Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Copyright 2003 PathScale, Inc.
5 * Derived from include/asm-i386/pgtable.h
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25#define _PAGE_SWP_EXCLUSIVE 0x400
26
27#ifdef CONFIG_3_LEVEL_PGTABLES
28#include <asm/pgtable-3level.h>
29#else
30#include <asm/pgtable-2level.h>
31#endif
32
33extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34
35/* zero page used for uninitialized stuff */
36extern unsigned long *empty_zero_page;
37
38/* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46extern unsigned long end_iomem;
47
48#define VMALLOC_OFFSET (__va_space)
49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
52#define MODULES_VADDR VMALLOC_START
53#define MODULES_END VMALLOC_END
54#define MODULES_LEN (MODULES_VADDR - MODULES_END)
55
56#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
59#define __PAGE_KERNEL_EXEC \
60 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
61#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
62#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
63#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
65#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
66#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
67
68/*
69 * The i386 can't do page protection for execute, and considers that the same
70 * are read.
71 * Also, write permissions imply read permissions. This is the closest we can
72 * get..
73 */
74
75/*
76 * ZERO_PAGE is a global shared page that is always zero: used
77 * for zero-mapped memory areas etc..
78 */
79#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
80
81#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
82
83#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
84#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
85
86#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
87#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
88
89#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
90#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
91
92#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
93#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
94
95#define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
96#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
97
98#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
99#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100
101#define pte_page(x) pfn_to_page(pte_pfn(x))
102
103#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104
105/*
106 * =================================
107 * Flags checking section.
108 * =================================
109 */
110
111static inline int pte_none(pte_t pte)
112{
113 return pte_is_zero(pte);
114}
115
116/*
117 * The following only work if pte_present() is true.
118 * Undefined behaviour if not..
119 */
120static inline int pte_read(pte_t pte)
121{
122 return((pte_get_bits(pte, _PAGE_USER)) &&
123 !(pte_get_bits(pte, _PAGE_PROTNONE)));
124}
125
126static inline int pte_exec(pte_t pte){
127 return((pte_get_bits(pte, _PAGE_USER)) &&
128 !(pte_get_bits(pte, _PAGE_PROTNONE)));
129}
130
131static inline int pte_write(pte_t pte)
132{
133 return((pte_get_bits(pte, _PAGE_RW)) &&
134 !(pte_get_bits(pte, _PAGE_PROTNONE)));
135}
136
137static inline int pte_dirty(pte_t pte)
138{
139 return pte_get_bits(pte, _PAGE_DIRTY);
140}
141
142static inline int pte_young(pte_t pte)
143{
144 return pte_get_bits(pte, _PAGE_ACCESSED);
145}
146
147static inline int pte_newpage(pte_t pte)
148{
149 return pte_get_bits(pte, _PAGE_NEWPAGE);
150}
151
152static inline int pte_newprot(pte_t pte)
153{
154 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
155}
156
157/*
158 * =================================
159 * Flags setting section.
160 * =================================
161 */
162
163static inline pte_t pte_mknewprot(pte_t pte)
164{
165 pte_set_bits(pte, _PAGE_NEWPROT);
166 return(pte);
167}
168
169static inline pte_t pte_mkclean(pte_t pte)
170{
171 pte_clear_bits(pte, _PAGE_DIRTY);
172 return(pte);
173}
174
175static inline pte_t pte_mkold(pte_t pte)
176{
177 pte_clear_bits(pte, _PAGE_ACCESSED);
178 return(pte);
179}
180
181static inline pte_t pte_wrprotect(pte_t pte)
182{
183 if (likely(pte_get_bits(pte, _PAGE_RW)))
184 pte_clear_bits(pte, _PAGE_RW);
185 else
186 return pte;
187 return(pte_mknewprot(pte));
188}
189
190static inline pte_t pte_mkread(pte_t pte)
191{
192 if (unlikely(pte_get_bits(pte, _PAGE_USER)))
193 return pte;
194 pte_set_bits(pte, _PAGE_USER);
195 return(pte_mknewprot(pte));
196}
197
198static inline pte_t pte_mkdirty(pte_t pte)
199{
200 pte_set_bits(pte, _PAGE_DIRTY);
201 return(pte);
202}
203
204static inline pte_t pte_mkyoung(pte_t pte)
205{
206 pte_set_bits(pte, _PAGE_ACCESSED);
207 return(pte);
208}
209
210static inline pte_t pte_mkwrite_novma(pte_t pte)
211{
212 if (unlikely(pte_get_bits(pte, _PAGE_RW)))
213 return pte;
214 pte_set_bits(pte, _PAGE_RW);
215 return(pte_mknewprot(pte));
216}
217
218static inline pte_t pte_mkuptodate(pte_t pte)
219{
220 pte_clear_bits(pte, _PAGE_NEWPAGE);
221 if(pte_present(pte))
222 pte_clear_bits(pte, _PAGE_NEWPROT);
223 return(pte);
224}
225
226static inline pte_t pte_mknewpage(pte_t pte)
227{
228 pte_set_bits(pte, _PAGE_NEWPAGE);
229 return(pte);
230}
231
232static inline void set_pte(pte_t *pteptr, pte_t pteval)
233{
234 pte_copy(*pteptr, pteval);
235
236 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
237 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
238 * mapped pages.
239 */
240
241 *pteptr = pte_mknewpage(*pteptr);
242 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
243}
244
245#define PFN_PTE_SHIFT PAGE_SHIFT
246
247#define __HAVE_ARCH_PTE_SAME
248static inline int pte_same(pte_t pte_a, pte_t pte_b)
249{
250 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
251}
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257
258#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
259#define __virt_to_page(virt) phys_to_page(__pa(virt))
260#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
261#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
262
263#define mk_pte(page, pgprot) \
264 ({ pte_t pte; \
265 \
266 pte_set_val(pte, page_to_phys(page), (pgprot)); \
267 if (pte_present(pte)) \
268 pte_mknewprot(pte_mknewpage(pte)); \
269 pte;})
270
271static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
272{
273 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
274 return pte;
275}
276
277/*
278 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
279 *
280 * this macro returns the index of the entry in the pmd page which would
281 * control the given virtual address
282 */
283#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
284
285struct mm_struct;
286extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
287
288#define update_mmu_cache(vma,address,ptep) do {} while (0)
289#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
290
291/*
292 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
293 * are !pte_none() && !pte_present().
294 *
295 * Format of swap PTEs:
296 *
297 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
298 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
299 * <--------------- offset ----------------> E < type -> 0 0 0 1 0
300 *
301 * E is the exclusive marker that is not stored in swap entries.
302 * _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
303 */
304#define __swp_type(x) (((x).val >> 5) & 0x1f)
305#define __swp_offset(x) ((x).val >> 11)
306
307#define __swp_entry(type, offset) \
308 ((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
309#define __pte_to_swp_entry(pte) \
310 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
311#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
312
313static inline int pte_swp_exclusive(pte_t pte)
314{
315 return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
316}
317
318static inline pte_t pte_swp_mkexclusive(pte_t pte)
319{
320 pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
321 return pte;
322}
323
324static inline pte_t pte_swp_clear_exclusive(pte_t pte)
325{
326 pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
327 return pte;
328}
329
330/* Clear a kernel PTE and flush it from the TLB */
331#define kpte_clear_flush(ptep, vaddr) \
332do { \
333 pte_clear(&init_mm, (vaddr), (ptep)); \
334 __flush_tlb_one((vaddr)); \
335} while (0)
336
337#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Copyright 2003 PathScale, Inc.
5 * Derived from include/asm-i386/pgtable.h
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEEDSYNC 0x002
15#define _PAGE_RW 0x020
16#define _PAGE_USER 0x040
17#define _PAGE_ACCESSED 0x080
18#define _PAGE_DIRTY 0x100
19/* If _PAGE_PRESENT is clear, we use these: */
20#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
21 pte_present gives true */
22
23/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
24#define _PAGE_SWP_EXCLUSIVE 0x400
25
26#if CONFIG_PGTABLE_LEVELS == 4
27#include <asm/pgtable-4level.h>
28#elif CONFIG_PGTABLE_LEVELS == 2
29#include <asm/pgtable-2level.h>
30#else
31#error "Unsupported number of page table levels"
32#endif
33
34extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
35
36/* zero page used for uninitialized stuff */
37extern unsigned long *empty_zero_page;
38
39/* Just any arbitrary offset to the start of the vmalloc VM area: the
40 * current 8MB value just means that there will be a 8MB "hole" after the
41 * physical memory until the kernel virtual memory starts. That means that
42 * any out-of-bounds memory accesses will hopefully be caught.
43 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
44 * area for the same reason. ;)
45 */
46
47extern unsigned long end_iomem;
48
49#define VMALLOC_OFFSET (__va_space)
50#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
51#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
52#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
53#define MODULES_VADDR VMALLOC_START
54#define MODULES_END VMALLOC_END
55#define MODULES_LEN (MODULES_VADDR - MODULES_END)
56
57#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
58#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
59#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
60#define __PAGE_KERNEL_EXEC \
61 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
62#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
63#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
64#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
65#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
66#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
67#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
68
69/*
70 * The i386 can't do page protection for execute, and considers that the same
71 * are read.
72 * Also, write permissions imply read permissions. This is the closest we can
73 * get..
74 */
75
76/*
77 * ZERO_PAGE is a global shared page that is always zero: used
78 * for zero-mapped memory areas etc..
79 */
80#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
81
82#define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC))
83
84#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC))
85#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
86
87#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
88#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0)
89
90#define pmd_needsync(x) (pmd_val(x) & _PAGE_NEEDSYNC)
91#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC)
92
93#define pud_needsync(x) (pud_val(x) & _PAGE_NEEDSYNC)
94#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC)
95
96#define p4d_needsync(x) (p4d_val(x) & _PAGE_NEEDSYNC)
97#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC)
98
99#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
100#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
101
102#define pte_page(x) pfn_to_page(pte_pfn(x))
103
104#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
105
106/*
107 * =================================
108 * Flags checking section.
109 * =================================
110 */
111
112static inline int pte_none(pte_t pte)
113{
114 return pte_is_zero(pte);
115}
116
117/*
118 * The following only work if pte_present() is true.
119 * Undefined behaviour if not..
120 */
121static inline int pte_read(pte_t pte)
122{
123 return((pte_get_bits(pte, _PAGE_USER)) &&
124 !(pte_get_bits(pte, _PAGE_PROTNONE)));
125}
126
127static inline int pte_exec(pte_t pte){
128 return((pte_get_bits(pte, _PAGE_USER)) &&
129 !(pte_get_bits(pte, _PAGE_PROTNONE)));
130}
131
132static inline int pte_write(pte_t pte)
133{
134 return((pte_get_bits(pte, _PAGE_RW)) &&
135 !(pte_get_bits(pte, _PAGE_PROTNONE)));
136}
137
138static inline int pte_dirty(pte_t pte)
139{
140 return pte_get_bits(pte, _PAGE_DIRTY);
141}
142
143static inline int pte_young(pte_t pte)
144{
145 return pte_get_bits(pte, _PAGE_ACCESSED);
146}
147
148static inline int pte_needsync(pte_t pte)
149{
150 return pte_get_bits(pte, _PAGE_NEEDSYNC);
151}
152
153/*
154 * =================================
155 * Flags setting section.
156 * =================================
157 */
158
159static inline pte_t pte_mkclean(pte_t pte)
160{
161 pte_clear_bits(pte, _PAGE_DIRTY);
162 return(pte);
163}
164
165static inline pte_t pte_mkold(pte_t pte)
166{
167 pte_clear_bits(pte, _PAGE_ACCESSED);
168 return(pte);
169}
170
171static inline pte_t pte_wrprotect(pte_t pte)
172{
173 pte_clear_bits(pte, _PAGE_RW);
174 return pte;
175}
176
177static inline pte_t pte_mkread(pte_t pte)
178{
179 pte_set_bits(pte, _PAGE_USER);
180 return pte;
181}
182
183static inline pte_t pte_mkdirty(pte_t pte)
184{
185 pte_set_bits(pte, _PAGE_DIRTY);
186 return(pte);
187}
188
189static inline pte_t pte_mkyoung(pte_t pte)
190{
191 pte_set_bits(pte, _PAGE_ACCESSED);
192 return(pte);
193}
194
195static inline pte_t pte_mkwrite_novma(pte_t pte)
196{
197 pte_set_bits(pte, _PAGE_RW);
198 return pte;
199}
200
201static inline pte_t pte_mkuptodate(pte_t pte)
202{
203 pte_clear_bits(pte, _PAGE_NEEDSYNC);
204 return pte;
205}
206
207static inline pte_t pte_mkneedsync(pte_t pte)
208{
209 pte_set_bits(pte, _PAGE_NEEDSYNC);
210 return(pte);
211}
212
213static inline void set_pte(pte_t *pteptr, pte_t pteval)
214{
215 pte_copy(*pteptr, pteval);
216
217 /* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so
218 * update_pte_range knows to unmap it.
219 */
220
221 *pteptr = pte_mkneedsync(*pteptr);
222}
223
224#define PFN_PTE_SHIFT PAGE_SHIFT
225
226static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
227 unsigned long end)
228{
229 if (!mm->context.sync_tlb_range_to) {
230 mm->context.sync_tlb_range_from = start;
231 mm->context.sync_tlb_range_to = end;
232 } else {
233 if (start < mm->context.sync_tlb_range_from)
234 mm->context.sync_tlb_range_from = start;
235 if (end > mm->context.sync_tlb_range_to)
236 mm->context.sync_tlb_range_to = end;
237 }
238}
239
240#define set_ptes set_ptes
241static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
242 pte_t *ptep, pte_t pte, int nr)
243{
244 /* Basically the default implementation */
245 size_t length = nr * PAGE_SIZE;
246
247 for (;;) {
248 set_pte(ptep, pte);
249 if (--nr == 0)
250 break;
251 ptep++;
252 pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
253 }
254
255 um_tlb_mark_sync(mm, addr, addr + length);
256}
257
258#define __HAVE_ARCH_PTE_SAME
259static inline int pte_same(pte_t pte_a, pte_t pte_b)
260{
261 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC);
262}
263
264/*
265 * Conversion functions: convert a page and protection to a page entry,
266 * and a page entry and page directory to the page they refer to.
267 */
268
269#define __virt_to_page(virt) phys_to_page(__pa(virt))
270#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
271
272#define mk_pte(page, pgprot) \
273 ({ pte_t pte; \
274 \
275 pte_set_val(pte, page_to_phys(page), (pgprot)); \
276 pte;})
277
278static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
279{
280 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
281 return pte;
282}
283
284/*
285 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
286 *
287 * this macro returns the index of the entry in the pmd page which would
288 * control the given virtual address
289 */
290#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
291
292struct mm_struct;
293extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
294
295#define update_mmu_cache(vma,address,ptep) do {} while (0)
296#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
297
298/*
299 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
300 * are !pte_none() && !pte_present().
301 *
302 * Format of swap PTEs:
303 *
304 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
305 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
306 * <--------------- offset ----------------> E < type -> 0 0 0 1 0
307 *
308 * E is the exclusive marker that is not stored in swap entries.
309 * _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte().
310 */
311#define __swp_type(x) (((x).val >> 5) & 0x1f)
312#define __swp_offset(x) ((x).val >> 11)
313
314#define __swp_entry(type, offset) \
315 ((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
316#define __pte_to_swp_entry(pte) \
317 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
318#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
319
320static inline int pte_swp_exclusive(pte_t pte)
321{
322 return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
323}
324
325static inline pte_t pte_swp_mkexclusive(pte_t pte)
326{
327 pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
328 return pte;
329}
330
331static inline pte_t pte_swp_clear_exclusive(pte_t pte)
332{
333 pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
334 return pte;
335}
336
337#endif