Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
 
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
 
  16#include "xfs_buf_item.h"
  17#include "xfs_btree.h"
  18#include "xfs_errortag.h"
  19#include "xfs_error.h"
  20#include "xfs_trace.h"
 
  21#include "xfs_alloc.h"
  22#include "xfs_log.h"
  23#include "xfs_btree_staging.h"
  24#include "xfs_ag.h"
  25#include "xfs_alloc_btree.h"
  26#include "xfs_ialloc_btree.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_rmap_btree.h"
  29#include "xfs_refcount_btree.h"
  30
  31/*
  32 * Btree magic numbers.
  33 */
  34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  35	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  36	  XFS_FIBT_MAGIC, 0 },
  37	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  38	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  39	  XFS_REFC_CRC_MAGIC }
  40};
 
 
  41
  42uint32_t
  43xfs_btree_magic(
  44	int			crc,
  45	xfs_btnum_t		btnum)
  46{
  47	uint32_t		magic = xfs_magics[crc][btnum];
  48
  49	/* Ensure we asked for crc for crc-only magics. */
  50	ASSERT(magic != 0);
  51	return magic;
  52}
  53
  54/*
  55 * These sibling pointer checks are optimised for null sibling pointers. This
  56 * happens a lot, and we don't need to byte swap at runtime if the sibling
  57 * pointer is NULL.
  58 *
  59 * These are explicitly marked at inline because the cost of calling them as
  60 * functions instead of inlining them is about 36 bytes extra code per call site
  61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
  62 * two sibling check functions reduces the compiled code size by over 300
  63 * bytes.
  64 */
  65static inline xfs_failaddr_t
  66xfs_btree_check_lblock_siblings(
  67	struct xfs_mount	*mp,
  68	struct xfs_btree_cur	*cur,
  69	int			level,
  70	xfs_fsblock_t		fsb,
  71	__be64			dsibling)
  72{
  73	xfs_fsblock_t		sibling;
  74
  75	if (dsibling == cpu_to_be64(NULLFSBLOCK))
  76		return NULL;
  77
  78	sibling = be64_to_cpu(dsibling);
  79	if (sibling == fsb)
  80		return __this_address;
  81	if (level >= 0) {
  82		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
  83			return __this_address;
  84	} else {
  85		if (!xfs_verify_fsbno(mp, sibling))
  86			return __this_address;
  87	}
  88
  89	return NULL;
  90}
  91
  92static inline xfs_failaddr_t
  93xfs_btree_check_sblock_siblings(
  94	struct xfs_perag	*pag,
  95	struct xfs_btree_cur	*cur,
  96	int			level,
  97	xfs_agblock_t		agbno,
  98	__be32			dsibling)
  99{
 100	xfs_agblock_t		sibling;
 101
 102	if (dsibling == cpu_to_be32(NULLAGBLOCK))
 103		return NULL;
 104
 105	sibling = be32_to_cpu(dsibling);
 106	if (sibling == agbno)
 107		return __this_address;
 108	if (level >= 0) {
 109		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
 110			return __this_address;
 111	} else {
 112		if (!xfs_verify_agbno(pag, sibling))
 113			return __this_address;
 114	}
 115	return NULL;
 116}
 117
 118/*
 119 * Check a long btree block header.  Return the address of the failing check,
 120 * or NULL if everything is ok.
 121 */
 122xfs_failaddr_t
 123__xfs_btree_check_lblock(
 124	struct xfs_btree_cur	*cur,
 125	struct xfs_btree_block	*block,
 126	int			level,
 127	struct xfs_buf		*bp)
 128{
 129	struct xfs_mount	*mp = cur->bc_mp;
 130	xfs_btnum_t		btnum = cur->bc_btnum;
 131	int			crc = xfs_has_crc(mp);
 132	xfs_failaddr_t		fa;
 133	xfs_fsblock_t		fsb = NULLFSBLOCK;
 134
 135	if (crc) {
 136		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
 137			return __this_address;
 138		if (block->bb_u.l.bb_blkno !=
 139		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 140			return __this_address;
 141		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
 142			return __this_address;
 143	}
 144
 145	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 146		return __this_address;
 147	if (be16_to_cpu(block->bb_level) != level)
 148		return __this_address;
 149	if (be16_to_cpu(block->bb_numrecs) >
 150	    cur->bc_ops->get_maxrecs(cur, level))
 151		return __this_address;
 152
 153	if (bp)
 154		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
 155
 156	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 157			block->bb_u.l.bb_leftsib);
 158	if (!fa)
 159		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
 160				block->bb_u.l.bb_rightsib);
 161	return fa;
 162}
 163
 164/* Check a long btree block header. */
 165static int
 166xfs_btree_check_lblock(
 167	struct xfs_btree_cur	*cur,
 168	struct xfs_btree_block	*block,
 169	int			level,
 170	struct xfs_buf		*bp)
 171{
 172	struct xfs_mount	*mp = cur->bc_mp;
 173	xfs_failaddr_t		fa;
 174
 175	fa = __xfs_btree_check_lblock(cur, block, level, bp);
 176	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 177	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178		if (bp)
 179			trace_xfs_btree_corrupt(bp, _RET_IP_);
 
 180		return -EFSCORRUPTED;
 181	}
 182	return 0;
 183}
 184
 185/*
 186 * Check a short btree block header.  Return the address of the failing check,
 187 * or NULL if everything is ok.
 188 */
 189xfs_failaddr_t
 190__xfs_btree_check_sblock(
 191	struct xfs_btree_cur	*cur,
 192	struct xfs_btree_block	*block,
 193	int			level,
 194	struct xfs_buf		*bp)
 195{
 196	struct xfs_mount	*mp = cur->bc_mp;
 197	struct xfs_perag	*pag = cur->bc_ag.pag;
 198	xfs_btnum_t		btnum = cur->bc_btnum;
 199	int			crc = xfs_has_crc(mp);
 200	xfs_failaddr_t		fa;
 201	xfs_agblock_t		agbno = NULLAGBLOCK;
 202
 203	if (crc) {
 204		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 205			return __this_address;
 206		if (block->bb_u.s.bb_blkno !=
 207		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
 208			return __this_address;
 209	}
 210
 211	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 212		return __this_address;
 213	if (be16_to_cpu(block->bb_level) != level)
 214		return __this_address;
 215	if (be16_to_cpu(block->bb_numrecs) >
 216	    cur->bc_ops->get_maxrecs(cur, level))
 217		return __this_address;
 218
 219	if (bp)
 220		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
 221
 222	fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 223			block->bb_u.s.bb_leftsib);
 224	if (!fa)
 225		fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
 226				block->bb_u.s.bb_rightsib);
 227	return fa;
 228}
 229
 230/* Check a short btree block header. */
 231STATIC int
 232xfs_btree_check_sblock(
 233	struct xfs_btree_cur	*cur,
 234	struct xfs_btree_block	*block,
 235	int			level,
 236	struct xfs_buf		*bp)
 237{
 238	struct xfs_mount	*mp = cur->bc_mp;
 239	xfs_failaddr_t		fa;
 
 
 
 240
 241	fa = __xfs_btree_check_sblock(cur, block, level, bp);
 242	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
 243	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244		if (bp)
 245			trace_xfs_btree_corrupt(bp, _RET_IP_);
 
 246		return -EFSCORRUPTED;
 247	}
 248	return 0;
 249}
 250
 251/*
 252 * Debug routine: check that block header is ok.
 253 */
 254int
 255xfs_btree_check_block(
 256	struct xfs_btree_cur	*cur,	/* btree cursor */
 257	struct xfs_btree_block	*block,	/* generic btree block pointer */
 258	int			level,	/* level of the btree block */
 259	struct xfs_buf		*bp)	/* buffer containing block, if any */
 260{
 261	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 262		return xfs_btree_check_lblock(cur, block, level, bp);
 263	else
 264		return xfs_btree_check_sblock(cur, block, level, bp);
 265}
 266
 267/* Check that this long pointer is valid and points within the fs. */
 268bool
 
 
 269xfs_btree_check_lptr(
 270	struct xfs_btree_cur	*cur,
 271	xfs_fsblock_t		fsbno,
 272	int			level)
 273{
 274	if (level <= 0)
 275		return false;
 276	return xfs_verify_fsbno(cur->bc_mp, fsbno);
 
 
 277}
 278
 279/* Check that this short pointer is valid and points within the AG. */
 280bool
 
 
 
 281xfs_btree_check_sptr(
 282	struct xfs_btree_cur	*cur,
 283	xfs_agblock_t		agbno,
 284	int			level)
 285{
 286	if (level <= 0)
 287		return false;
 288	return xfs_verify_agbno(cur->bc_ag.pag, agbno);
 
 
 
 
 
 289}
 290
 291/*
 292 * Check that a given (indexed) btree pointer at a certain level of a
 293 * btree is valid and doesn't point past where it should.
 294 */
 295static int
 296xfs_btree_check_ptr(
 297	struct xfs_btree_cur		*cur,
 298	const union xfs_btree_ptr	*ptr,
 299	int				index,
 300	int				level)
 301{
 302	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 303		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
 304				level))
 305			return 0;
 306		xfs_err(cur->bc_mp,
 307"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
 308				cur->bc_ino.ip->i_ino,
 309				cur->bc_ino.whichfork, cur->bc_btnum,
 310				level, index);
 311	} else {
 312		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
 313				level))
 314			return 0;
 315		xfs_err(cur->bc_mp,
 316"AG %u: Corrupt btree %d pointer at level %d index %d.",
 317				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
 318				level, index);
 319	}
 320
 321	return -EFSCORRUPTED;
 322}
 323
 324#ifdef DEBUG
 325# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
 326#else
 327# define xfs_btree_debug_check_ptr(...)	(0)
 328#endif
 329
 330/*
 331 * Calculate CRC on the whole btree block and stuff it into the
 332 * long-form btree header.
 333 *
 334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 335 * it into the buffer so recovery knows what the last modification was that made
 336 * it to disk.
 337 */
 338void
 339xfs_btree_lblock_calc_crc(
 340	struct xfs_buf		*bp)
 341{
 342	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 343	struct xfs_buf_log_item	*bip = bp->b_log_item;
 344
 345	if (!xfs_has_crc(bp->b_mount))
 346		return;
 347	if (bip)
 348		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 349	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 350}
 351
 352bool
 353xfs_btree_lblock_verify_crc(
 354	struct xfs_buf		*bp)
 355{
 356	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 357	struct xfs_mount	*mp = bp->b_mount;
 358
 359	if (xfs_has_crc(mp)) {
 360		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 361			return false;
 362		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 363	}
 364
 365	return true;
 366}
 367
 368/*
 369 * Calculate CRC on the whole btree block and stuff it into the
 370 * short-form btree header.
 371 *
 372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 373 * it into the buffer so recovery knows what the last modification was that made
 374 * it to disk.
 375 */
 376void
 377xfs_btree_sblock_calc_crc(
 378	struct xfs_buf		*bp)
 379{
 380	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 381	struct xfs_buf_log_item	*bip = bp->b_log_item;
 382
 383	if (!xfs_has_crc(bp->b_mount))
 384		return;
 385	if (bip)
 386		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 387	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 388}
 389
 390bool
 391xfs_btree_sblock_verify_crc(
 392	struct xfs_buf		*bp)
 393{
 394	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 395	struct xfs_mount	*mp = bp->b_mount;
 396
 397	if (xfs_has_crc(mp)) {
 398		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 399			return false;
 400		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 401	}
 402
 403	return true;
 404}
 405
 406static int
 407xfs_btree_free_block(
 408	struct xfs_btree_cur	*cur,
 409	struct xfs_buf		*bp)
 410{
 411	int			error;
 412
 413	error = cur->bc_ops->free_block(cur, bp);
 414	if (!error) {
 415		xfs_trans_binval(cur->bc_tp, bp);
 416		XFS_BTREE_STATS_INC(cur, free);
 417	}
 418	return error;
 419}
 420
 421/*
 422 * Delete the btree cursor.
 423 */
 424void
 425xfs_btree_del_cursor(
 426	struct xfs_btree_cur	*cur,		/* btree cursor */
 427	int			error)		/* del because of error */
 428{
 429	int			i;		/* btree level */
 430
 431	/*
 432	 * Clear the buffer pointers and release the buffers. If we're doing
 433	 * this because of an error, inspect all of the entries in the bc_bufs
 434	 * array for buffers to be unlocked. This is because some of the btree
 435	 * code works from level n down to 0, and if we get an error along the
 436	 * way we won't have initialized all the entries down to 0.
 
 
 
 437	 */
 438	for (i = 0; i < cur->bc_nlevels; i++) {
 439		if (cur->bc_levels[i].bp)
 440			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
 441		else if (!error)
 442			break;
 443	}
 444
 445	/*
 446	 * If we are doing a BMBT update, the number of unaccounted blocks
 447	 * allocated during this cursor life time should be zero. If it's not
 448	 * zero, then we should be shut down or on our way to shutdown due to
 449	 * cancelling a dirty transaction on error.
 450	 */
 451	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
 452	       xfs_is_shutdown(cur->bc_mp) || error != 0);
 453	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
 454		kmem_free(cur->bc_ops);
 455	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
 456		xfs_perag_put(cur->bc_ag.pag);
 457	kmem_cache_free(cur->bc_cache, cur);
 458}
 459
 460/*
 461 * Duplicate the btree cursor.
 462 * Allocate a new one, copy the record, re-get the buffers.
 463 */
 464int					/* error */
 465xfs_btree_dup_cursor(
 466	struct xfs_btree_cur *cur,		/* input cursor */
 467	struct xfs_btree_cur **ncur)		/* output cursor */
 468{
 469	struct xfs_buf	*bp;		/* btree block's buffer pointer */
 470	int		error;		/* error return value */
 471	int		i;		/* level number of btree block */
 472	xfs_mount_t	*mp;		/* mount structure for filesystem */
 473	struct xfs_btree_cur *new;		/* new cursor value */
 474	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
 475
 476	tp = cur->bc_tp;
 477	mp = cur->bc_mp;
 478
 479	/*
 480	 * Allocate a new cursor like the old one.
 481	 */
 482	new = cur->bc_ops->dup_cursor(cur);
 483
 484	/*
 485	 * Copy the record currently in the cursor.
 486	 */
 487	new->bc_rec = cur->bc_rec;
 488
 489	/*
 490	 * For each level current, re-get the buffer and copy the ptr value.
 491	 */
 492	for (i = 0; i < new->bc_nlevels; i++) {
 493		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
 494		new->bc_levels[i].ra = cur->bc_levels[i].ra;
 495		bp = cur->bc_levels[i].bp;
 496		if (bp) {
 497			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 498						   xfs_buf_daddr(bp), mp->m_bsize,
 499						   0, &bp,
 500						   cur->bc_ops->buf_ops);
 501			if (error) {
 502				xfs_btree_del_cursor(new, error);
 503				*ncur = NULL;
 504				return error;
 505			}
 506		}
 507		new->bc_levels[i].bp = bp;
 508	}
 509	*ncur = new;
 510	return 0;
 511}
 512
 513/*
 514 * XFS btree block layout and addressing:
 515 *
 516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 517 *
 518 * The leaf record start with a header then followed by records containing
 519 * the values.  A non-leaf block also starts with the same header, and
 520 * then first contains lookup keys followed by an equal number of pointers
 521 * to the btree blocks at the previous level.
 522 *
 523 *		+--------+-------+-------+-------+-------+-------+-------+
 524 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 525 *		+--------+-------+-------+-------+-------+-------+-------+
 526 *
 527 *		+--------+-------+-------+-------+-------+-------+-------+
 528 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 529 *		+--------+-------+-------+-------+-------+-------+-------+
 530 *
 531 * The header is called struct xfs_btree_block for reasons better left unknown
 532 * and comes in different versions for short (32bit) and long (64bit) block
 533 * pointers.  The record and key structures are defined by the btree instances
 534 * and opaque to the btree core.  The block pointers are simple disk endian
 535 * integers, available in a short (32bit) and long (64bit) variant.
 536 *
 537 * The helpers below calculate the offset of a given record, key or pointer
 538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 539 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 540 * inside the btree block is done using indices starting at one, not zero!
 541 *
 542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 543 * overlapping intervals.  In such a tree, records are still sorted lowest to
 544 * highest and indexed by the smallest key value that refers to the record.
 545 * However, nodes are different: each pointer has two associated keys -- one
 546 * indexing the lowest key available in the block(s) below (the same behavior
 547 * as the key in a regular btree) and another indexing the highest key
 548 * available in the block(s) below.  Because records are /not/ sorted by the
 549 * highest key, all leaf block updates require us to compute the highest key
 550 * that matches any record in the leaf and to recursively update the high keys
 551 * in the nodes going further up in the tree, if necessary.  Nodes look like
 552 * this:
 553 *
 554 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 555 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 556 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 557 *
 558 * To perform an interval query on an overlapped tree, perform the usual
 559 * depth-first search and use the low and high keys to decide if we can skip
 560 * that particular node.  If a leaf node is reached, return the records that
 561 * intersect the interval.  Note that an interval query may return numerous
 562 * entries.  For a non-overlapped tree, simply search for the record associated
 563 * with the lowest key and iterate forward until a non-matching record is
 564 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 566 * more detail.
 567 *
 568 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 569 * reverse mapping records on a reflink filesystem:
 570 *
 571 * 1: +- file A startblock B offset C length D -----------+
 572 * 2:      +- file E startblock F offset G length H --------------+
 573 * 3:      +- file I startblock F offset J length K --+
 574 * 4:                                                        +- file L... --+
 575 *
 576 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 577 * we'd simply increment the length of record 1.  But how do we find the record
 578 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 579 * record 3 because the keys are ordered first by startblock.  An interval
 580 * query would return records 1 and 2 because they both overlap (B+D-1), and
 581 * from that we can pick out record 1 as the appropriate left neighbor.
 582 *
 583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 584 * because a record's interval must end before the next record.
 585 */
 586
 587/*
 588 * Return size of the btree block header for this btree instance.
 589 */
 590static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 591{
 592	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 593		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 594			return XFS_BTREE_LBLOCK_CRC_LEN;
 595		return XFS_BTREE_LBLOCK_LEN;
 596	}
 597	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 598		return XFS_BTREE_SBLOCK_CRC_LEN;
 599	return XFS_BTREE_SBLOCK_LEN;
 600}
 601
 602/*
 603 * Return size of btree block pointers for this btree instance.
 604 */
 605static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 606{
 607	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 608		sizeof(__be64) : sizeof(__be32);
 609}
 610
 611/*
 612 * Calculate offset of the n-th record in a btree block.
 613 */
 614STATIC size_t
 615xfs_btree_rec_offset(
 616	struct xfs_btree_cur	*cur,
 617	int			n)
 618{
 619	return xfs_btree_block_len(cur) +
 620		(n - 1) * cur->bc_ops->rec_len;
 621}
 622
 623/*
 624 * Calculate offset of the n-th key in a btree block.
 625 */
 626STATIC size_t
 627xfs_btree_key_offset(
 628	struct xfs_btree_cur	*cur,
 629	int			n)
 630{
 631	return xfs_btree_block_len(cur) +
 632		(n - 1) * cur->bc_ops->key_len;
 633}
 634
 635/*
 636 * Calculate offset of the n-th high key in a btree block.
 637 */
 638STATIC size_t
 639xfs_btree_high_key_offset(
 640	struct xfs_btree_cur	*cur,
 641	int			n)
 642{
 643	return xfs_btree_block_len(cur) +
 644		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 645}
 646
 647/*
 648 * Calculate offset of the n-th block pointer in a btree block.
 649 */
 650STATIC size_t
 651xfs_btree_ptr_offset(
 652	struct xfs_btree_cur	*cur,
 653	int			n,
 654	int			level)
 655{
 656	return xfs_btree_block_len(cur) +
 657		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 658		(n - 1) * xfs_btree_ptr_len(cur);
 659}
 660
 661/*
 662 * Return a pointer to the n-th record in the btree block.
 663 */
 664union xfs_btree_rec *
 665xfs_btree_rec_addr(
 666	struct xfs_btree_cur	*cur,
 667	int			n,
 668	struct xfs_btree_block	*block)
 669{
 670	return (union xfs_btree_rec *)
 671		((char *)block + xfs_btree_rec_offset(cur, n));
 672}
 673
 674/*
 675 * Return a pointer to the n-th key in the btree block.
 676 */
 677union xfs_btree_key *
 678xfs_btree_key_addr(
 679	struct xfs_btree_cur	*cur,
 680	int			n,
 681	struct xfs_btree_block	*block)
 682{
 683	return (union xfs_btree_key *)
 684		((char *)block + xfs_btree_key_offset(cur, n));
 685}
 686
 687/*
 688 * Return a pointer to the n-th high key in the btree block.
 689 */
 690union xfs_btree_key *
 691xfs_btree_high_key_addr(
 692	struct xfs_btree_cur	*cur,
 693	int			n,
 694	struct xfs_btree_block	*block)
 695{
 696	return (union xfs_btree_key *)
 697		((char *)block + xfs_btree_high_key_offset(cur, n));
 698}
 699
 700/*
 701 * Return a pointer to the n-th block pointer in the btree block.
 702 */
 703union xfs_btree_ptr *
 704xfs_btree_ptr_addr(
 705	struct xfs_btree_cur	*cur,
 706	int			n,
 707	struct xfs_btree_block	*block)
 708{
 709	int			level = xfs_btree_get_level(block);
 710
 711	ASSERT(block->bb_level != 0);
 712
 713	return (union xfs_btree_ptr *)
 714		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 715}
 716
 717struct xfs_ifork *
 718xfs_btree_ifork_ptr(
 719	struct xfs_btree_cur	*cur)
 720{
 721	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
 722
 723	if (cur->bc_flags & XFS_BTREE_STAGING)
 724		return cur->bc_ino.ifake->if_fork;
 725	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
 726}
 727
 728/*
 729 * Get the root block which is stored in the inode.
 730 *
 731 * For now this btree implementation assumes the btree root is always
 732 * stored in the if_broot field of an inode fork.
 733 */
 734STATIC struct xfs_btree_block *
 735xfs_btree_get_iroot(
 736	struct xfs_btree_cur	*cur)
 737{
 738	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
 739
 
 740	return (struct xfs_btree_block *)ifp->if_broot;
 741}
 742
 743/*
 744 * Retrieve the block pointer from the cursor at the given level.
 745 * This may be an inode btree root or from a buffer.
 746 */
 747struct xfs_btree_block *		/* generic btree block pointer */
 748xfs_btree_get_block(
 749	struct xfs_btree_cur	*cur,	/* btree cursor */
 750	int			level,	/* level in btree */
 751	struct xfs_buf		**bpp)	/* buffer containing the block */
 752{
 753	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 754	    (level == cur->bc_nlevels - 1)) {
 755		*bpp = NULL;
 756		return xfs_btree_get_iroot(cur);
 757	}
 758
 759	*bpp = cur->bc_levels[level].bp;
 760	return XFS_BUF_TO_BLOCK(*bpp);
 761}
 762
 763/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764 * Change the cursor to point to the first record at the given level.
 765 * Other levels are unaffected.
 766 */
 767STATIC int				/* success=1, failure=0 */
 768xfs_btree_firstrec(
 769	struct xfs_btree_cur	*cur,	/* btree cursor */
 770	int			level)	/* level to change */
 771{
 772	struct xfs_btree_block	*block;	/* generic btree block pointer */
 773	struct xfs_buf		*bp;	/* buffer containing block */
 774
 775	/*
 776	 * Get the block pointer for this level.
 777	 */
 778	block = xfs_btree_get_block(cur, level, &bp);
 779	if (xfs_btree_check_block(cur, block, level, bp))
 780		return 0;
 781	/*
 782	 * It's empty, there is no such record.
 783	 */
 784	if (!block->bb_numrecs)
 785		return 0;
 786	/*
 787	 * Set the ptr value to 1, that's the first record/key.
 788	 */
 789	cur->bc_levels[level].ptr = 1;
 790	return 1;
 791}
 792
 793/*
 794 * Change the cursor to point to the last record in the current block
 795 * at the given level.  Other levels are unaffected.
 796 */
 797STATIC int				/* success=1, failure=0 */
 798xfs_btree_lastrec(
 799	struct xfs_btree_cur	*cur,	/* btree cursor */
 800	int			level)	/* level to change */
 801{
 802	struct xfs_btree_block	*block;	/* generic btree block pointer */
 803	struct xfs_buf		*bp;	/* buffer containing block */
 804
 805	/*
 806	 * Get the block pointer for this level.
 807	 */
 808	block = xfs_btree_get_block(cur, level, &bp);
 809	if (xfs_btree_check_block(cur, block, level, bp))
 810		return 0;
 811	/*
 812	 * It's empty, there is no such record.
 813	 */
 814	if (!block->bb_numrecs)
 815		return 0;
 816	/*
 817	 * Set the ptr value to numrecs, that's the last record/key.
 818	 */
 819	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
 820	return 1;
 821}
 822
 823/*
 824 * Compute first and last byte offsets for the fields given.
 825 * Interprets the offsets table, which contains struct field offsets.
 826 */
 827void
 828xfs_btree_offsets(
 829	uint32_t	fields,		/* bitmask of fields */
 830	const short	*offsets,	/* table of field offsets */
 831	int		nbits,		/* number of bits to inspect */
 832	int		*first,		/* output: first byte offset */
 833	int		*last)		/* output: last byte offset */
 834{
 835	int		i;		/* current bit number */
 836	uint32_t	imask;		/* mask for current bit number */
 837
 838	ASSERT(fields != 0);
 839	/*
 840	 * Find the lowest bit, so the first byte offset.
 841	 */
 842	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
 843		if (imask & fields) {
 844			*first = offsets[i];
 845			break;
 846		}
 847	}
 848	/*
 849	 * Find the highest bit, so the last byte offset.
 850	 */
 851	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
 852		if (imask & fields) {
 853			*last = offsets[i + 1] - 1;
 854			break;
 855		}
 856	}
 857}
 858
 859/*
 860 * Get a buffer for the block, return it read in.
 861 * Long-form addressing.
 862 */
 863int
 864xfs_btree_read_bufl(
 865	struct xfs_mount	*mp,		/* file system mount point */
 866	struct xfs_trans	*tp,		/* transaction pointer */
 867	xfs_fsblock_t		fsbno,		/* file system block number */
 
 868	struct xfs_buf		**bpp,		/* buffer for fsbno */
 869	int			refval,		/* ref count value for buffer */
 870	const struct xfs_buf_ops *ops)
 871{
 872	struct xfs_buf		*bp;		/* return value */
 873	xfs_daddr_t		d;		/* real disk block address */
 874	int			error;
 875
 876	if (!xfs_verify_fsbno(mp, fsbno))
 877		return -EFSCORRUPTED;
 878	d = XFS_FSB_TO_DADDR(mp, fsbno);
 879	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 880				   mp->m_bsize, 0, &bp, ops);
 881	if (error)
 882		return error;
 883	if (bp)
 884		xfs_buf_set_ref(bp, refval);
 885	*bpp = bp;
 886	return 0;
 887}
 888
 889/*
 890 * Read-ahead the block, don't wait for it, don't return a buffer.
 891 * Long-form addressing.
 892 */
 893/* ARGSUSED */
 894void
 895xfs_btree_reada_bufl(
 896	struct xfs_mount	*mp,		/* file system mount point */
 897	xfs_fsblock_t		fsbno,		/* file system block number */
 898	xfs_extlen_t		count,		/* count of filesystem blocks */
 899	const struct xfs_buf_ops *ops)
 900{
 901	xfs_daddr_t		d;
 902
 903	ASSERT(fsbno != NULLFSBLOCK);
 904	d = XFS_FSB_TO_DADDR(mp, fsbno);
 905	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 906}
 907
 908/*
 909 * Read-ahead the block, don't wait for it, don't return a buffer.
 910 * Short-form addressing.
 911 */
 912/* ARGSUSED */
 913void
 914xfs_btree_reada_bufs(
 915	struct xfs_mount	*mp,		/* file system mount point */
 916	xfs_agnumber_t		agno,		/* allocation group number */
 917	xfs_agblock_t		agbno,		/* allocation group block number */
 918	xfs_extlen_t		count,		/* count of filesystem blocks */
 919	const struct xfs_buf_ops *ops)
 920{
 921	xfs_daddr_t		d;
 922
 923	ASSERT(agno != NULLAGNUMBER);
 924	ASSERT(agbno != NULLAGBLOCK);
 925	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 926	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 927}
 928
 929STATIC int
 930xfs_btree_readahead_lblock(
 931	struct xfs_btree_cur	*cur,
 932	int			lr,
 933	struct xfs_btree_block	*block)
 934{
 935	int			rval = 0;
 936	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 937	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 938
 939	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 940		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 941				     cur->bc_ops->buf_ops);
 942		rval++;
 943	}
 944
 945	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 946		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 947				     cur->bc_ops->buf_ops);
 948		rval++;
 949	}
 950
 951	return rval;
 952}
 953
 954STATIC int
 955xfs_btree_readahead_sblock(
 956	struct xfs_btree_cur	*cur,
 957	int			lr,
 958	struct xfs_btree_block *block)
 959{
 960	int			rval = 0;
 961	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 962	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 963
 964
 965	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 966		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 967				     left, 1, cur->bc_ops->buf_ops);
 968		rval++;
 969	}
 970
 971	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 972		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
 973				     right, 1, cur->bc_ops->buf_ops);
 974		rval++;
 975	}
 976
 977	return rval;
 978}
 979
 980/*
 981 * Read-ahead btree blocks, at the given level.
 982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 983 */
 984STATIC int
 985xfs_btree_readahead(
 986	struct xfs_btree_cur	*cur,		/* btree cursor */
 987	int			lev,		/* level in btree */
 988	int			lr)		/* left/right bits */
 989{
 990	struct xfs_btree_block	*block;
 991
 992	/*
 993	 * No readahead needed if we are at the root level and the
 994	 * btree root is stored in the inode.
 995	 */
 996	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 997	    (lev == cur->bc_nlevels - 1))
 998		return 0;
 999
1000	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001		return 0;
1002
1003	cur->bc_levels[lev].ra |= lr;
1004	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007		return xfs_btree_readahead_lblock(cur, lr, block);
1008	return xfs_btree_readahead_sblock(cur, lr, block);
1009}
1010
1011STATIC int
1012xfs_btree_ptr_to_daddr(
1013	struct xfs_btree_cur		*cur,
1014	const union xfs_btree_ptr	*ptr,
1015	xfs_daddr_t			*daddr)
1016{
1017	xfs_fsblock_t		fsbno;
1018	xfs_agblock_t		agbno;
1019	int			error;
1020
1021	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022	if (error)
1023		return error;
1024
1025	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026		fsbno = be64_to_cpu(ptr->l);
1027		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
 
1028	} else {
1029		agbno = be32_to_cpu(ptr->s);
1030		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031				agbno);
1032	}
1033
1034	return 0;
 
 
1035}
1036
1037/*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043STATIC void
1044xfs_btree_readahead_ptr(
1045	struct xfs_btree_cur	*cur,
1046	union xfs_btree_ptr	*ptr,
1047	xfs_extlen_t		count)
1048{
1049	xfs_daddr_t		daddr;
1050
1051	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052		return;
1053	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055}
1056
1057/*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061STATIC void
1062xfs_btree_setbuf(
1063	struct xfs_btree_cur	*cur,	/* btree cursor */
1064	int			lev,	/* level in btree */
1065	struct xfs_buf		*bp)	/* new buffer to set */
1066{
1067	struct xfs_btree_block	*b;	/* btree block */
1068
1069	if (cur->bc_levels[lev].bp)
1070		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071	cur->bc_levels[lev].bp = bp;
1072	cur->bc_levels[lev].ra = 0;
1073
1074	b = XFS_BUF_TO_BLOCK(bp);
1075	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080	} else {
1081		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085	}
1086}
1087
1088bool
1089xfs_btree_ptr_is_null(
1090	struct xfs_btree_cur		*cur,
1091	const union xfs_btree_ptr	*ptr)
1092{
1093	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095	else
1096		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097}
1098
1099void
1100xfs_btree_set_ptr_null(
1101	struct xfs_btree_cur	*cur,
1102	union xfs_btree_ptr	*ptr)
1103{
1104	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105		ptr->l = cpu_to_be64(NULLFSBLOCK);
1106	else
1107		ptr->s = cpu_to_be32(NULLAGBLOCK);
1108}
1109
1110/*
1111 * Get/set/init sibling pointers
1112 */
1113void
1114xfs_btree_get_sibling(
1115	struct xfs_btree_cur	*cur,
1116	struct xfs_btree_block	*block,
1117	union xfs_btree_ptr	*ptr,
1118	int			lr)
1119{
1120	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123		if (lr == XFS_BB_RIGHTSIB)
1124			ptr->l = block->bb_u.l.bb_rightsib;
1125		else
1126			ptr->l = block->bb_u.l.bb_leftsib;
1127	} else {
1128		if (lr == XFS_BB_RIGHTSIB)
1129			ptr->s = block->bb_u.s.bb_rightsib;
1130		else
1131			ptr->s = block->bb_u.s.bb_leftsib;
1132	}
1133}
1134
1135void
1136xfs_btree_set_sibling(
1137	struct xfs_btree_cur		*cur,
1138	struct xfs_btree_block		*block,
1139	const union xfs_btree_ptr	*ptr,
1140	int				lr)
1141{
1142	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145		if (lr == XFS_BB_RIGHTSIB)
1146			block->bb_u.l.bb_rightsib = ptr->l;
1147		else
1148			block->bb_u.l.bb_leftsib = ptr->l;
1149	} else {
1150		if (lr == XFS_BB_RIGHTSIB)
1151			block->bb_u.s.bb_rightsib = ptr->s;
1152		else
1153			block->bb_u.s.bb_leftsib = ptr->s;
1154	}
1155}
1156
1157void
1158xfs_btree_init_block_int(
1159	struct xfs_mount	*mp,
1160	struct xfs_btree_block	*buf,
1161	xfs_daddr_t		blkno,
1162	xfs_btnum_t		btnum,
1163	__u16			level,
1164	__u16			numrecs,
1165	__u64			owner,
1166	unsigned int		flags)
1167{
1168	int			crc = xfs_has_crc(mp);
1169	__u32			magic = xfs_btree_magic(crc, btnum);
1170
1171	buf->bb_magic = cpu_to_be32(magic);
1172	buf->bb_level = cpu_to_be16(level);
1173	buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175	if (flags & XFS_BTREE_LONG_PTRS) {
1176		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178		if (crc) {
1179			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182			buf->bb_u.l.bb_pad = 0;
1183			buf->bb_u.l.bb_lsn = 0;
1184		}
1185	} else {
1186		/* owner is a 32 bit value on short blocks */
1187		__u32 __owner = (__u32)owner;
1188
1189		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191		if (crc) {
1192			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195			buf->bb_u.s.bb_lsn = 0;
1196		}
1197	}
1198}
1199
1200void
1201xfs_btree_init_block(
1202	struct xfs_mount *mp,
1203	struct xfs_buf	*bp,
1204	xfs_btnum_t	btnum,
1205	__u16		level,
1206	__u16		numrecs,
1207	__u64		owner)
 
1208{
1209	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210				 btnum, level, numrecs, owner, 0);
1211}
1212
1213void
1214xfs_btree_init_block_cur(
1215	struct xfs_btree_cur	*cur,
1216	struct xfs_buf		*bp,
1217	int			level,
1218	int			numrecs)
1219{
1220	__u64			owner;
1221
1222	/*
1223	 * we can pull the owner from the cursor right now as the different
1224	 * owners align directly with the pointer size of the btree. This may
1225	 * change in future, but is safe for current users of the generic btree
1226	 * code.
1227	 */
1228	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229		owner = cur->bc_ino.ip->i_ino;
1230	else
1231		owner = cur->bc_ag.pag->pag_agno;
1232
1233	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234				xfs_buf_daddr(bp), cur->bc_btnum, level,
1235				numrecs, owner, cur->bc_flags);
1236}
1237
1238/*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record.  The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243STATIC int
1244xfs_btree_is_lastrec(
1245	struct xfs_btree_cur	*cur,
1246	struct xfs_btree_block	*block,
1247	int			level)
1248{
1249	union xfs_btree_ptr	ptr;
1250
1251	if (level > 0)
1252		return 0;
1253	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254		return 0;
1255
1256	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257	if (!xfs_btree_ptr_is_null(cur, &ptr))
1258		return 0;
1259	return 1;
1260}
1261
1262STATIC void
1263xfs_btree_buf_to_ptr(
1264	struct xfs_btree_cur	*cur,
1265	struct xfs_buf		*bp,
1266	union xfs_btree_ptr	*ptr)
1267{
1268	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270					xfs_buf_daddr(bp)));
1271	else {
1272		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273					xfs_buf_daddr(bp)));
1274	}
1275}
1276
1277STATIC void
1278xfs_btree_set_refs(
1279	struct xfs_btree_cur	*cur,
1280	struct xfs_buf		*bp)
1281{
1282	switch (cur->bc_btnum) {
1283	case XFS_BTNUM_BNO:
1284	case XFS_BTNUM_CNT:
1285		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286		break;
1287	case XFS_BTNUM_INO:
1288	case XFS_BTNUM_FINO:
1289		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290		break;
1291	case XFS_BTNUM_BMAP:
1292		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293		break;
1294	case XFS_BTNUM_RMAP:
1295		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296		break;
1297	case XFS_BTNUM_REFC:
1298		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299		break;
1300	default:
1301		ASSERT(0);
1302	}
1303}
1304
1305int
1306xfs_btree_get_buf_block(
1307	struct xfs_btree_cur		*cur,
1308	const union xfs_btree_ptr	*ptr,
1309	struct xfs_btree_block		**block,
1310	struct xfs_buf			**bpp)
 
1311{
1312	struct xfs_mount	*mp = cur->bc_mp;
1313	xfs_daddr_t		d;
1314	int			error;
1315
1316	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317	if (error)
1318		return error;
1319	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320			0, bpp);
1321	if (error)
1322		return error;
 
 
1323
1324	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1325	*block = XFS_BUF_TO_BLOCK(*bpp);
1326	return 0;
1327}
1328
1329/*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333int
1334xfs_btree_read_buf_block(
1335	struct xfs_btree_cur		*cur,
1336	const union xfs_btree_ptr	*ptr,
1337	int				flags,
1338	struct xfs_btree_block		**block,
1339	struct xfs_buf			**bpp)
1340{
1341	struct xfs_mount	*mp = cur->bc_mp;
1342	xfs_daddr_t		d;
1343	int			error;
1344
1345	/* need to sort out how callers deal with failures first */
1346	ASSERT(!(flags & XBF_TRYLOCK));
1347
1348	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349	if (error)
1350		return error;
1351	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352				   mp->m_bsize, flags, bpp,
1353				   cur->bc_ops->buf_ops);
1354	if (error)
1355		return error;
1356
1357	xfs_btree_set_refs(cur, *bpp);
1358	*block = XFS_BUF_TO_BLOCK(*bpp);
1359	return 0;
1360}
1361
1362/*
1363 * Copy keys from one btree block to another.
1364 */
1365void
1366xfs_btree_copy_keys(
1367	struct xfs_btree_cur		*cur,
1368	union xfs_btree_key		*dst_key,
1369	const union xfs_btree_key	*src_key,
1370	int				numkeys)
1371{
1372	ASSERT(numkeys >= 0);
1373	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374}
1375
1376/*
1377 * Copy records from one btree block to another.
1378 */
1379STATIC void
1380xfs_btree_copy_recs(
1381	struct xfs_btree_cur	*cur,
1382	union xfs_btree_rec	*dst_rec,
1383	union xfs_btree_rec	*src_rec,
1384	int			numrecs)
1385{
1386	ASSERT(numrecs >= 0);
1387	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388}
1389
1390/*
1391 * Copy block pointers from one btree block to another.
1392 */
1393void
1394xfs_btree_copy_ptrs(
1395	struct xfs_btree_cur	*cur,
1396	union xfs_btree_ptr	*dst_ptr,
1397	const union xfs_btree_ptr *src_ptr,
1398	int			numptrs)
1399{
1400	ASSERT(numptrs >= 0);
1401	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402}
1403
1404/*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407STATIC void
1408xfs_btree_shift_keys(
1409	struct xfs_btree_cur	*cur,
1410	union xfs_btree_key	*key,
1411	int			dir,
1412	int			numkeys)
1413{
1414	char			*dst_key;
1415
1416	ASSERT(numkeys >= 0);
1417	ASSERT(dir == 1 || dir == -1);
1418
1419	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426STATIC void
1427xfs_btree_shift_recs(
1428	struct xfs_btree_cur	*cur,
1429	union xfs_btree_rec	*rec,
1430	int			dir,
1431	int			numrecs)
1432{
1433	char			*dst_rec;
1434
1435	ASSERT(numrecs >= 0);
1436	ASSERT(dir == 1 || dir == -1);
1437
1438	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440}
1441
1442/*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445STATIC void
1446xfs_btree_shift_ptrs(
1447	struct xfs_btree_cur	*cur,
1448	union xfs_btree_ptr	*ptr,
1449	int			dir,
1450	int			numptrs)
1451{
1452	char			*dst_ptr;
1453
1454	ASSERT(numptrs >= 0);
1455	ASSERT(dir == 1 || dir == -1);
1456
1457	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459}
1460
1461/*
1462 * Log key values from the btree block.
1463 */
1464STATIC void
1465xfs_btree_log_keys(
1466	struct xfs_btree_cur	*cur,
1467	struct xfs_buf		*bp,
1468	int			first,
1469	int			last)
1470{
 
 
1471
1472	if (bp) {
1473		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474		xfs_trans_log_buf(cur->bc_tp, bp,
1475				  xfs_btree_key_offset(cur, first),
1476				  xfs_btree_key_offset(cur, last + 1) - 1);
1477	} else {
1478		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480	}
 
 
1481}
1482
1483/*
1484 * Log record values from the btree block.
1485 */
1486void
1487xfs_btree_log_recs(
1488	struct xfs_btree_cur	*cur,
1489	struct xfs_buf		*bp,
1490	int			first,
1491	int			last)
1492{
 
 
1493
1494	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495	xfs_trans_log_buf(cur->bc_tp, bp,
1496			  xfs_btree_rec_offset(cur, first),
1497			  xfs_btree_rec_offset(cur, last + 1) - 1);
1498
 
1499}
1500
1501/*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504STATIC void
1505xfs_btree_log_ptrs(
1506	struct xfs_btree_cur	*cur,	/* btree cursor */
1507	struct xfs_buf		*bp,	/* buffer containing btree block */
1508	int			first,	/* index of first pointer to log */
1509	int			last)	/* index of last pointer to log */
1510{
 
 
1511
1512	if (bp) {
1513		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1514		int			level = xfs_btree_get_level(block);
1515
1516		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517		xfs_trans_log_buf(cur->bc_tp, bp,
1518				xfs_btree_ptr_offset(cur, first, level),
1519				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520	} else {
1521		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523	}
1524
 
1525}
1526
1527/*
1528 * Log fields from a btree block header.
1529 */
1530void
1531xfs_btree_log_block(
1532	struct xfs_btree_cur	*cur,	/* btree cursor */
1533	struct xfs_buf		*bp,	/* buffer containing btree block */
1534	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1535{
1536	int			first;	/* first byte offset logged */
1537	int			last;	/* last byte offset logged */
1538	static const short	soffsets[] = {	/* table of offsets (short) */
1539		offsetof(struct xfs_btree_block, bb_magic),
1540		offsetof(struct xfs_btree_block, bb_level),
1541		offsetof(struct xfs_btree_block, bb_numrecs),
1542		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549		XFS_BTREE_SBLOCK_CRC_LEN
1550	};
1551	static const short	loffsets[] = {	/* table of offsets (long) */
1552		offsetof(struct xfs_btree_block, bb_magic),
1553		offsetof(struct xfs_btree_block, bb_level),
1554		offsetof(struct xfs_btree_block, bb_numrecs),
1555		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563		XFS_BTREE_LBLOCK_CRC_LEN
1564	};
1565
 
 
 
1566	if (bp) {
1567		int nbits;
1568
1569		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570			/*
1571			 * We don't log the CRC when updating a btree
1572			 * block but instead recreate it during log
1573			 * recovery.  As the log buffers have checksums
1574			 * of their own this is safe and avoids logging a crc
1575			 * update in a lot of places.
1576			 */
1577			if (fields == XFS_BB_ALL_BITS)
1578				fields = XFS_BB_ALL_BITS_CRC;
1579			nbits = XFS_BB_NUM_BITS_CRC;
1580		} else {
1581			nbits = XFS_BB_NUM_BITS;
1582		}
1583		xfs_btree_offsets(fields,
1584				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585					loffsets : soffsets,
1586				  nbits, &first, &last);
1587		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589	} else {
1590		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592	}
 
 
1593}
1594
1595/*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599int						/* error */
1600xfs_btree_increment(
1601	struct xfs_btree_cur	*cur,
1602	int			level,
1603	int			*stat)		/* success/failure */
1604{
1605	struct xfs_btree_block	*block;
1606	union xfs_btree_ptr	ptr;
1607	struct xfs_buf		*bp;
1608	int			error;		/* error return value */
1609	int			lev;
1610
 
 
 
1611	ASSERT(level < cur->bc_nlevels);
1612
1613	/* Read-ahead to the right at this level. */
1614	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616	/* Get a pointer to the btree block. */
1617	block = xfs_btree_get_block(cur, level, &bp);
1618
1619#ifdef DEBUG
1620	error = xfs_btree_check_block(cur, block, level, bp);
1621	if (error)
1622		goto error0;
1623#endif
1624
1625	/* We're done if we remain in the block after the increment. */
1626	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627		goto out1;
1628
1629	/* Fail if we just went off the right edge of the tree. */
1630	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631	if (xfs_btree_ptr_is_null(cur, &ptr))
1632		goto out0;
1633
1634	XFS_BTREE_STATS_INC(cur, increment);
1635
1636	/*
1637	 * March up the tree incrementing pointers.
1638	 * Stop when we don't go off the right edge of a block.
1639	 */
1640	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641		block = xfs_btree_get_block(cur, lev, &bp);
1642
1643#ifdef DEBUG
1644		error = xfs_btree_check_block(cur, block, lev, bp);
1645		if (error)
1646			goto error0;
1647#endif
1648
1649		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650			break;
1651
1652		/* Read-ahead the right block for the next loop. */
1653		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654	}
1655
1656	/*
1657	 * If we went off the root then we are either seriously
1658	 * confused or have the tree root in an inode.
1659	 */
1660	if (lev == cur->bc_nlevels) {
1661		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662			goto out0;
1663		ASSERT(0);
1664		error = -EFSCORRUPTED;
1665		goto error0;
1666	}
1667	ASSERT(lev < cur->bc_nlevels);
1668
1669	/*
1670	 * Now walk back down the tree, fixing up the cursor's buffer
1671	 * pointers and key numbers.
1672	 */
1673	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674		union xfs_btree_ptr	*ptrp;
1675
1676		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677		--lev;
1678		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679		if (error)
1680			goto error0;
1681
1682		xfs_btree_setbuf(cur, lev, bp);
1683		cur->bc_levels[lev].ptr = 1;
1684	}
1685out1:
 
1686	*stat = 1;
1687	return 0;
1688
1689out0:
 
1690	*stat = 0;
1691	return 0;
1692
1693error0:
 
1694	return error;
1695}
1696
1697/*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701int						/* error */
1702xfs_btree_decrement(
1703	struct xfs_btree_cur	*cur,
1704	int			level,
1705	int			*stat)		/* success/failure */
1706{
1707	struct xfs_btree_block	*block;
1708	struct xfs_buf		*bp;
1709	int			error;		/* error return value */
1710	int			lev;
1711	union xfs_btree_ptr	ptr;
1712
 
 
 
1713	ASSERT(level < cur->bc_nlevels);
1714
1715	/* Read-ahead to the left at this level. */
1716	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718	/* We're done if we remain in the block after the decrement. */
1719	if (--cur->bc_levels[level].ptr > 0)
1720		goto out1;
1721
1722	/* Get a pointer to the btree block. */
1723	block = xfs_btree_get_block(cur, level, &bp);
1724
1725#ifdef DEBUG
1726	error = xfs_btree_check_block(cur, block, level, bp);
1727	if (error)
1728		goto error0;
1729#endif
1730
1731	/* Fail if we just went off the left edge of the tree. */
1732	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733	if (xfs_btree_ptr_is_null(cur, &ptr))
1734		goto out0;
1735
1736	XFS_BTREE_STATS_INC(cur, decrement);
1737
1738	/*
1739	 * March up the tree decrementing pointers.
1740	 * Stop when we don't go off the left edge of a block.
1741	 */
1742	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743		if (--cur->bc_levels[lev].ptr > 0)
1744			break;
1745		/* Read-ahead the left block for the next loop. */
1746		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747	}
1748
1749	/*
1750	 * If we went off the root then we are seriously confused.
1751	 * or the root of the tree is in an inode.
1752	 */
1753	if (lev == cur->bc_nlevels) {
1754		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755			goto out0;
1756		ASSERT(0);
1757		error = -EFSCORRUPTED;
1758		goto error0;
1759	}
1760	ASSERT(lev < cur->bc_nlevels);
1761
1762	/*
1763	 * Now walk back down the tree, fixing up the cursor's buffer
1764	 * pointers and key numbers.
1765	 */
1766	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767		union xfs_btree_ptr	*ptrp;
1768
1769		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770		--lev;
1771		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772		if (error)
1773			goto error0;
1774		xfs_btree_setbuf(cur, lev, bp);
1775		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776	}
1777out1:
 
1778	*stat = 1;
1779	return 0;
1780
1781out0:
 
1782	*stat = 0;
1783	return 0;
1784
1785error0:
 
1786	return error;
1787}
1788
1789int
1790xfs_btree_lookup_get_block(
1791	struct xfs_btree_cur		*cur,	/* btree cursor */
1792	int				level,	/* level in the btree */
1793	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1794	struct xfs_btree_block		**blkp) /* return btree block */
1795{
1796	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1797	xfs_daddr_t		daddr;
1798	int			error = 0;
1799
1800	/* special case the root block if in an inode */
1801	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802	    (level == cur->bc_nlevels - 1)) {
1803		*blkp = xfs_btree_get_iroot(cur);
1804		return 0;
1805	}
1806
1807	/*
1808	 * If the old buffer at this level for the disk address we are
1809	 * looking for re-use it.
1810	 *
1811	 * Otherwise throw it away and get a new one.
1812	 */
1813	bp = cur->bc_levels[level].bp;
1814	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815	if (error)
1816		return error;
1817	if (bp && xfs_buf_daddr(bp) == daddr) {
1818		*blkp = XFS_BUF_TO_BLOCK(bp);
1819		return 0;
1820	}
1821
1822	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823	if (error)
1824		return error;
1825
1826	/* Check the inode owner since the verifiers don't. */
1827	if (xfs_has_crc(cur->bc_mp) &&
1828	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831			cur->bc_ino.ip->i_ino)
1832		goto out_bad;
1833
1834	/* Did we get the level we were looking for? */
1835	if (be16_to_cpu((*blkp)->bb_level) != level)
1836		goto out_bad;
1837
1838	/* Check that internal nodes have at least one record. */
1839	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840		goto out_bad;
1841
1842	xfs_btree_setbuf(cur, level, bp);
1843	return 0;
1844
1845out_bad:
1846	*blkp = NULL;
1847	xfs_buf_mark_corrupt(bp);
1848	xfs_trans_brelse(cur->bc_tp, bp);
1849	return -EFSCORRUPTED;
1850}
1851
1852/*
1853 * Get current search key.  For level 0 we don't actually have a key
1854 * structure so we make one up from the record.  For all other levels
1855 * we just return the right key.
1856 */
1857STATIC union xfs_btree_key *
1858xfs_lookup_get_search_key(
1859	struct xfs_btree_cur	*cur,
1860	int			level,
1861	int			keyno,
1862	struct xfs_btree_block	*block,
1863	union xfs_btree_key	*kp)
1864{
1865	if (level == 0) {
1866		cur->bc_ops->init_key_from_rec(kp,
1867				xfs_btree_rec_addr(cur, keyno, block));
1868		return kp;
1869	}
1870
1871	return xfs_btree_key_addr(cur, keyno, block);
1872}
1873
1874/*
1875 * Lookup the record.  The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878int					/* error */
1879xfs_btree_lookup(
1880	struct xfs_btree_cur	*cur,	/* btree cursor */
1881	xfs_lookup_t		dir,	/* <=, ==, or >= */
1882	int			*stat)	/* success/failure */
1883{
1884	struct xfs_btree_block	*block;	/* current btree block */
1885	int64_t			diff;	/* difference for the current key */
1886	int			error;	/* error return value */
1887	int			keyno;	/* current key number */
1888	int			level;	/* level in the btree */
1889	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1890	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1891
 
 
 
1892	XFS_BTREE_STATS_INC(cur, lookup);
1893
1894	/* No such thing as a zero-level tree. */
1895	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896		return -EFSCORRUPTED;
1897
1898	block = NULL;
1899	keyno = 0;
1900
1901	/* initialise start pointer from cursor */
1902	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903	pp = &ptr;
1904
1905	/*
1906	 * Iterate over each level in the btree, starting at the root.
1907	 * For each level above the leaves, find the key we need, based
1908	 * on the lookup record, then follow the corresponding block
1909	 * pointer down to the next level.
1910	 */
1911	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912		/* Get the block we need to do the lookup on. */
1913		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914		if (error)
1915			goto error0;
1916
1917		if (diff == 0) {
1918			/*
1919			 * If we already had a key match at a higher level, we
1920			 * know we need to use the first entry in this block.
1921			 */
1922			keyno = 1;
1923		} else {
1924			/* Otherwise search this block. Do a binary search. */
1925
1926			int	high;	/* high entry number */
1927			int	low;	/* low entry number */
1928
1929			/* Set low and high entry numbers, 1-based. */
1930			low = 1;
1931			high = xfs_btree_get_numrecs(block);
1932			if (!high) {
1933				/* Block is empty, must be an empty leaf. */
1934				if (level != 0 || cur->bc_nlevels != 1) {
1935					XFS_CORRUPTION_ERROR(__func__,
1936							XFS_ERRLEVEL_LOW,
1937							cur->bc_mp, block,
1938							sizeof(*block));
1939					return -EFSCORRUPTED;
1940				}
1941
1942				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
 
1943				*stat = 0;
1944				return 0;
1945			}
1946
1947			/* Binary search the block. */
1948			while (low <= high) {
1949				union xfs_btree_key	key;
1950				union xfs_btree_key	*kp;
1951
1952				XFS_BTREE_STATS_INC(cur, compare);
1953
1954				/* keyno is average of low and high. */
1955				keyno = (low + high) >> 1;
1956
1957				/* Get current search key */
1958				kp = xfs_lookup_get_search_key(cur, level,
1959						keyno, block, &key);
1960
1961				/*
1962				 * Compute difference to get next direction:
1963				 *  - less than, move right
1964				 *  - greater than, move left
1965				 *  - equal, we're done
1966				 */
1967				diff = cur->bc_ops->key_diff(cur, kp);
1968				if (diff < 0)
1969					low = keyno + 1;
1970				else if (diff > 0)
1971					high = keyno - 1;
1972				else
1973					break;
1974			}
1975		}
1976
1977		/*
1978		 * If there are more levels, set up for the next level
1979		 * by getting the block number and filling in the cursor.
1980		 */
1981		if (level > 0) {
1982			/*
1983			 * If we moved left, need the previous key number,
1984			 * unless there isn't one.
1985			 */
1986			if (diff > 0 && --keyno < 1)
1987				keyno = 1;
1988			pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
 
1991			if (error)
1992				goto error0;
1993
1994			cur->bc_levels[level].ptr = keyno;
1995		}
1996	}
1997
1998	/* Done with the search. See if we need to adjust the results. */
1999	if (dir != XFS_LOOKUP_LE && diff < 0) {
2000		keyno++;
2001		/*
2002		 * If ge search and we went off the end of the block, but it's
2003		 * not the last block, we're in the wrong block.
2004		 */
2005		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006		if (dir == XFS_LOOKUP_GE &&
2007		    keyno > xfs_btree_get_numrecs(block) &&
2008		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2009			int	i;
2010
2011			cur->bc_levels[0].ptr = keyno;
2012			error = xfs_btree_increment(cur, 0, &i);
2013			if (error)
2014				goto error0;
2015			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016				return -EFSCORRUPTED;
2017			*stat = 1;
2018			return 0;
2019		}
2020	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2021		keyno--;
2022	cur->bc_levels[0].ptr = keyno;
2023
2024	/* Return if we succeeded or not. */
2025	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026		*stat = 0;
2027	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028		*stat = 1;
2029	else
2030		*stat = 0;
 
2031	return 0;
2032
2033error0:
 
2034	return error;
2035}
2036
2037/* Find the high key storage area from a regular key. */
2038union xfs_btree_key *
2039xfs_btree_high_key_from_key(
2040	struct xfs_btree_cur	*cur,
2041	union xfs_btree_key	*key)
2042{
2043	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044	return (union xfs_btree_key *)((char *)key +
2045			(cur->bc_ops->key_len / 2));
2046}
2047
2048/* Determine the low (and high if overlapped) keys of a leaf block */
2049STATIC void
2050xfs_btree_get_leaf_keys(
2051	struct xfs_btree_cur	*cur,
2052	struct xfs_btree_block	*block,
2053	union xfs_btree_key	*key)
2054{
2055	union xfs_btree_key	max_hkey;
2056	union xfs_btree_key	hkey;
2057	union xfs_btree_rec	*rec;
2058	union xfs_btree_key	*high;
2059	int			n;
2060
2061	rec = xfs_btree_rec_addr(cur, 1, block);
2062	cur->bc_ops->init_key_from_rec(key, rec);
2063
2064	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068			rec = xfs_btree_rec_addr(cur, n, block);
2069			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
 
2071				max_hkey = hkey;
2072		}
2073
2074		high = xfs_btree_high_key_from_key(cur, key);
2075		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2076	}
2077}
2078
2079/* Determine the low (and high if overlapped) keys of a node block */
2080STATIC void
2081xfs_btree_get_node_keys(
2082	struct xfs_btree_cur	*cur,
2083	struct xfs_btree_block	*block,
2084	union xfs_btree_key	*key)
2085{
2086	union xfs_btree_key	*hkey;
2087	union xfs_btree_key	*max_hkey;
2088	union xfs_btree_key	*high;
2089	int			n;
2090
2091	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2092		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2093				cur->bc_ops->key_len / 2);
2094
2095		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2096		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2097			hkey = xfs_btree_high_key_addr(cur, n, block);
2098			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2099				max_hkey = hkey;
2100		}
2101
2102		high = xfs_btree_high_key_from_key(cur, key);
2103		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2104	} else {
2105		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2106				cur->bc_ops->key_len);
2107	}
2108}
2109
2110/* Derive the keys for any btree block. */
2111void
2112xfs_btree_get_keys(
2113	struct xfs_btree_cur	*cur,
2114	struct xfs_btree_block	*block,
2115	union xfs_btree_key	*key)
2116{
2117	if (be16_to_cpu(block->bb_level) == 0)
2118		xfs_btree_get_leaf_keys(cur, block, key);
2119	else
2120		xfs_btree_get_node_keys(cur, block, key);
2121}
2122
2123/*
2124 * Decide if we need to update the parent keys of a btree block.  For
2125 * a standard btree this is only necessary if we're updating the first
2126 * record/key.  For an overlapping btree, we must always update the
2127 * keys because the highest key can be in any of the records or keys
2128 * in the block.
2129 */
2130static inline bool
2131xfs_btree_needs_key_update(
2132	struct xfs_btree_cur	*cur,
2133	int			ptr)
2134{
2135	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2136}
2137
2138/*
2139 * Update the low and high parent keys of the given level, progressing
2140 * towards the root.  If force_all is false, stop if the keys for a given
2141 * level do not need updating.
2142 */
2143STATIC int
2144__xfs_btree_updkeys(
2145	struct xfs_btree_cur	*cur,
2146	int			level,
2147	struct xfs_btree_block	*block,
2148	struct xfs_buf		*bp0,
2149	bool			force_all)
2150{
2151	union xfs_btree_key	key;	/* keys from current level */
2152	union xfs_btree_key	*lkey;	/* keys from the next level up */
2153	union xfs_btree_key	*hkey;
2154	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2155	union xfs_btree_key	*nhkey;
2156	struct xfs_buf		*bp;
2157	int			ptr;
2158
2159	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2160
2161	/* Exit if there aren't any parent levels to update. */
2162	if (level + 1 >= cur->bc_nlevels)
2163		return 0;
2164
2165	trace_xfs_btree_updkeys(cur, level, bp0);
2166
2167	lkey = &key;
2168	hkey = xfs_btree_high_key_from_key(cur, lkey);
2169	xfs_btree_get_keys(cur, block, lkey);
2170	for (level++; level < cur->bc_nlevels; level++) {
2171#ifdef DEBUG
2172		int		error;
2173#endif
2174		block = xfs_btree_get_block(cur, level, &bp);
2175		trace_xfs_btree_updkeys(cur, level, bp);
2176#ifdef DEBUG
2177		error = xfs_btree_check_block(cur, block, level, bp);
2178		if (error)
 
2179			return error;
 
2180#endif
2181		ptr = cur->bc_levels[level].ptr;
2182		nlkey = xfs_btree_key_addr(cur, ptr, block);
2183		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2184		if (!force_all &&
2185		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2186		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2187			break;
2188		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2189		xfs_btree_log_keys(cur, bp, ptr, ptr);
2190		if (level + 1 >= cur->bc_nlevels)
2191			break;
2192		xfs_btree_get_node_keys(cur, block, lkey);
2193	}
2194
2195	return 0;
2196}
2197
2198/* Update all the keys from some level in cursor back to the root. */
2199STATIC int
2200xfs_btree_updkeys_force(
2201	struct xfs_btree_cur	*cur,
2202	int			level)
2203{
2204	struct xfs_buf		*bp;
2205	struct xfs_btree_block	*block;
2206
2207	block = xfs_btree_get_block(cur, level, &bp);
2208	return __xfs_btree_updkeys(cur, level, block, bp, true);
2209}
2210
2211/*
2212 * Update the parent keys of the given level, progressing towards the root.
2213 */
2214STATIC int
2215xfs_btree_update_keys(
2216	struct xfs_btree_cur	*cur,
2217	int			level)
2218{
2219	struct xfs_btree_block	*block;
2220	struct xfs_buf		*bp;
2221	union xfs_btree_key	*kp;
2222	union xfs_btree_key	key;
2223	int			ptr;
2224
2225	ASSERT(level >= 0);
2226
2227	block = xfs_btree_get_block(cur, level, &bp);
2228	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2229		return __xfs_btree_updkeys(cur, level, block, bp, false);
2230
 
 
 
2231	/*
2232	 * Go up the tree from this level toward the root.
2233	 * At each level, update the key value to the value input.
2234	 * Stop when we reach a level where the cursor isn't pointing
2235	 * at the first entry in the block.
2236	 */
2237	xfs_btree_get_keys(cur, block, &key);
2238	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2239#ifdef DEBUG
2240		int		error;
2241#endif
2242		block = xfs_btree_get_block(cur, level, &bp);
2243#ifdef DEBUG
2244		error = xfs_btree_check_block(cur, block, level, bp);
2245		if (error)
 
2246			return error;
 
2247#endif
2248		ptr = cur->bc_levels[level].ptr;
2249		kp = xfs_btree_key_addr(cur, ptr, block);
2250		xfs_btree_copy_keys(cur, kp, &key, 1);
2251		xfs_btree_log_keys(cur, bp, ptr, ptr);
2252	}
2253
 
2254	return 0;
2255}
2256
2257/*
2258 * Update the record referred to by cur to the value in the
2259 * given record. This either works (return 0) or gets an
2260 * EFSCORRUPTED error.
2261 */
2262int
2263xfs_btree_update(
2264	struct xfs_btree_cur	*cur,
2265	union xfs_btree_rec	*rec)
2266{
2267	struct xfs_btree_block	*block;
2268	struct xfs_buf		*bp;
2269	int			error;
2270	int			ptr;
2271	union xfs_btree_rec	*rp;
2272
 
 
 
2273	/* Pick up the current block. */
2274	block = xfs_btree_get_block(cur, 0, &bp);
2275
2276#ifdef DEBUG
2277	error = xfs_btree_check_block(cur, block, 0, bp);
2278	if (error)
2279		goto error0;
2280#endif
2281	/* Get the address of the rec to be updated. */
2282	ptr = cur->bc_levels[0].ptr;
2283	rp = xfs_btree_rec_addr(cur, ptr, block);
2284
2285	/* Fill in the new contents and log them. */
2286	xfs_btree_copy_recs(cur, rp, rec, 1);
2287	xfs_btree_log_recs(cur, bp, ptr, ptr);
2288
2289	/*
2290	 * If we are tracking the last record in the tree and
2291	 * we are at the far right edge of the tree, update it.
2292	 */
2293	if (xfs_btree_is_lastrec(cur, block, 0)) {
2294		cur->bc_ops->update_lastrec(cur, block, rec,
2295					    ptr, LASTREC_UPDATE);
2296	}
2297
2298	/* Pass new key value up to our parent. */
2299	if (xfs_btree_needs_key_update(cur, ptr)) {
2300		error = xfs_btree_update_keys(cur, 0);
2301		if (error)
2302			goto error0;
2303	}
2304
 
2305	return 0;
2306
2307error0:
 
2308	return error;
2309}
2310
2311/*
2312 * Move 1 record left from cur/level if possible.
2313 * Update cur to reflect the new path.
2314 */
2315STATIC int					/* error */
2316xfs_btree_lshift(
2317	struct xfs_btree_cur	*cur,
2318	int			level,
2319	int			*stat)		/* success/failure */
2320{
2321	struct xfs_buf		*lbp;		/* left buffer pointer */
2322	struct xfs_btree_block	*left;		/* left btree block */
2323	int			lrecs;		/* left record count */
2324	struct xfs_buf		*rbp;		/* right buffer pointer */
2325	struct xfs_btree_block	*right;		/* right btree block */
2326	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2327	int			rrecs;		/* right record count */
2328	union xfs_btree_ptr	lptr;		/* left btree pointer */
2329	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2330	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2331	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2332	int			error;		/* error return value */
2333	int			i;
2334
 
 
 
2335	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2336	    level == cur->bc_nlevels - 1)
2337		goto out0;
2338
2339	/* Set up variables for this block as "right". */
2340	right = xfs_btree_get_block(cur, level, &rbp);
2341
2342#ifdef DEBUG
2343	error = xfs_btree_check_block(cur, right, level, rbp);
2344	if (error)
2345		goto error0;
2346#endif
2347
2348	/* If we've got no left sibling then we can't shift an entry left. */
2349	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2350	if (xfs_btree_ptr_is_null(cur, &lptr))
2351		goto out0;
2352
2353	/*
2354	 * If the cursor entry is the one that would be moved, don't
2355	 * do it... it's too complicated.
2356	 */
2357	if (cur->bc_levels[level].ptr <= 1)
2358		goto out0;
2359
2360	/* Set up the left neighbor as "left". */
2361	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2362	if (error)
2363		goto error0;
2364
2365	/* If it's full, it can't take another entry. */
2366	lrecs = xfs_btree_get_numrecs(left);
2367	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2368		goto out0;
2369
2370	rrecs = xfs_btree_get_numrecs(right);
2371
2372	/*
2373	 * We add one entry to the left side and remove one for the right side.
2374	 * Account for it here, the changes will be updated on disk and logged
2375	 * later.
2376	 */
2377	lrecs++;
2378	rrecs--;
2379
2380	XFS_BTREE_STATS_INC(cur, lshift);
2381	XFS_BTREE_STATS_ADD(cur, moves, 1);
2382
2383	/*
2384	 * If non-leaf, copy a key and a ptr to the left block.
2385	 * Log the changes to the left block.
2386	 */
2387	if (level > 0) {
2388		/* It's a non-leaf.  Move keys and pointers. */
2389		union xfs_btree_key	*lkp;	/* left btree key */
2390		union xfs_btree_ptr	*lpp;	/* left address pointer */
2391
2392		lkp = xfs_btree_key_addr(cur, lrecs, left);
2393		rkp = xfs_btree_key_addr(cur, 1, right);
2394
2395		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2396		rpp = xfs_btree_ptr_addr(cur, 1, right);
2397
2398		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2399		if (error)
2400			goto error0;
2401
2402		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2403		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2404
2405		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2406		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2407
2408		ASSERT(cur->bc_ops->keys_inorder(cur,
2409			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2410	} else {
2411		/* It's a leaf.  Move records.  */
2412		union xfs_btree_rec	*lrp;	/* left record pointer */
2413
2414		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2415		rrp = xfs_btree_rec_addr(cur, 1, right);
2416
2417		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2418		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2419
2420		ASSERT(cur->bc_ops->recs_inorder(cur,
2421			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2422	}
2423
2424	xfs_btree_set_numrecs(left, lrecs);
2425	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2426
2427	xfs_btree_set_numrecs(right, rrecs);
2428	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2429
2430	/*
2431	 * Slide the contents of right down one entry.
2432	 */
2433	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2434	if (level > 0) {
2435		/* It's a nonleaf. operate on keys and ptrs */
 
 
 
2436		for (i = 0; i < rrecs; i++) {
2437			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2438			if (error)
2439				goto error0;
2440		}
2441
2442		xfs_btree_shift_keys(cur,
2443				xfs_btree_key_addr(cur, 2, right),
2444				-1, rrecs);
2445		xfs_btree_shift_ptrs(cur,
2446				xfs_btree_ptr_addr(cur, 2, right),
2447				-1, rrecs);
2448
2449		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2450		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2451	} else {
2452		/* It's a leaf. operate on records */
2453		xfs_btree_shift_recs(cur,
2454			xfs_btree_rec_addr(cur, 2, right),
2455			-1, rrecs);
2456		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2457	}
2458
2459	/*
2460	 * Using a temporary cursor, update the parent key values of the
2461	 * block on the left.
2462	 */
2463	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2464		error = xfs_btree_dup_cursor(cur, &tcur);
2465		if (error)
2466			goto error0;
2467		i = xfs_btree_firstrec(tcur, level);
2468		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2469			error = -EFSCORRUPTED;
2470			goto error0;
2471		}
2472
2473		error = xfs_btree_decrement(tcur, level, &i);
2474		if (error)
2475			goto error1;
2476
2477		/* Update the parent high keys of the left block, if needed. */
2478		error = xfs_btree_update_keys(tcur, level);
2479		if (error)
2480			goto error1;
2481
2482		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2483	}
2484
2485	/* Update the parent keys of the right block. */
2486	error = xfs_btree_update_keys(cur, level);
2487	if (error)
2488		goto error0;
2489
2490	/* Slide the cursor value left one. */
2491	cur->bc_levels[level].ptr--;
2492
 
2493	*stat = 1;
2494	return 0;
2495
2496out0:
 
2497	*stat = 0;
2498	return 0;
2499
2500error0:
 
2501	return error;
2502
2503error1:
 
2504	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2505	return error;
2506}
2507
2508/*
2509 * Move 1 record right from cur/level if possible.
2510 * Update cur to reflect the new path.
2511 */
2512STATIC int					/* error */
2513xfs_btree_rshift(
2514	struct xfs_btree_cur	*cur,
2515	int			level,
2516	int			*stat)		/* success/failure */
2517{
2518	struct xfs_buf		*lbp;		/* left buffer pointer */
2519	struct xfs_btree_block	*left;		/* left btree block */
2520	struct xfs_buf		*rbp;		/* right buffer pointer */
2521	struct xfs_btree_block	*right;		/* right btree block */
2522	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2523	union xfs_btree_ptr	rptr;		/* right block pointer */
2524	union xfs_btree_key	*rkp;		/* right btree key */
2525	int			rrecs;		/* right record count */
2526	int			lrecs;		/* left record count */
2527	int			error;		/* error return value */
2528	int			i;		/* loop counter */
2529
 
 
 
2530	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2531	    (level == cur->bc_nlevels - 1))
2532		goto out0;
2533
2534	/* Set up variables for this block as "left". */
2535	left = xfs_btree_get_block(cur, level, &lbp);
2536
2537#ifdef DEBUG
2538	error = xfs_btree_check_block(cur, left, level, lbp);
2539	if (error)
2540		goto error0;
2541#endif
2542
2543	/* If we've got no right sibling then we can't shift an entry right. */
2544	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2545	if (xfs_btree_ptr_is_null(cur, &rptr))
2546		goto out0;
2547
2548	/*
2549	 * If the cursor entry is the one that would be moved, don't
2550	 * do it... it's too complicated.
2551	 */
2552	lrecs = xfs_btree_get_numrecs(left);
2553	if (cur->bc_levels[level].ptr >= lrecs)
2554		goto out0;
2555
2556	/* Set up the right neighbor as "right". */
2557	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2558	if (error)
2559		goto error0;
2560
2561	/* If it's full, it can't take another entry. */
2562	rrecs = xfs_btree_get_numrecs(right);
2563	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2564		goto out0;
2565
2566	XFS_BTREE_STATS_INC(cur, rshift);
2567	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2568
2569	/*
2570	 * Make a hole at the start of the right neighbor block, then
2571	 * copy the last left block entry to the hole.
2572	 */
2573	if (level > 0) {
2574		/* It's a nonleaf. make a hole in the keys and ptrs */
2575		union xfs_btree_key	*lkp;
2576		union xfs_btree_ptr	*lpp;
2577		union xfs_btree_ptr	*rpp;
2578
2579		lkp = xfs_btree_key_addr(cur, lrecs, left);
2580		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2581		rkp = xfs_btree_key_addr(cur, 1, right);
2582		rpp = xfs_btree_ptr_addr(cur, 1, right);
2583
 
2584		for (i = rrecs - 1; i >= 0; i--) {
2585			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2586			if (error)
2587				goto error0;
2588		}
 
2589
2590		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2591		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2592
2593		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
 
2594		if (error)
2595			goto error0;
 
2596
2597		/* Now put the new data in, and log it. */
2598		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2599		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2600
2601		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2602		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2603
2604		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2605			xfs_btree_key_addr(cur, 2, right)));
2606	} else {
2607		/* It's a leaf. make a hole in the records */
2608		union xfs_btree_rec	*lrp;
2609		union xfs_btree_rec	*rrp;
2610
2611		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2612		rrp = xfs_btree_rec_addr(cur, 1, right);
2613
2614		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2615
2616		/* Now put the new data in, and log it. */
2617		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2618		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2619	}
2620
2621	/*
2622	 * Decrement and log left's numrecs, bump and log right's numrecs.
2623	 */
2624	xfs_btree_set_numrecs(left, --lrecs);
2625	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2626
2627	xfs_btree_set_numrecs(right, ++rrecs);
2628	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2629
2630	/*
2631	 * Using a temporary cursor, update the parent key values of the
2632	 * block on the right.
2633	 */
2634	error = xfs_btree_dup_cursor(cur, &tcur);
2635	if (error)
2636		goto error0;
2637	i = xfs_btree_lastrec(tcur, level);
2638	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2639		error = -EFSCORRUPTED;
2640		goto error0;
2641	}
2642
2643	error = xfs_btree_increment(tcur, level, &i);
2644	if (error)
2645		goto error1;
2646
2647	/* Update the parent high keys of the left block, if needed. */
2648	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2649		error = xfs_btree_update_keys(cur, level);
2650		if (error)
2651			goto error1;
2652	}
2653
2654	/* Update the parent keys of the right block. */
2655	error = xfs_btree_update_keys(tcur, level);
2656	if (error)
2657		goto error1;
2658
2659	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2660
 
2661	*stat = 1;
2662	return 0;
2663
2664out0:
 
2665	*stat = 0;
2666	return 0;
2667
2668error0:
 
2669	return error;
2670
2671error1:
 
2672	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2673	return error;
2674}
2675
2676/*
2677 * Split cur/level block in half.
2678 * Return new block number and the key to its first
2679 * record (to be inserted into parent).
2680 */
2681STATIC int					/* error */
2682__xfs_btree_split(
2683	struct xfs_btree_cur	*cur,
2684	int			level,
2685	union xfs_btree_ptr	*ptrp,
2686	union xfs_btree_key	*key,
2687	struct xfs_btree_cur	**curp,
2688	int			*stat)		/* success/failure */
2689{
2690	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2691	struct xfs_buf		*lbp;		/* left buffer pointer */
2692	struct xfs_btree_block	*left;		/* left btree block */
2693	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2694	struct xfs_buf		*rbp;		/* right buffer pointer */
2695	struct xfs_btree_block	*right;		/* right btree block */
2696	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2697	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2698	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2699	int			lrecs;
2700	int			rrecs;
2701	int			src_index;
2702	int			error;		/* error return value */
 
2703	int			i;
 
 
 
 
2704
2705	XFS_BTREE_STATS_INC(cur, split);
2706
2707	/* Set up left block (current one). */
2708	left = xfs_btree_get_block(cur, level, &lbp);
2709
2710#ifdef DEBUG
2711	error = xfs_btree_check_block(cur, left, level, lbp);
2712	if (error)
2713		goto error0;
2714#endif
2715
2716	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2717
2718	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2719	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2720	if (error)
2721		goto error0;
2722	if (*stat == 0)
2723		goto out0;
2724	XFS_BTREE_STATS_INC(cur, alloc);
2725
2726	/* Set up the new block as "right". */
2727	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2728	if (error)
2729		goto error0;
2730
2731	/* Fill in the btree header for the new right block. */
2732	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2733
2734	/*
2735	 * Split the entries between the old and the new block evenly.
2736	 * Make sure that if there's an odd number of entries now, that
2737	 * each new block will have the same number of entries.
2738	 */
2739	lrecs = xfs_btree_get_numrecs(left);
2740	rrecs = lrecs / 2;
2741	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2742		rrecs++;
2743	src_index = (lrecs - rrecs + 1);
2744
2745	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2746
2747	/* Adjust numrecs for the later get_*_keys() calls. */
2748	lrecs -= rrecs;
2749	xfs_btree_set_numrecs(left, lrecs);
2750	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2751
2752	/*
2753	 * Copy btree block entries from the left block over to the
2754	 * new block, the right. Update the right block and log the
2755	 * changes.
2756	 */
2757	if (level > 0) {
2758		/* It's a non-leaf.  Move keys and pointers. */
2759		union xfs_btree_key	*lkp;	/* left btree key */
2760		union xfs_btree_ptr	*lpp;	/* left address pointer */
2761		union xfs_btree_key	*rkp;	/* right btree key */
2762		union xfs_btree_ptr	*rpp;	/* right address pointer */
2763
2764		lkp = xfs_btree_key_addr(cur, src_index, left);
2765		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2766		rkp = xfs_btree_key_addr(cur, 1, right);
2767		rpp = xfs_btree_ptr_addr(cur, 1, right);
2768
 
2769		for (i = src_index; i < rrecs; i++) {
2770			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2771			if (error)
2772				goto error0;
2773		}
 
2774
2775		/* Copy the keys & pointers to the new block. */
2776		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2777		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2778
2779		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2780		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2781
2782		/* Stash the keys of the new block for later insertion. */
2783		xfs_btree_get_node_keys(cur, right, key);
2784	} else {
2785		/* It's a leaf.  Move records.  */
2786		union xfs_btree_rec	*lrp;	/* left record pointer */
2787		union xfs_btree_rec	*rrp;	/* right record pointer */
2788
2789		lrp = xfs_btree_rec_addr(cur, src_index, left);
2790		rrp = xfs_btree_rec_addr(cur, 1, right);
2791
2792		/* Copy records to the new block. */
2793		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2794		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2795
2796		/* Stash the keys of the new block for later insertion. */
2797		xfs_btree_get_leaf_keys(cur, right, key);
2798	}
2799
2800	/*
2801	 * Find the left block number by looking in the buffer.
2802	 * Adjust sibling pointers.
2803	 */
2804	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2805	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2806	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2807	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2808
2809	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2810	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2811
2812	/*
2813	 * If there's a block to the new block's right, make that block
2814	 * point back to right instead of to left.
2815	 */
2816	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2817		error = xfs_btree_read_buf_block(cur, &rrptr,
2818							0, &rrblock, &rrbp);
2819		if (error)
2820			goto error0;
2821		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2822		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2823	}
2824
2825	/* Update the parent high keys of the left block, if needed. */
2826	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2827		error = xfs_btree_update_keys(cur, level);
2828		if (error)
2829			goto error0;
2830	}
2831
2832	/*
2833	 * If the cursor is really in the right block, move it there.
2834	 * If it's just pointing past the last entry in left, then we'll
2835	 * insert there, so don't change anything in that case.
2836	 */
2837	if (cur->bc_levels[level].ptr > lrecs + 1) {
2838		xfs_btree_setbuf(cur, level, rbp);
2839		cur->bc_levels[level].ptr -= lrecs;
2840	}
2841	/*
2842	 * If there are more levels, we'll need another cursor which refers
2843	 * the right block, no matter where this cursor was.
2844	 */
2845	if (level + 1 < cur->bc_nlevels) {
2846		error = xfs_btree_dup_cursor(cur, curp);
2847		if (error)
2848			goto error0;
2849		(*curp)->bc_levels[level + 1].ptr++;
2850	}
2851	*ptrp = rptr;
 
2852	*stat = 1;
2853	return 0;
2854out0:
 
2855	*stat = 0;
2856	return 0;
2857
2858error0:
 
2859	return error;
2860}
2861
2862#ifdef __KERNEL__
2863struct xfs_btree_split_args {
2864	struct xfs_btree_cur	*cur;
2865	int			level;
2866	union xfs_btree_ptr	*ptrp;
2867	union xfs_btree_key	*key;
2868	struct xfs_btree_cur	**curp;
2869	int			*stat;		/* success/failure */
2870	int			result;
2871	bool			kswapd;	/* allocation in kswapd context */
2872	struct completion	*done;
2873	struct work_struct	work;
2874};
2875
2876/*
2877 * Stack switching interfaces for allocation
2878 */
2879static void
2880xfs_btree_split_worker(
2881	struct work_struct	*work)
2882{
2883	struct xfs_btree_split_args	*args = container_of(work,
2884						struct xfs_btree_split_args, work);
2885	unsigned long		pflags;
2886	unsigned long		new_pflags = 0;
2887
2888	/*
2889	 * we are in a transaction context here, but may also be doing work
2890	 * in kswapd context, and hence we may need to inherit that state
2891	 * temporarily to ensure that we don't block waiting for memory reclaim
2892	 * in any way.
2893	 */
2894	if (args->kswapd)
2895		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2896
2897	current_set_flags_nested(&pflags, new_pflags);
2898	xfs_trans_set_context(args->cur->bc_tp);
2899
2900	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2901					 args->key, args->curp, args->stat);
2902
2903	xfs_trans_clear_context(args->cur->bc_tp);
2904	current_restore_flags_nested(&pflags, new_pflags);
2905
2906	/*
2907	 * Do not access args after complete() has run here. We don't own args
2908	 * and the owner may run and free args before we return here.
2909	 */
2910	complete(args->done);
2911
 
2912}
2913
2914/*
2915 * BMBT split requests often come in with little stack to work on so we push
2916 * them off to a worker thread so there is lots of stack to use. For the other
2917 * btree types, just call directly to avoid the context switch overhead here.
2918 *
2919 * Care must be taken here - the work queue rescuer thread introduces potential
2920 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2921 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2922 * lock an AGF that is already locked by a task queued to run by the rescuer,
2923 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2924 * release it until the current thread it is running gains the lock.
2925 *
2926 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2927 * already locked to allocate from. The only place that doesn't hold an AGF
2928 * locked is unwritten extent conversion at IO completion, but that has already
2929 * been offloaded to a worker thread and hence has no stack consumption issues
2930 * we have to worry about.
2931 */
2932STATIC int					/* error */
2933xfs_btree_split(
2934	struct xfs_btree_cur	*cur,
2935	int			level,
2936	union xfs_btree_ptr	*ptrp,
2937	union xfs_btree_key	*key,
2938	struct xfs_btree_cur	**curp,
2939	int			*stat)		/* success/failure */
2940{
2941	struct xfs_btree_split_args	args;
2942	DECLARE_COMPLETION_ONSTACK(done);
2943
2944	if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2945	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2946		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2947
2948	args.cur = cur;
2949	args.level = level;
2950	args.ptrp = ptrp;
2951	args.key = key;
2952	args.curp = curp;
2953	args.stat = stat;
2954	args.done = &done;
2955	args.kswapd = current_is_kswapd();
2956	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2957	queue_work(xfs_alloc_wq, &args.work);
2958	wait_for_completion(&done);
2959	destroy_work_on_stack(&args.work);
2960	return args.result;
2961}
2962#else
2963#define xfs_btree_split	__xfs_btree_split
2964#endif /* __KERNEL__ */
2965
2966
2967/*
2968 * Copy the old inode root contents into a real block and make the
2969 * broot point to it.
2970 */
2971int						/* error */
2972xfs_btree_new_iroot(
2973	struct xfs_btree_cur	*cur,		/* btree cursor */
2974	int			*logflags,	/* logging flags for inode */
2975	int			*stat)		/* return status - 0 fail */
2976{
2977	struct xfs_buf		*cbp;		/* buffer for cblock */
2978	struct xfs_btree_block	*block;		/* btree block */
2979	struct xfs_btree_block	*cblock;	/* child btree block */
2980	union xfs_btree_key	*ckp;		/* child key pointer */
2981	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2982	union xfs_btree_key	*kp;		/* pointer to btree key */
2983	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2984	union xfs_btree_ptr	nptr;		/* new block addr */
2985	int			level;		/* btree level */
2986	int			error;		/* error return code */
 
2987	int			i;		/* loop counter */
 
2988
 
2989	XFS_BTREE_STATS_INC(cur, newroot);
2990
2991	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2992
2993	level = cur->bc_nlevels - 1;
2994
2995	block = xfs_btree_get_iroot(cur);
2996	pp = xfs_btree_ptr_addr(cur, 1, block);
2997
2998	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2999	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3000	if (error)
3001		goto error0;
3002	if (*stat == 0)
 
3003		return 0;
3004
3005	XFS_BTREE_STATS_INC(cur, alloc);
3006
3007	/* Copy the root into a real block. */
3008	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3009	if (error)
3010		goto error0;
3011
3012	/*
3013	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3014	 * In that case have to also ensure the blkno remains correct
3015	 */
3016	memcpy(cblock, block, xfs_btree_block_len(cur));
3017	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3018		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3019		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3020			cblock->bb_u.l.bb_blkno = bno;
3021		else
3022			cblock->bb_u.s.bb_blkno = bno;
3023	}
3024
3025	be16_add_cpu(&block->bb_level, 1);
3026	xfs_btree_set_numrecs(block, 1);
3027	cur->bc_nlevels++;
3028	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3029	cur->bc_levels[level + 1].ptr = 1;
3030
3031	kp = xfs_btree_key_addr(cur, 1, block);
3032	ckp = xfs_btree_key_addr(cur, 1, cblock);
3033	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3034
3035	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
 
3036	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3037		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3038		if (error)
3039			goto error0;
3040	}
3041
3042	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3043
3044	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
 
3045	if (error)
3046		goto error0;
3047
3048	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3049
3050	xfs_iroot_realloc(cur->bc_ino.ip,
3051			  1 - xfs_btree_get_numrecs(cblock),
3052			  cur->bc_ino.whichfork);
3053
3054	xfs_btree_setbuf(cur, level, cbp);
3055
3056	/*
3057	 * Do all this logging at the end so that
3058	 * the root is at the right level.
3059	 */
3060	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3061	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3062	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063
3064	*logflags |=
3065		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3066	*stat = 1;
 
3067	return 0;
3068error0:
 
3069	return error;
3070}
3071
3072/*
3073 * Allocate a new root block, fill it in.
3074 */
3075STATIC int				/* error */
3076xfs_btree_new_root(
3077	struct xfs_btree_cur	*cur,	/* btree cursor */
3078	int			*stat)	/* success/failure */
3079{
3080	struct xfs_btree_block	*block;	/* one half of the old root block */
3081	struct xfs_buf		*bp;	/* buffer containing block */
3082	int			error;	/* error return value */
3083	struct xfs_buf		*lbp;	/* left buffer pointer */
3084	struct xfs_btree_block	*left;	/* left btree block */
3085	struct xfs_buf		*nbp;	/* new (root) buffer */
3086	struct xfs_btree_block	*new;	/* new (root) btree block */
3087	int			nptr;	/* new value for key index, 1 or 2 */
3088	struct xfs_buf		*rbp;	/* right buffer pointer */
3089	struct xfs_btree_block	*right;	/* right btree block */
3090	union xfs_btree_ptr	rptr;
3091	union xfs_btree_ptr	lptr;
3092
 
3093	XFS_BTREE_STATS_INC(cur, newroot);
3094
3095	/* initialise our start point from the cursor */
3096	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3097
3098	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3099	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3100	if (error)
3101		goto error0;
3102	if (*stat == 0)
3103		goto out0;
3104	XFS_BTREE_STATS_INC(cur, alloc);
3105
3106	/* Set up the new block. */
3107	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3108	if (error)
3109		goto error0;
3110
3111	/* Set the root in the holding structure  increasing the level by 1. */
3112	cur->bc_ops->set_root(cur, &lptr, 1);
3113
3114	/*
3115	 * At the previous root level there are now two blocks: the old root,
3116	 * and the new block generated when it was split.  We don't know which
3117	 * one the cursor is pointing at, so we set up variables "left" and
3118	 * "right" for each case.
3119	 */
3120	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3121
3122#ifdef DEBUG
3123	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3124	if (error)
3125		goto error0;
3126#endif
3127
3128	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3129	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3130		/* Our block is left, pick up the right block. */
3131		lbp = bp;
3132		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3133		left = block;
3134		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3135		if (error)
3136			goto error0;
3137		bp = rbp;
3138		nptr = 1;
3139	} else {
3140		/* Our block is right, pick up the left block. */
3141		rbp = bp;
3142		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3143		right = block;
3144		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3145		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3146		if (error)
3147			goto error0;
3148		bp = lbp;
3149		nptr = 2;
3150	}
3151
3152	/* Fill in the new block's btree header and log it. */
3153	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3154	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3155	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3156			!xfs_btree_ptr_is_null(cur, &rptr));
3157
3158	/* Fill in the key data in the new root. */
3159	if (xfs_btree_get_level(left) > 0) {
3160		/*
3161		 * Get the keys for the left block's keys and put them directly
3162		 * in the parent block.  Do the same for the right block.
3163		 */
3164		xfs_btree_get_node_keys(cur, left,
3165				xfs_btree_key_addr(cur, 1, new));
3166		xfs_btree_get_node_keys(cur, right,
3167				xfs_btree_key_addr(cur, 2, new));
3168	} else {
3169		/*
3170		 * Get the keys for the left block's records and put them
3171		 * directly in the parent block.  Do the same for the right
3172		 * block.
3173		 */
3174		xfs_btree_get_leaf_keys(cur, left,
3175			xfs_btree_key_addr(cur, 1, new));
3176		xfs_btree_get_leaf_keys(cur, right,
3177			xfs_btree_key_addr(cur, 2, new));
3178	}
3179	xfs_btree_log_keys(cur, nbp, 1, 2);
3180
3181	/* Fill in the pointer data in the new root. */
3182	xfs_btree_copy_ptrs(cur,
3183		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3184	xfs_btree_copy_ptrs(cur,
3185		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3186	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3187
3188	/* Fix up the cursor. */
3189	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3190	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3191	cur->bc_nlevels++;
3192	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3193	*stat = 1;
3194	return 0;
3195error0:
 
3196	return error;
3197out0:
 
3198	*stat = 0;
3199	return 0;
3200}
3201
3202STATIC int
3203xfs_btree_make_block_unfull(
3204	struct xfs_btree_cur	*cur,	/* btree cursor */
3205	int			level,	/* btree level */
3206	int			numrecs,/* # of recs in block */
3207	int			*oindex,/* old tree index */
3208	int			*index,	/* new tree index */
3209	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3210	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3211	union xfs_btree_key	*key,	/* key of new block */
3212	int			*stat)
3213{
3214	int			error = 0;
3215
3216	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3217	    level == cur->bc_nlevels - 1) {
3218		struct xfs_inode *ip = cur->bc_ino.ip;
3219
3220		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3221			/* A root block that can be made bigger. */
3222			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3223			*stat = 1;
3224		} else {
3225			/* A root block that needs replacing */
3226			int	logflags = 0;
3227
3228			error = xfs_btree_new_iroot(cur, &logflags, stat);
3229			if (error || *stat == 0)
3230				return error;
3231
3232			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3233		}
3234
3235		return 0;
3236	}
3237
3238	/* First, try shifting an entry to the right neighbor. */
3239	error = xfs_btree_rshift(cur, level, stat);
3240	if (error || *stat)
3241		return error;
3242
3243	/* Next, try shifting an entry to the left neighbor. */
3244	error = xfs_btree_lshift(cur, level, stat);
3245	if (error)
3246		return error;
3247
3248	if (*stat) {
3249		*oindex = *index = cur->bc_levels[level].ptr;
3250		return 0;
3251	}
3252
3253	/*
3254	 * Next, try splitting the current block in half.
3255	 *
3256	 * If this works we have to re-set our variables because we
3257	 * could be in a different block now.
3258	 */
3259	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3260	if (error || *stat == 0)
3261		return error;
3262
3263
3264	*index = cur->bc_levels[level].ptr;
3265	return 0;
3266}
3267
3268/*
3269 * Insert one record/level.  Return information to the caller
3270 * allowing the next level up to proceed if necessary.
3271 */
3272STATIC int
3273xfs_btree_insrec(
3274	struct xfs_btree_cur	*cur,	/* btree cursor */
3275	int			level,	/* level to insert record at */
3276	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3277	union xfs_btree_rec	*rec,	/* record to insert */
3278	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3279	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3280	int			*stat)	/* success/failure */
3281{
3282	struct xfs_btree_block	*block;	/* btree block */
3283	struct xfs_buf		*bp;	/* buffer for block */
3284	union xfs_btree_ptr	nptr;	/* new block ptr */
3285	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3286	union xfs_btree_key	nkey;	/* new block key */
3287	union xfs_btree_key	*lkey;
3288	int			optr;	/* old key/record index */
3289	int			ptr;	/* key/record index */
3290	int			numrecs;/* number of records */
3291	int			error;	/* error return value */
 
3292	int			i;
 
3293	xfs_daddr_t		old_bn;
3294
 
 
 
3295	ncur = NULL;
3296	lkey = &nkey;
3297
3298	/*
3299	 * If we have an external root pointer, and we've made it to the
3300	 * root level, allocate a new root block and we're done.
3301	 */
3302	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3303	    (level >= cur->bc_nlevels)) {
3304		error = xfs_btree_new_root(cur, stat);
3305		xfs_btree_set_ptr_null(cur, ptrp);
3306
 
3307		return error;
3308	}
3309
3310	/* If we're off the left edge, return failure. */
3311	ptr = cur->bc_levels[level].ptr;
3312	if (ptr == 0) {
 
3313		*stat = 0;
3314		return 0;
3315	}
3316
3317	optr = ptr;
3318
3319	XFS_BTREE_STATS_INC(cur, insrec);
3320
3321	/* Get pointers to the btree buffer and block. */
3322	block = xfs_btree_get_block(cur, level, &bp);
3323	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3324	numrecs = xfs_btree_get_numrecs(block);
3325
3326#ifdef DEBUG
3327	error = xfs_btree_check_block(cur, block, level, bp);
3328	if (error)
3329		goto error0;
3330
3331	/* Check that the new entry is being inserted in the right place. */
3332	if (ptr <= numrecs) {
3333		if (level == 0) {
3334			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3335				xfs_btree_rec_addr(cur, ptr, block)));
3336		} else {
3337			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3338				xfs_btree_key_addr(cur, ptr, block)));
3339		}
3340	}
3341#endif
3342
3343	/*
3344	 * If the block is full, we can't insert the new entry until we
3345	 * make the block un-full.
3346	 */
3347	xfs_btree_set_ptr_null(cur, &nptr);
3348	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3349		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3350					&optr, &ptr, &nptr, &ncur, lkey, stat);
3351		if (error || *stat == 0)
3352			goto error0;
3353	}
3354
3355	/*
3356	 * The current block may have changed if the block was
3357	 * previously full and we have just made space in it.
3358	 */
3359	block = xfs_btree_get_block(cur, level, &bp);
3360	numrecs = xfs_btree_get_numrecs(block);
3361
3362#ifdef DEBUG
3363	error = xfs_btree_check_block(cur, block, level, bp);
3364	if (error)
3365		goto error0;
3366#endif
3367
3368	/*
3369	 * At this point we know there's room for our new entry in the block
3370	 * we're pointing at.
3371	 */
3372	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3373
3374	if (level > 0) {
3375		/* It's a nonleaf. make a hole in the keys and ptrs */
3376		union xfs_btree_key	*kp;
3377		union xfs_btree_ptr	*pp;
3378
3379		kp = xfs_btree_key_addr(cur, ptr, block);
3380		pp = xfs_btree_ptr_addr(cur, ptr, block);
3381
 
3382		for (i = numrecs - ptr; i >= 0; i--) {
3383			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3384			if (error)
3385				goto error0;
3386		}
 
3387
3388		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3389		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3390
3391		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
 
3392		if (error)
3393			goto error0;
 
3394
3395		/* Now put the new data in, bump numrecs and log it. */
3396		xfs_btree_copy_keys(cur, kp, key, 1);
3397		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3398		numrecs++;
3399		xfs_btree_set_numrecs(block, numrecs);
3400		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3401		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3402#ifdef DEBUG
3403		if (ptr < numrecs) {
3404			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3405				xfs_btree_key_addr(cur, ptr + 1, block)));
3406		}
3407#endif
3408	} else {
3409		/* It's a leaf. make a hole in the records */
3410		union xfs_btree_rec             *rp;
3411
3412		rp = xfs_btree_rec_addr(cur, ptr, block);
3413
3414		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3415
3416		/* Now put the new data in, bump numrecs and log it. */
3417		xfs_btree_copy_recs(cur, rp, rec, 1);
3418		xfs_btree_set_numrecs(block, ++numrecs);
3419		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3420#ifdef DEBUG
3421		if (ptr < numrecs) {
3422			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3423				xfs_btree_rec_addr(cur, ptr + 1, block)));
3424		}
3425#endif
3426	}
3427
3428	/* Log the new number of records in the btree header. */
3429	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3430
3431	/*
3432	 * If we just inserted into a new tree block, we have to
3433	 * recalculate nkey here because nkey is out of date.
3434	 *
3435	 * Otherwise we're just updating an existing block (having shoved
3436	 * some records into the new tree block), so use the regular key
3437	 * update mechanism.
3438	 */
3439	if (bp && xfs_buf_daddr(bp) != old_bn) {
3440		xfs_btree_get_keys(cur, block, lkey);
3441	} else if (xfs_btree_needs_key_update(cur, optr)) {
3442		error = xfs_btree_update_keys(cur, level);
3443		if (error)
3444			goto error0;
3445	}
3446
3447	/*
3448	 * If we are tracking the last record in the tree and
3449	 * we are at the far right edge of the tree, update it.
3450	 */
3451	if (xfs_btree_is_lastrec(cur, block, level)) {
3452		cur->bc_ops->update_lastrec(cur, block, rec,
3453					    ptr, LASTREC_INSREC);
3454	}
3455
3456	/*
3457	 * Return the new block number, if any.
3458	 * If there is one, give back a record value and a cursor too.
3459	 */
3460	*ptrp = nptr;
3461	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3462		xfs_btree_copy_keys(cur, key, lkey, 1);
3463		*curp = ncur;
3464	}
3465
 
3466	*stat = 1;
3467	return 0;
3468
3469error0:
3470	if (ncur)
3471		xfs_btree_del_cursor(ncur, error);
3472	return error;
3473}
3474
3475/*
3476 * Insert the record at the point referenced by cur.
3477 *
3478 * A multi-level split of the tree on insert will invalidate the original
3479 * cursor.  All callers of this function should assume that the cursor is
3480 * no longer valid and revalidate it.
3481 */
3482int
3483xfs_btree_insert(
3484	struct xfs_btree_cur	*cur,
3485	int			*stat)
3486{
3487	int			error;	/* error return value */
3488	int			i;	/* result value, 0 for failure */
3489	int			level;	/* current level number in btree */
3490	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3491	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3492	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3493	union xfs_btree_key	bkey;	/* key of block to insert */
3494	union xfs_btree_key	*key;
3495	union xfs_btree_rec	rec;	/* record to insert */
3496
3497	level = 0;
3498	ncur = NULL;
3499	pcur = cur;
3500	key = &bkey;
3501
3502	xfs_btree_set_ptr_null(cur, &nptr);
3503
3504	/* Make a key out of the record data to be inserted, and save it. */
3505	cur->bc_ops->init_rec_from_cur(cur, &rec);
3506	cur->bc_ops->init_key_from_rec(key, &rec);
3507
3508	/*
3509	 * Loop going up the tree, starting at the leaf level.
3510	 * Stop when we don't get a split block, that must mean that
3511	 * the insert is finished with this level.
3512	 */
3513	do {
3514		/*
3515		 * Insert nrec/nptr into this level of the tree.
3516		 * Note if we fail, nptr will be null.
3517		 */
3518		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3519				&ncur, &i);
3520		if (error) {
3521			if (pcur != cur)
3522				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3523			goto error0;
3524		}
3525
3526		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3527			error = -EFSCORRUPTED;
3528			goto error0;
3529		}
3530		level++;
3531
3532		/*
3533		 * See if the cursor we just used is trash.
3534		 * Can't trash the caller's cursor, but otherwise we should
3535		 * if ncur is a new cursor or we're about to be done.
3536		 */
3537		if (pcur != cur &&
3538		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3539			/* Save the state from the cursor before we trash it */
3540			if (cur->bc_ops->update_cursor)
3541				cur->bc_ops->update_cursor(pcur, cur);
3542			cur->bc_nlevels = pcur->bc_nlevels;
3543			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3544		}
3545		/* If we got a new cursor, switch to it. */
3546		if (ncur) {
3547			pcur = ncur;
3548			ncur = NULL;
3549		}
3550	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3551
 
3552	*stat = i;
3553	return 0;
3554error0:
 
3555	return error;
3556}
3557
3558/*
3559 * Try to merge a non-leaf block back into the inode root.
3560 *
3561 * Note: the killroot names comes from the fact that we're effectively
3562 * killing the old root block.  But because we can't just delete the
3563 * inode we have to copy the single block it was pointing to into the
3564 * inode.
3565 */
3566STATIC int
3567xfs_btree_kill_iroot(
3568	struct xfs_btree_cur	*cur)
3569{
3570	int			whichfork = cur->bc_ino.whichfork;
3571	struct xfs_inode	*ip = cur->bc_ino.ip;
3572	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3573	struct xfs_btree_block	*block;
3574	struct xfs_btree_block	*cblock;
3575	union xfs_btree_key	*kp;
3576	union xfs_btree_key	*ckp;
3577	union xfs_btree_ptr	*pp;
3578	union xfs_btree_ptr	*cpp;
3579	struct xfs_buf		*cbp;
3580	int			level;
3581	int			index;
3582	int			numrecs;
3583	int			error;
3584#ifdef DEBUG
3585	union xfs_btree_ptr	ptr;
3586#endif
3587	int			i;
 
 
 
3588
3589	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3590	ASSERT(cur->bc_nlevels > 1);
3591
3592	/*
3593	 * Don't deal with the root block needs to be a leaf case.
3594	 * We're just going to turn the thing back into extents anyway.
3595	 */
3596	level = cur->bc_nlevels - 1;
3597	if (level == 1)
3598		goto out0;
3599
3600	/*
3601	 * Give up if the root has multiple children.
3602	 */
3603	block = xfs_btree_get_iroot(cur);
3604	if (xfs_btree_get_numrecs(block) != 1)
3605		goto out0;
3606
3607	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3608	numrecs = xfs_btree_get_numrecs(cblock);
3609
3610	/*
3611	 * Only do this if the next level will fit.
3612	 * Then the data must be copied up to the inode,
3613	 * instead of freeing the root you free the next level.
3614	 */
3615	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3616		goto out0;
3617
3618	XFS_BTREE_STATS_INC(cur, killroot);
3619
3620#ifdef DEBUG
3621	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3622	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3623	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3624	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3625#endif
3626
3627	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3628	if (index) {
3629		xfs_iroot_realloc(cur->bc_ino.ip, index,
3630				  cur->bc_ino.whichfork);
3631		block = ifp->if_broot;
3632	}
3633
3634	be16_add_cpu(&block->bb_numrecs, index);
3635	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3636
3637	kp = xfs_btree_key_addr(cur, 1, block);
3638	ckp = xfs_btree_key_addr(cur, 1, cblock);
3639	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3640
3641	pp = xfs_btree_ptr_addr(cur, 1, block);
3642	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3643
3644	for (i = 0; i < numrecs; i++) {
3645		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3646		if (error)
 
3647			return error;
 
3648	}
3649
3650	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3651
3652	error = xfs_btree_free_block(cur, cbp);
3653	if (error)
 
3654		return error;
 
3655
3656	cur->bc_levels[level - 1].bp = NULL;
3657	be16_add_cpu(&block->bb_level, -1);
3658	xfs_trans_log_inode(cur->bc_tp, ip,
3659		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3660	cur->bc_nlevels--;
3661out0:
 
3662	return 0;
3663}
3664
3665/*
3666 * Kill the current root node, and replace it with it's only child node.
3667 */
3668STATIC int
3669xfs_btree_kill_root(
3670	struct xfs_btree_cur	*cur,
3671	struct xfs_buf		*bp,
3672	int			level,
3673	union xfs_btree_ptr	*newroot)
3674{
3675	int			error;
3676
 
3677	XFS_BTREE_STATS_INC(cur, killroot);
3678
3679	/*
3680	 * Update the root pointer, decreasing the level by 1 and then
3681	 * free the old root.
3682	 */
3683	cur->bc_ops->set_root(cur, newroot, -1);
3684
3685	error = xfs_btree_free_block(cur, bp);
3686	if (error)
 
3687		return error;
 
3688
3689	cur->bc_levels[level].bp = NULL;
3690	cur->bc_levels[level].ra = 0;
3691	cur->bc_nlevels--;
3692
 
3693	return 0;
3694}
3695
3696STATIC int
3697xfs_btree_dec_cursor(
3698	struct xfs_btree_cur	*cur,
3699	int			level,
3700	int			*stat)
3701{
3702	int			error;
3703	int			i;
3704
3705	if (level > 0) {
3706		error = xfs_btree_decrement(cur, level, &i);
3707		if (error)
3708			return error;
3709	}
3710
 
3711	*stat = 1;
3712	return 0;
3713}
3714
3715/*
3716 * Single level of the btree record deletion routine.
3717 * Delete record pointed to by cur/level.
3718 * Remove the record from its block then rebalance the tree.
3719 * Return 0 for error, 1 for done, 2 to go on to the next level.
3720 */
3721STATIC int					/* error */
3722xfs_btree_delrec(
3723	struct xfs_btree_cur	*cur,		/* btree cursor */
3724	int			level,		/* level removing record from */
3725	int			*stat)		/* fail/done/go-on */
3726{
3727	struct xfs_btree_block	*block;		/* btree block */
3728	union xfs_btree_ptr	cptr;		/* current block ptr */
3729	struct xfs_buf		*bp;		/* buffer for block */
3730	int			error;		/* error return value */
3731	int			i;		/* loop counter */
3732	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3733	struct xfs_buf		*lbp;		/* left buffer pointer */
3734	struct xfs_btree_block	*left;		/* left btree block */
3735	int			lrecs = 0;	/* left record count */
3736	int			ptr;		/* key/record index */
3737	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3738	struct xfs_buf		*rbp;		/* right buffer pointer */
3739	struct xfs_btree_block	*right;		/* right btree block */
3740	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3741	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3742	int			rrecs = 0;	/* right record count */
3743	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3744	int			numrecs;	/* temporary numrec count */
3745
 
 
 
3746	tcur = NULL;
3747
3748	/* Get the index of the entry being deleted, check for nothing there. */
3749	ptr = cur->bc_levels[level].ptr;
3750	if (ptr == 0) {
 
3751		*stat = 0;
3752		return 0;
3753	}
3754
3755	/* Get the buffer & block containing the record or key/ptr. */
3756	block = xfs_btree_get_block(cur, level, &bp);
3757	numrecs = xfs_btree_get_numrecs(block);
3758
3759#ifdef DEBUG
3760	error = xfs_btree_check_block(cur, block, level, bp);
3761	if (error)
3762		goto error0;
3763#endif
3764
3765	/* Fail if we're off the end of the block. */
3766	if (ptr > numrecs) {
 
3767		*stat = 0;
3768		return 0;
3769	}
3770
3771	XFS_BTREE_STATS_INC(cur, delrec);
3772	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3773
3774	/* Excise the entries being deleted. */
3775	if (level > 0) {
3776		/* It's a nonleaf. operate on keys and ptrs */
3777		union xfs_btree_key	*lkp;
3778		union xfs_btree_ptr	*lpp;
3779
3780		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3781		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3782
 
3783		for (i = 0; i < numrecs - ptr; i++) {
3784			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3785			if (error)
3786				goto error0;
3787		}
 
3788
3789		if (ptr < numrecs) {
3790			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3791			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3792			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3793			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3794		}
3795	} else {
3796		/* It's a leaf. operate on records */
3797		if (ptr < numrecs) {
3798			xfs_btree_shift_recs(cur,
3799				xfs_btree_rec_addr(cur, ptr + 1, block),
3800				-1, numrecs - ptr);
3801			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3802		}
3803	}
3804
3805	/*
3806	 * Decrement and log the number of entries in the block.
3807	 */
3808	xfs_btree_set_numrecs(block, --numrecs);
3809	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3810
3811	/*
3812	 * If we are tracking the last record in the tree and
3813	 * we are at the far right edge of the tree, update it.
3814	 */
3815	if (xfs_btree_is_lastrec(cur, block, level)) {
3816		cur->bc_ops->update_lastrec(cur, block, NULL,
3817					    ptr, LASTREC_DELREC);
3818	}
3819
3820	/*
3821	 * We're at the root level.  First, shrink the root block in-memory.
3822	 * Try to get rid of the next level down.  If we can't then there's
3823	 * nothing left to do.
3824	 */
3825	if (level == cur->bc_nlevels - 1) {
3826		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3828					  cur->bc_ino.whichfork);
3829
3830			error = xfs_btree_kill_iroot(cur);
3831			if (error)
3832				goto error0;
3833
3834			error = xfs_btree_dec_cursor(cur, level, stat);
3835			if (error)
3836				goto error0;
3837			*stat = 1;
3838			return 0;
3839		}
3840
3841		/*
3842		 * If this is the root level, and there's only one entry left,
3843		 * and it's NOT the leaf level, then we can get rid of this
3844		 * level.
3845		 */
3846		if (numrecs == 1 && level > 0) {
3847			union xfs_btree_ptr	*pp;
3848			/*
3849			 * pp is still set to the first pointer in the block.
3850			 * Make it the new root of the btree.
3851			 */
3852			pp = xfs_btree_ptr_addr(cur, 1, block);
3853			error = xfs_btree_kill_root(cur, bp, level, pp);
3854			if (error)
3855				goto error0;
3856		} else if (level > 0) {
3857			error = xfs_btree_dec_cursor(cur, level, stat);
3858			if (error)
3859				goto error0;
3860		}
3861		*stat = 1;
3862		return 0;
3863	}
3864
3865	/*
3866	 * If we deleted the leftmost entry in the block, update the
3867	 * key values above us in the tree.
3868	 */
3869	if (xfs_btree_needs_key_update(cur, ptr)) {
3870		error = xfs_btree_update_keys(cur, level);
3871		if (error)
3872			goto error0;
3873	}
3874
3875	/*
3876	 * If the number of records remaining in the block is at least
3877	 * the minimum, we're done.
3878	 */
3879	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3880		error = xfs_btree_dec_cursor(cur, level, stat);
3881		if (error)
3882			goto error0;
3883		return 0;
3884	}
3885
3886	/*
3887	 * Otherwise, we have to move some records around to keep the
3888	 * tree balanced.  Look at the left and right sibling blocks to
3889	 * see if we can re-balance by moving only one record.
3890	 */
3891	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3892	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3893
3894	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3895		/*
3896		 * One child of root, need to get a chance to copy its contents
3897		 * into the root and delete it. Can't go up to next level,
3898		 * there's nothing to delete there.
3899		 */
3900		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3901		    xfs_btree_ptr_is_null(cur, &lptr) &&
3902		    level == cur->bc_nlevels - 2) {
3903			error = xfs_btree_kill_iroot(cur);
3904			if (!error)
3905				error = xfs_btree_dec_cursor(cur, level, stat);
3906			if (error)
3907				goto error0;
3908			return 0;
3909		}
3910	}
3911
3912	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3913	       !xfs_btree_ptr_is_null(cur, &lptr));
3914
3915	/*
3916	 * Duplicate the cursor so our btree manipulations here won't
3917	 * disrupt the next level up.
3918	 */
3919	error = xfs_btree_dup_cursor(cur, &tcur);
3920	if (error)
3921		goto error0;
3922
3923	/*
3924	 * If there's a right sibling, see if it's ok to shift an entry
3925	 * out of it.
3926	 */
3927	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3928		/*
3929		 * Move the temp cursor to the last entry in the next block.
3930		 * Actually any entry but the first would suffice.
3931		 */
3932		i = xfs_btree_lastrec(tcur, level);
3933		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3934			error = -EFSCORRUPTED;
3935			goto error0;
3936		}
3937
3938		error = xfs_btree_increment(tcur, level, &i);
3939		if (error)
3940			goto error0;
3941		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3942			error = -EFSCORRUPTED;
3943			goto error0;
3944		}
3945
3946		i = xfs_btree_lastrec(tcur, level);
3947		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3948			error = -EFSCORRUPTED;
3949			goto error0;
3950		}
3951
3952		/* Grab a pointer to the block. */
3953		right = xfs_btree_get_block(tcur, level, &rbp);
3954#ifdef DEBUG
3955		error = xfs_btree_check_block(tcur, right, level, rbp);
3956		if (error)
3957			goto error0;
3958#endif
3959		/* Grab the current block number, for future use. */
3960		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3961
3962		/*
3963		 * If right block is full enough so that removing one entry
3964		 * won't make it too empty, and left-shifting an entry out
3965		 * of right to us works, we're done.
3966		 */
3967		if (xfs_btree_get_numrecs(right) - 1 >=
3968		    cur->bc_ops->get_minrecs(tcur, level)) {
3969			error = xfs_btree_lshift(tcur, level, &i);
3970			if (error)
3971				goto error0;
3972			if (i) {
3973				ASSERT(xfs_btree_get_numrecs(block) >=
3974				       cur->bc_ops->get_minrecs(tcur, level));
3975
3976				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3977				tcur = NULL;
3978
3979				error = xfs_btree_dec_cursor(cur, level, stat);
3980				if (error)
3981					goto error0;
3982				return 0;
3983			}
3984		}
3985
3986		/*
3987		 * Otherwise, grab the number of records in right for
3988		 * future reference, and fix up the temp cursor to point
3989		 * to our block again (last record).
3990		 */
3991		rrecs = xfs_btree_get_numrecs(right);
3992		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3993			i = xfs_btree_firstrec(tcur, level);
3994			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3995				error = -EFSCORRUPTED;
3996				goto error0;
3997			}
3998
3999			error = xfs_btree_decrement(tcur, level, &i);
4000			if (error)
4001				goto error0;
4002			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4003				error = -EFSCORRUPTED;
4004				goto error0;
4005			}
4006		}
4007	}
4008
4009	/*
4010	 * If there's a left sibling, see if it's ok to shift an entry
4011	 * out of it.
4012	 */
4013	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4014		/*
4015		 * Move the temp cursor to the first entry in the
4016		 * previous block.
4017		 */
4018		i = xfs_btree_firstrec(tcur, level);
4019		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4020			error = -EFSCORRUPTED;
4021			goto error0;
4022		}
4023
4024		error = xfs_btree_decrement(tcur, level, &i);
4025		if (error)
4026			goto error0;
4027		i = xfs_btree_firstrec(tcur, level);
4028		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4029			error = -EFSCORRUPTED;
4030			goto error0;
4031		}
4032
4033		/* Grab a pointer to the block. */
4034		left = xfs_btree_get_block(tcur, level, &lbp);
4035#ifdef DEBUG
4036		error = xfs_btree_check_block(cur, left, level, lbp);
4037		if (error)
4038			goto error0;
4039#endif
4040		/* Grab the current block number, for future use. */
4041		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4042
4043		/*
4044		 * If left block is full enough so that removing one entry
4045		 * won't make it too empty, and right-shifting an entry out
4046		 * of left to us works, we're done.
4047		 */
4048		if (xfs_btree_get_numrecs(left) - 1 >=
4049		    cur->bc_ops->get_minrecs(tcur, level)) {
4050			error = xfs_btree_rshift(tcur, level, &i);
4051			if (error)
4052				goto error0;
4053			if (i) {
4054				ASSERT(xfs_btree_get_numrecs(block) >=
4055				       cur->bc_ops->get_minrecs(tcur, level));
4056				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4057				tcur = NULL;
4058				if (level == 0)
4059					cur->bc_levels[0].ptr++;
4060
4061				*stat = 1;
4062				return 0;
4063			}
4064		}
4065
4066		/*
4067		 * Otherwise, grab the number of records in right for
4068		 * future reference.
4069		 */
4070		lrecs = xfs_btree_get_numrecs(left);
4071	}
4072
4073	/* Delete the temp cursor, we're done with it. */
4074	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4075	tcur = NULL;
4076
4077	/* If here, we need to do a join to keep the tree balanced. */
4078	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4079
4080	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4081	    lrecs + xfs_btree_get_numrecs(block) <=
4082			cur->bc_ops->get_maxrecs(cur, level)) {
4083		/*
4084		 * Set "right" to be the starting block,
4085		 * "left" to be the left neighbor.
4086		 */
4087		rptr = cptr;
4088		right = block;
4089		rbp = bp;
4090		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4091		if (error)
4092			goto error0;
4093
4094	/*
4095	 * If that won't work, see if we can join with the right neighbor block.
4096	 */
4097	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4098		   rrecs + xfs_btree_get_numrecs(block) <=
4099			cur->bc_ops->get_maxrecs(cur, level)) {
4100		/*
4101		 * Set "left" to be the starting block,
4102		 * "right" to be the right neighbor.
4103		 */
4104		lptr = cptr;
4105		left = block;
4106		lbp = bp;
4107		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4108		if (error)
4109			goto error0;
4110
4111	/*
4112	 * Otherwise, we can't fix the imbalance.
4113	 * Just return.  This is probably a logic error, but it's not fatal.
4114	 */
4115	} else {
4116		error = xfs_btree_dec_cursor(cur, level, stat);
4117		if (error)
4118			goto error0;
4119		return 0;
4120	}
4121
4122	rrecs = xfs_btree_get_numrecs(right);
4123	lrecs = xfs_btree_get_numrecs(left);
4124
4125	/*
4126	 * We're now going to join "left" and "right" by moving all the stuff
4127	 * in "right" to "left" and deleting "right".
4128	 */
4129	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4130	if (level > 0) {
4131		/* It's a non-leaf.  Move keys and pointers. */
4132		union xfs_btree_key	*lkp;	/* left btree key */
4133		union xfs_btree_ptr	*lpp;	/* left address pointer */
4134		union xfs_btree_key	*rkp;	/* right btree key */
4135		union xfs_btree_ptr	*rpp;	/* right address pointer */
4136
4137		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4138		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4139		rkp = xfs_btree_key_addr(cur, 1, right);
4140		rpp = xfs_btree_ptr_addr(cur, 1, right);
4141
4142		for (i = 1; i < rrecs; i++) {
4143			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4144			if (error)
4145				goto error0;
4146		}
4147
4148		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4149		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4150
4151		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4152		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153	} else {
4154		/* It's a leaf.  Move records.  */
4155		union xfs_btree_rec	*lrp;	/* left record pointer */
4156		union xfs_btree_rec	*rrp;	/* right record pointer */
4157
4158		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4159		rrp = xfs_btree_rec_addr(cur, 1, right);
4160
4161		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4162		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4163	}
4164
4165	XFS_BTREE_STATS_INC(cur, join);
4166
4167	/*
4168	 * Fix up the number of records and right block pointer in the
4169	 * surviving block, and log it.
4170	 */
4171	xfs_btree_set_numrecs(left, lrecs + rrecs);
4172	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4173	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4174	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4175
4176	/* If there is a right sibling, point it to the remaining block. */
4177	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4178	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4179		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4180		if (error)
4181			goto error0;
4182		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4183		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4184	}
4185
4186	/* Free the deleted block. */
4187	error = xfs_btree_free_block(cur, rbp);
4188	if (error)
4189		goto error0;
4190
4191	/*
4192	 * If we joined with the left neighbor, set the buffer in the
4193	 * cursor to the left block, and fix up the index.
4194	 */
4195	if (bp != lbp) {
4196		cur->bc_levels[level].bp = lbp;
4197		cur->bc_levels[level].ptr += lrecs;
4198		cur->bc_levels[level].ra = 0;
4199	}
4200	/*
4201	 * If we joined with the right neighbor and there's a level above
4202	 * us, increment the cursor at that level.
4203	 */
4204	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4205		   (level + 1 < cur->bc_nlevels)) {
4206		error = xfs_btree_increment(cur, level + 1, &i);
4207		if (error)
4208			goto error0;
4209	}
4210
4211	/*
4212	 * Readjust the ptr at this level if it's not a leaf, since it's
4213	 * still pointing at the deletion point, which makes the cursor
4214	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4215	 * We can't use decrement because it would change the next level up.
4216	 */
4217	if (level > 0)
4218		cur->bc_levels[level].ptr--;
4219
4220	/*
4221	 * We combined blocks, so we have to update the parent keys if the
4222	 * btree supports overlapped intervals.  However,
4223	 * bc_levels[level + 1].ptr points to the old block so that the caller
4224	 * knows which record to delete.  Therefore, the caller must be savvy
4225	 * enough to call updkeys for us if we return stat == 2.  The other
4226	 * exit points from this function don't require deletions further up
4227	 * the tree, so they can call updkeys directly.
4228	 */
4229
 
4230	/* Return value means the next level up has something to do. */
4231	*stat = 2;
4232	return 0;
4233
4234error0:
 
4235	if (tcur)
4236		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4237	return error;
4238}
4239
4240/*
4241 * Delete the record pointed to by cur.
4242 * The cursor refers to the place where the record was (could be inserted)
4243 * when the operation returns.
4244 */
4245int					/* error */
4246xfs_btree_delete(
4247	struct xfs_btree_cur	*cur,
4248	int			*stat)	/* success/failure */
4249{
4250	int			error;	/* error return value */
4251	int			level;
4252	int			i;
4253	bool			joined = false;
4254
 
 
4255	/*
4256	 * Go up the tree, starting at leaf level.
4257	 *
4258	 * If 2 is returned then a join was done; go to the next level.
4259	 * Otherwise we are done.
4260	 */
4261	for (level = 0, i = 2; i == 2; level++) {
4262		error = xfs_btree_delrec(cur, level, &i);
4263		if (error)
4264			goto error0;
4265		if (i == 2)
4266			joined = true;
4267	}
4268
4269	/*
4270	 * If we combined blocks as part of deleting the record, delrec won't
4271	 * have updated the parent high keys so we have to do that here.
4272	 */
4273	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4274		error = xfs_btree_updkeys_force(cur, 0);
4275		if (error)
4276			goto error0;
4277	}
4278
4279	if (i == 0) {
4280		for (level = 1; level < cur->bc_nlevels; level++) {
4281			if (cur->bc_levels[level].ptr == 0) {
4282				error = xfs_btree_decrement(cur, level, &i);
4283				if (error)
4284					goto error0;
4285				break;
4286			}
4287		}
4288	}
4289
 
4290	*stat = i;
4291	return 0;
4292error0:
 
4293	return error;
4294}
4295
4296/*
4297 * Get the data from the pointed-to record.
4298 */
4299int					/* error */
4300xfs_btree_get_rec(
4301	struct xfs_btree_cur	*cur,	/* btree cursor */
4302	union xfs_btree_rec	**recp,	/* output: btree record */
4303	int			*stat)	/* output: success/failure */
4304{
4305	struct xfs_btree_block	*block;	/* btree block */
4306	struct xfs_buf		*bp;	/* buffer pointer */
4307	int			ptr;	/* record number */
4308#ifdef DEBUG
4309	int			error;	/* error return value */
4310#endif
4311
4312	ptr = cur->bc_levels[0].ptr;
4313	block = xfs_btree_get_block(cur, 0, &bp);
4314
4315#ifdef DEBUG
4316	error = xfs_btree_check_block(cur, block, 0, bp);
4317	if (error)
4318		return error;
4319#endif
4320
4321	/*
4322	 * Off the right end or left end, return failure.
4323	 */
4324	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4325		*stat = 0;
4326		return 0;
4327	}
4328
4329	/*
4330	 * Point to the record and extract its data.
4331	 */
4332	*recp = xfs_btree_rec_addr(cur, ptr, block);
4333	*stat = 1;
4334	return 0;
4335}
4336
4337/* Visit a block in a btree. */
4338STATIC int
4339xfs_btree_visit_block(
4340	struct xfs_btree_cur		*cur,
4341	int				level,
4342	xfs_btree_visit_blocks_fn	fn,
4343	void				*data)
4344{
4345	struct xfs_btree_block		*block;
4346	struct xfs_buf			*bp;
4347	union xfs_btree_ptr		rptr;
4348	int				error;
4349
4350	/* do right sibling readahead */
4351	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4352	block = xfs_btree_get_block(cur, level, &bp);
4353
4354	/* process the block */
4355	error = fn(cur, level, data);
4356	if (error)
4357		return error;
4358
4359	/* now read rh sibling block for next iteration */
4360	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4361	if (xfs_btree_ptr_is_null(cur, &rptr))
4362		return -ENOENT;
4363
4364	/*
4365	 * We only visit blocks once in this walk, so we have to avoid the
4366	 * internal xfs_btree_lookup_get_block() optimisation where it will
4367	 * return the same block without checking if the right sibling points
4368	 * back to us and creates a cyclic reference in the btree.
4369	 */
4370	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4371		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4372							xfs_buf_daddr(bp)))
4373			return -EFSCORRUPTED;
4374	} else {
4375		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4376							xfs_buf_daddr(bp)))
4377			return -EFSCORRUPTED;
4378	}
4379	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4380}
4381
4382
4383/* Visit every block in a btree. */
4384int
4385xfs_btree_visit_blocks(
4386	struct xfs_btree_cur		*cur,
4387	xfs_btree_visit_blocks_fn	fn,
4388	unsigned int			flags,
4389	void				*data)
4390{
4391	union xfs_btree_ptr		lptr;
4392	int				level;
4393	struct xfs_btree_block		*block = NULL;
4394	int				error = 0;
4395
4396	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4397
4398	/* for each level */
4399	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4400		/* grab the left hand block */
4401		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4402		if (error)
4403			return error;
4404
4405		/* readahead the left most block for the next level down */
4406		if (level > 0) {
4407			union xfs_btree_ptr     *ptr;
4408
4409			ptr = xfs_btree_ptr_addr(cur, 1, block);
4410			xfs_btree_readahead_ptr(cur, ptr, 1);
4411
4412			/* save for the next iteration of the loop */
4413			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4414
4415			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4416				continue;
4417		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4418			continue;
4419		}
4420
4421		/* for each buffer in the level */
4422		do {
4423			error = xfs_btree_visit_block(cur, level, fn, data);
4424		} while (!error);
4425
4426		if (error != -ENOENT)
4427			return error;
4428	}
4429
4430	return 0;
4431}
4432
4433/*
4434 * Change the owner of a btree.
4435 *
4436 * The mechanism we use here is ordered buffer logging. Because we don't know
4437 * how many buffers were are going to need to modify, we don't really want to
4438 * have to make transaction reservations for the worst case of every buffer in a
4439 * full size btree as that may be more space that we can fit in the log....
4440 *
4441 * We do the btree walk in the most optimal manner possible - we have sibling
4442 * pointers so we can just walk all the blocks on each level from left to right
4443 * in a single pass, and then move to the next level and do the same. We can
4444 * also do readahead on the sibling pointers to get IO moving more quickly,
4445 * though for slow disks this is unlikely to make much difference to performance
4446 * as the amount of CPU work we have to do before moving to the next block is
4447 * relatively small.
4448 *
4449 * For each btree block that we load, modify the owner appropriately, set the
4450 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4451 * we mark the region we change dirty so that if the buffer is relogged in
4452 * a subsequent transaction the changes we make here as an ordered buffer are
4453 * correctly relogged in that transaction.  If we are in recovery context, then
4454 * just queue the modified buffer as delayed write buffer so the transaction
4455 * recovery completion writes the changes to disk.
4456 */
4457struct xfs_btree_block_change_owner_info {
4458	uint64_t		new_owner;
4459	struct list_head	*buffer_list;
4460};
4461
4462static int
4463xfs_btree_block_change_owner(
4464	struct xfs_btree_cur	*cur,
4465	int			level,
4466	void			*data)
4467{
4468	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4469	struct xfs_btree_block	*block;
4470	struct xfs_buf		*bp;
4471
4472	/* modify the owner */
4473	block = xfs_btree_get_block(cur, level, &bp);
4474	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4475		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4476			return 0;
4477		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4478	} else {
4479		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4480			return 0;
4481		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4482	}
4483
4484	/*
4485	 * If the block is a root block hosted in an inode, we might not have a
4486	 * buffer pointer here and we shouldn't attempt to log the change as the
4487	 * information is already held in the inode and discarded when the root
4488	 * block is formatted into the on-disk inode fork. We still change it,
4489	 * though, so everything is consistent in memory.
4490	 */
4491	if (!bp) {
4492		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4493		ASSERT(level == cur->bc_nlevels - 1);
4494		return 0;
4495	}
4496
4497	if (cur->bc_tp) {
4498		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4499			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4500			return -EAGAIN;
 
4501		}
4502	} else {
4503		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
 
4504	}
4505
4506	return 0;
4507}
4508
4509int
4510xfs_btree_change_owner(
4511	struct xfs_btree_cur	*cur,
4512	uint64_t		new_owner,
4513	struct list_head	*buffer_list)
4514{
4515	struct xfs_btree_block_change_owner_info	bbcoi;
4516
4517	bbcoi.new_owner = new_owner;
4518	bbcoi.buffer_list = buffer_list;
4519
4520	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4521			XFS_BTREE_VISIT_ALL, &bbcoi);
4522}
4523
4524/* Verify the v5 fields of a long-format btree block. */
4525xfs_failaddr_t
4526xfs_btree_lblock_v5hdr_verify(
4527	struct xfs_buf		*bp,
4528	uint64_t		owner)
4529{
4530	struct xfs_mount	*mp = bp->b_mount;
4531	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4532
4533	if (!xfs_has_crc(mp))
4534		return __this_address;
4535	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4536		return __this_address;
4537	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4538		return __this_address;
4539	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4540	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4541		return __this_address;
4542	return NULL;
4543}
4544
4545/* Verify a long-format btree block. */
4546xfs_failaddr_t
4547xfs_btree_lblock_verify(
4548	struct xfs_buf		*bp,
4549	unsigned int		max_recs)
4550{
4551	struct xfs_mount	*mp = bp->b_mount;
4552	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4553	xfs_fsblock_t		fsb;
4554	xfs_failaddr_t		fa;
4555
4556	/* numrecs verification */
4557	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4558		return __this_address;
4559
4560	/* sibling pointer verification */
4561	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4562	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4563			block->bb_u.l.bb_leftsib);
4564	if (!fa)
4565		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4566				block->bb_u.l.bb_rightsib);
4567	return fa;
4568}
4569
4570/**
4571 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4572 *				      btree block
4573 *
4574 * @bp: buffer containing the btree block
 
 
4575 */
4576xfs_failaddr_t
4577xfs_btree_sblock_v5hdr_verify(
4578	struct xfs_buf		*bp)
4579{
4580	struct xfs_mount	*mp = bp->b_mount;
4581	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4582	struct xfs_perag	*pag = bp->b_pag;
4583
4584	if (!xfs_has_crc(mp))
4585		return __this_address;
4586	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4587		return __this_address;
4588	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4589		return __this_address;
4590	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4591		return __this_address;
4592	return NULL;
4593}
4594
4595/**
4596 * xfs_btree_sblock_verify() -- verify a short-format btree block
4597 *
4598 * @bp: buffer containing the btree block
4599 * @max_recs: maximum records allowed in this btree node
4600 */
4601xfs_failaddr_t
4602xfs_btree_sblock_verify(
4603	struct xfs_buf		*bp,
4604	unsigned int		max_recs)
4605{
4606	struct xfs_mount	*mp = bp->b_mount;
4607	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4608	xfs_agblock_t		agbno;
4609	xfs_failaddr_t		fa;
4610
4611	/* numrecs verification */
4612	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4613		return __this_address;
4614
4615	/* sibling pointer verification */
4616	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4617	fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4618			block->bb_u.s.bb_leftsib);
4619	if (!fa)
4620		fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4621				block->bb_u.s.bb_rightsib);
4622	return fa;
4623}
4624
4625/*
4626 * For the given limits on leaf and keyptr records per block, calculate the
4627 * height of the tree needed to index the number of leaf records.
4628 */
4629unsigned int
4630xfs_btree_compute_maxlevels(
4631	const unsigned int	*limits,
4632	unsigned long long	records)
4633{
4634	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4635	unsigned int		height = 1;
4636
4637	while (level_blocks > 1) {
4638		level_blocks = howmany_64(level_blocks, limits[1]);
4639		height++;
4640	}
4641
4642	return height;
4643}
4644
4645/*
4646 * For the given limits on leaf and keyptr records per block, calculate the
4647 * number of blocks needed to index the given number of leaf records.
4648 */
4649unsigned long long
4650xfs_btree_calc_size(
4651	const unsigned int	*limits,
4652	unsigned long long	records)
 
4653{
4654	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4655	unsigned long long	blocks = level_blocks;
4656
4657	while (level_blocks > 1) {
4658		level_blocks = howmany_64(level_blocks, limits[1]);
4659		blocks += level_blocks;
4660	}
4661
4662	return blocks;
4663}
4664
4665/*
4666 * Given a number of available blocks for the btree to consume with records and
4667 * pointers, calculate the height of the tree needed to index all the records
4668 * that space can hold based on the number of pointers each interior node
4669 * holds.
4670 *
4671 * We start by assuming a single level tree consumes a single block, then track
4672 * the number of blocks each node level consumes until we no longer have space
4673 * to store the next node level. At this point, we are indexing all the leaf
4674 * blocks in the space, and there's no more free space to split the tree any
4675 * further. That's our maximum btree height.
4676 */
4677unsigned int
4678xfs_btree_space_to_height(
4679	const unsigned int	*limits,
4680	unsigned long long	leaf_blocks)
4681{
4682	/*
4683	 * The root btree block can have fewer than minrecs pointers in it
4684	 * because the tree might not be big enough to require that amount of
4685	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4686	 */
4687	unsigned long long	node_blocks = 2;
4688	unsigned long long	blocks_left = leaf_blocks - 1;
4689	unsigned int		height = 1;
4690
4691	if (leaf_blocks < 1)
4692		return 0;
4693
4694	while (node_blocks < blocks_left) {
4695		blocks_left -= node_blocks;
4696		node_blocks *= limits[1];
4697		height++;
4698	}
4699
4700	return height;
4701}
4702
4703/*
4704 * Query a regular btree for all records overlapping a given interval.
4705 * Start with a LE lookup of the key of low_rec and return all records
4706 * until we find a record with a key greater than the key of high_rec.
4707 */
4708STATIC int
4709xfs_btree_simple_query_range(
4710	struct xfs_btree_cur		*cur,
4711	const union xfs_btree_key	*low_key,
4712	const union xfs_btree_key	*high_key,
4713	xfs_btree_query_range_fn	fn,
4714	void				*priv)
4715{
4716	union xfs_btree_rec		*recp;
4717	union xfs_btree_key		rec_key;
 
4718	int				stat;
4719	bool				firstrec = true;
4720	int				error;
4721
4722	ASSERT(cur->bc_ops->init_high_key_from_rec);
4723	ASSERT(cur->bc_ops->diff_two_keys);
4724
4725	/*
4726	 * Find the leftmost record.  The btree cursor must be set
4727	 * to the low record used to generate low_key.
4728	 */
4729	stat = 0;
4730	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4731	if (error)
4732		goto out;
4733
4734	/* Nothing?  See if there's anything to the right. */
4735	if (!stat) {
4736		error = xfs_btree_increment(cur, 0, &stat);
4737		if (error)
4738			goto out;
4739	}
4740
4741	while (stat) {
4742		/* Find the record. */
4743		error = xfs_btree_get_rec(cur, &recp, &stat);
4744		if (error || !stat)
4745			break;
4746
4747		/* Skip if low_key > high_key(rec). */
4748		if (firstrec) {
4749			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4750			firstrec = false;
4751			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
 
 
4752				goto advloop;
4753		}
4754
4755		/* Stop if low_key(rec) > high_key. */
4756		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4757		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
 
4758			break;
4759
4760		/* Callback */
4761		error = fn(cur, recp, priv);
4762		if (error)
4763			break;
4764
4765advloop:
4766		/* Move on to the next record. */
4767		error = xfs_btree_increment(cur, 0, &stat);
4768		if (error)
4769			break;
4770	}
4771
4772out:
4773	return error;
4774}
4775
4776/*
4777 * Query an overlapped interval btree for all records overlapping a given
4778 * interval.  This function roughly follows the algorithm given in
4779 * "Interval Trees" of _Introduction to Algorithms_, which is section
4780 * 14.3 in the 2nd and 3rd editions.
4781 *
4782 * First, generate keys for the low and high records passed in.
4783 *
4784 * For any leaf node, generate the high and low keys for the record.
4785 * If the record keys overlap with the query low/high keys, pass the
4786 * record to the function iterator.
4787 *
4788 * For any internal node, compare the low and high keys of each
4789 * pointer against the query low/high keys.  If there's an overlap,
4790 * follow the pointer.
4791 *
4792 * As an optimization, we stop scanning a block when we find a low key
4793 * that is greater than the query's high key.
4794 */
4795STATIC int
4796xfs_btree_overlapped_query_range(
4797	struct xfs_btree_cur		*cur,
4798	const union xfs_btree_key	*low_key,
4799	const union xfs_btree_key	*high_key,
4800	xfs_btree_query_range_fn	fn,
4801	void				*priv)
4802{
4803	union xfs_btree_ptr		ptr;
4804	union xfs_btree_ptr		*pp;
4805	union xfs_btree_key		rec_key;
4806	union xfs_btree_key		rec_hkey;
4807	union xfs_btree_key		*lkp;
4808	union xfs_btree_key		*hkp;
4809	union xfs_btree_rec		*recp;
4810	struct xfs_btree_block		*block;
 
 
4811	int				level;
4812	struct xfs_buf			*bp;
4813	int				i;
4814	int				error;
4815
4816	/* Load the root of the btree. */
4817	level = cur->bc_nlevels - 1;
4818	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4819	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4820	if (error)
4821		return error;
4822	xfs_btree_get_block(cur, level, &bp);
4823	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4824#ifdef DEBUG
4825	error = xfs_btree_check_block(cur, block, level, bp);
4826	if (error)
4827		goto out;
4828#endif
4829	cur->bc_levels[level].ptr = 1;
4830
4831	while (level < cur->bc_nlevels) {
4832		block = xfs_btree_get_block(cur, level, &bp);
4833
4834		/* End of node, pop back towards the root. */
4835		if (cur->bc_levels[level].ptr >
4836					be16_to_cpu(block->bb_numrecs)) {
4837pop_up:
4838			if (level < cur->bc_nlevels - 1)
4839				cur->bc_levels[level + 1].ptr++;
4840			level++;
4841			continue;
4842		}
4843
4844		if (level == 0) {
4845			/* Handle a leaf node. */
4846			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4847					block);
4848
4849			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
 
 
 
4850			cur->bc_ops->init_key_from_rec(&rec_key, recp);
 
 
4851
4852			/*
4853			 * If (query's high key < record's low key), then there
4854			 * are no more interesting records in this block.  Pop
4855			 * up to the leaf level to find more record blocks.
4856			 *
4857			 * If (record's high key >= query's low key) and
4858			 *    (query's high key >= record's low key), then
4859			 * this record overlaps the query range; callback.
4860			 */
4861			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
4862				goto pop_up;
4863			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
4864				error = fn(cur, recp, priv);
4865				if (error)
 
4866					break;
 
 
 
4867			}
4868			cur->bc_levels[level].ptr++;
4869			continue;
4870		}
4871
4872		/* Handle an internal node. */
4873		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4874		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4875				block);
4876		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
 
 
4877
4878		/*
4879		 * If (query's high key < pointer's low key), then there are no
4880		 * more interesting keys in this block.  Pop up one leaf level
4881		 * to continue looking for records.
4882		 *
4883		 * If (pointer's high key >= query's low key) and
4884		 *    (query's high key >= pointer's low key), then
4885		 * this record overlaps the query range; follow pointer.
4886		 */
4887		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
4888			goto pop_up;
4889		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
4890			level--;
4891			error = xfs_btree_lookup_get_block(cur, level, pp,
4892					&block);
4893			if (error)
4894				goto out;
4895			xfs_btree_get_block(cur, level, &bp);
4896			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4897#ifdef DEBUG
4898			error = xfs_btree_check_block(cur, block, level, bp);
4899			if (error)
4900				goto out;
4901#endif
4902			cur->bc_levels[level].ptr = 1;
4903			continue;
 
 
 
4904		}
4905		cur->bc_levels[level].ptr++;
4906	}
4907
4908out:
4909	/*
4910	 * If we don't end this function with the cursor pointing at a record
4911	 * block, a subsequent non-error cursor deletion will not release
4912	 * node-level buffers, causing a buffer leak.  This is quite possible
4913	 * with a zero-results range query, so release the buffers if we
4914	 * failed to return any results.
4915	 */
4916	if (cur->bc_levels[0].bp == NULL) {
4917		for (i = 0; i < cur->bc_nlevels; i++) {
4918			if (cur->bc_levels[i].bp) {
4919				xfs_trans_brelse(cur->bc_tp,
4920						cur->bc_levels[i].bp);
4921				cur->bc_levels[i].bp = NULL;
4922				cur->bc_levels[i].ptr = 0;
4923				cur->bc_levels[i].ra = 0;
4924			}
4925		}
4926	}
4927
4928	return error;
4929}
4930
4931static inline void
4932xfs_btree_key_from_irec(
4933	struct xfs_btree_cur		*cur,
4934	union xfs_btree_key		*key,
4935	const union xfs_btree_irec	*irec)
4936{
4937	union xfs_btree_rec		rec;
4938
4939	cur->bc_rec = *irec;
4940	cur->bc_ops->init_rec_from_cur(cur, &rec);
4941	cur->bc_ops->init_key_from_rec(key, &rec);
4942}
4943
4944/*
4945 * Query a btree for all records overlapping a given interval of keys.  The
4946 * supplied function will be called with each record found; return one of the
4947 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4948 * code.  This function returns -ECANCELED, zero, or a negative error code.
 
4949 */
4950int
4951xfs_btree_query_range(
4952	struct xfs_btree_cur		*cur,
4953	const union xfs_btree_irec	*low_rec,
4954	const union xfs_btree_irec	*high_rec,
4955	xfs_btree_query_range_fn	fn,
4956	void				*priv)
4957{
 
4958	union xfs_btree_key		low_key;
4959	union xfs_btree_key		high_key;
4960
4961	/* Find the keys of both ends of the interval. */
4962	xfs_btree_key_from_irec(cur, &high_key, high_rec);
4963	xfs_btree_key_from_irec(cur, &low_key, low_rec);
 
4964
4965	/* Enforce low key <= high key. */
4966	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
 
 
 
 
4967		return -EINVAL;
4968
4969	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4970		return xfs_btree_simple_query_range(cur, &low_key,
4971				&high_key, fn, priv);
4972	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4973			fn, priv);
4974}
4975
4976/* Query a btree for all records. */
4977int
4978xfs_btree_query_all(
4979	struct xfs_btree_cur		*cur,
4980	xfs_btree_query_range_fn	fn,
4981	void				*priv)
 
 
 
4982{
4983	union xfs_btree_key		low_key;
4984	union xfs_btree_key		high_key;
4985
4986	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4987	memset(&low_key, 0, sizeof(low_key));
4988	memset(&high_key, 0xFF, sizeof(high_key));
4989
4990	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
 
 
 
 
 
 
 
4991}
4992
4993static int
4994xfs_btree_count_blocks_helper(
4995	struct xfs_btree_cur	*cur,
4996	int			level,
4997	void			*data)
4998{
4999	xfs_extlen_t		*blocks = data;
5000	(*blocks)++;
5001
5002	return 0;
5003}
5004
5005/* Count the blocks in a btree and return the result in *blocks. */
5006int
5007xfs_btree_count_blocks(
5008	struct xfs_btree_cur	*cur,
5009	xfs_extlen_t		*blocks)
5010{
5011	*blocks = 0;
5012	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5013			XFS_BTREE_VISIT_ALL, blocks);
5014}
5015
5016/* Compare two btree pointers. */
5017int64_t
5018xfs_btree_diff_two_ptrs(
5019	struct xfs_btree_cur		*cur,
5020	const union xfs_btree_ptr	*a,
5021	const union xfs_btree_ptr	*b)
5022{
5023	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5024		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5025	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5026}
5027
5028struct xfs_btree_has_records {
5029	/* Keys for the start and end of the range we want to know about. */
5030	union xfs_btree_key		start_key;
5031	union xfs_btree_key		end_key;
5032
5033	/* Mask for key comparisons, if desired. */
5034	const union xfs_btree_key	*key_mask;
5035
5036	/* Highest record key we've seen so far. */
5037	union xfs_btree_key		high_key;
5038
5039	enum xbtree_recpacking		outcome;
5040};
5041
5042STATIC int
5043xfs_btree_has_records_helper(
5044	struct xfs_btree_cur		*cur,
5045	const union xfs_btree_rec	*rec,
5046	void				*priv)
5047{
5048	union xfs_btree_key		rec_key;
5049	union xfs_btree_key		rec_high_key;
5050	struct xfs_btree_has_records	*info = priv;
5051	enum xbtree_key_contig		key_contig;
5052
5053	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5054
5055	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5056		info->outcome = XBTREE_RECPACKING_SPARSE;
5057
5058		/*
5059		 * If the first record we find does not overlap the start key,
5060		 * then there is a hole at the start of the search range.
5061		 * Classify this as sparse and stop immediately.
5062		 */
5063		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5064					info->key_mask))
5065			return -ECANCELED;
5066	} else {
5067		/*
5068		 * If a subsequent record does not overlap with the any record
5069		 * we've seen so far, there is a hole in the middle of the
5070		 * search range.  Classify this as sparse and stop.
5071		 * If the keys overlap and this btree does not allow overlap,
5072		 * signal corruption.
5073		 */
5074		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5075					&rec_key, info->key_mask);
5076		if (key_contig == XBTREE_KEY_OVERLAP &&
5077				!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
5078			return -EFSCORRUPTED;
5079		if (key_contig == XBTREE_KEY_GAP)
5080			return -ECANCELED;
5081	}
5082
5083	/*
5084	 * If high_key(rec) is larger than any other high key we've seen,
5085	 * remember it for later.
5086	 */
5087	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5088	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5089				info->key_mask))
5090		info->high_key = rec_high_key; /* struct copy */
5091
5092	return 0;
5093}
5094
5095/*
5096 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5097 * map to any records; is fully mapped to records; or is partially mapped to
5098 * records.  This is the btree record equivalent to determining if a file is
5099 * sparse.
5100 *
5101 * For most btree types, the record scan should use all available btree key
5102 * fields to compare the keys encountered.  These callers should pass NULL for
5103 * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5104 * want to ignore some part of the btree record keyspace when performing the
5105 * comparison.  These callers should pass in a union xfs_btree_key object with
5106 * the fields that *should* be a part of the comparison set to any nonzero
5107 * value, and the rest zeroed.
5108 */
5109int
5110xfs_btree_has_records(
5111	struct xfs_btree_cur		*cur,
5112	const union xfs_btree_irec	*low,
5113	const union xfs_btree_irec	*high,
5114	const union xfs_btree_key	*mask,
5115	enum xbtree_recpacking		*outcome)
5116{
5117	struct xfs_btree_has_records	info = {
5118		.outcome		= XBTREE_RECPACKING_EMPTY,
5119		.key_mask		= mask,
5120	};
5121	int				error;
5122
5123	/* Not all btrees support this operation. */
5124	if (!cur->bc_ops->keys_contiguous) {
5125		ASSERT(0);
5126		return -EOPNOTSUPP;
5127	}
5128
5129	xfs_btree_key_from_irec(cur, &info.start_key, low);
5130	xfs_btree_key_from_irec(cur, &info.end_key, high);
5131
5132	error = xfs_btree_query_range(cur, low, high,
5133			xfs_btree_has_records_helper, &info);
5134	if (error == -ECANCELED)
5135		goto out;
5136	if (error)
5137		return error;
5138
5139	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5140		goto out;
5141
5142	/*
5143	 * If the largest high_key(rec) we saw during the walk is greater than
5144	 * the end of the search range, classify this as full.  Otherwise,
5145	 * there is a hole at the end of the search range.
5146	 */
5147	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5148				mask))
5149		info.outcome = XBTREE_RECPACKING_FULL;
5150
5151out:
5152	*outcome = info.outcome;
5153	return 0;
5154}
5155
5156/* Are there more records in this btree? */
5157bool
5158xfs_btree_has_more_records(
5159	struct xfs_btree_cur	*cur)
5160{
5161	struct xfs_btree_block	*block;
5162	struct xfs_buf		*bp;
5163
5164	block = xfs_btree_get_block(cur, 0, &bp);
5165
5166	/* There are still records in this block. */
5167	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5168		return true;
5169
5170	/* There are more record blocks. */
5171	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5172		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5173	else
5174		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5175}
5176
5177/* Set up all the btree cursor caches. */
5178int __init
5179xfs_btree_init_cur_caches(void)
5180{
5181	int		error;
5182
5183	error = xfs_allocbt_init_cur_cache();
5184	if (error)
5185		return error;
5186	error = xfs_inobt_init_cur_cache();
5187	if (error)
5188		goto err;
5189	error = xfs_bmbt_init_cur_cache();
5190	if (error)
5191		goto err;
5192	error = xfs_rmapbt_init_cur_cache();
5193	if (error)
5194		goto err;
5195	error = xfs_refcountbt_init_cur_cache();
5196	if (error)
5197		goto err;
5198
5199	return 0;
5200err:
5201	xfs_btree_destroy_cur_caches();
5202	return error;
5203}
5204
5205/* Destroy all the btree cursor caches, if they've been allocated. */
5206void
5207xfs_btree_destroy_cur_caches(void)
5208{
5209	xfs_allocbt_destroy_cur_cache();
5210	xfs_inobt_destroy_cur_cache();
5211	xfs_bmbt_destroy_cur_cache();
5212	xfs_rmapbt_destroy_cur_cache();
5213	xfs_refcountbt_destroy_cur_cache();
5214}
5215
5216/* Move the btree cursor before the first record. */
5217int
5218xfs_btree_goto_left_edge(
5219	struct xfs_btree_cur	*cur)
5220{
5221	int			stat = 0;
5222	int			error;
5223
5224	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5225	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5226	if (error)
5227		return error;
5228	if (!stat)
5229		return 0;
5230
5231	error = xfs_btree_decrement(cur, 0, &stat);
5232	if (error)
5233		return error;
5234	if (stat != 0) {
5235		ASSERT(0);
5236		return -EFSCORRUPTED;
5237	}
5238
5239	return 0;
5240}
v4.10.11
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_mount.h"
  26#include "xfs_defer.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_buf_item.h"
  31#include "xfs_btree.h"
 
  32#include "xfs_error.h"
  33#include "xfs_trace.h"
  34#include "xfs_cksum.h"
  35#include "xfs_alloc.h"
  36#include "xfs_log.h"
  37
  38/*
  39 * Cursor allocation zone.
  40 */
  41kmem_zone_t	*xfs_btree_cur_zone;
 
 
  42
  43/*
  44 * Btree magic numbers.
  45 */
  46static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  47	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  48	  XFS_FIBT_MAGIC, 0 },
  49	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  50	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  51	  XFS_REFC_CRC_MAGIC }
  52};
  53#define xfs_btree_magic(cur) \
  54	xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
  55
  56STATIC int				/* error (0 or EFSCORRUPTED) */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57xfs_btree_check_lblock(
  58	struct xfs_btree_cur	*cur,	/* btree cursor */
  59	struct xfs_btree_block	*block,	/* btree long form block pointer */
  60	int			level,	/* level of the btree block */
  61	struct xfs_buf		*bp)	/* buffer for block, if any */
  62{
  63	int			lblock_ok = 1; /* block passes checks */
  64	struct xfs_mount	*mp;	/* file system mount point */
  65
  66	mp = cur->bc_mp;
  67
  68	if (xfs_sb_version_hascrc(&mp->m_sb)) {
  69		lblock_ok = lblock_ok &&
  70			uuid_equal(&block->bb_u.l.bb_uuid,
  71				   &mp->m_sb.sb_meta_uuid) &&
  72			block->bb_u.l.bb_blkno == cpu_to_be64(
  73				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
  74	}
  75
  76	lblock_ok = lblock_ok &&
  77		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
  78		be16_to_cpu(block->bb_level) == level &&
  79		be16_to_cpu(block->bb_numrecs) <=
  80			cur->bc_ops->get_maxrecs(cur, level) &&
  81		block->bb_u.l.bb_leftsib &&
  82		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
  83		 XFS_FSB_SANITY_CHECK(mp,
  84			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
  85		block->bb_u.l.bb_rightsib &&
  86		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
  87		 XFS_FSB_SANITY_CHECK(mp,
  88			be64_to_cpu(block->bb_u.l.bb_rightsib)));
  89
  90	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
  91			XFS_ERRTAG_BTREE_CHECK_LBLOCK,
  92			XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
  93		if (bp)
  94			trace_xfs_btree_corrupt(bp, _RET_IP_);
  95		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
  96		return -EFSCORRUPTED;
  97	}
  98	return 0;
  99}
 100
 101STATIC int				/* error (0 or EFSCORRUPTED) */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102xfs_btree_check_sblock(
 103	struct xfs_btree_cur	*cur,	/* btree cursor */
 104	struct xfs_btree_block	*block,	/* btree short form block pointer */
 105	int			level,	/* level of the btree block */
 106	struct xfs_buf		*bp)	/* buffer containing block */
 107{
 108	struct xfs_mount	*mp;	/* file system mount point */
 109	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
 110	struct xfs_agf		*agf;	/* ag. freespace structure */
 111	xfs_agblock_t		agflen;	/* native ag. freespace length */
 112	int			sblock_ok = 1; /* block passes checks */
 113
 114	mp = cur->bc_mp;
 115	agbp = cur->bc_private.a.agbp;
 116	agf = XFS_BUF_TO_AGF(agbp);
 117	agflen = be32_to_cpu(agf->agf_length);
 118
 119	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 120		sblock_ok = sblock_ok &&
 121			uuid_equal(&block->bb_u.s.bb_uuid,
 122				   &mp->m_sb.sb_meta_uuid) &&
 123			block->bb_u.s.bb_blkno == cpu_to_be64(
 124				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
 125	}
 126
 127	sblock_ok = sblock_ok &&
 128		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
 129		be16_to_cpu(block->bb_level) == level &&
 130		be16_to_cpu(block->bb_numrecs) <=
 131			cur->bc_ops->get_maxrecs(cur, level) &&
 132		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
 133		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
 134		block->bb_u.s.bb_leftsib &&
 135		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
 136		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
 137		block->bb_u.s.bb_rightsib;
 138
 139	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
 140			XFS_ERRTAG_BTREE_CHECK_SBLOCK,
 141			XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
 142		if (bp)
 143			trace_xfs_btree_corrupt(bp, _RET_IP_);
 144		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 145		return -EFSCORRUPTED;
 146	}
 147	return 0;
 148}
 149
 150/*
 151 * Debug routine: check that block header is ok.
 152 */
 153int
 154xfs_btree_check_block(
 155	struct xfs_btree_cur	*cur,	/* btree cursor */
 156	struct xfs_btree_block	*block,	/* generic btree block pointer */
 157	int			level,	/* level of the btree block */
 158	struct xfs_buf		*bp)	/* buffer containing block, if any */
 159{
 160	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 161		return xfs_btree_check_lblock(cur, block, level, bp);
 162	else
 163		return xfs_btree_check_sblock(cur, block, level, bp);
 164}
 165
 166/*
 167 * Check that (long) pointer is ok.
 168 */
 169int					/* error (0 or EFSCORRUPTED) */
 170xfs_btree_check_lptr(
 171	struct xfs_btree_cur	*cur,	/* btree cursor */
 172	xfs_fsblock_t		bno,	/* btree block disk address */
 173	int			level)	/* btree block level */
 174{
 175	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 176		level > 0 &&
 177		bno != NULLFSBLOCK &&
 178		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
 179	return 0;
 180}
 181
 182#ifdef DEBUG
 183/*
 184 * Check that (short) pointer is ok.
 185 */
 186STATIC int				/* error (0 or EFSCORRUPTED) */
 187xfs_btree_check_sptr(
 188	struct xfs_btree_cur	*cur,	/* btree cursor */
 189	xfs_agblock_t		bno,	/* btree block disk address */
 190	int			level)	/* btree block level */
 191{
 192	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
 193
 194	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 195		level > 0 &&
 196		bno != NULLAGBLOCK &&
 197		bno != 0 &&
 198		bno < agblocks);
 199	return 0;
 200}
 201
 202/*
 203 * Check that block ptr is ok.
 
 204 */
 205STATIC int				/* error (0 or EFSCORRUPTED) */
 206xfs_btree_check_ptr(
 207	struct xfs_btree_cur	*cur,	/* btree cursor */
 208	union xfs_btree_ptr	*ptr,	/* btree block disk address */
 209	int			index,	/* offset from ptr to check */
 210	int			level)	/* btree block level */
 211{
 212	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 213		return xfs_btree_check_lptr(cur,
 214				be64_to_cpu((&ptr->l)[index]), level);
 
 
 
 
 
 
 215	} else {
 216		return xfs_btree_check_sptr(cur,
 217				be32_to_cpu((&ptr->s)[index]), level);
 
 
 
 
 
 218	}
 
 
 219}
 
 
 
 
 
 220#endif
 221
 222/*
 223 * Calculate CRC on the whole btree block and stuff it into the
 224 * long-form btree header.
 225 *
 226 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 227 * it into the buffer so recovery knows what the last modification was that made
 228 * it to disk.
 229 */
 230void
 231xfs_btree_lblock_calc_crc(
 232	struct xfs_buf		*bp)
 233{
 234	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 235	struct xfs_buf_log_item	*bip = bp->b_fspriv;
 236
 237	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 238		return;
 239	if (bip)
 240		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 241	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 242}
 243
 244bool
 245xfs_btree_lblock_verify_crc(
 246	struct xfs_buf		*bp)
 247{
 248	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 249	struct xfs_mount	*mp = bp->b_target->bt_mount;
 250
 251	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 252		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 253			return false;
 254		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 255	}
 256
 257	return true;
 258}
 259
 260/*
 261 * Calculate CRC on the whole btree block and stuff it into the
 262 * short-form btree header.
 263 *
 264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 265 * it into the buffer so recovery knows what the last modification was that made
 266 * it to disk.
 267 */
 268void
 269xfs_btree_sblock_calc_crc(
 270	struct xfs_buf		*bp)
 271{
 272	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 273	struct xfs_buf_log_item	*bip = bp->b_fspriv;
 274
 275	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 276		return;
 277	if (bip)
 278		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 279	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 280}
 281
 282bool
 283xfs_btree_sblock_verify_crc(
 284	struct xfs_buf		*bp)
 285{
 286	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 287	struct xfs_mount	*mp = bp->b_target->bt_mount;
 288
 289	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 290		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 291			return false;
 292		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 293	}
 294
 295	return true;
 296}
 297
 298static int
 299xfs_btree_free_block(
 300	struct xfs_btree_cur	*cur,
 301	struct xfs_buf		*bp)
 302{
 303	int			error;
 304
 305	error = cur->bc_ops->free_block(cur, bp);
 306	if (!error) {
 307		xfs_trans_binval(cur->bc_tp, bp);
 308		XFS_BTREE_STATS_INC(cur, free);
 309	}
 310	return error;
 311}
 312
 313/*
 314 * Delete the btree cursor.
 315 */
 316void
 317xfs_btree_del_cursor(
 318	xfs_btree_cur_t	*cur,		/* btree cursor */
 319	int		error)		/* del because of error */
 320{
 321	int		i;		/* btree level */
 322
 323	/*
 324	 * Clear the buffer pointers, and release the buffers.
 325	 * If we're doing this in the face of an error, we
 326	 * need to make sure to inspect all of the entries
 327	 * in the bc_bufs array for buffers to be unlocked.
 328	 * This is because some of the btree code works from
 329	 * level n down to 0, and if we get an error along
 330	 * the way we won't have initialized all the entries
 331	 * down to 0.
 332	 */
 333	for (i = 0; i < cur->bc_nlevels; i++) {
 334		if (cur->bc_bufs[i])
 335			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 336		else if (!error)
 337			break;
 338	}
 
 339	/*
 340	 * Can't free a bmap cursor without having dealt with the
 341	 * allocated indirect blocks' accounting.
 342	 */
 343	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 344	       cur->bc_private.b.allocated == 0);
 345	/*
 346	 * Free the cursor.
 347	 */
 348	kmem_zone_free(xfs_btree_cur_zone, cur);
 
 
 
 349}
 350
 351/*
 352 * Duplicate the btree cursor.
 353 * Allocate a new one, copy the record, re-get the buffers.
 354 */
 355int					/* error */
 356xfs_btree_dup_cursor(
 357	xfs_btree_cur_t	*cur,		/* input cursor */
 358	xfs_btree_cur_t	**ncur)		/* output cursor */
 359{
 360	xfs_buf_t	*bp;		/* btree block's buffer pointer */
 361	int		error;		/* error return value */
 362	int		i;		/* level number of btree block */
 363	xfs_mount_t	*mp;		/* mount structure for filesystem */
 364	xfs_btree_cur_t	*new;		/* new cursor value */
 365	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
 366
 367	tp = cur->bc_tp;
 368	mp = cur->bc_mp;
 369
 370	/*
 371	 * Allocate a new cursor like the old one.
 372	 */
 373	new = cur->bc_ops->dup_cursor(cur);
 374
 375	/*
 376	 * Copy the record currently in the cursor.
 377	 */
 378	new->bc_rec = cur->bc_rec;
 379
 380	/*
 381	 * For each level current, re-get the buffer and copy the ptr value.
 382	 */
 383	for (i = 0; i < new->bc_nlevels; i++) {
 384		new->bc_ptrs[i] = cur->bc_ptrs[i];
 385		new->bc_ra[i] = cur->bc_ra[i];
 386		bp = cur->bc_bufs[i];
 387		if (bp) {
 388			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 389						   XFS_BUF_ADDR(bp), mp->m_bsize,
 390						   0, &bp,
 391						   cur->bc_ops->buf_ops);
 392			if (error) {
 393				xfs_btree_del_cursor(new, error);
 394				*ncur = NULL;
 395				return error;
 396			}
 397		}
 398		new->bc_bufs[i] = bp;
 399	}
 400	*ncur = new;
 401	return 0;
 402}
 403
 404/*
 405 * XFS btree block layout and addressing:
 406 *
 407 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 408 *
 409 * The leaf record start with a header then followed by records containing
 410 * the values.  A non-leaf block also starts with the same header, and
 411 * then first contains lookup keys followed by an equal number of pointers
 412 * to the btree blocks at the previous level.
 413 *
 414 *		+--------+-------+-------+-------+-------+-------+-------+
 415 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 416 *		+--------+-------+-------+-------+-------+-------+-------+
 417 *
 418 *		+--------+-------+-------+-------+-------+-------+-------+
 419 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 420 *		+--------+-------+-------+-------+-------+-------+-------+
 421 *
 422 * The header is called struct xfs_btree_block for reasons better left unknown
 423 * and comes in different versions for short (32bit) and long (64bit) block
 424 * pointers.  The record and key structures are defined by the btree instances
 425 * and opaque to the btree core.  The block pointers are simple disk endian
 426 * integers, available in a short (32bit) and long (64bit) variant.
 427 *
 428 * The helpers below calculate the offset of a given record, key or pointer
 429 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 430 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 431 * inside the btree block is done using indices starting at one, not zero!
 432 *
 433 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 434 * overlapping intervals.  In such a tree, records are still sorted lowest to
 435 * highest and indexed by the smallest key value that refers to the record.
 436 * However, nodes are different: each pointer has two associated keys -- one
 437 * indexing the lowest key available in the block(s) below (the same behavior
 438 * as the key in a regular btree) and another indexing the highest key
 439 * available in the block(s) below.  Because records are /not/ sorted by the
 440 * highest key, all leaf block updates require us to compute the highest key
 441 * that matches any record in the leaf and to recursively update the high keys
 442 * in the nodes going further up in the tree, if necessary.  Nodes look like
 443 * this:
 444 *
 445 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 446 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 447 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 448 *
 449 * To perform an interval query on an overlapped tree, perform the usual
 450 * depth-first search and use the low and high keys to decide if we can skip
 451 * that particular node.  If a leaf node is reached, return the records that
 452 * intersect the interval.  Note that an interval query may return numerous
 453 * entries.  For a non-overlapped tree, simply search for the record associated
 454 * with the lowest key and iterate forward until a non-matching record is
 455 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 456 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 457 * more detail.
 458 *
 459 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 460 * reverse mapping records on a reflink filesystem:
 461 *
 462 * 1: +- file A startblock B offset C length D -----------+
 463 * 2:      +- file E startblock F offset G length H --------------+
 464 * 3:      +- file I startblock F offset J length K --+
 465 * 4:                                                        +- file L... --+
 466 *
 467 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 468 * we'd simply increment the length of record 1.  But how do we find the record
 469 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 470 * record 3 because the keys are ordered first by startblock.  An interval
 471 * query would return records 1 and 2 because they both overlap (B+D-1), and
 472 * from that we can pick out record 1 as the appropriate left neighbor.
 473 *
 474 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 475 * because a record's interval must end before the next record.
 476 */
 477
 478/*
 479 * Return size of the btree block header for this btree instance.
 480 */
 481static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 482{
 483	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 484		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 485			return XFS_BTREE_LBLOCK_CRC_LEN;
 486		return XFS_BTREE_LBLOCK_LEN;
 487	}
 488	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 489		return XFS_BTREE_SBLOCK_CRC_LEN;
 490	return XFS_BTREE_SBLOCK_LEN;
 491}
 492
 493/*
 494 * Return size of btree block pointers for this btree instance.
 495 */
 496static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 497{
 498	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 499		sizeof(__be64) : sizeof(__be32);
 500}
 501
 502/*
 503 * Calculate offset of the n-th record in a btree block.
 504 */
 505STATIC size_t
 506xfs_btree_rec_offset(
 507	struct xfs_btree_cur	*cur,
 508	int			n)
 509{
 510	return xfs_btree_block_len(cur) +
 511		(n - 1) * cur->bc_ops->rec_len;
 512}
 513
 514/*
 515 * Calculate offset of the n-th key in a btree block.
 516 */
 517STATIC size_t
 518xfs_btree_key_offset(
 519	struct xfs_btree_cur	*cur,
 520	int			n)
 521{
 522	return xfs_btree_block_len(cur) +
 523		(n - 1) * cur->bc_ops->key_len;
 524}
 525
 526/*
 527 * Calculate offset of the n-th high key in a btree block.
 528 */
 529STATIC size_t
 530xfs_btree_high_key_offset(
 531	struct xfs_btree_cur	*cur,
 532	int			n)
 533{
 534	return xfs_btree_block_len(cur) +
 535		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 536}
 537
 538/*
 539 * Calculate offset of the n-th block pointer in a btree block.
 540 */
 541STATIC size_t
 542xfs_btree_ptr_offset(
 543	struct xfs_btree_cur	*cur,
 544	int			n,
 545	int			level)
 546{
 547	return xfs_btree_block_len(cur) +
 548		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 549		(n - 1) * xfs_btree_ptr_len(cur);
 550}
 551
 552/*
 553 * Return a pointer to the n-th record in the btree block.
 554 */
 555STATIC union xfs_btree_rec *
 556xfs_btree_rec_addr(
 557	struct xfs_btree_cur	*cur,
 558	int			n,
 559	struct xfs_btree_block	*block)
 560{
 561	return (union xfs_btree_rec *)
 562		((char *)block + xfs_btree_rec_offset(cur, n));
 563}
 564
 565/*
 566 * Return a pointer to the n-th key in the btree block.
 567 */
 568STATIC union xfs_btree_key *
 569xfs_btree_key_addr(
 570	struct xfs_btree_cur	*cur,
 571	int			n,
 572	struct xfs_btree_block	*block)
 573{
 574	return (union xfs_btree_key *)
 575		((char *)block + xfs_btree_key_offset(cur, n));
 576}
 577
 578/*
 579 * Return a pointer to the n-th high key in the btree block.
 580 */
 581STATIC union xfs_btree_key *
 582xfs_btree_high_key_addr(
 583	struct xfs_btree_cur	*cur,
 584	int			n,
 585	struct xfs_btree_block	*block)
 586{
 587	return (union xfs_btree_key *)
 588		((char *)block + xfs_btree_high_key_offset(cur, n));
 589}
 590
 591/*
 592 * Return a pointer to the n-th block pointer in the btree block.
 593 */
 594STATIC union xfs_btree_ptr *
 595xfs_btree_ptr_addr(
 596	struct xfs_btree_cur	*cur,
 597	int			n,
 598	struct xfs_btree_block	*block)
 599{
 600	int			level = xfs_btree_get_level(block);
 601
 602	ASSERT(block->bb_level != 0);
 603
 604	return (union xfs_btree_ptr *)
 605		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 606}
 607
 
 
 
 
 
 
 
 
 
 
 
 608/*
 609 * Get the root block which is stored in the inode.
 610 *
 611 * For now this btree implementation assumes the btree root is always
 612 * stored in the if_broot field of an inode fork.
 613 */
 614STATIC struct xfs_btree_block *
 615xfs_btree_get_iroot(
 616	struct xfs_btree_cur	*cur)
 617{
 618	struct xfs_ifork	*ifp;
 619
 620	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 621	return (struct xfs_btree_block *)ifp->if_broot;
 622}
 623
 624/*
 625 * Retrieve the block pointer from the cursor at the given level.
 626 * This may be an inode btree root or from a buffer.
 627 */
 628STATIC struct xfs_btree_block *		/* generic btree block pointer */
 629xfs_btree_get_block(
 630	struct xfs_btree_cur	*cur,	/* btree cursor */
 631	int			level,	/* level in btree */
 632	struct xfs_buf		**bpp)	/* buffer containing the block */
 633{
 634	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 635	    (level == cur->bc_nlevels - 1)) {
 636		*bpp = NULL;
 637		return xfs_btree_get_iroot(cur);
 638	}
 639
 640	*bpp = cur->bc_bufs[level];
 641	return XFS_BUF_TO_BLOCK(*bpp);
 642}
 643
 644/*
 645 * Get a buffer for the block, return it with no data read.
 646 * Long-form addressing.
 647 */
 648xfs_buf_t *				/* buffer for fsbno */
 649xfs_btree_get_bufl(
 650	xfs_mount_t	*mp,		/* file system mount point */
 651	xfs_trans_t	*tp,		/* transaction pointer */
 652	xfs_fsblock_t	fsbno,		/* file system block number */
 653	uint		lock)		/* lock flags for get_buf */
 654{
 655	xfs_daddr_t		d;		/* real disk block address */
 656
 657	ASSERT(fsbno != NULLFSBLOCK);
 658	d = XFS_FSB_TO_DADDR(mp, fsbno);
 659	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 660}
 661
 662/*
 663 * Get a buffer for the block, return it with no data read.
 664 * Short-form addressing.
 665 */
 666xfs_buf_t *				/* buffer for agno/agbno */
 667xfs_btree_get_bufs(
 668	xfs_mount_t	*mp,		/* file system mount point */
 669	xfs_trans_t	*tp,		/* transaction pointer */
 670	xfs_agnumber_t	agno,		/* allocation group number */
 671	xfs_agblock_t	agbno,		/* allocation group block number */
 672	uint		lock)		/* lock flags for get_buf */
 673{
 674	xfs_daddr_t		d;		/* real disk block address */
 675
 676	ASSERT(agno != NULLAGNUMBER);
 677	ASSERT(agbno != NULLAGBLOCK);
 678	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 679	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 680}
 681
 682/*
 683 * Check for the cursor referring to the last block at the given level.
 684 */
 685int					/* 1=is last block, 0=not last block */
 686xfs_btree_islastblock(
 687	xfs_btree_cur_t		*cur,	/* btree cursor */
 688	int			level)	/* level to check */
 689{
 690	struct xfs_btree_block	*block;	/* generic btree block pointer */
 691	xfs_buf_t		*bp;	/* buffer containing block */
 692
 693	block = xfs_btree_get_block(cur, level, &bp);
 694	xfs_btree_check_block(cur, block, level, bp);
 695	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 696		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
 697	else
 698		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
 699}
 700
 701/*
 702 * Change the cursor to point to the first record at the given level.
 703 * Other levels are unaffected.
 704 */
 705STATIC int				/* success=1, failure=0 */
 706xfs_btree_firstrec(
 707	xfs_btree_cur_t		*cur,	/* btree cursor */
 708	int			level)	/* level to change */
 709{
 710	struct xfs_btree_block	*block;	/* generic btree block pointer */
 711	xfs_buf_t		*bp;	/* buffer containing block */
 712
 713	/*
 714	 * Get the block pointer for this level.
 715	 */
 716	block = xfs_btree_get_block(cur, level, &bp);
 717	xfs_btree_check_block(cur, block, level, bp);
 
 718	/*
 719	 * It's empty, there is no such record.
 720	 */
 721	if (!block->bb_numrecs)
 722		return 0;
 723	/*
 724	 * Set the ptr value to 1, that's the first record/key.
 725	 */
 726	cur->bc_ptrs[level] = 1;
 727	return 1;
 728}
 729
 730/*
 731 * Change the cursor to point to the last record in the current block
 732 * at the given level.  Other levels are unaffected.
 733 */
 734STATIC int				/* success=1, failure=0 */
 735xfs_btree_lastrec(
 736	xfs_btree_cur_t		*cur,	/* btree cursor */
 737	int			level)	/* level to change */
 738{
 739	struct xfs_btree_block	*block;	/* generic btree block pointer */
 740	xfs_buf_t		*bp;	/* buffer containing block */
 741
 742	/*
 743	 * Get the block pointer for this level.
 744	 */
 745	block = xfs_btree_get_block(cur, level, &bp);
 746	xfs_btree_check_block(cur, block, level, bp);
 
 747	/*
 748	 * It's empty, there is no such record.
 749	 */
 750	if (!block->bb_numrecs)
 751		return 0;
 752	/*
 753	 * Set the ptr value to numrecs, that's the last record/key.
 754	 */
 755	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 756	return 1;
 757}
 758
 759/*
 760 * Compute first and last byte offsets for the fields given.
 761 * Interprets the offsets table, which contains struct field offsets.
 762 */
 763void
 764xfs_btree_offsets(
 765	__int64_t	fields,		/* bitmask of fields */
 766	const short	*offsets,	/* table of field offsets */
 767	int		nbits,		/* number of bits to inspect */
 768	int		*first,		/* output: first byte offset */
 769	int		*last)		/* output: last byte offset */
 770{
 771	int		i;		/* current bit number */
 772	__int64_t	imask;		/* mask for current bit number */
 773
 774	ASSERT(fields != 0);
 775	/*
 776	 * Find the lowest bit, so the first byte offset.
 777	 */
 778	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 779		if (imask & fields) {
 780			*first = offsets[i];
 781			break;
 782		}
 783	}
 784	/*
 785	 * Find the highest bit, so the last byte offset.
 786	 */
 787	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 788		if (imask & fields) {
 789			*last = offsets[i + 1] - 1;
 790			break;
 791		}
 792	}
 793}
 794
 795/*
 796 * Get a buffer for the block, return it read in.
 797 * Long-form addressing.
 798 */
 799int
 800xfs_btree_read_bufl(
 801	struct xfs_mount	*mp,		/* file system mount point */
 802	struct xfs_trans	*tp,		/* transaction pointer */
 803	xfs_fsblock_t		fsbno,		/* file system block number */
 804	uint			lock,		/* lock flags for read_buf */
 805	struct xfs_buf		**bpp,		/* buffer for fsbno */
 806	int			refval,		/* ref count value for buffer */
 807	const struct xfs_buf_ops *ops)
 808{
 809	struct xfs_buf		*bp;		/* return value */
 810	xfs_daddr_t		d;		/* real disk block address */
 811	int			error;
 812
 813	if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
 814		return -EFSCORRUPTED;
 815	d = XFS_FSB_TO_DADDR(mp, fsbno);
 816	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 817				   mp->m_bsize, lock, &bp, ops);
 818	if (error)
 819		return error;
 820	if (bp)
 821		xfs_buf_set_ref(bp, refval);
 822	*bpp = bp;
 823	return 0;
 824}
 825
 826/*
 827 * Read-ahead the block, don't wait for it, don't return a buffer.
 828 * Long-form addressing.
 829 */
 830/* ARGSUSED */
 831void
 832xfs_btree_reada_bufl(
 833	struct xfs_mount	*mp,		/* file system mount point */
 834	xfs_fsblock_t		fsbno,		/* file system block number */
 835	xfs_extlen_t		count,		/* count of filesystem blocks */
 836	const struct xfs_buf_ops *ops)
 837{
 838	xfs_daddr_t		d;
 839
 840	ASSERT(fsbno != NULLFSBLOCK);
 841	d = XFS_FSB_TO_DADDR(mp, fsbno);
 842	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 843}
 844
 845/*
 846 * Read-ahead the block, don't wait for it, don't return a buffer.
 847 * Short-form addressing.
 848 */
 849/* ARGSUSED */
 850void
 851xfs_btree_reada_bufs(
 852	struct xfs_mount	*mp,		/* file system mount point */
 853	xfs_agnumber_t		agno,		/* allocation group number */
 854	xfs_agblock_t		agbno,		/* allocation group block number */
 855	xfs_extlen_t		count,		/* count of filesystem blocks */
 856	const struct xfs_buf_ops *ops)
 857{
 858	xfs_daddr_t		d;
 859
 860	ASSERT(agno != NULLAGNUMBER);
 861	ASSERT(agbno != NULLAGBLOCK);
 862	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 863	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 864}
 865
 866STATIC int
 867xfs_btree_readahead_lblock(
 868	struct xfs_btree_cur	*cur,
 869	int			lr,
 870	struct xfs_btree_block	*block)
 871{
 872	int			rval = 0;
 873	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 874	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 875
 876	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 877		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 878				     cur->bc_ops->buf_ops);
 879		rval++;
 880	}
 881
 882	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 883		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 884				     cur->bc_ops->buf_ops);
 885		rval++;
 886	}
 887
 888	return rval;
 889}
 890
 891STATIC int
 892xfs_btree_readahead_sblock(
 893	struct xfs_btree_cur	*cur,
 894	int			lr,
 895	struct xfs_btree_block *block)
 896{
 897	int			rval = 0;
 898	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 899	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 900
 901
 902	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 903		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 904				     left, 1, cur->bc_ops->buf_ops);
 905		rval++;
 906	}
 907
 908	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 909		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 910				     right, 1, cur->bc_ops->buf_ops);
 911		rval++;
 912	}
 913
 914	return rval;
 915}
 916
 917/*
 918 * Read-ahead btree blocks, at the given level.
 919 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 920 */
 921STATIC int
 922xfs_btree_readahead(
 923	struct xfs_btree_cur	*cur,		/* btree cursor */
 924	int			lev,		/* level in btree */
 925	int			lr)		/* left/right bits */
 926{
 927	struct xfs_btree_block	*block;
 928
 929	/*
 930	 * No readahead needed if we are at the root level and the
 931	 * btree root is stored in the inode.
 932	 */
 933	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 934	    (lev == cur->bc_nlevels - 1))
 935		return 0;
 936
 937	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 938		return 0;
 939
 940	cur->bc_ra[lev] |= lr;
 941	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 942
 943	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 944		return xfs_btree_readahead_lblock(cur, lr, block);
 945	return xfs_btree_readahead_sblock(cur, lr, block);
 946}
 947
 948STATIC xfs_daddr_t
 949xfs_btree_ptr_to_daddr(
 950	struct xfs_btree_cur	*cur,
 951	union xfs_btree_ptr	*ptr)
 
 952{
 
 
 
 
 
 
 
 
 953	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 954		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
 955
 956		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
 957	} else {
 958		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
 959		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
 
 
 960
 961		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
 962					be32_to_cpu(ptr->s));
 963	}
 964}
 965
 966/*
 967 * Readahead @count btree blocks at the given @ptr location.
 968 *
 969 * We don't need to care about long or short form btrees here as we have a
 970 * method of converting the ptr directly to a daddr available to us.
 971 */
 972STATIC void
 973xfs_btree_readahead_ptr(
 974	struct xfs_btree_cur	*cur,
 975	union xfs_btree_ptr	*ptr,
 976	xfs_extlen_t		count)
 977{
 978	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
 979			  xfs_btree_ptr_to_daddr(cur, ptr),
 
 
 
 980			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 981}
 982
 983/*
 984 * Set the buffer for level "lev" in the cursor to bp, releasing
 985 * any previous buffer.
 986 */
 987STATIC void
 988xfs_btree_setbuf(
 989	xfs_btree_cur_t		*cur,	/* btree cursor */
 990	int			lev,	/* level in btree */
 991	xfs_buf_t		*bp)	/* new buffer to set */
 992{
 993	struct xfs_btree_block	*b;	/* btree block */
 994
 995	if (cur->bc_bufs[lev])
 996		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
 997	cur->bc_bufs[lev] = bp;
 998	cur->bc_ra[lev] = 0;
 999
1000	b = XFS_BUF_TO_BLOCK(bp);
1001	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1002		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1003			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1004		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1005			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1006	} else {
1007		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1008			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1009		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1010			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1011	}
1012}
1013
1014STATIC int
1015xfs_btree_ptr_is_null(
1016	struct xfs_btree_cur	*cur,
1017	union xfs_btree_ptr	*ptr)
1018{
1019	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1020		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1021	else
1022		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1023}
1024
1025STATIC void
1026xfs_btree_set_ptr_null(
1027	struct xfs_btree_cur	*cur,
1028	union xfs_btree_ptr	*ptr)
1029{
1030	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1031		ptr->l = cpu_to_be64(NULLFSBLOCK);
1032	else
1033		ptr->s = cpu_to_be32(NULLAGBLOCK);
1034}
1035
1036/*
1037 * Get/set/init sibling pointers
1038 */
1039STATIC void
1040xfs_btree_get_sibling(
1041	struct xfs_btree_cur	*cur,
1042	struct xfs_btree_block	*block,
1043	union xfs_btree_ptr	*ptr,
1044	int			lr)
1045{
1046	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1047
1048	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1049		if (lr == XFS_BB_RIGHTSIB)
1050			ptr->l = block->bb_u.l.bb_rightsib;
1051		else
1052			ptr->l = block->bb_u.l.bb_leftsib;
1053	} else {
1054		if (lr == XFS_BB_RIGHTSIB)
1055			ptr->s = block->bb_u.s.bb_rightsib;
1056		else
1057			ptr->s = block->bb_u.s.bb_leftsib;
1058	}
1059}
1060
1061STATIC void
1062xfs_btree_set_sibling(
1063	struct xfs_btree_cur	*cur,
1064	struct xfs_btree_block	*block,
1065	union xfs_btree_ptr	*ptr,
1066	int			lr)
1067{
1068	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1069
1070	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1071		if (lr == XFS_BB_RIGHTSIB)
1072			block->bb_u.l.bb_rightsib = ptr->l;
1073		else
1074			block->bb_u.l.bb_leftsib = ptr->l;
1075	} else {
1076		if (lr == XFS_BB_RIGHTSIB)
1077			block->bb_u.s.bb_rightsib = ptr->s;
1078		else
1079			block->bb_u.s.bb_leftsib = ptr->s;
1080	}
1081}
1082
1083void
1084xfs_btree_init_block_int(
1085	struct xfs_mount	*mp,
1086	struct xfs_btree_block	*buf,
1087	xfs_daddr_t		blkno,
1088	__u32			magic,
1089	__u16			level,
1090	__u16			numrecs,
1091	__u64			owner,
1092	unsigned int		flags)
1093{
 
 
 
1094	buf->bb_magic = cpu_to_be32(magic);
1095	buf->bb_level = cpu_to_be16(level);
1096	buf->bb_numrecs = cpu_to_be16(numrecs);
1097
1098	if (flags & XFS_BTREE_LONG_PTRS) {
1099		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1100		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1101		if (flags & XFS_BTREE_CRC_BLOCKS) {
1102			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1103			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1104			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1105			buf->bb_u.l.bb_pad = 0;
1106			buf->bb_u.l.bb_lsn = 0;
1107		}
1108	} else {
1109		/* owner is a 32 bit value on short blocks */
1110		__u32 __owner = (__u32)owner;
1111
1112		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1113		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1114		if (flags & XFS_BTREE_CRC_BLOCKS) {
1115			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1116			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1117			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1118			buf->bb_u.s.bb_lsn = 0;
1119		}
1120	}
1121}
1122
1123void
1124xfs_btree_init_block(
1125	struct xfs_mount *mp,
1126	struct xfs_buf	*bp,
1127	__u32		magic,
1128	__u16		level,
1129	__u16		numrecs,
1130	__u64		owner,
1131	unsigned int	flags)
1132{
1133	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1134				 magic, level, numrecs, owner, flags);
1135}
1136
1137STATIC void
1138xfs_btree_init_block_cur(
1139	struct xfs_btree_cur	*cur,
1140	struct xfs_buf		*bp,
1141	int			level,
1142	int			numrecs)
1143{
1144	__u64 owner;
1145
1146	/*
1147	 * we can pull the owner from the cursor right now as the different
1148	 * owners align directly with the pointer size of the btree. This may
1149	 * change in future, but is safe for current users of the generic btree
1150	 * code.
1151	 */
1152	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1153		owner = cur->bc_private.b.ip->i_ino;
1154	else
1155		owner = cur->bc_private.a.agno;
1156
1157	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1158				 xfs_btree_magic(cur), level, numrecs,
1159				 owner, cur->bc_flags);
1160}
1161
1162/*
1163 * Return true if ptr is the last record in the btree and
1164 * we need to track updates to this record.  The decision
1165 * will be further refined in the update_lastrec method.
1166 */
1167STATIC int
1168xfs_btree_is_lastrec(
1169	struct xfs_btree_cur	*cur,
1170	struct xfs_btree_block	*block,
1171	int			level)
1172{
1173	union xfs_btree_ptr	ptr;
1174
1175	if (level > 0)
1176		return 0;
1177	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1178		return 0;
1179
1180	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1181	if (!xfs_btree_ptr_is_null(cur, &ptr))
1182		return 0;
1183	return 1;
1184}
1185
1186STATIC void
1187xfs_btree_buf_to_ptr(
1188	struct xfs_btree_cur	*cur,
1189	struct xfs_buf		*bp,
1190	union xfs_btree_ptr	*ptr)
1191{
1192	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1193		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1194					XFS_BUF_ADDR(bp)));
1195	else {
1196		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1197					XFS_BUF_ADDR(bp)));
1198	}
1199}
1200
1201STATIC void
1202xfs_btree_set_refs(
1203	struct xfs_btree_cur	*cur,
1204	struct xfs_buf		*bp)
1205{
1206	switch (cur->bc_btnum) {
1207	case XFS_BTNUM_BNO:
1208	case XFS_BTNUM_CNT:
1209		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1210		break;
1211	case XFS_BTNUM_INO:
1212	case XFS_BTNUM_FINO:
1213		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1214		break;
1215	case XFS_BTNUM_BMAP:
1216		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1217		break;
1218	case XFS_BTNUM_RMAP:
1219		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1220		break;
1221	case XFS_BTNUM_REFC:
1222		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1223		break;
1224	default:
1225		ASSERT(0);
1226	}
1227}
1228
1229STATIC int
1230xfs_btree_get_buf_block(
1231	struct xfs_btree_cur	*cur,
1232	union xfs_btree_ptr	*ptr,
1233	int			flags,
1234	struct xfs_btree_block	**block,
1235	struct xfs_buf		**bpp)
1236{
1237	struct xfs_mount	*mp = cur->bc_mp;
1238	xfs_daddr_t		d;
 
1239
1240	/* need to sort out how callers deal with failures first */
1241	ASSERT(!(flags & XBF_TRYLOCK));
1242
1243	d = xfs_btree_ptr_to_daddr(cur, ptr);
1244	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1245				 mp->m_bsize, flags);
1246
1247	if (!*bpp)
1248		return -ENOMEM;
1249
1250	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1251	*block = XFS_BUF_TO_BLOCK(*bpp);
1252	return 0;
1253}
1254
1255/*
1256 * Read in the buffer at the given ptr and return the buffer and
1257 * the block pointer within the buffer.
1258 */
1259STATIC int
1260xfs_btree_read_buf_block(
1261	struct xfs_btree_cur	*cur,
1262	union xfs_btree_ptr	*ptr,
1263	int			flags,
1264	struct xfs_btree_block	**block,
1265	struct xfs_buf		**bpp)
1266{
1267	struct xfs_mount	*mp = cur->bc_mp;
1268	xfs_daddr_t		d;
1269	int			error;
1270
1271	/* need to sort out how callers deal with failures first */
1272	ASSERT(!(flags & XBF_TRYLOCK));
1273
1274	d = xfs_btree_ptr_to_daddr(cur, ptr);
 
 
1275	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1276				   mp->m_bsize, flags, bpp,
1277				   cur->bc_ops->buf_ops);
1278	if (error)
1279		return error;
1280
1281	xfs_btree_set_refs(cur, *bpp);
1282	*block = XFS_BUF_TO_BLOCK(*bpp);
1283	return 0;
1284}
1285
1286/*
1287 * Copy keys from one btree block to another.
1288 */
1289STATIC void
1290xfs_btree_copy_keys(
1291	struct xfs_btree_cur	*cur,
1292	union xfs_btree_key	*dst_key,
1293	union xfs_btree_key	*src_key,
1294	int			numkeys)
1295{
1296	ASSERT(numkeys >= 0);
1297	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1298}
1299
1300/*
1301 * Copy records from one btree block to another.
1302 */
1303STATIC void
1304xfs_btree_copy_recs(
1305	struct xfs_btree_cur	*cur,
1306	union xfs_btree_rec	*dst_rec,
1307	union xfs_btree_rec	*src_rec,
1308	int			numrecs)
1309{
1310	ASSERT(numrecs >= 0);
1311	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1312}
1313
1314/*
1315 * Copy block pointers from one btree block to another.
1316 */
1317STATIC void
1318xfs_btree_copy_ptrs(
1319	struct xfs_btree_cur	*cur,
1320	union xfs_btree_ptr	*dst_ptr,
1321	union xfs_btree_ptr	*src_ptr,
1322	int			numptrs)
1323{
1324	ASSERT(numptrs >= 0);
1325	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1326}
1327
1328/*
1329 * Shift keys one index left/right inside a single btree block.
1330 */
1331STATIC void
1332xfs_btree_shift_keys(
1333	struct xfs_btree_cur	*cur,
1334	union xfs_btree_key	*key,
1335	int			dir,
1336	int			numkeys)
1337{
1338	char			*dst_key;
1339
1340	ASSERT(numkeys >= 0);
1341	ASSERT(dir == 1 || dir == -1);
1342
1343	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1344	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1345}
1346
1347/*
1348 * Shift records one index left/right inside a single btree block.
1349 */
1350STATIC void
1351xfs_btree_shift_recs(
1352	struct xfs_btree_cur	*cur,
1353	union xfs_btree_rec	*rec,
1354	int			dir,
1355	int			numrecs)
1356{
1357	char			*dst_rec;
1358
1359	ASSERT(numrecs >= 0);
1360	ASSERT(dir == 1 || dir == -1);
1361
1362	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1363	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1364}
1365
1366/*
1367 * Shift block pointers one index left/right inside a single btree block.
1368 */
1369STATIC void
1370xfs_btree_shift_ptrs(
1371	struct xfs_btree_cur	*cur,
1372	union xfs_btree_ptr	*ptr,
1373	int			dir,
1374	int			numptrs)
1375{
1376	char			*dst_ptr;
1377
1378	ASSERT(numptrs >= 0);
1379	ASSERT(dir == 1 || dir == -1);
1380
1381	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1382	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1383}
1384
1385/*
1386 * Log key values from the btree block.
1387 */
1388STATIC void
1389xfs_btree_log_keys(
1390	struct xfs_btree_cur	*cur,
1391	struct xfs_buf		*bp,
1392	int			first,
1393	int			last)
1394{
1395	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1396	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1397
1398	if (bp) {
1399		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1400		xfs_trans_log_buf(cur->bc_tp, bp,
1401				  xfs_btree_key_offset(cur, first),
1402				  xfs_btree_key_offset(cur, last + 1) - 1);
1403	} else {
1404		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1405				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1406	}
1407
1408	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1409}
1410
1411/*
1412 * Log record values from the btree block.
1413 */
1414void
1415xfs_btree_log_recs(
1416	struct xfs_btree_cur	*cur,
1417	struct xfs_buf		*bp,
1418	int			first,
1419	int			last)
1420{
1421	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1422	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1423
1424	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1425	xfs_trans_log_buf(cur->bc_tp, bp,
1426			  xfs_btree_rec_offset(cur, first),
1427			  xfs_btree_rec_offset(cur, last + 1) - 1);
1428
1429	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1430}
1431
1432/*
1433 * Log block pointer fields from a btree block (nonleaf).
1434 */
1435STATIC void
1436xfs_btree_log_ptrs(
1437	struct xfs_btree_cur	*cur,	/* btree cursor */
1438	struct xfs_buf		*bp,	/* buffer containing btree block */
1439	int			first,	/* index of first pointer to log */
1440	int			last)	/* index of last pointer to log */
1441{
1442	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1443	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1444
1445	if (bp) {
1446		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1447		int			level = xfs_btree_get_level(block);
1448
1449		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1450		xfs_trans_log_buf(cur->bc_tp, bp,
1451				xfs_btree_ptr_offset(cur, first, level),
1452				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1453	} else {
1454		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1455			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1456	}
1457
1458	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1459}
1460
1461/*
1462 * Log fields from a btree block header.
1463 */
1464void
1465xfs_btree_log_block(
1466	struct xfs_btree_cur	*cur,	/* btree cursor */
1467	struct xfs_buf		*bp,	/* buffer containing btree block */
1468	int			fields)	/* mask of fields: XFS_BB_... */
1469{
1470	int			first;	/* first byte offset logged */
1471	int			last;	/* last byte offset logged */
1472	static const short	soffsets[] = {	/* table of offsets (short) */
1473		offsetof(struct xfs_btree_block, bb_magic),
1474		offsetof(struct xfs_btree_block, bb_level),
1475		offsetof(struct xfs_btree_block, bb_numrecs),
1476		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1477		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1478		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1479		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1480		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1481		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1482		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1483		XFS_BTREE_SBLOCK_CRC_LEN
1484	};
1485	static const short	loffsets[] = {	/* table of offsets (long) */
1486		offsetof(struct xfs_btree_block, bb_magic),
1487		offsetof(struct xfs_btree_block, bb_level),
1488		offsetof(struct xfs_btree_block, bb_numrecs),
1489		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1490		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1491		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1492		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1493		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1494		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1495		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1496		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1497		XFS_BTREE_LBLOCK_CRC_LEN
1498	};
1499
1500	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1501	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1502
1503	if (bp) {
1504		int nbits;
1505
1506		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1507			/*
1508			 * We don't log the CRC when updating a btree
1509			 * block but instead recreate it during log
1510			 * recovery.  As the log buffers have checksums
1511			 * of their own this is safe and avoids logging a crc
1512			 * update in a lot of places.
1513			 */
1514			if (fields == XFS_BB_ALL_BITS)
1515				fields = XFS_BB_ALL_BITS_CRC;
1516			nbits = XFS_BB_NUM_BITS_CRC;
1517		} else {
1518			nbits = XFS_BB_NUM_BITS;
1519		}
1520		xfs_btree_offsets(fields,
1521				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1522					loffsets : soffsets,
1523				  nbits, &first, &last);
1524		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1525		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1526	} else {
1527		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1528			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1529	}
1530
1531	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1532}
1533
1534/*
1535 * Increment cursor by one record at the level.
1536 * For nonzero levels the leaf-ward information is untouched.
1537 */
1538int						/* error */
1539xfs_btree_increment(
1540	struct xfs_btree_cur	*cur,
1541	int			level,
1542	int			*stat)		/* success/failure */
1543{
1544	struct xfs_btree_block	*block;
1545	union xfs_btree_ptr	ptr;
1546	struct xfs_buf		*bp;
1547	int			error;		/* error return value */
1548	int			lev;
1549
1550	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1551	XFS_BTREE_TRACE_ARGI(cur, level);
1552
1553	ASSERT(level < cur->bc_nlevels);
1554
1555	/* Read-ahead to the right at this level. */
1556	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1557
1558	/* Get a pointer to the btree block. */
1559	block = xfs_btree_get_block(cur, level, &bp);
1560
1561#ifdef DEBUG
1562	error = xfs_btree_check_block(cur, block, level, bp);
1563	if (error)
1564		goto error0;
1565#endif
1566
1567	/* We're done if we remain in the block after the increment. */
1568	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1569		goto out1;
1570
1571	/* Fail if we just went off the right edge of the tree. */
1572	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1573	if (xfs_btree_ptr_is_null(cur, &ptr))
1574		goto out0;
1575
1576	XFS_BTREE_STATS_INC(cur, increment);
1577
1578	/*
1579	 * March up the tree incrementing pointers.
1580	 * Stop when we don't go off the right edge of a block.
1581	 */
1582	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1583		block = xfs_btree_get_block(cur, lev, &bp);
1584
1585#ifdef DEBUG
1586		error = xfs_btree_check_block(cur, block, lev, bp);
1587		if (error)
1588			goto error0;
1589#endif
1590
1591		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1592			break;
1593
1594		/* Read-ahead the right block for the next loop. */
1595		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1596	}
1597
1598	/*
1599	 * If we went off the root then we are either seriously
1600	 * confused or have the tree root in an inode.
1601	 */
1602	if (lev == cur->bc_nlevels) {
1603		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1604			goto out0;
1605		ASSERT(0);
1606		error = -EFSCORRUPTED;
1607		goto error0;
1608	}
1609	ASSERT(lev < cur->bc_nlevels);
1610
1611	/*
1612	 * Now walk back down the tree, fixing up the cursor's buffer
1613	 * pointers and key numbers.
1614	 */
1615	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1616		union xfs_btree_ptr	*ptrp;
1617
1618		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1619		--lev;
1620		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1621		if (error)
1622			goto error0;
1623
1624		xfs_btree_setbuf(cur, lev, bp);
1625		cur->bc_ptrs[lev] = 1;
1626	}
1627out1:
1628	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1629	*stat = 1;
1630	return 0;
1631
1632out0:
1633	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1634	*stat = 0;
1635	return 0;
1636
1637error0:
1638	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1639	return error;
1640}
1641
1642/*
1643 * Decrement cursor by one record at the level.
1644 * For nonzero levels the leaf-ward information is untouched.
1645 */
1646int						/* error */
1647xfs_btree_decrement(
1648	struct xfs_btree_cur	*cur,
1649	int			level,
1650	int			*stat)		/* success/failure */
1651{
1652	struct xfs_btree_block	*block;
1653	xfs_buf_t		*bp;
1654	int			error;		/* error return value */
1655	int			lev;
1656	union xfs_btree_ptr	ptr;
1657
1658	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1659	XFS_BTREE_TRACE_ARGI(cur, level);
1660
1661	ASSERT(level < cur->bc_nlevels);
1662
1663	/* Read-ahead to the left at this level. */
1664	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1665
1666	/* We're done if we remain in the block after the decrement. */
1667	if (--cur->bc_ptrs[level] > 0)
1668		goto out1;
1669
1670	/* Get a pointer to the btree block. */
1671	block = xfs_btree_get_block(cur, level, &bp);
1672
1673#ifdef DEBUG
1674	error = xfs_btree_check_block(cur, block, level, bp);
1675	if (error)
1676		goto error0;
1677#endif
1678
1679	/* Fail if we just went off the left edge of the tree. */
1680	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1681	if (xfs_btree_ptr_is_null(cur, &ptr))
1682		goto out0;
1683
1684	XFS_BTREE_STATS_INC(cur, decrement);
1685
1686	/*
1687	 * March up the tree decrementing pointers.
1688	 * Stop when we don't go off the left edge of a block.
1689	 */
1690	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1691		if (--cur->bc_ptrs[lev] > 0)
1692			break;
1693		/* Read-ahead the left block for the next loop. */
1694		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1695	}
1696
1697	/*
1698	 * If we went off the root then we are seriously confused.
1699	 * or the root of the tree is in an inode.
1700	 */
1701	if (lev == cur->bc_nlevels) {
1702		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1703			goto out0;
1704		ASSERT(0);
1705		error = -EFSCORRUPTED;
1706		goto error0;
1707	}
1708	ASSERT(lev < cur->bc_nlevels);
1709
1710	/*
1711	 * Now walk back down the tree, fixing up the cursor's buffer
1712	 * pointers and key numbers.
1713	 */
1714	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1715		union xfs_btree_ptr	*ptrp;
1716
1717		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1718		--lev;
1719		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1720		if (error)
1721			goto error0;
1722		xfs_btree_setbuf(cur, lev, bp);
1723		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1724	}
1725out1:
1726	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1727	*stat = 1;
1728	return 0;
1729
1730out0:
1731	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1732	*stat = 0;
1733	return 0;
1734
1735error0:
1736	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1737	return error;
1738}
1739
1740STATIC int
1741xfs_btree_lookup_get_block(
1742	struct xfs_btree_cur	*cur,	/* btree cursor */
1743	int			level,	/* level in the btree */
1744	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1745	struct xfs_btree_block	**blkp) /* return btree block */
1746{
1747	struct xfs_buf		*bp;	/* buffer pointer for btree block */
 
1748	int			error = 0;
1749
1750	/* special case the root block if in an inode */
1751	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1752	    (level == cur->bc_nlevels - 1)) {
1753		*blkp = xfs_btree_get_iroot(cur);
1754		return 0;
1755	}
1756
1757	/*
1758	 * If the old buffer at this level for the disk address we are
1759	 * looking for re-use it.
1760	 *
1761	 * Otherwise throw it away and get a new one.
1762	 */
1763	bp = cur->bc_bufs[level];
1764	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
 
 
 
1765		*blkp = XFS_BUF_TO_BLOCK(bp);
1766		return 0;
1767	}
1768
1769	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1770	if (error)
1771		return error;
1772
1773	/* Check the inode owner since the verifiers don't. */
1774	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
 
1775	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1776	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1777			cur->bc_private.b.ip->i_ino)
1778		goto out_bad;
1779
1780	/* Did we get the level we were looking for? */
1781	if (be16_to_cpu((*blkp)->bb_level) != level)
1782		goto out_bad;
1783
1784	/* Check that internal nodes have at least one record. */
1785	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1786		goto out_bad;
1787
1788	xfs_btree_setbuf(cur, level, bp);
1789	return 0;
1790
1791out_bad:
1792	*blkp = NULL;
 
1793	xfs_trans_brelse(cur->bc_tp, bp);
1794	return -EFSCORRUPTED;
1795}
1796
1797/*
1798 * Get current search key.  For level 0 we don't actually have a key
1799 * structure so we make one up from the record.  For all other levels
1800 * we just return the right key.
1801 */
1802STATIC union xfs_btree_key *
1803xfs_lookup_get_search_key(
1804	struct xfs_btree_cur	*cur,
1805	int			level,
1806	int			keyno,
1807	struct xfs_btree_block	*block,
1808	union xfs_btree_key	*kp)
1809{
1810	if (level == 0) {
1811		cur->bc_ops->init_key_from_rec(kp,
1812				xfs_btree_rec_addr(cur, keyno, block));
1813		return kp;
1814	}
1815
1816	return xfs_btree_key_addr(cur, keyno, block);
1817}
1818
1819/*
1820 * Lookup the record.  The cursor is made to point to it, based on dir.
1821 * stat is set to 0 if can't find any such record, 1 for success.
1822 */
1823int					/* error */
1824xfs_btree_lookup(
1825	struct xfs_btree_cur	*cur,	/* btree cursor */
1826	xfs_lookup_t		dir,	/* <=, ==, or >= */
1827	int			*stat)	/* success/failure */
1828{
1829	struct xfs_btree_block	*block;	/* current btree block */
1830	__int64_t		diff;	/* difference for the current key */
1831	int			error;	/* error return value */
1832	int			keyno;	/* current key number */
1833	int			level;	/* level in the btree */
1834	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1835	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1836
1837	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1838	XFS_BTREE_TRACE_ARGI(cur, dir);
1839
1840	XFS_BTREE_STATS_INC(cur, lookup);
1841
1842	/* No such thing as a zero-level tree. */
1843	if (cur->bc_nlevels == 0)
1844		return -EFSCORRUPTED;
1845
1846	block = NULL;
1847	keyno = 0;
1848
1849	/* initialise start pointer from cursor */
1850	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1851	pp = &ptr;
1852
1853	/*
1854	 * Iterate over each level in the btree, starting at the root.
1855	 * For each level above the leaves, find the key we need, based
1856	 * on the lookup record, then follow the corresponding block
1857	 * pointer down to the next level.
1858	 */
1859	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1860		/* Get the block we need to do the lookup on. */
1861		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1862		if (error)
1863			goto error0;
1864
1865		if (diff == 0) {
1866			/*
1867			 * If we already had a key match at a higher level, we
1868			 * know we need to use the first entry in this block.
1869			 */
1870			keyno = 1;
1871		} else {
1872			/* Otherwise search this block. Do a binary search. */
1873
1874			int	high;	/* high entry number */
1875			int	low;	/* low entry number */
1876
1877			/* Set low and high entry numbers, 1-based. */
1878			low = 1;
1879			high = xfs_btree_get_numrecs(block);
1880			if (!high) {
1881				/* Block is empty, must be an empty leaf. */
1882				ASSERT(level == 0 && cur->bc_nlevels == 1);
 
 
 
 
 
 
1883
1884				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1885				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1886				*stat = 0;
1887				return 0;
1888			}
1889
1890			/* Binary search the block. */
1891			while (low <= high) {
1892				union xfs_btree_key	key;
1893				union xfs_btree_key	*kp;
1894
1895				XFS_BTREE_STATS_INC(cur, compare);
1896
1897				/* keyno is average of low and high. */
1898				keyno = (low + high) >> 1;
1899
1900				/* Get current search key */
1901				kp = xfs_lookup_get_search_key(cur, level,
1902						keyno, block, &key);
1903
1904				/*
1905				 * Compute difference to get next direction:
1906				 *  - less than, move right
1907				 *  - greater than, move left
1908				 *  - equal, we're done
1909				 */
1910				diff = cur->bc_ops->key_diff(cur, kp);
1911				if (diff < 0)
1912					low = keyno + 1;
1913				else if (diff > 0)
1914					high = keyno - 1;
1915				else
1916					break;
1917			}
1918		}
1919
1920		/*
1921		 * If there are more levels, set up for the next level
1922		 * by getting the block number and filling in the cursor.
1923		 */
1924		if (level > 0) {
1925			/*
1926			 * If we moved left, need the previous key number,
1927			 * unless there isn't one.
1928			 */
1929			if (diff > 0 && --keyno < 1)
1930				keyno = 1;
1931			pp = xfs_btree_ptr_addr(cur, keyno, block);
1932
1933#ifdef DEBUG
1934			error = xfs_btree_check_ptr(cur, pp, 0, level);
1935			if (error)
1936				goto error0;
1937#endif
1938			cur->bc_ptrs[level] = keyno;
1939		}
1940	}
1941
1942	/* Done with the search. See if we need to adjust the results. */
1943	if (dir != XFS_LOOKUP_LE && diff < 0) {
1944		keyno++;
1945		/*
1946		 * If ge search and we went off the end of the block, but it's
1947		 * not the last block, we're in the wrong block.
1948		 */
1949		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1950		if (dir == XFS_LOOKUP_GE &&
1951		    keyno > xfs_btree_get_numrecs(block) &&
1952		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1953			int	i;
1954
1955			cur->bc_ptrs[0] = keyno;
1956			error = xfs_btree_increment(cur, 0, &i);
1957			if (error)
1958				goto error0;
1959			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1960			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1961			*stat = 1;
1962			return 0;
1963		}
1964	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1965		keyno--;
1966	cur->bc_ptrs[0] = keyno;
1967
1968	/* Return if we succeeded or not. */
1969	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1970		*stat = 0;
1971	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1972		*stat = 1;
1973	else
1974		*stat = 0;
1975	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1976	return 0;
1977
1978error0:
1979	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1980	return error;
1981}
1982
1983/* Find the high key storage area from a regular key. */
1984STATIC union xfs_btree_key *
1985xfs_btree_high_key_from_key(
1986	struct xfs_btree_cur	*cur,
1987	union xfs_btree_key	*key)
1988{
1989	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1990	return (union xfs_btree_key *)((char *)key +
1991			(cur->bc_ops->key_len / 2));
1992}
1993
1994/* Determine the low (and high if overlapped) keys of a leaf block */
1995STATIC void
1996xfs_btree_get_leaf_keys(
1997	struct xfs_btree_cur	*cur,
1998	struct xfs_btree_block	*block,
1999	union xfs_btree_key	*key)
2000{
2001	union xfs_btree_key	max_hkey;
2002	union xfs_btree_key	hkey;
2003	union xfs_btree_rec	*rec;
2004	union xfs_btree_key	*high;
2005	int			n;
2006
2007	rec = xfs_btree_rec_addr(cur, 1, block);
2008	cur->bc_ops->init_key_from_rec(key, rec);
2009
2010	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2011
2012		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2013		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2014			rec = xfs_btree_rec_addr(cur, n, block);
2015			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2016			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2017					> 0)
2018				max_hkey = hkey;
2019		}
2020
2021		high = xfs_btree_high_key_from_key(cur, key);
2022		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2023	}
2024}
2025
2026/* Determine the low (and high if overlapped) keys of a node block */
2027STATIC void
2028xfs_btree_get_node_keys(
2029	struct xfs_btree_cur	*cur,
2030	struct xfs_btree_block	*block,
2031	union xfs_btree_key	*key)
2032{
2033	union xfs_btree_key	*hkey;
2034	union xfs_btree_key	*max_hkey;
2035	union xfs_btree_key	*high;
2036	int			n;
2037
2038	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2039		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2040				cur->bc_ops->key_len / 2);
2041
2042		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2043		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2044			hkey = xfs_btree_high_key_addr(cur, n, block);
2045			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2046				max_hkey = hkey;
2047		}
2048
2049		high = xfs_btree_high_key_from_key(cur, key);
2050		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2051	} else {
2052		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2053				cur->bc_ops->key_len);
2054	}
2055}
2056
2057/* Derive the keys for any btree block. */
2058STATIC void
2059xfs_btree_get_keys(
2060	struct xfs_btree_cur	*cur,
2061	struct xfs_btree_block	*block,
2062	union xfs_btree_key	*key)
2063{
2064	if (be16_to_cpu(block->bb_level) == 0)
2065		xfs_btree_get_leaf_keys(cur, block, key);
2066	else
2067		xfs_btree_get_node_keys(cur, block, key);
2068}
2069
2070/*
2071 * Decide if we need to update the parent keys of a btree block.  For
2072 * a standard btree this is only necessary if we're updating the first
2073 * record/key.  For an overlapping btree, we must always update the
2074 * keys because the highest key can be in any of the records or keys
2075 * in the block.
2076 */
2077static inline bool
2078xfs_btree_needs_key_update(
2079	struct xfs_btree_cur	*cur,
2080	int			ptr)
2081{
2082	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2083}
2084
2085/*
2086 * Update the low and high parent keys of the given level, progressing
2087 * towards the root.  If force_all is false, stop if the keys for a given
2088 * level do not need updating.
2089 */
2090STATIC int
2091__xfs_btree_updkeys(
2092	struct xfs_btree_cur	*cur,
2093	int			level,
2094	struct xfs_btree_block	*block,
2095	struct xfs_buf		*bp0,
2096	bool			force_all)
2097{
2098	union xfs_btree_key	key;	/* keys from current level */
2099	union xfs_btree_key	*lkey;	/* keys from the next level up */
2100	union xfs_btree_key	*hkey;
2101	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2102	union xfs_btree_key	*nhkey;
2103	struct xfs_buf		*bp;
2104	int			ptr;
2105
2106	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2107
2108	/* Exit if there aren't any parent levels to update. */
2109	if (level + 1 >= cur->bc_nlevels)
2110		return 0;
2111
2112	trace_xfs_btree_updkeys(cur, level, bp0);
2113
2114	lkey = &key;
2115	hkey = xfs_btree_high_key_from_key(cur, lkey);
2116	xfs_btree_get_keys(cur, block, lkey);
2117	for (level++; level < cur->bc_nlevels; level++) {
2118#ifdef DEBUG
2119		int		error;
2120#endif
2121		block = xfs_btree_get_block(cur, level, &bp);
2122		trace_xfs_btree_updkeys(cur, level, bp);
2123#ifdef DEBUG
2124		error = xfs_btree_check_block(cur, block, level, bp);
2125		if (error) {
2126			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2127			return error;
2128		}
2129#endif
2130		ptr = cur->bc_ptrs[level];
2131		nlkey = xfs_btree_key_addr(cur, ptr, block);
2132		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2133		if (!force_all &&
2134		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2135		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2136			break;
2137		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2138		xfs_btree_log_keys(cur, bp, ptr, ptr);
2139		if (level + 1 >= cur->bc_nlevels)
2140			break;
2141		xfs_btree_get_node_keys(cur, block, lkey);
2142	}
2143
2144	return 0;
2145}
2146
2147/* Update all the keys from some level in cursor back to the root. */
2148STATIC int
2149xfs_btree_updkeys_force(
2150	struct xfs_btree_cur	*cur,
2151	int			level)
2152{
2153	struct xfs_buf		*bp;
2154	struct xfs_btree_block	*block;
2155
2156	block = xfs_btree_get_block(cur, level, &bp);
2157	return __xfs_btree_updkeys(cur, level, block, bp, true);
2158}
2159
2160/*
2161 * Update the parent keys of the given level, progressing towards the root.
2162 */
2163STATIC int
2164xfs_btree_update_keys(
2165	struct xfs_btree_cur	*cur,
2166	int			level)
2167{
2168	struct xfs_btree_block	*block;
2169	struct xfs_buf		*bp;
2170	union xfs_btree_key	*kp;
2171	union xfs_btree_key	key;
2172	int			ptr;
2173
2174	ASSERT(level >= 0);
2175
2176	block = xfs_btree_get_block(cur, level, &bp);
2177	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2178		return __xfs_btree_updkeys(cur, level, block, bp, false);
2179
2180	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2181	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2182
2183	/*
2184	 * Go up the tree from this level toward the root.
2185	 * At each level, update the key value to the value input.
2186	 * Stop when we reach a level where the cursor isn't pointing
2187	 * at the first entry in the block.
2188	 */
2189	xfs_btree_get_keys(cur, block, &key);
2190	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2191#ifdef DEBUG
2192		int		error;
2193#endif
2194		block = xfs_btree_get_block(cur, level, &bp);
2195#ifdef DEBUG
2196		error = xfs_btree_check_block(cur, block, level, bp);
2197		if (error) {
2198			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2199			return error;
2200		}
2201#endif
2202		ptr = cur->bc_ptrs[level];
2203		kp = xfs_btree_key_addr(cur, ptr, block);
2204		xfs_btree_copy_keys(cur, kp, &key, 1);
2205		xfs_btree_log_keys(cur, bp, ptr, ptr);
2206	}
2207
2208	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2209	return 0;
2210}
2211
2212/*
2213 * Update the record referred to by cur to the value in the
2214 * given record. This either works (return 0) or gets an
2215 * EFSCORRUPTED error.
2216 */
2217int
2218xfs_btree_update(
2219	struct xfs_btree_cur	*cur,
2220	union xfs_btree_rec	*rec)
2221{
2222	struct xfs_btree_block	*block;
2223	struct xfs_buf		*bp;
2224	int			error;
2225	int			ptr;
2226	union xfs_btree_rec	*rp;
2227
2228	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2229	XFS_BTREE_TRACE_ARGR(cur, rec);
2230
2231	/* Pick up the current block. */
2232	block = xfs_btree_get_block(cur, 0, &bp);
2233
2234#ifdef DEBUG
2235	error = xfs_btree_check_block(cur, block, 0, bp);
2236	if (error)
2237		goto error0;
2238#endif
2239	/* Get the address of the rec to be updated. */
2240	ptr = cur->bc_ptrs[0];
2241	rp = xfs_btree_rec_addr(cur, ptr, block);
2242
2243	/* Fill in the new contents and log them. */
2244	xfs_btree_copy_recs(cur, rp, rec, 1);
2245	xfs_btree_log_recs(cur, bp, ptr, ptr);
2246
2247	/*
2248	 * If we are tracking the last record in the tree and
2249	 * we are at the far right edge of the tree, update it.
2250	 */
2251	if (xfs_btree_is_lastrec(cur, block, 0)) {
2252		cur->bc_ops->update_lastrec(cur, block, rec,
2253					    ptr, LASTREC_UPDATE);
2254	}
2255
2256	/* Pass new key value up to our parent. */
2257	if (xfs_btree_needs_key_update(cur, ptr)) {
2258		error = xfs_btree_update_keys(cur, 0);
2259		if (error)
2260			goto error0;
2261	}
2262
2263	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2264	return 0;
2265
2266error0:
2267	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2268	return error;
2269}
2270
2271/*
2272 * Move 1 record left from cur/level if possible.
2273 * Update cur to reflect the new path.
2274 */
2275STATIC int					/* error */
2276xfs_btree_lshift(
2277	struct xfs_btree_cur	*cur,
2278	int			level,
2279	int			*stat)		/* success/failure */
2280{
2281	struct xfs_buf		*lbp;		/* left buffer pointer */
2282	struct xfs_btree_block	*left;		/* left btree block */
2283	int			lrecs;		/* left record count */
2284	struct xfs_buf		*rbp;		/* right buffer pointer */
2285	struct xfs_btree_block	*right;		/* right btree block */
2286	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2287	int			rrecs;		/* right record count */
2288	union xfs_btree_ptr	lptr;		/* left btree pointer */
2289	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2290	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2291	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2292	int			error;		/* error return value */
2293	int			i;
2294
2295	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2296	XFS_BTREE_TRACE_ARGI(cur, level);
2297
2298	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2299	    level == cur->bc_nlevels - 1)
2300		goto out0;
2301
2302	/* Set up variables for this block as "right". */
2303	right = xfs_btree_get_block(cur, level, &rbp);
2304
2305#ifdef DEBUG
2306	error = xfs_btree_check_block(cur, right, level, rbp);
2307	if (error)
2308		goto error0;
2309#endif
2310
2311	/* If we've got no left sibling then we can't shift an entry left. */
2312	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2313	if (xfs_btree_ptr_is_null(cur, &lptr))
2314		goto out0;
2315
2316	/*
2317	 * If the cursor entry is the one that would be moved, don't
2318	 * do it... it's too complicated.
2319	 */
2320	if (cur->bc_ptrs[level] <= 1)
2321		goto out0;
2322
2323	/* Set up the left neighbor as "left". */
2324	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2325	if (error)
2326		goto error0;
2327
2328	/* If it's full, it can't take another entry. */
2329	lrecs = xfs_btree_get_numrecs(left);
2330	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2331		goto out0;
2332
2333	rrecs = xfs_btree_get_numrecs(right);
2334
2335	/*
2336	 * We add one entry to the left side and remove one for the right side.
2337	 * Account for it here, the changes will be updated on disk and logged
2338	 * later.
2339	 */
2340	lrecs++;
2341	rrecs--;
2342
2343	XFS_BTREE_STATS_INC(cur, lshift);
2344	XFS_BTREE_STATS_ADD(cur, moves, 1);
2345
2346	/*
2347	 * If non-leaf, copy a key and a ptr to the left block.
2348	 * Log the changes to the left block.
2349	 */
2350	if (level > 0) {
2351		/* It's a non-leaf.  Move keys and pointers. */
2352		union xfs_btree_key	*lkp;	/* left btree key */
2353		union xfs_btree_ptr	*lpp;	/* left address pointer */
2354
2355		lkp = xfs_btree_key_addr(cur, lrecs, left);
2356		rkp = xfs_btree_key_addr(cur, 1, right);
2357
2358		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2359		rpp = xfs_btree_ptr_addr(cur, 1, right);
2360#ifdef DEBUG
2361		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2362		if (error)
2363			goto error0;
2364#endif
2365		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2366		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2367
2368		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2369		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2370
2371		ASSERT(cur->bc_ops->keys_inorder(cur,
2372			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2373	} else {
2374		/* It's a leaf.  Move records.  */
2375		union xfs_btree_rec	*lrp;	/* left record pointer */
2376
2377		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2378		rrp = xfs_btree_rec_addr(cur, 1, right);
2379
2380		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2381		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2382
2383		ASSERT(cur->bc_ops->recs_inorder(cur,
2384			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2385	}
2386
2387	xfs_btree_set_numrecs(left, lrecs);
2388	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2389
2390	xfs_btree_set_numrecs(right, rrecs);
2391	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2392
2393	/*
2394	 * Slide the contents of right down one entry.
2395	 */
2396	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2397	if (level > 0) {
2398		/* It's a nonleaf. operate on keys and ptrs */
2399#ifdef DEBUG
2400		int			i;		/* loop index */
2401
2402		for (i = 0; i < rrecs; i++) {
2403			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2404			if (error)
2405				goto error0;
2406		}
2407#endif
2408		xfs_btree_shift_keys(cur,
2409				xfs_btree_key_addr(cur, 2, right),
2410				-1, rrecs);
2411		xfs_btree_shift_ptrs(cur,
2412				xfs_btree_ptr_addr(cur, 2, right),
2413				-1, rrecs);
2414
2415		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2416		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2417	} else {
2418		/* It's a leaf. operate on records */
2419		xfs_btree_shift_recs(cur,
2420			xfs_btree_rec_addr(cur, 2, right),
2421			-1, rrecs);
2422		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2423	}
2424
2425	/*
2426	 * Using a temporary cursor, update the parent key values of the
2427	 * block on the left.
2428	 */
2429	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2430		error = xfs_btree_dup_cursor(cur, &tcur);
2431		if (error)
2432			goto error0;
2433		i = xfs_btree_firstrec(tcur, level);
2434		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
 
 
 
2435
2436		error = xfs_btree_decrement(tcur, level, &i);
2437		if (error)
2438			goto error1;
2439
2440		/* Update the parent high keys of the left block, if needed. */
2441		error = xfs_btree_update_keys(tcur, level);
2442		if (error)
2443			goto error1;
2444
2445		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2446	}
2447
2448	/* Update the parent keys of the right block. */
2449	error = xfs_btree_update_keys(cur, level);
2450	if (error)
2451		goto error0;
2452
2453	/* Slide the cursor value left one. */
2454	cur->bc_ptrs[level]--;
2455
2456	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2457	*stat = 1;
2458	return 0;
2459
2460out0:
2461	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2462	*stat = 0;
2463	return 0;
2464
2465error0:
2466	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2467	return error;
2468
2469error1:
2470	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2471	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2472	return error;
2473}
2474
2475/*
2476 * Move 1 record right from cur/level if possible.
2477 * Update cur to reflect the new path.
2478 */
2479STATIC int					/* error */
2480xfs_btree_rshift(
2481	struct xfs_btree_cur	*cur,
2482	int			level,
2483	int			*stat)		/* success/failure */
2484{
2485	struct xfs_buf		*lbp;		/* left buffer pointer */
2486	struct xfs_btree_block	*left;		/* left btree block */
2487	struct xfs_buf		*rbp;		/* right buffer pointer */
2488	struct xfs_btree_block	*right;		/* right btree block */
2489	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2490	union xfs_btree_ptr	rptr;		/* right block pointer */
2491	union xfs_btree_key	*rkp;		/* right btree key */
2492	int			rrecs;		/* right record count */
2493	int			lrecs;		/* left record count */
2494	int			error;		/* error return value */
2495	int			i;		/* loop counter */
2496
2497	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2498	XFS_BTREE_TRACE_ARGI(cur, level);
2499
2500	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2501	    (level == cur->bc_nlevels - 1))
2502		goto out0;
2503
2504	/* Set up variables for this block as "left". */
2505	left = xfs_btree_get_block(cur, level, &lbp);
2506
2507#ifdef DEBUG
2508	error = xfs_btree_check_block(cur, left, level, lbp);
2509	if (error)
2510		goto error0;
2511#endif
2512
2513	/* If we've got no right sibling then we can't shift an entry right. */
2514	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2515	if (xfs_btree_ptr_is_null(cur, &rptr))
2516		goto out0;
2517
2518	/*
2519	 * If the cursor entry is the one that would be moved, don't
2520	 * do it... it's too complicated.
2521	 */
2522	lrecs = xfs_btree_get_numrecs(left);
2523	if (cur->bc_ptrs[level] >= lrecs)
2524		goto out0;
2525
2526	/* Set up the right neighbor as "right". */
2527	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2528	if (error)
2529		goto error0;
2530
2531	/* If it's full, it can't take another entry. */
2532	rrecs = xfs_btree_get_numrecs(right);
2533	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2534		goto out0;
2535
2536	XFS_BTREE_STATS_INC(cur, rshift);
2537	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2538
2539	/*
2540	 * Make a hole at the start of the right neighbor block, then
2541	 * copy the last left block entry to the hole.
2542	 */
2543	if (level > 0) {
2544		/* It's a nonleaf. make a hole in the keys and ptrs */
2545		union xfs_btree_key	*lkp;
2546		union xfs_btree_ptr	*lpp;
2547		union xfs_btree_ptr	*rpp;
2548
2549		lkp = xfs_btree_key_addr(cur, lrecs, left);
2550		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2551		rkp = xfs_btree_key_addr(cur, 1, right);
2552		rpp = xfs_btree_ptr_addr(cur, 1, right);
2553
2554#ifdef DEBUG
2555		for (i = rrecs - 1; i >= 0; i--) {
2556			error = xfs_btree_check_ptr(cur, rpp, i, level);
2557			if (error)
2558				goto error0;
2559		}
2560#endif
2561
2562		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2563		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2564
2565#ifdef DEBUG
2566		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2567		if (error)
2568			goto error0;
2569#endif
2570
2571		/* Now put the new data in, and log it. */
2572		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2573		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2574
2575		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2576		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2577
2578		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2579			xfs_btree_key_addr(cur, 2, right)));
2580	} else {
2581		/* It's a leaf. make a hole in the records */
2582		union xfs_btree_rec	*lrp;
2583		union xfs_btree_rec	*rrp;
2584
2585		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2586		rrp = xfs_btree_rec_addr(cur, 1, right);
2587
2588		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2589
2590		/* Now put the new data in, and log it. */
2591		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2592		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2593	}
2594
2595	/*
2596	 * Decrement and log left's numrecs, bump and log right's numrecs.
2597	 */
2598	xfs_btree_set_numrecs(left, --lrecs);
2599	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2600
2601	xfs_btree_set_numrecs(right, ++rrecs);
2602	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2603
2604	/*
2605	 * Using a temporary cursor, update the parent key values of the
2606	 * block on the right.
2607	 */
2608	error = xfs_btree_dup_cursor(cur, &tcur);
2609	if (error)
2610		goto error0;
2611	i = xfs_btree_lastrec(tcur, level);
2612	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
 
 
 
2613
2614	error = xfs_btree_increment(tcur, level, &i);
2615	if (error)
2616		goto error1;
2617
2618	/* Update the parent high keys of the left block, if needed. */
2619	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2620		error = xfs_btree_update_keys(cur, level);
2621		if (error)
2622			goto error1;
2623	}
2624
2625	/* Update the parent keys of the right block. */
2626	error = xfs_btree_update_keys(tcur, level);
2627	if (error)
2628		goto error1;
2629
2630	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2631
2632	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2633	*stat = 1;
2634	return 0;
2635
2636out0:
2637	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2638	*stat = 0;
2639	return 0;
2640
2641error0:
2642	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2643	return error;
2644
2645error1:
2646	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2647	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2648	return error;
2649}
2650
2651/*
2652 * Split cur/level block in half.
2653 * Return new block number and the key to its first
2654 * record (to be inserted into parent).
2655 */
2656STATIC int					/* error */
2657__xfs_btree_split(
2658	struct xfs_btree_cur	*cur,
2659	int			level,
2660	union xfs_btree_ptr	*ptrp,
2661	union xfs_btree_key	*key,
2662	struct xfs_btree_cur	**curp,
2663	int			*stat)		/* success/failure */
2664{
2665	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2666	struct xfs_buf		*lbp;		/* left buffer pointer */
2667	struct xfs_btree_block	*left;		/* left btree block */
2668	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2669	struct xfs_buf		*rbp;		/* right buffer pointer */
2670	struct xfs_btree_block	*right;		/* right btree block */
2671	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2672	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2673	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2674	int			lrecs;
2675	int			rrecs;
2676	int			src_index;
2677	int			error;		/* error return value */
2678#ifdef DEBUG
2679	int			i;
2680#endif
2681
2682	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2683	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2684
2685	XFS_BTREE_STATS_INC(cur, split);
2686
2687	/* Set up left block (current one). */
2688	left = xfs_btree_get_block(cur, level, &lbp);
2689
2690#ifdef DEBUG
2691	error = xfs_btree_check_block(cur, left, level, lbp);
2692	if (error)
2693		goto error0;
2694#endif
2695
2696	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2697
2698	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2699	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2700	if (error)
2701		goto error0;
2702	if (*stat == 0)
2703		goto out0;
2704	XFS_BTREE_STATS_INC(cur, alloc);
2705
2706	/* Set up the new block as "right". */
2707	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2708	if (error)
2709		goto error0;
2710
2711	/* Fill in the btree header for the new right block. */
2712	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2713
2714	/*
2715	 * Split the entries between the old and the new block evenly.
2716	 * Make sure that if there's an odd number of entries now, that
2717	 * each new block will have the same number of entries.
2718	 */
2719	lrecs = xfs_btree_get_numrecs(left);
2720	rrecs = lrecs / 2;
2721	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2722		rrecs++;
2723	src_index = (lrecs - rrecs + 1);
2724
2725	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2726
2727	/* Adjust numrecs for the later get_*_keys() calls. */
2728	lrecs -= rrecs;
2729	xfs_btree_set_numrecs(left, lrecs);
2730	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2731
2732	/*
2733	 * Copy btree block entries from the left block over to the
2734	 * new block, the right. Update the right block and log the
2735	 * changes.
2736	 */
2737	if (level > 0) {
2738		/* It's a non-leaf.  Move keys and pointers. */
2739		union xfs_btree_key	*lkp;	/* left btree key */
2740		union xfs_btree_ptr	*lpp;	/* left address pointer */
2741		union xfs_btree_key	*rkp;	/* right btree key */
2742		union xfs_btree_ptr	*rpp;	/* right address pointer */
2743
2744		lkp = xfs_btree_key_addr(cur, src_index, left);
2745		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2746		rkp = xfs_btree_key_addr(cur, 1, right);
2747		rpp = xfs_btree_ptr_addr(cur, 1, right);
2748
2749#ifdef DEBUG
2750		for (i = src_index; i < rrecs; i++) {
2751			error = xfs_btree_check_ptr(cur, lpp, i, level);
2752			if (error)
2753				goto error0;
2754		}
2755#endif
2756
2757		/* Copy the keys & pointers to the new block. */
2758		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2759		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2760
2761		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2762		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2763
2764		/* Stash the keys of the new block for later insertion. */
2765		xfs_btree_get_node_keys(cur, right, key);
2766	} else {
2767		/* It's a leaf.  Move records.  */
2768		union xfs_btree_rec	*lrp;	/* left record pointer */
2769		union xfs_btree_rec	*rrp;	/* right record pointer */
2770
2771		lrp = xfs_btree_rec_addr(cur, src_index, left);
2772		rrp = xfs_btree_rec_addr(cur, 1, right);
2773
2774		/* Copy records to the new block. */
2775		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2776		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2777
2778		/* Stash the keys of the new block for later insertion. */
2779		xfs_btree_get_leaf_keys(cur, right, key);
2780	}
2781
2782	/*
2783	 * Find the left block number by looking in the buffer.
2784	 * Adjust sibling pointers.
2785	 */
2786	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2787	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2788	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2789	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2790
2791	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2792	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2793
2794	/*
2795	 * If there's a block to the new block's right, make that block
2796	 * point back to right instead of to left.
2797	 */
2798	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2799		error = xfs_btree_read_buf_block(cur, &rrptr,
2800							0, &rrblock, &rrbp);
2801		if (error)
2802			goto error0;
2803		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2804		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2805	}
2806
2807	/* Update the parent high keys of the left block, if needed. */
2808	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2809		error = xfs_btree_update_keys(cur, level);
2810		if (error)
2811			goto error0;
2812	}
2813
2814	/*
2815	 * If the cursor is really in the right block, move it there.
2816	 * If it's just pointing past the last entry in left, then we'll
2817	 * insert there, so don't change anything in that case.
2818	 */
2819	if (cur->bc_ptrs[level] > lrecs + 1) {
2820		xfs_btree_setbuf(cur, level, rbp);
2821		cur->bc_ptrs[level] -= lrecs;
2822	}
2823	/*
2824	 * If there are more levels, we'll need another cursor which refers
2825	 * the right block, no matter where this cursor was.
2826	 */
2827	if (level + 1 < cur->bc_nlevels) {
2828		error = xfs_btree_dup_cursor(cur, curp);
2829		if (error)
2830			goto error0;
2831		(*curp)->bc_ptrs[level + 1]++;
2832	}
2833	*ptrp = rptr;
2834	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2835	*stat = 1;
2836	return 0;
2837out0:
2838	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2839	*stat = 0;
2840	return 0;
2841
2842error0:
2843	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2844	return error;
2845}
2846
 
2847struct xfs_btree_split_args {
2848	struct xfs_btree_cur	*cur;
2849	int			level;
2850	union xfs_btree_ptr	*ptrp;
2851	union xfs_btree_key	*key;
2852	struct xfs_btree_cur	**curp;
2853	int			*stat;		/* success/failure */
2854	int			result;
2855	bool			kswapd;	/* allocation in kswapd context */
2856	struct completion	*done;
2857	struct work_struct	work;
2858};
2859
2860/*
2861 * Stack switching interfaces for allocation
2862 */
2863static void
2864xfs_btree_split_worker(
2865	struct work_struct	*work)
2866{
2867	struct xfs_btree_split_args	*args = container_of(work,
2868						struct xfs_btree_split_args, work);
2869	unsigned long		pflags;
2870	unsigned long		new_pflags = PF_FSTRANS;
2871
2872	/*
2873	 * we are in a transaction context here, but may also be doing work
2874	 * in kswapd context, and hence we may need to inherit that state
2875	 * temporarily to ensure that we don't block waiting for memory reclaim
2876	 * in any way.
2877	 */
2878	if (args->kswapd)
2879		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2880
2881	current_set_flags_nested(&pflags, new_pflags);
 
2882
2883	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2884					 args->key, args->curp, args->stat);
 
 
 
 
 
 
 
 
2885	complete(args->done);
2886
2887	current_restore_flags_nested(&pflags, new_pflags);
2888}
2889
2890/*
2891 * BMBT split requests often come in with little stack to work on. Push
2892 * them off to a worker thread so there is lots of stack to use. For the other
2893 * btree types, just call directly to avoid the context switch overhead here.
 
 
 
 
 
 
 
 
 
 
 
 
 
2894 */
2895STATIC int					/* error */
2896xfs_btree_split(
2897	struct xfs_btree_cur	*cur,
2898	int			level,
2899	union xfs_btree_ptr	*ptrp,
2900	union xfs_btree_key	*key,
2901	struct xfs_btree_cur	**curp,
2902	int			*stat)		/* success/failure */
2903{
2904	struct xfs_btree_split_args	args;
2905	DECLARE_COMPLETION_ONSTACK(done);
2906
2907	if (cur->bc_btnum != XFS_BTNUM_BMAP)
 
2908		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2909
2910	args.cur = cur;
2911	args.level = level;
2912	args.ptrp = ptrp;
2913	args.key = key;
2914	args.curp = curp;
2915	args.stat = stat;
2916	args.done = &done;
2917	args.kswapd = current_is_kswapd();
2918	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2919	queue_work(xfs_alloc_wq, &args.work);
2920	wait_for_completion(&done);
2921	destroy_work_on_stack(&args.work);
2922	return args.result;
2923}
 
 
 
2924
2925
2926/*
2927 * Copy the old inode root contents into a real block and make the
2928 * broot point to it.
2929 */
2930int						/* error */
2931xfs_btree_new_iroot(
2932	struct xfs_btree_cur	*cur,		/* btree cursor */
2933	int			*logflags,	/* logging flags for inode */
2934	int			*stat)		/* return status - 0 fail */
2935{
2936	struct xfs_buf		*cbp;		/* buffer for cblock */
2937	struct xfs_btree_block	*block;		/* btree block */
2938	struct xfs_btree_block	*cblock;	/* child btree block */
2939	union xfs_btree_key	*ckp;		/* child key pointer */
2940	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2941	union xfs_btree_key	*kp;		/* pointer to btree key */
2942	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2943	union xfs_btree_ptr	nptr;		/* new block addr */
2944	int			level;		/* btree level */
2945	int			error;		/* error return code */
2946#ifdef DEBUG
2947	int			i;		/* loop counter */
2948#endif
2949
2950	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2951	XFS_BTREE_STATS_INC(cur, newroot);
2952
2953	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2954
2955	level = cur->bc_nlevels - 1;
2956
2957	block = xfs_btree_get_iroot(cur);
2958	pp = xfs_btree_ptr_addr(cur, 1, block);
2959
2960	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2961	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2962	if (error)
2963		goto error0;
2964	if (*stat == 0) {
2965		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2966		return 0;
2967	}
2968	XFS_BTREE_STATS_INC(cur, alloc);
2969
2970	/* Copy the root into a real block. */
2971	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2972	if (error)
2973		goto error0;
2974
2975	/*
2976	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2977	 * In that case have to also ensure the blkno remains correct
2978	 */
2979	memcpy(cblock, block, xfs_btree_block_len(cur));
2980	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
 
2981		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2982			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2983		else
2984			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2985	}
2986
2987	be16_add_cpu(&block->bb_level, 1);
2988	xfs_btree_set_numrecs(block, 1);
2989	cur->bc_nlevels++;
2990	cur->bc_ptrs[level + 1] = 1;
 
2991
2992	kp = xfs_btree_key_addr(cur, 1, block);
2993	ckp = xfs_btree_key_addr(cur, 1, cblock);
2994	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2995
2996	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2997#ifdef DEBUG
2998	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2999		error = xfs_btree_check_ptr(cur, pp, i, level);
3000		if (error)
3001			goto error0;
3002	}
3003#endif
3004	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3005
3006#ifdef DEBUG
3007	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3008	if (error)
3009		goto error0;
3010#endif
3011	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3012
3013	xfs_iroot_realloc(cur->bc_private.b.ip,
3014			  1 - xfs_btree_get_numrecs(cblock),
3015			  cur->bc_private.b.whichfork);
3016
3017	xfs_btree_setbuf(cur, level, cbp);
3018
3019	/*
3020	 * Do all this logging at the end so that
3021	 * the root is at the right level.
3022	 */
3023	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3024	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3025	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3026
3027	*logflags |=
3028		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3029	*stat = 1;
3030	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3031	return 0;
3032error0:
3033	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3034	return error;
3035}
3036
3037/*
3038 * Allocate a new root block, fill it in.
3039 */
3040STATIC int				/* error */
3041xfs_btree_new_root(
3042	struct xfs_btree_cur	*cur,	/* btree cursor */
3043	int			*stat)	/* success/failure */
3044{
3045	struct xfs_btree_block	*block;	/* one half of the old root block */
3046	struct xfs_buf		*bp;	/* buffer containing block */
3047	int			error;	/* error return value */
3048	struct xfs_buf		*lbp;	/* left buffer pointer */
3049	struct xfs_btree_block	*left;	/* left btree block */
3050	struct xfs_buf		*nbp;	/* new (root) buffer */
3051	struct xfs_btree_block	*new;	/* new (root) btree block */
3052	int			nptr;	/* new value for key index, 1 or 2 */
3053	struct xfs_buf		*rbp;	/* right buffer pointer */
3054	struct xfs_btree_block	*right;	/* right btree block */
3055	union xfs_btree_ptr	rptr;
3056	union xfs_btree_ptr	lptr;
3057
3058	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3059	XFS_BTREE_STATS_INC(cur, newroot);
3060
3061	/* initialise our start point from the cursor */
3062	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3063
3064	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3065	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3066	if (error)
3067		goto error0;
3068	if (*stat == 0)
3069		goto out0;
3070	XFS_BTREE_STATS_INC(cur, alloc);
3071
3072	/* Set up the new block. */
3073	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3074	if (error)
3075		goto error0;
3076
3077	/* Set the root in the holding structure  increasing the level by 1. */
3078	cur->bc_ops->set_root(cur, &lptr, 1);
3079
3080	/*
3081	 * At the previous root level there are now two blocks: the old root,
3082	 * and the new block generated when it was split.  We don't know which
3083	 * one the cursor is pointing at, so we set up variables "left" and
3084	 * "right" for each case.
3085	 */
3086	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3087
3088#ifdef DEBUG
3089	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3090	if (error)
3091		goto error0;
3092#endif
3093
3094	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3095	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3096		/* Our block is left, pick up the right block. */
3097		lbp = bp;
3098		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3099		left = block;
3100		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3101		if (error)
3102			goto error0;
3103		bp = rbp;
3104		nptr = 1;
3105	} else {
3106		/* Our block is right, pick up the left block. */
3107		rbp = bp;
3108		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3109		right = block;
3110		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3111		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3112		if (error)
3113			goto error0;
3114		bp = lbp;
3115		nptr = 2;
3116	}
3117
3118	/* Fill in the new block's btree header and log it. */
3119	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3120	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3121	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3122			!xfs_btree_ptr_is_null(cur, &rptr));
3123
3124	/* Fill in the key data in the new root. */
3125	if (xfs_btree_get_level(left) > 0) {
3126		/*
3127		 * Get the keys for the left block's keys and put them directly
3128		 * in the parent block.  Do the same for the right block.
3129		 */
3130		xfs_btree_get_node_keys(cur, left,
3131				xfs_btree_key_addr(cur, 1, new));
3132		xfs_btree_get_node_keys(cur, right,
3133				xfs_btree_key_addr(cur, 2, new));
3134	} else {
3135		/*
3136		 * Get the keys for the left block's records and put them
3137		 * directly in the parent block.  Do the same for the right
3138		 * block.
3139		 */
3140		xfs_btree_get_leaf_keys(cur, left,
3141			xfs_btree_key_addr(cur, 1, new));
3142		xfs_btree_get_leaf_keys(cur, right,
3143			xfs_btree_key_addr(cur, 2, new));
3144	}
3145	xfs_btree_log_keys(cur, nbp, 1, 2);
3146
3147	/* Fill in the pointer data in the new root. */
3148	xfs_btree_copy_ptrs(cur,
3149		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3150	xfs_btree_copy_ptrs(cur,
3151		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3152	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3153
3154	/* Fix up the cursor. */
3155	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3156	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3157	cur->bc_nlevels++;
3158	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3159	*stat = 1;
3160	return 0;
3161error0:
3162	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3163	return error;
3164out0:
3165	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3166	*stat = 0;
3167	return 0;
3168}
3169
3170STATIC int
3171xfs_btree_make_block_unfull(
3172	struct xfs_btree_cur	*cur,	/* btree cursor */
3173	int			level,	/* btree level */
3174	int			numrecs,/* # of recs in block */
3175	int			*oindex,/* old tree index */
3176	int			*index,	/* new tree index */
3177	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3178	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3179	union xfs_btree_key	*key,	/* key of new block */
3180	int			*stat)
3181{
3182	int			error = 0;
3183
3184	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3185	    level == cur->bc_nlevels - 1) {
3186	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3187
3188		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3189			/* A root block that can be made bigger. */
3190			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3191			*stat = 1;
3192		} else {
3193			/* A root block that needs replacing */
3194			int	logflags = 0;
3195
3196			error = xfs_btree_new_iroot(cur, &logflags, stat);
3197			if (error || *stat == 0)
3198				return error;
3199
3200			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3201		}
3202
3203		return 0;
3204	}
3205
3206	/* First, try shifting an entry to the right neighbor. */
3207	error = xfs_btree_rshift(cur, level, stat);
3208	if (error || *stat)
3209		return error;
3210
3211	/* Next, try shifting an entry to the left neighbor. */
3212	error = xfs_btree_lshift(cur, level, stat);
3213	if (error)
3214		return error;
3215
3216	if (*stat) {
3217		*oindex = *index = cur->bc_ptrs[level];
3218		return 0;
3219	}
3220
3221	/*
3222	 * Next, try splitting the current block in half.
3223	 *
3224	 * If this works we have to re-set our variables because we
3225	 * could be in a different block now.
3226	 */
3227	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3228	if (error || *stat == 0)
3229		return error;
3230
3231
3232	*index = cur->bc_ptrs[level];
3233	return 0;
3234}
3235
3236/*
3237 * Insert one record/level.  Return information to the caller
3238 * allowing the next level up to proceed if necessary.
3239 */
3240STATIC int
3241xfs_btree_insrec(
3242	struct xfs_btree_cur	*cur,	/* btree cursor */
3243	int			level,	/* level to insert record at */
3244	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3245	union xfs_btree_rec	*rec,	/* record to insert */
3246	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3247	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3248	int			*stat)	/* success/failure */
3249{
3250	struct xfs_btree_block	*block;	/* btree block */
3251	struct xfs_buf		*bp;	/* buffer for block */
3252	union xfs_btree_ptr	nptr;	/* new block ptr */
3253	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3254	union xfs_btree_key	nkey;	/* new block key */
3255	union xfs_btree_key	*lkey;
3256	int			optr;	/* old key/record index */
3257	int			ptr;	/* key/record index */
3258	int			numrecs;/* number of records */
3259	int			error;	/* error return value */
3260#ifdef DEBUG
3261	int			i;
3262#endif
3263	xfs_daddr_t		old_bn;
3264
3265	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3266	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3267
3268	ncur = NULL;
3269	lkey = &nkey;
3270
3271	/*
3272	 * If we have an external root pointer, and we've made it to the
3273	 * root level, allocate a new root block and we're done.
3274	 */
3275	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3276	    (level >= cur->bc_nlevels)) {
3277		error = xfs_btree_new_root(cur, stat);
3278		xfs_btree_set_ptr_null(cur, ptrp);
3279
3280		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3281		return error;
3282	}
3283
3284	/* If we're off the left edge, return failure. */
3285	ptr = cur->bc_ptrs[level];
3286	if (ptr == 0) {
3287		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3288		*stat = 0;
3289		return 0;
3290	}
3291
3292	optr = ptr;
3293
3294	XFS_BTREE_STATS_INC(cur, insrec);
3295
3296	/* Get pointers to the btree buffer and block. */
3297	block = xfs_btree_get_block(cur, level, &bp);
3298	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3299	numrecs = xfs_btree_get_numrecs(block);
3300
3301#ifdef DEBUG
3302	error = xfs_btree_check_block(cur, block, level, bp);
3303	if (error)
3304		goto error0;
3305
3306	/* Check that the new entry is being inserted in the right place. */
3307	if (ptr <= numrecs) {
3308		if (level == 0) {
3309			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3310				xfs_btree_rec_addr(cur, ptr, block)));
3311		} else {
3312			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3313				xfs_btree_key_addr(cur, ptr, block)));
3314		}
3315	}
3316#endif
3317
3318	/*
3319	 * If the block is full, we can't insert the new entry until we
3320	 * make the block un-full.
3321	 */
3322	xfs_btree_set_ptr_null(cur, &nptr);
3323	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3324		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3325					&optr, &ptr, &nptr, &ncur, lkey, stat);
3326		if (error || *stat == 0)
3327			goto error0;
3328	}
3329
3330	/*
3331	 * The current block may have changed if the block was
3332	 * previously full and we have just made space in it.
3333	 */
3334	block = xfs_btree_get_block(cur, level, &bp);
3335	numrecs = xfs_btree_get_numrecs(block);
3336
3337#ifdef DEBUG
3338	error = xfs_btree_check_block(cur, block, level, bp);
3339	if (error)
3340		return error;
3341#endif
3342
3343	/*
3344	 * At this point we know there's room for our new entry in the block
3345	 * we're pointing at.
3346	 */
3347	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3348
3349	if (level > 0) {
3350		/* It's a nonleaf. make a hole in the keys and ptrs */
3351		union xfs_btree_key	*kp;
3352		union xfs_btree_ptr	*pp;
3353
3354		kp = xfs_btree_key_addr(cur, ptr, block);
3355		pp = xfs_btree_ptr_addr(cur, ptr, block);
3356
3357#ifdef DEBUG
3358		for (i = numrecs - ptr; i >= 0; i--) {
3359			error = xfs_btree_check_ptr(cur, pp, i, level);
3360			if (error)
3361				return error;
3362		}
3363#endif
3364
3365		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3366		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3367
3368#ifdef DEBUG
3369		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3370		if (error)
3371			goto error0;
3372#endif
3373
3374		/* Now put the new data in, bump numrecs and log it. */
3375		xfs_btree_copy_keys(cur, kp, key, 1);
3376		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3377		numrecs++;
3378		xfs_btree_set_numrecs(block, numrecs);
3379		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3380		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3381#ifdef DEBUG
3382		if (ptr < numrecs) {
3383			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3384				xfs_btree_key_addr(cur, ptr + 1, block)));
3385		}
3386#endif
3387	} else {
3388		/* It's a leaf. make a hole in the records */
3389		union xfs_btree_rec             *rp;
3390
3391		rp = xfs_btree_rec_addr(cur, ptr, block);
3392
3393		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3394
3395		/* Now put the new data in, bump numrecs and log it. */
3396		xfs_btree_copy_recs(cur, rp, rec, 1);
3397		xfs_btree_set_numrecs(block, ++numrecs);
3398		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3399#ifdef DEBUG
3400		if (ptr < numrecs) {
3401			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3402				xfs_btree_rec_addr(cur, ptr + 1, block)));
3403		}
3404#endif
3405	}
3406
3407	/* Log the new number of records in the btree header. */
3408	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3409
3410	/*
3411	 * If we just inserted into a new tree block, we have to
3412	 * recalculate nkey here because nkey is out of date.
3413	 *
3414	 * Otherwise we're just updating an existing block (having shoved
3415	 * some records into the new tree block), so use the regular key
3416	 * update mechanism.
3417	 */
3418	if (bp && bp->b_bn != old_bn) {
3419		xfs_btree_get_keys(cur, block, lkey);
3420	} else if (xfs_btree_needs_key_update(cur, optr)) {
3421		error = xfs_btree_update_keys(cur, level);
3422		if (error)
3423			goto error0;
3424	}
3425
3426	/*
3427	 * If we are tracking the last record in the tree and
3428	 * we are at the far right edge of the tree, update it.
3429	 */
3430	if (xfs_btree_is_lastrec(cur, block, level)) {
3431		cur->bc_ops->update_lastrec(cur, block, rec,
3432					    ptr, LASTREC_INSREC);
3433	}
3434
3435	/*
3436	 * Return the new block number, if any.
3437	 * If there is one, give back a record value and a cursor too.
3438	 */
3439	*ptrp = nptr;
3440	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3441		xfs_btree_copy_keys(cur, key, lkey, 1);
3442		*curp = ncur;
3443	}
3444
3445	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3446	*stat = 1;
3447	return 0;
3448
3449error0:
3450	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
 
3451	return error;
3452}
3453
3454/*
3455 * Insert the record at the point referenced by cur.
3456 *
3457 * A multi-level split of the tree on insert will invalidate the original
3458 * cursor.  All callers of this function should assume that the cursor is
3459 * no longer valid and revalidate it.
3460 */
3461int
3462xfs_btree_insert(
3463	struct xfs_btree_cur	*cur,
3464	int			*stat)
3465{
3466	int			error;	/* error return value */
3467	int			i;	/* result value, 0 for failure */
3468	int			level;	/* current level number in btree */
3469	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3470	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3471	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3472	union xfs_btree_key	bkey;	/* key of block to insert */
3473	union xfs_btree_key	*key;
3474	union xfs_btree_rec	rec;	/* record to insert */
3475
3476	level = 0;
3477	ncur = NULL;
3478	pcur = cur;
3479	key = &bkey;
3480
3481	xfs_btree_set_ptr_null(cur, &nptr);
3482
3483	/* Make a key out of the record data to be inserted, and save it. */
3484	cur->bc_ops->init_rec_from_cur(cur, &rec);
3485	cur->bc_ops->init_key_from_rec(key, &rec);
3486
3487	/*
3488	 * Loop going up the tree, starting at the leaf level.
3489	 * Stop when we don't get a split block, that must mean that
3490	 * the insert is finished with this level.
3491	 */
3492	do {
3493		/*
3494		 * Insert nrec/nptr into this level of the tree.
3495		 * Note if we fail, nptr will be null.
3496		 */
3497		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3498				&ncur, &i);
3499		if (error) {
3500			if (pcur != cur)
3501				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3502			goto error0;
3503		}
3504
3505		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3506		level++;
3507
3508		/*
3509		 * See if the cursor we just used is trash.
3510		 * Can't trash the caller's cursor, but otherwise we should
3511		 * if ncur is a new cursor or we're about to be done.
3512		 */
3513		if (pcur != cur &&
3514		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3515			/* Save the state from the cursor before we trash it */
3516			if (cur->bc_ops->update_cursor)
3517				cur->bc_ops->update_cursor(pcur, cur);
3518			cur->bc_nlevels = pcur->bc_nlevels;
3519			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3520		}
3521		/* If we got a new cursor, switch to it. */
3522		if (ncur) {
3523			pcur = ncur;
3524			ncur = NULL;
3525		}
3526	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3527
3528	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3529	*stat = i;
3530	return 0;
3531error0:
3532	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3533	return error;
3534}
3535
3536/*
3537 * Try to merge a non-leaf block back into the inode root.
3538 *
3539 * Note: the killroot names comes from the fact that we're effectively
3540 * killing the old root block.  But because we can't just delete the
3541 * inode we have to copy the single block it was pointing to into the
3542 * inode.
3543 */
3544STATIC int
3545xfs_btree_kill_iroot(
3546	struct xfs_btree_cur	*cur)
3547{
3548	int			whichfork = cur->bc_private.b.whichfork;
3549	struct xfs_inode	*ip = cur->bc_private.b.ip;
3550	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3551	struct xfs_btree_block	*block;
3552	struct xfs_btree_block	*cblock;
3553	union xfs_btree_key	*kp;
3554	union xfs_btree_key	*ckp;
3555	union xfs_btree_ptr	*pp;
3556	union xfs_btree_ptr	*cpp;
3557	struct xfs_buf		*cbp;
3558	int			level;
3559	int			index;
3560	int			numrecs;
3561	int			error;
3562#ifdef DEBUG
3563	union xfs_btree_ptr	ptr;
 
3564	int			i;
3565#endif
3566
3567	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3568
3569	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3570	ASSERT(cur->bc_nlevels > 1);
3571
3572	/*
3573	 * Don't deal with the root block needs to be a leaf case.
3574	 * We're just going to turn the thing back into extents anyway.
3575	 */
3576	level = cur->bc_nlevels - 1;
3577	if (level == 1)
3578		goto out0;
3579
3580	/*
3581	 * Give up if the root has multiple children.
3582	 */
3583	block = xfs_btree_get_iroot(cur);
3584	if (xfs_btree_get_numrecs(block) != 1)
3585		goto out0;
3586
3587	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3588	numrecs = xfs_btree_get_numrecs(cblock);
3589
3590	/*
3591	 * Only do this if the next level will fit.
3592	 * Then the data must be copied up to the inode,
3593	 * instead of freeing the root you free the next level.
3594	 */
3595	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3596		goto out0;
3597
3598	XFS_BTREE_STATS_INC(cur, killroot);
3599
3600#ifdef DEBUG
3601	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3602	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3603	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3604	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3605#endif
3606
3607	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3608	if (index) {
3609		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3610				  cur->bc_private.b.whichfork);
3611		block = ifp->if_broot;
3612	}
3613
3614	be16_add_cpu(&block->bb_numrecs, index);
3615	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3616
3617	kp = xfs_btree_key_addr(cur, 1, block);
3618	ckp = xfs_btree_key_addr(cur, 1, cblock);
3619	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3620
3621	pp = xfs_btree_ptr_addr(cur, 1, block);
3622	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3623#ifdef DEBUG
3624	for (i = 0; i < numrecs; i++) {
3625		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3626		if (error) {
3627			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3628			return error;
3629		}
3630	}
3631#endif
3632	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3633
3634	error = xfs_btree_free_block(cur, cbp);
3635	if (error) {
3636		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3637		return error;
3638	}
3639
3640	cur->bc_bufs[level - 1] = NULL;
3641	be16_add_cpu(&block->bb_level, -1);
3642	xfs_trans_log_inode(cur->bc_tp, ip,
3643		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3644	cur->bc_nlevels--;
3645out0:
3646	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3647	return 0;
3648}
3649
3650/*
3651 * Kill the current root node, and replace it with it's only child node.
3652 */
3653STATIC int
3654xfs_btree_kill_root(
3655	struct xfs_btree_cur	*cur,
3656	struct xfs_buf		*bp,
3657	int			level,
3658	union xfs_btree_ptr	*newroot)
3659{
3660	int			error;
3661
3662	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3663	XFS_BTREE_STATS_INC(cur, killroot);
3664
3665	/*
3666	 * Update the root pointer, decreasing the level by 1 and then
3667	 * free the old root.
3668	 */
3669	cur->bc_ops->set_root(cur, newroot, -1);
3670
3671	error = xfs_btree_free_block(cur, bp);
3672	if (error) {
3673		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3674		return error;
3675	}
3676
3677	cur->bc_bufs[level] = NULL;
3678	cur->bc_ra[level] = 0;
3679	cur->bc_nlevels--;
3680
3681	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3682	return 0;
3683}
3684
3685STATIC int
3686xfs_btree_dec_cursor(
3687	struct xfs_btree_cur	*cur,
3688	int			level,
3689	int			*stat)
3690{
3691	int			error;
3692	int			i;
3693
3694	if (level > 0) {
3695		error = xfs_btree_decrement(cur, level, &i);
3696		if (error)
3697			return error;
3698	}
3699
3700	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3701	*stat = 1;
3702	return 0;
3703}
3704
3705/*
3706 * Single level of the btree record deletion routine.
3707 * Delete record pointed to by cur/level.
3708 * Remove the record from its block then rebalance the tree.
3709 * Return 0 for error, 1 for done, 2 to go on to the next level.
3710 */
3711STATIC int					/* error */
3712xfs_btree_delrec(
3713	struct xfs_btree_cur	*cur,		/* btree cursor */
3714	int			level,		/* level removing record from */
3715	int			*stat)		/* fail/done/go-on */
3716{
3717	struct xfs_btree_block	*block;		/* btree block */
3718	union xfs_btree_ptr	cptr;		/* current block ptr */
3719	struct xfs_buf		*bp;		/* buffer for block */
3720	int			error;		/* error return value */
3721	int			i;		/* loop counter */
3722	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3723	struct xfs_buf		*lbp;		/* left buffer pointer */
3724	struct xfs_btree_block	*left;		/* left btree block */
3725	int			lrecs = 0;	/* left record count */
3726	int			ptr;		/* key/record index */
3727	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3728	struct xfs_buf		*rbp;		/* right buffer pointer */
3729	struct xfs_btree_block	*right;		/* right btree block */
3730	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3731	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3732	int			rrecs = 0;	/* right record count */
3733	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3734	int			numrecs;	/* temporary numrec count */
3735
3736	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3737	XFS_BTREE_TRACE_ARGI(cur, level);
3738
3739	tcur = NULL;
3740
3741	/* Get the index of the entry being deleted, check for nothing there. */
3742	ptr = cur->bc_ptrs[level];
3743	if (ptr == 0) {
3744		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3745		*stat = 0;
3746		return 0;
3747	}
3748
3749	/* Get the buffer & block containing the record or key/ptr. */
3750	block = xfs_btree_get_block(cur, level, &bp);
3751	numrecs = xfs_btree_get_numrecs(block);
3752
3753#ifdef DEBUG
3754	error = xfs_btree_check_block(cur, block, level, bp);
3755	if (error)
3756		goto error0;
3757#endif
3758
3759	/* Fail if we're off the end of the block. */
3760	if (ptr > numrecs) {
3761		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3762		*stat = 0;
3763		return 0;
3764	}
3765
3766	XFS_BTREE_STATS_INC(cur, delrec);
3767	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3768
3769	/* Excise the entries being deleted. */
3770	if (level > 0) {
3771		/* It's a nonleaf. operate on keys and ptrs */
3772		union xfs_btree_key	*lkp;
3773		union xfs_btree_ptr	*lpp;
3774
3775		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3776		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3777
3778#ifdef DEBUG
3779		for (i = 0; i < numrecs - ptr; i++) {
3780			error = xfs_btree_check_ptr(cur, lpp, i, level);
3781			if (error)
3782				goto error0;
3783		}
3784#endif
3785
3786		if (ptr < numrecs) {
3787			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3788			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3789			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3790			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3791		}
3792	} else {
3793		/* It's a leaf. operate on records */
3794		if (ptr < numrecs) {
3795			xfs_btree_shift_recs(cur,
3796				xfs_btree_rec_addr(cur, ptr + 1, block),
3797				-1, numrecs - ptr);
3798			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3799		}
3800	}
3801
3802	/*
3803	 * Decrement and log the number of entries in the block.
3804	 */
3805	xfs_btree_set_numrecs(block, --numrecs);
3806	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3807
3808	/*
3809	 * If we are tracking the last record in the tree and
3810	 * we are at the far right edge of the tree, update it.
3811	 */
3812	if (xfs_btree_is_lastrec(cur, block, level)) {
3813		cur->bc_ops->update_lastrec(cur, block, NULL,
3814					    ptr, LASTREC_DELREC);
3815	}
3816
3817	/*
3818	 * We're at the root level.  First, shrink the root block in-memory.
3819	 * Try to get rid of the next level down.  If we can't then there's
3820	 * nothing left to do.
3821	 */
3822	if (level == cur->bc_nlevels - 1) {
3823		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3824			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3825					  cur->bc_private.b.whichfork);
3826
3827			error = xfs_btree_kill_iroot(cur);
3828			if (error)
3829				goto error0;
3830
3831			error = xfs_btree_dec_cursor(cur, level, stat);
3832			if (error)
3833				goto error0;
3834			*stat = 1;
3835			return 0;
3836		}
3837
3838		/*
3839		 * If this is the root level, and there's only one entry left,
3840		 * and it's NOT the leaf level, then we can get rid of this
3841		 * level.
3842		 */
3843		if (numrecs == 1 && level > 0) {
3844			union xfs_btree_ptr	*pp;
3845			/*
3846			 * pp is still set to the first pointer in the block.
3847			 * Make it the new root of the btree.
3848			 */
3849			pp = xfs_btree_ptr_addr(cur, 1, block);
3850			error = xfs_btree_kill_root(cur, bp, level, pp);
3851			if (error)
3852				goto error0;
3853		} else if (level > 0) {
3854			error = xfs_btree_dec_cursor(cur, level, stat);
3855			if (error)
3856				goto error0;
3857		}
3858		*stat = 1;
3859		return 0;
3860	}
3861
3862	/*
3863	 * If we deleted the leftmost entry in the block, update the
3864	 * key values above us in the tree.
3865	 */
3866	if (xfs_btree_needs_key_update(cur, ptr)) {
3867		error = xfs_btree_update_keys(cur, level);
3868		if (error)
3869			goto error0;
3870	}
3871
3872	/*
3873	 * If the number of records remaining in the block is at least
3874	 * the minimum, we're done.
3875	 */
3876	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3877		error = xfs_btree_dec_cursor(cur, level, stat);
3878		if (error)
3879			goto error0;
3880		return 0;
3881	}
3882
3883	/*
3884	 * Otherwise, we have to move some records around to keep the
3885	 * tree balanced.  Look at the left and right sibling blocks to
3886	 * see if we can re-balance by moving only one record.
3887	 */
3888	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3889	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3890
3891	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3892		/*
3893		 * One child of root, need to get a chance to copy its contents
3894		 * into the root and delete it. Can't go up to next level,
3895		 * there's nothing to delete there.
3896		 */
3897		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3898		    xfs_btree_ptr_is_null(cur, &lptr) &&
3899		    level == cur->bc_nlevels - 2) {
3900			error = xfs_btree_kill_iroot(cur);
3901			if (!error)
3902				error = xfs_btree_dec_cursor(cur, level, stat);
3903			if (error)
3904				goto error0;
3905			return 0;
3906		}
3907	}
3908
3909	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3910	       !xfs_btree_ptr_is_null(cur, &lptr));
3911
3912	/*
3913	 * Duplicate the cursor so our btree manipulations here won't
3914	 * disrupt the next level up.
3915	 */
3916	error = xfs_btree_dup_cursor(cur, &tcur);
3917	if (error)
3918		goto error0;
3919
3920	/*
3921	 * If there's a right sibling, see if it's ok to shift an entry
3922	 * out of it.
3923	 */
3924	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3925		/*
3926		 * Move the temp cursor to the last entry in the next block.
3927		 * Actually any entry but the first would suffice.
3928		 */
3929		i = xfs_btree_lastrec(tcur, level);
3930		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3931
3932		error = xfs_btree_increment(tcur, level, &i);
3933		if (error)
3934			goto error0;
3935		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3936
3937		i = xfs_btree_lastrec(tcur, level);
3938		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3939
3940		/* Grab a pointer to the block. */
3941		right = xfs_btree_get_block(tcur, level, &rbp);
3942#ifdef DEBUG
3943		error = xfs_btree_check_block(tcur, right, level, rbp);
3944		if (error)
3945			goto error0;
3946#endif
3947		/* Grab the current block number, for future use. */
3948		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3949
3950		/*
3951		 * If right block is full enough so that removing one entry
3952		 * won't make it too empty, and left-shifting an entry out
3953		 * of right to us works, we're done.
3954		 */
3955		if (xfs_btree_get_numrecs(right) - 1 >=
3956		    cur->bc_ops->get_minrecs(tcur, level)) {
3957			error = xfs_btree_lshift(tcur, level, &i);
3958			if (error)
3959				goto error0;
3960			if (i) {
3961				ASSERT(xfs_btree_get_numrecs(block) >=
3962				       cur->bc_ops->get_minrecs(tcur, level));
3963
3964				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3965				tcur = NULL;
3966
3967				error = xfs_btree_dec_cursor(cur, level, stat);
3968				if (error)
3969					goto error0;
3970				return 0;
3971			}
3972		}
3973
3974		/*
3975		 * Otherwise, grab the number of records in right for
3976		 * future reference, and fix up the temp cursor to point
3977		 * to our block again (last record).
3978		 */
3979		rrecs = xfs_btree_get_numrecs(right);
3980		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3981			i = xfs_btree_firstrec(tcur, level);
3982			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3983
3984			error = xfs_btree_decrement(tcur, level, &i);
3985			if (error)
3986				goto error0;
3987			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
3988		}
3989	}
3990
3991	/*
3992	 * If there's a left sibling, see if it's ok to shift an entry
3993	 * out of it.
3994	 */
3995	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3996		/*
3997		 * Move the temp cursor to the first entry in the
3998		 * previous block.
3999		 */
4000		i = xfs_btree_firstrec(tcur, level);
4001		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
4002
4003		error = xfs_btree_decrement(tcur, level, &i);
4004		if (error)
4005			goto error0;
4006		i = xfs_btree_firstrec(tcur, level);
4007		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
 
 
 
4008
4009		/* Grab a pointer to the block. */
4010		left = xfs_btree_get_block(tcur, level, &lbp);
4011#ifdef DEBUG
4012		error = xfs_btree_check_block(cur, left, level, lbp);
4013		if (error)
4014			goto error0;
4015#endif
4016		/* Grab the current block number, for future use. */
4017		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4018
4019		/*
4020		 * If left block is full enough so that removing one entry
4021		 * won't make it too empty, and right-shifting an entry out
4022		 * of left to us works, we're done.
4023		 */
4024		if (xfs_btree_get_numrecs(left) - 1 >=
4025		    cur->bc_ops->get_minrecs(tcur, level)) {
4026			error = xfs_btree_rshift(tcur, level, &i);
4027			if (error)
4028				goto error0;
4029			if (i) {
4030				ASSERT(xfs_btree_get_numrecs(block) >=
4031				       cur->bc_ops->get_minrecs(tcur, level));
4032				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4033				tcur = NULL;
4034				if (level == 0)
4035					cur->bc_ptrs[0]++;
4036				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4037				*stat = 1;
4038				return 0;
4039			}
4040		}
4041
4042		/*
4043		 * Otherwise, grab the number of records in right for
4044		 * future reference.
4045		 */
4046		lrecs = xfs_btree_get_numrecs(left);
4047	}
4048
4049	/* Delete the temp cursor, we're done with it. */
4050	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4051	tcur = NULL;
4052
4053	/* If here, we need to do a join to keep the tree balanced. */
4054	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4055
4056	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4057	    lrecs + xfs_btree_get_numrecs(block) <=
4058			cur->bc_ops->get_maxrecs(cur, level)) {
4059		/*
4060		 * Set "right" to be the starting block,
4061		 * "left" to be the left neighbor.
4062		 */
4063		rptr = cptr;
4064		right = block;
4065		rbp = bp;
4066		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4067		if (error)
4068			goto error0;
4069
4070	/*
4071	 * If that won't work, see if we can join with the right neighbor block.
4072	 */
4073	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4074		   rrecs + xfs_btree_get_numrecs(block) <=
4075			cur->bc_ops->get_maxrecs(cur, level)) {
4076		/*
4077		 * Set "left" to be the starting block,
4078		 * "right" to be the right neighbor.
4079		 */
4080		lptr = cptr;
4081		left = block;
4082		lbp = bp;
4083		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4084		if (error)
4085			goto error0;
4086
4087	/*
4088	 * Otherwise, we can't fix the imbalance.
4089	 * Just return.  This is probably a logic error, but it's not fatal.
4090	 */
4091	} else {
4092		error = xfs_btree_dec_cursor(cur, level, stat);
4093		if (error)
4094			goto error0;
4095		return 0;
4096	}
4097
4098	rrecs = xfs_btree_get_numrecs(right);
4099	lrecs = xfs_btree_get_numrecs(left);
4100
4101	/*
4102	 * We're now going to join "left" and "right" by moving all the stuff
4103	 * in "right" to "left" and deleting "right".
4104	 */
4105	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4106	if (level > 0) {
4107		/* It's a non-leaf.  Move keys and pointers. */
4108		union xfs_btree_key	*lkp;	/* left btree key */
4109		union xfs_btree_ptr	*lpp;	/* left address pointer */
4110		union xfs_btree_key	*rkp;	/* right btree key */
4111		union xfs_btree_ptr	*rpp;	/* right address pointer */
4112
4113		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4114		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4115		rkp = xfs_btree_key_addr(cur, 1, right);
4116		rpp = xfs_btree_ptr_addr(cur, 1, right);
4117#ifdef DEBUG
4118		for (i = 1; i < rrecs; i++) {
4119			error = xfs_btree_check_ptr(cur, rpp, i, level);
4120			if (error)
4121				goto error0;
4122		}
4123#endif
4124		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4125		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4126
4127		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4128		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4129	} else {
4130		/* It's a leaf.  Move records.  */
4131		union xfs_btree_rec	*lrp;	/* left record pointer */
4132		union xfs_btree_rec	*rrp;	/* right record pointer */
4133
4134		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4135		rrp = xfs_btree_rec_addr(cur, 1, right);
4136
4137		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4138		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4139	}
4140
4141	XFS_BTREE_STATS_INC(cur, join);
4142
4143	/*
4144	 * Fix up the number of records and right block pointer in the
4145	 * surviving block, and log it.
4146	 */
4147	xfs_btree_set_numrecs(left, lrecs + rrecs);
4148	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4149	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4150	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4151
4152	/* If there is a right sibling, point it to the remaining block. */
4153	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4154	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4155		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4156		if (error)
4157			goto error0;
4158		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4159		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4160	}
4161
4162	/* Free the deleted block. */
4163	error = xfs_btree_free_block(cur, rbp);
4164	if (error)
4165		goto error0;
4166
4167	/*
4168	 * If we joined with the left neighbor, set the buffer in the
4169	 * cursor to the left block, and fix up the index.
4170	 */
4171	if (bp != lbp) {
4172		cur->bc_bufs[level] = lbp;
4173		cur->bc_ptrs[level] += lrecs;
4174		cur->bc_ra[level] = 0;
4175	}
4176	/*
4177	 * If we joined with the right neighbor and there's a level above
4178	 * us, increment the cursor at that level.
4179	 */
4180	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4181		   (level + 1 < cur->bc_nlevels)) {
4182		error = xfs_btree_increment(cur, level + 1, &i);
4183		if (error)
4184			goto error0;
4185	}
4186
4187	/*
4188	 * Readjust the ptr at this level if it's not a leaf, since it's
4189	 * still pointing at the deletion point, which makes the cursor
4190	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4191	 * We can't use decrement because it would change the next level up.
4192	 */
4193	if (level > 0)
4194		cur->bc_ptrs[level]--;
4195
4196	/*
4197	 * We combined blocks, so we have to update the parent keys if the
4198	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4199	 * points to the old block so that the caller knows which record to
4200	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4201	 * for us if we return stat == 2.  The other exit points from this
4202	 * function don't require deletions further up the tree, so they can
4203	 * call updkeys directly.
4204	 */
4205
4206	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4207	/* Return value means the next level up has something to do. */
4208	*stat = 2;
4209	return 0;
4210
4211error0:
4212	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4213	if (tcur)
4214		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4215	return error;
4216}
4217
4218/*
4219 * Delete the record pointed to by cur.
4220 * The cursor refers to the place where the record was (could be inserted)
4221 * when the operation returns.
4222 */
4223int					/* error */
4224xfs_btree_delete(
4225	struct xfs_btree_cur	*cur,
4226	int			*stat)	/* success/failure */
4227{
4228	int			error;	/* error return value */
4229	int			level;
4230	int			i;
4231	bool			joined = false;
4232
4233	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4234
4235	/*
4236	 * Go up the tree, starting at leaf level.
4237	 *
4238	 * If 2 is returned then a join was done; go to the next level.
4239	 * Otherwise we are done.
4240	 */
4241	for (level = 0, i = 2; i == 2; level++) {
4242		error = xfs_btree_delrec(cur, level, &i);
4243		if (error)
4244			goto error0;
4245		if (i == 2)
4246			joined = true;
4247	}
4248
4249	/*
4250	 * If we combined blocks as part of deleting the record, delrec won't
4251	 * have updated the parent high keys so we have to do that here.
4252	 */
4253	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4254		error = xfs_btree_updkeys_force(cur, 0);
4255		if (error)
4256			goto error0;
4257	}
4258
4259	if (i == 0) {
4260		for (level = 1; level < cur->bc_nlevels; level++) {
4261			if (cur->bc_ptrs[level] == 0) {
4262				error = xfs_btree_decrement(cur, level, &i);
4263				if (error)
4264					goto error0;
4265				break;
4266			}
4267		}
4268	}
4269
4270	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4271	*stat = i;
4272	return 0;
4273error0:
4274	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4275	return error;
4276}
4277
4278/*
4279 * Get the data from the pointed-to record.
4280 */
4281int					/* error */
4282xfs_btree_get_rec(
4283	struct xfs_btree_cur	*cur,	/* btree cursor */
4284	union xfs_btree_rec	**recp,	/* output: btree record */
4285	int			*stat)	/* output: success/failure */
4286{
4287	struct xfs_btree_block	*block;	/* btree block */
4288	struct xfs_buf		*bp;	/* buffer pointer */
4289	int			ptr;	/* record number */
4290#ifdef DEBUG
4291	int			error;	/* error return value */
4292#endif
4293
4294	ptr = cur->bc_ptrs[0];
4295	block = xfs_btree_get_block(cur, 0, &bp);
4296
4297#ifdef DEBUG
4298	error = xfs_btree_check_block(cur, block, 0, bp);
4299	if (error)
4300		return error;
4301#endif
4302
4303	/*
4304	 * Off the right end or left end, return failure.
4305	 */
4306	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4307		*stat = 0;
4308		return 0;
4309	}
4310
4311	/*
4312	 * Point to the record and extract its data.
4313	 */
4314	*recp = xfs_btree_rec_addr(cur, ptr, block);
4315	*stat = 1;
4316	return 0;
4317}
4318
4319/* Visit a block in a btree. */
4320STATIC int
4321xfs_btree_visit_block(
4322	struct xfs_btree_cur		*cur,
4323	int				level,
4324	xfs_btree_visit_blocks_fn	fn,
4325	void				*data)
4326{
4327	struct xfs_btree_block		*block;
4328	struct xfs_buf			*bp;
4329	union xfs_btree_ptr		rptr;
4330	int				error;
4331
4332	/* do right sibling readahead */
4333	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4334	block = xfs_btree_get_block(cur, level, &bp);
4335
4336	/* process the block */
4337	error = fn(cur, level, data);
4338	if (error)
4339		return error;
4340
4341	/* now read rh sibling block for next iteration */
4342	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4343	if (xfs_btree_ptr_is_null(cur, &rptr))
4344		return -ENOENT;
4345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4346	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4347}
4348
4349
4350/* Visit every block in a btree. */
4351int
4352xfs_btree_visit_blocks(
4353	struct xfs_btree_cur		*cur,
4354	xfs_btree_visit_blocks_fn	fn,
 
4355	void				*data)
4356{
4357	union xfs_btree_ptr		lptr;
4358	int				level;
4359	struct xfs_btree_block		*block = NULL;
4360	int				error = 0;
4361
4362	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4363
4364	/* for each level */
4365	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4366		/* grab the left hand block */
4367		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4368		if (error)
4369			return error;
4370
4371		/* readahead the left most block for the next level down */
4372		if (level > 0) {
4373			union xfs_btree_ptr     *ptr;
4374
4375			ptr = xfs_btree_ptr_addr(cur, 1, block);
4376			xfs_btree_readahead_ptr(cur, ptr, 1);
4377
4378			/* save for the next iteration of the loop */
4379			lptr = *ptr;
 
 
 
 
 
4380		}
4381
4382		/* for each buffer in the level */
4383		do {
4384			error = xfs_btree_visit_block(cur, level, fn, data);
4385		} while (!error);
4386
4387		if (error != -ENOENT)
4388			return error;
4389	}
4390
4391	return 0;
4392}
4393
4394/*
4395 * Change the owner of a btree.
4396 *
4397 * The mechanism we use here is ordered buffer logging. Because we don't know
4398 * how many buffers were are going to need to modify, we don't really want to
4399 * have to make transaction reservations for the worst case of every buffer in a
4400 * full size btree as that may be more space that we can fit in the log....
4401 *
4402 * We do the btree walk in the most optimal manner possible - we have sibling
4403 * pointers so we can just walk all the blocks on each level from left to right
4404 * in a single pass, and then move to the next level and do the same. We can
4405 * also do readahead on the sibling pointers to get IO moving more quickly,
4406 * though for slow disks this is unlikely to make much difference to performance
4407 * as the amount of CPU work we have to do before moving to the next block is
4408 * relatively small.
4409 *
4410 * For each btree block that we load, modify the owner appropriately, set the
4411 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4412 * we mark the region we change dirty so that if the buffer is relogged in
4413 * a subsequent transaction the changes we make here as an ordered buffer are
4414 * correctly relogged in that transaction.  If we are in recovery context, then
4415 * just queue the modified buffer as delayed write buffer so the transaction
4416 * recovery completion writes the changes to disk.
4417 */
4418struct xfs_btree_block_change_owner_info {
4419	__uint64_t		new_owner;
4420	struct list_head	*buffer_list;
4421};
4422
4423static int
4424xfs_btree_block_change_owner(
4425	struct xfs_btree_cur	*cur,
4426	int			level,
4427	void			*data)
4428{
4429	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4430	struct xfs_btree_block	*block;
4431	struct xfs_buf		*bp;
4432
4433	/* modify the owner */
4434	block = xfs_btree_get_block(cur, level, &bp);
4435	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 
 
4436		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4437	else
 
 
4438		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
 
4439
4440	/*
4441	 * If the block is a root block hosted in an inode, we might not have a
4442	 * buffer pointer here and we shouldn't attempt to log the change as the
4443	 * information is already held in the inode and discarded when the root
4444	 * block is formatted into the on-disk inode fork. We still change it,
4445	 * though, so everything is consistent in memory.
4446	 */
4447	if (bp) {
4448		if (cur->bc_tp) {
4449			xfs_trans_ordered_buf(cur->bc_tp, bp);
 
 
 
 
 
4450			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4451		} else {
4452			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4453		}
4454	} else {
4455		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4456		ASSERT(level == cur->bc_nlevels - 1);
4457	}
4458
4459	return 0;
4460}
4461
4462int
4463xfs_btree_change_owner(
4464	struct xfs_btree_cur	*cur,
4465	__uint64_t		new_owner,
4466	struct list_head	*buffer_list)
4467{
4468	struct xfs_btree_block_change_owner_info	bbcoi;
4469
4470	bbcoi.new_owner = new_owner;
4471	bbcoi.buffer_list = buffer_list;
4472
4473	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4474			&bbcoi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4475}
4476
4477/**
4478 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4479 *				      btree block
4480 *
4481 * @bp: buffer containing the btree block
4482 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4483 * @pag_max_level: pointer to the per-ag max level field
4484 */
4485bool
4486xfs_btree_sblock_v5hdr_verify(
4487	struct xfs_buf		*bp)
4488{
4489	struct xfs_mount	*mp = bp->b_target->bt_mount;
4490	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4491	struct xfs_perag	*pag = bp->b_pag;
4492
4493	if (!xfs_sb_version_hascrc(&mp->m_sb))
4494		return false;
4495	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4496		return false;
4497	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4498		return false;
4499	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4500		return false;
4501	return true;
4502}
4503
4504/**
4505 * xfs_btree_sblock_verify() -- verify a short-format btree block
4506 *
4507 * @bp: buffer containing the btree block
4508 * @max_recs: maximum records allowed in this btree node
4509 */
4510bool
4511xfs_btree_sblock_verify(
4512	struct xfs_buf		*bp,
4513	unsigned int		max_recs)
4514{
4515	struct xfs_mount	*mp = bp->b_target->bt_mount;
4516	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 
 
4517
4518	/* numrecs verification */
4519	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4520		return false;
4521
4522	/* sibling pointer verification */
4523	if (!block->bb_u.s.bb_leftsib ||
4524	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4525	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4526		return false;
4527	if (!block->bb_u.s.bb_rightsib ||
4528	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4529	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4530		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531
4532	return true;
4533}
4534
4535/*
4536 * Calculate the number of btree levels needed to store a given number of
4537 * records in a short-format btree.
4538 */
4539uint
4540xfs_btree_compute_maxlevels(
4541	struct xfs_mount	*mp,
4542	uint			*limits,
4543	unsigned long		len)
4544{
4545	uint			level;
4546	unsigned long		maxblocks;
4547
4548	maxblocks = (len + limits[0] - 1) / limits[0];
4549	for (level = 1; maxblocks > 1; level++)
4550		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4551	return level;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4552}
4553
4554/*
4555 * Query a regular btree for all records overlapping a given interval.
4556 * Start with a LE lookup of the key of low_rec and return all records
4557 * until we find a record with a key greater than the key of high_rec.
4558 */
4559STATIC int
4560xfs_btree_simple_query_range(
4561	struct xfs_btree_cur		*cur,
4562	union xfs_btree_key		*low_key,
4563	union xfs_btree_key		*high_key,
4564	xfs_btree_query_range_fn	fn,
4565	void				*priv)
4566{
4567	union xfs_btree_rec		*recp;
4568	union xfs_btree_key		rec_key;
4569	__int64_t			diff;
4570	int				stat;
4571	bool				firstrec = true;
4572	int				error;
4573
4574	ASSERT(cur->bc_ops->init_high_key_from_rec);
4575	ASSERT(cur->bc_ops->diff_two_keys);
4576
4577	/*
4578	 * Find the leftmost record.  The btree cursor must be set
4579	 * to the low record used to generate low_key.
4580	 */
4581	stat = 0;
4582	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4583	if (error)
4584		goto out;
4585
4586	/* Nothing?  See if there's anything to the right. */
4587	if (!stat) {
4588		error = xfs_btree_increment(cur, 0, &stat);
4589		if (error)
4590			goto out;
4591	}
4592
4593	while (stat) {
4594		/* Find the record. */
4595		error = xfs_btree_get_rec(cur, &recp, &stat);
4596		if (error || !stat)
4597			break;
4598
4599		/* Skip if high_key(rec) < low_key. */
4600		if (firstrec) {
4601			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4602			firstrec = false;
4603			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4604					&rec_key);
4605			if (diff > 0)
4606				goto advloop;
4607		}
4608
4609		/* Stop if high_key < low_key(rec). */
4610		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4611		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4612		if (diff > 0)
4613			break;
4614
4615		/* Callback */
4616		error = fn(cur, recp, priv);
4617		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4618			break;
4619
4620advloop:
4621		/* Move on to the next record. */
4622		error = xfs_btree_increment(cur, 0, &stat);
4623		if (error)
4624			break;
4625	}
4626
4627out:
4628	return error;
4629}
4630
4631/*
4632 * Query an overlapped interval btree for all records overlapping a given
4633 * interval.  This function roughly follows the algorithm given in
4634 * "Interval Trees" of _Introduction to Algorithms_, which is section
4635 * 14.3 in the 2nd and 3rd editions.
4636 *
4637 * First, generate keys for the low and high records passed in.
4638 *
4639 * For any leaf node, generate the high and low keys for the record.
4640 * If the record keys overlap with the query low/high keys, pass the
4641 * record to the function iterator.
4642 *
4643 * For any internal node, compare the low and high keys of each
4644 * pointer against the query low/high keys.  If there's an overlap,
4645 * follow the pointer.
4646 *
4647 * As an optimization, we stop scanning a block when we find a low key
4648 * that is greater than the query's high key.
4649 */
4650STATIC int
4651xfs_btree_overlapped_query_range(
4652	struct xfs_btree_cur		*cur,
4653	union xfs_btree_key		*low_key,
4654	union xfs_btree_key		*high_key,
4655	xfs_btree_query_range_fn	fn,
4656	void				*priv)
4657{
4658	union xfs_btree_ptr		ptr;
4659	union xfs_btree_ptr		*pp;
4660	union xfs_btree_key		rec_key;
4661	union xfs_btree_key		rec_hkey;
4662	union xfs_btree_key		*lkp;
4663	union xfs_btree_key		*hkp;
4664	union xfs_btree_rec		*recp;
4665	struct xfs_btree_block		*block;
4666	__int64_t			ldiff;
4667	__int64_t			hdiff;
4668	int				level;
4669	struct xfs_buf			*bp;
4670	int				i;
4671	int				error;
4672
4673	/* Load the root of the btree. */
4674	level = cur->bc_nlevels - 1;
4675	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4676	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4677	if (error)
4678		return error;
4679	xfs_btree_get_block(cur, level, &bp);
4680	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4681#ifdef DEBUG
4682	error = xfs_btree_check_block(cur, block, level, bp);
4683	if (error)
4684		goto out;
4685#endif
4686	cur->bc_ptrs[level] = 1;
4687
4688	while (level < cur->bc_nlevels) {
4689		block = xfs_btree_get_block(cur, level, &bp);
4690
4691		/* End of node, pop back towards the root. */
4692		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
 
4693pop_up:
4694			if (level < cur->bc_nlevels - 1)
4695				cur->bc_ptrs[level + 1]++;
4696			level++;
4697			continue;
4698		}
4699
4700		if (level == 0) {
4701			/* Handle a leaf node. */
4702			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
 
4703
4704			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4705			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4706					low_key);
4707
4708			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4709			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4710					&rec_key);
4711
4712			/*
 
 
 
 
4713			 * If (record's high key >= query's low key) and
4714			 *    (query's high key >= record's low key), then
4715			 * this record overlaps the query range; callback.
4716			 */
4717			if (ldiff >= 0 && hdiff >= 0) {
 
 
4718				error = fn(cur, recp, priv);
4719				if (error < 0 ||
4720				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4721					break;
4722			} else if (hdiff < 0) {
4723				/* Record is larger than high key; pop. */
4724				goto pop_up;
4725			}
4726			cur->bc_ptrs[level]++;
4727			continue;
4728		}
4729
4730		/* Handle an internal node. */
4731		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4732		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4733		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4734
4735		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4736		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4737
4738		/*
 
 
 
 
4739		 * If (pointer's high key >= query's low key) and
4740		 *    (query's high key >= pointer's low key), then
4741		 * this record overlaps the query range; follow pointer.
4742		 */
4743		if (ldiff >= 0 && hdiff >= 0) {
 
 
4744			level--;
4745			error = xfs_btree_lookup_get_block(cur, level, pp,
4746					&block);
4747			if (error)
4748				goto out;
4749			xfs_btree_get_block(cur, level, &bp);
4750			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4751#ifdef DEBUG
4752			error = xfs_btree_check_block(cur, block, level, bp);
4753			if (error)
4754				goto out;
4755#endif
4756			cur->bc_ptrs[level] = 1;
4757			continue;
4758		} else if (hdiff < 0) {
4759			/* The low key is larger than the upper range; pop. */
4760			goto pop_up;
4761		}
4762		cur->bc_ptrs[level]++;
4763	}
4764
4765out:
4766	/*
4767	 * If we don't end this function with the cursor pointing at a record
4768	 * block, a subsequent non-error cursor deletion will not release
4769	 * node-level buffers, causing a buffer leak.  This is quite possible
4770	 * with a zero-results range query, so release the buffers if we
4771	 * failed to return any results.
4772	 */
4773	if (cur->bc_bufs[0] == NULL) {
4774		for (i = 0; i < cur->bc_nlevels; i++) {
4775			if (cur->bc_bufs[i]) {
4776				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4777				cur->bc_bufs[i] = NULL;
4778				cur->bc_ptrs[i] = 0;
4779				cur->bc_ra[i] = 0;
 
4780			}
4781		}
4782	}
4783
4784	return error;
4785}
4786
 
 
 
 
 
 
 
 
 
 
 
 
 
4787/*
4788 * Query a btree for all records overlapping a given interval of keys.  The
4789 * supplied function will be called with each record found; return one of the
4790 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4791 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4792 * negative error code.
4793 */
4794int
4795xfs_btree_query_range(
4796	struct xfs_btree_cur		*cur,
4797	union xfs_btree_irec		*low_rec,
4798	union xfs_btree_irec		*high_rec,
4799	xfs_btree_query_range_fn	fn,
4800	void				*priv)
4801{
4802	union xfs_btree_rec		rec;
4803	union xfs_btree_key		low_key;
4804	union xfs_btree_key		high_key;
4805
4806	/* Find the keys of both ends of the interval. */
4807	cur->bc_rec = *high_rec;
4808	cur->bc_ops->init_rec_from_cur(cur, &rec);
4809	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4810
4811	cur->bc_rec = *low_rec;
4812	cur->bc_ops->init_rec_from_cur(cur, &rec);
4813	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4814
4815	/* Enforce low key < high key. */
4816	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4817		return -EINVAL;
4818
4819	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4820		return xfs_btree_simple_query_range(cur, &low_key,
4821				&high_key, fn, priv);
4822	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4823			fn, priv);
4824}
4825
4826/*
4827 * Calculate the number of blocks needed to store a given number of records
4828 * in a short-format (per-AG metadata) btree.
4829 */
4830xfs_extlen_t
4831xfs_btree_calc_size(
4832	struct xfs_mount	*mp,
4833	uint			*limits,
4834	unsigned long long	len)
4835{
4836	int			level;
4837	int			maxrecs;
4838	xfs_extlen_t		rval;
 
 
 
4839
4840	maxrecs = limits[0];
4841	for (level = 0, rval = 0; len > 1; level++) {
4842		len += maxrecs - 1;
4843		do_div(len, maxrecs);
4844		maxrecs = limits[1];
4845		rval += len;
4846	}
4847	return rval;
4848}
4849
4850static int
4851xfs_btree_count_blocks_helper(
4852	struct xfs_btree_cur	*cur,
4853	int			level,
4854	void			*data)
4855{
4856	xfs_extlen_t		*blocks = data;
4857	(*blocks)++;
4858
4859	return 0;
4860}
4861
4862/* Count the blocks in a btree and return the result in *blocks. */
4863int
4864xfs_btree_count_blocks(
4865	struct xfs_btree_cur	*cur,
4866	xfs_extlen_t		*blocks)
4867{
4868	*blocks = 0;
4869	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4870			blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4871}