Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
 
 
 
 
 
 
 
 
 
  43
  44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE		0
  49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  52#define DESCRIPTOR_STATUS		(1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  54#define DESCRIPTOR_PING			(1 << 7)
  55#define DESCRIPTOR_YY			(1 << 6)
  56#define DESCRIPTOR_NO_IRQ		(0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  60#define DESCRIPTOR_WAIT			(3 << 0)
  61
  62#define DESCRIPTOR_CMD			(0xf << 12)
  63
  64struct descriptor {
  65	__le16 req_count;
  66	__le16 control;
  67	__le32 data_address;
  68	__le32 branch_address;
  69	__le16 res_count;
  70	__le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)	(regs)
  74#define CONTROL_CLEAR(regs)	((regs) + 4)
  75#define COMMAND_PTR(regs)	((regs) + 12)
  76#define CONTEXT_MATCH(regs)	((regs) + 16)
  77
  78#define AR_BUFFER_SIZE	(32*1024)
  79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD	4096
  84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88	struct fw_ohci *ohci;
  89	struct page *pages[AR_BUFFERS];
  90	void *buffer;
  91	struct descriptor *descriptors;
  92	dma_addr_t descriptors_bus;
  93	void *pointer;
  94	unsigned int last_buffer_index;
  95	u32 regs;
  96	struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102				     struct descriptor *d,
 103				     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110	struct list_head list;
 111	dma_addr_t buffer_bus;
 112	size_t buffer_size;
 113	size_t used;
 114	struct descriptor buffer[];
 115};
 116
 117struct context {
 118	struct fw_ohci *ohci;
 119	u32 regs;
 120	int total_allocation;
 121	u32 current_bus;
 122	bool running;
 123	bool flushing;
 124
 125	/*
 126	 * List of page-sized buffers for storing DMA descriptors.
 127	 * Head of list contains buffers in use and tail of list contains
 128	 * free buffers.
 129	 */
 130	struct list_head buffer_list;
 131
 132	/*
 133	 * Pointer to a buffer inside buffer_list that contains the tail
 134	 * end of the current DMA program.
 135	 */
 136	struct descriptor_buffer *buffer_tail;
 137
 138	/*
 139	 * The descriptor containing the branch address of the first
 140	 * descriptor that has not yet been filled by the device.
 141	 */
 142	struct descriptor *last;
 143
 144	/*
 145	 * The last descriptor block in the DMA program. It contains the branch
 146	 * address that must be updated upon appending a new descriptor.
 147	 */
 148	struct descriptor *prev;
 149	int prev_z;
 150
 151	descriptor_callback_t callback;
 152
 153	struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164	struct fw_iso_context base;
 165	struct context context;
 166	void *header;
 167	size_t header_length;
 168	unsigned long flushing_completions;
 169	u32 mc_buffer_bus;
 170	u16 mc_completed;
 171	u16 last_timestamp;
 172	u8 sync;
 173	u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179	struct fw_card card;
 180
 181	__iomem char *registers;
 182	int node_id;
 183	int generation;
 184	int request_generation;	/* for timestamping incoming requests */
 185	unsigned quirks;
 186	unsigned int pri_req_max;
 187	u32 bus_time;
 188	bool bus_time_running;
 189	bool is_root;
 190	bool csr_state_setclear_abdicate;
 191	int n_ir;
 192	int n_it;
 193	/*
 194	 * Spinlock for accessing fw_ohci data.  Never call out of
 195	 * this driver with this lock held.
 196	 */
 197	spinlock_t lock;
 198
 199	struct mutex phy_reg_mutex;
 200
 201	void *misc_buffer;
 202	dma_addr_t misc_buffer_bus;
 203
 204	struct ar_context ar_request_ctx;
 205	struct ar_context ar_response_ctx;
 206	struct context at_request_ctx;
 207	struct context at_response_ctx;
 208
 209	u32 it_context_support;
 210	u32 it_context_mask;     /* unoccupied IT contexts */
 211	struct iso_context *it_context_list;
 212	u64 ir_context_channels; /* unoccupied channels */
 213	u32 ir_context_support;
 214	u32 ir_context_mask;     /* unoccupied IR contexts */
 215	struct iso_context *ir_context_list;
 216	u64 mc_channels; /* channels in use by the multichannel IR context */
 217	bool mc_allocated;
 218
 219	__be32    *config_rom;
 220	dma_addr_t config_rom_bus;
 221	__be32    *next_config_rom;
 222	dma_addr_t next_config_rom_bus;
 223	__be32     next_header;
 224
 225	__le32    *self_id;
 226	dma_addr_t self_id_bus;
 227	struct work_struct bus_reset_work;
 228
 229	u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 396#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 397
 398static int param_debug;
 399module_param_named(debug, param_debug, int, 0644);
 400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 401	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 402	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 403	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 404	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 405	", or a combination, or all = -1)");
 406
 407static bool param_remote_dma;
 408module_param_named(remote_dma, param_remote_dma, bool, 0444);
 409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 410
 411static void log_irqs(struct fw_ohci *ohci, u32 evt)
 412{
 413	if (likely(!(param_debug &
 414			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 415		return;
 416
 417	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 418	    !(evt & OHCI1394_busReset))
 419		return;
 420
 421	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 422	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 423	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 424	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 425	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 426	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 427	    evt & OHCI1394_isochRx		? " IR"			: "",
 428	    evt & OHCI1394_isochTx		? " IT"			: "",
 429	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 430	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 431	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 432	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 433	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 434	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 435	    evt & OHCI1394_busReset		? " busReset"		: "",
 436	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 437		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 438		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 439		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 440		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 441		    OHCI1394_cycleInconsistent |
 442		    OHCI1394_regAccessFail | OHCI1394_busReset)
 443						? " ?"			: "");
 444}
 445
 446static const char *speed[] = {
 447	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 448};
 449static const char *power[] = {
 450	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 451	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 452};
 453static const char port[] = { '.', '-', 'p', 'c', };
 454
 455static char _p(u32 *s, int shift)
 456{
 457	return port[*s >> shift & 3];
 458}
 459
 460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 461{
 462	u32 *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463
 464	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 465		return;
 466
 467	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 468		    self_id_count, generation, ohci->node_id);
 469
 470	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 471		if ((*s & 1 << 23) == 0)
 472			ohci_notice(ohci,
 473			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 474			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 475			    speed[*s >> 14 & 3], *s >> 16 & 63,
 476			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 477			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 478		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479			ohci_notice(ohci,
 480			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 481			    *s, *s >> 24 & 63,
 482			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 483			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 
 
 
 
 
 
 
 
 
 
 
 
 484}
 485
 486static const char *evts[] = {
 487	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 488	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 489	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 490	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 491	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 492	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 493	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 494	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 495	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 496	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 497	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 498	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 499	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 500	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 501	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 502	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 503	[0x20] = "pending/cancelled",
 504};
 505static const char *tcodes[] = {
 506	[0x0] = "QW req",		[0x1] = "BW req",
 507	[0x2] = "W resp",		[0x3] = "-reserved-",
 508	[0x4] = "QR req",		[0x5] = "BR req",
 509	[0x6] = "QR resp",		[0x7] = "BR resp",
 510	[0x8] = "cycle start",		[0x9] = "Lk req",
 511	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 512	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 513	[0xe] = "link internal",	[0xf] = "-reserved-",
 514};
 515
 516static void log_ar_at_event(struct fw_ohci *ohci,
 517			    char dir, int speed, u32 *header, int evt)
 518{
 519	int tcode = header[0] >> 4 & 0xf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	char specific[12];
 521
 522	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 523		return;
 524
 525	if (unlikely(evt >= ARRAY_SIZE(evts)))
 526			evt = 0x1f;
 527
 528	if (evt == OHCI1394_evt_bus_reset) {
 529		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 530			    dir, (header[2] >> 16) & 0xff);
 531		return;
 532	}
 533
 534	switch (tcode) {
 535	case 0x0: case 0x6: case 0x8:
 
 
 536		snprintf(specific, sizeof(specific), " = %08x",
 537			 be32_to_cpu((__force __be32)header[3]));
 538		break;
 539	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 
 
 
 
 540		snprintf(specific, sizeof(specific), " %x,%x",
 541			 header[3] >> 16, header[3] & 0xffff);
 
 542		break;
 543	default:
 544		specific[0] = '\0';
 545	}
 546
 547	switch (tcode) {
 548	case 0xa:
 549		ohci_notice(ohci, "A%c %s, %s\n",
 550			    dir, evts[evt], tcodes[tcode]);
 551		break;
 552	case 0xe:
 553		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 554			    dir, evts[evt], header[1], header[2]);
 555		break;
 556	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 
 
 
 
 557		ohci_notice(ohci,
 558			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 559			    dir, speed, header[0] >> 10 & 0x3f,
 560			    header[1] >> 16, header[0] >> 16, evts[evt],
 561			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 562		break;
 563	default:
 564		ohci_notice(ohci,
 565			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 566			    dir, speed, header[0] >> 10 & 0x3f,
 567			    header[1] >> 16, header[0] >> 16, evts[evt],
 568			    tcodes[tcode], specific);
 569	}
 570}
 571
 572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 573{
 574	writel(data, ohci->registers + offset);
 575}
 576
 577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 578{
 579	return readl(ohci->registers + offset);
 580}
 581
 582static inline void flush_writes(const struct fw_ohci *ohci)
 583{
 584	/* Do a dummy read to flush writes. */
 585	reg_read(ohci, OHCI1394_Version);
 586}
 587
 588/*
 589 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 592 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 593 */
 594static int read_phy_reg(struct fw_ohci *ohci, int addr)
 595{
 596	u32 val;
 597	int i;
 598
 599	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 600	for (i = 0; i < 3 + 100; i++) {
 601		val = reg_read(ohci, OHCI1394_PhyControl);
 602		if (!~val)
 603			return -ENODEV; /* Card was ejected. */
 604
 605		if (val & OHCI1394_PhyControl_ReadDone)
 606			return OHCI1394_PhyControl_ReadData(val);
 607
 608		/*
 609		 * Try a few times without waiting.  Sleeping is necessary
 610		 * only when the link/PHY interface is busy.
 611		 */
 612		if (i >= 3)
 613			msleep(1);
 614	}
 615	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 616	dump_stack();
 617
 618	return -EBUSY;
 619}
 620
 621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 622{
 623	int i;
 624
 625	reg_write(ohci, OHCI1394_PhyControl,
 626		  OHCI1394_PhyControl_Write(addr, val));
 627	for (i = 0; i < 3 + 100; i++) {
 628		val = reg_read(ohci, OHCI1394_PhyControl);
 629		if (!~val)
 630			return -ENODEV; /* Card was ejected. */
 631
 632		if (!(val & OHCI1394_PhyControl_WritePending))
 633			return 0;
 634
 635		if (i >= 3)
 636			msleep(1);
 637	}
 638	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 639	dump_stack();
 640
 641	return -EBUSY;
 642}
 643
 644static int update_phy_reg(struct fw_ohci *ohci, int addr,
 645			  int clear_bits, int set_bits)
 646{
 647	int ret = read_phy_reg(ohci, addr);
 648	if (ret < 0)
 649		return ret;
 650
 651	/*
 652	 * The interrupt status bits are cleared by writing a one bit.
 653	 * Avoid clearing them unless explicitly requested in set_bits.
 654	 */
 655	if (addr == 5)
 656		clear_bits |= PHY_INT_STATUS_BITS;
 657
 658	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 659}
 660
 661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 662{
 663	int ret;
 664
 665	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 666	if (ret < 0)
 667		return ret;
 668
 669	return read_phy_reg(ohci, addr);
 670}
 671
 672static int ohci_read_phy_reg(struct fw_card *card, int addr)
 673{
 674	struct fw_ohci *ohci = fw_ohci(card);
 675	int ret;
 676
 677	mutex_lock(&ohci->phy_reg_mutex);
 678	ret = read_phy_reg(ohci, addr);
 679	mutex_unlock(&ohci->phy_reg_mutex);
 680
 681	return ret;
 682}
 683
 684static int ohci_update_phy_reg(struct fw_card *card, int addr,
 685			       int clear_bits, int set_bits)
 686{
 687	struct fw_ohci *ohci = fw_ohci(card);
 688	int ret;
 689
 690	mutex_lock(&ohci->phy_reg_mutex);
 691	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 692	mutex_unlock(&ohci->phy_reg_mutex);
 693
 694	return ret;
 695}
 696
 697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 698{
 699	return page_private(ctx->pages[i]);
 700}
 701
 702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 703{
 704	struct descriptor *d;
 705
 706	d = &ctx->descriptors[index];
 707	d->branch_address  &= cpu_to_le32(~0xf);
 708	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 709	d->transfer_status =  0;
 710
 711	wmb(); /* finish init of new descriptors before branch_address update */
 712	d = &ctx->descriptors[ctx->last_buffer_index];
 713	d->branch_address  |= cpu_to_le32(1);
 714
 715	ctx->last_buffer_index = index;
 716
 717	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 718}
 719
 720static void ar_context_release(struct ar_context *ctx)
 721{
 722	struct device *dev = ctx->ohci->card.device;
 723	unsigned int i;
 724
 725	if (!ctx->buffer)
 726		return;
 727
 728	vunmap(ctx->buffer);
 729
 730	for (i = 0; i < AR_BUFFERS; i++) {
 731		if (ctx->pages[i])
 732			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 733				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 734	}
 735}
 736
 737static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 738{
 739	struct fw_ohci *ohci = ctx->ohci;
 740
 741	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 742		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 743		flush_writes(ohci);
 744
 745		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 746	}
 747	/* FIXME: restart? */
 748}
 749
 750static inline unsigned int ar_next_buffer_index(unsigned int index)
 751{
 752	return (index + 1) % AR_BUFFERS;
 753}
 754
 755static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 756{
 757	return ar_next_buffer_index(ctx->last_buffer_index);
 758}
 759
 760/*
 761 * We search for the buffer that contains the last AR packet DMA data written
 762 * by the controller.
 763 */
 764static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 765						 unsigned int *buffer_offset)
 766{
 767	unsigned int i, next_i, last = ctx->last_buffer_index;
 768	__le16 res_count, next_res_count;
 769
 770	i = ar_first_buffer_index(ctx);
 771	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 772
 773	/* A buffer that is not yet completely filled must be the last one. */
 774	while (i != last && res_count == 0) {
 775
 776		/* Peek at the next descriptor. */
 777		next_i = ar_next_buffer_index(i);
 778		rmb(); /* read descriptors in order */
 779		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 780		/*
 781		 * If the next descriptor is still empty, we must stop at this
 782		 * descriptor.
 783		 */
 784		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 785			/*
 786			 * The exception is when the DMA data for one packet is
 787			 * split over three buffers; in this case, the middle
 788			 * buffer's descriptor might be never updated by the
 789			 * controller and look still empty, and we have to peek
 790			 * at the third one.
 791			 */
 792			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 793				next_i = ar_next_buffer_index(next_i);
 794				rmb();
 795				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 796				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 797					goto next_buffer_is_active;
 798			}
 799
 800			break;
 801		}
 802
 803next_buffer_is_active:
 804		i = next_i;
 805		res_count = next_res_count;
 806	}
 807
 808	rmb(); /* read res_count before the DMA data */
 809
 810	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 811	if (*buffer_offset > PAGE_SIZE) {
 812		*buffer_offset = 0;
 813		ar_context_abort(ctx, "corrupted descriptor");
 814	}
 815
 816	return i;
 817}
 818
 819static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 820				    unsigned int end_buffer_index,
 821				    unsigned int end_buffer_offset)
 822{
 823	unsigned int i;
 824
 825	i = ar_first_buffer_index(ctx);
 826	while (i != end_buffer_index) {
 827		dma_sync_single_for_cpu(ctx->ohci->card.device,
 828					ar_buffer_bus(ctx, i),
 829					PAGE_SIZE, DMA_FROM_DEVICE);
 830		i = ar_next_buffer_index(i);
 831	}
 832	if (end_buffer_offset > 0)
 833		dma_sync_single_for_cpu(ctx->ohci->card.device,
 834					ar_buffer_bus(ctx, i),
 835					end_buffer_offset, DMA_FROM_DEVICE);
 836}
 837
 838#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 839#define cond_le32_to_cpu(v) \
 840	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 
 
 
 
 
 
 
 841#else
 842#define cond_le32_to_cpu(v) le32_to_cpu(v)
 
 
 
 
 
 
 
 
 843#endif
 844
 845static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 846{
 847	struct fw_ohci *ohci = ctx->ohci;
 848	struct fw_packet p;
 849	u32 status, length, tcode;
 850	int evt;
 851
 852	p.header[0] = cond_le32_to_cpu(buffer[0]);
 853	p.header[1] = cond_le32_to_cpu(buffer[1]);
 854	p.header[2] = cond_le32_to_cpu(buffer[2]);
 855
 856	tcode = (p.header[0] >> 4) & 0x0f;
 857	switch (tcode) {
 858	case TCODE_WRITE_QUADLET_REQUEST:
 859	case TCODE_READ_QUADLET_RESPONSE:
 860		p.header[3] = (__force __u32) buffer[3];
 861		p.header_length = 16;
 862		p.payload_length = 0;
 863		break;
 864
 865	case TCODE_READ_BLOCK_REQUEST :
 866		p.header[3] = cond_le32_to_cpu(buffer[3]);
 867		p.header_length = 16;
 868		p.payload_length = 0;
 869		break;
 870
 871	case TCODE_WRITE_BLOCK_REQUEST:
 872	case TCODE_READ_BLOCK_RESPONSE:
 873	case TCODE_LOCK_REQUEST:
 874	case TCODE_LOCK_RESPONSE:
 875		p.header[3] = cond_le32_to_cpu(buffer[3]);
 876		p.header_length = 16;
 877		p.payload_length = p.header[3] >> 16;
 878		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 879			ar_context_abort(ctx, "invalid packet length");
 880			return NULL;
 881		}
 882		break;
 883
 884	case TCODE_WRITE_RESPONSE:
 885	case TCODE_READ_QUADLET_REQUEST:
 886	case OHCI_TCODE_PHY_PACKET:
 887		p.header_length = 12;
 888		p.payload_length = 0;
 889		break;
 890
 891	default:
 892		ar_context_abort(ctx, "invalid tcode");
 893		return NULL;
 894	}
 895
 896	p.payload = (void *) buffer + p.header_length;
 897
 898	/* FIXME: What to do about evt_* errors? */
 899	length = (p.header_length + p.payload_length + 3) / 4;
 900	status = cond_le32_to_cpu(buffer[length]);
 901	evt    = (status >> 16) & 0x1f;
 902
 903	p.ack        = evt - 16;
 904	p.speed      = (status >> 21) & 0x7;
 905	p.timestamp  = status & 0xffff;
 906	p.generation = ohci->request_generation;
 907
 908	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 909
 910	/*
 911	 * Several controllers, notably from NEC and VIA, forget to
 912	 * write ack_complete status at PHY packet reception.
 913	 */
 914	if (evt == OHCI1394_evt_no_status &&
 915	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 916		p.ack = ACK_COMPLETE;
 917
 918	/*
 919	 * The OHCI bus reset handler synthesizes a PHY packet with
 920	 * the new generation number when a bus reset happens (see
 921	 * section 8.4.2.3).  This helps us determine when a request
 922	 * was received and make sure we send the response in the same
 923	 * generation.  We only need this for requests; for responses
 924	 * we use the unique tlabel for finding the matching
 925	 * request.
 926	 *
 927	 * Alas some chips sometimes emit bus reset packets with a
 928	 * wrong generation.  We set the correct generation for these
 929	 * at a slightly incorrect time (in bus_reset_work).
 930	 */
 931	if (evt == OHCI1394_evt_bus_reset) {
 932		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 933			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 934	} else if (ctx == &ohci->ar_request_ctx) {
 935		fw_core_handle_request(&ohci->card, &p);
 936	} else {
 937		fw_core_handle_response(&ohci->card, &p);
 938	}
 939
 940	return buffer + length + 1;
 941}
 942
 943static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 944{
 945	void *next;
 946
 947	while (p < end) {
 948		next = handle_ar_packet(ctx, p);
 949		if (!next)
 950			return p;
 951		p = next;
 952	}
 953
 954	return p;
 955}
 956
 957static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 958{
 959	unsigned int i;
 960
 961	i = ar_first_buffer_index(ctx);
 962	while (i != end_buffer) {
 963		dma_sync_single_for_device(ctx->ohci->card.device,
 964					   ar_buffer_bus(ctx, i),
 965					   PAGE_SIZE, DMA_FROM_DEVICE);
 966		ar_context_link_page(ctx, i);
 967		i = ar_next_buffer_index(i);
 968	}
 969}
 970
 971static void ar_context_tasklet(unsigned long data)
 972{
 973	struct ar_context *ctx = (struct ar_context *)data;
 974	unsigned int end_buffer_index, end_buffer_offset;
 975	void *p, *end;
 976
 977	p = ctx->pointer;
 978	if (!p)
 979		return;
 980
 981	end_buffer_index = ar_search_last_active_buffer(ctx,
 982							&end_buffer_offset);
 983	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 984	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 985
 986	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 987		/*
 988		 * The filled part of the overall buffer wraps around; handle
 989		 * all packets up to the buffer end here.  If the last packet
 990		 * wraps around, its tail will be visible after the buffer end
 991		 * because the buffer start pages are mapped there again.
 992		 */
 993		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 994		p = handle_ar_packets(ctx, p, buffer_end);
 995		if (p < buffer_end)
 996			goto error;
 997		/* adjust p to point back into the actual buffer */
 998		p -= AR_BUFFERS * PAGE_SIZE;
 999	}
1000
1001	p = handle_ar_packets(ctx, p, end);
1002	if (p != end) {
1003		if (p > end)
1004			ar_context_abort(ctx, "inconsistent descriptor");
1005		goto error;
1006	}
1007
1008	ctx->pointer = p;
1009	ar_recycle_buffers(ctx, end_buffer_index);
1010
1011	return;
1012
1013error:
1014	ctx->pointer = NULL;
1015}
1016
1017static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018			   unsigned int descriptors_offset, u32 regs)
1019{
1020	struct device *dev = ohci->card.device;
1021	unsigned int i;
1022	dma_addr_t dma_addr;
1023	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024	struct descriptor *d;
1025
1026	ctx->regs        = regs;
1027	ctx->ohci        = ohci;
1028	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030	for (i = 0; i < AR_BUFFERS; i++) {
1031		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032						DMA_FROM_DEVICE, GFP_KERNEL);
1033		if (!ctx->pages[i])
1034			goto out_of_memory;
1035		set_page_private(ctx->pages[i], dma_addr);
1036		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037					   DMA_FROM_DEVICE);
1038	}
1039
1040	for (i = 0; i < AR_BUFFERS; i++)
1041		pages[i]              = ctx->pages[i];
1042	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043		pages[AR_BUFFERS + i] = ctx->pages[i];
1044	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045	if (!ctx->buffer)
1046		goto out_of_memory;
1047
1048	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051	for (i = 0; i < AR_BUFFERS; i++) {
1052		d = &ctx->descriptors[i];
1053		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055						DESCRIPTOR_STATUS |
1056						DESCRIPTOR_BRANCH_ALWAYS);
1057		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060	}
1061
1062	return 0;
1063
1064out_of_memory:
1065	ar_context_release(ctx);
1066
1067	return -ENOMEM;
1068}
1069
1070static void ar_context_run(struct ar_context *ctx)
1071{
1072	unsigned int i;
1073
1074	for (i = 0; i < AR_BUFFERS; i++)
1075		ar_context_link_page(ctx, i);
1076
1077	ctx->pointer = ctx->buffer;
1078
1079	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081}
1082
1083static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084{
1085	__le16 branch;
1086
1087	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089	/* figure out which descriptor the branch address goes in */
1090	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091		return d;
1092	else
1093		return d + z - 1;
1094}
1095
1096static void context_tasklet(unsigned long data)
1097{
1098	struct context *ctx = (struct context *) data;
1099	struct descriptor *d, *last;
1100	u32 address;
1101	int z;
1102	struct descriptor_buffer *desc;
1103
1104	desc = list_entry(ctx->buffer_list.next,
1105			struct descriptor_buffer, list);
1106	last = ctx->last;
1107	while (last->branch_address != 0) {
1108		struct descriptor_buffer *old_desc = desc;
1109		address = le32_to_cpu(last->branch_address);
1110		z = address & 0xf;
1111		address &= ~0xf;
1112		ctx->current_bus = address;
1113
1114		/* If the branch address points to a buffer outside of the
1115		 * current buffer, advance to the next buffer. */
1116		if (address < desc->buffer_bus ||
1117				address >= desc->buffer_bus + desc->used)
1118			desc = list_entry(desc->list.next,
1119					struct descriptor_buffer, list);
1120		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121		last = find_branch_descriptor(d, z);
1122
1123		if (!ctx->callback(ctx, d, last))
1124			break;
1125
1126		if (old_desc != desc) {
1127			/* If we've advanced to the next buffer, move the
1128			 * previous buffer to the free list. */
1129			unsigned long flags;
1130			old_desc->used = 0;
1131			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134		}
1135		ctx->last = last;
1136	}
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139/*
1140 * Allocate a new buffer and add it to the list of free buffers for this
1141 * context.  Must be called with ohci->lock held.
1142 */
1143static int context_add_buffer(struct context *ctx)
1144{
1145	struct descriptor_buffer *desc;
1146	dma_addr_t bus_addr;
1147	int offset;
1148
1149	/*
1150	 * 16MB of descriptors should be far more than enough for any DMA
1151	 * program.  This will catch run-away userspace or DoS attacks.
1152	 */
1153	if (ctx->total_allocation >= 16*1024*1024)
1154		return -ENOMEM;
1155
1156	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157	if (!desc)
1158		return -ENOMEM;
1159
1160	offset = (void *)&desc->buffer - (void *)desc;
1161	/*
1162	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165	 * Work around this by always leaving at least 0x10 bytes of padding.
1166	 */
1167	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168	desc->buffer_bus = bus_addr + offset;
1169	desc->used = 0;
1170
1171	list_add_tail(&desc->list, &ctx->buffer_list);
1172	ctx->total_allocation += PAGE_SIZE;
1173
1174	return 0;
1175}
1176
1177static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178			u32 regs, descriptor_callback_t callback)
1179{
1180	ctx->ohci = ohci;
1181	ctx->regs = regs;
1182	ctx->total_allocation = 0;
1183
1184	INIT_LIST_HEAD(&ctx->buffer_list);
1185	if (context_add_buffer(ctx) < 0)
1186		return -ENOMEM;
1187
1188	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189			struct descriptor_buffer, list);
1190
1191	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192	ctx->callback = callback;
1193
1194	/*
1195	 * We put a dummy descriptor in the buffer that has a NULL
1196	 * branch address and looks like it's been sent.  That way we
1197	 * have a descriptor to append DMA programs to.
1198	 */
1199	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203	ctx->last = ctx->buffer_tail->buffer;
1204	ctx->prev = ctx->buffer_tail->buffer;
1205	ctx->prev_z = 1;
1206
1207	return 0;
1208}
1209
1210static void context_release(struct context *ctx)
1211{
1212	struct fw_card *card = &ctx->ohci->card;
1213	struct descriptor_buffer *desc, *tmp;
1214
1215	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218	}
1219}
1220
1221/* Must be called with ohci->lock held */
1222static struct descriptor *context_get_descriptors(struct context *ctx,
1223						  int z, dma_addr_t *d_bus)
1224{
1225	struct descriptor *d = NULL;
1226	struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228	if (z * sizeof(*d) > desc->buffer_size)
1229		return NULL;
1230
1231	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232		/* No room for the descriptor in this buffer, so advance to the
1233		 * next one. */
1234
1235		if (desc->list.next == &ctx->buffer_list) {
1236			/* If there is no free buffer next in the list,
1237			 * allocate one. */
1238			if (context_add_buffer(ctx) < 0)
1239				return NULL;
1240		}
1241		desc = list_entry(desc->list.next,
1242				struct descriptor_buffer, list);
1243		ctx->buffer_tail = desc;
1244	}
1245
1246	d = desc->buffer + desc->used / sizeof(*d);
1247	memset(d, 0, z * sizeof(*d));
1248	*d_bus = desc->buffer_bus + desc->used;
1249
1250	return d;
1251}
1252
1253static void context_run(struct context *ctx, u32 extra)
1254{
1255	struct fw_ohci *ohci = ctx->ohci;
1256
1257	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258		  le32_to_cpu(ctx->last->branch_address));
1259	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261	ctx->running = true;
1262	flush_writes(ohci);
1263}
1264
1265static void context_append(struct context *ctx,
1266			   struct descriptor *d, int z, int extra)
1267{
1268	dma_addr_t d_bus;
1269	struct descriptor_buffer *desc = ctx->buffer_tail;
1270	struct descriptor *d_branch;
1271
1272	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274	desc->used += (z + extra) * sizeof(*d);
1275
1276	wmb(); /* finish init of new descriptors before branch_address update */
1277
1278	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281	/*
1282	 * VT6306 incorrectly checks only the single descriptor at the
1283	 * CommandPtr when the wake bit is written, so if it's a
1284	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285	 * the branch address in the first descriptor.
1286	 *
1287	 * Not doing this for transmit contexts since not sure how it interacts
1288	 * with skip addresses.
1289	 */
1290	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291	    d_branch != ctx->prev &&
1292	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295	}
1296
1297	ctx->prev = d;
1298	ctx->prev_z = z;
1299}
1300
1301static void context_stop(struct context *ctx)
1302{
1303	struct fw_ohci *ohci = ctx->ohci;
1304	u32 reg;
1305	int i;
1306
1307	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308	ctx->running = false;
1309
1310	for (i = 0; i < 1000; i++) {
1311		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312		if ((reg & CONTEXT_ACTIVE) == 0)
1313			return;
1314
1315		if (i)
1316			udelay(10);
1317	}
1318	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319}
1320
1321struct driver_data {
1322	u8 inline_data[8];
1323	struct fw_packet *packet;
1324};
1325
1326/*
1327 * This function apppends a packet to the DMA queue for transmission.
1328 * Must always be called with the ochi->lock held to ensure proper
1329 * generation handling and locking around packet queue manipulation.
1330 */
1331static int at_context_queue_packet(struct context *ctx,
1332				   struct fw_packet *packet)
1333{
1334	struct fw_ohci *ohci = ctx->ohci;
1335	dma_addr_t d_bus, payload_bus;
1336	struct driver_data *driver_data;
1337	struct descriptor *d, *last;
1338	__le32 *header;
1339	int z, tcode;
1340
1341	d = context_get_descriptors(ctx, 4, &d_bus);
1342	if (d == NULL) {
1343		packet->ack = RCODE_SEND_ERROR;
1344		return -1;
1345	}
1346
1347	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348	d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350	/*
1351	 * The DMA format for asynchronous link packets is different
1352	 * from the IEEE1394 layout, so shift the fields around
1353	 * accordingly.
1354	 */
1355
1356	tcode = (packet->header[0] >> 4) & 0x0f;
1357	header = (__le32 *) &d[1];
1358	switch (tcode) {
1359	case TCODE_WRITE_QUADLET_REQUEST:
1360	case TCODE_WRITE_BLOCK_REQUEST:
1361	case TCODE_WRITE_RESPONSE:
1362	case TCODE_READ_QUADLET_REQUEST:
1363	case TCODE_READ_BLOCK_REQUEST:
1364	case TCODE_READ_QUADLET_RESPONSE:
1365	case TCODE_READ_BLOCK_RESPONSE:
1366	case TCODE_LOCK_REQUEST:
1367	case TCODE_LOCK_RESPONSE:
1368		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369					(packet->speed << 16));
1370		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371					(packet->header[0] & 0xffff0000));
1372		header[2] = cpu_to_le32(packet->header[2]);
 
 
 
1373
1374		if (TCODE_IS_BLOCK_PACKET(tcode))
 
 
 
 
 
 
 
1375			header[3] = cpu_to_le32(packet->header[3]);
1376		else
1377			header[3] = (__force __le32) packet->header[3];
1378
1379		d[0].req_count = cpu_to_le16(packet->header_length);
1380		break;
1381
1382	case TCODE_LINK_INTERNAL:
1383		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384					(packet->speed << 16));
 
1385		header[1] = cpu_to_le32(packet->header[1]);
1386		header[2] = cpu_to_le32(packet->header[2]);
1387		d[0].req_count = cpu_to_le16(12);
1388
1389		if (is_ping_packet(&packet->header[1]))
1390			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391		break;
1392
1393	case TCODE_STREAM_DATA:
1394		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395					(packet->speed << 16));
1396		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
 
 
 
 
 
1397		d[0].req_count = cpu_to_le16(8);
1398		break;
1399
1400	default:
1401		/* BUG(); */
1402		packet->ack = RCODE_SEND_ERROR;
1403		return -1;
1404	}
1405
1406	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407	driver_data = (struct driver_data *) &d[3];
1408	driver_data->packet = packet;
1409	packet->driver_data = driver_data;
1410
1411	if (packet->payload_length > 0) {
1412		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413			payload_bus = dma_map_single(ohci->card.device,
1414						     packet->payload,
1415						     packet->payload_length,
1416						     DMA_TO_DEVICE);
1417			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418				packet->ack = RCODE_SEND_ERROR;
1419				return -1;
1420			}
1421			packet->payload_bus	= payload_bus;
1422			packet->payload_mapped	= true;
1423		} else {
1424			memcpy(driver_data->inline_data, packet->payload,
1425			       packet->payload_length);
1426			payload_bus = d_bus + 3 * sizeof(*d);
1427		}
1428
1429		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430		d[2].data_address = cpu_to_le32(payload_bus);
1431		last = &d[2];
1432		z = 3;
1433	} else {
1434		last = &d[0];
1435		z = 2;
1436	}
1437
1438	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439				     DESCRIPTOR_IRQ_ALWAYS |
1440				     DESCRIPTOR_BRANCH_ALWAYS);
1441
1442	/* FIXME: Document how the locking works. */
1443	if (ohci->generation != packet->generation) {
1444		if (packet->payload_mapped)
1445			dma_unmap_single(ohci->card.device, payload_bus,
1446					 packet->payload_length, DMA_TO_DEVICE);
1447		packet->ack = RCODE_GENERATION;
1448		return -1;
1449	}
1450
1451	context_append(ctx, d, z, 4 - z);
1452
1453	if (ctx->running)
1454		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455	else
1456		context_run(ctx, 0);
1457
1458	return 0;
1459}
1460
1461static void at_context_flush(struct context *ctx)
1462{
1463	tasklet_disable(&ctx->tasklet);
1464
1465	ctx->flushing = true;
1466	context_tasklet((unsigned long)ctx);
1467	ctx->flushing = false;
1468
1469	tasklet_enable(&ctx->tasklet);
1470}
1471
1472static int handle_at_packet(struct context *context,
1473			    struct descriptor *d,
1474			    struct descriptor *last)
1475{
1476	struct driver_data *driver_data;
1477	struct fw_packet *packet;
1478	struct fw_ohci *ohci = context->ohci;
1479	int evt;
1480
1481	if (last->transfer_status == 0 && !context->flushing)
1482		/* This descriptor isn't done yet, stop iteration. */
1483		return 0;
1484
1485	driver_data = (struct driver_data *) &d[3];
1486	packet = driver_data->packet;
1487	if (packet == NULL)
1488		/* This packet was cancelled, just continue. */
1489		return 1;
1490
1491	if (packet->payload_mapped)
1492		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493				 packet->payload_length, DMA_TO_DEVICE);
1494
1495	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496	packet->timestamp = le16_to_cpu(last->res_count);
1497
1498	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500	switch (evt) {
1501	case OHCI1394_evt_timeout:
1502		/* Async response transmit timed out. */
1503		packet->ack = RCODE_CANCELLED;
1504		break;
1505
1506	case OHCI1394_evt_flushed:
1507		/*
1508		 * The packet was flushed should give same error as
1509		 * when we try to use a stale generation count.
1510		 */
1511		packet->ack = RCODE_GENERATION;
1512		break;
1513
1514	case OHCI1394_evt_missing_ack:
1515		if (context->flushing)
1516			packet->ack = RCODE_GENERATION;
1517		else {
1518			/*
1519			 * Using a valid (current) generation count, but the
1520			 * node is not on the bus or not sending acks.
1521			 */
1522			packet->ack = RCODE_NO_ACK;
1523		}
1524		break;
1525
1526	case ACK_COMPLETE + 0x10:
1527	case ACK_PENDING + 0x10:
1528	case ACK_BUSY_X + 0x10:
1529	case ACK_BUSY_A + 0x10:
1530	case ACK_BUSY_B + 0x10:
1531	case ACK_DATA_ERROR + 0x10:
1532	case ACK_TYPE_ERROR + 0x10:
1533		packet->ack = evt - 0x10;
1534		break;
1535
1536	case OHCI1394_evt_no_status:
1537		if (context->flushing) {
1538			packet->ack = RCODE_GENERATION;
1539			break;
1540		}
1541		fallthrough;
1542
1543	default:
1544		packet->ack = RCODE_SEND_ERROR;
1545		break;
1546	}
1547
1548	packet->callback(packet, &ohci->card, packet->ack);
1549
1550	return 1;
1551}
1552
1553#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558
1559static void handle_local_rom(struct fw_ohci *ohci,
1560			     struct fw_packet *packet, u32 csr)
1561{
1562	struct fw_packet response;
1563	int tcode, length, i;
1564
1565	tcode = HEADER_GET_TCODE(packet->header[0]);
1566	if (TCODE_IS_BLOCK_PACKET(tcode))
1567		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568	else
1569		length = 4;
1570
1571	i = csr - CSR_CONFIG_ROM;
1572	if (i + length > CONFIG_ROM_SIZE) {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_ADDRESS_ERROR, NULL, 0);
1575	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1576		fw_fill_response(&response, packet->header,
1577				 RCODE_TYPE_ERROR, NULL, 0);
1578	} else {
1579		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580				 (void *) ohci->config_rom + i, length);
1581	}
1582
 
 
1583	fw_core_handle_response(&ohci->card, &response);
1584}
1585
1586static void handle_local_lock(struct fw_ohci *ohci,
1587			      struct fw_packet *packet, u32 csr)
1588{
1589	struct fw_packet response;
1590	int tcode, length, ext_tcode, sel, try;
1591	__be32 *payload, lock_old;
1592	u32 lock_arg, lock_data;
1593
1594	tcode = HEADER_GET_TCODE(packet->header[0]);
1595	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1596	payload = packet->payload;
1597	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1598
1599	if (tcode == TCODE_LOCK_REQUEST &&
1600	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1601		lock_arg = be32_to_cpu(payload[0]);
1602		lock_data = be32_to_cpu(payload[1]);
1603	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1604		lock_arg = 0;
1605		lock_data = 0;
1606	} else {
1607		fw_fill_response(&response, packet->header,
1608				 RCODE_TYPE_ERROR, NULL, 0);
1609		goto out;
1610	}
1611
1612	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1613	reg_write(ohci, OHCI1394_CSRData, lock_data);
1614	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1615	reg_write(ohci, OHCI1394_CSRControl, sel);
1616
1617	for (try = 0; try < 20; try++)
1618		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1619			lock_old = cpu_to_be32(reg_read(ohci,
1620							OHCI1394_CSRData));
1621			fw_fill_response(&response, packet->header,
1622					 RCODE_COMPLETE,
1623					 &lock_old, sizeof(lock_old));
1624			goto out;
1625		}
1626
1627	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1628	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1629
1630 out:
 
 
1631	fw_core_handle_response(&ohci->card, &response);
1632}
1633
1634static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1635{
1636	u64 offset, csr;
1637
1638	if (ctx == &ctx->ohci->at_request_ctx) {
1639		packet->ack = ACK_PENDING;
1640		packet->callback(packet, &ctx->ohci->card, packet->ack);
1641	}
1642
1643	offset =
1644		((unsigned long long)
1645		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1646		packet->header[2];
1647	csr = offset - CSR_REGISTER_BASE;
1648
1649	/* Handle config rom reads. */
1650	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1651		handle_local_rom(ctx->ohci, packet, csr);
1652	else switch (csr) {
1653	case CSR_BUS_MANAGER_ID:
1654	case CSR_BANDWIDTH_AVAILABLE:
1655	case CSR_CHANNELS_AVAILABLE_HI:
1656	case CSR_CHANNELS_AVAILABLE_LO:
1657		handle_local_lock(ctx->ohci, packet, csr);
1658		break;
1659	default:
1660		if (ctx == &ctx->ohci->at_request_ctx)
1661			fw_core_handle_request(&ctx->ohci->card, packet);
1662		else
1663			fw_core_handle_response(&ctx->ohci->card, packet);
1664		break;
1665	}
1666
1667	if (ctx == &ctx->ohci->at_response_ctx) {
1668		packet->ack = ACK_COMPLETE;
1669		packet->callback(packet, &ctx->ohci->card, packet->ack);
1670	}
1671}
1672
1673static u32 get_cycle_time(struct fw_ohci *ohci);
1674
1675static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676{
1677	unsigned long flags;
1678	int ret;
1679
1680	spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683	    ctx->ohci->generation == packet->generation) {
1684		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685
1686		// Timestamping on behalf of the hardware.
1687		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1688
1689		handle_local_request(ctx, packet);
1690		return;
1691	}
1692
1693	ret = at_context_queue_packet(ctx, packet);
1694	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1695
1696	if (ret < 0) {
1697		// Timestamping on behalf of the hardware.
1698		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1699
1700		packet->callback(packet, &ctx->ohci->card, packet->ack);
1701	}
1702}
1703
1704static void detect_dead_context(struct fw_ohci *ohci,
1705				const char *name, unsigned int regs)
1706{
1707	u32 ctl;
1708
1709	ctl = reg_read(ohci, CONTROL_SET(regs));
1710	if (ctl & CONTEXT_DEAD)
1711		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1712			name, evts[ctl & 0x1f]);
1713}
1714
1715static void handle_dead_contexts(struct fw_ohci *ohci)
1716{
1717	unsigned int i;
1718	char name[8];
1719
1720	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1721	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1722	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1723	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1724	for (i = 0; i < 32; ++i) {
1725		if (!(ohci->it_context_support & (1 << i)))
1726			continue;
1727		sprintf(name, "IT%u", i);
1728		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1729	}
1730	for (i = 0; i < 32; ++i) {
1731		if (!(ohci->ir_context_support & (1 << i)))
1732			continue;
1733		sprintf(name, "IR%u", i);
1734		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1735	}
1736	/* TODO: maybe try to flush and restart the dead contexts */
1737}
1738
1739static u32 cycle_timer_ticks(u32 cycle_timer)
1740{
1741	u32 ticks;
1742
1743	ticks = cycle_timer & 0xfff;
1744	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1745	ticks += (3072 * 8000) * (cycle_timer >> 25);
1746
1747	return ticks;
1748}
1749
1750/*
1751 * Some controllers exhibit one or more of the following bugs when updating the
1752 * iso cycle timer register:
1753 *  - When the lowest six bits are wrapping around to zero, a read that happens
1754 *    at the same time will return garbage in the lowest ten bits.
1755 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1756 *    not incremented for about 60 ns.
1757 *  - Occasionally, the entire register reads zero.
1758 *
1759 * To catch these, we read the register three times and ensure that the
1760 * difference between each two consecutive reads is approximately the same, i.e.
1761 * less than twice the other.  Furthermore, any negative difference indicates an
1762 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1763 * execute, so we have enough precision to compute the ratio of the differences.)
1764 */
1765static u32 get_cycle_time(struct fw_ohci *ohci)
1766{
1767	u32 c0, c1, c2;
1768	u32 t0, t1, t2;
1769	s32 diff01, diff12;
1770	int i;
1771
1772	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1773		return 0;
1774
1775	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1776
1777	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1778		i = 0;
1779		c1 = c2;
1780		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781		do {
1782			c0 = c1;
1783			c1 = c2;
1784			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785			t0 = cycle_timer_ticks(c0);
1786			t1 = cycle_timer_ticks(c1);
1787			t2 = cycle_timer_ticks(c2);
1788			diff01 = t1 - t0;
1789			diff12 = t2 - t1;
1790		} while ((diff01 <= 0 || diff12 <= 0 ||
1791			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1792			 && i++ < 20);
1793	}
1794
1795	return c2;
1796}
1797
1798/*
1799 * This function has to be called at least every 64 seconds.  The bus_time
1800 * field stores not only the upper 25 bits of the BUS_TIME register but also
1801 * the most significant bit of the cycle timer in bit 6 so that we can detect
1802 * changes in this bit.
1803 */
1804static u32 update_bus_time(struct fw_ohci *ohci)
1805{
1806	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1807
1808	if (unlikely(!ohci->bus_time_running)) {
1809		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1810		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1811		                 (cycle_time_seconds & 0x40);
1812		ohci->bus_time_running = true;
1813	}
1814
1815	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1816		ohci->bus_time += 0x40;
1817
1818	return ohci->bus_time | cycle_time_seconds;
1819}
1820
1821static int get_status_for_port(struct fw_ohci *ohci, int port_index)
 
1822{
1823	int reg;
1824
1825	mutex_lock(&ohci->phy_reg_mutex);
1826	reg = write_phy_reg(ohci, 7, port_index);
1827	if (reg >= 0)
 
 
1828		reg = read_phy_reg(ohci, 8);
1829	mutex_unlock(&ohci->phy_reg_mutex);
1830	if (reg < 0)
1831		return reg;
1832
1833	switch (reg & 0x0f) {
1834	case 0x06:
1835		return 2;	/* is child node (connected to parent node) */
 
 
1836	case 0x0e:
1837		return 3;	/* is parent node (connected to child node) */
 
 
 
 
 
 
1838	}
1839	return 1;		/* not connected */
 
1840}
1841
1842static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1843	int self_id_count)
1844{
 
1845	int i;
1846	u32 entry;
1847
1848	for (i = 0; i < self_id_count; i++) {
1849		entry = ohci->self_id_buffer[i];
1850		if ((self_id & 0xff000000) == (entry & 0xff000000))
 
 
1851			return -1;
1852		if ((self_id & 0xff000000) < (entry & 0xff000000))
1853			return i;
1854	}
1855	return i;
1856}
1857
1858static int initiated_reset(struct fw_ohci *ohci)
1859{
1860	int reg;
1861	int ret = 0;
1862
1863	mutex_lock(&ohci->phy_reg_mutex);
1864	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1865	if (reg >= 0) {
1866		reg = read_phy_reg(ohci, 8);
1867		reg |= 0x40;
1868		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1869		if (reg >= 0) {
1870			reg = read_phy_reg(ohci, 12); /* read register 12 */
1871			if (reg >= 0) {
1872				if ((reg & 0x08) == 0x08) {
1873					/* bit 3 indicates "initiated reset" */
1874					ret = 0x2;
1875				}
1876			}
1877		}
1878	}
1879	mutex_unlock(&ohci->phy_reg_mutex);
1880	return ret;
 
 
 
 
 
 
 
 
1881}
1882
1883/*
1884 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1885 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1886 * Construct the selfID from phy register contents.
1887 */
1888static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1889{
1890	int reg, i, pos, status;
1891	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1892	u32 self_id = 0x8040c800;
 
 
 
 
 
 
1893
1894	reg = reg_read(ohci, OHCI1394_NodeID);
1895	if (!(reg & OHCI1394_NodeID_idValid)) {
1896		ohci_notice(ohci,
1897			    "node ID not valid, new bus reset in progress\n");
1898		return -EBUSY;
1899	}
1900	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1901
1902	reg = ohci_read_phy_reg(&ohci->card, 4);
1903	if (reg < 0)
1904		return reg;
1905	self_id |= ((reg & 0x07) << 8); /* power class */
1906
1907	reg = ohci_read_phy_reg(&ohci->card, 1);
1908	if (reg < 0)
1909		return reg;
1910	self_id |= ((reg & 0x3f) << 16); /* gap count */
1911
1912	for (i = 0; i < 3; i++) {
1913		status = get_status_for_port(ohci, i);
1914		if (status < 0)
1915			return status;
1916		self_id |= ((status & 0x3) << (6 - (i * 2)));
 
 
 
1917	}
1918
1919	self_id |= initiated_reset(ohci);
 
 
 
1920
1921	pos = get_self_id_pos(ohci, self_id, self_id_count);
1922	if (pos >= 0) {
1923		memmove(&(ohci->self_id_buffer[pos+1]),
1924			&(ohci->self_id_buffer[pos]),
1925			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1926		ohci->self_id_buffer[pos] = self_id;
1927		self_id_count++;
1928	}
1929	return self_id_count;
1930}
1931
1932static void bus_reset_work(struct work_struct *work)
1933{
1934	struct fw_ohci *ohci =
1935		container_of(work, struct fw_ohci, bus_reset_work);
1936	int self_id_count, generation, new_generation, i, j;
1937	u32 reg;
1938	void *free_rom = NULL;
1939	dma_addr_t free_rom_bus = 0;
1940	bool is_new_root;
1941
1942	reg = reg_read(ohci, OHCI1394_NodeID);
1943	if (!(reg & OHCI1394_NodeID_idValid)) {
1944		ohci_notice(ohci,
1945			    "node ID not valid, new bus reset in progress\n");
1946		return;
1947	}
1948	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1949		ohci_notice(ohci, "malconfigured bus\n");
1950		return;
1951	}
1952	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1953			       OHCI1394_NodeID_nodeNumber);
1954
1955	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1956	if (!(ohci->is_root && is_new_root))
1957		reg_write(ohci, OHCI1394_LinkControlSet,
1958			  OHCI1394_LinkControl_cycleMaster);
1959	ohci->is_root = is_new_root;
1960
1961	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1962	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1963		ohci_notice(ohci, "self ID receive error\n");
1964		return;
1965	}
1966	/*
1967	 * The count in the SelfIDCount register is the number of
1968	 * bytes in the self ID receive buffer.  Since we also receive
1969	 * the inverted quadlets and a header quadlet, we shift one
1970	 * bit extra to get the actual number of self IDs.
1971	 */
1972	self_id_count = (reg >> 3) & 0xff;
1973
1974	if (self_id_count > 252) {
1975		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1976		return;
1977	}
1978
1979	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
 
1980	rmb();
1981
1982	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1983		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1984		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1985
1986		if (id != ~id2) {
1987			/*
1988			 * If the invalid data looks like a cycle start packet,
1989			 * it's likely to be the result of the cycle master
1990			 * having a wrong gap count.  In this case, the self IDs
1991			 * so far are valid and should be processed so that the
1992			 * bus manager can then correct the gap count.
1993			 */
1994			if (id == 0xffff008f) {
1995				ohci_notice(ohci, "ignoring spurious self IDs\n");
1996				self_id_count = j;
1997				break;
1998			}
1999
2000			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2001				    j, self_id_count, id, id2);
2002			return;
2003		}
2004		ohci->self_id_buffer[j] = id;
2005	}
2006
2007	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2008		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2009		if (self_id_count < 0) {
2010			ohci_notice(ohci,
2011				    "could not construct local self ID\n");
2012			return;
2013		}
2014	}
2015
2016	if (self_id_count == 0) {
2017		ohci_notice(ohci, "no self IDs\n");
2018		return;
2019	}
2020	rmb();
2021
2022	/*
2023	 * Check the consistency of the self IDs we just read.  The
2024	 * problem we face is that a new bus reset can start while we
2025	 * read out the self IDs from the DMA buffer. If this happens,
2026	 * the DMA buffer will be overwritten with new self IDs and we
2027	 * will read out inconsistent data.  The OHCI specification
2028	 * (section 11.2) recommends a technique similar to
2029	 * linux/seqlock.h, where we remember the generation of the
2030	 * self IDs in the buffer before reading them out and compare
2031	 * it to the current generation after reading them out.  If
2032	 * the two generations match we know we have a consistent set
2033	 * of self IDs.
2034	 */
2035
2036	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
 
2037	if (new_generation != generation) {
2038		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2039		return;
2040	}
2041
2042	/* FIXME: Document how the locking works. */
2043	spin_lock_irq(&ohci->lock);
2044
2045	ohci->generation = -1; /* prevent AT packet queueing */
2046	context_stop(&ohci->at_request_ctx);
2047	context_stop(&ohci->at_response_ctx);
2048
2049	spin_unlock_irq(&ohci->lock);
2050
2051	/*
2052	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2053	 * packets in the AT queues and software needs to drain them.
2054	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2055	 */
2056	at_context_flush(&ohci->at_request_ctx);
2057	at_context_flush(&ohci->at_response_ctx);
2058
2059	spin_lock_irq(&ohci->lock);
2060
2061	ohci->generation = generation;
2062	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2063
2064	if (ohci->quirks & QUIRK_RESET_PACKET)
2065		ohci->request_generation = generation;
2066
2067	/*
2068	 * This next bit is unrelated to the AT context stuff but we
2069	 * have to do it under the spinlock also.  If a new config rom
2070	 * was set up before this reset, the old one is now no longer
2071	 * in use and we can free it. Update the config rom pointers
2072	 * to point to the current config rom and clear the
2073	 * next_config_rom pointer so a new update can take place.
2074	 */
2075
2076	if (ohci->next_config_rom != NULL) {
2077		if (ohci->next_config_rom != ohci->config_rom) {
2078			free_rom      = ohci->config_rom;
2079			free_rom_bus  = ohci->config_rom_bus;
 
 
 
 
 
 
 
2080		}
2081		ohci->config_rom      = ohci->next_config_rom;
2082		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2083		ohci->next_config_rom = NULL;
2084
2085		/*
2086		 * Restore config_rom image and manually update
2087		 * config_rom registers.  Writing the header quadlet
2088		 * will indicate that the config rom is ready, so we
2089		 * do that last.
2090		 */
2091		reg_write(ohci, OHCI1394_BusOptions,
2092			  be32_to_cpu(ohci->config_rom[2]));
2093		ohci->config_rom[0] = ohci->next_header;
2094		reg_write(ohci, OHCI1394_ConfigROMhdr,
2095			  be32_to_cpu(ohci->next_header));
2096	}
2097
2098	if (param_remote_dma) {
2099		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2100		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
 
2101	}
2102
2103	spin_unlock_irq(&ohci->lock);
2104
2105	if (free_rom)
2106		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2107
2108	log_selfids(ohci, generation, self_id_count);
2109
2110	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2111				 self_id_count, ohci->self_id_buffer,
2112				 ohci->csr_state_setclear_abdicate);
2113	ohci->csr_state_setclear_abdicate = false;
2114}
2115
2116static irqreturn_t irq_handler(int irq, void *data)
2117{
2118	struct fw_ohci *ohci = data;
2119	u32 event, iso_event;
2120	int i;
2121
2122	event = reg_read(ohci, OHCI1394_IntEventClear);
2123
2124	if (!event || !~event)
2125		return IRQ_NONE;
2126
 
 
 
 
 
2127	/*
2128	 * busReset and postedWriteErr must not be cleared yet
2129	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2130	 */
2131	reg_write(ohci, OHCI1394_IntEventClear,
2132		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
 
2133	log_irqs(ohci, event);
 
 
 
 
 
 
 
2134
2135	if (event & OHCI1394_selfIDComplete)
 
 
2136		queue_work(selfid_workqueue, &ohci->bus_reset_work);
 
2137
2138	if (event & OHCI1394_RQPkt)
2139		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2140
2141	if (event & OHCI1394_RSPkt)
2142		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2143
2144	if (event & OHCI1394_reqTxComplete)
2145		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2146
2147	if (event & OHCI1394_respTxComplete)
2148		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2149
2150	if (event & OHCI1394_isochRx) {
2151		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2152		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2153
2154		while (iso_event) {
2155			i = ffs(iso_event) - 1;
2156			tasklet_schedule(
2157				&ohci->ir_context_list[i].context.tasklet);
2158			iso_event &= ~(1 << i);
2159		}
2160	}
2161
2162	if (event & OHCI1394_isochTx) {
2163		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2164		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2165
2166		while (iso_event) {
2167			i = ffs(iso_event) - 1;
2168			tasklet_schedule(
2169				&ohci->it_context_list[i].context.tasklet);
2170			iso_event &= ~(1 << i);
2171		}
2172	}
2173
2174	if (unlikely(event & OHCI1394_regAccessFail))
2175		ohci_err(ohci, "register access failure\n");
2176
2177	if (unlikely(event & OHCI1394_postedWriteErr)) {
2178		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2179		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2180		reg_write(ohci, OHCI1394_IntEventClear,
2181			  OHCI1394_postedWriteErr);
2182		if (printk_ratelimit())
2183			ohci_err(ohci, "PCI posted write error\n");
2184	}
2185
2186	if (unlikely(event & OHCI1394_cycleTooLong)) {
2187		if (printk_ratelimit())
2188			ohci_notice(ohci, "isochronous cycle too long\n");
2189		reg_write(ohci, OHCI1394_LinkControlSet,
2190			  OHCI1394_LinkControl_cycleMaster);
2191	}
2192
2193	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2194		/*
2195		 * We need to clear this event bit in order to make
2196		 * cycleMatch isochronous I/O work.  In theory we should
2197		 * stop active cycleMatch iso contexts now and restart
2198		 * them at least two cycles later.  (FIXME?)
2199		 */
2200		if (printk_ratelimit())
2201			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2202	}
2203
2204	if (unlikely(event & OHCI1394_unrecoverableError))
2205		handle_dead_contexts(ohci);
2206
2207	if (event & OHCI1394_cycle64Seconds) {
2208		spin_lock(&ohci->lock);
2209		update_bus_time(ohci);
2210		spin_unlock(&ohci->lock);
2211	} else
2212		flush_writes(ohci);
2213
2214	return IRQ_HANDLED;
2215}
2216
2217static int software_reset(struct fw_ohci *ohci)
2218{
2219	u32 val;
2220	int i;
2221
2222	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2223	for (i = 0; i < 500; i++) {
2224		val = reg_read(ohci, OHCI1394_HCControlSet);
2225		if (!~val)
2226			return -ENODEV; /* Card was ejected. */
2227
2228		if (!(val & OHCI1394_HCControl_softReset))
2229			return 0;
2230
2231		msleep(1);
2232	}
2233
2234	return -EBUSY;
2235}
2236
2237static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2238{
2239	size_t size = length * 4;
2240
2241	memcpy(dest, src, size);
2242	if (size < CONFIG_ROM_SIZE)
2243		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2244}
2245
2246static int configure_1394a_enhancements(struct fw_ohci *ohci)
2247{
2248	bool enable_1394a;
2249	int ret, clear, set, offset;
2250
2251	/* Check if the driver should configure link and PHY. */
2252	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2253	      OHCI1394_HCControl_programPhyEnable))
2254		return 0;
2255
2256	/* Paranoia: check whether the PHY supports 1394a, too. */
2257	enable_1394a = false;
2258	ret = read_phy_reg(ohci, 2);
2259	if (ret < 0)
2260		return ret;
2261	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2262		ret = read_paged_phy_reg(ohci, 1, 8);
2263		if (ret < 0)
2264			return ret;
2265		if (ret >= 1)
2266			enable_1394a = true;
2267	}
2268
2269	if (ohci->quirks & QUIRK_NO_1394A)
2270		enable_1394a = false;
2271
2272	/* Configure PHY and link consistently. */
2273	if (enable_1394a) {
2274		clear = 0;
2275		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2276	} else {
2277		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2278		set = 0;
2279	}
2280	ret = update_phy_reg(ohci, 5, clear, set);
2281	if (ret < 0)
2282		return ret;
2283
2284	if (enable_1394a)
2285		offset = OHCI1394_HCControlSet;
2286	else
2287		offset = OHCI1394_HCControlClear;
2288	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2289
2290	/* Clean up: configuration has been taken care of. */
2291	reg_write(ohci, OHCI1394_HCControlClear,
2292		  OHCI1394_HCControl_programPhyEnable);
2293
2294	return 0;
2295}
2296
2297static int probe_tsb41ba3d(struct fw_ohci *ohci)
2298{
2299	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2300	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2301	int reg, i;
2302
2303	reg = read_phy_reg(ohci, 2);
2304	if (reg < 0)
2305		return reg;
2306	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2307		return 0;
2308
2309	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2310		reg = read_paged_phy_reg(ohci, 1, i + 10);
2311		if (reg < 0)
2312			return reg;
2313		if (reg != id[i])
2314			return 0;
2315	}
2316	return 1;
2317}
2318
2319static int ohci_enable(struct fw_card *card,
2320		       const __be32 *config_rom, size_t length)
2321{
2322	struct fw_ohci *ohci = fw_ohci(card);
2323	u32 lps, version, irqs;
2324	int i, ret;
2325
2326	ret = software_reset(ohci);
2327	if (ret < 0) {
2328		ohci_err(ohci, "failed to reset ohci card\n");
2329		return ret;
2330	}
2331
2332	/*
2333	 * Now enable LPS, which we need in order to start accessing
2334	 * most of the registers.  In fact, on some cards (ALI M5251),
2335	 * accessing registers in the SClk domain without LPS enabled
2336	 * will lock up the machine.  Wait 50msec to make sure we have
2337	 * full link enabled.  However, with some cards (well, at least
2338	 * a JMicron PCIe card), we have to try again sometimes.
2339	 *
2340	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2341	 * cannot actually use the phy at that time.  These need tens of
2342	 * millisecods pause between LPS write and first phy access too.
2343	 */
2344
2345	reg_write(ohci, OHCI1394_HCControlSet,
2346		  OHCI1394_HCControl_LPS |
2347		  OHCI1394_HCControl_postedWriteEnable);
2348	flush_writes(ohci);
2349
2350	for (lps = 0, i = 0; !lps && i < 3; i++) {
2351		msleep(50);
2352		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2353		      OHCI1394_HCControl_LPS;
2354	}
2355
2356	if (!lps) {
2357		ohci_err(ohci, "failed to set Link Power Status\n");
2358		return -EIO;
2359	}
2360
2361	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2362		ret = probe_tsb41ba3d(ohci);
2363		if (ret < 0)
2364			return ret;
2365		if (ret)
2366			ohci_notice(ohci, "local TSB41BA3D phy\n");
2367		else
2368			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2369	}
2370
2371	reg_write(ohci, OHCI1394_HCControlClear,
2372		  OHCI1394_HCControl_noByteSwapData);
2373
2374	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2375	reg_write(ohci, OHCI1394_LinkControlSet,
2376		  OHCI1394_LinkControl_cycleTimerEnable |
2377		  OHCI1394_LinkControl_cycleMaster);
2378
2379	reg_write(ohci, OHCI1394_ATRetries,
2380		  OHCI1394_MAX_AT_REQ_RETRIES |
2381		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2382		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2383		  (200 << 16));
2384
2385	ohci->bus_time_running = false;
2386
2387	for (i = 0; i < 32; i++)
2388		if (ohci->ir_context_support & (1 << i))
2389			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2390				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2391
2392	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2393	if (version >= OHCI_VERSION_1_1) {
2394		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2395			  0xfffffffe);
2396		card->broadcast_channel_auto_allocated = true;
2397	}
2398
2399	/* Get implemented bits of the priority arbitration request counter. */
2400	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2401	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2402	reg_write(ohci, OHCI1394_FairnessControl, 0);
2403	card->priority_budget_implemented = ohci->pri_req_max != 0;
2404
2405	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2406	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2407	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2408
2409	ret = configure_1394a_enhancements(ohci);
2410	if (ret < 0)
2411		return ret;
2412
2413	/* Activate link_on bit and contender bit in our self ID packets.*/
2414	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2415	if (ret < 0)
2416		return ret;
2417
2418	/*
2419	 * When the link is not yet enabled, the atomic config rom
2420	 * update mechanism described below in ohci_set_config_rom()
2421	 * is not active.  We have to update ConfigRomHeader and
2422	 * BusOptions manually, and the write to ConfigROMmap takes
2423	 * effect immediately.  We tie this to the enabling of the
2424	 * link, so we have a valid config rom before enabling - the
2425	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2426	 * values before enabling.
2427	 *
2428	 * However, when the ConfigROMmap is written, some controllers
2429	 * always read back quadlets 0 and 2 from the config rom to
2430	 * the ConfigRomHeader and BusOptions registers on bus reset.
2431	 * They shouldn't do that in this initial case where the link
2432	 * isn't enabled.  This means we have to use the same
2433	 * workaround here, setting the bus header to 0 and then write
2434	 * the right values in the bus reset tasklet.
2435	 */
2436
2437	if (config_rom) {
2438		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2439							    &ohci->next_config_rom_bus, GFP_KERNEL);
2440		if (ohci->next_config_rom == NULL)
2441			return -ENOMEM;
2442
2443		copy_config_rom(ohci->next_config_rom, config_rom, length);
2444	} else {
2445		/*
2446		 * In the suspend case, config_rom is NULL, which
2447		 * means that we just reuse the old config rom.
2448		 */
2449		ohci->next_config_rom = ohci->config_rom;
2450		ohci->next_config_rom_bus = ohci->config_rom_bus;
2451	}
2452
2453	ohci->next_header = ohci->next_config_rom[0];
2454	ohci->next_config_rom[0] = 0;
2455	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2456	reg_write(ohci, OHCI1394_BusOptions,
2457		  be32_to_cpu(ohci->next_config_rom[2]));
2458	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2459
2460	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2461
2462	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2463		OHCI1394_RQPkt | OHCI1394_RSPkt |
2464		OHCI1394_isochTx | OHCI1394_isochRx |
2465		OHCI1394_postedWriteErr |
2466		OHCI1394_selfIDComplete |
2467		OHCI1394_regAccessFail |
2468		OHCI1394_cycleInconsistent |
2469		OHCI1394_unrecoverableError |
2470		OHCI1394_cycleTooLong |
2471		OHCI1394_masterIntEnable;
2472	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2473		irqs |= OHCI1394_busReset;
2474	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2475
2476	reg_write(ohci, OHCI1394_HCControlSet,
2477		  OHCI1394_HCControl_linkEnable |
2478		  OHCI1394_HCControl_BIBimageValid);
2479
2480	reg_write(ohci, OHCI1394_LinkControlSet,
2481		  OHCI1394_LinkControl_rcvSelfID |
2482		  OHCI1394_LinkControl_rcvPhyPkt);
2483
2484	ar_context_run(&ohci->ar_request_ctx);
2485	ar_context_run(&ohci->ar_response_ctx);
2486
2487	flush_writes(ohci);
2488
2489	/* We are ready to go, reset bus to finish initialization. */
2490	fw_schedule_bus_reset(&ohci->card, false, true);
2491
2492	return 0;
2493}
2494
2495static int ohci_set_config_rom(struct fw_card *card,
2496			       const __be32 *config_rom, size_t length)
2497{
2498	struct fw_ohci *ohci;
2499	__be32 *next_config_rom;
2500	dma_addr_t next_config_rom_bus;
2501
2502	ohci = fw_ohci(card);
2503
2504	/*
2505	 * When the OHCI controller is enabled, the config rom update
2506	 * mechanism is a bit tricky, but easy enough to use.  See
2507	 * section 5.5.6 in the OHCI specification.
2508	 *
2509	 * The OHCI controller caches the new config rom address in a
2510	 * shadow register (ConfigROMmapNext) and needs a bus reset
2511	 * for the changes to take place.  When the bus reset is
2512	 * detected, the controller loads the new values for the
2513	 * ConfigRomHeader and BusOptions registers from the specified
2514	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2515	 * shadow register. All automatically and atomically.
2516	 *
2517	 * Now, there's a twist to this story.  The automatic load of
2518	 * ConfigRomHeader and BusOptions doesn't honor the
2519	 * noByteSwapData bit, so with a be32 config rom, the
2520	 * controller will load be32 values in to these registers
2521	 * during the atomic update, even on litte endian
2522	 * architectures.  The workaround we use is to put a 0 in the
2523	 * header quadlet; 0 is endian agnostic and means that the
2524	 * config rom isn't ready yet.  In the bus reset tasklet we
2525	 * then set up the real values for the two registers.
2526	 *
2527	 * We use ohci->lock to avoid racing with the code that sets
2528	 * ohci->next_config_rom to NULL (see bus_reset_work).
2529	 */
2530
2531	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2532					      &next_config_rom_bus, GFP_KERNEL);
2533	if (next_config_rom == NULL)
2534		return -ENOMEM;
2535
2536	spin_lock_irq(&ohci->lock);
2537
2538	/*
2539	 * If there is not an already pending config_rom update,
2540	 * push our new allocation into the ohci->next_config_rom
2541	 * and then mark the local variable as null so that we
2542	 * won't deallocate the new buffer.
2543	 *
2544	 * OTOH, if there is a pending config_rom update, just
2545	 * use that buffer with the new config_rom data, and
2546	 * let this routine free the unused DMA allocation.
2547	 */
2548
2549	if (ohci->next_config_rom == NULL) {
2550		ohci->next_config_rom = next_config_rom;
2551		ohci->next_config_rom_bus = next_config_rom_bus;
2552		next_config_rom = NULL;
2553	}
2554
2555	copy_config_rom(ohci->next_config_rom, config_rom, length);
2556
2557	ohci->next_header = config_rom[0];
2558	ohci->next_config_rom[0] = 0;
2559
2560	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
 
2561
2562	spin_unlock_irq(&ohci->lock);
 
2563
2564	/* If we didn't use the DMA allocation, delete it. */
2565	if (next_config_rom != NULL) {
2566		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2567				   next_config_rom_bus);
2568	}
2569
2570	/*
2571	 * Now initiate a bus reset to have the changes take
2572	 * effect. We clean up the old config rom memory and DMA
2573	 * mappings in the bus reset tasklet, since the OHCI
2574	 * controller could need to access it before the bus reset
2575	 * takes effect.
2576	 */
2577
2578	fw_schedule_bus_reset(&ohci->card, true, true);
2579
2580	return 0;
2581}
2582
2583static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2584{
2585	struct fw_ohci *ohci = fw_ohci(card);
2586
2587	at_context_transmit(&ohci->at_request_ctx, packet);
2588}
2589
2590static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2591{
2592	struct fw_ohci *ohci = fw_ohci(card);
2593
2594	at_context_transmit(&ohci->at_response_ctx, packet);
2595}
2596
2597static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2598{
2599	struct fw_ohci *ohci = fw_ohci(card);
2600	struct context *ctx = &ohci->at_request_ctx;
2601	struct driver_data *driver_data = packet->driver_data;
2602	int ret = -ENOENT;
2603
2604	tasklet_disable_in_atomic(&ctx->tasklet);
2605
2606	if (packet->ack != 0)
2607		goto out;
2608
2609	if (packet->payload_mapped)
2610		dma_unmap_single(ohci->card.device, packet->payload_bus,
2611				 packet->payload_length, DMA_TO_DEVICE);
2612
2613	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2614	driver_data->packet = NULL;
2615	packet->ack = RCODE_CANCELLED;
2616
2617	// Timestamping on behalf of the hardware.
2618	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2619
2620	packet->callback(packet, &ohci->card, packet->ack);
2621	ret = 0;
2622 out:
2623	tasklet_enable(&ctx->tasklet);
2624
2625	return ret;
2626}
2627
2628static int ohci_enable_phys_dma(struct fw_card *card,
2629				int node_id, int generation)
2630{
2631	struct fw_ohci *ohci = fw_ohci(card);
2632	unsigned long flags;
2633	int n, ret = 0;
2634
2635	if (param_remote_dma)
2636		return 0;
2637
2638	/*
2639	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2640	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2641	 */
2642
2643	spin_lock_irqsave(&ohci->lock, flags);
2644
2645	if (ohci->generation != generation) {
2646		ret = -ESTALE;
2647		goto out;
2648	}
2649
2650	/*
2651	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2652	 * enabled for _all_ nodes on remote buses.
2653	 */
2654
2655	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2656	if (n < 32)
2657		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2658	else
2659		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2660
2661	flush_writes(ohci);
2662 out:
2663	spin_unlock_irqrestore(&ohci->lock, flags);
2664
2665	return ret;
2666}
2667
2668static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2669{
2670	struct fw_ohci *ohci = fw_ohci(card);
2671	unsigned long flags;
2672	u32 value;
2673
2674	switch (csr_offset) {
2675	case CSR_STATE_CLEAR:
2676	case CSR_STATE_SET:
2677		if (ohci->is_root &&
2678		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2679		     OHCI1394_LinkControl_cycleMaster))
2680			value = CSR_STATE_BIT_CMSTR;
2681		else
2682			value = 0;
2683		if (ohci->csr_state_setclear_abdicate)
2684			value |= CSR_STATE_BIT_ABDICATE;
2685
2686		return value;
2687
2688	case CSR_NODE_IDS:
2689		return reg_read(ohci, OHCI1394_NodeID) << 16;
2690
2691	case CSR_CYCLE_TIME:
2692		return get_cycle_time(ohci);
2693
2694	case CSR_BUS_TIME:
2695		/*
2696		 * We might be called just after the cycle timer has wrapped
2697		 * around but just before the cycle64Seconds handler, so we
2698		 * better check here, too, if the bus time needs to be updated.
2699		 */
2700		spin_lock_irqsave(&ohci->lock, flags);
2701		value = update_bus_time(ohci);
2702		spin_unlock_irqrestore(&ohci->lock, flags);
2703		return value;
2704
 
 
 
2705	case CSR_BUSY_TIMEOUT:
2706		value = reg_read(ohci, OHCI1394_ATRetries);
2707		return (value >> 4) & 0x0ffff00f;
2708
2709	case CSR_PRIORITY_BUDGET:
2710		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2711			(ohci->pri_req_max << 8);
2712
2713	default:
2714		WARN_ON(1);
2715		return 0;
2716	}
2717}
2718
2719static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2720{
2721	struct fw_ohci *ohci = fw_ohci(card);
2722	unsigned long flags;
2723
2724	switch (csr_offset) {
2725	case CSR_STATE_CLEAR:
2726		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2727			reg_write(ohci, OHCI1394_LinkControlClear,
2728				  OHCI1394_LinkControl_cycleMaster);
2729			flush_writes(ohci);
2730		}
2731		if (value & CSR_STATE_BIT_ABDICATE)
2732			ohci->csr_state_setclear_abdicate = false;
2733		break;
2734
2735	case CSR_STATE_SET:
2736		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2737			reg_write(ohci, OHCI1394_LinkControlSet,
2738				  OHCI1394_LinkControl_cycleMaster);
2739			flush_writes(ohci);
2740		}
2741		if (value & CSR_STATE_BIT_ABDICATE)
2742			ohci->csr_state_setclear_abdicate = true;
2743		break;
2744
2745	case CSR_NODE_IDS:
2746		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2747		flush_writes(ohci);
2748		break;
2749
2750	case CSR_CYCLE_TIME:
2751		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2752		reg_write(ohci, OHCI1394_IntEventSet,
2753			  OHCI1394_cycleInconsistent);
2754		flush_writes(ohci);
2755		break;
2756
2757	case CSR_BUS_TIME:
2758		spin_lock_irqsave(&ohci->lock, flags);
2759		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2760		                 (value & ~0x7f);
2761		spin_unlock_irqrestore(&ohci->lock, flags);
2762		break;
2763
2764	case CSR_BUSY_TIMEOUT:
2765		value = (value & 0xf) | ((value & 0xf) << 4) |
2766			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2767		reg_write(ohci, OHCI1394_ATRetries, value);
2768		flush_writes(ohci);
2769		break;
2770
2771	case CSR_PRIORITY_BUDGET:
2772		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2773		flush_writes(ohci);
2774		break;
2775
2776	default:
2777		WARN_ON(1);
2778		break;
2779	}
2780}
2781
2782static void flush_iso_completions(struct iso_context *ctx)
2783{
 
 
 
 
 
2784	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2785			      ctx->header_length, ctx->header,
2786			      ctx->base.callback_data);
2787	ctx->header_length = 0;
2788}
2789
2790static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2791{
2792	u32 *ctx_hdr;
2793
2794	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2795		if (ctx->base.drop_overflow_headers)
2796			return;
2797		flush_iso_completions(ctx);
2798	}
2799
2800	ctx_hdr = ctx->header + ctx->header_length;
2801	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2802
2803	/*
2804	 * The two iso header quadlets are byteswapped to little
2805	 * endian by the controller, but we want to present them
2806	 * as big endian for consistency with the bus endianness.
2807	 */
2808	if (ctx->base.header_size > 0)
2809		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2810	if (ctx->base.header_size > 4)
2811		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2812	if (ctx->base.header_size > 8)
2813		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2814	ctx->header_length += ctx->base.header_size;
2815}
2816
2817static int handle_ir_packet_per_buffer(struct context *context,
2818				       struct descriptor *d,
2819				       struct descriptor *last)
2820{
2821	struct iso_context *ctx =
2822		container_of(context, struct iso_context, context);
2823	struct descriptor *pd;
2824	u32 buffer_dma;
2825
2826	for (pd = d; pd <= last; pd++)
2827		if (pd->transfer_status)
2828			break;
2829	if (pd > last)
2830		/* Descriptor(s) not done yet, stop iteration */
2831		return 0;
2832
2833	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2834		d++;
2835		buffer_dma = le32_to_cpu(d->data_address);
2836		dma_sync_single_range_for_cpu(context->ohci->card.device,
2837					      buffer_dma & PAGE_MASK,
2838					      buffer_dma & ~PAGE_MASK,
2839					      le16_to_cpu(d->req_count),
2840					      DMA_FROM_DEVICE);
2841	}
2842
2843	copy_iso_headers(ctx, (u32 *) (last + 1));
2844
2845	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2846		flush_iso_completions(ctx);
2847
2848	return 1;
2849}
2850
2851/* d == last because each descriptor block is only a single descriptor. */
2852static int handle_ir_buffer_fill(struct context *context,
2853				 struct descriptor *d,
2854				 struct descriptor *last)
2855{
2856	struct iso_context *ctx =
2857		container_of(context, struct iso_context, context);
2858	unsigned int req_count, res_count, completed;
2859	u32 buffer_dma;
2860
2861	req_count = le16_to_cpu(last->req_count);
2862	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2863	completed = req_count - res_count;
2864	buffer_dma = le32_to_cpu(last->data_address);
2865
2866	if (completed > 0) {
2867		ctx->mc_buffer_bus = buffer_dma;
2868		ctx->mc_completed = completed;
2869	}
2870
2871	if (res_count != 0)
2872		/* Descriptor(s) not done yet, stop iteration */
2873		return 0;
2874
2875	dma_sync_single_range_for_cpu(context->ohci->card.device,
2876				      buffer_dma & PAGE_MASK,
2877				      buffer_dma & ~PAGE_MASK,
2878				      completed, DMA_FROM_DEVICE);
2879
2880	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
 
 
 
2881		ctx->base.callback.mc(&ctx->base,
2882				      buffer_dma + completed,
2883				      ctx->base.callback_data);
2884		ctx->mc_completed = 0;
2885	}
2886
2887	return 1;
2888}
2889
2890static void flush_ir_buffer_fill(struct iso_context *ctx)
2891{
2892	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2893				      ctx->mc_buffer_bus & PAGE_MASK,
2894				      ctx->mc_buffer_bus & ~PAGE_MASK,
2895				      ctx->mc_completed, DMA_FROM_DEVICE);
2896
 
 
 
2897	ctx->base.callback.mc(&ctx->base,
2898			      ctx->mc_buffer_bus + ctx->mc_completed,
2899			      ctx->base.callback_data);
2900	ctx->mc_completed = 0;
2901}
2902
2903static inline void sync_it_packet_for_cpu(struct context *context,
2904					  struct descriptor *pd)
2905{
2906	__le16 control;
2907	u32 buffer_dma;
2908
2909	/* only packets beginning with OUTPUT_MORE* have data buffers */
2910	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2911		return;
2912
2913	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2914	pd += 2;
2915
2916	/*
2917	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2918	 * data buffer is in the context program's coherent page and must not
2919	 * be synced.
2920	 */
2921	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2922	    (context->current_bus          & PAGE_MASK)) {
2923		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2924			return;
2925		pd++;
2926	}
2927
2928	do {
2929		buffer_dma = le32_to_cpu(pd->data_address);
2930		dma_sync_single_range_for_cpu(context->ohci->card.device,
2931					      buffer_dma & PAGE_MASK,
2932					      buffer_dma & ~PAGE_MASK,
2933					      le16_to_cpu(pd->req_count),
2934					      DMA_TO_DEVICE);
2935		control = pd->control;
2936		pd++;
2937	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2938}
2939
2940static int handle_it_packet(struct context *context,
2941			    struct descriptor *d,
2942			    struct descriptor *last)
2943{
2944	struct iso_context *ctx =
2945		container_of(context, struct iso_context, context);
2946	struct descriptor *pd;
2947	__be32 *ctx_hdr;
2948
2949	for (pd = d; pd <= last; pd++)
2950		if (pd->transfer_status)
2951			break;
2952	if (pd > last)
2953		/* Descriptor(s) not done yet, stop iteration */
2954		return 0;
2955
2956	sync_it_packet_for_cpu(context, d);
2957
2958	if (ctx->header_length + 4 > PAGE_SIZE) {
2959		if (ctx->base.drop_overflow_headers)
2960			return 1;
2961		flush_iso_completions(ctx);
2962	}
2963
2964	ctx_hdr = ctx->header + ctx->header_length;
2965	ctx->last_timestamp = le16_to_cpu(last->res_count);
2966	/* Present this value as big-endian to match the receive code */
2967	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2968			       le16_to_cpu(pd->res_count));
2969	ctx->header_length += 4;
2970
2971	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2972		flush_iso_completions(ctx);
2973
2974	return 1;
2975}
2976
2977static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2978{
2979	u32 hi = channels >> 32, lo = channels;
2980
2981	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2982	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2983	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2984	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2985	ohci->mc_channels = channels;
2986}
2987
2988static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2989				int type, int channel, size_t header_size)
2990{
2991	struct fw_ohci *ohci = fw_ohci(card);
2992	struct iso_context *ctx;
2993	descriptor_callback_t callback;
2994	u64 *channels;
2995	u32 *mask, regs;
2996	int index, ret = -EBUSY;
2997
2998	spin_lock_irq(&ohci->lock);
 
 
 
 
 
 
 
 
 
 
 
2999
3000	switch (type) {
3001	case FW_ISO_CONTEXT_TRANSMIT:
3002		mask     = &ohci->it_context_mask;
3003		callback = handle_it_packet;
3004		index    = ffs(*mask) - 1;
3005		if (index >= 0) {
3006			*mask &= ~(1 << index);
3007			regs = OHCI1394_IsoXmitContextBase(index);
3008			ctx  = &ohci->it_context_list[index];
3009		}
3010		break;
 
3011
3012	case FW_ISO_CONTEXT_RECEIVE:
3013		channels = &ohci->ir_context_channels;
3014		mask     = &ohci->ir_context_mask;
3015		callback = handle_ir_packet_per_buffer;
3016		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3017		if (index >= 0) {
3018			*channels &= ~(1ULL << channel);
3019			*mask     &= ~(1 << index);
3020			regs = OHCI1394_IsoRcvContextBase(index);
3021			ctx  = &ohci->ir_context_list[index];
3022		}
3023		break;
3024
3025	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3026		mask     = &ohci->ir_context_mask;
3027		callback = handle_ir_buffer_fill;
3028		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3029		if (index >= 0) {
3030			ohci->mc_allocated = true;
3031			*mask &= ~(1 << index);
3032			regs = OHCI1394_IsoRcvContextBase(index);
3033			ctx  = &ohci->ir_context_list[index];
3034		}
3035		break;
3036
3037	default:
3038		index = -1;
3039		ret = -ENOSYS;
3040	}
3041
3042	spin_unlock_irq(&ohci->lock);
3043
3044	if (index < 0)
3045		return ERR_PTR(ret);
3046
3047	memset(ctx, 0, sizeof(*ctx));
3048	ctx->header_length = 0;
3049	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3050	if (ctx->header == NULL) {
3051		ret = -ENOMEM;
3052		goto out;
3053	}
3054	ret = context_init(&ctx->context, ohci, regs, callback);
3055	if (ret < 0)
3056		goto out_with_header;
 
3057
3058	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3059		set_multichannel_mask(ohci, 0);
3060		ctx->mc_completed = 0;
3061	}
3062
3063	return &ctx->base;
3064
3065 out_with_header:
3066	free_page((unsigned long)ctx->header);
3067 out:
3068	spin_lock_irq(&ohci->lock);
3069
3070	switch (type) {
3071	case FW_ISO_CONTEXT_RECEIVE:
3072		*channels |= 1ULL << channel;
3073		break;
3074
3075	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3076		ohci->mc_allocated = false;
3077		break;
 
 
3078	}
3079	*mask |= 1 << index;
3080
3081	spin_unlock_irq(&ohci->lock);
3082
3083	return ERR_PTR(ret);
3084}
3085
3086static int ohci_start_iso(struct fw_iso_context *base,
3087			  s32 cycle, u32 sync, u32 tags)
3088{
3089	struct iso_context *ctx = container_of(base, struct iso_context, base);
3090	struct fw_ohci *ohci = ctx->context.ohci;
3091	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3092	int index;
3093
3094	/* the controller cannot start without any queued packets */
3095	if (ctx->context.last->branch_address == 0)
3096		return -ENODATA;
3097
3098	switch (ctx->base.type) {
3099	case FW_ISO_CONTEXT_TRANSMIT:
3100		index = ctx - ohci->it_context_list;
3101		match = 0;
3102		if (cycle >= 0)
3103			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3104				(cycle & 0x7fff) << 16;
3105
3106		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3107		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3108		context_run(&ctx->context, match);
3109		break;
3110
3111	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3112		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3113		fallthrough;
3114	case FW_ISO_CONTEXT_RECEIVE:
3115		index = ctx - ohci->ir_context_list;
3116		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3117		if (cycle >= 0) {
3118			match |= (cycle & 0x07fff) << 12;
3119			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3120		}
3121
3122		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3123		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3124		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3125		context_run(&ctx->context, control);
3126
3127		ctx->sync = sync;
3128		ctx->tags = tags;
3129
3130		break;
3131	}
3132
3133	return 0;
3134}
3135
3136static int ohci_stop_iso(struct fw_iso_context *base)
3137{
3138	struct fw_ohci *ohci = fw_ohci(base->card);
3139	struct iso_context *ctx = container_of(base, struct iso_context, base);
3140	int index;
3141
3142	switch (ctx->base.type) {
3143	case FW_ISO_CONTEXT_TRANSMIT:
3144		index = ctx - ohci->it_context_list;
3145		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3146		break;
3147
3148	case FW_ISO_CONTEXT_RECEIVE:
3149	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150		index = ctx - ohci->ir_context_list;
3151		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3152		break;
3153	}
3154	flush_writes(ohci);
3155	context_stop(&ctx->context);
3156	tasklet_kill(&ctx->context.tasklet);
3157
3158	return 0;
3159}
3160
3161static void ohci_free_iso_context(struct fw_iso_context *base)
3162{
3163	struct fw_ohci *ohci = fw_ohci(base->card);
3164	struct iso_context *ctx = container_of(base, struct iso_context, base);
3165	unsigned long flags;
3166	int index;
3167
3168	ohci_stop_iso(base);
3169	context_release(&ctx->context);
3170	free_page((unsigned long)ctx->header);
3171
3172	spin_lock_irqsave(&ohci->lock, flags);
3173
3174	switch (base->type) {
3175	case FW_ISO_CONTEXT_TRANSMIT:
3176		index = ctx - ohci->it_context_list;
3177		ohci->it_context_mask |= 1 << index;
3178		break;
3179
3180	case FW_ISO_CONTEXT_RECEIVE:
3181		index = ctx - ohci->ir_context_list;
3182		ohci->ir_context_mask |= 1 << index;
3183		ohci->ir_context_channels |= 1ULL << base->channel;
3184		break;
3185
3186	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3187		index = ctx - ohci->ir_context_list;
3188		ohci->ir_context_mask |= 1 << index;
3189		ohci->ir_context_channels |= ohci->mc_channels;
3190		ohci->mc_channels = 0;
3191		ohci->mc_allocated = false;
3192		break;
3193	}
3194
3195	spin_unlock_irqrestore(&ohci->lock, flags);
3196}
3197
3198static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3199{
3200	struct fw_ohci *ohci = fw_ohci(base->card);
3201	unsigned long flags;
3202	int ret;
3203
3204	switch (base->type) {
3205	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
 
 
3206
3207		spin_lock_irqsave(&ohci->lock, flags);
3208
3209		/* Don't allow multichannel to grab other contexts' channels. */
3210		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3211			*channels = ohci->ir_context_channels;
3212			ret = -EBUSY;
3213		} else {
3214			set_multichannel_mask(ohci, *channels);
3215			ret = 0;
3216		}
3217
3218		spin_unlock_irqrestore(&ohci->lock, flags);
3219
3220		break;
3221	default:
3222		ret = -EINVAL;
3223	}
3224
3225	return ret;
3226}
3227
3228#ifdef CONFIG_PM
3229static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3230{
3231	int i;
3232	struct iso_context *ctx;
3233
3234	for (i = 0 ; i < ohci->n_ir ; i++) {
3235		ctx = &ohci->ir_context_list[i];
3236		if (ctx->context.running)
3237			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3238	}
3239
3240	for (i = 0 ; i < ohci->n_it ; i++) {
3241		ctx = &ohci->it_context_list[i];
3242		if (ctx->context.running)
3243			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3244	}
3245}
3246#endif
3247
3248static int queue_iso_transmit(struct iso_context *ctx,
3249			      struct fw_iso_packet *packet,
3250			      struct fw_iso_buffer *buffer,
3251			      unsigned long payload)
3252{
3253	struct descriptor *d, *last, *pd;
3254	struct fw_iso_packet *p;
3255	__le32 *header;
3256	dma_addr_t d_bus, page_bus;
3257	u32 z, header_z, payload_z, irq;
3258	u32 payload_index, payload_end_index, next_page_index;
3259	int page, end_page, i, length, offset;
3260
3261	p = packet;
3262	payload_index = payload;
3263
3264	if (p->skip)
3265		z = 1;
3266	else
3267		z = 2;
3268	if (p->header_length > 0)
3269		z++;
3270
3271	/* Determine the first page the payload isn't contained in. */
3272	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3273	if (p->payload_length > 0)
3274		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3275	else
3276		payload_z = 0;
3277
3278	z += payload_z;
3279
3280	/* Get header size in number of descriptors. */
3281	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3282
3283	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3284	if (d == NULL)
3285		return -ENOMEM;
3286
3287	if (!p->skip) {
3288		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3289		d[0].req_count = cpu_to_le16(8);
3290		/*
3291		 * Link the skip address to this descriptor itself.  This causes
3292		 * a context to skip a cycle whenever lost cycles or FIFO
3293		 * overruns occur, without dropping the data.  The application
3294		 * should then decide whether this is an error condition or not.
3295		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3296		 */
3297		d[0].branch_address = cpu_to_le32(d_bus | z);
3298
3299		header = (__le32 *) &d[1];
3300		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3301					IT_HEADER_TAG(p->tag) |
3302					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3303					IT_HEADER_CHANNEL(ctx->base.channel) |
3304					IT_HEADER_SPEED(ctx->base.speed));
3305		header[1] =
3306			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3307							  p->payload_length));
3308	}
3309
3310	if (p->header_length > 0) {
3311		d[2].req_count    = cpu_to_le16(p->header_length);
3312		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3313		memcpy(&d[z], p->header, p->header_length);
3314	}
3315
3316	pd = d + z - payload_z;
3317	payload_end_index = payload_index + p->payload_length;
3318	for (i = 0; i < payload_z; i++) {
3319		page               = payload_index >> PAGE_SHIFT;
3320		offset             = payload_index & ~PAGE_MASK;
3321		next_page_index    = (page + 1) << PAGE_SHIFT;
3322		length             =
3323			min(next_page_index, payload_end_index) - payload_index;
3324		pd[i].req_count    = cpu_to_le16(length);
3325
3326		page_bus = page_private(buffer->pages[page]);
3327		pd[i].data_address = cpu_to_le32(page_bus + offset);
3328
3329		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3330						 page_bus, offset, length,
3331						 DMA_TO_DEVICE);
3332
3333		payload_index += length;
3334	}
3335
3336	if (p->interrupt)
3337		irq = DESCRIPTOR_IRQ_ALWAYS;
3338	else
3339		irq = DESCRIPTOR_NO_IRQ;
3340
3341	last = z == 2 ? d : d + z - 1;
3342	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3343				     DESCRIPTOR_STATUS |
3344				     DESCRIPTOR_BRANCH_ALWAYS |
3345				     irq);
3346
3347	context_append(&ctx->context, d, z, header_z);
3348
3349	return 0;
3350}
3351
3352static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3353				       struct fw_iso_packet *packet,
3354				       struct fw_iso_buffer *buffer,
3355				       unsigned long payload)
3356{
3357	struct device *device = ctx->context.ohci->card.device;
3358	struct descriptor *d, *pd;
3359	dma_addr_t d_bus, page_bus;
3360	u32 z, header_z, rest;
3361	int i, j, length;
3362	int page, offset, packet_count, header_size, payload_per_buffer;
3363
3364	/*
3365	 * The OHCI controller puts the isochronous header and trailer in the
3366	 * buffer, so we need at least 8 bytes.
3367	 */
3368	packet_count = packet->header_length / ctx->base.header_size;
3369	header_size  = max(ctx->base.header_size, (size_t)8);
3370
3371	/* Get header size in number of descriptors. */
3372	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3373	page     = payload >> PAGE_SHIFT;
3374	offset   = payload & ~PAGE_MASK;
3375	payload_per_buffer = packet->payload_length / packet_count;
3376
3377	for (i = 0; i < packet_count; i++) {
3378		/* d points to the header descriptor */
3379		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3380		d = context_get_descriptors(&ctx->context,
3381				z + header_z, &d_bus);
3382		if (d == NULL)
3383			return -ENOMEM;
3384
3385		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3386					      DESCRIPTOR_INPUT_MORE);
3387		if (packet->skip && i == 0)
3388			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3389		d->req_count    = cpu_to_le16(header_size);
3390		d->res_count    = d->req_count;
3391		d->transfer_status = 0;
3392		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3393
3394		rest = payload_per_buffer;
3395		pd = d;
3396		for (j = 1; j < z; j++) {
3397			pd++;
3398			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3399						  DESCRIPTOR_INPUT_MORE);
3400
3401			if (offset + rest < PAGE_SIZE)
3402				length = rest;
3403			else
3404				length = PAGE_SIZE - offset;
3405			pd->req_count = cpu_to_le16(length);
3406			pd->res_count = pd->req_count;
3407			pd->transfer_status = 0;
3408
3409			page_bus = page_private(buffer->pages[page]);
3410			pd->data_address = cpu_to_le32(page_bus + offset);
3411
3412			dma_sync_single_range_for_device(device, page_bus,
3413							 offset, length,
3414							 DMA_FROM_DEVICE);
3415
3416			offset = (offset + length) & ~PAGE_MASK;
3417			rest -= length;
3418			if (offset == 0)
3419				page++;
3420		}
3421		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3422					  DESCRIPTOR_INPUT_LAST |
3423					  DESCRIPTOR_BRANCH_ALWAYS);
3424		if (packet->interrupt && i == packet_count - 1)
3425			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3426
3427		context_append(&ctx->context, d, z, header_z);
3428	}
3429
3430	return 0;
3431}
3432
3433static int queue_iso_buffer_fill(struct iso_context *ctx,
3434				 struct fw_iso_packet *packet,
3435				 struct fw_iso_buffer *buffer,
3436				 unsigned long payload)
3437{
3438	struct descriptor *d;
3439	dma_addr_t d_bus, page_bus;
3440	int page, offset, rest, z, i, length;
3441
3442	page   = payload >> PAGE_SHIFT;
3443	offset = payload & ~PAGE_MASK;
3444	rest   = packet->payload_length;
3445
3446	/* We need one descriptor for each page in the buffer. */
3447	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3448
3449	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3450		return -EFAULT;
3451
3452	for (i = 0; i < z; i++) {
3453		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3454		if (d == NULL)
3455			return -ENOMEM;
3456
3457		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3458					 DESCRIPTOR_BRANCH_ALWAYS);
3459		if (packet->skip && i == 0)
3460			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3461		if (packet->interrupt && i == z - 1)
3462			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3463
3464		if (offset + rest < PAGE_SIZE)
3465			length = rest;
3466		else
3467			length = PAGE_SIZE - offset;
3468		d->req_count = cpu_to_le16(length);
3469		d->res_count = d->req_count;
3470		d->transfer_status = 0;
3471
3472		page_bus = page_private(buffer->pages[page]);
3473		d->data_address = cpu_to_le32(page_bus + offset);
3474
3475		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3476						 page_bus, offset, length,
3477						 DMA_FROM_DEVICE);
3478
3479		rest -= length;
3480		offset = 0;
3481		page++;
3482
3483		context_append(&ctx->context, d, 1, 0);
3484	}
3485
3486	return 0;
3487}
3488
3489static int ohci_queue_iso(struct fw_iso_context *base,
3490			  struct fw_iso_packet *packet,
3491			  struct fw_iso_buffer *buffer,
3492			  unsigned long payload)
3493{
3494	struct iso_context *ctx = container_of(base, struct iso_context, base);
3495	unsigned long flags;
3496	int ret = -ENOSYS;
3497
3498	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
 
3499	switch (base->type) {
3500	case FW_ISO_CONTEXT_TRANSMIT:
3501		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3502		break;
3503	case FW_ISO_CONTEXT_RECEIVE:
3504		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3505		break;
3506	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3507		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3508		break;
 
3509	}
3510	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3511
3512	return ret;
3513}
3514
3515static void ohci_flush_queue_iso(struct fw_iso_context *base)
3516{
3517	struct context *ctx =
3518			&container_of(base, struct iso_context, base)->context;
3519
3520	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3521}
3522
3523static int ohci_flush_iso_completions(struct fw_iso_context *base)
3524{
3525	struct iso_context *ctx = container_of(base, struct iso_context, base);
3526	int ret = 0;
3527
3528	tasklet_disable_in_atomic(&ctx->context.tasklet);
3529
3530	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3531		context_tasklet((unsigned long)&ctx->context);
3532
3533		switch (base->type) {
3534		case FW_ISO_CONTEXT_TRANSMIT:
3535		case FW_ISO_CONTEXT_RECEIVE:
3536			if (ctx->header_length != 0)
3537				flush_iso_completions(ctx);
3538			break;
3539		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3540			if (ctx->mc_completed != 0)
3541				flush_ir_buffer_fill(ctx);
3542			break;
3543		default:
3544			ret = -ENOSYS;
3545		}
3546
3547		clear_bit_unlock(0, &ctx->flushing_completions);
3548		smp_mb__after_atomic();
3549	}
3550
3551	tasklet_enable(&ctx->context.tasklet);
3552
3553	return ret;
3554}
3555
3556static const struct fw_card_driver ohci_driver = {
3557	.enable			= ohci_enable,
3558	.read_phy_reg		= ohci_read_phy_reg,
3559	.update_phy_reg		= ohci_update_phy_reg,
3560	.set_config_rom		= ohci_set_config_rom,
3561	.send_request		= ohci_send_request,
3562	.send_response		= ohci_send_response,
3563	.cancel_packet		= ohci_cancel_packet,
3564	.enable_phys_dma	= ohci_enable_phys_dma,
3565	.read_csr		= ohci_read_csr,
3566	.write_csr		= ohci_write_csr,
3567
3568	.allocate_iso_context	= ohci_allocate_iso_context,
3569	.free_iso_context	= ohci_free_iso_context,
3570	.set_iso_channels	= ohci_set_iso_channels,
3571	.queue_iso		= ohci_queue_iso,
3572	.flush_queue_iso	= ohci_flush_queue_iso,
3573	.flush_iso_completions	= ohci_flush_iso_completions,
3574	.start_iso		= ohci_start_iso,
3575	.stop_iso		= ohci_stop_iso,
3576};
3577
3578#ifdef CONFIG_PPC_PMAC
3579static void pmac_ohci_on(struct pci_dev *dev)
3580{
3581	if (machine_is(powermac)) {
3582		struct device_node *ofn = pci_device_to_OF_node(dev);
3583
3584		if (ofn) {
3585			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3586			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3587		}
3588	}
3589}
3590
3591static void pmac_ohci_off(struct pci_dev *dev)
3592{
3593	if (machine_is(powermac)) {
3594		struct device_node *ofn = pci_device_to_OF_node(dev);
3595
3596		if (ofn) {
3597			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3598			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3599		}
3600	}
3601}
3602#else
3603static inline void pmac_ohci_on(struct pci_dev *dev) {}
3604static inline void pmac_ohci_off(struct pci_dev *dev) {}
3605#endif /* CONFIG_PPC_PMAC */
3606
3607static void release_ohci(struct device *dev, void *data)
3608{
3609	struct pci_dev *pdev = to_pci_dev(dev);
3610	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3611
3612	pmac_ohci_off(pdev);
3613
3614	ar_context_release(&ohci->ar_response_ctx);
3615	ar_context_release(&ohci->ar_request_ctx);
3616
3617	dev_notice(dev, "removed fw-ohci device\n");
3618}
3619
3620static int pci_probe(struct pci_dev *dev,
3621			       const struct pci_device_id *ent)
3622{
3623	struct fw_ohci *ohci;
3624	u32 bus_options, max_receive, link_speed, version;
3625	u64 guid;
3626	int i, err;
3627	size_t size;
3628
3629	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3630		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3631		return -ENOSYS;
3632	}
3633
3634	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3635	if (ohci == NULL)
3636		return -ENOMEM;
3637	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3638	pci_set_drvdata(dev, ohci);
3639	pmac_ohci_on(dev);
3640	devres_add(&dev->dev, ohci);
3641
3642	err = pcim_enable_device(dev);
3643	if (err) {
3644		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3645		return err;
3646	}
3647
3648	pci_set_master(dev);
3649	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3650
3651	spin_lock_init(&ohci->lock);
3652	mutex_init(&ohci->phy_reg_mutex);
3653
3654	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3655
3656	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3657	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3658		ohci_err(ohci, "invalid MMIO resource\n");
3659		return -ENXIO;
3660	}
3661
3662	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3663	if (err) {
3664		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3665		return -ENXIO;
3666	}
3667	ohci->registers = pcim_iomap_table(dev)[0];
3668
3669	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3670		if ((ohci_quirks[i].vendor == dev->vendor) &&
3671		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3672		     ohci_quirks[i].device == dev->device) &&
3673		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3674		     ohci_quirks[i].revision >= dev->revision)) {
3675			ohci->quirks = ohci_quirks[i].flags;
3676			break;
3677		}
3678	if (param_quirks)
3679		ohci->quirks = param_quirks;
3680
3681	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3682		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3683
3684	/*
3685	 * Because dma_alloc_coherent() allocates at least one page,
3686	 * we save space by using a common buffer for the AR request/
3687	 * response descriptors and the self IDs buffer.
3688	 */
3689	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3690	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3691	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3692						GFP_KERNEL);
3693	if (!ohci->misc_buffer)
3694		return -ENOMEM;
3695
3696	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3697			      OHCI1394_AsReqRcvContextControlSet);
3698	if (err < 0)
3699		return err;
3700
3701	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3702			      OHCI1394_AsRspRcvContextControlSet);
3703	if (err < 0)
3704		return err;
3705
3706	err = context_init(&ohci->at_request_ctx, ohci,
3707			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3708	if (err < 0)
3709		return err;
3710
3711	err = context_init(&ohci->at_response_ctx, ohci,
3712			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3713	if (err < 0)
3714		return err;
3715
3716	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3717	ohci->ir_context_channels = ~0ULL;
3718	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3719	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3720	ohci->ir_context_mask = ohci->ir_context_support;
3721	ohci->n_ir = hweight32(ohci->ir_context_mask);
3722	size = sizeof(struct iso_context) * ohci->n_ir;
3723	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3724	if (!ohci->ir_context_list)
3725		return -ENOMEM;
3726
3727	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3728	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3729	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3730	if (!ohci->it_context_support) {
3731		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3732		ohci->it_context_support = 0xf;
3733	}
3734	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3735	ohci->it_context_mask = ohci->it_context_support;
3736	ohci->n_it = hweight32(ohci->it_context_mask);
3737	size = sizeof(struct iso_context) * ohci->n_it;
3738	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3739	if (!ohci->it_context_list)
3740		return -ENOMEM;
3741
3742	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3743	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3744
3745	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3746	max_receive = (bus_options >> 12) & 0xf;
3747	link_speed = bus_options & 0x7;
3748	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3749		reg_read(ohci, OHCI1394_GUIDLo);
3750
 
3751	if (!(ohci->quirks & QUIRK_NO_MSI))
3752		pci_enable_msi(dev);
3753	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3754			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
 
 
 
 
 
 
 
 
 
 
3755	if (err < 0) {
3756		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3757		goto fail_msi;
3758	}
3759
3760	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3761	if (err)
3762		goto fail_msi;
3763
3764	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3765	ohci_notice(ohci,
3766		    "added OHCI v%x.%x device as card %d, "
3767		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3768		    version >> 16, version & 0xff, ohci->card.index,
3769		    ohci->n_ir, ohci->n_it, ohci->quirks,
3770		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3771			", physUB" : "");
3772
3773	return 0;
3774
 
 
3775 fail_msi:
3776	devm_free_irq(&dev->dev, dev->irq, ohci);
3777	pci_disable_msi(dev);
3778
3779	return err;
3780}
3781
3782static void pci_remove(struct pci_dev *dev)
3783{
3784	struct fw_ohci *ohci = pci_get_drvdata(dev);
 
3785
3786	/*
3787	 * If the removal is happening from the suspend state, LPS won't be
3788	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3789	 */
3790	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3791		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3792		flush_writes(ohci);
3793	}
3794	cancel_work_sync(&ohci->bus_reset_work);
3795	fw_core_remove_card(&ohci->card);
3796
3797	/*
3798	 * FIXME: Fail all pending packets here, now that the upper
3799	 * layers can't queue any more.
3800	 */
3801
3802	software_reset(ohci);
3803
3804	devm_free_irq(&dev->dev, dev->irq, ohci);
3805	pci_disable_msi(dev);
 
 
3806
3807	dev_notice(&dev->dev, "removing fw-ohci device\n");
3808}
3809
3810#ifdef CONFIG_PM
3811static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812{
3813	struct fw_ohci *ohci = pci_get_drvdata(dev);
3814	int err;
3815
3816	software_reset(ohci);
3817	err = pci_save_state(dev);
3818	if (err) {
3819		ohci_err(ohci, "pci_save_state failed\n");
3820		return err;
3821	}
3822	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823	if (err)
3824		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825	pmac_ohci_off(dev);
3826
3827	return 0;
3828}
3829
3830static int pci_resume(struct pci_dev *dev)
3831{
3832	struct fw_ohci *ohci = pci_get_drvdata(dev);
3833	int err;
3834
3835	pmac_ohci_on(dev);
3836	pci_set_power_state(dev, PCI_D0);
3837	pci_restore_state(dev);
3838	err = pci_enable_device(dev);
3839	if (err) {
3840		ohci_err(ohci, "pci_enable_device failed\n");
3841		return err;
3842	}
3843
3844	/* Some systems don't setup GUID register on resume from ram  */
3845	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846					!reg_read(ohci, OHCI1394_GUIDHi)) {
3847		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849	}
3850
3851	err = ohci_enable(&ohci->card, NULL, 0);
3852	if (err)
3853		return err;
3854
3855	ohci_resume_iso_dma(ohci);
3856
3857	return 0;
3858}
3859#endif
3860
3861static const struct pci_device_id pci_table[] = {
3862	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863	{ }
3864};
3865
3866MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868static struct pci_driver fw_ohci_pci_driver = {
3869	.name		= ohci_driver_name,
3870	.id_table	= pci_table,
3871	.probe		= pci_probe,
3872	.remove		= pci_remove,
3873#ifdef CONFIG_PM
3874	.resume		= pci_resume,
3875	.suspend	= pci_suspend,
3876#endif
3877};
3878
3879static int __init fw_ohci_init(void)
3880{
3881	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882	if (!selfid_workqueue)
3883		return -ENOMEM;
3884
3885	return pci_register_driver(&fw_ohci_pci_driver);
3886}
3887
3888static void __exit fw_ohci_cleanup(void)
3889{
3890	pci_unregister_driver(&fw_ohci_pci_driver);
3891	destroy_workqueue(selfid_workqueue);
3892}
3893
3894module_init(fw_ohci_init);
3895module_exit(fw_ohci_cleanup);
3896
3897MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899MODULE_LICENSE("GPL");
3900
3901/* Provide a module alias so root-on-sbp2 initrds don't break. */
3902MODULE_ALIAS("ohci1394");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43#include "packet-header-definitions.h"
  44#include "phy-packet-definitions.h"
  45
  46#include <trace/events/firewire.h>
  47
  48static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/firewire_ohci.h>
  52
 
  53#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  54#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  55
  56#define DESCRIPTOR_OUTPUT_MORE		0
  57#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  58#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  59#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  60#define DESCRIPTOR_STATUS		(1 << 11)
  61#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  62#define DESCRIPTOR_PING			(1 << 7)
  63#define DESCRIPTOR_YY			(1 << 6)
  64#define DESCRIPTOR_NO_IRQ		(0 << 4)
  65#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  66#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  67#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  68#define DESCRIPTOR_WAIT			(3 << 0)
  69
  70#define DESCRIPTOR_CMD			(0xf << 12)
  71
  72struct descriptor {
  73	__le16 req_count;
  74	__le16 control;
  75	__le32 data_address;
  76	__le32 branch_address;
  77	__le16 res_count;
  78	__le16 transfer_status;
  79} __aligned(16);
  80
  81#define CONTROL_SET(regs)	(regs)
  82#define CONTROL_CLEAR(regs)	((regs) + 4)
  83#define COMMAND_PTR(regs)	((regs) + 12)
  84#define CONTEXT_MATCH(regs)	((regs) + 16)
  85
  86#define AR_BUFFER_SIZE	(32*1024)
  87#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  88/* we need at least two pages for proper list management */
  89#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  90
  91#define MAX_ASYNC_PAYLOAD	4096
  92#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  93#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  94
  95struct ar_context {
  96	struct fw_ohci *ohci;
  97	struct page *pages[AR_BUFFERS];
  98	void *buffer;
  99	struct descriptor *descriptors;
 100	dma_addr_t descriptors_bus;
 101	void *pointer;
 102	unsigned int last_buffer_index;
 103	u32 regs;
 104	struct tasklet_struct tasklet;
 105};
 106
 107struct context;
 108
 109typedef int (*descriptor_callback_t)(struct context *ctx,
 110				     struct descriptor *d,
 111				     struct descriptor *last);
 112
 113/*
 114 * A buffer that contains a block of DMA-able coherent memory used for
 115 * storing a portion of a DMA descriptor program.
 116 */
 117struct descriptor_buffer {
 118	struct list_head list;
 119	dma_addr_t buffer_bus;
 120	size_t buffer_size;
 121	size_t used;
 122	struct descriptor buffer[];
 123};
 124
 125struct context {
 126	struct fw_ohci *ohci;
 127	u32 regs;
 128	int total_allocation;
 129	u32 current_bus;
 130	bool running;
 131	bool flushing;
 132
 133	/*
 134	 * List of page-sized buffers for storing DMA descriptors.
 135	 * Head of list contains buffers in use and tail of list contains
 136	 * free buffers.
 137	 */
 138	struct list_head buffer_list;
 139
 140	/*
 141	 * Pointer to a buffer inside buffer_list that contains the tail
 142	 * end of the current DMA program.
 143	 */
 144	struct descriptor_buffer *buffer_tail;
 145
 146	/*
 147	 * The descriptor containing the branch address of the first
 148	 * descriptor that has not yet been filled by the device.
 149	 */
 150	struct descriptor *last;
 151
 152	/*
 153	 * The last descriptor block in the DMA program. It contains the branch
 154	 * address that must be updated upon appending a new descriptor.
 155	 */
 156	struct descriptor *prev;
 157	int prev_z;
 158
 159	descriptor_callback_t callback;
 160
 161	struct tasklet_struct tasklet;
 162};
 163
 
 
 
 
 
 
 
 164struct iso_context {
 165	struct fw_iso_context base;
 166	struct context context;
 167	void *header;
 168	size_t header_length;
 169	unsigned long flushing_completions;
 170	u32 mc_buffer_bus;
 171	u16 mc_completed;
 172	u16 last_timestamp;
 173	u8 sync;
 174	u8 tags;
 175};
 176
 177#define CONFIG_ROM_SIZE		(CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
 178
 179struct fw_ohci {
 180	struct fw_card card;
 181
 182	__iomem char *registers;
 183	int node_id;
 184	int generation;
 185	int request_generation;	/* for timestamping incoming requests */
 186	unsigned quirks;
 187	unsigned int pri_req_max;
 188	u32 bus_time;
 189	bool bus_time_running;
 190	bool is_root;
 191	bool csr_state_setclear_abdicate;
 192	int n_ir;
 193	int n_it;
 194	/*
 195	 * Spinlock for accessing fw_ohci data.  Never call out of
 196	 * this driver with this lock held.
 197	 */
 198	spinlock_t lock;
 199
 200	struct mutex phy_reg_mutex;
 201
 202	void *misc_buffer;
 203	dma_addr_t misc_buffer_bus;
 204
 205	struct ar_context ar_request_ctx;
 206	struct ar_context ar_response_ctx;
 207	struct context at_request_ctx;
 208	struct context at_response_ctx;
 209
 210	u32 it_context_support;
 211	u32 it_context_mask;     /* unoccupied IT contexts */
 212	struct iso_context *it_context_list;
 213	u64 ir_context_channels; /* unoccupied channels */
 214	u32 ir_context_support;
 215	u32 ir_context_mask;     /* unoccupied IR contexts */
 216	struct iso_context *ir_context_list;
 217	u64 mc_channels; /* channels in use by the multichannel IR context */
 218	bool mc_allocated;
 219
 220	__be32    *config_rom;
 221	dma_addr_t config_rom_bus;
 222	__be32    *next_config_rom;
 223	dma_addr_t next_config_rom_bus;
 224	__be32     next_header;
 225
 226	__le32    *self_id;
 227	dma_addr_t self_id_bus;
 228	struct work_struct bus_reset_work;
 229
 230	u32 self_id_buffer[512];
 231};
 232
 233static struct workqueue_struct *selfid_workqueue;
 234
 235static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 236{
 237	return container_of(card, struct fw_ohci, card);
 238}
 239
 240#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 241#define IR_CONTEXT_BUFFER_FILL		0x80000000
 242#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 243#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 244#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 245#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 246
 247#define CONTEXT_RUN	0x8000
 248#define CONTEXT_WAKE	0x1000
 249#define CONTEXT_DEAD	0x0800
 250#define CONTEXT_ACTIVE	0x0400
 251
 252#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 253#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 254#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 255
 256#define OHCI1394_REGISTER_SIZE		0x800
 257#define OHCI1394_PCI_HCI_Control	0x40
 258#define SELF_ID_BUF_SIZE		0x800
 
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 
 396
 397static int param_debug;
 398module_param_named(debug, param_debug, int, 0644);
 399MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
 400	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 401	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 402	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 
 403	", or a combination, or all = -1)");
 404
 405static bool param_remote_dma;
 406module_param_named(remote_dma, param_remote_dma, bool, 0444);
 407MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 408
 409static void log_irqs(struct fw_ohci *ohci, u32 evt)
 410{
 411	if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
 
 
 
 
 
 412		return;
 413
 414	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 415	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 416	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 417	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 418	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 419	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 420	    evt & OHCI1394_isochRx		? " IR"			: "",
 421	    evt & OHCI1394_isochTx		? " IT"			: "",
 422	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 423	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 424	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 425	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 426	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 427	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 428	    evt & OHCI1394_busReset		? " busReset"		: "",
 429	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 430		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 431		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 432		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 433		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 434		    OHCI1394_cycleInconsistent |
 435		    OHCI1394_regAccessFail | OHCI1394_busReset)
 436						? " ?"			: "");
 437}
 438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 440{
 441	static const char *const speed[] = {
 442		[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 443	};
 444	static const char *const power[] = {
 445		[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 446		[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 447	};
 448	static const char port[] = {
 449		[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
 450		[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
 451		[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
 452		[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
 453	};
 454	struct self_id_sequence_enumerator enumerator = {
 455		.cursor = ohci->self_id_buffer,
 456		.quadlet_count = self_id_count,
 457	};
 458
 459	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 460		return;
 461
 462	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 463		    self_id_count, generation, ohci->node_id);
 464
 465	while (enumerator.quadlet_count > 0) {
 466		unsigned int quadlet_count;
 467		unsigned int port_index;
 468		const u32 *s;
 469		int i;
 470
 471		s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
 472		if (IS_ERR(s))
 473			break;
 474
 475		ohci_notice(ohci,
 476		    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 477		    *s,
 478		    phy_packet_self_id_get_phy_id(*s),
 479		    port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
 480		    port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
 481		    port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
 482		    speed[*s >> 14 & 3], *s >> 16 & 63,
 483		    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 484		    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 485
 486		port_index = 3;
 487		for (i = 1; i < quadlet_count; ++i) {
 488			ohci_notice(ohci,
 489			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 490			    s[i],
 491			    phy_packet_self_id_get_phy_id(s[i]),
 492			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
 493			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
 494			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
 495			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
 496			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
 497			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
 498			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
 499			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
 500			);
 501
 502			port_index += 8;
 503		}
 504	}
 505}
 506
 507static const char *evts[] = {
 508	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 509	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 510	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 511	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 512	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 513	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 514	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 515	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 516	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 517	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 518	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 519	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 520	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 521	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 522	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 523	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 524	[0x20] = "pending/cancelled",
 525};
 
 
 
 
 
 
 
 
 
 
 526
 527static void log_ar_at_event(struct fw_ohci *ohci,
 528			    char dir, int speed, u32 *header, int evt)
 529{
 530	static const char *const tcodes[] = {
 531		[TCODE_WRITE_QUADLET_REQUEST]	= "QW req",
 532		[TCODE_WRITE_BLOCK_REQUEST]	= "BW req",
 533		[TCODE_WRITE_RESPONSE]		= "W resp",
 534		[0x3]				= "-reserved-",
 535		[TCODE_READ_QUADLET_REQUEST]	= "QR req",
 536		[TCODE_READ_BLOCK_REQUEST]	= "BR req",
 537		[TCODE_READ_QUADLET_RESPONSE]	= "QR resp",
 538		[TCODE_READ_BLOCK_RESPONSE]	= "BR resp",
 539		[TCODE_CYCLE_START]		= "cycle start",
 540		[TCODE_LOCK_REQUEST]		= "Lk req",
 541		[TCODE_STREAM_DATA]		= "async stream packet",
 542		[TCODE_LOCK_RESPONSE]		= "Lk resp",
 543		[0xc]				= "-reserved-",
 544		[0xd]				= "-reserved-",
 545		[TCODE_LINK_INTERNAL]		= "link internal",
 546		[0xf]				= "-reserved-",
 547	};
 548	int tcode = async_header_get_tcode(header);
 549	char specific[12];
 550
 551	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 552		return;
 553
 554	if (unlikely(evt >= ARRAY_SIZE(evts)))
 555		evt = 0x1f;
 556
 557	if (evt == OHCI1394_evt_bus_reset) {
 558		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 559			    dir, (header[2] >> 16) & 0xff);
 560		return;
 561	}
 562
 563	switch (tcode) {
 564	case TCODE_WRITE_QUADLET_REQUEST:
 565	case TCODE_READ_QUADLET_RESPONSE:
 566	case TCODE_CYCLE_START:
 567		snprintf(specific, sizeof(specific), " = %08x",
 568			 be32_to_cpu((__force __be32)header[3]));
 569		break;
 570	case TCODE_WRITE_BLOCK_REQUEST:
 571	case TCODE_READ_BLOCK_REQUEST:
 572	case TCODE_READ_BLOCK_RESPONSE:
 573	case TCODE_LOCK_REQUEST:
 574	case TCODE_LOCK_RESPONSE:
 575		snprintf(specific, sizeof(specific), " %x,%x",
 576			 async_header_get_data_length(header),
 577			 async_header_get_extended_tcode(header));
 578		break;
 579	default:
 580		specific[0] = '\0';
 581	}
 582
 583	switch (tcode) {
 584	case TCODE_STREAM_DATA:
 585		ohci_notice(ohci, "A%c %s, %s\n",
 586			    dir, evts[evt], tcodes[tcode]);
 587		break;
 588	case TCODE_LINK_INTERNAL:
 589		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 590			    dir, evts[evt], header[1], header[2]);
 591		break;
 592	case TCODE_WRITE_QUADLET_REQUEST:
 593	case TCODE_WRITE_BLOCK_REQUEST:
 594	case TCODE_READ_QUADLET_REQUEST:
 595	case TCODE_READ_BLOCK_REQUEST:
 596	case TCODE_LOCK_REQUEST:
 597		ohci_notice(ohci,
 598			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
 599			    dir, speed, async_header_get_tlabel(header),
 600			    async_header_get_source(header), async_header_get_destination(header),
 601			    evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
 602		break;
 603	default:
 604		ohci_notice(ohci,
 605			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 606			    dir, speed, async_header_get_tlabel(header),
 607			    async_header_get_source(header), async_header_get_destination(header),
 608			    evts[evt], tcodes[tcode], specific);
 609	}
 610}
 611
 612static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 613{
 614	writel(data, ohci->registers + offset);
 615}
 616
 617static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 618{
 619	return readl(ohci->registers + offset);
 620}
 621
 622static inline void flush_writes(const struct fw_ohci *ohci)
 623{
 624	/* Do a dummy read to flush writes. */
 625	reg_read(ohci, OHCI1394_Version);
 626}
 627
 628/*
 629 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 630 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 631 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 632 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 633 */
 634static int read_phy_reg(struct fw_ohci *ohci, int addr)
 635{
 636	u32 val;
 637	int i;
 638
 639	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 640	for (i = 0; i < 3 + 100; i++) {
 641		val = reg_read(ohci, OHCI1394_PhyControl);
 642		if (!~val)
 643			return -ENODEV; /* Card was ejected. */
 644
 645		if (val & OHCI1394_PhyControl_ReadDone)
 646			return OHCI1394_PhyControl_ReadData(val);
 647
 648		/*
 649		 * Try a few times without waiting.  Sleeping is necessary
 650		 * only when the link/PHY interface is busy.
 651		 */
 652		if (i >= 3)
 653			msleep(1);
 654	}
 655	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 656	dump_stack();
 657
 658	return -EBUSY;
 659}
 660
 661static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 662{
 663	int i;
 664
 665	reg_write(ohci, OHCI1394_PhyControl,
 666		  OHCI1394_PhyControl_Write(addr, val));
 667	for (i = 0; i < 3 + 100; i++) {
 668		val = reg_read(ohci, OHCI1394_PhyControl);
 669		if (!~val)
 670			return -ENODEV; /* Card was ejected. */
 671
 672		if (!(val & OHCI1394_PhyControl_WritePending))
 673			return 0;
 674
 675		if (i >= 3)
 676			msleep(1);
 677	}
 678	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 679	dump_stack();
 680
 681	return -EBUSY;
 682}
 683
 684static int update_phy_reg(struct fw_ohci *ohci, int addr,
 685			  int clear_bits, int set_bits)
 686{
 687	int ret = read_phy_reg(ohci, addr);
 688	if (ret < 0)
 689		return ret;
 690
 691	/*
 692	 * The interrupt status bits are cleared by writing a one bit.
 693	 * Avoid clearing them unless explicitly requested in set_bits.
 694	 */
 695	if (addr == 5)
 696		clear_bits |= PHY_INT_STATUS_BITS;
 697
 698	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 699}
 700
 701static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 702{
 703	int ret;
 704
 705	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 706	if (ret < 0)
 707		return ret;
 708
 709	return read_phy_reg(ohci, addr);
 710}
 711
 712static int ohci_read_phy_reg(struct fw_card *card, int addr)
 713{
 714	struct fw_ohci *ohci = fw_ohci(card);
 
 715
 716	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 717
 718	return read_phy_reg(ohci, addr);
 719}
 720
 721static int ohci_update_phy_reg(struct fw_card *card, int addr,
 722			       int clear_bits, int set_bits)
 723{
 724	struct fw_ohci *ohci = fw_ohci(card);
 
 725
 726	guard(mutex)(&ohci->phy_reg_mutex);
 
 
 727
 728	return update_phy_reg(ohci, addr, clear_bits, set_bits);
 729}
 730
 731static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 732{
 733	return page_private(ctx->pages[i]);
 734}
 735
 736static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 737{
 738	struct descriptor *d;
 739
 740	d = &ctx->descriptors[index];
 741	d->branch_address  &= cpu_to_le32(~0xf);
 742	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 743	d->transfer_status =  0;
 744
 745	wmb(); /* finish init of new descriptors before branch_address update */
 746	d = &ctx->descriptors[ctx->last_buffer_index];
 747	d->branch_address  |= cpu_to_le32(1);
 748
 749	ctx->last_buffer_index = index;
 750
 751	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 752}
 753
 754static void ar_context_release(struct ar_context *ctx)
 755{
 756	struct device *dev = ctx->ohci->card.device;
 757	unsigned int i;
 758
 759	if (!ctx->buffer)
 760		return;
 761
 762	vunmap(ctx->buffer);
 763
 764	for (i = 0; i < AR_BUFFERS; i++) {
 765		if (ctx->pages[i])
 766			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 767				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 768	}
 769}
 770
 771static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 772{
 773	struct fw_ohci *ohci = ctx->ohci;
 774
 775	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 776		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 777		flush_writes(ohci);
 778
 779		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 780	}
 781	/* FIXME: restart? */
 782}
 783
 784static inline unsigned int ar_next_buffer_index(unsigned int index)
 785{
 786	return (index + 1) % AR_BUFFERS;
 787}
 788
 789static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 790{
 791	return ar_next_buffer_index(ctx->last_buffer_index);
 792}
 793
 794/*
 795 * We search for the buffer that contains the last AR packet DMA data written
 796 * by the controller.
 797 */
 798static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 799						 unsigned int *buffer_offset)
 800{
 801	unsigned int i, next_i, last = ctx->last_buffer_index;
 802	__le16 res_count, next_res_count;
 803
 804	i = ar_first_buffer_index(ctx);
 805	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 806
 807	/* A buffer that is not yet completely filled must be the last one. */
 808	while (i != last && res_count == 0) {
 809
 810		/* Peek at the next descriptor. */
 811		next_i = ar_next_buffer_index(i);
 812		rmb(); /* read descriptors in order */
 813		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 814		/*
 815		 * If the next descriptor is still empty, we must stop at this
 816		 * descriptor.
 817		 */
 818		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 819			/*
 820			 * The exception is when the DMA data for one packet is
 821			 * split over three buffers; in this case, the middle
 822			 * buffer's descriptor might be never updated by the
 823			 * controller and look still empty, and we have to peek
 824			 * at the third one.
 825			 */
 826			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 827				next_i = ar_next_buffer_index(next_i);
 828				rmb();
 829				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 830				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 831					goto next_buffer_is_active;
 832			}
 833
 834			break;
 835		}
 836
 837next_buffer_is_active:
 838		i = next_i;
 839		res_count = next_res_count;
 840	}
 841
 842	rmb(); /* read res_count before the DMA data */
 843
 844	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 845	if (*buffer_offset > PAGE_SIZE) {
 846		*buffer_offset = 0;
 847		ar_context_abort(ctx, "corrupted descriptor");
 848	}
 849
 850	return i;
 851}
 852
 853static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 854				    unsigned int end_buffer_index,
 855				    unsigned int end_buffer_offset)
 856{
 857	unsigned int i;
 858
 859	i = ar_first_buffer_index(ctx);
 860	while (i != end_buffer_index) {
 861		dma_sync_single_for_cpu(ctx->ohci->card.device,
 862					ar_buffer_bus(ctx, i),
 863					PAGE_SIZE, DMA_FROM_DEVICE);
 864		i = ar_next_buffer_index(i);
 865	}
 866	if (end_buffer_offset > 0)
 867		dma_sync_single_for_cpu(ctx->ohci->card.device,
 868					ar_buffer_bus(ctx, i),
 869					end_buffer_offset, DMA_FROM_DEVICE);
 870}
 871
 872#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 873static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
 874{
 875	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
 876}
 877
 878static bool has_be_header_quirk(const struct fw_ohci *ohci)
 879{
 880	return !!(ohci->quirks & QUIRK_BE_HEADERS);
 881}
 882#else
 883static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
 884{
 885	return le32_to_cpu(value);
 886}
 887
 888static bool has_be_header_quirk(const struct fw_ohci *ohci)
 889{
 890	return false;
 891}
 892#endif
 893
 894static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 895{
 896	struct fw_ohci *ohci = ctx->ohci;
 897	struct fw_packet p;
 898	u32 status, length, tcode;
 899	int evt;
 900
 901	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
 902	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
 903	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
 904
 905	tcode = async_header_get_tcode(p.header);
 906	switch (tcode) {
 907	case TCODE_WRITE_QUADLET_REQUEST:
 908	case TCODE_READ_QUADLET_RESPONSE:
 909		p.header[3] = (__force __u32) buffer[3];
 910		p.header_length = 16;
 911		p.payload_length = 0;
 912		break;
 913
 914	case TCODE_READ_BLOCK_REQUEST :
 915		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 916		p.header_length = 16;
 917		p.payload_length = 0;
 918		break;
 919
 920	case TCODE_WRITE_BLOCK_REQUEST:
 921	case TCODE_READ_BLOCK_RESPONSE:
 922	case TCODE_LOCK_REQUEST:
 923	case TCODE_LOCK_RESPONSE:
 924		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
 925		p.header_length = 16;
 926		p.payload_length = async_header_get_data_length(p.header);
 927		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 928			ar_context_abort(ctx, "invalid packet length");
 929			return NULL;
 930		}
 931		break;
 932
 933	case TCODE_WRITE_RESPONSE:
 934	case TCODE_READ_QUADLET_REQUEST:
 935	case TCODE_LINK_INTERNAL:
 936		p.header_length = 12;
 937		p.payload_length = 0;
 938		break;
 939
 940	default:
 941		ar_context_abort(ctx, "invalid tcode");
 942		return NULL;
 943	}
 944
 945	p.payload = (void *) buffer + p.header_length;
 946
 947	/* FIXME: What to do about evt_* errors? */
 948	length = (p.header_length + p.payload_length + 3) / 4;
 949	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
 950	evt    = (status >> 16) & 0x1f;
 951
 952	p.ack        = evt - 16;
 953	p.speed      = (status >> 21) & 0x7;
 954	p.timestamp  = status & 0xffff;
 955	p.generation = ohci->request_generation;
 956
 957	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 958
 959	/*
 960	 * Several controllers, notably from NEC and VIA, forget to
 961	 * write ack_complete status at PHY packet reception.
 962	 */
 963	if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
 
 964		p.ack = ACK_COMPLETE;
 965
 966	/*
 967	 * The OHCI bus reset handler synthesizes a PHY packet with
 968	 * the new generation number when a bus reset happens (see
 969	 * section 8.4.2.3).  This helps us determine when a request
 970	 * was received and make sure we send the response in the same
 971	 * generation.  We only need this for requests; for responses
 972	 * we use the unique tlabel for finding the matching
 973	 * request.
 974	 *
 975	 * Alas some chips sometimes emit bus reset packets with a
 976	 * wrong generation.  We set the correct generation for these
 977	 * at a slightly incorrect time (in bus_reset_work).
 978	 */
 979	if (evt == OHCI1394_evt_bus_reset) {
 980		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 981			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 982	} else if (ctx == &ohci->ar_request_ctx) {
 983		fw_core_handle_request(&ohci->card, &p);
 984	} else {
 985		fw_core_handle_response(&ohci->card, &p);
 986	}
 987
 988	return buffer + length + 1;
 989}
 990
 991static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 992{
 993	void *next;
 994
 995	while (p < end) {
 996		next = handle_ar_packet(ctx, p);
 997		if (!next)
 998			return p;
 999		p = next;
1000	}
1001
1002	return p;
1003}
1004
1005static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1006{
1007	unsigned int i;
1008
1009	i = ar_first_buffer_index(ctx);
1010	while (i != end_buffer) {
1011		dma_sync_single_for_device(ctx->ohci->card.device,
1012					   ar_buffer_bus(ctx, i),
1013					   PAGE_SIZE, DMA_FROM_DEVICE);
1014		ar_context_link_page(ctx, i);
1015		i = ar_next_buffer_index(i);
1016	}
1017}
1018
1019static void ar_context_tasklet(unsigned long data)
1020{
1021	struct ar_context *ctx = (struct ar_context *)data;
1022	unsigned int end_buffer_index, end_buffer_offset;
1023	void *p, *end;
1024
1025	p = ctx->pointer;
1026	if (!p)
1027		return;
1028
1029	end_buffer_index = ar_search_last_active_buffer(ctx,
1030							&end_buffer_offset);
1031	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1032	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1033
1034	if (end_buffer_index < ar_first_buffer_index(ctx)) {
1035		/*
1036		 * The filled part of the overall buffer wraps around; handle
1037		 * all packets up to the buffer end here.  If the last packet
1038		 * wraps around, its tail will be visible after the buffer end
1039		 * because the buffer start pages are mapped there again.
1040		 */
1041		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1042		p = handle_ar_packets(ctx, p, buffer_end);
1043		if (p < buffer_end)
1044			goto error;
1045		/* adjust p to point back into the actual buffer */
1046		p -= AR_BUFFERS * PAGE_SIZE;
1047	}
1048
1049	p = handle_ar_packets(ctx, p, end);
1050	if (p != end) {
1051		if (p > end)
1052			ar_context_abort(ctx, "inconsistent descriptor");
1053		goto error;
1054	}
1055
1056	ctx->pointer = p;
1057	ar_recycle_buffers(ctx, end_buffer_index);
1058
1059	return;
1060
1061error:
1062	ctx->pointer = NULL;
1063}
1064
1065static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1066			   unsigned int descriptors_offset, u32 regs)
1067{
1068	struct device *dev = ohci->card.device;
1069	unsigned int i;
1070	dma_addr_t dma_addr;
1071	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1072	struct descriptor *d;
1073
1074	ctx->regs        = regs;
1075	ctx->ohci        = ohci;
1076	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1077
1078	for (i = 0; i < AR_BUFFERS; i++) {
1079		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1080						DMA_FROM_DEVICE, GFP_KERNEL);
1081		if (!ctx->pages[i])
1082			goto out_of_memory;
1083		set_page_private(ctx->pages[i], dma_addr);
1084		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1085					   DMA_FROM_DEVICE);
1086	}
1087
1088	for (i = 0; i < AR_BUFFERS; i++)
1089		pages[i]              = ctx->pages[i];
1090	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1091		pages[AR_BUFFERS + i] = ctx->pages[i];
1092	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1093	if (!ctx->buffer)
1094		goto out_of_memory;
1095
1096	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1097	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1098
1099	for (i = 0; i < AR_BUFFERS; i++) {
1100		d = &ctx->descriptors[i];
1101		d->req_count      = cpu_to_le16(PAGE_SIZE);
1102		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1103						DESCRIPTOR_STATUS |
1104						DESCRIPTOR_BRANCH_ALWAYS);
1105		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1106		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1107			ar_next_buffer_index(i) * sizeof(struct descriptor));
1108	}
1109
1110	return 0;
1111
1112out_of_memory:
1113	ar_context_release(ctx);
1114
1115	return -ENOMEM;
1116}
1117
1118static void ar_context_run(struct ar_context *ctx)
1119{
1120	unsigned int i;
1121
1122	for (i = 0; i < AR_BUFFERS; i++)
1123		ar_context_link_page(ctx, i);
1124
1125	ctx->pointer = ctx->buffer;
1126
1127	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1128	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1129}
1130
1131static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1132{
1133	__le16 branch;
1134
1135	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1136
1137	/* figure out which descriptor the branch address goes in */
1138	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1139		return d;
1140	else
1141		return d + z - 1;
1142}
1143
1144static void context_retire_descriptors(struct context *ctx)
1145{
 
1146	struct descriptor *d, *last;
1147	u32 address;
1148	int z;
1149	struct descriptor_buffer *desc;
1150
1151	desc = list_entry(ctx->buffer_list.next,
1152			struct descriptor_buffer, list);
1153	last = ctx->last;
1154	while (last->branch_address != 0) {
1155		struct descriptor_buffer *old_desc = desc;
1156		address = le32_to_cpu(last->branch_address);
1157		z = address & 0xf;
1158		address &= ~0xf;
1159		ctx->current_bus = address;
1160
1161		/* If the branch address points to a buffer outside of the
1162		 * current buffer, advance to the next buffer. */
1163		if (address < desc->buffer_bus ||
1164				address >= desc->buffer_bus + desc->used)
1165			desc = list_entry(desc->list.next,
1166					struct descriptor_buffer, list);
1167		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1168		last = find_branch_descriptor(d, z);
1169
1170		if (!ctx->callback(ctx, d, last))
1171			break;
1172
1173		if (old_desc != desc) {
1174			// If we've advanced to the next buffer, move the previous buffer to the
1175			// free list.
 
1176			old_desc->used = 0;
1177			guard(spinlock_irqsave)(&ctx->ohci->lock);
1178			list_move_tail(&old_desc->list, &ctx->buffer_list);
 
1179		}
1180		ctx->last = last;
1181	}
1182}
1183
1184static void context_tasklet(unsigned long data)
1185{
1186	struct context *ctx = (struct context *) data;
1187
1188	context_retire_descriptors(ctx);
1189}
1190
1191static void ohci_isoc_context_work(struct work_struct *work)
1192{
1193	struct fw_iso_context *base = container_of(work, struct fw_iso_context, work);
1194	struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1195
1196	context_retire_descriptors(&isoc_ctx->context);
1197}
1198
1199/*
1200 * Allocate a new buffer and add it to the list of free buffers for this
1201 * context.  Must be called with ohci->lock held.
1202 */
1203static int context_add_buffer(struct context *ctx)
1204{
1205	struct descriptor_buffer *desc;
1206	dma_addr_t bus_addr;
1207	int offset;
1208
1209	/*
1210	 * 16MB of descriptors should be far more than enough for any DMA
1211	 * program.  This will catch run-away userspace or DoS attacks.
1212	 */
1213	if (ctx->total_allocation >= 16*1024*1024)
1214		return -ENOMEM;
1215
1216	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1217	if (!desc)
1218		return -ENOMEM;
1219
1220	offset = (void *)&desc->buffer - (void *)desc;
1221	/*
1222	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1223	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1224	 * an IOMMU is in use and the oversized read crosses a page boundary.
1225	 * Work around this by always leaving at least 0x10 bytes of padding.
1226	 */
1227	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1228	desc->buffer_bus = bus_addr + offset;
1229	desc->used = 0;
1230
1231	list_add_tail(&desc->list, &ctx->buffer_list);
1232	ctx->total_allocation += PAGE_SIZE;
1233
1234	return 0;
1235}
1236
1237static int context_init(struct context *ctx, struct fw_ohci *ohci,
1238			u32 regs, descriptor_callback_t callback)
1239{
1240	ctx->ohci = ohci;
1241	ctx->regs = regs;
1242	ctx->total_allocation = 0;
1243
1244	INIT_LIST_HEAD(&ctx->buffer_list);
1245	if (context_add_buffer(ctx) < 0)
1246		return -ENOMEM;
1247
1248	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1249			struct descriptor_buffer, list);
1250
1251	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1252	ctx->callback = callback;
1253
1254	/*
1255	 * We put a dummy descriptor in the buffer that has a NULL
1256	 * branch address and looks like it's been sent.  That way we
1257	 * have a descriptor to append DMA programs to.
1258	 */
1259	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1260	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1261	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1262	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1263	ctx->last = ctx->buffer_tail->buffer;
1264	ctx->prev = ctx->buffer_tail->buffer;
1265	ctx->prev_z = 1;
1266
1267	return 0;
1268}
1269
1270static void context_release(struct context *ctx)
1271{
1272	struct fw_card *card = &ctx->ohci->card;
1273	struct descriptor_buffer *desc, *tmp;
1274
1275	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1276		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1277				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1278	}
1279}
1280
1281/* Must be called with ohci->lock held */
1282static struct descriptor *context_get_descriptors(struct context *ctx,
1283						  int z, dma_addr_t *d_bus)
1284{
1285	struct descriptor *d = NULL;
1286	struct descriptor_buffer *desc = ctx->buffer_tail;
1287
1288	if (z * sizeof(*d) > desc->buffer_size)
1289		return NULL;
1290
1291	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1292		/* No room for the descriptor in this buffer, so advance to the
1293		 * next one. */
1294
1295		if (desc->list.next == &ctx->buffer_list) {
1296			/* If there is no free buffer next in the list,
1297			 * allocate one. */
1298			if (context_add_buffer(ctx) < 0)
1299				return NULL;
1300		}
1301		desc = list_entry(desc->list.next,
1302				struct descriptor_buffer, list);
1303		ctx->buffer_tail = desc;
1304	}
1305
1306	d = desc->buffer + desc->used / sizeof(*d);
1307	memset(d, 0, z * sizeof(*d));
1308	*d_bus = desc->buffer_bus + desc->used;
1309
1310	return d;
1311}
1312
1313static void context_run(struct context *ctx, u32 extra)
1314{
1315	struct fw_ohci *ohci = ctx->ohci;
1316
1317	reg_write(ohci, COMMAND_PTR(ctx->regs),
1318		  le32_to_cpu(ctx->last->branch_address));
1319	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1320	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1321	ctx->running = true;
1322	flush_writes(ohci);
1323}
1324
1325static void context_append(struct context *ctx,
1326			   struct descriptor *d, int z, int extra)
1327{
1328	dma_addr_t d_bus;
1329	struct descriptor_buffer *desc = ctx->buffer_tail;
1330	struct descriptor *d_branch;
1331
1332	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1333
1334	desc->used += (z + extra) * sizeof(*d);
1335
1336	wmb(); /* finish init of new descriptors before branch_address update */
1337
1338	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1339	d_branch->branch_address = cpu_to_le32(d_bus | z);
1340
1341	/*
1342	 * VT6306 incorrectly checks only the single descriptor at the
1343	 * CommandPtr when the wake bit is written, so if it's a
1344	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1345	 * the branch address in the first descriptor.
1346	 *
1347	 * Not doing this for transmit contexts since not sure how it interacts
1348	 * with skip addresses.
1349	 */
1350	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1351	    d_branch != ctx->prev &&
1352	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1353	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1354		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1355	}
1356
1357	ctx->prev = d;
1358	ctx->prev_z = z;
1359}
1360
1361static void context_stop(struct context *ctx)
1362{
1363	struct fw_ohci *ohci = ctx->ohci;
1364	u32 reg;
1365	int i;
1366
1367	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1368	ctx->running = false;
1369
1370	for (i = 0; i < 1000; i++) {
1371		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1372		if ((reg & CONTEXT_ACTIVE) == 0)
1373			return;
1374
1375		if (i)
1376			udelay(10);
1377	}
1378	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1379}
1380
1381struct driver_data {
1382	u8 inline_data[8];
1383	struct fw_packet *packet;
1384};
1385
1386/*
1387 * This function appends a packet to the DMA queue for transmission.
1388 * Must always be called with the ochi->lock held to ensure proper
1389 * generation handling and locking around packet queue manipulation.
1390 */
1391static int at_context_queue_packet(struct context *ctx,
1392				   struct fw_packet *packet)
1393{
1394	struct fw_ohci *ohci = ctx->ohci;
1395	dma_addr_t d_bus, payload_bus;
1396	struct driver_data *driver_data;
1397	struct descriptor *d, *last;
1398	__le32 *header;
1399	int z, tcode;
1400
1401	d = context_get_descriptors(ctx, 4, &d_bus);
1402	if (d == NULL) {
1403		packet->ack = RCODE_SEND_ERROR;
1404		return -1;
1405	}
1406
1407	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1408	d[0].res_count = cpu_to_le16(packet->timestamp);
1409
1410	tcode = async_header_get_tcode(packet->header);
 
 
 
 
 
 
1411	header = (__le32 *) &d[1];
1412	switch (tcode) {
1413	case TCODE_WRITE_QUADLET_REQUEST:
1414	case TCODE_WRITE_BLOCK_REQUEST:
1415	case TCODE_WRITE_RESPONSE:
1416	case TCODE_READ_QUADLET_REQUEST:
1417	case TCODE_READ_BLOCK_REQUEST:
1418	case TCODE_READ_QUADLET_RESPONSE:
1419	case TCODE_READ_BLOCK_RESPONSE:
1420	case TCODE_LOCK_REQUEST:
1421	case TCODE_LOCK_RESPONSE:
1422		ohci1394_at_data_set_src_bus_id(header, false);
1423		ohci1394_at_data_set_speed(header, packet->speed);
1424		ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1425		ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1426		ohci1394_at_data_set_tcode(header, tcode);
1427
1428		ohci1394_at_data_set_destination_id(header,
1429						    async_header_get_destination(packet->header));
1430
1431		if (ctx == &ctx->ohci->at_response_ctx) {
1432			ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1433		} else {
1434			ohci1394_at_data_set_destination_offset(header,
1435							async_header_get_offset(packet->header));
1436		}
1437
1438		if (tcode_is_block_packet(tcode))
1439			header[3] = cpu_to_le32(packet->header[3]);
1440		else
1441			header[3] = (__force __le32) packet->header[3];
1442
1443		d[0].req_count = cpu_to_le16(packet->header_length);
1444		break;
 
1445	case TCODE_LINK_INTERNAL:
1446		ohci1394_at_data_set_speed(header, packet->speed);
1447		ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1448
1449		header[1] = cpu_to_le32(packet->header[1]);
1450		header[2] = cpu_to_le32(packet->header[2]);
1451		d[0].req_count = cpu_to_le16(12);
1452
1453		if (is_ping_packet(&packet->header[1]))
1454			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1455		break;
1456
1457	case TCODE_STREAM_DATA:
1458		ohci1394_it_data_set_speed(header, packet->speed);
1459		ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1460		ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1461		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1462		ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1463
1464		ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1465
1466		d[0].req_count = cpu_to_le16(8);
1467		break;
1468
1469	default:
1470		/* BUG(); */
1471		packet->ack = RCODE_SEND_ERROR;
1472		return -1;
1473	}
1474
1475	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1476	driver_data = (struct driver_data *) &d[3];
1477	driver_data->packet = packet;
1478	packet->driver_data = driver_data;
1479
1480	if (packet->payload_length > 0) {
1481		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1482			payload_bus = dma_map_single(ohci->card.device,
1483						     packet->payload,
1484						     packet->payload_length,
1485						     DMA_TO_DEVICE);
1486			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1487				packet->ack = RCODE_SEND_ERROR;
1488				return -1;
1489			}
1490			packet->payload_bus	= payload_bus;
1491			packet->payload_mapped	= true;
1492		} else {
1493			memcpy(driver_data->inline_data, packet->payload,
1494			       packet->payload_length);
1495			payload_bus = d_bus + 3 * sizeof(*d);
1496		}
1497
1498		d[2].req_count    = cpu_to_le16(packet->payload_length);
1499		d[2].data_address = cpu_to_le32(payload_bus);
1500		last = &d[2];
1501		z = 3;
1502	} else {
1503		last = &d[0];
1504		z = 2;
1505	}
1506
1507	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1508				     DESCRIPTOR_IRQ_ALWAYS |
1509				     DESCRIPTOR_BRANCH_ALWAYS);
1510
1511	/* FIXME: Document how the locking works. */
1512	if (ohci->generation != packet->generation) {
1513		if (packet->payload_mapped)
1514			dma_unmap_single(ohci->card.device, payload_bus,
1515					 packet->payload_length, DMA_TO_DEVICE);
1516		packet->ack = RCODE_GENERATION;
1517		return -1;
1518	}
1519
1520	context_append(ctx, d, z, 4 - z);
1521
1522	if (ctx->running)
1523		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1524	else
1525		context_run(ctx, 0);
1526
1527	return 0;
1528}
1529
1530static void at_context_flush(struct context *ctx)
1531{
1532	tasklet_disable(&ctx->tasklet);
1533
1534	ctx->flushing = true;
1535	context_tasklet((unsigned long)ctx);
1536	ctx->flushing = false;
1537
1538	tasklet_enable(&ctx->tasklet);
1539}
1540
1541static int handle_at_packet(struct context *context,
1542			    struct descriptor *d,
1543			    struct descriptor *last)
1544{
1545	struct driver_data *driver_data;
1546	struct fw_packet *packet;
1547	struct fw_ohci *ohci = context->ohci;
1548	int evt;
1549
1550	if (last->transfer_status == 0 && !context->flushing)
1551		/* This descriptor isn't done yet, stop iteration. */
1552		return 0;
1553
1554	driver_data = (struct driver_data *) &d[3];
1555	packet = driver_data->packet;
1556	if (packet == NULL)
1557		/* This packet was cancelled, just continue. */
1558		return 1;
1559
1560	if (packet->payload_mapped)
1561		dma_unmap_single(ohci->card.device, packet->payload_bus,
1562				 packet->payload_length, DMA_TO_DEVICE);
1563
1564	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1565	packet->timestamp = le16_to_cpu(last->res_count);
1566
1567	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1568
1569	switch (evt) {
1570	case OHCI1394_evt_timeout:
1571		/* Async response transmit timed out. */
1572		packet->ack = RCODE_CANCELLED;
1573		break;
1574
1575	case OHCI1394_evt_flushed:
1576		/*
1577		 * The packet was flushed should give same error as
1578		 * when we try to use a stale generation count.
1579		 */
1580		packet->ack = RCODE_GENERATION;
1581		break;
1582
1583	case OHCI1394_evt_missing_ack:
1584		if (context->flushing)
1585			packet->ack = RCODE_GENERATION;
1586		else {
1587			/*
1588			 * Using a valid (current) generation count, but the
1589			 * node is not on the bus or not sending acks.
1590			 */
1591			packet->ack = RCODE_NO_ACK;
1592		}
1593		break;
1594
1595	case ACK_COMPLETE + 0x10:
1596	case ACK_PENDING + 0x10:
1597	case ACK_BUSY_X + 0x10:
1598	case ACK_BUSY_A + 0x10:
1599	case ACK_BUSY_B + 0x10:
1600	case ACK_DATA_ERROR + 0x10:
1601	case ACK_TYPE_ERROR + 0x10:
1602		packet->ack = evt - 0x10;
1603		break;
1604
1605	case OHCI1394_evt_no_status:
1606		if (context->flushing) {
1607			packet->ack = RCODE_GENERATION;
1608			break;
1609		}
1610		fallthrough;
1611
1612	default:
1613		packet->ack = RCODE_SEND_ERROR;
1614		break;
1615	}
1616
1617	packet->callback(packet, &ohci->card, packet->ack);
1618
1619	return 1;
1620}
1621
1622static u32 get_cycle_time(struct fw_ohci *ohci);
 
 
 
 
1623
1624static void handle_local_rom(struct fw_ohci *ohci,
1625			     struct fw_packet *packet, u32 csr)
1626{
1627	struct fw_packet response;
1628	int tcode, length, i;
1629
1630	tcode = async_header_get_tcode(packet->header);
1631	if (tcode_is_block_packet(tcode))
1632		length = async_header_get_data_length(packet->header);
1633	else
1634		length = 4;
1635
1636	i = csr - CSR_CONFIG_ROM;
1637	if (i + length > CONFIG_ROM_SIZE) {
1638		fw_fill_response(&response, packet->header,
1639				 RCODE_ADDRESS_ERROR, NULL, 0);
1640	} else if (!tcode_is_read_request(tcode)) {
1641		fw_fill_response(&response, packet->header,
1642				 RCODE_TYPE_ERROR, NULL, 0);
1643	} else {
1644		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1645				 (void *) ohci->config_rom + i, length);
1646	}
1647
1648	// Timestamping on behalf of the hardware.
1649	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1650	fw_core_handle_response(&ohci->card, &response);
1651}
1652
1653static void handle_local_lock(struct fw_ohci *ohci,
1654			      struct fw_packet *packet, u32 csr)
1655{
1656	struct fw_packet response;
1657	int tcode, length, ext_tcode, sel, try;
1658	__be32 *payload, lock_old;
1659	u32 lock_arg, lock_data;
1660
1661	tcode = async_header_get_tcode(packet->header);
1662	length = async_header_get_data_length(packet->header);
1663	payload = packet->payload;
1664	ext_tcode = async_header_get_extended_tcode(packet->header);
1665
1666	if (tcode == TCODE_LOCK_REQUEST &&
1667	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1668		lock_arg = be32_to_cpu(payload[0]);
1669		lock_data = be32_to_cpu(payload[1]);
1670	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1671		lock_arg = 0;
1672		lock_data = 0;
1673	} else {
1674		fw_fill_response(&response, packet->header,
1675				 RCODE_TYPE_ERROR, NULL, 0);
1676		goto out;
1677	}
1678
1679	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1680	reg_write(ohci, OHCI1394_CSRData, lock_data);
1681	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1682	reg_write(ohci, OHCI1394_CSRControl, sel);
1683
1684	for (try = 0; try < 20; try++)
1685		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1686			lock_old = cpu_to_be32(reg_read(ohci,
1687							OHCI1394_CSRData));
1688			fw_fill_response(&response, packet->header,
1689					 RCODE_COMPLETE,
1690					 &lock_old, sizeof(lock_old));
1691			goto out;
1692		}
1693
1694	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1695	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1696
1697 out:
1698	// Timestamping on behalf of the hardware.
1699	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1700	fw_core_handle_response(&ohci->card, &response);
1701}
1702
1703static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1704{
1705	u64 offset, csr;
1706
1707	if (ctx == &ctx->ohci->at_request_ctx) {
1708		packet->ack = ACK_PENDING;
1709		packet->callback(packet, &ctx->ohci->card, packet->ack);
1710	}
1711
1712	offset = async_header_get_offset(packet->header);
 
 
 
1713	csr = offset - CSR_REGISTER_BASE;
1714
1715	/* Handle config rom reads. */
1716	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1717		handle_local_rom(ctx->ohci, packet, csr);
1718	else switch (csr) {
1719	case CSR_BUS_MANAGER_ID:
1720	case CSR_BANDWIDTH_AVAILABLE:
1721	case CSR_CHANNELS_AVAILABLE_HI:
1722	case CSR_CHANNELS_AVAILABLE_LO:
1723		handle_local_lock(ctx->ohci, packet, csr);
1724		break;
1725	default:
1726		if (ctx == &ctx->ohci->at_request_ctx)
1727			fw_core_handle_request(&ctx->ohci->card, packet);
1728		else
1729			fw_core_handle_response(&ctx->ohci->card, packet);
1730		break;
1731	}
1732
1733	if (ctx == &ctx->ohci->at_response_ctx) {
1734		packet->ack = ACK_COMPLETE;
1735		packet->callback(packet, &ctx->ohci->card, packet->ack);
1736	}
1737}
1738
 
 
1739static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1740{
1741	unsigned long flags;
1742	int ret;
1743
1744	spin_lock_irqsave(&ctx->ohci->lock, flags);
1745
1746	if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1747	    ctx->ohci->generation == packet->generation) {
1748		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1749
1750		// Timestamping on behalf of the hardware.
1751		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1752
1753		handle_local_request(ctx, packet);
1754		return;
1755	}
1756
1757	ret = at_context_queue_packet(ctx, packet);
1758	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1759
1760	if (ret < 0) {
1761		// Timestamping on behalf of the hardware.
1762		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1763
1764		packet->callback(packet, &ctx->ohci->card, packet->ack);
1765	}
1766}
1767
1768static void detect_dead_context(struct fw_ohci *ohci,
1769				const char *name, unsigned int regs)
1770{
1771	u32 ctl;
1772
1773	ctl = reg_read(ohci, CONTROL_SET(regs));
1774	if (ctl & CONTEXT_DEAD)
1775		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1776			name, evts[ctl & 0x1f]);
1777}
1778
1779static void handle_dead_contexts(struct fw_ohci *ohci)
1780{
1781	unsigned int i;
1782	char name[8];
1783
1784	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1785	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1786	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1787	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1788	for (i = 0; i < 32; ++i) {
1789		if (!(ohci->it_context_support & (1 << i)))
1790			continue;
1791		sprintf(name, "IT%u", i);
1792		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1793	}
1794	for (i = 0; i < 32; ++i) {
1795		if (!(ohci->ir_context_support & (1 << i)))
1796			continue;
1797		sprintf(name, "IR%u", i);
1798		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1799	}
1800	/* TODO: maybe try to flush and restart the dead contexts */
1801}
1802
1803static u32 cycle_timer_ticks(u32 cycle_timer)
1804{
1805	u32 ticks;
1806
1807	ticks = cycle_timer & 0xfff;
1808	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1809	ticks += (3072 * 8000) * (cycle_timer >> 25);
1810
1811	return ticks;
1812}
1813
1814/*
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 *  - When the lowest six bits are wrapping around to zero, a read that happens
1818 *    at the same time will return garbage in the lowest ten bits.
1819 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 *    not incremented for about 60 ns.
1821 *  - Occasionally, the entire register reads zero.
1822 *
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other.  Furthermore, any negative difference indicates an
1826 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1828 */
1829static u32 get_cycle_time(struct fw_ohci *ohci)
1830{
1831	u32 c0, c1, c2;
1832	u32 t0, t1, t2;
1833	s32 diff01, diff12;
1834	int i;
1835
1836	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1837		return 0;
1838
1839	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1840
1841	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1842		i = 0;
1843		c1 = c2;
1844		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1845		do {
1846			c0 = c1;
1847			c1 = c2;
1848			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849			t0 = cycle_timer_ticks(c0);
1850			t1 = cycle_timer_ticks(c1);
1851			t2 = cycle_timer_ticks(c2);
1852			diff01 = t1 - t0;
1853			diff12 = t2 - t1;
1854		} while ((diff01 <= 0 || diff12 <= 0 ||
1855			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1856			 && i++ < 20);
1857	}
1858
1859	return c2;
1860}
1861
1862/*
1863 * This function has to be called at least every 64 seconds.  The bus_time
1864 * field stores not only the upper 25 bits of the BUS_TIME register but also
1865 * the most significant bit of the cycle timer in bit 6 so that we can detect
1866 * changes in this bit.
1867 */
1868static u32 update_bus_time(struct fw_ohci *ohci)
1869{
1870	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1871
1872	if (unlikely(!ohci->bus_time_running)) {
1873		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1874		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1875		                 (cycle_time_seconds & 0x40);
1876		ohci->bus_time_running = true;
1877	}
1878
1879	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1880		ohci->bus_time += 0x40;
1881
1882	return ohci->bus_time | cycle_time_seconds;
1883}
1884
1885static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1886			       enum phy_packet_self_id_port_status *status)
1887{
1888	int reg;
1889
1890	scoped_guard(mutex, &ohci->phy_reg_mutex) {
1891		reg = write_phy_reg(ohci, 7, port_index);
1892		if (reg < 0)
1893			return reg;
1894
1895		reg = read_phy_reg(ohci, 8);
1896		if (reg < 0)
1897			return reg;
1898	}
1899
1900	switch (reg & 0x0f) {
1901	case 0x06:
1902		// is child node (connected to parent node)
1903		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1904		break;
1905	case 0x0e:
1906		// is parent node (connected to child node)
1907		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1908		break;
1909	default:
1910		// not connected
1911		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1912		break;
1913	}
1914
1915	return 0;
1916}
1917
1918static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1919	int self_id_count)
1920{
1921	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1922	int i;
 
1923
1924	for (i = 0; i < self_id_count; i++) {
1925		u32 entry = ohci->self_id_buffer[i];
1926		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1927
1928		if (left_phy_id == right_phy_id)
1929			return -1;
1930		if (left_phy_id < right_phy_id)
1931			return i;
1932	}
1933	return i;
1934}
1935
1936static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1937{
1938	int reg;
 
1939
1940	guard(mutex)(&ohci->phy_reg_mutex);
1941
1942	// Select page 7
1943	reg = write_phy_reg(ohci, 7, 0xe0);
1944	if (reg < 0)
1945		return reg;
1946
1947	reg = read_phy_reg(ohci, 8);
1948	if (reg < 0)
1949		return reg;
1950
1951	// set PMODE bit
1952	reg |= 0x40;
1953	reg = write_phy_reg(ohci, 8, reg);
1954	if (reg < 0)
1955		return reg;
1956
1957	// read register 12
1958	reg = read_phy_reg(ohci, 12);
1959	if (reg < 0)
1960		return reg;
1961
1962	// bit 3 indicates "initiated reset"
1963	*is_initiated_reset = !!((reg & 0x08) == 0x08);
1964
1965	return 0;
1966}
1967
1968/*
1969 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1970 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1971 * Construct the selfID from phy register contents.
1972 */
1973static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1974{
1975	int reg, i, pos, err;
1976	bool is_initiated_reset;
1977	u32 self_id = 0;
1978
1979	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1980	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1981	phy_packet_self_id_zero_set_link_active(&self_id, true);
1982	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1983	phy_packet_self_id_zero_set_contender(&self_id, true);
1984
1985	reg = reg_read(ohci, OHCI1394_NodeID);
1986	if (!(reg & OHCI1394_NodeID_idValid)) {
1987		ohci_notice(ohci,
1988			    "node ID not valid, new bus reset in progress\n");
1989		return -EBUSY;
1990	}
1991	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1992
1993	reg = ohci_read_phy_reg(&ohci->card, 4);
1994	if (reg < 0)
1995		return reg;
1996	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1997
1998	reg = ohci_read_phy_reg(&ohci->card, 1);
1999	if (reg < 0)
2000		return reg;
2001	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2002
2003	for (i = 0; i < 3; i++) {
2004		enum phy_packet_self_id_port_status status;
2005
2006		err = get_status_for_port(ohci, i, &status);
2007		if (err < 0)
2008			return err;
2009
2010		self_id_sequence_set_port_status(&self_id, 1, i, status);
2011	}
2012
2013	err = detect_initiated_reset(ohci, &is_initiated_reset);
2014	if (err < 0)
2015		return err;
2016	phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2017
2018	pos = get_self_id_pos(ohci, self_id, self_id_count);
2019	if (pos >= 0) {
2020		memmove(&(ohci->self_id_buffer[pos+1]),
2021			&(ohci->self_id_buffer[pos]),
2022			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2023		ohci->self_id_buffer[pos] = self_id;
2024		self_id_count++;
2025	}
2026	return self_id_count;
2027}
2028
2029static void bus_reset_work(struct work_struct *work)
2030{
2031	struct fw_ohci *ohci =
2032		container_of(work, struct fw_ohci, bus_reset_work);
2033	int self_id_count, generation, new_generation, i, j;
2034	u32 reg, quadlet;
2035	void *free_rom = NULL;
2036	dma_addr_t free_rom_bus = 0;
2037	bool is_new_root;
2038
2039	reg = reg_read(ohci, OHCI1394_NodeID);
2040	if (!(reg & OHCI1394_NodeID_idValid)) {
2041		ohci_notice(ohci,
2042			    "node ID not valid, new bus reset in progress\n");
2043		return;
2044	}
2045	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2046		ohci_notice(ohci, "malconfigured bus\n");
2047		return;
2048	}
2049	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2050			       OHCI1394_NodeID_nodeNumber);
2051
2052	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2053	if (!(ohci->is_root && is_new_root))
2054		reg_write(ohci, OHCI1394_LinkControlSet,
2055			  OHCI1394_LinkControl_cycleMaster);
2056	ohci->is_root = is_new_root;
2057
2058	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2059	if (ohci1394_self_id_count_is_error(reg)) {
2060		ohci_notice(ohci, "self ID receive error\n");
2061		return;
2062	}
2063	/*
2064	 * The count in the SelfIDCount register is the number of
2065	 * bytes in the self ID receive buffer.  Since we also receive
2066	 * the inverted quadlets and a header quadlet, we shift one
2067	 * bit extra to get the actual number of self IDs.
2068	 */
2069	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2070
2071	if (self_id_count > 252) {
2072		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2073		return;
2074	}
2075
2076	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2077	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2078	rmb();
2079
2080	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2081		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2082		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2083
2084		if (id != ~id2) {
2085			/*
2086			 * If the invalid data looks like a cycle start packet,
2087			 * it's likely to be the result of the cycle master
2088			 * having a wrong gap count.  In this case, the self IDs
2089			 * so far are valid and should be processed so that the
2090			 * bus manager can then correct the gap count.
2091			 */
2092			if (id == 0xffff008f) {
2093				ohci_notice(ohci, "ignoring spurious self IDs\n");
2094				self_id_count = j;
2095				break;
2096			}
2097
2098			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2099				    j, self_id_count, id, id2);
2100			return;
2101		}
2102		ohci->self_id_buffer[j] = id;
2103	}
2104
2105	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2106		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2107		if (self_id_count < 0) {
2108			ohci_notice(ohci,
2109				    "could not construct local self ID\n");
2110			return;
2111		}
2112	}
2113
2114	if (self_id_count == 0) {
2115		ohci_notice(ohci, "no self IDs\n");
2116		return;
2117	}
2118	rmb();
2119
2120	/*
2121	 * Check the consistency of the self IDs we just read.  The
2122	 * problem we face is that a new bus reset can start while we
2123	 * read out the self IDs from the DMA buffer. If this happens,
2124	 * the DMA buffer will be overwritten with new self IDs and we
2125	 * will read out inconsistent data.  The OHCI specification
2126	 * (section 11.2) recommends a technique similar to
2127	 * linux/seqlock.h, where we remember the generation of the
2128	 * self IDs in the buffer before reading them out and compare
2129	 * it to the current generation after reading them out.  If
2130	 * the two generations match we know we have a consistent set
2131	 * of self IDs.
2132	 */
2133
2134	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2135	new_generation = ohci1394_self_id_count_get_generation(reg);
2136	if (new_generation != generation) {
2137		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2138		return;
2139	}
2140
2141	// FIXME: Document how the locking works.
2142	scoped_guard(spinlock_irq, &ohci->lock) {
2143		ohci->generation = -1; // prevent AT packet queueing
2144		context_stop(&ohci->at_request_ctx);
2145		context_stop(&ohci->at_response_ctx);
2146	}
 
 
2147
2148	/*
2149	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2150	 * packets in the AT queues and software needs to drain them.
2151	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2152	 */
2153	at_context_flush(&ohci->at_request_ctx);
2154	at_context_flush(&ohci->at_response_ctx);
2155
2156	scoped_guard(spinlock_irq, &ohci->lock) {
2157		ohci->generation = generation;
2158		reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2159		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2160
2161		if (ohci->quirks & QUIRK_RESET_PACKET)
2162			ohci->request_generation = generation;
2163
2164		// This next bit is unrelated to the AT context stuff but we have to do it under the
2165		// spinlock also. If a new config rom was set up before this reset, the old one is
2166		// now no longer in use and we can free it. Update the config rom pointers to point
2167		// to the current config rom and clear the next_config_rom pointer so a new update
2168		// can take place.
2169		if (ohci->next_config_rom != NULL) {
2170			if (ohci->next_config_rom != ohci->config_rom) {
2171				free_rom      = ohci->config_rom;
2172				free_rom_bus  = ohci->config_rom_bus;
2173			}
2174			ohci->config_rom      = ohci->next_config_rom;
2175			ohci->config_rom_bus  = ohci->next_config_rom_bus;
2176			ohci->next_config_rom = NULL;
2177
2178			// Restore config_rom image and manually update config_rom registers.
2179			// Writing the header quadlet will indicate that the config rom is ready,
2180			// so we do that last.
2181			reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2182			ohci->config_rom[0] = ohci->next_header;
2183			reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2184		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185
2186		if (param_remote_dma) {
2187			reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2188			reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2189		}
2190	}
2191
 
 
2192	if (free_rom)
2193		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2194
2195	log_selfids(ohci, generation, self_id_count);
2196
2197	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2198				 self_id_count, ohci->self_id_buffer,
2199				 ohci->csr_state_setclear_abdicate);
2200	ohci->csr_state_setclear_abdicate = false;
2201}
2202
2203static irqreturn_t irq_handler(int irq, void *data)
2204{
2205	struct fw_ohci *ohci = data;
2206	u32 event, iso_event;
2207	int i;
2208
2209	event = reg_read(ohci, OHCI1394_IntEventClear);
2210
2211	if (!event || !~event)
2212		return IRQ_NONE;
2213
2214	if (unlikely(param_debug > 0)) {
2215		dev_notice_ratelimited(ohci->card.device,
2216				       "The debug parameter is superseded by tracepoints events, and deprecated.");
2217	}
2218
2219	/*
2220	 * busReset and postedWriteErr events must not be cleared yet
2221	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2222	 */
2223	reg_write(ohci, OHCI1394_IntEventClear,
2224		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2225	trace_irqs(ohci->card.index, event);
2226	log_irqs(ohci, event);
2227	// The flag is masked again at bus_reset_work() scheduled by selfID event.
2228	if (event & OHCI1394_busReset)
2229		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2230
2231	if (event & OHCI1394_selfIDComplete) {
2232		if (trace_self_id_complete_enabled()) {
2233			u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2234
2235			trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2236					       has_be_header_quirk(ohci));
2237		}
2238		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2239	}
2240
2241	if (event & OHCI1394_RQPkt)
2242		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2243
2244	if (event & OHCI1394_RSPkt)
2245		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2246
2247	if (event & OHCI1394_reqTxComplete)
2248		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2249
2250	if (event & OHCI1394_respTxComplete)
2251		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2252
2253	if (event & OHCI1394_isochRx) {
2254		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2255		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2256
2257		while (iso_event) {
2258			i = ffs(iso_event) - 1;
2259			fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
 
2260			iso_event &= ~(1 << i);
2261		}
2262	}
2263
2264	if (event & OHCI1394_isochTx) {
2265		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2266		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2267
2268		while (iso_event) {
2269			i = ffs(iso_event) - 1;
2270			fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
 
2271			iso_event &= ~(1 << i);
2272		}
2273	}
2274
2275	if (unlikely(event & OHCI1394_regAccessFail))
2276		ohci_err(ohci, "register access failure\n");
2277
2278	if (unlikely(event & OHCI1394_postedWriteErr)) {
2279		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2280		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2281		reg_write(ohci, OHCI1394_IntEventClear,
2282			  OHCI1394_postedWriteErr);
2283		dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
 
2284	}
2285
2286	if (unlikely(event & OHCI1394_cycleTooLong)) {
2287		dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
 
2288		reg_write(ohci, OHCI1394_LinkControlSet,
2289			  OHCI1394_LinkControl_cycleMaster);
2290	}
2291
2292	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2293		/*
2294		 * We need to clear this event bit in order to make
2295		 * cycleMatch isochronous I/O work.  In theory we should
2296		 * stop active cycleMatch iso contexts now and restart
2297		 * them at least two cycles later.  (FIXME?)
2298		 */
2299		dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
 
2300	}
2301
2302	if (unlikely(event & OHCI1394_unrecoverableError))
2303		handle_dead_contexts(ohci);
2304
2305	if (event & OHCI1394_cycle64Seconds) {
2306		guard(spinlock)(&ohci->lock);
2307		update_bus_time(ohci);
 
2308	} else
2309		flush_writes(ohci);
2310
2311	return IRQ_HANDLED;
2312}
2313
2314static int software_reset(struct fw_ohci *ohci)
2315{
2316	u32 val;
2317	int i;
2318
2319	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2320	for (i = 0; i < 500; i++) {
2321		val = reg_read(ohci, OHCI1394_HCControlSet);
2322		if (!~val)
2323			return -ENODEV; /* Card was ejected. */
2324
2325		if (!(val & OHCI1394_HCControl_softReset))
2326			return 0;
2327
2328		msleep(1);
2329	}
2330
2331	return -EBUSY;
2332}
2333
2334static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2335{
2336	size_t size = length * 4;
2337
2338	memcpy(dest, src, size);
2339	if (size < CONFIG_ROM_SIZE)
2340		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2341}
2342
2343static int configure_1394a_enhancements(struct fw_ohci *ohci)
2344{
2345	bool enable_1394a;
2346	int ret, clear, set, offset;
2347
2348	/* Check if the driver should configure link and PHY. */
2349	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2350	      OHCI1394_HCControl_programPhyEnable))
2351		return 0;
2352
2353	/* Paranoia: check whether the PHY supports 1394a, too. */
2354	enable_1394a = false;
2355	ret = read_phy_reg(ohci, 2);
2356	if (ret < 0)
2357		return ret;
2358	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2359		ret = read_paged_phy_reg(ohci, 1, 8);
2360		if (ret < 0)
2361			return ret;
2362		if (ret >= 1)
2363			enable_1394a = true;
2364	}
2365
2366	if (ohci->quirks & QUIRK_NO_1394A)
2367		enable_1394a = false;
2368
2369	/* Configure PHY and link consistently. */
2370	if (enable_1394a) {
2371		clear = 0;
2372		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2373	} else {
2374		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2375		set = 0;
2376	}
2377	ret = update_phy_reg(ohci, 5, clear, set);
2378	if (ret < 0)
2379		return ret;
2380
2381	if (enable_1394a)
2382		offset = OHCI1394_HCControlSet;
2383	else
2384		offset = OHCI1394_HCControlClear;
2385	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2386
2387	/* Clean up: configuration has been taken care of. */
2388	reg_write(ohci, OHCI1394_HCControlClear,
2389		  OHCI1394_HCControl_programPhyEnable);
2390
2391	return 0;
2392}
2393
2394static int probe_tsb41ba3d(struct fw_ohci *ohci)
2395{
2396	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2397	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2398	int reg, i;
2399
2400	reg = read_phy_reg(ohci, 2);
2401	if (reg < 0)
2402		return reg;
2403	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2404		return 0;
2405
2406	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2407		reg = read_paged_phy_reg(ohci, 1, i + 10);
2408		if (reg < 0)
2409			return reg;
2410		if (reg != id[i])
2411			return 0;
2412	}
2413	return 1;
2414}
2415
2416static int ohci_enable(struct fw_card *card,
2417		       const __be32 *config_rom, size_t length)
2418{
2419	struct fw_ohci *ohci = fw_ohci(card);
2420	u32 lps, version, irqs;
2421	int i, ret;
2422
2423	ret = software_reset(ohci);
2424	if (ret < 0) {
2425		ohci_err(ohci, "failed to reset ohci card\n");
2426		return ret;
2427	}
2428
2429	/*
2430	 * Now enable LPS, which we need in order to start accessing
2431	 * most of the registers.  In fact, on some cards (ALI M5251),
2432	 * accessing registers in the SClk domain without LPS enabled
2433	 * will lock up the machine.  Wait 50msec to make sure we have
2434	 * full link enabled.  However, with some cards (well, at least
2435	 * a JMicron PCIe card), we have to try again sometimes.
2436	 *
2437	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2438	 * cannot actually use the phy at that time.  These need tens of
2439	 * millisecods pause between LPS write and first phy access too.
2440	 */
2441
2442	reg_write(ohci, OHCI1394_HCControlSet,
2443		  OHCI1394_HCControl_LPS |
2444		  OHCI1394_HCControl_postedWriteEnable);
2445	flush_writes(ohci);
2446
2447	for (lps = 0, i = 0; !lps && i < 3; i++) {
2448		msleep(50);
2449		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2450		      OHCI1394_HCControl_LPS;
2451	}
2452
2453	if (!lps) {
2454		ohci_err(ohci, "failed to set Link Power Status\n");
2455		return -EIO;
2456	}
2457
2458	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2459		ret = probe_tsb41ba3d(ohci);
2460		if (ret < 0)
2461			return ret;
2462		if (ret)
2463			ohci_notice(ohci, "local TSB41BA3D phy\n");
2464		else
2465			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2466	}
2467
2468	reg_write(ohci, OHCI1394_HCControlClear,
2469		  OHCI1394_HCControl_noByteSwapData);
2470
2471	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2472	reg_write(ohci, OHCI1394_LinkControlSet,
2473		  OHCI1394_LinkControl_cycleTimerEnable |
2474		  OHCI1394_LinkControl_cycleMaster);
2475
2476	reg_write(ohci, OHCI1394_ATRetries,
2477		  OHCI1394_MAX_AT_REQ_RETRIES |
2478		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2479		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2480		  (200 << 16));
2481
2482	ohci->bus_time_running = false;
2483
2484	for (i = 0; i < 32; i++)
2485		if (ohci->ir_context_support & (1 << i))
2486			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2487				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2488
2489	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2490	if (version >= OHCI_VERSION_1_1) {
2491		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2492			  0xfffffffe);
2493		card->broadcast_channel_auto_allocated = true;
2494	}
2495
2496	/* Get implemented bits of the priority arbitration request counter. */
2497	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2498	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2499	reg_write(ohci, OHCI1394_FairnessControl, 0);
2500	card->priority_budget_implemented = ohci->pri_req_max != 0;
2501
2502	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2503	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2504	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2505
2506	ret = configure_1394a_enhancements(ohci);
2507	if (ret < 0)
2508		return ret;
2509
2510	/* Activate link_on bit and contender bit in our self ID packets.*/
2511	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2512	if (ret < 0)
2513		return ret;
2514
2515	/*
2516	 * When the link is not yet enabled, the atomic config rom
2517	 * update mechanism described below in ohci_set_config_rom()
2518	 * is not active.  We have to update ConfigRomHeader and
2519	 * BusOptions manually, and the write to ConfigROMmap takes
2520	 * effect immediately.  We tie this to the enabling of the
2521	 * link, so we have a valid config rom before enabling - the
2522	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2523	 * values before enabling.
2524	 *
2525	 * However, when the ConfigROMmap is written, some controllers
2526	 * always read back quadlets 0 and 2 from the config rom to
2527	 * the ConfigRomHeader and BusOptions registers on bus reset.
2528	 * They shouldn't do that in this initial case where the link
2529	 * isn't enabled.  This means we have to use the same
2530	 * workaround here, setting the bus header to 0 and then write
2531	 * the right values in the bus reset tasklet.
2532	 */
2533
2534	if (config_rom) {
2535		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2536							    &ohci->next_config_rom_bus, GFP_KERNEL);
2537		if (ohci->next_config_rom == NULL)
2538			return -ENOMEM;
2539
2540		copy_config_rom(ohci->next_config_rom, config_rom, length);
2541	} else {
2542		/*
2543		 * In the suspend case, config_rom is NULL, which
2544		 * means that we just reuse the old config rom.
2545		 */
2546		ohci->next_config_rom = ohci->config_rom;
2547		ohci->next_config_rom_bus = ohci->config_rom_bus;
2548	}
2549
2550	ohci->next_header = ohci->next_config_rom[0];
2551	ohci->next_config_rom[0] = 0;
2552	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2553	reg_write(ohci, OHCI1394_BusOptions,
2554		  be32_to_cpu(ohci->next_config_rom[2]));
2555	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2556
2557	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2558
2559	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2560		OHCI1394_RQPkt | OHCI1394_RSPkt |
2561		OHCI1394_isochTx | OHCI1394_isochRx |
2562		OHCI1394_postedWriteErr |
2563		OHCI1394_selfIDComplete |
2564		OHCI1394_regAccessFail |
2565		OHCI1394_cycleInconsistent |
2566		OHCI1394_unrecoverableError |
2567		OHCI1394_cycleTooLong |
2568		OHCI1394_masterIntEnable |
2569		OHCI1394_busReset;
 
2570	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2571
2572	reg_write(ohci, OHCI1394_HCControlSet,
2573		  OHCI1394_HCControl_linkEnable |
2574		  OHCI1394_HCControl_BIBimageValid);
2575
2576	reg_write(ohci, OHCI1394_LinkControlSet,
2577		  OHCI1394_LinkControl_rcvSelfID |
2578		  OHCI1394_LinkControl_rcvPhyPkt);
2579
2580	ar_context_run(&ohci->ar_request_ctx);
2581	ar_context_run(&ohci->ar_response_ctx);
2582
2583	flush_writes(ohci);
2584
2585	/* We are ready to go, reset bus to finish initialization. */
2586	fw_schedule_bus_reset(&ohci->card, false, true);
2587
2588	return 0;
2589}
2590
2591static int ohci_set_config_rom(struct fw_card *card,
2592			       const __be32 *config_rom, size_t length)
2593{
2594	struct fw_ohci *ohci;
2595	__be32 *next_config_rom;
2596	dma_addr_t next_config_rom_bus;
2597
2598	ohci = fw_ohci(card);
2599
2600	/*
2601	 * When the OHCI controller is enabled, the config rom update
2602	 * mechanism is a bit tricky, but easy enough to use.  See
2603	 * section 5.5.6 in the OHCI specification.
2604	 *
2605	 * The OHCI controller caches the new config rom address in a
2606	 * shadow register (ConfigROMmapNext) and needs a bus reset
2607	 * for the changes to take place.  When the bus reset is
2608	 * detected, the controller loads the new values for the
2609	 * ConfigRomHeader and BusOptions registers from the specified
2610	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2611	 * shadow register. All automatically and atomically.
2612	 *
2613	 * Now, there's a twist to this story.  The automatic load of
2614	 * ConfigRomHeader and BusOptions doesn't honor the
2615	 * noByteSwapData bit, so with a be32 config rom, the
2616	 * controller will load be32 values in to these registers
2617	 * during the atomic update, even on little endian
2618	 * architectures.  The workaround we use is to put a 0 in the
2619	 * header quadlet; 0 is endian agnostic and means that the
2620	 * config rom isn't ready yet.  In the bus reset tasklet we
2621	 * then set up the real values for the two registers.
2622	 *
2623	 * We use ohci->lock to avoid racing with the code that sets
2624	 * ohci->next_config_rom to NULL (see bus_reset_work).
2625	 */
2626
2627	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2628					      &next_config_rom_bus, GFP_KERNEL);
2629	if (next_config_rom == NULL)
2630		return -ENOMEM;
2631
2632	scoped_guard(spinlock_irq, &ohci->lock) {
2633		// If there is not an already pending config_rom update, push our new allocation
2634		// into the ohci->next_config_rom and then mark the local variable as null so that
2635		// we won't deallocate the new buffer.
2636		//
2637		// OTOH, if there is a pending config_rom update, just use that buffer with the new
2638		// config_rom data, and let this routine free the unused DMA allocation.
2639		if (ohci->next_config_rom == NULL) {
2640			ohci->next_config_rom = next_config_rom;
2641			ohci->next_config_rom_bus = next_config_rom_bus;
2642			next_config_rom = NULL;
2643		}
 
 
 
 
 
 
 
 
2644
2645		copy_config_rom(ohci->next_config_rom, config_rom, length);
 
2646
2647		ohci->next_header = config_rom[0];
2648		ohci->next_config_rom[0] = 0;
2649
2650		reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2651	}
2652
2653	/* If we didn't use the DMA allocation, delete it. */
2654	if (next_config_rom != NULL) {
2655		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2656				   next_config_rom_bus);
2657	}
2658
2659	/*
2660	 * Now initiate a bus reset to have the changes take
2661	 * effect. We clean up the old config rom memory and DMA
2662	 * mappings in the bus reset tasklet, since the OHCI
2663	 * controller could need to access it before the bus reset
2664	 * takes effect.
2665	 */
2666
2667	fw_schedule_bus_reset(&ohci->card, true, true);
2668
2669	return 0;
2670}
2671
2672static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2673{
2674	struct fw_ohci *ohci = fw_ohci(card);
2675
2676	at_context_transmit(&ohci->at_request_ctx, packet);
2677}
2678
2679static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2680{
2681	struct fw_ohci *ohci = fw_ohci(card);
2682
2683	at_context_transmit(&ohci->at_response_ctx, packet);
2684}
2685
2686static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2687{
2688	struct fw_ohci *ohci = fw_ohci(card);
2689	struct context *ctx = &ohci->at_request_ctx;
2690	struct driver_data *driver_data = packet->driver_data;
2691	int ret = -ENOENT;
2692
2693	tasklet_disable_in_atomic(&ctx->tasklet);
2694
2695	if (packet->ack != 0)
2696		goto out;
2697
2698	if (packet->payload_mapped)
2699		dma_unmap_single(ohci->card.device, packet->payload_bus,
2700				 packet->payload_length, DMA_TO_DEVICE);
2701
2702	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2703	driver_data->packet = NULL;
2704	packet->ack = RCODE_CANCELLED;
2705
2706	// Timestamping on behalf of the hardware.
2707	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2708
2709	packet->callback(packet, &ohci->card, packet->ack);
2710	ret = 0;
2711 out:
2712	tasklet_enable(&ctx->tasklet);
2713
2714	return ret;
2715}
2716
2717static int ohci_enable_phys_dma(struct fw_card *card,
2718				int node_id, int generation)
2719{
2720	struct fw_ohci *ohci = fw_ohci(card);
 
2721	int n, ret = 0;
2722
2723	if (param_remote_dma)
2724		return 0;
2725
2726	/*
2727	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2728	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2729	 */
2730
2731	guard(spinlock_irqsave)(&ohci->lock);
2732
2733	if (ohci->generation != generation)
2734		return -ESTALE;
 
 
2735
2736	/*
2737	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2738	 * enabled for _all_ nodes on remote buses.
2739	 */
2740
2741	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2742	if (n < 32)
2743		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2744	else
2745		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2746
2747	flush_writes(ohci);
 
 
2748
2749	return ret;
2750}
2751
2752static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753{
2754	struct fw_ohci *ohci = fw_ohci(card);
 
2755	u32 value;
2756
2757	switch (csr_offset) {
2758	case CSR_STATE_CLEAR:
2759	case CSR_STATE_SET:
2760		if (ohci->is_root &&
2761		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2762		     OHCI1394_LinkControl_cycleMaster))
2763			value = CSR_STATE_BIT_CMSTR;
2764		else
2765			value = 0;
2766		if (ohci->csr_state_setclear_abdicate)
2767			value |= CSR_STATE_BIT_ABDICATE;
2768
2769		return value;
2770
2771	case CSR_NODE_IDS:
2772		return reg_read(ohci, OHCI1394_NodeID) << 16;
2773
2774	case CSR_CYCLE_TIME:
2775		return get_cycle_time(ohci);
2776
2777	case CSR_BUS_TIME:
2778	{
2779		// We might be called just after the cycle timer has wrapped around but just before
2780		// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2781		// to be updated.
 
 
 
 
 
2782
2783		guard(spinlock_irqsave)(&ohci->lock);
2784		return update_bus_time(ohci);
2785	}
2786	case CSR_BUSY_TIMEOUT:
2787		value = reg_read(ohci, OHCI1394_ATRetries);
2788		return (value >> 4) & 0x0ffff00f;
2789
2790	case CSR_PRIORITY_BUDGET:
2791		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2792			(ohci->pri_req_max << 8);
2793
2794	default:
2795		WARN_ON(1);
2796		return 0;
2797	}
2798}
2799
2800static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2801{
2802	struct fw_ohci *ohci = fw_ohci(card);
 
2803
2804	switch (csr_offset) {
2805	case CSR_STATE_CLEAR:
2806		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2807			reg_write(ohci, OHCI1394_LinkControlClear,
2808				  OHCI1394_LinkControl_cycleMaster);
2809			flush_writes(ohci);
2810		}
2811		if (value & CSR_STATE_BIT_ABDICATE)
2812			ohci->csr_state_setclear_abdicate = false;
2813		break;
2814
2815	case CSR_STATE_SET:
2816		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2817			reg_write(ohci, OHCI1394_LinkControlSet,
2818				  OHCI1394_LinkControl_cycleMaster);
2819			flush_writes(ohci);
2820		}
2821		if (value & CSR_STATE_BIT_ABDICATE)
2822			ohci->csr_state_setclear_abdicate = true;
2823		break;
2824
2825	case CSR_NODE_IDS:
2826		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2827		flush_writes(ohci);
2828		break;
2829
2830	case CSR_CYCLE_TIME:
2831		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2832		reg_write(ohci, OHCI1394_IntEventSet,
2833			  OHCI1394_cycleInconsistent);
2834		flush_writes(ohci);
2835		break;
2836
2837	case CSR_BUS_TIME:
2838	{
2839		guard(spinlock_irqsave)(&ohci->lock);
2840		ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
 
2841		break;
2842	}
2843	case CSR_BUSY_TIMEOUT:
2844		value = (value & 0xf) | ((value & 0xf) << 4) |
2845			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2846		reg_write(ohci, OHCI1394_ATRetries, value);
2847		flush_writes(ohci);
2848		break;
2849
2850	case CSR_PRIORITY_BUDGET:
2851		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2852		flush_writes(ohci);
2853		break;
2854
2855	default:
2856		WARN_ON(1);
2857		break;
2858	}
2859}
2860
2861static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2862{
2863	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2864					      ctx->header_length);
2865	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2866					ctx->header_length);
2867
2868	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2869			      ctx->header_length, ctx->header,
2870			      ctx->base.callback_data);
2871	ctx->header_length = 0;
2872}
2873
2874static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2875{
2876	u32 *ctx_hdr;
2877
2878	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2879		if (ctx->base.drop_overflow_headers)
2880			return;
2881		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2882	}
2883
2884	ctx_hdr = ctx->header + ctx->header_length;
2885	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2886
2887	/*
2888	 * The two iso header quadlets are byteswapped to little
2889	 * endian by the controller, but we want to present them
2890	 * as big endian for consistency with the bus endianness.
2891	 */
2892	if (ctx->base.header_size > 0)
2893		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2894	if (ctx->base.header_size > 4)
2895		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2896	if (ctx->base.header_size > 8)
2897		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2898	ctx->header_length += ctx->base.header_size;
2899}
2900
2901static int handle_ir_packet_per_buffer(struct context *context,
2902				       struct descriptor *d,
2903				       struct descriptor *last)
2904{
2905	struct iso_context *ctx =
2906		container_of(context, struct iso_context, context);
2907	struct descriptor *pd;
2908	u32 buffer_dma;
2909
2910	for (pd = d; pd <= last; pd++)
2911		if (pd->transfer_status)
2912			break;
2913	if (pd > last)
2914		/* Descriptor(s) not done yet, stop iteration */
2915		return 0;
2916
2917	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2918		d++;
2919		buffer_dma = le32_to_cpu(d->data_address);
2920		dma_sync_single_range_for_cpu(context->ohci->card.device,
2921					      buffer_dma & PAGE_MASK,
2922					      buffer_dma & ~PAGE_MASK,
2923					      le16_to_cpu(d->req_count),
2924					      DMA_FROM_DEVICE);
2925	}
2926
2927	copy_iso_headers(ctx, (u32 *) (last + 1));
2928
2929	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2931
2932	return 1;
2933}
2934
2935/* d == last because each descriptor block is only a single descriptor. */
2936static int handle_ir_buffer_fill(struct context *context,
2937				 struct descriptor *d,
2938				 struct descriptor *last)
2939{
2940	struct iso_context *ctx =
2941		container_of(context, struct iso_context, context);
2942	unsigned int req_count, res_count, completed;
2943	u32 buffer_dma;
2944
2945	req_count = le16_to_cpu(last->req_count);
2946	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2947	completed = req_count - res_count;
2948	buffer_dma = le32_to_cpu(last->data_address);
2949
2950	if (completed > 0) {
2951		ctx->mc_buffer_bus = buffer_dma;
2952		ctx->mc_completed = completed;
2953	}
2954
2955	if (res_count != 0)
2956		/* Descriptor(s) not done yet, stop iteration */
2957		return 0;
2958
2959	dma_sync_single_range_for_cpu(context->ohci->card.device,
2960				      buffer_dma & PAGE_MASK,
2961				      buffer_dma & ~PAGE_MASK,
2962				      completed, DMA_FROM_DEVICE);
2963
2964	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2965		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2966							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2967
2968		ctx->base.callback.mc(&ctx->base,
2969				      buffer_dma + completed,
2970				      ctx->base.callback_data);
2971		ctx->mc_completed = 0;
2972	}
2973
2974	return 1;
2975}
2976
2977static void flush_ir_buffer_fill(struct iso_context *ctx)
2978{
2979	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2980				      ctx->mc_buffer_bus & PAGE_MASK,
2981				      ctx->mc_buffer_bus & ~PAGE_MASK,
2982				      ctx->mc_completed, DMA_FROM_DEVICE);
2983
2984	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2985						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2986
2987	ctx->base.callback.mc(&ctx->base,
2988			      ctx->mc_buffer_bus + ctx->mc_completed,
2989			      ctx->base.callback_data);
2990	ctx->mc_completed = 0;
2991}
2992
2993static inline void sync_it_packet_for_cpu(struct context *context,
2994					  struct descriptor *pd)
2995{
2996	__le16 control;
2997	u32 buffer_dma;
2998
2999	/* only packets beginning with OUTPUT_MORE* have data buffers */
3000	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3001		return;
3002
3003	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3004	pd += 2;
3005
3006	/*
3007	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3008	 * data buffer is in the context program's coherent page and must not
3009	 * be synced.
3010	 */
3011	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3012	    (context->current_bus          & PAGE_MASK)) {
3013		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3014			return;
3015		pd++;
3016	}
3017
3018	do {
3019		buffer_dma = le32_to_cpu(pd->data_address);
3020		dma_sync_single_range_for_cpu(context->ohci->card.device,
3021					      buffer_dma & PAGE_MASK,
3022					      buffer_dma & ~PAGE_MASK,
3023					      le16_to_cpu(pd->req_count),
3024					      DMA_TO_DEVICE);
3025		control = pd->control;
3026		pd++;
3027	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3028}
3029
3030static int handle_it_packet(struct context *context,
3031			    struct descriptor *d,
3032			    struct descriptor *last)
3033{
3034	struct iso_context *ctx =
3035		container_of(context, struct iso_context, context);
3036	struct descriptor *pd;
3037	__be32 *ctx_hdr;
3038
3039	for (pd = d; pd <= last; pd++)
3040		if (pd->transfer_status)
3041			break;
3042	if (pd > last)
3043		/* Descriptor(s) not done yet, stop iteration */
3044		return 0;
3045
3046	sync_it_packet_for_cpu(context, d);
3047
3048	if (ctx->header_length + 4 > PAGE_SIZE) {
3049		if (ctx->base.drop_overflow_headers)
3050			return 1;
3051		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3052	}
3053
3054	ctx_hdr = ctx->header + ctx->header_length;
3055	ctx->last_timestamp = le16_to_cpu(last->res_count);
3056	/* Present this value as big-endian to match the receive code */
3057	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3058			       le16_to_cpu(pd->res_count));
3059	ctx->header_length += 4;
3060
3061	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3062		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3063
3064	return 1;
3065}
3066
3067static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3068{
3069	u32 hi = channels >> 32, lo = channels;
3070
3071	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3072	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3073	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3074	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3075	ohci->mc_channels = channels;
3076}
3077
3078static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3079				int type, int channel, size_t header_size)
3080{
3081	struct fw_ohci *ohci = fw_ohci(card);
3082	struct iso_context *ctx;
3083	descriptor_callback_t callback;
3084	u64 *channels;
3085	u32 *mask, regs;
3086	int index, ret = -EBUSY;
3087
3088	scoped_guard(spinlock_irq, &ohci->lock) {
3089		switch (type) {
3090		case FW_ISO_CONTEXT_TRANSMIT:
3091			mask     = &ohci->it_context_mask;
3092			callback = handle_it_packet;
3093			index    = ffs(*mask) - 1;
3094			if (index >= 0) {
3095				*mask &= ~(1 << index);
3096				regs = OHCI1394_IsoXmitContextBase(index);
3097				ctx  = &ohci->it_context_list[index];
3098			}
3099			break;
3100
3101		case FW_ISO_CONTEXT_RECEIVE:
3102			channels = &ohci->ir_context_channels;
3103			mask     = &ohci->ir_context_mask;
3104			callback = handle_ir_packet_per_buffer;
3105			index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3106			if (index >= 0) {
3107				*channels &= ~(1ULL << channel);
3108				*mask     &= ~(1 << index);
3109				regs = OHCI1394_IsoRcvContextBase(index);
3110				ctx  = &ohci->ir_context_list[index];
3111			}
3112			break;
3113
3114		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3115			mask     = &ohci->ir_context_mask;
3116			callback = handle_ir_buffer_fill;
3117			index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3118			if (index >= 0) {
3119				ohci->mc_allocated = true;
3120				*mask &= ~(1 << index);
3121				regs = OHCI1394_IsoRcvContextBase(index);
3122				ctx  = &ohci->ir_context_list[index];
3123			}
3124			break;
 
3125
3126		default:
3127			index = -1;
3128			ret = -ENOSYS;
 
 
 
 
 
 
3129		}
 
3130
3131		if (index < 0)
3132			return ERR_PTR(ret);
 
3133	}
3134
 
 
 
 
 
3135	memset(ctx, 0, sizeof(*ctx));
3136	ctx->header_length = 0;
3137	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3138	if (ctx->header == NULL) {
3139		ret = -ENOMEM;
3140		goto out;
3141	}
3142	ret = context_init(&ctx->context, ohci, regs, callback);
3143	if (ret < 0)
3144		goto out_with_header;
3145	fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3146
3147	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3148		set_multichannel_mask(ohci, 0);
3149		ctx->mc_completed = 0;
3150	}
3151
3152	return &ctx->base;
3153
3154 out_with_header:
3155	free_page((unsigned long)ctx->header);
3156 out:
3157	scoped_guard(spinlock_irq, &ohci->lock) {
3158		switch (type) {
3159		case FW_ISO_CONTEXT_RECEIVE:
3160			*channels |= 1ULL << channel;
3161			break;
 
3162
3163		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164			ohci->mc_allocated = false;
3165			break;
3166		}
3167		*mask |= 1 << index;
3168	}
 
 
 
3169
3170	return ERR_PTR(ret);
3171}
3172
3173static int ohci_start_iso(struct fw_iso_context *base,
3174			  s32 cycle, u32 sync, u32 tags)
3175{
3176	struct iso_context *ctx = container_of(base, struct iso_context, base);
3177	struct fw_ohci *ohci = ctx->context.ohci;
3178	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3179	int index;
3180
3181	/* the controller cannot start without any queued packets */
3182	if (ctx->context.last->branch_address == 0)
3183		return -ENODATA;
3184
3185	switch (ctx->base.type) {
3186	case FW_ISO_CONTEXT_TRANSMIT:
3187		index = ctx - ohci->it_context_list;
3188		match = 0;
3189		if (cycle >= 0)
3190			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3191				(cycle & 0x7fff) << 16;
3192
3193		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3194		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3195		context_run(&ctx->context, match);
3196		break;
3197
3198	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3199		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3200		fallthrough;
3201	case FW_ISO_CONTEXT_RECEIVE:
3202		index = ctx - ohci->ir_context_list;
3203		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3204		if (cycle >= 0) {
3205			match |= (cycle & 0x07fff) << 12;
3206			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3207		}
3208
3209		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3210		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3211		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3212		context_run(&ctx->context, control);
3213
3214		ctx->sync = sync;
3215		ctx->tags = tags;
3216
3217		break;
3218	}
3219
3220	return 0;
3221}
3222
3223static int ohci_stop_iso(struct fw_iso_context *base)
3224{
3225	struct fw_ohci *ohci = fw_ohci(base->card);
3226	struct iso_context *ctx = container_of(base, struct iso_context, base);
3227	int index;
3228
3229	switch (ctx->base.type) {
3230	case FW_ISO_CONTEXT_TRANSMIT:
3231		index = ctx - ohci->it_context_list;
3232		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3233		break;
3234
3235	case FW_ISO_CONTEXT_RECEIVE:
3236	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3237		index = ctx - ohci->ir_context_list;
3238		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3239		break;
3240	}
3241	flush_writes(ohci);
3242	context_stop(&ctx->context);
 
3243
3244	return 0;
3245}
3246
3247static void ohci_free_iso_context(struct fw_iso_context *base)
3248{
3249	struct fw_ohci *ohci = fw_ohci(base->card);
3250	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
3251	int index;
3252
3253	ohci_stop_iso(base);
3254	context_release(&ctx->context);
3255	free_page((unsigned long)ctx->header);
3256
3257	guard(spinlock_irqsave)(&ohci->lock);
3258
3259	switch (base->type) {
3260	case FW_ISO_CONTEXT_TRANSMIT:
3261		index = ctx - ohci->it_context_list;
3262		ohci->it_context_mask |= 1 << index;
3263		break;
3264
3265	case FW_ISO_CONTEXT_RECEIVE:
3266		index = ctx - ohci->ir_context_list;
3267		ohci->ir_context_mask |= 1 << index;
3268		ohci->ir_context_channels |= 1ULL << base->channel;
3269		break;
3270
3271	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3272		index = ctx - ohci->ir_context_list;
3273		ohci->ir_context_mask |= 1 << index;
3274		ohci->ir_context_channels |= ohci->mc_channels;
3275		ohci->mc_channels = 0;
3276		ohci->mc_allocated = false;
3277		break;
3278	}
 
 
3279}
3280
3281static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3282{
3283	struct fw_ohci *ohci = fw_ohci(base->card);
 
 
3284
3285	switch (base->type) {
3286	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3287	{
3288		guard(spinlock_irqsave)(&ohci->lock);
3289
3290		// Don't allow multichannel to grab other contexts' channels.
 
 
3291		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3292			*channels = ohci->ir_context_channels;
3293			return -EBUSY;
3294		} else {
3295			set_multichannel_mask(ohci, *channels);
3296			return 0;
3297		}
3298	}
 
 
 
3299	default:
3300		return -EINVAL;
3301	}
 
 
3302}
3303
3304#ifdef CONFIG_PM
3305static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3306{
3307	int i;
3308	struct iso_context *ctx;
3309
3310	for (i = 0 ; i < ohci->n_ir ; i++) {
3311		ctx = &ohci->ir_context_list[i];
3312		if (ctx->context.running)
3313			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3314	}
3315
3316	for (i = 0 ; i < ohci->n_it ; i++) {
3317		ctx = &ohci->it_context_list[i];
3318		if (ctx->context.running)
3319			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3320	}
3321}
3322#endif
3323
3324static int queue_iso_transmit(struct iso_context *ctx,
3325			      struct fw_iso_packet *packet,
3326			      struct fw_iso_buffer *buffer,
3327			      unsigned long payload)
3328{
3329	struct descriptor *d, *last, *pd;
3330	struct fw_iso_packet *p;
3331	__le32 *header;
3332	dma_addr_t d_bus, page_bus;
3333	u32 z, header_z, payload_z, irq;
3334	u32 payload_index, payload_end_index, next_page_index;
3335	int page, end_page, i, length, offset;
3336
3337	p = packet;
3338	payload_index = payload;
3339
3340	if (p->skip)
3341		z = 1;
3342	else
3343		z = 2;
3344	if (p->header_length > 0)
3345		z++;
3346
3347	/* Determine the first page the payload isn't contained in. */
3348	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3349	if (p->payload_length > 0)
3350		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3351	else
3352		payload_z = 0;
3353
3354	z += payload_z;
3355
3356	/* Get header size in number of descriptors. */
3357	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3358
3359	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3360	if (d == NULL)
3361		return -ENOMEM;
3362
3363	if (!p->skip) {
3364		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3365		d[0].req_count = cpu_to_le16(8);
3366		/*
3367		 * Link the skip address to this descriptor itself.  This causes
3368		 * a context to skip a cycle whenever lost cycles or FIFO
3369		 * overruns occur, without dropping the data.  The application
3370		 * should then decide whether this is an error condition or not.
3371		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3372		 */
3373		d[0].branch_address = cpu_to_le32(d_bus | z);
3374
3375		header = (__le32 *) &d[1];
3376
3377		ohci1394_it_data_set_speed(header, ctx->base.speed);
3378		ohci1394_it_data_set_tag(header, p->tag);
3379		ohci1394_it_data_set_channel(header, ctx->base.channel);
3380		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3381		ohci1394_it_data_set_sync(header, p->sy);
3382
3383		ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3384	}
3385
3386	if (p->header_length > 0) {
3387		d[2].req_count    = cpu_to_le16(p->header_length);
3388		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3389		memcpy(&d[z], p->header, p->header_length);
3390	}
3391
3392	pd = d + z - payload_z;
3393	payload_end_index = payload_index + p->payload_length;
3394	for (i = 0; i < payload_z; i++) {
3395		page               = payload_index >> PAGE_SHIFT;
3396		offset             = payload_index & ~PAGE_MASK;
3397		next_page_index    = (page + 1) << PAGE_SHIFT;
3398		length             =
3399			min(next_page_index, payload_end_index) - payload_index;
3400		pd[i].req_count    = cpu_to_le16(length);
3401
3402		page_bus = page_private(buffer->pages[page]);
3403		pd[i].data_address = cpu_to_le32(page_bus + offset);
3404
3405		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3406						 page_bus, offset, length,
3407						 DMA_TO_DEVICE);
3408
3409		payload_index += length;
3410	}
3411
3412	if (p->interrupt)
3413		irq = DESCRIPTOR_IRQ_ALWAYS;
3414	else
3415		irq = DESCRIPTOR_NO_IRQ;
3416
3417	last = z == 2 ? d : d + z - 1;
3418	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3419				     DESCRIPTOR_STATUS |
3420				     DESCRIPTOR_BRANCH_ALWAYS |
3421				     irq);
3422
3423	context_append(&ctx->context, d, z, header_z);
3424
3425	return 0;
3426}
3427
3428static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3429				       struct fw_iso_packet *packet,
3430				       struct fw_iso_buffer *buffer,
3431				       unsigned long payload)
3432{
3433	struct device *device = ctx->context.ohci->card.device;
3434	struct descriptor *d, *pd;
3435	dma_addr_t d_bus, page_bus;
3436	u32 z, header_z, rest;
3437	int i, j, length;
3438	int page, offset, packet_count, header_size, payload_per_buffer;
3439
3440	/*
3441	 * The OHCI controller puts the isochronous header and trailer in the
3442	 * buffer, so we need at least 8 bytes.
3443	 */
3444	packet_count = packet->header_length / ctx->base.header_size;
3445	header_size  = max(ctx->base.header_size, (size_t)8);
3446
3447	/* Get header size in number of descriptors. */
3448	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3449	page     = payload >> PAGE_SHIFT;
3450	offset   = payload & ~PAGE_MASK;
3451	payload_per_buffer = packet->payload_length / packet_count;
3452
3453	for (i = 0; i < packet_count; i++) {
3454		/* d points to the header descriptor */
3455		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3456		d = context_get_descriptors(&ctx->context,
3457				z + header_z, &d_bus);
3458		if (d == NULL)
3459			return -ENOMEM;
3460
3461		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3462					      DESCRIPTOR_INPUT_MORE);
3463		if (packet->skip && i == 0)
3464			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3465		d->req_count    = cpu_to_le16(header_size);
3466		d->res_count    = d->req_count;
3467		d->transfer_status = 0;
3468		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3469
3470		rest = payload_per_buffer;
3471		pd = d;
3472		for (j = 1; j < z; j++) {
3473			pd++;
3474			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3475						  DESCRIPTOR_INPUT_MORE);
3476
3477			if (offset + rest < PAGE_SIZE)
3478				length = rest;
3479			else
3480				length = PAGE_SIZE - offset;
3481			pd->req_count = cpu_to_le16(length);
3482			pd->res_count = pd->req_count;
3483			pd->transfer_status = 0;
3484
3485			page_bus = page_private(buffer->pages[page]);
3486			pd->data_address = cpu_to_le32(page_bus + offset);
3487
3488			dma_sync_single_range_for_device(device, page_bus,
3489							 offset, length,
3490							 DMA_FROM_DEVICE);
3491
3492			offset = (offset + length) & ~PAGE_MASK;
3493			rest -= length;
3494			if (offset == 0)
3495				page++;
3496		}
3497		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3498					  DESCRIPTOR_INPUT_LAST |
3499					  DESCRIPTOR_BRANCH_ALWAYS);
3500		if (packet->interrupt && i == packet_count - 1)
3501			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3502
3503		context_append(&ctx->context, d, z, header_z);
3504	}
3505
3506	return 0;
3507}
3508
3509static int queue_iso_buffer_fill(struct iso_context *ctx,
3510				 struct fw_iso_packet *packet,
3511				 struct fw_iso_buffer *buffer,
3512				 unsigned long payload)
3513{
3514	struct descriptor *d;
3515	dma_addr_t d_bus, page_bus;
3516	int page, offset, rest, z, i, length;
3517
3518	page   = payload >> PAGE_SHIFT;
3519	offset = payload & ~PAGE_MASK;
3520	rest   = packet->payload_length;
3521
3522	/* We need one descriptor for each page in the buffer. */
3523	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3524
3525	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3526		return -EFAULT;
3527
3528	for (i = 0; i < z; i++) {
3529		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3530		if (d == NULL)
3531			return -ENOMEM;
3532
3533		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3534					 DESCRIPTOR_BRANCH_ALWAYS);
3535		if (packet->skip && i == 0)
3536			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3537		if (packet->interrupt && i == z - 1)
3538			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3539
3540		if (offset + rest < PAGE_SIZE)
3541			length = rest;
3542		else
3543			length = PAGE_SIZE - offset;
3544		d->req_count = cpu_to_le16(length);
3545		d->res_count = d->req_count;
3546		d->transfer_status = 0;
3547
3548		page_bus = page_private(buffer->pages[page]);
3549		d->data_address = cpu_to_le32(page_bus + offset);
3550
3551		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3552						 page_bus, offset, length,
3553						 DMA_FROM_DEVICE);
3554
3555		rest -= length;
3556		offset = 0;
3557		page++;
3558
3559		context_append(&ctx->context, d, 1, 0);
3560	}
3561
3562	return 0;
3563}
3564
3565static int ohci_queue_iso(struct fw_iso_context *base,
3566			  struct fw_iso_packet *packet,
3567			  struct fw_iso_buffer *buffer,
3568			  unsigned long payload)
3569{
3570	struct iso_context *ctx = container_of(base, struct iso_context, base);
 
 
3571
3572	guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3573
3574	switch (base->type) {
3575	case FW_ISO_CONTEXT_TRANSMIT:
3576		return queue_iso_transmit(ctx, packet, buffer, payload);
 
3577	case FW_ISO_CONTEXT_RECEIVE:
3578		return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
 
3579	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3580		return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3581	default:
3582		return -ENOSYS;
3583	}
 
 
 
3584}
3585
3586static void ohci_flush_queue_iso(struct fw_iso_context *base)
3587{
3588	struct context *ctx =
3589			&container_of(base, struct iso_context, base)->context;
3590
3591	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3592}
3593
3594static int ohci_flush_iso_completions(struct fw_iso_context *base)
3595{
3596	struct iso_context *ctx = container_of(base, struct iso_context, base);
3597	int ret = 0;
3598
 
 
3599	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3600		ohci_isoc_context_work(&base->work);
3601
3602		switch (base->type) {
3603		case FW_ISO_CONTEXT_TRANSMIT:
3604		case FW_ISO_CONTEXT_RECEIVE:
3605			if (ctx->header_length != 0)
3606				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3607			break;
3608		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3609			if (ctx->mc_completed != 0)
3610				flush_ir_buffer_fill(ctx);
3611			break;
3612		default:
3613			ret = -ENOSYS;
3614		}
3615
3616		clear_bit_unlock(0, &ctx->flushing_completions);
3617		smp_mb__after_atomic();
3618	}
3619
 
 
3620	return ret;
3621}
3622
3623static const struct fw_card_driver ohci_driver = {
3624	.enable			= ohci_enable,
3625	.read_phy_reg		= ohci_read_phy_reg,
3626	.update_phy_reg		= ohci_update_phy_reg,
3627	.set_config_rom		= ohci_set_config_rom,
3628	.send_request		= ohci_send_request,
3629	.send_response		= ohci_send_response,
3630	.cancel_packet		= ohci_cancel_packet,
3631	.enable_phys_dma	= ohci_enable_phys_dma,
3632	.read_csr		= ohci_read_csr,
3633	.write_csr		= ohci_write_csr,
3634
3635	.allocate_iso_context	= ohci_allocate_iso_context,
3636	.free_iso_context	= ohci_free_iso_context,
3637	.set_iso_channels	= ohci_set_iso_channels,
3638	.queue_iso		= ohci_queue_iso,
3639	.flush_queue_iso	= ohci_flush_queue_iso,
3640	.flush_iso_completions	= ohci_flush_iso_completions,
3641	.start_iso		= ohci_start_iso,
3642	.stop_iso		= ohci_stop_iso,
3643};
3644
3645#ifdef CONFIG_PPC_PMAC
3646static void pmac_ohci_on(struct pci_dev *dev)
3647{
3648	if (machine_is(powermac)) {
3649		struct device_node *ofn = pci_device_to_OF_node(dev);
3650
3651		if (ofn) {
3652			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3653			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3654		}
3655	}
3656}
3657
3658static void pmac_ohci_off(struct pci_dev *dev)
3659{
3660	if (machine_is(powermac)) {
3661		struct device_node *ofn = pci_device_to_OF_node(dev);
3662
3663		if (ofn) {
3664			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3665			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3666		}
3667	}
3668}
3669#else
3670static inline void pmac_ohci_on(struct pci_dev *dev) {}
3671static inline void pmac_ohci_off(struct pci_dev *dev) {}
3672#endif /* CONFIG_PPC_PMAC */
3673
3674static void release_ohci(struct device *dev, void *data)
3675{
3676	struct pci_dev *pdev = to_pci_dev(dev);
3677	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3678
3679	pmac_ohci_off(pdev);
3680
3681	ar_context_release(&ohci->ar_response_ctx);
3682	ar_context_release(&ohci->ar_request_ctx);
3683
3684	dev_notice(dev, "removed fw-ohci device\n");
3685}
3686
3687static int pci_probe(struct pci_dev *dev,
3688			       const struct pci_device_id *ent)
3689{
3690	struct fw_ohci *ohci;
3691	u32 bus_options, max_receive, link_speed, version;
3692	u64 guid;
3693	int i, flags, irq, err;
3694	size_t size;
3695
3696	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3697		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3698		return -ENOSYS;
3699	}
3700
3701	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3702	if (ohci == NULL)
3703		return -ENOMEM;
3704	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3705	pci_set_drvdata(dev, ohci);
3706	pmac_ohci_on(dev);
3707	devres_add(&dev->dev, ohci);
3708
3709	err = pcim_enable_device(dev);
3710	if (err) {
3711		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3712		return err;
3713	}
3714
3715	pci_set_master(dev);
3716	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3717
3718	spin_lock_init(&ohci->lock);
3719	mutex_init(&ohci->phy_reg_mutex);
3720
3721	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3722
3723	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3724	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3725		ohci_err(ohci, "invalid MMIO resource\n");
3726		return -ENXIO;
3727	}
3728
3729	ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3730	if (IS_ERR(ohci->registers)) {
3731		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3732		return -ENXIO;
3733	}
 
3734
3735	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3736		if ((ohci_quirks[i].vendor == dev->vendor) &&
3737		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3738		     ohci_quirks[i].device == dev->device) &&
3739		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3740		     ohci_quirks[i].revision >= dev->revision)) {
3741			ohci->quirks = ohci_quirks[i].flags;
3742			break;
3743		}
3744	if (param_quirks)
3745		ohci->quirks = param_quirks;
3746
3747	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3748		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3749
3750	/*
3751	 * Because dma_alloc_coherent() allocates at least one page,
3752	 * we save space by using a common buffer for the AR request/
3753	 * response descriptors and the self IDs buffer.
3754	 */
3755	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3756	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3757	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3758						GFP_KERNEL);
3759	if (!ohci->misc_buffer)
3760		return -ENOMEM;
3761
3762	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3763			      OHCI1394_AsReqRcvContextControlSet);
3764	if (err < 0)
3765		return err;
3766
3767	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3768			      OHCI1394_AsRspRcvContextControlSet);
3769	if (err < 0)
3770		return err;
3771
3772	err = context_init(&ohci->at_request_ctx, ohci,
3773			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3774	if (err < 0)
3775		return err;
3776
3777	err = context_init(&ohci->at_response_ctx, ohci,
3778			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3779	if (err < 0)
3780		return err;
3781
3782	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3783	ohci->ir_context_channels = ~0ULL;
3784	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3785	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3786	ohci->ir_context_mask = ohci->ir_context_support;
3787	ohci->n_ir = hweight32(ohci->ir_context_mask);
3788	size = sizeof(struct iso_context) * ohci->n_ir;
3789	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3790	if (!ohci->ir_context_list)
3791		return -ENOMEM;
3792
3793	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3794	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3795	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3796	if (!ohci->it_context_support) {
3797		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3798		ohci->it_context_support = 0xf;
3799	}
3800	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3801	ohci->it_context_mask = ohci->it_context_support;
3802	ohci->n_it = hweight32(ohci->it_context_mask);
3803	size = sizeof(struct iso_context) * ohci->n_it;
3804	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3805	if (!ohci->it_context_list)
3806		return -ENOMEM;
3807
3808	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3809	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3810
3811	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3812	max_receive = (bus_options >> 12) & 0xf;
3813	link_speed = bus_options & 0x7;
3814	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3815		reg_read(ohci, OHCI1394_GUIDLo);
3816
3817	flags = PCI_IRQ_INTX;
3818	if (!(ohci->quirks & QUIRK_NO_MSI))
3819		flags |= PCI_IRQ_MSI;
3820	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3821	if (err < 0)
3822		return err;
3823	irq = pci_irq_vector(dev, 0);
3824	if (irq < 0) {
3825		err = irq;
3826		goto fail_msi;
3827	}
3828
3829	err = request_threaded_irq(irq, irq_handler, NULL,
3830				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3831				   ohci);
3832	if (err < 0) {
3833		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3834		goto fail_msi;
3835	}
3836
3837	err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3838	if (err)
3839		goto fail_irq;
3840
3841	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3842	ohci_notice(ohci,
3843		    "added OHCI v%x.%x device as card %d, "
3844		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3845		    version >> 16, version & 0xff, ohci->card.index,
3846		    ohci->n_ir, ohci->n_it, ohci->quirks,
3847		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3848			", physUB" : "");
3849
3850	return 0;
3851
3852 fail_irq:
3853	free_irq(irq, ohci);
3854 fail_msi:
3855	pci_free_irq_vectors(dev);
 
3856
3857	return err;
3858}
3859
3860static void pci_remove(struct pci_dev *dev)
3861{
3862	struct fw_ohci *ohci = pci_get_drvdata(dev);
3863	int irq;
3864
3865	/*
3866	 * If the removal is happening from the suspend state, LPS won't be
3867	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3868	 */
3869	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3870		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3871		flush_writes(ohci);
3872	}
3873	cancel_work_sync(&ohci->bus_reset_work);
3874	fw_core_remove_card(&ohci->card);
3875
3876	/*
3877	 * FIXME: Fail all pending packets here, now that the upper
3878	 * layers can't queue any more.
3879	 */
3880
3881	software_reset(ohci);
3882
3883	irq = pci_irq_vector(dev, 0);
3884	if (irq >= 0)
3885		free_irq(irq, ohci);
3886	pci_free_irq_vectors(dev);
3887
3888	dev_notice(&dev->dev, "removing fw-ohci device\n");
3889}
3890
3891#ifdef CONFIG_PM
3892static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3893{
3894	struct fw_ohci *ohci = pci_get_drvdata(dev);
3895	int err;
3896
3897	software_reset(ohci);
3898	err = pci_save_state(dev);
3899	if (err) {
3900		ohci_err(ohci, "pci_save_state failed\n");
3901		return err;
3902	}
3903	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3904	if (err)
3905		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3906	pmac_ohci_off(dev);
3907
3908	return 0;
3909}
3910
3911static int pci_resume(struct pci_dev *dev)
3912{
3913	struct fw_ohci *ohci = pci_get_drvdata(dev);
3914	int err;
3915
3916	pmac_ohci_on(dev);
3917	pci_set_power_state(dev, PCI_D0);
3918	pci_restore_state(dev);
3919	err = pci_enable_device(dev);
3920	if (err) {
3921		ohci_err(ohci, "pci_enable_device failed\n");
3922		return err;
3923	}
3924
3925	/* Some systems don't setup GUID register on resume from ram  */
3926	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3927					!reg_read(ohci, OHCI1394_GUIDHi)) {
3928		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3929		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3930	}
3931
3932	err = ohci_enable(&ohci->card, NULL, 0);
3933	if (err)
3934		return err;
3935
3936	ohci_resume_iso_dma(ohci);
3937
3938	return 0;
3939}
3940#endif
3941
3942static const struct pci_device_id pci_table[] = {
3943	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3944	{ }
3945};
3946
3947MODULE_DEVICE_TABLE(pci, pci_table);
3948
3949static struct pci_driver fw_ohci_pci_driver = {
3950	.name		= ohci_driver_name,
3951	.id_table	= pci_table,
3952	.probe		= pci_probe,
3953	.remove		= pci_remove,
3954#ifdef CONFIG_PM
3955	.resume		= pci_resume,
3956	.suspend	= pci_suspend,
3957#endif
3958};
3959
3960static int __init fw_ohci_init(void)
3961{
3962	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3963	if (!selfid_workqueue)
3964		return -ENOMEM;
3965
3966	return pci_register_driver(&fw_ohci_pci_driver);
3967}
3968
3969static void __exit fw_ohci_cleanup(void)
3970{
3971	pci_unregister_driver(&fw_ohci_pci_driver);
3972	destroy_workqueue(selfid_workqueue);
3973}
3974
3975module_init(fw_ohci_init);
3976module_exit(fw_ohci_cleanup);
3977
3978MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3979MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3980MODULE_LICENSE("GPL");
3981
3982/* Provide a module alias so root-on-sbp2 initrds don't break. */
3983MODULE_ALIAS("ohci1394");