Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23#include "xfs_btree_staging.h"
  24#include "xfs_ag.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_ialloc_btree.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_rmap_btree.h"
  29#include "xfs_refcount_btree.h"
 
 
 
  30
  31/*
  32 * Btree magic numbers.
  33 */
  34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  35	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  36	  XFS_FIBT_MAGIC, 0 },
  37	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  38	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  39	  XFS_REFC_CRC_MAGIC }
  40};
  41
  42uint32_t
  43xfs_btree_magic(
  44	int			crc,
  45	xfs_btnum_t		btnum)
  46{
  47	uint32_t		magic = xfs_magics[crc][btnum];
 
  48
  49	/* Ensure we asked for crc for crc-only magics. */
  50	ASSERT(magic != 0);
  51	return magic;
  52}
  53
  54/*
  55 * These sibling pointer checks are optimised for null sibling pointers. This
  56 * happens a lot, and we don't need to byte swap at runtime if the sibling
  57 * pointer is NULL.
  58 *
  59 * These are explicitly marked at inline because the cost of calling them as
  60 * functions instead of inlining them is about 36 bytes extra code per call site
  61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
  62 * two sibling check functions reduces the compiled code size by over 300
  63 * bytes.
  64 */
  65static inline xfs_failaddr_t
  66xfs_btree_check_lblock_siblings(
  67	struct xfs_mount	*mp,
  68	struct xfs_btree_cur	*cur,
  69	int			level,
  70	xfs_fsblock_t		fsb,
  71	__be64			dsibling)
  72{
  73	xfs_fsblock_t		sibling;
  74
  75	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  76		return NULL;
  77
  78	sibling = be64_to_cpu(dsibling);
  79	if (sibling == fsb)
  80		return __this_address;
  81	if (level >= 0) {
  82		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
  83			return __this_address;
  84	} else {
  85		if (!xfs_verify_fsbno(mp, sibling))
  86			return __this_address;
  87	}
 
 
 
 
 
  88
 
 
 
 
 
 
 
 
  89	return NULL;
  90}
  91
  92static inline xfs_failaddr_t
  93xfs_btree_check_sblock_siblings(
  94	struct xfs_perag	*pag,
  95	struct xfs_btree_cur	*cur,
  96	int			level,
  97	xfs_agblock_t		agbno,
  98	__be32			dsibling)
  99{
 100	xfs_agblock_t		sibling;
 101
 102	if (dsibling == cpu_to_be32(NULLAGBLOCK))
 103		return NULL;
 104
 105	sibling = be32_to_cpu(dsibling);
 106	if (sibling == agbno)
 107		return __this_address;
 108	if (level >= 0) {
 109		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
 110			return __this_address;
 111	} else {
 112		if (!xfs_verify_agbno(pag, sibling))
 113			return __this_address;
 114	}
 115	return NULL;
 116}
 117
 118/*
 119 * Check a long btree block header.  Return the address of the failing check,
 120 * or NULL if everything is ok.
 121 */
 122xfs_failaddr_t
 123__xfs_btree_check_lblock(
 124	struct xfs_btree_cur	*cur,
 125	struct xfs_btree_block	*block,
 126	int			level,
 127	struct xfs_buf		*bp)
 128{
 129	struct xfs_mount	*mp = cur->bc_mp;
 130	xfs_btnum_t		btnum = cur->bc_btnum;
 131	int			crc = xfs_has_crc(mp);
 132	xfs_failaddr_t		fa;
 133	xfs_fsblock_t		fsb = NULLFSBLOCK;
 134
 135	if (crc) {
 136		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
 137			return __this_address;
 138		if (block->bb_u.l.bb_blkno !=
 139		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 140			return __this_address;
 141		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
 142			return __this_address;
 143	}
 144
 145	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 146		return __this_address;
 147	if (be16_to_cpu(block->bb_level) != level)
 148		return __this_address;
 149	if (be16_to_cpu(block->bb_numrecs) >
 150	    cur->bc_ops->get_maxrecs(cur, level))
 151		return __this_address;
 152
 153	if (bp)
 154		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155
 156	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 157			block->bb_u.l.bb_leftsib);
 158	if (!fa)
 159		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 160				block->bb_u.l.bb_rightsib);
 161	return fa;
 162}
 163
 164/* Check a long btree block header. */
 165static int
 166xfs_btree_check_lblock(
 
 
 
 167	struct xfs_btree_cur	*cur,
 168	struct xfs_btree_block	*block,
 169	int			level,
 170	struct xfs_buf		*bp)
 171{
 172	struct xfs_mount	*mp = cur->bc_mp;
 173	xfs_failaddr_t		fa;
 
 174
 175	fa = __xfs_btree_check_lblock(cur, block, level, bp);
 176	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 177	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
 178		if (bp)
 179			trace_xfs_btree_corrupt(bp, _RET_IP_);
 180		return -EFSCORRUPTED;
 181	}
 182	return 0;
 
 
 
 183}
 184
 185/*
 186 * Check a short btree block header.  Return the address of the failing check,
 187 * or NULL if everything is ok.
 188 */
 189xfs_failaddr_t
 190__xfs_btree_check_sblock(
 191	struct xfs_btree_cur	*cur,
 192	struct xfs_btree_block	*block,
 193	int			level,
 194	struct xfs_buf		*bp)
 195{
 196	struct xfs_mount	*mp = cur->bc_mp;
 197	struct xfs_perag	*pag = cur->bc_ag.pag;
 198	xfs_btnum_t		btnum = cur->bc_btnum;
 199	int			crc = xfs_has_crc(mp);
 200	xfs_failaddr_t		fa;
 201	xfs_agblock_t		agbno = NULLAGBLOCK;
 202
 203	if (crc) {
 204		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 205			return __this_address;
 206		if (block->bb_u.s.bb_blkno !=
 207		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 208			return __this_address;
 209	}
 210
 211	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 212		return __this_address;
 213	if (be16_to_cpu(block->bb_level) != level)
 214		return __this_address;
 215	if (be16_to_cpu(block->bb_numrecs) >
 216	    cur->bc_ops->get_maxrecs(cur, level))
 217		return __this_address;
 218
 219	if (bp)
 220		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
 221
 222	fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 223			block->bb_u.s.bb_leftsib);
 224	if (!fa)
 225		fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 226				block->bb_u.s.bb_rightsib);
 227	return fa;
 228}
 229
 230/* Check a short btree block header. */
 231STATIC int
 232xfs_btree_check_sblock(
 
 
 
 
 233	struct xfs_btree_cur	*cur,
 234	struct xfs_btree_block	*block,
 235	int			level,
 236	struct xfs_buf		*bp)
 237{
 238	struct xfs_mount	*mp = cur->bc_mp;
 239	xfs_failaddr_t		fa;
 240
 241	fa = __xfs_btree_check_sblock(cur, block, level, bp);
 242	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 243	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
 244		if (bp)
 245			trace_xfs_btree_corrupt(bp, _RET_IP_);
 246		return -EFSCORRUPTED;
 
 247	}
 248	return 0;
 
 
 
 
 
 
 249}
 250
 251/*
 252 * Debug routine: check that block header is ok.
 253 */
 254int
 255xfs_btree_check_block(
 256	struct xfs_btree_cur	*cur,	/* btree cursor */
 257	struct xfs_btree_block	*block,	/* generic btree block pointer */
 258	int			level,	/* level of the btree block */
 259	struct xfs_buf		*bp)	/* buffer containing block, if any */
 260{
 261	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 262		return xfs_btree_check_lblock(cur, block, level, bp);
 263	else
 264		return xfs_btree_check_sblock(cur, block, level, bp);
 265}
 266
 267/* Check that this long pointer is valid and points within the fs. */
 268bool
 269xfs_btree_check_lptr(
 270	struct xfs_btree_cur	*cur,
 271	xfs_fsblock_t		fsbno,
 272	int			level)
 273{
 274	if (level <= 0)
 275		return false;
 276	return xfs_verify_fsbno(cur->bc_mp, fsbno);
 277}
 278
 279/* Check that this short pointer is valid and points within the AG. */
 280bool
 281xfs_btree_check_sptr(
 282	struct xfs_btree_cur	*cur,
 283	xfs_agblock_t		agbno,
 284	int			level)
 285{
 286	if (level <= 0)
 287		return false;
 288	return xfs_verify_agbno(cur->bc_ag.pag, agbno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289}
 290
 291/*
 292 * Check that a given (indexed) btree pointer at a certain level of a
 293 * btree is valid and doesn't point past where it should.
 294 */
 295static int
 296xfs_btree_check_ptr(
 297	struct xfs_btree_cur		*cur,
 298	const union xfs_btree_ptr	*ptr,
 299	int				index,
 300	int				level)
 301{
 302	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 303		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
 304				level))
 305			return 0;
 306		xfs_err(cur->bc_mp,
 307"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
 
 
 
 
 
 
 
 
 308				cur->bc_ino.ip->i_ino,
 309				cur->bc_ino.whichfork, cur->bc_btnum,
 310				level, index);
 311	} else {
 312		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
 313				level))
 314			return 0;
 315		xfs_err(cur->bc_mp,
 316"AG %u: Corrupt btree %d pointer at level %d index %d.",
 317				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
 318				level, index);
 
 
 
 319	}
 320
 321	return -EFSCORRUPTED;
 322}
 323
 324#ifdef DEBUG
 325# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
 326#else
 327# define xfs_btree_debug_check_ptr(...)	(0)
 328#endif
 329
 330/*
 331 * Calculate CRC on the whole btree block and stuff it into the
 332 * long-form btree header.
 333 *
 334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 335 * it into the buffer so recovery knows what the last modification was that made
 336 * it to disk.
 337 */
 338void
 339xfs_btree_lblock_calc_crc(
 340	struct xfs_buf		*bp)
 341{
 342	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 343	struct xfs_buf_log_item	*bip = bp->b_log_item;
 344
 345	if (!xfs_has_crc(bp->b_mount))
 346		return;
 347	if (bip)
 348		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 349	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 350}
 351
 352bool
 353xfs_btree_lblock_verify_crc(
 354	struct xfs_buf		*bp)
 355{
 356	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 357	struct xfs_mount	*mp = bp->b_mount;
 358
 359	if (xfs_has_crc(mp)) {
 360		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 361			return false;
 362		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 363	}
 364
 365	return true;
 366}
 367
 368/*
 369 * Calculate CRC on the whole btree block and stuff it into the
 370 * short-form btree header.
 371 *
 372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 373 * it into the buffer so recovery knows what the last modification was that made
 374 * it to disk.
 375 */
 376void
 377xfs_btree_sblock_calc_crc(
 378	struct xfs_buf		*bp)
 379{
 380	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 381	struct xfs_buf_log_item	*bip = bp->b_log_item;
 382
 383	if (!xfs_has_crc(bp->b_mount))
 384		return;
 385	if (bip)
 386		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 387	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 388}
 389
 390bool
 391xfs_btree_sblock_verify_crc(
 392	struct xfs_buf		*bp)
 393{
 394	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 395	struct xfs_mount	*mp = bp->b_mount;
 396
 397	if (xfs_has_crc(mp)) {
 398		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 399			return false;
 400		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 401	}
 402
 403	return true;
 404}
 405
 406static int
 407xfs_btree_free_block(
 408	struct xfs_btree_cur	*cur,
 409	struct xfs_buf		*bp)
 410{
 411	int			error;
 412
 
 
 
 
 
 
 
 
 
 
 
 413	error = cur->bc_ops->free_block(cur, bp);
 414	if (!error) {
 415		xfs_trans_binval(cur->bc_tp, bp);
 416		XFS_BTREE_STATS_INC(cur, free);
 417	}
 418	return error;
 419}
 420
 421/*
 422 * Delete the btree cursor.
 423 */
 424void
 425xfs_btree_del_cursor(
 426	struct xfs_btree_cur	*cur,		/* btree cursor */
 427	int			error)		/* del because of error */
 428{
 429	int			i;		/* btree level */
 430
 431	/*
 432	 * Clear the buffer pointers and release the buffers. If we're doing
 433	 * this because of an error, inspect all of the entries in the bc_bufs
 434	 * array for buffers to be unlocked. This is because some of the btree
 435	 * code works from level n down to 0, and if we get an error along the
 436	 * way we won't have initialized all the entries down to 0.
 437	 */
 438	for (i = 0; i < cur->bc_nlevels; i++) {
 439		if (cur->bc_levels[i].bp)
 440			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
 441		else if (!error)
 442			break;
 443	}
 444
 445	/*
 446	 * If we are doing a BMBT update, the number of unaccounted blocks
 447	 * allocated during this cursor life time should be zero. If it's not
 448	 * zero, then we should be shut down or on our way to shutdown due to
 449	 * cancelling a dirty transaction on error.
 450	 */
 451	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
 452	       xfs_is_shutdown(cur->bc_mp) || error != 0);
 453	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
 454		kmem_free(cur->bc_ops);
 455	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
 456		xfs_perag_put(cur->bc_ag.pag);
 457	kmem_cache_free(cur->bc_cache, cur);
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460/*
 461 * Duplicate the btree cursor.
 462 * Allocate a new one, copy the record, re-get the buffers.
 463 */
 464int					/* error */
 465xfs_btree_dup_cursor(
 466	struct xfs_btree_cur *cur,		/* input cursor */
 467	struct xfs_btree_cur **ncur)		/* output cursor */
 468{
 469	struct xfs_buf	*bp;		/* btree block's buffer pointer */
 470	int		error;		/* error return value */
 471	int		i;		/* level number of btree block */
 472	xfs_mount_t	*mp;		/* mount structure for filesystem */
 473	struct xfs_btree_cur *new;		/* new cursor value */
 474	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
 475
 476	tp = cur->bc_tp;
 477	mp = cur->bc_mp;
 
 
 
 
 
 
 478
 479	/*
 480	 * Allocate a new cursor like the old one.
 481	 */
 482	new = cur->bc_ops->dup_cursor(cur);
 483
 484	/*
 485	 * Copy the record currently in the cursor.
 486	 */
 487	new->bc_rec = cur->bc_rec;
 488
 489	/*
 490	 * For each level current, re-get the buffer and copy the ptr value.
 491	 */
 492	for (i = 0; i < new->bc_nlevels; i++) {
 493		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
 494		new->bc_levels[i].ra = cur->bc_levels[i].ra;
 495		bp = cur->bc_levels[i].bp;
 496		if (bp) {
 497			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 498						   xfs_buf_daddr(bp), mp->m_bsize,
 499						   0, &bp,
 500						   cur->bc_ops->buf_ops);
 
 
 
 501			if (error) {
 502				xfs_btree_del_cursor(new, error);
 503				*ncur = NULL;
 504				return error;
 505			}
 506		}
 507		new->bc_levels[i].bp = bp;
 508	}
 509	*ncur = new;
 510	return 0;
 511}
 512
 513/*
 514 * XFS btree block layout and addressing:
 515 *
 516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 517 *
 518 * The leaf record start with a header then followed by records containing
 519 * the values.  A non-leaf block also starts with the same header, and
 520 * then first contains lookup keys followed by an equal number of pointers
 521 * to the btree blocks at the previous level.
 522 *
 523 *		+--------+-------+-------+-------+-------+-------+-------+
 524 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 525 *		+--------+-------+-------+-------+-------+-------+-------+
 526 *
 527 *		+--------+-------+-------+-------+-------+-------+-------+
 528 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 529 *		+--------+-------+-------+-------+-------+-------+-------+
 530 *
 531 * The header is called struct xfs_btree_block for reasons better left unknown
 532 * and comes in different versions for short (32bit) and long (64bit) block
 533 * pointers.  The record and key structures are defined by the btree instances
 534 * and opaque to the btree core.  The block pointers are simple disk endian
 535 * integers, available in a short (32bit) and long (64bit) variant.
 536 *
 537 * The helpers below calculate the offset of a given record, key or pointer
 538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 539 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 540 * inside the btree block is done using indices starting at one, not zero!
 541 *
 542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 543 * overlapping intervals.  In such a tree, records are still sorted lowest to
 544 * highest and indexed by the smallest key value that refers to the record.
 545 * However, nodes are different: each pointer has two associated keys -- one
 546 * indexing the lowest key available in the block(s) below (the same behavior
 547 * as the key in a regular btree) and another indexing the highest key
 548 * available in the block(s) below.  Because records are /not/ sorted by the
 549 * highest key, all leaf block updates require us to compute the highest key
 550 * that matches any record in the leaf and to recursively update the high keys
 551 * in the nodes going further up in the tree, if necessary.  Nodes look like
 552 * this:
 553 *
 554 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 555 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 556 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 557 *
 558 * To perform an interval query on an overlapped tree, perform the usual
 559 * depth-first search and use the low and high keys to decide if we can skip
 560 * that particular node.  If a leaf node is reached, return the records that
 561 * intersect the interval.  Note that an interval query may return numerous
 562 * entries.  For a non-overlapped tree, simply search for the record associated
 563 * with the lowest key and iterate forward until a non-matching record is
 564 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 566 * more detail.
 567 *
 568 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 569 * reverse mapping records on a reflink filesystem:
 570 *
 571 * 1: +- file A startblock B offset C length D -----------+
 572 * 2:      +- file E startblock F offset G length H --------------+
 573 * 3:      +- file I startblock F offset J length K --+
 574 * 4:                                                        +- file L... --+
 575 *
 576 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 577 * we'd simply increment the length of record 1.  But how do we find the record
 578 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 579 * record 3 because the keys are ordered first by startblock.  An interval
 580 * query would return records 1 and 2 because they both overlap (B+D-1), and
 581 * from that we can pick out record 1 as the appropriate left neighbor.
 582 *
 583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 584 * because a record's interval must end before the next record.
 585 */
 586
 587/*
 588 * Return size of the btree block header for this btree instance.
 589 */
 590static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 591{
 592	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 593		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 594			return XFS_BTREE_LBLOCK_CRC_LEN;
 595		return XFS_BTREE_LBLOCK_LEN;
 596	}
 597	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 598		return XFS_BTREE_SBLOCK_CRC_LEN;
 599	return XFS_BTREE_SBLOCK_LEN;
 600}
 601
 602/*
 603 * Return size of btree block pointers for this btree instance.
 604 */
 605static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 606{
 607	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 608		sizeof(__be64) : sizeof(__be32);
 609}
 610
 611/*
 612 * Calculate offset of the n-th record in a btree block.
 613 */
 614STATIC size_t
 615xfs_btree_rec_offset(
 616	struct xfs_btree_cur	*cur,
 617	int			n)
 618{
 619	return xfs_btree_block_len(cur) +
 620		(n - 1) * cur->bc_ops->rec_len;
 621}
 622
 623/*
 624 * Calculate offset of the n-th key in a btree block.
 625 */
 626STATIC size_t
 627xfs_btree_key_offset(
 628	struct xfs_btree_cur	*cur,
 629	int			n)
 630{
 631	return xfs_btree_block_len(cur) +
 632		(n - 1) * cur->bc_ops->key_len;
 633}
 634
 635/*
 636 * Calculate offset of the n-th high key in a btree block.
 637 */
 638STATIC size_t
 639xfs_btree_high_key_offset(
 640	struct xfs_btree_cur	*cur,
 641	int			n)
 642{
 643	return xfs_btree_block_len(cur) +
 644		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 645}
 646
 647/*
 648 * Calculate offset of the n-th block pointer in a btree block.
 649 */
 650STATIC size_t
 651xfs_btree_ptr_offset(
 652	struct xfs_btree_cur	*cur,
 653	int			n,
 654	int			level)
 655{
 656	return xfs_btree_block_len(cur) +
 657		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 658		(n - 1) * xfs_btree_ptr_len(cur);
 659}
 660
 661/*
 662 * Return a pointer to the n-th record in the btree block.
 663 */
 664union xfs_btree_rec *
 665xfs_btree_rec_addr(
 666	struct xfs_btree_cur	*cur,
 667	int			n,
 668	struct xfs_btree_block	*block)
 669{
 670	return (union xfs_btree_rec *)
 671		((char *)block + xfs_btree_rec_offset(cur, n));
 672}
 673
 674/*
 675 * Return a pointer to the n-th key in the btree block.
 676 */
 677union xfs_btree_key *
 678xfs_btree_key_addr(
 679	struct xfs_btree_cur	*cur,
 680	int			n,
 681	struct xfs_btree_block	*block)
 682{
 683	return (union xfs_btree_key *)
 684		((char *)block + xfs_btree_key_offset(cur, n));
 685}
 686
 687/*
 688 * Return a pointer to the n-th high key in the btree block.
 689 */
 690union xfs_btree_key *
 691xfs_btree_high_key_addr(
 692	struct xfs_btree_cur	*cur,
 693	int			n,
 694	struct xfs_btree_block	*block)
 695{
 696	return (union xfs_btree_key *)
 697		((char *)block + xfs_btree_high_key_offset(cur, n));
 698}
 699
 700/*
 701 * Return a pointer to the n-th block pointer in the btree block.
 702 */
 703union xfs_btree_ptr *
 704xfs_btree_ptr_addr(
 705	struct xfs_btree_cur	*cur,
 706	int			n,
 707	struct xfs_btree_block	*block)
 708{
 709	int			level = xfs_btree_get_level(block);
 710
 711	ASSERT(block->bb_level != 0);
 712
 713	return (union xfs_btree_ptr *)
 714		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 715}
 716
 717struct xfs_ifork *
 718xfs_btree_ifork_ptr(
 719	struct xfs_btree_cur	*cur)
 720{
 721	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
 722
 723	if (cur->bc_flags & XFS_BTREE_STAGING)
 724		return cur->bc_ino.ifake->if_fork;
 725	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
 726}
 727
 728/*
 729 * Get the root block which is stored in the inode.
 730 *
 731 * For now this btree implementation assumes the btree root is always
 732 * stored in the if_broot field of an inode fork.
 733 */
 734STATIC struct xfs_btree_block *
 735xfs_btree_get_iroot(
 736	struct xfs_btree_cur	*cur)
 737{
 738	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 739
 740	return (struct xfs_btree_block *)ifp->if_broot;
 741}
 742
 743/*
 744 * Retrieve the block pointer from the cursor at the given level.
 745 * This may be an inode btree root or from a buffer.
 746 */
 747struct xfs_btree_block *		/* generic btree block pointer */
 748xfs_btree_get_block(
 749	struct xfs_btree_cur	*cur,	/* btree cursor */
 750	int			level,	/* level in btree */
 751	struct xfs_buf		**bpp)	/* buffer containing the block */
 752{
 753	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 754	    (level == cur->bc_nlevels - 1)) {
 755		*bpp = NULL;
 756		return xfs_btree_get_iroot(cur);
 757	}
 758
 759	*bpp = cur->bc_levels[level].bp;
 760	return XFS_BUF_TO_BLOCK(*bpp);
 761}
 762
 763/*
 764 * Change the cursor to point to the first record at the given level.
 765 * Other levels are unaffected.
 766 */
 767STATIC int				/* success=1, failure=0 */
 768xfs_btree_firstrec(
 769	struct xfs_btree_cur	*cur,	/* btree cursor */
 770	int			level)	/* level to change */
 771{
 772	struct xfs_btree_block	*block;	/* generic btree block pointer */
 773	struct xfs_buf		*bp;	/* buffer containing block */
 774
 775	/*
 776	 * Get the block pointer for this level.
 777	 */
 778	block = xfs_btree_get_block(cur, level, &bp);
 779	if (xfs_btree_check_block(cur, block, level, bp))
 780		return 0;
 781	/*
 782	 * It's empty, there is no such record.
 783	 */
 784	if (!block->bb_numrecs)
 785		return 0;
 786	/*
 787	 * Set the ptr value to 1, that's the first record/key.
 788	 */
 789	cur->bc_levels[level].ptr = 1;
 790	return 1;
 791}
 792
 793/*
 794 * Change the cursor to point to the last record in the current block
 795 * at the given level.  Other levels are unaffected.
 796 */
 797STATIC int				/* success=1, failure=0 */
 798xfs_btree_lastrec(
 799	struct xfs_btree_cur	*cur,	/* btree cursor */
 800	int			level)	/* level to change */
 801{
 802	struct xfs_btree_block	*block;	/* generic btree block pointer */
 803	struct xfs_buf		*bp;	/* buffer containing block */
 804
 805	/*
 806	 * Get the block pointer for this level.
 807	 */
 808	block = xfs_btree_get_block(cur, level, &bp);
 809	if (xfs_btree_check_block(cur, block, level, bp))
 810		return 0;
 811	/*
 812	 * It's empty, there is no such record.
 813	 */
 814	if (!block->bb_numrecs)
 815		return 0;
 816	/*
 817	 * Set the ptr value to numrecs, that's the last record/key.
 818	 */
 819	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
 820	return 1;
 821}
 822
 823/*
 824 * Compute first and last byte offsets for the fields given.
 825 * Interprets the offsets table, which contains struct field offsets.
 826 */
 827void
 828xfs_btree_offsets(
 829	uint32_t	fields,		/* bitmask of fields */
 830	const short	*offsets,	/* table of field offsets */
 831	int		nbits,		/* number of bits to inspect */
 832	int		*first,		/* output: first byte offset */
 833	int		*last)		/* output: last byte offset */
 834{
 835	int		i;		/* current bit number */
 836	uint32_t	imask;		/* mask for current bit number */
 837
 838	ASSERT(fields != 0);
 839	/*
 840	 * Find the lowest bit, so the first byte offset.
 841	 */
 842	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
 843		if (imask & fields) {
 844			*first = offsets[i];
 845			break;
 846		}
 847	}
 848	/*
 849	 * Find the highest bit, so the last byte offset.
 850	 */
 851	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
 852		if (imask & fields) {
 853			*last = offsets[i + 1] - 1;
 854			break;
 855		}
 856	}
 857}
 858
 859/*
 860 * Get a buffer for the block, return it read in.
 861 * Long-form addressing.
 862 */
 863int
 864xfs_btree_read_bufl(
 865	struct xfs_mount	*mp,		/* file system mount point */
 866	struct xfs_trans	*tp,		/* transaction pointer */
 867	xfs_fsblock_t		fsbno,		/* file system block number */
 868	struct xfs_buf		**bpp,		/* buffer for fsbno */
 869	int			refval,		/* ref count value for buffer */
 870	const struct xfs_buf_ops *ops)
 871{
 872	struct xfs_buf		*bp;		/* return value */
 873	xfs_daddr_t		d;		/* real disk block address */
 874	int			error;
 875
 876	if (!xfs_verify_fsbno(mp, fsbno))
 877		return -EFSCORRUPTED;
 878	d = XFS_FSB_TO_DADDR(mp, fsbno);
 879	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 880				   mp->m_bsize, 0, &bp, ops);
 881	if (error)
 882		return error;
 883	if (bp)
 884		xfs_buf_set_ref(bp, refval);
 885	*bpp = bp;
 886	return 0;
 887}
 888
 889/*
 890 * Read-ahead the block, don't wait for it, don't return a buffer.
 891 * Long-form addressing.
 892 */
 893/* ARGSUSED */
 894void
 895xfs_btree_reada_bufl(
 896	struct xfs_mount	*mp,		/* file system mount point */
 897	xfs_fsblock_t		fsbno,		/* file system block number */
 898	xfs_extlen_t		count,		/* count of filesystem blocks */
 899	const struct xfs_buf_ops *ops)
 900{
 901	xfs_daddr_t		d;
 
 
 
 902
 903	ASSERT(fsbno != NULLFSBLOCK);
 904	d = XFS_FSB_TO_DADDR(mp, fsbno);
 905	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 906}
 
 907
 908/*
 909 * Read-ahead the block, don't wait for it, don't return a buffer.
 910 * Short-form addressing.
 911 */
 912/* ARGSUSED */
 913void
 914xfs_btree_reada_bufs(
 915	struct xfs_mount	*mp,		/* file system mount point */
 916	xfs_agnumber_t		agno,		/* allocation group number */
 917	xfs_agblock_t		agbno,		/* allocation group block number */
 918	xfs_extlen_t		count,		/* count of filesystem blocks */
 919	const struct xfs_buf_ops *ops)
 920{
 921	xfs_daddr_t		d;
 922
 923	ASSERT(agno != NULLAGNUMBER);
 924	ASSERT(agbno != NULLAGBLOCK);
 925	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 926	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 927}
 928
 929STATIC int
 930xfs_btree_readahead_lblock(
 931	struct xfs_btree_cur	*cur,
 932	int			lr,
 933	struct xfs_btree_block	*block)
 934{
 
 
 
 935	int			rval = 0;
 936	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 937	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 938
 939	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 940		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 941				     cur->bc_ops->buf_ops);
 942		rval++;
 943	}
 944
 945	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 946		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 947				     cur->bc_ops->buf_ops);
 948		rval++;
 949	}
 950
 951	return rval;
 952}
 953
 954STATIC int
 955xfs_btree_readahead_sblock(
 956	struct xfs_btree_cur	*cur,
 957	int			lr,
 958	struct xfs_btree_block *block)
 959{
 960	int			rval = 0;
 
 961	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 962	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 963
 964
 965	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 966		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 967				     left, 1, cur->bc_ops->buf_ops);
 
 968		rval++;
 969	}
 970
 971	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 972		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 973				     right, 1, cur->bc_ops->buf_ops);
 
 974		rval++;
 975	}
 976
 977	return rval;
 978}
 979
 980/*
 981 * Read-ahead btree blocks, at the given level.
 982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 983 */
 984STATIC int
 985xfs_btree_readahead(
 986	struct xfs_btree_cur	*cur,		/* btree cursor */
 987	int			lev,		/* level in btree */
 988	int			lr)		/* left/right bits */
 989{
 990	struct xfs_btree_block	*block;
 991
 992	/*
 993	 * No readahead needed if we are at the root level and the
 994	 * btree root is stored in the inode.
 995	 */
 996	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 997	    (lev == cur->bc_nlevels - 1))
 998		return 0;
 999
1000	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001		return 0;
1002
1003	cur->bc_levels[lev].ra |= lr;
1004	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007		return xfs_btree_readahead_lblock(cur, lr, block);
1008	return xfs_btree_readahead_sblock(cur, lr, block);
 
 
 
 
 
 
 
 
1009}
1010
1011STATIC int
1012xfs_btree_ptr_to_daddr(
1013	struct xfs_btree_cur		*cur,
1014	const union xfs_btree_ptr	*ptr,
1015	xfs_daddr_t			*daddr)
1016{
1017	xfs_fsblock_t		fsbno;
1018	xfs_agblock_t		agbno;
1019	int			error;
1020
1021	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022	if (error)
1023		return error;
1024
1025	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026		fsbno = be64_to_cpu(ptr->l);
1027		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028	} else {
1029		agbno = be32_to_cpu(ptr->s);
1030		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031				agbno);
 
 
 
 
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043STATIC void
1044xfs_btree_readahead_ptr(
1045	struct xfs_btree_cur	*cur,
1046	union xfs_btree_ptr	*ptr,
1047	xfs_extlen_t		count)
1048{
1049	xfs_daddr_t		daddr;
1050
1051	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052		return;
1053	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 
1055}
1056
1057/*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061STATIC void
1062xfs_btree_setbuf(
1063	struct xfs_btree_cur	*cur,	/* btree cursor */
1064	int			lev,	/* level in btree */
1065	struct xfs_buf		*bp)	/* new buffer to set */
1066{
1067	struct xfs_btree_block	*b;	/* btree block */
1068
1069	if (cur->bc_levels[lev].bp)
1070		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071	cur->bc_levels[lev].bp = bp;
1072	cur->bc_levels[lev].ra = 0;
1073
1074	b = XFS_BUF_TO_BLOCK(bp);
1075	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080	} else {
1081		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085	}
1086}
1087
1088bool
1089xfs_btree_ptr_is_null(
1090	struct xfs_btree_cur		*cur,
1091	const union xfs_btree_ptr	*ptr)
1092{
1093	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095	else
1096		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097}
1098
1099void
1100xfs_btree_set_ptr_null(
1101	struct xfs_btree_cur	*cur,
1102	union xfs_btree_ptr	*ptr)
1103{
1104	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105		ptr->l = cpu_to_be64(NULLFSBLOCK);
1106	else
1107		ptr->s = cpu_to_be32(NULLAGBLOCK);
1108}
1109
 
 
 
 
 
 
 
 
 
 
 
1110/*
1111 * Get/set/init sibling pointers
1112 */
1113void
1114xfs_btree_get_sibling(
1115	struct xfs_btree_cur	*cur,
1116	struct xfs_btree_block	*block,
1117	union xfs_btree_ptr	*ptr,
1118	int			lr)
1119{
1120	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123		if (lr == XFS_BB_RIGHTSIB)
1124			ptr->l = block->bb_u.l.bb_rightsib;
1125		else
1126			ptr->l = block->bb_u.l.bb_leftsib;
1127	} else {
1128		if (lr == XFS_BB_RIGHTSIB)
1129			ptr->s = block->bb_u.s.bb_rightsib;
1130		else
1131			ptr->s = block->bb_u.s.bb_leftsib;
1132	}
1133}
1134
1135void
1136xfs_btree_set_sibling(
1137	struct xfs_btree_cur		*cur,
1138	struct xfs_btree_block		*block,
1139	const union xfs_btree_ptr	*ptr,
1140	int				lr)
1141{
1142	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145		if (lr == XFS_BB_RIGHTSIB)
1146			block->bb_u.l.bb_rightsib = ptr->l;
1147		else
1148			block->bb_u.l.bb_leftsib = ptr->l;
1149	} else {
1150		if (lr == XFS_BB_RIGHTSIB)
1151			block->bb_u.s.bb_rightsib = ptr->s;
1152		else
1153			block->bb_u.s.bb_leftsib = ptr->s;
1154	}
1155}
1156
1157void
1158xfs_btree_init_block_int(
1159	struct xfs_mount	*mp,
1160	struct xfs_btree_block	*buf,
 
1161	xfs_daddr_t		blkno,
1162	xfs_btnum_t		btnum,
1163	__u16			level,
1164	__u16			numrecs,
1165	__u64			owner,
1166	unsigned int		flags)
1167{
1168	int			crc = xfs_has_crc(mp);
1169	__u32			magic = xfs_btree_magic(crc, btnum);
1170
1171	buf->bb_magic = cpu_to_be32(magic);
1172	buf->bb_level = cpu_to_be16(level);
1173	buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175	if (flags & XFS_BTREE_LONG_PTRS) {
1176		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178		if (crc) {
1179			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182			buf->bb_u.l.bb_pad = 0;
1183			buf->bb_u.l.bb_lsn = 0;
1184		}
1185	} else {
1186		/* owner is a 32 bit value on short blocks */
1187		__u32 __owner = (__u32)owner;
1188
1189		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191		if (crc) {
1192			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
 
1194			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195			buf->bb_u.s.bb_lsn = 0;
1196		}
1197	}
1198}
1199
1200void
1201xfs_btree_init_block(
1202	struct xfs_mount *mp,
1203	struct xfs_buf	*bp,
1204	xfs_btnum_t	btnum,
1205	__u16		level,
1206	__u16		numrecs,
1207	__u64		owner)
1208{
1209	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210				 btnum, level, numrecs, owner, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211}
1212
1213void
1214xfs_btree_init_block_cur(
1215	struct xfs_btree_cur	*cur,
1216	struct xfs_buf		*bp,
1217	int			level,
1218	int			numrecs)
1219{
1220	__u64			owner;
1221
1222	/*
1223	 * we can pull the owner from the cursor right now as the different
1224	 * owners align directly with the pointer size of the btree. This may
1225	 * change in future, but is safe for current users of the generic btree
1226	 * code.
1227	 */
1228	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229		owner = cur->bc_ino.ip->i_ino;
1230	else
1231		owner = cur->bc_ag.pag->pag_agno;
1232
1233	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234				xfs_buf_daddr(bp), cur->bc_btnum, level,
1235				numrecs, owner, cur->bc_flags);
1236}
1237
1238/*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record.  The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243STATIC int
1244xfs_btree_is_lastrec(
1245	struct xfs_btree_cur	*cur,
1246	struct xfs_btree_block	*block,
1247	int			level)
1248{
1249	union xfs_btree_ptr	ptr;
1250
1251	if (level > 0)
1252		return 0;
1253	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254		return 0;
1255
1256	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257	if (!xfs_btree_ptr_is_null(cur, &ptr))
1258		return 0;
1259	return 1;
1260}
1261
1262STATIC void
1263xfs_btree_buf_to_ptr(
1264	struct xfs_btree_cur	*cur,
1265	struct xfs_buf		*bp,
1266	union xfs_btree_ptr	*ptr)
1267{
1268	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270					xfs_buf_daddr(bp)));
1271	else {
1272		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273					xfs_buf_daddr(bp)));
 
 
 
 
 
 
 
 
1274	}
1275}
1276
1277STATIC void
1278xfs_btree_set_refs(
1279	struct xfs_btree_cur	*cur,
1280	struct xfs_buf		*bp)
1281{
1282	switch (cur->bc_btnum) {
1283	case XFS_BTNUM_BNO:
1284	case XFS_BTNUM_CNT:
1285		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286		break;
1287	case XFS_BTNUM_INO:
1288	case XFS_BTNUM_FINO:
1289		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290		break;
1291	case XFS_BTNUM_BMAP:
1292		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293		break;
1294	case XFS_BTNUM_RMAP:
1295		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296		break;
1297	case XFS_BTNUM_REFC:
1298		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299		break;
1300	default:
1301		ASSERT(0);
1302	}
1303}
1304
1305int
1306xfs_btree_get_buf_block(
1307	struct xfs_btree_cur		*cur,
1308	const union xfs_btree_ptr	*ptr,
1309	struct xfs_btree_block		**block,
1310	struct xfs_buf			**bpp)
1311{
1312	struct xfs_mount	*mp = cur->bc_mp;
1313	xfs_daddr_t		d;
1314	int			error;
1315
1316	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317	if (error)
1318		return error;
1319	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320			0, bpp);
1321	if (error)
1322		return error;
1323
1324	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1325	*block = XFS_BUF_TO_BLOCK(*bpp);
1326	return 0;
1327}
1328
1329/*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333int
1334xfs_btree_read_buf_block(
1335	struct xfs_btree_cur		*cur,
1336	const union xfs_btree_ptr	*ptr,
1337	int				flags,
1338	struct xfs_btree_block		**block,
1339	struct xfs_buf			**bpp)
1340{
1341	struct xfs_mount	*mp = cur->bc_mp;
1342	xfs_daddr_t		d;
1343	int			error;
1344
1345	/* need to sort out how callers deal with failures first */
1346	ASSERT(!(flags & XBF_TRYLOCK));
1347
1348	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349	if (error)
1350		return error;
1351	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352				   mp->m_bsize, flags, bpp,
1353				   cur->bc_ops->buf_ops);
 
 
1354	if (error)
1355		return error;
1356
1357	xfs_btree_set_refs(cur, *bpp);
1358	*block = XFS_BUF_TO_BLOCK(*bpp);
1359	return 0;
1360}
1361
1362/*
1363 * Copy keys from one btree block to another.
1364 */
1365void
1366xfs_btree_copy_keys(
1367	struct xfs_btree_cur		*cur,
1368	union xfs_btree_key		*dst_key,
1369	const union xfs_btree_key	*src_key,
1370	int				numkeys)
1371{
1372	ASSERT(numkeys >= 0);
1373	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374}
1375
1376/*
1377 * Copy records from one btree block to another.
1378 */
1379STATIC void
1380xfs_btree_copy_recs(
1381	struct xfs_btree_cur	*cur,
1382	union xfs_btree_rec	*dst_rec,
1383	union xfs_btree_rec	*src_rec,
1384	int			numrecs)
1385{
1386	ASSERT(numrecs >= 0);
1387	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388}
1389
1390/*
1391 * Copy block pointers from one btree block to another.
1392 */
1393void
1394xfs_btree_copy_ptrs(
1395	struct xfs_btree_cur	*cur,
1396	union xfs_btree_ptr	*dst_ptr,
1397	const union xfs_btree_ptr *src_ptr,
1398	int			numptrs)
1399{
1400	ASSERT(numptrs >= 0);
1401	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402}
1403
1404/*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407STATIC void
1408xfs_btree_shift_keys(
1409	struct xfs_btree_cur	*cur,
1410	union xfs_btree_key	*key,
1411	int			dir,
1412	int			numkeys)
1413{
1414	char			*dst_key;
1415
1416	ASSERT(numkeys >= 0);
1417	ASSERT(dir == 1 || dir == -1);
1418
1419	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426STATIC void
1427xfs_btree_shift_recs(
1428	struct xfs_btree_cur	*cur,
1429	union xfs_btree_rec	*rec,
1430	int			dir,
1431	int			numrecs)
1432{
1433	char			*dst_rec;
1434
1435	ASSERT(numrecs >= 0);
1436	ASSERT(dir == 1 || dir == -1);
1437
1438	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440}
1441
1442/*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445STATIC void
1446xfs_btree_shift_ptrs(
1447	struct xfs_btree_cur	*cur,
1448	union xfs_btree_ptr	*ptr,
1449	int			dir,
1450	int			numptrs)
1451{
1452	char			*dst_ptr;
1453
1454	ASSERT(numptrs >= 0);
1455	ASSERT(dir == 1 || dir == -1);
1456
1457	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459}
1460
1461/*
1462 * Log key values from the btree block.
1463 */
1464STATIC void
1465xfs_btree_log_keys(
1466	struct xfs_btree_cur	*cur,
1467	struct xfs_buf		*bp,
1468	int			first,
1469	int			last)
1470{
1471
1472	if (bp) {
1473		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474		xfs_trans_log_buf(cur->bc_tp, bp,
1475				  xfs_btree_key_offset(cur, first),
1476				  xfs_btree_key_offset(cur, last + 1) - 1);
1477	} else {
1478		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480	}
1481}
1482
1483/*
1484 * Log record values from the btree block.
1485 */
1486void
1487xfs_btree_log_recs(
1488	struct xfs_btree_cur	*cur,
1489	struct xfs_buf		*bp,
1490	int			first,
1491	int			last)
1492{
1493
1494	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495	xfs_trans_log_buf(cur->bc_tp, bp,
1496			  xfs_btree_rec_offset(cur, first),
1497			  xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499}
1500
1501/*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504STATIC void
1505xfs_btree_log_ptrs(
1506	struct xfs_btree_cur	*cur,	/* btree cursor */
1507	struct xfs_buf		*bp,	/* buffer containing btree block */
1508	int			first,	/* index of first pointer to log */
1509	int			last)	/* index of last pointer to log */
1510{
1511
1512	if (bp) {
1513		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1514		int			level = xfs_btree_get_level(block);
1515
1516		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517		xfs_trans_log_buf(cur->bc_tp, bp,
1518				xfs_btree_ptr_offset(cur, first, level),
1519				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520	} else {
1521		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523	}
1524
1525}
1526
1527/*
1528 * Log fields from a btree block header.
1529 */
1530void
1531xfs_btree_log_block(
1532	struct xfs_btree_cur	*cur,	/* btree cursor */
1533	struct xfs_buf		*bp,	/* buffer containing btree block */
1534	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1535{
1536	int			first;	/* first byte offset logged */
1537	int			last;	/* last byte offset logged */
1538	static const short	soffsets[] = {	/* table of offsets (short) */
1539		offsetof(struct xfs_btree_block, bb_magic),
1540		offsetof(struct xfs_btree_block, bb_level),
1541		offsetof(struct xfs_btree_block, bb_numrecs),
1542		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549		XFS_BTREE_SBLOCK_CRC_LEN
1550	};
1551	static const short	loffsets[] = {	/* table of offsets (long) */
1552		offsetof(struct xfs_btree_block, bb_magic),
1553		offsetof(struct xfs_btree_block, bb_level),
1554		offsetof(struct xfs_btree_block, bb_numrecs),
1555		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563		XFS_BTREE_LBLOCK_CRC_LEN
1564	};
1565
1566	if (bp) {
1567		int nbits;
1568
1569		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570			/*
1571			 * We don't log the CRC when updating a btree
1572			 * block but instead recreate it during log
1573			 * recovery.  As the log buffers have checksums
1574			 * of their own this is safe and avoids logging a crc
1575			 * update in a lot of places.
1576			 */
1577			if (fields == XFS_BB_ALL_BITS)
1578				fields = XFS_BB_ALL_BITS_CRC;
1579			nbits = XFS_BB_NUM_BITS_CRC;
1580		} else {
1581			nbits = XFS_BB_NUM_BITS;
1582		}
1583		xfs_btree_offsets(fields,
1584				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585					loffsets : soffsets,
1586				  nbits, &first, &last);
1587		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589	} else {
1590		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592	}
1593}
1594
1595/*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599int						/* error */
1600xfs_btree_increment(
1601	struct xfs_btree_cur	*cur,
1602	int			level,
1603	int			*stat)		/* success/failure */
1604{
1605	struct xfs_btree_block	*block;
1606	union xfs_btree_ptr	ptr;
1607	struct xfs_buf		*bp;
1608	int			error;		/* error return value */
1609	int			lev;
1610
1611	ASSERT(level < cur->bc_nlevels);
1612
1613	/* Read-ahead to the right at this level. */
1614	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616	/* Get a pointer to the btree block. */
1617	block = xfs_btree_get_block(cur, level, &bp);
1618
1619#ifdef DEBUG
1620	error = xfs_btree_check_block(cur, block, level, bp);
1621	if (error)
1622		goto error0;
1623#endif
1624
1625	/* We're done if we remain in the block after the increment. */
1626	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627		goto out1;
1628
1629	/* Fail if we just went off the right edge of the tree. */
1630	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631	if (xfs_btree_ptr_is_null(cur, &ptr))
1632		goto out0;
1633
1634	XFS_BTREE_STATS_INC(cur, increment);
1635
1636	/*
1637	 * March up the tree incrementing pointers.
1638	 * Stop when we don't go off the right edge of a block.
1639	 */
1640	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641		block = xfs_btree_get_block(cur, lev, &bp);
1642
1643#ifdef DEBUG
1644		error = xfs_btree_check_block(cur, block, lev, bp);
1645		if (error)
1646			goto error0;
1647#endif
1648
1649		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650			break;
1651
1652		/* Read-ahead the right block for the next loop. */
1653		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654	}
1655
1656	/*
1657	 * If we went off the root then we are either seriously
1658	 * confused or have the tree root in an inode.
1659	 */
1660	if (lev == cur->bc_nlevels) {
1661		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662			goto out0;
1663		ASSERT(0);
 
1664		error = -EFSCORRUPTED;
1665		goto error0;
1666	}
1667	ASSERT(lev < cur->bc_nlevels);
1668
1669	/*
1670	 * Now walk back down the tree, fixing up the cursor's buffer
1671	 * pointers and key numbers.
1672	 */
1673	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674		union xfs_btree_ptr	*ptrp;
1675
1676		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677		--lev;
1678		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679		if (error)
1680			goto error0;
1681
1682		xfs_btree_setbuf(cur, lev, bp);
1683		cur->bc_levels[lev].ptr = 1;
1684	}
1685out1:
1686	*stat = 1;
1687	return 0;
1688
1689out0:
1690	*stat = 0;
1691	return 0;
1692
1693error0:
1694	return error;
1695}
1696
1697/*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701int						/* error */
1702xfs_btree_decrement(
1703	struct xfs_btree_cur	*cur,
1704	int			level,
1705	int			*stat)		/* success/failure */
1706{
1707	struct xfs_btree_block	*block;
1708	struct xfs_buf		*bp;
1709	int			error;		/* error return value */
1710	int			lev;
1711	union xfs_btree_ptr	ptr;
1712
1713	ASSERT(level < cur->bc_nlevels);
1714
1715	/* Read-ahead to the left at this level. */
1716	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718	/* We're done if we remain in the block after the decrement. */
1719	if (--cur->bc_levels[level].ptr > 0)
1720		goto out1;
1721
1722	/* Get a pointer to the btree block. */
1723	block = xfs_btree_get_block(cur, level, &bp);
1724
1725#ifdef DEBUG
1726	error = xfs_btree_check_block(cur, block, level, bp);
1727	if (error)
1728		goto error0;
1729#endif
1730
1731	/* Fail if we just went off the left edge of the tree. */
1732	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733	if (xfs_btree_ptr_is_null(cur, &ptr))
1734		goto out0;
1735
1736	XFS_BTREE_STATS_INC(cur, decrement);
1737
1738	/*
1739	 * March up the tree decrementing pointers.
1740	 * Stop when we don't go off the left edge of a block.
1741	 */
1742	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743		if (--cur->bc_levels[lev].ptr > 0)
1744			break;
1745		/* Read-ahead the left block for the next loop. */
1746		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747	}
1748
1749	/*
1750	 * If we went off the root then we are seriously confused.
1751	 * or the root of the tree is in an inode.
1752	 */
1753	if (lev == cur->bc_nlevels) {
1754		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755			goto out0;
1756		ASSERT(0);
 
1757		error = -EFSCORRUPTED;
1758		goto error0;
1759	}
1760	ASSERT(lev < cur->bc_nlevels);
1761
1762	/*
1763	 * Now walk back down the tree, fixing up the cursor's buffer
1764	 * pointers and key numbers.
1765	 */
1766	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767		union xfs_btree_ptr	*ptrp;
1768
1769		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770		--lev;
1771		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772		if (error)
1773			goto error0;
1774		xfs_btree_setbuf(cur, lev, bp);
1775		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776	}
1777out1:
1778	*stat = 1;
1779	return 0;
1780
1781out0:
1782	*stat = 0;
1783	return 0;
1784
1785error0:
1786	return error;
1787}
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789int
1790xfs_btree_lookup_get_block(
1791	struct xfs_btree_cur		*cur,	/* btree cursor */
1792	int				level,	/* level in the btree */
1793	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1794	struct xfs_btree_block		**blkp) /* return btree block */
1795{
1796	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1797	xfs_daddr_t		daddr;
1798	int			error = 0;
1799
1800	/* special case the root block if in an inode */
1801	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802	    (level == cur->bc_nlevels - 1)) {
1803		*blkp = xfs_btree_get_iroot(cur);
1804		return 0;
1805	}
1806
1807	/*
1808	 * If the old buffer at this level for the disk address we are
1809	 * looking for re-use it.
1810	 *
1811	 * Otherwise throw it away and get a new one.
1812	 */
1813	bp = cur->bc_levels[level].bp;
1814	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815	if (error)
1816		return error;
1817	if (bp && xfs_buf_daddr(bp) == daddr) {
1818		*blkp = XFS_BUF_TO_BLOCK(bp);
1819		return 0;
1820	}
1821
1822	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823	if (error)
1824		return error;
1825
1826	/* Check the inode owner since the verifiers don't. */
1827	if (xfs_has_crc(cur->bc_mp) &&
1828	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831			cur->bc_ino.ip->i_ino)
1832		goto out_bad;
1833
1834	/* Did we get the level we were looking for? */
1835	if (be16_to_cpu((*blkp)->bb_level) != level)
1836		goto out_bad;
1837
1838	/* Check that internal nodes have at least one record. */
1839	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840		goto out_bad;
1841
1842	xfs_btree_setbuf(cur, level, bp);
1843	return 0;
1844
1845out_bad:
1846	*blkp = NULL;
1847	xfs_buf_mark_corrupt(bp);
1848	xfs_trans_brelse(cur->bc_tp, bp);
 
1849	return -EFSCORRUPTED;
1850}
1851
1852/*
1853 * Get current search key.  For level 0 we don't actually have a key
1854 * structure so we make one up from the record.  For all other levels
1855 * we just return the right key.
1856 */
1857STATIC union xfs_btree_key *
1858xfs_lookup_get_search_key(
1859	struct xfs_btree_cur	*cur,
1860	int			level,
1861	int			keyno,
1862	struct xfs_btree_block	*block,
1863	union xfs_btree_key	*kp)
1864{
1865	if (level == 0) {
1866		cur->bc_ops->init_key_from_rec(kp,
1867				xfs_btree_rec_addr(cur, keyno, block));
1868		return kp;
1869	}
1870
1871	return xfs_btree_key_addr(cur, keyno, block);
1872}
1873
1874/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875 * Lookup the record.  The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878int					/* error */
1879xfs_btree_lookup(
1880	struct xfs_btree_cur	*cur,	/* btree cursor */
1881	xfs_lookup_t		dir,	/* <=, ==, or >= */
1882	int			*stat)	/* success/failure */
1883{
1884	struct xfs_btree_block	*block;	/* current btree block */
1885	int64_t			diff;	/* difference for the current key */
1886	int			error;	/* error return value */
1887	int			keyno;	/* current key number */
1888	int			level;	/* level in the btree */
1889	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1890	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1891
1892	XFS_BTREE_STATS_INC(cur, lookup);
1893
1894	/* No such thing as a zero-level tree. */
1895	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
 
1896		return -EFSCORRUPTED;
 
1897
1898	block = NULL;
1899	keyno = 0;
1900
1901	/* initialise start pointer from cursor */
1902	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903	pp = &ptr;
1904
1905	/*
1906	 * Iterate over each level in the btree, starting at the root.
1907	 * For each level above the leaves, find the key we need, based
1908	 * on the lookup record, then follow the corresponding block
1909	 * pointer down to the next level.
1910	 */
1911	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912		/* Get the block we need to do the lookup on. */
1913		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914		if (error)
1915			goto error0;
1916
1917		if (diff == 0) {
1918			/*
1919			 * If we already had a key match at a higher level, we
1920			 * know we need to use the first entry in this block.
1921			 */
1922			keyno = 1;
1923		} else {
1924			/* Otherwise search this block. Do a binary search. */
1925
1926			int	high;	/* high entry number */
1927			int	low;	/* low entry number */
1928
1929			/* Set low and high entry numbers, 1-based. */
1930			low = 1;
1931			high = xfs_btree_get_numrecs(block);
1932			if (!high) {
1933				/* Block is empty, must be an empty leaf. */
1934				if (level != 0 || cur->bc_nlevels != 1) {
1935					XFS_CORRUPTION_ERROR(__func__,
1936							XFS_ERRLEVEL_LOW,
1937							cur->bc_mp, block,
1938							sizeof(*block));
 
1939					return -EFSCORRUPTED;
1940				}
1941
1942				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943				*stat = 0;
1944				return 0;
1945			}
1946
1947			/* Binary search the block. */
1948			while (low <= high) {
1949				union xfs_btree_key	key;
1950				union xfs_btree_key	*kp;
1951
1952				XFS_BTREE_STATS_INC(cur, compare);
1953
1954				/* keyno is average of low and high. */
1955				keyno = (low + high) >> 1;
1956
1957				/* Get current search key */
1958				kp = xfs_lookup_get_search_key(cur, level,
1959						keyno, block, &key);
1960
1961				/*
1962				 * Compute difference to get next direction:
1963				 *  - less than, move right
1964				 *  - greater than, move left
1965				 *  - equal, we're done
1966				 */
1967				diff = cur->bc_ops->key_diff(cur, kp);
1968				if (diff < 0)
1969					low = keyno + 1;
1970				else if (diff > 0)
1971					high = keyno - 1;
1972				else
1973					break;
1974			}
1975		}
1976
1977		/*
1978		 * If there are more levels, set up for the next level
1979		 * by getting the block number and filling in the cursor.
1980		 */
1981		if (level > 0) {
1982			/*
1983			 * If we moved left, need the previous key number,
1984			 * unless there isn't one.
1985			 */
1986			if (diff > 0 && --keyno < 1)
1987				keyno = 1;
1988			pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991			if (error)
1992				goto error0;
1993
1994			cur->bc_levels[level].ptr = keyno;
1995		}
1996	}
1997
1998	/* Done with the search. See if we need to adjust the results. */
1999	if (dir != XFS_LOOKUP_LE && diff < 0) {
2000		keyno++;
2001		/*
2002		 * If ge search and we went off the end of the block, but it's
2003		 * not the last block, we're in the wrong block.
2004		 */
2005		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006		if (dir == XFS_LOOKUP_GE &&
2007		    keyno > xfs_btree_get_numrecs(block) &&
2008		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2009			int	i;
2010
2011			cur->bc_levels[0].ptr = keyno;
2012			error = xfs_btree_increment(cur, 0, &i);
2013			if (error)
2014				goto error0;
2015			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
 
2016				return -EFSCORRUPTED;
 
2017			*stat = 1;
2018			return 0;
2019		}
2020	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2021		keyno--;
2022	cur->bc_levels[0].ptr = keyno;
2023
2024	/* Return if we succeeded or not. */
2025	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026		*stat = 0;
2027	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028		*stat = 1;
2029	else
2030		*stat = 0;
2031	return 0;
2032
2033error0:
2034	return error;
2035}
2036
2037/* Find the high key storage area from a regular key. */
2038union xfs_btree_key *
2039xfs_btree_high_key_from_key(
2040	struct xfs_btree_cur	*cur,
2041	union xfs_btree_key	*key)
2042{
2043	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044	return (union xfs_btree_key *)((char *)key +
2045			(cur->bc_ops->key_len / 2));
2046}
2047
2048/* Determine the low (and high if overlapped) keys of a leaf block */
2049STATIC void
2050xfs_btree_get_leaf_keys(
2051	struct xfs_btree_cur	*cur,
2052	struct xfs_btree_block	*block,
2053	union xfs_btree_key	*key)
2054{
2055	union xfs_btree_key	max_hkey;
2056	union xfs_btree_key	hkey;
2057	union xfs_btree_rec	*rec;
2058	union xfs_btree_key	*high;
2059	int			n;
2060
2061	rec = xfs_btree_rec_addr(cur, 1, block);
2062	cur->bc_ops->init_key_from_rec(key, rec);
2063
2064	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068			rec = xfs_btree_rec_addr(cur, n, block);
2069			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2071				max_hkey = hkey;
2072		}
2073
2074		high = xfs_btree_high_key_from_key(cur, key);
2075		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2076	}
2077}
2078
2079/* Determine the low (and high if overlapped) keys of a node block */
2080STATIC void
2081xfs_btree_get_node_keys(
2082	struct xfs_btree_cur	*cur,
2083	struct xfs_btree_block	*block,
2084	union xfs_btree_key	*key)
2085{
2086	union xfs_btree_key	*hkey;
2087	union xfs_btree_key	*max_hkey;
2088	union xfs_btree_key	*high;
2089	int			n;
2090
2091	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2092		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2093				cur->bc_ops->key_len / 2);
2094
2095		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2096		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2097			hkey = xfs_btree_high_key_addr(cur, n, block);
2098			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2099				max_hkey = hkey;
2100		}
2101
2102		high = xfs_btree_high_key_from_key(cur, key);
2103		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2104	} else {
2105		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2106				cur->bc_ops->key_len);
2107	}
2108}
2109
2110/* Derive the keys for any btree block. */
2111void
2112xfs_btree_get_keys(
2113	struct xfs_btree_cur	*cur,
2114	struct xfs_btree_block	*block,
2115	union xfs_btree_key	*key)
2116{
2117	if (be16_to_cpu(block->bb_level) == 0)
2118		xfs_btree_get_leaf_keys(cur, block, key);
2119	else
2120		xfs_btree_get_node_keys(cur, block, key);
2121}
2122
2123/*
2124 * Decide if we need to update the parent keys of a btree block.  For
2125 * a standard btree this is only necessary if we're updating the first
2126 * record/key.  For an overlapping btree, we must always update the
2127 * keys because the highest key can be in any of the records or keys
2128 * in the block.
2129 */
2130static inline bool
2131xfs_btree_needs_key_update(
2132	struct xfs_btree_cur	*cur,
2133	int			ptr)
2134{
2135	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2136}
2137
2138/*
2139 * Update the low and high parent keys of the given level, progressing
2140 * towards the root.  If force_all is false, stop if the keys for a given
2141 * level do not need updating.
2142 */
2143STATIC int
2144__xfs_btree_updkeys(
2145	struct xfs_btree_cur	*cur,
2146	int			level,
2147	struct xfs_btree_block	*block,
2148	struct xfs_buf		*bp0,
2149	bool			force_all)
2150{
2151	union xfs_btree_key	key;	/* keys from current level */
2152	union xfs_btree_key	*lkey;	/* keys from the next level up */
2153	union xfs_btree_key	*hkey;
2154	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2155	union xfs_btree_key	*nhkey;
2156	struct xfs_buf		*bp;
2157	int			ptr;
2158
2159	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2160
2161	/* Exit if there aren't any parent levels to update. */
2162	if (level + 1 >= cur->bc_nlevels)
2163		return 0;
2164
2165	trace_xfs_btree_updkeys(cur, level, bp0);
2166
2167	lkey = &key;
2168	hkey = xfs_btree_high_key_from_key(cur, lkey);
2169	xfs_btree_get_keys(cur, block, lkey);
2170	for (level++; level < cur->bc_nlevels; level++) {
2171#ifdef DEBUG
2172		int		error;
2173#endif
2174		block = xfs_btree_get_block(cur, level, &bp);
2175		trace_xfs_btree_updkeys(cur, level, bp);
2176#ifdef DEBUG
2177		error = xfs_btree_check_block(cur, block, level, bp);
2178		if (error)
2179			return error;
2180#endif
2181		ptr = cur->bc_levels[level].ptr;
2182		nlkey = xfs_btree_key_addr(cur, ptr, block);
2183		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2184		if (!force_all &&
2185		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2186		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2187			break;
2188		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2189		xfs_btree_log_keys(cur, bp, ptr, ptr);
2190		if (level + 1 >= cur->bc_nlevels)
2191			break;
2192		xfs_btree_get_node_keys(cur, block, lkey);
2193	}
2194
2195	return 0;
2196}
2197
2198/* Update all the keys from some level in cursor back to the root. */
2199STATIC int
2200xfs_btree_updkeys_force(
2201	struct xfs_btree_cur	*cur,
2202	int			level)
2203{
2204	struct xfs_buf		*bp;
2205	struct xfs_btree_block	*block;
2206
2207	block = xfs_btree_get_block(cur, level, &bp);
2208	return __xfs_btree_updkeys(cur, level, block, bp, true);
2209}
2210
2211/*
2212 * Update the parent keys of the given level, progressing towards the root.
2213 */
2214STATIC int
2215xfs_btree_update_keys(
2216	struct xfs_btree_cur	*cur,
2217	int			level)
2218{
2219	struct xfs_btree_block	*block;
2220	struct xfs_buf		*bp;
2221	union xfs_btree_key	*kp;
2222	union xfs_btree_key	key;
2223	int			ptr;
2224
2225	ASSERT(level >= 0);
2226
2227	block = xfs_btree_get_block(cur, level, &bp);
2228	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2229		return __xfs_btree_updkeys(cur, level, block, bp, false);
2230
2231	/*
2232	 * Go up the tree from this level toward the root.
2233	 * At each level, update the key value to the value input.
2234	 * Stop when we reach a level where the cursor isn't pointing
2235	 * at the first entry in the block.
2236	 */
2237	xfs_btree_get_keys(cur, block, &key);
2238	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2239#ifdef DEBUG
2240		int		error;
2241#endif
2242		block = xfs_btree_get_block(cur, level, &bp);
2243#ifdef DEBUG
2244		error = xfs_btree_check_block(cur, block, level, bp);
2245		if (error)
2246			return error;
2247#endif
2248		ptr = cur->bc_levels[level].ptr;
2249		kp = xfs_btree_key_addr(cur, ptr, block);
2250		xfs_btree_copy_keys(cur, kp, &key, 1);
2251		xfs_btree_log_keys(cur, bp, ptr, ptr);
2252	}
2253
2254	return 0;
2255}
2256
2257/*
2258 * Update the record referred to by cur to the value in the
2259 * given record. This either works (return 0) or gets an
2260 * EFSCORRUPTED error.
2261 */
2262int
2263xfs_btree_update(
2264	struct xfs_btree_cur	*cur,
2265	union xfs_btree_rec	*rec)
2266{
2267	struct xfs_btree_block	*block;
2268	struct xfs_buf		*bp;
2269	int			error;
2270	int			ptr;
2271	union xfs_btree_rec	*rp;
2272
2273	/* Pick up the current block. */
2274	block = xfs_btree_get_block(cur, 0, &bp);
2275
2276#ifdef DEBUG
2277	error = xfs_btree_check_block(cur, block, 0, bp);
2278	if (error)
2279		goto error0;
2280#endif
2281	/* Get the address of the rec to be updated. */
2282	ptr = cur->bc_levels[0].ptr;
2283	rp = xfs_btree_rec_addr(cur, ptr, block);
2284
2285	/* Fill in the new contents and log them. */
2286	xfs_btree_copy_recs(cur, rp, rec, 1);
2287	xfs_btree_log_recs(cur, bp, ptr, ptr);
2288
2289	/*
2290	 * If we are tracking the last record in the tree and
2291	 * we are at the far right edge of the tree, update it.
2292	 */
2293	if (xfs_btree_is_lastrec(cur, block, 0)) {
2294		cur->bc_ops->update_lastrec(cur, block, rec,
2295					    ptr, LASTREC_UPDATE);
2296	}
2297
2298	/* Pass new key value up to our parent. */
2299	if (xfs_btree_needs_key_update(cur, ptr)) {
2300		error = xfs_btree_update_keys(cur, 0);
2301		if (error)
2302			goto error0;
2303	}
2304
2305	return 0;
2306
2307error0:
2308	return error;
2309}
2310
2311/*
2312 * Move 1 record left from cur/level if possible.
2313 * Update cur to reflect the new path.
2314 */
2315STATIC int					/* error */
2316xfs_btree_lshift(
2317	struct xfs_btree_cur	*cur,
2318	int			level,
2319	int			*stat)		/* success/failure */
2320{
2321	struct xfs_buf		*lbp;		/* left buffer pointer */
2322	struct xfs_btree_block	*left;		/* left btree block */
2323	int			lrecs;		/* left record count */
2324	struct xfs_buf		*rbp;		/* right buffer pointer */
2325	struct xfs_btree_block	*right;		/* right btree block */
2326	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2327	int			rrecs;		/* right record count */
2328	union xfs_btree_ptr	lptr;		/* left btree pointer */
2329	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2330	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2331	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2332	int			error;		/* error return value */
2333	int			i;
2334
2335	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2336	    level == cur->bc_nlevels - 1)
2337		goto out0;
2338
2339	/* Set up variables for this block as "right". */
2340	right = xfs_btree_get_block(cur, level, &rbp);
2341
2342#ifdef DEBUG
2343	error = xfs_btree_check_block(cur, right, level, rbp);
2344	if (error)
2345		goto error0;
2346#endif
2347
2348	/* If we've got no left sibling then we can't shift an entry left. */
2349	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2350	if (xfs_btree_ptr_is_null(cur, &lptr))
2351		goto out0;
2352
2353	/*
2354	 * If the cursor entry is the one that would be moved, don't
2355	 * do it... it's too complicated.
2356	 */
2357	if (cur->bc_levels[level].ptr <= 1)
2358		goto out0;
2359
2360	/* Set up the left neighbor as "left". */
2361	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2362	if (error)
2363		goto error0;
2364
2365	/* If it's full, it can't take another entry. */
2366	lrecs = xfs_btree_get_numrecs(left);
2367	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2368		goto out0;
2369
2370	rrecs = xfs_btree_get_numrecs(right);
2371
2372	/*
2373	 * We add one entry to the left side and remove one for the right side.
2374	 * Account for it here, the changes will be updated on disk and logged
2375	 * later.
2376	 */
2377	lrecs++;
2378	rrecs--;
2379
2380	XFS_BTREE_STATS_INC(cur, lshift);
2381	XFS_BTREE_STATS_ADD(cur, moves, 1);
2382
2383	/*
2384	 * If non-leaf, copy a key and a ptr to the left block.
2385	 * Log the changes to the left block.
2386	 */
2387	if (level > 0) {
2388		/* It's a non-leaf.  Move keys and pointers. */
2389		union xfs_btree_key	*lkp;	/* left btree key */
2390		union xfs_btree_ptr	*lpp;	/* left address pointer */
2391
2392		lkp = xfs_btree_key_addr(cur, lrecs, left);
2393		rkp = xfs_btree_key_addr(cur, 1, right);
2394
2395		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2396		rpp = xfs_btree_ptr_addr(cur, 1, right);
2397
2398		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2399		if (error)
2400			goto error0;
2401
2402		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2403		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2404
2405		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2406		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2407
2408		ASSERT(cur->bc_ops->keys_inorder(cur,
2409			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2410	} else {
2411		/* It's a leaf.  Move records.  */
2412		union xfs_btree_rec	*lrp;	/* left record pointer */
2413
2414		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2415		rrp = xfs_btree_rec_addr(cur, 1, right);
2416
2417		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2418		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2419
2420		ASSERT(cur->bc_ops->recs_inorder(cur,
2421			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2422	}
2423
2424	xfs_btree_set_numrecs(left, lrecs);
2425	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2426
2427	xfs_btree_set_numrecs(right, rrecs);
2428	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2429
2430	/*
2431	 * Slide the contents of right down one entry.
2432	 */
2433	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2434	if (level > 0) {
2435		/* It's a nonleaf. operate on keys and ptrs */
2436		for (i = 0; i < rrecs; i++) {
2437			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2438			if (error)
2439				goto error0;
2440		}
2441
2442		xfs_btree_shift_keys(cur,
2443				xfs_btree_key_addr(cur, 2, right),
2444				-1, rrecs);
2445		xfs_btree_shift_ptrs(cur,
2446				xfs_btree_ptr_addr(cur, 2, right),
2447				-1, rrecs);
2448
2449		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2450		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2451	} else {
2452		/* It's a leaf. operate on records */
2453		xfs_btree_shift_recs(cur,
2454			xfs_btree_rec_addr(cur, 2, right),
2455			-1, rrecs);
2456		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2457	}
2458
2459	/*
2460	 * Using a temporary cursor, update the parent key values of the
2461	 * block on the left.
2462	 */
2463	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2464		error = xfs_btree_dup_cursor(cur, &tcur);
2465		if (error)
2466			goto error0;
2467		i = xfs_btree_firstrec(tcur, level);
2468		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
 
2469			error = -EFSCORRUPTED;
2470			goto error0;
2471		}
2472
2473		error = xfs_btree_decrement(tcur, level, &i);
2474		if (error)
2475			goto error1;
2476
2477		/* Update the parent high keys of the left block, if needed. */
2478		error = xfs_btree_update_keys(tcur, level);
2479		if (error)
2480			goto error1;
2481
2482		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2483	}
2484
2485	/* Update the parent keys of the right block. */
2486	error = xfs_btree_update_keys(cur, level);
2487	if (error)
2488		goto error0;
2489
2490	/* Slide the cursor value left one. */
2491	cur->bc_levels[level].ptr--;
2492
2493	*stat = 1;
2494	return 0;
2495
2496out0:
2497	*stat = 0;
2498	return 0;
2499
2500error0:
2501	return error;
2502
2503error1:
2504	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2505	return error;
2506}
2507
2508/*
2509 * Move 1 record right from cur/level if possible.
2510 * Update cur to reflect the new path.
2511 */
2512STATIC int					/* error */
2513xfs_btree_rshift(
2514	struct xfs_btree_cur	*cur,
2515	int			level,
2516	int			*stat)		/* success/failure */
2517{
2518	struct xfs_buf		*lbp;		/* left buffer pointer */
2519	struct xfs_btree_block	*left;		/* left btree block */
2520	struct xfs_buf		*rbp;		/* right buffer pointer */
2521	struct xfs_btree_block	*right;		/* right btree block */
2522	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2523	union xfs_btree_ptr	rptr;		/* right block pointer */
2524	union xfs_btree_key	*rkp;		/* right btree key */
2525	int			rrecs;		/* right record count */
2526	int			lrecs;		/* left record count */
2527	int			error;		/* error return value */
2528	int			i;		/* loop counter */
2529
2530	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2531	    (level == cur->bc_nlevels - 1))
2532		goto out0;
2533
2534	/* Set up variables for this block as "left". */
2535	left = xfs_btree_get_block(cur, level, &lbp);
2536
2537#ifdef DEBUG
2538	error = xfs_btree_check_block(cur, left, level, lbp);
2539	if (error)
2540		goto error0;
2541#endif
2542
2543	/* If we've got no right sibling then we can't shift an entry right. */
2544	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2545	if (xfs_btree_ptr_is_null(cur, &rptr))
2546		goto out0;
2547
2548	/*
2549	 * If the cursor entry is the one that would be moved, don't
2550	 * do it... it's too complicated.
2551	 */
2552	lrecs = xfs_btree_get_numrecs(left);
2553	if (cur->bc_levels[level].ptr >= lrecs)
2554		goto out0;
2555
2556	/* Set up the right neighbor as "right". */
2557	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2558	if (error)
2559		goto error0;
2560
2561	/* If it's full, it can't take another entry. */
2562	rrecs = xfs_btree_get_numrecs(right);
2563	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2564		goto out0;
2565
2566	XFS_BTREE_STATS_INC(cur, rshift);
2567	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2568
2569	/*
2570	 * Make a hole at the start of the right neighbor block, then
2571	 * copy the last left block entry to the hole.
2572	 */
2573	if (level > 0) {
2574		/* It's a nonleaf. make a hole in the keys and ptrs */
2575		union xfs_btree_key	*lkp;
2576		union xfs_btree_ptr	*lpp;
2577		union xfs_btree_ptr	*rpp;
2578
2579		lkp = xfs_btree_key_addr(cur, lrecs, left);
2580		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2581		rkp = xfs_btree_key_addr(cur, 1, right);
2582		rpp = xfs_btree_ptr_addr(cur, 1, right);
2583
2584		for (i = rrecs - 1; i >= 0; i--) {
2585			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2586			if (error)
2587				goto error0;
2588		}
2589
2590		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2591		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2592
2593		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2594		if (error)
2595			goto error0;
2596
2597		/* Now put the new data in, and log it. */
2598		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2599		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2600
2601		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2602		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2603
2604		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2605			xfs_btree_key_addr(cur, 2, right)));
2606	} else {
2607		/* It's a leaf. make a hole in the records */
2608		union xfs_btree_rec	*lrp;
2609		union xfs_btree_rec	*rrp;
2610
2611		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2612		rrp = xfs_btree_rec_addr(cur, 1, right);
2613
2614		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2615
2616		/* Now put the new data in, and log it. */
2617		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2618		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2619	}
2620
2621	/*
2622	 * Decrement and log left's numrecs, bump and log right's numrecs.
2623	 */
2624	xfs_btree_set_numrecs(left, --lrecs);
2625	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2626
2627	xfs_btree_set_numrecs(right, ++rrecs);
2628	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2629
2630	/*
2631	 * Using a temporary cursor, update the parent key values of the
2632	 * block on the right.
2633	 */
2634	error = xfs_btree_dup_cursor(cur, &tcur);
2635	if (error)
2636		goto error0;
2637	i = xfs_btree_lastrec(tcur, level);
2638	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
 
2639		error = -EFSCORRUPTED;
2640		goto error0;
2641	}
2642
2643	error = xfs_btree_increment(tcur, level, &i);
2644	if (error)
2645		goto error1;
2646
2647	/* Update the parent high keys of the left block, if needed. */
2648	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2649		error = xfs_btree_update_keys(cur, level);
2650		if (error)
2651			goto error1;
2652	}
2653
2654	/* Update the parent keys of the right block. */
2655	error = xfs_btree_update_keys(tcur, level);
2656	if (error)
2657		goto error1;
2658
2659	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2660
2661	*stat = 1;
2662	return 0;
2663
2664out0:
2665	*stat = 0;
2666	return 0;
2667
2668error0:
2669	return error;
2670
2671error1:
2672	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2673	return error;
2674}
2675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676/*
2677 * Split cur/level block in half.
2678 * Return new block number and the key to its first
2679 * record (to be inserted into parent).
2680 */
2681STATIC int					/* error */
2682__xfs_btree_split(
2683	struct xfs_btree_cur	*cur,
2684	int			level,
2685	union xfs_btree_ptr	*ptrp,
2686	union xfs_btree_key	*key,
2687	struct xfs_btree_cur	**curp,
2688	int			*stat)		/* success/failure */
2689{
2690	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2691	struct xfs_buf		*lbp;		/* left buffer pointer */
2692	struct xfs_btree_block	*left;		/* left btree block */
2693	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2694	struct xfs_buf		*rbp;		/* right buffer pointer */
2695	struct xfs_btree_block	*right;		/* right btree block */
2696	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2697	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2698	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2699	int			lrecs;
2700	int			rrecs;
2701	int			src_index;
2702	int			error;		/* error return value */
2703	int			i;
2704
2705	XFS_BTREE_STATS_INC(cur, split);
2706
2707	/* Set up left block (current one). */
2708	left = xfs_btree_get_block(cur, level, &lbp);
2709
2710#ifdef DEBUG
2711	error = xfs_btree_check_block(cur, left, level, lbp);
2712	if (error)
2713		goto error0;
2714#endif
2715
2716	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2717
2718	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2719	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2720	if (error)
2721		goto error0;
2722	if (*stat == 0)
2723		goto out0;
2724	XFS_BTREE_STATS_INC(cur, alloc);
2725
2726	/* Set up the new block as "right". */
2727	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2728	if (error)
2729		goto error0;
2730
2731	/* Fill in the btree header for the new right block. */
2732	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2733
2734	/*
2735	 * Split the entries between the old and the new block evenly.
2736	 * Make sure that if there's an odd number of entries now, that
2737	 * each new block will have the same number of entries.
2738	 */
2739	lrecs = xfs_btree_get_numrecs(left);
2740	rrecs = lrecs / 2;
2741	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2742		rrecs++;
2743	src_index = (lrecs - rrecs + 1);
2744
2745	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2746
2747	/* Adjust numrecs for the later get_*_keys() calls. */
2748	lrecs -= rrecs;
2749	xfs_btree_set_numrecs(left, lrecs);
2750	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2751
2752	/*
2753	 * Copy btree block entries from the left block over to the
2754	 * new block, the right. Update the right block and log the
2755	 * changes.
2756	 */
2757	if (level > 0) {
2758		/* It's a non-leaf.  Move keys and pointers. */
2759		union xfs_btree_key	*lkp;	/* left btree key */
2760		union xfs_btree_ptr	*lpp;	/* left address pointer */
2761		union xfs_btree_key	*rkp;	/* right btree key */
2762		union xfs_btree_ptr	*rpp;	/* right address pointer */
2763
2764		lkp = xfs_btree_key_addr(cur, src_index, left);
2765		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2766		rkp = xfs_btree_key_addr(cur, 1, right);
2767		rpp = xfs_btree_ptr_addr(cur, 1, right);
2768
2769		for (i = src_index; i < rrecs; i++) {
2770			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2771			if (error)
2772				goto error0;
2773		}
2774
2775		/* Copy the keys & pointers to the new block. */
2776		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2777		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2778
2779		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2780		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2781
2782		/* Stash the keys of the new block for later insertion. */
2783		xfs_btree_get_node_keys(cur, right, key);
2784	} else {
2785		/* It's a leaf.  Move records.  */
2786		union xfs_btree_rec	*lrp;	/* left record pointer */
2787		union xfs_btree_rec	*rrp;	/* right record pointer */
2788
2789		lrp = xfs_btree_rec_addr(cur, src_index, left);
2790		rrp = xfs_btree_rec_addr(cur, 1, right);
2791
2792		/* Copy records to the new block. */
2793		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2794		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2795
2796		/* Stash the keys of the new block for later insertion. */
2797		xfs_btree_get_leaf_keys(cur, right, key);
2798	}
2799
2800	/*
2801	 * Find the left block number by looking in the buffer.
2802	 * Adjust sibling pointers.
2803	 */
2804	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2805	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2806	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2807	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2808
2809	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2810	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2811
2812	/*
2813	 * If there's a block to the new block's right, make that block
2814	 * point back to right instead of to left.
2815	 */
2816	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2817		error = xfs_btree_read_buf_block(cur, &rrptr,
2818							0, &rrblock, &rrbp);
2819		if (error)
2820			goto error0;
2821		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2822		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2823	}
2824
2825	/* Update the parent high keys of the left block, if needed. */
2826	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2827		error = xfs_btree_update_keys(cur, level);
2828		if (error)
2829			goto error0;
2830	}
2831
2832	/*
2833	 * If the cursor is really in the right block, move it there.
2834	 * If it's just pointing past the last entry in left, then we'll
2835	 * insert there, so don't change anything in that case.
2836	 */
2837	if (cur->bc_levels[level].ptr > lrecs + 1) {
2838		xfs_btree_setbuf(cur, level, rbp);
2839		cur->bc_levels[level].ptr -= lrecs;
2840	}
2841	/*
2842	 * If there are more levels, we'll need another cursor which refers
2843	 * the right block, no matter where this cursor was.
2844	 */
2845	if (level + 1 < cur->bc_nlevels) {
2846		error = xfs_btree_dup_cursor(cur, curp);
2847		if (error)
2848			goto error0;
2849		(*curp)->bc_levels[level + 1].ptr++;
2850	}
2851	*ptrp = rptr;
2852	*stat = 1;
2853	return 0;
2854out0:
2855	*stat = 0;
2856	return 0;
2857
2858error0:
2859	return error;
2860}
2861
2862#ifdef __KERNEL__
2863struct xfs_btree_split_args {
2864	struct xfs_btree_cur	*cur;
2865	int			level;
2866	union xfs_btree_ptr	*ptrp;
2867	union xfs_btree_key	*key;
2868	struct xfs_btree_cur	**curp;
2869	int			*stat;		/* success/failure */
2870	int			result;
2871	bool			kswapd;	/* allocation in kswapd context */
2872	struct completion	*done;
2873	struct work_struct	work;
2874};
2875
2876/*
2877 * Stack switching interfaces for allocation
2878 */
2879static void
2880xfs_btree_split_worker(
2881	struct work_struct	*work)
2882{
2883	struct xfs_btree_split_args	*args = container_of(work,
2884						struct xfs_btree_split_args, work);
2885	unsigned long		pflags;
2886	unsigned long		new_pflags = 0;
2887
2888	/*
2889	 * we are in a transaction context here, but may also be doing work
2890	 * in kswapd context, and hence we may need to inherit that state
2891	 * temporarily to ensure that we don't block waiting for memory reclaim
2892	 * in any way.
2893	 */
2894	if (args->kswapd)
2895		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2896
2897	current_set_flags_nested(&pflags, new_pflags);
2898	xfs_trans_set_context(args->cur->bc_tp);
2899
2900	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2901					 args->key, args->curp, args->stat);
2902
2903	xfs_trans_clear_context(args->cur->bc_tp);
2904	current_restore_flags_nested(&pflags, new_pflags);
2905
2906	/*
2907	 * Do not access args after complete() has run here. We don't own args
2908	 * and the owner may run and free args before we return here.
2909	 */
2910	complete(args->done);
2911
2912}
2913
2914/*
2915 * BMBT split requests often come in with little stack to work on so we push
2916 * them off to a worker thread so there is lots of stack to use. For the other
2917 * btree types, just call directly to avoid the context switch overhead here.
2918 *
2919 * Care must be taken here - the work queue rescuer thread introduces potential
2920 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2921 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2922 * lock an AGF that is already locked by a task queued to run by the rescuer,
2923 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2924 * release it until the current thread it is running gains the lock.
2925 *
2926 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2927 * already locked to allocate from. The only place that doesn't hold an AGF
2928 * locked is unwritten extent conversion at IO completion, but that has already
2929 * been offloaded to a worker thread and hence has no stack consumption issues
2930 * we have to worry about.
2931 */
2932STATIC int					/* error */
2933xfs_btree_split(
2934	struct xfs_btree_cur	*cur,
2935	int			level,
2936	union xfs_btree_ptr	*ptrp,
2937	union xfs_btree_key	*key,
2938	struct xfs_btree_cur	**curp,
2939	int			*stat)		/* success/failure */
2940{
2941	struct xfs_btree_split_args	args;
2942	DECLARE_COMPLETION_ONSTACK(done);
2943
2944	if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2945	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2946		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2947
2948	args.cur = cur;
2949	args.level = level;
2950	args.ptrp = ptrp;
2951	args.key = key;
2952	args.curp = curp;
2953	args.stat = stat;
2954	args.done = &done;
2955	args.kswapd = current_is_kswapd();
2956	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2957	queue_work(xfs_alloc_wq, &args.work);
2958	wait_for_completion(&done);
2959	destroy_work_on_stack(&args.work);
2960	return args.result;
2961}
2962#else
2963#define xfs_btree_split	__xfs_btree_split
2964#endif /* __KERNEL__ */
2965
2966
2967/*
2968 * Copy the old inode root contents into a real block and make the
2969 * broot point to it.
2970 */
2971int						/* error */
2972xfs_btree_new_iroot(
2973	struct xfs_btree_cur	*cur,		/* btree cursor */
2974	int			*logflags,	/* logging flags for inode */
2975	int			*stat)		/* return status - 0 fail */
2976{
2977	struct xfs_buf		*cbp;		/* buffer for cblock */
2978	struct xfs_btree_block	*block;		/* btree block */
2979	struct xfs_btree_block	*cblock;	/* child btree block */
2980	union xfs_btree_key	*ckp;		/* child key pointer */
2981	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2982	union xfs_btree_key	*kp;		/* pointer to btree key */
2983	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2984	union xfs_btree_ptr	nptr;		/* new block addr */
2985	int			level;		/* btree level */
2986	int			error;		/* error return code */
2987	int			i;		/* loop counter */
2988
2989	XFS_BTREE_STATS_INC(cur, newroot);
2990
2991	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2992
2993	level = cur->bc_nlevels - 1;
2994
2995	block = xfs_btree_get_iroot(cur);
2996	pp = xfs_btree_ptr_addr(cur, 1, block);
2997
2998	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2999	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3000	if (error)
3001		goto error0;
3002	if (*stat == 0)
3003		return 0;
3004
3005	XFS_BTREE_STATS_INC(cur, alloc);
3006
3007	/* Copy the root into a real block. */
3008	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3009	if (error)
3010		goto error0;
3011
3012	/*
3013	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3014	 * In that case have to also ensure the blkno remains correct
3015	 */
3016	memcpy(cblock, block, xfs_btree_block_len(cur));
3017	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3018		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3019		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3020			cblock->bb_u.l.bb_blkno = bno;
3021		else
3022			cblock->bb_u.s.bb_blkno = bno;
3023	}
3024
3025	be16_add_cpu(&block->bb_level, 1);
3026	xfs_btree_set_numrecs(block, 1);
3027	cur->bc_nlevels++;
3028	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3029	cur->bc_levels[level + 1].ptr = 1;
3030
3031	kp = xfs_btree_key_addr(cur, 1, block);
3032	ckp = xfs_btree_key_addr(cur, 1, cblock);
3033	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3034
3035	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3036	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3037		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3038		if (error)
3039			goto error0;
3040	}
3041
3042	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3043
3044	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3045	if (error)
3046		goto error0;
3047
3048	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3049
3050	xfs_iroot_realloc(cur->bc_ino.ip,
3051			  1 - xfs_btree_get_numrecs(cblock),
3052			  cur->bc_ino.whichfork);
3053
3054	xfs_btree_setbuf(cur, level, cbp);
3055
3056	/*
3057	 * Do all this logging at the end so that
3058	 * the root is at the right level.
3059	 */
3060	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3061	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3062	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063
3064	*logflags |=
3065		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3066	*stat = 1;
3067	return 0;
3068error0:
3069	return error;
3070}
3071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3072/*
3073 * Allocate a new root block, fill it in.
3074 */
3075STATIC int				/* error */
3076xfs_btree_new_root(
3077	struct xfs_btree_cur	*cur,	/* btree cursor */
3078	int			*stat)	/* success/failure */
3079{
3080	struct xfs_btree_block	*block;	/* one half of the old root block */
3081	struct xfs_buf		*bp;	/* buffer containing block */
3082	int			error;	/* error return value */
3083	struct xfs_buf		*lbp;	/* left buffer pointer */
3084	struct xfs_btree_block	*left;	/* left btree block */
3085	struct xfs_buf		*nbp;	/* new (root) buffer */
3086	struct xfs_btree_block	*new;	/* new (root) btree block */
3087	int			nptr;	/* new value for key index, 1 or 2 */
3088	struct xfs_buf		*rbp;	/* right buffer pointer */
3089	struct xfs_btree_block	*right;	/* right btree block */
3090	union xfs_btree_ptr	rptr;
3091	union xfs_btree_ptr	lptr;
3092
3093	XFS_BTREE_STATS_INC(cur, newroot);
3094
3095	/* initialise our start point from the cursor */
3096	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3097
3098	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3099	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3100	if (error)
3101		goto error0;
3102	if (*stat == 0)
3103		goto out0;
3104	XFS_BTREE_STATS_INC(cur, alloc);
3105
3106	/* Set up the new block. */
3107	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3108	if (error)
3109		goto error0;
3110
3111	/* Set the root in the holding structure  increasing the level by 1. */
3112	cur->bc_ops->set_root(cur, &lptr, 1);
3113
3114	/*
3115	 * At the previous root level there are now two blocks: the old root,
3116	 * and the new block generated when it was split.  We don't know which
3117	 * one the cursor is pointing at, so we set up variables "left" and
3118	 * "right" for each case.
3119	 */
3120	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3121
3122#ifdef DEBUG
3123	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3124	if (error)
3125		goto error0;
3126#endif
3127
3128	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3129	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3130		/* Our block is left, pick up the right block. */
3131		lbp = bp;
3132		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3133		left = block;
3134		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3135		if (error)
3136			goto error0;
3137		bp = rbp;
3138		nptr = 1;
3139	} else {
3140		/* Our block is right, pick up the left block. */
3141		rbp = bp;
3142		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3143		right = block;
3144		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3145		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3146		if (error)
3147			goto error0;
3148		bp = lbp;
3149		nptr = 2;
3150	}
3151
3152	/* Fill in the new block's btree header and log it. */
3153	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3154	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3155	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3156			!xfs_btree_ptr_is_null(cur, &rptr));
3157
3158	/* Fill in the key data in the new root. */
3159	if (xfs_btree_get_level(left) > 0) {
3160		/*
3161		 * Get the keys for the left block's keys and put them directly
3162		 * in the parent block.  Do the same for the right block.
3163		 */
3164		xfs_btree_get_node_keys(cur, left,
3165				xfs_btree_key_addr(cur, 1, new));
3166		xfs_btree_get_node_keys(cur, right,
3167				xfs_btree_key_addr(cur, 2, new));
3168	} else {
3169		/*
3170		 * Get the keys for the left block's records and put them
3171		 * directly in the parent block.  Do the same for the right
3172		 * block.
3173		 */
3174		xfs_btree_get_leaf_keys(cur, left,
3175			xfs_btree_key_addr(cur, 1, new));
3176		xfs_btree_get_leaf_keys(cur, right,
3177			xfs_btree_key_addr(cur, 2, new));
3178	}
3179	xfs_btree_log_keys(cur, nbp, 1, 2);
3180
3181	/* Fill in the pointer data in the new root. */
3182	xfs_btree_copy_ptrs(cur,
3183		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3184	xfs_btree_copy_ptrs(cur,
3185		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3186	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3187
3188	/* Fix up the cursor. */
3189	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3190	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3191	cur->bc_nlevels++;
3192	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3193	*stat = 1;
3194	return 0;
3195error0:
3196	return error;
3197out0:
3198	*stat = 0;
3199	return 0;
3200}
3201
3202STATIC int
3203xfs_btree_make_block_unfull(
3204	struct xfs_btree_cur	*cur,	/* btree cursor */
3205	int			level,	/* btree level */
3206	int			numrecs,/* # of recs in block */
3207	int			*oindex,/* old tree index */
3208	int			*index,	/* new tree index */
3209	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3210	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3211	union xfs_btree_key	*key,	/* key of new block */
3212	int			*stat)
3213{
3214	int			error = 0;
3215
3216	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3217	    level == cur->bc_nlevels - 1) {
3218		struct xfs_inode *ip = cur->bc_ino.ip;
3219
3220		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3221			/* A root block that can be made bigger. */
3222			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3223			*stat = 1;
3224		} else {
3225			/* A root block that needs replacing */
3226			int	logflags = 0;
3227
3228			error = xfs_btree_new_iroot(cur, &logflags, stat);
3229			if (error || *stat == 0)
3230				return error;
3231
3232			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3233		}
3234
3235		return 0;
3236	}
3237
3238	/* First, try shifting an entry to the right neighbor. */
3239	error = xfs_btree_rshift(cur, level, stat);
3240	if (error || *stat)
3241		return error;
3242
3243	/* Next, try shifting an entry to the left neighbor. */
3244	error = xfs_btree_lshift(cur, level, stat);
3245	if (error)
3246		return error;
3247
3248	if (*stat) {
3249		*oindex = *index = cur->bc_levels[level].ptr;
3250		return 0;
3251	}
3252
3253	/*
3254	 * Next, try splitting the current block in half.
3255	 *
3256	 * If this works we have to re-set our variables because we
3257	 * could be in a different block now.
3258	 */
3259	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3260	if (error || *stat == 0)
3261		return error;
3262
3263
3264	*index = cur->bc_levels[level].ptr;
3265	return 0;
3266}
3267
3268/*
3269 * Insert one record/level.  Return information to the caller
3270 * allowing the next level up to proceed if necessary.
3271 */
3272STATIC int
3273xfs_btree_insrec(
3274	struct xfs_btree_cur	*cur,	/* btree cursor */
3275	int			level,	/* level to insert record at */
3276	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3277	union xfs_btree_rec	*rec,	/* record to insert */
3278	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3279	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3280	int			*stat)	/* success/failure */
3281{
3282	struct xfs_btree_block	*block;	/* btree block */
3283	struct xfs_buf		*bp;	/* buffer for block */
3284	union xfs_btree_ptr	nptr;	/* new block ptr */
3285	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3286	union xfs_btree_key	nkey;	/* new block key */
3287	union xfs_btree_key	*lkey;
3288	int			optr;	/* old key/record index */
3289	int			ptr;	/* key/record index */
3290	int			numrecs;/* number of records */
3291	int			error;	/* error return value */
3292	int			i;
3293	xfs_daddr_t		old_bn;
3294
3295	ncur = NULL;
3296	lkey = &nkey;
3297
3298	/*
3299	 * If we have an external root pointer, and we've made it to the
3300	 * root level, allocate a new root block and we're done.
3301	 */
3302	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3303	    (level >= cur->bc_nlevels)) {
3304		error = xfs_btree_new_root(cur, stat);
3305		xfs_btree_set_ptr_null(cur, ptrp);
3306
3307		return error;
3308	}
3309
3310	/* If we're off the left edge, return failure. */
3311	ptr = cur->bc_levels[level].ptr;
3312	if (ptr == 0) {
3313		*stat = 0;
3314		return 0;
3315	}
3316
3317	optr = ptr;
3318
3319	XFS_BTREE_STATS_INC(cur, insrec);
3320
3321	/* Get pointers to the btree buffer and block. */
3322	block = xfs_btree_get_block(cur, level, &bp);
3323	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3324	numrecs = xfs_btree_get_numrecs(block);
3325
3326#ifdef DEBUG
3327	error = xfs_btree_check_block(cur, block, level, bp);
3328	if (error)
3329		goto error0;
3330
3331	/* Check that the new entry is being inserted in the right place. */
3332	if (ptr <= numrecs) {
3333		if (level == 0) {
3334			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3335				xfs_btree_rec_addr(cur, ptr, block)));
3336		} else {
3337			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3338				xfs_btree_key_addr(cur, ptr, block)));
3339		}
3340	}
3341#endif
3342
3343	/*
3344	 * If the block is full, we can't insert the new entry until we
3345	 * make the block un-full.
3346	 */
3347	xfs_btree_set_ptr_null(cur, &nptr);
3348	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3349		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3350					&optr, &ptr, &nptr, &ncur, lkey, stat);
3351		if (error || *stat == 0)
3352			goto error0;
3353	}
3354
3355	/*
3356	 * The current block may have changed if the block was
3357	 * previously full and we have just made space in it.
3358	 */
3359	block = xfs_btree_get_block(cur, level, &bp);
3360	numrecs = xfs_btree_get_numrecs(block);
3361
3362#ifdef DEBUG
3363	error = xfs_btree_check_block(cur, block, level, bp);
3364	if (error)
3365		goto error0;
3366#endif
3367
3368	/*
3369	 * At this point we know there's room for our new entry in the block
3370	 * we're pointing at.
3371	 */
3372	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3373
3374	if (level > 0) {
3375		/* It's a nonleaf. make a hole in the keys and ptrs */
3376		union xfs_btree_key	*kp;
3377		union xfs_btree_ptr	*pp;
3378
3379		kp = xfs_btree_key_addr(cur, ptr, block);
3380		pp = xfs_btree_ptr_addr(cur, ptr, block);
3381
3382		for (i = numrecs - ptr; i >= 0; i--) {
3383			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3384			if (error)
3385				goto error0;
3386		}
3387
3388		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3389		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3390
3391		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3392		if (error)
3393			goto error0;
3394
3395		/* Now put the new data in, bump numrecs and log it. */
3396		xfs_btree_copy_keys(cur, kp, key, 1);
3397		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3398		numrecs++;
3399		xfs_btree_set_numrecs(block, numrecs);
3400		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3401		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3402#ifdef DEBUG
3403		if (ptr < numrecs) {
3404			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3405				xfs_btree_key_addr(cur, ptr + 1, block)));
3406		}
3407#endif
3408	} else {
3409		/* It's a leaf. make a hole in the records */
3410		union xfs_btree_rec             *rp;
3411
3412		rp = xfs_btree_rec_addr(cur, ptr, block);
3413
3414		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3415
3416		/* Now put the new data in, bump numrecs and log it. */
3417		xfs_btree_copy_recs(cur, rp, rec, 1);
3418		xfs_btree_set_numrecs(block, ++numrecs);
3419		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3420#ifdef DEBUG
3421		if (ptr < numrecs) {
3422			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3423				xfs_btree_rec_addr(cur, ptr + 1, block)));
3424		}
3425#endif
3426	}
3427
3428	/* Log the new number of records in the btree header. */
3429	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3430
3431	/*
3432	 * If we just inserted into a new tree block, we have to
3433	 * recalculate nkey here because nkey is out of date.
 
 
 
 
 
 
 
 
 
3434	 *
3435	 * Otherwise we're just updating an existing block (having shoved
3436	 * some records into the new tree block), so use the regular key
3437	 * update mechanism.
 
 
 
 
 
 
 
3438	 */
3439	if (bp && xfs_buf_daddr(bp) != old_bn) {
 
3440		xfs_btree_get_keys(cur, block, lkey);
3441	} else if (xfs_btree_needs_key_update(cur, optr)) {
3442		error = xfs_btree_update_keys(cur, level);
3443		if (error)
3444			goto error0;
3445	}
3446
3447	/*
3448	 * If we are tracking the last record in the tree and
3449	 * we are at the far right edge of the tree, update it.
3450	 */
3451	if (xfs_btree_is_lastrec(cur, block, level)) {
3452		cur->bc_ops->update_lastrec(cur, block, rec,
3453					    ptr, LASTREC_INSREC);
3454	}
3455
3456	/*
3457	 * Return the new block number, if any.
3458	 * If there is one, give back a record value and a cursor too.
3459	 */
3460	*ptrp = nptr;
3461	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3462		xfs_btree_copy_keys(cur, key, lkey, 1);
3463		*curp = ncur;
3464	}
3465
3466	*stat = 1;
3467	return 0;
3468
3469error0:
3470	if (ncur)
3471		xfs_btree_del_cursor(ncur, error);
3472	return error;
3473}
3474
3475/*
3476 * Insert the record at the point referenced by cur.
3477 *
3478 * A multi-level split of the tree on insert will invalidate the original
3479 * cursor.  All callers of this function should assume that the cursor is
3480 * no longer valid and revalidate it.
3481 */
3482int
3483xfs_btree_insert(
3484	struct xfs_btree_cur	*cur,
3485	int			*stat)
3486{
3487	int			error;	/* error return value */
3488	int			i;	/* result value, 0 for failure */
3489	int			level;	/* current level number in btree */
3490	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3491	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3492	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3493	union xfs_btree_key	bkey;	/* key of block to insert */
3494	union xfs_btree_key	*key;
3495	union xfs_btree_rec	rec;	/* record to insert */
3496
3497	level = 0;
3498	ncur = NULL;
3499	pcur = cur;
3500	key = &bkey;
3501
3502	xfs_btree_set_ptr_null(cur, &nptr);
3503
3504	/* Make a key out of the record data to be inserted, and save it. */
3505	cur->bc_ops->init_rec_from_cur(cur, &rec);
3506	cur->bc_ops->init_key_from_rec(key, &rec);
3507
3508	/*
3509	 * Loop going up the tree, starting at the leaf level.
3510	 * Stop when we don't get a split block, that must mean that
3511	 * the insert is finished with this level.
3512	 */
3513	do {
3514		/*
3515		 * Insert nrec/nptr into this level of the tree.
3516		 * Note if we fail, nptr will be null.
3517		 */
3518		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3519				&ncur, &i);
3520		if (error) {
3521			if (pcur != cur)
3522				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3523			goto error0;
3524		}
3525
3526		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3527			error = -EFSCORRUPTED;
3528			goto error0;
3529		}
3530		level++;
3531
3532		/*
3533		 * See if the cursor we just used is trash.
3534		 * Can't trash the caller's cursor, but otherwise we should
3535		 * if ncur is a new cursor or we're about to be done.
3536		 */
3537		if (pcur != cur &&
3538		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3539			/* Save the state from the cursor before we trash it */
3540			if (cur->bc_ops->update_cursor)
 
3541				cur->bc_ops->update_cursor(pcur, cur);
3542			cur->bc_nlevels = pcur->bc_nlevels;
3543			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3544		}
3545		/* If we got a new cursor, switch to it. */
3546		if (ncur) {
3547			pcur = ncur;
3548			ncur = NULL;
3549		}
3550	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3551
3552	*stat = i;
3553	return 0;
3554error0:
3555	return error;
3556}
3557
3558/*
3559 * Try to merge a non-leaf block back into the inode root.
3560 *
3561 * Note: the killroot names comes from the fact that we're effectively
3562 * killing the old root block.  But because we can't just delete the
3563 * inode we have to copy the single block it was pointing to into the
3564 * inode.
3565 */
3566STATIC int
3567xfs_btree_kill_iroot(
3568	struct xfs_btree_cur	*cur)
3569{
3570	int			whichfork = cur->bc_ino.whichfork;
3571	struct xfs_inode	*ip = cur->bc_ino.ip;
3572	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3573	struct xfs_btree_block	*block;
3574	struct xfs_btree_block	*cblock;
3575	union xfs_btree_key	*kp;
3576	union xfs_btree_key	*ckp;
3577	union xfs_btree_ptr	*pp;
3578	union xfs_btree_ptr	*cpp;
3579	struct xfs_buf		*cbp;
3580	int			level;
3581	int			index;
3582	int			numrecs;
3583	int			error;
3584#ifdef DEBUG
3585	union xfs_btree_ptr	ptr;
3586#endif
3587	int			i;
3588
3589	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3590	ASSERT(cur->bc_nlevels > 1);
3591
3592	/*
3593	 * Don't deal with the root block needs to be a leaf case.
3594	 * We're just going to turn the thing back into extents anyway.
3595	 */
3596	level = cur->bc_nlevels - 1;
3597	if (level == 1)
3598		goto out0;
3599
3600	/*
3601	 * Give up if the root has multiple children.
3602	 */
3603	block = xfs_btree_get_iroot(cur);
3604	if (xfs_btree_get_numrecs(block) != 1)
3605		goto out0;
3606
3607	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3608	numrecs = xfs_btree_get_numrecs(cblock);
3609
3610	/*
3611	 * Only do this if the next level will fit.
3612	 * Then the data must be copied up to the inode,
3613	 * instead of freeing the root you free the next level.
3614	 */
3615	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3616		goto out0;
3617
3618	XFS_BTREE_STATS_INC(cur, killroot);
3619
3620#ifdef DEBUG
3621	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3622	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3623	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3624	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3625#endif
3626
3627	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3628	if (index) {
3629		xfs_iroot_realloc(cur->bc_ino.ip, index,
3630				  cur->bc_ino.whichfork);
3631		block = ifp->if_broot;
3632	}
3633
3634	be16_add_cpu(&block->bb_numrecs, index);
3635	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3636
3637	kp = xfs_btree_key_addr(cur, 1, block);
3638	ckp = xfs_btree_key_addr(cur, 1, cblock);
3639	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3640
3641	pp = xfs_btree_ptr_addr(cur, 1, block);
3642	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3643
3644	for (i = 0; i < numrecs; i++) {
3645		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3646		if (error)
3647			return error;
3648	}
3649
3650	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3651
3652	error = xfs_btree_free_block(cur, cbp);
3653	if (error)
3654		return error;
3655
3656	cur->bc_levels[level - 1].bp = NULL;
3657	be16_add_cpu(&block->bb_level, -1);
3658	xfs_trans_log_inode(cur->bc_tp, ip,
3659		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3660	cur->bc_nlevels--;
3661out0:
3662	return 0;
3663}
3664
3665/*
3666 * Kill the current root node, and replace it with it's only child node.
3667 */
3668STATIC int
3669xfs_btree_kill_root(
3670	struct xfs_btree_cur	*cur,
3671	struct xfs_buf		*bp,
3672	int			level,
3673	union xfs_btree_ptr	*newroot)
3674{
3675	int			error;
3676
3677	XFS_BTREE_STATS_INC(cur, killroot);
3678
3679	/*
3680	 * Update the root pointer, decreasing the level by 1 and then
3681	 * free the old root.
3682	 */
3683	cur->bc_ops->set_root(cur, newroot, -1);
3684
3685	error = xfs_btree_free_block(cur, bp);
3686	if (error)
3687		return error;
3688
3689	cur->bc_levels[level].bp = NULL;
3690	cur->bc_levels[level].ra = 0;
3691	cur->bc_nlevels--;
3692
3693	return 0;
3694}
3695
3696STATIC int
3697xfs_btree_dec_cursor(
3698	struct xfs_btree_cur	*cur,
3699	int			level,
3700	int			*stat)
3701{
3702	int			error;
3703	int			i;
3704
3705	if (level > 0) {
3706		error = xfs_btree_decrement(cur, level, &i);
3707		if (error)
3708			return error;
3709	}
3710
3711	*stat = 1;
3712	return 0;
3713}
3714
3715/*
3716 * Single level of the btree record deletion routine.
3717 * Delete record pointed to by cur/level.
3718 * Remove the record from its block then rebalance the tree.
3719 * Return 0 for error, 1 for done, 2 to go on to the next level.
3720 */
3721STATIC int					/* error */
3722xfs_btree_delrec(
3723	struct xfs_btree_cur	*cur,		/* btree cursor */
3724	int			level,		/* level removing record from */
3725	int			*stat)		/* fail/done/go-on */
3726{
3727	struct xfs_btree_block	*block;		/* btree block */
3728	union xfs_btree_ptr	cptr;		/* current block ptr */
3729	struct xfs_buf		*bp;		/* buffer for block */
3730	int			error;		/* error return value */
3731	int			i;		/* loop counter */
3732	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3733	struct xfs_buf		*lbp;		/* left buffer pointer */
3734	struct xfs_btree_block	*left;		/* left btree block */
3735	int			lrecs = 0;	/* left record count */
3736	int			ptr;		/* key/record index */
3737	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3738	struct xfs_buf		*rbp;		/* right buffer pointer */
3739	struct xfs_btree_block	*right;		/* right btree block */
3740	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3741	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3742	int			rrecs = 0;	/* right record count */
3743	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3744	int			numrecs;	/* temporary numrec count */
3745
3746	tcur = NULL;
3747
3748	/* Get the index of the entry being deleted, check for nothing there. */
3749	ptr = cur->bc_levels[level].ptr;
3750	if (ptr == 0) {
3751		*stat = 0;
3752		return 0;
3753	}
3754
3755	/* Get the buffer & block containing the record or key/ptr. */
3756	block = xfs_btree_get_block(cur, level, &bp);
3757	numrecs = xfs_btree_get_numrecs(block);
3758
3759#ifdef DEBUG
3760	error = xfs_btree_check_block(cur, block, level, bp);
3761	if (error)
3762		goto error0;
3763#endif
3764
3765	/* Fail if we're off the end of the block. */
3766	if (ptr > numrecs) {
3767		*stat = 0;
3768		return 0;
3769	}
3770
3771	XFS_BTREE_STATS_INC(cur, delrec);
3772	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3773
3774	/* Excise the entries being deleted. */
3775	if (level > 0) {
3776		/* It's a nonleaf. operate on keys and ptrs */
3777		union xfs_btree_key	*lkp;
3778		union xfs_btree_ptr	*lpp;
3779
3780		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3781		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3782
3783		for (i = 0; i < numrecs - ptr; i++) {
3784			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3785			if (error)
3786				goto error0;
3787		}
3788
3789		if (ptr < numrecs) {
3790			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3791			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3792			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3793			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3794		}
3795	} else {
3796		/* It's a leaf. operate on records */
3797		if (ptr < numrecs) {
3798			xfs_btree_shift_recs(cur,
3799				xfs_btree_rec_addr(cur, ptr + 1, block),
3800				-1, numrecs - ptr);
3801			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3802		}
3803	}
3804
3805	/*
3806	 * Decrement and log the number of entries in the block.
3807	 */
3808	xfs_btree_set_numrecs(block, --numrecs);
3809	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3810
3811	/*
3812	 * If we are tracking the last record in the tree and
3813	 * we are at the far right edge of the tree, update it.
3814	 */
3815	if (xfs_btree_is_lastrec(cur, block, level)) {
3816		cur->bc_ops->update_lastrec(cur, block, NULL,
3817					    ptr, LASTREC_DELREC);
3818	}
3819
3820	/*
3821	 * We're at the root level.  First, shrink the root block in-memory.
3822	 * Try to get rid of the next level down.  If we can't then there's
3823	 * nothing left to do.
3824	 */
3825	if (level == cur->bc_nlevels - 1) {
3826		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3828					  cur->bc_ino.whichfork);
3829
3830			error = xfs_btree_kill_iroot(cur);
3831			if (error)
3832				goto error0;
3833
3834			error = xfs_btree_dec_cursor(cur, level, stat);
3835			if (error)
3836				goto error0;
3837			*stat = 1;
3838			return 0;
3839		}
3840
3841		/*
3842		 * If this is the root level, and there's only one entry left,
3843		 * and it's NOT the leaf level, then we can get rid of this
3844		 * level.
3845		 */
3846		if (numrecs == 1 && level > 0) {
3847			union xfs_btree_ptr	*pp;
3848			/*
3849			 * pp is still set to the first pointer in the block.
3850			 * Make it the new root of the btree.
3851			 */
3852			pp = xfs_btree_ptr_addr(cur, 1, block);
3853			error = xfs_btree_kill_root(cur, bp, level, pp);
3854			if (error)
3855				goto error0;
3856		} else if (level > 0) {
3857			error = xfs_btree_dec_cursor(cur, level, stat);
3858			if (error)
3859				goto error0;
3860		}
3861		*stat = 1;
3862		return 0;
3863	}
3864
3865	/*
3866	 * If we deleted the leftmost entry in the block, update the
3867	 * key values above us in the tree.
3868	 */
3869	if (xfs_btree_needs_key_update(cur, ptr)) {
3870		error = xfs_btree_update_keys(cur, level);
3871		if (error)
3872			goto error0;
3873	}
3874
3875	/*
3876	 * If the number of records remaining in the block is at least
3877	 * the minimum, we're done.
3878	 */
3879	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3880		error = xfs_btree_dec_cursor(cur, level, stat);
3881		if (error)
3882			goto error0;
3883		return 0;
3884	}
3885
3886	/*
3887	 * Otherwise, we have to move some records around to keep the
3888	 * tree balanced.  Look at the left and right sibling blocks to
3889	 * see if we can re-balance by moving only one record.
3890	 */
3891	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3892	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3893
3894	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3895		/*
3896		 * One child of root, need to get a chance to copy its contents
3897		 * into the root and delete it. Can't go up to next level,
3898		 * there's nothing to delete there.
3899		 */
3900		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3901		    xfs_btree_ptr_is_null(cur, &lptr) &&
3902		    level == cur->bc_nlevels - 2) {
3903			error = xfs_btree_kill_iroot(cur);
3904			if (!error)
3905				error = xfs_btree_dec_cursor(cur, level, stat);
3906			if (error)
3907				goto error0;
3908			return 0;
3909		}
3910	}
3911
3912	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3913	       !xfs_btree_ptr_is_null(cur, &lptr));
3914
3915	/*
3916	 * Duplicate the cursor so our btree manipulations here won't
3917	 * disrupt the next level up.
3918	 */
3919	error = xfs_btree_dup_cursor(cur, &tcur);
3920	if (error)
3921		goto error0;
3922
3923	/*
3924	 * If there's a right sibling, see if it's ok to shift an entry
3925	 * out of it.
3926	 */
3927	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3928		/*
3929		 * Move the temp cursor to the last entry in the next block.
3930		 * Actually any entry but the first would suffice.
3931		 */
3932		i = xfs_btree_lastrec(tcur, level);
3933		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3934			error = -EFSCORRUPTED;
3935			goto error0;
3936		}
3937
3938		error = xfs_btree_increment(tcur, level, &i);
3939		if (error)
3940			goto error0;
3941		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3942			error = -EFSCORRUPTED;
3943			goto error0;
3944		}
3945
3946		i = xfs_btree_lastrec(tcur, level);
3947		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3948			error = -EFSCORRUPTED;
3949			goto error0;
3950		}
3951
3952		/* Grab a pointer to the block. */
3953		right = xfs_btree_get_block(tcur, level, &rbp);
3954#ifdef DEBUG
3955		error = xfs_btree_check_block(tcur, right, level, rbp);
3956		if (error)
3957			goto error0;
3958#endif
3959		/* Grab the current block number, for future use. */
3960		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3961
3962		/*
3963		 * If right block is full enough so that removing one entry
3964		 * won't make it too empty, and left-shifting an entry out
3965		 * of right to us works, we're done.
3966		 */
3967		if (xfs_btree_get_numrecs(right) - 1 >=
3968		    cur->bc_ops->get_minrecs(tcur, level)) {
3969			error = xfs_btree_lshift(tcur, level, &i);
3970			if (error)
3971				goto error0;
3972			if (i) {
3973				ASSERT(xfs_btree_get_numrecs(block) >=
3974				       cur->bc_ops->get_minrecs(tcur, level));
3975
3976				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3977				tcur = NULL;
3978
3979				error = xfs_btree_dec_cursor(cur, level, stat);
3980				if (error)
3981					goto error0;
3982				return 0;
3983			}
3984		}
3985
3986		/*
3987		 * Otherwise, grab the number of records in right for
3988		 * future reference, and fix up the temp cursor to point
3989		 * to our block again (last record).
3990		 */
3991		rrecs = xfs_btree_get_numrecs(right);
3992		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3993			i = xfs_btree_firstrec(tcur, level);
3994			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3995				error = -EFSCORRUPTED;
3996				goto error0;
3997			}
3998
3999			error = xfs_btree_decrement(tcur, level, &i);
4000			if (error)
4001				goto error0;
4002			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4003				error = -EFSCORRUPTED;
4004				goto error0;
4005			}
4006		}
4007	}
4008
4009	/*
4010	 * If there's a left sibling, see if it's ok to shift an entry
4011	 * out of it.
4012	 */
4013	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4014		/*
4015		 * Move the temp cursor to the first entry in the
4016		 * previous block.
4017		 */
4018		i = xfs_btree_firstrec(tcur, level);
4019		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4020			error = -EFSCORRUPTED;
4021			goto error0;
4022		}
4023
4024		error = xfs_btree_decrement(tcur, level, &i);
4025		if (error)
4026			goto error0;
4027		i = xfs_btree_firstrec(tcur, level);
4028		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4029			error = -EFSCORRUPTED;
4030			goto error0;
4031		}
4032
4033		/* Grab a pointer to the block. */
4034		left = xfs_btree_get_block(tcur, level, &lbp);
4035#ifdef DEBUG
4036		error = xfs_btree_check_block(cur, left, level, lbp);
4037		if (error)
4038			goto error0;
4039#endif
4040		/* Grab the current block number, for future use. */
4041		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4042
4043		/*
4044		 * If left block is full enough so that removing one entry
4045		 * won't make it too empty, and right-shifting an entry out
4046		 * of left to us works, we're done.
4047		 */
4048		if (xfs_btree_get_numrecs(left) - 1 >=
4049		    cur->bc_ops->get_minrecs(tcur, level)) {
4050			error = xfs_btree_rshift(tcur, level, &i);
4051			if (error)
4052				goto error0;
4053			if (i) {
4054				ASSERT(xfs_btree_get_numrecs(block) >=
4055				       cur->bc_ops->get_minrecs(tcur, level));
4056				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4057				tcur = NULL;
4058				if (level == 0)
4059					cur->bc_levels[0].ptr++;
4060
4061				*stat = 1;
4062				return 0;
4063			}
4064		}
4065
4066		/*
4067		 * Otherwise, grab the number of records in right for
4068		 * future reference.
4069		 */
4070		lrecs = xfs_btree_get_numrecs(left);
4071	}
4072
4073	/* Delete the temp cursor, we're done with it. */
4074	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4075	tcur = NULL;
4076
4077	/* If here, we need to do a join to keep the tree balanced. */
4078	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4079
4080	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4081	    lrecs + xfs_btree_get_numrecs(block) <=
4082			cur->bc_ops->get_maxrecs(cur, level)) {
4083		/*
4084		 * Set "right" to be the starting block,
4085		 * "left" to be the left neighbor.
4086		 */
4087		rptr = cptr;
4088		right = block;
4089		rbp = bp;
4090		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4091		if (error)
4092			goto error0;
4093
4094	/*
4095	 * If that won't work, see if we can join with the right neighbor block.
4096	 */
4097	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4098		   rrecs + xfs_btree_get_numrecs(block) <=
4099			cur->bc_ops->get_maxrecs(cur, level)) {
4100		/*
4101		 * Set "left" to be the starting block,
4102		 * "right" to be the right neighbor.
4103		 */
4104		lptr = cptr;
4105		left = block;
4106		lbp = bp;
4107		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4108		if (error)
4109			goto error0;
4110
4111	/*
4112	 * Otherwise, we can't fix the imbalance.
4113	 * Just return.  This is probably a logic error, but it's not fatal.
4114	 */
4115	} else {
4116		error = xfs_btree_dec_cursor(cur, level, stat);
4117		if (error)
4118			goto error0;
4119		return 0;
4120	}
4121
4122	rrecs = xfs_btree_get_numrecs(right);
4123	lrecs = xfs_btree_get_numrecs(left);
4124
4125	/*
4126	 * We're now going to join "left" and "right" by moving all the stuff
4127	 * in "right" to "left" and deleting "right".
4128	 */
4129	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4130	if (level > 0) {
4131		/* It's a non-leaf.  Move keys and pointers. */
4132		union xfs_btree_key	*lkp;	/* left btree key */
4133		union xfs_btree_ptr	*lpp;	/* left address pointer */
4134		union xfs_btree_key	*rkp;	/* right btree key */
4135		union xfs_btree_ptr	*rpp;	/* right address pointer */
4136
4137		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4138		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4139		rkp = xfs_btree_key_addr(cur, 1, right);
4140		rpp = xfs_btree_ptr_addr(cur, 1, right);
4141
4142		for (i = 1; i < rrecs; i++) {
4143			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4144			if (error)
4145				goto error0;
4146		}
4147
4148		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4149		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4150
4151		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4152		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153	} else {
4154		/* It's a leaf.  Move records.  */
4155		union xfs_btree_rec	*lrp;	/* left record pointer */
4156		union xfs_btree_rec	*rrp;	/* right record pointer */
4157
4158		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4159		rrp = xfs_btree_rec_addr(cur, 1, right);
4160
4161		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4162		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4163	}
4164
4165	XFS_BTREE_STATS_INC(cur, join);
4166
4167	/*
4168	 * Fix up the number of records and right block pointer in the
4169	 * surviving block, and log it.
4170	 */
4171	xfs_btree_set_numrecs(left, lrecs + rrecs);
4172	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4173	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4174	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4175
4176	/* If there is a right sibling, point it to the remaining block. */
4177	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4178	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4179		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4180		if (error)
4181			goto error0;
4182		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4183		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4184	}
4185
4186	/* Free the deleted block. */
4187	error = xfs_btree_free_block(cur, rbp);
4188	if (error)
4189		goto error0;
4190
4191	/*
4192	 * If we joined with the left neighbor, set the buffer in the
4193	 * cursor to the left block, and fix up the index.
4194	 */
4195	if (bp != lbp) {
4196		cur->bc_levels[level].bp = lbp;
4197		cur->bc_levels[level].ptr += lrecs;
4198		cur->bc_levels[level].ra = 0;
4199	}
4200	/*
4201	 * If we joined with the right neighbor and there's a level above
4202	 * us, increment the cursor at that level.
4203	 */
4204	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4205		   (level + 1 < cur->bc_nlevels)) {
4206		error = xfs_btree_increment(cur, level + 1, &i);
4207		if (error)
4208			goto error0;
4209	}
4210
4211	/*
4212	 * Readjust the ptr at this level if it's not a leaf, since it's
4213	 * still pointing at the deletion point, which makes the cursor
4214	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4215	 * We can't use decrement because it would change the next level up.
4216	 */
4217	if (level > 0)
4218		cur->bc_levels[level].ptr--;
4219
4220	/*
4221	 * We combined blocks, so we have to update the parent keys if the
4222	 * btree supports overlapped intervals.  However,
4223	 * bc_levels[level + 1].ptr points to the old block so that the caller
4224	 * knows which record to delete.  Therefore, the caller must be savvy
4225	 * enough to call updkeys for us if we return stat == 2.  The other
4226	 * exit points from this function don't require deletions further up
4227	 * the tree, so they can call updkeys directly.
4228	 */
4229
4230	/* Return value means the next level up has something to do. */
4231	*stat = 2;
4232	return 0;
4233
4234error0:
4235	if (tcur)
4236		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4237	return error;
4238}
4239
4240/*
4241 * Delete the record pointed to by cur.
4242 * The cursor refers to the place where the record was (could be inserted)
4243 * when the operation returns.
4244 */
4245int					/* error */
4246xfs_btree_delete(
4247	struct xfs_btree_cur	*cur,
4248	int			*stat)	/* success/failure */
4249{
4250	int			error;	/* error return value */
4251	int			level;
4252	int			i;
4253	bool			joined = false;
4254
4255	/*
4256	 * Go up the tree, starting at leaf level.
4257	 *
4258	 * If 2 is returned then a join was done; go to the next level.
4259	 * Otherwise we are done.
4260	 */
4261	for (level = 0, i = 2; i == 2; level++) {
4262		error = xfs_btree_delrec(cur, level, &i);
4263		if (error)
4264			goto error0;
4265		if (i == 2)
4266			joined = true;
4267	}
4268
4269	/*
4270	 * If we combined blocks as part of deleting the record, delrec won't
4271	 * have updated the parent high keys so we have to do that here.
4272	 */
4273	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4274		error = xfs_btree_updkeys_force(cur, 0);
4275		if (error)
4276			goto error0;
4277	}
4278
4279	if (i == 0) {
4280		for (level = 1; level < cur->bc_nlevels; level++) {
4281			if (cur->bc_levels[level].ptr == 0) {
4282				error = xfs_btree_decrement(cur, level, &i);
4283				if (error)
4284					goto error0;
4285				break;
4286			}
4287		}
4288	}
4289
4290	*stat = i;
4291	return 0;
4292error0:
4293	return error;
4294}
4295
4296/*
4297 * Get the data from the pointed-to record.
4298 */
4299int					/* error */
4300xfs_btree_get_rec(
4301	struct xfs_btree_cur	*cur,	/* btree cursor */
4302	union xfs_btree_rec	**recp,	/* output: btree record */
4303	int			*stat)	/* output: success/failure */
4304{
4305	struct xfs_btree_block	*block;	/* btree block */
4306	struct xfs_buf		*bp;	/* buffer pointer */
4307	int			ptr;	/* record number */
4308#ifdef DEBUG
4309	int			error;	/* error return value */
4310#endif
4311
4312	ptr = cur->bc_levels[0].ptr;
4313	block = xfs_btree_get_block(cur, 0, &bp);
4314
4315#ifdef DEBUG
4316	error = xfs_btree_check_block(cur, block, 0, bp);
4317	if (error)
4318		return error;
4319#endif
4320
4321	/*
4322	 * Off the right end or left end, return failure.
4323	 */
4324	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4325		*stat = 0;
4326		return 0;
4327	}
4328
4329	/*
4330	 * Point to the record and extract its data.
4331	 */
4332	*recp = xfs_btree_rec_addr(cur, ptr, block);
4333	*stat = 1;
4334	return 0;
4335}
4336
4337/* Visit a block in a btree. */
4338STATIC int
4339xfs_btree_visit_block(
4340	struct xfs_btree_cur		*cur,
4341	int				level,
4342	xfs_btree_visit_blocks_fn	fn,
4343	void				*data)
4344{
4345	struct xfs_btree_block		*block;
4346	struct xfs_buf			*bp;
4347	union xfs_btree_ptr		rptr;
4348	int				error;
4349
4350	/* do right sibling readahead */
4351	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4352	block = xfs_btree_get_block(cur, level, &bp);
4353
4354	/* process the block */
4355	error = fn(cur, level, data);
4356	if (error)
4357		return error;
4358
4359	/* now read rh sibling block for next iteration */
4360	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4361	if (xfs_btree_ptr_is_null(cur, &rptr))
4362		return -ENOENT;
4363
4364	/*
4365	 * We only visit blocks once in this walk, so we have to avoid the
4366	 * internal xfs_btree_lookup_get_block() optimisation where it will
4367	 * return the same block without checking if the right sibling points
4368	 * back to us and creates a cyclic reference in the btree.
4369	 */
4370	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4371		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4372							xfs_buf_daddr(bp)))
4373			return -EFSCORRUPTED;
4374	} else {
4375		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4376							xfs_buf_daddr(bp)))
4377			return -EFSCORRUPTED;
4378	}
 
4379	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4380}
4381
4382
4383/* Visit every block in a btree. */
4384int
4385xfs_btree_visit_blocks(
4386	struct xfs_btree_cur		*cur,
4387	xfs_btree_visit_blocks_fn	fn,
4388	unsigned int			flags,
4389	void				*data)
4390{
4391	union xfs_btree_ptr		lptr;
4392	int				level;
4393	struct xfs_btree_block		*block = NULL;
4394	int				error = 0;
4395
4396	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4397
4398	/* for each level */
4399	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4400		/* grab the left hand block */
4401		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4402		if (error)
4403			return error;
4404
4405		/* readahead the left most block for the next level down */
4406		if (level > 0) {
4407			union xfs_btree_ptr     *ptr;
4408
4409			ptr = xfs_btree_ptr_addr(cur, 1, block);
4410			xfs_btree_readahead_ptr(cur, ptr, 1);
4411
4412			/* save for the next iteration of the loop */
4413			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4414
4415			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4416				continue;
4417		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4418			continue;
4419		}
4420
4421		/* for each buffer in the level */
4422		do {
4423			error = xfs_btree_visit_block(cur, level, fn, data);
4424		} while (!error);
4425
4426		if (error != -ENOENT)
4427			return error;
4428	}
4429
4430	return 0;
4431}
4432
4433/*
4434 * Change the owner of a btree.
4435 *
4436 * The mechanism we use here is ordered buffer logging. Because we don't know
4437 * how many buffers were are going to need to modify, we don't really want to
4438 * have to make transaction reservations for the worst case of every buffer in a
4439 * full size btree as that may be more space that we can fit in the log....
4440 *
4441 * We do the btree walk in the most optimal manner possible - we have sibling
4442 * pointers so we can just walk all the blocks on each level from left to right
4443 * in a single pass, and then move to the next level and do the same. We can
4444 * also do readahead on the sibling pointers to get IO moving more quickly,
4445 * though for slow disks this is unlikely to make much difference to performance
4446 * as the amount of CPU work we have to do before moving to the next block is
4447 * relatively small.
4448 *
4449 * For each btree block that we load, modify the owner appropriately, set the
4450 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4451 * we mark the region we change dirty so that if the buffer is relogged in
4452 * a subsequent transaction the changes we make here as an ordered buffer are
4453 * correctly relogged in that transaction.  If we are in recovery context, then
4454 * just queue the modified buffer as delayed write buffer so the transaction
4455 * recovery completion writes the changes to disk.
4456 */
4457struct xfs_btree_block_change_owner_info {
4458	uint64_t		new_owner;
4459	struct list_head	*buffer_list;
4460};
4461
4462static int
4463xfs_btree_block_change_owner(
4464	struct xfs_btree_cur	*cur,
4465	int			level,
4466	void			*data)
4467{
4468	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4469	struct xfs_btree_block	*block;
4470	struct xfs_buf		*bp;
4471
4472	/* modify the owner */
4473	block = xfs_btree_get_block(cur, level, &bp);
4474	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4475		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4476			return 0;
4477		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4478	} else {
4479		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4480			return 0;
4481		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4482	}
4483
4484	/*
4485	 * If the block is a root block hosted in an inode, we might not have a
4486	 * buffer pointer here and we shouldn't attempt to log the change as the
4487	 * information is already held in the inode and discarded when the root
4488	 * block is formatted into the on-disk inode fork. We still change it,
4489	 * though, so everything is consistent in memory.
4490	 */
4491	if (!bp) {
4492		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4493		ASSERT(level == cur->bc_nlevels - 1);
4494		return 0;
4495	}
4496
4497	if (cur->bc_tp) {
4498		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4499			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4500			return -EAGAIN;
4501		}
4502	} else {
4503		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4504	}
4505
4506	return 0;
4507}
4508
4509int
4510xfs_btree_change_owner(
4511	struct xfs_btree_cur	*cur,
4512	uint64_t		new_owner,
4513	struct list_head	*buffer_list)
4514{
4515	struct xfs_btree_block_change_owner_info	bbcoi;
4516
4517	bbcoi.new_owner = new_owner;
4518	bbcoi.buffer_list = buffer_list;
4519
4520	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4521			XFS_BTREE_VISIT_ALL, &bbcoi);
4522}
4523
4524/* Verify the v5 fields of a long-format btree block. */
4525xfs_failaddr_t
4526xfs_btree_lblock_v5hdr_verify(
4527	struct xfs_buf		*bp,
4528	uint64_t		owner)
4529{
4530	struct xfs_mount	*mp = bp->b_mount;
4531	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4532
4533	if (!xfs_has_crc(mp))
4534		return __this_address;
4535	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4536		return __this_address;
4537	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4538		return __this_address;
4539	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4540	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4541		return __this_address;
4542	return NULL;
4543}
4544
4545/* Verify a long-format btree block. */
4546xfs_failaddr_t
4547xfs_btree_lblock_verify(
4548	struct xfs_buf		*bp,
4549	unsigned int		max_recs)
4550{
4551	struct xfs_mount	*mp = bp->b_mount;
4552	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4553	xfs_fsblock_t		fsb;
4554	xfs_failaddr_t		fa;
4555
 
 
4556	/* numrecs verification */
4557	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4558		return __this_address;
4559
4560	/* sibling pointer verification */
4561	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4562	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4563			block->bb_u.l.bb_leftsib);
4564	if (!fa)
4565		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4566				block->bb_u.l.bb_rightsib);
4567	return fa;
4568}
4569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570/**
4571 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4572 *				      btree block
4573 *
4574 * @bp: buffer containing the btree block
4575 */
4576xfs_failaddr_t
4577xfs_btree_sblock_v5hdr_verify(
4578	struct xfs_buf		*bp)
4579{
4580	struct xfs_mount	*mp = bp->b_mount;
4581	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4582	struct xfs_perag	*pag = bp->b_pag;
4583
4584	if (!xfs_has_crc(mp))
4585		return __this_address;
4586	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4587		return __this_address;
4588	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4589		return __this_address;
4590	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4591		return __this_address;
4592	return NULL;
4593}
4594
4595/**
4596 * xfs_btree_sblock_verify() -- verify a short-format btree block
4597 *
4598 * @bp: buffer containing the btree block
4599 * @max_recs: maximum records allowed in this btree node
4600 */
4601xfs_failaddr_t
4602xfs_btree_sblock_verify(
4603	struct xfs_buf		*bp,
4604	unsigned int		max_recs)
4605{
4606	struct xfs_mount	*mp = bp->b_mount;
4607	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4608	xfs_agblock_t		agbno;
4609	xfs_failaddr_t		fa;
4610
 
 
4611	/* numrecs verification */
4612	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4613		return __this_address;
4614
4615	/* sibling pointer verification */
4616	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4617	fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4618			block->bb_u.s.bb_leftsib);
4619	if (!fa)
4620		fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4621				block->bb_u.s.bb_rightsib);
4622	return fa;
4623}
4624
4625/*
4626 * For the given limits on leaf and keyptr records per block, calculate the
4627 * height of the tree needed to index the number of leaf records.
4628 */
4629unsigned int
4630xfs_btree_compute_maxlevels(
4631	const unsigned int	*limits,
4632	unsigned long long	records)
4633{
4634	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4635	unsigned int		height = 1;
4636
4637	while (level_blocks > 1) {
4638		level_blocks = howmany_64(level_blocks, limits[1]);
4639		height++;
4640	}
4641
4642	return height;
4643}
4644
4645/*
4646 * For the given limits on leaf and keyptr records per block, calculate the
4647 * number of blocks needed to index the given number of leaf records.
4648 */
4649unsigned long long
4650xfs_btree_calc_size(
4651	const unsigned int	*limits,
4652	unsigned long long	records)
4653{
4654	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4655	unsigned long long	blocks = level_blocks;
4656
4657	while (level_blocks > 1) {
4658		level_blocks = howmany_64(level_blocks, limits[1]);
4659		blocks += level_blocks;
4660	}
4661
4662	return blocks;
4663}
4664
4665/*
4666 * Given a number of available blocks for the btree to consume with records and
4667 * pointers, calculate the height of the tree needed to index all the records
4668 * that space can hold based on the number of pointers each interior node
4669 * holds.
4670 *
4671 * We start by assuming a single level tree consumes a single block, then track
4672 * the number of blocks each node level consumes until we no longer have space
4673 * to store the next node level. At this point, we are indexing all the leaf
4674 * blocks in the space, and there's no more free space to split the tree any
4675 * further. That's our maximum btree height.
4676 */
4677unsigned int
4678xfs_btree_space_to_height(
4679	const unsigned int	*limits,
4680	unsigned long long	leaf_blocks)
4681{
4682	/*
4683	 * The root btree block can have fewer than minrecs pointers in it
4684	 * because the tree might not be big enough to require that amount of
4685	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4686	 */
4687	unsigned long long	node_blocks = 2;
4688	unsigned long long	blocks_left = leaf_blocks - 1;
4689	unsigned int		height = 1;
4690
4691	if (leaf_blocks < 1)
4692		return 0;
4693
4694	while (node_blocks < blocks_left) {
4695		blocks_left -= node_blocks;
4696		node_blocks *= limits[1];
4697		height++;
4698	}
4699
4700	return height;
4701}
4702
4703/*
4704 * Query a regular btree for all records overlapping a given interval.
4705 * Start with a LE lookup of the key of low_rec and return all records
4706 * until we find a record with a key greater than the key of high_rec.
4707 */
4708STATIC int
4709xfs_btree_simple_query_range(
4710	struct xfs_btree_cur		*cur,
4711	const union xfs_btree_key	*low_key,
4712	const union xfs_btree_key	*high_key,
4713	xfs_btree_query_range_fn	fn,
4714	void				*priv)
4715{
4716	union xfs_btree_rec		*recp;
4717	union xfs_btree_key		rec_key;
4718	int				stat;
4719	bool				firstrec = true;
4720	int				error;
4721
4722	ASSERT(cur->bc_ops->init_high_key_from_rec);
4723	ASSERT(cur->bc_ops->diff_two_keys);
4724
4725	/*
4726	 * Find the leftmost record.  The btree cursor must be set
4727	 * to the low record used to generate low_key.
4728	 */
4729	stat = 0;
4730	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4731	if (error)
4732		goto out;
4733
4734	/* Nothing?  See if there's anything to the right. */
4735	if (!stat) {
4736		error = xfs_btree_increment(cur, 0, &stat);
4737		if (error)
4738			goto out;
4739	}
4740
4741	while (stat) {
4742		/* Find the record. */
4743		error = xfs_btree_get_rec(cur, &recp, &stat);
4744		if (error || !stat)
4745			break;
4746
4747		/* Skip if low_key > high_key(rec). */
4748		if (firstrec) {
4749			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4750			firstrec = false;
4751			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4752				goto advloop;
4753		}
4754
4755		/* Stop if low_key(rec) > high_key. */
4756		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4757		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4758			break;
4759
4760		/* Callback */
4761		error = fn(cur, recp, priv);
4762		if (error)
4763			break;
4764
4765advloop:
4766		/* Move on to the next record. */
4767		error = xfs_btree_increment(cur, 0, &stat);
4768		if (error)
4769			break;
4770	}
4771
4772out:
4773	return error;
4774}
4775
4776/*
4777 * Query an overlapped interval btree for all records overlapping a given
4778 * interval.  This function roughly follows the algorithm given in
4779 * "Interval Trees" of _Introduction to Algorithms_, which is section
4780 * 14.3 in the 2nd and 3rd editions.
4781 *
4782 * First, generate keys for the low and high records passed in.
4783 *
4784 * For any leaf node, generate the high and low keys for the record.
4785 * If the record keys overlap with the query low/high keys, pass the
4786 * record to the function iterator.
4787 *
4788 * For any internal node, compare the low and high keys of each
4789 * pointer against the query low/high keys.  If there's an overlap,
4790 * follow the pointer.
4791 *
4792 * As an optimization, we stop scanning a block when we find a low key
4793 * that is greater than the query's high key.
4794 */
4795STATIC int
4796xfs_btree_overlapped_query_range(
4797	struct xfs_btree_cur		*cur,
4798	const union xfs_btree_key	*low_key,
4799	const union xfs_btree_key	*high_key,
4800	xfs_btree_query_range_fn	fn,
4801	void				*priv)
4802{
4803	union xfs_btree_ptr		ptr;
4804	union xfs_btree_ptr		*pp;
4805	union xfs_btree_key		rec_key;
4806	union xfs_btree_key		rec_hkey;
4807	union xfs_btree_key		*lkp;
4808	union xfs_btree_key		*hkp;
4809	union xfs_btree_rec		*recp;
4810	struct xfs_btree_block		*block;
4811	int				level;
4812	struct xfs_buf			*bp;
4813	int				i;
4814	int				error;
4815
4816	/* Load the root of the btree. */
4817	level = cur->bc_nlevels - 1;
4818	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4819	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4820	if (error)
4821		return error;
4822	xfs_btree_get_block(cur, level, &bp);
4823	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4824#ifdef DEBUG
4825	error = xfs_btree_check_block(cur, block, level, bp);
4826	if (error)
4827		goto out;
4828#endif
4829	cur->bc_levels[level].ptr = 1;
4830
4831	while (level < cur->bc_nlevels) {
4832		block = xfs_btree_get_block(cur, level, &bp);
4833
4834		/* End of node, pop back towards the root. */
4835		if (cur->bc_levels[level].ptr >
4836					be16_to_cpu(block->bb_numrecs)) {
4837pop_up:
4838			if (level < cur->bc_nlevels - 1)
4839				cur->bc_levels[level + 1].ptr++;
4840			level++;
4841			continue;
4842		}
4843
4844		if (level == 0) {
4845			/* Handle a leaf node. */
4846			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4847					block);
4848
4849			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4850			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4851
4852			/*
4853			 * If (query's high key < record's low key), then there
4854			 * are no more interesting records in this block.  Pop
4855			 * up to the leaf level to find more record blocks.
4856			 *
4857			 * If (record's high key >= query's low key) and
4858			 *    (query's high key >= record's low key), then
4859			 * this record overlaps the query range; callback.
4860			 */
4861			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
4862				goto pop_up;
4863			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
4864				error = fn(cur, recp, priv);
4865				if (error)
4866					break;
4867			}
4868			cur->bc_levels[level].ptr++;
4869			continue;
4870		}
4871
4872		/* Handle an internal node. */
4873		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4874		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4875				block);
4876		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4877
4878		/*
4879		 * If (query's high key < pointer's low key), then there are no
4880		 * more interesting keys in this block.  Pop up one leaf level
4881		 * to continue looking for records.
4882		 *
4883		 * If (pointer's high key >= query's low key) and
4884		 *    (query's high key >= pointer's low key), then
4885		 * this record overlaps the query range; follow pointer.
4886		 */
4887		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
4888			goto pop_up;
4889		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
4890			level--;
4891			error = xfs_btree_lookup_get_block(cur, level, pp,
4892					&block);
4893			if (error)
4894				goto out;
4895			xfs_btree_get_block(cur, level, &bp);
4896			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4897#ifdef DEBUG
4898			error = xfs_btree_check_block(cur, block, level, bp);
4899			if (error)
4900				goto out;
4901#endif
4902			cur->bc_levels[level].ptr = 1;
4903			continue;
4904		}
4905		cur->bc_levels[level].ptr++;
4906	}
4907
4908out:
4909	/*
4910	 * If we don't end this function with the cursor pointing at a record
4911	 * block, a subsequent non-error cursor deletion will not release
4912	 * node-level buffers, causing a buffer leak.  This is quite possible
4913	 * with a zero-results range query, so release the buffers if we
4914	 * failed to return any results.
4915	 */
4916	if (cur->bc_levels[0].bp == NULL) {
4917		for (i = 0; i < cur->bc_nlevels; i++) {
4918			if (cur->bc_levels[i].bp) {
4919				xfs_trans_brelse(cur->bc_tp,
4920						cur->bc_levels[i].bp);
4921				cur->bc_levels[i].bp = NULL;
4922				cur->bc_levels[i].ptr = 0;
4923				cur->bc_levels[i].ra = 0;
4924			}
4925		}
4926	}
4927
4928	return error;
4929}
4930
4931static inline void
4932xfs_btree_key_from_irec(
4933	struct xfs_btree_cur		*cur,
4934	union xfs_btree_key		*key,
4935	const union xfs_btree_irec	*irec)
4936{
4937	union xfs_btree_rec		rec;
4938
4939	cur->bc_rec = *irec;
4940	cur->bc_ops->init_rec_from_cur(cur, &rec);
4941	cur->bc_ops->init_key_from_rec(key, &rec);
4942}
4943
4944/*
4945 * Query a btree for all records overlapping a given interval of keys.  The
4946 * supplied function will be called with each record found; return one of the
4947 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4948 * code.  This function returns -ECANCELED, zero, or a negative error code.
4949 */
4950int
4951xfs_btree_query_range(
4952	struct xfs_btree_cur		*cur,
4953	const union xfs_btree_irec	*low_rec,
4954	const union xfs_btree_irec	*high_rec,
4955	xfs_btree_query_range_fn	fn,
4956	void				*priv)
4957{
4958	union xfs_btree_key		low_key;
4959	union xfs_btree_key		high_key;
4960
4961	/* Find the keys of both ends of the interval. */
4962	xfs_btree_key_from_irec(cur, &high_key, high_rec);
4963	xfs_btree_key_from_irec(cur, &low_key, low_rec);
4964
4965	/* Enforce low key <= high key. */
4966	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
4967		return -EINVAL;
4968
4969	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4970		return xfs_btree_simple_query_range(cur, &low_key,
4971				&high_key, fn, priv);
4972	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4973			fn, priv);
4974}
4975
4976/* Query a btree for all records. */
4977int
4978xfs_btree_query_all(
4979	struct xfs_btree_cur		*cur,
4980	xfs_btree_query_range_fn	fn,
4981	void				*priv)
4982{
4983	union xfs_btree_key		low_key;
4984	union xfs_btree_key		high_key;
4985
4986	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4987	memset(&low_key, 0, sizeof(low_key));
4988	memset(&high_key, 0xFF, sizeof(high_key));
4989
4990	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4991}
4992
4993static int
4994xfs_btree_count_blocks_helper(
4995	struct xfs_btree_cur	*cur,
4996	int			level,
4997	void			*data)
4998{
4999	xfs_extlen_t		*blocks = data;
5000	(*blocks)++;
5001
5002	return 0;
5003}
5004
5005/* Count the blocks in a btree and return the result in *blocks. */
5006int
5007xfs_btree_count_blocks(
5008	struct xfs_btree_cur	*cur,
5009	xfs_extlen_t		*blocks)
5010{
5011	*blocks = 0;
5012	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5013			XFS_BTREE_VISIT_ALL, blocks);
5014}
5015
5016/* Compare two btree pointers. */
5017int64_t
5018xfs_btree_diff_two_ptrs(
5019	struct xfs_btree_cur		*cur,
5020	const union xfs_btree_ptr	*a,
5021	const union xfs_btree_ptr	*b)
5022{
5023	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5024		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5025	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5026}
5027
5028struct xfs_btree_has_records {
5029	/* Keys for the start and end of the range we want to know about. */
5030	union xfs_btree_key		start_key;
5031	union xfs_btree_key		end_key;
5032
5033	/* Mask for key comparisons, if desired. */
5034	const union xfs_btree_key	*key_mask;
5035
5036	/* Highest record key we've seen so far. */
5037	union xfs_btree_key		high_key;
5038
5039	enum xbtree_recpacking		outcome;
5040};
5041
5042STATIC int
5043xfs_btree_has_records_helper(
5044	struct xfs_btree_cur		*cur,
5045	const union xfs_btree_rec	*rec,
5046	void				*priv)
5047{
5048	union xfs_btree_key		rec_key;
5049	union xfs_btree_key		rec_high_key;
5050	struct xfs_btree_has_records	*info = priv;
5051	enum xbtree_key_contig		key_contig;
5052
5053	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5054
5055	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5056		info->outcome = XBTREE_RECPACKING_SPARSE;
5057
5058		/*
5059		 * If the first record we find does not overlap the start key,
5060		 * then there is a hole at the start of the search range.
5061		 * Classify this as sparse and stop immediately.
5062		 */
5063		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5064					info->key_mask))
5065			return -ECANCELED;
5066	} else {
5067		/*
5068		 * If a subsequent record does not overlap with the any record
5069		 * we've seen so far, there is a hole in the middle of the
5070		 * search range.  Classify this as sparse and stop.
5071		 * If the keys overlap and this btree does not allow overlap,
5072		 * signal corruption.
5073		 */
5074		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5075					&rec_key, info->key_mask);
5076		if (key_contig == XBTREE_KEY_OVERLAP &&
5077				!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
5078			return -EFSCORRUPTED;
5079		if (key_contig == XBTREE_KEY_GAP)
5080			return -ECANCELED;
5081	}
5082
5083	/*
5084	 * If high_key(rec) is larger than any other high key we've seen,
5085	 * remember it for later.
5086	 */
5087	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5088	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5089				info->key_mask))
5090		info->high_key = rec_high_key; /* struct copy */
5091
5092	return 0;
5093}
5094
5095/*
5096 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5097 * map to any records; is fully mapped to records; or is partially mapped to
5098 * records.  This is the btree record equivalent to determining if a file is
5099 * sparse.
5100 *
5101 * For most btree types, the record scan should use all available btree key
5102 * fields to compare the keys encountered.  These callers should pass NULL for
5103 * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5104 * want to ignore some part of the btree record keyspace when performing the
5105 * comparison.  These callers should pass in a union xfs_btree_key object with
5106 * the fields that *should* be a part of the comparison set to any nonzero
5107 * value, and the rest zeroed.
5108 */
5109int
5110xfs_btree_has_records(
5111	struct xfs_btree_cur		*cur,
5112	const union xfs_btree_irec	*low,
5113	const union xfs_btree_irec	*high,
5114	const union xfs_btree_key	*mask,
5115	enum xbtree_recpacking		*outcome)
5116{
5117	struct xfs_btree_has_records	info = {
5118		.outcome		= XBTREE_RECPACKING_EMPTY,
5119		.key_mask		= mask,
5120	};
5121	int				error;
5122
5123	/* Not all btrees support this operation. */
5124	if (!cur->bc_ops->keys_contiguous) {
5125		ASSERT(0);
5126		return -EOPNOTSUPP;
5127	}
5128
5129	xfs_btree_key_from_irec(cur, &info.start_key, low);
5130	xfs_btree_key_from_irec(cur, &info.end_key, high);
5131
5132	error = xfs_btree_query_range(cur, low, high,
5133			xfs_btree_has_records_helper, &info);
5134	if (error == -ECANCELED)
5135		goto out;
5136	if (error)
5137		return error;
5138
5139	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5140		goto out;
5141
5142	/*
5143	 * If the largest high_key(rec) we saw during the walk is greater than
5144	 * the end of the search range, classify this as full.  Otherwise,
5145	 * there is a hole at the end of the search range.
5146	 */
5147	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5148				mask))
5149		info.outcome = XBTREE_RECPACKING_FULL;
5150
5151out:
5152	*outcome = info.outcome;
5153	return 0;
5154}
5155
5156/* Are there more records in this btree? */
5157bool
5158xfs_btree_has_more_records(
5159	struct xfs_btree_cur	*cur)
5160{
5161	struct xfs_btree_block	*block;
5162	struct xfs_buf		*bp;
5163
5164	block = xfs_btree_get_block(cur, 0, &bp);
5165
5166	/* There are still records in this block. */
5167	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5168		return true;
5169
5170	/* There are more record blocks. */
5171	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5172		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5173	else
5174		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5175}
5176
5177/* Set up all the btree cursor caches. */
5178int __init
5179xfs_btree_init_cur_caches(void)
5180{
5181	int		error;
5182
5183	error = xfs_allocbt_init_cur_cache();
5184	if (error)
5185		return error;
5186	error = xfs_inobt_init_cur_cache();
5187	if (error)
5188		goto err;
5189	error = xfs_bmbt_init_cur_cache();
5190	if (error)
5191		goto err;
5192	error = xfs_rmapbt_init_cur_cache();
5193	if (error)
5194		goto err;
5195	error = xfs_refcountbt_init_cur_cache();
5196	if (error)
5197		goto err;
5198
5199	return 0;
5200err:
5201	xfs_btree_destroy_cur_caches();
5202	return error;
5203}
5204
5205/* Destroy all the btree cursor caches, if they've been allocated. */
5206void
5207xfs_btree_destroy_cur_caches(void)
5208{
5209	xfs_allocbt_destroy_cur_cache();
5210	xfs_inobt_destroy_cur_cache();
5211	xfs_bmbt_destroy_cur_cache();
5212	xfs_rmapbt_destroy_cur_cache();
5213	xfs_refcountbt_destroy_cur_cache();
5214}
5215
5216/* Move the btree cursor before the first record. */
5217int
5218xfs_btree_goto_left_edge(
5219	struct xfs_btree_cur	*cur)
5220{
5221	int			stat = 0;
5222	int			error;
5223
5224	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5225	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5226	if (error)
5227		return error;
5228	if (!stat)
5229		return 0;
5230
5231	error = xfs_btree_decrement(cur, 0, &stat);
5232	if (error)
5233		return error;
5234	if (stat != 0) {
5235		ASSERT(0);
 
5236		return -EFSCORRUPTED;
5237	}
5238
5239	return 0;
5240}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23#include "xfs_btree_staging.h"
  24#include "xfs_ag.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_ialloc_btree.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_rmap_btree.h"
  29#include "xfs_refcount_btree.h"
  30#include "xfs_health.h"
  31#include "xfs_buf_mem.h"
  32#include "xfs_btree_mem.h"
  33
  34/*
  35 * Btree magic numbers.
  36 */
 
 
 
 
 
 
 
 
  37uint32_t
  38xfs_btree_magic(
  39	struct xfs_mount		*mp,
  40	const struct xfs_btree_ops	*ops)
  41{
  42	int				idx = xfs_has_crc(mp) ? 1 : 0;
  43	__be32				magic = ops->buf_ops->magic[idx];
  44
  45	/* Ensure we asked for crc for crc-only magics. */
  46	ASSERT(magic != 0);
  47	return be32_to_cpu(magic);
  48}
  49
  50/*
  51 * These sibling pointer checks are optimised for null sibling pointers. This
  52 * happens a lot, and we don't need to byte swap at runtime if the sibling
  53 * pointer is NULL.
  54 *
  55 * These are explicitly marked at inline because the cost of calling them as
  56 * functions instead of inlining them is about 36 bytes extra code per call site
  57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
  58 * two sibling check functions reduces the compiled code size by over 300
  59 * bytes.
  60 */
  61static inline xfs_failaddr_t
  62xfs_btree_check_fsblock_siblings(
  63	struct xfs_mount	*mp,
 
 
  64	xfs_fsblock_t		fsb,
  65	__be64			dsibling)
  66{
  67	xfs_fsblock_t		sibling;
  68
  69	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  70		return NULL;
  71
  72	sibling = be64_to_cpu(dsibling);
  73	if (sibling == fsb)
  74		return __this_address;
  75	if (!xfs_verify_fsbno(mp, sibling))
  76		return __this_address;
  77	return NULL;
  78}
  79
  80static inline xfs_failaddr_t
  81xfs_btree_check_memblock_siblings(
  82	struct xfs_buftarg	*btp,
  83	xfbno_t			bno,
  84	__be64			dsibling)
  85{
  86	xfbno_t			sibling;
  87
  88	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  89		return NULL;
  90
  91	sibling = be64_to_cpu(dsibling);
  92	if (sibling == bno)
  93		return __this_address;
  94	if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
  95		return __this_address;
  96	return NULL;
  97}
  98
  99static inline xfs_failaddr_t
 100xfs_btree_check_agblock_siblings(
 101	struct xfs_perag	*pag,
 
 
 102	xfs_agblock_t		agbno,
 103	__be32			dsibling)
 104{
 105	xfs_agblock_t		sibling;
 106
 107	if (dsibling == cpu_to_be32(NULLAGBLOCK))
 108		return NULL;
 109
 110	sibling = be32_to_cpu(dsibling);
 111	if (sibling == agbno)
 112		return __this_address;
 113	if (!xfs_verify_agbno(pag, sibling))
 114		return __this_address;
 
 
 
 
 
 115	return NULL;
 116}
 117
 118static xfs_failaddr_t
 119__xfs_btree_check_lblock_hdr(
 
 
 
 
 120	struct xfs_btree_cur	*cur,
 121	struct xfs_btree_block	*block,
 122	int			level,
 123	struct xfs_buf		*bp)
 124{
 125	struct xfs_mount	*mp = cur->bc_mp;
 
 
 
 
 126
 127	if (xfs_has_crc(mp)) {
 128		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
 129			return __this_address;
 130		if (block->bb_u.l.bb_blkno !=
 131		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 132			return __this_address;
 133		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
 134			return __this_address;
 135	}
 136
 137	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
 138		return __this_address;
 139	if (be16_to_cpu(block->bb_level) != level)
 140		return __this_address;
 141	if (be16_to_cpu(block->bb_numrecs) >
 142	    cur->bc_ops->get_maxrecs(cur, level))
 143		return __this_address;
 144
 145	return NULL;
 146}
 147
 148/*
 149 * Check a long btree block header.  Return the address of the failing check,
 150 * or NULL if everything is ok.
 151 */
 152static xfs_failaddr_t
 153__xfs_btree_check_fsblock(
 154	struct xfs_btree_cur	*cur,
 155	struct xfs_btree_block	*block,
 156	int			level,
 157	struct xfs_buf		*bp)
 158{
 159	struct xfs_mount	*mp = cur->bc_mp;
 160	xfs_failaddr_t		fa;
 161	xfs_fsblock_t		fsb;
 162
 163	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
 164	if (fa)
 165		return fa;
 166
 167	/*
 168	 * For inode-rooted btrees, the root block sits in the inode fork.  In
 169	 * that case bp is NULL, and the block must not have any siblings.
 170	 */
 171	if (!bp) {
 172		if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
 173			return __this_address;
 174		if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
 175			return __this_address;
 176		return NULL;
 177	}
 178
 179	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
 180	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
 181			block->bb_u.l.bb_leftsib);
 182	if (!fa)
 183		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
 184				block->bb_u.l.bb_rightsib);
 185	return fa;
 186}
 187
 188/*
 189 * Check an in-memory btree block header.  Return the address of the failing
 190 * check, or NULL if everything is ok.
 191 */
 192static xfs_failaddr_t
 193__xfs_btree_check_memblock(
 194	struct xfs_btree_cur	*cur,
 195	struct xfs_btree_block	*block,
 196	int			level,
 197	struct xfs_buf		*bp)
 198{
 199	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
 200	xfs_failaddr_t		fa;
 201	xfbno_t			bno;
 202
 203	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
 204	if (fa)
 205		return fa;
 206
 207	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
 208	fa = xfs_btree_check_memblock_siblings(btp, bno,
 209			block->bb_u.l.bb_leftsib);
 210	if (!fa)
 211		fa = xfs_btree_check_memblock_siblings(btp, bno,
 212				block->bb_u.l.bb_rightsib);
 213	return fa;
 214}
 215
 216/*
 217 * Check a short btree block header.  Return the address of the failing check,
 218 * or NULL if everything is ok.
 219 */
 220static xfs_failaddr_t
 221__xfs_btree_check_agblock(
 222	struct xfs_btree_cur	*cur,
 223	struct xfs_btree_block	*block,
 224	int			level,
 225	struct xfs_buf		*bp)
 226{
 227	struct xfs_mount	*mp = cur->bc_mp;
 228	struct xfs_perag	*pag = to_perag(cur->bc_group);
 
 
 229	xfs_failaddr_t		fa;
 230	xfs_agblock_t		agbno;
 231
 232	if (xfs_has_crc(mp)) {
 233		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 234			return __this_address;
 235		if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
 
 236			return __this_address;
 237	}
 238
 239	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
 240		return __this_address;
 241	if (be16_to_cpu(block->bb_level) != level)
 242		return __this_address;
 243	if (be16_to_cpu(block->bb_numrecs) >
 244	    cur->bc_ops->get_maxrecs(cur, level))
 245		return __this_address;
 246
 247	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
 248	fa = xfs_btree_check_agblock_siblings(pag, agbno,
 
 
 249			block->bb_u.s.bb_leftsib);
 250	if (!fa)
 251		fa = xfs_btree_check_agblock_siblings(pag, agbno,
 252				block->bb_u.s.bb_rightsib);
 253	return fa;
 254}
 255
 256/*
 257 * Internal btree block check.
 258 *
 259 * Return NULL if the block is ok or the address of the failed check otherwise.
 260 */
 261xfs_failaddr_t
 262__xfs_btree_check_block(
 263	struct xfs_btree_cur	*cur,
 264	struct xfs_btree_block	*block,
 265	int			level,
 266	struct xfs_buf		*bp)
 267{
 268	switch (cur->bc_ops->type) {
 269	case XFS_BTREE_TYPE_MEM:
 270		return __xfs_btree_check_memblock(cur, block, level, bp);
 271	case XFS_BTREE_TYPE_AG:
 272		return __xfs_btree_check_agblock(cur, block, level, bp);
 273	case XFS_BTREE_TYPE_INODE:
 274		return __xfs_btree_check_fsblock(cur, block, level, bp);
 275	default:
 276		ASSERT(0);
 277		return __this_address;
 278	}
 279}
 280
 281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
 282{
 283	if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
 284		return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
 285	return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
 286}
 287
 288/*
 289 * Debug routine: check that block header is ok.
 290 */
 291int
 292xfs_btree_check_block(
 293	struct xfs_btree_cur	*cur,	/* btree cursor */
 294	struct xfs_btree_block	*block,	/* generic btree block pointer */
 295	int			level,	/* level of the btree block */
 296	struct xfs_buf		*bp)	/* buffer containing block, if any */
 297{
 298	struct xfs_mount	*mp = cur->bc_mp;
 299	xfs_failaddr_t		fa;
 
 
 
 300
 301	fa = __xfs_btree_check_block(cur, block, level, bp);
 302	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 303	    XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
 304		if (bp)
 305			trace_xfs_btree_corrupt(bp, _RET_IP_);
 306		xfs_btree_mark_sick(cur);
 307		return -EFSCORRUPTED;
 308	}
 309	return 0;
 
 310}
 311
 312int
 313__xfs_btree_check_ptr(
 314	struct xfs_btree_cur		*cur,
 315	const union xfs_btree_ptr	*ptr,
 316	int				index,
 317	int				level)
 318{
 319	if (level <= 0)
 320		return -EFSCORRUPTED;
 321
 322	switch (cur->bc_ops->type) {
 323	case XFS_BTREE_TYPE_MEM:
 324		if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
 325				be64_to_cpu((&ptr->l)[index])))
 326			return -EFSCORRUPTED;
 327		break;
 328	case XFS_BTREE_TYPE_INODE:
 329		if (!xfs_verify_fsbno(cur->bc_mp,
 330				be64_to_cpu((&ptr->l)[index])))
 331			return -EFSCORRUPTED;
 332		break;
 333	case XFS_BTREE_TYPE_AG:
 334		if (!xfs_verify_agbno(to_perag(cur->bc_group),
 335				be32_to_cpu((&ptr->s)[index])))
 336			return -EFSCORRUPTED;
 337		break;
 338	}
 339
 340	return 0;
 341}
 342
 343/*
 344 * Check that a given (indexed) btree pointer at a certain level of a
 345 * btree is valid and doesn't point past where it should.
 346 */
 347static int
 348xfs_btree_check_ptr(
 349	struct xfs_btree_cur		*cur,
 350	const union xfs_btree_ptr	*ptr,
 351	int				index,
 352	int				level)
 353{
 354	int				error;
 355
 356	error = __xfs_btree_check_ptr(cur, ptr, index, level);
 357	if (error) {
 358		switch (cur->bc_ops->type) {
 359		case XFS_BTREE_TYPE_MEM:
 360			xfs_err(cur->bc_mp,
 361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
 362				cur->bc_ops->name, cur->bc_flags, level, index,
 363				__this_address);
 364			break;
 365		case XFS_BTREE_TYPE_INODE:
 366			xfs_err(cur->bc_mp,
 367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
 368				cur->bc_ino.ip->i_ino,
 369				cur->bc_ino.whichfork, cur->bc_ops->name,
 370				level, index);
 371			break;
 372		case XFS_BTREE_TYPE_AG:
 373			xfs_err(cur->bc_mp,
 374"AG %u: Corrupt %sbt pointer at level %d index %d.",
 375				cur->bc_group->xg_gno, cur->bc_ops->name,
 
 
 376				level, index);
 377			break;
 378		}
 379		xfs_btree_mark_sick(cur);
 380	}
 381
 382	return error;
 383}
 384
 385#ifdef DEBUG
 386# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
 387#else
 388# define xfs_btree_debug_check_ptr(...)	(0)
 389#endif
 390
 391/*
 392 * Calculate CRC on the whole btree block and stuff it into the
 393 * long-form btree header.
 394 *
 395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 396 * it into the buffer so recovery knows what the last modification was that made
 397 * it to disk.
 398 */
 399void
 400xfs_btree_fsblock_calc_crc(
 401	struct xfs_buf		*bp)
 402{
 403	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 404	struct xfs_buf_log_item	*bip = bp->b_log_item;
 405
 406	if (!xfs_has_crc(bp->b_mount))
 407		return;
 408	if (bip)
 409		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 410	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 411}
 412
 413bool
 414xfs_btree_fsblock_verify_crc(
 415	struct xfs_buf		*bp)
 416{
 417	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 418	struct xfs_mount	*mp = bp->b_mount;
 419
 420	if (xfs_has_crc(mp)) {
 421		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 422			return false;
 423		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 424	}
 425
 426	return true;
 427}
 428
 429/*
 430 * Calculate CRC on the whole btree block and stuff it into the
 431 * short-form btree header.
 432 *
 433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 434 * it into the buffer so recovery knows what the last modification was that made
 435 * it to disk.
 436 */
 437void
 438xfs_btree_agblock_calc_crc(
 439	struct xfs_buf		*bp)
 440{
 441	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 442	struct xfs_buf_log_item	*bip = bp->b_log_item;
 443
 444	if (!xfs_has_crc(bp->b_mount))
 445		return;
 446	if (bip)
 447		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 448	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 449}
 450
 451bool
 452xfs_btree_agblock_verify_crc(
 453	struct xfs_buf		*bp)
 454{
 455	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 456	struct xfs_mount	*mp = bp->b_mount;
 457
 458	if (xfs_has_crc(mp)) {
 459		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 460			return false;
 461		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 462	}
 463
 464	return true;
 465}
 466
 467static int
 468xfs_btree_free_block(
 469	struct xfs_btree_cur	*cur,
 470	struct xfs_buf		*bp)
 471{
 472	int			error;
 473
 474	trace_xfs_btree_free_block(cur, bp);
 475
 476	/*
 477	 * Don't allow block freeing for a staging cursor, because staging
 478	 * cursors do not support regular btree modifications.
 479	 */
 480	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
 481		ASSERT(0);
 482		return -EFSCORRUPTED;
 483	}
 484
 485	error = cur->bc_ops->free_block(cur, bp);
 486	if (!error) {
 487		xfs_trans_binval(cur->bc_tp, bp);
 488		XFS_BTREE_STATS_INC(cur, free);
 489	}
 490	return error;
 491}
 492
 493/*
 494 * Delete the btree cursor.
 495 */
 496void
 497xfs_btree_del_cursor(
 498	struct xfs_btree_cur	*cur,		/* btree cursor */
 499	int			error)		/* del because of error */
 500{
 501	int			i;		/* btree level */
 502
 503	/*
 504	 * Clear the buffer pointers and release the buffers. If we're doing
 505	 * this because of an error, inspect all of the entries in the bc_bufs
 506	 * array for buffers to be unlocked. This is because some of the btree
 507	 * code works from level n down to 0, and if we get an error along the
 508	 * way we won't have initialized all the entries down to 0.
 509	 */
 510	for (i = 0; i < cur->bc_nlevels; i++) {
 511		if (cur->bc_levels[i].bp)
 512			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
 513		else if (!error)
 514			break;
 515	}
 516
 517	/*
 518	 * If we are doing a BMBT update, the number of unaccounted blocks
 519	 * allocated during this cursor life time should be zero. If it's not
 520	 * zero, then we should be shut down or on our way to shutdown due to
 521	 * cancelling a dirty transaction on error.
 522	 */
 523	ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
 524	       xfs_is_shutdown(cur->bc_mp) || error != 0);
 525
 526	if (cur->bc_group)
 527		xfs_group_put(cur->bc_group);
 
 528	kmem_cache_free(cur->bc_cache, cur);
 529}
 530
 531/* Return the buffer target for this btree's buffer. */
 532static inline struct xfs_buftarg *
 533xfs_btree_buftarg(
 534	struct xfs_btree_cur	*cur)
 535{
 536	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
 537		return cur->bc_mem.xfbtree->target;
 538	return cur->bc_mp->m_ddev_targp;
 539}
 540
 541/* Return the block size (in units of 512b sectors) for this btree. */
 542static inline unsigned int
 543xfs_btree_bbsize(
 544	struct xfs_btree_cur	*cur)
 545{
 546	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
 547		return XFBNO_BBSIZE;
 548	return cur->bc_mp->m_bsize;
 549}
 550
 551/*
 552 * Duplicate the btree cursor.
 553 * Allocate a new one, copy the record, re-get the buffers.
 554 */
 555int						/* error */
 556xfs_btree_dup_cursor(
 557	struct xfs_btree_cur	*cur,		/* input cursor */
 558	struct xfs_btree_cur	**ncur)		/* output cursor */
 559{
 560	struct xfs_mount	*mp = cur->bc_mp;
 561	struct xfs_trans	*tp = cur->bc_tp;
 562	struct xfs_buf		*bp;
 563	struct xfs_btree_cur	*new;
 564	int			error;
 565	int			i;
 566
 567	/*
 568	 * Don't allow staging cursors to be duplicated because they're supposed
 569	 * to be kept private to a single thread.
 570	 */
 571	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
 572		ASSERT(0);
 573		return -EFSCORRUPTED;
 574	}
 575
 576	/*
 577	 * Allocate a new cursor like the old one.
 578	 */
 579	new = cur->bc_ops->dup_cursor(cur);
 580
 581	/*
 582	 * Copy the record currently in the cursor.
 583	 */
 584	new->bc_rec = cur->bc_rec;
 585
 586	/*
 587	 * For each level current, re-get the buffer and copy the ptr value.
 588	 */
 589	for (i = 0; i < new->bc_nlevels; i++) {
 590		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
 591		new->bc_levels[i].ra = cur->bc_levels[i].ra;
 592		bp = cur->bc_levels[i].bp;
 593		if (bp) {
 594			error = xfs_trans_read_buf(mp, tp,
 595					xfs_btree_buftarg(cur),
 596					xfs_buf_daddr(bp),
 597					xfs_btree_bbsize(cur), 0, &bp,
 598					cur->bc_ops->buf_ops);
 599			if (xfs_metadata_is_sick(error))
 600				xfs_btree_mark_sick(new);
 601			if (error) {
 602				xfs_btree_del_cursor(new, error);
 603				*ncur = NULL;
 604				return error;
 605			}
 606		}
 607		new->bc_levels[i].bp = bp;
 608	}
 609	*ncur = new;
 610	return 0;
 611}
 612
 613/*
 614 * XFS btree block layout and addressing:
 615 *
 616 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 617 *
 618 * The leaf record start with a header then followed by records containing
 619 * the values.  A non-leaf block also starts with the same header, and
 620 * then first contains lookup keys followed by an equal number of pointers
 621 * to the btree blocks at the previous level.
 622 *
 623 *		+--------+-------+-------+-------+-------+-------+-------+
 624 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 625 *		+--------+-------+-------+-------+-------+-------+-------+
 626 *
 627 *		+--------+-------+-------+-------+-------+-------+-------+
 628 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 629 *		+--------+-------+-------+-------+-------+-------+-------+
 630 *
 631 * The header is called struct xfs_btree_block for reasons better left unknown
 632 * and comes in different versions for short (32bit) and long (64bit) block
 633 * pointers.  The record and key structures are defined by the btree instances
 634 * and opaque to the btree core.  The block pointers are simple disk endian
 635 * integers, available in a short (32bit) and long (64bit) variant.
 636 *
 637 * The helpers below calculate the offset of a given record, key or pointer
 638 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 639 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 640 * inside the btree block is done using indices starting at one, not zero!
 641 *
 642 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
 643 * overlapping intervals.  In such a tree, records are still sorted lowest to
 644 * highest and indexed by the smallest key value that refers to the record.
 645 * However, nodes are different: each pointer has two associated keys -- one
 646 * indexing the lowest key available in the block(s) below (the same behavior
 647 * as the key in a regular btree) and another indexing the highest key
 648 * available in the block(s) below.  Because records are /not/ sorted by the
 649 * highest key, all leaf block updates require us to compute the highest key
 650 * that matches any record in the leaf and to recursively update the high keys
 651 * in the nodes going further up in the tree, if necessary.  Nodes look like
 652 * this:
 653 *
 654 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 655 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 656 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 657 *
 658 * To perform an interval query on an overlapped tree, perform the usual
 659 * depth-first search and use the low and high keys to decide if we can skip
 660 * that particular node.  If a leaf node is reached, return the records that
 661 * intersect the interval.  Note that an interval query may return numerous
 662 * entries.  For a non-overlapped tree, simply search for the record associated
 663 * with the lowest key and iterate forward until a non-matching record is
 664 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 665 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 666 * more detail.
 667 *
 668 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 669 * reverse mapping records on a reflink filesystem:
 670 *
 671 * 1: +- file A startblock B offset C length D -----------+
 672 * 2:      +- file E startblock F offset G length H --------------+
 673 * 3:      +- file I startblock F offset J length K --+
 674 * 4:                                                        +- file L... --+
 675 *
 676 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 677 * we'd simply increment the length of record 1.  But how do we find the record
 678 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 679 * record 3 because the keys are ordered first by startblock.  An interval
 680 * query would return records 1 and 2 because they both overlap (B+D-1), and
 681 * from that we can pick out record 1 as the appropriate left neighbor.
 682 *
 683 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 684 * because a record's interval must end before the next record.
 685 */
 686
 687/*
 688 * Return size of the btree block header for this btree instance.
 689 */
 690static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 691{
 692	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
 693		if (xfs_has_crc(cur->bc_mp))
 694			return XFS_BTREE_LBLOCK_CRC_LEN;
 695		return XFS_BTREE_LBLOCK_LEN;
 696	}
 697	if (xfs_has_crc(cur->bc_mp))
 698		return XFS_BTREE_SBLOCK_CRC_LEN;
 699	return XFS_BTREE_SBLOCK_LEN;
 700}
 701
 702/*
 
 
 
 
 
 
 
 
 
 703 * Calculate offset of the n-th record in a btree block.
 704 */
 705STATIC size_t
 706xfs_btree_rec_offset(
 707	struct xfs_btree_cur	*cur,
 708	int			n)
 709{
 710	return xfs_btree_block_len(cur) +
 711		(n - 1) * cur->bc_ops->rec_len;
 712}
 713
 714/*
 715 * Calculate offset of the n-th key in a btree block.
 716 */
 717STATIC size_t
 718xfs_btree_key_offset(
 719	struct xfs_btree_cur	*cur,
 720	int			n)
 721{
 722	return xfs_btree_block_len(cur) +
 723		(n - 1) * cur->bc_ops->key_len;
 724}
 725
 726/*
 727 * Calculate offset of the n-th high key in a btree block.
 728 */
 729STATIC size_t
 730xfs_btree_high_key_offset(
 731	struct xfs_btree_cur	*cur,
 732	int			n)
 733{
 734	return xfs_btree_block_len(cur) +
 735		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 736}
 737
 738/*
 739 * Calculate offset of the n-th block pointer in a btree block.
 740 */
 741STATIC size_t
 742xfs_btree_ptr_offset(
 743	struct xfs_btree_cur	*cur,
 744	int			n,
 745	int			level)
 746{
 747	return xfs_btree_block_len(cur) +
 748		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 749		(n - 1) * cur->bc_ops->ptr_len;
 750}
 751
 752/*
 753 * Return a pointer to the n-th record in the btree block.
 754 */
 755union xfs_btree_rec *
 756xfs_btree_rec_addr(
 757	struct xfs_btree_cur	*cur,
 758	int			n,
 759	struct xfs_btree_block	*block)
 760{
 761	return (union xfs_btree_rec *)
 762		((char *)block + xfs_btree_rec_offset(cur, n));
 763}
 764
 765/*
 766 * Return a pointer to the n-th key in the btree block.
 767 */
 768union xfs_btree_key *
 769xfs_btree_key_addr(
 770	struct xfs_btree_cur	*cur,
 771	int			n,
 772	struct xfs_btree_block	*block)
 773{
 774	return (union xfs_btree_key *)
 775		((char *)block + xfs_btree_key_offset(cur, n));
 776}
 777
 778/*
 779 * Return a pointer to the n-th high key in the btree block.
 780 */
 781union xfs_btree_key *
 782xfs_btree_high_key_addr(
 783	struct xfs_btree_cur	*cur,
 784	int			n,
 785	struct xfs_btree_block	*block)
 786{
 787	return (union xfs_btree_key *)
 788		((char *)block + xfs_btree_high_key_offset(cur, n));
 789}
 790
 791/*
 792 * Return a pointer to the n-th block pointer in the btree block.
 793 */
 794union xfs_btree_ptr *
 795xfs_btree_ptr_addr(
 796	struct xfs_btree_cur	*cur,
 797	int			n,
 798	struct xfs_btree_block	*block)
 799{
 800	int			level = xfs_btree_get_level(block);
 801
 802	ASSERT(block->bb_level != 0);
 803
 804	return (union xfs_btree_ptr *)
 805		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 806}
 807
 808struct xfs_ifork *
 809xfs_btree_ifork_ptr(
 810	struct xfs_btree_cur	*cur)
 811{
 812	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
 813
 814	if (cur->bc_flags & XFS_BTREE_STAGING)
 815		return cur->bc_ino.ifake->if_fork;
 816	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
 817}
 818
 819/*
 820 * Get the root block which is stored in the inode.
 821 *
 822 * For now this btree implementation assumes the btree root is always
 823 * stored in the if_broot field of an inode fork.
 824 */
 825STATIC struct xfs_btree_block *
 826xfs_btree_get_iroot(
 827	struct xfs_btree_cur	*cur)
 828{
 829	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 830
 831	return (struct xfs_btree_block *)ifp->if_broot;
 832}
 833
 834/*
 835 * Retrieve the block pointer from the cursor at the given level.
 836 * This may be an inode btree root or from a buffer.
 837 */
 838struct xfs_btree_block *		/* generic btree block pointer */
 839xfs_btree_get_block(
 840	struct xfs_btree_cur	*cur,	/* btree cursor */
 841	int			level,	/* level in btree */
 842	struct xfs_buf		**bpp)	/* buffer containing the block */
 843{
 844	if (xfs_btree_at_iroot(cur, level)) {
 
 845		*bpp = NULL;
 846		return xfs_btree_get_iroot(cur);
 847	}
 848
 849	*bpp = cur->bc_levels[level].bp;
 850	return XFS_BUF_TO_BLOCK(*bpp);
 851}
 852
 853/*
 854 * Change the cursor to point to the first record at the given level.
 855 * Other levels are unaffected.
 856 */
 857STATIC int				/* success=1, failure=0 */
 858xfs_btree_firstrec(
 859	struct xfs_btree_cur	*cur,	/* btree cursor */
 860	int			level)	/* level to change */
 861{
 862	struct xfs_btree_block	*block;	/* generic btree block pointer */
 863	struct xfs_buf		*bp;	/* buffer containing block */
 864
 865	/*
 866	 * Get the block pointer for this level.
 867	 */
 868	block = xfs_btree_get_block(cur, level, &bp);
 869	if (xfs_btree_check_block(cur, block, level, bp))
 870		return 0;
 871	/*
 872	 * It's empty, there is no such record.
 873	 */
 874	if (!block->bb_numrecs)
 875		return 0;
 876	/*
 877	 * Set the ptr value to 1, that's the first record/key.
 878	 */
 879	cur->bc_levels[level].ptr = 1;
 880	return 1;
 881}
 882
 883/*
 884 * Change the cursor to point to the last record in the current block
 885 * at the given level.  Other levels are unaffected.
 886 */
 887STATIC int				/* success=1, failure=0 */
 888xfs_btree_lastrec(
 889	struct xfs_btree_cur	*cur,	/* btree cursor */
 890	int			level)	/* level to change */
 891{
 892	struct xfs_btree_block	*block;	/* generic btree block pointer */
 893	struct xfs_buf		*bp;	/* buffer containing block */
 894
 895	/*
 896	 * Get the block pointer for this level.
 897	 */
 898	block = xfs_btree_get_block(cur, level, &bp);
 899	if (xfs_btree_check_block(cur, block, level, bp))
 900		return 0;
 901	/*
 902	 * It's empty, there is no such record.
 903	 */
 904	if (!block->bb_numrecs)
 905		return 0;
 906	/*
 907	 * Set the ptr value to numrecs, that's the last record/key.
 908	 */
 909	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
 910	return 1;
 911}
 912
 913/*
 914 * Compute first and last byte offsets for the fields given.
 915 * Interprets the offsets table, which contains struct field offsets.
 916 */
 917void
 918xfs_btree_offsets(
 919	uint32_t	fields,		/* bitmask of fields */
 920	const short	*offsets,	/* table of field offsets */
 921	int		nbits,		/* number of bits to inspect */
 922	int		*first,		/* output: first byte offset */
 923	int		*last)		/* output: last byte offset */
 924{
 925	int		i;		/* current bit number */
 926	uint32_t	imask;		/* mask for current bit number */
 927
 928	ASSERT(fields != 0);
 929	/*
 930	 * Find the lowest bit, so the first byte offset.
 931	 */
 932	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
 933		if (imask & fields) {
 934			*first = offsets[i];
 935			break;
 936		}
 937	}
 938	/*
 939	 * Find the highest bit, so the last byte offset.
 940	 */
 941	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
 942		if (imask & fields) {
 943			*last = offsets[i + 1] - 1;
 944			break;
 945		}
 946	}
 947}
 948
 949STATIC int
 950xfs_btree_readahead_fsblock(
 951	struct xfs_btree_cur	*cur,
 952	int			lr,
 953	struct xfs_btree_block	*block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954{
 955	struct xfs_mount	*mp = cur->bc_mp;
 956	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 957	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 958	int			rval = 0;
 959
 960	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 961		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
 962				mp->m_bsize, cur->bc_ops->buf_ops);
 963		rval++;
 964	}
 965
 966	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 967		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
 968				mp->m_bsize, cur->bc_ops->buf_ops);
 969		rval++;
 970	}
 
 
 
 
 
 
 
 
 
 971
 972	return rval;
 
 
 
 973}
 974
 975STATIC int
 976xfs_btree_readahead_memblock(
 977	struct xfs_btree_cur	*cur,
 978	int			lr,
 979	struct xfs_btree_block	*block)
 980{
 981	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
 982	xfbno_t			left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 983	xfbno_t			right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 984	int			rval = 0;
 
 
 985
 986	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 987		xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
 988				cur->bc_ops->buf_ops);
 989		rval++;
 990	}
 991
 992	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 993		xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
 994				cur->bc_ops->buf_ops);
 995		rval++;
 996	}
 997
 998	return rval;
 999}
1000
1001STATIC int
1002xfs_btree_readahead_agblock(
1003	struct xfs_btree_cur	*cur,
1004	int			lr,
1005	struct xfs_btree_block	*block)
1006{
1007	struct xfs_mount	*mp = cur->bc_mp;
1008	struct xfs_perag	*pag = to_perag(cur->bc_group);
1009	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1010	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1011	int			rval = 0;
1012
1013	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1014		xfs_buf_readahead(mp->m_ddev_targp,
1015				xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1016				cur->bc_ops->buf_ops);
1017		rval++;
1018	}
1019
1020	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1021		xfs_buf_readahead(mp->m_ddev_targp,
1022				xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1023				cur->bc_ops->buf_ops);
1024		rval++;
1025	}
1026
1027	return rval;
1028}
1029
1030/*
1031 * Read-ahead btree blocks, at the given level.
1032 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1033 */
1034STATIC int
1035xfs_btree_readahead(
1036	struct xfs_btree_cur	*cur,		/* btree cursor */
1037	int			lev,		/* level in btree */
1038	int			lr)		/* left/right bits */
1039{
1040	struct xfs_btree_block	*block;
1041
1042	/*
1043	 * No readahead needed if we are at the root level and the
1044	 * btree root is stored in the inode.
1045	 */
1046	if (xfs_btree_at_iroot(cur, lev))
 
1047		return 0;
1048
1049	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1050		return 0;
1051
1052	cur->bc_levels[lev].ra |= lr;
1053	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1054
1055	switch (cur->bc_ops->type) {
1056	case XFS_BTREE_TYPE_AG:
1057		return xfs_btree_readahead_agblock(cur, lr, block);
1058	case XFS_BTREE_TYPE_INODE:
1059		return xfs_btree_readahead_fsblock(cur, lr, block);
1060	case XFS_BTREE_TYPE_MEM:
1061		return xfs_btree_readahead_memblock(cur, lr, block);
1062	default:
1063		ASSERT(0);
1064		return 0;
1065	}
1066}
1067
1068STATIC int
1069xfs_btree_ptr_to_daddr(
1070	struct xfs_btree_cur		*cur,
1071	const union xfs_btree_ptr	*ptr,
1072	xfs_daddr_t			*daddr)
1073{
 
 
1074	int			error;
1075
1076	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1077	if (error)
1078		return error;
1079
1080	switch (cur->bc_ops->type) {
1081	case XFS_BTREE_TYPE_AG:
1082		*daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1083				be32_to_cpu(ptr->s));
1084		break;
1085	case XFS_BTREE_TYPE_INODE:
1086		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1087		break;
1088	case XFS_BTREE_TYPE_MEM:
1089		*daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1090		break;
1091	}
 
1092	return 0;
1093}
1094
1095/*
1096 * Readahead @count btree blocks at the given @ptr location.
1097 *
1098 * We don't need to care about long or short form btrees here as we have a
1099 * method of converting the ptr directly to a daddr available to us.
1100 */
1101STATIC void
1102xfs_btree_readahead_ptr(
1103	struct xfs_btree_cur	*cur,
1104	union xfs_btree_ptr	*ptr,
1105	xfs_extlen_t		count)
1106{
1107	xfs_daddr_t		daddr;
1108
1109	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1110		return;
1111	xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1112			xfs_btree_bbsize(cur) * count,
1113			cur->bc_ops->buf_ops);
1114}
1115
1116/*
1117 * Set the buffer for level "lev" in the cursor to bp, releasing
1118 * any previous buffer.
1119 */
1120STATIC void
1121xfs_btree_setbuf(
1122	struct xfs_btree_cur	*cur,	/* btree cursor */
1123	int			lev,	/* level in btree */
1124	struct xfs_buf		*bp)	/* new buffer to set */
1125{
1126	struct xfs_btree_block	*b;	/* btree block */
1127
1128	if (cur->bc_levels[lev].bp)
1129		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1130	cur->bc_levels[lev].bp = bp;
1131	cur->bc_levels[lev].ra = 0;
1132
1133	b = XFS_BUF_TO_BLOCK(bp);
1134	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1135		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1136			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1137		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1138			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1139	} else {
1140		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1141			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1142		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1143			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1144	}
1145}
1146
1147bool
1148xfs_btree_ptr_is_null(
1149	struct xfs_btree_cur		*cur,
1150	const union xfs_btree_ptr	*ptr)
1151{
1152	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1153		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1154	else
1155		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1156}
1157
1158void
1159xfs_btree_set_ptr_null(
1160	struct xfs_btree_cur	*cur,
1161	union xfs_btree_ptr	*ptr)
1162{
1163	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1164		ptr->l = cpu_to_be64(NULLFSBLOCK);
1165	else
1166		ptr->s = cpu_to_be32(NULLAGBLOCK);
1167}
1168
1169static inline bool
1170xfs_btree_ptrs_equal(
1171	struct xfs_btree_cur		*cur,
1172	union xfs_btree_ptr		*ptr1,
1173	union xfs_btree_ptr		*ptr2)
1174{
1175	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176		return ptr1->l == ptr2->l;
1177	return ptr1->s == ptr2->s;
1178}
1179
1180/*
1181 * Get/set/init sibling pointers
1182 */
1183void
1184xfs_btree_get_sibling(
1185	struct xfs_btree_cur	*cur,
1186	struct xfs_btree_block	*block,
1187	union xfs_btree_ptr	*ptr,
1188	int			lr)
1189{
1190	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1191
1192	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1193		if (lr == XFS_BB_RIGHTSIB)
1194			ptr->l = block->bb_u.l.bb_rightsib;
1195		else
1196			ptr->l = block->bb_u.l.bb_leftsib;
1197	} else {
1198		if (lr == XFS_BB_RIGHTSIB)
1199			ptr->s = block->bb_u.s.bb_rightsib;
1200		else
1201			ptr->s = block->bb_u.s.bb_leftsib;
1202	}
1203}
1204
1205void
1206xfs_btree_set_sibling(
1207	struct xfs_btree_cur		*cur,
1208	struct xfs_btree_block		*block,
1209	const union xfs_btree_ptr	*ptr,
1210	int				lr)
1211{
1212	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1213
1214	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1215		if (lr == XFS_BB_RIGHTSIB)
1216			block->bb_u.l.bb_rightsib = ptr->l;
1217		else
1218			block->bb_u.l.bb_leftsib = ptr->l;
1219	} else {
1220		if (lr == XFS_BB_RIGHTSIB)
1221			block->bb_u.s.bb_rightsib = ptr->s;
1222		else
1223			block->bb_u.s.bb_leftsib = ptr->s;
1224	}
1225}
1226
1227static void
1228__xfs_btree_init_block(
1229	struct xfs_mount	*mp,
1230	struct xfs_btree_block	*buf,
1231	const struct xfs_btree_ops *ops,
1232	xfs_daddr_t		blkno,
 
1233	__u16			level,
1234	__u16			numrecs,
1235	__u64			owner)
 
1236{
1237	bool			crc = xfs_has_crc(mp);
1238	__u32			magic = xfs_btree_magic(mp, ops);
1239
1240	buf->bb_magic = cpu_to_be32(magic);
1241	buf->bb_level = cpu_to_be16(level);
1242	buf->bb_numrecs = cpu_to_be16(numrecs);
1243
1244	if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1245		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1246		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1247		if (crc) {
1248			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1249			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1250			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1251			buf->bb_u.l.bb_pad = 0;
1252			buf->bb_u.l.bb_lsn = 0;
1253		}
1254	} else {
 
 
 
1255		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1256		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1257		if (crc) {
1258			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1259			/* owner is a 32 bit value on short blocks */
1260			buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1261			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1262			buf->bb_u.s.bb_lsn = 0;
1263		}
1264	}
1265}
1266
1267void
1268xfs_btree_init_block(
1269	struct xfs_mount	*mp,
1270	struct xfs_btree_block	*block,
1271	const struct xfs_btree_ops *ops,
1272	__u16			level,
1273	__u16			numrecs,
1274	__u64			owner)
1275{
1276	__xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1277			numrecs, owner);
1278}
1279
1280void
1281xfs_btree_init_buf(
1282	struct xfs_mount		*mp,
1283	struct xfs_buf			*bp,
1284	const struct xfs_btree_ops	*ops,
1285	__u16				level,
1286	__u16				numrecs,
1287	__u64				owner)
1288{
1289	__xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1290			xfs_buf_daddr(bp), level, numrecs, owner);
1291	bp->b_ops = ops->buf_ops;
1292}
1293
1294static inline __u64
1295xfs_btree_owner(
1296	struct xfs_btree_cur    *cur)
1297{
1298	switch (cur->bc_ops->type) {
1299	case XFS_BTREE_TYPE_MEM:
1300		return cur->bc_mem.xfbtree->owner;
1301	case XFS_BTREE_TYPE_INODE:
1302		return cur->bc_ino.ip->i_ino;
1303	case XFS_BTREE_TYPE_AG:
1304		return cur->bc_group->xg_gno;
1305	default:
1306		ASSERT(0);
1307		return 0;
1308	}
1309}
1310
1311void
1312xfs_btree_init_block_cur(
1313	struct xfs_btree_cur	*cur,
1314	struct xfs_buf		*bp,
1315	int			level,
1316	int			numrecs)
1317{
1318	xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1319			xfs_btree_owner(cur));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320}
1321
1322STATIC void
1323xfs_btree_buf_to_ptr(
1324	struct xfs_btree_cur	*cur,
1325	struct xfs_buf		*bp,
1326	union xfs_btree_ptr	*ptr)
1327{
1328	switch (cur->bc_ops->type) {
1329	case XFS_BTREE_TYPE_AG:
 
 
1330		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1331					xfs_buf_daddr(bp)));
1332		break;
1333	case XFS_BTREE_TYPE_INODE:
1334		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1335					xfs_buf_daddr(bp)));
1336		break;
1337	case XFS_BTREE_TYPE_MEM:
1338		ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1339		break;
1340	}
1341}
1342
1343static inline void
1344xfs_btree_set_refs(
1345	struct xfs_btree_cur	*cur,
1346	struct xfs_buf		*bp)
1347{
1348	xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349}
1350
1351int
1352xfs_btree_get_buf_block(
1353	struct xfs_btree_cur		*cur,
1354	const union xfs_btree_ptr	*ptr,
1355	struct xfs_btree_block		**block,
1356	struct xfs_buf			**bpp)
1357{
1358	xfs_daddr_t			d;
1359	int				error;
 
1360
1361	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1362	if (error)
1363		return error;
1364	error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1365			xfs_btree_bbsize(cur), 0, bpp);
1366	if (error)
1367		return error;
1368
1369	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1370	*block = XFS_BUF_TO_BLOCK(*bpp);
1371	return 0;
1372}
1373
1374/*
1375 * Read in the buffer at the given ptr and return the buffer and
1376 * the block pointer within the buffer.
1377 */
1378int
1379xfs_btree_read_buf_block(
1380	struct xfs_btree_cur		*cur,
1381	const union xfs_btree_ptr	*ptr,
1382	int				flags,
1383	struct xfs_btree_block		**block,
1384	struct xfs_buf			**bpp)
1385{
1386	struct xfs_mount	*mp = cur->bc_mp;
1387	xfs_daddr_t		d;
1388	int			error;
1389
1390	/* need to sort out how callers deal with failures first */
1391	ASSERT(!(flags & XBF_TRYLOCK));
1392
1393	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1394	if (error)
1395		return error;
1396	error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1397			xfs_btree_bbsize(cur), flags, bpp,
1398			cur->bc_ops->buf_ops);
1399	if (xfs_metadata_is_sick(error))
1400		xfs_btree_mark_sick(cur);
1401	if (error)
1402		return error;
1403
1404	xfs_btree_set_refs(cur, *bpp);
1405	*block = XFS_BUF_TO_BLOCK(*bpp);
1406	return 0;
1407}
1408
1409/*
1410 * Copy keys from one btree block to another.
1411 */
1412void
1413xfs_btree_copy_keys(
1414	struct xfs_btree_cur		*cur,
1415	union xfs_btree_key		*dst_key,
1416	const union xfs_btree_key	*src_key,
1417	int				numkeys)
1418{
1419	ASSERT(numkeys >= 0);
1420	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Copy records from one btree block to another.
1425 */
1426STATIC void
1427xfs_btree_copy_recs(
1428	struct xfs_btree_cur	*cur,
1429	union xfs_btree_rec	*dst_rec,
1430	union xfs_btree_rec	*src_rec,
1431	int			numrecs)
1432{
1433	ASSERT(numrecs >= 0);
1434	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1435}
1436
1437/*
1438 * Copy block pointers from one btree block to another.
1439 */
1440void
1441xfs_btree_copy_ptrs(
1442	struct xfs_btree_cur	*cur,
1443	union xfs_btree_ptr	*dst_ptr,
1444	const union xfs_btree_ptr *src_ptr,
1445	int			numptrs)
1446{
1447	ASSERT(numptrs >= 0);
1448	memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1449}
1450
1451/*
1452 * Shift keys one index left/right inside a single btree block.
1453 */
1454STATIC void
1455xfs_btree_shift_keys(
1456	struct xfs_btree_cur	*cur,
1457	union xfs_btree_key	*key,
1458	int			dir,
1459	int			numkeys)
1460{
1461	char			*dst_key;
1462
1463	ASSERT(numkeys >= 0);
1464	ASSERT(dir == 1 || dir == -1);
1465
1466	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1467	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1468}
1469
1470/*
1471 * Shift records one index left/right inside a single btree block.
1472 */
1473STATIC void
1474xfs_btree_shift_recs(
1475	struct xfs_btree_cur	*cur,
1476	union xfs_btree_rec	*rec,
1477	int			dir,
1478	int			numrecs)
1479{
1480	char			*dst_rec;
1481
1482	ASSERT(numrecs >= 0);
1483	ASSERT(dir == 1 || dir == -1);
1484
1485	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1486	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1487}
1488
1489/*
1490 * Shift block pointers one index left/right inside a single btree block.
1491 */
1492STATIC void
1493xfs_btree_shift_ptrs(
1494	struct xfs_btree_cur	*cur,
1495	union xfs_btree_ptr	*ptr,
1496	int			dir,
1497	int			numptrs)
1498{
1499	char			*dst_ptr;
1500
1501	ASSERT(numptrs >= 0);
1502	ASSERT(dir == 1 || dir == -1);
1503
1504	dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1505	memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1506}
1507
1508/*
1509 * Log key values from the btree block.
1510 */
1511STATIC void
1512xfs_btree_log_keys(
1513	struct xfs_btree_cur	*cur,
1514	struct xfs_buf		*bp,
1515	int			first,
1516	int			last)
1517{
1518
1519	if (bp) {
1520		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1521		xfs_trans_log_buf(cur->bc_tp, bp,
1522				  xfs_btree_key_offset(cur, first),
1523				  xfs_btree_key_offset(cur, last + 1) - 1);
1524	} else {
1525		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1526				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1527	}
1528}
1529
1530/*
1531 * Log record values from the btree block.
1532 */
1533void
1534xfs_btree_log_recs(
1535	struct xfs_btree_cur	*cur,
1536	struct xfs_buf		*bp,
1537	int			first,
1538	int			last)
1539{
1540
1541	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1542	xfs_trans_log_buf(cur->bc_tp, bp,
1543			  xfs_btree_rec_offset(cur, first),
1544			  xfs_btree_rec_offset(cur, last + 1) - 1);
1545
1546}
1547
1548/*
1549 * Log block pointer fields from a btree block (nonleaf).
1550 */
1551STATIC void
1552xfs_btree_log_ptrs(
1553	struct xfs_btree_cur	*cur,	/* btree cursor */
1554	struct xfs_buf		*bp,	/* buffer containing btree block */
1555	int			first,	/* index of first pointer to log */
1556	int			last)	/* index of last pointer to log */
1557{
1558
1559	if (bp) {
1560		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1561		int			level = xfs_btree_get_level(block);
1562
1563		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564		xfs_trans_log_buf(cur->bc_tp, bp,
1565				xfs_btree_ptr_offset(cur, first, level),
1566				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1567	} else {
1568		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1569			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1570	}
1571
1572}
1573
1574/*
1575 * Log fields from a btree block header.
1576 */
1577void
1578xfs_btree_log_block(
1579	struct xfs_btree_cur	*cur,	/* btree cursor */
1580	struct xfs_buf		*bp,	/* buffer containing btree block */
1581	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1582{
1583	int			first;	/* first byte offset logged */
1584	int			last;	/* last byte offset logged */
1585	static const short	soffsets[] = {	/* table of offsets (short) */
1586		offsetof(struct xfs_btree_block, bb_magic),
1587		offsetof(struct xfs_btree_block, bb_level),
1588		offsetof(struct xfs_btree_block, bb_numrecs),
1589		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1590		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1591		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1592		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1593		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1594		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1595		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1596		XFS_BTREE_SBLOCK_CRC_LEN
1597	};
1598	static const short	loffsets[] = {	/* table of offsets (long) */
1599		offsetof(struct xfs_btree_block, bb_magic),
1600		offsetof(struct xfs_btree_block, bb_level),
1601		offsetof(struct xfs_btree_block, bb_numrecs),
1602		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1603		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1604		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1605		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1606		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1607		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1608		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1609		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1610		XFS_BTREE_LBLOCK_CRC_LEN
1611	};
1612
1613	if (bp) {
1614		int nbits;
1615
1616		if (xfs_has_crc(cur->bc_mp)) {
1617			/*
1618			 * We don't log the CRC when updating a btree
1619			 * block but instead recreate it during log
1620			 * recovery.  As the log buffers have checksums
1621			 * of their own this is safe and avoids logging a crc
1622			 * update in a lot of places.
1623			 */
1624			if (fields == XFS_BB_ALL_BITS)
1625				fields = XFS_BB_ALL_BITS_CRC;
1626			nbits = XFS_BB_NUM_BITS_CRC;
1627		} else {
1628			nbits = XFS_BB_NUM_BITS;
1629		}
1630		xfs_btree_offsets(fields,
1631				  (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1632					loffsets : soffsets,
1633				  nbits, &first, &last);
1634		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1635		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1636	} else {
1637		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1638			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1639	}
1640}
1641
1642/*
1643 * Increment cursor by one record at the level.
1644 * For nonzero levels the leaf-ward information is untouched.
1645 */
1646int						/* error */
1647xfs_btree_increment(
1648	struct xfs_btree_cur	*cur,
1649	int			level,
1650	int			*stat)		/* success/failure */
1651{
1652	struct xfs_btree_block	*block;
1653	union xfs_btree_ptr	ptr;
1654	struct xfs_buf		*bp;
1655	int			error;		/* error return value */
1656	int			lev;
1657
1658	ASSERT(level < cur->bc_nlevels);
1659
1660	/* Read-ahead to the right at this level. */
1661	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1662
1663	/* Get a pointer to the btree block. */
1664	block = xfs_btree_get_block(cur, level, &bp);
1665
1666#ifdef DEBUG
1667	error = xfs_btree_check_block(cur, block, level, bp);
1668	if (error)
1669		goto error0;
1670#endif
1671
1672	/* We're done if we remain in the block after the increment. */
1673	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1674		goto out1;
1675
1676	/* Fail if we just went off the right edge of the tree. */
1677	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1678	if (xfs_btree_ptr_is_null(cur, &ptr))
1679		goto out0;
1680
1681	XFS_BTREE_STATS_INC(cur, increment);
1682
1683	/*
1684	 * March up the tree incrementing pointers.
1685	 * Stop when we don't go off the right edge of a block.
1686	 */
1687	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1688		block = xfs_btree_get_block(cur, lev, &bp);
1689
1690#ifdef DEBUG
1691		error = xfs_btree_check_block(cur, block, lev, bp);
1692		if (error)
1693			goto error0;
1694#endif
1695
1696		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1697			break;
1698
1699		/* Read-ahead the right block for the next loop. */
1700		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1701	}
1702
1703	/*
1704	 * If we went off the root then we are either seriously
1705	 * confused or have the tree root in an inode.
1706	 */
1707	if (lev == cur->bc_nlevels) {
1708		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1709			goto out0;
1710		ASSERT(0);
1711		xfs_btree_mark_sick(cur);
1712		error = -EFSCORRUPTED;
1713		goto error0;
1714	}
1715	ASSERT(lev < cur->bc_nlevels);
1716
1717	/*
1718	 * Now walk back down the tree, fixing up the cursor's buffer
1719	 * pointers and key numbers.
1720	 */
1721	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1722		union xfs_btree_ptr	*ptrp;
1723
1724		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1725		--lev;
1726		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1727		if (error)
1728			goto error0;
1729
1730		xfs_btree_setbuf(cur, lev, bp);
1731		cur->bc_levels[lev].ptr = 1;
1732	}
1733out1:
1734	*stat = 1;
1735	return 0;
1736
1737out0:
1738	*stat = 0;
1739	return 0;
1740
1741error0:
1742	return error;
1743}
1744
1745/*
1746 * Decrement cursor by one record at the level.
1747 * For nonzero levels the leaf-ward information is untouched.
1748 */
1749int						/* error */
1750xfs_btree_decrement(
1751	struct xfs_btree_cur	*cur,
1752	int			level,
1753	int			*stat)		/* success/failure */
1754{
1755	struct xfs_btree_block	*block;
1756	struct xfs_buf		*bp;
1757	int			error;		/* error return value */
1758	int			lev;
1759	union xfs_btree_ptr	ptr;
1760
1761	ASSERT(level < cur->bc_nlevels);
1762
1763	/* Read-ahead to the left at this level. */
1764	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1765
1766	/* We're done if we remain in the block after the decrement. */
1767	if (--cur->bc_levels[level].ptr > 0)
1768		goto out1;
1769
1770	/* Get a pointer to the btree block. */
1771	block = xfs_btree_get_block(cur, level, &bp);
1772
1773#ifdef DEBUG
1774	error = xfs_btree_check_block(cur, block, level, bp);
1775	if (error)
1776		goto error0;
1777#endif
1778
1779	/* Fail if we just went off the left edge of the tree. */
1780	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1781	if (xfs_btree_ptr_is_null(cur, &ptr))
1782		goto out0;
1783
1784	XFS_BTREE_STATS_INC(cur, decrement);
1785
1786	/*
1787	 * March up the tree decrementing pointers.
1788	 * Stop when we don't go off the left edge of a block.
1789	 */
1790	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1791		if (--cur->bc_levels[lev].ptr > 0)
1792			break;
1793		/* Read-ahead the left block for the next loop. */
1794		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1795	}
1796
1797	/*
1798	 * If we went off the root then we are seriously confused.
1799	 * or the root of the tree is in an inode.
1800	 */
1801	if (lev == cur->bc_nlevels) {
1802		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1803			goto out0;
1804		ASSERT(0);
1805		xfs_btree_mark_sick(cur);
1806		error = -EFSCORRUPTED;
1807		goto error0;
1808	}
1809	ASSERT(lev < cur->bc_nlevels);
1810
1811	/*
1812	 * Now walk back down the tree, fixing up the cursor's buffer
1813	 * pointers and key numbers.
1814	 */
1815	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1816		union xfs_btree_ptr	*ptrp;
1817
1818		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1819		--lev;
1820		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1821		if (error)
1822			goto error0;
1823		xfs_btree_setbuf(cur, lev, bp);
1824		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1825	}
1826out1:
1827	*stat = 1;
1828	return 0;
1829
1830out0:
1831	*stat = 0;
1832	return 0;
1833
1834error0:
1835	return error;
1836}
1837
1838/*
1839 * Check the btree block owner now that we have the context to know who the
1840 * real owner is.
1841 */
1842static inline xfs_failaddr_t
1843xfs_btree_check_block_owner(
1844	struct xfs_btree_cur	*cur,
1845	struct xfs_btree_block	*block)
1846{
1847	__u64			owner;
1848
1849	if (!xfs_has_crc(cur->bc_mp) ||
1850	    (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1851		return NULL;
1852
1853	owner = xfs_btree_owner(cur);
1854	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1855		if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1856			return __this_address;
1857	} else {
1858		if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1859			return __this_address;
1860	}
1861
1862	return NULL;
1863}
1864
1865int
1866xfs_btree_lookup_get_block(
1867	struct xfs_btree_cur		*cur,	/* btree cursor */
1868	int				level,	/* level in the btree */
1869	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1870	struct xfs_btree_block		**blkp) /* return btree block */
1871{
1872	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1873	xfs_daddr_t		daddr;
1874	int			error = 0;
1875
1876	/* special case the root block if in an inode */
1877	if (xfs_btree_at_iroot(cur, level)) {
 
1878		*blkp = xfs_btree_get_iroot(cur);
1879		return 0;
1880	}
1881
1882	/*
1883	 * If the old buffer at this level for the disk address we are
1884	 * looking for re-use it.
1885	 *
1886	 * Otherwise throw it away and get a new one.
1887	 */
1888	bp = cur->bc_levels[level].bp;
1889	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1890	if (error)
1891		return error;
1892	if (bp && xfs_buf_daddr(bp) == daddr) {
1893		*blkp = XFS_BUF_TO_BLOCK(bp);
1894		return 0;
1895	}
1896
1897	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1898	if (error)
1899		return error;
1900
1901	/* Check the inode owner since the verifiers don't. */
1902	if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
 
 
 
 
1903		goto out_bad;
1904
1905	/* Did we get the level we were looking for? */
1906	if (be16_to_cpu((*blkp)->bb_level) != level)
1907		goto out_bad;
1908
1909	/* Check that internal nodes have at least one record. */
1910	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1911		goto out_bad;
1912
1913	xfs_btree_setbuf(cur, level, bp);
1914	return 0;
1915
1916out_bad:
1917	*blkp = NULL;
1918	xfs_buf_mark_corrupt(bp);
1919	xfs_trans_brelse(cur->bc_tp, bp);
1920	xfs_btree_mark_sick(cur);
1921	return -EFSCORRUPTED;
1922}
1923
1924/*
1925 * Get current search key.  For level 0 we don't actually have a key
1926 * structure so we make one up from the record.  For all other levels
1927 * we just return the right key.
1928 */
1929STATIC union xfs_btree_key *
1930xfs_lookup_get_search_key(
1931	struct xfs_btree_cur	*cur,
1932	int			level,
1933	int			keyno,
1934	struct xfs_btree_block	*block,
1935	union xfs_btree_key	*kp)
1936{
1937	if (level == 0) {
1938		cur->bc_ops->init_key_from_rec(kp,
1939				xfs_btree_rec_addr(cur, keyno, block));
1940		return kp;
1941	}
1942
1943	return xfs_btree_key_addr(cur, keyno, block);
1944}
1945
1946/*
1947 * Initialize a pointer to the root block.
1948 */
1949void
1950xfs_btree_init_ptr_from_cur(
1951	struct xfs_btree_cur	*cur,
1952	union xfs_btree_ptr	*ptr)
1953{
1954	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1955		/*
1956		 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1957		 * in xfs_btree_lookup_get_block and don't need a pointer here.
1958		 */
1959		ptr->l = 0;
1960	} else if (cur->bc_flags & XFS_BTREE_STAGING) {
1961		ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1962	} else {
1963		cur->bc_ops->init_ptr_from_cur(cur, ptr);
1964	}
1965}
1966
1967/*
1968 * Lookup the record.  The cursor is made to point to it, based on dir.
1969 * stat is set to 0 if can't find any such record, 1 for success.
1970 */
1971int					/* error */
1972xfs_btree_lookup(
1973	struct xfs_btree_cur	*cur,	/* btree cursor */
1974	xfs_lookup_t		dir,	/* <=, ==, or >= */
1975	int			*stat)	/* success/failure */
1976{
1977	struct xfs_btree_block	*block;	/* current btree block */
1978	int64_t			diff;	/* difference for the current key */
1979	int			error;	/* error return value */
1980	int			keyno;	/* current key number */
1981	int			level;	/* level in the btree */
1982	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1983	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1984
1985	XFS_BTREE_STATS_INC(cur, lookup);
1986
1987	/* No such thing as a zero-level tree. */
1988	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1989		xfs_btree_mark_sick(cur);
1990		return -EFSCORRUPTED;
1991	}
1992
1993	block = NULL;
1994	keyno = 0;
1995
1996	/* initialise start pointer from cursor */
1997	xfs_btree_init_ptr_from_cur(cur, &ptr);
1998	pp = &ptr;
1999
2000	/*
2001	 * Iterate over each level in the btree, starting at the root.
2002	 * For each level above the leaves, find the key we need, based
2003	 * on the lookup record, then follow the corresponding block
2004	 * pointer down to the next level.
2005	 */
2006	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2007		/* Get the block we need to do the lookup on. */
2008		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2009		if (error)
2010			goto error0;
2011
2012		if (diff == 0) {
2013			/*
2014			 * If we already had a key match at a higher level, we
2015			 * know we need to use the first entry in this block.
2016			 */
2017			keyno = 1;
2018		} else {
2019			/* Otherwise search this block. Do a binary search. */
2020
2021			int	high;	/* high entry number */
2022			int	low;	/* low entry number */
2023
2024			/* Set low and high entry numbers, 1-based. */
2025			low = 1;
2026			high = xfs_btree_get_numrecs(block);
2027			if (!high) {
2028				/* Block is empty, must be an empty leaf. */
2029				if (level != 0 || cur->bc_nlevels != 1) {
2030					XFS_CORRUPTION_ERROR(__func__,
2031							XFS_ERRLEVEL_LOW,
2032							cur->bc_mp, block,
2033							sizeof(*block));
2034					xfs_btree_mark_sick(cur);
2035					return -EFSCORRUPTED;
2036				}
2037
2038				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2039				*stat = 0;
2040				return 0;
2041			}
2042
2043			/* Binary search the block. */
2044			while (low <= high) {
2045				union xfs_btree_key	key;
2046				union xfs_btree_key	*kp;
2047
2048				XFS_BTREE_STATS_INC(cur, compare);
2049
2050				/* keyno is average of low and high. */
2051				keyno = (low + high) >> 1;
2052
2053				/* Get current search key */
2054				kp = xfs_lookup_get_search_key(cur, level,
2055						keyno, block, &key);
2056
2057				/*
2058				 * Compute difference to get next direction:
2059				 *  - less than, move right
2060				 *  - greater than, move left
2061				 *  - equal, we're done
2062				 */
2063				diff = cur->bc_ops->key_diff(cur, kp);
2064				if (diff < 0)
2065					low = keyno + 1;
2066				else if (diff > 0)
2067					high = keyno - 1;
2068				else
2069					break;
2070			}
2071		}
2072
2073		/*
2074		 * If there are more levels, set up for the next level
2075		 * by getting the block number and filling in the cursor.
2076		 */
2077		if (level > 0) {
2078			/*
2079			 * If we moved left, need the previous key number,
2080			 * unless there isn't one.
2081			 */
2082			if (diff > 0 && --keyno < 1)
2083				keyno = 1;
2084			pp = xfs_btree_ptr_addr(cur, keyno, block);
2085
2086			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2087			if (error)
2088				goto error0;
2089
2090			cur->bc_levels[level].ptr = keyno;
2091		}
2092	}
2093
2094	/* Done with the search. See if we need to adjust the results. */
2095	if (dir != XFS_LOOKUP_LE && diff < 0) {
2096		keyno++;
2097		/*
2098		 * If ge search and we went off the end of the block, but it's
2099		 * not the last block, we're in the wrong block.
2100		 */
2101		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2102		if (dir == XFS_LOOKUP_GE &&
2103		    keyno > xfs_btree_get_numrecs(block) &&
2104		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2105			int	i;
2106
2107			cur->bc_levels[0].ptr = keyno;
2108			error = xfs_btree_increment(cur, 0, &i);
2109			if (error)
2110				goto error0;
2111			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2112				xfs_btree_mark_sick(cur);
2113				return -EFSCORRUPTED;
2114			}
2115			*stat = 1;
2116			return 0;
2117		}
2118	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2119		keyno--;
2120	cur->bc_levels[0].ptr = keyno;
2121
2122	/* Return if we succeeded or not. */
2123	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2124		*stat = 0;
2125	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2126		*stat = 1;
2127	else
2128		*stat = 0;
2129	return 0;
2130
2131error0:
2132	return error;
2133}
2134
2135/* Find the high key storage area from a regular key. */
2136union xfs_btree_key *
2137xfs_btree_high_key_from_key(
2138	struct xfs_btree_cur	*cur,
2139	union xfs_btree_key	*key)
2140{
2141	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2142	return (union xfs_btree_key *)((char *)key +
2143			(cur->bc_ops->key_len / 2));
2144}
2145
2146/* Determine the low (and high if overlapped) keys of a leaf block */
2147STATIC void
2148xfs_btree_get_leaf_keys(
2149	struct xfs_btree_cur	*cur,
2150	struct xfs_btree_block	*block,
2151	union xfs_btree_key	*key)
2152{
2153	union xfs_btree_key	max_hkey;
2154	union xfs_btree_key	hkey;
2155	union xfs_btree_rec	*rec;
2156	union xfs_btree_key	*high;
2157	int			n;
2158
2159	rec = xfs_btree_rec_addr(cur, 1, block);
2160	cur->bc_ops->init_key_from_rec(key, rec);
2161
2162	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2163
2164		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2165		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2166			rec = xfs_btree_rec_addr(cur, n, block);
2167			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2168			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2169				max_hkey = hkey;
2170		}
2171
2172		high = xfs_btree_high_key_from_key(cur, key);
2173		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2174	}
2175}
2176
2177/* Determine the low (and high if overlapped) keys of a node block */
2178STATIC void
2179xfs_btree_get_node_keys(
2180	struct xfs_btree_cur	*cur,
2181	struct xfs_btree_block	*block,
2182	union xfs_btree_key	*key)
2183{
2184	union xfs_btree_key	*hkey;
2185	union xfs_btree_key	*max_hkey;
2186	union xfs_btree_key	*high;
2187	int			n;
2188
2189	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2190		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2191				cur->bc_ops->key_len / 2);
2192
2193		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2194		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2195			hkey = xfs_btree_high_key_addr(cur, n, block);
2196			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2197				max_hkey = hkey;
2198		}
2199
2200		high = xfs_btree_high_key_from_key(cur, key);
2201		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2202	} else {
2203		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2204				cur->bc_ops->key_len);
2205	}
2206}
2207
2208/* Derive the keys for any btree block. */
2209void
2210xfs_btree_get_keys(
2211	struct xfs_btree_cur	*cur,
2212	struct xfs_btree_block	*block,
2213	union xfs_btree_key	*key)
2214{
2215	if (be16_to_cpu(block->bb_level) == 0)
2216		xfs_btree_get_leaf_keys(cur, block, key);
2217	else
2218		xfs_btree_get_node_keys(cur, block, key);
2219}
2220
2221/*
2222 * Decide if we need to update the parent keys of a btree block.  For
2223 * a standard btree this is only necessary if we're updating the first
2224 * record/key.  For an overlapping btree, we must always update the
2225 * keys because the highest key can be in any of the records or keys
2226 * in the block.
2227 */
2228static inline bool
2229xfs_btree_needs_key_update(
2230	struct xfs_btree_cur	*cur,
2231	int			ptr)
2232{
2233	return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2234}
2235
2236/*
2237 * Update the low and high parent keys of the given level, progressing
2238 * towards the root.  If force_all is false, stop if the keys for a given
2239 * level do not need updating.
2240 */
2241STATIC int
2242__xfs_btree_updkeys(
2243	struct xfs_btree_cur	*cur,
2244	int			level,
2245	struct xfs_btree_block	*block,
2246	struct xfs_buf		*bp0,
2247	bool			force_all)
2248{
2249	union xfs_btree_key	key;	/* keys from current level */
2250	union xfs_btree_key	*lkey;	/* keys from the next level up */
2251	union xfs_btree_key	*hkey;
2252	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2253	union xfs_btree_key	*nhkey;
2254	struct xfs_buf		*bp;
2255	int			ptr;
2256
2257	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2258
2259	/* Exit if there aren't any parent levels to update. */
2260	if (level + 1 >= cur->bc_nlevels)
2261		return 0;
2262
2263	trace_xfs_btree_updkeys(cur, level, bp0);
2264
2265	lkey = &key;
2266	hkey = xfs_btree_high_key_from_key(cur, lkey);
2267	xfs_btree_get_keys(cur, block, lkey);
2268	for (level++; level < cur->bc_nlevels; level++) {
2269#ifdef DEBUG
2270		int		error;
2271#endif
2272		block = xfs_btree_get_block(cur, level, &bp);
2273		trace_xfs_btree_updkeys(cur, level, bp);
2274#ifdef DEBUG
2275		error = xfs_btree_check_block(cur, block, level, bp);
2276		if (error)
2277			return error;
2278#endif
2279		ptr = cur->bc_levels[level].ptr;
2280		nlkey = xfs_btree_key_addr(cur, ptr, block);
2281		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2282		if (!force_all &&
2283		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2284		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2285			break;
2286		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2287		xfs_btree_log_keys(cur, bp, ptr, ptr);
2288		if (level + 1 >= cur->bc_nlevels)
2289			break;
2290		xfs_btree_get_node_keys(cur, block, lkey);
2291	}
2292
2293	return 0;
2294}
2295
2296/* Update all the keys from some level in cursor back to the root. */
2297STATIC int
2298xfs_btree_updkeys_force(
2299	struct xfs_btree_cur	*cur,
2300	int			level)
2301{
2302	struct xfs_buf		*bp;
2303	struct xfs_btree_block	*block;
2304
2305	block = xfs_btree_get_block(cur, level, &bp);
2306	return __xfs_btree_updkeys(cur, level, block, bp, true);
2307}
2308
2309/*
2310 * Update the parent keys of the given level, progressing towards the root.
2311 */
2312STATIC int
2313xfs_btree_update_keys(
2314	struct xfs_btree_cur	*cur,
2315	int			level)
2316{
2317	struct xfs_btree_block	*block;
2318	struct xfs_buf		*bp;
2319	union xfs_btree_key	*kp;
2320	union xfs_btree_key	key;
2321	int			ptr;
2322
2323	ASSERT(level >= 0);
2324
2325	block = xfs_btree_get_block(cur, level, &bp);
2326	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2327		return __xfs_btree_updkeys(cur, level, block, bp, false);
2328
2329	/*
2330	 * Go up the tree from this level toward the root.
2331	 * At each level, update the key value to the value input.
2332	 * Stop when we reach a level where the cursor isn't pointing
2333	 * at the first entry in the block.
2334	 */
2335	xfs_btree_get_keys(cur, block, &key);
2336	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2337#ifdef DEBUG
2338		int		error;
2339#endif
2340		block = xfs_btree_get_block(cur, level, &bp);
2341#ifdef DEBUG
2342		error = xfs_btree_check_block(cur, block, level, bp);
2343		if (error)
2344			return error;
2345#endif
2346		ptr = cur->bc_levels[level].ptr;
2347		kp = xfs_btree_key_addr(cur, ptr, block);
2348		xfs_btree_copy_keys(cur, kp, &key, 1);
2349		xfs_btree_log_keys(cur, bp, ptr, ptr);
2350	}
2351
2352	return 0;
2353}
2354
2355/*
2356 * Update the record referred to by cur to the value in the
2357 * given record. This either works (return 0) or gets an
2358 * EFSCORRUPTED error.
2359 */
2360int
2361xfs_btree_update(
2362	struct xfs_btree_cur	*cur,
2363	union xfs_btree_rec	*rec)
2364{
2365	struct xfs_btree_block	*block;
2366	struct xfs_buf		*bp;
2367	int			error;
2368	int			ptr;
2369	union xfs_btree_rec	*rp;
2370
2371	/* Pick up the current block. */
2372	block = xfs_btree_get_block(cur, 0, &bp);
2373
2374#ifdef DEBUG
2375	error = xfs_btree_check_block(cur, block, 0, bp);
2376	if (error)
2377		goto error0;
2378#endif
2379	/* Get the address of the rec to be updated. */
2380	ptr = cur->bc_levels[0].ptr;
2381	rp = xfs_btree_rec_addr(cur, ptr, block);
2382
2383	/* Fill in the new contents and log them. */
2384	xfs_btree_copy_recs(cur, rp, rec, 1);
2385	xfs_btree_log_recs(cur, bp, ptr, ptr);
2386
 
 
 
 
 
 
 
 
 
2387	/* Pass new key value up to our parent. */
2388	if (xfs_btree_needs_key_update(cur, ptr)) {
2389		error = xfs_btree_update_keys(cur, 0);
2390		if (error)
2391			goto error0;
2392	}
2393
2394	return 0;
2395
2396error0:
2397	return error;
2398}
2399
2400/*
2401 * Move 1 record left from cur/level if possible.
2402 * Update cur to reflect the new path.
2403 */
2404STATIC int					/* error */
2405xfs_btree_lshift(
2406	struct xfs_btree_cur	*cur,
2407	int			level,
2408	int			*stat)		/* success/failure */
2409{
2410	struct xfs_buf		*lbp;		/* left buffer pointer */
2411	struct xfs_btree_block	*left;		/* left btree block */
2412	int			lrecs;		/* left record count */
2413	struct xfs_buf		*rbp;		/* right buffer pointer */
2414	struct xfs_btree_block	*right;		/* right btree block */
2415	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2416	int			rrecs;		/* right record count */
2417	union xfs_btree_ptr	lptr;		/* left btree pointer */
2418	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2419	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2420	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2421	int			error;		/* error return value */
2422	int			i;
2423
2424	if (xfs_btree_at_iroot(cur, level))
 
2425		goto out0;
2426
2427	/* Set up variables for this block as "right". */
2428	right = xfs_btree_get_block(cur, level, &rbp);
2429
2430#ifdef DEBUG
2431	error = xfs_btree_check_block(cur, right, level, rbp);
2432	if (error)
2433		goto error0;
2434#endif
2435
2436	/* If we've got no left sibling then we can't shift an entry left. */
2437	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2438	if (xfs_btree_ptr_is_null(cur, &lptr))
2439		goto out0;
2440
2441	/*
2442	 * If the cursor entry is the one that would be moved, don't
2443	 * do it... it's too complicated.
2444	 */
2445	if (cur->bc_levels[level].ptr <= 1)
2446		goto out0;
2447
2448	/* Set up the left neighbor as "left". */
2449	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2450	if (error)
2451		goto error0;
2452
2453	/* If it's full, it can't take another entry. */
2454	lrecs = xfs_btree_get_numrecs(left);
2455	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2456		goto out0;
2457
2458	rrecs = xfs_btree_get_numrecs(right);
2459
2460	/*
2461	 * We add one entry to the left side and remove one for the right side.
2462	 * Account for it here, the changes will be updated on disk and logged
2463	 * later.
2464	 */
2465	lrecs++;
2466	rrecs--;
2467
2468	XFS_BTREE_STATS_INC(cur, lshift);
2469	XFS_BTREE_STATS_ADD(cur, moves, 1);
2470
2471	/*
2472	 * If non-leaf, copy a key and a ptr to the left block.
2473	 * Log the changes to the left block.
2474	 */
2475	if (level > 0) {
2476		/* It's a non-leaf.  Move keys and pointers. */
2477		union xfs_btree_key	*lkp;	/* left btree key */
2478		union xfs_btree_ptr	*lpp;	/* left address pointer */
2479
2480		lkp = xfs_btree_key_addr(cur, lrecs, left);
2481		rkp = xfs_btree_key_addr(cur, 1, right);
2482
2483		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2484		rpp = xfs_btree_ptr_addr(cur, 1, right);
2485
2486		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2487		if (error)
2488			goto error0;
2489
2490		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2491		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2492
2493		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2494		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2495
2496		ASSERT(cur->bc_ops->keys_inorder(cur,
2497			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2498	} else {
2499		/* It's a leaf.  Move records.  */
2500		union xfs_btree_rec	*lrp;	/* left record pointer */
2501
2502		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2503		rrp = xfs_btree_rec_addr(cur, 1, right);
2504
2505		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2506		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2507
2508		ASSERT(cur->bc_ops->recs_inorder(cur,
2509			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2510	}
2511
2512	xfs_btree_set_numrecs(left, lrecs);
2513	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2514
2515	xfs_btree_set_numrecs(right, rrecs);
2516	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2517
2518	/*
2519	 * Slide the contents of right down one entry.
2520	 */
2521	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2522	if (level > 0) {
2523		/* It's a nonleaf. operate on keys and ptrs */
2524		for (i = 0; i < rrecs; i++) {
2525			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2526			if (error)
2527				goto error0;
2528		}
2529
2530		xfs_btree_shift_keys(cur,
2531				xfs_btree_key_addr(cur, 2, right),
2532				-1, rrecs);
2533		xfs_btree_shift_ptrs(cur,
2534				xfs_btree_ptr_addr(cur, 2, right),
2535				-1, rrecs);
2536
2537		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2538		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2539	} else {
2540		/* It's a leaf. operate on records */
2541		xfs_btree_shift_recs(cur,
2542			xfs_btree_rec_addr(cur, 2, right),
2543			-1, rrecs);
2544		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2545	}
2546
2547	/*
2548	 * Using a temporary cursor, update the parent key values of the
2549	 * block on the left.
2550	 */
2551	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2552		error = xfs_btree_dup_cursor(cur, &tcur);
2553		if (error)
2554			goto error0;
2555		i = xfs_btree_firstrec(tcur, level);
2556		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2557			xfs_btree_mark_sick(cur);
2558			error = -EFSCORRUPTED;
2559			goto error0;
2560		}
2561
2562		error = xfs_btree_decrement(tcur, level, &i);
2563		if (error)
2564			goto error1;
2565
2566		/* Update the parent high keys of the left block, if needed. */
2567		error = xfs_btree_update_keys(tcur, level);
2568		if (error)
2569			goto error1;
2570
2571		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2572	}
2573
2574	/* Update the parent keys of the right block. */
2575	error = xfs_btree_update_keys(cur, level);
2576	if (error)
2577		goto error0;
2578
2579	/* Slide the cursor value left one. */
2580	cur->bc_levels[level].ptr--;
2581
2582	*stat = 1;
2583	return 0;
2584
2585out0:
2586	*stat = 0;
2587	return 0;
2588
2589error0:
2590	return error;
2591
2592error1:
2593	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2594	return error;
2595}
2596
2597/*
2598 * Move 1 record right from cur/level if possible.
2599 * Update cur to reflect the new path.
2600 */
2601STATIC int					/* error */
2602xfs_btree_rshift(
2603	struct xfs_btree_cur	*cur,
2604	int			level,
2605	int			*stat)		/* success/failure */
2606{
2607	struct xfs_buf		*lbp;		/* left buffer pointer */
2608	struct xfs_btree_block	*left;		/* left btree block */
2609	struct xfs_buf		*rbp;		/* right buffer pointer */
2610	struct xfs_btree_block	*right;		/* right btree block */
2611	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2612	union xfs_btree_ptr	rptr;		/* right block pointer */
2613	union xfs_btree_key	*rkp;		/* right btree key */
2614	int			rrecs;		/* right record count */
2615	int			lrecs;		/* left record count */
2616	int			error;		/* error return value */
2617	int			i;		/* loop counter */
2618
2619	if (xfs_btree_at_iroot(cur, level))
 
2620		goto out0;
2621
2622	/* Set up variables for this block as "left". */
2623	left = xfs_btree_get_block(cur, level, &lbp);
2624
2625#ifdef DEBUG
2626	error = xfs_btree_check_block(cur, left, level, lbp);
2627	if (error)
2628		goto error0;
2629#endif
2630
2631	/* If we've got no right sibling then we can't shift an entry right. */
2632	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2633	if (xfs_btree_ptr_is_null(cur, &rptr))
2634		goto out0;
2635
2636	/*
2637	 * If the cursor entry is the one that would be moved, don't
2638	 * do it... it's too complicated.
2639	 */
2640	lrecs = xfs_btree_get_numrecs(left);
2641	if (cur->bc_levels[level].ptr >= lrecs)
2642		goto out0;
2643
2644	/* Set up the right neighbor as "right". */
2645	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2646	if (error)
2647		goto error0;
2648
2649	/* If it's full, it can't take another entry. */
2650	rrecs = xfs_btree_get_numrecs(right);
2651	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2652		goto out0;
2653
2654	XFS_BTREE_STATS_INC(cur, rshift);
2655	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2656
2657	/*
2658	 * Make a hole at the start of the right neighbor block, then
2659	 * copy the last left block entry to the hole.
2660	 */
2661	if (level > 0) {
2662		/* It's a nonleaf. make a hole in the keys and ptrs */
2663		union xfs_btree_key	*lkp;
2664		union xfs_btree_ptr	*lpp;
2665		union xfs_btree_ptr	*rpp;
2666
2667		lkp = xfs_btree_key_addr(cur, lrecs, left);
2668		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2669		rkp = xfs_btree_key_addr(cur, 1, right);
2670		rpp = xfs_btree_ptr_addr(cur, 1, right);
2671
2672		for (i = rrecs - 1; i >= 0; i--) {
2673			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2674			if (error)
2675				goto error0;
2676		}
2677
2678		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2679		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2680
2681		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2682		if (error)
2683			goto error0;
2684
2685		/* Now put the new data in, and log it. */
2686		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2687		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2688
2689		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2690		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2691
2692		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2693			xfs_btree_key_addr(cur, 2, right)));
2694	} else {
2695		/* It's a leaf. make a hole in the records */
2696		union xfs_btree_rec	*lrp;
2697		union xfs_btree_rec	*rrp;
2698
2699		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2700		rrp = xfs_btree_rec_addr(cur, 1, right);
2701
2702		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2703
2704		/* Now put the new data in, and log it. */
2705		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2706		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2707	}
2708
2709	/*
2710	 * Decrement and log left's numrecs, bump and log right's numrecs.
2711	 */
2712	xfs_btree_set_numrecs(left, --lrecs);
2713	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2714
2715	xfs_btree_set_numrecs(right, ++rrecs);
2716	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2717
2718	/*
2719	 * Using a temporary cursor, update the parent key values of the
2720	 * block on the right.
2721	 */
2722	error = xfs_btree_dup_cursor(cur, &tcur);
2723	if (error)
2724		goto error0;
2725	i = xfs_btree_lastrec(tcur, level);
2726	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2727		xfs_btree_mark_sick(cur);
2728		error = -EFSCORRUPTED;
2729		goto error0;
2730	}
2731
2732	error = xfs_btree_increment(tcur, level, &i);
2733	if (error)
2734		goto error1;
2735
2736	/* Update the parent high keys of the left block, if needed. */
2737	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2738		error = xfs_btree_update_keys(cur, level);
2739		if (error)
2740			goto error1;
2741	}
2742
2743	/* Update the parent keys of the right block. */
2744	error = xfs_btree_update_keys(tcur, level);
2745	if (error)
2746		goto error1;
2747
2748	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2749
2750	*stat = 1;
2751	return 0;
2752
2753out0:
2754	*stat = 0;
2755	return 0;
2756
2757error0:
2758	return error;
2759
2760error1:
2761	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2762	return error;
2763}
2764
2765static inline int
2766xfs_btree_alloc_block(
2767	struct xfs_btree_cur		*cur,
2768	const union xfs_btree_ptr	*hint_block,
2769	union xfs_btree_ptr		*new_block,
2770	int				*stat)
2771{
2772	int				error;
2773
2774	/*
2775	 * Don't allow block allocation for a staging cursor, because staging
2776	 * cursors do not support regular btree modifications.
2777	 *
2778	 * Bulk loading uses a separate callback to obtain new blocks from a
2779	 * preallocated list, which prevents ENOSPC failures during loading.
2780	 */
2781	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2782		ASSERT(0);
2783		return -EFSCORRUPTED;
2784	}
2785
2786	error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2787	trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2788	return error;
2789}
2790
2791/*
2792 * Split cur/level block in half.
2793 * Return new block number and the key to its first
2794 * record (to be inserted into parent).
2795 */
2796STATIC int					/* error */
2797__xfs_btree_split(
2798	struct xfs_btree_cur	*cur,
2799	int			level,
2800	union xfs_btree_ptr	*ptrp,
2801	union xfs_btree_key	*key,
2802	struct xfs_btree_cur	**curp,
2803	int			*stat)		/* success/failure */
2804{
2805	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2806	struct xfs_buf		*lbp;		/* left buffer pointer */
2807	struct xfs_btree_block	*left;		/* left btree block */
2808	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2809	struct xfs_buf		*rbp;		/* right buffer pointer */
2810	struct xfs_btree_block	*right;		/* right btree block */
2811	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2812	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2813	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2814	int			lrecs;
2815	int			rrecs;
2816	int			src_index;
2817	int			error;		/* error return value */
2818	int			i;
2819
2820	XFS_BTREE_STATS_INC(cur, split);
2821
2822	/* Set up left block (current one). */
2823	left = xfs_btree_get_block(cur, level, &lbp);
2824
2825#ifdef DEBUG
2826	error = xfs_btree_check_block(cur, left, level, lbp);
2827	if (error)
2828		goto error0;
2829#endif
2830
2831	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2832
2833	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2834	error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2835	if (error)
2836		goto error0;
2837	if (*stat == 0)
2838		goto out0;
2839	XFS_BTREE_STATS_INC(cur, alloc);
2840
2841	/* Set up the new block as "right". */
2842	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2843	if (error)
2844		goto error0;
2845
2846	/* Fill in the btree header for the new right block. */
2847	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2848
2849	/*
2850	 * Split the entries between the old and the new block evenly.
2851	 * Make sure that if there's an odd number of entries now, that
2852	 * each new block will have the same number of entries.
2853	 */
2854	lrecs = xfs_btree_get_numrecs(left);
2855	rrecs = lrecs / 2;
2856	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2857		rrecs++;
2858	src_index = (lrecs - rrecs + 1);
2859
2860	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2861
2862	/* Adjust numrecs for the later get_*_keys() calls. */
2863	lrecs -= rrecs;
2864	xfs_btree_set_numrecs(left, lrecs);
2865	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2866
2867	/*
2868	 * Copy btree block entries from the left block over to the
2869	 * new block, the right. Update the right block and log the
2870	 * changes.
2871	 */
2872	if (level > 0) {
2873		/* It's a non-leaf.  Move keys and pointers. */
2874		union xfs_btree_key	*lkp;	/* left btree key */
2875		union xfs_btree_ptr	*lpp;	/* left address pointer */
2876		union xfs_btree_key	*rkp;	/* right btree key */
2877		union xfs_btree_ptr	*rpp;	/* right address pointer */
2878
2879		lkp = xfs_btree_key_addr(cur, src_index, left);
2880		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2881		rkp = xfs_btree_key_addr(cur, 1, right);
2882		rpp = xfs_btree_ptr_addr(cur, 1, right);
2883
2884		for (i = src_index; i < rrecs; i++) {
2885			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2886			if (error)
2887				goto error0;
2888		}
2889
2890		/* Copy the keys & pointers to the new block. */
2891		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2892		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2893
2894		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2895		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2896
2897		/* Stash the keys of the new block for later insertion. */
2898		xfs_btree_get_node_keys(cur, right, key);
2899	} else {
2900		/* It's a leaf.  Move records.  */
2901		union xfs_btree_rec	*lrp;	/* left record pointer */
2902		union xfs_btree_rec	*rrp;	/* right record pointer */
2903
2904		lrp = xfs_btree_rec_addr(cur, src_index, left);
2905		rrp = xfs_btree_rec_addr(cur, 1, right);
2906
2907		/* Copy records to the new block. */
2908		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2909		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2910
2911		/* Stash the keys of the new block for later insertion. */
2912		xfs_btree_get_leaf_keys(cur, right, key);
2913	}
2914
2915	/*
2916	 * Find the left block number by looking in the buffer.
2917	 * Adjust sibling pointers.
2918	 */
2919	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2920	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2921	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2922	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2923
2924	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2925	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2926
2927	/*
2928	 * If there's a block to the new block's right, make that block
2929	 * point back to right instead of to left.
2930	 */
2931	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2932		error = xfs_btree_read_buf_block(cur, &rrptr,
2933							0, &rrblock, &rrbp);
2934		if (error)
2935			goto error0;
2936		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2937		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2938	}
2939
2940	/* Update the parent high keys of the left block, if needed. */
2941	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2942		error = xfs_btree_update_keys(cur, level);
2943		if (error)
2944			goto error0;
2945	}
2946
2947	/*
2948	 * If the cursor is really in the right block, move it there.
2949	 * If it's just pointing past the last entry in left, then we'll
2950	 * insert there, so don't change anything in that case.
2951	 */
2952	if (cur->bc_levels[level].ptr > lrecs + 1) {
2953		xfs_btree_setbuf(cur, level, rbp);
2954		cur->bc_levels[level].ptr -= lrecs;
2955	}
2956	/*
2957	 * If there are more levels, we'll need another cursor which refers
2958	 * the right block, no matter where this cursor was.
2959	 */
2960	if (level + 1 < cur->bc_nlevels) {
2961		error = xfs_btree_dup_cursor(cur, curp);
2962		if (error)
2963			goto error0;
2964		(*curp)->bc_levels[level + 1].ptr++;
2965	}
2966	*ptrp = rptr;
2967	*stat = 1;
2968	return 0;
2969out0:
2970	*stat = 0;
2971	return 0;
2972
2973error0:
2974	return error;
2975}
2976
2977#ifdef __KERNEL__
2978struct xfs_btree_split_args {
2979	struct xfs_btree_cur	*cur;
2980	int			level;
2981	union xfs_btree_ptr	*ptrp;
2982	union xfs_btree_key	*key;
2983	struct xfs_btree_cur	**curp;
2984	int			*stat;		/* success/failure */
2985	int			result;
2986	bool			kswapd;	/* allocation in kswapd context */
2987	struct completion	*done;
2988	struct work_struct	work;
2989};
2990
2991/*
2992 * Stack switching interfaces for allocation
2993 */
2994static void
2995xfs_btree_split_worker(
2996	struct work_struct	*work)
2997{
2998	struct xfs_btree_split_args	*args = container_of(work,
2999						struct xfs_btree_split_args, work);
3000	unsigned long		pflags;
3001	unsigned long		new_pflags = 0;
3002
3003	/*
3004	 * we are in a transaction context here, but may also be doing work
3005	 * in kswapd context, and hence we may need to inherit that state
3006	 * temporarily to ensure that we don't block waiting for memory reclaim
3007	 * in any way.
3008	 */
3009	if (args->kswapd)
3010		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3011
3012	current_set_flags_nested(&pflags, new_pflags);
3013	xfs_trans_set_context(args->cur->bc_tp);
3014
3015	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3016					 args->key, args->curp, args->stat);
3017
3018	xfs_trans_clear_context(args->cur->bc_tp);
3019	current_restore_flags_nested(&pflags, new_pflags);
3020
3021	/*
3022	 * Do not access args after complete() has run here. We don't own args
3023	 * and the owner may run and free args before we return here.
3024	 */
3025	complete(args->done);
3026
3027}
3028
3029/*
3030 * BMBT split requests often come in with little stack to work on so we push
3031 * them off to a worker thread so there is lots of stack to use. For the other
3032 * btree types, just call directly to avoid the context switch overhead here.
3033 *
3034 * Care must be taken here - the work queue rescuer thread introduces potential
3035 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3036 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3037 * lock an AGF that is already locked by a task queued to run by the rescuer,
3038 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3039 * release it until the current thread it is running gains the lock.
3040 *
3041 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3042 * already locked to allocate from. The only place that doesn't hold an AGF
3043 * locked is unwritten extent conversion at IO completion, but that has already
3044 * been offloaded to a worker thread and hence has no stack consumption issues
3045 * we have to worry about.
3046 */
3047STATIC int					/* error */
3048xfs_btree_split(
3049	struct xfs_btree_cur	*cur,
3050	int			level,
3051	union xfs_btree_ptr	*ptrp,
3052	union xfs_btree_key	*key,
3053	struct xfs_btree_cur	**curp,
3054	int			*stat)		/* success/failure */
3055{
3056	struct xfs_btree_split_args	args;
3057	DECLARE_COMPLETION_ONSTACK(done);
3058
3059	if (!xfs_btree_is_bmap(cur->bc_ops) ||
3060	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3061		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3062
3063	args.cur = cur;
3064	args.level = level;
3065	args.ptrp = ptrp;
3066	args.key = key;
3067	args.curp = curp;
3068	args.stat = stat;
3069	args.done = &done;
3070	args.kswapd = current_is_kswapd();
3071	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3072	queue_work(xfs_alloc_wq, &args.work);
3073	wait_for_completion(&done);
3074	destroy_work_on_stack(&args.work);
3075	return args.result;
3076}
3077#else
3078#define xfs_btree_split	__xfs_btree_split
3079#endif /* __KERNEL__ */
3080
 
3081/*
3082 * Copy the old inode root contents into a real block and make the
3083 * broot point to it.
3084 */
3085int						/* error */
3086xfs_btree_new_iroot(
3087	struct xfs_btree_cur	*cur,		/* btree cursor */
3088	int			*logflags,	/* logging flags for inode */
3089	int			*stat)		/* return status - 0 fail */
3090{
3091	struct xfs_buf		*cbp;		/* buffer for cblock */
3092	struct xfs_btree_block	*block;		/* btree block */
3093	struct xfs_btree_block	*cblock;	/* child btree block */
3094	union xfs_btree_key	*ckp;		/* child key pointer */
3095	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
3096	union xfs_btree_key	*kp;		/* pointer to btree key */
3097	union xfs_btree_ptr	*pp;		/* pointer to block addr */
3098	union xfs_btree_ptr	nptr;		/* new block addr */
3099	int			level;		/* btree level */
3100	int			error;		/* error return code */
3101	int			i;		/* loop counter */
3102
3103	XFS_BTREE_STATS_INC(cur, newroot);
3104
3105	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3106
3107	level = cur->bc_nlevels - 1;
3108
3109	block = xfs_btree_get_iroot(cur);
3110	pp = xfs_btree_ptr_addr(cur, 1, block);
3111
3112	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3113	error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3114	if (error)
3115		goto error0;
3116	if (*stat == 0)
3117		return 0;
3118
3119	XFS_BTREE_STATS_INC(cur, alloc);
3120
3121	/* Copy the root into a real block. */
3122	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3123	if (error)
3124		goto error0;
3125
3126	/*
3127	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3128	 * In that case have to also ensure the blkno remains correct
3129	 */
3130	memcpy(cblock, block, xfs_btree_block_len(cur));
3131	if (xfs_has_crc(cur->bc_mp)) {
3132		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3133		if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3134			cblock->bb_u.l.bb_blkno = bno;
3135		else
3136			cblock->bb_u.s.bb_blkno = bno;
3137	}
3138
3139	be16_add_cpu(&block->bb_level, 1);
3140	xfs_btree_set_numrecs(block, 1);
3141	cur->bc_nlevels++;
3142	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3143	cur->bc_levels[level + 1].ptr = 1;
3144
3145	kp = xfs_btree_key_addr(cur, 1, block);
3146	ckp = xfs_btree_key_addr(cur, 1, cblock);
3147	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3148
3149	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3150	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3151		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3152		if (error)
3153			goto error0;
3154	}
3155
3156	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3157
3158	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3159	if (error)
3160		goto error0;
3161
3162	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3163
3164	xfs_iroot_realloc(cur->bc_ino.ip,
3165			  1 - xfs_btree_get_numrecs(cblock),
3166			  cur->bc_ino.whichfork);
3167
3168	xfs_btree_setbuf(cur, level, cbp);
3169
3170	/*
3171	 * Do all this logging at the end so that
3172	 * the root is at the right level.
3173	 */
3174	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3175	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3176	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3177
3178	*logflags |=
3179		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3180	*stat = 1;
3181	return 0;
3182error0:
3183	return error;
3184}
3185
3186static void
3187xfs_btree_set_root(
3188	struct xfs_btree_cur		*cur,
3189	const union xfs_btree_ptr	*ptr,
3190	int				inc)
3191{
3192	if (cur->bc_flags & XFS_BTREE_STAGING) {
3193		/* Update the btree root information for a per-AG fake root. */
3194		cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3195		cur->bc_ag.afake->af_levels += inc;
3196	} else {
3197		cur->bc_ops->set_root(cur, ptr, inc);
3198	}
3199}
3200
3201/*
3202 * Allocate a new root block, fill it in.
3203 */
3204STATIC int				/* error */
3205xfs_btree_new_root(
3206	struct xfs_btree_cur	*cur,	/* btree cursor */
3207	int			*stat)	/* success/failure */
3208{
3209	struct xfs_btree_block	*block;	/* one half of the old root block */
3210	struct xfs_buf		*bp;	/* buffer containing block */
3211	int			error;	/* error return value */
3212	struct xfs_buf		*lbp;	/* left buffer pointer */
3213	struct xfs_btree_block	*left;	/* left btree block */
3214	struct xfs_buf		*nbp;	/* new (root) buffer */
3215	struct xfs_btree_block	*new;	/* new (root) btree block */
3216	int			nptr;	/* new value for key index, 1 or 2 */
3217	struct xfs_buf		*rbp;	/* right buffer pointer */
3218	struct xfs_btree_block	*right;	/* right btree block */
3219	union xfs_btree_ptr	rptr;
3220	union xfs_btree_ptr	lptr;
3221
3222	XFS_BTREE_STATS_INC(cur, newroot);
3223
3224	/* initialise our start point from the cursor */
3225	xfs_btree_init_ptr_from_cur(cur, &rptr);
3226
3227	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3228	error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3229	if (error)
3230		goto error0;
3231	if (*stat == 0)
3232		goto out0;
3233	XFS_BTREE_STATS_INC(cur, alloc);
3234
3235	/* Set up the new block. */
3236	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3237	if (error)
3238		goto error0;
3239
3240	/* Set the root in the holding structure  increasing the level by 1. */
3241	xfs_btree_set_root(cur, &lptr, 1);
3242
3243	/*
3244	 * At the previous root level there are now two blocks: the old root,
3245	 * and the new block generated when it was split.  We don't know which
3246	 * one the cursor is pointing at, so we set up variables "left" and
3247	 * "right" for each case.
3248	 */
3249	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3250
3251#ifdef DEBUG
3252	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3253	if (error)
3254		goto error0;
3255#endif
3256
3257	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3258	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3259		/* Our block is left, pick up the right block. */
3260		lbp = bp;
3261		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3262		left = block;
3263		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3264		if (error)
3265			goto error0;
3266		bp = rbp;
3267		nptr = 1;
3268	} else {
3269		/* Our block is right, pick up the left block. */
3270		rbp = bp;
3271		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3272		right = block;
3273		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3274		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3275		if (error)
3276			goto error0;
3277		bp = lbp;
3278		nptr = 2;
3279	}
3280
3281	/* Fill in the new block's btree header and log it. */
3282	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3283	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3284	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3285			!xfs_btree_ptr_is_null(cur, &rptr));
3286
3287	/* Fill in the key data in the new root. */
3288	if (xfs_btree_get_level(left) > 0) {
3289		/*
3290		 * Get the keys for the left block's keys and put them directly
3291		 * in the parent block.  Do the same for the right block.
3292		 */
3293		xfs_btree_get_node_keys(cur, left,
3294				xfs_btree_key_addr(cur, 1, new));
3295		xfs_btree_get_node_keys(cur, right,
3296				xfs_btree_key_addr(cur, 2, new));
3297	} else {
3298		/*
3299		 * Get the keys for the left block's records and put them
3300		 * directly in the parent block.  Do the same for the right
3301		 * block.
3302		 */
3303		xfs_btree_get_leaf_keys(cur, left,
3304			xfs_btree_key_addr(cur, 1, new));
3305		xfs_btree_get_leaf_keys(cur, right,
3306			xfs_btree_key_addr(cur, 2, new));
3307	}
3308	xfs_btree_log_keys(cur, nbp, 1, 2);
3309
3310	/* Fill in the pointer data in the new root. */
3311	xfs_btree_copy_ptrs(cur,
3312		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3313	xfs_btree_copy_ptrs(cur,
3314		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3315	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3316
3317	/* Fix up the cursor. */
3318	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3319	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3320	cur->bc_nlevels++;
3321	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3322	*stat = 1;
3323	return 0;
3324error0:
3325	return error;
3326out0:
3327	*stat = 0;
3328	return 0;
3329}
3330
3331STATIC int
3332xfs_btree_make_block_unfull(
3333	struct xfs_btree_cur	*cur,	/* btree cursor */
3334	int			level,	/* btree level */
3335	int			numrecs,/* # of recs in block */
3336	int			*oindex,/* old tree index */
3337	int			*index,	/* new tree index */
3338	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3339	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3340	union xfs_btree_key	*key,	/* key of new block */
3341	int			*stat)
3342{
3343	int			error = 0;
3344
3345	if (xfs_btree_at_iroot(cur, level)) {
 
3346		struct xfs_inode *ip = cur->bc_ino.ip;
3347
3348		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3349			/* A root block that can be made bigger. */
3350			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3351			*stat = 1;
3352		} else {
3353			/* A root block that needs replacing */
3354			int	logflags = 0;
3355
3356			error = xfs_btree_new_iroot(cur, &logflags, stat);
3357			if (error || *stat == 0)
3358				return error;
3359
3360			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3361		}
3362
3363		return 0;
3364	}
3365
3366	/* First, try shifting an entry to the right neighbor. */
3367	error = xfs_btree_rshift(cur, level, stat);
3368	if (error || *stat)
3369		return error;
3370
3371	/* Next, try shifting an entry to the left neighbor. */
3372	error = xfs_btree_lshift(cur, level, stat);
3373	if (error)
3374		return error;
3375
3376	if (*stat) {
3377		*oindex = *index = cur->bc_levels[level].ptr;
3378		return 0;
3379	}
3380
3381	/*
3382	 * Next, try splitting the current block in half.
3383	 *
3384	 * If this works we have to re-set our variables because we
3385	 * could be in a different block now.
3386	 */
3387	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3388	if (error || *stat == 0)
3389		return error;
3390
3391
3392	*index = cur->bc_levels[level].ptr;
3393	return 0;
3394}
3395
3396/*
3397 * Insert one record/level.  Return information to the caller
3398 * allowing the next level up to proceed if necessary.
3399 */
3400STATIC int
3401xfs_btree_insrec(
3402	struct xfs_btree_cur	*cur,	/* btree cursor */
3403	int			level,	/* level to insert record at */
3404	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3405	union xfs_btree_rec	*rec,	/* record to insert */
3406	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3407	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3408	int			*stat)	/* success/failure */
3409{
3410	struct xfs_btree_block	*block;	/* btree block */
3411	struct xfs_buf		*bp;	/* buffer for block */
3412	union xfs_btree_ptr	nptr;	/* new block ptr */
3413	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3414	union xfs_btree_key	nkey;	/* new block key */
3415	union xfs_btree_key	*lkey;
3416	int			optr;	/* old key/record index */
3417	int			ptr;	/* key/record index */
3418	int			numrecs;/* number of records */
3419	int			error;	/* error return value */
3420	int			i;
3421	xfs_daddr_t		old_bn;
3422
3423	ncur = NULL;
3424	lkey = &nkey;
3425
3426	/*
3427	 * If we have an external root pointer, and we've made it to the
3428	 * root level, allocate a new root block and we're done.
3429	 */
3430	if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3431	    level >= cur->bc_nlevels) {
3432		error = xfs_btree_new_root(cur, stat);
3433		xfs_btree_set_ptr_null(cur, ptrp);
3434
3435		return error;
3436	}
3437
3438	/* If we're off the left edge, return failure. */
3439	ptr = cur->bc_levels[level].ptr;
3440	if (ptr == 0) {
3441		*stat = 0;
3442		return 0;
3443	}
3444
3445	optr = ptr;
3446
3447	XFS_BTREE_STATS_INC(cur, insrec);
3448
3449	/* Get pointers to the btree buffer and block. */
3450	block = xfs_btree_get_block(cur, level, &bp);
3451	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3452	numrecs = xfs_btree_get_numrecs(block);
3453
3454#ifdef DEBUG
3455	error = xfs_btree_check_block(cur, block, level, bp);
3456	if (error)
3457		goto error0;
3458
3459	/* Check that the new entry is being inserted in the right place. */
3460	if (ptr <= numrecs) {
3461		if (level == 0) {
3462			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3463				xfs_btree_rec_addr(cur, ptr, block)));
3464		} else {
3465			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3466				xfs_btree_key_addr(cur, ptr, block)));
3467		}
3468	}
3469#endif
3470
3471	/*
3472	 * If the block is full, we can't insert the new entry until we
3473	 * make the block un-full.
3474	 */
3475	xfs_btree_set_ptr_null(cur, &nptr);
3476	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3477		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3478					&optr, &ptr, &nptr, &ncur, lkey, stat);
3479		if (error || *stat == 0)
3480			goto error0;
3481	}
3482
3483	/*
3484	 * The current block may have changed if the block was
3485	 * previously full and we have just made space in it.
3486	 */
3487	block = xfs_btree_get_block(cur, level, &bp);
3488	numrecs = xfs_btree_get_numrecs(block);
3489
3490#ifdef DEBUG
3491	error = xfs_btree_check_block(cur, block, level, bp);
3492	if (error)
3493		goto error0;
3494#endif
3495
3496	/*
3497	 * At this point we know there's room for our new entry in the block
3498	 * we're pointing at.
3499	 */
3500	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3501
3502	if (level > 0) {
3503		/* It's a nonleaf. make a hole in the keys and ptrs */
3504		union xfs_btree_key	*kp;
3505		union xfs_btree_ptr	*pp;
3506
3507		kp = xfs_btree_key_addr(cur, ptr, block);
3508		pp = xfs_btree_ptr_addr(cur, ptr, block);
3509
3510		for (i = numrecs - ptr; i >= 0; i--) {
3511			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3512			if (error)
3513				goto error0;
3514		}
3515
3516		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3517		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3518
3519		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3520		if (error)
3521			goto error0;
3522
3523		/* Now put the new data in, bump numrecs and log it. */
3524		xfs_btree_copy_keys(cur, kp, key, 1);
3525		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3526		numrecs++;
3527		xfs_btree_set_numrecs(block, numrecs);
3528		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3529		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3530#ifdef DEBUG
3531		if (ptr < numrecs) {
3532			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3533				xfs_btree_key_addr(cur, ptr + 1, block)));
3534		}
3535#endif
3536	} else {
3537		/* It's a leaf. make a hole in the records */
3538		union xfs_btree_rec             *rp;
3539
3540		rp = xfs_btree_rec_addr(cur, ptr, block);
3541
3542		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3543
3544		/* Now put the new data in, bump numrecs and log it. */
3545		xfs_btree_copy_recs(cur, rp, rec, 1);
3546		xfs_btree_set_numrecs(block, ++numrecs);
3547		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3548#ifdef DEBUG
3549		if (ptr < numrecs) {
3550			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3551				xfs_btree_rec_addr(cur, ptr + 1, block)));
3552		}
3553#endif
3554	}
3555
3556	/* Log the new number of records in the btree header. */
3557	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3558
3559	/*
3560	 * Update btree keys to reflect the newly added record or keyptr.
3561	 * There are three cases here to be aware of.  Normally, all we have to
3562	 * do is walk towards the root, updating keys as necessary.
3563	 *
3564	 * If the caller had us target a full block for the insertion, we dealt
3565	 * with that by calling the _make_block_unfull function.  If the
3566	 * "make unfull" function splits the block, it'll hand us back the key
3567	 * and pointer of the new block.  We haven't yet added the new block to
3568	 * the next level up, so if we decide to add the new record to the new
3569	 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3570	 * so that the caller adds the new block with the correct key.
3571	 *
3572	 * However, there is a third possibility-- if the selected block is the
3573	 * root block of an inode-rooted btree and cannot be expanded further,
3574	 * the "make unfull" function moves the root block contents to a new
3575	 * block and updates the root block to point to the new block.  In this
3576	 * case, no block pointer is passed back because the block has already
3577	 * been added to the btree.  In this case, we need to use the regular
3578	 * key update function, just like the first case.  This is critical for
3579	 * overlapping btrees, because the high key must be updated to reflect
3580	 * the entire tree, not just the subtree accessible through the first
3581	 * child of the root (which is now two levels down from the root).
3582	 */
3583	if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3584	    bp && xfs_buf_daddr(bp) != old_bn) {
3585		xfs_btree_get_keys(cur, block, lkey);
3586	} else if (xfs_btree_needs_key_update(cur, optr)) {
3587		error = xfs_btree_update_keys(cur, level);
3588		if (error)
3589			goto error0;
3590	}
3591
3592	/*
 
 
 
 
 
 
 
 
 
3593	 * Return the new block number, if any.
3594	 * If there is one, give back a record value and a cursor too.
3595	 */
3596	*ptrp = nptr;
3597	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3598		xfs_btree_copy_keys(cur, key, lkey, 1);
3599		*curp = ncur;
3600	}
3601
3602	*stat = 1;
3603	return 0;
3604
3605error0:
3606	if (ncur)
3607		xfs_btree_del_cursor(ncur, error);
3608	return error;
3609}
3610
3611/*
3612 * Insert the record at the point referenced by cur.
3613 *
3614 * A multi-level split of the tree on insert will invalidate the original
3615 * cursor.  All callers of this function should assume that the cursor is
3616 * no longer valid and revalidate it.
3617 */
3618int
3619xfs_btree_insert(
3620	struct xfs_btree_cur	*cur,
3621	int			*stat)
3622{
3623	int			error;	/* error return value */
3624	int			i;	/* result value, 0 for failure */
3625	int			level;	/* current level number in btree */
3626	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3627	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3628	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3629	union xfs_btree_key	bkey;	/* key of block to insert */
3630	union xfs_btree_key	*key;
3631	union xfs_btree_rec	rec;	/* record to insert */
3632
3633	level = 0;
3634	ncur = NULL;
3635	pcur = cur;
3636	key = &bkey;
3637
3638	xfs_btree_set_ptr_null(cur, &nptr);
3639
3640	/* Make a key out of the record data to be inserted, and save it. */
3641	cur->bc_ops->init_rec_from_cur(cur, &rec);
3642	cur->bc_ops->init_key_from_rec(key, &rec);
3643
3644	/*
3645	 * Loop going up the tree, starting at the leaf level.
3646	 * Stop when we don't get a split block, that must mean that
3647	 * the insert is finished with this level.
3648	 */
3649	do {
3650		/*
3651		 * Insert nrec/nptr into this level of the tree.
3652		 * Note if we fail, nptr will be null.
3653		 */
3654		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3655				&ncur, &i);
3656		if (error) {
3657			if (pcur != cur)
3658				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3659			goto error0;
3660		}
3661
3662		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3663			xfs_btree_mark_sick(cur);
3664			error = -EFSCORRUPTED;
3665			goto error0;
3666		}
3667		level++;
3668
3669		/*
3670		 * See if the cursor we just used is trash.
3671		 * Can't trash the caller's cursor, but otherwise we should
3672		 * if ncur is a new cursor or we're about to be done.
3673		 */
3674		if (pcur != cur &&
3675		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3676			/* Save the state from the cursor before we trash it */
3677			if (cur->bc_ops->update_cursor &&
3678			    !(cur->bc_flags & XFS_BTREE_STAGING))
3679				cur->bc_ops->update_cursor(pcur, cur);
3680			cur->bc_nlevels = pcur->bc_nlevels;
3681			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3682		}
3683		/* If we got a new cursor, switch to it. */
3684		if (ncur) {
3685			pcur = ncur;
3686			ncur = NULL;
3687		}
3688	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3689
3690	*stat = i;
3691	return 0;
3692error0:
3693	return error;
3694}
3695
3696/*
3697 * Try to merge a non-leaf block back into the inode root.
3698 *
3699 * Note: the killroot names comes from the fact that we're effectively
3700 * killing the old root block.  But because we can't just delete the
3701 * inode we have to copy the single block it was pointing to into the
3702 * inode.
3703 */
3704STATIC int
3705xfs_btree_kill_iroot(
3706	struct xfs_btree_cur	*cur)
3707{
3708	int			whichfork = cur->bc_ino.whichfork;
3709	struct xfs_inode	*ip = cur->bc_ino.ip;
3710	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3711	struct xfs_btree_block	*block;
3712	struct xfs_btree_block	*cblock;
3713	union xfs_btree_key	*kp;
3714	union xfs_btree_key	*ckp;
3715	union xfs_btree_ptr	*pp;
3716	union xfs_btree_ptr	*cpp;
3717	struct xfs_buf		*cbp;
3718	int			level;
3719	int			index;
3720	int			numrecs;
3721	int			error;
3722#ifdef DEBUG
3723	union xfs_btree_ptr	ptr;
3724#endif
3725	int			i;
3726
3727	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3728	ASSERT(cur->bc_nlevels > 1);
3729
3730	/*
3731	 * Don't deal with the root block needs to be a leaf case.
3732	 * We're just going to turn the thing back into extents anyway.
3733	 */
3734	level = cur->bc_nlevels - 1;
3735	if (level == 1)
3736		goto out0;
3737
3738	/*
3739	 * Give up if the root has multiple children.
3740	 */
3741	block = xfs_btree_get_iroot(cur);
3742	if (xfs_btree_get_numrecs(block) != 1)
3743		goto out0;
3744
3745	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3746	numrecs = xfs_btree_get_numrecs(cblock);
3747
3748	/*
3749	 * Only do this if the next level will fit.
3750	 * Then the data must be copied up to the inode,
3751	 * instead of freeing the root you free the next level.
3752	 */
3753	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3754		goto out0;
3755
3756	XFS_BTREE_STATS_INC(cur, killroot);
3757
3758#ifdef DEBUG
3759	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3760	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3761	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3762	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3763#endif
3764
3765	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3766	if (index) {
3767		xfs_iroot_realloc(cur->bc_ino.ip, index,
3768				  cur->bc_ino.whichfork);
3769		block = ifp->if_broot;
3770	}
3771
3772	be16_add_cpu(&block->bb_numrecs, index);
3773	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3774
3775	kp = xfs_btree_key_addr(cur, 1, block);
3776	ckp = xfs_btree_key_addr(cur, 1, cblock);
3777	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3778
3779	pp = xfs_btree_ptr_addr(cur, 1, block);
3780	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3781
3782	for (i = 0; i < numrecs; i++) {
3783		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3784		if (error)
3785			return error;
3786	}
3787
3788	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3789
3790	error = xfs_btree_free_block(cur, cbp);
3791	if (error)
3792		return error;
3793
3794	cur->bc_levels[level - 1].bp = NULL;
3795	be16_add_cpu(&block->bb_level, -1);
3796	xfs_trans_log_inode(cur->bc_tp, ip,
3797		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3798	cur->bc_nlevels--;
3799out0:
3800	return 0;
3801}
3802
3803/*
3804 * Kill the current root node, and replace it with it's only child node.
3805 */
3806STATIC int
3807xfs_btree_kill_root(
3808	struct xfs_btree_cur	*cur,
3809	struct xfs_buf		*bp,
3810	int			level,
3811	union xfs_btree_ptr	*newroot)
3812{
3813	int			error;
3814
3815	XFS_BTREE_STATS_INC(cur, killroot);
3816
3817	/*
3818	 * Update the root pointer, decreasing the level by 1 and then
3819	 * free the old root.
3820	 */
3821	xfs_btree_set_root(cur, newroot, -1);
3822
3823	error = xfs_btree_free_block(cur, bp);
3824	if (error)
3825		return error;
3826
3827	cur->bc_levels[level].bp = NULL;
3828	cur->bc_levels[level].ra = 0;
3829	cur->bc_nlevels--;
3830
3831	return 0;
3832}
3833
3834STATIC int
3835xfs_btree_dec_cursor(
3836	struct xfs_btree_cur	*cur,
3837	int			level,
3838	int			*stat)
3839{
3840	int			error;
3841	int			i;
3842
3843	if (level > 0) {
3844		error = xfs_btree_decrement(cur, level, &i);
3845		if (error)
3846			return error;
3847	}
3848
3849	*stat = 1;
3850	return 0;
3851}
3852
3853/*
3854 * Single level of the btree record deletion routine.
3855 * Delete record pointed to by cur/level.
3856 * Remove the record from its block then rebalance the tree.
3857 * Return 0 for error, 1 for done, 2 to go on to the next level.
3858 */
3859STATIC int					/* error */
3860xfs_btree_delrec(
3861	struct xfs_btree_cur	*cur,		/* btree cursor */
3862	int			level,		/* level removing record from */
3863	int			*stat)		/* fail/done/go-on */
3864{
3865	struct xfs_btree_block	*block;		/* btree block */
3866	union xfs_btree_ptr	cptr;		/* current block ptr */
3867	struct xfs_buf		*bp;		/* buffer for block */
3868	int			error;		/* error return value */
3869	int			i;		/* loop counter */
3870	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3871	struct xfs_buf		*lbp;		/* left buffer pointer */
3872	struct xfs_btree_block	*left;		/* left btree block */
3873	int			lrecs = 0;	/* left record count */
3874	int			ptr;		/* key/record index */
3875	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3876	struct xfs_buf		*rbp;		/* right buffer pointer */
3877	struct xfs_btree_block	*right;		/* right btree block */
3878	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3879	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3880	int			rrecs = 0;	/* right record count */
3881	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3882	int			numrecs;	/* temporary numrec count */
3883
3884	tcur = NULL;
3885
3886	/* Get the index of the entry being deleted, check for nothing there. */
3887	ptr = cur->bc_levels[level].ptr;
3888	if (ptr == 0) {
3889		*stat = 0;
3890		return 0;
3891	}
3892
3893	/* Get the buffer & block containing the record or key/ptr. */
3894	block = xfs_btree_get_block(cur, level, &bp);
3895	numrecs = xfs_btree_get_numrecs(block);
3896
3897#ifdef DEBUG
3898	error = xfs_btree_check_block(cur, block, level, bp);
3899	if (error)
3900		goto error0;
3901#endif
3902
3903	/* Fail if we're off the end of the block. */
3904	if (ptr > numrecs) {
3905		*stat = 0;
3906		return 0;
3907	}
3908
3909	XFS_BTREE_STATS_INC(cur, delrec);
3910	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3911
3912	/* Excise the entries being deleted. */
3913	if (level > 0) {
3914		/* It's a nonleaf. operate on keys and ptrs */
3915		union xfs_btree_key	*lkp;
3916		union xfs_btree_ptr	*lpp;
3917
3918		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3919		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3920
3921		for (i = 0; i < numrecs - ptr; i++) {
3922			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3923			if (error)
3924				goto error0;
3925		}
3926
3927		if (ptr < numrecs) {
3928			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3929			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3930			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3931			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3932		}
3933	} else {
3934		/* It's a leaf. operate on records */
3935		if (ptr < numrecs) {
3936			xfs_btree_shift_recs(cur,
3937				xfs_btree_rec_addr(cur, ptr + 1, block),
3938				-1, numrecs - ptr);
3939			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3940		}
3941	}
3942
3943	/*
3944	 * Decrement and log the number of entries in the block.
3945	 */
3946	xfs_btree_set_numrecs(block, --numrecs);
3947	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3948
3949	/*
 
 
 
 
 
 
 
 
 
3950	 * We're at the root level.  First, shrink the root block in-memory.
3951	 * Try to get rid of the next level down.  If we can't then there's
3952	 * nothing left to do.
3953	 */
3954	if (xfs_btree_at_iroot(cur, level)) {
3955		xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
 
 
3956
3957		error = xfs_btree_kill_iroot(cur);
3958		if (error)
3959			goto error0;
3960
3961		error = xfs_btree_dec_cursor(cur, level, stat);
3962		if (error)
3963			goto error0;
3964		*stat = 1;
3965		return 0;
3966	}
3967
3968	/*
3969	 * If this is the root level, and there's only one entry left, and it's
3970	 * NOT the leaf level, then we can get rid of this level.
3971	 */
3972	if (level == cur->bc_nlevels - 1) {
3973		if (numrecs == 1 && level > 0) {
3974			union xfs_btree_ptr	*pp;
3975			/*
3976			 * pp is still set to the first pointer in the block.
3977			 * Make it the new root of the btree.
3978			 */
3979			pp = xfs_btree_ptr_addr(cur, 1, block);
3980			error = xfs_btree_kill_root(cur, bp, level, pp);
3981			if (error)
3982				goto error0;
3983		} else if (level > 0) {
3984			error = xfs_btree_dec_cursor(cur, level, stat);
3985			if (error)
3986				goto error0;
3987		}
3988		*stat = 1;
3989		return 0;
3990	}
3991
3992	/*
3993	 * If we deleted the leftmost entry in the block, update the
3994	 * key values above us in the tree.
3995	 */
3996	if (xfs_btree_needs_key_update(cur, ptr)) {
3997		error = xfs_btree_update_keys(cur, level);
3998		if (error)
3999			goto error0;
4000	}
4001
4002	/*
4003	 * If the number of records remaining in the block is at least
4004	 * the minimum, we're done.
4005	 */
4006	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4007		error = xfs_btree_dec_cursor(cur, level, stat);
4008		if (error)
4009			goto error0;
4010		return 0;
4011	}
4012
4013	/*
4014	 * Otherwise, we have to move some records around to keep the
4015	 * tree balanced.  Look at the left and right sibling blocks to
4016	 * see if we can re-balance by moving only one record.
4017	 */
4018	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4019	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4020
4021	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4022		/*
4023		 * One child of root, need to get a chance to copy its contents
4024		 * into the root and delete it. Can't go up to next level,
4025		 * there's nothing to delete there.
4026		 */
4027		if (xfs_btree_ptr_is_null(cur, &rptr) &&
4028		    xfs_btree_ptr_is_null(cur, &lptr) &&
4029		    level == cur->bc_nlevels - 2) {
4030			error = xfs_btree_kill_iroot(cur);
4031			if (!error)
4032				error = xfs_btree_dec_cursor(cur, level, stat);
4033			if (error)
4034				goto error0;
4035			return 0;
4036		}
4037	}
4038
4039	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4040	       !xfs_btree_ptr_is_null(cur, &lptr));
4041
4042	/*
4043	 * Duplicate the cursor so our btree manipulations here won't
4044	 * disrupt the next level up.
4045	 */
4046	error = xfs_btree_dup_cursor(cur, &tcur);
4047	if (error)
4048		goto error0;
4049
4050	/*
4051	 * If there's a right sibling, see if it's ok to shift an entry
4052	 * out of it.
4053	 */
4054	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4055		/*
4056		 * Move the temp cursor to the last entry in the next block.
4057		 * Actually any entry but the first would suffice.
4058		 */
4059		i = xfs_btree_lastrec(tcur, level);
4060		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4061			xfs_btree_mark_sick(cur);
4062			error = -EFSCORRUPTED;
4063			goto error0;
4064		}
4065
4066		error = xfs_btree_increment(tcur, level, &i);
4067		if (error)
4068			goto error0;
4069		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4070			xfs_btree_mark_sick(cur);
4071			error = -EFSCORRUPTED;
4072			goto error0;
4073		}
4074
4075		i = xfs_btree_lastrec(tcur, level);
4076		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4077			xfs_btree_mark_sick(cur);
4078			error = -EFSCORRUPTED;
4079			goto error0;
4080		}
4081
4082		/* Grab a pointer to the block. */
4083		right = xfs_btree_get_block(tcur, level, &rbp);
4084#ifdef DEBUG
4085		error = xfs_btree_check_block(tcur, right, level, rbp);
4086		if (error)
4087			goto error0;
4088#endif
4089		/* Grab the current block number, for future use. */
4090		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4091
4092		/*
4093		 * If right block is full enough so that removing one entry
4094		 * won't make it too empty, and left-shifting an entry out
4095		 * of right to us works, we're done.
4096		 */
4097		if (xfs_btree_get_numrecs(right) - 1 >=
4098		    cur->bc_ops->get_minrecs(tcur, level)) {
4099			error = xfs_btree_lshift(tcur, level, &i);
4100			if (error)
4101				goto error0;
4102			if (i) {
4103				ASSERT(xfs_btree_get_numrecs(block) >=
4104				       cur->bc_ops->get_minrecs(tcur, level));
4105
4106				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4107				tcur = NULL;
4108
4109				error = xfs_btree_dec_cursor(cur, level, stat);
4110				if (error)
4111					goto error0;
4112				return 0;
4113			}
4114		}
4115
4116		/*
4117		 * Otherwise, grab the number of records in right for
4118		 * future reference, and fix up the temp cursor to point
4119		 * to our block again (last record).
4120		 */
4121		rrecs = xfs_btree_get_numrecs(right);
4122		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4123			i = xfs_btree_firstrec(tcur, level);
4124			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4125				xfs_btree_mark_sick(cur);
4126				error = -EFSCORRUPTED;
4127				goto error0;
4128			}
4129
4130			error = xfs_btree_decrement(tcur, level, &i);
4131			if (error)
4132				goto error0;
4133			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4134				xfs_btree_mark_sick(cur);
4135				error = -EFSCORRUPTED;
4136				goto error0;
4137			}
4138		}
4139	}
4140
4141	/*
4142	 * If there's a left sibling, see if it's ok to shift an entry
4143	 * out of it.
4144	 */
4145	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4146		/*
4147		 * Move the temp cursor to the first entry in the
4148		 * previous block.
4149		 */
4150		i = xfs_btree_firstrec(tcur, level);
4151		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4152			xfs_btree_mark_sick(cur);
4153			error = -EFSCORRUPTED;
4154			goto error0;
4155		}
4156
4157		error = xfs_btree_decrement(tcur, level, &i);
4158		if (error)
4159			goto error0;
4160		i = xfs_btree_firstrec(tcur, level);
4161		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4162			xfs_btree_mark_sick(cur);
4163			error = -EFSCORRUPTED;
4164			goto error0;
4165		}
4166
4167		/* Grab a pointer to the block. */
4168		left = xfs_btree_get_block(tcur, level, &lbp);
4169#ifdef DEBUG
4170		error = xfs_btree_check_block(cur, left, level, lbp);
4171		if (error)
4172			goto error0;
4173#endif
4174		/* Grab the current block number, for future use. */
4175		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4176
4177		/*
4178		 * If left block is full enough so that removing one entry
4179		 * won't make it too empty, and right-shifting an entry out
4180		 * of left to us works, we're done.
4181		 */
4182		if (xfs_btree_get_numrecs(left) - 1 >=
4183		    cur->bc_ops->get_minrecs(tcur, level)) {
4184			error = xfs_btree_rshift(tcur, level, &i);
4185			if (error)
4186				goto error0;
4187			if (i) {
4188				ASSERT(xfs_btree_get_numrecs(block) >=
4189				       cur->bc_ops->get_minrecs(tcur, level));
4190				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4191				tcur = NULL;
4192				if (level == 0)
4193					cur->bc_levels[0].ptr++;
4194
4195				*stat = 1;
4196				return 0;
4197			}
4198		}
4199
4200		/*
4201		 * Otherwise, grab the number of records in right for
4202		 * future reference.
4203		 */
4204		lrecs = xfs_btree_get_numrecs(left);
4205	}
4206
4207	/* Delete the temp cursor, we're done with it. */
4208	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4209	tcur = NULL;
4210
4211	/* If here, we need to do a join to keep the tree balanced. */
4212	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4213
4214	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4215	    lrecs + xfs_btree_get_numrecs(block) <=
4216			cur->bc_ops->get_maxrecs(cur, level)) {
4217		/*
4218		 * Set "right" to be the starting block,
4219		 * "left" to be the left neighbor.
4220		 */
4221		rptr = cptr;
4222		right = block;
4223		rbp = bp;
4224		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4225		if (error)
4226			goto error0;
4227
4228	/*
4229	 * If that won't work, see if we can join with the right neighbor block.
4230	 */
4231	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4232		   rrecs + xfs_btree_get_numrecs(block) <=
4233			cur->bc_ops->get_maxrecs(cur, level)) {
4234		/*
4235		 * Set "left" to be the starting block,
4236		 * "right" to be the right neighbor.
4237		 */
4238		lptr = cptr;
4239		left = block;
4240		lbp = bp;
4241		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4242		if (error)
4243			goto error0;
4244
4245	/*
4246	 * Otherwise, we can't fix the imbalance.
4247	 * Just return.  This is probably a logic error, but it's not fatal.
4248	 */
4249	} else {
4250		error = xfs_btree_dec_cursor(cur, level, stat);
4251		if (error)
4252			goto error0;
4253		return 0;
4254	}
4255
4256	rrecs = xfs_btree_get_numrecs(right);
4257	lrecs = xfs_btree_get_numrecs(left);
4258
4259	/*
4260	 * We're now going to join "left" and "right" by moving all the stuff
4261	 * in "right" to "left" and deleting "right".
4262	 */
4263	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4264	if (level > 0) {
4265		/* It's a non-leaf.  Move keys and pointers. */
4266		union xfs_btree_key	*lkp;	/* left btree key */
4267		union xfs_btree_ptr	*lpp;	/* left address pointer */
4268		union xfs_btree_key	*rkp;	/* right btree key */
4269		union xfs_btree_ptr	*rpp;	/* right address pointer */
4270
4271		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4272		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4273		rkp = xfs_btree_key_addr(cur, 1, right);
4274		rpp = xfs_btree_ptr_addr(cur, 1, right);
4275
4276		for (i = 1; i < rrecs; i++) {
4277			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4278			if (error)
4279				goto error0;
4280		}
4281
4282		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4283		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4284
4285		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4286		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4287	} else {
4288		/* It's a leaf.  Move records.  */
4289		union xfs_btree_rec	*lrp;	/* left record pointer */
4290		union xfs_btree_rec	*rrp;	/* right record pointer */
4291
4292		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4293		rrp = xfs_btree_rec_addr(cur, 1, right);
4294
4295		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4296		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4297	}
4298
4299	XFS_BTREE_STATS_INC(cur, join);
4300
4301	/*
4302	 * Fix up the number of records and right block pointer in the
4303	 * surviving block, and log it.
4304	 */
4305	xfs_btree_set_numrecs(left, lrecs + rrecs);
4306	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4307	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4308	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4309
4310	/* If there is a right sibling, point it to the remaining block. */
4311	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4312	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4313		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4314		if (error)
4315			goto error0;
4316		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4317		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4318	}
4319
4320	/* Free the deleted block. */
4321	error = xfs_btree_free_block(cur, rbp);
4322	if (error)
4323		goto error0;
4324
4325	/*
4326	 * If we joined with the left neighbor, set the buffer in the
4327	 * cursor to the left block, and fix up the index.
4328	 */
4329	if (bp != lbp) {
4330		cur->bc_levels[level].bp = lbp;
4331		cur->bc_levels[level].ptr += lrecs;
4332		cur->bc_levels[level].ra = 0;
4333	}
4334	/*
4335	 * If we joined with the right neighbor and there's a level above
4336	 * us, increment the cursor at that level.
4337	 */
4338	else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4339		 level + 1 < cur->bc_nlevels) {
4340		error = xfs_btree_increment(cur, level + 1, &i);
4341		if (error)
4342			goto error0;
4343	}
4344
4345	/*
4346	 * Readjust the ptr at this level if it's not a leaf, since it's
4347	 * still pointing at the deletion point, which makes the cursor
4348	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4349	 * We can't use decrement because it would change the next level up.
4350	 */
4351	if (level > 0)
4352		cur->bc_levels[level].ptr--;
4353
4354	/*
4355	 * We combined blocks, so we have to update the parent keys if the
4356	 * btree supports overlapped intervals.  However,
4357	 * bc_levels[level + 1].ptr points to the old block so that the caller
4358	 * knows which record to delete.  Therefore, the caller must be savvy
4359	 * enough to call updkeys for us if we return stat == 2.  The other
4360	 * exit points from this function don't require deletions further up
4361	 * the tree, so they can call updkeys directly.
4362	 */
4363
4364	/* Return value means the next level up has something to do. */
4365	*stat = 2;
4366	return 0;
4367
4368error0:
4369	if (tcur)
4370		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4371	return error;
4372}
4373
4374/*
4375 * Delete the record pointed to by cur.
4376 * The cursor refers to the place where the record was (could be inserted)
4377 * when the operation returns.
4378 */
4379int					/* error */
4380xfs_btree_delete(
4381	struct xfs_btree_cur	*cur,
4382	int			*stat)	/* success/failure */
4383{
4384	int			error;	/* error return value */
4385	int			level;
4386	int			i;
4387	bool			joined = false;
4388
4389	/*
4390	 * Go up the tree, starting at leaf level.
4391	 *
4392	 * If 2 is returned then a join was done; go to the next level.
4393	 * Otherwise we are done.
4394	 */
4395	for (level = 0, i = 2; i == 2; level++) {
4396		error = xfs_btree_delrec(cur, level, &i);
4397		if (error)
4398			goto error0;
4399		if (i == 2)
4400			joined = true;
4401	}
4402
4403	/*
4404	 * If we combined blocks as part of deleting the record, delrec won't
4405	 * have updated the parent high keys so we have to do that here.
4406	 */
4407	if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4408		error = xfs_btree_updkeys_force(cur, 0);
4409		if (error)
4410			goto error0;
4411	}
4412
4413	if (i == 0) {
4414		for (level = 1; level < cur->bc_nlevels; level++) {
4415			if (cur->bc_levels[level].ptr == 0) {
4416				error = xfs_btree_decrement(cur, level, &i);
4417				if (error)
4418					goto error0;
4419				break;
4420			}
4421		}
4422	}
4423
4424	*stat = i;
4425	return 0;
4426error0:
4427	return error;
4428}
4429
4430/*
4431 * Get the data from the pointed-to record.
4432 */
4433int					/* error */
4434xfs_btree_get_rec(
4435	struct xfs_btree_cur	*cur,	/* btree cursor */
4436	union xfs_btree_rec	**recp,	/* output: btree record */
4437	int			*stat)	/* output: success/failure */
4438{
4439	struct xfs_btree_block	*block;	/* btree block */
4440	struct xfs_buf		*bp;	/* buffer pointer */
4441	int			ptr;	/* record number */
4442#ifdef DEBUG
4443	int			error;	/* error return value */
4444#endif
4445
4446	ptr = cur->bc_levels[0].ptr;
4447	block = xfs_btree_get_block(cur, 0, &bp);
4448
4449#ifdef DEBUG
4450	error = xfs_btree_check_block(cur, block, 0, bp);
4451	if (error)
4452		return error;
4453#endif
4454
4455	/*
4456	 * Off the right end or left end, return failure.
4457	 */
4458	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4459		*stat = 0;
4460		return 0;
4461	}
4462
4463	/*
4464	 * Point to the record and extract its data.
4465	 */
4466	*recp = xfs_btree_rec_addr(cur, ptr, block);
4467	*stat = 1;
4468	return 0;
4469}
4470
4471/* Visit a block in a btree. */
4472STATIC int
4473xfs_btree_visit_block(
4474	struct xfs_btree_cur		*cur,
4475	int				level,
4476	xfs_btree_visit_blocks_fn	fn,
4477	void				*data)
4478{
4479	struct xfs_btree_block		*block;
4480	struct xfs_buf			*bp;
4481	union xfs_btree_ptr		rptr, bufptr;
4482	int				error;
4483
4484	/* do right sibling readahead */
4485	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4486	block = xfs_btree_get_block(cur, level, &bp);
4487
4488	/* process the block */
4489	error = fn(cur, level, data);
4490	if (error)
4491		return error;
4492
4493	/* now read rh sibling block for next iteration */
4494	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4495	if (xfs_btree_ptr_is_null(cur, &rptr))
4496		return -ENOENT;
4497
4498	/*
4499	 * We only visit blocks once in this walk, so we have to avoid the
4500	 * internal xfs_btree_lookup_get_block() optimisation where it will
4501	 * return the same block without checking if the right sibling points
4502	 * back to us and creates a cyclic reference in the btree.
4503	 */
4504	xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4505	if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4506		xfs_btree_mark_sick(cur);
4507		return -EFSCORRUPTED;
 
 
 
 
4508	}
4509
4510	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4511}
4512
4513
4514/* Visit every block in a btree. */
4515int
4516xfs_btree_visit_blocks(
4517	struct xfs_btree_cur		*cur,
4518	xfs_btree_visit_blocks_fn	fn,
4519	unsigned int			flags,
4520	void				*data)
4521{
4522	union xfs_btree_ptr		lptr;
4523	int				level;
4524	struct xfs_btree_block		*block = NULL;
4525	int				error = 0;
4526
4527	xfs_btree_init_ptr_from_cur(cur, &lptr);
4528
4529	/* for each level */
4530	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4531		/* grab the left hand block */
4532		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4533		if (error)
4534			return error;
4535
4536		/* readahead the left most block for the next level down */
4537		if (level > 0) {
4538			union xfs_btree_ptr     *ptr;
4539
4540			ptr = xfs_btree_ptr_addr(cur, 1, block);
4541			xfs_btree_readahead_ptr(cur, ptr, 1);
4542
4543			/* save for the next iteration of the loop */
4544			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4545
4546			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4547				continue;
4548		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4549			continue;
4550		}
4551
4552		/* for each buffer in the level */
4553		do {
4554			error = xfs_btree_visit_block(cur, level, fn, data);
4555		} while (!error);
4556
4557		if (error != -ENOENT)
4558			return error;
4559	}
4560
4561	return 0;
4562}
4563
4564/*
4565 * Change the owner of a btree.
4566 *
4567 * The mechanism we use here is ordered buffer logging. Because we don't know
4568 * how many buffers were are going to need to modify, we don't really want to
4569 * have to make transaction reservations for the worst case of every buffer in a
4570 * full size btree as that may be more space that we can fit in the log....
4571 *
4572 * We do the btree walk in the most optimal manner possible - we have sibling
4573 * pointers so we can just walk all the blocks on each level from left to right
4574 * in a single pass, and then move to the next level and do the same. We can
4575 * also do readahead on the sibling pointers to get IO moving more quickly,
4576 * though for slow disks this is unlikely to make much difference to performance
4577 * as the amount of CPU work we have to do before moving to the next block is
4578 * relatively small.
4579 *
4580 * For each btree block that we load, modify the owner appropriately, set the
4581 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4582 * we mark the region we change dirty so that if the buffer is relogged in
4583 * a subsequent transaction the changes we make here as an ordered buffer are
4584 * correctly relogged in that transaction.  If we are in recovery context, then
4585 * just queue the modified buffer as delayed write buffer so the transaction
4586 * recovery completion writes the changes to disk.
4587 */
4588struct xfs_btree_block_change_owner_info {
4589	uint64_t		new_owner;
4590	struct list_head	*buffer_list;
4591};
4592
4593static int
4594xfs_btree_block_change_owner(
4595	struct xfs_btree_cur	*cur,
4596	int			level,
4597	void			*data)
4598{
4599	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4600	struct xfs_btree_block	*block;
4601	struct xfs_buf		*bp;
4602
4603	/* modify the owner */
4604	block = xfs_btree_get_block(cur, level, &bp);
4605	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4606		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4607			return 0;
4608		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4609	} else {
4610		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4611			return 0;
4612		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4613	}
4614
4615	/*
4616	 * If the block is a root block hosted in an inode, we might not have a
4617	 * buffer pointer here and we shouldn't attempt to log the change as the
4618	 * information is already held in the inode and discarded when the root
4619	 * block is formatted into the on-disk inode fork. We still change it,
4620	 * though, so everything is consistent in memory.
4621	 */
4622	if (!bp) {
4623		ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4624		ASSERT(level == cur->bc_nlevels - 1);
4625		return 0;
4626	}
4627
4628	if (cur->bc_tp) {
4629		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4630			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4631			return -EAGAIN;
4632		}
4633	} else {
4634		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4635	}
4636
4637	return 0;
4638}
4639
4640int
4641xfs_btree_change_owner(
4642	struct xfs_btree_cur	*cur,
4643	uint64_t		new_owner,
4644	struct list_head	*buffer_list)
4645{
4646	struct xfs_btree_block_change_owner_info	bbcoi;
4647
4648	bbcoi.new_owner = new_owner;
4649	bbcoi.buffer_list = buffer_list;
4650
4651	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4652			XFS_BTREE_VISIT_ALL, &bbcoi);
4653}
4654
4655/* Verify the v5 fields of a long-format btree block. */
4656xfs_failaddr_t
4657xfs_btree_fsblock_v5hdr_verify(
4658	struct xfs_buf		*bp,
4659	uint64_t		owner)
4660{
4661	struct xfs_mount	*mp = bp->b_mount;
4662	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4663
4664	if (!xfs_has_crc(mp))
4665		return __this_address;
4666	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4667		return __this_address;
4668	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4669		return __this_address;
4670	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4671	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4672		return __this_address;
4673	return NULL;
4674}
4675
4676/* Verify a long-format btree block. */
4677xfs_failaddr_t
4678xfs_btree_fsblock_verify(
4679	struct xfs_buf		*bp,
4680	unsigned int		max_recs)
4681{
4682	struct xfs_mount	*mp = bp->b_mount;
4683	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4684	xfs_fsblock_t		fsb;
4685	xfs_failaddr_t		fa;
4686
4687	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4688
4689	/* numrecs verification */
4690	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4691		return __this_address;
4692
4693	/* sibling pointer verification */
4694	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4695	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4696			block->bb_u.l.bb_leftsib);
4697	if (!fa)
4698		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4699				block->bb_u.l.bb_rightsib);
4700	return fa;
4701}
4702
4703/* Verify an in-memory btree block. */
4704xfs_failaddr_t
4705xfs_btree_memblock_verify(
4706	struct xfs_buf		*bp,
4707	unsigned int		max_recs)
4708{
4709	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4710	struct xfs_buftarg	*btp = bp->b_target;
4711	xfs_failaddr_t		fa;
4712	xfbno_t			bno;
4713
4714	ASSERT(xfs_buftarg_is_mem(bp->b_target));
4715
4716	/* numrecs verification */
4717	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4718		return __this_address;
4719
4720	/* sibling pointer verification */
4721	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4722	fa = xfs_btree_check_memblock_siblings(btp, bno,
4723			block->bb_u.l.bb_leftsib);
4724	if (fa)
4725		return fa;
4726	fa = xfs_btree_check_memblock_siblings(btp, bno,
4727			block->bb_u.l.bb_rightsib);
4728	if (fa)
4729		return fa;
4730
4731	return NULL;
4732}
4733/**
4734 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4735 *				      btree block
4736 *
4737 * @bp: buffer containing the btree block
4738 */
4739xfs_failaddr_t
4740xfs_btree_agblock_v5hdr_verify(
4741	struct xfs_buf		*bp)
4742{
4743	struct xfs_mount	*mp = bp->b_mount;
4744	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4745	struct xfs_perag	*pag = bp->b_pag;
4746
4747	if (!xfs_has_crc(mp))
4748		return __this_address;
4749	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4750		return __this_address;
4751	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4752		return __this_address;
4753	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4754		return __this_address;
4755	return NULL;
4756}
4757
4758/**
4759 * xfs_btree_agblock_verify() -- verify a short-format btree block
4760 *
4761 * @bp: buffer containing the btree block
4762 * @max_recs: maximum records allowed in this btree node
4763 */
4764xfs_failaddr_t
4765xfs_btree_agblock_verify(
4766	struct xfs_buf		*bp,
4767	unsigned int		max_recs)
4768{
4769	struct xfs_mount	*mp = bp->b_mount;
4770	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4771	xfs_agblock_t		agbno;
4772	xfs_failaddr_t		fa;
4773
4774	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4775
4776	/* numrecs verification */
4777	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4778		return __this_address;
4779
4780	/* sibling pointer verification */
4781	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4782	fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4783			block->bb_u.s.bb_leftsib);
4784	if (!fa)
4785		fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4786				block->bb_u.s.bb_rightsib);
4787	return fa;
4788}
4789
4790/*
4791 * For the given limits on leaf and keyptr records per block, calculate the
4792 * height of the tree needed to index the number of leaf records.
4793 */
4794unsigned int
4795xfs_btree_compute_maxlevels(
4796	const unsigned int	*limits,
4797	unsigned long long	records)
4798{
4799	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4800	unsigned int		height = 1;
4801
4802	while (level_blocks > 1) {
4803		level_blocks = howmany_64(level_blocks, limits[1]);
4804		height++;
4805	}
4806
4807	return height;
4808}
4809
4810/*
4811 * For the given limits on leaf and keyptr records per block, calculate the
4812 * number of blocks needed to index the given number of leaf records.
4813 */
4814unsigned long long
4815xfs_btree_calc_size(
4816	const unsigned int	*limits,
4817	unsigned long long	records)
4818{
4819	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4820	unsigned long long	blocks = level_blocks;
4821
4822	while (level_blocks > 1) {
4823		level_blocks = howmany_64(level_blocks, limits[1]);
4824		blocks += level_blocks;
4825	}
4826
4827	return blocks;
4828}
4829
4830/*
4831 * Given a number of available blocks for the btree to consume with records and
4832 * pointers, calculate the height of the tree needed to index all the records
4833 * that space can hold based on the number of pointers each interior node
4834 * holds.
4835 *
4836 * We start by assuming a single level tree consumes a single block, then track
4837 * the number of blocks each node level consumes until we no longer have space
4838 * to store the next node level. At this point, we are indexing all the leaf
4839 * blocks in the space, and there's no more free space to split the tree any
4840 * further. That's our maximum btree height.
4841 */
4842unsigned int
4843xfs_btree_space_to_height(
4844	const unsigned int	*limits,
4845	unsigned long long	leaf_blocks)
4846{
4847	/*
4848	 * The root btree block can have fewer than minrecs pointers in it
4849	 * because the tree might not be big enough to require that amount of
4850	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4851	 */
4852	unsigned long long	node_blocks = 2;
4853	unsigned long long	blocks_left = leaf_blocks - 1;
4854	unsigned int		height = 1;
4855
4856	if (leaf_blocks < 1)
4857		return 0;
4858
4859	while (node_blocks < blocks_left) {
4860		blocks_left -= node_blocks;
4861		node_blocks *= limits[1];
4862		height++;
4863	}
4864
4865	return height;
4866}
4867
4868/*
4869 * Query a regular btree for all records overlapping a given interval.
4870 * Start with a LE lookup of the key of low_rec and return all records
4871 * until we find a record with a key greater than the key of high_rec.
4872 */
4873STATIC int
4874xfs_btree_simple_query_range(
4875	struct xfs_btree_cur		*cur,
4876	const union xfs_btree_key	*low_key,
4877	const union xfs_btree_key	*high_key,
4878	xfs_btree_query_range_fn	fn,
4879	void				*priv)
4880{
4881	union xfs_btree_rec		*recp;
4882	union xfs_btree_key		rec_key;
4883	int				stat;
4884	bool				firstrec = true;
4885	int				error;
4886
4887	ASSERT(cur->bc_ops->init_high_key_from_rec);
4888	ASSERT(cur->bc_ops->diff_two_keys);
4889
4890	/*
4891	 * Find the leftmost record.  The btree cursor must be set
4892	 * to the low record used to generate low_key.
4893	 */
4894	stat = 0;
4895	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4896	if (error)
4897		goto out;
4898
4899	/* Nothing?  See if there's anything to the right. */
4900	if (!stat) {
4901		error = xfs_btree_increment(cur, 0, &stat);
4902		if (error)
4903			goto out;
4904	}
4905
4906	while (stat) {
4907		/* Find the record. */
4908		error = xfs_btree_get_rec(cur, &recp, &stat);
4909		if (error || !stat)
4910			break;
4911
4912		/* Skip if low_key > high_key(rec). */
4913		if (firstrec) {
4914			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4915			firstrec = false;
4916			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4917				goto advloop;
4918		}
4919
4920		/* Stop if low_key(rec) > high_key. */
4921		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4922		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4923			break;
4924
4925		/* Callback */
4926		error = fn(cur, recp, priv);
4927		if (error)
4928			break;
4929
4930advloop:
4931		/* Move on to the next record. */
4932		error = xfs_btree_increment(cur, 0, &stat);
4933		if (error)
4934			break;
4935	}
4936
4937out:
4938	return error;
4939}
4940
4941/*
4942 * Query an overlapped interval btree for all records overlapping a given
4943 * interval.  This function roughly follows the algorithm given in
4944 * "Interval Trees" of _Introduction to Algorithms_, which is section
4945 * 14.3 in the 2nd and 3rd editions.
4946 *
4947 * First, generate keys for the low and high records passed in.
4948 *
4949 * For any leaf node, generate the high and low keys for the record.
4950 * If the record keys overlap with the query low/high keys, pass the
4951 * record to the function iterator.
4952 *
4953 * For any internal node, compare the low and high keys of each
4954 * pointer against the query low/high keys.  If there's an overlap,
4955 * follow the pointer.
4956 *
4957 * As an optimization, we stop scanning a block when we find a low key
4958 * that is greater than the query's high key.
4959 */
4960STATIC int
4961xfs_btree_overlapped_query_range(
4962	struct xfs_btree_cur		*cur,
4963	const union xfs_btree_key	*low_key,
4964	const union xfs_btree_key	*high_key,
4965	xfs_btree_query_range_fn	fn,
4966	void				*priv)
4967{
4968	union xfs_btree_ptr		ptr;
4969	union xfs_btree_ptr		*pp;
4970	union xfs_btree_key		rec_key;
4971	union xfs_btree_key		rec_hkey;
4972	union xfs_btree_key		*lkp;
4973	union xfs_btree_key		*hkp;
4974	union xfs_btree_rec		*recp;
4975	struct xfs_btree_block		*block;
4976	int				level;
4977	struct xfs_buf			*bp;
4978	int				i;
4979	int				error;
4980
4981	/* Load the root of the btree. */
4982	level = cur->bc_nlevels - 1;
4983	xfs_btree_init_ptr_from_cur(cur, &ptr);
4984	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4985	if (error)
4986		return error;
4987	xfs_btree_get_block(cur, level, &bp);
4988	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4989#ifdef DEBUG
4990	error = xfs_btree_check_block(cur, block, level, bp);
4991	if (error)
4992		goto out;
4993#endif
4994	cur->bc_levels[level].ptr = 1;
4995
4996	while (level < cur->bc_nlevels) {
4997		block = xfs_btree_get_block(cur, level, &bp);
4998
4999		/* End of node, pop back towards the root. */
5000		if (cur->bc_levels[level].ptr >
5001					be16_to_cpu(block->bb_numrecs)) {
5002pop_up:
5003			if (level < cur->bc_nlevels - 1)
5004				cur->bc_levels[level + 1].ptr++;
5005			level++;
5006			continue;
5007		}
5008
5009		if (level == 0) {
5010			/* Handle a leaf node. */
5011			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5012					block);
5013
5014			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5015			cur->bc_ops->init_key_from_rec(&rec_key, recp);
5016
5017			/*
5018			 * If (query's high key < record's low key), then there
5019			 * are no more interesting records in this block.  Pop
5020			 * up to the leaf level to find more record blocks.
5021			 *
5022			 * If (record's high key >= query's low key) and
5023			 *    (query's high key >= record's low key), then
5024			 * this record overlaps the query range; callback.
5025			 */
5026			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5027				goto pop_up;
5028			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5029				error = fn(cur, recp, priv);
5030				if (error)
5031					break;
5032			}
5033			cur->bc_levels[level].ptr++;
5034			continue;
5035		}
5036
5037		/* Handle an internal node. */
5038		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5039		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5040				block);
5041		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5042
5043		/*
5044		 * If (query's high key < pointer's low key), then there are no
5045		 * more interesting keys in this block.  Pop up one leaf level
5046		 * to continue looking for records.
5047		 *
5048		 * If (pointer's high key >= query's low key) and
5049		 *    (query's high key >= pointer's low key), then
5050		 * this record overlaps the query range; follow pointer.
5051		 */
5052		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5053			goto pop_up;
5054		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5055			level--;
5056			error = xfs_btree_lookup_get_block(cur, level, pp,
5057					&block);
5058			if (error)
5059				goto out;
5060			xfs_btree_get_block(cur, level, &bp);
5061			trace_xfs_btree_overlapped_query_range(cur, level, bp);
5062#ifdef DEBUG
5063			error = xfs_btree_check_block(cur, block, level, bp);
5064			if (error)
5065				goto out;
5066#endif
5067			cur->bc_levels[level].ptr = 1;
5068			continue;
5069		}
5070		cur->bc_levels[level].ptr++;
5071	}
5072
5073out:
5074	/*
5075	 * If we don't end this function with the cursor pointing at a record
5076	 * block, a subsequent non-error cursor deletion will not release
5077	 * node-level buffers, causing a buffer leak.  This is quite possible
5078	 * with a zero-results range query, so release the buffers if we
5079	 * failed to return any results.
5080	 */
5081	if (cur->bc_levels[0].bp == NULL) {
5082		for (i = 0; i < cur->bc_nlevels; i++) {
5083			if (cur->bc_levels[i].bp) {
5084				xfs_trans_brelse(cur->bc_tp,
5085						cur->bc_levels[i].bp);
5086				cur->bc_levels[i].bp = NULL;
5087				cur->bc_levels[i].ptr = 0;
5088				cur->bc_levels[i].ra = 0;
5089			}
5090		}
5091	}
5092
5093	return error;
5094}
5095
5096static inline void
5097xfs_btree_key_from_irec(
5098	struct xfs_btree_cur		*cur,
5099	union xfs_btree_key		*key,
5100	const union xfs_btree_irec	*irec)
5101{
5102	union xfs_btree_rec		rec;
5103
5104	cur->bc_rec = *irec;
5105	cur->bc_ops->init_rec_from_cur(cur, &rec);
5106	cur->bc_ops->init_key_from_rec(key, &rec);
5107}
5108
5109/*
5110 * Query a btree for all records overlapping a given interval of keys.  The
5111 * supplied function will be called with each record found; return one of the
5112 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5113 * code.  This function returns -ECANCELED, zero, or a negative error code.
5114 */
5115int
5116xfs_btree_query_range(
5117	struct xfs_btree_cur		*cur,
5118	const union xfs_btree_irec	*low_rec,
5119	const union xfs_btree_irec	*high_rec,
5120	xfs_btree_query_range_fn	fn,
5121	void				*priv)
5122{
5123	union xfs_btree_key		low_key;
5124	union xfs_btree_key		high_key;
5125
5126	/* Find the keys of both ends of the interval. */
5127	xfs_btree_key_from_irec(cur, &high_key, high_rec);
5128	xfs_btree_key_from_irec(cur, &low_key, low_rec);
5129
5130	/* Enforce low key <= high key. */
5131	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5132		return -EINVAL;
5133
5134	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5135		return xfs_btree_simple_query_range(cur, &low_key,
5136				&high_key, fn, priv);
5137	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5138			fn, priv);
5139}
5140
5141/* Query a btree for all records. */
5142int
5143xfs_btree_query_all(
5144	struct xfs_btree_cur		*cur,
5145	xfs_btree_query_range_fn	fn,
5146	void				*priv)
5147{
5148	union xfs_btree_key		low_key;
5149	union xfs_btree_key		high_key;
5150
5151	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5152	memset(&low_key, 0, sizeof(low_key));
5153	memset(&high_key, 0xFF, sizeof(high_key));
5154
5155	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5156}
5157
5158static int
5159xfs_btree_count_blocks_helper(
5160	struct xfs_btree_cur	*cur,
5161	int			level,
5162	void			*data)
5163{
5164	xfs_filblks_t		*blocks = data;
5165	(*blocks)++;
5166
5167	return 0;
5168}
5169
5170/* Count the blocks in a btree and return the result in *blocks. */
5171int
5172xfs_btree_count_blocks(
5173	struct xfs_btree_cur	*cur,
5174	xfs_filblks_t		*blocks)
5175{
5176	*blocks = 0;
5177	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5178			XFS_BTREE_VISIT_ALL, blocks);
5179}
5180
5181/* Compare two btree pointers. */
5182int64_t
5183xfs_btree_diff_two_ptrs(
5184	struct xfs_btree_cur		*cur,
5185	const union xfs_btree_ptr	*a,
5186	const union xfs_btree_ptr	*b)
5187{
5188	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5189		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5190	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5191}
5192
5193struct xfs_btree_has_records {
5194	/* Keys for the start and end of the range we want to know about. */
5195	union xfs_btree_key		start_key;
5196	union xfs_btree_key		end_key;
5197
5198	/* Mask for key comparisons, if desired. */
5199	const union xfs_btree_key	*key_mask;
5200
5201	/* Highest record key we've seen so far. */
5202	union xfs_btree_key		high_key;
5203
5204	enum xbtree_recpacking		outcome;
5205};
5206
5207STATIC int
5208xfs_btree_has_records_helper(
5209	struct xfs_btree_cur		*cur,
5210	const union xfs_btree_rec	*rec,
5211	void				*priv)
5212{
5213	union xfs_btree_key		rec_key;
5214	union xfs_btree_key		rec_high_key;
5215	struct xfs_btree_has_records	*info = priv;
5216	enum xbtree_key_contig		key_contig;
5217
5218	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5219
5220	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5221		info->outcome = XBTREE_RECPACKING_SPARSE;
5222
5223		/*
5224		 * If the first record we find does not overlap the start key,
5225		 * then there is a hole at the start of the search range.
5226		 * Classify this as sparse and stop immediately.
5227		 */
5228		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5229					info->key_mask))
5230			return -ECANCELED;
5231	} else {
5232		/*
5233		 * If a subsequent record does not overlap with the any record
5234		 * we've seen so far, there is a hole in the middle of the
5235		 * search range.  Classify this as sparse and stop.
5236		 * If the keys overlap and this btree does not allow overlap,
5237		 * signal corruption.
5238		 */
5239		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5240					&rec_key, info->key_mask);
5241		if (key_contig == XBTREE_KEY_OVERLAP &&
5242				!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5243			return -EFSCORRUPTED;
5244		if (key_contig == XBTREE_KEY_GAP)
5245			return -ECANCELED;
5246	}
5247
5248	/*
5249	 * If high_key(rec) is larger than any other high key we've seen,
5250	 * remember it for later.
5251	 */
5252	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5253	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5254				info->key_mask))
5255		info->high_key = rec_high_key; /* struct copy */
5256
5257	return 0;
5258}
5259
5260/*
5261 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5262 * map to any records; is fully mapped to records; or is partially mapped to
5263 * records.  This is the btree record equivalent to determining if a file is
5264 * sparse.
5265 *
5266 * For most btree types, the record scan should use all available btree key
5267 * fields to compare the keys encountered.  These callers should pass NULL for
5268 * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5269 * want to ignore some part of the btree record keyspace when performing the
5270 * comparison.  These callers should pass in a union xfs_btree_key object with
5271 * the fields that *should* be a part of the comparison set to any nonzero
5272 * value, and the rest zeroed.
5273 */
5274int
5275xfs_btree_has_records(
5276	struct xfs_btree_cur		*cur,
5277	const union xfs_btree_irec	*low,
5278	const union xfs_btree_irec	*high,
5279	const union xfs_btree_key	*mask,
5280	enum xbtree_recpacking		*outcome)
5281{
5282	struct xfs_btree_has_records	info = {
5283		.outcome		= XBTREE_RECPACKING_EMPTY,
5284		.key_mask		= mask,
5285	};
5286	int				error;
5287
5288	/* Not all btrees support this operation. */
5289	if (!cur->bc_ops->keys_contiguous) {
5290		ASSERT(0);
5291		return -EOPNOTSUPP;
5292	}
5293
5294	xfs_btree_key_from_irec(cur, &info.start_key, low);
5295	xfs_btree_key_from_irec(cur, &info.end_key, high);
5296
5297	error = xfs_btree_query_range(cur, low, high,
5298			xfs_btree_has_records_helper, &info);
5299	if (error == -ECANCELED)
5300		goto out;
5301	if (error)
5302		return error;
5303
5304	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5305		goto out;
5306
5307	/*
5308	 * If the largest high_key(rec) we saw during the walk is greater than
5309	 * the end of the search range, classify this as full.  Otherwise,
5310	 * there is a hole at the end of the search range.
5311	 */
5312	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5313				mask))
5314		info.outcome = XBTREE_RECPACKING_FULL;
5315
5316out:
5317	*outcome = info.outcome;
5318	return 0;
5319}
5320
5321/* Are there more records in this btree? */
5322bool
5323xfs_btree_has_more_records(
5324	struct xfs_btree_cur	*cur)
5325{
5326	struct xfs_btree_block	*block;
5327	struct xfs_buf		*bp;
5328
5329	block = xfs_btree_get_block(cur, 0, &bp);
5330
5331	/* There are still records in this block. */
5332	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5333		return true;
5334
5335	/* There are more record blocks. */
5336	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5337		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5338	else
5339		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5340}
5341
5342/* Set up all the btree cursor caches. */
5343int __init
5344xfs_btree_init_cur_caches(void)
5345{
5346	int		error;
5347
5348	error = xfs_allocbt_init_cur_cache();
5349	if (error)
5350		return error;
5351	error = xfs_inobt_init_cur_cache();
5352	if (error)
5353		goto err;
5354	error = xfs_bmbt_init_cur_cache();
5355	if (error)
5356		goto err;
5357	error = xfs_rmapbt_init_cur_cache();
5358	if (error)
5359		goto err;
5360	error = xfs_refcountbt_init_cur_cache();
5361	if (error)
5362		goto err;
5363
5364	return 0;
5365err:
5366	xfs_btree_destroy_cur_caches();
5367	return error;
5368}
5369
5370/* Destroy all the btree cursor caches, if they've been allocated. */
5371void
5372xfs_btree_destroy_cur_caches(void)
5373{
5374	xfs_allocbt_destroy_cur_cache();
5375	xfs_inobt_destroy_cur_cache();
5376	xfs_bmbt_destroy_cur_cache();
5377	xfs_rmapbt_destroy_cur_cache();
5378	xfs_refcountbt_destroy_cur_cache();
5379}
5380
5381/* Move the btree cursor before the first record. */
5382int
5383xfs_btree_goto_left_edge(
5384	struct xfs_btree_cur	*cur)
5385{
5386	int			stat = 0;
5387	int			error;
5388
5389	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5390	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5391	if (error)
5392		return error;
5393	if (!stat)
5394		return 0;
5395
5396	error = xfs_btree_decrement(cur, 0, &stat);
5397	if (error)
5398		return error;
5399	if (stat != 0) {
5400		ASSERT(0);
5401		xfs_btree_mark_sick(cur);
5402		return -EFSCORRUPTED;
5403	}
5404
5405	return 0;
5406}