Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Copyright 2003 PathScale, Inc.
  5 * Derived from include/asm-i386/pgtable.h
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEWPAGE	0x002
 15#define _PAGE_NEWPROT	0x004
 16#define _PAGE_RW	0x020
 17#define _PAGE_USER	0x040
 18#define _PAGE_ACCESSED	0x080
 19#define _PAGE_DIRTY	0x100
 20/* If _PAGE_PRESENT is clear, we use these: */
 21#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 22				   pte_present gives true */
 23
 24/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
 25#define _PAGE_SWP_EXCLUSIVE	0x400
 26
 27#ifdef CONFIG_3_LEVEL_PGTABLES
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 
 
 31#endif
 32
 33extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 34
 35/* zero page used for uninitialized stuff */
 36extern unsigned long *empty_zero_page;
 37
 38/* Just any arbitrary offset to the start of the vmalloc VM area: the
 39 * current 8MB value just means that there will be a 8MB "hole" after the
 40 * physical memory until the kernel virtual memory starts.  That means that
 41 * any out-of-bounds memory accesses will hopefully be caught.
 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 43 * area for the same reason. ;)
 44 */
 45
 46extern unsigned long end_iomem;
 47
 48#define VMALLOC_OFFSET	(__va_space)
 49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 51#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 52#define MODULES_VADDR	VMALLOC_START
 53#define MODULES_END	VMALLOC_END
 54#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 55
 56#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 57#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 58#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 59#define __PAGE_KERNEL_EXEC                                              \
 60	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 61#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 62#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 63#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 64#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 65#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 66#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 67
 68/*
 69 * The i386 can't do page protection for execute, and considers that the same
 70 * are read.
 71 * Also, write permissions imply read permissions. This is the closest we can
 72 * get..
 73 */
 74
 75/*
 76 * ZERO_PAGE is a global shared page that is always zero: used
 77 * for zero-mapped memory areas etc..
 78 */
 79#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
 80
 81#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
 82
 83#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
 84#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 85
 86#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
 87#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
 88
 89#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
 90#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
 91
 92#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
 93#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
 94
 95#define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
 96#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
 97
 98#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
 99#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100
101#define pte_page(x) pfn_to_page(pte_pfn(x))
102
103#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104
105/*
106 * =================================
107 * Flags checking section.
108 * =================================
109 */
110
111static inline int pte_none(pte_t pte)
112{
113	return pte_is_zero(pte);
114}
115
116/*
117 * The following only work if pte_present() is true.
118 * Undefined behaviour if not..
119 */
120static inline int pte_read(pte_t pte)
121{
122	return((pte_get_bits(pte, _PAGE_USER)) &&
123	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
124}
125
126static inline int pte_exec(pte_t pte){
127	return((pte_get_bits(pte, _PAGE_USER)) &&
128	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
129}
130
131static inline int pte_write(pte_t pte)
132{
133	return((pte_get_bits(pte, _PAGE_RW)) &&
134	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
135}
136
137static inline int pte_dirty(pte_t pte)
138{
139	return pte_get_bits(pte, _PAGE_DIRTY);
140}
141
142static inline int pte_young(pte_t pte)
143{
144	return pte_get_bits(pte, _PAGE_ACCESSED);
145}
146
147static inline int pte_newpage(pte_t pte)
148{
149	return pte_get_bits(pte, _PAGE_NEWPAGE);
150}
151
152static inline int pte_newprot(pte_t pte)
153{
154	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
155}
156
157/*
158 * =================================
159 * Flags setting section.
160 * =================================
161 */
162
163static inline pte_t pte_mknewprot(pte_t pte)
164{
165	pte_set_bits(pte, _PAGE_NEWPROT);
166	return(pte);
167}
168
169static inline pte_t pte_mkclean(pte_t pte)
170{
171	pte_clear_bits(pte, _PAGE_DIRTY);
172	return(pte);
173}
174
175static inline pte_t pte_mkold(pte_t pte)
176{
177	pte_clear_bits(pte, _PAGE_ACCESSED);
178	return(pte);
179}
180
181static inline pte_t pte_wrprotect(pte_t pte)
182{
183	if (likely(pte_get_bits(pte, _PAGE_RW)))
184		pte_clear_bits(pte, _PAGE_RW);
185	else
186		return pte;
187	return(pte_mknewprot(pte));
188}
189
190static inline pte_t pte_mkread(pte_t pte)
191{
192	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
193		return pte;
194	pte_set_bits(pte, _PAGE_USER);
195	return(pte_mknewprot(pte));
196}
197
198static inline pte_t pte_mkdirty(pte_t pte)
199{
200	pte_set_bits(pte, _PAGE_DIRTY);
201	return(pte);
202}
203
204static inline pte_t pte_mkyoung(pte_t pte)
205{
206	pte_set_bits(pte, _PAGE_ACCESSED);
207	return(pte);
208}
209
210static inline pte_t pte_mkwrite_novma(pte_t pte)
211{
212	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
213		return pte;
214	pte_set_bits(pte, _PAGE_RW);
215	return(pte_mknewprot(pte));
216}
217
218static inline pte_t pte_mkuptodate(pte_t pte)
219{
220	pte_clear_bits(pte, _PAGE_NEWPAGE);
221	if(pte_present(pte))
222		pte_clear_bits(pte, _PAGE_NEWPROT);
223	return(pte);
224}
225
226static inline pte_t pte_mknewpage(pte_t pte)
227{
228	pte_set_bits(pte, _PAGE_NEWPAGE);
229	return(pte);
230}
231
232static inline void set_pte(pte_t *pteptr, pte_t pteval)
233{
234	pte_copy(*pteptr, pteval);
235
236	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
237	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
238	 * mapped pages.
239	 */
240
241	*pteptr = pte_mknewpage(*pteptr);
242	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
243}
244
245#define PFN_PTE_SHIFT		PAGE_SHIFT
246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247#define __HAVE_ARCH_PTE_SAME
248static inline int pte_same(pte_t pte_a, pte_t pte_b)
249{
250	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
251}
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257
258#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
259#define __virt_to_page(virt) phys_to_page(__pa(virt))
260#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
261#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
262
263#define mk_pte(page, pgprot) \
264	({ pte_t pte;					\
265							\
266	pte_set_val(pte, page_to_phys(page), (pgprot));	\
267	if (pte_present(pte))				\
268		pte_mknewprot(pte_mknewpage(pte));	\
269	pte;})
270
271static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
272{
273	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
274	return pte;
275}
276
277/*
278 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
279 *
280 * this macro returns the index of the entry in the pmd page which would
281 * control the given virtual address
282 */
283#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
284
285struct mm_struct;
286extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
287
288#define update_mmu_cache(vma,address,ptep) do {} while (0)
289#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
290
291/*
292 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
293 * are !pte_none() && !pte_present().
294 *
295 * Format of swap PTEs:
296 *
297 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
298 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
299 *   <--------------- offset ----------------> E < type -> 0 0 0 1 0
300 *
301 *   E is the exclusive marker that is not stored in swap entries.
302 *   _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
303 */
304#define __swp_type(x)			(((x).val >> 5) & 0x1f)
305#define __swp_offset(x)			((x).val >> 11)
306
307#define __swp_entry(type, offset) \
308	((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
309#define __pte_to_swp_entry(pte) \
310	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
311#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
312
313static inline int pte_swp_exclusive(pte_t pte)
314{
315	return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
316}
317
318static inline pte_t pte_swp_mkexclusive(pte_t pte)
319{
320	pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
321	return pte;
322}
323
324static inline pte_t pte_swp_clear_exclusive(pte_t pte)
325{
326	pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
327	return pte;
328}
329
330/* Clear a kernel PTE and flush it from the TLB */
331#define kpte_clear_flush(ptep, vaddr)		\
332do {						\
333	pte_clear(&init_mm, (vaddr), (ptep));	\
334	__flush_tlb_one((vaddr));		\
335} while (0)
336
337#endif
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Copyright 2003 PathScale, Inc.
  5 * Derived from include/asm-i386/pgtable.h
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEEDSYNC	0x002
 
 15#define _PAGE_RW	0x020
 16#define _PAGE_USER	0x040
 17#define _PAGE_ACCESSED	0x080
 18#define _PAGE_DIRTY	0x100
 19/* If _PAGE_PRESENT is clear, we use these: */
 20#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 21				   pte_present gives true */
 22
 23/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
 24#define _PAGE_SWP_EXCLUSIVE	0x400
 25
 26#if CONFIG_PGTABLE_LEVELS == 4
 27#include <asm/pgtable-4level.h>
 28#elif CONFIG_PGTABLE_LEVELS == 2
 29#include <asm/pgtable-2level.h>
 30#else
 31#error "Unsupported number of page table levels"
 32#endif
 33
 34extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 35
 36/* zero page used for uninitialized stuff */
 37extern unsigned long *empty_zero_page;
 38
 39/* Just any arbitrary offset to the start of the vmalloc VM area: the
 40 * current 8MB value just means that there will be a 8MB "hole" after the
 41 * physical memory until the kernel virtual memory starts.  That means that
 42 * any out-of-bounds memory accesses will hopefully be caught.
 43 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 44 * area for the same reason. ;)
 45 */
 46
 47extern unsigned long end_iomem;
 48
 49#define VMALLOC_OFFSET	(__va_space)
 50#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 51#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 52#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 53#define MODULES_VADDR	VMALLOC_START
 54#define MODULES_END	VMALLOC_END
 55#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 56
 57#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 58#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 59#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 60#define __PAGE_KERNEL_EXEC                                              \
 61	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 62#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 63#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 64#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 65#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 66#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 67#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 68
 69/*
 70 * The i386 can't do page protection for execute, and considers that the same
 71 * are read.
 72 * Also, write permissions imply read permissions. This is the closest we can
 73 * get..
 74 */
 75
 76/*
 77 * ZERO_PAGE is a global shared page that is always zero: used
 78 * for zero-mapped memory areas etc..
 79 */
 80#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
 81
 82#define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC))
 83
 84#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC))
 85#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 86
 87#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
 88#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0)
 89
 90#define pmd_needsync(x)   (pmd_val(x) & _PAGE_NEEDSYNC)
 91#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC)
 92
 93#define pud_needsync(x)   (pud_val(x) & _PAGE_NEEDSYNC)
 94#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC)
 95
 96#define p4d_needsync(x)   (p4d_val(x) & _PAGE_NEEDSYNC)
 97#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC)
 98
 99#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
100#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
101
102#define pte_page(x) pfn_to_page(pte_pfn(x))
103
104#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
105
106/*
107 * =================================
108 * Flags checking section.
109 * =================================
110 */
111
112static inline int pte_none(pte_t pte)
113{
114	return pte_is_zero(pte);
115}
116
117/*
118 * The following only work if pte_present() is true.
119 * Undefined behaviour if not..
120 */
121static inline int pte_read(pte_t pte)
122{
123	return((pte_get_bits(pte, _PAGE_USER)) &&
124	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
125}
126
127static inline int pte_exec(pte_t pte){
128	return((pte_get_bits(pte, _PAGE_USER)) &&
129	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
130}
131
132static inline int pte_write(pte_t pte)
133{
134	return((pte_get_bits(pte, _PAGE_RW)) &&
135	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
136}
137
138static inline int pte_dirty(pte_t pte)
139{
140	return pte_get_bits(pte, _PAGE_DIRTY);
141}
142
143static inline int pte_young(pte_t pte)
144{
145	return pte_get_bits(pte, _PAGE_ACCESSED);
146}
147
148static inline int pte_needsync(pte_t pte)
 
 
 
 
 
149{
150	return pte_get_bits(pte, _PAGE_NEEDSYNC);
151}
152
153/*
154 * =================================
155 * Flags setting section.
156 * =================================
157 */
158
 
 
 
 
 
 
159static inline pte_t pte_mkclean(pte_t pte)
160{
161	pte_clear_bits(pte, _PAGE_DIRTY);
162	return(pte);
163}
164
165static inline pte_t pte_mkold(pte_t pte)
166{
167	pte_clear_bits(pte, _PAGE_ACCESSED);
168	return(pte);
169}
170
171static inline pte_t pte_wrprotect(pte_t pte)
172{
173	pte_clear_bits(pte, _PAGE_RW);
174	return pte;
 
 
 
175}
176
177static inline pte_t pte_mkread(pte_t pte)
178{
 
 
179	pte_set_bits(pte, _PAGE_USER);
180	return pte;
181}
182
183static inline pte_t pte_mkdirty(pte_t pte)
184{
185	pte_set_bits(pte, _PAGE_DIRTY);
186	return(pte);
187}
188
189static inline pte_t pte_mkyoung(pte_t pte)
190{
191	pte_set_bits(pte, _PAGE_ACCESSED);
192	return(pte);
193}
194
195static inline pte_t pte_mkwrite_novma(pte_t pte)
196{
 
 
197	pte_set_bits(pte, _PAGE_RW);
198	return pte;
199}
200
201static inline pte_t pte_mkuptodate(pte_t pte)
202{
203	pte_clear_bits(pte, _PAGE_NEEDSYNC);
204	return pte;
 
 
205}
206
207static inline pte_t pte_mkneedsync(pte_t pte)
208{
209	pte_set_bits(pte, _PAGE_NEEDSYNC);
210	return(pte);
211}
212
213static inline void set_pte(pte_t *pteptr, pte_t pteval)
214{
215	pte_copy(*pteptr, pteval);
216
217	/* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so
218	 * update_pte_range knows to unmap it.
 
219	 */
220
221	*pteptr = pte_mkneedsync(*pteptr);
 
222}
223
224#define PFN_PTE_SHIFT		PAGE_SHIFT
225
226static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
227				    unsigned long end)
228{
229	if (!mm->context.sync_tlb_range_to) {
230		mm->context.sync_tlb_range_from = start;
231		mm->context.sync_tlb_range_to = end;
232	} else {
233		if (start < mm->context.sync_tlb_range_from)
234			mm->context.sync_tlb_range_from = start;
235		if (end > mm->context.sync_tlb_range_to)
236			mm->context.sync_tlb_range_to = end;
237	}
238}
239
240#define set_ptes set_ptes
241static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
242			    pte_t *ptep, pte_t pte, int nr)
243{
244	/* Basically the default implementation */
245	size_t length = nr * PAGE_SIZE;
246
247	for (;;) {
248		set_pte(ptep, pte);
249		if (--nr == 0)
250			break;
251		ptep++;
252		pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
253	}
254
255	um_tlb_mark_sync(mm, addr, addr + length);
256}
257
258#define __HAVE_ARCH_PTE_SAME
259static inline int pte_same(pte_t pte_a, pte_t pte_b)
260{
261	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC);
262}
263
264/*
265 * Conversion functions: convert a page and protection to a page entry,
266 * and a page entry and page directory to the page they refer to.
267 */
268
 
269#define __virt_to_page(virt) phys_to_page(__pa(virt))
 
270#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
271
272#define mk_pte(page, pgprot) \
273	({ pte_t pte;					\
274							\
275	pte_set_val(pte, page_to_phys(page), (pgprot));	\
 
 
276	pte;})
277
278static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
279{
280	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
281	return pte;
282}
283
284/*
285 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
286 *
287 * this macro returns the index of the entry in the pmd page which would
288 * control the given virtual address
289 */
290#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
291
292struct mm_struct;
293extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
294
295#define update_mmu_cache(vma,address,ptep) do {} while (0)
296#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
297
298/*
299 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
300 * are !pte_none() && !pte_present().
301 *
302 * Format of swap PTEs:
303 *
304 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
305 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
306 *   <--------------- offset ----------------> E < type -> 0 0 0 1 0
307 *
308 *   E is the exclusive marker that is not stored in swap entries.
309 *   _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte().
310 */
311#define __swp_type(x)			(((x).val >> 5) & 0x1f)
312#define __swp_offset(x)			((x).val >> 11)
313
314#define __swp_entry(type, offset) \
315	((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
316#define __pte_to_swp_entry(pte) \
317	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
318#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
319
320static inline int pte_swp_exclusive(pte_t pte)
321{
322	return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
323}
324
325static inline pte_t pte_swp_mkexclusive(pte_t pte)
326{
327	pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
328	return pte;
329}
330
331static inline pte_t pte_swp_clear_exclusive(pte_t pte)
332{
333	pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
334	return pte;
335}
 
 
 
 
 
 
 
336
337#endif