Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Copyright 2003 PathScale, Inc.
  5 * Derived from include/asm-i386/pgtable.h
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEWPAGE	0x002
 15#define _PAGE_NEWPROT	0x004
 16#define _PAGE_RW	0x020
 17#define _PAGE_USER	0x040
 18#define _PAGE_ACCESSED	0x080
 19#define _PAGE_DIRTY	0x100
 20/* If _PAGE_PRESENT is clear, we use these: */
 21#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 22				   pte_present gives true */
 23
 24/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
 25#define _PAGE_SWP_EXCLUSIVE	0x400
 26
 27#ifdef CONFIG_3_LEVEL_PGTABLES
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 34
 35/* zero page used for uninitialized stuff */
 36extern unsigned long *empty_zero_page;
 37
 38/* Just any arbitrary offset to the start of the vmalloc VM area: the
 39 * current 8MB value just means that there will be a 8MB "hole" after the
 40 * physical memory until the kernel virtual memory starts.  That means that
 41 * any out-of-bounds memory accesses will hopefully be caught.
 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 43 * area for the same reason. ;)
 44 */
 45
 46extern unsigned long end_iomem;
 47
 48#define VMALLOC_OFFSET	(__va_space)
 49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 51#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 52#define MODULES_VADDR	VMALLOC_START
 53#define MODULES_END	VMALLOC_END
 54#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 55
 56#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 57#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 58#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 59#define __PAGE_KERNEL_EXEC                                              \
 60	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 61#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 62#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 63#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 64#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 65#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 66#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 67
 68/*
 69 * The i386 can't do page protection for execute, and considers that the same
 70 * are read.
 71 * Also, write permissions imply read permissions. This is the closest we can
 72 * get..
 73 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75/*
 76 * ZERO_PAGE is a global shared page that is always zero: used
 77 * for zero-mapped memory areas etc..
 78 */
 79#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
 80
 81#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
 82
 83#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
 84#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 85
 86#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
 87#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
 88
 89#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
 90#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
 91
 92#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
 93#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
 94
 95#define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
 96#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
 97
 98#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
 99#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100
101#define pte_page(x) pfn_to_page(pte_pfn(x))
102
103#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104
105/*
106 * =================================
107 * Flags checking section.
108 * =================================
109 */
110
111static inline int pte_none(pte_t pte)
112{
113	return pte_is_zero(pte);
114}
115
116/*
117 * The following only work if pte_present() is true.
118 * Undefined behaviour if not..
119 */
120static inline int pte_read(pte_t pte)
121{
122	return((pte_get_bits(pte, _PAGE_USER)) &&
123	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
124}
125
126static inline int pte_exec(pte_t pte){
127	return((pte_get_bits(pte, _PAGE_USER)) &&
128	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
129}
130
131static inline int pte_write(pte_t pte)
132{
133	return((pte_get_bits(pte, _PAGE_RW)) &&
134	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
135}
136
137static inline int pte_dirty(pte_t pte)
138{
139	return pte_get_bits(pte, _PAGE_DIRTY);
140}
141
142static inline int pte_young(pte_t pte)
143{
144	return pte_get_bits(pte, _PAGE_ACCESSED);
145}
146
147static inline int pte_newpage(pte_t pte)
148{
149	return pte_get_bits(pte, _PAGE_NEWPAGE);
150}
151
152static inline int pte_newprot(pte_t pte)
153{
154	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
155}
156
 
 
 
 
 
157/*
158 * =================================
159 * Flags setting section.
160 * =================================
161 */
162
163static inline pte_t pte_mknewprot(pte_t pte)
164{
165	pte_set_bits(pte, _PAGE_NEWPROT);
166	return(pte);
167}
168
169static inline pte_t pte_mkclean(pte_t pte)
170{
171	pte_clear_bits(pte, _PAGE_DIRTY);
172	return(pte);
173}
174
175static inline pte_t pte_mkold(pte_t pte)
176{
177	pte_clear_bits(pte, _PAGE_ACCESSED);
178	return(pte);
179}
180
181static inline pte_t pte_wrprotect(pte_t pte)
182{
183	if (likely(pte_get_bits(pte, _PAGE_RW)))
184		pte_clear_bits(pte, _PAGE_RW);
185	else
186		return pte;
187	return(pte_mknewprot(pte));
188}
189
190static inline pte_t pte_mkread(pte_t pte)
191{
192	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
193		return pte;
194	pte_set_bits(pte, _PAGE_USER);
195	return(pte_mknewprot(pte));
196}
197
198static inline pte_t pte_mkdirty(pte_t pte)
199{
200	pte_set_bits(pte, _PAGE_DIRTY);
201	return(pte);
202}
203
204static inline pte_t pte_mkyoung(pte_t pte)
205{
206	pte_set_bits(pte, _PAGE_ACCESSED);
207	return(pte);
208}
209
210static inline pte_t pte_mkwrite_novma(pte_t pte)
211{
212	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
213		return pte;
214	pte_set_bits(pte, _PAGE_RW);
215	return(pte_mknewprot(pte));
216}
217
218static inline pte_t pte_mkuptodate(pte_t pte)
219{
220	pte_clear_bits(pte, _PAGE_NEWPAGE);
221	if(pte_present(pte))
222		pte_clear_bits(pte, _PAGE_NEWPROT);
223	return(pte);
224}
225
226static inline pte_t pte_mknewpage(pte_t pte)
227{
228	pte_set_bits(pte, _PAGE_NEWPAGE);
229	return(pte);
230}
231
 
 
 
 
 
232static inline void set_pte(pte_t *pteptr, pte_t pteval)
233{
234	pte_copy(*pteptr, pteval);
235
236	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
237	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
238	 * mapped pages.
239	 */
240
241	*pteptr = pte_mknewpage(*pteptr);
242	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
243}
244
245#define PFN_PTE_SHIFT		PAGE_SHIFT
 
 
 
 
246
247#define __HAVE_ARCH_PTE_SAME
248static inline int pte_same(pte_t pte_a, pte_t pte_b)
249{
250	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
251}
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257
258#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
259#define __virt_to_page(virt) phys_to_page(__pa(virt))
260#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
261#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
262
263#define mk_pte(page, pgprot) \
264	({ pte_t pte;					\
265							\
266	pte_set_val(pte, page_to_phys(page), (pgprot));	\
267	if (pte_present(pte))				\
268		pte_mknewprot(pte_mknewpage(pte));	\
269	pte;})
270
271static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
272{
273	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
274	return pte;
275}
276
277/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
279 *
280 * this macro returns the index of the entry in the pmd page which would
281 * control the given virtual address
282 */
283#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 
284
285struct mm_struct;
286extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
287
288#define update_mmu_cache(vma,address,ptep) do {} while (0)
289#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
290
291/*
292 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
293 * are !pte_none() && !pte_present().
294 *
295 * Format of swap PTEs:
296 *
297 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
298 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
299 *   <--------------- offset ----------------> E < type -> 0 0 0 1 0
300 *
301 *   E is the exclusive marker that is not stored in swap entries.
302 *   _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
303 */
 
 
 
 
 
 
 
 
 
 
 
 
 
304#define __swp_type(x)			(((x).val >> 5) & 0x1f)
305#define __swp_offset(x)			((x).val >> 11)
306
307#define __swp_entry(type, offset) \
308	((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
309#define __pte_to_swp_entry(pte) \
310	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
311#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
312
313static inline int pte_swp_exclusive(pte_t pte)
314{
315	return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
316}
317
318static inline pte_t pte_swp_mkexclusive(pte_t pte)
319{
320	pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
321	return pte;
322}
323
324static inline pte_t pte_swp_clear_exclusive(pte_t pte)
325{
326	pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
327	return pte;
328}
329
330/* Clear a kernel PTE and flush it from the TLB */
331#define kpte_clear_flush(ptep, vaddr)		\
332do {						\
333	pte_clear(&init_mm, (vaddr), (ptep));	\
334	__flush_tlb_one((vaddr));		\
335} while (0)
336
337#endif
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* 
  3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Copyright 2003 PathScale, Inc.
  5 * Derived from include/asm-i386/pgtable.h
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEWPAGE	0x002
 15#define _PAGE_NEWPROT	0x004
 16#define _PAGE_RW	0x020
 17#define _PAGE_USER	0x040
 18#define _PAGE_ACCESSED	0x080
 19#define _PAGE_DIRTY	0x100
 20/* If _PAGE_PRESENT is clear, we use these: */
 21#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 22				   pte_present gives true */
 23
 
 
 
 24#ifdef CONFIG_3_LEVEL_PGTABLES
 25#include <asm/pgtable-3level.h>
 26#else
 27#include <asm/pgtable-2level.h>
 28#endif
 29
 30extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 31
 32/* zero page used for uninitialized stuff */
 33extern unsigned long *empty_zero_page;
 34
 35/* Just any arbitrary offset to the start of the vmalloc VM area: the
 36 * current 8MB value just means that there will be a 8MB "hole" after the
 37 * physical memory until the kernel virtual memory starts.  That means that
 38 * any out-of-bounds memory accesses will hopefully be caught.
 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 40 * area for the same reason. ;)
 41 */
 42
 43extern unsigned long end_iomem;
 44
 45#define VMALLOC_OFFSET	(__va_space)
 46#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 47#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 48#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 49#define MODULES_VADDR	VMALLOC_START
 50#define MODULES_END	VMALLOC_END
 51#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 52
 53#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 54#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 55#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 56#define __PAGE_KERNEL_EXEC                                              \
 57	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 58#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 59#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 60#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 61#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 62#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 63#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 64
 65/*
 66 * The i386 can't do page protection for execute, and considers that the same
 67 * are read.
 68 * Also, write permissions imply read permissions. This is the closest we can
 69 * get..
 70 */
 71#define __P000	PAGE_NONE
 72#define __P001	PAGE_READONLY
 73#define __P010	PAGE_COPY
 74#define __P011	PAGE_COPY
 75#define __P100	PAGE_READONLY
 76#define __P101	PAGE_READONLY
 77#define __P110	PAGE_COPY
 78#define __P111	PAGE_COPY
 79
 80#define __S000	PAGE_NONE
 81#define __S001	PAGE_READONLY
 82#define __S010	PAGE_SHARED
 83#define __S011	PAGE_SHARED
 84#define __S100	PAGE_READONLY
 85#define __S101	PAGE_READONLY
 86#define __S110	PAGE_SHARED
 87#define __S111	PAGE_SHARED
 88
 89/*
 90 * ZERO_PAGE is a global shared page that is always zero: used
 91 * for zero-mapped memory areas etc..
 92 */
 93#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
 94
 95#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
 96
 97#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
 98#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 99
100#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
101#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
102
103#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
104#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
105
106#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
107#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
108
 
 
 
 
109#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
110
111#define pte_page(x) pfn_to_page(pte_pfn(x))
112
113#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
114
115/*
116 * =================================
117 * Flags checking section.
118 * =================================
119 */
120
121static inline int pte_none(pte_t pte)
122{
123	return pte_is_zero(pte);
124}
125
126/*
127 * The following only work if pte_present() is true.
128 * Undefined behaviour if not..
129 */
130static inline int pte_read(pte_t pte)
131{ 
132	return((pte_get_bits(pte, _PAGE_USER)) &&
133	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
134}
135
136static inline int pte_exec(pte_t pte){
137	return((pte_get_bits(pte, _PAGE_USER)) &&
138	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
139}
140
141static inline int pte_write(pte_t pte)
142{
143	return((pte_get_bits(pte, _PAGE_RW)) &&
144	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
145}
146
147static inline int pte_dirty(pte_t pte)
148{
149	return pte_get_bits(pte, _PAGE_DIRTY);
150}
151
152static inline int pte_young(pte_t pte)
153{
154	return pte_get_bits(pte, _PAGE_ACCESSED);
155}
156
157static inline int pte_newpage(pte_t pte)
158{
159	return pte_get_bits(pte, _PAGE_NEWPAGE);
160}
161
162static inline int pte_newprot(pte_t pte)
163{ 
164	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
165}
166
167static inline int pte_special(pte_t pte)
168{
169	return 0;
170}
171
172/*
173 * =================================
174 * Flags setting section.
175 * =================================
176 */
177
178static inline pte_t pte_mknewprot(pte_t pte)
179{
180	pte_set_bits(pte, _PAGE_NEWPROT);
181	return(pte);
182}
183
184static inline pte_t pte_mkclean(pte_t pte)
185{
186	pte_clear_bits(pte, _PAGE_DIRTY);
187	return(pte);
188}
189
190static inline pte_t pte_mkold(pte_t pte)	
191{ 
192	pte_clear_bits(pte, _PAGE_ACCESSED);
193	return(pte);
194}
195
196static inline pte_t pte_wrprotect(pte_t pte)
197{ 
198	if (likely(pte_get_bits(pte, _PAGE_RW)))
199		pte_clear_bits(pte, _PAGE_RW);
200	else
201		return pte;
202	return(pte_mknewprot(pte)); 
203}
204
205static inline pte_t pte_mkread(pte_t pte)
206{ 
207	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
208		return pte;
209	pte_set_bits(pte, _PAGE_USER);
210	return(pte_mknewprot(pte)); 
211}
212
213static inline pte_t pte_mkdirty(pte_t pte)
214{ 
215	pte_set_bits(pte, _PAGE_DIRTY);
216	return(pte);
217}
218
219static inline pte_t pte_mkyoung(pte_t pte)
220{
221	pte_set_bits(pte, _PAGE_ACCESSED);
222	return(pte);
223}
224
225static inline pte_t pte_mkwrite(pte_t pte)	
226{
227	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
228		return pte;
229	pte_set_bits(pte, _PAGE_RW);
230	return(pte_mknewprot(pte)); 
231}
232
233static inline pte_t pte_mkuptodate(pte_t pte)	
234{
235	pte_clear_bits(pte, _PAGE_NEWPAGE);
236	if(pte_present(pte))
237		pte_clear_bits(pte, _PAGE_NEWPROT);
238	return(pte); 
239}
240
241static inline pte_t pte_mknewpage(pte_t pte)
242{
243	pte_set_bits(pte, _PAGE_NEWPAGE);
244	return(pte);
245}
246
247static inline pte_t pte_mkspecial(pte_t pte)
248{
249	return(pte);
250}
251
252static inline void set_pte(pte_t *pteptr, pte_t pteval)
253{
254	pte_copy(*pteptr, pteval);
255
256	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
257	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
258	 * mapped pages.
259	 */
260
261	*pteptr = pte_mknewpage(*pteptr);
262	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
263}
264
265static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
266			      pte_t *pteptr, pte_t pteval)
267{
268	set_pte(pteptr, pteval);
269}
270
271#define __HAVE_ARCH_PTE_SAME
272static inline int pte_same(pte_t pte_a, pte_t pte_b)
273{
274	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
275}
276
277/*
278 * Conversion functions: convert a page and protection to a page entry,
279 * and a page entry and page directory to the page they refer to.
280 */
281
282#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
283#define __virt_to_page(virt) phys_to_page(__pa(virt))
284#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
285#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
286
287#define mk_pte(page, pgprot) \
288	({ pte_t pte;					\
289							\
290	pte_set_val(pte, page_to_phys(page), (pgprot));	\
291	if (pte_present(pte))				\
292		pte_mknewprot(pte_mknewpage(pte));	\
293	pte;})
294
295static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
296{
297	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
298	return pte; 
299}
300
301/*
302 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
303 *
304 * this macro returns the index of the entry in the pgd page which would
305 * control the given virtual address
306 */
307#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
308
309/*
310 * pgd_offset() returns a (pgd_t *)
311 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
312 */
313#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
314
315/*
316 * a shortcut which implies the use of the kernel's pgd, instead
317 * of a process's
318 */
319#define pgd_offset_k(address) pgd_offset(&init_mm, address)
320
321/*
322 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
323 *
324 * this macro returns the index of the entry in the pmd page which would
325 * control the given virtual address
326 */
327#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
328#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
329
330#define pmd_page_vaddr(pmd) \
331	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 
 
 
332
333/*
334 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 
335 *
336 * this macro returns the index of the entry in the pte page which would
337 * control the given virtual address
 
 
 
 
 
 
338 */
339#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
340#define pte_offset_kernel(dir, address) \
341	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
342#define pte_offset_map(dir, address) \
343	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
344#define pte_unmap(pte) do { } while (0)
345
346struct mm_struct;
347extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
348
349#define update_mmu_cache(vma,address,ptep) do ; while (0)
350
351/* Encode and de-code a swap entry */
352#define __swp_type(x)			(((x).val >> 5) & 0x1f)
353#define __swp_offset(x)			((x).val >> 11)
354
355#define __swp_entry(type, offset) \
356	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
357#define __pte_to_swp_entry(pte) \
358	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
359#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
360
361#define kern_addr_valid(addr) (1)
 
 
 
 
 
 
 
 
 
362
363#include <asm-generic/pgtable.h>
 
 
 
 
364
365/* Clear a kernel PTE and flush it from the TLB */
366#define kpte_clear_flush(ptep, vaddr)		\
367do {						\
368	pte_clear(&init_mm, (vaddr), (ptep));	\
369	__flush_tlb_one((vaddr));		\
370} while (0)
371
372#endif