Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23#include "xfs_btree_staging.h"
  24#include "xfs_ag.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_ialloc_btree.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_rmap_btree.h"
  29#include "xfs_refcount_btree.h"
 
 
 
  30
  31/*
  32 * Btree magic numbers.
  33 */
  34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  35	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  36	  XFS_FIBT_MAGIC, 0 },
  37	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  38	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  39	  XFS_REFC_CRC_MAGIC }
  40};
  41
  42uint32_t
  43xfs_btree_magic(
  44	int			crc,
  45	xfs_btnum_t		btnum)
  46{
  47	uint32_t		magic = xfs_magics[crc][btnum];
 
  48
  49	/* Ensure we asked for crc for crc-only magics. */
  50	ASSERT(magic != 0);
  51	return magic;
  52}
  53
  54/*
  55 * These sibling pointer checks are optimised for null sibling pointers. This
  56 * happens a lot, and we don't need to byte swap at runtime if the sibling
  57 * pointer is NULL.
  58 *
  59 * These are explicitly marked at inline because the cost of calling them as
  60 * functions instead of inlining them is about 36 bytes extra code per call site
  61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
  62 * two sibling check functions reduces the compiled code size by over 300
  63 * bytes.
  64 */
  65static inline xfs_failaddr_t
  66xfs_btree_check_lblock_siblings(
  67	struct xfs_mount	*mp,
  68	struct xfs_btree_cur	*cur,
  69	int			level,
  70	xfs_fsblock_t		fsb,
  71	__be64			dsibling)
  72{
  73	xfs_fsblock_t		sibling;
  74
  75	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  76		return NULL;
  77
  78	sibling = be64_to_cpu(dsibling);
  79	if (sibling == fsb)
  80		return __this_address;
  81	if (level >= 0) {
  82		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
  83			return __this_address;
  84	} else {
  85		if (!xfs_verify_fsbno(mp, sibling))
  86			return __this_address;
  87	}
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89	return NULL;
  90}
  91
  92static inline xfs_failaddr_t
  93xfs_btree_check_sblock_siblings(
  94	struct xfs_perag	*pag,
  95	struct xfs_btree_cur	*cur,
  96	int			level,
  97	xfs_agblock_t		agbno,
  98	__be32			dsibling)
  99{
 100	xfs_agblock_t		sibling;
 101
 102	if (dsibling == cpu_to_be32(NULLAGBLOCK))
 103		return NULL;
 104
 105	sibling = be32_to_cpu(dsibling);
 106	if (sibling == agbno)
 107		return __this_address;
 108	if (level >= 0) {
 109		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
 110			return __this_address;
 111	} else {
 112		if (!xfs_verify_agbno(pag, sibling))
 113			return __this_address;
 114	}
 115	return NULL;
 116}
 117
 118/*
 119 * Check a long btree block header.  Return the address of the failing check,
 120 * or NULL if everything is ok.
 121 */
 122xfs_failaddr_t
 123__xfs_btree_check_lblock(
 124	struct xfs_btree_cur	*cur,
 125	struct xfs_btree_block	*block,
 126	int			level,
 127	struct xfs_buf		*bp)
 128{
 129	struct xfs_mount	*mp = cur->bc_mp;
 130	xfs_btnum_t		btnum = cur->bc_btnum;
 131	int			crc = xfs_has_crc(mp);
 132	xfs_failaddr_t		fa;
 133	xfs_fsblock_t		fsb = NULLFSBLOCK;
 134
 135	if (crc) {
 136		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
 137			return __this_address;
 138		if (block->bb_u.l.bb_blkno !=
 139		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 140			return __this_address;
 141		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
 142			return __this_address;
 143	}
 144
 145	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 146		return __this_address;
 147	if (be16_to_cpu(block->bb_level) != level)
 148		return __this_address;
 149	if (be16_to_cpu(block->bb_numrecs) >
 150	    cur->bc_ops->get_maxrecs(cur, level))
 151		return __this_address;
 152
 153	if (bp)
 154		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
 155
 156	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157			block->bb_u.l.bb_leftsib);
 158	if (!fa)
 159		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 160				block->bb_u.l.bb_rightsib);
 161	return fa;
 162}
 163
 164/* Check a long btree block header. */
 165static int
 166xfs_btree_check_lblock(
 
 
 
 167	struct xfs_btree_cur	*cur,
 168	struct xfs_btree_block	*block,
 169	int			level,
 170	struct xfs_buf		*bp)
 171{
 172	struct xfs_mount	*mp = cur->bc_mp;
 173	xfs_failaddr_t		fa;
 
 174
 175	fa = __xfs_btree_check_lblock(cur, block, level, bp);
 176	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 177	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
 178		if (bp)
 179			trace_xfs_btree_corrupt(bp, _RET_IP_);
 180		return -EFSCORRUPTED;
 181	}
 182	return 0;
 
 
 
 183}
 184
 185/*
 186 * Check a short btree block header.  Return the address of the failing check,
 187 * or NULL if everything is ok.
 188 */
 189xfs_failaddr_t
 190__xfs_btree_check_sblock(
 191	struct xfs_btree_cur	*cur,
 192	struct xfs_btree_block	*block,
 193	int			level,
 194	struct xfs_buf		*bp)
 195{
 196	struct xfs_mount	*mp = cur->bc_mp;
 197	struct xfs_perag	*pag = cur->bc_ag.pag;
 198	xfs_btnum_t		btnum = cur->bc_btnum;
 199	int			crc = xfs_has_crc(mp);
 200	xfs_failaddr_t		fa;
 201	xfs_agblock_t		agbno = NULLAGBLOCK;
 202
 203	if (crc) {
 204		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 205			return __this_address;
 206		if (block->bb_u.s.bb_blkno !=
 207		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 208			return __this_address;
 209	}
 210
 211	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 212		return __this_address;
 213	if (be16_to_cpu(block->bb_level) != level)
 214		return __this_address;
 215	if (be16_to_cpu(block->bb_numrecs) >
 216	    cur->bc_ops->get_maxrecs(cur, level))
 217		return __this_address;
 218
 219	if (bp)
 220		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
 221
 222	fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 223			block->bb_u.s.bb_leftsib);
 224	if (!fa)
 225		fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 226				block->bb_u.s.bb_rightsib);
 227	return fa;
 228}
 229
 230/* Check a short btree block header. */
 231STATIC int
 232xfs_btree_check_sblock(
 
 
 
 
 233	struct xfs_btree_cur	*cur,
 234	struct xfs_btree_block	*block,
 235	int			level,
 236	struct xfs_buf		*bp)
 237{
 238	struct xfs_mount	*mp = cur->bc_mp;
 239	xfs_failaddr_t		fa;
 240
 241	fa = __xfs_btree_check_sblock(cur, block, level, bp);
 242	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 243	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
 244		if (bp)
 245			trace_xfs_btree_corrupt(bp, _RET_IP_);
 246		return -EFSCORRUPTED;
 
 247	}
 248	return 0;
 
 
 
 
 
 
 249}
 250
 251/*
 252 * Debug routine: check that block header is ok.
 253 */
 254int
 255xfs_btree_check_block(
 256	struct xfs_btree_cur	*cur,	/* btree cursor */
 257	struct xfs_btree_block	*block,	/* generic btree block pointer */
 258	int			level,	/* level of the btree block */
 259	struct xfs_buf		*bp)	/* buffer containing block, if any */
 260{
 261	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 262		return xfs_btree_check_lblock(cur, block, level, bp);
 263	else
 264		return xfs_btree_check_sblock(cur, block, level, bp);
 265}
 266
 267/* Check that this long pointer is valid and points within the fs. */
 268bool
 269xfs_btree_check_lptr(
 270	struct xfs_btree_cur	*cur,
 271	xfs_fsblock_t		fsbno,
 272	int			level)
 273{
 274	if (level <= 0)
 275		return false;
 276	return xfs_verify_fsbno(cur->bc_mp, fsbno);
 277}
 278
 279/* Check that this short pointer is valid and points within the AG. */
 280bool
 281xfs_btree_check_sptr(
 282	struct xfs_btree_cur	*cur,
 283	xfs_agblock_t		agbno,
 284	int			level)
 285{
 286	if (level <= 0)
 287		return false;
 288	return xfs_verify_agbno(cur->bc_ag.pag, agbno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289}
 290
 291/*
 292 * Check that a given (indexed) btree pointer at a certain level of a
 293 * btree is valid and doesn't point past where it should.
 294 */
 295static int
 296xfs_btree_check_ptr(
 297	struct xfs_btree_cur		*cur,
 298	const union xfs_btree_ptr	*ptr,
 299	int				index,
 300	int				level)
 301{
 302	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 303		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
 304				level))
 305			return 0;
 306		xfs_err(cur->bc_mp,
 307"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
 
 
 
 
 
 
 
 
 308				cur->bc_ino.ip->i_ino,
 309				cur->bc_ino.whichfork, cur->bc_btnum,
 310				level, index);
 311	} else {
 312		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
 313				level))
 314			return 0;
 315		xfs_err(cur->bc_mp,
 316"AG %u: Corrupt btree %d pointer at level %d index %d.",
 317				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
 318				level, index);
 
 
 
 319	}
 320
 321	return -EFSCORRUPTED;
 322}
 323
 324#ifdef DEBUG
 325# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
 326#else
 327# define xfs_btree_debug_check_ptr(...)	(0)
 328#endif
 329
 330/*
 331 * Calculate CRC on the whole btree block and stuff it into the
 332 * long-form btree header.
 333 *
 334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 335 * it into the buffer so recovery knows what the last modification was that made
 336 * it to disk.
 337 */
 338void
 339xfs_btree_lblock_calc_crc(
 340	struct xfs_buf		*bp)
 341{
 342	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 343	struct xfs_buf_log_item	*bip = bp->b_log_item;
 344
 345	if (!xfs_has_crc(bp->b_mount))
 346		return;
 347	if (bip)
 348		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 349	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 350}
 351
 352bool
 353xfs_btree_lblock_verify_crc(
 354	struct xfs_buf		*bp)
 355{
 356	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 357	struct xfs_mount	*mp = bp->b_mount;
 358
 359	if (xfs_has_crc(mp)) {
 360		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 361			return false;
 362		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 363	}
 364
 365	return true;
 366}
 367
 368/*
 369 * Calculate CRC on the whole btree block and stuff it into the
 370 * short-form btree header.
 371 *
 372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 373 * it into the buffer so recovery knows what the last modification was that made
 374 * it to disk.
 375 */
 376void
 377xfs_btree_sblock_calc_crc(
 378	struct xfs_buf		*bp)
 379{
 380	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 381	struct xfs_buf_log_item	*bip = bp->b_log_item;
 382
 383	if (!xfs_has_crc(bp->b_mount))
 384		return;
 385	if (bip)
 386		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 387	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 388}
 389
 390bool
 391xfs_btree_sblock_verify_crc(
 392	struct xfs_buf		*bp)
 393{
 394	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 395	struct xfs_mount	*mp = bp->b_mount;
 396
 397	if (xfs_has_crc(mp)) {
 398		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 399			return false;
 400		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 401	}
 402
 403	return true;
 404}
 405
 406static int
 407xfs_btree_free_block(
 408	struct xfs_btree_cur	*cur,
 409	struct xfs_buf		*bp)
 410{
 411	int			error;
 412
 
 
 
 
 
 
 
 
 
 
 
 413	error = cur->bc_ops->free_block(cur, bp);
 414	if (!error) {
 415		xfs_trans_binval(cur->bc_tp, bp);
 416		XFS_BTREE_STATS_INC(cur, free);
 417	}
 418	return error;
 419}
 420
 421/*
 422 * Delete the btree cursor.
 423 */
 424void
 425xfs_btree_del_cursor(
 426	struct xfs_btree_cur	*cur,		/* btree cursor */
 427	int			error)		/* del because of error */
 428{
 429	int			i;		/* btree level */
 430
 431	/*
 432	 * Clear the buffer pointers and release the buffers. If we're doing
 433	 * this because of an error, inspect all of the entries in the bc_bufs
 434	 * array for buffers to be unlocked. This is because some of the btree
 435	 * code works from level n down to 0, and if we get an error along the
 436	 * way we won't have initialized all the entries down to 0.
 437	 */
 438	for (i = 0; i < cur->bc_nlevels; i++) {
 439		if (cur->bc_levels[i].bp)
 440			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
 441		else if (!error)
 442			break;
 443	}
 444
 445	/*
 446	 * If we are doing a BMBT update, the number of unaccounted blocks
 447	 * allocated during this cursor life time should be zero. If it's not
 448	 * zero, then we should be shut down or on our way to shutdown due to
 449	 * cancelling a dirty transaction on error.
 450	 */
 451	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
 452	       xfs_is_shutdown(cur->bc_mp) || error != 0);
 453	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
 454		kmem_free(cur->bc_ops);
 455	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
 456		xfs_perag_put(cur->bc_ag.pag);
 
 
 
 
 
 
 
 
 
 
 
 457	kmem_cache_free(cur->bc_cache, cur);
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460/*
 461 * Duplicate the btree cursor.
 462 * Allocate a new one, copy the record, re-get the buffers.
 463 */
 464int					/* error */
 465xfs_btree_dup_cursor(
 466	struct xfs_btree_cur *cur,		/* input cursor */
 467	struct xfs_btree_cur **ncur)		/* output cursor */
 468{
 469	struct xfs_buf	*bp;		/* btree block's buffer pointer */
 470	int		error;		/* error return value */
 471	int		i;		/* level number of btree block */
 472	xfs_mount_t	*mp;		/* mount structure for filesystem */
 473	struct xfs_btree_cur *new;		/* new cursor value */
 474	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
 475
 476	tp = cur->bc_tp;
 477	mp = cur->bc_mp;
 
 
 
 
 
 
 478
 479	/*
 480	 * Allocate a new cursor like the old one.
 481	 */
 482	new = cur->bc_ops->dup_cursor(cur);
 483
 484	/*
 485	 * Copy the record currently in the cursor.
 486	 */
 487	new->bc_rec = cur->bc_rec;
 488
 489	/*
 490	 * For each level current, re-get the buffer and copy the ptr value.
 491	 */
 492	for (i = 0; i < new->bc_nlevels; i++) {
 493		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
 494		new->bc_levels[i].ra = cur->bc_levels[i].ra;
 495		bp = cur->bc_levels[i].bp;
 496		if (bp) {
 497			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 498						   xfs_buf_daddr(bp), mp->m_bsize,
 499						   0, &bp,
 500						   cur->bc_ops->buf_ops);
 
 
 
 501			if (error) {
 502				xfs_btree_del_cursor(new, error);
 503				*ncur = NULL;
 504				return error;
 505			}
 506		}
 507		new->bc_levels[i].bp = bp;
 508	}
 509	*ncur = new;
 510	return 0;
 511}
 512
 513/*
 514 * XFS btree block layout and addressing:
 515 *
 516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 517 *
 518 * The leaf record start with a header then followed by records containing
 519 * the values.  A non-leaf block also starts with the same header, and
 520 * then first contains lookup keys followed by an equal number of pointers
 521 * to the btree blocks at the previous level.
 522 *
 523 *		+--------+-------+-------+-------+-------+-------+-------+
 524 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 525 *		+--------+-------+-------+-------+-------+-------+-------+
 526 *
 527 *		+--------+-------+-------+-------+-------+-------+-------+
 528 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 529 *		+--------+-------+-------+-------+-------+-------+-------+
 530 *
 531 * The header is called struct xfs_btree_block for reasons better left unknown
 532 * and comes in different versions for short (32bit) and long (64bit) block
 533 * pointers.  The record and key structures are defined by the btree instances
 534 * and opaque to the btree core.  The block pointers are simple disk endian
 535 * integers, available in a short (32bit) and long (64bit) variant.
 536 *
 537 * The helpers below calculate the offset of a given record, key or pointer
 538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 539 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 540 * inside the btree block is done using indices starting at one, not zero!
 541 *
 542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 543 * overlapping intervals.  In such a tree, records are still sorted lowest to
 544 * highest and indexed by the smallest key value that refers to the record.
 545 * However, nodes are different: each pointer has two associated keys -- one
 546 * indexing the lowest key available in the block(s) below (the same behavior
 547 * as the key in a regular btree) and another indexing the highest key
 548 * available in the block(s) below.  Because records are /not/ sorted by the
 549 * highest key, all leaf block updates require us to compute the highest key
 550 * that matches any record in the leaf and to recursively update the high keys
 551 * in the nodes going further up in the tree, if necessary.  Nodes look like
 552 * this:
 553 *
 554 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 555 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 556 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 557 *
 558 * To perform an interval query on an overlapped tree, perform the usual
 559 * depth-first search and use the low and high keys to decide if we can skip
 560 * that particular node.  If a leaf node is reached, return the records that
 561 * intersect the interval.  Note that an interval query may return numerous
 562 * entries.  For a non-overlapped tree, simply search for the record associated
 563 * with the lowest key and iterate forward until a non-matching record is
 564 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 566 * more detail.
 567 *
 568 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 569 * reverse mapping records on a reflink filesystem:
 570 *
 571 * 1: +- file A startblock B offset C length D -----------+
 572 * 2:      +- file E startblock F offset G length H --------------+
 573 * 3:      +- file I startblock F offset J length K --+
 574 * 4:                                                        +- file L... --+
 575 *
 576 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 577 * we'd simply increment the length of record 1.  But how do we find the record
 578 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 579 * record 3 because the keys are ordered first by startblock.  An interval
 580 * query would return records 1 and 2 because they both overlap (B+D-1), and
 581 * from that we can pick out record 1 as the appropriate left neighbor.
 582 *
 583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 584 * because a record's interval must end before the next record.
 585 */
 586
 587/*
 588 * Return size of the btree block header for this btree instance.
 589 */
 590static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 591{
 592	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 593		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 594			return XFS_BTREE_LBLOCK_CRC_LEN;
 595		return XFS_BTREE_LBLOCK_LEN;
 596	}
 597	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 598		return XFS_BTREE_SBLOCK_CRC_LEN;
 599	return XFS_BTREE_SBLOCK_LEN;
 600}
 601
 602/*
 603 * Return size of btree block pointers for this btree instance.
 604 */
 605static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 606{
 607	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 608		sizeof(__be64) : sizeof(__be32);
 609}
 610
 611/*
 612 * Calculate offset of the n-th record in a btree block.
 613 */
 614STATIC size_t
 615xfs_btree_rec_offset(
 616	struct xfs_btree_cur	*cur,
 617	int			n)
 618{
 619	return xfs_btree_block_len(cur) +
 620		(n - 1) * cur->bc_ops->rec_len;
 621}
 622
 623/*
 624 * Calculate offset of the n-th key in a btree block.
 625 */
 626STATIC size_t
 627xfs_btree_key_offset(
 628	struct xfs_btree_cur	*cur,
 629	int			n)
 630{
 631	return xfs_btree_block_len(cur) +
 632		(n - 1) * cur->bc_ops->key_len;
 633}
 634
 635/*
 636 * Calculate offset of the n-th high key in a btree block.
 637 */
 638STATIC size_t
 639xfs_btree_high_key_offset(
 640	struct xfs_btree_cur	*cur,
 641	int			n)
 642{
 643	return xfs_btree_block_len(cur) +
 644		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 645}
 646
 647/*
 648 * Calculate offset of the n-th block pointer in a btree block.
 649 */
 650STATIC size_t
 651xfs_btree_ptr_offset(
 652	struct xfs_btree_cur	*cur,
 653	int			n,
 654	int			level)
 655{
 656	return xfs_btree_block_len(cur) +
 657		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 658		(n - 1) * xfs_btree_ptr_len(cur);
 659}
 660
 661/*
 662 * Return a pointer to the n-th record in the btree block.
 663 */
 664union xfs_btree_rec *
 665xfs_btree_rec_addr(
 666	struct xfs_btree_cur	*cur,
 667	int			n,
 668	struct xfs_btree_block	*block)
 669{
 670	return (union xfs_btree_rec *)
 671		((char *)block + xfs_btree_rec_offset(cur, n));
 672}
 673
 674/*
 675 * Return a pointer to the n-th key in the btree block.
 676 */
 677union xfs_btree_key *
 678xfs_btree_key_addr(
 679	struct xfs_btree_cur	*cur,
 680	int			n,
 681	struct xfs_btree_block	*block)
 682{
 683	return (union xfs_btree_key *)
 684		((char *)block + xfs_btree_key_offset(cur, n));
 685}
 686
 687/*
 688 * Return a pointer to the n-th high key in the btree block.
 689 */
 690union xfs_btree_key *
 691xfs_btree_high_key_addr(
 692	struct xfs_btree_cur	*cur,
 693	int			n,
 694	struct xfs_btree_block	*block)
 695{
 696	return (union xfs_btree_key *)
 697		((char *)block + xfs_btree_high_key_offset(cur, n));
 698}
 699
 700/*
 701 * Return a pointer to the n-th block pointer in the btree block.
 702 */
 703union xfs_btree_ptr *
 704xfs_btree_ptr_addr(
 705	struct xfs_btree_cur	*cur,
 706	int			n,
 707	struct xfs_btree_block	*block)
 708{
 709	int			level = xfs_btree_get_level(block);
 710
 711	ASSERT(block->bb_level != 0);
 712
 713	return (union xfs_btree_ptr *)
 714		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 715}
 716
 717struct xfs_ifork *
 718xfs_btree_ifork_ptr(
 719	struct xfs_btree_cur	*cur)
 720{
 721	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
 722
 723	if (cur->bc_flags & XFS_BTREE_STAGING)
 724		return cur->bc_ino.ifake->if_fork;
 725	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
 726}
 727
 728/*
 729 * Get the root block which is stored in the inode.
 730 *
 731 * For now this btree implementation assumes the btree root is always
 732 * stored in the if_broot field of an inode fork.
 733 */
 734STATIC struct xfs_btree_block *
 735xfs_btree_get_iroot(
 736	struct xfs_btree_cur	*cur)
 737{
 738	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 739
 740	return (struct xfs_btree_block *)ifp->if_broot;
 741}
 742
 743/*
 744 * Retrieve the block pointer from the cursor at the given level.
 745 * This may be an inode btree root or from a buffer.
 746 */
 747struct xfs_btree_block *		/* generic btree block pointer */
 748xfs_btree_get_block(
 749	struct xfs_btree_cur	*cur,	/* btree cursor */
 750	int			level,	/* level in btree */
 751	struct xfs_buf		**bpp)	/* buffer containing the block */
 752{
 753	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 754	    (level == cur->bc_nlevels - 1)) {
 755		*bpp = NULL;
 756		return xfs_btree_get_iroot(cur);
 757	}
 758
 759	*bpp = cur->bc_levels[level].bp;
 760	return XFS_BUF_TO_BLOCK(*bpp);
 761}
 762
 763/*
 764 * Change the cursor to point to the first record at the given level.
 765 * Other levels are unaffected.
 766 */
 767STATIC int				/* success=1, failure=0 */
 768xfs_btree_firstrec(
 769	struct xfs_btree_cur	*cur,	/* btree cursor */
 770	int			level)	/* level to change */
 771{
 772	struct xfs_btree_block	*block;	/* generic btree block pointer */
 773	struct xfs_buf		*bp;	/* buffer containing block */
 774
 775	/*
 776	 * Get the block pointer for this level.
 777	 */
 778	block = xfs_btree_get_block(cur, level, &bp);
 779	if (xfs_btree_check_block(cur, block, level, bp))
 780		return 0;
 781	/*
 782	 * It's empty, there is no such record.
 783	 */
 784	if (!block->bb_numrecs)
 785		return 0;
 786	/*
 787	 * Set the ptr value to 1, that's the first record/key.
 788	 */
 789	cur->bc_levels[level].ptr = 1;
 790	return 1;
 791}
 792
 793/*
 794 * Change the cursor to point to the last record in the current block
 795 * at the given level.  Other levels are unaffected.
 796 */
 797STATIC int				/* success=1, failure=0 */
 798xfs_btree_lastrec(
 799	struct xfs_btree_cur	*cur,	/* btree cursor */
 800	int			level)	/* level to change */
 801{
 802	struct xfs_btree_block	*block;	/* generic btree block pointer */
 803	struct xfs_buf		*bp;	/* buffer containing block */
 804
 805	/*
 806	 * Get the block pointer for this level.
 807	 */
 808	block = xfs_btree_get_block(cur, level, &bp);
 809	if (xfs_btree_check_block(cur, block, level, bp))
 810		return 0;
 811	/*
 812	 * It's empty, there is no such record.
 813	 */
 814	if (!block->bb_numrecs)
 815		return 0;
 816	/*
 817	 * Set the ptr value to numrecs, that's the last record/key.
 818	 */
 819	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
 820	return 1;
 821}
 822
 823/*
 824 * Compute first and last byte offsets for the fields given.
 825 * Interprets the offsets table, which contains struct field offsets.
 826 */
 827void
 828xfs_btree_offsets(
 829	uint32_t	fields,		/* bitmask of fields */
 830	const short	*offsets,	/* table of field offsets */
 831	int		nbits,		/* number of bits to inspect */
 832	int		*first,		/* output: first byte offset */
 833	int		*last)		/* output: last byte offset */
 834{
 835	int		i;		/* current bit number */
 836	uint32_t	imask;		/* mask for current bit number */
 837
 838	ASSERT(fields != 0);
 839	/*
 840	 * Find the lowest bit, so the first byte offset.
 841	 */
 842	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
 843		if (imask & fields) {
 844			*first = offsets[i];
 845			break;
 846		}
 847	}
 848	/*
 849	 * Find the highest bit, so the last byte offset.
 850	 */
 851	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
 852		if (imask & fields) {
 853			*last = offsets[i + 1] - 1;
 854			break;
 855		}
 856	}
 857}
 858
 859/*
 860 * Get a buffer for the block, return it read in.
 861 * Long-form addressing.
 862 */
 863int
 864xfs_btree_read_bufl(
 865	struct xfs_mount	*mp,		/* file system mount point */
 866	struct xfs_trans	*tp,		/* transaction pointer */
 867	xfs_fsblock_t		fsbno,		/* file system block number */
 868	struct xfs_buf		**bpp,		/* buffer for fsbno */
 869	int			refval,		/* ref count value for buffer */
 870	const struct xfs_buf_ops *ops)
 871{
 872	struct xfs_buf		*bp;		/* return value */
 873	xfs_daddr_t		d;		/* real disk block address */
 874	int			error;
 875
 876	if (!xfs_verify_fsbno(mp, fsbno))
 877		return -EFSCORRUPTED;
 878	d = XFS_FSB_TO_DADDR(mp, fsbno);
 879	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 880				   mp->m_bsize, 0, &bp, ops);
 881	if (error)
 882		return error;
 883	if (bp)
 884		xfs_buf_set_ref(bp, refval);
 885	*bpp = bp;
 886	return 0;
 887}
 888
 889/*
 890 * Read-ahead the block, don't wait for it, don't return a buffer.
 891 * Long-form addressing.
 892 */
 893/* ARGSUSED */
 894void
 895xfs_btree_reada_bufl(
 896	struct xfs_mount	*mp,		/* file system mount point */
 897	xfs_fsblock_t		fsbno,		/* file system block number */
 898	xfs_extlen_t		count,		/* count of filesystem blocks */
 899	const struct xfs_buf_ops *ops)
 900{
 901	xfs_daddr_t		d;
 
 
 
 902
 903	ASSERT(fsbno != NULLFSBLOCK);
 904	d = XFS_FSB_TO_DADDR(mp, fsbno);
 905	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 906}
 
 907
 908/*
 909 * Read-ahead the block, don't wait for it, don't return a buffer.
 910 * Short-form addressing.
 911 */
 912/* ARGSUSED */
 913void
 914xfs_btree_reada_bufs(
 915	struct xfs_mount	*mp,		/* file system mount point */
 916	xfs_agnumber_t		agno,		/* allocation group number */
 917	xfs_agblock_t		agbno,		/* allocation group block number */
 918	xfs_extlen_t		count,		/* count of filesystem blocks */
 919	const struct xfs_buf_ops *ops)
 920{
 921	xfs_daddr_t		d;
 922
 923	ASSERT(agno != NULLAGNUMBER);
 924	ASSERT(agbno != NULLAGBLOCK);
 925	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 926	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 927}
 928
 929STATIC int
 930xfs_btree_readahead_lblock(
 931	struct xfs_btree_cur	*cur,
 932	int			lr,
 933	struct xfs_btree_block	*block)
 934{
 
 
 
 935	int			rval = 0;
 936	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 937	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 938
 939	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 940		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 941				     cur->bc_ops->buf_ops);
 942		rval++;
 943	}
 944
 945	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 946		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 947				     cur->bc_ops->buf_ops);
 948		rval++;
 949	}
 950
 951	return rval;
 952}
 953
 954STATIC int
 955xfs_btree_readahead_sblock(
 956	struct xfs_btree_cur	*cur,
 957	int			lr,
 958	struct xfs_btree_block *block)
 959{
 960	int			rval = 0;
 
 961	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 962	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 963
 964
 965	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 966		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 967				     left, 1, cur->bc_ops->buf_ops);
 
 968		rval++;
 969	}
 970
 971	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 972		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 973				     right, 1, cur->bc_ops->buf_ops);
 
 974		rval++;
 975	}
 976
 977	return rval;
 978}
 979
 980/*
 981 * Read-ahead btree blocks, at the given level.
 982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 983 */
 984STATIC int
 985xfs_btree_readahead(
 986	struct xfs_btree_cur	*cur,		/* btree cursor */
 987	int			lev,		/* level in btree */
 988	int			lr)		/* left/right bits */
 989{
 990	struct xfs_btree_block	*block;
 991
 992	/*
 993	 * No readahead needed if we are at the root level and the
 994	 * btree root is stored in the inode.
 995	 */
 996	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 997	    (lev == cur->bc_nlevels - 1))
 998		return 0;
 999
1000	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001		return 0;
1002
1003	cur->bc_levels[lev].ra |= lr;
1004	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007		return xfs_btree_readahead_lblock(cur, lr, block);
1008	return xfs_btree_readahead_sblock(cur, lr, block);
 
 
 
 
 
 
 
 
1009}
1010
1011STATIC int
1012xfs_btree_ptr_to_daddr(
1013	struct xfs_btree_cur		*cur,
1014	const union xfs_btree_ptr	*ptr,
1015	xfs_daddr_t			*daddr)
1016{
1017	xfs_fsblock_t		fsbno;
1018	xfs_agblock_t		agbno;
1019	int			error;
1020
1021	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022	if (error)
1023		return error;
1024
1025	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026		fsbno = be64_to_cpu(ptr->l);
1027		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028	} else {
1029		agbno = be32_to_cpu(ptr->s);
1030		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031				agbno);
 
 
 
 
 
 
 
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043STATIC void
1044xfs_btree_readahead_ptr(
1045	struct xfs_btree_cur	*cur,
1046	union xfs_btree_ptr	*ptr,
1047	xfs_extlen_t		count)
1048{
1049	xfs_daddr_t		daddr;
1050
1051	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052		return;
1053	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 
1055}
1056
1057/*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061STATIC void
1062xfs_btree_setbuf(
1063	struct xfs_btree_cur	*cur,	/* btree cursor */
1064	int			lev,	/* level in btree */
1065	struct xfs_buf		*bp)	/* new buffer to set */
1066{
1067	struct xfs_btree_block	*b;	/* btree block */
1068
1069	if (cur->bc_levels[lev].bp)
1070		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071	cur->bc_levels[lev].bp = bp;
1072	cur->bc_levels[lev].ra = 0;
1073
1074	b = XFS_BUF_TO_BLOCK(bp);
1075	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080	} else {
1081		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085	}
1086}
1087
1088bool
1089xfs_btree_ptr_is_null(
1090	struct xfs_btree_cur		*cur,
1091	const union xfs_btree_ptr	*ptr)
1092{
1093	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095	else
1096		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097}
1098
1099void
1100xfs_btree_set_ptr_null(
1101	struct xfs_btree_cur	*cur,
1102	union xfs_btree_ptr	*ptr)
1103{
1104	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105		ptr->l = cpu_to_be64(NULLFSBLOCK);
1106	else
1107		ptr->s = cpu_to_be32(NULLAGBLOCK);
1108}
1109
 
 
 
 
 
 
 
 
 
 
 
1110/*
1111 * Get/set/init sibling pointers
1112 */
1113void
1114xfs_btree_get_sibling(
1115	struct xfs_btree_cur	*cur,
1116	struct xfs_btree_block	*block,
1117	union xfs_btree_ptr	*ptr,
1118	int			lr)
1119{
1120	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123		if (lr == XFS_BB_RIGHTSIB)
1124			ptr->l = block->bb_u.l.bb_rightsib;
1125		else
1126			ptr->l = block->bb_u.l.bb_leftsib;
1127	} else {
1128		if (lr == XFS_BB_RIGHTSIB)
1129			ptr->s = block->bb_u.s.bb_rightsib;
1130		else
1131			ptr->s = block->bb_u.s.bb_leftsib;
1132	}
1133}
1134
1135void
1136xfs_btree_set_sibling(
1137	struct xfs_btree_cur		*cur,
1138	struct xfs_btree_block		*block,
1139	const union xfs_btree_ptr	*ptr,
1140	int				lr)
1141{
1142	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145		if (lr == XFS_BB_RIGHTSIB)
1146			block->bb_u.l.bb_rightsib = ptr->l;
1147		else
1148			block->bb_u.l.bb_leftsib = ptr->l;
1149	} else {
1150		if (lr == XFS_BB_RIGHTSIB)
1151			block->bb_u.s.bb_rightsib = ptr->s;
1152		else
1153			block->bb_u.s.bb_leftsib = ptr->s;
1154	}
1155}
1156
1157void
1158xfs_btree_init_block_int(
1159	struct xfs_mount	*mp,
1160	struct xfs_btree_block	*buf,
 
1161	xfs_daddr_t		blkno,
1162	xfs_btnum_t		btnum,
1163	__u16			level,
1164	__u16			numrecs,
1165	__u64			owner,
1166	unsigned int		flags)
1167{
1168	int			crc = xfs_has_crc(mp);
1169	__u32			magic = xfs_btree_magic(crc, btnum);
1170
1171	buf->bb_magic = cpu_to_be32(magic);
1172	buf->bb_level = cpu_to_be16(level);
1173	buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175	if (flags & XFS_BTREE_LONG_PTRS) {
1176		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178		if (crc) {
1179			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182			buf->bb_u.l.bb_pad = 0;
1183			buf->bb_u.l.bb_lsn = 0;
1184		}
1185	} else {
1186		/* owner is a 32 bit value on short blocks */
1187		__u32 __owner = (__u32)owner;
1188
1189		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191		if (crc) {
1192			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
 
1194			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195			buf->bb_u.s.bb_lsn = 0;
1196		}
1197	}
1198}
1199
1200void
1201xfs_btree_init_block(
1202	struct xfs_mount *mp,
1203	struct xfs_buf	*bp,
1204	xfs_btnum_t	btnum,
1205	__u16		level,
1206	__u16		numrecs,
1207	__u64		owner)
1208{
1209	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210				 btnum, level, numrecs, owner, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211}
1212
1213void
1214xfs_btree_init_block_cur(
1215	struct xfs_btree_cur	*cur,
1216	struct xfs_buf		*bp,
1217	int			level,
1218	int			numrecs)
1219{
1220	__u64			owner;
1221
1222	/*
1223	 * we can pull the owner from the cursor right now as the different
1224	 * owners align directly with the pointer size of the btree. This may
1225	 * change in future, but is safe for current users of the generic btree
1226	 * code.
1227	 */
1228	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229		owner = cur->bc_ino.ip->i_ino;
1230	else
1231		owner = cur->bc_ag.pag->pag_agno;
1232
1233	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234				xfs_buf_daddr(bp), cur->bc_btnum, level,
1235				numrecs, owner, cur->bc_flags);
1236}
1237
1238/*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record.  The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243STATIC int
1244xfs_btree_is_lastrec(
1245	struct xfs_btree_cur	*cur,
1246	struct xfs_btree_block	*block,
1247	int			level)
1248{
1249	union xfs_btree_ptr	ptr;
1250
1251	if (level > 0)
1252		return 0;
1253	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254		return 0;
1255
1256	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257	if (!xfs_btree_ptr_is_null(cur, &ptr))
1258		return 0;
1259	return 1;
1260}
1261
1262STATIC void
1263xfs_btree_buf_to_ptr(
1264	struct xfs_btree_cur	*cur,
1265	struct xfs_buf		*bp,
1266	union xfs_btree_ptr	*ptr)
1267{
1268	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270					xfs_buf_daddr(bp)));
1271	else {
1272		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273					xfs_buf_daddr(bp)));
 
 
 
 
 
 
 
 
1274	}
1275}
1276
1277STATIC void
1278xfs_btree_set_refs(
1279	struct xfs_btree_cur	*cur,
1280	struct xfs_buf		*bp)
1281{
1282	switch (cur->bc_btnum) {
1283	case XFS_BTNUM_BNO:
1284	case XFS_BTNUM_CNT:
1285		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286		break;
1287	case XFS_BTNUM_INO:
1288	case XFS_BTNUM_FINO:
1289		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290		break;
1291	case XFS_BTNUM_BMAP:
1292		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293		break;
1294	case XFS_BTNUM_RMAP:
1295		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296		break;
1297	case XFS_BTNUM_REFC:
1298		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299		break;
1300	default:
1301		ASSERT(0);
1302	}
1303}
1304
1305int
1306xfs_btree_get_buf_block(
1307	struct xfs_btree_cur		*cur,
1308	const union xfs_btree_ptr	*ptr,
1309	struct xfs_btree_block		**block,
1310	struct xfs_buf			**bpp)
1311{
1312	struct xfs_mount	*mp = cur->bc_mp;
1313	xfs_daddr_t		d;
1314	int			error;
1315
1316	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317	if (error)
1318		return error;
1319	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320			0, bpp);
1321	if (error)
1322		return error;
1323
1324	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1325	*block = XFS_BUF_TO_BLOCK(*bpp);
1326	return 0;
1327}
1328
1329/*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333int
1334xfs_btree_read_buf_block(
1335	struct xfs_btree_cur		*cur,
1336	const union xfs_btree_ptr	*ptr,
1337	int				flags,
1338	struct xfs_btree_block		**block,
1339	struct xfs_buf			**bpp)
1340{
1341	struct xfs_mount	*mp = cur->bc_mp;
1342	xfs_daddr_t		d;
1343	int			error;
1344
1345	/* need to sort out how callers deal with failures first */
1346	ASSERT(!(flags & XBF_TRYLOCK));
1347
1348	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349	if (error)
1350		return error;
1351	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352				   mp->m_bsize, flags, bpp,
1353				   cur->bc_ops->buf_ops);
 
 
1354	if (error)
1355		return error;
1356
1357	xfs_btree_set_refs(cur, *bpp);
1358	*block = XFS_BUF_TO_BLOCK(*bpp);
1359	return 0;
1360}
1361
1362/*
1363 * Copy keys from one btree block to another.
1364 */
1365void
1366xfs_btree_copy_keys(
1367	struct xfs_btree_cur		*cur,
1368	union xfs_btree_key		*dst_key,
1369	const union xfs_btree_key	*src_key,
1370	int				numkeys)
1371{
1372	ASSERT(numkeys >= 0);
1373	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374}
1375
1376/*
1377 * Copy records from one btree block to another.
1378 */
1379STATIC void
1380xfs_btree_copy_recs(
1381	struct xfs_btree_cur	*cur,
1382	union xfs_btree_rec	*dst_rec,
1383	union xfs_btree_rec	*src_rec,
1384	int			numrecs)
1385{
1386	ASSERT(numrecs >= 0);
1387	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388}
1389
1390/*
1391 * Copy block pointers from one btree block to another.
1392 */
1393void
1394xfs_btree_copy_ptrs(
1395	struct xfs_btree_cur	*cur,
1396	union xfs_btree_ptr	*dst_ptr,
1397	const union xfs_btree_ptr *src_ptr,
1398	int			numptrs)
1399{
1400	ASSERT(numptrs >= 0);
1401	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402}
1403
1404/*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407STATIC void
1408xfs_btree_shift_keys(
1409	struct xfs_btree_cur	*cur,
1410	union xfs_btree_key	*key,
1411	int			dir,
1412	int			numkeys)
1413{
1414	char			*dst_key;
1415
1416	ASSERT(numkeys >= 0);
1417	ASSERT(dir == 1 || dir == -1);
1418
1419	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426STATIC void
1427xfs_btree_shift_recs(
1428	struct xfs_btree_cur	*cur,
1429	union xfs_btree_rec	*rec,
1430	int			dir,
1431	int			numrecs)
1432{
1433	char			*dst_rec;
1434
1435	ASSERT(numrecs >= 0);
1436	ASSERT(dir == 1 || dir == -1);
1437
1438	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440}
1441
1442/*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445STATIC void
1446xfs_btree_shift_ptrs(
1447	struct xfs_btree_cur	*cur,
1448	union xfs_btree_ptr	*ptr,
1449	int			dir,
1450	int			numptrs)
1451{
1452	char			*dst_ptr;
1453
1454	ASSERT(numptrs >= 0);
1455	ASSERT(dir == 1 || dir == -1);
1456
1457	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459}
1460
1461/*
1462 * Log key values from the btree block.
1463 */
1464STATIC void
1465xfs_btree_log_keys(
1466	struct xfs_btree_cur	*cur,
1467	struct xfs_buf		*bp,
1468	int			first,
1469	int			last)
1470{
1471
1472	if (bp) {
1473		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474		xfs_trans_log_buf(cur->bc_tp, bp,
1475				  xfs_btree_key_offset(cur, first),
1476				  xfs_btree_key_offset(cur, last + 1) - 1);
1477	} else {
1478		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480	}
1481}
1482
1483/*
1484 * Log record values from the btree block.
1485 */
1486void
1487xfs_btree_log_recs(
1488	struct xfs_btree_cur	*cur,
1489	struct xfs_buf		*bp,
1490	int			first,
1491	int			last)
1492{
1493
1494	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495	xfs_trans_log_buf(cur->bc_tp, bp,
1496			  xfs_btree_rec_offset(cur, first),
1497			  xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499}
1500
1501/*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504STATIC void
1505xfs_btree_log_ptrs(
1506	struct xfs_btree_cur	*cur,	/* btree cursor */
1507	struct xfs_buf		*bp,	/* buffer containing btree block */
1508	int			first,	/* index of first pointer to log */
1509	int			last)	/* index of last pointer to log */
1510{
1511
1512	if (bp) {
1513		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1514		int			level = xfs_btree_get_level(block);
1515
1516		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517		xfs_trans_log_buf(cur->bc_tp, bp,
1518				xfs_btree_ptr_offset(cur, first, level),
1519				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520	} else {
1521		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523	}
1524
1525}
1526
1527/*
1528 * Log fields from a btree block header.
1529 */
1530void
1531xfs_btree_log_block(
1532	struct xfs_btree_cur	*cur,	/* btree cursor */
1533	struct xfs_buf		*bp,	/* buffer containing btree block */
1534	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1535{
1536	int			first;	/* first byte offset logged */
1537	int			last;	/* last byte offset logged */
1538	static const short	soffsets[] = {	/* table of offsets (short) */
1539		offsetof(struct xfs_btree_block, bb_magic),
1540		offsetof(struct xfs_btree_block, bb_level),
1541		offsetof(struct xfs_btree_block, bb_numrecs),
1542		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549		XFS_BTREE_SBLOCK_CRC_LEN
1550	};
1551	static const short	loffsets[] = {	/* table of offsets (long) */
1552		offsetof(struct xfs_btree_block, bb_magic),
1553		offsetof(struct xfs_btree_block, bb_level),
1554		offsetof(struct xfs_btree_block, bb_numrecs),
1555		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563		XFS_BTREE_LBLOCK_CRC_LEN
1564	};
1565
1566	if (bp) {
1567		int nbits;
1568
1569		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570			/*
1571			 * We don't log the CRC when updating a btree
1572			 * block but instead recreate it during log
1573			 * recovery.  As the log buffers have checksums
1574			 * of their own this is safe and avoids logging a crc
1575			 * update in a lot of places.
1576			 */
1577			if (fields == XFS_BB_ALL_BITS)
1578				fields = XFS_BB_ALL_BITS_CRC;
1579			nbits = XFS_BB_NUM_BITS_CRC;
1580		} else {
1581			nbits = XFS_BB_NUM_BITS;
1582		}
1583		xfs_btree_offsets(fields,
1584				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585					loffsets : soffsets,
1586				  nbits, &first, &last);
1587		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589	} else {
1590		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592	}
1593}
1594
1595/*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599int						/* error */
1600xfs_btree_increment(
1601	struct xfs_btree_cur	*cur,
1602	int			level,
1603	int			*stat)		/* success/failure */
1604{
1605	struct xfs_btree_block	*block;
1606	union xfs_btree_ptr	ptr;
1607	struct xfs_buf		*bp;
1608	int			error;		/* error return value */
1609	int			lev;
1610
1611	ASSERT(level < cur->bc_nlevels);
1612
1613	/* Read-ahead to the right at this level. */
1614	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616	/* Get a pointer to the btree block. */
1617	block = xfs_btree_get_block(cur, level, &bp);
1618
1619#ifdef DEBUG
1620	error = xfs_btree_check_block(cur, block, level, bp);
1621	if (error)
1622		goto error0;
1623#endif
1624
1625	/* We're done if we remain in the block after the increment. */
1626	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627		goto out1;
1628
1629	/* Fail if we just went off the right edge of the tree. */
1630	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631	if (xfs_btree_ptr_is_null(cur, &ptr))
1632		goto out0;
1633
1634	XFS_BTREE_STATS_INC(cur, increment);
1635
1636	/*
1637	 * March up the tree incrementing pointers.
1638	 * Stop when we don't go off the right edge of a block.
1639	 */
1640	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641		block = xfs_btree_get_block(cur, lev, &bp);
1642
1643#ifdef DEBUG
1644		error = xfs_btree_check_block(cur, block, lev, bp);
1645		if (error)
1646			goto error0;
1647#endif
1648
1649		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650			break;
1651
1652		/* Read-ahead the right block for the next loop. */
1653		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654	}
1655
1656	/*
1657	 * If we went off the root then we are either seriously
1658	 * confused or have the tree root in an inode.
1659	 */
1660	if (lev == cur->bc_nlevels) {
1661		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662			goto out0;
1663		ASSERT(0);
 
1664		error = -EFSCORRUPTED;
1665		goto error0;
1666	}
1667	ASSERT(lev < cur->bc_nlevels);
1668
1669	/*
1670	 * Now walk back down the tree, fixing up the cursor's buffer
1671	 * pointers and key numbers.
1672	 */
1673	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674		union xfs_btree_ptr	*ptrp;
1675
1676		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677		--lev;
1678		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679		if (error)
1680			goto error0;
1681
1682		xfs_btree_setbuf(cur, lev, bp);
1683		cur->bc_levels[lev].ptr = 1;
1684	}
1685out1:
1686	*stat = 1;
1687	return 0;
1688
1689out0:
1690	*stat = 0;
1691	return 0;
1692
1693error0:
1694	return error;
1695}
1696
1697/*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701int						/* error */
1702xfs_btree_decrement(
1703	struct xfs_btree_cur	*cur,
1704	int			level,
1705	int			*stat)		/* success/failure */
1706{
1707	struct xfs_btree_block	*block;
1708	struct xfs_buf		*bp;
1709	int			error;		/* error return value */
1710	int			lev;
1711	union xfs_btree_ptr	ptr;
1712
1713	ASSERT(level < cur->bc_nlevels);
1714
1715	/* Read-ahead to the left at this level. */
1716	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718	/* We're done if we remain in the block after the decrement. */
1719	if (--cur->bc_levels[level].ptr > 0)
1720		goto out1;
1721
1722	/* Get a pointer to the btree block. */
1723	block = xfs_btree_get_block(cur, level, &bp);
1724
1725#ifdef DEBUG
1726	error = xfs_btree_check_block(cur, block, level, bp);
1727	if (error)
1728		goto error0;
1729#endif
1730
1731	/* Fail if we just went off the left edge of the tree. */
1732	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733	if (xfs_btree_ptr_is_null(cur, &ptr))
1734		goto out0;
1735
1736	XFS_BTREE_STATS_INC(cur, decrement);
1737
1738	/*
1739	 * March up the tree decrementing pointers.
1740	 * Stop when we don't go off the left edge of a block.
1741	 */
1742	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743		if (--cur->bc_levels[lev].ptr > 0)
1744			break;
1745		/* Read-ahead the left block for the next loop. */
1746		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747	}
1748
1749	/*
1750	 * If we went off the root then we are seriously confused.
1751	 * or the root of the tree is in an inode.
1752	 */
1753	if (lev == cur->bc_nlevels) {
1754		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755			goto out0;
1756		ASSERT(0);
 
1757		error = -EFSCORRUPTED;
1758		goto error0;
1759	}
1760	ASSERT(lev < cur->bc_nlevels);
1761
1762	/*
1763	 * Now walk back down the tree, fixing up the cursor's buffer
1764	 * pointers and key numbers.
1765	 */
1766	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767		union xfs_btree_ptr	*ptrp;
1768
1769		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770		--lev;
1771		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772		if (error)
1773			goto error0;
1774		xfs_btree_setbuf(cur, lev, bp);
1775		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776	}
1777out1:
1778	*stat = 1;
1779	return 0;
1780
1781out0:
1782	*stat = 0;
1783	return 0;
1784
1785error0:
1786	return error;
1787}
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789int
1790xfs_btree_lookup_get_block(
1791	struct xfs_btree_cur		*cur,	/* btree cursor */
1792	int				level,	/* level in the btree */
1793	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1794	struct xfs_btree_block		**blkp) /* return btree block */
1795{
1796	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1797	xfs_daddr_t		daddr;
1798	int			error = 0;
1799
1800	/* special case the root block if in an inode */
1801	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802	    (level == cur->bc_nlevels - 1)) {
1803		*blkp = xfs_btree_get_iroot(cur);
1804		return 0;
1805	}
1806
1807	/*
1808	 * If the old buffer at this level for the disk address we are
1809	 * looking for re-use it.
1810	 *
1811	 * Otherwise throw it away and get a new one.
1812	 */
1813	bp = cur->bc_levels[level].bp;
1814	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815	if (error)
1816		return error;
1817	if (bp && xfs_buf_daddr(bp) == daddr) {
1818		*blkp = XFS_BUF_TO_BLOCK(bp);
1819		return 0;
1820	}
1821
1822	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823	if (error)
1824		return error;
1825
1826	/* Check the inode owner since the verifiers don't. */
1827	if (xfs_has_crc(cur->bc_mp) &&
1828	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831			cur->bc_ino.ip->i_ino)
1832		goto out_bad;
1833
1834	/* Did we get the level we were looking for? */
1835	if (be16_to_cpu((*blkp)->bb_level) != level)
1836		goto out_bad;
1837
1838	/* Check that internal nodes have at least one record. */
1839	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840		goto out_bad;
1841
1842	xfs_btree_setbuf(cur, level, bp);
1843	return 0;
1844
1845out_bad:
1846	*blkp = NULL;
1847	xfs_buf_mark_corrupt(bp);
1848	xfs_trans_brelse(cur->bc_tp, bp);
 
1849	return -EFSCORRUPTED;
1850}
1851
1852/*
1853 * Get current search key.  For level 0 we don't actually have a key
1854 * structure so we make one up from the record.  For all other levels
1855 * we just return the right key.
1856 */
1857STATIC union xfs_btree_key *
1858xfs_lookup_get_search_key(
1859	struct xfs_btree_cur	*cur,
1860	int			level,
1861	int			keyno,
1862	struct xfs_btree_block	*block,
1863	union xfs_btree_key	*kp)
1864{
1865	if (level == 0) {
1866		cur->bc_ops->init_key_from_rec(kp,
1867				xfs_btree_rec_addr(cur, keyno, block));
1868		return kp;
1869	}
1870
1871	return xfs_btree_key_addr(cur, keyno, block);
1872}
1873
1874/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875 * Lookup the record.  The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878int					/* error */
1879xfs_btree_lookup(
1880	struct xfs_btree_cur	*cur,	/* btree cursor */
1881	xfs_lookup_t		dir,	/* <=, ==, or >= */
1882	int			*stat)	/* success/failure */
1883{
1884	struct xfs_btree_block	*block;	/* current btree block */
1885	int64_t			diff;	/* difference for the current key */
1886	int			error;	/* error return value */
1887	int			keyno;	/* current key number */
1888	int			level;	/* level in the btree */
1889	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1890	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1891
1892	XFS_BTREE_STATS_INC(cur, lookup);
1893
1894	/* No such thing as a zero-level tree. */
1895	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
 
1896		return -EFSCORRUPTED;
 
1897
1898	block = NULL;
1899	keyno = 0;
1900
1901	/* initialise start pointer from cursor */
1902	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903	pp = &ptr;
1904
1905	/*
1906	 * Iterate over each level in the btree, starting at the root.
1907	 * For each level above the leaves, find the key we need, based
1908	 * on the lookup record, then follow the corresponding block
1909	 * pointer down to the next level.
1910	 */
1911	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912		/* Get the block we need to do the lookup on. */
1913		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914		if (error)
1915			goto error0;
1916
1917		if (diff == 0) {
1918			/*
1919			 * If we already had a key match at a higher level, we
1920			 * know we need to use the first entry in this block.
1921			 */
1922			keyno = 1;
1923		} else {
1924			/* Otherwise search this block. Do a binary search. */
1925
1926			int	high;	/* high entry number */
1927			int	low;	/* low entry number */
1928
1929			/* Set low and high entry numbers, 1-based. */
1930			low = 1;
1931			high = xfs_btree_get_numrecs(block);
1932			if (!high) {
1933				/* Block is empty, must be an empty leaf. */
1934				if (level != 0 || cur->bc_nlevels != 1) {
1935					XFS_CORRUPTION_ERROR(__func__,
1936							XFS_ERRLEVEL_LOW,
1937							cur->bc_mp, block,
1938							sizeof(*block));
 
1939					return -EFSCORRUPTED;
1940				}
1941
1942				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943				*stat = 0;
1944				return 0;
1945			}
1946
1947			/* Binary search the block. */
1948			while (low <= high) {
1949				union xfs_btree_key	key;
1950				union xfs_btree_key	*kp;
1951
1952				XFS_BTREE_STATS_INC(cur, compare);
1953
1954				/* keyno is average of low and high. */
1955				keyno = (low + high) >> 1;
1956
1957				/* Get current search key */
1958				kp = xfs_lookup_get_search_key(cur, level,
1959						keyno, block, &key);
1960
1961				/*
1962				 * Compute difference to get next direction:
1963				 *  - less than, move right
1964				 *  - greater than, move left
1965				 *  - equal, we're done
1966				 */
1967				diff = cur->bc_ops->key_diff(cur, kp);
1968				if (diff < 0)
1969					low = keyno + 1;
1970				else if (diff > 0)
1971					high = keyno - 1;
1972				else
1973					break;
1974			}
1975		}
1976
1977		/*
1978		 * If there are more levels, set up for the next level
1979		 * by getting the block number and filling in the cursor.
1980		 */
1981		if (level > 0) {
1982			/*
1983			 * If we moved left, need the previous key number,
1984			 * unless there isn't one.
1985			 */
1986			if (diff > 0 && --keyno < 1)
1987				keyno = 1;
1988			pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991			if (error)
1992				goto error0;
1993
1994			cur->bc_levels[level].ptr = keyno;
1995		}
1996	}
1997
1998	/* Done with the search. See if we need to adjust the results. */
1999	if (dir != XFS_LOOKUP_LE && diff < 0) {
2000		keyno++;
2001		/*
2002		 * If ge search and we went off the end of the block, but it's
2003		 * not the last block, we're in the wrong block.
2004		 */
2005		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006		if (dir == XFS_LOOKUP_GE &&
2007		    keyno > xfs_btree_get_numrecs(block) &&
2008		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2009			int	i;
2010
2011			cur->bc_levels[0].ptr = keyno;
2012			error = xfs_btree_increment(cur, 0, &i);
2013			if (error)
2014				goto error0;
2015			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
 
2016				return -EFSCORRUPTED;
 
2017			*stat = 1;
2018			return 0;
2019		}
2020	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2021		keyno--;
2022	cur->bc_levels[0].ptr = keyno;
2023
2024	/* Return if we succeeded or not. */
2025	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026		*stat = 0;
2027	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028		*stat = 1;
2029	else
2030		*stat = 0;
2031	return 0;
2032
2033error0:
2034	return error;
2035}
2036
2037/* Find the high key storage area from a regular key. */
2038union xfs_btree_key *
2039xfs_btree_high_key_from_key(
2040	struct xfs_btree_cur	*cur,
2041	union xfs_btree_key	*key)
2042{
2043	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044	return (union xfs_btree_key *)((char *)key +
2045			(cur->bc_ops->key_len / 2));
2046}
2047
2048/* Determine the low (and high if overlapped) keys of a leaf block */
2049STATIC void
2050xfs_btree_get_leaf_keys(
2051	struct xfs_btree_cur	*cur,
2052	struct xfs_btree_block	*block,
2053	union xfs_btree_key	*key)
2054{
2055	union xfs_btree_key	max_hkey;
2056	union xfs_btree_key	hkey;
2057	union xfs_btree_rec	*rec;
2058	union xfs_btree_key	*high;
2059	int			n;
2060
2061	rec = xfs_btree_rec_addr(cur, 1, block);
2062	cur->bc_ops->init_key_from_rec(key, rec);
2063
2064	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068			rec = xfs_btree_rec_addr(cur, n, block);
2069			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2071				max_hkey = hkey;
2072		}
2073
2074		high = xfs_btree_high_key_from_key(cur, key);
2075		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2076	}
2077}
2078
2079/* Determine the low (and high if overlapped) keys of a node block */
2080STATIC void
2081xfs_btree_get_node_keys(
2082	struct xfs_btree_cur	*cur,
2083	struct xfs_btree_block	*block,
2084	union xfs_btree_key	*key)
2085{
2086	union xfs_btree_key	*hkey;
2087	union xfs_btree_key	*max_hkey;
2088	union xfs_btree_key	*high;
2089	int			n;
2090
2091	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2092		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2093				cur->bc_ops->key_len / 2);
2094
2095		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2096		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2097			hkey = xfs_btree_high_key_addr(cur, n, block);
2098			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2099				max_hkey = hkey;
2100		}
2101
2102		high = xfs_btree_high_key_from_key(cur, key);
2103		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2104	} else {
2105		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2106				cur->bc_ops->key_len);
2107	}
2108}
2109
2110/* Derive the keys for any btree block. */
2111void
2112xfs_btree_get_keys(
2113	struct xfs_btree_cur	*cur,
2114	struct xfs_btree_block	*block,
2115	union xfs_btree_key	*key)
2116{
2117	if (be16_to_cpu(block->bb_level) == 0)
2118		xfs_btree_get_leaf_keys(cur, block, key);
2119	else
2120		xfs_btree_get_node_keys(cur, block, key);
2121}
2122
2123/*
2124 * Decide if we need to update the parent keys of a btree block.  For
2125 * a standard btree this is only necessary if we're updating the first
2126 * record/key.  For an overlapping btree, we must always update the
2127 * keys because the highest key can be in any of the records or keys
2128 * in the block.
2129 */
2130static inline bool
2131xfs_btree_needs_key_update(
2132	struct xfs_btree_cur	*cur,
2133	int			ptr)
2134{
2135	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2136}
2137
2138/*
2139 * Update the low and high parent keys of the given level, progressing
2140 * towards the root.  If force_all is false, stop if the keys for a given
2141 * level do not need updating.
2142 */
2143STATIC int
2144__xfs_btree_updkeys(
2145	struct xfs_btree_cur	*cur,
2146	int			level,
2147	struct xfs_btree_block	*block,
2148	struct xfs_buf		*bp0,
2149	bool			force_all)
2150{
2151	union xfs_btree_key	key;	/* keys from current level */
2152	union xfs_btree_key	*lkey;	/* keys from the next level up */
2153	union xfs_btree_key	*hkey;
2154	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2155	union xfs_btree_key	*nhkey;
2156	struct xfs_buf		*bp;
2157	int			ptr;
2158
2159	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2160
2161	/* Exit if there aren't any parent levels to update. */
2162	if (level + 1 >= cur->bc_nlevels)
2163		return 0;
2164
2165	trace_xfs_btree_updkeys(cur, level, bp0);
2166
2167	lkey = &key;
2168	hkey = xfs_btree_high_key_from_key(cur, lkey);
2169	xfs_btree_get_keys(cur, block, lkey);
2170	for (level++; level < cur->bc_nlevels; level++) {
2171#ifdef DEBUG
2172		int		error;
2173#endif
2174		block = xfs_btree_get_block(cur, level, &bp);
2175		trace_xfs_btree_updkeys(cur, level, bp);
2176#ifdef DEBUG
2177		error = xfs_btree_check_block(cur, block, level, bp);
2178		if (error)
2179			return error;
2180#endif
2181		ptr = cur->bc_levels[level].ptr;
2182		nlkey = xfs_btree_key_addr(cur, ptr, block);
2183		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2184		if (!force_all &&
2185		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2186		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2187			break;
2188		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2189		xfs_btree_log_keys(cur, bp, ptr, ptr);
2190		if (level + 1 >= cur->bc_nlevels)
2191			break;
2192		xfs_btree_get_node_keys(cur, block, lkey);
2193	}
2194
2195	return 0;
2196}
2197
2198/* Update all the keys from some level in cursor back to the root. */
2199STATIC int
2200xfs_btree_updkeys_force(
2201	struct xfs_btree_cur	*cur,
2202	int			level)
2203{
2204	struct xfs_buf		*bp;
2205	struct xfs_btree_block	*block;
2206
2207	block = xfs_btree_get_block(cur, level, &bp);
2208	return __xfs_btree_updkeys(cur, level, block, bp, true);
2209}
2210
2211/*
2212 * Update the parent keys of the given level, progressing towards the root.
2213 */
2214STATIC int
2215xfs_btree_update_keys(
2216	struct xfs_btree_cur	*cur,
2217	int			level)
2218{
2219	struct xfs_btree_block	*block;
2220	struct xfs_buf		*bp;
2221	union xfs_btree_key	*kp;
2222	union xfs_btree_key	key;
2223	int			ptr;
2224
2225	ASSERT(level >= 0);
2226
2227	block = xfs_btree_get_block(cur, level, &bp);
2228	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2229		return __xfs_btree_updkeys(cur, level, block, bp, false);
2230
2231	/*
2232	 * Go up the tree from this level toward the root.
2233	 * At each level, update the key value to the value input.
2234	 * Stop when we reach a level where the cursor isn't pointing
2235	 * at the first entry in the block.
2236	 */
2237	xfs_btree_get_keys(cur, block, &key);
2238	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2239#ifdef DEBUG
2240		int		error;
2241#endif
2242		block = xfs_btree_get_block(cur, level, &bp);
2243#ifdef DEBUG
2244		error = xfs_btree_check_block(cur, block, level, bp);
2245		if (error)
2246			return error;
2247#endif
2248		ptr = cur->bc_levels[level].ptr;
2249		kp = xfs_btree_key_addr(cur, ptr, block);
2250		xfs_btree_copy_keys(cur, kp, &key, 1);
2251		xfs_btree_log_keys(cur, bp, ptr, ptr);
2252	}
2253
2254	return 0;
2255}
2256
2257/*
2258 * Update the record referred to by cur to the value in the
2259 * given record. This either works (return 0) or gets an
2260 * EFSCORRUPTED error.
2261 */
2262int
2263xfs_btree_update(
2264	struct xfs_btree_cur	*cur,
2265	union xfs_btree_rec	*rec)
2266{
2267	struct xfs_btree_block	*block;
2268	struct xfs_buf		*bp;
2269	int			error;
2270	int			ptr;
2271	union xfs_btree_rec	*rp;
2272
2273	/* Pick up the current block. */
2274	block = xfs_btree_get_block(cur, 0, &bp);
2275
2276#ifdef DEBUG
2277	error = xfs_btree_check_block(cur, block, 0, bp);
2278	if (error)
2279		goto error0;
2280#endif
2281	/* Get the address of the rec to be updated. */
2282	ptr = cur->bc_levels[0].ptr;
2283	rp = xfs_btree_rec_addr(cur, ptr, block);
2284
2285	/* Fill in the new contents and log them. */
2286	xfs_btree_copy_recs(cur, rp, rec, 1);
2287	xfs_btree_log_recs(cur, bp, ptr, ptr);
2288
2289	/*
2290	 * If we are tracking the last record in the tree and
2291	 * we are at the far right edge of the tree, update it.
2292	 */
2293	if (xfs_btree_is_lastrec(cur, block, 0)) {
2294		cur->bc_ops->update_lastrec(cur, block, rec,
2295					    ptr, LASTREC_UPDATE);
2296	}
2297
2298	/* Pass new key value up to our parent. */
2299	if (xfs_btree_needs_key_update(cur, ptr)) {
2300		error = xfs_btree_update_keys(cur, 0);
2301		if (error)
2302			goto error0;
2303	}
2304
2305	return 0;
2306
2307error0:
2308	return error;
2309}
2310
2311/*
2312 * Move 1 record left from cur/level if possible.
2313 * Update cur to reflect the new path.
2314 */
2315STATIC int					/* error */
2316xfs_btree_lshift(
2317	struct xfs_btree_cur	*cur,
2318	int			level,
2319	int			*stat)		/* success/failure */
2320{
2321	struct xfs_buf		*lbp;		/* left buffer pointer */
2322	struct xfs_btree_block	*left;		/* left btree block */
2323	int			lrecs;		/* left record count */
2324	struct xfs_buf		*rbp;		/* right buffer pointer */
2325	struct xfs_btree_block	*right;		/* right btree block */
2326	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2327	int			rrecs;		/* right record count */
2328	union xfs_btree_ptr	lptr;		/* left btree pointer */
2329	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2330	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2331	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2332	int			error;		/* error return value */
2333	int			i;
2334
2335	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2336	    level == cur->bc_nlevels - 1)
2337		goto out0;
2338
2339	/* Set up variables for this block as "right". */
2340	right = xfs_btree_get_block(cur, level, &rbp);
2341
2342#ifdef DEBUG
2343	error = xfs_btree_check_block(cur, right, level, rbp);
2344	if (error)
2345		goto error0;
2346#endif
2347
2348	/* If we've got no left sibling then we can't shift an entry left. */
2349	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2350	if (xfs_btree_ptr_is_null(cur, &lptr))
2351		goto out0;
2352
2353	/*
2354	 * If the cursor entry is the one that would be moved, don't
2355	 * do it... it's too complicated.
2356	 */
2357	if (cur->bc_levels[level].ptr <= 1)
2358		goto out0;
2359
2360	/* Set up the left neighbor as "left". */
2361	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2362	if (error)
2363		goto error0;
2364
2365	/* If it's full, it can't take another entry. */
2366	lrecs = xfs_btree_get_numrecs(left);
2367	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2368		goto out0;
2369
2370	rrecs = xfs_btree_get_numrecs(right);
2371
2372	/*
2373	 * We add one entry to the left side and remove one for the right side.
2374	 * Account for it here, the changes will be updated on disk and logged
2375	 * later.
2376	 */
2377	lrecs++;
2378	rrecs--;
2379
2380	XFS_BTREE_STATS_INC(cur, lshift);
2381	XFS_BTREE_STATS_ADD(cur, moves, 1);
2382
2383	/*
2384	 * If non-leaf, copy a key and a ptr to the left block.
2385	 * Log the changes to the left block.
2386	 */
2387	if (level > 0) {
2388		/* It's a non-leaf.  Move keys and pointers. */
2389		union xfs_btree_key	*lkp;	/* left btree key */
2390		union xfs_btree_ptr	*lpp;	/* left address pointer */
2391
2392		lkp = xfs_btree_key_addr(cur, lrecs, left);
2393		rkp = xfs_btree_key_addr(cur, 1, right);
2394
2395		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2396		rpp = xfs_btree_ptr_addr(cur, 1, right);
2397
2398		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2399		if (error)
2400			goto error0;
2401
2402		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2403		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2404
2405		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2406		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2407
2408		ASSERT(cur->bc_ops->keys_inorder(cur,
2409			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2410	} else {
2411		/* It's a leaf.  Move records.  */
2412		union xfs_btree_rec	*lrp;	/* left record pointer */
2413
2414		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2415		rrp = xfs_btree_rec_addr(cur, 1, right);
2416
2417		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2418		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2419
2420		ASSERT(cur->bc_ops->recs_inorder(cur,
2421			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2422	}
2423
2424	xfs_btree_set_numrecs(left, lrecs);
2425	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2426
2427	xfs_btree_set_numrecs(right, rrecs);
2428	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2429
2430	/*
2431	 * Slide the contents of right down one entry.
2432	 */
2433	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2434	if (level > 0) {
2435		/* It's a nonleaf. operate on keys and ptrs */
2436		for (i = 0; i < rrecs; i++) {
2437			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2438			if (error)
2439				goto error0;
2440		}
2441
2442		xfs_btree_shift_keys(cur,
2443				xfs_btree_key_addr(cur, 2, right),
2444				-1, rrecs);
2445		xfs_btree_shift_ptrs(cur,
2446				xfs_btree_ptr_addr(cur, 2, right),
2447				-1, rrecs);
2448
2449		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2450		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2451	} else {
2452		/* It's a leaf. operate on records */
2453		xfs_btree_shift_recs(cur,
2454			xfs_btree_rec_addr(cur, 2, right),
2455			-1, rrecs);
2456		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2457	}
2458
2459	/*
2460	 * Using a temporary cursor, update the parent key values of the
2461	 * block on the left.
2462	 */
2463	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2464		error = xfs_btree_dup_cursor(cur, &tcur);
2465		if (error)
2466			goto error0;
2467		i = xfs_btree_firstrec(tcur, level);
2468		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
 
2469			error = -EFSCORRUPTED;
2470			goto error0;
2471		}
2472
2473		error = xfs_btree_decrement(tcur, level, &i);
2474		if (error)
2475			goto error1;
2476
2477		/* Update the parent high keys of the left block, if needed. */
2478		error = xfs_btree_update_keys(tcur, level);
2479		if (error)
2480			goto error1;
2481
2482		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2483	}
2484
2485	/* Update the parent keys of the right block. */
2486	error = xfs_btree_update_keys(cur, level);
2487	if (error)
2488		goto error0;
2489
2490	/* Slide the cursor value left one. */
2491	cur->bc_levels[level].ptr--;
2492
2493	*stat = 1;
2494	return 0;
2495
2496out0:
2497	*stat = 0;
2498	return 0;
2499
2500error0:
2501	return error;
2502
2503error1:
2504	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2505	return error;
2506}
2507
2508/*
2509 * Move 1 record right from cur/level if possible.
2510 * Update cur to reflect the new path.
2511 */
2512STATIC int					/* error */
2513xfs_btree_rshift(
2514	struct xfs_btree_cur	*cur,
2515	int			level,
2516	int			*stat)		/* success/failure */
2517{
2518	struct xfs_buf		*lbp;		/* left buffer pointer */
2519	struct xfs_btree_block	*left;		/* left btree block */
2520	struct xfs_buf		*rbp;		/* right buffer pointer */
2521	struct xfs_btree_block	*right;		/* right btree block */
2522	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2523	union xfs_btree_ptr	rptr;		/* right block pointer */
2524	union xfs_btree_key	*rkp;		/* right btree key */
2525	int			rrecs;		/* right record count */
2526	int			lrecs;		/* left record count */
2527	int			error;		/* error return value */
2528	int			i;		/* loop counter */
2529
2530	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2531	    (level == cur->bc_nlevels - 1))
2532		goto out0;
2533
2534	/* Set up variables for this block as "left". */
2535	left = xfs_btree_get_block(cur, level, &lbp);
2536
2537#ifdef DEBUG
2538	error = xfs_btree_check_block(cur, left, level, lbp);
2539	if (error)
2540		goto error0;
2541#endif
2542
2543	/* If we've got no right sibling then we can't shift an entry right. */
2544	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2545	if (xfs_btree_ptr_is_null(cur, &rptr))
2546		goto out0;
2547
2548	/*
2549	 * If the cursor entry is the one that would be moved, don't
2550	 * do it... it's too complicated.
2551	 */
2552	lrecs = xfs_btree_get_numrecs(left);
2553	if (cur->bc_levels[level].ptr >= lrecs)
2554		goto out0;
2555
2556	/* Set up the right neighbor as "right". */
2557	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2558	if (error)
2559		goto error0;
2560
2561	/* If it's full, it can't take another entry. */
2562	rrecs = xfs_btree_get_numrecs(right);
2563	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2564		goto out0;
2565
2566	XFS_BTREE_STATS_INC(cur, rshift);
2567	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2568
2569	/*
2570	 * Make a hole at the start of the right neighbor block, then
2571	 * copy the last left block entry to the hole.
2572	 */
2573	if (level > 0) {
2574		/* It's a nonleaf. make a hole in the keys and ptrs */
2575		union xfs_btree_key	*lkp;
2576		union xfs_btree_ptr	*lpp;
2577		union xfs_btree_ptr	*rpp;
2578
2579		lkp = xfs_btree_key_addr(cur, lrecs, left);
2580		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2581		rkp = xfs_btree_key_addr(cur, 1, right);
2582		rpp = xfs_btree_ptr_addr(cur, 1, right);
2583
2584		for (i = rrecs - 1; i >= 0; i--) {
2585			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2586			if (error)
2587				goto error0;
2588		}
2589
2590		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2591		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2592
2593		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2594		if (error)
2595			goto error0;
2596
2597		/* Now put the new data in, and log it. */
2598		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2599		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2600
2601		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2602		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2603
2604		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2605			xfs_btree_key_addr(cur, 2, right)));
2606	} else {
2607		/* It's a leaf. make a hole in the records */
2608		union xfs_btree_rec	*lrp;
2609		union xfs_btree_rec	*rrp;
2610
2611		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2612		rrp = xfs_btree_rec_addr(cur, 1, right);
2613
2614		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2615
2616		/* Now put the new data in, and log it. */
2617		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2618		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2619	}
2620
2621	/*
2622	 * Decrement and log left's numrecs, bump and log right's numrecs.
2623	 */
2624	xfs_btree_set_numrecs(left, --lrecs);
2625	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2626
2627	xfs_btree_set_numrecs(right, ++rrecs);
2628	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2629
2630	/*
2631	 * Using a temporary cursor, update the parent key values of the
2632	 * block on the right.
2633	 */
2634	error = xfs_btree_dup_cursor(cur, &tcur);
2635	if (error)
2636		goto error0;
2637	i = xfs_btree_lastrec(tcur, level);
2638	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
 
2639		error = -EFSCORRUPTED;
2640		goto error0;
2641	}
2642
2643	error = xfs_btree_increment(tcur, level, &i);
2644	if (error)
2645		goto error1;
2646
2647	/* Update the parent high keys of the left block, if needed. */
2648	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2649		error = xfs_btree_update_keys(cur, level);
2650		if (error)
2651			goto error1;
2652	}
2653
2654	/* Update the parent keys of the right block. */
2655	error = xfs_btree_update_keys(tcur, level);
2656	if (error)
2657		goto error1;
2658
2659	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2660
2661	*stat = 1;
2662	return 0;
2663
2664out0:
2665	*stat = 0;
2666	return 0;
2667
2668error0:
2669	return error;
2670
2671error1:
2672	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2673	return error;
2674}
2675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676/*
2677 * Split cur/level block in half.
2678 * Return new block number and the key to its first
2679 * record (to be inserted into parent).
2680 */
2681STATIC int					/* error */
2682__xfs_btree_split(
2683	struct xfs_btree_cur	*cur,
2684	int			level,
2685	union xfs_btree_ptr	*ptrp,
2686	union xfs_btree_key	*key,
2687	struct xfs_btree_cur	**curp,
2688	int			*stat)		/* success/failure */
2689{
2690	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2691	struct xfs_buf		*lbp;		/* left buffer pointer */
2692	struct xfs_btree_block	*left;		/* left btree block */
2693	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2694	struct xfs_buf		*rbp;		/* right buffer pointer */
2695	struct xfs_btree_block	*right;		/* right btree block */
2696	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2697	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2698	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2699	int			lrecs;
2700	int			rrecs;
2701	int			src_index;
2702	int			error;		/* error return value */
2703	int			i;
2704
2705	XFS_BTREE_STATS_INC(cur, split);
2706
2707	/* Set up left block (current one). */
2708	left = xfs_btree_get_block(cur, level, &lbp);
2709
2710#ifdef DEBUG
2711	error = xfs_btree_check_block(cur, left, level, lbp);
2712	if (error)
2713		goto error0;
2714#endif
2715
2716	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2717
2718	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2719	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2720	if (error)
2721		goto error0;
2722	if (*stat == 0)
2723		goto out0;
2724	XFS_BTREE_STATS_INC(cur, alloc);
2725
2726	/* Set up the new block as "right". */
2727	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2728	if (error)
2729		goto error0;
2730
2731	/* Fill in the btree header for the new right block. */
2732	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2733
2734	/*
2735	 * Split the entries between the old and the new block evenly.
2736	 * Make sure that if there's an odd number of entries now, that
2737	 * each new block will have the same number of entries.
2738	 */
2739	lrecs = xfs_btree_get_numrecs(left);
2740	rrecs = lrecs / 2;
2741	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2742		rrecs++;
2743	src_index = (lrecs - rrecs + 1);
2744
2745	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2746
2747	/* Adjust numrecs for the later get_*_keys() calls. */
2748	lrecs -= rrecs;
2749	xfs_btree_set_numrecs(left, lrecs);
2750	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2751
2752	/*
2753	 * Copy btree block entries from the left block over to the
2754	 * new block, the right. Update the right block and log the
2755	 * changes.
2756	 */
2757	if (level > 0) {
2758		/* It's a non-leaf.  Move keys and pointers. */
2759		union xfs_btree_key	*lkp;	/* left btree key */
2760		union xfs_btree_ptr	*lpp;	/* left address pointer */
2761		union xfs_btree_key	*rkp;	/* right btree key */
2762		union xfs_btree_ptr	*rpp;	/* right address pointer */
2763
2764		lkp = xfs_btree_key_addr(cur, src_index, left);
2765		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2766		rkp = xfs_btree_key_addr(cur, 1, right);
2767		rpp = xfs_btree_ptr_addr(cur, 1, right);
2768
2769		for (i = src_index; i < rrecs; i++) {
2770			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2771			if (error)
2772				goto error0;
2773		}
2774
2775		/* Copy the keys & pointers to the new block. */
2776		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2777		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2778
2779		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2780		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2781
2782		/* Stash the keys of the new block for later insertion. */
2783		xfs_btree_get_node_keys(cur, right, key);
2784	} else {
2785		/* It's a leaf.  Move records.  */
2786		union xfs_btree_rec	*lrp;	/* left record pointer */
2787		union xfs_btree_rec	*rrp;	/* right record pointer */
2788
2789		lrp = xfs_btree_rec_addr(cur, src_index, left);
2790		rrp = xfs_btree_rec_addr(cur, 1, right);
2791
2792		/* Copy records to the new block. */
2793		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2794		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2795
2796		/* Stash the keys of the new block for later insertion. */
2797		xfs_btree_get_leaf_keys(cur, right, key);
2798	}
2799
2800	/*
2801	 * Find the left block number by looking in the buffer.
2802	 * Adjust sibling pointers.
2803	 */
2804	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2805	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2806	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2807	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2808
2809	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2810	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2811
2812	/*
2813	 * If there's a block to the new block's right, make that block
2814	 * point back to right instead of to left.
2815	 */
2816	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2817		error = xfs_btree_read_buf_block(cur, &rrptr,
2818							0, &rrblock, &rrbp);
2819		if (error)
2820			goto error0;
2821		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2822		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2823	}
2824
2825	/* Update the parent high keys of the left block, if needed. */
2826	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2827		error = xfs_btree_update_keys(cur, level);
2828		if (error)
2829			goto error0;
2830	}
2831
2832	/*
2833	 * If the cursor is really in the right block, move it there.
2834	 * If it's just pointing past the last entry in left, then we'll
2835	 * insert there, so don't change anything in that case.
2836	 */
2837	if (cur->bc_levels[level].ptr > lrecs + 1) {
2838		xfs_btree_setbuf(cur, level, rbp);
2839		cur->bc_levels[level].ptr -= lrecs;
2840	}
2841	/*
2842	 * If there are more levels, we'll need another cursor which refers
2843	 * the right block, no matter where this cursor was.
2844	 */
2845	if (level + 1 < cur->bc_nlevels) {
2846		error = xfs_btree_dup_cursor(cur, curp);
2847		if (error)
2848			goto error0;
2849		(*curp)->bc_levels[level + 1].ptr++;
2850	}
2851	*ptrp = rptr;
2852	*stat = 1;
2853	return 0;
2854out0:
2855	*stat = 0;
2856	return 0;
2857
2858error0:
2859	return error;
2860}
2861
2862#ifdef __KERNEL__
2863struct xfs_btree_split_args {
2864	struct xfs_btree_cur	*cur;
2865	int			level;
2866	union xfs_btree_ptr	*ptrp;
2867	union xfs_btree_key	*key;
2868	struct xfs_btree_cur	**curp;
2869	int			*stat;		/* success/failure */
2870	int			result;
2871	bool			kswapd;	/* allocation in kswapd context */
2872	struct completion	*done;
2873	struct work_struct	work;
2874};
2875
2876/*
2877 * Stack switching interfaces for allocation
2878 */
2879static void
2880xfs_btree_split_worker(
2881	struct work_struct	*work)
2882{
2883	struct xfs_btree_split_args	*args = container_of(work,
2884						struct xfs_btree_split_args, work);
2885	unsigned long		pflags;
2886	unsigned long		new_pflags = 0;
2887
2888	/*
2889	 * we are in a transaction context here, but may also be doing work
2890	 * in kswapd context, and hence we may need to inherit that state
2891	 * temporarily to ensure that we don't block waiting for memory reclaim
2892	 * in any way.
2893	 */
2894	if (args->kswapd)
2895		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2896
2897	current_set_flags_nested(&pflags, new_pflags);
2898	xfs_trans_set_context(args->cur->bc_tp);
2899
2900	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2901					 args->key, args->curp, args->stat);
2902
2903	xfs_trans_clear_context(args->cur->bc_tp);
2904	current_restore_flags_nested(&pflags, new_pflags);
2905
2906	/*
2907	 * Do not access args after complete() has run here. We don't own args
2908	 * and the owner may run and free args before we return here.
2909	 */
2910	complete(args->done);
2911
2912}
2913
2914/*
2915 * BMBT split requests often come in with little stack to work on so we push
2916 * them off to a worker thread so there is lots of stack to use. For the other
2917 * btree types, just call directly to avoid the context switch overhead here.
2918 *
2919 * Care must be taken here - the work queue rescuer thread introduces potential
2920 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2921 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2922 * lock an AGF that is already locked by a task queued to run by the rescuer,
2923 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2924 * release it until the current thread it is running gains the lock.
2925 *
2926 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2927 * already locked to allocate from. The only place that doesn't hold an AGF
2928 * locked is unwritten extent conversion at IO completion, but that has already
2929 * been offloaded to a worker thread and hence has no stack consumption issues
2930 * we have to worry about.
2931 */
2932STATIC int					/* error */
2933xfs_btree_split(
2934	struct xfs_btree_cur	*cur,
2935	int			level,
2936	union xfs_btree_ptr	*ptrp,
2937	union xfs_btree_key	*key,
2938	struct xfs_btree_cur	**curp,
2939	int			*stat)		/* success/failure */
2940{
2941	struct xfs_btree_split_args	args;
2942	DECLARE_COMPLETION_ONSTACK(done);
2943
2944	if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2945	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2946		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2947
2948	args.cur = cur;
2949	args.level = level;
2950	args.ptrp = ptrp;
2951	args.key = key;
2952	args.curp = curp;
2953	args.stat = stat;
2954	args.done = &done;
2955	args.kswapd = current_is_kswapd();
2956	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2957	queue_work(xfs_alloc_wq, &args.work);
2958	wait_for_completion(&done);
2959	destroy_work_on_stack(&args.work);
2960	return args.result;
2961}
2962#else
2963#define xfs_btree_split	__xfs_btree_split
2964#endif /* __KERNEL__ */
2965
2966
2967/*
2968 * Copy the old inode root contents into a real block and make the
2969 * broot point to it.
2970 */
2971int						/* error */
2972xfs_btree_new_iroot(
2973	struct xfs_btree_cur	*cur,		/* btree cursor */
2974	int			*logflags,	/* logging flags for inode */
2975	int			*stat)		/* return status - 0 fail */
2976{
2977	struct xfs_buf		*cbp;		/* buffer for cblock */
2978	struct xfs_btree_block	*block;		/* btree block */
2979	struct xfs_btree_block	*cblock;	/* child btree block */
2980	union xfs_btree_key	*ckp;		/* child key pointer */
2981	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2982	union xfs_btree_key	*kp;		/* pointer to btree key */
2983	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2984	union xfs_btree_ptr	nptr;		/* new block addr */
2985	int			level;		/* btree level */
2986	int			error;		/* error return code */
2987	int			i;		/* loop counter */
2988
2989	XFS_BTREE_STATS_INC(cur, newroot);
2990
2991	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2992
2993	level = cur->bc_nlevels - 1;
2994
2995	block = xfs_btree_get_iroot(cur);
2996	pp = xfs_btree_ptr_addr(cur, 1, block);
2997
2998	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2999	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3000	if (error)
3001		goto error0;
3002	if (*stat == 0)
3003		return 0;
3004
3005	XFS_BTREE_STATS_INC(cur, alloc);
3006
3007	/* Copy the root into a real block. */
3008	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3009	if (error)
3010		goto error0;
3011
3012	/*
3013	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3014	 * In that case have to also ensure the blkno remains correct
3015	 */
3016	memcpy(cblock, block, xfs_btree_block_len(cur));
3017	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3018		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3019		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3020			cblock->bb_u.l.bb_blkno = bno;
3021		else
3022			cblock->bb_u.s.bb_blkno = bno;
3023	}
3024
3025	be16_add_cpu(&block->bb_level, 1);
3026	xfs_btree_set_numrecs(block, 1);
3027	cur->bc_nlevels++;
3028	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3029	cur->bc_levels[level + 1].ptr = 1;
3030
3031	kp = xfs_btree_key_addr(cur, 1, block);
3032	ckp = xfs_btree_key_addr(cur, 1, cblock);
3033	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3034
3035	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3036	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3037		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3038		if (error)
3039			goto error0;
3040	}
3041
3042	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3043
3044	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3045	if (error)
3046		goto error0;
3047
3048	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3049
3050	xfs_iroot_realloc(cur->bc_ino.ip,
3051			  1 - xfs_btree_get_numrecs(cblock),
3052			  cur->bc_ino.whichfork);
3053
3054	xfs_btree_setbuf(cur, level, cbp);
3055
3056	/*
3057	 * Do all this logging at the end so that
3058	 * the root is at the right level.
3059	 */
3060	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3061	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3062	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063
3064	*logflags |=
3065		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3066	*stat = 1;
3067	return 0;
3068error0:
3069	return error;
3070}
3071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3072/*
3073 * Allocate a new root block, fill it in.
3074 */
3075STATIC int				/* error */
3076xfs_btree_new_root(
3077	struct xfs_btree_cur	*cur,	/* btree cursor */
3078	int			*stat)	/* success/failure */
3079{
3080	struct xfs_btree_block	*block;	/* one half of the old root block */
3081	struct xfs_buf		*bp;	/* buffer containing block */
3082	int			error;	/* error return value */
3083	struct xfs_buf		*lbp;	/* left buffer pointer */
3084	struct xfs_btree_block	*left;	/* left btree block */
3085	struct xfs_buf		*nbp;	/* new (root) buffer */
3086	struct xfs_btree_block	*new;	/* new (root) btree block */
3087	int			nptr;	/* new value for key index, 1 or 2 */
3088	struct xfs_buf		*rbp;	/* right buffer pointer */
3089	struct xfs_btree_block	*right;	/* right btree block */
3090	union xfs_btree_ptr	rptr;
3091	union xfs_btree_ptr	lptr;
3092
3093	XFS_BTREE_STATS_INC(cur, newroot);
3094
3095	/* initialise our start point from the cursor */
3096	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3097
3098	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3099	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3100	if (error)
3101		goto error0;
3102	if (*stat == 0)
3103		goto out0;
3104	XFS_BTREE_STATS_INC(cur, alloc);
3105
3106	/* Set up the new block. */
3107	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3108	if (error)
3109		goto error0;
3110
3111	/* Set the root in the holding structure  increasing the level by 1. */
3112	cur->bc_ops->set_root(cur, &lptr, 1);
3113
3114	/*
3115	 * At the previous root level there are now two blocks: the old root,
3116	 * and the new block generated when it was split.  We don't know which
3117	 * one the cursor is pointing at, so we set up variables "left" and
3118	 * "right" for each case.
3119	 */
3120	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3121
3122#ifdef DEBUG
3123	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3124	if (error)
3125		goto error0;
3126#endif
3127
3128	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3129	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3130		/* Our block is left, pick up the right block. */
3131		lbp = bp;
3132		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3133		left = block;
3134		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3135		if (error)
3136			goto error0;
3137		bp = rbp;
3138		nptr = 1;
3139	} else {
3140		/* Our block is right, pick up the left block. */
3141		rbp = bp;
3142		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3143		right = block;
3144		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3145		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3146		if (error)
3147			goto error0;
3148		bp = lbp;
3149		nptr = 2;
3150	}
3151
3152	/* Fill in the new block's btree header and log it. */
3153	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3154	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3155	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3156			!xfs_btree_ptr_is_null(cur, &rptr));
3157
3158	/* Fill in the key data in the new root. */
3159	if (xfs_btree_get_level(left) > 0) {
3160		/*
3161		 * Get the keys for the left block's keys and put them directly
3162		 * in the parent block.  Do the same for the right block.
3163		 */
3164		xfs_btree_get_node_keys(cur, left,
3165				xfs_btree_key_addr(cur, 1, new));
3166		xfs_btree_get_node_keys(cur, right,
3167				xfs_btree_key_addr(cur, 2, new));
3168	} else {
3169		/*
3170		 * Get the keys for the left block's records and put them
3171		 * directly in the parent block.  Do the same for the right
3172		 * block.
3173		 */
3174		xfs_btree_get_leaf_keys(cur, left,
3175			xfs_btree_key_addr(cur, 1, new));
3176		xfs_btree_get_leaf_keys(cur, right,
3177			xfs_btree_key_addr(cur, 2, new));
3178	}
3179	xfs_btree_log_keys(cur, nbp, 1, 2);
3180
3181	/* Fill in the pointer data in the new root. */
3182	xfs_btree_copy_ptrs(cur,
3183		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3184	xfs_btree_copy_ptrs(cur,
3185		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3186	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3187
3188	/* Fix up the cursor. */
3189	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3190	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3191	cur->bc_nlevels++;
3192	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3193	*stat = 1;
3194	return 0;
3195error0:
3196	return error;
3197out0:
3198	*stat = 0;
3199	return 0;
3200}
3201
3202STATIC int
3203xfs_btree_make_block_unfull(
3204	struct xfs_btree_cur	*cur,	/* btree cursor */
3205	int			level,	/* btree level */
3206	int			numrecs,/* # of recs in block */
3207	int			*oindex,/* old tree index */
3208	int			*index,	/* new tree index */
3209	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3210	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3211	union xfs_btree_key	*key,	/* key of new block */
3212	int			*stat)
3213{
3214	int			error = 0;
3215
3216	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3217	    level == cur->bc_nlevels - 1) {
3218		struct xfs_inode *ip = cur->bc_ino.ip;
3219
3220		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3221			/* A root block that can be made bigger. */
3222			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3223			*stat = 1;
3224		} else {
3225			/* A root block that needs replacing */
3226			int	logflags = 0;
3227
3228			error = xfs_btree_new_iroot(cur, &logflags, stat);
3229			if (error || *stat == 0)
3230				return error;
3231
3232			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3233		}
3234
3235		return 0;
3236	}
3237
3238	/* First, try shifting an entry to the right neighbor. */
3239	error = xfs_btree_rshift(cur, level, stat);
3240	if (error || *stat)
3241		return error;
3242
3243	/* Next, try shifting an entry to the left neighbor. */
3244	error = xfs_btree_lshift(cur, level, stat);
3245	if (error)
3246		return error;
3247
3248	if (*stat) {
3249		*oindex = *index = cur->bc_levels[level].ptr;
3250		return 0;
3251	}
3252
3253	/*
3254	 * Next, try splitting the current block in half.
3255	 *
3256	 * If this works we have to re-set our variables because we
3257	 * could be in a different block now.
3258	 */
3259	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3260	if (error || *stat == 0)
3261		return error;
3262
3263
3264	*index = cur->bc_levels[level].ptr;
3265	return 0;
3266}
3267
3268/*
3269 * Insert one record/level.  Return information to the caller
3270 * allowing the next level up to proceed if necessary.
3271 */
3272STATIC int
3273xfs_btree_insrec(
3274	struct xfs_btree_cur	*cur,	/* btree cursor */
3275	int			level,	/* level to insert record at */
3276	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3277	union xfs_btree_rec	*rec,	/* record to insert */
3278	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3279	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3280	int			*stat)	/* success/failure */
3281{
3282	struct xfs_btree_block	*block;	/* btree block */
3283	struct xfs_buf		*bp;	/* buffer for block */
3284	union xfs_btree_ptr	nptr;	/* new block ptr */
3285	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3286	union xfs_btree_key	nkey;	/* new block key */
3287	union xfs_btree_key	*lkey;
3288	int			optr;	/* old key/record index */
3289	int			ptr;	/* key/record index */
3290	int			numrecs;/* number of records */
3291	int			error;	/* error return value */
3292	int			i;
3293	xfs_daddr_t		old_bn;
3294
3295	ncur = NULL;
3296	lkey = &nkey;
3297
3298	/*
3299	 * If we have an external root pointer, and we've made it to the
3300	 * root level, allocate a new root block and we're done.
3301	 */
3302	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3303	    (level >= cur->bc_nlevels)) {
3304		error = xfs_btree_new_root(cur, stat);
3305		xfs_btree_set_ptr_null(cur, ptrp);
3306
3307		return error;
3308	}
3309
3310	/* If we're off the left edge, return failure. */
3311	ptr = cur->bc_levels[level].ptr;
3312	if (ptr == 0) {
3313		*stat = 0;
3314		return 0;
3315	}
3316
3317	optr = ptr;
3318
3319	XFS_BTREE_STATS_INC(cur, insrec);
3320
3321	/* Get pointers to the btree buffer and block. */
3322	block = xfs_btree_get_block(cur, level, &bp);
3323	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3324	numrecs = xfs_btree_get_numrecs(block);
3325
3326#ifdef DEBUG
3327	error = xfs_btree_check_block(cur, block, level, bp);
3328	if (error)
3329		goto error0;
3330
3331	/* Check that the new entry is being inserted in the right place. */
3332	if (ptr <= numrecs) {
3333		if (level == 0) {
3334			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3335				xfs_btree_rec_addr(cur, ptr, block)));
3336		} else {
3337			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3338				xfs_btree_key_addr(cur, ptr, block)));
3339		}
3340	}
3341#endif
3342
3343	/*
3344	 * If the block is full, we can't insert the new entry until we
3345	 * make the block un-full.
3346	 */
3347	xfs_btree_set_ptr_null(cur, &nptr);
3348	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3349		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3350					&optr, &ptr, &nptr, &ncur, lkey, stat);
3351		if (error || *stat == 0)
3352			goto error0;
3353	}
3354
3355	/*
3356	 * The current block may have changed if the block was
3357	 * previously full and we have just made space in it.
3358	 */
3359	block = xfs_btree_get_block(cur, level, &bp);
3360	numrecs = xfs_btree_get_numrecs(block);
3361
3362#ifdef DEBUG
3363	error = xfs_btree_check_block(cur, block, level, bp);
3364	if (error)
3365		goto error0;
3366#endif
3367
3368	/*
3369	 * At this point we know there's room for our new entry in the block
3370	 * we're pointing at.
3371	 */
3372	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3373
3374	if (level > 0) {
3375		/* It's a nonleaf. make a hole in the keys and ptrs */
3376		union xfs_btree_key	*kp;
3377		union xfs_btree_ptr	*pp;
3378
3379		kp = xfs_btree_key_addr(cur, ptr, block);
3380		pp = xfs_btree_ptr_addr(cur, ptr, block);
3381
3382		for (i = numrecs - ptr; i >= 0; i--) {
3383			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3384			if (error)
3385				goto error0;
3386		}
3387
3388		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3389		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3390
3391		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3392		if (error)
3393			goto error0;
3394
3395		/* Now put the new data in, bump numrecs and log it. */
3396		xfs_btree_copy_keys(cur, kp, key, 1);
3397		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3398		numrecs++;
3399		xfs_btree_set_numrecs(block, numrecs);
3400		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3401		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3402#ifdef DEBUG
3403		if (ptr < numrecs) {
3404			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3405				xfs_btree_key_addr(cur, ptr + 1, block)));
3406		}
3407#endif
3408	} else {
3409		/* It's a leaf. make a hole in the records */
3410		union xfs_btree_rec             *rp;
3411
3412		rp = xfs_btree_rec_addr(cur, ptr, block);
3413
3414		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3415
3416		/* Now put the new data in, bump numrecs and log it. */
3417		xfs_btree_copy_recs(cur, rp, rec, 1);
3418		xfs_btree_set_numrecs(block, ++numrecs);
3419		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3420#ifdef DEBUG
3421		if (ptr < numrecs) {
3422			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3423				xfs_btree_rec_addr(cur, ptr + 1, block)));
3424		}
3425#endif
3426	}
3427
3428	/* Log the new number of records in the btree header. */
3429	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3430
3431	/*
3432	 * If we just inserted into a new tree block, we have to
3433	 * recalculate nkey here because nkey is out of date.
3434	 *
3435	 * Otherwise we're just updating an existing block (having shoved
3436	 * some records into the new tree block), so use the regular key
3437	 * update mechanism.
3438	 */
3439	if (bp && xfs_buf_daddr(bp) != old_bn) {
3440		xfs_btree_get_keys(cur, block, lkey);
3441	} else if (xfs_btree_needs_key_update(cur, optr)) {
3442		error = xfs_btree_update_keys(cur, level);
3443		if (error)
3444			goto error0;
3445	}
3446
3447	/*
3448	 * If we are tracking the last record in the tree and
3449	 * we are at the far right edge of the tree, update it.
3450	 */
3451	if (xfs_btree_is_lastrec(cur, block, level)) {
3452		cur->bc_ops->update_lastrec(cur, block, rec,
3453					    ptr, LASTREC_INSREC);
3454	}
3455
3456	/*
3457	 * Return the new block number, if any.
3458	 * If there is one, give back a record value and a cursor too.
3459	 */
3460	*ptrp = nptr;
3461	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3462		xfs_btree_copy_keys(cur, key, lkey, 1);
3463		*curp = ncur;
3464	}
3465
3466	*stat = 1;
3467	return 0;
3468
3469error0:
3470	if (ncur)
3471		xfs_btree_del_cursor(ncur, error);
3472	return error;
3473}
3474
3475/*
3476 * Insert the record at the point referenced by cur.
3477 *
3478 * A multi-level split of the tree on insert will invalidate the original
3479 * cursor.  All callers of this function should assume that the cursor is
3480 * no longer valid and revalidate it.
3481 */
3482int
3483xfs_btree_insert(
3484	struct xfs_btree_cur	*cur,
3485	int			*stat)
3486{
3487	int			error;	/* error return value */
3488	int			i;	/* result value, 0 for failure */
3489	int			level;	/* current level number in btree */
3490	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3491	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3492	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3493	union xfs_btree_key	bkey;	/* key of block to insert */
3494	union xfs_btree_key	*key;
3495	union xfs_btree_rec	rec;	/* record to insert */
3496
3497	level = 0;
3498	ncur = NULL;
3499	pcur = cur;
3500	key = &bkey;
3501
3502	xfs_btree_set_ptr_null(cur, &nptr);
3503
3504	/* Make a key out of the record data to be inserted, and save it. */
3505	cur->bc_ops->init_rec_from_cur(cur, &rec);
3506	cur->bc_ops->init_key_from_rec(key, &rec);
3507
3508	/*
3509	 * Loop going up the tree, starting at the leaf level.
3510	 * Stop when we don't get a split block, that must mean that
3511	 * the insert is finished with this level.
3512	 */
3513	do {
3514		/*
3515		 * Insert nrec/nptr into this level of the tree.
3516		 * Note if we fail, nptr will be null.
3517		 */
3518		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3519				&ncur, &i);
3520		if (error) {
3521			if (pcur != cur)
3522				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3523			goto error0;
3524		}
3525
3526		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3527			error = -EFSCORRUPTED;
3528			goto error0;
3529		}
3530		level++;
3531
3532		/*
3533		 * See if the cursor we just used is trash.
3534		 * Can't trash the caller's cursor, but otherwise we should
3535		 * if ncur is a new cursor or we're about to be done.
3536		 */
3537		if (pcur != cur &&
3538		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3539			/* Save the state from the cursor before we trash it */
3540			if (cur->bc_ops->update_cursor)
 
3541				cur->bc_ops->update_cursor(pcur, cur);
3542			cur->bc_nlevels = pcur->bc_nlevels;
3543			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3544		}
3545		/* If we got a new cursor, switch to it. */
3546		if (ncur) {
3547			pcur = ncur;
3548			ncur = NULL;
3549		}
3550	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3551
3552	*stat = i;
3553	return 0;
3554error0:
3555	return error;
3556}
3557
3558/*
3559 * Try to merge a non-leaf block back into the inode root.
3560 *
3561 * Note: the killroot names comes from the fact that we're effectively
3562 * killing the old root block.  But because we can't just delete the
3563 * inode we have to copy the single block it was pointing to into the
3564 * inode.
3565 */
3566STATIC int
3567xfs_btree_kill_iroot(
3568	struct xfs_btree_cur	*cur)
3569{
3570	int			whichfork = cur->bc_ino.whichfork;
3571	struct xfs_inode	*ip = cur->bc_ino.ip;
3572	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3573	struct xfs_btree_block	*block;
3574	struct xfs_btree_block	*cblock;
3575	union xfs_btree_key	*kp;
3576	union xfs_btree_key	*ckp;
3577	union xfs_btree_ptr	*pp;
3578	union xfs_btree_ptr	*cpp;
3579	struct xfs_buf		*cbp;
3580	int			level;
3581	int			index;
3582	int			numrecs;
3583	int			error;
3584#ifdef DEBUG
3585	union xfs_btree_ptr	ptr;
3586#endif
3587	int			i;
3588
3589	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3590	ASSERT(cur->bc_nlevels > 1);
3591
3592	/*
3593	 * Don't deal with the root block needs to be a leaf case.
3594	 * We're just going to turn the thing back into extents anyway.
3595	 */
3596	level = cur->bc_nlevels - 1;
3597	if (level == 1)
3598		goto out0;
3599
3600	/*
3601	 * Give up if the root has multiple children.
3602	 */
3603	block = xfs_btree_get_iroot(cur);
3604	if (xfs_btree_get_numrecs(block) != 1)
3605		goto out0;
3606
3607	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3608	numrecs = xfs_btree_get_numrecs(cblock);
3609
3610	/*
3611	 * Only do this if the next level will fit.
3612	 * Then the data must be copied up to the inode,
3613	 * instead of freeing the root you free the next level.
3614	 */
3615	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3616		goto out0;
3617
3618	XFS_BTREE_STATS_INC(cur, killroot);
3619
3620#ifdef DEBUG
3621	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3622	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3623	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3624	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3625#endif
3626
3627	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3628	if (index) {
3629		xfs_iroot_realloc(cur->bc_ino.ip, index,
3630				  cur->bc_ino.whichfork);
3631		block = ifp->if_broot;
3632	}
3633
3634	be16_add_cpu(&block->bb_numrecs, index);
3635	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3636
3637	kp = xfs_btree_key_addr(cur, 1, block);
3638	ckp = xfs_btree_key_addr(cur, 1, cblock);
3639	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3640
3641	pp = xfs_btree_ptr_addr(cur, 1, block);
3642	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3643
3644	for (i = 0; i < numrecs; i++) {
3645		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3646		if (error)
3647			return error;
3648	}
3649
3650	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3651
3652	error = xfs_btree_free_block(cur, cbp);
3653	if (error)
3654		return error;
3655
3656	cur->bc_levels[level - 1].bp = NULL;
3657	be16_add_cpu(&block->bb_level, -1);
3658	xfs_trans_log_inode(cur->bc_tp, ip,
3659		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3660	cur->bc_nlevels--;
3661out0:
3662	return 0;
3663}
3664
3665/*
3666 * Kill the current root node, and replace it with it's only child node.
3667 */
3668STATIC int
3669xfs_btree_kill_root(
3670	struct xfs_btree_cur	*cur,
3671	struct xfs_buf		*bp,
3672	int			level,
3673	union xfs_btree_ptr	*newroot)
3674{
3675	int			error;
3676
3677	XFS_BTREE_STATS_INC(cur, killroot);
3678
3679	/*
3680	 * Update the root pointer, decreasing the level by 1 and then
3681	 * free the old root.
3682	 */
3683	cur->bc_ops->set_root(cur, newroot, -1);
3684
3685	error = xfs_btree_free_block(cur, bp);
3686	if (error)
3687		return error;
3688
3689	cur->bc_levels[level].bp = NULL;
3690	cur->bc_levels[level].ra = 0;
3691	cur->bc_nlevels--;
3692
3693	return 0;
3694}
3695
3696STATIC int
3697xfs_btree_dec_cursor(
3698	struct xfs_btree_cur	*cur,
3699	int			level,
3700	int			*stat)
3701{
3702	int			error;
3703	int			i;
3704
3705	if (level > 0) {
3706		error = xfs_btree_decrement(cur, level, &i);
3707		if (error)
3708			return error;
3709	}
3710
3711	*stat = 1;
3712	return 0;
3713}
3714
3715/*
3716 * Single level of the btree record deletion routine.
3717 * Delete record pointed to by cur/level.
3718 * Remove the record from its block then rebalance the tree.
3719 * Return 0 for error, 1 for done, 2 to go on to the next level.
3720 */
3721STATIC int					/* error */
3722xfs_btree_delrec(
3723	struct xfs_btree_cur	*cur,		/* btree cursor */
3724	int			level,		/* level removing record from */
3725	int			*stat)		/* fail/done/go-on */
3726{
3727	struct xfs_btree_block	*block;		/* btree block */
3728	union xfs_btree_ptr	cptr;		/* current block ptr */
3729	struct xfs_buf		*bp;		/* buffer for block */
3730	int			error;		/* error return value */
3731	int			i;		/* loop counter */
3732	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3733	struct xfs_buf		*lbp;		/* left buffer pointer */
3734	struct xfs_btree_block	*left;		/* left btree block */
3735	int			lrecs = 0;	/* left record count */
3736	int			ptr;		/* key/record index */
3737	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3738	struct xfs_buf		*rbp;		/* right buffer pointer */
3739	struct xfs_btree_block	*right;		/* right btree block */
3740	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3741	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3742	int			rrecs = 0;	/* right record count */
3743	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3744	int			numrecs;	/* temporary numrec count */
3745
3746	tcur = NULL;
3747
3748	/* Get the index of the entry being deleted, check for nothing there. */
3749	ptr = cur->bc_levels[level].ptr;
3750	if (ptr == 0) {
3751		*stat = 0;
3752		return 0;
3753	}
3754
3755	/* Get the buffer & block containing the record or key/ptr. */
3756	block = xfs_btree_get_block(cur, level, &bp);
3757	numrecs = xfs_btree_get_numrecs(block);
3758
3759#ifdef DEBUG
3760	error = xfs_btree_check_block(cur, block, level, bp);
3761	if (error)
3762		goto error0;
3763#endif
3764
3765	/* Fail if we're off the end of the block. */
3766	if (ptr > numrecs) {
3767		*stat = 0;
3768		return 0;
3769	}
3770
3771	XFS_BTREE_STATS_INC(cur, delrec);
3772	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3773
3774	/* Excise the entries being deleted. */
3775	if (level > 0) {
3776		/* It's a nonleaf. operate on keys and ptrs */
3777		union xfs_btree_key	*lkp;
3778		union xfs_btree_ptr	*lpp;
3779
3780		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3781		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3782
3783		for (i = 0; i < numrecs - ptr; i++) {
3784			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3785			if (error)
3786				goto error0;
3787		}
3788
3789		if (ptr < numrecs) {
3790			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3791			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3792			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3793			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3794		}
3795	} else {
3796		/* It's a leaf. operate on records */
3797		if (ptr < numrecs) {
3798			xfs_btree_shift_recs(cur,
3799				xfs_btree_rec_addr(cur, ptr + 1, block),
3800				-1, numrecs - ptr);
3801			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3802		}
3803	}
3804
3805	/*
3806	 * Decrement and log the number of entries in the block.
3807	 */
3808	xfs_btree_set_numrecs(block, --numrecs);
3809	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3810
3811	/*
3812	 * If we are tracking the last record in the tree and
3813	 * we are at the far right edge of the tree, update it.
3814	 */
3815	if (xfs_btree_is_lastrec(cur, block, level)) {
3816		cur->bc_ops->update_lastrec(cur, block, NULL,
3817					    ptr, LASTREC_DELREC);
3818	}
3819
3820	/*
3821	 * We're at the root level.  First, shrink the root block in-memory.
3822	 * Try to get rid of the next level down.  If we can't then there's
3823	 * nothing left to do.
3824	 */
3825	if (level == cur->bc_nlevels - 1) {
3826		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3828					  cur->bc_ino.whichfork);
3829
3830			error = xfs_btree_kill_iroot(cur);
3831			if (error)
3832				goto error0;
3833
3834			error = xfs_btree_dec_cursor(cur, level, stat);
3835			if (error)
3836				goto error0;
3837			*stat = 1;
3838			return 0;
3839		}
3840
3841		/*
3842		 * If this is the root level, and there's only one entry left,
3843		 * and it's NOT the leaf level, then we can get rid of this
3844		 * level.
3845		 */
3846		if (numrecs == 1 && level > 0) {
3847			union xfs_btree_ptr	*pp;
3848			/*
3849			 * pp is still set to the first pointer in the block.
3850			 * Make it the new root of the btree.
3851			 */
3852			pp = xfs_btree_ptr_addr(cur, 1, block);
3853			error = xfs_btree_kill_root(cur, bp, level, pp);
3854			if (error)
3855				goto error0;
3856		} else if (level > 0) {
3857			error = xfs_btree_dec_cursor(cur, level, stat);
3858			if (error)
3859				goto error0;
3860		}
3861		*stat = 1;
3862		return 0;
3863	}
3864
3865	/*
3866	 * If we deleted the leftmost entry in the block, update the
3867	 * key values above us in the tree.
3868	 */
3869	if (xfs_btree_needs_key_update(cur, ptr)) {
3870		error = xfs_btree_update_keys(cur, level);
3871		if (error)
3872			goto error0;
3873	}
3874
3875	/*
3876	 * If the number of records remaining in the block is at least
3877	 * the minimum, we're done.
3878	 */
3879	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3880		error = xfs_btree_dec_cursor(cur, level, stat);
3881		if (error)
3882			goto error0;
3883		return 0;
3884	}
3885
3886	/*
3887	 * Otherwise, we have to move some records around to keep the
3888	 * tree balanced.  Look at the left and right sibling blocks to
3889	 * see if we can re-balance by moving only one record.
3890	 */
3891	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3892	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3893
3894	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3895		/*
3896		 * One child of root, need to get a chance to copy its contents
3897		 * into the root and delete it. Can't go up to next level,
3898		 * there's nothing to delete there.
3899		 */
3900		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3901		    xfs_btree_ptr_is_null(cur, &lptr) &&
3902		    level == cur->bc_nlevels - 2) {
3903			error = xfs_btree_kill_iroot(cur);
3904			if (!error)
3905				error = xfs_btree_dec_cursor(cur, level, stat);
3906			if (error)
3907				goto error0;
3908			return 0;
3909		}
3910	}
3911
3912	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3913	       !xfs_btree_ptr_is_null(cur, &lptr));
3914
3915	/*
3916	 * Duplicate the cursor so our btree manipulations here won't
3917	 * disrupt the next level up.
3918	 */
3919	error = xfs_btree_dup_cursor(cur, &tcur);
3920	if (error)
3921		goto error0;
3922
3923	/*
3924	 * If there's a right sibling, see if it's ok to shift an entry
3925	 * out of it.
3926	 */
3927	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3928		/*
3929		 * Move the temp cursor to the last entry in the next block.
3930		 * Actually any entry but the first would suffice.
3931		 */
3932		i = xfs_btree_lastrec(tcur, level);
3933		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3934			error = -EFSCORRUPTED;
3935			goto error0;
3936		}
3937
3938		error = xfs_btree_increment(tcur, level, &i);
3939		if (error)
3940			goto error0;
3941		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3942			error = -EFSCORRUPTED;
3943			goto error0;
3944		}
3945
3946		i = xfs_btree_lastrec(tcur, level);
3947		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3948			error = -EFSCORRUPTED;
3949			goto error0;
3950		}
3951
3952		/* Grab a pointer to the block. */
3953		right = xfs_btree_get_block(tcur, level, &rbp);
3954#ifdef DEBUG
3955		error = xfs_btree_check_block(tcur, right, level, rbp);
3956		if (error)
3957			goto error0;
3958#endif
3959		/* Grab the current block number, for future use. */
3960		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3961
3962		/*
3963		 * If right block is full enough so that removing one entry
3964		 * won't make it too empty, and left-shifting an entry out
3965		 * of right to us works, we're done.
3966		 */
3967		if (xfs_btree_get_numrecs(right) - 1 >=
3968		    cur->bc_ops->get_minrecs(tcur, level)) {
3969			error = xfs_btree_lshift(tcur, level, &i);
3970			if (error)
3971				goto error0;
3972			if (i) {
3973				ASSERT(xfs_btree_get_numrecs(block) >=
3974				       cur->bc_ops->get_minrecs(tcur, level));
3975
3976				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3977				tcur = NULL;
3978
3979				error = xfs_btree_dec_cursor(cur, level, stat);
3980				if (error)
3981					goto error0;
3982				return 0;
3983			}
3984		}
3985
3986		/*
3987		 * Otherwise, grab the number of records in right for
3988		 * future reference, and fix up the temp cursor to point
3989		 * to our block again (last record).
3990		 */
3991		rrecs = xfs_btree_get_numrecs(right);
3992		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3993			i = xfs_btree_firstrec(tcur, level);
3994			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
3995				error = -EFSCORRUPTED;
3996				goto error0;
3997			}
3998
3999			error = xfs_btree_decrement(tcur, level, &i);
4000			if (error)
4001				goto error0;
4002			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4003				error = -EFSCORRUPTED;
4004				goto error0;
4005			}
4006		}
4007	}
4008
4009	/*
4010	 * If there's a left sibling, see if it's ok to shift an entry
4011	 * out of it.
4012	 */
4013	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4014		/*
4015		 * Move the temp cursor to the first entry in the
4016		 * previous block.
4017		 */
4018		i = xfs_btree_firstrec(tcur, level);
4019		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4020			error = -EFSCORRUPTED;
4021			goto error0;
4022		}
4023
4024		error = xfs_btree_decrement(tcur, level, &i);
4025		if (error)
4026			goto error0;
4027		i = xfs_btree_firstrec(tcur, level);
4028		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
 
4029			error = -EFSCORRUPTED;
4030			goto error0;
4031		}
4032
4033		/* Grab a pointer to the block. */
4034		left = xfs_btree_get_block(tcur, level, &lbp);
4035#ifdef DEBUG
4036		error = xfs_btree_check_block(cur, left, level, lbp);
4037		if (error)
4038			goto error0;
4039#endif
4040		/* Grab the current block number, for future use. */
4041		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4042
4043		/*
4044		 * If left block is full enough so that removing one entry
4045		 * won't make it too empty, and right-shifting an entry out
4046		 * of left to us works, we're done.
4047		 */
4048		if (xfs_btree_get_numrecs(left) - 1 >=
4049		    cur->bc_ops->get_minrecs(tcur, level)) {
4050			error = xfs_btree_rshift(tcur, level, &i);
4051			if (error)
4052				goto error0;
4053			if (i) {
4054				ASSERT(xfs_btree_get_numrecs(block) >=
4055				       cur->bc_ops->get_minrecs(tcur, level));
4056				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4057				tcur = NULL;
4058				if (level == 0)
4059					cur->bc_levels[0].ptr++;
4060
4061				*stat = 1;
4062				return 0;
4063			}
4064		}
4065
4066		/*
4067		 * Otherwise, grab the number of records in right for
4068		 * future reference.
4069		 */
4070		lrecs = xfs_btree_get_numrecs(left);
4071	}
4072
4073	/* Delete the temp cursor, we're done with it. */
4074	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4075	tcur = NULL;
4076
4077	/* If here, we need to do a join to keep the tree balanced. */
4078	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4079
4080	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4081	    lrecs + xfs_btree_get_numrecs(block) <=
4082			cur->bc_ops->get_maxrecs(cur, level)) {
4083		/*
4084		 * Set "right" to be the starting block,
4085		 * "left" to be the left neighbor.
4086		 */
4087		rptr = cptr;
4088		right = block;
4089		rbp = bp;
4090		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4091		if (error)
4092			goto error0;
4093
4094	/*
4095	 * If that won't work, see if we can join with the right neighbor block.
4096	 */
4097	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4098		   rrecs + xfs_btree_get_numrecs(block) <=
4099			cur->bc_ops->get_maxrecs(cur, level)) {
4100		/*
4101		 * Set "left" to be the starting block,
4102		 * "right" to be the right neighbor.
4103		 */
4104		lptr = cptr;
4105		left = block;
4106		lbp = bp;
4107		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4108		if (error)
4109			goto error0;
4110
4111	/*
4112	 * Otherwise, we can't fix the imbalance.
4113	 * Just return.  This is probably a logic error, but it's not fatal.
4114	 */
4115	} else {
4116		error = xfs_btree_dec_cursor(cur, level, stat);
4117		if (error)
4118			goto error0;
4119		return 0;
4120	}
4121
4122	rrecs = xfs_btree_get_numrecs(right);
4123	lrecs = xfs_btree_get_numrecs(left);
4124
4125	/*
4126	 * We're now going to join "left" and "right" by moving all the stuff
4127	 * in "right" to "left" and deleting "right".
4128	 */
4129	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4130	if (level > 0) {
4131		/* It's a non-leaf.  Move keys and pointers. */
4132		union xfs_btree_key	*lkp;	/* left btree key */
4133		union xfs_btree_ptr	*lpp;	/* left address pointer */
4134		union xfs_btree_key	*rkp;	/* right btree key */
4135		union xfs_btree_ptr	*rpp;	/* right address pointer */
4136
4137		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4138		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4139		rkp = xfs_btree_key_addr(cur, 1, right);
4140		rpp = xfs_btree_ptr_addr(cur, 1, right);
4141
4142		for (i = 1; i < rrecs; i++) {
4143			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4144			if (error)
4145				goto error0;
4146		}
4147
4148		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4149		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4150
4151		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4152		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153	} else {
4154		/* It's a leaf.  Move records.  */
4155		union xfs_btree_rec	*lrp;	/* left record pointer */
4156		union xfs_btree_rec	*rrp;	/* right record pointer */
4157
4158		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4159		rrp = xfs_btree_rec_addr(cur, 1, right);
4160
4161		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4162		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4163	}
4164
4165	XFS_BTREE_STATS_INC(cur, join);
4166
4167	/*
4168	 * Fix up the number of records and right block pointer in the
4169	 * surviving block, and log it.
4170	 */
4171	xfs_btree_set_numrecs(left, lrecs + rrecs);
4172	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4173	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4174	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4175
4176	/* If there is a right sibling, point it to the remaining block. */
4177	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4178	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4179		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4180		if (error)
4181			goto error0;
4182		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4183		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4184	}
4185
4186	/* Free the deleted block. */
4187	error = xfs_btree_free_block(cur, rbp);
4188	if (error)
4189		goto error0;
4190
4191	/*
4192	 * If we joined with the left neighbor, set the buffer in the
4193	 * cursor to the left block, and fix up the index.
4194	 */
4195	if (bp != lbp) {
4196		cur->bc_levels[level].bp = lbp;
4197		cur->bc_levels[level].ptr += lrecs;
4198		cur->bc_levels[level].ra = 0;
4199	}
4200	/*
4201	 * If we joined with the right neighbor and there's a level above
4202	 * us, increment the cursor at that level.
4203	 */
4204	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4205		   (level + 1 < cur->bc_nlevels)) {
4206		error = xfs_btree_increment(cur, level + 1, &i);
4207		if (error)
4208			goto error0;
4209	}
4210
4211	/*
4212	 * Readjust the ptr at this level if it's not a leaf, since it's
4213	 * still pointing at the deletion point, which makes the cursor
4214	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4215	 * We can't use decrement because it would change the next level up.
4216	 */
4217	if (level > 0)
4218		cur->bc_levels[level].ptr--;
4219
4220	/*
4221	 * We combined blocks, so we have to update the parent keys if the
4222	 * btree supports overlapped intervals.  However,
4223	 * bc_levels[level + 1].ptr points to the old block so that the caller
4224	 * knows which record to delete.  Therefore, the caller must be savvy
4225	 * enough to call updkeys for us if we return stat == 2.  The other
4226	 * exit points from this function don't require deletions further up
4227	 * the tree, so they can call updkeys directly.
4228	 */
4229
4230	/* Return value means the next level up has something to do. */
4231	*stat = 2;
4232	return 0;
4233
4234error0:
4235	if (tcur)
4236		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4237	return error;
4238}
4239
4240/*
4241 * Delete the record pointed to by cur.
4242 * The cursor refers to the place where the record was (could be inserted)
4243 * when the operation returns.
4244 */
4245int					/* error */
4246xfs_btree_delete(
4247	struct xfs_btree_cur	*cur,
4248	int			*stat)	/* success/failure */
4249{
4250	int			error;	/* error return value */
4251	int			level;
4252	int			i;
4253	bool			joined = false;
4254
4255	/*
4256	 * Go up the tree, starting at leaf level.
4257	 *
4258	 * If 2 is returned then a join was done; go to the next level.
4259	 * Otherwise we are done.
4260	 */
4261	for (level = 0, i = 2; i == 2; level++) {
4262		error = xfs_btree_delrec(cur, level, &i);
4263		if (error)
4264			goto error0;
4265		if (i == 2)
4266			joined = true;
4267	}
4268
4269	/*
4270	 * If we combined blocks as part of deleting the record, delrec won't
4271	 * have updated the parent high keys so we have to do that here.
4272	 */
4273	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4274		error = xfs_btree_updkeys_force(cur, 0);
4275		if (error)
4276			goto error0;
4277	}
4278
4279	if (i == 0) {
4280		for (level = 1; level < cur->bc_nlevels; level++) {
4281			if (cur->bc_levels[level].ptr == 0) {
4282				error = xfs_btree_decrement(cur, level, &i);
4283				if (error)
4284					goto error0;
4285				break;
4286			}
4287		}
4288	}
4289
4290	*stat = i;
4291	return 0;
4292error0:
4293	return error;
4294}
4295
4296/*
4297 * Get the data from the pointed-to record.
4298 */
4299int					/* error */
4300xfs_btree_get_rec(
4301	struct xfs_btree_cur	*cur,	/* btree cursor */
4302	union xfs_btree_rec	**recp,	/* output: btree record */
4303	int			*stat)	/* output: success/failure */
4304{
4305	struct xfs_btree_block	*block;	/* btree block */
4306	struct xfs_buf		*bp;	/* buffer pointer */
4307	int			ptr;	/* record number */
4308#ifdef DEBUG
4309	int			error;	/* error return value */
4310#endif
4311
4312	ptr = cur->bc_levels[0].ptr;
4313	block = xfs_btree_get_block(cur, 0, &bp);
4314
4315#ifdef DEBUG
4316	error = xfs_btree_check_block(cur, block, 0, bp);
4317	if (error)
4318		return error;
4319#endif
4320
4321	/*
4322	 * Off the right end or left end, return failure.
4323	 */
4324	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4325		*stat = 0;
4326		return 0;
4327	}
4328
4329	/*
4330	 * Point to the record and extract its data.
4331	 */
4332	*recp = xfs_btree_rec_addr(cur, ptr, block);
4333	*stat = 1;
4334	return 0;
4335}
4336
4337/* Visit a block in a btree. */
4338STATIC int
4339xfs_btree_visit_block(
4340	struct xfs_btree_cur		*cur,
4341	int				level,
4342	xfs_btree_visit_blocks_fn	fn,
4343	void				*data)
4344{
4345	struct xfs_btree_block		*block;
4346	struct xfs_buf			*bp;
4347	union xfs_btree_ptr		rptr;
4348	int				error;
4349
4350	/* do right sibling readahead */
4351	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4352	block = xfs_btree_get_block(cur, level, &bp);
4353
4354	/* process the block */
4355	error = fn(cur, level, data);
4356	if (error)
4357		return error;
4358
4359	/* now read rh sibling block for next iteration */
4360	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4361	if (xfs_btree_ptr_is_null(cur, &rptr))
4362		return -ENOENT;
4363
4364	/*
4365	 * We only visit blocks once in this walk, so we have to avoid the
4366	 * internal xfs_btree_lookup_get_block() optimisation where it will
4367	 * return the same block without checking if the right sibling points
4368	 * back to us and creates a cyclic reference in the btree.
4369	 */
4370	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4371		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4372							xfs_buf_daddr(bp)))
4373			return -EFSCORRUPTED;
4374	} else {
4375		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4376							xfs_buf_daddr(bp)))
4377			return -EFSCORRUPTED;
4378	}
 
4379	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4380}
4381
4382
4383/* Visit every block in a btree. */
4384int
4385xfs_btree_visit_blocks(
4386	struct xfs_btree_cur		*cur,
4387	xfs_btree_visit_blocks_fn	fn,
4388	unsigned int			flags,
4389	void				*data)
4390{
4391	union xfs_btree_ptr		lptr;
4392	int				level;
4393	struct xfs_btree_block		*block = NULL;
4394	int				error = 0;
4395
4396	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4397
4398	/* for each level */
4399	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4400		/* grab the left hand block */
4401		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4402		if (error)
4403			return error;
4404
4405		/* readahead the left most block for the next level down */
4406		if (level > 0) {
4407			union xfs_btree_ptr     *ptr;
4408
4409			ptr = xfs_btree_ptr_addr(cur, 1, block);
4410			xfs_btree_readahead_ptr(cur, ptr, 1);
4411
4412			/* save for the next iteration of the loop */
4413			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4414
4415			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4416				continue;
4417		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4418			continue;
4419		}
4420
4421		/* for each buffer in the level */
4422		do {
4423			error = xfs_btree_visit_block(cur, level, fn, data);
4424		} while (!error);
4425
4426		if (error != -ENOENT)
4427			return error;
4428	}
4429
4430	return 0;
4431}
4432
4433/*
4434 * Change the owner of a btree.
4435 *
4436 * The mechanism we use here is ordered buffer logging. Because we don't know
4437 * how many buffers were are going to need to modify, we don't really want to
4438 * have to make transaction reservations for the worst case of every buffer in a
4439 * full size btree as that may be more space that we can fit in the log....
4440 *
4441 * We do the btree walk in the most optimal manner possible - we have sibling
4442 * pointers so we can just walk all the blocks on each level from left to right
4443 * in a single pass, and then move to the next level and do the same. We can
4444 * also do readahead on the sibling pointers to get IO moving more quickly,
4445 * though for slow disks this is unlikely to make much difference to performance
4446 * as the amount of CPU work we have to do before moving to the next block is
4447 * relatively small.
4448 *
4449 * For each btree block that we load, modify the owner appropriately, set the
4450 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4451 * we mark the region we change dirty so that if the buffer is relogged in
4452 * a subsequent transaction the changes we make here as an ordered buffer are
4453 * correctly relogged in that transaction.  If we are in recovery context, then
4454 * just queue the modified buffer as delayed write buffer so the transaction
4455 * recovery completion writes the changes to disk.
4456 */
4457struct xfs_btree_block_change_owner_info {
4458	uint64_t		new_owner;
4459	struct list_head	*buffer_list;
4460};
4461
4462static int
4463xfs_btree_block_change_owner(
4464	struct xfs_btree_cur	*cur,
4465	int			level,
4466	void			*data)
4467{
4468	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4469	struct xfs_btree_block	*block;
4470	struct xfs_buf		*bp;
4471
4472	/* modify the owner */
4473	block = xfs_btree_get_block(cur, level, &bp);
4474	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4475		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4476			return 0;
4477		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4478	} else {
4479		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4480			return 0;
4481		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4482	}
4483
4484	/*
4485	 * If the block is a root block hosted in an inode, we might not have a
4486	 * buffer pointer here and we shouldn't attempt to log the change as the
4487	 * information is already held in the inode and discarded when the root
4488	 * block is formatted into the on-disk inode fork. We still change it,
4489	 * though, so everything is consistent in memory.
4490	 */
4491	if (!bp) {
4492		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4493		ASSERT(level == cur->bc_nlevels - 1);
4494		return 0;
4495	}
4496
4497	if (cur->bc_tp) {
4498		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4499			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4500			return -EAGAIN;
4501		}
4502	} else {
4503		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4504	}
4505
4506	return 0;
4507}
4508
4509int
4510xfs_btree_change_owner(
4511	struct xfs_btree_cur	*cur,
4512	uint64_t		new_owner,
4513	struct list_head	*buffer_list)
4514{
4515	struct xfs_btree_block_change_owner_info	bbcoi;
4516
4517	bbcoi.new_owner = new_owner;
4518	bbcoi.buffer_list = buffer_list;
4519
4520	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4521			XFS_BTREE_VISIT_ALL, &bbcoi);
4522}
4523
4524/* Verify the v5 fields of a long-format btree block. */
4525xfs_failaddr_t
4526xfs_btree_lblock_v5hdr_verify(
4527	struct xfs_buf		*bp,
4528	uint64_t		owner)
4529{
4530	struct xfs_mount	*mp = bp->b_mount;
4531	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4532
4533	if (!xfs_has_crc(mp))
4534		return __this_address;
4535	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4536		return __this_address;
4537	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4538		return __this_address;
4539	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4540	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4541		return __this_address;
4542	return NULL;
4543}
4544
4545/* Verify a long-format btree block. */
4546xfs_failaddr_t
4547xfs_btree_lblock_verify(
4548	struct xfs_buf		*bp,
4549	unsigned int		max_recs)
4550{
4551	struct xfs_mount	*mp = bp->b_mount;
4552	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4553	xfs_fsblock_t		fsb;
4554	xfs_failaddr_t		fa;
4555
 
 
4556	/* numrecs verification */
4557	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4558		return __this_address;
4559
4560	/* sibling pointer verification */
4561	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4562	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4563			block->bb_u.l.bb_leftsib);
4564	if (!fa)
4565		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4566				block->bb_u.l.bb_rightsib);
4567	return fa;
4568}
4569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570/**
4571 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4572 *				      btree block
4573 *
4574 * @bp: buffer containing the btree block
4575 */
4576xfs_failaddr_t
4577xfs_btree_sblock_v5hdr_verify(
4578	struct xfs_buf		*bp)
4579{
4580	struct xfs_mount	*mp = bp->b_mount;
4581	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4582	struct xfs_perag	*pag = bp->b_pag;
4583
4584	if (!xfs_has_crc(mp))
4585		return __this_address;
4586	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4587		return __this_address;
4588	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4589		return __this_address;
4590	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4591		return __this_address;
4592	return NULL;
4593}
4594
4595/**
4596 * xfs_btree_sblock_verify() -- verify a short-format btree block
4597 *
4598 * @bp: buffer containing the btree block
4599 * @max_recs: maximum records allowed in this btree node
4600 */
4601xfs_failaddr_t
4602xfs_btree_sblock_verify(
4603	struct xfs_buf		*bp,
4604	unsigned int		max_recs)
4605{
4606	struct xfs_mount	*mp = bp->b_mount;
4607	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4608	xfs_agblock_t		agbno;
4609	xfs_failaddr_t		fa;
4610
 
 
4611	/* numrecs verification */
4612	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4613		return __this_address;
4614
4615	/* sibling pointer verification */
4616	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4617	fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4618			block->bb_u.s.bb_leftsib);
4619	if (!fa)
4620		fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4621				block->bb_u.s.bb_rightsib);
4622	return fa;
4623}
4624
4625/*
4626 * For the given limits on leaf and keyptr records per block, calculate the
4627 * height of the tree needed to index the number of leaf records.
4628 */
4629unsigned int
4630xfs_btree_compute_maxlevels(
4631	const unsigned int	*limits,
4632	unsigned long long	records)
4633{
4634	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4635	unsigned int		height = 1;
4636
4637	while (level_blocks > 1) {
4638		level_blocks = howmany_64(level_blocks, limits[1]);
4639		height++;
4640	}
4641
4642	return height;
4643}
4644
4645/*
4646 * For the given limits on leaf and keyptr records per block, calculate the
4647 * number of blocks needed to index the given number of leaf records.
4648 */
4649unsigned long long
4650xfs_btree_calc_size(
4651	const unsigned int	*limits,
4652	unsigned long long	records)
4653{
4654	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4655	unsigned long long	blocks = level_blocks;
4656
4657	while (level_blocks > 1) {
4658		level_blocks = howmany_64(level_blocks, limits[1]);
4659		blocks += level_blocks;
4660	}
4661
4662	return blocks;
4663}
4664
4665/*
4666 * Given a number of available blocks for the btree to consume with records and
4667 * pointers, calculate the height of the tree needed to index all the records
4668 * that space can hold based on the number of pointers each interior node
4669 * holds.
4670 *
4671 * We start by assuming a single level tree consumes a single block, then track
4672 * the number of blocks each node level consumes until we no longer have space
4673 * to store the next node level. At this point, we are indexing all the leaf
4674 * blocks in the space, and there's no more free space to split the tree any
4675 * further. That's our maximum btree height.
4676 */
4677unsigned int
4678xfs_btree_space_to_height(
4679	const unsigned int	*limits,
4680	unsigned long long	leaf_blocks)
4681{
4682	/*
4683	 * The root btree block can have fewer than minrecs pointers in it
4684	 * because the tree might not be big enough to require that amount of
4685	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4686	 */
4687	unsigned long long	node_blocks = 2;
4688	unsigned long long	blocks_left = leaf_blocks - 1;
4689	unsigned int		height = 1;
4690
4691	if (leaf_blocks < 1)
4692		return 0;
4693
4694	while (node_blocks < blocks_left) {
4695		blocks_left -= node_blocks;
4696		node_blocks *= limits[1];
4697		height++;
4698	}
4699
4700	return height;
4701}
4702
4703/*
4704 * Query a regular btree for all records overlapping a given interval.
4705 * Start with a LE lookup of the key of low_rec and return all records
4706 * until we find a record with a key greater than the key of high_rec.
4707 */
4708STATIC int
4709xfs_btree_simple_query_range(
4710	struct xfs_btree_cur		*cur,
4711	const union xfs_btree_key	*low_key,
4712	const union xfs_btree_key	*high_key,
4713	xfs_btree_query_range_fn	fn,
4714	void				*priv)
4715{
4716	union xfs_btree_rec		*recp;
4717	union xfs_btree_key		rec_key;
4718	int				stat;
4719	bool				firstrec = true;
4720	int				error;
4721
4722	ASSERT(cur->bc_ops->init_high_key_from_rec);
4723	ASSERT(cur->bc_ops->diff_two_keys);
4724
4725	/*
4726	 * Find the leftmost record.  The btree cursor must be set
4727	 * to the low record used to generate low_key.
4728	 */
4729	stat = 0;
4730	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4731	if (error)
4732		goto out;
4733
4734	/* Nothing?  See if there's anything to the right. */
4735	if (!stat) {
4736		error = xfs_btree_increment(cur, 0, &stat);
4737		if (error)
4738			goto out;
4739	}
4740
4741	while (stat) {
4742		/* Find the record. */
4743		error = xfs_btree_get_rec(cur, &recp, &stat);
4744		if (error || !stat)
4745			break;
4746
4747		/* Skip if low_key > high_key(rec). */
4748		if (firstrec) {
4749			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4750			firstrec = false;
4751			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4752				goto advloop;
4753		}
4754
4755		/* Stop if low_key(rec) > high_key. */
4756		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4757		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4758			break;
4759
4760		/* Callback */
4761		error = fn(cur, recp, priv);
4762		if (error)
4763			break;
4764
4765advloop:
4766		/* Move on to the next record. */
4767		error = xfs_btree_increment(cur, 0, &stat);
4768		if (error)
4769			break;
4770	}
4771
4772out:
4773	return error;
4774}
4775
4776/*
4777 * Query an overlapped interval btree for all records overlapping a given
4778 * interval.  This function roughly follows the algorithm given in
4779 * "Interval Trees" of _Introduction to Algorithms_, which is section
4780 * 14.3 in the 2nd and 3rd editions.
4781 *
4782 * First, generate keys for the low and high records passed in.
4783 *
4784 * For any leaf node, generate the high and low keys for the record.
4785 * If the record keys overlap with the query low/high keys, pass the
4786 * record to the function iterator.
4787 *
4788 * For any internal node, compare the low and high keys of each
4789 * pointer against the query low/high keys.  If there's an overlap,
4790 * follow the pointer.
4791 *
4792 * As an optimization, we stop scanning a block when we find a low key
4793 * that is greater than the query's high key.
4794 */
4795STATIC int
4796xfs_btree_overlapped_query_range(
4797	struct xfs_btree_cur		*cur,
4798	const union xfs_btree_key	*low_key,
4799	const union xfs_btree_key	*high_key,
4800	xfs_btree_query_range_fn	fn,
4801	void				*priv)
4802{
4803	union xfs_btree_ptr		ptr;
4804	union xfs_btree_ptr		*pp;
4805	union xfs_btree_key		rec_key;
4806	union xfs_btree_key		rec_hkey;
4807	union xfs_btree_key		*lkp;
4808	union xfs_btree_key		*hkp;
4809	union xfs_btree_rec		*recp;
4810	struct xfs_btree_block		*block;
4811	int				level;
4812	struct xfs_buf			*bp;
4813	int				i;
4814	int				error;
4815
4816	/* Load the root of the btree. */
4817	level = cur->bc_nlevels - 1;
4818	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4819	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4820	if (error)
4821		return error;
4822	xfs_btree_get_block(cur, level, &bp);
4823	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4824#ifdef DEBUG
4825	error = xfs_btree_check_block(cur, block, level, bp);
4826	if (error)
4827		goto out;
4828#endif
4829	cur->bc_levels[level].ptr = 1;
4830
4831	while (level < cur->bc_nlevels) {
4832		block = xfs_btree_get_block(cur, level, &bp);
4833
4834		/* End of node, pop back towards the root. */
4835		if (cur->bc_levels[level].ptr >
4836					be16_to_cpu(block->bb_numrecs)) {
4837pop_up:
4838			if (level < cur->bc_nlevels - 1)
4839				cur->bc_levels[level + 1].ptr++;
4840			level++;
4841			continue;
4842		}
4843
4844		if (level == 0) {
4845			/* Handle a leaf node. */
4846			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4847					block);
4848
4849			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4850			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4851
4852			/*
4853			 * If (query's high key < record's low key), then there
4854			 * are no more interesting records in this block.  Pop
4855			 * up to the leaf level to find more record blocks.
4856			 *
4857			 * If (record's high key >= query's low key) and
4858			 *    (query's high key >= record's low key), then
4859			 * this record overlaps the query range; callback.
4860			 */
4861			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
4862				goto pop_up;
4863			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
4864				error = fn(cur, recp, priv);
4865				if (error)
4866					break;
4867			}
4868			cur->bc_levels[level].ptr++;
4869			continue;
4870		}
4871
4872		/* Handle an internal node. */
4873		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4874		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4875				block);
4876		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4877
4878		/*
4879		 * If (query's high key < pointer's low key), then there are no
4880		 * more interesting keys in this block.  Pop up one leaf level
4881		 * to continue looking for records.
4882		 *
4883		 * If (pointer's high key >= query's low key) and
4884		 *    (query's high key >= pointer's low key), then
4885		 * this record overlaps the query range; follow pointer.
4886		 */
4887		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
4888			goto pop_up;
4889		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
4890			level--;
4891			error = xfs_btree_lookup_get_block(cur, level, pp,
4892					&block);
4893			if (error)
4894				goto out;
4895			xfs_btree_get_block(cur, level, &bp);
4896			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4897#ifdef DEBUG
4898			error = xfs_btree_check_block(cur, block, level, bp);
4899			if (error)
4900				goto out;
4901#endif
4902			cur->bc_levels[level].ptr = 1;
4903			continue;
4904		}
4905		cur->bc_levels[level].ptr++;
4906	}
4907
4908out:
4909	/*
4910	 * If we don't end this function with the cursor pointing at a record
4911	 * block, a subsequent non-error cursor deletion will not release
4912	 * node-level buffers, causing a buffer leak.  This is quite possible
4913	 * with a zero-results range query, so release the buffers if we
4914	 * failed to return any results.
4915	 */
4916	if (cur->bc_levels[0].bp == NULL) {
4917		for (i = 0; i < cur->bc_nlevels; i++) {
4918			if (cur->bc_levels[i].bp) {
4919				xfs_trans_brelse(cur->bc_tp,
4920						cur->bc_levels[i].bp);
4921				cur->bc_levels[i].bp = NULL;
4922				cur->bc_levels[i].ptr = 0;
4923				cur->bc_levels[i].ra = 0;
4924			}
4925		}
4926	}
4927
4928	return error;
4929}
4930
4931static inline void
4932xfs_btree_key_from_irec(
4933	struct xfs_btree_cur		*cur,
4934	union xfs_btree_key		*key,
4935	const union xfs_btree_irec	*irec)
4936{
4937	union xfs_btree_rec		rec;
4938
4939	cur->bc_rec = *irec;
4940	cur->bc_ops->init_rec_from_cur(cur, &rec);
4941	cur->bc_ops->init_key_from_rec(key, &rec);
4942}
4943
4944/*
4945 * Query a btree for all records overlapping a given interval of keys.  The
4946 * supplied function will be called with each record found; return one of the
4947 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4948 * code.  This function returns -ECANCELED, zero, or a negative error code.
4949 */
4950int
4951xfs_btree_query_range(
4952	struct xfs_btree_cur		*cur,
4953	const union xfs_btree_irec	*low_rec,
4954	const union xfs_btree_irec	*high_rec,
4955	xfs_btree_query_range_fn	fn,
4956	void				*priv)
4957{
4958	union xfs_btree_key		low_key;
4959	union xfs_btree_key		high_key;
4960
4961	/* Find the keys of both ends of the interval. */
4962	xfs_btree_key_from_irec(cur, &high_key, high_rec);
4963	xfs_btree_key_from_irec(cur, &low_key, low_rec);
4964
4965	/* Enforce low key <= high key. */
4966	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
4967		return -EINVAL;
4968
4969	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4970		return xfs_btree_simple_query_range(cur, &low_key,
4971				&high_key, fn, priv);
4972	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4973			fn, priv);
4974}
4975
4976/* Query a btree for all records. */
4977int
4978xfs_btree_query_all(
4979	struct xfs_btree_cur		*cur,
4980	xfs_btree_query_range_fn	fn,
4981	void				*priv)
4982{
4983	union xfs_btree_key		low_key;
4984	union xfs_btree_key		high_key;
4985
4986	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4987	memset(&low_key, 0, sizeof(low_key));
4988	memset(&high_key, 0xFF, sizeof(high_key));
4989
4990	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4991}
4992
4993static int
4994xfs_btree_count_blocks_helper(
4995	struct xfs_btree_cur	*cur,
4996	int			level,
4997	void			*data)
4998{
4999	xfs_extlen_t		*blocks = data;
5000	(*blocks)++;
5001
5002	return 0;
5003}
5004
5005/* Count the blocks in a btree and return the result in *blocks. */
5006int
5007xfs_btree_count_blocks(
5008	struct xfs_btree_cur	*cur,
5009	xfs_extlen_t		*blocks)
5010{
5011	*blocks = 0;
5012	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5013			XFS_BTREE_VISIT_ALL, blocks);
5014}
5015
5016/* Compare two btree pointers. */
5017int64_t
5018xfs_btree_diff_two_ptrs(
5019	struct xfs_btree_cur		*cur,
5020	const union xfs_btree_ptr	*a,
5021	const union xfs_btree_ptr	*b)
5022{
5023	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5024		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5025	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5026}
5027
5028struct xfs_btree_has_records {
5029	/* Keys for the start and end of the range we want to know about. */
5030	union xfs_btree_key		start_key;
5031	union xfs_btree_key		end_key;
5032
5033	/* Mask for key comparisons, if desired. */
5034	const union xfs_btree_key	*key_mask;
5035
5036	/* Highest record key we've seen so far. */
5037	union xfs_btree_key		high_key;
5038
5039	enum xbtree_recpacking		outcome;
5040};
5041
5042STATIC int
5043xfs_btree_has_records_helper(
5044	struct xfs_btree_cur		*cur,
5045	const union xfs_btree_rec	*rec,
5046	void				*priv)
5047{
5048	union xfs_btree_key		rec_key;
5049	union xfs_btree_key		rec_high_key;
5050	struct xfs_btree_has_records	*info = priv;
5051	enum xbtree_key_contig		key_contig;
5052
5053	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5054
5055	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5056		info->outcome = XBTREE_RECPACKING_SPARSE;
5057
5058		/*
5059		 * If the first record we find does not overlap the start key,
5060		 * then there is a hole at the start of the search range.
5061		 * Classify this as sparse and stop immediately.
5062		 */
5063		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5064					info->key_mask))
5065			return -ECANCELED;
5066	} else {
5067		/*
5068		 * If a subsequent record does not overlap with the any record
5069		 * we've seen so far, there is a hole in the middle of the
5070		 * search range.  Classify this as sparse and stop.
5071		 * If the keys overlap and this btree does not allow overlap,
5072		 * signal corruption.
5073		 */
5074		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5075					&rec_key, info->key_mask);
5076		if (key_contig == XBTREE_KEY_OVERLAP &&
5077				!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
5078			return -EFSCORRUPTED;
5079		if (key_contig == XBTREE_KEY_GAP)
5080			return -ECANCELED;
5081	}
5082
5083	/*
5084	 * If high_key(rec) is larger than any other high key we've seen,
5085	 * remember it for later.
5086	 */
5087	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5088	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5089				info->key_mask))
5090		info->high_key = rec_high_key; /* struct copy */
5091
5092	return 0;
5093}
5094
5095/*
5096 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5097 * map to any records; is fully mapped to records; or is partially mapped to
5098 * records.  This is the btree record equivalent to determining if a file is
5099 * sparse.
5100 *
5101 * For most btree types, the record scan should use all available btree key
5102 * fields to compare the keys encountered.  These callers should pass NULL for
5103 * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5104 * want to ignore some part of the btree record keyspace when performing the
5105 * comparison.  These callers should pass in a union xfs_btree_key object with
5106 * the fields that *should* be a part of the comparison set to any nonzero
5107 * value, and the rest zeroed.
5108 */
5109int
5110xfs_btree_has_records(
5111	struct xfs_btree_cur		*cur,
5112	const union xfs_btree_irec	*low,
5113	const union xfs_btree_irec	*high,
5114	const union xfs_btree_key	*mask,
5115	enum xbtree_recpacking		*outcome)
5116{
5117	struct xfs_btree_has_records	info = {
5118		.outcome		= XBTREE_RECPACKING_EMPTY,
5119		.key_mask		= mask,
5120	};
5121	int				error;
5122
5123	/* Not all btrees support this operation. */
5124	if (!cur->bc_ops->keys_contiguous) {
5125		ASSERT(0);
5126		return -EOPNOTSUPP;
5127	}
5128
5129	xfs_btree_key_from_irec(cur, &info.start_key, low);
5130	xfs_btree_key_from_irec(cur, &info.end_key, high);
5131
5132	error = xfs_btree_query_range(cur, low, high,
5133			xfs_btree_has_records_helper, &info);
5134	if (error == -ECANCELED)
5135		goto out;
5136	if (error)
5137		return error;
5138
5139	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5140		goto out;
5141
5142	/*
5143	 * If the largest high_key(rec) we saw during the walk is greater than
5144	 * the end of the search range, classify this as full.  Otherwise,
5145	 * there is a hole at the end of the search range.
5146	 */
5147	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5148				mask))
5149		info.outcome = XBTREE_RECPACKING_FULL;
5150
5151out:
5152	*outcome = info.outcome;
5153	return 0;
5154}
5155
5156/* Are there more records in this btree? */
5157bool
5158xfs_btree_has_more_records(
5159	struct xfs_btree_cur	*cur)
5160{
5161	struct xfs_btree_block	*block;
5162	struct xfs_buf		*bp;
5163
5164	block = xfs_btree_get_block(cur, 0, &bp);
5165
5166	/* There are still records in this block. */
5167	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5168		return true;
5169
5170	/* There are more record blocks. */
5171	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5172		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5173	else
5174		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5175}
5176
5177/* Set up all the btree cursor caches. */
5178int __init
5179xfs_btree_init_cur_caches(void)
5180{
5181	int		error;
5182
5183	error = xfs_allocbt_init_cur_cache();
5184	if (error)
5185		return error;
5186	error = xfs_inobt_init_cur_cache();
5187	if (error)
5188		goto err;
5189	error = xfs_bmbt_init_cur_cache();
5190	if (error)
5191		goto err;
5192	error = xfs_rmapbt_init_cur_cache();
5193	if (error)
5194		goto err;
5195	error = xfs_refcountbt_init_cur_cache();
5196	if (error)
5197		goto err;
5198
5199	return 0;
5200err:
5201	xfs_btree_destroy_cur_caches();
5202	return error;
5203}
5204
5205/* Destroy all the btree cursor caches, if they've been allocated. */
5206void
5207xfs_btree_destroy_cur_caches(void)
5208{
5209	xfs_allocbt_destroy_cur_cache();
5210	xfs_inobt_destroy_cur_cache();
5211	xfs_bmbt_destroy_cur_cache();
5212	xfs_rmapbt_destroy_cur_cache();
5213	xfs_refcountbt_destroy_cur_cache();
5214}
5215
5216/* Move the btree cursor before the first record. */
5217int
5218xfs_btree_goto_left_edge(
5219	struct xfs_btree_cur	*cur)
5220{
5221	int			stat = 0;
5222	int			error;
5223
5224	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5225	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5226	if (error)
5227		return error;
5228	if (!stat)
5229		return 0;
5230
5231	error = xfs_btree_decrement(cur, 0, &stat);
5232	if (error)
5233		return error;
5234	if (stat != 0) {
5235		ASSERT(0);
 
5236		return -EFSCORRUPTED;
5237	}
5238
5239	return 0;
5240}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23#include "xfs_btree_staging.h"
  24#include "xfs_ag.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_ialloc_btree.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_rmap_btree.h"
  29#include "xfs_refcount_btree.h"
  30#include "xfs_health.h"
  31#include "xfs_buf_mem.h"
  32#include "xfs_btree_mem.h"
  33
  34/*
  35 * Btree magic numbers.
  36 */
 
 
 
 
 
 
 
 
  37uint32_t
  38xfs_btree_magic(
  39	struct xfs_mount		*mp,
  40	const struct xfs_btree_ops	*ops)
  41{
  42	int				idx = xfs_has_crc(mp) ? 1 : 0;
  43	__be32				magic = ops->buf_ops->magic[idx];
  44
  45	/* Ensure we asked for crc for crc-only magics. */
  46	ASSERT(magic != 0);
  47	return be32_to_cpu(magic);
  48}
  49
  50/*
  51 * These sibling pointer checks are optimised for null sibling pointers. This
  52 * happens a lot, and we don't need to byte swap at runtime if the sibling
  53 * pointer is NULL.
  54 *
  55 * These are explicitly marked at inline because the cost of calling them as
  56 * functions instead of inlining them is about 36 bytes extra code per call site
  57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
  58 * two sibling check functions reduces the compiled code size by over 300
  59 * bytes.
  60 */
  61static inline xfs_failaddr_t
  62xfs_btree_check_fsblock_siblings(
  63	struct xfs_mount	*mp,
 
 
  64	xfs_fsblock_t		fsb,
  65	__be64			dsibling)
  66{
  67	xfs_fsblock_t		sibling;
  68
  69	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  70		return NULL;
  71
  72	sibling = be64_to_cpu(dsibling);
  73	if (sibling == fsb)
  74		return __this_address;
  75	if (!xfs_verify_fsbno(mp, sibling))
  76		return __this_address;
  77	return NULL;
  78}
 
 
 
  79
  80static inline xfs_failaddr_t
  81xfs_btree_check_memblock_siblings(
  82	struct xfs_buftarg	*btp,
  83	xfbno_t			bno,
  84	__be64			dsibling)
  85{
  86	xfbno_t			sibling;
  87
  88	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  89		return NULL;
  90
  91	sibling = be64_to_cpu(dsibling);
  92	if (sibling == bno)
  93		return __this_address;
  94	if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
  95		return __this_address;
  96	return NULL;
  97}
  98
  99static inline xfs_failaddr_t
 100xfs_btree_check_agblock_siblings(
 101	struct xfs_perag	*pag,
 
 
 102	xfs_agblock_t		agbno,
 103	__be32			dsibling)
 104{
 105	xfs_agblock_t		sibling;
 106
 107	if (dsibling == cpu_to_be32(NULLAGBLOCK))
 108		return NULL;
 109
 110	sibling = be32_to_cpu(dsibling);
 111	if (sibling == agbno)
 112		return __this_address;
 113	if (!xfs_verify_agbno(pag, sibling))
 114		return __this_address;
 
 
 
 
 
 115	return NULL;
 116}
 117
 118static xfs_failaddr_t
 119__xfs_btree_check_lblock_hdr(
 
 
 
 
 120	struct xfs_btree_cur	*cur,
 121	struct xfs_btree_block	*block,
 122	int			level,
 123	struct xfs_buf		*bp)
 124{
 125	struct xfs_mount	*mp = cur->bc_mp;
 
 
 
 
 126
 127	if (xfs_has_crc(mp)) {
 128		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
 129			return __this_address;
 130		if (block->bb_u.l.bb_blkno !=
 131		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 132			return __this_address;
 133		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
 134			return __this_address;
 135	}
 136
 137	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
 138		return __this_address;
 139	if (be16_to_cpu(block->bb_level) != level)
 140		return __this_address;
 141	if (be16_to_cpu(block->bb_numrecs) >
 142	    cur->bc_ops->get_maxrecs(cur, level))
 143		return __this_address;
 144
 145	return NULL;
 146}
 147
 148/*
 149 * Check a long btree block header.  Return the address of the failing check,
 150 * or NULL if everything is ok.
 151 */
 152static xfs_failaddr_t
 153__xfs_btree_check_fsblock(
 154	struct xfs_btree_cur	*cur,
 155	struct xfs_btree_block	*block,
 156	int			level,
 157	struct xfs_buf		*bp)
 158{
 159	struct xfs_mount	*mp = cur->bc_mp;
 160	xfs_failaddr_t		fa;
 161	xfs_fsblock_t		fsb;
 162
 163	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
 164	if (fa)
 165		return fa;
 166
 167	/*
 168	 * For inode-rooted btrees, the root block sits in the inode fork.  In
 169	 * that case bp is NULL, and the block must not have any siblings.
 170	 */
 171	if (!bp) {
 172		if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
 173			return __this_address;
 174		if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
 175			return __this_address;
 176		return NULL;
 177	}
 178
 179	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
 180	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
 181			block->bb_u.l.bb_leftsib);
 182	if (!fa)
 183		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
 184				block->bb_u.l.bb_rightsib);
 185	return fa;
 186}
 187
 188/*
 189 * Check an in-memory btree block header.  Return the address of the failing
 190 * check, or NULL if everything is ok.
 191 */
 192static xfs_failaddr_t
 193__xfs_btree_check_memblock(
 194	struct xfs_btree_cur	*cur,
 195	struct xfs_btree_block	*block,
 196	int			level,
 197	struct xfs_buf		*bp)
 198{
 199	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
 200	xfs_failaddr_t		fa;
 201	xfbno_t			bno;
 202
 203	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
 204	if (fa)
 205		return fa;
 206
 207	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
 208	fa = xfs_btree_check_memblock_siblings(btp, bno,
 209			block->bb_u.l.bb_leftsib);
 210	if (!fa)
 211		fa = xfs_btree_check_memblock_siblings(btp, bno,
 212				block->bb_u.l.bb_rightsib);
 213	return fa;
 214}
 215
 216/*
 217 * Check a short btree block header.  Return the address of the failing check,
 218 * or NULL if everything is ok.
 219 */
 220static xfs_failaddr_t
 221__xfs_btree_check_agblock(
 222	struct xfs_btree_cur	*cur,
 223	struct xfs_btree_block	*block,
 224	int			level,
 225	struct xfs_buf		*bp)
 226{
 227	struct xfs_mount	*mp = cur->bc_mp;
 228	struct xfs_perag	*pag = cur->bc_ag.pag;
 
 
 229	xfs_failaddr_t		fa;
 230	xfs_agblock_t		agbno;
 231
 232	if (xfs_has_crc(mp)) {
 233		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 234			return __this_address;
 235		if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
 
 236			return __this_address;
 237	}
 238
 239	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
 240		return __this_address;
 241	if (be16_to_cpu(block->bb_level) != level)
 242		return __this_address;
 243	if (be16_to_cpu(block->bb_numrecs) >
 244	    cur->bc_ops->get_maxrecs(cur, level))
 245		return __this_address;
 246
 247	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
 248	fa = xfs_btree_check_agblock_siblings(pag, agbno,
 
 
 249			block->bb_u.s.bb_leftsib);
 250	if (!fa)
 251		fa = xfs_btree_check_agblock_siblings(pag, agbno,
 252				block->bb_u.s.bb_rightsib);
 253	return fa;
 254}
 255
 256/*
 257 * Internal btree block check.
 258 *
 259 * Return NULL if the block is ok or the address of the failed check otherwise.
 260 */
 261xfs_failaddr_t
 262__xfs_btree_check_block(
 263	struct xfs_btree_cur	*cur,
 264	struct xfs_btree_block	*block,
 265	int			level,
 266	struct xfs_buf		*bp)
 267{
 268	switch (cur->bc_ops->type) {
 269	case XFS_BTREE_TYPE_MEM:
 270		return __xfs_btree_check_memblock(cur, block, level, bp);
 271	case XFS_BTREE_TYPE_AG:
 272		return __xfs_btree_check_agblock(cur, block, level, bp);
 273	case XFS_BTREE_TYPE_INODE:
 274		return __xfs_btree_check_fsblock(cur, block, level, bp);
 275	default:
 276		ASSERT(0);
 277		return __this_address;
 278	}
 279}
 280
 281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
 282{
 283	if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
 284		return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
 285	return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
 286}
 287
 288/*
 289 * Debug routine: check that block header is ok.
 290 */
 291int
 292xfs_btree_check_block(
 293	struct xfs_btree_cur	*cur,	/* btree cursor */
 294	struct xfs_btree_block	*block,	/* generic btree block pointer */
 295	int			level,	/* level of the btree block */
 296	struct xfs_buf		*bp)	/* buffer containing block, if any */
 297{
 298	struct xfs_mount	*mp = cur->bc_mp;
 299	xfs_failaddr_t		fa;
 
 
 
 300
 301	fa = __xfs_btree_check_block(cur, block, level, bp);
 302	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 303	    XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
 304		if (bp)
 305			trace_xfs_btree_corrupt(bp, _RET_IP_);
 306		xfs_btree_mark_sick(cur);
 307		return -EFSCORRUPTED;
 308	}
 309	return 0;
 
 310}
 311
 312int
 313__xfs_btree_check_ptr(
 314	struct xfs_btree_cur		*cur,
 315	const union xfs_btree_ptr	*ptr,
 316	int				index,
 317	int				level)
 318{
 319	if (level <= 0)
 320		return -EFSCORRUPTED;
 321
 322	switch (cur->bc_ops->type) {
 323	case XFS_BTREE_TYPE_MEM:
 324		if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
 325				be64_to_cpu((&ptr->l)[index])))
 326			return -EFSCORRUPTED;
 327		break;
 328	case XFS_BTREE_TYPE_INODE:
 329		if (!xfs_verify_fsbno(cur->bc_mp,
 330				be64_to_cpu((&ptr->l)[index])))
 331			return -EFSCORRUPTED;
 332		break;
 333	case XFS_BTREE_TYPE_AG:
 334		if (!xfs_verify_agbno(cur->bc_ag.pag,
 335				be32_to_cpu((&ptr->s)[index])))
 336			return -EFSCORRUPTED;
 337		break;
 338	}
 339
 340	return 0;
 341}
 342
 343/*
 344 * Check that a given (indexed) btree pointer at a certain level of a
 345 * btree is valid and doesn't point past where it should.
 346 */
 347static int
 348xfs_btree_check_ptr(
 349	struct xfs_btree_cur		*cur,
 350	const union xfs_btree_ptr	*ptr,
 351	int				index,
 352	int				level)
 353{
 354	int				error;
 355
 356	error = __xfs_btree_check_ptr(cur, ptr, index, level);
 357	if (error) {
 358		switch (cur->bc_ops->type) {
 359		case XFS_BTREE_TYPE_MEM:
 360			xfs_err(cur->bc_mp,
 361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
 362				cur->bc_ops->name, cur->bc_flags, level, index,
 363				__this_address);
 364			break;
 365		case XFS_BTREE_TYPE_INODE:
 366			xfs_err(cur->bc_mp,
 367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
 368				cur->bc_ino.ip->i_ino,
 369				cur->bc_ino.whichfork, cur->bc_ops->name,
 370				level, index);
 371			break;
 372		case XFS_BTREE_TYPE_AG:
 373			xfs_err(cur->bc_mp,
 374"AG %u: Corrupt %sbt pointer at level %d index %d.",
 375				cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
 
 
 376				level, index);
 377			break;
 378		}
 379		xfs_btree_mark_sick(cur);
 380	}
 381
 382	return error;
 383}
 384
 385#ifdef DEBUG
 386# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
 387#else
 388# define xfs_btree_debug_check_ptr(...)	(0)
 389#endif
 390
 391/*
 392 * Calculate CRC on the whole btree block and stuff it into the
 393 * long-form btree header.
 394 *
 395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 396 * it into the buffer so recovery knows what the last modification was that made
 397 * it to disk.
 398 */
 399void
 400xfs_btree_fsblock_calc_crc(
 401	struct xfs_buf		*bp)
 402{
 403	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 404	struct xfs_buf_log_item	*bip = bp->b_log_item;
 405
 406	if (!xfs_has_crc(bp->b_mount))
 407		return;
 408	if (bip)
 409		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 410	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 411}
 412
 413bool
 414xfs_btree_fsblock_verify_crc(
 415	struct xfs_buf		*bp)
 416{
 417	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 418	struct xfs_mount	*mp = bp->b_mount;
 419
 420	if (xfs_has_crc(mp)) {
 421		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 422			return false;
 423		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 424	}
 425
 426	return true;
 427}
 428
 429/*
 430 * Calculate CRC on the whole btree block and stuff it into the
 431 * short-form btree header.
 432 *
 433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 434 * it into the buffer so recovery knows what the last modification was that made
 435 * it to disk.
 436 */
 437void
 438xfs_btree_agblock_calc_crc(
 439	struct xfs_buf		*bp)
 440{
 441	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 442	struct xfs_buf_log_item	*bip = bp->b_log_item;
 443
 444	if (!xfs_has_crc(bp->b_mount))
 445		return;
 446	if (bip)
 447		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 448	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 449}
 450
 451bool
 452xfs_btree_agblock_verify_crc(
 453	struct xfs_buf		*bp)
 454{
 455	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 456	struct xfs_mount	*mp = bp->b_mount;
 457
 458	if (xfs_has_crc(mp)) {
 459		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 460			return false;
 461		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 462	}
 463
 464	return true;
 465}
 466
 467static int
 468xfs_btree_free_block(
 469	struct xfs_btree_cur	*cur,
 470	struct xfs_buf		*bp)
 471{
 472	int			error;
 473
 474	trace_xfs_btree_free_block(cur, bp);
 475
 476	/*
 477	 * Don't allow block freeing for a staging cursor, because staging
 478	 * cursors do not support regular btree modifications.
 479	 */
 480	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
 481		ASSERT(0);
 482		return -EFSCORRUPTED;
 483	}
 484
 485	error = cur->bc_ops->free_block(cur, bp);
 486	if (!error) {
 487		xfs_trans_binval(cur->bc_tp, bp);
 488		XFS_BTREE_STATS_INC(cur, free);
 489	}
 490	return error;
 491}
 492
 493/*
 494 * Delete the btree cursor.
 495 */
 496void
 497xfs_btree_del_cursor(
 498	struct xfs_btree_cur	*cur,		/* btree cursor */
 499	int			error)		/* del because of error */
 500{
 501	int			i;		/* btree level */
 502
 503	/*
 504	 * Clear the buffer pointers and release the buffers. If we're doing
 505	 * this because of an error, inspect all of the entries in the bc_bufs
 506	 * array for buffers to be unlocked. This is because some of the btree
 507	 * code works from level n down to 0, and if we get an error along the
 508	 * way we won't have initialized all the entries down to 0.
 509	 */
 510	for (i = 0; i < cur->bc_nlevels; i++) {
 511		if (cur->bc_levels[i].bp)
 512			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
 513		else if (!error)
 514			break;
 515	}
 516
 517	/*
 518	 * If we are doing a BMBT update, the number of unaccounted blocks
 519	 * allocated during this cursor life time should be zero. If it's not
 520	 * zero, then we should be shut down or on our way to shutdown due to
 521	 * cancelling a dirty transaction on error.
 522	 */
 523	ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
 524	       xfs_is_shutdown(cur->bc_mp) || error != 0);
 525
 526	switch (cur->bc_ops->type) {
 527	case XFS_BTREE_TYPE_AG:
 528		if (cur->bc_ag.pag)
 529			xfs_perag_put(cur->bc_ag.pag);
 530		break;
 531	case XFS_BTREE_TYPE_INODE:
 532		/* nothing to do */
 533		break;
 534	case XFS_BTREE_TYPE_MEM:
 535		if (cur->bc_mem.pag)
 536			xfs_perag_put(cur->bc_mem.pag);
 537		break;
 538	}
 539
 540	kmem_cache_free(cur->bc_cache, cur);
 541}
 542
 543/* Return the buffer target for this btree's buffer. */
 544static inline struct xfs_buftarg *
 545xfs_btree_buftarg(
 546	struct xfs_btree_cur	*cur)
 547{
 548	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
 549		return cur->bc_mem.xfbtree->target;
 550	return cur->bc_mp->m_ddev_targp;
 551}
 552
 553/* Return the block size (in units of 512b sectors) for this btree. */
 554static inline unsigned int
 555xfs_btree_bbsize(
 556	struct xfs_btree_cur	*cur)
 557{
 558	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
 559		return XFBNO_BBSIZE;
 560	return cur->bc_mp->m_bsize;
 561}
 562
 563/*
 564 * Duplicate the btree cursor.
 565 * Allocate a new one, copy the record, re-get the buffers.
 566 */
 567int						/* error */
 568xfs_btree_dup_cursor(
 569	struct xfs_btree_cur	*cur,		/* input cursor */
 570	struct xfs_btree_cur	**ncur)		/* output cursor */
 571{
 572	struct xfs_mount	*mp = cur->bc_mp;
 573	struct xfs_trans	*tp = cur->bc_tp;
 574	struct xfs_buf		*bp;
 575	struct xfs_btree_cur	*new;
 576	int			error;
 577	int			i;
 578
 579	/*
 580	 * Don't allow staging cursors to be duplicated because they're supposed
 581	 * to be kept private to a single thread.
 582	 */
 583	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
 584		ASSERT(0);
 585		return -EFSCORRUPTED;
 586	}
 587
 588	/*
 589	 * Allocate a new cursor like the old one.
 590	 */
 591	new = cur->bc_ops->dup_cursor(cur);
 592
 593	/*
 594	 * Copy the record currently in the cursor.
 595	 */
 596	new->bc_rec = cur->bc_rec;
 597
 598	/*
 599	 * For each level current, re-get the buffer and copy the ptr value.
 600	 */
 601	for (i = 0; i < new->bc_nlevels; i++) {
 602		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
 603		new->bc_levels[i].ra = cur->bc_levels[i].ra;
 604		bp = cur->bc_levels[i].bp;
 605		if (bp) {
 606			error = xfs_trans_read_buf(mp, tp,
 607					xfs_btree_buftarg(cur),
 608					xfs_buf_daddr(bp),
 609					xfs_btree_bbsize(cur), 0, &bp,
 610					cur->bc_ops->buf_ops);
 611			if (xfs_metadata_is_sick(error))
 612				xfs_btree_mark_sick(new);
 613			if (error) {
 614				xfs_btree_del_cursor(new, error);
 615				*ncur = NULL;
 616				return error;
 617			}
 618		}
 619		new->bc_levels[i].bp = bp;
 620	}
 621	*ncur = new;
 622	return 0;
 623}
 624
 625/*
 626 * XFS btree block layout and addressing:
 627 *
 628 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 629 *
 630 * The leaf record start with a header then followed by records containing
 631 * the values.  A non-leaf block also starts with the same header, and
 632 * then first contains lookup keys followed by an equal number of pointers
 633 * to the btree blocks at the previous level.
 634 *
 635 *		+--------+-------+-------+-------+-------+-------+-------+
 636 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 637 *		+--------+-------+-------+-------+-------+-------+-------+
 638 *
 639 *		+--------+-------+-------+-------+-------+-------+-------+
 640 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 641 *		+--------+-------+-------+-------+-------+-------+-------+
 642 *
 643 * The header is called struct xfs_btree_block for reasons better left unknown
 644 * and comes in different versions for short (32bit) and long (64bit) block
 645 * pointers.  The record and key structures are defined by the btree instances
 646 * and opaque to the btree core.  The block pointers are simple disk endian
 647 * integers, available in a short (32bit) and long (64bit) variant.
 648 *
 649 * The helpers below calculate the offset of a given record, key or pointer
 650 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 651 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 652 * inside the btree block is done using indices starting at one, not zero!
 653 *
 654 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
 655 * overlapping intervals.  In such a tree, records are still sorted lowest to
 656 * highest and indexed by the smallest key value that refers to the record.
 657 * However, nodes are different: each pointer has two associated keys -- one
 658 * indexing the lowest key available in the block(s) below (the same behavior
 659 * as the key in a regular btree) and another indexing the highest key
 660 * available in the block(s) below.  Because records are /not/ sorted by the
 661 * highest key, all leaf block updates require us to compute the highest key
 662 * that matches any record in the leaf and to recursively update the high keys
 663 * in the nodes going further up in the tree, if necessary.  Nodes look like
 664 * this:
 665 *
 666 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 667 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 668 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 669 *
 670 * To perform an interval query on an overlapped tree, perform the usual
 671 * depth-first search and use the low and high keys to decide if we can skip
 672 * that particular node.  If a leaf node is reached, return the records that
 673 * intersect the interval.  Note that an interval query may return numerous
 674 * entries.  For a non-overlapped tree, simply search for the record associated
 675 * with the lowest key and iterate forward until a non-matching record is
 676 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 677 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 678 * more detail.
 679 *
 680 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 681 * reverse mapping records on a reflink filesystem:
 682 *
 683 * 1: +- file A startblock B offset C length D -----------+
 684 * 2:      +- file E startblock F offset G length H --------------+
 685 * 3:      +- file I startblock F offset J length K --+
 686 * 4:                                                        +- file L... --+
 687 *
 688 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 689 * we'd simply increment the length of record 1.  But how do we find the record
 690 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 691 * record 3 because the keys are ordered first by startblock.  An interval
 692 * query would return records 1 and 2 because they both overlap (B+D-1), and
 693 * from that we can pick out record 1 as the appropriate left neighbor.
 694 *
 695 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 696 * because a record's interval must end before the next record.
 697 */
 698
 699/*
 700 * Return size of the btree block header for this btree instance.
 701 */
 702static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 703{
 704	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
 705		if (xfs_has_crc(cur->bc_mp))
 706			return XFS_BTREE_LBLOCK_CRC_LEN;
 707		return XFS_BTREE_LBLOCK_LEN;
 708	}
 709	if (xfs_has_crc(cur->bc_mp))
 710		return XFS_BTREE_SBLOCK_CRC_LEN;
 711	return XFS_BTREE_SBLOCK_LEN;
 712}
 713
 714/*
 
 
 
 
 
 
 
 
 
 715 * Calculate offset of the n-th record in a btree block.
 716 */
 717STATIC size_t
 718xfs_btree_rec_offset(
 719	struct xfs_btree_cur	*cur,
 720	int			n)
 721{
 722	return xfs_btree_block_len(cur) +
 723		(n - 1) * cur->bc_ops->rec_len;
 724}
 725
 726/*
 727 * Calculate offset of the n-th key in a btree block.
 728 */
 729STATIC size_t
 730xfs_btree_key_offset(
 731	struct xfs_btree_cur	*cur,
 732	int			n)
 733{
 734	return xfs_btree_block_len(cur) +
 735		(n - 1) * cur->bc_ops->key_len;
 736}
 737
 738/*
 739 * Calculate offset of the n-th high key in a btree block.
 740 */
 741STATIC size_t
 742xfs_btree_high_key_offset(
 743	struct xfs_btree_cur	*cur,
 744	int			n)
 745{
 746	return xfs_btree_block_len(cur) +
 747		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 748}
 749
 750/*
 751 * Calculate offset of the n-th block pointer in a btree block.
 752 */
 753STATIC size_t
 754xfs_btree_ptr_offset(
 755	struct xfs_btree_cur	*cur,
 756	int			n,
 757	int			level)
 758{
 759	return xfs_btree_block_len(cur) +
 760		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 761		(n - 1) * cur->bc_ops->ptr_len;
 762}
 763
 764/*
 765 * Return a pointer to the n-th record in the btree block.
 766 */
 767union xfs_btree_rec *
 768xfs_btree_rec_addr(
 769	struct xfs_btree_cur	*cur,
 770	int			n,
 771	struct xfs_btree_block	*block)
 772{
 773	return (union xfs_btree_rec *)
 774		((char *)block + xfs_btree_rec_offset(cur, n));
 775}
 776
 777/*
 778 * Return a pointer to the n-th key in the btree block.
 779 */
 780union xfs_btree_key *
 781xfs_btree_key_addr(
 782	struct xfs_btree_cur	*cur,
 783	int			n,
 784	struct xfs_btree_block	*block)
 785{
 786	return (union xfs_btree_key *)
 787		((char *)block + xfs_btree_key_offset(cur, n));
 788}
 789
 790/*
 791 * Return a pointer to the n-th high key in the btree block.
 792 */
 793union xfs_btree_key *
 794xfs_btree_high_key_addr(
 795	struct xfs_btree_cur	*cur,
 796	int			n,
 797	struct xfs_btree_block	*block)
 798{
 799	return (union xfs_btree_key *)
 800		((char *)block + xfs_btree_high_key_offset(cur, n));
 801}
 802
 803/*
 804 * Return a pointer to the n-th block pointer in the btree block.
 805 */
 806union xfs_btree_ptr *
 807xfs_btree_ptr_addr(
 808	struct xfs_btree_cur	*cur,
 809	int			n,
 810	struct xfs_btree_block	*block)
 811{
 812	int			level = xfs_btree_get_level(block);
 813
 814	ASSERT(block->bb_level != 0);
 815
 816	return (union xfs_btree_ptr *)
 817		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 818}
 819
 820struct xfs_ifork *
 821xfs_btree_ifork_ptr(
 822	struct xfs_btree_cur	*cur)
 823{
 824	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
 825
 826	if (cur->bc_flags & XFS_BTREE_STAGING)
 827		return cur->bc_ino.ifake->if_fork;
 828	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
 829}
 830
 831/*
 832 * Get the root block which is stored in the inode.
 833 *
 834 * For now this btree implementation assumes the btree root is always
 835 * stored in the if_broot field of an inode fork.
 836 */
 837STATIC struct xfs_btree_block *
 838xfs_btree_get_iroot(
 839	struct xfs_btree_cur	*cur)
 840{
 841	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 842
 843	return (struct xfs_btree_block *)ifp->if_broot;
 844}
 845
 846/*
 847 * Retrieve the block pointer from the cursor at the given level.
 848 * This may be an inode btree root or from a buffer.
 849 */
 850struct xfs_btree_block *		/* generic btree block pointer */
 851xfs_btree_get_block(
 852	struct xfs_btree_cur	*cur,	/* btree cursor */
 853	int			level,	/* level in btree */
 854	struct xfs_buf		**bpp)	/* buffer containing the block */
 855{
 856	if (xfs_btree_at_iroot(cur, level)) {
 
 857		*bpp = NULL;
 858		return xfs_btree_get_iroot(cur);
 859	}
 860
 861	*bpp = cur->bc_levels[level].bp;
 862	return XFS_BUF_TO_BLOCK(*bpp);
 863}
 864
 865/*
 866 * Change the cursor to point to the first record at the given level.
 867 * Other levels are unaffected.
 868 */
 869STATIC int				/* success=1, failure=0 */
 870xfs_btree_firstrec(
 871	struct xfs_btree_cur	*cur,	/* btree cursor */
 872	int			level)	/* level to change */
 873{
 874	struct xfs_btree_block	*block;	/* generic btree block pointer */
 875	struct xfs_buf		*bp;	/* buffer containing block */
 876
 877	/*
 878	 * Get the block pointer for this level.
 879	 */
 880	block = xfs_btree_get_block(cur, level, &bp);
 881	if (xfs_btree_check_block(cur, block, level, bp))
 882		return 0;
 883	/*
 884	 * It's empty, there is no such record.
 885	 */
 886	if (!block->bb_numrecs)
 887		return 0;
 888	/*
 889	 * Set the ptr value to 1, that's the first record/key.
 890	 */
 891	cur->bc_levels[level].ptr = 1;
 892	return 1;
 893}
 894
 895/*
 896 * Change the cursor to point to the last record in the current block
 897 * at the given level.  Other levels are unaffected.
 898 */
 899STATIC int				/* success=1, failure=0 */
 900xfs_btree_lastrec(
 901	struct xfs_btree_cur	*cur,	/* btree cursor */
 902	int			level)	/* level to change */
 903{
 904	struct xfs_btree_block	*block;	/* generic btree block pointer */
 905	struct xfs_buf		*bp;	/* buffer containing block */
 906
 907	/*
 908	 * Get the block pointer for this level.
 909	 */
 910	block = xfs_btree_get_block(cur, level, &bp);
 911	if (xfs_btree_check_block(cur, block, level, bp))
 912		return 0;
 913	/*
 914	 * It's empty, there is no such record.
 915	 */
 916	if (!block->bb_numrecs)
 917		return 0;
 918	/*
 919	 * Set the ptr value to numrecs, that's the last record/key.
 920	 */
 921	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
 922	return 1;
 923}
 924
 925/*
 926 * Compute first and last byte offsets for the fields given.
 927 * Interprets the offsets table, which contains struct field offsets.
 928 */
 929void
 930xfs_btree_offsets(
 931	uint32_t	fields,		/* bitmask of fields */
 932	const short	*offsets,	/* table of field offsets */
 933	int		nbits,		/* number of bits to inspect */
 934	int		*first,		/* output: first byte offset */
 935	int		*last)		/* output: last byte offset */
 936{
 937	int		i;		/* current bit number */
 938	uint32_t	imask;		/* mask for current bit number */
 939
 940	ASSERT(fields != 0);
 941	/*
 942	 * Find the lowest bit, so the first byte offset.
 943	 */
 944	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
 945		if (imask & fields) {
 946			*first = offsets[i];
 947			break;
 948		}
 949	}
 950	/*
 951	 * Find the highest bit, so the last byte offset.
 952	 */
 953	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
 954		if (imask & fields) {
 955			*last = offsets[i + 1] - 1;
 956			break;
 957		}
 958	}
 959}
 960
 961STATIC int
 962xfs_btree_readahead_fsblock(
 963	struct xfs_btree_cur	*cur,
 964	int			lr,
 965	struct xfs_btree_block	*block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966{
 967	struct xfs_mount	*mp = cur->bc_mp;
 968	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 969	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 970	int			rval = 0;
 971
 972	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 973		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
 974				mp->m_bsize, cur->bc_ops->buf_ops);
 975		rval++;
 976	}
 977
 978	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 979		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
 980				mp->m_bsize, cur->bc_ops->buf_ops);
 981		rval++;
 982	}
 
 
 
 
 
 
 
 
 
 983
 984	return rval;
 
 
 
 985}
 986
 987STATIC int
 988xfs_btree_readahead_memblock(
 989	struct xfs_btree_cur	*cur,
 990	int			lr,
 991	struct xfs_btree_block	*block)
 992{
 993	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
 994	xfbno_t			left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 995	xfbno_t			right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 996	int			rval = 0;
 
 
 997
 998	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 999		xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000				cur->bc_ops->buf_ops);
1001		rval++;
1002	}
1003
1004	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005		xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006				cur->bc_ops->buf_ops);
1007		rval++;
1008	}
1009
1010	return rval;
1011}
1012
1013STATIC int
1014xfs_btree_readahead_agblock(
1015	struct xfs_btree_cur	*cur,
1016	int			lr,
1017	struct xfs_btree_block	*block)
1018{
1019	struct xfs_mount	*mp = cur->bc_mp;
1020	xfs_agnumber_t		agno = cur->bc_ag.pag->pag_agno;
1021	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023	int			rval = 0;
1024
1025	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026		xfs_buf_readahead(mp->m_ddev_targp,
1027				XFS_AGB_TO_DADDR(mp, agno, left),
1028				mp->m_bsize, cur->bc_ops->buf_ops);
1029		rval++;
1030	}
1031
1032	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033		xfs_buf_readahead(mp->m_ddev_targp,
1034				XFS_AGB_TO_DADDR(mp, agno, right),
1035				mp->m_bsize, cur->bc_ops->buf_ops);
1036		rval++;
1037	}
1038
1039	return rval;
1040}
1041
1042/*
1043 * Read-ahead btree blocks, at the given level.
1044 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045 */
1046STATIC int
1047xfs_btree_readahead(
1048	struct xfs_btree_cur	*cur,		/* btree cursor */
1049	int			lev,		/* level in btree */
1050	int			lr)		/* left/right bits */
1051{
1052	struct xfs_btree_block	*block;
1053
1054	/*
1055	 * No readahead needed if we are at the root level and the
1056	 * btree root is stored in the inode.
1057	 */
1058	if (xfs_btree_at_iroot(cur, lev))
 
1059		return 0;
1060
1061	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062		return 0;
1063
1064	cur->bc_levels[lev].ra |= lr;
1065	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066
1067	switch (cur->bc_ops->type) {
1068	case XFS_BTREE_TYPE_AG:
1069		return xfs_btree_readahead_agblock(cur, lr, block);
1070	case XFS_BTREE_TYPE_INODE:
1071		return xfs_btree_readahead_fsblock(cur, lr, block);
1072	case XFS_BTREE_TYPE_MEM:
1073		return xfs_btree_readahead_memblock(cur, lr, block);
1074	default:
1075		ASSERT(0);
1076		return 0;
1077	}
1078}
1079
1080STATIC int
1081xfs_btree_ptr_to_daddr(
1082	struct xfs_btree_cur		*cur,
1083	const union xfs_btree_ptr	*ptr,
1084	xfs_daddr_t			*daddr)
1085{
 
 
1086	int			error;
1087
1088	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1089	if (error)
1090		return error;
1091
1092	switch (cur->bc_ops->type) {
1093	case XFS_BTREE_TYPE_AG:
 
 
 
1094		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095				be32_to_cpu(ptr->s));
1096		break;
1097	case XFS_BTREE_TYPE_INODE:
1098		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099		break;
1100	case XFS_BTREE_TYPE_MEM:
1101		*daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102		break;
1103	}
 
1104	return 0;
1105}
1106
1107/*
1108 * Readahead @count btree blocks at the given @ptr location.
1109 *
1110 * We don't need to care about long or short form btrees here as we have a
1111 * method of converting the ptr directly to a daddr available to us.
1112 */
1113STATIC void
1114xfs_btree_readahead_ptr(
1115	struct xfs_btree_cur	*cur,
1116	union xfs_btree_ptr	*ptr,
1117	xfs_extlen_t		count)
1118{
1119	xfs_daddr_t		daddr;
1120
1121	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122		return;
1123	xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124			xfs_btree_bbsize(cur) * count,
1125			cur->bc_ops->buf_ops);
1126}
1127
1128/*
1129 * Set the buffer for level "lev" in the cursor to bp, releasing
1130 * any previous buffer.
1131 */
1132STATIC void
1133xfs_btree_setbuf(
1134	struct xfs_btree_cur	*cur,	/* btree cursor */
1135	int			lev,	/* level in btree */
1136	struct xfs_buf		*bp)	/* new buffer to set */
1137{
1138	struct xfs_btree_block	*b;	/* btree block */
1139
1140	if (cur->bc_levels[lev].bp)
1141		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142	cur->bc_levels[lev].bp = bp;
1143	cur->bc_levels[lev].ra = 0;
1144
1145	b = XFS_BUF_TO_BLOCK(bp);
1146	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151	} else {
1152		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156	}
1157}
1158
1159bool
1160xfs_btree_ptr_is_null(
1161	struct xfs_btree_cur		*cur,
1162	const union xfs_btree_ptr	*ptr)
1163{
1164	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166	else
1167		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168}
1169
1170void
1171xfs_btree_set_ptr_null(
1172	struct xfs_btree_cur	*cur,
1173	union xfs_btree_ptr	*ptr)
1174{
1175	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176		ptr->l = cpu_to_be64(NULLFSBLOCK);
1177	else
1178		ptr->s = cpu_to_be32(NULLAGBLOCK);
1179}
1180
1181static inline bool
1182xfs_btree_ptrs_equal(
1183	struct xfs_btree_cur		*cur,
1184	union xfs_btree_ptr		*ptr1,
1185	union xfs_btree_ptr		*ptr2)
1186{
1187	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188		return ptr1->l == ptr2->l;
1189	return ptr1->s == ptr2->s;
1190}
1191
1192/*
1193 * Get/set/init sibling pointers
1194 */
1195void
1196xfs_btree_get_sibling(
1197	struct xfs_btree_cur	*cur,
1198	struct xfs_btree_block	*block,
1199	union xfs_btree_ptr	*ptr,
1200	int			lr)
1201{
1202	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203
1204	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205		if (lr == XFS_BB_RIGHTSIB)
1206			ptr->l = block->bb_u.l.bb_rightsib;
1207		else
1208			ptr->l = block->bb_u.l.bb_leftsib;
1209	} else {
1210		if (lr == XFS_BB_RIGHTSIB)
1211			ptr->s = block->bb_u.s.bb_rightsib;
1212		else
1213			ptr->s = block->bb_u.s.bb_leftsib;
1214	}
1215}
1216
1217void
1218xfs_btree_set_sibling(
1219	struct xfs_btree_cur		*cur,
1220	struct xfs_btree_block		*block,
1221	const union xfs_btree_ptr	*ptr,
1222	int				lr)
1223{
1224	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225
1226	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227		if (lr == XFS_BB_RIGHTSIB)
1228			block->bb_u.l.bb_rightsib = ptr->l;
1229		else
1230			block->bb_u.l.bb_leftsib = ptr->l;
1231	} else {
1232		if (lr == XFS_BB_RIGHTSIB)
1233			block->bb_u.s.bb_rightsib = ptr->s;
1234		else
1235			block->bb_u.s.bb_leftsib = ptr->s;
1236	}
1237}
1238
1239static void
1240__xfs_btree_init_block(
1241	struct xfs_mount	*mp,
1242	struct xfs_btree_block	*buf,
1243	const struct xfs_btree_ops *ops,
1244	xfs_daddr_t		blkno,
 
1245	__u16			level,
1246	__u16			numrecs,
1247	__u64			owner)
 
1248{
1249	bool			crc = xfs_has_crc(mp);
1250	__u32			magic = xfs_btree_magic(mp, ops);
1251
1252	buf->bb_magic = cpu_to_be32(magic);
1253	buf->bb_level = cpu_to_be16(level);
1254	buf->bb_numrecs = cpu_to_be16(numrecs);
1255
1256	if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259		if (crc) {
1260			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263			buf->bb_u.l.bb_pad = 0;
1264			buf->bb_u.l.bb_lsn = 0;
1265		}
1266	} else {
 
 
 
1267		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269		if (crc) {
1270			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271			/* owner is a 32 bit value on short blocks */
1272			buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274			buf->bb_u.s.bb_lsn = 0;
1275		}
1276	}
1277}
1278
1279void
1280xfs_btree_init_block(
1281	struct xfs_mount	*mp,
1282	struct xfs_btree_block	*block,
1283	const struct xfs_btree_ops *ops,
1284	__u16			level,
1285	__u16			numrecs,
1286	__u64			owner)
1287{
1288	__xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289			numrecs, owner);
1290}
1291
1292void
1293xfs_btree_init_buf(
1294	struct xfs_mount		*mp,
1295	struct xfs_buf			*bp,
1296	const struct xfs_btree_ops	*ops,
1297	__u16				level,
1298	__u16				numrecs,
1299	__u64				owner)
1300{
1301	__xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302			xfs_buf_daddr(bp), level, numrecs, owner);
1303	bp->b_ops = ops->buf_ops;
1304}
1305
1306static inline __u64
1307xfs_btree_owner(
1308	struct xfs_btree_cur    *cur)
1309{
1310	switch (cur->bc_ops->type) {
1311	case XFS_BTREE_TYPE_MEM:
1312		return cur->bc_mem.xfbtree->owner;
1313	case XFS_BTREE_TYPE_INODE:
1314		return cur->bc_ino.ip->i_ino;
1315	case XFS_BTREE_TYPE_AG:
1316		return cur->bc_ag.pag->pag_agno;
1317	default:
1318		ASSERT(0);
1319		return 0;
1320	}
1321}
1322
1323void
1324xfs_btree_init_block_cur(
1325	struct xfs_btree_cur	*cur,
1326	struct xfs_buf		*bp,
1327	int			level,
1328	int			numrecs)
1329{
1330	xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331			xfs_btree_owner(cur));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332}
1333
1334/*
1335 * Return true if ptr is the last record in the btree and
1336 * we need to track updates to this record.  The decision
1337 * will be further refined in the update_lastrec method.
1338 */
1339STATIC int
1340xfs_btree_is_lastrec(
1341	struct xfs_btree_cur	*cur,
1342	struct xfs_btree_block	*block,
1343	int			level)
1344{
1345	union xfs_btree_ptr	ptr;
1346
1347	if (level > 0)
1348		return 0;
1349	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE))
1350		return 0;
1351
1352	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1353	if (!xfs_btree_ptr_is_null(cur, &ptr))
1354		return 0;
1355	return 1;
1356}
1357
1358STATIC void
1359xfs_btree_buf_to_ptr(
1360	struct xfs_btree_cur	*cur,
1361	struct xfs_buf		*bp,
1362	union xfs_btree_ptr	*ptr)
1363{
1364	switch (cur->bc_ops->type) {
1365	case XFS_BTREE_TYPE_AG:
 
 
1366		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1367					xfs_buf_daddr(bp)));
1368		break;
1369	case XFS_BTREE_TYPE_INODE:
1370		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1371					xfs_buf_daddr(bp)));
1372		break;
1373	case XFS_BTREE_TYPE_MEM:
1374		ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1375		break;
1376	}
1377}
1378
1379static inline void
1380xfs_btree_set_refs(
1381	struct xfs_btree_cur	*cur,
1382	struct xfs_buf		*bp)
1383{
1384	xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385}
1386
1387int
1388xfs_btree_get_buf_block(
1389	struct xfs_btree_cur		*cur,
1390	const union xfs_btree_ptr	*ptr,
1391	struct xfs_btree_block		**block,
1392	struct xfs_buf			**bpp)
1393{
1394	xfs_daddr_t			d;
1395	int				error;
 
1396
1397	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1398	if (error)
1399		return error;
1400	error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1401			xfs_btree_bbsize(cur), 0, bpp);
1402	if (error)
1403		return error;
1404
1405	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1406	*block = XFS_BUF_TO_BLOCK(*bpp);
1407	return 0;
1408}
1409
1410/*
1411 * Read in the buffer at the given ptr and return the buffer and
1412 * the block pointer within the buffer.
1413 */
1414int
1415xfs_btree_read_buf_block(
1416	struct xfs_btree_cur		*cur,
1417	const union xfs_btree_ptr	*ptr,
1418	int				flags,
1419	struct xfs_btree_block		**block,
1420	struct xfs_buf			**bpp)
1421{
1422	struct xfs_mount	*mp = cur->bc_mp;
1423	xfs_daddr_t		d;
1424	int			error;
1425
1426	/* need to sort out how callers deal with failures first */
1427	ASSERT(!(flags & XBF_TRYLOCK));
1428
1429	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1430	if (error)
1431		return error;
1432	error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1433			xfs_btree_bbsize(cur), flags, bpp,
1434			cur->bc_ops->buf_ops);
1435	if (xfs_metadata_is_sick(error))
1436		xfs_btree_mark_sick(cur);
1437	if (error)
1438		return error;
1439
1440	xfs_btree_set_refs(cur, *bpp);
1441	*block = XFS_BUF_TO_BLOCK(*bpp);
1442	return 0;
1443}
1444
1445/*
1446 * Copy keys from one btree block to another.
1447 */
1448void
1449xfs_btree_copy_keys(
1450	struct xfs_btree_cur		*cur,
1451	union xfs_btree_key		*dst_key,
1452	const union xfs_btree_key	*src_key,
1453	int				numkeys)
1454{
1455	ASSERT(numkeys >= 0);
1456	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1457}
1458
1459/*
1460 * Copy records from one btree block to another.
1461 */
1462STATIC void
1463xfs_btree_copy_recs(
1464	struct xfs_btree_cur	*cur,
1465	union xfs_btree_rec	*dst_rec,
1466	union xfs_btree_rec	*src_rec,
1467	int			numrecs)
1468{
1469	ASSERT(numrecs >= 0);
1470	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1471}
1472
1473/*
1474 * Copy block pointers from one btree block to another.
1475 */
1476void
1477xfs_btree_copy_ptrs(
1478	struct xfs_btree_cur	*cur,
1479	union xfs_btree_ptr	*dst_ptr,
1480	const union xfs_btree_ptr *src_ptr,
1481	int			numptrs)
1482{
1483	ASSERT(numptrs >= 0);
1484	memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1485}
1486
1487/*
1488 * Shift keys one index left/right inside a single btree block.
1489 */
1490STATIC void
1491xfs_btree_shift_keys(
1492	struct xfs_btree_cur	*cur,
1493	union xfs_btree_key	*key,
1494	int			dir,
1495	int			numkeys)
1496{
1497	char			*dst_key;
1498
1499	ASSERT(numkeys >= 0);
1500	ASSERT(dir == 1 || dir == -1);
1501
1502	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1503	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1504}
1505
1506/*
1507 * Shift records one index left/right inside a single btree block.
1508 */
1509STATIC void
1510xfs_btree_shift_recs(
1511	struct xfs_btree_cur	*cur,
1512	union xfs_btree_rec	*rec,
1513	int			dir,
1514	int			numrecs)
1515{
1516	char			*dst_rec;
1517
1518	ASSERT(numrecs >= 0);
1519	ASSERT(dir == 1 || dir == -1);
1520
1521	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1522	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1523}
1524
1525/*
1526 * Shift block pointers one index left/right inside a single btree block.
1527 */
1528STATIC void
1529xfs_btree_shift_ptrs(
1530	struct xfs_btree_cur	*cur,
1531	union xfs_btree_ptr	*ptr,
1532	int			dir,
1533	int			numptrs)
1534{
1535	char			*dst_ptr;
1536
1537	ASSERT(numptrs >= 0);
1538	ASSERT(dir == 1 || dir == -1);
1539
1540	dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1541	memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1542}
1543
1544/*
1545 * Log key values from the btree block.
1546 */
1547STATIC void
1548xfs_btree_log_keys(
1549	struct xfs_btree_cur	*cur,
1550	struct xfs_buf		*bp,
1551	int			first,
1552	int			last)
1553{
1554
1555	if (bp) {
1556		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1557		xfs_trans_log_buf(cur->bc_tp, bp,
1558				  xfs_btree_key_offset(cur, first),
1559				  xfs_btree_key_offset(cur, last + 1) - 1);
1560	} else {
1561		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1562				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1563	}
1564}
1565
1566/*
1567 * Log record values from the btree block.
1568 */
1569void
1570xfs_btree_log_recs(
1571	struct xfs_btree_cur	*cur,
1572	struct xfs_buf		*bp,
1573	int			first,
1574	int			last)
1575{
1576
1577	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1578	xfs_trans_log_buf(cur->bc_tp, bp,
1579			  xfs_btree_rec_offset(cur, first),
1580			  xfs_btree_rec_offset(cur, last + 1) - 1);
1581
1582}
1583
1584/*
1585 * Log block pointer fields from a btree block (nonleaf).
1586 */
1587STATIC void
1588xfs_btree_log_ptrs(
1589	struct xfs_btree_cur	*cur,	/* btree cursor */
1590	struct xfs_buf		*bp,	/* buffer containing btree block */
1591	int			first,	/* index of first pointer to log */
1592	int			last)	/* index of last pointer to log */
1593{
1594
1595	if (bp) {
1596		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1597		int			level = xfs_btree_get_level(block);
1598
1599		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1600		xfs_trans_log_buf(cur->bc_tp, bp,
1601				xfs_btree_ptr_offset(cur, first, level),
1602				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1603	} else {
1604		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1605			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1606	}
1607
1608}
1609
1610/*
1611 * Log fields from a btree block header.
1612 */
1613void
1614xfs_btree_log_block(
1615	struct xfs_btree_cur	*cur,	/* btree cursor */
1616	struct xfs_buf		*bp,	/* buffer containing btree block */
1617	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1618{
1619	int			first;	/* first byte offset logged */
1620	int			last;	/* last byte offset logged */
1621	static const short	soffsets[] = {	/* table of offsets (short) */
1622		offsetof(struct xfs_btree_block, bb_magic),
1623		offsetof(struct xfs_btree_block, bb_level),
1624		offsetof(struct xfs_btree_block, bb_numrecs),
1625		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1626		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1627		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1628		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1629		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1630		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1631		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1632		XFS_BTREE_SBLOCK_CRC_LEN
1633	};
1634	static const short	loffsets[] = {	/* table of offsets (long) */
1635		offsetof(struct xfs_btree_block, bb_magic),
1636		offsetof(struct xfs_btree_block, bb_level),
1637		offsetof(struct xfs_btree_block, bb_numrecs),
1638		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1639		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1640		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1641		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1642		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1643		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1644		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1645		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1646		XFS_BTREE_LBLOCK_CRC_LEN
1647	};
1648
1649	if (bp) {
1650		int nbits;
1651
1652		if (xfs_has_crc(cur->bc_mp)) {
1653			/*
1654			 * We don't log the CRC when updating a btree
1655			 * block but instead recreate it during log
1656			 * recovery.  As the log buffers have checksums
1657			 * of their own this is safe and avoids logging a crc
1658			 * update in a lot of places.
1659			 */
1660			if (fields == XFS_BB_ALL_BITS)
1661				fields = XFS_BB_ALL_BITS_CRC;
1662			nbits = XFS_BB_NUM_BITS_CRC;
1663		} else {
1664			nbits = XFS_BB_NUM_BITS;
1665		}
1666		xfs_btree_offsets(fields,
1667				  (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1668					loffsets : soffsets,
1669				  nbits, &first, &last);
1670		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1671		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1672	} else {
1673		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1674			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1675	}
1676}
1677
1678/*
1679 * Increment cursor by one record at the level.
1680 * For nonzero levels the leaf-ward information is untouched.
1681 */
1682int						/* error */
1683xfs_btree_increment(
1684	struct xfs_btree_cur	*cur,
1685	int			level,
1686	int			*stat)		/* success/failure */
1687{
1688	struct xfs_btree_block	*block;
1689	union xfs_btree_ptr	ptr;
1690	struct xfs_buf		*bp;
1691	int			error;		/* error return value */
1692	int			lev;
1693
1694	ASSERT(level < cur->bc_nlevels);
1695
1696	/* Read-ahead to the right at this level. */
1697	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1698
1699	/* Get a pointer to the btree block. */
1700	block = xfs_btree_get_block(cur, level, &bp);
1701
1702#ifdef DEBUG
1703	error = xfs_btree_check_block(cur, block, level, bp);
1704	if (error)
1705		goto error0;
1706#endif
1707
1708	/* We're done if we remain in the block after the increment. */
1709	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1710		goto out1;
1711
1712	/* Fail if we just went off the right edge of the tree. */
1713	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1714	if (xfs_btree_ptr_is_null(cur, &ptr))
1715		goto out0;
1716
1717	XFS_BTREE_STATS_INC(cur, increment);
1718
1719	/*
1720	 * March up the tree incrementing pointers.
1721	 * Stop when we don't go off the right edge of a block.
1722	 */
1723	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1724		block = xfs_btree_get_block(cur, lev, &bp);
1725
1726#ifdef DEBUG
1727		error = xfs_btree_check_block(cur, block, lev, bp);
1728		if (error)
1729			goto error0;
1730#endif
1731
1732		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1733			break;
1734
1735		/* Read-ahead the right block for the next loop. */
1736		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1737	}
1738
1739	/*
1740	 * If we went off the root then we are either seriously
1741	 * confused or have the tree root in an inode.
1742	 */
1743	if (lev == cur->bc_nlevels) {
1744		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1745			goto out0;
1746		ASSERT(0);
1747		xfs_btree_mark_sick(cur);
1748		error = -EFSCORRUPTED;
1749		goto error0;
1750	}
1751	ASSERT(lev < cur->bc_nlevels);
1752
1753	/*
1754	 * Now walk back down the tree, fixing up the cursor's buffer
1755	 * pointers and key numbers.
1756	 */
1757	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1758		union xfs_btree_ptr	*ptrp;
1759
1760		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1761		--lev;
1762		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1763		if (error)
1764			goto error0;
1765
1766		xfs_btree_setbuf(cur, lev, bp);
1767		cur->bc_levels[lev].ptr = 1;
1768	}
1769out1:
1770	*stat = 1;
1771	return 0;
1772
1773out0:
1774	*stat = 0;
1775	return 0;
1776
1777error0:
1778	return error;
1779}
1780
1781/*
1782 * Decrement cursor by one record at the level.
1783 * For nonzero levels the leaf-ward information is untouched.
1784 */
1785int						/* error */
1786xfs_btree_decrement(
1787	struct xfs_btree_cur	*cur,
1788	int			level,
1789	int			*stat)		/* success/failure */
1790{
1791	struct xfs_btree_block	*block;
1792	struct xfs_buf		*bp;
1793	int			error;		/* error return value */
1794	int			lev;
1795	union xfs_btree_ptr	ptr;
1796
1797	ASSERT(level < cur->bc_nlevels);
1798
1799	/* Read-ahead to the left at this level. */
1800	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1801
1802	/* We're done if we remain in the block after the decrement. */
1803	if (--cur->bc_levels[level].ptr > 0)
1804		goto out1;
1805
1806	/* Get a pointer to the btree block. */
1807	block = xfs_btree_get_block(cur, level, &bp);
1808
1809#ifdef DEBUG
1810	error = xfs_btree_check_block(cur, block, level, bp);
1811	if (error)
1812		goto error0;
1813#endif
1814
1815	/* Fail if we just went off the left edge of the tree. */
1816	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1817	if (xfs_btree_ptr_is_null(cur, &ptr))
1818		goto out0;
1819
1820	XFS_BTREE_STATS_INC(cur, decrement);
1821
1822	/*
1823	 * March up the tree decrementing pointers.
1824	 * Stop when we don't go off the left edge of a block.
1825	 */
1826	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1827		if (--cur->bc_levels[lev].ptr > 0)
1828			break;
1829		/* Read-ahead the left block for the next loop. */
1830		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831	}
1832
1833	/*
1834	 * If we went off the root then we are seriously confused.
1835	 * or the root of the tree is in an inode.
1836	 */
1837	if (lev == cur->bc_nlevels) {
1838		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1839			goto out0;
1840		ASSERT(0);
1841		xfs_btree_mark_sick(cur);
1842		error = -EFSCORRUPTED;
1843		goto error0;
1844	}
1845	ASSERT(lev < cur->bc_nlevels);
1846
1847	/*
1848	 * Now walk back down the tree, fixing up the cursor's buffer
1849	 * pointers and key numbers.
1850	 */
1851	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1852		union xfs_btree_ptr	*ptrp;
1853
1854		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1855		--lev;
1856		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1857		if (error)
1858			goto error0;
1859		xfs_btree_setbuf(cur, lev, bp);
1860		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1861	}
1862out1:
1863	*stat = 1;
1864	return 0;
1865
1866out0:
1867	*stat = 0;
1868	return 0;
1869
1870error0:
1871	return error;
1872}
1873
1874/*
1875 * Check the btree block owner now that we have the context to know who the
1876 * real owner is.
1877 */
1878static inline xfs_failaddr_t
1879xfs_btree_check_block_owner(
1880	struct xfs_btree_cur	*cur,
1881	struct xfs_btree_block	*block)
1882{
1883	__u64			owner;
1884
1885	if (!xfs_has_crc(cur->bc_mp) ||
1886	    (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1887		return NULL;
1888
1889	owner = xfs_btree_owner(cur);
1890	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1891		if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1892			return __this_address;
1893	} else {
1894		if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1895			return __this_address;
1896	}
1897
1898	return NULL;
1899}
1900
1901int
1902xfs_btree_lookup_get_block(
1903	struct xfs_btree_cur		*cur,	/* btree cursor */
1904	int				level,	/* level in the btree */
1905	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1906	struct xfs_btree_block		**blkp) /* return btree block */
1907{
1908	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1909	xfs_daddr_t		daddr;
1910	int			error = 0;
1911
1912	/* special case the root block if in an inode */
1913	if (xfs_btree_at_iroot(cur, level)) {
 
1914		*blkp = xfs_btree_get_iroot(cur);
1915		return 0;
1916	}
1917
1918	/*
1919	 * If the old buffer at this level for the disk address we are
1920	 * looking for re-use it.
1921	 *
1922	 * Otherwise throw it away and get a new one.
1923	 */
1924	bp = cur->bc_levels[level].bp;
1925	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1926	if (error)
1927		return error;
1928	if (bp && xfs_buf_daddr(bp) == daddr) {
1929		*blkp = XFS_BUF_TO_BLOCK(bp);
1930		return 0;
1931	}
1932
1933	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1934	if (error)
1935		return error;
1936
1937	/* Check the inode owner since the verifiers don't. */
1938	if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
 
 
 
 
1939		goto out_bad;
1940
1941	/* Did we get the level we were looking for? */
1942	if (be16_to_cpu((*blkp)->bb_level) != level)
1943		goto out_bad;
1944
1945	/* Check that internal nodes have at least one record. */
1946	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1947		goto out_bad;
1948
1949	xfs_btree_setbuf(cur, level, bp);
1950	return 0;
1951
1952out_bad:
1953	*blkp = NULL;
1954	xfs_buf_mark_corrupt(bp);
1955	xfs_trans_brelse(cur->bc_tp, bp);
1956	xfs_btree_mark_sick(cur);
1957	return -EFSCORRUPTED;
1958}
1959
1960/*
1961 * Get current search key.  For level 0 we don't actually have a key
1962 * structure so we make one up from the record.  For all other levels
1963 * we just return the right key.
1964 */
1965STATIC union xfs_btree_key *
1966xfs_lookup_get_search_key(
1967	struct xfs_btree_cur	*cur,
1968	int			level,
1969	int			keyno,
1970	struct xfs_btree_block	*block,
1971	union xfs_btree_key	*kp)
1972{
1973	if (level == 0) {
1974		cur->bc_ops->init_key_from_rec(kp,
1975				xfs_btree_rec_addr(cur, keyno, block));
1976		return kp;
1977	}
1978
1979	return xfs_btree_key_addr(cur, keyno, block);
1980}
1981
1982/*
1983 * Initialize a pointer to the root block.
1984 */
1985void
1986xfs_btree_init_ptr_from_cur(
1987	struct xfs_btree_cur	*cur,
1988	union xfs_btree_ptr	*ptr)
1989{
1990	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1991		/*
1992		 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1993		 * in xfs_btree_lookup_get_block and don't need a pointer here.
1994		 */
1995		ptr->l = 0;
1996	} else if (cur->bc_flags & XFS_BTREE_STAGING) {
1997		ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1998	} else {
1999		cur->bc_ops->init_ptr_from_cur(cur, ptr);
2000	}
2001}
2002
2003/*
2004 * Lookup the record.  The cursor is made to point to it, based on dir.
2005 * stat is set to 0 if can't find any such record, 1 for success.
2006 */
2007int					/* error */
2008xfs_btree_lookup(
2009	struct xfs_btree_cur	*cur,	/* btree cursor */
2010	xfs_lookup_t		dir,	/* <=, ==, or >= */
2011	int			*stat)	/* success/failure */
2012{
2013	struct xfs_btree_block	*block;	/* current btree block */
2014	int64_t			diff;	/* difference for the current key */
2015	int			error;	/* error return value */
2016	int			keyno;	/* current key number */
2017	int			level;	/* level in the btree */
2018	union xfs_btree_ptr	*pp;	/* ptr to btree block */
2019	union xfs_btree_ptr	ptr;	/* ptr to btree block */
2020
2021	XFS_BTREE_STATS_INC(cur, lookup);
2022
2023	/* No such thing as a zero-level tree. */
2024	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2025		xfs_btree_mark_sick(cur);
2026		return -EFSCORRUPTED;
2027	}
2028
2029	block = NULL;
2030	keyno = 0;
2031
2032	/* initialise start pointer from cursor */
2033	xfs_btree_init_ptr_from_cur(cur, &ptr);
2034	pp = &ptr;
2035
2036	/*
2037	 * Iterate over each level in the btree, starting at the root.
2038	 * For each level above the leaves, find the key we need, based
2039	 * on the lookup record, then follow the corresponding block
2040	 * pointer down to the next level.
2041	 */
2042	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2043		/* Get the block we need to do the lookup on. */
2044		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2045		if (error)
2046			goto error0;
2047
2048		if (diff == 0) {
2049			/*
2050			 * If we already had a key match at a higher level, we
2051			 * know we need to use the first entry in this block.
2052			 */
2053			keyno = 1;
2054		} else {
2055			/* Otherwise search this block. Do a binary search. */
2056
2057			int	high;	/* high entry number */
2058			int	low;	/* low entry number */
2059
2060			/* Set low and high entry numbers, 1-based. */
2061			low = 1;
2062			high = xfs_btree_get_numrecs(block);
2063			if (!high) {
2064				/* Block is empty, must be an empty leaf. */
2065				if (level != 0 || cur->bc_nlevels != 1) {
2066					XFS_CORRUPTION_ERROR(__func__,
2067							XFS_ERRLEVEL_LOW,
2068							cur->bc_mp, block,
2069							sizeof(*block));
2070					xfs_btree_mark_sick(cur);
2071					return -EFSCORRUPTED;
2072				}
2073
2074				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2075				*stat = 0;
2076				return 0;
2077			}
2078
2079			/* Binary search the block. */
2080			while (low <= high) {
2081				union xfs_btree_key	key;
2082				union xfs_btree_key	*kp;
2083
2084				XFS_BTREE_STATS_INC(cur, compare);
2085
2086				/* keyno is average of low and high. */
2087				keyno = (low + high) >> 1;
2088
2089				/* Get current search key */
2090				kp = xfs_lookup_get_search_key(cur, level,
2091						keyno, block, &key);
2092
2093				/*
2094				 * Compute difference to get next direction:
2095				 *  - less than, move right
2096				 *  - greater than, move left
2097				 *  - equal, we're done
2098				 */
2099				diff = cur->bc_ops->key_diff(cur, kp);
2100				if (diff < 0)
2101					low = keyno + 1;
2102				else if (diff > 0)
2103					high = keyno - 1;
2104				else
2105					break;
2106			}
2107		}
2108
2109		/*
2110		 * If there are more levels, set up for the next level
2111		 * by getting the block number and filling in the cursor.
2112		 */
2113		if (level > 0) {
2114			/*
2115			 * If we moved left, need the previous key number,
2116			 * unless there isn't one.
2117			 */
2118			if (diff > 0 && --keyno < 1)
2119				keyno = 1;
2120			pp = xfs_btree_ptr_addr(cur, keyno, block);
2121
2122			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2123			if (error)
2124				goto error0;
2125
2126			cur->bc_levels[level].ptr = keyno;
2127		}
2128	}
2129
2130	/* Done with the search. See if we need to adjust the results. */
2131	if (dir != XFS_LOOKUP_LE && diff < 0) {
2132		keyno++;
2133		/*
2134		 * If ge search and we went off the end of the block, but it's
2135		 * not the last block, we're in the wrong block.
2136		 */
2137		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2138		if (dir == XFS_LOOKUP_GE &&
2139		    keyno > xfs_btree_get_numrecs(block) &&
2140		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2141			int	i;
2142
2143			cur->bc_levels[0].ptr = keyno;
2144			error = xfs_btree_increment(cur, 0, &i);
2145			if (error)
2146				goto error0;
2147			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2148				xfs_btree_mark_sick(cur);
2149				return -EFSCORRUPTED;
2150			}
2151			*stat = 1;
2152			return 0;
2153		}
2154	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2155		keyno--;
2156	cur->bc_levels[0].ptr = keyno;
2157
2158	/* Return if we succeeded or not. */
2159	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2160		*stat = 0;
2161	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2162		*stat = 1;
2163	else
2164		*stat = 0;
2165	return 0;
2166
2167error0:
2168	return error;
2169}
2170
2171/* Find the high key storage area from a regular key. */
2172union xfs_btree_key *
2173xfs_btree_high_key_from_key(
2174	struct xfs_btree_cur	*cur,
2175	union xfs_btree_key	*key)
2176{
2177	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2178	return (union xfs_btree_key *)((char *)key +
2179			(cur->bc_ops->key_len / 2));
2180}
2181
2182/* Determine the low (and high if overlapped) keys of a leaf block */
2183STATIC void
2184xfs_btree_get_leaf_keys(
2185	struct xfs_btree_cur	*cur,
2186	struct xfs_btree_block	*block,
2187	union xfs_btree_key	*key)
2188{
2189	union xfs_btree_key	max_hkey;
2190	union xfs_btree_key	hkey;
2191	union xfs_btree_rec	*rec;
2192	union xfs_btree_key	*high;
2193	int			n;
2194
2195	rec = xfs_btree_rec_addr(cur, 1, block);
2196	cur->bc_ops->init_key_from_rec(key, rec);
2197
2198	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2199
2200		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2201		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2202			rec = xfs_btree_rec_addr(cur, n, block);
2203			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2204			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2205				max_hkey = hkey;
2206		}
2207
2208		high = xfs_btree_high_key_from_key(cur, key);
2209		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2210	}
2211}
2212
2213/* Determine the low (and high if overlapped) keys of a node block */
2214STATIC void
2215xfs_btree_get_node_keys(
2216	struct xfs_btree_cur	*cur,
2217	struct xfs_btree_block	*block,
2218	union xfs_btree_key	*key)
2219{
2220	union xfs_btree_key	*hkey;
2221	union xfs_btree_key	*max_hkey;
2222	union xfs_btree_key	*high;
2223	int			n;
2224
2225	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2226		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2227				cur->bc_ops->key_len / 2);
2228
2229		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2230		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2231			hkey = xfs_btree_high_key_addr(cur, n, block);
2232			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2233				max_hkey = hkey;
2234		}
2235
2236		high = xfs_btree_high_key_from_key(cur, key);
2237		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2238	} else {
2239		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2240				cur->bc_ops->key_len);
2241	}
2242}
2243
2244/* Derive the keys for any btree block. */
2245void
2246xfs_btree_get_keys(
2247	struct xfs_btree_cur	*cur,
2248	struct xfs_btree_block	*block,
2249	union xfs_btree_key	*key)
2250{
2251	if (be16_to_cpu(block->bb_level) == 0)
2252		xfs_btree_get_leaf_keys(cur, block, key);
2253	else
2254		xfs_btree_get_node_keys(cur, block, key);
2255}
2256
2257/*
2258 * Decide if we need to update the parent keys of a btree block.  For
2259 * a standard btree this is only necessary if we're updating the first
2260 * record/key.  For an overlapping btree, we must always update the
2261 * keys because the highest key can be in any of the records or keys
2262 * in the block.
2263 */
2264static inline bool
2265xfs_btree_needs_key_update(
2266	struct xfs_btree_cur	*cur,
2267	int			ptr)
2268{
2269	return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2270}
2271
2272/*
2273 * Update the low and high parent keys of the given level, progressing
2274 * towards the root.  If force_all is false, stop if the keys for a given
2275 * level do not need updating.
2276 */
2277STATIC int
2278__xfs_btree_updkeys(
2279	struct xfs_btree_cur	*cur,
2280	int			level,
2281	struct xfs_btree_block	*block,
2282	struct xfs_buf		*bp0,
2283	bool			force_all)
2284{
2285	union xfs_btree_key	key;	/* keys from current level */
2286	union xfs_btree_key	*lkey;	/* keys from the next level up */
2287	union xfs_btree_key	*hkey;
2288	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2289	union xfs_btree_key	*nhkey;
2290	struct xfs_buf		*bp;
2291	int			ptr;
2292
2293	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2294
2295	/* Exit if there aren't any parent levels to update. */
2296	if (level + 1 >= cur->bc_nlevels)
2297		return 0;
2298
2299	trace_xfs_btree_updkeys(cur, level, bp0);
2300
2301	lkey = &key;
2302	hkey = xfs_btree_high_key_from_key(cur, lkey);
2303	xfs_btree_get_keys(cur, block, lkey);
2304	for (level++; level < cur->bc_nlevels; level++) {
2305#ifdef DEBUG
2306		int		error;
2307#endif
2308		block = xfs_btree_get_block(cur, level, &bp);
2309		trace_xfs_btree_updkeys(cur, level, bp);
2310#ifdef DEBUG
2311		error = xfs_btree_check_block(cur, block, level, bp);
2312		if (error)
2313			return error;
2314#endif
2315		ptr = cur->bc_levels[level].ptr;
2316		nlkey = xfs_btree_key_addr(cur, ptr, block);
2317		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2318		if (!force_all &&
2319		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2320		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2321			break;
2322		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2323		xfs_btree_log_keys(cur, bp, ptr, ptr);
2324		if (level + 1 >= cur->bc_nlevels)
2325			break;
2326		xfs_btree_get_node_keys(cur, block, lkey);
2327	}
2328
2329	return 0;
2330}
2331
2332/* Update all the keys from some level in cursor back to the root. */
2333STATIC int
2334xfs_btree_updkeys_force(
2335	struct xfs_btree_cur	*cur,
2336	int			level)
2337{
2338	struct xfs_buf		*bp;
2339	struct xfs_btree_block	*block;
2340
2341	block = xfs_btree_get_block(cur, level, &bp);
2342	return __xfs_btree_updkeys(cur, level, block, bp, true);
2343}
2344
2345/*
2346 * Update the parent keys of the given level, progressing towards the root.
2347 */
2348STATIC int
2349xfs_btree_update_keys(
2350	struct xfs_btree_cur	*cur,
2351	int			level)
2352{
2353	struct xfs_btree_block	*block;
2354	struct xfs_buf		*bp;
2355	union xfs_btree_key	*kp;
2356	union xfs_btree_key	key;
2357	int			ptr;
2358
2359	ASSERT(level >= 0);
2360
2361	block = xfs_btree_get_block(cur, level, &bp);
2362	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2363		return __xfs_btree_updkeys(cur, level, block, bp, false);
2364
2365	/*
2366	 * Go up the tree from this level toward the root.
2367	 * At each level, update the key value to the value input.
2368	 * Stop when we reach a level where the cursor isn't pointing
2369	 * at the first entry in the block.
2370	 */
2371	xfs_btree_get_keys(cur, block, &key);
2372	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2373#ifdef DEBUG
2374		int		error;
2375#endif
2376		block = xfs_btree_get_block(cur, level, &bp);
2377#ifdef DEBUG
2378		error = xfs_btree_check_block(cur, block, level, bp);
2379		if (error)
2380			return error;
2381#endif
2382		ptr = cur->bc_levels[level].ptr;
2383		kp = xfs_btree_key_addr(cur, ptr, block);
2384		xfs_btree_copy_keys(cur, kp, &key, 1);
2385		xfs_btree_log_keys(cur, bp, ptr, ptr);
2386	}
2387
2388	return 0;
2389}
2390
2391/*
2392 * Update the record referred to by cur to the value in the
2393 * given record. This either works (return 0) or gets an
2394 * EFSCORRUPTED error.
2395 */
2396int
2397xfs_btree_update(
2398	struct xfs_btree_cur	*cur,
2399	union xfs_btree_rec	*rec)
2400{
2401	struct xfs_btree_block	*block;
2402	struct xfs_buf		*bp;
2403	int			error;
2404	int			ptr;
2405	union xfs_btree_rec	*rp;
2406
2407	/* Pick up the current block. */
2408	block = xfs_btree_get_block(cur, 0, &bp);
2409
2410#ifdef DEBUG
2411	error = xfs_btree_check_block(cur, block, 0, bp);
2412	if (error)
2413		goto error0;
2414#endif
2415	/* Get the address of the rec to be updated. */
2416	ptr = cur->bc_levels[0].ptr;
2417	rp = xfs_btree_rec_addr(cur, ptr, block);
2418
2419	/* Fill in the new contents and log them. */
2420	xfs_btree_copy_recs(cur, rp, rec, 1);
2421	xfs_btree_log_recs(cur, bp, ptr, ptr);
2422
2423	/*
2424	 * If we are tracking the last record in the tree and
2425	 * we are at the far right edge of the tree, update it.
2426	 */
2427	if (xfs_btree_is_lastrec(cur, block, 0)) {
2428		cur->bc_ops->update_lastrec(cur, block, rec,
2429					    ptr, LASTREC_UPDATE);
2430	}
2431
2432	/* Pass new key value up to our parent. */
2433	if (xfs_btree_needs_key_update(cur, ptr)) {
2434		error = xfs_btree_update_keys(cur, 0);
2435		if (error)
2436			goto error0;
2437	}
2438
2439	return 0;
2440
2441error0:
2442	return error;
2443}
2444
2445/*
2446 * Move 1 record left from cur/level if possible.
2447 * Update cur to reflect the new path.
2448 */
2449STATIC int					/* error */
2450xfs_btree_lshift(
2451	struct xfs_btree_cur	*cur,
2452	int			level,
2453	int			*stat)		/* success/failure */
2454{
2455	struct xfs_buf		*lbp;		/* left buffer pointer */
2456	struct xfs_btree_block	*left;		/* left btree block */
2457	int			lrecs;		/* left record count */
2458	struct xfs_buf		*rbp;		/* right buffer pointer */
2459	struct xfs_btree_block	*right;		/* right btree block */
2460	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2461	int			rrecs;		/* right record count */
2462	union xfs_btree_ptr	lptr;		/* left btree pointer */
2463	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2464	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2465	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2466	int			error;		/* error return value */
2467	int			i;
2468
2469	if (xfs_btree_at_iroot(cur, level))
 
2470		goto out0;
2471
2472	/* Set up variables for this block as "right". */
2473	right = xfs_btree_get_block(cur, level, &rbp);
2474
2475#ifdef DEBUG
2476	error = xfs_btree_check_block(cur, right, level, rbp);
2477	if (error)
2478		goto error0;
2479#endif
2480
2481	/* If we've got no left sibling then we can't shift an entry left. */
2482	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2483	if (xfs_btree_ptr_is_null(cur, &lptr))
2484		goto out0;
2485
2486	/*
2487	 * If the cursor entry is the one that would be moved, don't
2488	 * do it... it's too complicated.
2489	 */
2490	if (cur->bc_levels[level].ptr <= 1)
2491		goto out0;
2492
2493	/* Set up the left neighbor as "left". */
2494	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2495	if (error)
2496		goto error0;
2497
2498	/* If it's full, it can't take another entry. */
2499	lrecs = xfs_btree_get_numrecs(left);
2500	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2501		goto out0;
2502
2503	rrecs = xfs_btree_get_numrecs(right);
2504
2505	/*
2506	 * We add one entry to the left side and remove one for the right side.
2507	 * Account for it here, the changes will be updated on disk and logged
2508	 * later.
2509	 */
2510	lrecs++;
2511	rrecs--;
2512
2513	XFS_BTREE_STATS_INC(cur, lshift);
2514	XFS_BTREE_STATS_ADD(cur, moves, 1);
2515
2516	/*
2517	 * If non-leaf, copy a key and a ptr to the left block.
2518	 * Log the changes to the left block.
2519	 */
2520	if (level > 0) {
2521		/* It's a non-leaf.  Move keys and pointers. */
2522		union xfs_btree_key	*lkp;	/* left btree key */
2523		union xfs_btree_ptr	*lpp;	/* left address pointer */
2524
2525		lkp = xfs_btree_key_addr(cur, lrecs, left);
2526		rkp = xfs_btree_key_addr(cur, 1, right);
2527
2528		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2529		rpp = xfs_btree_ptr_addr(cur, 1, right);
2530
2531		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2532		if (error)
2533			goto error0;
2534
2535		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2536		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2537
2538		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2539		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2540
2541		ASSERT(cur->bc_ops->keys_inorder(cur,
2542			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2543	} else {
2544		/* It's a leaf.  Move records.  */
2545		union xfs_btree_rec	*lrp;	/* left record pointer */
2546
2547		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2548		rrp = xfs_btree_rec_addr(cur, 1, right);
2549
2550		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2551		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2552
2553		ASSERT(cur->bc_ops->recs_inorder(cur,
2554			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2555	}
2556
2557	xfs_btree_set_numrecs(left, lrecs);
2558	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2559
2560	xfs_btree_set_numrecs(right, rrecs);
2561	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2562
2563	/*
2564	 * Slide the contents of right down one entry.
2565	 */
2566	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2567	if (level > 0) {
2568		/* It's a nonleaf. operate on keys and ptrs */
2569		for (i = 0; i < rrecs; i++) {
2570			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2571			if (error)
2572				goto error0;
2573		}
2574
2575		xfs_btree_shift_keys(cur,
2576				xfs_btree_key_addr(cur, 2, right),
2577				-1, rrecs);
2578		xfs_btree_shift_ptrs(cur,
2579				xfs_btree_ptr_addr(cur, 2, right),
2580				-1, rrecs);
2581
2582		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2583		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2584	} else {
2585		/* It's a leaf. operate on records */
2586		xfs_btree_shift_recs(cur,
2587			xfs_btree_rec_addr(cur, 2, right),
2588			-1, rrecs);
2589		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2590	}
2591
2592	/*
2593	 * Using a temporary cursor, update the parent key values of the
2594	 * block on the left.
2595	 */
2596	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2597		error = xfs_btree_dup_cursor(cur, &tcur);
2598		if (error)
2599			goto error0;
2600		i = xfs_btree_firstrec(tcur, level);
2601		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2602			xfs_btree_mark_sick(cur);
2603			error = -EFSCORRUPTED;
2604			goto error0;
2605		}
2606
2607		error = xfs_btree_decrement(tcur, level, &i);
2608		if (error)
2609			goto error1;
2610
2611		/* Update the parent high keys of the left block, if needed. */
2612		error = xfs_btree_update_keys(tcur, level);
2613		if (error)
2614			goto error1;
2615
2616		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617	}
2618
2619	/* Update the parent keys of the right block. */
2620	error = xfs_btree_update_keys(cur, level);
2621	if (error)
2622		goto error0;
2623
2624	/* Slide the cursor value left one. */
2625	cur->bc_levels[level].ptr--;
2626
2627	*stat = 1;
2628	return 0;
2629
2630out0:
2631	*stat = 0;
2632	return 0;
2633
2634error0:
2635	return error;
2636
2637error1:
2638	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2639	return error;
2640}
2641
2642/*
2643 * Move 1 record right from cur/level if possible.
2644 * Update cur to reflect the new path.
2645 */
2646STATIC int					/* error */
2647xfs_btree_rshift(
2648	struct xfs_btree_cur	*cur,
2649	int			level,
2650	int			*stat)		/* success/failure */
2651{
2652	struct xfs_buf		*lbp;		/* left buffer pointer */
2653	struct xfs_btree_block	*left;		/* left btree block */
2654	struct xfs_buf		*rbp;		/* right buffer pointer */
2655	struct xfs_btree_block	*right;		/* right btree block */
2656	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2657	union xfs_btree_ptr	rptr;		/* right block pointer */
2658	union xfs_btree_key	*rkp;		/* right btree key */
2659	int			rrecs;		/* right record count */
2660	int			lrecs;		/* left record count */
2661	int			error;		/* error return value */
2662	int			i;		/* loop counter */
2663
2664	if (xfs_btree_at_iroot(cur, level))
 
2665		goto out0;
2666
2667	/* Set up variables for this block as "left". */
2668	left = xfs_btree_get_block(cur, level, &lbp);
2669
2670#ifdef DEBUG
2671	error = xfs_btree_check_block(cur, left, level, lbp);
2672	if (error)
2673		goto error0;
2674#endif
2675
2676	/* If we've got no right sibling then we can't shift an entry right. */
2677	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2678	if (xfs_btree_ptr_is_null(cur, &rptr))
2679		goto out0;
2680
2681	/*
2682	 * If the cursor entry is the one that would be moved, don't
2683	 * do it... it's too complicated.
2684	 */
2685	lrecs = xfs_btree_get_numrecs(left);
2686	if (cur->bc_levels[level].ptr >= lrecs)
2687		goto out0;
2688
2689	/* Set up the right neighbor as "right". */
2690	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2691	if (error)
2692		goto error0;
2693
2694	/* If it's full, it can't take another entry. */
2695	rrecs = xfs_btree_get_numrecs(right);
2696	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2697		goto out0;
2698
2699	XFS_BTREE_STATS_INC(cur, rshift);
2700	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701
2702	/*
2703	 * Make a hole at the start of the right neighbor block, then
2704	 * copy the last left block entry to the hole.
2705	 */
2706	if (level > 0) {
2707		/* It's a nonleaf. make a hole in the keys and ptrs */
2708		union xfs_btree_key	*lkp;
2709		union xfs_btree_ptr	*lpp;
2710		union xfs_btree_ptr	*rpp;
2711
2712		lkp = xfs_btree_key_addr(cur, lrecs, left);
2713		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2714		rkp = xfs_btree_key_addr(cur, 1, right);
2715		rpp = xfs_btree_ptr_addr(cur, 1, right);
2716
2717		for (i = rrecs - 1; i >= 0; i--) {
2718			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2719			if (error)
2720				goto error0;
2721		}
2722
2723		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2724		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2725
2726		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2727		if (error)
2728			goto error0;
2729
2730		/* Now put the new data in, and log it. */
2731		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2732		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2733
2734		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2735		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2736
2737		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2738			xfs_btree_key_addr(cur, 2, right)));
2739	} else {
2740		/* It's a leaf. make a hole in the records */
2741		union xfs_btree_rec	*lrp;
2742		union xfs_btree_rec	*rrp;
2743
2744		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2745		rrp = xfs_btree_rec_addr(cur, 1, right);
2746
2747		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2748
2749		/* Now put the new data in, and log it. */
2750		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2751		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2752	}
2753
2754	/*
2755	 * Decrement and log left's numrecs, bump and log right's numrecs.
2756	 */
2757	xfs_btree_set_numrecs(left, --lrecs);
2758	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2759
2760	xfs_btree_set_numrecs(right, ++rrecs);
2761	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2762
2763	/*
2764	 * Using a temporary cursor, update the parent key values of the
2765	 * block on the right.
2766	 */
2767	error = xfs_btree_dup_cursor(cur, &tcur);
2768	if (error)
2769		goto error0;
2770	i = xfs_btree_lastrec(tcur, level);
2771	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2772		xfs_btree_mark_sick(cur);
2773		error = -EFSCORRUPTED;
2774		goto error0;
2775	}
2776
2777	error = xfs_btree_increment(tcur, level, &i);
2778	if (error)
2779		goto error1;
2780
2781	/* Update the parent high keys of the left block, if needed. */
2782	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2783		error = xfs_btree_update_keys(cur, level);
2784		if (error)
2785			goto error1;
2786	}
2787
2788	/* Update the parent keys of the right block. */
2789	error = xfs_btree_update_keys(tcur, level);
2790	if (error)
2791		goto error1;
2792
2793	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2794
2795	*stat = 1;
2796	return 0;
2797
2798out0:
2799	*stat = 0;
2800	return 0;
2801
2802error0:
2803	return error;
2804
2805error1:
2806	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2807	return error;
2808}
2809
2810static inline int
2811xfs_btree_alloc_block(
2812	struct xfs_btree_cur		*cur,
2813	const union xfs_btree_ptr	*hint_block,
2814	union xfs_btree_ptr		*new_block,
2815	int				*stat)
2816{
2817	int				error;
2818
2819	/*
2820	 * Don't allow block allocation for a staging cursor, because staging
2821	 * cursors do not support regular btree modifications.
2822	 *
2823	 * Bulk loading uses a separate callback to obtain new blocks from a
2824	 * preallocated list, which prevents ENOSPC failures during loading.
2825	 */
2826	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2827		ASSERT(0);
2828		return -EFSCORRUPTED;
2829	}
2830
2831	error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2832	trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2833	return error;
2834}
2835
2836/*
2837 * Split cur/level block in half.
2838 * Return new block number and the key to its first
2839 * record (to be inserted into parent).
2840 */
2841STATIC int					/* error */
2842__xfs_btree_split(
2843	struct xfs_btree_cur	*cur,
2844	int			level,
2845	union xfs_btree_ptr	*ptrp,
2846	union xfs_btree_key	*key,
2847	struct xfs_btree_cur	**curp,
2848	int			*stat)		/* success/failure */
2849{
2850	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2851	struct xfs_buf		*lbp;		/* left buffer pointer */
2852	struct xfs_btree_block	*left;		/* left btree block */
2853	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2854	struct xfs_buf		*rbp;		/* right buffer pointer */
2855	struct xfs_btree_block	*right;		/* right btree block */
2856	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2857	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2858	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2859	int			lrecs;
2860	int			rrecs;
2861	int			src_index;
2862	int			error;		/* error return value */
2863	int			i;
2864
2865	XFS_BTREE_STATS_INC(cur, split);
2866
2867	/* Set up left block (current one). */
2868	left = xfs_btree_get_block(cur, level, &lbp);
2869
2870#ifdef DEBUG
2871	error = xfs_btree_check_block(cur, left, level, lbp);
2872	if (error)
2873		goto error0;
2874#endif
2875
2876	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2877
2878	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2879	error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2880	if (error)
2881		goto error0;
2882	if (*stat == 0)
2883		goto out0;
2884	XFS_BTREE_STATS_INC(cur, alloc);
2885
2886	/* Set up the new block as "right". */
2887	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2888	if (error)
2889		goto error0;
2890
2891	/* Fill in the btree header for the new right block. */
2892	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2893
2894	/*
2895	 * Split the entries between the old and the new block evenly.
2896	 * Make sure that if there's an odd number of entries now, that
2897	 * each new block will have the same number of entries.
2898	 */
2899	lrecs = xfs_btree_get_numrecs(left);
2900	rrecs = lrecs / 2;
2901	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2902		rrecs++;
2903	src_index = (lrecs - rrecs + 1);
2904
2905	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2906
2907	/* Adjust numrecs for the later get_*_keys() calls. */
2908	lrecs -= rrecs;
2909	xfs_btree_set_numrecs(left, lrecs);
2910	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2911
2912	/*
2913	 * Copy btree block entries from the left block over to the
2914	 * new block, the right. Update the right block and log the
2915	 * changes.
2916	 */
2917	if (level > 0) {
2918		/* It's a non-leaf.  Move keys and pointers. */
2919		union xfs_btree_key	*lkp;	/* left btree key */
2920		union xfs_btree_ptr	*lpp;	/* left address pointer */
2921		union xfs_btree_key	*rkp;	/* right btree key */
2922		union xfs_btree_ptr	*rpp;	/* right address pointer */
2923
2924		lkp = xfs_btree_key_addr(cur, src_index, left);
2925		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2926		rkp = xfs_btree_key_addr(cur, 1, right);
2927		rpp = xfs_btree_ptr_addr(cur, 1, right);
2928
2929		for (i = src_index; i < rrecs; i++) {
2930			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2931			if (error)
2932				goto error0;
2933		}
2934
2935		/* Copy the keys & pointers to the new block. */
2936		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2937		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2938
2939		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2940		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2941
2942		/* Stash the keys of the new block for later insertion. */
2943		xfs_btree_get_node_keys(cur, right, key);
2944	} else {
2945		/* It's a leaf.  Move records.  */
2946		union xfs_btree_rec	*lrp;	/* left record pointer */
2947		union xfs_btree_rec	*rrp;	/* right record pointer */
2948
2949		lrp = xfs_btree_rec_addr(cur, src_index, left);
2950		rrp = xfs_btree_rec_addr(cur, 1, right);
2951
2952		/* Copy records to the new block. */
2953		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2954		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2955
2956		/* Stash the keys of the new block for later insertion. */
2957		xfs_btree_get_leaf_keys(cur, right, key);
2958	}
2959
2960	/*
2961	 * Find the left block number by looking in the buffer.
2962	 * Adjust sibling pointers.
2963	 */
2964	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2965	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2966	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2967	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2968
2969	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2970	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2971
2972	/*
2973	 * If there's a block to the new block's right, make that block
2974	 * point back to right instead of to left.
2975	 */
2976	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2977		error = xfs_btree_read_buf_block(cur, &rrptr,
2978							0, &rrblock, &rrbp);
2979		if (error)
2980			goto error0;
2981		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2982		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2983	}
2984
2985	/* Update the parent high keys of the left block, if needed. */
2986	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2987		error = xfs_btree_update_keys(cur, level);
2988		if (error)
2989			goto error0;
2990	}
2991
2992	/*
2993	 * If the cursor is really in the right block, move it there.
2994	 * If it's just pointing past the last entry in left, then we'll
2995	 * insert there, so don't change anything in that case.
2996	 */
2997	if (cur->bc_levels[level].ptr > lrecs + 1) {
2998		xfs_btree_setbuf(cur, level, rbp);
2999		cur->bc_levels[level].ptr -= lrecs;
3000	}
3001	/*
3002	 * If there are more levels, we'll need another cursor which refers
3003	 * the right block, no matter where this cursor was.
3004	 */
3005	if (level + 1 < cur->bc_nlevels) {
3006		error = xfs_btree_dup_cursor(cur, curp);
3007		if (error)
3008			goto error0;
3009		(*curp)->bc_levels[level + 1].ptr++;
3010	}
3011	*ptrp = rptr;
3012	*stat = 1;
3013	return 0;
3014out0:
3015	*stat = 0;
3016	return 0;
3017
3018error0:
3019	return error;
3020}
3021
3022#ifdef __KERNEL__
3023struct xfs_btree_split_args {
3024	struct xfs_btree_cur	*cur;
3025	int			level;
3026	union xfs_btree_ptr	*ptrp;
3027	union xfs_btree_key	*key;
3028	struct xfs_btree_cur	**curp;
3029	int			*stat;		/* success/failure */
3030	int			result;
3031	bool			kswapd;	/* allocation in kswapd context */
3032	struct completion	*done;
3033	struct work_struct	work;
3034};
3035
3036/*
3037 * Stack switching interfaces for allocation
3038 */
3039static void
3040xfs_btree_split_worker(
3041	struct work_struct	*work)
3042{
3043	struct xfs_btree_split_args	*args = container_of(work,
3044						struct xfs_btree_split_args, work);
3045	unsigned long		pflags;
3046	unsigned long		new_pflags = 0;
3047
3048	/*
3049	 * we are in a transaction context here, but may also be doing work
3050	 * in kswapd context, and hence we may need to inherit that state
3051	 * temporarily to ensure that we don't block waiting for memory reclaim
3052	 * in any way.
3053	 */
3054	if (args->kswapd)
3055		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3056
3057	current_set_flags_nested(&pflags, new_pflags);
3058	xfs_trans_set_context(args->cur->bc_tp);
3059
3060	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3061					 args->key, args->curp, args->stat);
3062
3063	xfs_trans_clear_context(args->cur->bc_tp);
3064	current_restore_flags_nested(&pflags, new_pflags);
3065
3066	/*
3067	 * Do not access args after complete() has run here. We don't own args
3068	 * and the owner may run and free args before we return here.
3069	 */
3070	complete(args->done);
3071
3072}
3073
3074/*
3075 * BMBT split requests often come in with little stack to work on so we push
3076 * them off to a worker thread so there is lots of stack to use. For the other
3077 * btree types, just call directly to avoid the context switch overhead here.
3078 *
3079 * Care must be taken here - the work queue rescuer thread introduces potential
3080 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3081 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3082 * lock an AGF that is already locked by a task queued to run by the rescuer,
3083 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3084 * release it until the current thread it is running gains the lock.
3085 *
3086 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3087 * already locked to allocate from. The only place that doesn't hold an AGF
3088 * locked is unwritten extent conversion at IO completion, but that has already
3089 * been offloaded to a worker thread and hence has no stack consumption issues
3090 * we have to worry about.
3091 */
3092STATIC int					/* error */
3093xfs_btree_split(
3094	struct xfs_btree_cur	*cur,
3095	int			level,
3096	union xfs_btree_ptr	*ptrp,
3097	union xfs_btree_key	*key,
3098	struct xfs_btree_cur	**curp,
3099	int			*stat)		/* success/failure */
3100{
3101	struct xfs_btree_split_args	args;
3102	DECLARE_COMPLETION_ONSTACK(done);
3103
3104	if (!xfs_btree_is_bmap(cur->bc_ops) ||
3105	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3106		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3107
3108	args.cur = cur;
3109	args.level = level;
3110	args.ptrp = ptrp;
3111	args.key = key;
3112	args.curp = curp;
3113	args.stat = stat;
3114	args.done = &done;
3115	args.kswapd = current_is_kswapd();
3116	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3117	queue_work(xfs_alloc_wq, &args.work);
3118	wait_for_completion(&done);
3119	destroy_work_on_stack(&args.work);
3120	return args.result;
3121}
3122#else
3123#define xfs_btree_split	__xfs_btree_split
3124#endif /* __KERNEL__ */
3125
 
3126/*
3127 * Copy the old inode root contents into a real block and make the
3128 * broot point to it.
3129 */
3130int						/* error */
3131xfs_btree_new_iroot(
3132	struct xfs_btree_cur	*cur,		/* btree cursor */
3133	int			*logflags,	/* logging flags for inode */
3134	int			*stat)		/* return status - 0 fail */
3135{
3136	struct xfs_buf		*cbp;		/* buffer for cblock */
3137	struct xfs_btree_block	*block;		/* btree block */
3138	struct xfs_btree_block	*cblock;	/* child btree block */
3139	union xfs_btree_key	*ckp;		/* child key pointer */
3140	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
3141	union xfs_btree_key	*kp;		/* pointer to btree key */
3142	union xfs_btree_ptr	*pp;		/* pointer to block addr */
3143	union xfs_btree_ptr	nptr;		/* new block addr */
3144	int			level;		/* btree level */
3145	int			error;		/* error return code */
3146	int			i;		/* loop counter */
3147
3148	XFS_BTREE_STATS_INC(cur, newroot);
3149
3150	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3151
3152	level = cur->bc_nlevels - 1;
3153
3154	block = xfs_btree_get_iroot(cur);
3155	pp = xfs_btree_ptr_addr(cur, 1, block);
3156
3157	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3158	error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3159	if (error)
3160		goto error0;
3161	if (*stat == 0)
3162		return 0;
3163
3164	XFS_BTREE_STATS_INC(cur, alloc);
3165
3166	/* Copy the root into a real block. */
3167	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3168	if (error)
3169		goto error0;
3170
3171	/*
3172	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3173	 * In that case have to also ensure the blkno remains correct
3174	 */
3175	memcpy(cblock, block, xfs_btree_block_len(cur));
3176	if (xfs_has_crc(cur->bc_mp)) {
3177		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3178		if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3179			cblock->bb_u.l.bb_blkno = bno;
3180		else
3181			cblock->bb_u.s.bb_blkno = bno;
3182	}
3183
3184	be16_add_cpu(&block->bb_level, 1);
3185	xfs_btree_set_numrecs(block, 1);
3186	cur->bc_nlevels++;
3187	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3188	cur->bc_levels[level + 1].ptr = 1;
3189
3190	kp = xfs_btree_key_addr(cur, 1, block);
3191	ckp = xfs_btree_key_addr(cur, 1, cblock);
3192	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3193
3194	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3195	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3196		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3197		if (error)
3198			goto error0;
3199	}
3200
3201	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3202
3203	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3204	if (error)
3205		goto error0;
3206
3207	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3208
3209	xfs_iroot_realloc(cur->bc_ino.ip,
3210			  1 - xfs_btree_get_numrecs(cblock),
3211			  cur->bc_ino.whichfork);
3212
3213	xfs_btree_setbuf(cur, level, cbp);
3214
3215	/*
3216	 * Do all this logging at the end so that
3217	 * the root is at the right level.
3218	 */
3219	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3220	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3221	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3222
3223	*logflags |=
3224		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3225	*stat = 1;
3226	return 0;
3227error0:
3228	return error;
3229}
3230
3231static void
3232xfs_btree_set_root(
3233	struct xfs_btree_cur		*cur,
3234	const union xfs_btree_ptr	*ptr,
3235	int				inc)
3236{
3237	if (cur->bc_flags & XFS_BTREE_STAGING) {
3238		/* Update the btree root information for a per-AG fake root. */
3239		cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3240		cur->bc_ag.afake->af_levels += inc;
3241	} else {
3242		cur->bc_ops->set_root(cur, ptr, inc);
3243	}
3244}
3245
3246/*
3247 * Allocate a new root block, fill it in.
3248 */
3249STATIC int				/* error */
3250xfs_btree_new_root(
3251	struct xfs_btree_cur	*cur,	/* btree cursor */
3252	int			*stat)	/* success/failure */
3253{
3254	struct xfs_btree_block	*block;	/* one half of the old root block */
3255	struct xfs_buf		*bp;	/* buffer containing block */
3256	int			error;	/* error return value */
3257	struct xfs_buf		*lbp;	/* left buffer pointer */
3258	struct xfs_btree_block	*left;	/* left btree block */
3259	struct xfs_buf		*nbp;	/* new (root) buffer */
3260	struct xfs_btree_block	*new;	/* new (root) btree block */
3261	int			nptr;	/* new value for key index, 1 or 2 */
3262	struct xfs_buf		*rbp;	/* right buffer pointer */
3263	struct xfs_btree_block	*right;	/* right btree block */
3264	union xfs_btree_ptr	rptr;
3265	union xfs_btree_ptr	lptr;
3266
3267	XFS_BTREE_STATS_INC(cur, newroot);
3268
3269	/* initialise our start point from the cursor */
3270	xfs_btree_init_ptr_from_cur(cur, &rptr);
3271
3272	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3273	error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3274	if (error)
3275		goto error0;
3276	if (*stat == 0)
3277		goto out0;
3278	XFS_BTREE_STATS_INC(cur, alloc);
3279
3280	/* Set up the new block. */
3281	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3282	if (error)
3283		goto error0;
3284
3285	/* Set the root in the holding structure  increasing the level by 1. */
3286	xfs_btree_set_root(cur, &lptr, 1);
3287
3288	/*
3289	 * At the previous root level there are now two blocks: the old root,
3290	 * and the new block generated when it was split.  We don't know which
3291	 * one the cursor is pointing at, so we set up variables "left" and
3292	 * "right" for each case.
3293	 */
3294	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3295
3296#ifdef DEBUG
3297	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3298	if (error)
3299		goto error0;
3300#endif
3301
3302	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3303	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3304		/* Our block is left, pick up the right block. */
3305		lbp = bp;
3306		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3307		left = block;
3308		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3309		if (error)
3310			goto error0;
3311		bp = rbp;
3312		nptr = 1;
3313	} else {
3314		/* Our block is right, pick up the left block. */
3315		rbp = bp;
3316		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3317		right = block;
3318		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3319		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3320		if (error)
3321			goto error0;
3322		bp = lbp;
3323		nptr = 2;
3324	}
3325
3326	/* Fill in the new block's btree header and log it. */
3327	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3328	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3329	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3330			!xfs_btree_ptr_is_null(cur, &rptr));
3331
3332	/* Fill in the key data in the new root. */
3333	if (xfs_btree_get_level(left) > 0) {
3334		/*
3335		 * Get the keys for the left block's keys and put them directly
3336		 * in the parent block.  Do the same for the right block.
3337		 */
3338		xfs_btree_get_node_keys(cur, left,
3339				xfs_btree_key_addr(cur, 1, new));
3340		xfs_btree_get_node_keys(cur, right,
3341				xfs_btree_key_addr(cur, 2, new));
3342	} else {
3343		/*
3344		 * Get the keys for the left block's records and put them
3345		 * directly in the parent block.  Do the same for the right
3346		 * block.
3347		 */
3348		xfs_btree_get_leaf_keys(cur, left,
3349			xfs_btree_key_addr(cur, 1, new));
3350		xfs_btree_get_leaf_keys(cur, right,
3351			xfs_btree_key_addr(cur, 2, new));
3352	}
3353	xfs_btree_log_keys(cur, nbp, 1, 2);
3354
3355	/* Fill in the pointer data in the new root. */
3356	xfs_btree_copy_ptrs(cur,
3357		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3358	xfs_btree_copy_ptrs(cur,
3359		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3360	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3361
3362	/* Fix up the cursor. */
3363	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3364	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3365	cur->bc_nlevels++;
3366	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3367	*stat = 1;
3368	return 0;
3369error0:
3370	return error;
3371out0:
3372	*stat = 0;
3373	return 0;
3374}
3375
3376STATIC int
3377xfs_btree_make_block_unfull(
3378	struct xfs_btree_cur	*cur,	/* btree cursor */
3379	int			level,	/* btree level */
3380	int			numrecs,/* # of recs in block */
3381	int			*oindex,/* old tree index */
3382	int			*index,	/* new tree index */
3383	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3384	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3385	union xfs_btree_key	*key,	/* key of new block */
3386	int			*stat)
3387{
3388	int			error = 0;
3389
3390	if (xfs_btree_at_iroot(cur, level)) {
 
3391		struct xfs_inode *ip = cur->bc_ino.ip;
3392
3393		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3394			/* A root block that can be made bigger. */
3395			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3396			*stat = 1;
3397		} else {
3398			/* A root block that needs replacing */
3399			int	logflags = 0;
3400
3401			error = xfs_btree_new_iroot(cur, &logflags, stat);
3402			if (error || *stat == 0)
3403				return error;
3404
3405			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3406		}
3407
3408		return 0;
3409	}
3410
3411	/* First, try shifting an entry to the right neighbor. */
3412	error = xfs_btree_rshift(cur, level, stat);
3413	if (error || *stat)
3414		return error;
3415
3416	/* Next, try shifting an entry to the left neighbor. */
3417	error = xfs_btree_lshift(cur, level, stat);
3418	if (error)
3419		return error;
3420
3421	if (*stat) {
3422		*oindex = *index = cur->bc_levels[level].ptr;
3423		return 0;
3424	}
3425
3426	/*
3427	 * Next, try splitting the current block in half.
3428	 *
3429	 * If this works we have to re-set our variables because we
3430	 * could be in a different block now.
3431	 */
3432	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3433	if (error || *stat == 0)
3434		return error;
3435
3436
3437	*index = cur->bc_levels[level].ptr;
3438	return 0;
3439}
3440
3441/*
3442 * Insert one record/level.  Return information to the caller
3443 * allowing the next level up to proceed if necessary.
3444 */
3445STATIC int
3446xfs_btree_insrec(
3447	struct xfs_btree_cur	*cur,	/* btree cursor */
3448	int			level,	/* level to insert record at */
3449	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3450	union xfs_btree_rec	*rec,	/* record to insert */
3451	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3452	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3453	int			*stat)	/* success/failure */
3454{
3455	struct xfs_btree_block	*block;	/* btree block */
3456	struct xfs_buf		*bp;	/* buffer for block */
3457	union xfs_btree_ptr	nptr;	/* new block ptr */
3458	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3459	union xfs_btree_key	nkey;	/* new block key */
3460	union xfs_btree_key	*lkey;
3461	int			optr;	/* old key/record index */
3462	int			ptr;	/* key/record index */
3463	int			numrecs;/* number of records */
3464	int			error;	/* error return value */
3465	int			i;
3466	xfs_daddr_t		old_bn;
3467
3468	ncur = NULL;
3469	lkey = &nkey;
3470
3471	/*
3472	 * If we have an external root pointer, and we've made it to the
3473	 * root level, allocate a new root block and we're done.
3474	 */
3475	if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3476	    level >= cur->bc_nlevels) {
3477		error = xfs_btree_new_root(cur, stat);
3478		xfs_btree_set_ptr_null(cur, ptrp);
3479
3480		return error;
3481	}
3482
3483	/* If we're off the left edge, return failure. */
3484	ptr = cur->bc_levels[level].ptr;
3485	if (ptr == 0) {
3486		*stat = 0;
3487		return 0;
3488	}
3489
3490	optr = ptr;
3491
3492	XFS_BTREE_STATS_INC(cur, insrec);
3493
3494	/* Get pointers to the btree buffer and block. */
3495	block = xfs_btree_get_block(cur, level, &bp);
3496	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3497	numrecs = xfs_btree_get_numrecs(block);
3498
3499#ifdef DEBUG
3500	error = xfs_btree_check_block(cur, block, level, bp);
3501	if (error)
3502		goto error0;
3503
3504	/* Check that the new entry is being inserted in the right place. */
3505	if (ptr <= numrecs) {
3506		if (level == 0) {
3507			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3508				xfs_btree_rec_addr(cur, ptr, block)));
3509		} else {
3510			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3511				xfs_btree_key_addr(cur, ptr, block)));
3512		}
3513	}
3514#endif
3515
3516	/*
3517	 * If the block is full, we can't insert the new entry until we
3518	 * make the block un-full.
3519	 */
3520	xfs_btree_set_ptr_null(cur, &nptr);
3521	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3522		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3523					&optr, &ptr, &nptr, &ncur, lkey, stat);
3524		if (error || *stat == 0)
3525			goto error0;
3526	}
3527
3528	/*
3529	 * The current block may have changed if the block was
3530	 * previously full and we have just made space in it.
3531	 */
3532	block = xfs_btree_get_block(cur, level, &bp);
3533	numrecs = xfs_btree_get_numrecs(block);
3534
3535#ifdef DEBUG
3536	error = xfs_btree_check_block(cur, block, level, bp);
3537	if (error)
3538		goto error0;
3539#endif
3540
3541	/*
3542	 * At this point we know there's room for our new entry in the block
3543	 * we're pointing at.
3544	 */
3545	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3546
3547	if (level > 0) {
3548		/* It's a nonleaf. make a hole in the keys and ptrs */
3549		union xfs_btree_key	*kp;
3550		union xfs_btree_ptr	*pp;
3551
3552		kp = xfs_btree_key_addr(cur, ptr, block);
3553		pp = xfs_btree_ptr_addr(cur, ptr, block);
3554
3555		for (i = numrecs - ptr; i >= 0; i--) {
3556			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3557			if (error)
3558				goto error0;
3559		}
3560
3561		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3562		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3563
3564		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3565		if (error)
3566			goto error0;
3567
3568		/* Now put the new data in, bump numrecs and log it. */
3569		xfs_btree_copy_keys(cur, kp, key, 1);
3570		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3571		numrecs++;
3572		xfs_btree_set_numrecs(block, numrecs);
3573		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3574		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3575#ifdef DEBUG
3576		if (ptr < numrecs) {
3577			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3578				xfs_btree_key_addr(cur, ptr + 1, block)));
3579		}
3580#endif
3581	} else {
3582		/* It's a leaf. make a hole in the records */
3583		union xfs_btree_rec             *rp;
3584
3585		rp = xfs_btree_rec_addr(cur, ptr, block);
3586
3587		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3588
3589		/* Now put the new data in, bump numrecs and log it. */
3590		xfs_btree_copy_recs(cur, rp, rec, 1);
3591		xfs_btree_set_numrecs(block, ++numrecs);
3592		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3593#ifdef DEBUG
3594		if (ptr < numrecs) {
3595			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3596				xfs_btree_rec_addr(cur, ptr + 1, block)));
3597		}
3598#endif
3599	}
3600
3601	/* Log the new number of records in the btree header. */
3602	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3603
3604	/*
3605	 * If we just inserted into a new tree block, we have to
3606	 * recalculate nkey here because nkey is out of date.
3607	 *
3608	 * Otherwise we're just updating an existing block (having shoved
3609	 * some records into the new tree block), so use the regular key
3610	 * update mechanism.
3611	 */
3612	if (bp && xfs_buf_daddr(bp) != old_bn) {
3613		xfs_btree_get_keys(cur, block, lkey);
3614	} else if (xfs_btree_needs_key_update(cur, optr)) {
3615		error = xfs_btree_update_keys(cur, level);
3616		if (error)
3617			goto error0;
3618	}
3619
3620	/*
3621	 * If we are tracking the last record in the tree and
3622	 * we are at the far right edge of the tree, update it.
3623	 */
3624	if (xfs_btree_is_lastrec(cur, block, level)) {
3625		cur->bc_ops->update_lastrec(cur, block, rec,
3626					    ptr, LASTREC_INSREC);
3627	}
3628
3629	/*
3630	 * Return the new block number, if any.
3631	 * If there is one, give back a record value and a cursor too.
3632	 */
3633	*ptrp = nptr;
3634	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3635		xfs_btree_copy_keys(cur, key, lkey, 1);
3636		*curp = ncur;
3637	}
3638
3639	*stat = 1;
3640	return 0;
3641
3642error0:
3643	if (ncur)
3644		xfs_btree_del_cursor(ncur, error);
3645	return error;
3646}
3647
3648/*
3649 * Insert the record at the point referenced by cur.
3650 *
3651 * A multi-level split of the tree on insert will invalidate the original
3652 * cursor.  All callers of this function should assume that the cursor is
3653 * no longer valid and revalidate it.
3654 */
3655int
3656xfs_btree_insert(
3657	struct xfs_btree_cur	*cur,
3658	int			*stat)
3659{
3660	int			error;	/* error return value */
3661	int			i;	/* result value, 0 for failure */
3662	int			level;	/* current level number in btree */
3663	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3664	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3665	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3666	union xfs_btree_key	bkey;	/* key of block to insert */
3667	union xfs_btree_key	*key;
3668	union xfs_btree_rec	rec;	/* record to insert */
3669
3670	level = 0;
3671	ncur = NULL;
3672	pcur = cur;
3673	key = &bkey;
3674
3675	xfs_btree_set_ptr_null(cur, &nptr);
3676
3677	/* Make a key out of the record data to be inserted, and save it. */
3678	cur->bc_ops->init_rec_from_cur(cur, &rec);
3679	cur->bc_ops->init_key_from_rec(key, &rec);
3680
3681	/*
3682	 * Loop going up the tree, starting at the leaf level.
3683	 * Stop when we don't get a split block, that must mean that
3684	 * the insert is finished with this level.
3685	 */
3686	do {
3687		/*
3688		 * Insert nrec/nptr into this level of the tree.
3689		 * Note if we fail, nptr will be null.
3690		 */
3691		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3692				&ncur, &i);
3693		if (error) {
3694			if (pcur != cur)
3695				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3696			goto error0;
3697		}
3698
3699		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3700			xfs_btree_mark_sick(cur);
3701			error = -EFSCORRUPTED;
3702			goto error0;
3703		}
3704		level++;
3705
3706		/*
3707		 * See if the cursor we just used is trash.
3708		 * Can't trash the caller's cursor, but otherwise we should
3709		 * if ncur is a new cursor or we're about to be done.
3710		 */
3711		if (pcur != cur &&
3712		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3713			/* Save the state from the cursor before we trash it */
3714			if (cur->bc_ops->update_cursor &&
3715			    !(cur->bc_flags & XFS_BTREE_STAGING))
3716				cur->bc_ops->update_cursor(pcur, cur);
3717			cur->bc_nlevels = pcur->bc_nlevels;
3718			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3719		}
3720		/* If we got a new cursor, switch to it. */
3721		if (ncur) {
3722			pcur = ncur;
3723			ncur = NULL;
3724		}
3725	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3726
3727	*stat = i;
3728	return 0;
3729error0:
3730	return error;
3731}
3732
3733/*
3734 * Try to merge a non-leaf block back into the inode root.
3735 *
3736 * Note: the killroot names comes from the fact that we're effectively
3737 * killing the old root block.  But because we can't just delete the
3738 * inode we have to copy the single block it was pointing to into the
3739 * inode.
3740 */
3741STATIC int
3742xfs_btree_kill_iroot(
3743	struct xfs_btree_cur	*cur)
3744{
3745	int			whichfork = cur->bc_ino.whichfork;
3746	struct xfs_inode	*ip = cur->bc_ino.ip;
3747	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3748	struct xfs_btree_block	*block;
3749	struct xfs_btree_block	*cblock;
3750	union xfs_btree_key	*kp;
3751	union xfs_btree_key	*ckp;
3752	union xfs_btree_ptr	*pp;
3753	union xfs_btree_ptr	*cpp;
3754	struct xfs_buf		*cbp;
3755	int			level;
3756	int			index;
3757	int			numrecs;
3758	int			error;
3759#ifdef DEBUG
3760	union xfs_btree_ptr	ptr;
3761#endif
3762	int			i;
3763
3764	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3765	ASSERT(cur->bc_nlevels > 1);
3766
3767	/*
3768	 * Don't deal with the root block needs to be a leaf case.
3769	 * We're just going to turn the thing back into extents anyway.
3770	 */
3771	level = cur->bc_nlevels - 1;
3772	if (level == 1)
3773		goto out0;
3774
3775	/*
3776	 * Give up if the root has multiple children.
3777	 */
3778	block = xfs_btree_get_iroot(cur);
3779	if (xfs_btree_get_numrecs(block) != 1)
3780		goto out0;
3781
3782	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3783	numrecs = xfs_btree_get_numrecs(cblock);
3784
3785	/*
3786	 * Only do this if the next level will fit.
3787	 * Then the data must be copied up to the inode,
3788	 * instead of freeing the root you free the next level.
3789	 */
3790	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3791		goto out0;
3792
3793	XFS_BTREE_STATS_INC(cur, killroot);
3794
3795#ifdef DEBUG
3796	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3797	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3798	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3799	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3800#endif
3801
3802	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3803	if (index) {
3804		xfs_iroot_realloc(cur->bc_ino.ip, index,
3805				  cur->bc_ino.whichfork);
3806		block = ifp->if_broot;
3807	}
3808
3809	be16_add_cpu(&block->bb_numrecs, index);
3810	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3811
3812	kp = xfs_btree_key_addr(cur, 1, block);
3813	ckp = xfs_btree_key_addr(cur, 1, cblock);
3814	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3815
3816	pp = xfs_btree_ptr_addr(cur, 1, block);
3817	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3818
3819	for (i = 0; i < numrecs; i++) {
3820		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3821		if (error)
3822			return error;
3823	}
3824
3825	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3826
3827	error = xfs_btree_free_block(cur, cbp);
3828	if (error)
3829		return error;
3830
3831	cur->bc_levels[level - 1].bp = NULL;
3832	be16_add_cpu(&block->bb_level, -1);
3833	xfs_trans_log_inode(cur->bc_tp, ip,
3834		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3835	cur->bc_nlevels--;
3836out0:
3837	return 0;
3838}
3839
3840/*
3841 * Kill the current root node, and replace it with it's only child node.
3842 */
3843STATIC int
3844xfs_btree_kill_root(
3845	struct xfs_btree_cur	*cur,
3846	struct xfs_buf		*bp,
3847	int			level,
3848	union xfs_btree_ptr	*newroot)
3849{
3850	int			error;
3851
3852	XFS_BTREE_STATS_INC(cur, killroot);
3853
3854	/*
3855	 * Update the root pointer, decreasing the level by 1 and then
3856	 * free the old root.
3857	 */
3858	xfs_btree_set_root(cur, newroot, -1);
3859
3860	error = xfs_btree_free_block(cur, bp);
3861	if (error)
3862		return error;
3863
3864	cur->bc_levels[level].bp = NULL;
3865	cur->bc_levels[level].ra = 0;
3866	cur->bc_nlevels--;
3867
3868	return 0;
3869}
3870
3871STATIC int
3872xfs_btree_dec_cursor(
3873	struct xfs_btree_cur	*cur,
3874	int			level,
3875	int			*stat)
3876{
3877	int			error;
3878	int			i;
3879
3880	if (level > 0) {
3881		error = xfs_btree_decrement(cur, level, &i);
3882		if (error)
3883			return error;
3884	}
3885
3886	*stat = 1;
3887	return 0;
3888}
3889
3890/*
3891 * Single level of the btree record deletion routine.
3892 * Delete record pointed to by cur/level.
3893 * Remove the record from its block then rebalance the tree.
3894 * Return 0 for error, 1 for done, 2 to go on to the next level.
3895 */
3896STATIC int					/* error */
3897xfs_btree_delrec(
3898	struct xfs_btree_cur	*cur,		/* btree cursor */
3899	int			level,		/* level removing record from */
3900	int			*stat)		/* fail/done/go-on */
3901{
3902	struct xfs_btree_block	*block;		/* btree block */
3903	union xfs_btree_ptr	cptr;		/* current block ptr */
3904	struct xfs_buf		*bp;		/* buffer for block */
3905	int			error;		/* error return value */
3906	int			i;		/* loop counter */
3907	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3908	struct xfs_buf		*lbp;		/* left buffer pointer */
3909	struct xfs_btree_block	*left;		/* left btree block */
3910	int			lrecs = 0;	/* left record count */
3911	int			ptr;		/* key/record index */
3912	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3913	struct xfs_buf		*rbp;		/* right buffer pointer */
3914	struct xfs_btree_block	*right;		/* right btree block */
3915	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3916	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3917	int			rrecs = 0;	/* right record count */
3918	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3919	int			numrecs;	/* temporary numrec count */
3920
3921	tcur = NULL;
3922
3923	/* Get the index of the entry being deleted, check for nothing there. */
3924	ptr = cur->bc_levels[level].ptr;
3925	if (ptr == 0) {
3926		*stat = 0;
3927		return 0;
3928	}
3929
3930	/* Get the buffer & block containing the record or key/ptr. */
3931	block = xfs_btree_get_block(cur, level, &bp);
3932	numrecs = xfs_btree_get_numrecs(block);
3933
3934#ifdef DEBUG
3935	error = xfs_btree_check_block(cur, block, level, bp);
3936	if (error)
3937		goto error0;
3938#endif
3939
3940	/* Fail if we're off the end of the block. */
3941	if (ptr > numrecs) {
3942		*stat = 0;
3943		return 0;
3944	}
3945
3946	XFS_BTREE_STATS_INC(cur, delrec);
3947	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3948
3949	/* Excise the entries being deleted. */
3950	if (level > 0) {
3951		/* It's a nonleaf. operate on keys and ptrs */
3952		union xfs_btree_key	*lkp;
3953		union xfs_btree_ptr	*lpp;
3954
3955		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3956		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3957
3958		for (i = 0; i < numrecs - ptr; i++) {
3959			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3960			if (error)
3961				goto error0;
3962		}
3963
3964		if (ptr < numrecs) {
3965			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3966			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3967			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3968			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3969		}
3970	} else {
3971		/* It's a leaf. operate on records */
3972		if (ptr < numrecs) {
3973			xfs_btree_shift_recs(cur,
3974				xfs_btree_rec_addr(cur, ptr + 1, block),
3975				-1, numrecs - ptr);
3976			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3977		}
3978	}
3979
3980	/*
3981	 * Decrement and log the number of entries in the block.
3982	 */
3983	xfs_btree_set_numrecs(block, --numrecs);
3984	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3985
3986	/*
3987	 * If we are tracking the last record in the tree and
3988	 * we are at the far right edge of the tree, update it.
3989	 */
3990	if (xfs_btree_is_lastrec(cur, block, level)) {
3991		cur->bc_ops->update_lastrec(cur, block, NULL,
3992					    ptr, LASTREC_DELREC);
3993	}
3994
3995	/*
3996	 * We're at the root level.  First, shrink the root block in-memory.
3997	 * Try to get rid of the next level down.  If we can't then there's
3998	 * nothing left to do.
3999	 */
4000	if (xfs_btree_at_iroot(cur, level)) {
4001		xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
 
 
4002
4003		error = xfs_btree_kill_iroot(cur);
4004		if (error)
4005			goto error0;
4006
4007		error = xfs_btree_dec_cursor(cur, level, stat);
4008		if (error)
4009			goto error0;
4010		*stat = 1;
4011		return 0;
4012	}
4013
4014	/*
4015	 * If this is the root level, and there's only one entry left, and it's
4016	 * NOT the leaf level, then we can get rid of this level.
4017	 */
4018	if (level == cur->bc_nlevels - 1) {
4019		if (numrecs == 1 && level > 0) {
4020			union xfs_btree_ptr	*pp;
4021			/*
4022			 * pp is still set to the first pointer in the block.
4023			 * Make it the new root of the btree.
4024			 */
4025			pp = xfs_btree_ptr_addr(cur, 1, block);
4026			error = xfs_btree_kill_root(cur, bp, level, pp);
4027			if (error)
4028				goto error0;
4029		} else if (level > 0) {
4030			error = xfs_btree_dec_cursor(cur, level, stat);
4031			if (error)
4032				goto error0;
4033		}
4034		*stat = 1;
4035		return 0;
4036	}
4037
4038	/*
4039	 * If we deleted the leftmost entry in the block, update the
4040	 * key values above us in the tree.
4041	 */
4042	if (xfs_btree_needs_key_update(cur, ptr)) {
4043		error = xfs_btree_update_keys(cur, level);
4044		if (error)
4045			goto error0;
4046	}
4047
4048	/*
4049	 * If the number of records remaining in the block is at least
4050	 * the minimum, we're done.
4051	 */
4052	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4053		error = xfs_btree_dec_cursor(cur, level, stat);
4054		if (error)
4055			goto error0;
4056		return 0;
4057	}
4058
4059	/*
4060	 * Otherwise, we have to move some records around to keep the
4061	 * tree balanced.  Look at the left and right sibling blocks to
4062	 * see if we can re-balance by moving only one record.
4063	 */
4064	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4065	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4066
4067	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4068		/*
4069		 * One child of root, need to get a chance to copy its contents
4070		 * into the root and delete it. Can't go up to next level,
4071		 * there's nothing to delete there.
4072		 */
4073		if (xfs_btree_ptr_is_null(cur, &rptr) &&
4074		    xfs_btree_ptr_is_null(cur, &lptr) &&
4075		    level == cur->bc_nlevels - 2) {
4076			error = xfs_btree_kill_iroot(cur);
4077			if (!error)
4078				error = xfs_btree_dec_cursor(cur, level, stat);
4079			if (error)
4080				goto error0;
4081			return 0;
4082		}
4083	}
4084
4085	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4086	       !xfs_btree_ptr_is_null(cur, &lptr));
4087
4088	/*
4089	 * Duplicate the cursor so our btree manipulations here won't
4090	 * disrupt the next level up.
4091	 */
4092	error = xfs_btree_dup_cursor(cur, &tcur);
4093	if (error)
4094		goto error0;
4095
4096	/*
4097	 * If there's a right sibling, see if it's ok to shift an entry
4098	 * out of it.
4099	 */
4100	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4101		/*
4102		 * Move the temp cursor to the last entry in the next block.
4103		 * Actually any entry but the first would suffice.
4104		 */
4105		i = xfs_btree_lastrec(tcur, level);
4106		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4107			xfs_btree_mark_sick(cur);
4108			error = -EFSCORRUPTED;
4109			goto error0;
4110		}
4111
4112		error = xfs_btree_increment(tcur, level, &i);
4113		if (error)
4114			goto error0;
4115		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4116			xfs_btree_mark_sick(cur);
4117			error = -EFSCORRUPTED;
4118			goto error0;
4119		}
4120
4121		i = xfs_btree_lastrec(tcur, level);
4122		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4123			xfs_btree_mark_sick(cur);
4124			error = -EFSCORRUPTED;
4125			goto error0;
4126		}
4127
4128		/* Grab a pointer to the block. */
4129		right = xfs_btree_get_block(tcur, level, &rbp);
4130#ifdef DEBUG
4131		error = xfs_btree_check_block(tcur, right, level, rbp);
4132		if (error)
4133			goto error0;
4134#endif
4135		/* Grab the current block number, for future use. */
4136		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4137
4138		/*
4139		 * If right block is full enough so that removing one entry
4140		 * won't make it too empty, and left-shifting an entry out
4141		 * of right to us works, we're done.
4142		 */
4143		if (xfs_btree_get_numrecs(right) - 1 >=
4144		    cur->bc_ops->get_minrecs(tcur, level)) {
4145			error = xfs_btree_lshift(tcur, level, &i);
4146			if (error)
4147				goto error0;
4148			if (i) {
4149				ASSERT(xfs_btree_get_numrecs(block) >=
4150				       cur->bc_ops->get_minrecs(tcur, level));
4151
4152				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4153				tcur = NULL;
4154
4155				error = xfs_btree_dec_cursor(cur, level, stat);
4156				if (error)
4157					goto error0;
4158				return 0;
4159			}
4160		}
4161
4162		/*
4163		 * Otherwise, grab the number of records in right for
4164		 * future reference, and fix up the temp cursor to point
4165		 * to our block again (last record).
4166		 */
4167		rrecs = xfs_btree_get_numrecs(right);
4168		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4169			i = xfs_btree_firstrec(tcur, level);
4170			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4171				xfs_btree_mark_sick(cur);
4172				error = -EFSCORRUPTED;
4173				goto error0;
4174			}
4175
4176			error = xfs_btree_decrement(tcur, level, &i);
4177			if (error)
4178				goto error0;
4179			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4180				xfs_btree_mark_sick(cur);
4181				error = -EFSCORRUPTED;
4182				goto error0;
4183			}
4184		}
4185	}
4186
4187	/*
4188	 * If there's a left sibling, see if it's ok to shift an entry
4189	 * out of it.
4190	 */
4191	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4192		/*
4193		 * Move the temp cursor to the first entry in the
4194		 * previous block.
4195		 */
4196		i = xfs_btree_firstrec(tcur, level);
4197		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4198			xfs_btree_mark_sick(cur);
4199			error = -EFSCORRUPTED;
4200			goto error0;
4201		}
4202
4203		error = xfs_btree_decrement(tcur, level, &i);
4204		if (error)
4205			goto error0;
4206		i = xfs_btree_firstrec(tcur, level);
4207		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4208			xfs_btree_mark_sick(cur);
4209			error = -EFSCORRUPTED;
4210			goto error0;
4211		}
4212
4213		/* Grab a pointer to the block. */
4214		left = xfs_btree_get_block(tcur, level, &lbp);
4215#ifdef DEBUG
4216		error = xfs_btree_check_block(cur, left, level, lbp);
4217		if (error)
4218			goto error0;
4219#endif
4220		/* Grab the current block number, for future use. */
4221		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4222
4223		/*
4224		 * If left block is full enough so that removing one entry
4225		 * won't make it too empty, and right-shifting an entry out
4226		 * of left to us works, we're done.
4227		 */
4228		if (xfs_btree_get_numrecs(left) - 1 >=
4229		    cur->bc_ops->get_minrecs(tcur, level)) {
4230			error = xfs_btree_rshift(tcur, level, &i);
4231			if (error)
4232				goto error0;
4233			if (i) {
4234				ASSERT(xfs_btree_get_numrecs(block) >=
4235				       cur->bc_ops->get_minrecs(tcur, level));
4236				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4237				tcur = NULL;
4238				if (level == 0)
4239					cur->bc_levels[0].ptr++;
4240
4241				*stat = 1;
4242				return 0;
4243			}
4244		}
4245
4246		/*
4247		 * Otherwise, grab the number of records in right for
4248		 * future reference.
4249		 */
4250		lrecs = xfs_btree_get_numrecs(left);
4251	}
4252
4253	/* Delete the temp cursor, we're done with it. */
4254	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4255	tcur = NULL;
4256
4257	/* If here, we need to do a join to keep the tree balanced. */
4258	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4259
4260	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4261	    lrecs + xfs_btree_get_numrecs(block) <=
4262			cur->bc_ops->get_maxrecs(cur, level)) {
4263		/*
4264		 * Set "right" to be the starting block,
4265		 * "left" to be the left neighbor.
4266		 */
4267		rptr = cptr;
4268		right = block;
4269		rbp = bp;
4270		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4271		if (error)
4272			goto error0;
4273
4274	/*
4275	 * If that won't work, see if we can join with the right neighbor block.
4276	 */
4277	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4278		   rrecs + xfs_btree_get_numrecs(block) <=
4279			cur->bc_ops->get_maxrecs(cur, level)) {
4280		/*
4281		 * Set "left" to be the starting block,
4282		 * "right" to be the right neighbor.
4283		 */
4284		lptr = cptr;
4285		left = block;
4286		lbp = bp;
4287		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4288		if (error)
4289			goto error0;
4290
4291	/*
4292	 * Otherwise, we can't fix the imbalance.
4293	 * Just return.  This is probably a logic error, but it's not fatal.
4294	 */
4295	} else {
4296		error = xfs_btree_dec_cursor(cur, level, stat);
4297		if (error)
4298			goto error0;
4299		return 0;
4300	}
4301
4302	rrecs = xfs_btree_get_numrecs(right);
4303	lrecs = xfs_btree_get_numrecs(left);
4304
4305	/*
4306	 * We're now going to join "left" and "right" by moving all the stuff
4307	 * in "right" to "left" and deleting "right".
4308	 */
4309	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4310	if (level > 0) {
4311		/* It's a non-leaf.  Move keys and pointers. */
4312		union xfs_btree_key	*lkp;	/* left btree key */
4313		union xfs_btree_ptr	*lpp;	/* left address pointer */
4314		union xfs_btree_key	*rkp;	/* right btree key */
4315		union xfs_btree_ptr	*rpp;	/* right address pointer */
4316
4317		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4318		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4319		rkp = xfs_btree_key_addr(cur, 1, right);
4320		rpp = xfs_btree_ptr_addr(cur, 1, right);
4321
4322		for (i = 1; i < rrecs; i++) {
4323			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4324			if (error)
4325				goto error0;
4326		}
4327
4328		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4329		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4330
4331		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4332		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4333	} else {
4334		/* It's a leaf.  Move records.  */
4335		union xfs_btree_rec	*lrp;	/* left record pointer */
4336		union xfs_btree_rec	*rrp;	/* right record pointer */
4337
4338		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4339		rrp = xfs_btree_rec_addr(cur, 1, right);
4340
4341		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4342		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4343	}
4344
4345	XFS_BTREE_STATS_INC(cur, join);
4346
4347	/*
4348	 * Fix up the number of records and right block pointer in the
4349	 * surviving block, and log it.
4350	 */
4351	xfs_btree_set_numrecs(left, lrecs + rrecs);
4352	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4353	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4354	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4355
4356	/* If there is a right sibling, point it to the remaining block. */
4357	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4358	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4359		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4360		if (error)
4361			goto error0;
4362		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4363		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4364	}
4365
4366	/* Free the deleted block. */
4367	error = xfs_btree_free_block(cur, rbp);
4368	if (error)
4369		goto error0;
4370
4371	/*
4372	 * If we joined with the left neighbor, set the buffer in the
4373	 * cursor to the left block, and fix up the index.
4374	 */
4375	if (bp != lbp) {
4376		cur->bc_levels[level].bp = lbp;
4377		cur->bc_levels[level].ptr += lrecs;
4378		cur->bc_levels[level].ra = 0;
4379	}
4380	/*
4381	 * If we joined with the right neighbor and there's a level above
4382	 * us, increment the cursor at that level.
4383	 */
4384	else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4385		 level + 1 < cur->bc_nlevels) {
4386		error = xfs_btree_increment(cur, level + 1, &i);
4387		if (error)
4388			goto error0;
4389	}
4390
4391	/*
4392	 * Readjust the ptr at this level if it's not a leaf, since it's
4393	 * still pointing at the deletion point, which makes the cursor
4394	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4395	 * We can't use decrement because it would change the next level up.
4396	 */
4397	if (level > 0)
4398		cur->bc_levels[level].ptr--;
4399
4400	/*
4401	 * We combined blocks, so we have to update the parent keys if the
4402	 * btree supports overlapped intervals.  However,
4403	 * bc_levels[level + 1].ptr points to the old block so that the caller
4404	 * knows which record to delete.  Therefore, the caller must be savvy
4405	 * enough to call updkeys for us if we return stat == 2.  The other
4406	 * exit points from this function don't require deletions further up
4407	 * the tree, so they can call updkeys directly.
4408	 */
4409
4410	/* Return value means the next level up has something to do. */
4411	*stat = 2;
4412	return 0;
4413
4414error0:
4415	if (tcur)
4416		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4417	return error;
4418}
4419
4420/*
4421 * Delete the record pointed to by cur.
4422 * The cursor refers to the place where the record was (could be inserted)
4423 * when the operation returns.
4424 */
4425int					/* error */
4426xfs_btree_delete(
4427	struct xfs_btree_cur	*cur,
4428	int			*stat)	/* success/failure */
4429{
4430	int			error;	/* error return value */
4431	int			level;
4432	int			i;
4433	bool			joined = false;
4434
4435	/*
4436	 * Go up the tree, starting at leaf level.
4437	 *
4438	 * If 2 is returned then a join was done; go to the next level.
4439	 * Otherwise we are done.
4440	 */
4441	for (level = 0, i = 2; i == 2; level++) {
4442		error = xfs_btree_delrec(cur, level, &i);
4443		if (error)
4444			goto error0;
4445		if (i == 2)
4446			joined = true;
4447	}
4448
4449	/*
4450	 * If we combined blocks as part of deleting the record, delrec won't
4451	 * have updated the parent high keys so we have to do that here.
4452	 */
4453	if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4454		error = xfs_btree_updkeys_force(cur, 0);
4455		if (error)
4456			goto error0;
4457	}
4458
4459	if (i == 0) {
4460		for (level = 1; level < cur->bc_nlevels; level++) {
4461			if (cur->bc_levels[level].ptr == 0) {
4462				error = xfs_btree_decrement(cur, level, &i);
4463				if (error)
4464					goto error0;
4465				break;
4466			}
4467		}
4468	}
4469
4470	*stat = i;
4471	return 0;
4472error0:
4473	return error;
4474}
4475
4476/*
4477 * Get the data from the pointed-to record.
4478 */
4479int					/* error */
4480xfs_btree_get_rec(
4481	struct xfs_btree_cur	*cur,	/* btree cursor */
4482	union xfs_btree_rec	**recp,	/* output: btree record */
4483	int			*stat)	/* output: success/failure */
4484{
4485	struct xfs_btree_block	*block;	/* btree block */
4486	struct xfs_buf		*bp;	/* buffer pointer */
4487	int			ptr;	/* record number */
4488#ifdef DEBUG
4489	int			error;	/* error return value */
4490#endif
4491
4492	ptr = cur->bc_levels[0].ptr;
4493	block = xfs_btree_get_block(cur, 0, &bp);
4494
4495#ifdef DEBUG
4496	error = xfs_btree_check_block(cur, block, 0, bp);
4497	if (error)
4498		return error;
4499#endif
4500
4501	/*
4502	 * Off the right end or left end, return failure.
4503	 */
4504	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4505		*stat = 0;
4506		return 0;
4507	}
4508
4509	/*
4510	 * Point to the record and extract its data.
4511	 */
4512	*recp = xfs_btree_rec_addr(cur, ptr, block);
4513	*stat = 1;
4514	return 0;
4515}
4516
4517/* Visit a block in a btree. */
4518STATIC int
4519xfs_btree_visit_block(
4520	struct xfs_btree_cur		*cur,
4521	int				level,
4522	xfs_btree_visit_blocks_fn	fn,
4523	void				*data)
4524{
4525	struct xfs_btree_block		*block;
4526	struct xfs_buf			*bp;
4527	union xfs_btree_ptr		rptr, bufptr;
4528	int				error;
4529
4530	/* do right sibling readahead */
4531	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4532	block = xfs_btree_get_block(cur, level, &bp);
4533
4534	/* process the block */
4535	error = fn(cur, level, data);
4536	if (error)
4537		return error;
4538
4539	/* now read rh sibling block for next iteration */
4540	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4541	if (xfs_btree_ptr_is_null(cur, &rptr))
4542		return -ENOENT;
4543
4544	/*
4545	 * We only visit blocks once in this walk, so we have to avoid the
4546	 * internal xfs_btree_lookup_get_block() optimisation where it will
4547	 * return the same block without checking if the right sibling points
4548	 * back to us and creates a cyclic reference in the btree.
4549	 */
4550	xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4551	if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4552		xfs_btree_mark_sick(cur);
4553		return -EFSCORRUPTED;
 
 
 
 
4554	}
4555
4556	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4557}
4558
4559
4560/* Visit every block in a btree. */
4561int
4562xfs_btree_visit_blocks(
4563	struct xfs_btree_cur		*cur,
4564	xfs_btree_visit_blocks_fn	fn,
4565	unsigned int			flags,
4566	void				*data)
4567{
4568	union xfs_btree_ptr		lptr;
4569	int				level;
4570	struct xfs_btree_block		*block = NULL;
4571	int				error = 0;
4572
4573	xfs_btree_init_ptr_from_cur(cur, &lptr);
4574
4575	/* for each level */
4576	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4577		/* grab the left hand block */
4578		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4579		if (error)
4580			return error;
4581
4582		/* readahead the left most block for the next level down */
4583		if (level > 0) {
4584			union xfs_btree_ptr     *ptr;
4585
4586			ptr = xfs_btree_ptr_addr(cur, 1, block);
4587			xfs_btree_readahead_ptr(cur, ptr, 1);
4588
4589			/* save for the next iteration of the loop */
4590			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4591
4592			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4593				continue;
4594		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4595			continue;
4596		}
4597
4598		/* for each buffer in the level */
4599		do {
4600			error = xfs_btree_visit_block(cur, level, fn, data);
4601		} while (!error);
4602
4603		if (error != -ENOENT)
4604			return error;
4605	}
4606
4607	return 0;
4608}
4609
4610/*
4611 * Change the owner of a btree.
4612 *
4613 * The mechanism we use here is ordered buffer logging. Because we don't know
4614 * how many buffers were are going to need to modify, we don't really want to
4615 * have to make transaction reservations for the worst case of every buffer in a
4616 * full size btree as that may be more space that we can fit in the log....
4617 *
4618 * We do the btree walk in the most optimal manner possible - we have sibling
4619 * pointers so we can just walk all the blocks on each level from left to right
4620 * in a single pass, and then move to the next level and do the same. We can
4621 * also do readahead on the sibling pointers to get IO moving more quickly,
4622 * though for slow disks this is unlikely to make much difference to performance
4623 * as the amount of CPU work we have to do before moving to the next block is
4624 * relatively small.
4625 *
4626 * For each btree block that we load, modify the owner appropriately, set the
4627 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4628 * we mark the region we change dirty so that if the buffer is relogged in
4629 * a subsequent transaction the changes we make here as an ordered buffer are
4630 * correctly relogged in that transaction.  If we are in recovery context, then
4631 * just queue the modified buffer as delayed write buffer so the transaction
4632 * recovery completion writes the changes to disk.
4633 */
4634struct xfs_btree_block_change_owner_info {
4635	uint64_t		new_owner;
4636	struct list_head	*buffer_list;
4637};
4638
4639static int
4640xfs_btree_block_change_owner(
4641	struct xfs_btree_cur	*cur,
4642	int			level,
4643	void			*data)
4644{
4645	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4646	struct xfs_btree_block	*block;
4647	struct xfs_buf		*bp;
4648
4649	/* modify the owner */
4650	block = xfs_btree_get_block(cur, level, &bp);
4651	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4652		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4653			return 0;
4654		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4655	} else {
4656		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4657			return 0;
4658		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4659	}
4660
4661	/*
4662	 * If the block is a root block hosted in an inode, we might not have a
4663	 * buffer pointer here and we shouldn't attempt to log the change as the
4664	 * information is already held in the inode and discarded when the root
4665	 * block is formatted into the on-disk inode fork. We still change it,
4666	 * though, so everything is consistent in memory.
4667	 */
4668	if (!bp) {
4669		ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4670		ASSERT(level == cur->bc_nlevels - 1);
4671		return 0;
4672	}
4673
4674	if (cur->bc_tp) {
4675		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4676			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4677			return -EAGAIN;
4678		}
4679	} else {
4680		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4681	}
4682
4683	return 0;
4684}
4685
4686int
4687xfs_btree_change_owner(
4688	struct xfs_btree_cur	*cur,
4689	uint64_t		new_owner,
4690	struct list_head	*buffer_list)
4691{
4692	struct xfs_btree_block_change_owner_info	bbcoi;
4693
4694	bbcoi.new_owner = new_owner;
4695	bbcoi.buffer_list = buffer_list;
4696
4697	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4698			XFS_BTREE_VISIT_ALL, &bbcoi);
4699}
4700
4701/* Verify the v5 fields of a long-format btree block. */
4702xfs_failaddr_t
4703xfs_btree_fsblock_v5hdr_verify(
4704	struct xfs_buf		*bp,
4705	uint64_t		owner)
4706{
4707	struct xfs_mount	*mp = bp->b_mount;
4708	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4709
4710	if (!xfs_has_crc(mp))
4711		return __this_address;
4712	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4713		return __this_address;
4714	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4715		return __this_address;
4716	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4717	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4718		return __this_address;
4719	return NULL;
4720}
4721
4722/* Verify a long-format btree block. */
4723xfs_failaddr_t
4724xfs_btree_fsblock_verify(
4725	struct xfs_buf		*bp,
4726	unsigned int		max_recs)
4727{
4728	struct xfs_mount	*mp = bp->b_mount;
4729	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4730	xfs_fsblock_t		fsb;
4731	xfs_failaddr_t		fa;
4732
4733	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4734
4735	/* numrecs verification */
4736	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4737		return __this_address;
4738
4739	/* sibling pointer verification */
4740	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4741	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4742			block->bb_u.l.bb_leftsib);
4743	if (!fa)
4744		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4745				block->bb_u.l.bb_rightsib);
4746	return fa;
4747}
4748
4749/* Verify an in-memory btree block. */
4750xfs_failaddr_t
4751xfs_btree_memblock_verify(
4752	struct xfs_buf		*bp,
4753	unsigned int		max_recs)
4754{
4755	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4756	struct xfs_buftarg	*btp = bp->b_target;
4757	xfs_failaddr_t		fa;
4758	xfbno_t			bno;
4759
4760	ASSERT(xfs_buftarg_is_mem(bp->b_target));
4761
4762	/* numrecs verification */
4763	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4764		return __this_address;
4765
4766	/* sibling pointer verification */
4767	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4768	fa = xfs_btree_check_memblock_siblings(btp, bno,
4769			block->bb_u.l.bb_leftsib);
4770	if (fa)
4771		return fa;
4772	fa = xfs_btree_check_memblock_siblings(btp, bno,
4773			block->bb_u.l.bb_rightsib);
4774	if (fa)
4775		return fa;
4776
4777	return NULL;
4778}
4779/**
4780 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4781 *				      btree block
4782 *
4783 * @bp: buffer containing the btree block
4784 */
4785xfs_failaddr_t
4786xfs_btree_agblock_v5hdr_verify(
4787	struct xfs_buf		*bp)
4788{
4789	struct xfs_mount	*mp = bp->b_mount;
4790	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4791	struct xfs_perag	*pag = bp->b_pag;
4792
4793	if (!xfs_has_crc(mp))
4794		return __this_address;
4795	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4796		return __this_address;
4797	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4798		return __this_address;
4799	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4800		return __this_address;
4801	return NULL;
4802}
4803
4804/**
4805 * xfs_btree_agblock_verify() -- verify a short-format btree block
4806 *
4807 * @bp: buffer containing the btree block
4808 * @max_recs: maximum records allowed in this btree node
4809 */
4810xfs_failaddr_t
4811xfs_btree_agblock_verify(
4812	struct xfs_buf		*bp,
4813	unsigned int		max_recs)
4814{
4815	struct xfs_mount	*mp = bp->b_mount;
4816	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4817	xfs_agblock_t		agbno;
4818	xfs_failaddr_t		fa;
4819
4820	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4821
4822	/* numrecs verification */
4823	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4824		return __this_address;
4825
4826	/* sibling pointer verification */
4827	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4828	fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4829			block->bb_u.s.bb_leftsib);
4830	if (!fa)
4831		fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4832				block->bb_u.s.bb_rightsib);
4833	return fa;
4834}
4835
4836/*
4837 * For the given limits on leaf and keyptr records per block, calculate the
4838 * height of the tree needed to index the number of leaf records.
4839 */
4840unsigned int
4841xfs_btree_compute_maxlevels(
4842	const unsigned int	*limits,
4843	unsigned long long	records)
4844{
4845	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4846	unsigned int		height = 1;
4847
4848	while (level_blocks > 1) {
4849		level_blocks = howmany_64(level_blocks, limits[1]);
4850		height++;
4851	}
4852
4853	return height;
4854}
4855
4856/*
4857 * For the given limits on leaf and keyptr records per block, calculate the
4858 * number of blocks needed to index the given number of leaf records.
4859 */
4860unsigned long long
4861xfs_btree_calc_size(
4862	const unsigned int	*limits,
4863	unsigned long long	records)
4864{
4865	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4866	unsigned long long	blocks = level_blocks;
4867
4868	while (level_blocks > 1) {
4869		level_blocks = howmany_64(level_blocks, limits[1]);
4870		blocks += level_blocks;
4871	}
4872
4873	return blocks;
4874}
4875
4876/*
4877 * Given a number of available blocks for the btree to consume with records and
4878 * pointers, calculate the height of the tree needed to index all the records
4879 * that space can hold based on the number of pointers each interior node
4880 * holds.
4881 *
4882 * We start by assuming a single level tree consumes a single block, then track
4883 * the number of blocks each node level consumes until we no longer have space
4884 * to store the next node level. At this point, we are indexing all the leaf
4885 * blocks in the space, and there's no more free space to split the tree any
4886 * further. That's our maximum btree height.
4887 */
4888unsigned int
4889xfs_btree_space_to_height(
4890	const unsigned int	*limits,
4891	unsigned long long	leaf_blocks)
4892{
4893	/*
4894	 * The root btree block can have fewer than minrecs pointers in it
4895	 * because the tree might not be big enough to require that amount of
4896	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4897	 */
4898	unsigned long long	node_blocks = 2;
4899	unsigned long long	blocks_left = leaf_blocks - 1;
4900	unsigned int		height = 1;
4901
4902	if (leaf_blocks < 1)
4903		return 0;
4904
4905	while (node_blocks < blocks_left) {
4906		blocks_left -= node_blocks;
4907		node_blocks *= limits[1];
4908		height++;
4909	}
4910
4911	return height;
4912}
4913
4914/*
4915 * Query a regular btree for all records overlapping a given interval.
4916 * Start with a LE lookup of the key of low_rec and return all records
4917 * until we find a record with a key greater than the key of high_rec.
4918 */
4919STATIC int
4920xfs_btree_simple_query_range(
4921	struct xfs_btree_cur		*cur,
4922	const union xfs_btree_key	*low_key,
4923	const union xfs_btree_key	*high_key,
4924	xfs_btree_query_range_fn	fn,
4925	void				*priv)
4926{
4927	union xfs_btree_rec		*recp;
4928	union xfs_btree_key		rec_key;
4929	int				stat;
4930	bool				firstrec = true;
4931	int				error;
4932
4933	ASSERT(cur->bc_ops->init_high_key_from_rec);
4934	ASSERT(cur->bc_ops->diff_two_keys);
4935
4936	/*
4937	 * Find the leftmost record.  The btree cursor must be set
4938	 * to the low record used to generate low_key.
4939	 */
4940	stat = 0;
4941	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4942	if (error)
4943		goto out;
4944
4945	/* Nothing?  See if there's anything to the right. */
4946	if (!stat) {
4947		error = xfs_btree_increment(cur, 0, &stat);
4948		if (error)
4949			goto out;
4950	}
4951
4952	while (stat) {
4953		/* Find the record. */
4954		error = xfs_btree_get_rec(cur, &recp, &stat);
4955		if (error || !stat)
4956			break;
4957
4958		/* Skip if low_key > high_key(rec). */
4959		if (firstrec) {
4960			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4961			firstrec = false;
4962			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4963				goto advloop;
4964		}
4965
4966		/* Stop if low_key(rec) > high_key. */
4967		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4968		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4969			break;
4970
4971		/* Callback */
4972		error = fn(cur, recp, priv);
4973		if (error)
4974			break;
4975
4976advloop:
4977		/* Move on to the next record. */
4978		error = xfs_btree_increment(cur, 0, &stat);
4979		if (error)
4980			break;
4981	}
4982
4983out:
4984	return error;
4985}
4986
4987/*
4988 * Query an overlapped interval btree for all records overlapping a given
4989 * interval.  This function roughly follows the algorithm given in
4990 * "Interval Trees" of _Introduction to Algorithms_, which is section
4991 * 14.3 in the 2nd and 3rd editions.
4992 *
4993 * First, generate keys for the low and high records passed in.
4994 *
4995 * For any leaf node, generate the high and low keys for the record.
4996 * If the record keys overlap with the query low/high keys, pass the
4997 * record to the function iterator.
4998 *
4999 * For any internal node, compare the low and high keys of each
5000 * pointer against the query low/high keys.  If there's an overlap,
5001 * follow the pointer.
5002 *
5003 * As an optimization, we stop scanning a block when we find a low key
5004 * that is greater than the query's high key.
5005 */
5006STATIC int
5007xfs_btree_overlapped_query_range(
5008	struct xfs_btree_cur		*cur,
5009	const union xfs_btree_key	*low_key,
5010	const union xfs_btree_key	*high_key,
5011	xfs_btree_query_range_fn	fn,
5012	void				*priv)
5013{
5014	union xfs_btree_ptr		ptr;
5015	union xfs_btree_ptr		*pp;
5016	union xfs_btree_key		rec_key;
5017	union xfs_btree_key		rec_hkey;
5018	union xfs_btree_key		*lkp;
5019	union xfs_btree_key		*hkp;
5020	union xfs_btree_rec		*recp;
5021	struct xfs_btree_block		*block;
5022	int				level;
5023	struct xfs_buf			*bp;
5024	int				i;
5025	int				error;
5026
5027	/* Load the root of the btree. */
5028	level = cur->bc_nlevels - 1;
5029	xfs_btree_init_ptr_from_cur(cur, &ptr);
5030	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5031	if (error)
5032		return error;
5033	xfs_btree_get_block(cur, level, &bp);
5034	trace_xfs_btree_overlapped_query_range(cur, level, bp);
5035#ifdef DEBUG
5036	error = xfs_btree_check_block(cur, block, level, bp);
5037	if (error)
5038		goto out;
5039#endif
5040	cur->bc_levels[level].ptr = 1;
5041
5042	while (level < cur->bc_nlevels) {
5043		block = xfs_btree_get_block(cur, level, &bp);
5044
5045		/* End of node, pop back towards the root. */
5046		if (cur->bc_levels[level].ptr >
5047					be16_to_cpu(block->bb_numrecs)) {
5048pop_up:
5049			if (level < cur->bc_nlevels - 1)
5050				cur->bc_levels[level + 1].ptr++;
5051			level++;
5052			continue;
5053		}
5054
5055		if (level == 0) {
5056			/* Handle a leaf node. */
5057			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5058					block);
5059
5060			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5061			cur->bc_ops->init_key_from_rec(&rec_key, recp);
5062
5063			/*
5064			 * If (query's high key < record's low key), then there
5065			 * are no more interesting records in this block.  Pop
5066			 * up to the leaf level to find more record blocks.
5067			 *
5068			 * If (record's high key >= query's low key) and
5069			 *    (query's high key >= record's low key), then
5070			 * this record overlaps the query range; callback.
5071			 */
5072			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5073				goto pop_up;
5074			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5075				error = fn(cur, recp, priv);
5076				if (error)
5077					break;
5078			}
5079			cur->bc_levels[level].ptr++;
5080			continue;
5081		}
5082
5083		/* Handle an internal node. */
5084		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5085		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5086				block);
5087		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5088
5089		/*
5090		 * If (query's high key < pointer's low key), then there are no
5091		 * more interesting keys in this block.  Pop up one leaf level
5092		 * to continue looking for records.
5093		 *
5094		 * If (pointer's high key >= query's low key) and
5095		 *    (query's high key >= pointer's low key), then
5096		 * this record overlaps the query range; follow pointer.
5097		 */
5098		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5099			goto pop_up;
5100		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5101			level--;
5102			error = xfs_btree_lookup_get_block(cur, level, pp,
5103					&block);
5104			if (error)
5105				goto out;
5106			xfs_btree_get_block(cur, level, &bp);
5107			trace_xfs_btree_overlapped_query_range(cur, level, bp);
5108#ifdef DEBUG
5109			error = xfs_btree_check_block(cur, block, level, bp);
5110			if (error)
5111				goto out;
5112#endif
5113			cur->bc_levels[level].ptr = 1;
5114			continue;
5115		}
5116		cur->bc_levels[level].ptr++;
5117	}
5118
5119out:
5120	/*
5121	 * If we don't end this function with the cursor pointing at a record
5122	 * block, a subsequent non-error cursor deletion will not release
5123	 * node-level buffers, causing a buffer leak.  This is quite possible
5124	 * with a zero-results range query, so release the buffers if we
5125	 * failed to return any results.
5126	 */
5127	if (cur->bc_levels[0].bp == NULL) {
5128		for (i = 0; i < cur->bc_nlevels; i++) {
5129			if (cur->bc_levels[i].bp) {
5130				xfs_trans_brelse(cur->bc_tp,
5131						cur->bc_levels[i].bp);
5132				cur->bc_levels[i].bp = NULL;
5133				cur->bc_levels[i].ptr = 0;
5134				cur->bc_levels[i].ra = 0;
5135			}
5136		}
5137	}
5138
5139	return error;
5140}
5141
5142static inline void
5143xfs_btree_key_from_irec(
5144	struct xfs_btree_cur		*cur,
5145	union xfs_btree_key		*key,
5146	const union xfs_btree_irec	*irec)
5147{
5148	union xfs_btree_rec		rec;
5149
5150	cur->bc_rec = *irec;
5151	cur->bc_ops->init_rec_from_cur(cur, &rec);
5152	cur->bc_ops->init_key_from_rec(key, &rec);
5153}
5154
5155/*
5156 * Query a btree for all records overlapping a given interval of keys.  The
5157 * supplied function will be called with each record found; return one of the
5158 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5159 * code.  This function returns -ECANCELED, zero, or a negative error code.
5160 */
5161int
5162xfs_btree_query_range(
5163	struct xfs_btree_cur		*cur,
5164	const union xfs_btree_irec	*low_rec,
5165	const union xfs_btree_irec	*high_rec,
5166	xfs_btree_query_range_fn	fn,
5167	void				*priv)
5168{
5169	union xfs_btree_key		low_key;
5170	union xfs_btree_key		high_key;
5171
5172	/* Find the keys of both ends of the interval. */
5173	xfs_btree_key_from_irec(cur, &high_key, high_rec);
5174	xfs_btree_key_from_irec(cur, &low_key, low_rec);
5175
5176	/* Enforce low key <= high key. */
5177	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5178		return -EINVAL;
5179
5180	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5181		return xfs_btree_simple_query_range(cur, &low_key,
5182				&high_key, fn, priv);
5183	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5184			fn, priv);
5185}
5186
5187/* Query a btree for all records. */
5188int
5189xfs_btree_query_all(
5190	struct xfs_btree_cur		*cur,
5191	xfs_btree_query_range_fn	fn,
5192	void				*priv)
5193{
5194	union xfs_btree_key		low_key;
5195	union xfs_btree_key		high_key;
5196
5197	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5198	memset(&low_key, 0, sizeof(low_key));
5199	memset(&high_key, 0xFF, sizeof(high_key));
5200
5201	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5202}
5203
5204static int
5205xfs_btree_count_blocks_helper(
5206	struct xfs_btree_cur	*cur,
5207	int			level,
5208	void			*data)
5209{
5210	xfs_extlen_t		*blocks = data;
5211	(*blocks)++;
5212
5213	return 0;
5214}
5215
5216/* Count the blocks in a btree and return the result in *blocks. */
5217int
5218xfs_btree_count_blocks(
5219	struct xfs_btree_cur	*cur,
5220	xfs_extlen_t		*blocks)
5221{
5222	*blocks = 0;
5223	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5224			XFS_BTREE_VISIT_ALL, blocks);
5225}
5226
5227/* Compare two btree pointers. */
5228int64_t
5229xfs_btree_diff_two_ptrs(
5230	struct xfs_btree_cur		*cur,
5231	const union xfs_btree_ptr	*a,
5232	const union xfs_btree_ptr	*b)
5233{
5234	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5235		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5236	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5237}
5238
5239struct xfs_btree_has_records {
5240	/* Keys for the start and end of the range we want to know about. */
5241	union xfs_btree_key		start_key;
5242	union xfs_btree_key		end_key;
5243
5244	/* Mask for key comparisons, if desired. */
5245	const union xfs_btree_key	*key_mask;
5246
5247	/* Highest record key we've seen so far. */
5248	union xfs_btree_key		high_key;
5249
5250	enum xbtree_recpacking		outcome;
5251};
5252
5253STATIC int
5254xfs_btree_has_records_helper(
5255	struct xfs_btree_cur		*cur,
5256	const union xfs_btree_rec	*rec,
5257	void				*priv)
5258{
5259	union xfs_btree_key		rec_key;
5260	union xfs_btree_key		rec_high_key;
5261	struct xfs_btree_has_records	*info = priv;
5262	enum xbtree_key_contig		key_contig;
5263
5264	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5265
5266	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5267		info->outcome = XBTREE_RECPACKING_SPARSE;
5268
5269		/*
5270		 * If the first record we find does not overlap the start key,
5271		 * then there is a hole at the start of the search range.
5272		 * Classify this as sparse and stop immediately.
5273		 */
5274		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5275					info->key_mask))
5276			return -ECANCELED;
5277	} else {
5278		/*
5279		 * If a subsequent record does not overlap with the any record
5280		 * we've seen so far, there is a hole in the middle of the
5281		 * search range.  Classify this as sparse and stop.
5282		 * If the keys overlap and this btree does not allow overlap,
5283		 * signal corruption.
5284		 */
5285		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5286					&rec_key, info->key_mask);
5287		if (key_contig == XBTREE_KEY_OVERLAP &&
5288				!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5289			return -EFSCORRUPTED;
5290		if (key_contig == XBTREE_KEY_GAP)
5291			return -ECANCELED;
5292	}
5293
5294	/*
5295	 * If high_key(rec) is larger than any other high key we've seen,
5296	 * remember it for later.
5297	 */
5298	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5299	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5300				info->key_mask))
5301		info->high_key = rec_high_key; /* struct copy */
5302
5303	return 0;
5304}
5305
5306/*
5307 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5308 * map to any records; is fully mapped to records; or is partially mapped to
5309 * records.  This is the btree record equivalent to determining if a file is
5310 * sparse.
5311 *
5312 * For most btree types, the record scan should use all available btree key
5313 * fields to compare the keys encountered.  These callers should pass NULL for
5314 * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5315 * want to ignore some part of the btree record keyspace when performing the
5316 * comparison.  These callers should pass in a union xfs_btree_key object with
5317 * the fields that *should* be a part of the comparison set to any nonzero
5318 * value, and the rest zeroed.
5319 */
5320int
5321xfs_btree_has_records(
5322	struct xfs_btree_cur		*cur,
5323	const union xfs_btree_irec	*low,
5324	const union xfs_btree_irec	*high,
5325	const union xfs_btree_key	*mask,
5326	enum xbtree_recpacking		*outcome)
5327{
5328	struct xfs_btree_has_records	info = {
5329		.outcome		= XBTREE_RECPACKING_EMPTY,
5330		.key_mask		= mask,
5331	};
5332	int				error;
5333
5334	/* Not all btrees support this operation. */
5335	if (!cur->bc_ops->keys_contiguous) {
5336		ASSERT(0);
5337		return -EOPNOTSUPP;
5338	}
5339
5340	xfs_btree_key_from_irec(cur, &info.start_key, low);
5341	xfs_btree_key_from_irec(cur, &info.end_key, high);
5342
5343	error = xfs_btree_query_range(cur, low, high,
5344			xfs_btree_has_records_helper, &info);
5345	if (error == -ECANCELED)
5346		goto out;
5347	if (error)
5348		return error;
5349
5350	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5351		goto out;
5352
5353	/*
5354	 * If the largest high_key(rec) we saw during the walk is greater than
5355	 * the end of the search range, classify this as full.  Otherwise,
5356	 * there is a hole at the end of the search range.
5357	 */
5358	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5359				mask))
5360		info.outcome = XBTREE_RECPACKING_FULL;
5361
5362out:
5363	*outcome = info.outcome;
5364	return 0;
5365}
5366
5367/* Are there more records in this btree? */
5368bool
5369xfs_btree_has_more_records(
5370	struct xfs_btree_cur	*cur)
5371{
5372	struct xfs_btree_block	*block;
5373	struct xfs_buf		*bp;
5374
5375	block = xfs_btree_get_block(cur, 0, &bp);
5376
5377	/* There are still records in this block. */
5378	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5379		return true;
5380
5381	/* There are more record blocks. */
5382	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5383		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5384	else
5385		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5386}
5387
5388/* Set up all the btree cursor caches. */
5389int __init
5390xfs_btree_init_cur_caches(void)
5391{
5392	int		error;
5393
5394	error = xfs_allocbt_init_cur_cache();
5395	if (error)
5396		return error;
5397	error = xfs_inobt_init_cur_cache();
5398	if (error)
5399		goto err;
5400	error = xfs_bmbt_init_cur_cache();
5401	if (error)
5402		goto err;
5403	error = xfs_rmapbt_init_cur_cache();
5404	if (error)
5405		goto err;
5406	error = xfs_refcountbt_init_cur_cache();
5407	if (error)
5408		goto err;
5409
5410	return 0;
5411err:
5412	xfs_btree_destroy_cur_caches();
5413	return error;
5414}
5415
5416/* Destroy all the btree cursor caches, if they've been allocated. */
5417void
5418xfs_btree_destroy_cur_caches(void)
5419{
5420	xfs_allocbt_destroy_cur_cache();
5421	xfs_inobt_destroy_cur_cache();
5422	xfs_bmbt_destroy_cur_cache();
5423	xfs_rmapbt_destroy_cur_cache();
5424	xfs_refcountbt_destroy_cur_cache();
5425}
5426
5427/* Move the btree cursor before the first record. */
5428int
5429xfs_btree_goto_left_edge(
5430	struct xfs_btree_cur	*cur)
5431{
5432	int			stat = 0;
5433	int			error;
5434
5435	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5436	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5437	if (error)
5438		return error;
5439	if (!stat)
5440		return 0;
5441
5442	error = xfs_btree_decrement(cur, 0, &stat);
5443	if (error)
5444		return error;
5445	if (stat != 0) {
5446		ASSERT(0);
5447		xfs_btree_mark_sick(cur);
5448		return -EFSCORRUPTED;
5449	}
5450
5451	return 0;
5452}