sibling(entry)) {
208 offset = xa_to_sibling(entry);
209 entry = xa_entry(xas->xa, node, offset);
210 }
211
212 xas->xa_offset = offset;
213 return entry;
214}
215
216/**
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
219 *
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
223 *
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
227 *
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
230 */
231void *xas_load(struct xa_state *xas)
232{
233 void *entry = xas_start(xas);
234
235 while (xa_is_node(entry)) {
236 struct xa_node *node = xa_to_node(entry);
237
238 if (xas->xa_shift > node->shift)
239 break;
240 entry = xas_descend(xas, node);
241 if (node->shift == 0)
242 break;
243 }
244 return entry;
245}
246EXPORT_SYMBOL_GPL(xas_load);
247
248/* Move the radix tree node cache here */
249extern struct kmem_cache *radix_tree_node_cachep;
250extern void radix_tree_node_rcu_free(struct rcu_head *head);
251
252#define XA_RCU_FREE ((struct xarray *)1)
253
254static void xa_node_free(struct xa_node *node)
255{
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259}
260
261/*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * This function is now internal-only.
266 */
267static void xas_destroy(struct xa_state *xas)
268{
269 struct xa_node *node = xas->xa_alloc;
270
271 if (!node)
272 return;
273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 kmem_cache_free(radix_tree_node_cachep, node);
275 xas->xa_alloc = NULL;
276}
277
278/**
279 * xas_nomem() - Allocate memory if needed.
280 * @xas: XArray operation state.
281 * @gfp: Memory allocation flags.
282 *
283 * If we need to add new nodes to the XArray, we try to allocate memory
284 * with GFP_NOWAIT while holding the lock, which will usually succeed.
285 * If it fails, @xas is flagged as needing memory to continue. The caller
286 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
287 * the caller should retry the operation.
288 *
289 * Forward progress is guaranteed as one node is allocated here and
290 * stored in the xa_state where it will be found by xas_alloc(). More
291 * nodes will likely be found in the slab allocator, but we do not tie
292 * them up here.
293 *
294 * Return: true if memory was needed, and was successfully allocated.
295 */
296bool xas_nomem(struct xa_state *xas, gfp_t gfp)
297{
298 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
299 xas_destroy(xas);
300 return false;
301 }
302 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
303 gfp |= __GFP_ACCOUNT;
304 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
305 if (!xas->xa_alloc)
306 return false;
307 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
308 xas->xa_node = XAS_RESTART;
309 return true;
310}
311EXPORT_SYMBOL_GPL(xas_nomem);
312
313/*
314 * __xas_nomem() - Drop locks and allocate memory if needed.
315 * @xas: XArray operation state.
316 * @gfp: Memory allocation flags.
317 *
318 * Internal variant of xas_nomem().
319 *
320 * Return: true if memory was needed, and was successfully allocated.
321 */
322static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
323 __must_hold(xas->xa->xa_lock)
324{
325 unsigned int lock_type = xa_lock_type(xas->xa);
326
327 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
328 xas_destroy(xas);
329 return false;
330 }
331 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
332 gfp |= __GFP_ACCOUNT;
333 if (gfpflags_allow_blocking(gfp)) {
334 xas_unlock_type(xas, lock_type);
335 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
336 xas_lock_type(xas, lock_type);
337 } else {
338 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
339 }
340 if (!xas->xa_alloc)
341 return false;
342 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
343 xas->xa_node = XAS_RESTART;
344 return true;
345}
346
347static void xas_update(struct xa_state *xas, struct xa_node *node)
348{
349 if (xas->xa_update)
350 xas->xa_update(node);
351 else
352 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
353}
354
355static void *xas_alloc(struct xa_state *xas, unsigned int shift)
356{
357 struct xa_node *parent = xas->xa_node;
358 struct xa_node *node = xas->xa_alloc;
359
360 if (xas_invalid(xas))
361 return NULL;
362
363 if (node) {
364 xas->xa_alloc = NULL;
365 } else {
366 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
367
368 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
369 gfp |= __GFP_ACCOUNT;
370
371 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
372 if (!node) {
373 xas_set_err(xas, -ENOMEM);
374 return NULL;
375 }
376 }
377
378 if (parent) {
379 node->offset = xas->xa_offset;
380 parent->count++;
381 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
382 xas_update(xas, parent);
383 }
384 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
385 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
386 node->shift = shift;
387 node->count = 0;
388 node->nr_values = 0;
389 RCU_INIT_POINTER(node->parent, xas->xa_node);
390 node->array = xas->xa;
391
392 return node;
393}
394
395#ifdef CONFIG_XARRAY_MULTI
396/* Returns the number of indices covered by a given xa_state */
397static unsigned long xas_size(const struct xa_state *xas)
398{
399 return (xas->xa_sibs + 1UL) << xas->xa_shift;
400}
401#endif
402
403/*
404 * Use this to calculate the maximum index that will need to be created
405 * in order to add the entry described by @xas. Because we cannot store a
406 * multiple-index entry at index 0, the calculation is a little more complex
407 * than you might expect.
408 */
409static unsigned long xas_max(struct xa_state *xas)
410{
411 unsigned long max = xas->xa_index;
412
413#ifdef CONFIG_XARRAY_MULTI
414 if (xas->xa_shift || xas->xa_sibs) {
415 unsigned long mask = xas_size(xas) - 1;
416 max |= mask;
417 if (mask == max)
418 max++;
419 }
420#endif
421
422 return max;
423}
424
425/* The maximum index that can be contained in the array without expanding it */
426static unsigned long max_index(void *entry)
427{
428 if (!xa_is_node(entry))
429 return 0;
430 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
431}
432
433static void xas_shrink(struct xa_state *xas)
434{
435 struct xarray *xa = xas->xa;
436 struct xa_node *node = xas->xa_node;
437
438 for (;;) {
439 void *entry;
440
441 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
442 if (node->count != 1)
443 break;
444 entry = xa_entry_locked(xa, node, 0);
445 if (!entry)
446 break;
447 if (!xa_is_node(entry) && node->shift)
448 break;
449 if (xa_is_zero(entry) && xa_zero_busy(xa))
450 entry = NULL;
451 xas->xa_node = XAS_BOUNDS;
452
453 RCU_INIT_POINTER(xa->xa_head, entry);
454 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
455 xa_mark_clear(xa, XA_FREE_MARK);
456
457 node->count = 0;
458 node->nr_values = 0;
459 if (!xa_is_node(entry))
460 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
461 xas_update(xas, node);
462 xa_node_free(node);
463 if (!xa_is_node(entry))
464 break;
465 node = xa_to_node(entry);
466 node->parent = NULL;
467 }
468}
469
470/*
471 * xas_delete_node() - Attempt to delete an xa_node
472 * @xas: Array operation state.
473 *
474 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
475 * a non-zero reference count.
476 */
477static void xas_delete_node(struct xa_state *xas)
478{
479 struct xa_node *node = xas->xa_node;
480
481 for (;;) {
482 struct xa_node *parent;
483
484 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
485 if (node->count)
486 break;
487
488 parent = xa_parent_locked(xas->xa, node);
489 xas->xa_node = parent;
490 xas->xa_offset = node->offset;
491 xa_node_free(node);
492
493 if (!parent) {
494 xas->xa->xa_head = NULL;
495 xas->xa_node = XAS_BOUNDS;
496 return;
497 }
498
499 parent->slots[xas->xa_offset] = NULL;
500 parent->count--;
501 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
502 node = parent;
503 xas_update(xas, node);
504 }
505
506 if (!node->parent)
507 xas_shrink(xas);
508}
509
510/**
511 * xas_free_nodes() - Free this node and all nodes that it references
512 * @xas: Array operation state.
513 * @top: Node to free
514 *
515 * This node has been removed from the tree. We must now free it and all
516 * of its subnodes. There may be RCU walkers with references into the tree,
517 * so we must replace all entries with retry markers.
518 */
519static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
520{
521 unsigned int offset = 0;
522 struct xa_node *node = top;
523
524 for (;;) {
525 void *entry = xa_entry_locked(xas->xa, node, offset);
526
527 if (node->shift && xa_is_node(entry)) {
528 node = xa_to_node(entry);
529 offset = 0;
530 continue;
531 }
532 if (entry)
533 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
534 offset++;
535 while (offset == XA_CHUNK_SIZE) {
536 struct xa_node *parent;
537
538 parent = xa_parent_locked(xas->xa, node);
539 offset = node->offset + 1;
540 node->count = 0;
541 node->nr_values = 0;
542 xas_update(xas, node);
543 xa_node_free(node);
544 if (node == top)
545 return;
546 node = parent;
547 }
548 }
549}
550
551/*
552 * xas_expand adds nodes to the head of the tree until it has reached
553 * sufficient height to be able to contain @xas->xa_index
554 */
555static int xas_expand(struct xa_state *xas, void *head)
556{
557 struct xarray *xa = xas->xa;
558 struct xa_node *node = NULL;
559 unsigned int shift = 0;
560 unsigned long max = xas_max(xas);
561
562 if (!head) {
563 if (max == 0)
564 return 0;
565 while ((max >> shift) >= XA_CHUNK_SIZE)
566 shift += XA_CHUNK_SHIFT;
567 return shift + XA_CHUNK_SHIFT;
568 } else if (xa_is_node(head)) {
569 node = xa_to_node(head);
570 shift = node->shift + XA_CHUNK_SHIFT;
571 }
572 xas->xa_node = NULL;
573
574 while (max > max_index(head)) {
575 xa_mark_t mark = 0;
576
577 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
578 node = xas_alloc(xas, shift);
579 if (!node)
580 return -ENOMEM;
581
582 node->count = 1;
583 if (xa_is_value(head))
584 node->nr_values = 1;
585 RCU_INIT_POINTER(node->slots[0], head);
586
587 /* Propagate the aggregated mark info to the new child */
588 for (;;) {
589 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
590 node_mark_all(node, XA_FREE_MARK);
591 if (!xa_marked(xa, XA_FREE_MARK)) {
592 node_clear_mark(node, 0, XA_FREE_MARK);
593 xa_mark_set(xa, XA_FREE_MARK);
594 }
595 } else if (xa_marked(xa, mark)) {
596 node_set_mark(node, 0, mark);
597 }
598 if (mark == XA_MARK_MAX)
599 break;
600 mark_inc(mark);
601 }
602
603 /*
604 * Now that the new node is fully initialised, we can add
605 * it to the tree
606 */
607 if (xa_is_node(head)) {
608 xa_to_node(head)->offset = 0;
609 rcu_assign_pointer(xa_to_node(head)->parent, node);
610 }
611 head = xa_mk_node(node);
612 rcu_assign_pointer(xa->xa_head, head);
613 xas_update(xas, node);
614
615 shift += XA_CHUNK_SHIFT;
616 }
617
618 xas->xa_node = node;
619 return shift;
620}
621
622/*
623 * xas_create() - Create a slot to store an entry in.
624 * @xas: XArray operation state.
625 * @allow_root: %true if we can store the entry in the root directly
626 *
627 * Most users will not need to call this function directly, as it is called
628 * by xas_store(). It is useful for doing conditional store operations
629 * (see the xa_cmpxchg() implementation for an example).
630 *
631 * Return: If the slot already existed, returns the contents of this slot.
632 * If the slot was newly created, returns %NULL. If it failed to create the
633 * slot, returns %NULL and indicates the error in @xas.
634 */
635static void *xas_create(struct xa_state *xas, bool allow_root)
636{
637 struct xarray *xa = xas->xa;
638 void *entry;
639 void __rcu **slot;
640 struct xa_node *node = xas->xa_node;
641 int shift;
642 unsigned int order = xas->xa_shift;
643
644 if (xas_top(node)) {
645 entry = xa_head_locked(xa);
646 xas->xa_node = NULL;
647 if (!entry && xa_zero_busy(xa))
648 entry = XA_ZERO_ENTRY;
649 shift = xas_expand(xas, entry);
650 if (shift < 0)
651 return NULL;
652 if (!shift && !allow_root)
653 shift = XA_CHUNK_SHIFT;
654 entry = xa_head_locked(xa);
655 slot = &xa->xa_head;
656 } else if (xas_error(xas)) {
657 return NULL;
658 } else if (node) {
659 unsigned int offset = xas->xa_offset;
660
661 shift = node->shift;
662 entry = xa_entry_locked(xa, node, offset);
663 slot = &node->slots[offset];
664 } else {
665 shift = 0;
666 entry = xa_head_locked(xa);
667 slot = &xa->xa_head;
668 }
669
670 while (shift > order) {
671 shift -= XA_CHUNK_SHIFT;
672 if (!entry) {
673 node = xas_alloc(xas, shift);
674 if (!node)
675 break;
676 if (xa_track_free(xa))
677 node_mark_all(node, XA_FREE_MARK);
678 rcu_assign_pointer(*slot, xa_mk_node(node));
679 } else if (xa_is_node(entry)) {
680 node = xa_to_node(entry);
681 } else {
682 break;
683 }
684 entry = xas_descend(xas, node);
685 slot = &node->slots[xas->xa_offset];
686 }
687
688 return entry;
689}
690
691/**
692 * xas_create_range() - Ensure that stores to this range will succeed
693 * @xas: XArray operation state.
694 *
695 * Creates all of the slots in the range covered by @xas. Sets @xas to
696 * create single-index entries and positions it at the beginning of the
697 * range. This is for the benefit of users which have not yet been
698 * converted to use multi-index entries.
699 */
700void xas_create_range(struct xa_state *xas)
701{
702 unsigned long index = xas->xa_index;
703 unsigned char shift = xas->xa_shift;
704 unsigned char sibs = xas->xa_sibs;
705
706 xas->xa_index |= ((sibs + 1) << shift) - 1;
707 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
708 xas->xa_offset |= sibs;
709 xas->xa_shift = 0;
710 xas->xa_sibs = 0;
711
712 for (;;) {
713 xas_create(xas, true);
714 if (xas_error(xas))
715 goto restore;
716 if (xas->xa_index <= (index | XA_CHUNK_MASK))
717 goto success;
718 xas->xa_index -= XA_CHUNK_SIZE;
719
720 for (;;) {
721 struct xa_node *node = xas->xa_node;
722 xas->xa_node = xa_parent_locked(xas->xa, node);
723 xas->xa_offset = node->offset - 1;
724 if (node->offset != 0)
725 break;
726 }
727 }
728
729restore:
730 xas->xa_shift = shift;
731 xas->xa_sibs = sibs;
732 xas->xa_index = index;
733 return;
734success:
735 xas->xa_index = index;
736 if (xas->xa_node)
737 xas_set_offset(xas);
738}
739EXPORT_SYMBOL_GPL(xas_create_range);
740
741static void update_node(struct xa_state *xas, struct xa_node *node,
742 int count, int values)
743{
744 if (!node || (!count && !values))
745 return;
746
747 node->count += count;
748 node->nr_values += values;
749 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
750 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
751 xas_update(xas, node);
752 if (count < 0)
753 xas_delete_node(xas);
754}
755
756/**
757 * xas_store() - Store this entry in the XArray.
758 * @xas: XArray operation state.
759 * @entry: New entry.
760 *
761 * If @xas is operating on a multi-index entry, the entry returned by this
762 * function is essentially meaningless (it may be an internal entry or it
763 * may be %NULL, even if there are non-NULL entries at some of the indices
764 * covered by the range). This is not a problem for any current users,
765 * and can be changed if needed.
766 *
767 * Return: The old entry at this index.
768 */
769void *xas_store(struct xa_state *xas, void *entry)
770{
771 struct xa_node *node;
772 void __rcu **slot = &xas->xa->xa_head;
773 unsigned int offset, max;
774 int count = 0;
775 int values = 0;
776 void *first, *next;
777 bool value = xa_is_value(entry);
778
779 if (entry) {
780 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
781 first = xas_create(xas, allow_root);
782 } else {
783 first = xas_load(xas);
784 }
785
786 if (xas_invalid(xas))
787 return first;
788 node = xas->xa_node;
789 if (node && (xas->xa_shift < node->shift))
790 xas->xa_sibs = 0;
791 if ((first == entry) && !xas->xa_sibs)
792 return first;
793
794 next = first;
795 offset = xas->xa_offset;
796 max = xas->xa_offset + xas->xa_sibs;
797 if (node) {
798 slot = &node->slots[offset];
799 if (xas->xa_sibs)
800 xas_squash_marks(xas);
801 }
802 if (!entry)
803 xas_init_marks(xas);
804
805 for (;;) {
806 /*
807 * Must clear the marks before setting the entry to NULL,
808 * otherwise xas_for_each_marked may find a NULL entry and
809 * stop early. rcu_assign_pointer contains a release barrier
810 * so the mark clearing will appear to happen before the
811 * entry is set to NULL.
812 */
813 rcu_assign_pointer(*slot, entry);
814 if (xa_is_node(next) && (!node || node->shift))
815 xas_free_nodes(xas, xa_to_node(next));
816 if (!node)
817 break;
818 count += !next - !entry;
819 values += !xa_is_value(first) - !value;
820 if (entry) {
821 if (offset == max)
822 break;
823 if (!xa_is_sibling(entry))
824 entry = xa_mk_sibling(xas->xa_offset);
825 } else {
826 if (offset == XA_CHUNK_MASK)
827 break;
828 }
829 next = xa_entry_locked(xas->xa, node, ++offset);
830 if (!xa_is_sibling(next)) {
831 if (!entry && (offset > max))
832 break;
833 first = next;
834 }
835 slot++;
836 }
837
838 update_node(xas, node, count, values);
839 return first;
840}
841EXPORT_SYMBOL_GPL(xas_store);
842
843/**
844 * xas_get_mark() - Returns the state of this mark.
845 * @xas: XArray operation state.
846 * @mark: Mark number.
847 *
848 * Return: true if the mark is set, false if the mark is clear or @xas
849 * is in an error state.
850 */
851bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
852{
853 if (xas_invalid(xas))
854 return false;
855 if (!xas->xa_node)
856 return xa_marked(xas->xa, mark);
857 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
858}
859EXPORT_SYMBOL_GPL(xas_get_mark);
860
861/**
862 * xas_set_mark() - Sets the mark on this entry and its parents.
863 * @xas: XArray operation state.
864 * @mark: Mark number.
865 *
866 * Sets the specified mark on this entry, and walks up the tree setting it
867 * on all the ancestor entries. Does nothing if @xas has not been walked to
868 * an entry, or is in an error state.
869 */
870void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
871{
872 struct xa_node *node = xas->xa_node;
873 unsigned int offset = xas->xa_offset;
874
875 if (xas_invalid(xas))
876 return;
877
878 while (node) {
879 if (node_set_mark(node, offset, mark))
880 return;
881 offset = node->offset;
882 node = xa_parent_locked(xas->xa, node);
883 }
884
885 if (!xa_marked(xas->xa, mark))
886 xa_mark_set(xas->xa, mark);
887}
888EXPORT_SYMBOL_GPL(xas_set_mark);
889
890/**
891 * xas_clear_mark() - Clears the mark on this entry and its parents.
892 * @xas: XArray operation state.
893 * @mark: Mark number.
894 *
895 * Clears the specified mark on this entry, and walks back to the head
896 * attempting to clear it on all the ancestor entries. Does nothing if
897 * @xas has not been walked to an entry, or is in an error state.
898 */
899void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
900{
901 struct xa_node *node = xas->xa_node;
902 unsigned int offset = xas->xa_offset;
903
904 if (xas_invalid(xas))
905 return;
906
907 while (node) {
908 if (!node_clear_mark(node, offset, mark))
909 return;
910 if (node_any_mark(node, mark))
911 return;
912
913 offset = node->offset;
914 node = xa_parent_locked(xas->xa, node);
915 }
916
917 if (xa_marked(xas->xa, mark))
918 xa_mark_clear(xas->xa, mark);
919}
920EXPORT_SYMBOL_GPL(xas_clear_mark);
921
922/**
923 * xas_init_marks() - Initialise all marks for the entry
924 * @xas: Array operations state.
925 *
926 * Initialise all marks for the entry specified by @xas. If we're tracking
927 * free entries with a mark, we need to set it on all entries. All other
928 * marks are cleared.
929 *
930 * This implementation is not as efficient as it could be; we may walk
931 * up the tree multiple times.
932 */
933void xas_init_marks(const struct xa_state *xas)
934{
935 xa_mark_t mark = 0;
936
937 for (;;) {
938 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
939 xas_set_mark(xas, mark);
940 else
941 xas_clear_mark(xas, mark);
942 if (mark == XA_MARK_MAX)
943 break;
944 mark_inc(mark);
945 }
946}
947EXPORT_SYMBOL_GPL(xas_init_marks);
948
949/**
950 * xas_pause() - Pause a walk to drop a lock.
951 * @xas: XArray operation state.
952 *
953 * Some users need to pause a walk and drop the lock they're holding in
954 * order to yield to a higher priority thread or carry out an operation
955 * on an entry. Those users should call this function before they drop
956 * the lock. It resets the @xas to be suitable for the next iteration
957 * of the loop after the user has reacquired the lock. If most entries
958 * found during a walk require you to call xas_pause(), the xa_for_each()
959 * iterator may be more appropriate.
960 *
961 * Note that xas_pause() only works for forward iteration. If a user needs
962 * to pause a reverse iteration, we will need a xas_pause_rev().
963 */
964void xas_pause(struct xa_state *xas)
965{
966 struct xa_node *node = xas->xa_node;
967
968 if (xas_invalid(xas))
969 return;
970
971 xas->xa_node = XAS_RESTART;
972 if (node) {
973 unsigned long offset = xas->xa_offset;
974 while (++offset < XA_CHUNK_SIZE) {
975 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
976 break;
977 }
978 xas->xa_index += (offset - xas->xa_offset) << node->shift;
979 if (xas->xa_index == 0)
980 xas->xa_node = XAS_BOUNDS;
981 } else {
982 xas->xa_index++;
983 }
984}
985EXPORT_SYMBOL_GPL(xas_pause);
986
987/*
988 * __xas_prev() - Find the previous entry in the XArray.
989 * @xas: XArray operation state.
990 *
991 * Helper function for xas_prev() which handles all the complex cases
992 * out of line.
993 */
994void *__xas_prev(struct xa_state *xas)
995{
996 void *entry;
997
998 if (!xas_frozen(xas->xa_node))
999 xas->xa_index--;
1000 if (!xas->xa_node)
1001 return set_bounds(xas);
1002 if (xas_not_node(xas->xa_node))
1003 return xas_load(xas);
1004
1005 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1006 xas->xa_offset--;
1007
1008 while (xas->xa_offset == 255) {
1009 xas->xa_offset = xas->xa_node->offset - 1;
1010 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1011 if (!xas->xa_node)
1012 return set_bounds(xas);
1013 }
1014
1015 for (;;) {
1016 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1017 if (!xa_is_node(entry))
1018 return entry;
1019
1020 xas->xa_node = xa_to_node(entry);
1021 xas_set_offset(xas);
1022 }
1023}
1024EXPORT_SYMBOL_GPL(__xas_prev);
1025
1026/*
1027 * __xas_next() - Find the next entry in the XArray.
1028 * @xas: XArray operation state.
1029 *
1030 * Helper function for xas_next() which handles all the complex cases
1031 * out of line.
1032 */
1033void *__xas_next(struct xa_state *xas)
1034{
1035 void *entry;
1036
1037 if (!xas_frozen(xas->xa_node))
1038 xas->xa_index++;
1039 if (!xas->xa_node)
1040 return set_bounds(xas);
1041 if (xas_not_node(xas->xa_node))
1042 return xas_load(xas);
1043
1044 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1045 xas->xa_offset++;
1046
1047 while (xas->xa_offset == XA_CHUNK_SIZE) {
1048 xas->xa_offset = xas->xa_node->offset + 1;
1049 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1050 if (!xas->xa_node)
1051 return set_bounds(xas);
1052 }
1053
1054 for (;;) {
1055 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1056 if (!xa_is_node(entry))
1057 return entry;
1058
1059 xas->xa_node = xa_to_node(entry);
1060 xas_set_offset(xas);
1061 }
1062}
1063EXPORT_SYMBOL_GPL(__xas_next);
1064
1065/**
1066 * xas_find() - Find the next present entry in the XArray.
1067 * @xas: XArray operation state.
1068 * @max: Highest index to return.
1069 *
1070 * If the @xas has not yet been walked to an entry, return the entry
1071 * which has an index >= xas.xa_index. If it has been walked, the entry
1072 * currently being pointed at has been processed, and so we move to the
1073 * next entry.
1074 *
1075 * If no entry is found and the array is smaller than @max, the iterator
1076 * is set to the smallest index not yet in the array. This allows @xas
1077 * to be immediately passed to xas_store().
1078 *
1079 * Return: The entry, if found, otherwise %NULL.
1080 */
1081void *xas_find(struct xa_state *xas, unsigned long max)
1082{
1083 void *entry;
1084
1085 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1086 return NULL;
1087 if (xas->xa_index > max)
1088 return set_bounds(xas);
1089
1090 if (!xas->xa_node) {
1091 xas->xa_index = 1;
1092 return set_bounds(xas);
1093 } else if (xas->xa_node == XAS_RESTART) {
1094 entry = xas_load(xas);
1095 if (entry || xas_not_node(xas->xa_node))
1096 return entry;
1097 } else if (!xas->xa_node->shift &&
1098 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1099 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1100 }
1101
1102 xas_advance(xas);
1103
1104 while (xas->xa_node && (xas->xa_index <= max)) {
1105 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1106 xas->xa_offset = xas->xa_node->offset + 1;
1107 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1108 continue;
1109 }
1110
1111 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1112 if (xa_is_node(entry)) {
1113 xas->xa_node = xa_to_node(entry);
1114 xas->xa_offset = 0;
1115 continue;
1116 }
1117 if (entry && !xa_is_sibling(entry))
1118 return entry;
1119
1120 xas_advance(xas);
1121 }
1122
1123 if (!xas->xa_node)
1124 xas->xa_node = XAS_BOUNDS;
1125 return NULL;
1126}
1127EXPORT_SYMBOL_GPL(xas_find);
1128
1129/**
1130 * xas_find_marked() - Find the next marked entry in the XArray.
1131 * @xas: XArray operation state.
1132 * @max: Highest index to return.
1133 * @mark: Mark number to search for.
1134 *
1135 * If the @xas has not yet been walked to an entry, return the marked entry
1136 * which has an index >= xas.xa_index. If it has been walked, the entry
1137 * currently being pointed at has been processed, and so we return the
1138 * first marked entry with an index > xas.xa_index.
1139 *
1140 * If no marked entry is found and the array is smaller than @max, @xas is
1141 * set to the bounds state and xas->xa_index is set to the smallest index
1142 * not yet in the array. This allows @xas to be immediately passed to
1143 * xas_store().
1144 *
1145 * If no entry is found before @max is reached, @xas is set to the restart
1146 * state.
1147 *
1148 * Return: The entry, if found, otherwise %NULL.
1149 */
1150void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1151{
1152 bool advance = true;
1153 unsigned int offset;
1154 void *entry;
1155
1156 if (xas_error(xas))
1157 return NULL;
1158 if (xas->xa_index > max)
1159 goto max;
1160
1161 if (!xas->xa_node) {
1162 xas->xa_index = 1;
1163 goto out;
1164 } else if (xas_top(xas->xa_node)) {
1165 advance = false;
1166 entry = xa_head(xas->xa);
1167 xas->xa_node = NULL;
1168 if (xas->xa_index > max_index(entry))
1169 goto out;
1170 if (!xa_is_node(entry)) {
1171 if (xa_marked(xas->xa, mark))
1172 return entry;
1173 xas->xa_index = 1;
1174 goto out;
1175 }
1176 xas->xa_node = xa_to_node(entry);
1177 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1178 }
1179
1180 while (xas->xa_index <= max) {
1181 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1182 xas->xa_offset = xas->xa_node->offset + 1;
1183 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1184 if (!xas->xa_node)
1185 break;
1186 advance = false;
1187 continue;
1188 }
1189
1190 if (!advance) {
1191 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1192 if (xa_is_sibling(entry)) {
1193 xas->xa_offset = xa_to_sibling(entry);
1194 xas_move_index(xas, xas->xa_offset);
1195 }
1196 }
1197
1198 offset = xas_find_chunk(xas, advance, mark);
1199 if (offset > xas->xa_offset) {
1200 advance = false;
1201 xas_move_index(xas, offset);
1202 /* Mind the wrap */
1203 if ((xas->xa_index - 1) >= max)
1204 goto max;
1205 xas->xa_offset = offset;
1206 if (offset == XA_CHUNK_SIZE)
1207 continue;
1208 }
1209
1210 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1211 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1212 continue;
1213 if (!xa_is_node(entry))
1214 return entry;
1215 xas->xa_node = xa_to_node(entry);
1216 xas_set_offset(xas);
1217 }
1218
1219out:
1220 if (xas->xa_index > max)
1221 goto max;
1222 return set_bounds(xas);
1223max:
1224 xas->xa_node = XAS_RESTART;
1225 return NULL;
1226}
1227EXPORT_SYMBOL_GPL(xas_find_marked);
1228
1229/**
1230 * xas_find_conflict() - Find the next present entry in a range.
1231 * @xas: XArray operation state.
1232 *
1233 * The @xas describes both a range and a position within that range.
1234 *
1235 * Context: Any context. Expects xa_lock to be held.
1236 * Return: The next entry in the range covered by @xas or %NULL.
1237 */
1238void *xas_find_conflict(struct xa_state *xas)
1239{
1240 void *curr;
1241
1242 if (xas_error(xas))
1243 return NULL;
1244
1245 if (!xas->xa_node)
1246 return NULL;
1247
1248 if (xas_top(xas->xa_node)) {
1249 curr = xas_start(xas);
1250 if (!curr)
1251 return NULL;
1252 while (xa_is_node(curr)) {
1253 struct xa_node *node = xa_to_node(curr);
1254 curr = xas_descend(xas, node);
1255 }
1256 if (curr)
1257 return curr;
1258 }
1259
1260 if (xas->xa_node->shift > xas->xa_shift)
1261 return NULL;
1262
1263 for (;;) {
1264 if (xas->xa_node->shift == xas->xa_shift) {
1265 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1266 break;
1267 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1268 xas->xa_offset = xas->xa_node->offset;
1269 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1270 if (!xas->xa_node)
1271 break;
1272 continue;
1273 }
1274 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1275 if (xa_is_sibling(curr))
1276 continue;
1277 while (xa_is_node(curr)) {
1278 xas->xa_node = xa_to_node(curr);
1279 xas->xa_offset = 0;
1280 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1281 }
1282 if (curr)
1283 return curr;
1284 }
1285 xas->xa_offset -= xas->xa_sibs;
1286 return NULL;
1287}
1288EXPORT_SYMBOL_GPL(xas_find_conflict);
1289
1290/**
1291 * xa_load() - Load an entry from an XArray.
1292 * @xa: XArray.
1293 * @index: index into array.
1294 *
1295 * Context: Any context. Takes and releases the RCU lock.
1296 * Return: The entry at @index in @xa.
1297 */
1298void *xa_load(struct xarray *xa, unsigned long index)
1299{
1300 XA_STATE(xas, xa, index);
1301 void *entry;
1302
1303 rcu_read_lock();
1304 do {
1305 entry = xas_load(&xas);
1306 if (xa_is_zero(entry))
1307 entry = NULL;
1308 } while (xas_retry(&xas, entry));
1309 rcu_read_unlock();
1310
1311 return entry;
1312}
1313EXPORT_SYMBOL(xa_load);
1314
1315static void *xas_result(struct xa_state *xas, void *curr)
1316{
1317 if (xa_is_zero(curr))
1318 return NULL;
1319 if (xas_error(xas))
1320 curr = xas->xa_node;
1321 return curr;
1322}
1323
1324/**
1325 * __xa_erase() - Erase this entry from the XArray while locked.
1326 * @xa: XArray.
1327 * @index: Index into array.
1328 *
1329 * After this function returns, loading from @index will return %NULL.
1330 * If the index is part of a multi-index entry, all indices will be erased
1331 * and none of the entries will be part of a multi-index entry.
1332 *
1333 * Context: Any context. Expects xa_lock to be held on entry.
1334 * Return: The entry which used to be at this index.
1335 */
1336void *__xa_erase(struct xarray *xa, unsigned long index)
1337{
1338 XA_STATE(xas, xa, index);
1339 return xas_result(&xas, xas_store(&xas, NULL));
1340}
1341EXPORT_SYMBOL(__xa_erase);
1342
1343/**
1344 * xa_erase() - Erase this entry from the XArray.
1345 * @xa: XArray.
1346 * @index: Index of entry.
1347 *
1348 * After this function returns, loading from @index will return %NULL.
1349 * If the index is part of a multi-index entry, all indices will be erased
1350 * and none of the entries will be part of a multi-index entry.
1351 *
1352 * Context: Any context. Takes and releases the xa_lock.
1353 * Return: The entry which used to be at this index.
1354 */
1355void *xa_erase(struct xarray *xa, unsigned long index)
1356{
1357 void *entry;
1358
1359 xa_lock(xa);
1360 entry = __xa_erase(xa, index);
1361 xa_unlock(xa);
1362
1363 return entry;
1364}
1365EXPORT_SYMBOL(xa_erase);
1366
1367/**
1368 * __xa_store() - Store this entry in the XArray.
1369 * @xa: XArray.
1370 * @index: Index into array.
1371 * @entry: New entry.
1372 * @gfp: Memory allocation flags.
1373 *
1374 * You must already be holding the xa_lock when calling this function.
1375 * It will drop the lock if needed to allocate memory, and then reacquire
1376 * it afterwards.
1377 *
1378 * Context: Any context. Expects xa_lock to be held on entry. May
1379 * release and reacquire xa_lock if @gfp flags permit.
1380 * Return: The old entry at this index or xa_err() if an error happened.
1381 */
1382void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1383{
1384 XA_STATE(xas, xa, index);
1385 void *curr;
1386
1387 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1388 return XA_ERROR(-EINVAL);
1389 if (xa_track_free(xa) && !entry)
1390 entry = XA_ZERO_ENTRY;
1391
1392 do {
1393 curr = xas_store(&xas, entry);
1394 if (xa_track_free(xa))
1395 xas_clear_mark(&xas, XA_FREE_MARK);
1396 } while (__xas_nomem(&xas, gfp));
1397
1398 return xas_result(&xas, curr);
1399}
1400EXPORT_SYMBOL(__xa_store);
1401
1402/**
1403 * xa_store() - Store this entry in the XArray.
1404 * @xa: XArray.
1405 * @index: Index into array.
1406 * @entry: New entry.
1407 * @gfp: Memory allocation flags.
1408 *
1409 * After this function returns, loads from this index will return @entry.
1410 * Storing into an existing multislot entry updates the entry of every index.
1411 * The marks associated with @index are unaffected unless @entry is %NULL.
1412 *
1413 * Context: Any context. Takes and releases the xa_lock.
1414 * May sleep if the @gfp flags permit.
1415 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1416 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1417 * failed.
1418 */
1419void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1420{
1421 void *curr;
1422
1423 xa_lock(xa);
1424 curr = __xa_store(xa, index, entry, gfp);
1425 xa_unlock(xa);
1426
1427 return curr;
1428}
1429EXPORT_SYMBOL(xa_store);
1430
1431/**
1432 * __xa_cmpxchg() - Store this entry in the XArray.
1433 * @xa: XArray.
1434 * @index: Index into array.
1435 * @old: Old value to test against.
1436 * @entry: New entry.
1437 * @gfp: Memory allocation flags.
1438 *
1439 * You must already be holding the xa_lock when calling this function.
1440 * It will drop the lock if needed to allocate memory, and then reacquire
1441 * it afterwards.
1442 *
1443 * Context: Any context. Expects xa_lock to be held on entry. May
1444 * release and reacquire xa_lock if @gfp flags permit.
1445 * Return: The old entry at this index or xa_err() if an error happened.
1446 */
1447void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1448 void *old, void *entry, gfp_t gfp)
1449{
1450 XA_STATE(xas, xa, index);
1451 void *curr;
1452
1453 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1454 return XA_ERROR(-EINVAL);
1455
1456 do {
1457 curr = xas_load(&xas);
1458 if (curr == old) {
1459 xas_store(&xas, entry);
1460 if (xa_track_free(xa) && entry && !curr)
1461 xas_clear_mark(&xas, XA_FREE_MARK);
1462 }
1463 } while (__xas_nomem(&xas, gfp));
1464
1465 return xas_result(&xas, curr);
1466}
1467EXPORT_SYMBOL(__xa_cmpxchg);
1468
1469/**
1470 * __xa_insert() - Store this entry in the XArray if no entry is present.
1471 * @xa: XArray.
1472 * @index: Index into array.
1473 * @entry: New entry.
1474 * @gfp: Memory allocation flags.
1475 *
1476 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1477 * if no entry is present. Inserting will fail if a reserved entry is
1478 * present, even though loading from this index will return NULL.
1479 *
1480 * Context: Any context. Expects xa_lock to be held on entry. May
1481 * release and reacquire xa_lock if @gfp flags permit.
1482 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1483 * -ENOMEM if memory could not be allocated.
1484 */
1485int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1486{
1487 XA_STATE(xas, xa, index);
1488 void *curr;
1489
1490 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1491 return -EINVAL;
1492 if (!entry)
1493 entry = XA_ZERO_ENTRY;
1494
1495 do {
1496 curr = xas_load(&xas);
1497 if (!curr) {
1498 xas_store(&xas, entry);
1499 if (xa_track_free(xa))
1500 xas_clear_mark(&xas, XA_FREE_MARK);
1501 } else {
1502 xas_set_err(&xas, -EBUSY);
1503 }
1504 } while (__xas_nomem(&xas, gfp));
1505
1506 return xas_error(&xas);
1507}
1508EXPORT_SYMBOL(__xa_insert);
1509
1510#ifdef CONFIG_XARRAY_MULTI
1511static void xas_set_range(struct xa_state *xas, unsigned long first,
1512 unsigned long last)
1513{
1514 unsigned int shift = 0;
1515 unsigned long sibs = last - first;
1516 unsigned int offset = XA_CHUNK_MASK;
1517
1518 xas_set(xas, first);
1519
1520 while ((first & XA_CHUNK_MASK) == 0) {
1521 if (sibs < XA_CHUNK_MASK)
1522 break;
1523 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1524 break;
1525 shift += XA_CHUNK_SHIFT;
1526 if (offset == XA_CHUNK_MASK)
1527 offset = sibs & XA_CHUNK_MASK;
1528 sibs >>= XA_CHUNK_SHIFT;
1529 first >>= XA_CHUNK_SHIFT;
1530 }
1531
1532 offset = first & XA_CHUNK_MASK;
1533 if (offset + sibs > XA_CHUNK_MASK)
1534 sibs = XA_CHUNK_MASK - offset;
1535 if ((((first + sibs + 1) << shift) - 1) > last)
1536 sibs -= 1;
1537
1538 xas->xa_shift = shift;
1539 xas->xa_sibs = sibs;
1540}
1541
1542/**
1543 * xa_store_range() - Store this entry at a range of indices in the XArray.
1544 * @xa: XArray.
1545 * @first: First index to affect.
1546 * @last: Last index to affect.
1547 * @entry: New entry.
1548 * @gfp: Memory allocation flags.
1549 *
1550 * After this function returns, loads from any index between @first and @last,
1551 * inclusive will return @entry.
1552 * Storing into an existing multislot entry updates the entry of every index.
1553 * The marks associated with @index are unaffected unless @entry is %NULL.
1554 *
1555 * Context: Process context. Takes and releases the xa_lock. May sleep
1556 * if the @gfp flags permit.
1557 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1558 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1559 */
1560void *xa_store_range(struct xarray *xa, unsigned long first,
1561 unsigned long last, void *entry, gfp_t gfp)
1562{
1563 XA_STATE(xas, xa, 0);
1564
1565 if (WARN_ON_ONCE(xa_is_internal(entry)))
1566 return XA_ERROR(-EINVAL);
1567 if (last < first)
1568 return XA_ERROR(-EINVAL);
1569
1570 do {
1571 xas_lock(&xas);
1572 if (entry) {
1573 unsigned int order = BITS_PER_LONG;
1574 if (last + 1)
1575 order = __ffs(last + 1);
1576 xas_set_order(&xas, last, order);
1577 xas_create(&xas, true);
1578 if (xas_error(&xas))
1579 goto unlock;
1580 }
1581 do {
1582 xas_set_range(&xas, first, last);
1583 xas_store(&xas, entry);
1584 if (xas_error(&xas))
1585 goto unlock;
1586 first += xas_size(&xas);
1587 } while (first <= last);
1588unlock:
1589 xas_unlock(&xas);
1590 } while (xas_nomem(&xas, gfp));
1591
1592 return xas_result(&xas, NULL);
1593}
1594EXPORT_SYMBOL(xa_store_range);
1595#endif /* CONFIG_XARRAY_MULTI */
1596
1597/**
1598 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1599 * @xa: XArray.
1600 * @id: Pointer to ID.
1601 * @limit: Range for allocated ID.
1602 * @entry: New entry.
1603 * @gfp: Memory allocation flags.
1604 *
1605 * Finds an empty entry in @xa between @limit.min and @limit.max,
1606 * stores the index into the @id pointer, then stores the entry at
1607 * that index. A concurrent lookup will not see an uninitialised @id.
1608 *
1609 * Context: Any context. Expects xa_lock to be held on entry. May
1610 * release and reacquire xa_lock if @gfp flags permit.
1611 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1612 * -EBUSY if there are no free entries in @limit.
1613 */
1614int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1615 struct xa_limit limit, gfp_t gfp)
1616{
1617 XA_STATE(xas, xa, 0);
1618
1619 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1620 return -EINVAL;
1621 if (WARN_ON_ONCE(!xa_track_free(xa)))
1622 return -EINVAL;
1623
1624 if (!entry)
1625 entry = XA_ZERO_ENTRY;
1626
1627 do {
1628 xas.xa_index = limit.min;
1629 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1630 if (xas.xa_node == XAS_RESTART)
1631 xas_set_err(&xas, -EBUSY);
1632 else
1633 *id = xas.xa_index;
1634 xas_store(&xas, entry);
1635 xas_clear_mark(&xas, XA_FREE_MARK);
1636 } while (__xas_nomem(&xas, gfp));
1637
1638 return xas_error(&xas);
1639}
1640EXPORT_SYMBOL(__xa_alloc);
1641
1642/**
1643 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1644 * @xa: XArray.
1645 * @id: Pointer to ID.
1646 * @entry: New entry.
1647 * @limit: Range of allocated ID.
1648 * @next: Pointer to next ID to allocate.
1649 * @gfp: Memory allocation flags.
1650 *
1651 * Finds an empty entry in @xa between @limit.min and @limit.max,
1652 * stores the index into the @id pointer, then stores the entry at
1653 * that index. A concurrent lookup will not see an uninitialised @id.
1654 * The search for an empty entry will start at @next and will wrap
1655 * around if necessary.
1656 *
1657 * Context: Any context. Expects xa_lock to be held on entry. May
1658 * release and reacquire xa_lock if @gfp flags permit.
1659 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1660 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1661 * allocated or -EBUSY if there are no free entries in @limit.
1662 */
1663int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1664 struct xa_limit limit, u32 *next, gfp_t gfp)
1665{
1666 u32 min = limit.min;
1667 int ret;
1668
1669 limit.min = max(min, *next);
1670 ret = __xa_alloc(xa, id, entry, limit, gfp);
1671 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1672 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1673 ret = 1;
1674 }
1675
1676 if (ret < 0 && limit.min > min) {
1677 limit.min = min;
1678 ret = __xa_alloc(xa, id, entry, limit, gfp);
1679 if (ret == 0)
1680 ret = 1;
1681 }
1682
1683 if (ret >= 0) {
1684 *next = *id + 1;
1685 if (*next == 0)
1686 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1687 }
1688 return ret;
1689}
1690EXPORT_SYMBOL(__xa_alloc_cyclic);
1691
1692/**
1693 * __xa_set_mark() - Set this mark on this entry while locked.
1694 * @xa: XArray.
1695 * @index: Index of entry.
1696 * @mark: Mark number.
1697 *
1698 * Attempting to set a mark on a %NULL entry does not succeed.
1699 *
1700 * Context: Any context. Expects xa_lock to be held on entry.
1701 */
1702void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1703{
1704 XA_STATE(xas, xa, index);
1705 void *entry = xas_load(&xas);
1706
1707 if (entry)
1708 xas_set_mark(&xas, mark);
1709}
1710EXPORT_SYMBOL(__xa_set_mark);
1711
1712/**
1713 * __xa_clear_mark() - Clear this mark on this entry while locked.
1714 * @xa: XArray.
1715 * @index: Index of entry.
1716 * @mark: Mark number.
1717 *
1718 * Context: Any context. Expects xa_lock to be held on entry.
1719 */
1720void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1721{
1722 XA_STATE(xas, xa, index);
1723 void *entry = xas_load(&xas);
1724
1725 if (entry)
1726 xas_clear_mark(&xas, mark);
1727}
1728EXPORT_SYMBOL(__xa_clear_mark);
1729
1730/**
1731 * xa_get_mark() - Inquire whether this mark is set on this entry.
1732 * @xa: XArray.
1733 * @index: Index of entry.
1734 * @mark: Mark number.
1735 *
1736 * This function uses the RCU read lock, so the result may be out of date
1737 * by the time it returns. If you need the result to be stable, use a lock.
1738 *
1739 * Context: Any context. Takes and releases the RCU lock.
1740 * Return: True if the entry at @index has this mark set, false if it doesn't.
1741 */
1742bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1743{
1744 XA_STATE(xas, xa, index);
1745 void *entry;
1746
1747 rcu_read_lock();
1748 entry = xas_start(&xas);
1749 while (xas_get_mark(&xas, mark)) {
1750 if (!xa_is_node(entry))
1751 goto found;
1752 entry = xas_descend(&xas, xa_to_node(entry));
1753 }
1754 rcu_read_unlock();
1755 return false;
1756 found:
1757 rcu_read_unlock();
1758 return true;
1759}
1760EXPORT_SYMBOL(xa_get_mark);
1761
1762/**
1763 * xa_set_mark() - Set this mark on this entry.
1764 * @xa: XArray.
1765 * @index: Index of entry.
1766 * @mark: Mark number.
1767 *
1768 * Attempting to set a mark on a %NULL entry does not succeed.
1769 *
1770 * Context: Process context. Takes and releases the xa_lock.
1771 */
1772void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1773{
1774 xa_lock(xa);
1775 __xa_set_mark(xa, index, mark);
1776 xa_unlock(xa);
1777}
1778EXPORT_SYMBOL(xa_set_mark);
1779
1780/**
1781 * xa_clear_mark() - Clear this mark on this entry.
1782 * @xa: XArray.
1783 * @index: Index of entry.
1784 * @mark: Mark number.
1785 *
1786 * Clearing a mark always succeeds.
1787 *
1788 * Context: Process context. Takes and releases the xa_lock.
1789 */
1790void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1791{
1792 xa_lock(xa);
1793 __xa_clear_mark(xa, index, mark);
1794 xa_unlock(xa);
1795}
1796EXPORT_SYMBOL(xa_clear_mark);
1797
1798/**
1799 * xa_find() - Search the XArray for an entry.
1800 * @xa: XArray.
1801 * @indexp: Pointer to an index.
1802 * @max: Maximum index to search to.
1803 * @filter: Selection criterion.
1804 *
1805 * Finds the entry in @xa which matches the @filter, and has the lowest
1806 * index that is at least @indexp and no more than @max.
1807 * If an entry is found, @indexp is updated to be the index of the entry.
1808 * This function is protected by the RCU read lock, so it may not find
1809 * entries which are being simultaneously added. It will not return an
1810 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1811 *
1812 * Context: Any context. Takes and releases the RCU lock.
1813 * Return: The entry, if found, otherwise %NULL.
1814 */
1815void *xa_find(struct xarray *xa, unsigned long *indexp,
1816 unsigned long max, xa_mark_t filter)
1817{
1818 XA_STATE(xas, xa, *indexp);
1819 void *entry;
1820
1821 rcu_read_lock();
1822 do {
1823 if ((__force unsigned int)filter < XA_MAX_MARKS)
1824 entry = xas_find_marked(&xas, max, filter);
1825 else
1826 entry = xas_find(&xas, max);
1827 } while (xas_retry(&xas, entry));
1828 rcu_read_unlock();
1829
1830 if (entry)
1831 *indexp = xas.xa_index;
1832 return entry;
1833}
1834EXPORT_SYMBOL(xa_find);
1835
1836static bool xas_sibling(struct xa_state *xas)
1837{
1838 struct xa_node *node = xas->xa_node;
1839 unsigned long mask;
1840
1841 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
1842 return false;
1843 mask = (XA_CHUNK_SIZE << node->shift) - 1;
1844 return (xas->xa_index & mask) >
1845 ((unsigned long)xas->xa_offset << node->shift);
1846}
1847
1848/**
1849 * xa_find_after() - Search the XArray for a present entry.
1850 * @xa: XArray.
1851 * @indexp: Pointer to an index.
1852 * @max: Maximum index to search to.
1853 * @filter: Selection criterion.
1854 *
1855 * Finds the entry in @xa which matches the @filter and has the lowest
1856 * index that is above @indexp and no more than @max.
1857 * If an entry is found, @indexp is updated to be the index of the entry.
1858 * This function is protected by the RCU read lock, so it may miss entries
1859 * which are being simultaneously added. It will not return an
1860 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1861 *
1862 * Context: Any context. Takes and releases the RCU lock.
1863 * Return: The pointer, if found, otherwise %NULL.
1864 */
1865void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1866 unsigned long max, xa_mark_t filter)
1867{
1868 XA_STATE(xas, xa, *indexp + 1);
1869 void *entry;
1870
1871 if (xas.xa_index == 0)
1872 return NULL;
1873
1874 rcu_read_lock();
1875 for (;;) {
1876 if ((__force unsigned int)filter < XA_MAX_MARKS)
1877 entry = xas_find_marked(&xas, max, filter);
1878 else
1879 entry = xas_find(&xas, max);
1880
1881 if (xas_invalid(&xas))
1882 break;
1883 if (xas_sibling(&xas))
1884 continue;
1885 if (!xas_retry(&xas, entry))
1886 break;
1887 }
1888 rcu_read_unlock();
1889
1890 if (entry)
1891 *indexp = xas.xa_index;
1892 return entry;
1893}
1894EXPORT_SYMBOL(xa_find_after);
1895
1896static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1897 unsigned long max, unsigned int n)
1898{
1899 void *entry;
1900 unsigned int i = 0;
1901
1902 rcu_read_lock();
1903 xas_for_each(xas, entry, max) {
1904 if (xas_retry(xas, entry))
1905 continue;
1906 dst[i++] = entry;
1907 if (i == n)
1908 break;
1909 }
1910 rcu_read_unlock();
1911
1912 return i;
1913}
1914
1915static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1916 unsigned long max, unsigned int n, xa_mark_t mark)
1917{
1918 void *entry;
1919 unsigned int i = 0;
1920
1921 rcu_read_lock();
1922 xas_for_each_marked(xas, entry, max, mark) {
1923 if (xas_retry(xas, entry))
1924 continue;
1925 dst[i++] = entry;
1926 if (i == n)
1927 break;
1928 }
1929 rcu_read_unlock();
1930
1931 return i;
1932}
1933
1934/**
1935 * xa_extract() - Copy selected entries from the XArray into a normal array.
1936 * @xa: The source XArray to copy from.
1937 * @dst: The buffer to copy entries into.
1938 * @start: The first index in the XArray eligible to be selected.
1939 * @max: The last index in the XArray eligible to be selected.
1940 * @n: The maximum number of entries to copy.
1941 * @filter: Selection criterion.
1942 *
1943 * Copies up to @n entries that match @filter from the XArray. The
1944 * copied entries will have indices between @start and @max, inclusive.
1945 *
1946 * The @filter may be an XArray mark value, in which case entries which are
1947 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1948 * which case all entries which are not %NULL will be copied.
1949 *
1950 * The entries returned may not represent a snapshot of the XArray at a
1951 * moment in time. For example, if another thread stores to index 5, then
1952 * index 10, calling xa_extract() may return the old contents of index 5
1953 * and the new contents of index 10. Indices not modified while this
1954 * function is running will not be skipped.
1955 *
1956 * If you need stronger guarantees, holding the xa_lock across calls to this
1957 * function will prevent concurrent modification.
1958 *
1959 * Context: Any context. Takes and releases the RCU lock.
1960 * Return: The number of entries copied.
1961 */
1962unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1963 unsigned long max, unsigned int n, xa_mark_t filter)
1964{
1965 XA_STATE(xas, xa, start);
1966
1967 if (!n)
1968 return 0;
1969
1970 if ((__force unsigned int)filter < XA_MAX_MARKS)
1971 return xas_extract_marked(&xas, dst, max, n, filter);
1972 return xas_extract_present(&xas, dst, max, n);
1973}
1974EXPORT_SYMBOL(xa_extract);
1975
1976/**
1977 * xa_destroy() - Free all internal data structures.
1978 * @xa: XArray.
1979 *
1980 * After calling this function, the XArray is empty and has freed all memory
1981 * allocated for its internal data structures. You are responsible for
1982 * freeing the objects referenced by the XArray.
1983 *
1984 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1985 */
1986void xa_destroy(struct xarray *xa)
1987{
1988 XA_STATE(xas, xa, 0);
1989 unsigned long flags;
1990 void *entry;
1991
1992 xas.xa_node = NULL;
1993 xas_lock_irqsave(&xas, flags);
1994 entry = xa_head_locked(xa);
1995 RCU_INIT_POINTER(xa->xa_head, NULL);
1996 xas_init_marks(&xas);
1997 if (xa_zero_busy(xa))
1998 xa_mark_clear(xa, XA_FREE_MARK);
1999 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2000 if (xa_is_node(entry))
2001 xas_free_nodes(&xas, xa_to_node(entry));
2002 xas_unlock_irqrestore(&xas, flags);
2003}
2004EXPORT_SYMBOL(xa_destroy);
2005
2006#ifdef XA_DEBUG
2007void xa_dump_node(const struct xa_node *node)
2008{
2009 unsigned i, j;
2010
2011 if (!node)
2012 return;
2013 if ((unsigned long)node & 3) {
2014 pr_cont("node %px\n", node);
2015 return;
2016 }
2017
2018 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2019 "array %px list %px %px marks",
2020 node, node->parent ? "offset" : "max", node->offset,
2021 node->parent, node->shift, node->count, node->nr_values,
2022 node->array, node->private_list.prev, node->private_list.next);
2023 for (i = 0; i < XA_MAX_MARKS; i++)
2024 for (j = 0; j < XA_MARK_LONGS; j++)
2025 pr_cont(" %lx", node->marks[i][j]);
2026 pr_cont("\n");
2027}
2028
2029void xa_dump_index(unsigned long index, unsigned int shift)
2030{
2031 if (!shift)
2032 pr_info("%lu: ", index);
2033 else if (shift >= BITS_PER_LONG)
2034 pr_info("0-%lu: ", ~0UL);
2035 else
2036 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2037}
2038
2039void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2040{
2041 if (!entry)
2042 return;
2043
2044 xa_dump_index(index, shift);
2045
2046 if (xa_is_node(entry)) {
2047 if (shift == 0) {
2048 pr_cont("%px\n", entry);
2049 } else {
2050 unsigned long i;
2051 struct xa_node *node = xa_to_node(entry);
2052 xa_dump_node(node);
2053 for (i = 0; i < XA_CHUNK_SIZE; i++)
2054 xa_dump_entry(node->slots[i],
2055 index + (i << node->shift), node->shift);
2056 }
2057 } else if (xa_is_value(entry))
2058 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2059 xa_to_value(entry), entry);
2060 else if (!xa_is_internal(entry))
2061 pr_cont("%px\n", entry);
2062 else if (xa_is_retry(entry))
2063 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2064 else if (xa_is_sibling(entry))
2065 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2066 else if (xa_is_zero(entry))
2067 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2068 else
2069 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2070}
2071
2072void xa_dump(const struct xarray *xa)
2073{
2074 void *entry = xa->xa_head;
2075 unsigned int shift = 0;
2076
2077 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2078 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2079 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2080 if (xa_is_node(entry))
2081 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2082 xa_dump_entry(entry, 0, shift);
2083}
2084#endif