Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Copyright 2003 PathScale, Inc.
5 * Derived from include/asm-i386/pgtable.h
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25#define _PAGE_SWP_EXCLUSIVE 0x400
26
27#ifdef CONFIG_3_LEVEL_PGTABLES
28#include <asm/pgtable-3level.h>
29#else
30#include <asm/pgtable-2level.h>
31#endif
32
33extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34
35/* zero page used for uninitialized stuff */
36extern unsigned long *empty_zero_page;
37
38/* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46extern unsigned long end_iomem;
47
48#define VMALLOC_OFFSET (__va_space)
49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
52#define MODULES_VADDR VMALLOC_START
53#define MODULES_END VMALLOC_END
54#define MODULES_LEN (MODULES_VADDR - MODULES_END)
55
56#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
59#define __PAGE_KERNEL_EXEC \
60 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
61#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
62#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
63#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
65#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
66#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
67
68/*
69 * The i386 can't do page protection for execute, and considers that the same
70 * are read.
71 * Also, write permissions imply read permissions. This is the closest we can
72 * get..
73 */
74
75/*
76 * ZERO_PAGE is a global shared page that is always zero: used
77 * for zero-mapped memory areas etc..
78 */
79#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
80
81#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
82
83#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
84#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
85
86#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
87#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
88
89#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
90#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
91
92#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
93#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
94
95#define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
96#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
97
98#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
99#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100
101#define pte_page(x) pfn_to_page(pte_pfn(x))
102
103#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104
105/*
106 * =================================
107 * Flags checking section.
108 * =================================
109 */
110
111static inline int pte_none(pte_t pte)
112{
113 return pte_is_zero(pte);
114}
115
116/*
117 * The following only work if pte_present() is true.
118 * Undefined behaviour if not..
119 */
120static inline int pte_read(pte_t pte)
121{
122 return((pte_get_bits(pte, _PAGE_USER)) &&
123 !(pte_get_bits(pte, _PAGE_PROTNONE)));
124}
125
126static inline int pte_exec(pte_t pte){
127 return((pte_get_bits(pte, _PAGE_USER)) &&
128 !(pte_get_bits(pte, _PAGE_PROTNONE)));
129}
130
131static inline int pte_write(pte_t pte)
132{
133 return((pte_get_bits(pte, _PAGE_RW)) &&
134 !(pte_get_bits(pte, _PAGE_PROTNONE)));
135}
136
137static inline int pte_dirty(pte_t pte)
138{
139 return pte_get_bits(pte, _PAGE_DIRTY);
140}
141
142static inline int pte_young(pte_t pte)
143{
144 return pte_get_bits(pte, _PAGE_ACCESSED);
145}
146
147static inline int pte_newpage(pte_t pte)
148{
149 return pte_get_bits(pte, _PAGE_NEWPAGE);
150}
151
152static inline int pte_newprot(pte_t pte)
153{
154 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
155}
156
157/*
158 * =================================
159 * Flags setting section.
160 * =================================
161 */
162
163static inline pte_t pte_mknewprot(pte_t pte)
164{
165 pte_set_bits(pte, _PAGE_NEWPROT);
166 return(pte);
167}
168
169static inline pte_t pte_mkclean(pte_t pte)
170{
171 pte_clear_bits(pte, _PAGE_DIRTY);
172 return(pte);
173}
174
175static inline pte_t pte_mkold(pte_t pte)
176{
177 pte_clear_bits(pte, _PAGE_ACCESSED);
178 return(pte);
179}
180
181static inline pte_t pte_wrprotect(pte_t pte)
182{
183 if (likely(pte_get_bits(pte, _PAGE_RW)))
184 pte_clear_bits(pte, _PAGE_RW);
185 else
186 return pte;
187 return(pte_mknewprot(pte));
188}
189
190static inline pte_t pte_mkread(pte_t pte)
191{
192 if (unlikely(pte_get_bits(pte, _PAGE_USER)))
193 return pte;
194 pte_set_bits(pte, _PAGE_USER);
195 return(pte_mknewprot(pte));
196}
197
198static inline pte_t pte_mkdirty(pte_t pte)
199{
200 pte_set_bits(pte, _PAGE_DIRTY);
201 return(pte);
202}
203
204static inline pte_t pte_mkyoung(pte_t pte)
205{
206 pte_set_bits(pte, _PAGE_ACCESSED);
207 return(pte);
208}
209
210static inline pte_t pte_mkwrite_novma(pte_t pte)
211{
212 if (unlikely(pte_get_bits(pte, _PAGE_RW)))
213 return pte;
214 pte_set_bits(pte, _PAGE_RW);
215 return(pte_mknewprot(pte));
216}
217
218static inline pte_t pte_mkuptodate(pte_t pte)
219{
220 pte_clear_bits(pte, _PAGE_NEWPAGE);
221 if(pte_present(pte))
222 pte_clear_bits(pte, _PAGE_NEWPROT);
223 return(pte);
224}
225
226static inline pte_t pte_mknewpage(pte_t pte)
227{
228 pte_set_bits(pte, _PAGE_NEWPAGE);
229 return(pte);
230}
231
232static inline void set_pte(pte_t *pteptr, pte_t pteval)
233{
234 pte_copy(*pteptr, pteval);
235
236 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
237 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
238 * mapped pages.
239 */
240
241 *pteptr = pte_mknewpage(*pteptr);
242 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
243}
244
245#define PFN_PTE_SHIFT PAGE_SHIFT
246
247#define __HAVE_ARCH_PTE_SAME
248static inline int pte_same(pte_t pte_a, pte_t pte_b)
249{
250 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
251}
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257
258#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
259#define __virt_to_page(virt) phys_to_page(__pa(virt))
260#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
261#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
262
263#define mk_pte(page, pgprot) \
264 ({ pte_t pte; \
265 \
266 pte_set_val(pte, page_to_phys(page), (pgprot)); \
267 if (pte_present(pte)) \
268 pte_mknewprot(pte_mknewpage(pte)); \
269 pte;})
270
271static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
272{
273 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
274 return pte;
275}
276
277/*
278 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
279 *
280 * this macro returns the index of the entry in the pmd page which would
281 * control the given virtual address
282 */
283#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
284
285struct mm_struct;
286extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
287
288#define update_mmu_cache(vma,address,ptep) do {} while (0)
289#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
290
291/*
292 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
293 * are !pte_none() && !pte_present().
294 *
295 * Format of swap PTEs:
296 *
297 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
298 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
299 * <--------------- offset ----------------> E < type -> 0 0 0 1 0
300 *
301 * E is the exclusive marker that is not stored in swap entries.
302 * _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
303 */
304#define __swp_type(x) (((x).val >> 5) & 0x1f)
305#define __swp_offset(x) ((x).val >> 11)
306
307#define __swp_entry(type, offset) \
308 ((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
309#define __pte_to_swp_entry(pte) \
310 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
311#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
312
313static inline int pte_swp_exclusive(pte_t pte)
314{
315 return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
316}
317
318static inline pte_t pte_swp_mkexclusive(pte_t pte)
319{
320 pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
321 return pte;
322}
323
324static inline pte_t pte_swp_clear_exclusive(pte_t pte)
325{
326 pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
327 return pte;
328}
329
330/* Clear a kernel PTE and flush it from the TLB */
331#define kpte_clear_flush(ptep, vaddr) \
332do { \
333 pte_clear(&init_mm, (vaddr), (ptep)); \
334 __flush_tlb_one((vaddr)); \
335} while (0)
336
337#endif
1/*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
24
25#ifdef CONFIG_3_LEVEL_PGTABLES
26#include "asm/pgtable-3level.h"
27#else
28#include "asm/pgtable-2level.h"
29#endif
30
31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33/* zero page used for uninitialized stuff */
34extern unsigned long *empty_zero_page;
35
36#define pgtable_cache_init() do ; while (0)
37
38/* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46extern unsigned long end_iomem;
47
48#define VMALLOC_OFFSET (__va_space)
49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51#ifdef CONFIG_HIGHMEM
52# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53#else
54# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55#endif
56#define MODULES_VADDR VMALLOC_START
57#define MODULES_END VMALLOC_END
58#define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63#define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72#define io_remap_pfn_range remap_pfn_range
73
74/*
75 * The i386 can't do page protection for execute, and considers that the same
76 * are read.
77 * Also, write permissions imply read permissions. This is the closest we can
78 * get..
79 */
80#define __P000 PAGE_NONE
81#define __P001 PAGE_READONLY
82#define __P010 PAGE_COPY
83#define __P011 PAGE_COPY
84#define __P100 PAGE_READONLY
85#define __P101 PAGE_READONLY
86#define __P110 PAGE_COPY
87#define __P111 PAGE_COPY
88
89#define __S000 PAGE_NONE
90#define __S001 PAGE_READONLY
91#define __S010 PAGE_SHARED
92#define __S011 PAGE_SHARED
93#define __S100 PAGE_READONLY
94#define __S101 PAGE_READONLY
95#define __S110 PAGE_SHARED
96#define __S111 PAGE_SHARED
97
98/*
99 * ZERO_PAGE is a global shared page that is always zero: used
100 * for zero-mapped memory areas etc..
101 */
102#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
103
104#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
105
106#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
107#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
108
109#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
110#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
111
112#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
113#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
114
115#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
116#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
117
118#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
119
120#define pte_page(x) pfn_to_page(pte_pfn(x))
121
122#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
123
124/*
125 * =================================
126 * Flags checking section.
127 * =================================
128 */
129
130static inline int pte_none(pte_t pte)
131{
132 return pte_is_zero(pte);
133}
134
135/*
136 * The following only work if pte_present() is true.
137 * Undefined behaviour if not..
138 */
139static inline int pte_read(pte_t pte)
140{
141 return((pte_get_bits(pte, _PAGE_USER)) &&
142 !(pte_get_bits(pte, _PAGE_PROTNONE)));
143}
144
145static inline int pte_exec(pte_t pte){
146 return((pte_get_bits(pte, _PAGE_USER)) &&
147 !(pte_get_bits(pte, _PAGE_PROTNONE)));
148}
149
150static inline int pte_write(pte_t pte)
151{
152 return((pte_get_bits(pte, _PAGE_RW)) &&
153 !(pte_get_bits(pte, _PAGE_PROTNONE)));
154}
155
156/*
157 * The following only works if pte_present() is not true.
158 */
159static inline int pte_file(pte_t pte)
160{
161 return pte_get_bits(pte, _PAGE_FILE);
162}
163
164static inline int pte_dirty(pte_t pte)
165{
166 return pte_get_bits(pte, _PAGE_DIRTY);
167}
168
169static inline int pte_young(pte_t pte)
170{
171 return pte_get_bits(pte, _PAGE_ACCESSED);
172}
173
174static inline int pte_newpage(pte_t pte)
175{
176 return pte_get_bits(pte, _PAGE_NEWPAGE);
177}
178
179static inline int pte_newprot(pte_t pte)
180{
181 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
182}
183
184static inline int pte_special(pte_t pte)
185{
186 return 0;
187}
188
189/*
190 * =================================
191 * Flags setting section.
192 * =================================
193 */
194
195static inline pte_t pte_mknewprot(pte_t pte)
196{
197 pte_set_bits(pte, _PAGE_NEWPROT);
198 return(pte);
199}
200
201static inline pte_t pte_mkclean(pte_t pte)
202{
203 pte_clear_bits(pte, _PAGE_DIRTY);
204 return(pte);
205}
206
207static inline pte_t pte_mkold(pte_t pte)
208{
209 pte_clear_bits(pte, _PAGE_ACCESSED);
210 return(pte);
211}
212
213static inline pte_t pte_wrprotect(pte_t pte)
214{
215 pte_clear_bits(pte, _PAGE_RW);
216 return(pte_mknewprot(pte));
217}
218
219static inline pte_t pte_mkread(pte_t pte)
220{
221 pte_set_bits(pte, _PAGE_USER);
222 return(pte_mknewprot(pte));
223}
224
225static inline pte_t pte_mkdirty(pte_t pte)
226{
227 pte_set_bits(pte, _PAGE_DIRTY);
228 return(pte);
229}
230
231static inline pte_t pte_mkyoung(pte_t pte)
232{
233 pte_set_bits(pte, _PAGE_ACCESSED);
234 return(pte);
235}
236
237static inline pte_t pte_mkwrite(pte_t pte)
238{
239 pte_set_bits(pte, _PAGE_RW);
240 return(pte_mknewprot(pte));
241}
242
243static inline pte_t pte_mkuptodate(pte_t pte)
244{
245 pte_clear_bits(pte, _PAGE_NEWPAGE);
246 if(pte_present(pte))
247 pte_clear_bits(pte, _PAGE_NEWPROT);
248 return(pte);
249}
250
251static inline pte_t pte_mknewpage(pte_t pte)
252{
253 pte_set_bits(pte, _PAGE_NEWPAGE);
254 return(pte);
255}
256
257static inline pte_t pte_mkspecial(pte_t pte)
258{
259 return(pte);
260}
261
262static inline void set_pte(pte_t *pteptr, pte_t pteval)
263{
264 pte_copy(*pteptr, pteval);
265
266 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
267 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
268 * mapped pages.
269 */
270
271 *pteptr = pte_mknewpage(*pteptr);
272 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
273}
274#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
275
276#define __HAVE_ARCH_PTE_SAME
277static inline int pte_same(pte_t pte_a, pte_t pte_b)
278{
279 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
280}
281
282/*
283 * Conversion functions: convert a page and protection to a page entry,
284 * and a page entry and page directory to the page they refer to.
285 */
286
287#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
288#define __virt_to_page(virt) phys_to_page(__pa(virt))
289#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
290#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
291
292#define mk_pte(page, pgprot) \
293 ({ pte_t pte; \
294 \
295 pte_set_val(pte, page_to_phys(page), (pgprot)); \
296 if (pte_present(pte)) \
297 pte_mknewprot(pte_mknewpage(pte)); \
298 pte;})
299
300static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
301{
302 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
303 return pte;
304}
305
306/*
307 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
308 *
309 * this macro returns the index of the entry in the pgd page which would
310 * control the given virtual address
311 */
312#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
313
314/*
315 * pgd_offset() returns a (pgd_t *)
316 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
317 */
318#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
319
320/*
321 * a shortcut which implies the use of the kernel's pgd, instead
322 * of a process's
323 */
324#define pgd_offset_k(address) pgd_offset(&init_mm, address)
325
326/*
327 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
328 *
329 * this macro returns the index of the entry in the pmd page which would
330 * control the given virtual address
331 */
332#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
333#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
334
335#define pmd_page_vaddr(pmd) \
336 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
337
338/*
339 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
340 *
341 * this macro returns the index of the entry in the pte page which would
342 * control the given virtual address
343 */
344#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
345#define pte_offset_kernel(dir, address) \
346 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
347#define pte_offset_map(dir, address) \
348 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
349#define pte_unmap(pte) do { } while (0)
350
351struct mm_struct;
352extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
353
354#define update_mmu_cache(vma,address,ptep) do ; while (0)
355
356/* Encode and de-code a swap entry */
357#define __swp_type(x) (((x).val >> 5) & 0x1f)
358#define __swp_offset(x) ((x).val >> 11)
359
360#define __swp_entry(type, offset) \
361 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
362#define __pte_to_swp_entry(pte) \
363 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
364#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
365
366#define kern_addr_valid(addr) (1)
367
368#include <asm-generic/pgtable.h>
369
370/* Clear a kernel PTE and flush it from the TLB */
371#define kpte_clear_flush(ptep, vaddr) \
372do { \
373 pte_clear(&init_mm, (vaddr), (ptep)); \
374 __flush_tlb_one((vaddr)); \
375} while (0)
376
377#endif