Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43
  44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE		0
  49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  52#define DESCRIPTOR_STATUS		(1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  54#define DESCRIPTOR_PING			(1 << 7)
  55#define DESCRIPTOR_YY			(1 << 6)
  56#define DESCRIPTOR_NO_IRQ		(0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  60#define DESCRIPTOR_WAIT			(3 << 0)
  61
  62#define DESCRIPTOR_CMD			(0xf << 12)
  63
  64struct descriptor {
  65	__le16 req_count;
  66	__le16 control;
  67	__le32 data_address;
  68	__le32 branch_address;
  69	__le16 res_count;
  70	__le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)	(regs)
  74#define CONTROL_CLEAR(regs)	((regs) + 4)
  75#define COMMAND_PTR(regs)	((regs) + 12)
  76#define CONTEXT_MATCH(regs)	((regs) + 16)
  77
  78#define AR_BUFFER_SIZE	(32*1024)
  79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD	4096
  84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88	struct fw_ohci *ohci;
  89	struct page *pages[AR_BUFFERS];
  90	void *buffer;
  91	struct descriptor *descriptors;
  92	dma_addr_t descriptors_bus;
  93	void *pointer;
  94	unsigned int last_buffer_index;
  95	u32 regs;
  96	struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102				     struct descriptor *d,
 103				     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110	struct list_head list;
 111	dma_addr_t buffer_bus;
 112	size_t buffer_size;
 113	size_t used;
 114	struct descriptor buffer[];
 115};
 116
 117struct context {
 118	struct fw_ohci *ohci;
 119	u32 regs;
 120	int total_allocation;
 121	u32 current_bus;
 122	bool running;
 123	bool flushing;
 124
 125	/*
 126	 * List of page-sized buffers for storing DMA descriptors.
 127	 * Head of list contains buffers in use and tail of list contains
 128	 * free buffers.
 129	 */
 130	struct list_head buffer_list;
 131
 132	/*
 133	 * Pointer to a buffer inside buffer_list that contains the tail
 134	 * end of the current DMA program.
 135	 */
 136	struct descriptor_buffer *buffer_tail;
 137
 138	/*
 139	 * The descriptor containing the branch address of the first
 140	 * descriptor that has not yet been filled by the device.
 141	 */
 142	struct descriptor *last;
 143
 144	/*
 145	 * The last descriptor block in the DMA program. It contains the branch
 146	 * address that must be updated upon appending a new descriptor.
 147	 */
 148	struct descriptor *prev;
 149	int prev_z;
 150
 151	descriptor_callback_t callback;
 152
 153	struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164	struct fw_iso_context base;
 165	struct context context;
 166	void *header;
 167	size_t header_length;
 168	unsigned long flushing_completions;
 169	u32 mc_buffer_bus;
 170	u16 mc_completed;
 171	u16 last_timestamp;
 172	u8 sync;
 173	u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179	struct fw_card card;
 180
 181	__iomem char *registers;
 182	int node_id;
 183	int generation;
 184	int request_generation;	/* for timestamping incoming requests */
 185	unsigned quirks;
 186	unsigned int pri_req_max;
 187	u32 bus_time;
 188	bool bus_time_running;
 189	bool is_root;
 190	bool csr_state_setclear_abdicate;
 191	int n_ir;
 192	int n_it;
 193	/*
 194	 * Spinlock for accessing fw_ohci data.  Never call out of
 195	 * this driver with this lock held.
 196	 */
 197	spinlock_t lock;
 198
 199	struct mutex phy_reg_mutex;
 200
 201	void *misc_buffer;
 202	dma_addr_t misc_buffer_bus;
 203
 204	struct ar_context ar_request_ctx;
 205	struct ar_context ar_response_ctx;
 206	struct context at_request_ctx;
 207	struct context at_response_ctx;
 208
 209	u32 it_context_support;
 210	u32 it_context_mask;     /* unoccupied IT contexts */
 211	struct iso_context *it_context_list;
 212	u64 ir_context_channels; /* unoccupied channels */
 213	u32 ir_context_support;
 214	u32 ir_context_mask;     /* unoccupied IR contexts */
 215	struct iso_context *ir_context_list;
 216	u64 mc_channels; /* channels in use by the multichannel IR context */
 217	bool mc_allocated;
 218
 219	__be32    *config_rom;
 220	dma_addr_t config_rom_bus;
 221	__be32    *next_config_rom;
 222	dma_addr_t next_config_rom_bus;
 223	__be32     next_header;
 224
 225	__le32    *self_id;
 226	dma_addr_t self_id_bus;
 227	struct work_struct bus_reset_work;
 228
 229	u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 396#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 397
 398static int param_debug;
 399module_param_named(debug, param_debug, int, 0644);
 400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 401	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 402	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 403	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 404	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 405	", or a combination, or all = -1)");
 406
 407static bool param_remote_dma;
 408module_param_named(remote_dma, param_remote_dma, bool, 0444);
 409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 410
 411static void log_irqs(struct fw_ohci *ohci, u32 evt)
 412{
 413	if (likely(!(param_debug &
 414			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 415		return;
 416
 417	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 418	    !(evt & OHCI1394_busReset))
 419		return;
 420
 421	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 422	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 423	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 424	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 425	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 426	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 427	    evt & OHCI1394_isochRx		? " IR"			: "",
 428	    evt & OHCI1394_isochTx		? " IT"			: "",
 429	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 430	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 431	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 432	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 433	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 434	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 435	    evt & OHCI1394_busReset		? " busReset"		: "",
 436	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 437		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 438		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 439		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 440		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 441		    OHCI1394_cycleInconsistent |
 442		    OHCI1394_regAccessFail | OHCI1394_busReset)
 443						? " ?"			: "");
 444}
 445
 446static const char *speed[] = {
 447	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 448};
 449static const char *power[] = {
 450	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 451	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 452};
 453static const char port[] = { '.', '-', 'p', 'c', };
 454
 455static char _p(u32 *s, int shift)
 456{
 457	return port[*s >> shift & 3];
 458}
 459
 460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 461{
 462	u32 *s;
 463
 464	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 465		return;
 466
 467	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 468		    self_id_count, generation, ohci->node_id);
 469
 470	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 471		if ((*s & 1 << 23) == 0)
 472			ohci_notice(ohci,
 473			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 474			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 475			    speed[*s >> 14 & 3], *s >> 16 & 63,
 476			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 477			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 478		else
 479			ohci_notice(ohci,
 480			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 481			    *s, *s >> 24 & 63,
 482			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 483			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 484}
 485
 486static const char *evts[] = {
 487	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 488	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 489	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 490	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 491	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 492	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 493	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 494	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 495	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 496	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 497	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 498	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 499	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 500	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 501	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 502	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 503	[0x20] = "pending/cancelled",
 504};
 505static const char *tcodes[] = {
 506	[0x0] = "QW req",		[0x1] = "BW req",
 507	[0x2] = "W resp",		[0x3] = "-reserved-",
 508	[0x4] = "QR req",		[0x5] = "BR req",
 509	[0x6] = "QR resp",		[0x7] = "BR resp",
 510	[0x8] = "cycle start",		[0x9] = "Lk req",
 511	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 512	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 513	[0xe] = "link internal",	[0xf] = "-reserved-",
 514};
 515
 516static void log_ar_at_event(struct fw_ohci *ohci,
 517			    char dir, int speed, u32 *header, int evt)
 518{
 519	int tcode = header[0] >> 4 & 0xf;
 520	char specific[12];
 521
 522	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 523		return;
 524
 525	if (unlikely(evt >= ARRAY_SIZE(evts)))
 526			evt = 0x1f;
 527
 528	if (evt == OHCI1394_evt_bus_reset) {
 529		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 530			    dir, (header[2] >> 16) & 0xff);
 531		return;
 532	}
 533
 534	switch (tcode) {
 535	case 0x0: case 0x6: case 0x8:
 536		snprintf(specific, sizeof(specific), " = %08x",
 537			 be32_to_cpu((__force __be32)header[3]));
 538		break;
 539	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 540		snprintf(specific, sizeof(specific), " %x,%x",
 541			 header[3] >> 16, header[3] & 0xffff);
 542		break;
 543	default:
 544		specific[0] = '\0';
 545	}
 546
 547	switch (tcode) {
 548	case 0xa:
 549		ohci_notice(ohci, "A%c %s, %s\n",
 550			    dir, evts[evt], tcodes[tcode]);
 551		break;
 552	case 0xe:
 553		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 554			    dir, evts[evt], header[1], header[2]);
 555		break;
 556	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 557		ohci_notice(ohci,
 558			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 559			    dir, speed, header[0] >> 10 & 0x3f,
 560			    header[1] >> 16, header[0] >> 16, evts[evt],
 561			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 562		break;
 563	default:
 564		ohci_notice(ohci,
 565			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 566			    dir, speed, header[0] >> 10 & 0x3f,
 567			    header[1] >> 16, header[0] >> 16, evts[evt],
 568			    tcodes[tcode], specific);
 569	}
 570}
 571
 572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 573{
 574	writel(data, ohci->registers + offset);
 575}
 576
 577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 578{
 579	return readl(ohci->registers + offset);
 580}
 581
 582static inline void flush_writes(const struct fw_ohci *ohci)
 583{
 584	/* Do a dummy read to flush writes. */
 585	reg_read(ohci, OHCI1394_Version);
 586}
 587
 588/*
 589 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 592 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 593 */
 594static int read_phy_reg(struct fw_ohci *ohci, int addr)
 595{
 596	u32 val;
 597	int i;
 598
 599	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 600	for (i = 0; i < 3 + 100; i++) {
 601		val = reg_read(ohci, OHCI1394_PhyControl);
 602		if (!~val)
 603			return -ENODEV; /* Card was ejected. */
 604
 605		if (val & OHCI1394_PhyControl_ReadDone)
 606			return OHCI1394_PhyControl_ReadData(val);
 607
 608		/*
 609		 * Try a few times without waiting.  Sleeping is necessary
 610		 * only when the link/PHY interface is busy.
 611		 */
 612		if (i >= 3)
 613			msleep(1);
 614	}
 615	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 616	dump_stack();
 617
 618	return -EBUSY;
 619}
 620
 621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 622{
 623	int i;
 624
 625	reg_write(ohci, OHCI1394_PhyControl,
 626		  OHCI1394_PhyControl_Write(addr, val));
 627	for (i = 0; i < 3 + 100; i++) {
 628		val = reg_read(ohci, OHCI1394_PhyControl);
 629		if (!~val)
 630			return -ENODEV; /* Card was ejected. */
 631
 632		if (!(val & OHCI1394_PhyControl_WritePending))
 633			return 0;
 634
 635		if (i >= 3)
 636			msleep(1);
 637	}
 638	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 639	dump_stack();
 640
 641	return -EBUSY;
 642}
 643
 644static int update_phy_reg(struct fw_ohci *ohci, int addr,
 645			  int clear_bits, int set_bits)
 646{
 647	int ret = read_phy_reg(ohci, addr);
 648	if (ret < 0)
 649		return ret;
 650
 651	/*
 652	 * The interrupt status bits are cleared by writing a one bit.
 653	 * Avoid clearing them unless explicitly requested in set_bits.
 654	 */
 655	if (addr == 5)
 656		clear_bits |= PHY_INT_STATUS_BITS;
 657
 658	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 659}
 660
 661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 662{
 663	int ret;
 664
 665	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 666	if (ret < 0)
 667		return ret;
 668
 669	return read_phy_reg(ohci, addr);
 670}
 671
 672static int ohci_read_phy_reg(struct fw_card *card, int addr)
 673{
 674	struct fw_ohci *ohci = fw_ohci(card);
 675	int ret;
 676
 677	mutex_lock(&ohci->phy_reg_mutex);
 678	ret = read_phy_reg(ohci, addr);
 679	mutex_unlock(&ohci->phy_reg_mutex);
 680
 681	return ret;
 682}
 683
 684static int ohci_update_phy_reg(struct fw_card *card, int addr,
 685			       int clear_bits, int set_bits)
 686{
 687	struct fw_ohci *ohci = fw_ohci(card);
 688	int ret;
 689
 690	mutex_lock(&ohci->phy_reg_mutex);
 691	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 692	mutex_unlock(&ohci->phy_reg_mutex);
 693
 694	return ret;
 695}
 696
 697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 698{
 699	return page_private(ctx->pages[i]);
 700}
 701
 702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 703{
 704	struct descriptor *d;
 705
 706	d = &ctx->descriptors[index];
 707	d->branch_address  &= cpu_to_le32(~0xf);
 708	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 709	d->transfer_status =  0;
 710
 711	wmb(); /* finish init of new descriptors before branch_address update */
 712	d = &ctx->descriptors[ctx->last_buffer_index];
 713	d->branch_address  |= cpu_to_le32(1);
 714
 715	ctx->last_buffer_index = index;
 716
 717	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 718}
 719
 720static void ar_context_release(struct ar_context *ctx)
 721{
 722	struct device *dev = ctx->ohci->card.device;
 723	unsigned int i;
 724
 725	if (!ctx->buffer)
 726		return;
 727
 728	vunmap(ctx->buffer);
 729
 730	for (i = 0; i < AR_BUFFERS; i++) {
 731		if (ctx->pages[i])
 732			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 733				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 734	}
 
 
 735}
 736
 737static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 738{
 739	struct fw_ohci *ohci = ctx->ohci;
 740
 741	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 742		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 743		flush_writes(ohci);
 744
 745		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 746	}
 747	/* FIXME: restart? */
 748}
 749
 750static inline unsigned int ar_next_buffer_index(unsigned int index)
 751{
 752	return (index + 1) % AR_BUFFERS;
 753}
 754
 755static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 756{
 757	return ar_next_buffer_index(ctx->last_buffer_index);
 758}
 759
 760/*
 761 * We search for the buffer that contains the last AR packet DMA data written
 762 * by the controller.
 763 */
 764static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 765						 unsigned int *buffer_offset)
 766{
 767	unsigned int i, next_i, last = ctx->last_buffer_index;
 768	__le16 res_count, next_res_count;
 769
 770	i = ar_first_buffer_index(ctx);
 771	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 772
 773	/* A buffer that is not yet completely filled must be the last one. */
 774	while (i != last && res_count == 0) {
 775
 776		/* Peek at the next descriptor. */
 777		next_i = ar_next_buffer_index(i);
 778		rmb(); /* read descriptors in order */
 779		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 780		/*
 781		 * If the next descriptor is still empty, we must stop at this
 782		 * descriptor.
 783		 */
 784		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 785			/*
 786			 * The exception is when the DMA data for one packet is
 787			 * split over three buffers; in this case, the middle
 788			 * buffer's descriptor might be never updated by the
 789			 * controller and look still empty, and we have to peek
 790			 * at the third one.
 791			 */
 792			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 793				next_i = ar_next_buffer_index(next_i);
 794				rmb();
 795				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 796				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 797					goto next_buffer_is_active;
 798			}
 799
 800			break;
 801		}
 802
 803next_buffer_is_active:
 804		i = next_i;
 805		res_count = next_res_count;
 806	}
 807
 808	rmb(); /* read res_count before the DMA data */
 809
 810	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 811	if (*buffer_offset > PAGE_SIZE) {
 812		*buffer_offset = 0;
 813		ar_context_abort(ctx, "corrupted descriptor");
 814	}
 815
 816	return i;
 817}
 818
 819static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 820				    unsigned int end_buffer_index,
 821				    unsigned int end_buffer_offset)
 822{
 823	unsigned int i;
 824
 825	i = ar_first_buffer_index(ctx);
 826	while (i != end_buffer_index) {
 827		dma_sync_single_for_cpu(ctx->ohci->card.device,
 828					ar_buffer_bus(ctx, i),
 829					PAGE_SIZE, DMA_FROM_DEVICE);
 830		i = ar_next_buffer_index(i);
 831	}
 832	if (end_buffer_offset > 0)
 833		dma_sync_single_for_cpu(ctx->ohci->card.device,
 834					ar_buffer_bus(ctx, i),
 835					end_buffer_offset, DMA_FROM_DEVICE);
 836}
 837
 838#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 839#define cond_le32_to_cpu(v) \
 840	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 841#else
 842#define cond_le32_to_cpu(v) le32_to_cpu(v)
 843#endif
 844
 845static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 846{
 847	struct fw_ohci *ohci = ctx->ohci;
 848	struct fw_packet p;
 849	u32 status, length, tcode;
 850	int evt;
 851
 852	p.header[0] = cond_le32_to_cpu(buffer[0]);
 853	p.header[1] = cond_le32_to_cpu(buffer[1]);
 854	p.header[2] = cond_le32_to_cpu(buffer[2]);
 855
 856	tcode = (p.header[0] >> 4) & 0x0f;
 857	switch (tcode) {
 858	case TCODE_WRITE_QUADLET_REQUEST:
 859	case TCODE_READ_QUADLET_RESPONSE:
 860		p.header[3] = (__force __u32) buffer[3];
 861		p.header_length = 16;
 862		p.payload_length = 0;
 863		break;
 864
 865	case TCODE_READ_BLOCK_REQUEST :
 866		p.header[3] = cond_le32_to_cpu(buffer[3]);
 867		p.header_length = 16;
 868		p.payload_length = 0;
 869		break;
 870
 871	case TCODE_WRITE_BLOCK_REQUEST:
 872	case TCODE_READ_BLOCK_RESPONSE:
 873	case TCODE_LOCK_REQUEST:
 874	case TCODE_LOCK_RESPONSE:
 875		p.header[3] = cond_le32_to_cpu(buffer[3]);
 876		p.header_length = 16;
 877		p.payload_length = p.header[3] >> 16;
 878		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 879			ar_context_abort(ctx, "invalid packet length");
 880			return NULL;
 881		}
 882		break;
 883
 884	case TCODE_WRITE_RESPONSE:
 885	case TCODE_READ_QUADLET_REQUEST:
 886	case OHCI_TCODE_PHY_PACKET:
 887		p.header_length = 12;
 888		p.payload_length = 0;
 889		break;
 890
 891	default:
 892		ar_context_abort(ctx, "invalid tcode");
 893		return NULL;
 894	}
 895
 896	p.payload = (void *) buffer + p.header_length;
 897
 898	/* FIXME: What to do about evt_* errors? */
 899	length = (p.header_length + p.payload_length + 3) / 4;
 900	status = cond_le32_to_cpu(buffer[length]);
 901	evt    = (status >> 16) & 0x1f;
 902
 903	p.ack        = evt - 16;
 904	p.speed      = (status >> 21) & 0x7;
 905	p.timestamp  = status & 0xffff;
 906	p.generation = ohci->request_generation;
 907
 908	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 909
 910	/*
 911	 * Several controllers, notably from NEC and VIA, forget to
 912	 * write ack_complete status at PHY packet reception.
 913	 */
 914	if (evt == OHCI1394_evt_no_status &&
 915	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 916		p.ack = ACK_COMPLETE;
 917
 918	/*
 919	 * The OHCI bus reset handler synthesizes a PHY packet with
 920	 * the new generation number when a bus reset happens (see
 921	 * section 8.4.2.3).  This helps us determine when a request
 922	 * was received and make sure we send the response in the same
 923	 * generation.  We only need this for requests; for responses
 924	 * we use the unique tlabel for finding the matching
 925	 * request.
 926	 *
 927	 * Alas some chips sometimes emit bus reset packets with a
 928	 * wrong generation.  We set the correct generation for these
 929	 * at a slightly incorrect time (in bus_reset_work).
 930	 */
 931	if (evt == OHCI1394_evt_bus_reset) {
 932		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 933			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 934	} else if (ctx == &ohci->ar_request_ctx) {
 935		fw_core_handle_request(&ohci->card, &p);
 936	} else {
 937		fw_core_handle_response(&ohci->card, &p);
 938	}
 939
 940	return buffer + length + 1;
 941}
 942
 943static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 944{
 945	void *next;
 946
 947	while (p < end) {
 948		next = handle_ar_packet(ctx, p);
 949		if (!next)
 950			return p;
 951		p = next;
 952	}
 953
 954	return p;
 955}
 956
 957static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 958{
 959	unsigned int i;
 960
 961	i = ar_first_buffer_index(ctx);
 962	while (i != end_buffer) {
 963		dma_sync_single_for_device(ctx->ohci->card.device,
 964					   ar_buffer_bus(ctx, i),
 965					   PAGE_SIZE, DMA_FROM_DEVICE);
 966		ar_context_link_page(ctx, i);
 967		i = ar_next_buffer_index(i);
 968	}
 969}
 970
 971static void ar_context_tasklet(unsigned long data)
 972{
 973	struct ar_context *ctx = (struct ar_context *)data;
 974	unsigned int end_buffer_index, end_buffer_offset;
 975	void *p, *end;
 976
 977	p = ctx->pointer;
 978	if (!p)
 979		return;
 980
 981	end_buffer_index = ar_search_last_active_buffer(ctx,
 982							&end_buffer_offset);
 983	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 984	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 985
 986	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 987		/*
 988		 * The filled part of the overall buffer wraps around; handle
 989		 * all packets up to the buffer end here.  If the last packet
 990		 * wraps around, its tail will be visible after the buffer end
 991		 * because the buffer start pages are mapped there again.
 992		 */
 993		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 994		p = handle_ar_packets(ctx, p, buffer_end);
 995		if (p < buffer_end)
 996			goto error;
 997		/* adjust p to point back into the actual buffer */
 998		p -= AR_BUFFERS * PAGE_SIZE;
 999	}
1000
1001	p = handle_ar_packets(ctx, p, end);
1002	if (p != end) {
1003		if (p > end)
1004			ar_context_abort(ctx, "inconsistent descriptor");
1005		goto error;
1006	}
1007
1008	ctx->pointer = p;
1009	ar_recycle_buffers(ctx, end_buffer_index);
1010
1011	return;
1012
1013error:
1014	ctx->pointer = NULL;
1015}
1016
1017static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018			   unsigned int descriptors_offset, u32 regs)
1019{
1020	struct device *dev = ohci->card.device;
1021	unsigned int i;
1022	dma_addr_t dma_addr;
1023	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024	struct descriptor *d;
1025
1026	ctx->regs        = regs;
1027	ctx->ohci        = ohci;
1028	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030	for (i = 0; i < AR_BUFFERS; i++) {
1031		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032						DMA_FROM_DEVICE, GFP_KERNEL);
1033		if (!ctx->pages[i])
1034			goto out_of_memory;
 
 
 
 
 
 
 
1035		set_page_private(ctx->pages[i], dma_addr);
1036		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037					   DMA_FROM_DEVICE);
1038	}
1039
1040	for (i = 0; i < AR_BUFFERS; i++)
1041		pages[i]              = ctx->pages[i];
1042	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043		pages[AR_BUFFERS + i] = ctx->pages[i];
1044	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045	if (!ctx->buffer)
1046		goto out_of_memory;
1047
1048	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051	for (i = 0; i < AR_BUFFERS; i++) {
1052		d = &ctx->descriptors[i];
1053		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055						DESCRIPTOR_STATUS |
1056						DESCRIPTOR_BRANCH_ALWAYS);
1057		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060	}
1061
1062	return 0;
1063
1064out_of_memory:
1065	ar_context_release(ctx);
1066
1067	return -ENOMEM;
1068}
1069
1070static void ar_context_run(struct ar_context *ctx)
1071{
1072	unsigned int i;
1073
1074	for (i = 0; i < AR_BUFFERS; i++)
1075		ar_context_link_page(ctx, i);
1076
1077	ctx->pointer = ctx->buffer;
1078
1079	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081}
1082
1083static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084{
1085	__le16 branch;
1086
1087	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089	/* figure out which descriptor the branch address goes in */
1090	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091		return d;
1092	else
1093		return d + z - 1;
1094}
1095
1096static void context_tasklet(unsigned long data)
1097{
1098	struct context *ctx = (struct context *) data;
1099	struct descriptor *d, *last;
1100	u32 address;
1101	int z;
1102	struct descriptor_buffer *desc;
1103
1104	desc = list_entry(ctx->buffer_list.next,
1105			struct descriptor_buffer, list);
1106	last = ctx->last;
1107	while (last->branch_address != 0) {
1108		struct descriptor_buffer *old_desc = desc;
1109		address = le32_to_cpu(last->branch_address);
1110		z = address & 0xf;
1111		address &= ~0xf;
1112		ctx->current_bus = address;
1113
1114		/* If the branch address points to a buffer outside of the
1115		 * current buffer, advance to the next buffer. */
1116		if (address < desc->buffer_bus ||
1117				address >= desc->buffer_bus + desc->used)
1118			desc = list_entry(desc->list.next,
1119					struct descriptor_buffer, list);
1120		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121		last = find_branch_descriptor(d, z);
1122
1123		if (!ctx->callback(ctx, d, last))
1124			break;
1125
1126		if (old_desc != desc) {
1127			/* If we've advanced to the next buffer, move the
1128			 * previous buffer to the free list. */
1129			unsigned long flags;
1130			old_desc->used = 0;
1131			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134		}
1135		ctx->last = last;
1136	}
1137}
1138
1139/*
1140 * Allocate a new buffer and add it to the list of free buffers for this
1141 * context.  Must be called with ohci->lock held.
1142 */
1143static int context_add_buffer(struct context *ctx)
1144{
1145	struct descriptor_buffer *desc;
1146	dma_addr_t bus_addr;
1147	int offset;
1148
1149	/*
1150	 * 16MB of descriptors should be far more than enough for any DMA
1151	 * program.  This will catch run-away userspace or DoS attacks.
1152	 */
1153	if (ctx->total_allocation >= 16*1024*1024)
1154		return -ENOMEM;
1155
1156	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
 
1157	if (!desc)
1158		return -ENOMEM;
1159
1160	offset = (void *)&desc->buffer - (void *)desc;
1161	/*
1162	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165	 * Work around this by always leaving at least 0x10 bytes of padding.
1166	 */
1167	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168	desc->buffer_bus = bus_addr + offset;
1169	desc->used = 0;
1170
1171	list_add_tail(&desc->list, &ctx->buffer_list);
1172	ctx->total_allocation += PAGE_SIZE;
1173
1174	return 0;
1175}
1176
1177static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178			u32 regs, descriptor_callback_t callback)
1179{
1180	ctx->ohci = ohci;
1181	ctx->regs = regs;
1182	ctx->total_allocation = 0;
1183
1184	INIT_LIST_HEAD(&ctx->buffer_list);
1185	if (context_add_buffer(ctx) < 0)
1186		return -ENOMEM;
1187
1188	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189			struct descriptor_buffer, list);
1190
1191	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192	ctx->callback = callback;
1193
1194	/*
1195	 * We put a dummy descriptor in the buffer that has a NULL
1196	 * branch address and looks like it's been sent.  That way we
1197	 * have a descriptor to append DMA programs to.
1198	 */
1199	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203	ctx->last = ctx->buffer_tail->buffer;
1204	ctx->prev = ctx->buffer_tail->buffer;
1205	ctx->prev_z = 1;
1206
1207	return 0;
1208}
1209
1210static void context_release(struct context *ctx)
1211{
1212	struct fw_card *card = &ctx->ohci->card;
1213	struct descriptor_buffer *desc, *tmp;
1214
1215	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218	}
1219}
1220
1221/* Must be called with ohci->lock held */
1222static struct descriptor *context_get_descriptors(struct context *ctx,
1223						  int z, dma_addr_t *d_bus)
1224{
1225	struct descriptor *d = NULL;
1226	struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228	if (z * sizeof(*d) > desc->buffer_size)
1229		return NULL;
1230
1231	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232		/* No room for the descriptor in this buffer, so advance to the
1233		 * next one. */
1234
1235		if (desc->list.next == &ctx->buffer_list) {
1236			/* If there is no free buffer next in the list,
1237			 * allocate one. */
1238			if (context_add_buffer(ctx) < 0)
1239				return NULL;
1240		}
1241		desc = list_entry(desc->list.next,
1242				struct descriptor_buffer, list);
1243		ctx->buffer_tail = desc;
1244	}
1245
1246	d = desc->buffer + desc->used / sizeof(*d);
1247	memset(d, 0, z * sizeof(*d));
1248	*d_bus = desc->buffer_bus + desc->used;
1249
1250	return d;
1251}
1252
1253static void context_run(struct context *ctx, u32 extra)
1254{
1255	struct fw_ohci *ohci = ctx->ohci;
1256
1257	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258		  le32_to_cpu(ctx->last->branch_address));
1259	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261	ctx->running = true;
1262	flush_writes(ohci);
1263}
1264
1265static void context_append(struct context *ctx,
1266			   struct descriptor *d, int z, int extra)
1267{
1268	dma_addr_t d_bus;
1269	struct descriptor_buffer *desc = ctx->buffer_tail;
1270	struct descriptor *d_branch;
1271
1272	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274	desc->used += (z + extra) * sizeof(*d);
1275
1276	wmb(); /* finish init of new descriptors before branch_address update */
1277
1278	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281	/*
1282	 * VT6306 incorrectly checks only the single descriptor at the
1283	 * CommandPtr when the wake bit is written, so if it's a
1284	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285	 * the branch address in the first descriptor.
1286	 *
1287	 * Not doing this for transmit contexts since not sure how it interacts
1288	 * with skip addresses.
1289	 */
1290	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291	    d_branch != ctx->prev &&
1292	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295	}
1296
1297	ctx->prev = d;
1298	ctx->prev_z = z;
1299}
1300
1301static void context_stop(struct context *ctx)
1302{
1303	struct fw_ohci *ohci = ctx->ohci;
1304	u32 reg;
1305	int i;
1306
1307	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308	ctx->running = false;
1309
1310	for (i = 0; i < 1000; i++) {
1311		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312		if ((reg & CONTEXT_ACTIVE) == 0)
1313			return;
1314
1315		if (i)
1316			udelay(10);
1317	}
1318	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319}
1320
1321struct driver_data {
1322	u8 inline_data[8];
1323	struct fw_packet *packet;
1324};
1325
1326/*
1327 * This function apppends a packet to the DMA queue for transmission.
1328 * Must always be called with the ochi->lock held to ensure proper
1329 * generation handling and locking around packet queue manipulation.
1330 */
1331static int at_context_queue_packet(struct context *ctx,
1332				   struct fw_packet *packet)
1333{
1334	struct fw_ohci *ohci = ctx->ohci;
1335	dma_addr_t d_bus, payload_bus;
1336	struct driver_data *driver_data;
1337	struct descriptor *d, *last;
1338	__le32 *header;
1339	int z, tcode;
1340
1341	d = context_get_descriptors(ctx, 4, &d_bus);
1342	if (d == NULL) {
1343		packet->ack = RCODE_SEND_ERROR;
1344		return -1;
1345	}
1346
1347	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348	d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350	/*
1351	 * The DMA format for asynchronous link packets is different
1352	 * from the IEEE1394 layout, so shift the fields around
1353	 * accordingly.
1354	 */
1355
1356	tcode = (packet->header[0] >> 4) & 0x0f;
1357	header = (__le32 *) &d[1];
1358	switch (tcode) {
1359	case TCODE_WRITE_QUADLET_REQUEST:
1360	case TCODE_WRITE_BLOCK_REQUEST:
1361	case TCODE_WRITE_RESPONSE:
1362	case TCODE_READ_QUADLET_REQUEST:
1363	case TCODE_READ_BLOCK_REQUEST:
1364	case TCODE_READ_QUADLET_RESPONSE:
1365	case TCODE_READ_BLOCK_RESPONSE:
1366	case TCODE_LOCK_REQUEST:
1367	case TCODE_LOCK_RESPONSE:
1368		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369					(packet->speed << 16));
1370		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371					(packet->header[0] & 0xffff0000));
1372		header[2] = cpu_to_le32(packet->header[2]);
1373
1374		if (TCODE_IS_BLOCK_PACKET(tcode))
1375			header[3] = cpu_to_le32(packet->header[3]);
1376		else
1377			header[3] = (__force __le32) packet->header[3];
1378
1379		d[0].req_count = cpu_to_le16(packet->header_length);
1380		break;
1381
1382	case TCODE_LINK_INTERNAL:
1383		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384					(packet->speed << 16));
1385		header[1] = cpu_to_le32(packet->header[1]);
1386		header[2] = cpu_to_le32(packet->header[2]);
1387		d[0].req_count = cpu_to_le16(12);
1388
1389		if (is_ping_packet(&packet->header[1]))
1390			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391		break;
1392
1393	case TCODE_STREAM_DATA:
1394		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395					(packet->speed << 16));
1396		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397		d[0].req_count = cpu_to_le16(8);
1398		break;
1399
1400	default:
1401		/* BUG(); */
1402		packet->ack = RCODE_SEND_ERROR;
1403		return -1;
1404	}
1405
1406	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407	driver_data = (struct driver_data *) &d[3];
1408	driver_data->packet = packet;
1409	packet->driver_data = driver_data;
1410
1411	if (packet->payload_length > 0) {
1412		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413			payload_bus = dma_map_single(ohci->card.device,
1414						     packet->payload,
1415						     packet->payload_length,
1416						     DMA_TO_DEVICE);
1417			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418				packet->ack = RCODE_SEND_ERROR;
1419				return -1;
1420			}
1421			packet->payload_bus	= payload_bus;
1422			packet->payload_mapped	= true;
1423		} else {
1424			memcpy(driver_data->inline_data, packet->payload,
1425			       packet->payload_length);
1426			payload_bus = d_bus + 3 * sizeof(*d);
1427		}
1428
1429		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430		d[2].data_address = cpu_to_le32(payload_bus);
1431		last = &d[2];
1432		z = 3;
1433	} else {
1434		last = &d[0];
1435		z = 2;
1436	}
1437
1438	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439				     DESCRIPTOR_IRQ_ALWAYS |
1440				     DESCRIPTOR_BRANCH_ALWAYS);
1441
1442	/* FIXME: Document how the locking works. */
1443	if (ohci->generation != packet->generation) {
1444		if (packet->payload_mapped)
1445			dma_unmap_single(ohci->card.device, payload_bus,
1446					 packet->payload_length, DMA_TO_DEVICE);
1447		packet->ack = RCODE_GENERATION;
1448		return -1;
1449	}
1450
1451	context_append(ctx, d, z, 4 - z);
1452
1453	if (ctx->running)
1454		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455	else
1456		context_run(ctx, 0);
1457
1458	return 0;
1459}
1460
1461static void at_context_flush(struct context *ctx)
1462{
1463	tasklet_disable(&ctx->tasklet);
1464
1465	ctx->flushing = true;
1466	context_tasklet((unsigned long)ctx);
1467	ctx->flushing = false;
1468
1469	tasklet_enable(&ctx->tasklet);
1470}
1471
1472static int handle_at_packet(struct context *context,
1473			    struct descriptor *d,
1474			    struct descriptor *last)
1475{
1476	struct driver_data *driver_data;
1477	struct fw_packet *packet;
1478	struct fw_ohci *ohci = context->ohci;
1479	int evt;
1480
1481	if (last->transfer_status == 0 && !context->flushing)
1482		/* This descriptor isn't done yet, stop iteration. */
1483		return 0;
1484
1485	driver_data = (struct driver_data *) &d[3];
1486	packet = driver_data->packet;
1487	if (packet == NULL)
1488		/* This packet was cancelled, just continue. */
1489		return 1;
1490
1491	if (packet->payload_mapped)
1492		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493				 packet->payload_length, DMA_TO_DEVICE);
1494
1495	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496	packet->timestamp = le16_to_cpu(last->res_count);
1497
1498	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500	switch (evt) {
1501	case OHCI1394_evt_timeout:
1502		/* Async response transmit timed out. */
1503		packet->ack = RCODE_CANCELLED;
1504		break;
1505
1506	case OHCI1394_evt_flushed:
1507		/*
1508		 * The packet was flushed should give same error as
1509		 * when we try to use a stale generation count.
1510		 */
1511		packet->ack = RCODE_GENERATION;
1512		break;
1513
1514	case OHCI1394_evt_missing_ack:
1515		if (context->flushing)
1516			packet->ack = RCODE_GENERATION;
1517		else {
1518			/*
1519			 * Using a valid (current) generation count, but the
1520			 * node is not on the bus or not sending acks.
1521			 */
1522			packet->ack = RCODE_NO_ACK;
1523		}
1524		break;
1525
1526	case ACK_COMPLETE + 0x10:
1527	case ACK_PENDING + 0x10:
1528	case ACK_BUSY_X + 0x10:
1529	case ACK_BUSY_A + 0x10:
1530	case ACK_BUSY_B + 0x10:
1531	case ACK_DATA_ERROR + 0x10:
1532	case ACK_TYPE_ERROR + 0x10:
1533		packet->ack = evt - 0x10;
1534		break;
1535
1536	case OHCI1394_evt_no_status:
1537		if (context->flushing) {
1538			packet->ack = RCODE_GENERATION;
1539			break;
1540		}
1541		fallthrough;
1542
1543	default:
1544		packet->ack = RCODE_SEND_ERROR;
1545		break;
1546	}
1547
1548	packet->callback(packet, &ohci->card, packet->ack);
1549
1550	return 1;
1551}
1552
1553#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558
1559static void handle_local_rom(struct fw_ohci *ohci,
1560			     struct fw_packet *packet, u32 csr)
1561{
1562	struct fw_packet response;
1563	int tcode, length, i;
1564
1565	tcode = HEADER_GET_TCODE(packet->header[0]);
1566	if (TCODE_IS_BLOCK_PACKET(tcode))
1567		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568	else
1569		length = 4;
1570
1571	i = csr - CSR_CONFIG_ROM;
1572	if (i + length > CONFIG_ROM_SIZE) {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_ADDRESS_ERROR, NULL, 0);
1575	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1576		fw_fill_response(&response, packet->header,
1577				 RCODE_TYPE_ERROR, NULL, 0);
1578	} else {
1579		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580				 (void *) ohci->config_rom + i, length);
1581	}
1582
1583	fw_core_handle_response(&ohci->card, &response);
1584}
1585
1586static void handle_local_lock(struct fw_ohci *ohci,
1587			      struct fw_packet *packet, u32 csr)
1588{
1589	struct fw_packet response;
1590	int tcode, length, ext_tcode, sel, try;
1591	__be32 *payload, lock_old;
1592	u32 lock_arg, lock_data;
1593
1594	tcode = HEADER_GET_TCODE(packet->header[0]);
1595	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1596	payload = packet->payload;
1597	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1598
1599	if (tcode == TCODE_LOCK_REQUEST &&
1600	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1601		lock_arg = be32_to_cpu(payload[0]);
1602		lock_data = be32_to_cpu(payload[1]);
1603	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1604		lock_arg = 0;
1605		lock_data = 0;
1606	} else {
1607		fw_fill_response(&response, packet->header,
1608				 RCODE_TYPE_ERROR, NULL, 0);
1609		goto out;
1610	}
1611
1612	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1613	reg_write(ohci, OHCI1394_CSRData, lock_data);
1614	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1615	reg_write(ohci, OHCI1394_CSRControl, sel);
1616
1617	for (try = 0; try < 20; try++)
1618		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1619			lock_old = cpu_to_be32(reg_read(ohci,
1620							OHCI1394_CSRData));
1621			fw_fill_response(&response, packet->header,
1622					 RCODE_COMPLETE,
1623					 &lock_old, sizeof(lock_old));
1624			goto out;
1625		}
1626
1627	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1628	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1629
1630 out:
1631	fw_core_handle_response(&ohci->card, &response);
1632}
1633
1634static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1635{
1636	u64 offset, csr;
1637
1638	if (ctx == &ctx->ohci->at_request_ctx) {
1639		packet->ack = ACK_PENDING;
1640		packet->callback(packet, &ctx->ohci->card, packet->ack);
1641	}
1642
1643	offset =
1644		((unsigned long long)
1645		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1646		packet->header[2];
1647	csr = offset - CSR_REGISTER_BASE;
1648
1649	/* Handle config rom reads. */
1650	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1651		handle_local_rom(ctx->ohci, packet, csr);
1652	else switch (csr) {
1653	case CSR_BUS_MANAGER_ID:
1654	case CSR_BANDWIDTH_AVAILABLE:
1655	case CSR_CHANNELS_AVAILABLE_HI:
1656	case CSR_CHANNELS_AVAILABLE_LO:
1657		handle_local_lock(ctx->ohci, packet, csr);
1658		break;
1659	default:
1660		if (ctx == &ctx->ohci->at_request_ctx)
1661			fw_core_handle_request(&ctx->ohci->card, packet);
1662		else
1663			fw_core_handle_response(&ctx->ohci->card, packet);
1664		break;
1665	}
1666
1667	if (ctx == &ctx->ohci->at_response_ctx) {
1668		packet->ack = ACK_COMPLETE;
1669		packet->callback(packet, &ctx->ohci->card, packet->ack);
1670	}
1671}
1672
1673static u32 get_cycle_time(struct fw_ohci *ohci);
1674
1675static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676{
1677	unsigned long flags;
1678	int ret;
1679
1680	spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683	    ctx->ohci->generation == packet->generation) {
1684		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685
1686		// Timestamping on behalf of the hardware.
1687		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1688
1689		handle_local_request(ctx, packet);
1690		return;
1691	}
1692
1693	ret = at_context_queue_packet(ctx, packet);
1694	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1695
1696	if (ret < 0) {
1697		// Timestamping on behalf of the hardware.
1698		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1699
1700		packet->callback(packet, &ctx->ohci->card, packet->ack);
1701	}
1702}
1703
1704static void detect_dead_context(struct fw_ohci *ohci,
1705				const char *name, unsigned int regs)
1706{
1707	u32 ctl;
1708
1709	ctl = reg_read(ohci, CONTROL_SET(regs));
1710	if (ctl & CONTEXT_DEAD)
1711		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1712			name, evts[ctl & 0x1f]);
1713}
1714
1715static void handle_dead_contexts(struct fw_ohci *ohci)
1716{
1717	unsigned int i;
1718	char name[8];
1719
1720	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1721	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1722	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1723	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1724	for (i = 0; i < 32; ++i) {
1725		if (!(ohci->it_context_support & (1 << i)))
1726			continue;
1727		sprintf(name, "IT%u", i);
1728		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1729	}
1730	for (i = 0; i < 32; ++i) {
1731		if (!(ohci->ir_context_support & (1 << i)))
1732			continue;
1733		sprintf(name, "IR%u", i);
1734		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1735	}
1736	/* TODO: maybe try to flush and restart the dead contexts */
1737}
1738
1739static u32 cycle_timer_ticks(u32 cycle_timer)
1740{
1741	u32 ticks;
1742
1743	ticks = cycle_timer & 0xfff;
1744	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1745	ticks += (3072 * 8000) * (cycle_timer >> 25);
1746
1747	return ticks;
1748}
1749
1750/*
1751 * Some controllers exhibit one or more of the following bugs when updating the
1752 * iso cycle timer register:
1753 *  - When the lowest six bits are wrapping around to zero, a read that happens
1754 *    at the same time will return garbage in the lowest ten bits.
1755 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1756 *    not incremented for about 60 ns.
1757 *  - Occasionally, the entire register reads zero.
1758 *
1759 * To catch these, we read the register three times and ensure that the
1760 * difference between each two consecutive reads is approximately the same, i.e.
1761 * less than twice the other.  Furthermore, any negative difference indicates an
1762 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1763 * execute, so we have enough precision to compute the ratio of the differences.)
1764 */
1765static u32 get_cycle_time(struct fw_ohci *ohci)
1766{
1767	u32 c0, c1, c2;
1768	u32 t0, t1, t2;
1769	s32 diff01, diff12;
1770	int i;
1771
1772	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1773		return 0;
1774
1775	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1776
1777	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1778		i = 0;
1779		c1 = c2;
1780		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781		do {
1782			c0 = c1;
1783			c1 = c2;
1784			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785			t0 = cycle_timer_ticks(c0);
1786			t1 = cycle_timer_ticks(c1);
1787			t2 = cycle_timer_ticks(c2);
1788			diff01 = t1 - t0;
1789			diff12 = t2 - t1;
1790		} while ((diff01 <= 0 || diff12 <= 0 ||
1791			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1792			 && i++ < 20);
1793	}
1794
1795	return c2;
1796}
1797
1798/*
1799 * This function has to be called at least every 64 seconds.  The bus_time
1800 * field stores not only the upper 25 bits of the BUS_TIME register but also
1801 * the most significant bit of the cycle timer in bit 6 so that we can detect
1802 * changes in this bit.
1803 */
1804static u32 update_bus_time(struct fw_ohci *ohci)
1805{
1806	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1807
1808	if (unlikely(!ohci->bus_time_running)) {
1809		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1810		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1811		                 (cycle_time_seconds & 0x40);
1812		ohci->bus_time_running = true;
1813	}
1814
1815	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1816		ohci->bus_time += 0x40;
1817
1818	return ohci->bus_time | cycle_time_seconds;
1819}
1820
1821static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1822{
1823	int reg;
1824
1825	mutex_lock(&ohci->phy_reg_mutex);
1826	reg = write_phy_reg(ohci, 7, port_index);
1827	if (reg >= 0)
1828		reg = read_phy_reg(ohci, 8);
1829	mutex_unlock(&ohci->phy_reg_mutex);
1830	if (reg < 0)
1831		return reg;
1832
1833	switch (reg & 0x0f) {
1834	case 0x06:
1835		return 2;	/* is child node (connected to parent node) */
1836	case 0x0e:
1837		return 3;	/* is parent node (connected to child node) */
1838	}
1839	return 1;		/* not connected */
1840}
1841
1842static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1843	int self_id_count)
1844{
1845	int i;
1846	u32 entry;
1847
1848	for (i = 0; i < self_id_count; i++) {
1849		entry = ohci->self_id_buffer[i];
1850		if ((self_id & 0xff000000) == (entry & 0xff000000))
1851			return -1;
1852		if ((self_id & 0xff000000) < (entry & 0xff000000))
1853			return i;
1854	}
1855	return i;
1856}
1857
1858static int initiated_reset(struct fw_ohci *ohci)
1859{
1860	int reg;
1861	int ret = 0;
1862
1863	mutex_lock(&ohci->phy_reg_mutex);
1864	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1865	if (reg >= 0) {
1866		reg = read_phy_reg(ohci, 8);
1867		reg |= 0x40;
1868		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1869		if (reg >= 0) {
1870			reg = read_phy_reg(ohci, 12); /* read register 12 */
1871			if (reg >= 0) {
1872				if ((reg & 0x08) == 0x08) {
1873					/* bit 3 indicates "initiated reset" */
1874					ret = 0x2;
1875				}
1876			}
1877		}
1878	}
1879	mutex_unlock(&ohci->phy_reg_mutex);
1880	return ret;
1881}
1882
1883/*
1884 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1885 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1886 * Construct the selfID from phy register contents.
1887 */
1888static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1889{
1890	int reg, i, pos, status;
1891	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1892	u32 self_id = 0x8040c800;
1893
1894	reg = reg_read(ohci, OHCI1394_NodeID);
1895	if (!(reg & OHCI1394_NodeID_idValid)) {
1896		ohci_notice(ohci,
1897			    "node ID not valid, new bus reset in progress\n");
1898		return -EBUSY;
1899	}
1900	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1901
1902	reg = ohci_read_phy_reg(&ohci->card, 4);
1903	if (reg < 0)
1904		return reg;
1905	self_id |= ((reg & 0x07) << 8); /* power class */
1906
1907	reg = ohci_read_phy_reg(&ohci->card, 1);
1908	if (reg < 0)
1909		return reg;
1910	self_id |= ((reg & 0x3f) << 16); /* gap count */
1911
1912	for (i = 0; i < 3; i++) {
1913		status = get_status_for_port(ohci, i);
1914		if (status < 0)
1915			return status;
1916		self_id |= ((status & 0x3) << (6 - (i * 2)));
1917	}
1918
1919	self_id |= initiated_reset(ohci);
1920
1921	pos = get_self_id_pos(ohci, self_id, self_id_count);
1922	if (pos >= 0) {
1923		memmove(&(ohci->self_id_buffer[pos+1]),
1924			&(ohci->self_id_buffer[pos]),
1925			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1926		ohci->self_id_buffer[pos] = self_id;
1927		self_id_count++;
1928	}
1929	return self_id_count;
1930}
1931
1932static void bus_reset_work(struct work_struct *work)
1933{
1934	struct fw_ohci *ohci =
1935		container_of(work, struct fw_ohci, bus_reset_work);
1936	int self_id_count, generation, new_generation, i, j;
1937	u32 reg;
1938	void *free_rom = NULL;
1939	dma_addr_t free_rom_bus = 0;
1940	bool is_new_root;
1941
1942	reg = reg_read(ohci, OHCI1394_NodeID);
1943	if (!(reg & OHCI1394_NodeID_idValid)) {
1944		ohci_notice(ohci,
1945			    "node ID not valid, new bus reset in progress\n");
1946		return;
1947	}
1948	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1949		ohci_notice(ohci, "malconfigured bus\n");
1950		return;
1951	}
1952	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1953			       OHCI1394_NodeID_nodeNumber);
1954
1955	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1956	if (!(ohci->is_root && is_new_root))
1957		reg_write(ohci, OHCI1394_LinkControlSet,
1958			  OHCI1394_LinkControl_cycleMaster);
1959	ohci->is_root = is_new_root;
1960
1961	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1962	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1963		ohci_notice(ohci, "self ID receive error\n");
1964		return;
1965	}
1966	/*
1967	 * The count in the SelfIDCount register is the number of
1968	 * bytes in the self ID receive buffer.  Since we also receive
1969	 * the inverted quadlets and a header quadlet, we shift one
1970	 * bit extra to get the actual number of self IDs.
1971	 */
1972	self_id_count = (reg >> 3) & 0xff;
1973
1974	if (self_id_count > 252) {
1975		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1976		return;
1977	}
1978
1979	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1980	rmb();
1981
1982	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1983		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1984		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1985
1986		if (id != ~id2) {
1987			/*
1988			 * If the invalid data looks like a cycle start packet,
1989			 * it's likely to be the result of the cycle master
1990			 * having a wrong gap count.  In this case, the self IDs
1991			 * so far are valid and should be processed so that the
1992			 * bus manager can then correct the gap count.
1993			 */
1994			if (id == 0xffff008f) {
1995				ohci_notice(ohci, "ignoring spurious self IDs\n");
1996				self_id_count = j;
1997				break;
1998			}
1999
2000			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2001				    j, self_id_count, id, id2);
2002			return;
2003		}
2004		ohci->self_id_buffer[j] = id;
2005	}
2006
2007	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2008		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2009		if (self_id_count < 0) {
2010			ohci_notice(ohci,
2011				    "could not construct local self ID\n");
2012			return;
2013		}
2014	}
2015
2016	if (self_id_count == 0) {
2017		ohci_notice(ohci, "no self IDs\n");
2018		return;
2019	}
2020	rmb();
2021
2022	/*
2023	 * Check the consistency of the self IDs we just read.  The
2024	 * problem we face is that a new bus reset can start while we
2025	 * read out the self IDs from the DMA buffer. If this happens,
2026	 * the DMA buffer will be overwritten with new self IDs and we
2027	 * will read out inconsistent data.  The OHCI specification
2028	 * (section 11.2) recommends a technique similar to
2029	 * linux/seqlock.h, where we remember the generation of the
2030	 * self IDs in the buffer before reading them out and compare
2031	 * it to the current generation after reading them out.  If
2032	 * the two generations match we know we have a consistent set
2033	 * of self IDs.
2034	 */
2035
2036	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2037	if (new_generation != generation) {
2038		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2039		return;
2040	}
2041
2042	/* FIXME: Document how the locking works. */
2043	spin_lock_irq(&ohci->lock);
2044
2045	ohci->generation = -1; /* prevent AT packet queueing */
2046	context_stop(&ohci->at_request_ctx);
2047	context_stop(&ohci->at_response_ctx);
2048
2049	spin_unlock_irq(&ohci->lock);
2050
2051	/*
2052	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2053	 * packets in the AT queues and software needs to drain them.
2054	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2055	 */
2056	at_context_flush(&ohci->at_request_ctx);
2057	at_context_flush(&ohci->at_response_ctx);
2058
2059	spin_lock_irq(&ohci->lock);
2060
2061	ohci->generation = generation;
2062	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2063
2064	if (ohci->quirks & QUIRK_RESET_PACKET)
2065		ohci->request_generation = generation;
2066
2067	/*
2068	 * This next bit is unrelated to the AT context stuff but we
2069	 * have to do it under the spinlock also.  If a new config rom
2070	 * was set up before this reset, the old one is now no longer
2071	 * in use and we can free it. Update the config rom pointers
2072	 * to point to the current config rom and clear the
2073	 * next_config_rom pointer so a new update can take place.
2074	 */
2075
2076	if (ohci->next_config_rom != NULL) {
2077		if (ohci->next_config_rom != ohci->config_rom) {
2078			free_rom      = ohci->config_rom;
2079			free_rom_bus  = ohci->config_rom_bus;
2080		}
2081		ohci->config_rom      = ohci->next_config_rom;
2082		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2083		ohci->next_config_rom = NULL;
2084
2085		/*
2086		 * Restore config_rom image and manually update
2087		 * config_rom registers.  Writing the header quadlet
2088		 * will indicate that the config rom is ready, so we
2089		 * do that last.
2090		 */
2091		reg_write(ohci, OHCI1394_BusOptions,
2092			  be32_to_cpu(ohci->config_rom[2]));
2093		ohci->config_rom[0] = ohci->next_header;
2094		reg_write(ohci, OHCI1394_ConfigROMhdr,
2095			  be32_to_cpu(ohci->next_header));
2096	}
2097
2098	if (param_remote_dma) {
2099		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2100		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2101	}
2102
2103	spin_unlock_irq(&ohci->lock);
2104
2105	if (free_rom)
2106		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
 
2107
2108	log_selfids(ohci, generation, self_id_count);
2109
2110	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2111				 self_id_count, ohci->self_id_buffer,
2112				 ohci->csr_state_setclear_abdicate);
2113	ohci->csr_state_setclear_abdicate = false;
2114}
2115
2116static irqreturn_t irq_handler(int irq, void *data)
2117{
2118	struct fw_ohci *ohci = data;
2119	u32 event, iso_event;
2120	int i;
2121
2122	event = reg_read(ohci, OHCI1394_IntEventClear);
2123
2124	if (!event || !~event)
2125		return IRQ_NONE;
2126
2127	/*
2128	 * busReset and postedWriteErr must not be cleared yet
2129	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2130	 */
2131	reg_write(ohci, OHCI1394_IntEventClear,
2132		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2133	log_irqs(ohci, event);
2134
2135	if (event & OHCI1394_selfIDComplete)
2136		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2137
2138	if (event & OHCI1394_RQPkt)
2139		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2140
2141	if (event & OHCI1394_RSPkt)
2142		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2143
2144	if (event & OHCI1394_reqTxComplete)
2145		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2146
2147	if (event & OHCI1394_respTxComplete)
2148		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2149
2150	if (event & OHCI1394_isochRx) {
2151		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2152		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2153
2154		while (iso_event) {
2155			i = ffs(iso_event) - 1;
2156			tasklet_schedule(
2157				&ohci->ir_context_list[i].context.tasklet);
2158			iso_event &= ~(1 << i);
2159		}
2160	}
2161
2162	if (event & OHCI1394_isochTx) {
2163		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2164		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2165
2166		while (iso_event) {
2167			i = ffs(iso_event) - 1;
2168			tasklet_schedule(
2169				&ohci->it_context_list[i].context.tasklet);
2170			iso_event &= ~(1 << i);
2171		}
2172	}
2173
2174	if (unlikely(event & OHCI1394_regAccessFail))
2175		ohci_err(ohci, "register access failure\n");
2176
2177	if (unlikely(event & OHCI1394_postedWriteErr)) {
2178		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2179		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2180		reg_write(ohci, OHCI1394_IntEventClear,
2181			  OHCI1394_postedWriteErr);
2182		if (printk_ratelimit())
2183			ohci_err(ohci, "PCI posted write error\n");
2184	}
2185
2186	if (unlikely(event & OHCI1394_cycleTooLong)) {
2187		if (printk_ratelimit())
2188			ohci_notice(ohci, "isochronous cycle too long\n");
2189		reg_write(ohci, OHCI1394_LinkControlSet,
2190			  OHCI1394_LinkControl_cycleMaster);
2191	}
2192
2193	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2194		/*
2195		 * We need to clear this event bit in order to make
2196		 * cycleMatch isochronous I/O work.  In theory we should
2197		 * stop active cycleMatch iso contexts now and restart
2198		 * them at least two cycles later.  (FIXME?)
2199		 */
2200		if (printk_ratelimit())
2201			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2202	}
2203
2204	if (unlikely(event & OHCI1394_unrecoverableError))
2205		handle_dead_contexts(ohci);
2206
2207	if (event & OHCI1394_cycle64Seconds) {
2208		spin_lock(&ohci->lock);
2209		update_bus_time(ohci);
2210		spin_unlock(&ohci->lock);
2211	} else
2212		flush_writes(ohci);
2213
2214	return IRQ_HANDLED;
2215}
2216
2217static int software_reset(struct fw_ohci *ohci)
2218{
2219	u32 val;
2220	int i;
2221
2222	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2223	for (i = 0; i < 500; i++) {
2224		val = reg_read(ohci, OHCI1394_HCControlSet);
2225		if (!~val)
2226			return -ENODEV; /* Card was ejected. */
2227
2228		if (!(val & OHCI1394_HCControl_softReset))
2229			return 0;
2230
2231		msleep(1);
2232	}
2233
2234	return -EBUSY;
2235}
2236
2237static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2238{
2239	size_t size = length * 4;
2240
2241	memcpy(dest, src, size);
2242	if (size < CONFIG_ROM_SIZE)
2243		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2244}
2245
2246static int configure_1394a_enhancements(struct fw_ohci *ohci)
2247{
2248	bool enable_1394a;
2249	int ret, clear, set, offset;
2250
2251	/* Check if the driver should configure link and PHY. */
2252	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2253	      OHCI1394_HCControl_programPhyEnable))
2254		return 0;
2255
2256	/* Paranoia: check whether the PHY supports 1394a, too. */
2257	enable_1394a = false;
2258	ret = read_phy_reg(ohci, 2);
2259	if (ret < 0)
2260		return ret;
2261	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2262		ret = read_paged_phy_reg(ohci, 1, 8);
2263		if (ret < 0)
2264			return ret;
2265		if (ret >= 1)
2266			enable_1394a = true;
2267	}
2268
2269	if (ohci->quirks & QUIRK_NO_1394A)
2270		enable_1394a = false;
2271
2272	/* Configure PHY and link consistently. */
2273	if (enable_1394a) {
2274		clear = 0;
2275		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2276	} else {
2277		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2278		set = 0;
2279	}
2280	ret = update_phy_reg(ohci, 5, clear, set);
2281	if (ret < 0)
2282		return ret;
2283
2284	if (enable_1394a)
2285		offset = OHCI1394_HCControlSet;
2286	else
2287		offset = OHCI1394_HCControlClear;
2288	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2289
2290	/* Clean up: configuration has been taken care of. */
2291	reg_write(ohci, OHCI1394_HCControlClear,
2292		  OHCI1394_HCControl_programPhyEnable);
2293
2294	return 0;
2295}
2296
2297static int probe_tsb41ba3d(struct fw_ohci *ohci)
2298{
2299	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2300	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2301	int reg, i;
2302
2303	reg = read_phy_reg(ohci, 2);
2304	if (reg < 0)
2305		return reg;
2306	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2307		return 0;
2308
2309	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2310		reg = read_paged_phy_reg(ohci, 1, i + 10);
2311		if (reg < 0)
2312			return reg;
2313		if (reg != id[i])
2314			return 0;
2315	}
2316	return 1;
2317}
2318
2319static int ohci_enable(struct fw_card *card,
2320		       const __be32 *config_rom, size_t length)
2321{
2322	struct fw_ohci *ohci = fw_ohci(card);
2323	u32 lps, version, irqs;
2324	int i, ret;
2325
2326	ret = software_reset(ohci);
2327	if (ret < 0) {
2328		ohci_err(ohci, "failed to reset ohci card\n");
2329		return ret;
2330	}
2331
2332	/*
2333	 * Now enable LPS, which we need in order to start accessing
2334	 * most of the registers.  In fact, on some cards (ALI M5251),
2335	 * accessing registers in the SClk domain without LPS enabled
2336	 * will lock up the machine.  Wait 50msec to make sure we have
2337	 * full link enabled.  However, with some cards (well, at least
2338	 * a JMicron PCIe card), we have to try again sometimes.
2339	 *
2340	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2341	 * cannot actually use the phy at that time.  These need tens of
2342	 * millisecods pause between LPS write and first phy access too.
2343	 */
2344
2345	reg_write(ohci, OHCI1394_HCControlSet,
2346		  OHCI1394_HCControl_LPS |
2347		  OHCI1394_HCControl_postedWriteEnable);
2348	flush_writes(ohci);
2349
2350	for (lps = 0, i = 0; !lps && i < 3; i++) {
2351		msleep(50);
2352		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2353		      OHCI1394_HCControl_LPS;
2354	}
2355
2356	if (!lps) {
2357		ohci_err(ohci, "failed to set Link Power Status\n");
2358		return -EIO;
2359	}
2360
2361	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2362		ret = probe_tsb41ba3d(ohci);
2363		if (ret < 0)
2364			return ret;
2365		if (ret)
2366			ohci_notice(ohci, "local TSB41BA3D phy\n");
2367		else
2368			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2369	}
2370
2371	reg_write(ohci, OHCI1394_HCControlClear,
2372		  OHCI1394_HCControl_noByteSwapData);
2373
2374	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2375	reg_write(ohci, OHCI1394_LinkControlSet,
2376		  OHCI1394_LinkControl_cycleTimerEnable |
2377		  OHCI1394_LinkControl_cycleMaster);
2378
2379	reg_write(ohci, OHCI1394_ATRetries,
2380		  OHCI1394_MAX_AT_REQ_RETRIES |
2381		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2382		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2383		  (200 << 16));
2384
2385	ohci->bus_time_running = false;
2386
2387	for (i = 0; i < 32; i++)
2388		if (ohci->ir_context_support & (1 << i))
2389			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2390				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2391
2392	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2393	if (version >= OHCI_VERSION_1_1) {
2394		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2395			  0xfffffffe);
2396		card->broadcast_channel_auto_allocated = true;
2397	}
2398
2399	/* Get implemented bits of the priority arbitration request counter. */
2400	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2401	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2402	reg_write(ohci, OHCI1394_FairnessControl, 0);
2403	card->priority_budget_implemented = ohci->pri_req_max != 0;
2404
2405	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2406	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2407	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2408
2409	ret = configure_1394a_enhancements(ohci);
2410	if (ret < 0)
2411		return ret;
2412
2413	/* Activate link_on bit and contender bit in our self ID packets.*/
2414	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2415	if (ret < 0)
2416		return ret;
2417
2418	/*
2419	 * When the link is not yet enabled, the atomic config rom
2420	 * update mechanism described below in ohci_set_config_rom()
2421	 * is not active.  We have to update ConfigRomHeader and
2422	 * BusOptions manually, and the write to ConfigROMmap takes
2423	 * effect immediately.  We tie this to the enabling of the
2424	 * link, so we have a valid config rom before enabling - the
2425	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2426	 * values before enabling.
2427	 *
2428	 * However, when the ConfigROMmap is written, some controllers
2429	 * always read back quadlets 0 and 2 from the config rom to
2430	 * the ConfigRomHeader and BusOptions registers on bus reset.
2431	 * They shouldn't do that in this initial case where the link
2432	 * isn't enabled.  This means we have to use the same
2433	 * workaround here, setting the bus header to 0 and then write
2434	 * the right values in the bus reset tasklet.
2435	 */
2436
2437	if (config_rom) {
2438		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2439							    &ohci->next_config_rom_bus, GFP_KERNEL);
 
 
2440		if (ohci->next_config_rom == NULL)
2441			return -ENOMEM;
2442
2443		copy_config_rom(ohci->next_config_rom, config_rom, length);
2444	} else {
2445		/*
2446		 * In the suspend case, config_rom is NULL, which
2447		 * means that we just reuse the old config rom.
2448		 */
2449		ohci->next_config_rom = ohci->config_rom;
2450		ohci->next_config_rom_bus = ohci->config_rom_bus;
2451	}
2452
2453	ohci->next_header = ohci->next_config_rom[0];
2454	ohci->next_config_rom[0] = 0;
2455	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2456	reg_write(ohci, OHCI1394_BusOptions,
2457		  be32_to_cpu(ohci->next_config_rom[2]));
2458	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2459
2460	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2461
2462	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2463		OHCI1394_RQPkt | OHCI1394_RSPkt |
2464		OHCI1394_isochTx | OHCI1394_isochRx |
2465		OHCI1394_postedWriteErr |
2466		OHCI1394_selfIDComplete |
2467		OHCI1394_regAccessFail |
2468		OHCI1394_cycleInconsistent |
2469		OHCI1394_unrecoverableError |
2470		OHCI1394_cycleTooLong |
2471		OHCI1394_masterIntEnable;
2472	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2473		irqs |= OHCI1394_busReset;
2474	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2475
2476	reg_write(ohci, OHCI1394_HCControlSet,
2477		  OHCI1394_HCControl_linkEnable |
2478		  OHCI1394_HCControl_BIBimageValid);
2479
2480	reg_write(ohci, OHCI1394_LinkControlSet,
2481		  OHCI1394_LinkControl_rcvSelfID |
2482		  OHCI1394_LinkControl_rcvPhyPkt);
2483
2484	ar_context_run(&ohci->ar_request_ctx);
2485	ar_context_run(&ohci->ar_response_ctx);
2486
2487	flush_writes(ohci);
2488
2489	/* We are ready to go, reset bus to finish initialization. */
2490	fw_schedule_bus_reset(&ohci->card, false, true);
2491
2492	return 0;
2493}
2494
2495static int ohci_set_config_rom(struct fw_card *card,
2496			       const __be32 *config_rom, size_t length)
2497{
2498	struct fw_ohci *ohci;
2499	__be32 *next_config_rom;
2500	dma_addr_t next_config_rom_bus;
2501
2502	ohci = fw_ohci(card);
2503
2504	/*
2505	 * When the OHCI controller is enabled, the config rom update
2506	 * mechanism is a bit tricky, but easy enough to use.  See
2507	 * section 5.5.6 in the OHCI specification.
2508	 *
2509	 * The OHCI controller caches the new config rom address in a
2510	 * shadow register (ConfigROMmapNext) and needs a bus reset
2511	 * for the changes to take place.  When the bus reset is
2512	 * detected, the controller loads the new values for the
2513	 * ConfigRomHeader and BusOptions registers from the specified
2514	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2515	 * shadow register. All automatically and atomically.
2516	 *
2517	 * Now, there's a twist to this story.  The automatic load of
2518	 * ConfigRomHeader and BusOptions doesn't honor the
2519	 * noByteSwapData bit, so with a be32 config rom, the
2520	 * controller will load be32 values in to these registers
2521	 * during the atomic update, even on litte endian
2522	 * architectures.  The workaround we use is to put a 0 in the
2523	 * header quadlet; 0 is endian agnostic and means that the
2524	 * config rom isn't ready yet.  In the bus reset tasklet we
2525	 * then set up the real values for the two registers.
2526	 *
2527	 * We use ohci->lock to avoid racing with the code that sets
2528	 * ohci->next_config_rom to NULL (see bus_reset_work).
2529	 */
2530
2531	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2532					      &next_config_rom_bus, GFP_KERNEL);
 
2533	if (next_config_rom == NULL)
2534		return -ENOMEM;
2535
2536	spin_lock_irq(&ohci->lock);
2537
2538	/*
2539	 * If there is not an already pending config_rom update,
2540	 * push our new allocation into the ohci->next_config_rom
2541	 * and then mark the local variable as null so that we
2542	 * won't deallocate the new buffer.
2543	 *
2544	 * OTOH, if there is a pending config_rom update, just
2545	 * use that buffer with the new config_rom data, and
2546	 * let this routine free the unused DMA allocation.
2547	 */
2548
2549	if (ohci->next_config_rom == NULL) {
2550		ohci->next_config_rom = next_config_rom;
2551		ohci->next_config_rom_bus = next_config_rom_bus;
2552		next_config_rom = NULL;
2553	}
2554
2555	copy_config_rom(ohci->next_config_rom, config_rom, length);
2556
2557	ohci->next_header = config_rom[0];
2558	ohci->next_config_rom[0] = 0;
2559
2560	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2561
2562	spin_unlock_irq(&ohci->lock);
2563
2564	/* If we didn't use the DMA allocation, delete it. */
2565	if (next_config_rom != NULL) {
2566		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2567				   next_config_rom_bus);
2568	}
2569
2570	/*
2571	 * Now initiate a bus reset to have the changes take
2572	 * effect. We clean up the old config rom memory and DMA
2573	 * mappings in the bus reset tasklet, since the OHCI
2574	 * controller could need to access it before the bus reset
2575	 * takes effect.
2576	 */
2577
2578	fw_schedule_bus_reset(&ohci->card, true, true);
2579
2580	return 0;
2581}
2582
2583static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2584{
2585	struct fw_ohci *ohci = fw_ohci(card);
2586
2587	at_context_transmit(&ohci->at_request_ctx, packet);
2588}
2589
2590static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2591{
2592	struct fw_ohci *ohci = fw_ohci(card);
2593
2594	at_context_transmit(&ohci->at_response_ctx, packet);
2595}
2596
2597static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2598{
2599	struct fw_ohci *ohci = fw_ohci(card);
2600	struct context *ctx = &ohci->at_request_ctx;
2601	struct driver_data *driver_data = packet->driver_data;
2602	int ret = -ENOENT;
2603
2604	tasklet_disable_in_atomic(&ctx->tasklet);
2605
2606	if (packet->ack != 0)
2607		goto out;
2608
2609	if (packet->payload_mapped)
2610		dma_unmap_single(ohci->card.device, packet->payload_bus,
2611				 packet->payload_length, DMA_TO_DEVICE);
2612
2613	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2614	driver_data->packet = NULL;
2615	packet->ack = RCODE_CANCELLED;
2616
2617	// Timestamping on behalf of the hardware.
2618	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2619
2620	packet->callback(packet, &ohci->card, packet->ack);
2621	ret = 0;
2622 out:
2623	tasklet_enable(&ctx->tasklet);
2624
2625	return ret;
2626}
2627
2628static int ohci_enable_phys_dma(struct fw_card *card,
2629				int node_id, int generation)
2630{
2631	struct fw_ohci *ohci = fw_ohci(card);
2632	unsigned long flags;
2633	int n, ret = 0;
2634
2635	if (param_remote_dma)
2636		return 0;
2637
2638	/*
2639	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2640	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2641	 */
2642
2643	spin_lock_irqsave(&ohci->lock, flags);
2644
2645	if (ohci->generation != generation) {
2646		ret = -ESTALE;
2647		goto out;
2648	}
2649
2650	/*
2651	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2652	 * enabled for _all_ nodes on remote buses.
2653	 */
2654
2655	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2656	if (n < 32)
2657		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2658	else
2659		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2660
2661	flush_writes(ohci);
2662 out:
2663	spin_unlock_irqrestore(&ohci->lock, flags);
2664
2665	return ret;
2666}
2667
2668static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2669{
2670	struct fw_ohci *ohci = fw_ohci(card);
2671	unsigned long flags;
2672	u32 value;
2673
2674	switch (csr_offset) {
2675	case CSR_STATE_CLEAR:
2676	case CSR_STATE_SET:
2677		if (ohci->is_root &&
2678		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2679		     OHCI1394_LinkControl_cycleMaster))
2680			value = CSR_STATE_BIT_CMSTR;
2681		else
2682			value = 0;
2683		if (ohci->csr_state_setclear_abdicate)
2684			value |= CSR_STATE_BIT_ABDICATE;
2685
2686		return value;
2687
2688	case CSR_NODE_IDS:
2689		return reg_read(ohci, OHCI1394_NodeID) << 16;
2690
2691	case CSR_CYCLE_TIME:
2692		return get_cycle_time(ohci);
2693
2694	case CSR_BUS_TIME:
2695		/*
2696		 * We might be called just after the cycle timer has wrapped
2697		 * around but just before the cycle64Seconds handler, so we
2698		 * better check here, too, if the bus time needs to be updated.
2699		 */
2700		spin_lock_irqsave(&ohci->lock, flags);
2701		value = update_bus_time(ohci);
2702		spin_unlock_irqrestore(&ohci->lock, flags);
2703		return value;
2704
2705	case CSR_BUSY_TIMEOUT:
2706		value = reg_read(ohci, OHCI1394_ATRetries);
2707		return (value >> 4) & 0x0ffff00f;
2708
2709	case CSR_PRIORITY_BUDGET:
2710		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2711			(ohci->pri_req_max << 8);
2712
2713	default:
2714		WARN_ON(1);
2715		return 0;
2716	}
2717}
2718
2719static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2720{
2721	struct fw_ohci *ohci = fw_ohci(card);
2722	unsigned long flags;
2723
2724	switch (csr_offset) {
2725	case CSR_STATE_CLEAR:
2726		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2727			reg_write(ohci, OHCI1394_LinkControlClear,
2728				  OHCI1394_LinkControl_cycleMaster);
2729			flush_writes(ohci);
2730		}
2731		if (value & CSR_STATE_BIT_ABDICATE)
2732			ohci->csr_state_setclear_abdicate = false;
2733		break;
2734
2735	case CSR_STATE_SET:
2736		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2737			reg_write(ohci, OHCI1394_LinkControlSet,
2738				  OHCI1394_LinkControl_cycleMaster);
2739			flush_writes(ohci);
2740		}
2741		if (value & CSR_STATE_BIT_ABDICATE)
2742			ohci->csr_state_setclear_abdicate = true;
2743		break;
2744
2745	case CSR_NODE_IDS:
2746		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2747		flush_writes(ohci);
2748		break;
2749
2750	case CSR_CYCLE_TIME:
2751		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2752		reg_write(ohci, OHCI1394_IntEventSet,
2753			  OHCI1394_cycleInconsistent);
2754		flush_writes(ohci);
2755		break;
2756
2757	case CSR_BUS_TIME:
2758		spin_lock_irqsave(&ohci->lock, flags);
2759		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2760		                 (value & ~0x7f);
2761		spin_unlock_irqrestore(&ohci->lock, flags);
2762		break;
2763
2764	case CSR_BUSY_TIMEOUT:
2765		value = (value & 0xf) | ((value & 0xf) << 4) |
2766			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2767		reg_write(ohci, OHCI1394_ATRetries, value);
2768		flush_writes(ohci);
2769		break;
2770
2771	case CSR_PRIORITY_BUDGET:
2772		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2773		flush_writes(ohci);
2774		break;
2775
2776	default:
2777		WARN_ON(1);
2778		break;
2779	}
2780}
2781
2782static void flush_iso_completions(struct iso_context *ctx)
2783{
2784	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2785			      ctx->header_length, ctx->header,
2786			      ctx->base.callback_data);
2787	ctx->header_length = 0;
2788}
2789
2790static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2791{
2792	u32 *ctx_hdr;
2793
2794	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2795		if (ctx->base.drop_overflow_headers)
2796			return;
2797		flush_iso_completions(ctx);
2798	}
2799
2800	ctx_hdr = ctx->header + ctx->header_length;
2801	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2802
2803	/*
2804	 * The two iso header quadlets are byteswapped to little
2805	 * endian by the controller, but we want to present them
2806	 * as big endian for consistency with the bus endianness.
2807	 */
2808	if (ctx->base.header_size > 0)
2809		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2810	if (ctx->base.header_size > 4)
2811		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2812	if (ctx->base.header_size > 8)
2813		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2814	ctx->header_length += ctx->base.header_size;
2815}
2816
2817static int handle_ir_packet_per_buffer(struct context *context,
2818				       struct descriptor *d,
2819				       struct descriptor *last)
2820{
2821	struct iso_context *ctx =
2822		container_of(context, struct iso_context, context);
2823	struct descriptor *pd;
2824	u32 buffer_dma;
2825
2826	for (pd = d; pd <= last; pd++)
2827		if (pd->transfer_status)
2828			break;
2829	if (pd > last)
2830		/* Descriptor(s) not done yet, stop iteration */
2831		return 0;
2832
2833	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2834		d++;
2835		buffer_dma = le32_to_cpu(d->data_address);
2836		dma_sync_single_range_for_cpu(context->ohci->card.device,
2837					      buffer_dma & PAGE_MASK,
2838					      buffer_dma & ~PAGE_MASK,
2839					      le16_to_cpu(d->req_count),
2840					      DMA_FROM_DEVICE);
2841	}
2842
2843	copy_iso_headers(ctx, (u32 *) (last + 1));
2844
2845	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2846		flush_iso_completions(ctx);
2847
2848	return 1;
2849}
2850
2851/* d == last because each descriptor block is only a single descriptor. */
2852static int handle_ir_buffer_fill(struct context *context,
2853				 struct descriptor *d,
2854				 struct descriptor *last)
2855{
2856	struct iso_context *ctx =
2857		container_of(context, struct iso_context, context);
2858	unsigned int req_count, res_count, completed;
2859	u32 buffer_dma;
2860
2861	req_count = le16_to_cpu(last->req_count);
2862	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2863	completed = req_count - res_count;
2864	buffer_dma = le32_to_cpu(last->data_address);
2865
2866	if (completed > 0) {
2867		ctx->mc_buffer_bus = buffer_dma;
2868		ctx->mc_completed = completed;
2869	}
2870
2871	if (res_count != 0)
2872		/* Descriptor(s) not done yet, stop iteration */
2873		return 0;
2874
2875	dma_sync_single_range_for_cpu(context->ohci->card.device,
2876				      buffer_dma & PAGE_MASK,
2877				      buffer_dma & ~PAGE_MASK,
2878				      completed, DMA_FROM_DEVICE);
2879
2880	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2881		ctx->base.callback.mc(&ctx->base,
2882				      buffer_dma + completed,
2883				      ctx->base.callback_data);
2884		ctx->mc_completed = 0;
2885	}
2886
2887	return 1;
2888}
2889
2890static void flush_ir_buffer_fill(struct iso_context *ctx)
2891{
2892	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2893				      ctx->mc_buffer_bus & PAGE_MASK,
2894				      ctx->mc_buffer_bus & ~PAGE_MASK,
2895				      ctx->mc_completed, DMA_FROM_DEVICE);
2896
2897	ctx->base.callback.mc(&ctx->base,
2898			      ctx->mc_buffer_bus + ctx->mc_completed,
2899			      ctx->base.callback_data);
2900	ctx->mc_completed = 0;
2901}
2902
2903static inline void sync_it_packet_for_cpu(struct context *context,
2904					  struct descriptor *pd)
2905{
2906	__le16 control;
2907	u32 buffer_dma;
2908
2909	/* only packets beginning with OUTPUT_MORE* have data buffers */
2910	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2911		return;
2912
2913	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2914	pd += 2;
2915
2916	/*
2917	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2918	 * data buffer is in the context program's coherent page and must not
2919	 * be synced.
2920	 */
2921	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2922	    (context->current_bus          & PAGE_MASK)) {
2923		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2924			return;
2925		pd++;
2926	}
2927
2928	do {
2929		buffer_dma = le32_to_cpu(pd->data_address);
2930		dma_sync_single_range_for_cpu(context->ohci->card.device,
2931					      buffer_dma & PAGE_MASK,
2932					      buffer_dma & ~PAGE_MASK,
2933					      le16_to_cpu(pd->req_count),
2934					      DMA_TO_DEVICE);
2935		control = pd->control;
2936		pd++;
2937	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2938}
2939
2940static int handle_it_packet(struct context *context,
2941			    struct descriptor *d,
2942			    struct descriptor *last)
2943{
2944	struct iso_context *ctx =
2945		container_of(context, struct iso_context, context);
2946	struct descriptor *pd;
2947	__be32 *ctx_hdr;
2948
2949	for (pd = d; pd <= last; pd++)
2950		if (pd->transfer_status)
2951			break;
2952	if (pd > last)
2953		/* Descriptor(s) not done yet, stop iteration */
2954		return 0;
2955
2956	sync_it_packet_for_cpu(context, d);
2957
2958	if (ctx->header_length + 4 > PAGE_SIZE) {
2959		if (ctx->base.drop_overflow_headers)
2960			return 1;
2961		flush_iso_completions(ctx);
2962	}
2963
2964	ctx_hdr = ctx->header + ctx->header_length;
2965	ctx->last_timestamp = le16_to_cpu(last->res_count);
2966	/* Present this value as big-endian to match the receive code */
2967	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2968			       le16_to_cpu(pd->res_count));
2969	ctx->header_length += 4;
2970
2971	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2972		flush_iso_completions(ctx);
2973
2974	return 1;
2975}
2976
2977static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2978{
2979	u32 hi = channels >> 32, lo = channels;
2980
2981	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2982	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2983	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2984	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
2985	ohci->mc_channels = channels;
2986}
2987
2988static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2989				int type, int channel, size_t header_size)
2990{
2991	struct fw_ohci *ohci = fw_ohci(card);
2992	struct iso_context *ctx;
2993	descriptor_callback_t callback;
2994	u64 *channels;
2995	u32 *mask, regs;
2996	int index, ret = -EBUSY;
2997
2998	spin_lock_irq(&ohci->lock);
2999
3000	switch (type) {
3001	case FW_ISO_CONTEXT_TRANSMIT:
3002		mask     = &ohci->it_context_mask;
3003		callback = handle_it_packet;
3004		index    = ffs(*mask) - 1;
3005		if (index >= 0) {
3006			*mask &= ~(1 << index);
3007			regs = OHCI1394_IsoXmitContextBase(index);
3008			ctx  = &ohci->it_context_list[index];
3009		}
3010		break;
3011
3012	case FW_ISO_CONTEXT_RECEIVE:
3013		channels = &ohci->ir_context_channels;
3014		mask     = &ohci->ir_context_mask;
3015		callback = handle_ir_packet_per_buffer;
3016		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3017		if (index >= 0) {
3018			*channels &= ~(1ULL << channel);
3019			*mask     &= ~(1 << index);
3020			regs = OHCI1394_IsoRcvContextBase(index);
3021			ctx  = &ohci->ir_context_list[index];
3022		}
3023		break;
3024
3025	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3026		mask     = &ohci->ir_context_mask;
3027		callback = handle_ir_buffer_fill;
3028		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3029		if (index >= 0) {
3030			ohci->mc_allocated = true;
3031			*mask &= ~(1 << index);
3032			regs = OHCI1394_IsoRcvContextBase(index);
3033			ctx  = &ohci->ir_context_list[index];
3034		}
3035		break;
3036
3037	default:
3038		index = -1;
3039		ret = -ENOSYS;
3040	}
3041
3042	spin_unlock_irq(&ohci->lock);
3043
3044	if (index < 0)
3045		return ERR_PTR(ret);
3046
3047	memset(ctx, 0, sizeof(*ctx));
3048	ctx->header_length = 0;
3049	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3050	if (ctx->header == NULL) {
3051		ret = -ENOMEM;
3052		goto out;
3053	}
3054	ret = context_init(&ctx->context, ohci, regs, callback);
3055	if (ret < 0)
3056		goto out_with_header;
3057
3058	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3059		set_multichannel_mask(ohci, 0);
3060		ctx->mc_completed = 0;
3061	}
3062
3063	return &ctx->base;
3064
3065 out_with_header:
3066	free_page((unsigned long)ctx->header);
3067 out:
3068	spin_lock_irq(&ohci->lock);
3069
3070	switch (type) {
3071	case FW_ISO_CONTEXT_RECEIVE:
3072		*channels |= 1ULL << channel;
3073		break;
3074
3075	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3076		ohci->mc_allocated = false;
3077		break;
3078	}
3079	*mask |= 1 << index;
3080
3081	spin_unlock_irq(&ohci->lock);
3082
3083	return ERR_PTR(ret);
3084}
3085
3086static int ohci_start_iso(struct fw_iso_context *base,
3087			  s32 cycle, u32 sync, u32 tags)
3088{
3089	struct iso_context *ctx = container_of(base, struct iso_context, base);
3090	struct fw_ohci *ohci = ctx->context.ohci;
3091	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3092	int index;
3093
3094	/* the controller cannot start without any queued packets */
3095	if (ctx->context.last->branch_address == 0)
3096		return -ENODATA;
3097
3098	switch (ctx->base.type) {
3099	case FW_ISO_CONTEXT_TRANSMIT:
3100		index = ctx - ohci->it_context_list;
3101		match = 0;
3102		if (cycle >= 0)
3103			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3104				(cycle & 0x7fff) << 16;
3105
3106		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3107		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3108		context_run(&ctx->context, match);
3109		break;
3110
3111	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3112		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3113		fallthrough;
3114	case FW_ISO_CONTEXT_RECEIVE:
3115		index = ctx - ohci->ir_context_list;
3116		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3117		if (cycle >= 0) {
3118			match |= (cycle & 0x07fff) << 12;
3119			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3120		}
3121
3122		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3123		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3124		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3125		context_run(&ctx->context, control);
3126
3127		ctx->sync = sync;
3128		ctx->tags = tags;
3129
3130		break;
3131	}
3132
3133	return 0;
3134}
3135
3136static int ohci_stop_iso(struct fw_iso_context *base)
3137{
3138	struct fw_ohci *ohci = fw_ohci(base->card);
3139	struct iso_context *ctx = container_of(base, struct iso_context, base);
3140	int index;
3141
3142	switch (ctx->base.type) {
3143	case FW_ISO_CONTEXT_TRANSMIT:
3144		index = ctx - ohci->it_context_list;
3145		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3146		break;
3147
3148	case FW_ISO_CONTEXT_RECEIVE:
3149	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150		index = ctx - ohci->ir_context_list;
3151		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3152		break;
3153	}
3154	flush_writes(ohci);
3155	context_stop(&ctx->context);
3156	tasklet_kill(&ctx->context.tasklet);
3157
3158	return 0;
3159}
3160
3161static void ohci_free_iso_context(struct fw_iso_context *base)
3162{
3163	struct fw_ohci *ohci = fw_ohci(base->card);
3164	struct iso_context *ctx = container_of(base, struct iso_context, base);
3165	unsigned long flags;
3166	int index;
3167
3168	ohci_stop_iso(base);
3169	context_release(&ctx->context);
3170	free_page((unsigned long)ctx->header);
3171
3172	spin_lock_irqsave(&ohci->lock, flags);
3173
3174	switch (base->type) {
3175	case FW_ISO_CONTEXT_TRANSMIT:
3176		index = ctx - ohci->it_context_list;
3177		ohci->it_context_mask |= 1 << index;
3178		break;
3179
3180	case FW_ISO_CONTEXT_RECEIVE:
3181		index = ctx - ohci->ir_context_list;
3182		ohci->ir_context_mask |= 1 << index;
3183		ohci->ir_context_channels |= 1ULL << base->channel;
3184		break;
3185
3186	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3187		index = ctx - ohci->ir_context_list;
3188		ohci->ir_context_mask |= 1 << index;
3189		ohci->ir_context_channels |= ohci->mc_channels;
3190		ohci->mc_channels = 0;
3191		ohci->mc_allocated = false;
3192		break;
3193	}
3194
3195	spin_unlock_irqrestore(&ohci->lock, flags);
3196}
3197
3198static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3199{
3200	struct fw_ohci *ohci = fw_ohci(base->card);
3201	unsigned long flags;
3202	int ret;
3203
3204	switch (base->type) {
3205	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3206
3207		spin_lock_irqsave(&ohci->lock, flags);
3208
3209		/* Don't allow multichannel to grab other contexts' channels. */
3210		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3211			*channels = ohci->ir_context_channels;
3212			ret = -EBUSY;
3213		} else {
3214			set_multichannel_mask(ohci, *channels);
3215			ret = 0;
3216		}
3217
3218		spin_unlock_irqrestore(&ohci->lock, flags);
3219
3220		break;
3221	default:
3222		ret = -EINVAL;
3223	}
3224
3225	return ret;
3226}
3227
3228#ifdef CONFIG_PM
3229static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3230{
3231	int i;
3232	struct iso_context *ctx;
3233
3234	for (i = 0 ; i < ohci->n_ir ; i++) {
3235		ctx = &ohci->ir_context_list[i];
3236		if (ctx->context.running)
3237			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3238	}
3239
3240	for (i = 0 ; i < ohci->n_it ; i++) {
3241		ctx = &ohci->it_context_list[i];
3242		if (ctx->context.running)
3243			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3244	}
3245}
3246#endif
3247
3248static int queue_iso_transmit(struct iso_context *ctx,
3249			      struct fw_iso_packet *packet,
3250			      struct fw_iso_buffer *buffer,
3251			      unsigned long payload)
3252{
3253	struct descriptor *d, *last, *pd;
3254	struct fw_iso_packet *p;
3255	__le32 *header;
3256	dma_addr_t d_bus, page_bus;
3257	u32 z, header_z, payload_z, irq;
3258	u32 payload_index, payload_end_index, next_page_index;
3259	int page, end_page, i, length, offset;
3260
3261	p = packet;
3262	payload_index = payload;
3263
3264	if (p->skip)
3265		z = 1;
3266	else
3267		z = 2;
3268	if (p->header_length > 0)
3269		z++;
3270
3271	/* Determine the first page the payload isn't contained in. */
3272	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3273	if (p->payload_length > 0)
3274		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3275	else
3276		payload_z = 0;
3277
3278	z += payload_z;
3279
3280	/* Get header size in number of descriptors. */
3281	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3282
3283	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3284	if (d == NULL)
3285		return -ENOMEM;
3286
3287	if (!p->skip) {
3288		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3289		d[0].req_count = cpu_to_le16(8);
3290		/*
3291		 * Link the skip address to this descriptor itself.  This causes
3292		 * a context to skip a cycle whenever lost cycles or FIFO
3293		 * overruns occur, without dropping the data.  The application
3294		 * should then decide whether this is an error condition or not.
3295		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3296		 */
3297		d[0].branch_address = cpu_to_le32(d_bus | z);
3298
3299		header = (__le32 *) &d[1];
3300		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3301					IT_HEADER_TAG(p->tag) |
3302					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3303					IT_HEADER_CHANNEL(ctx->base.channel) |
3304					IT_HEADER_SPEED(ctx->base.speed));
3305		header[1] =
3306			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3307							  p->payload_length));
3308	}
3309
3310	if (p->header_length > 0) {
3311		d[2].req_count    = cpu_to_le16(p->header_length);
3312		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3313		memcpy(&d[z], p->header, p->header_length);
3314	}
3315
3316	pd = d + z - payload_z;
3317	payload_end_index = payload_index + p->payload_length;
3318	for (i = 0; i < payload_z; i++) {
3319		page               = payload_index >> PAGE_SHIFT;
3320		offset             = payload_index & ~PAGE_MASK;
3321		next_page_index    = (page + 1) << PAGE_SHIFT;
3322		length             =
3323			min(next_page_index, payload_end_index) - payload_index;
3324		pd[i].req_count    = cpu_to_le16(length);
3325
3326		page_bus = page_private(buffer->pages[page]);
3327		pd[i].data_address = cpu_to_le32(page_bus + offset);
3328
3329		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3330						 page_bus, offset, length,
3331						 DMA_TO_DEVICE);
3332
3333		payload_index += length;
3334	}
3335
3336	if (p->interrupt)
3337		irq = DESCRIPTOR_IRQ_ALWAYS;
3338	else
3339		irq = DESCRIPTOR_NO_IRQ;
3340
3341	last = z == 2 ? d : d + z - 1;
3342	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3343				     DESCRIPTOR_STATUS |
3344				     DESCRIPTOR_BRANCH_ALWAYS |
3345				     irq);
3346
3347	context_append(&ctx->context, d, z, header_z);
3348
3349	return 0;
3350}
3351
3352static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3353				       struct fw_iso_packet *packet,
3354				       struct fw_iso_buffer *buffer,
3355				       unsigned long payload)
3356{
3357	struct device *device = ctx->context.ohci->card.device;
3358	struct descriptor *d, *pd;
3359	dma_addr_t d_bus, page_bus;
3360	u32 z, header_z, rest;
3361	int i, j, length;
3362	int page, offset, packet_count, header_size, payload_per_buffer;
3363
3364	/*
3365	 * The OHCI controller puts the isochronous header and trailer in the
3366	 * buffer, so we need at least 8 bytes.
3367	 */
3368	packet_count = packet->header_length / ctx->base.header_size;
3369	header_size  = max(ctx->base.header_size, (size_t)8);
3370
3371	/* Get header size in number of descriptors. */
3372	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3373	page     = payload >> PAGE_SHIFT;
3374	offset   = payload & ~PAGE_MASK;
3375	payload_per_buffer = packet->payload_length / packet_count;
3376
3377	for (i = 0; i < packet_count; i++) {
3378		/* d points to the header descriptor */
3379		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3380		d = context_get_descriptors(&ctx->context,
3381				z + header_z, &d_bus);
3382		if (d == NULL)
3383			return -ENOMEM;
3384
3385		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3386					      DESCRIPTOR_INPUT_MORE);
3387		if (packet->skip && i == 0)
3388			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3389		d->req_count    = cpu_to_le16(header_size);
3390		d->res_count    = d->req_count;
3391		d->transfer_status = 0;
3392		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3393
3394		rest = payload_per_buffer;
3395		pd = d;
3396		for (j = 1; j < z; j++) {
3397			pd++;
3398			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3399						  DESCRIPTOR_INPUT_MORE);
3400
3401			if (offset + rest < PAGE_SIZE)
3402				length = rest;
3403			else
3404				length = PAGE_SIZE - offset;
3405			pd->req_count = cpu_to_le16(length);
3406			pd->res_count = pd->req_count;
3407			pd->transfer_status = 0;
3408
3409			page_bus = page_private(buffer->pages[page]);
3410			pd->data_address = cpu_to_le32(page_bus + offset);
3411
3412			dma_sync_single_range_for_device(device, page_bus,
3413							 offset, length,
3414							 DMA_FROM_DEVICE);
3415
3416			offset = (offset + length) & ~PAGE_MASK;
3417			rest -= length;
3418			if (offset == 0)
3419				page++;
3420		}
3421		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3422					  DESCRIPTOR_INPUT_LAST |
3423					  DESCRIPTOR_BRANCH_ALWAYS);
3424		if (packet->interrupt && i == packet_count - 1)
3425			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3426
3427		context_append(&ctx->context, d, z, header_z);
3428	}
3429
3430	return 0;
3431}
3432
3433static int queue_iso_buffer_fill(struct iso_context *ctx,
3434				 struct fw_iso_packet *packet,
3435				 struct fw_iso_buffer *buffer,
3436				 unsigned long payload)
3437{
3438	struct descriptor *d;
3439	dma_addr_t d_bus, page_bus;
3440	int page, offset, rest, z, i, length;
3441
3442	page   = payload >> PAGE_SHIFT;
3443	offset = payload & ~PAGE_MASK;
3444	rest   = packet->payload_length;
3445
3446	/* We need one descriptor for each page in the buffer. */
3447	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3448
3449	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3450		return -EFAULT;
3451
3452	for (i = 0; i < z; i++) {
3453		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3454		if (d == NULL)
3455			return -ENOMEM;
3456
3457		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3458					 DESCRIPTOR_BRANCH_ALWAYS);
3459		if (packet->skip && i == 0)
3460			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3461		if (packet->interrupt && i == z - 1)
3462			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3463
3464		if (offset + rest < PAGE_SIZE)
3465			length = rest;
3466		else
3467			length = PAGE_SIZE - offset;
3468		d->req_count = cpu_to_le16(length);
3469		d->res_count = d->req_count;
3470		d->transfer_status = 0;
3471
3472		page_bus = page_private(buffer->pages[page]);
3473		d->data_address = cpu_to_le32(page_bus + offset);
3474
3475		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3476						 page_bus, offset, length,
3477						 DMA_FROM_DEVICE);
3478
3479		rest -= length;
3480		offset = 0;
3481		page++;
3482
3483		context_append(&ctx->context, d, 1, 0);
3484	}
3485
3486	return 0;
3487}
3488
3489static int ohci_queue_iso(struct fw_iso_context *base,
3490			  struct fw_iso_packet *packet,
3491			  struct fw_iso_buffer *buffer,
3492			  unsigned long payload)
3493{
3494	struct iso_context *ctx = container_of(base, struct iso_context, base);
3495	unsigned long flags;
3496	int ret = -ENOSYS;
3497
3498	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3499	switch (base->type) {
3500	case FW_ISO_CONTEXT_TRANSMIT:
3501		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3502		break;
3503	case FW_ISO_CONTEXT_RECEIVE:
3504		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3505		break;
3506	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3507		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3508		break;
3509	}
3510	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3511
3512	return ret;
3513}
3514
3515static void ohci_flush_queue_iso(struct fw_iso_context *base)
3516{
3517	struct context *ctx =
3518			&container_of(base, struct iso_context, base)->context;
3519
3520	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3521}
3522
3523static int ohci_flush_iso_completions(struct fw_iso_context *base)
3524{
3525	struct iso_context *ctx = container_of(base, struct iso_context, base);
3526	int ret = 0;
3527
3528	tasklet_disable_in_atomic(&ctx->context.tasklet);
3529
3530	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3531		context_tasklet((unsigned long)&ctx->context);
3532
3533		switch (base->type) {
3534		case FW_ISO_CONTEXT_TRANSMIT:
3535		case FW_ISO_CONTEXT_RECEIVE:
3536			if (ctx->header_length != 0)
3537				flush_iso_completions(ctx);
3538			break;
3539		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3540			if (ctx->mc_completed != 0)
3541				flush_ir_buffer_fill(ctx);
3542			break;
3543		default:
3544			ret = -ENOSYS;
3545		}
3546
3547		clear_bit_unlock(0, &ctx->flushing_completions);
3548		smp_mb__after_atomic();
3549	}
3550
3551	tasklet_enable(&ctx->context.tasklet);
3552
3553	return ret;
3554}
3555
3556static const struct fw_card_driver ohci_driver = {
3557	.enable			= ohci_enable,
3558	.read_phy_reg		= ohci_read_phy_reg,
3559	.update_phy_reg		= ohci_update_phy_reg,
3560	.set_config_rom		= ohci_set_config_rom,
3561	.send_request		= ohci_send_request,
3562	.send_response		= ohci_send_response,
3563	.cancel_packet		= ohci_cancel_packet,
3564	.enable_phys_dma	= ohci_enable_phys_dma,
3565	.read_csr		= ohci_read_csr,
3566	.write_csr		= ohci_write_csr,
3567
3568	.allocate_iso_context	= ohci_allocate_iso_context,
3569	.free_iso_context	= ohci_free_iso_context,
3570	.set_iso_channels	= ohci_set_iso_channels,
3571	.queue_iso		= ohci_queue_iso,
3572	.flush_queue_iso	= ohci_flush_queue_iso,
3573	.flush_iso_completions	= ohci_flush_iso_completions,
3574	.start_iso		= ohci_start_iso,
3575	.stop_iso		= ohci_stop_iso,
3576};
3577
3578#ifdef CONFIG_PPC_PMAC
3579static void pmac_ohci_on(struct pci_dev *dev)
3580{
3581	if (machine_is(powermac)) {
3582		struct device_node *ofn = pci_device_to_OF_node(dev);
3583
3584		if (ofn) {
3585			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3586			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3587		}
3588	}
3589}
3590
3591static void pmac_ohci_off(struct pci_dev *dev)
3592{
3593	if (machine_is(powermac)) {
3594		struct device_node *ofn = pci_device_to_OF_node(dev);
3595
3596		if (ofn) {
3597			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3598			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3599		}
3600	}
3601}
3602#else
3603static inline void pmac_ohci_on(struct pci_dev *dev) {}
3604static inline void pmac_ohci_off(struct pci_dev *dev) {}
3605#endif /* CONFIG_PPC_PMAC */
3606
3607static void release_ohci(struct device *dev, void *data)
3608{
3609	struct pci_dev *pdev = to_pci_dev(dev);
3610	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3611
3612	pmac_ohci_off(pdev);
3613
3614	ar_context_release(&ohci->ar_response_ctx);
3615	ar_context_release(&ohci->ar_request_ctx);
3616
3617	dev_notice(dev, "removed fw-ohci device\n");
3618}
3619
3620static int pci_probe(struct pci_dev *dev,
3621			       const struct pci_device_id *ent)
3622{
3623	struct fw_ohci *ohci;
3624	u32 bus_options, max_receive, link_speed, version;
3625	u64 guid;
3626	int i, err;
3627	size_t size;
3628
3629	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3630		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3631		return -ENOSYS;
3632	}
3633
3634	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3635	if (ohci == NULL)
3636		return -ENOMEM;
 
 
 
3637	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3638	pci_set_drvdata(dev, ohci);
3639	pmac_ohci_on(dev);
3640	devres_add(&dev->dev, ohci);
3641
3642	err = pcim_enable_device(dev);
3643	if (err) {
3644		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3645		return err;
3646	}
3647
3648	pci_set_master(dev);
3649	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
 
3650
3651	spin_lock_init(&ohci->lock);
3652	mutex_init(&ohci->phy_reg_mutex);
3653
3654	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3655
3656	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3657	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3658		ohci_err(ohci, "invalid MMIO resource\n");
3659		return -ENXIO;
 
3660	}
3661
3662	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3663	if (err) {
3664		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3665		return -ENXIO;
 
 
 
 
 
 
 
3666	}
3667	ohci->registers = pcim_iomap_table(dev)[0];
3668
3669	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3670		if ((ohci_quirks[i].vendor == dev->vendor) &&
3671		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3672		     ohci_quirks[i].device == dev->device) &&
3673		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3674		     ohci_quirks[i].revision >= dev->revision)) {
3675			ohci->quirks = ohci_quirks[i].flags;
3676			break;
3677		}
3678	if (param_quirks)
3679		ohci->quirks = param_quirks;
3680
3681	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3682		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3683
3684	/*
3685	 * Because dma_alloc_coherent() allocates at least one page,
3686	 * we save space by using a common buffer for the AR request/
3687	 * response descriptors and the self IDs buffer.
3688	 */
3689	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3690	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3691	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3692						GFP_KERNEL);
3693	if (!ohci->misc_buffer)
3694		return -ENOMEM;
 
 
 
 
3695
3696	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3697			      OHCI1394_AsReqRcvContextControlSet);
3698	if (err < 0)
3699		return err;
3700
3701	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3702			      OHCI1394_AsRspRcvContextControlSet);
3703	if (err < 0)
3704		return err;
3705
3706	err = context_init(&ohci->at_request_ctx, ohci,
3707			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3708	if (err < 0)
3709		return err;
3710
3711	err = context_init(&ohci->at_response_ctx, ohci,
3712			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3713	if (err < 0)
3714		return err;
3715
3716	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3717	ohci->ir_context_channels = ~0ULL;
3718	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3719	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3720	ohci->ir_context_mask = ohci->ir_context_support;
3721	ohci->n_ir = hweight32(ohci->ir_context_mask);
3722	size = sizeof(struct iso_context) * ohci->n_ir;
3723	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3724	if (!ohci->ir_context_list)
3725		return -ENOMEM;
3726
3727	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3728	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3729	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3730	if (!ohci->it_context_support) {
3731		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3732		ohci->it_context_support = 0xf;
3733	}
3734	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3735	ohci->it_context_mask = ohci->it_context_support;
3736	ohci->n_it = hweight32(ohci->it_context_mask);
3737	size = sizeof(struct iso_context) * ohci->n_it;
3738	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3739	if (!ohci->it_context_list)
3740		return -ENOMEM;
 
 
 
3741
3742	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3743	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3744
3745	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3746	max_receive = (bus_options >> 12) & 0xf;
3747	link_speed = bus_options & 0x7;
3748	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3749		reg_read(ohci, OHCI1394_GUIDLo);
3750
3751	if (!(ohci->quirks & QUIRK_NO_MSI))
3752		pci_enable_msi(dev);
3753	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3754			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3755	if (err < 0) {
3756		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
 
3757		goto fail_msi;
3758	}
3759
3760	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3761	if (err)
3762		goto fail_msi;
3763
3764	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3765	ohci_notice(ohci,
3766		    "added OHCI v%x.%x device as card %d, "
3767		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3768		    version >> 16, version & 0xff, ohci->card.index,
3769		    ohci->n_ir, ohci->n_it, ohci->quirks,
3770		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3771			", physUB" : "");
3772
3773	return 0;
3774
 
 
3775 fail_msi:
3776	devm_free_irq(&dev->dev, dev->irq, ohci);
3777	pci_disable_msi(dev);
3778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779	return err;
3780}
3781
3782static void pci_remove(struct pci_dev *dev)
3783{
3784	struct fw_ohci *ohci = pci_get_drvdata(dev);
3785
3786	/*
3787	 * If the removal is happening from the suspend state, LPS won't be
3788	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3789	 */
3790	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3791		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3792		flush_writes(ohci);
3793	}
3794	cancel_work_sync(&ohci->bus_reset_work);
3795	fw_core_remove_card(&ohci->card);
3796
3797	/*
3798	 * FIXME: Fail all pending packets here, now that the upper
3799	 * layers can't queue any more.
3800	 */
3801
3802	software_reset(ohci);
 
3803
3804	devm_free_irq(&dev->dev, dev->irq, ohci);
 
 
 
 
 
 
 
 
 
 
 
 
 
3805	pci_disable_msi(dev);
 
 
 
 
 
3806
3807	dev_notice(&dev->dev, "removing fw-ohci device\n");
3808}
3809
3810#ifdef CONFIG_PM
3811static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812{
3813	struct fw_ohci *ohci = pci_get_drvdata(dev);
3814	int err;
3815
3816	software_reset(ohci);
3817	err = pci_save_state(dev);
3818	if (err) {
3819		ohci_err(ohci, "pci_save_state failed\n");
3820		return err;
3821	}
3822	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823	if (err)
3824		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825	pmac_ohci_off(dev);
3826
3827	return 0;
3828}
3829
3830static int pci_resume(struct pci_dev *dev)
3831{
3832	struct fw_ohci *ohci = pci_get_drvdata(dev);
3833	int err;
3834
3835	pmac_ohci_on(dev);
3836	pci_set_power_state(dev, PCI_D0);
3837	pci_restore_state(dev);
3838	err = pci_enable_device(dev);
3839	if (err) {
3840		ohci_err(ohci, "pci_enable_device failed\n");
3841		return err;
3842	}
3843
3844	/* Some systems don't setup GUID register on resume from ram  */
3845	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846					!reg_read(ohci, OHCI1394_GUIDHi)) {
3847		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849	}
3850
3851	err = ohci_enable(&ohci->card, NULL, 0);
3852	if (err)
3853		return err;
3854
3855	ohci_resume_iso_dma(ohci);
3856
3857	return 0;
3858}
3859#endif
3860
3861static const struct pci_device_id pci_table[] = {
3862	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863	{ }
3864};
3865
3866MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868static struct pci_driver fw_ohci_pci_driver = {
3869	.name		= ohci_driver_name,
3870	.id_table	= pci_table,
3871	.probe		= pci_probe,
3872	.remove		= pci_remove,
3873#ifdef CONFIG_PM
3874	.resume		= pci_resume,
3875	.suspend	= pci_suspend,
3876#endif
3877};
3878
3879static int __init fw_ohci_init(void)
3880{
3881	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882	if (!selfid_workqueue)
3883		return -ENOMEM;
3884
3885	return pci_register_driver(&fw_ohci_pci_driver);
3886}
3887
3888static void __exit fw_ohci_cleanup(void)
3889{
3890	pci_unregister_driver(&fw_ohci_pci_driver);
3891	destroy_workqueue(selfid_workqueue);
3892}
3893
3894module_init(fw_ohci_init);
3895module_exit(fw_ohci_cleanup);
3896
3897MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899MODULE_LICENSE("GPL");
3900
3901/* Provide a module alias so root-on-sbp2 initrds don't break. */
3902MODULE_ALIAS("ohci1394");
v4.17
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE		0
  62#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  63#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  64#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  65#define DESCRIPTOR_STATUS		(1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  67#define DESCRIPTOR_PING			(1 << 7)
  68#define DESCRIPTOR_YY			(1 << 6)
  69#define DESCRIPTOR_NO_IRQ		(0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  73#define DESCRIPTOR_WAIT			(3 << 0)
  74
  75#define DESCRIPTOR_CMD			(0xf << 12)
  76
  77struct descriptor {
  78	__le16 req_count;
  79	__le16 control;
  80	__le32 data_address;
  81	__le32 branch_address;
  82	__le16 res_count;
  83	__le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)	(regs)
  87#define CONTROL_CLEAR(regs)	((regs) + 4)
  88#define COMMAND_PTR(regs)	((regs) + 12)
  89#define CONTEXT_MATCH(regs)	((regs) + 16)
  90
  91#define AR_BUFFER_SIZE	(32*1024)
  92#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD	4096
  97#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101	struct fw_ohci *ohci;
 102	struct page *pages[AR_BUFFERS];
 103	void *buffer;
 104	struct descriptor *descriptors;
 105	dma_addr_t descriptors_bus;
 106	void *pointer;
 107	unsigned int last_buffer_index;
 108	u32 regs;
 109	struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115				     struct descriptor *d,
 116				     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123	struct list_head list;
 124	dma_addr_t buffer_bus;
 125	size_t buffer_size;
 126	size_t used;
 127	struct descriptor buffer[0];
 128};
 129
 130struct context {
 131	struct fw_ohci *ohci;
 132	u32 regs;
 133	int total_allocation;
 134	u32 current_bus;
 135	bool running;
 136	bool flushing;
 137
 138	/*
 139	 * List of page-sized buffers for storing DMA descriptors.
 140	 * Head of list contains buffers in use and tail of list contains
 141	 * free buffers.
 142	 */
 143	struct list_head buffer_list;
 144
 145	/*
 146	 * Pointer to a buffer inside buffer_list that contains the tail
 147	 * end of the current DMA program.
 148	 */
 149	struct descriptor_buffer *buffer_tail;
 150
 151	/*
 152	 * The descriptor containing the branch address of the first
 153	 * descriptor that has not yet been filled by the device.
 154	 */
 155	struct descriptor *last;
 156
 157	/*
 158	 * The last descriptor block in the DMA program. It contains the branch
 159	 * address that must be updated upon appending a new descriptor.
 160	 */
 161	struct descriptor *prev;
 162	int prev_z;
 163
 164	descriptor_callback_t callback;
 165
 166	struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177	struct fw_iso_context base;
 178	struct context context;
 179	void *header;
 180	size_t header_length;
 181	unsigned long flushing_completions;
 182	u32 mc_buffer_bus;
 183	u16 mc_completed;
 184	u16 last_timestamp;
 185	u8 sync;
 186	u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192	struct fw_card card;
 193
 194	__iomem char *registers;
 195	int node_id;
 196	int generation;
 197	int request_generation;	/* for timestamping incoming requests */
 198	unsigned quirks;
 199	unsigned int pri_req_max;
 200	u32 bus_time;
 201	bool bus_time_running;
 202	bool is_root;
 203	bool csr_state_setclear_abdicate;
 204	int n_ir;
 205	int n_it;
 206	/*
 207	 * Spinlock for accessing fw_ohci data.  Never call out of
 208	 * this driver with this lock held.
 209	 */
 210	spinlock_t lock;
 211
 212	struct mutex phy_reg_mutex;
 213
 214	void *misc_buffer;
 215	dma_addr_t misc_buffer_bus;
 216
 217	struct ar_context ar_request_ctx;
 218	struct ar_context ar_response_ctx;
 219	struct context at_request_ctx;
 220	struct context at_response_ctx;
 221
 222	u32 it_context_support;
 223	u32 it_context_mask;     /* unoccupied IT contexts */
 224	struct iso_context *it_context_list;
 225	u64 ir_context_channels; /* unoccupied channels */
 226	u32 ir_context_support;
 227	u32 ir_context_mask;     /* unoccupied IR contexts */
 228	struct iso_context *ir_context_list;
 229	u64 mc_channels; /* channels in use by the multichannel IR context */
 230	bool mc_allocated;
 231
 232	__be32    *config_rom;
 233	dma_addr_t config_rom_bus;
 234	__be32    *next_config_rom;
 235	dma_addr_t next_config_rom_bus;
 236	__be32     next_header;
 237
 238	__le32    *self_id;
 239	dma_addr_t self_id_bus;
 240	struct work_struct bus_reset_work;
 241
 242	u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249	return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 253#define IR_CONTEXT_BUFFER_FILL		0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 258
 259#define CONTEXT_RUN	0x8000
 260#define CONTEXT_WAKE	0x1000
 261#define CONTEXT_DEAD	0x0800
 262#define CONTEXT_ACTIVE	0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 267
 268#define OHCI1394_REGISTER_SIZE		0x800
 269#define OHCI1394_PCI_HCI_Control	0x40
 270#define SELF_ID_BUF_SIZE		0x800
 271#define OHCI_TCODE_PHY_PACKET		0x0e
 272#define OHCI_VERSION_1_1		0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 284#define PCI_REV_ID_VIA_VT6306		0x46
 285#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 286
 287#define QUIRK_CYCLE_TIMER		0x1
 288#define QUIRK_RESET_PACKET		0x2
 289#define QUIRK_BE_HEADERS		0x4
 290#define QUIRK_NO_1394A			0x8
 291#define QUIRK_NO_MSI			0x10
 292#define QUIRK_TI_SLLZ059		0x20
 293#define QUIRK_IR_WAKE			0x40
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297	unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300		QUIRK_CYCLE_TIMER},
 301
 302	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303		QUIRK_BE_HEADERS},
 304
 305	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306		QUIRK_NO_MSI},
 307
 308	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 309		QUIRK_RESET_PACKET},
 310
 311	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 312		QUIRK_NO_MSI},
 313
 314	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 315		QUIRK_CYCLE_TIMER},
 316
 317	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 318		QUIRK_NO_MSI},
 319
 320	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 321		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 322
 323	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 324		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 325
 326	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 327		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 330		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 333		QUIRK_RESET_PACKET},
 334
 335	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 336		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 337
 338	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 339		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 340
 341	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 342		QUIRK_NO_MSI},
 343
 344	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 345		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 346};
 347
 348/* This overrides anything that was found in ohci_quirks[]. */
 349static int param_quirks;
 350module_param_named(quirks, param_quirks, int, 0644);
 351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 352	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 353	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 354	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 355	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 356	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 357	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 358	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 359	")");
 360
 361#define OHCI_PARAM_DEBUG_AT_AR		1
 362#define OHCI_PARAM_DEBUG_SELFIDS	2
 363#define OHCI_PARAM_DEBUG_IRQS		4
 364#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 365
 366static int param_debug;
 367module_param_named(debug, param_debug, int, 0644);
 368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 369	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 370	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 371	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 372	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 373	", or a combination, or all = -1)");
 374
 375static bool param_remote_dma;
 376module_param_named(remote_dma, param_remote_dma, bool, 0444);
 377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 378
 379static void log_irqs(struct fw_ohci *ohci, u32 evt)
 380{
 381	if (likely(!(param_debug &
 382			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 383		return;
 384
 385	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 386	    !(evt & OHCI1394_busReset))
 387		return;
 388
 389	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 390	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 391	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 392	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 393	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 394	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 395	    evt & OHCI1394_isochRx		? " IR"			: "",
 396	    evt & OHCI1394_isochTx		? " IT"			: "",
 397	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 398	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 399	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 400	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 401	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 402	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 403	    evt & OHCI1394_busReset		? " busReset"		: "",
 404	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 405		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 406		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 407		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 408		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 409		    OHCI1394_cycleInconsistent |
 410		    OHCI1394_regAccessFail | OHCI1394_busReset)
 411						? " ?"			: "");
 412}
 413
 414static const char *speed[] = {
 415	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 416};
 417static const char *power[] = {
 418	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 419	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 420};
 421static const char port[] = { '.', '-', 'p', 'c', };
 422
 423static char _p(u32 *s, int shift)
 424{
 425	return port[*s >> shift & 3];
 426}
 427
 428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 429{
 430	u32 *s;
 431
 432	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 433		return;
 434
 435	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 436		    self_id_count, generation, ohci->node_id);
 437
 438	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 439		if ((*s & 1 << 23) == 0)
 440			ohci_notice(ohci,
 441			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 442			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 443			    speed[*s >> 14 & 3], *s >> 16 & 63,
 444			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 445			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 446		else
 447			ohci_notice(ohci,
 448			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 449			    *s, *s >> 24 & 63,
 450			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 451			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 452}
 453
 454static const char *evts[] = {
 455	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 456	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 457	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 458	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 459	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 460	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 461	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 462	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 463	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 464	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 465	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 466	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 467	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 468	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 469	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 470	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 471	[0x20] = "pending/cancelled",
 472};
 473static const char *tcodes[] = {
 474	[0x0] = "QW req",		[0x1] = "BW req",
 475	[0x2] = "W resp",		[0x3] = "-reserved-",
 476	[0x4] = "QR req",		[0x5] = "BR req",
 477	[0x6] = "QR resp",		[0x7] = "BR resp",
 478	[0x8] = "cycle start",		[0x9] = "Lk req",
 479	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 480	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 481	[0xe] = "link internal",	[0xf] = "-reserved-",
 482};
 483
 484static void log_ar_at_event(struct fw_ohci *ohci,
 485			    char dir, int speed, u32 *header, int evt)
 486{
 487	int tcode = header[0] >> 4 & 0xf;
 488	char specific[12];
 489
 490	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 491		return;
 492
 493	if (unlikely(evt >= ARRAY_SIZE(evts)))
 494			evt = 0x1f;
 495
 496	if (evt == OHCI1394_evt_bus_reset) {
 497		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 498			    dir, (header[2] >> 16) & 0xff);
 499		return;
 500	}
 501
 502	switch (tcode) {
 503	case 0x0: case 0x6: case 0x8:
 504		snprintf(specific, sizeof(specific), " = %08x",
 505			 be32_to_cpu((__force __be32)header[3]));
 506		break;
 507	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 508		snprintf(specific, sizeof(specific), " %x,%x",
 509			 header[3] >> 16, header[3] & 0xffff);
 510		break;
 511	default:
 512		specific[0] = '\0';
 513	}
 514
 515	switch (tcode) {
 516	case 0xa:
 517		ohci_notice(ohci, "A%c %s, %s\n",
 518			    dir, evts[evt], tcodes[tcode]);
 519		break;
 520	case 0xe:
 521		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 522			    dir, evts[evt], header[1], header[2]);
 523		break;
 524	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 525		ohci_notice(ohci,
 526			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 527			    dir, speed, header[0] >> 10 & 0x3f,
 528			    header[1] >> 16, header[0] >> 16, evts[evt],
 529			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 530		break;
 531	default:
 532		ohci_notice(ohci,
 533			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 534			    dir, speed, header[0] >> 10 & 0x3f,
 535			    header[1] >> 16, header[0] >> 16, evts[evt],
 536			    tcodes[tcode], specific);
 537	}
 538}
 539
 540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 541{
 542	writel(data, ohci->registers + offset);
 543}
 544
 545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 546{
 547	return readl(ohci->registers + offset);
 548}
 549
 550static inline void flush_writes(const struct fw_ohci *ohci)
 551{
 552	/* Do a dummy read to flush writes. */
 553	reg_read(ohci, OHCI1394_Version);
 554}
 555
 556/*
 557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 561 */
 562static int read_phy_reg(struct fw_ohci *ohci, int addr)
 563{
 564	u32 val;
 565	int i;
 566
 567	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 568	for (i = 0; i < 3 + 100; i++) {
 569		val = reg_read(ohci, OHCI1394_PhyControl);
 570		if (!~val)
 571			return -ENODEV; /* Card was ejected. */
 572
 573		if (val & OHCI1394_PhyControl_ReadDone)
 574			return OHCI1394_PhyControl_ReadData(val);
 575
 576		/*
 577		 * Try a few times without waiting.  Sleeping is necessary
 578		 * only when the link/PHY interface is busy.
 579		 */
 580		if (i >= 3)
 581			msleep(1);
 582	}
 583	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 584	dump_stack();
 585
 586	return -EBUSY;
 587}
 588
 589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 590{
 591	int i;
 592
 593	reg_write(ohci, OHCI1394_PhyControl,
 594		  OHCI1394_PhyControl_Write(addr, val));
 595	for (i = 0; i < 3 + 100; i++) {
 596		val = reg_read(ohci, OHCI1394_PhyControl);
 597		if (!~val)
 598			return -ENODEV; /* Card was ejected. */
 599
 600		if (!(val & OHCI1394_PhyControl_WritePending))
 601			return 0;
 602
 603		if (i >= 3)
 604			msleep(1);
 605	}
 606	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 607	dump_stack();
 608
 609	return -EBUSY;
 610}
 611
 612static int update_phy_reg(struct fw_ohci *ohci, int addr,
 613			  int clear_bits, int set_bits)
 614{
 615	int ret = read_phy_reg(ohci, addr);
 616	if (ret < 0)
 617		return ret;
 618
 619	/*
 620	 * The interrupt status bits are cleared by writing a one bit.
 621	 * Avoid clearing them unless explicitly requested in set_bits.
 622	 */
 623	if (addr == 5)
 624		clear_bits |= PHY_INT_STATUS_BITS;
 625
 626	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 627}
 628
 629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 630{
 631	int ret;
 632
 633	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 634	if (ret < 0)
 635		return ret;
 636
 637	return read_phy_reg(ohci, addr);
 638}
 639
 640static int ohci_read_phy_reg(struct fw_card *card, int addr)
 641{
 642	struct fw_ohci *ohci = fw_ohci(card);
 643	int ret;
 644
 645	mutex_lock(&ohci->phy_reg_mutex);
 646	ret = read_phy_reg(ohci, addr);
 647	mutex_unlock(&ohci->phy_reg_mutex);
 648
 649	return ret;
 650}
 651
 652static int ohci_update_phy_reg(struct fw_card *card, int addr,
 653			       int clear_bits, int set_bits)
 654{
 655	struct fw_ohci *ohci = fw_ohci(card);
 656	int ret;
 657
 658	mutex_lock(&ohci->phy_reg_mutex);
 659	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 660	mutex_unlock(&ohci->phy_reg_mutex);
 661
 662	return ret;
 663}
 664
 665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 666{
 667	return page_private(ctx->pages[i]);
 668}
 669
 670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 671{
 672	struct descriptor *d;
 673
 674	d = &ctx->descriptors[index];
 675	d->branch_address  &= cpu_to_le32(~0xf);
 676	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 677	d->transfer_status =  0;
 678
 679	wmb(); /* finish init of new descriptors before branch_address update */
 680	d = &ctx->descriptors[ctx->last_buffer_index];
 681	d->branch_address  |= cpu_to_le32(1);
 682
 683	ctx->last_buffer_index = index;
 684
 685	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 686}
 687
 688static void ar_context_release(struct ar_context *ctx)
 689{
 
 690	unsigned int i;
 691
 
 
 
 692	vunmap(ctx->buffer);
 693
 694	for (i = 0; i < AR_BUFFERS; i++)
 695		if (ctx->pages[i]) {
 696			dma_unmap_page(ctx->ohci->card.device,
 697				       ar_buffer_bus(ctx, i),
 698				       PAGE_SIZE, DMA_FROM_DEVICE);
 699			__free_page(ctx->pages[i]);
 700		}
 701}
 702
 703static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 704{
 705	struct fw_ohci *ohci = ctx->ohci;
 706
 707	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 708		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 709		flush_writes(ohci);
 710
 711		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 712	}
 713	/* FIXME: restart? */
 714}
 715
 716static inline unsigned int ar_next_buffer_index(unsigned int index)
 717{
 718	return (index + 1) % AR_BUFFERS;
 719}
 720
 721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 722{
 723	return ar_next_buffer_index(ctx->last_buffer_index);
 724}
 725
 726/*
 727 * We search for the buffer that contains the last AR packet DMA data written
 728 * by the controller.
 729 */
 730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 731						 unsigned int *buffer_offset)
 732{
 733	unsigned int i, next_i, last = ctx->last_buffer_index;
 734	__le16 res_count, next_res_count;
 735
 736	i = ar_first_buffer_index(ctx);
 737	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 738
 739	/* A buffer that is not yet completely filled must be the last one. */
 740	while (i != last && res_count == 0) {
 741
 742		/* Peek at the next descriptor. */
 743		next_i = ar_next_buffer_index(i);
 744		rmb(); /* read descriptors in order */
 745		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 746		/*
 747		 * If the next descriptor is still empty, we must stop at this
 748		 * descriptor.
 749		 */
 750		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 751			/*
 752			 * The exception is when the DMA data for one packet is
 753			 * split over three buffers; in this case, the middle
 754			 * buffer's descriptor might be never updated by the
 755			 * controller and look still empty, and we have to peek
 756			 * at the third one.
 757			 */
 758			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 759				next_i = ar_next_buffer_index(next_i);
 760				rmb();
 761				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 762				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 763					goto next_buffer_is_active;
 764			}
 765
 766			break;
 767		}
 768
 769next_buffer_is_active:
 770		i = next_i;
 771		res_count = next_res_count;
 772	}
 773
 774	rmb(); /* read res_count before the DMA data */
 775
 776	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 777	if (*buffer_offset > PAGE_SIZE) {
 778		*buffer_offset = 0;
 779		ar_context_abort(ctx, "corrupted descriptor");
 780	}
 781
 782	return i;
 783}
 784
 785static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 786				    unsigned int end_buffer_index,
 787				    unsigned int end_buffer_offset)
 788{
 789	unsigned int i;
 790
 791	i = ar_first_buffer_index(ctx);
 792	while (i != end_buffer_index) {
 793		dma_sync_single_for_cpu(ctx->ohci->card.device,
 794					ar_buffer_bus(ctx, i),
 795					PAGE_SIZE, DMA_FROM_DEVICE);
 796		i = ar_next_buffer_index(i);
 797	}
 798	if (end_buffer_offset > 0)
 799		dma_sync_single_for_cpu(ctx->ohci->card.device,
 800					ar_buffer_bus(ctx, i),
 801					end_buffer_offset, DMA_FROM_DEVICE);
 802}
 803
 804#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 805#define cond_le32_to_cpu(v) \
 806	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 807#else
 808#define cond_le32_to_cpu(v) le32_to_cpu(v)
 809#endif
 810
 811static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 812{
 813	struct fw_ohci *ohci = ctx->ohci;
 814	struct fw_packet p;
 815	u32 status, length, tcode;
 816	int evt;
 817
 818	p.header[0] = cond_le32_to_cpu(buffer[0]);
 819	p.header[1] = cond_le32_to_cpu(buffer[1]);
 820	p.header[2] = cond_le32_to_cpu(buffer[2]);
 821
 822	tcode = (p.header[0] >> 4) & 0x0f;
 823	switch (tcode) {
 824	case TCODE_WRITE_QUADLET_REQUEST:
 825	case TCODE_READ_QUADLET_RESPONSE:
 826		p.header[3] = (__force __u32) buffer[3];
 827		p.header_length = 16;
 828		p.payload_length = 0;
 829		break;
 830
 831	case TCODE_READ_BLOCK_REQUEST :
 832		p.header[3] = cond_le32_to_cpu(buffer[3]);
 833		p.header_length = 16;
 834		p.payload_length = 0;
 835		break;
 836
 837	case TCODE_WRITE_BLOCK_REQUEST:
 838	case TCODE_READ_BLOCK_RESPONSE:
 839	case TCODE_LOCK_REQUEST:
 840	case TCODE_LOCK_RESPONSE:
 841		p.header[3] = cond_le32_to_cpu(buffer[3]);
 842		p.header_length = 16;
 843		p.payload_length = p.header[3] >> 16;
 844		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 845			ar_context_abort(ctx, "invalid packet length");
 846			return NULL;
 847		}
 848		break;
 849
 850	case TCODE_WRITE_RESPONSE:
 851	case TCODE_READ_QUADLET_REQUEST:
 852	case OHCI_TCODE_PHY_PACKET:
 853		p.header_length = 12;
 854		p.payload_length = 0;
 855		break;
 856
 857	default:
 858		ar_context_abort(ctx, "invalid tcode");
 859		return NULL;
 860	}
 861
 862	p.payload = (void *) buffer + p.header_length;
 863
 864	/* FIXME: What to do about evt_* errors? */
 865	length = (p.header_length + p.payload_length + 3) / 4;
 866	status = cond_le32_to_cpu(buffer[length]);
 867	evt    = (status >> 16) & 0x1f;
 868
 869	p.ack        = evt - 16;
 870	p.speed      = (status >> 21) & 0x7;
 871	p.timestamp  = status & 0xffff;
 872	p.generation = ohci->request_generation;
 873
 874	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 875
 876	/*
 877	 * Several controllers, notably from NEC and VIA, forget to
 878	 * write ack_complete status at PHY packet reception.
 879	 */
 880	if (evt == OHCI1394_evt_no_status &&
 881	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 882		p.ack = ACK_COMPLETE;
 883
 884	/*
 885	 * The OHCI bus reset handler synthesizes a PHY packet with
 886	 * the new generation number when a bus reset happens (see
 887	 * section 8.4.2.3).  This helps us determine when a request
 888	 * was received and make sure we send the response in the same
 889	 * generation.  We only need this for requests; for responses
 890	 * we use the unique tlabel for finding the matching
 891	 * request.
 892	 *
 893	 * Alas some chips sometimes emit bus reset packets with a
 894	 * wrong generation.  We set the correct generation for these
 895	 * at a slightly incorrect time (in bus_reset_work).
 896	 */
 897	if (evt == OHCI1394_evt_bus_reset) {
 898		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 899			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 900	} else if (ctx == &ohci->ar_request_ctx) {
 901		fw_core_handle_request(&ohci->card, &p);
 902	} else {
 903		fw_core_handle_response(&ohci->card, &p);
 904	}
 905
 906	return buffer + length + 1;
 907}
 908
 909static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 910{
 911	void *next;
 912
 913	while (p < end) {
 914		next = handle_ar_packet(ctx, p);
 915		if (!next)
 916			return p;
 917		p = next;
 918	}
 919
 920	return p;
 921}
 922
 923static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 924{
 925	unsigned int i;
 926
 927	i = ar_first_buffer_index(ctx);
 928	while (i != end_buffer) {
 929		dma_sync_single_for_device(ctx->ohci->card.device,
 930					   ar_buffer_bus(ctx, i),
 931					   PAGE_SIZE, DMA_FROM_DEVICE);
 932		ar_context_link_page(ctx, i);
 933		i = ar_next_buffer_index(i);
 934	}
 935}
 936
 937static void ar_context_tasklet(unsigned long data)
 938{
 939	struct ar_context *ctx = (struct ar_context *)data;
 940	unsigned int end_buffer_index, end_buffer_offset;
 941	void *p, *end;
 942
 943	p = ctx->pointer;
 944	if (!p)
 945		return;
 946
 947	end_buffer_index = ar_search_last_active_buffer(ctx,
 948							&end_buffer_offset);
 949	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 950	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 951
 952	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 953		/*
 954		 * The filled part of the overall buffer wraps around; handle
 955		 * all packets up to the buffer end here.  If the last packet
 956		 * wraps around, its tail will be visible after the buffer end
 957		 * because the buffer start pages are mapped there again.
 958		 */
 959		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 960		p = handle_ar_packets(ctx, p, buffer_end);
 961		if (p < buffer_end)
 962			goto error;
 963		/* adjust p to point back into the actual buffer */
 964		p -= AR_BUFFERS * PAGE_SIZE;
 965	}
 966
 967	p = handle_ar_packets(ctx, p, end);
 968	if (p != end) {
 969		if (p > end)
 970			ar_context_abort(ctx, "inconsistent descriptor");
 971		goto error;
 972	}
 973
 974	ctx->pointer = p;
 975	ar_recycle_buffers(ctx, end_buffer_index);
 976
 977	return;
 978
 979error:
 980	ctx->pointer = NULL;
 981}
 982
 983static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 984			   unsigned int descriptors_offset, u32 regs)
 985{
 
 986	unsigned int i;
 987	dma_addr_t dma_addr;
 988	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 989	struct descriptor *d;
 990
 991	ctx->regs        = regs;
 992	ctx->ohci        = ohci;
 993	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 994
 995	for (i = 0; i < AR_BUFFERS; i++) {
 996		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 997		if (!ctx->pages[i])
 998			goto out_of_memory;
 999		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1000					0, PAGE_SIZE, DMA_FROM_DEVICE);
1001		if (dma_mapping_error(ohci->card.device, dma_addr)) {
1002			__free_page(ctx->pages[i]);
1003			ctx->pages[i] = NULL;
1004			goto out_of_memory;
1005		}
1006		set_page_private(ctx->pages[i], dma_addr);
 
 
1007	}
1008
1009	for (i = 0; i < AR_BUFFERS; i++)
1010		pages[i]              = ctx->pages[i];
1011	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1012		pages[AR_BUFFERS + i] = ctx->pages[i];
1013	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1014	if (!ctx->buffer)
1015		goto out_of_memory;
1016
1017	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1018	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1019
1020	for (i = 0; i < AR_BUFFERS; i++) {
1021		d = &ctx->descriptors[i];
1022		d->req_count      = cpu_to_le16(PAGE_SIZE);
1023		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1024						DESCRIPTOR_STATUS |
1025						DESCRIPTOR_BRANCH_ALWAYS);
1026		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1027		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1028			ar_next_buffer_index(i) * sizeof(struct descriptor));
1029	}
1030
1031	return 0;
1032
1033out_of_memory:
1034	ar_context_release(ctx);
1035
1036	return -ENOMEM;
1037}
1038
1039static void ar_context_run(struct ar_context *ctx)
1040{
1041	unsigned int i;
1042
1043	for (i = 0; i < AR_BUFFERS; i++)
1044		ar_context_link_page(ctx, i);
1045
1046	ctx->pointer = ctx->buffer;
1047
1048	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1049	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1050}
1051
1052static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1053{
1054	__le16 branch;
1055
1056	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1057
1058	/* figure out which descriptor the branch address goes in */
1059	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1060		return d;
1061	else
1062		return d + z - 1;
1063}
1064
1065static void context_tasklet(unsigned long data)
1066{
1067	struct context *ctx = (struct context *) data;
1068	struct descriptor *d, *last;
1069	u32 address;
1070	int z;
1071	struct descriptor_buffer *desc;
1072
1073	desc = list_entry(ctx->buffer_list.next,
1074			struct descriptor_buffer, list);
1075	last = ctx->last;
1076	while (last->branch_address != 0) {
1077		struct descriptor_buffer *old_desc = desc;
1078		address = le32_to_cpu(last->branch_address);
1079		z = address & 0xf;
1080		address &= ~0xf;
1081		ctx->current_bus = address;
1082
1083		/* If the branch address points to a buffer outside of the
1084		 * current buffer, advance to the next buffer. */
1085		if (address < desc->buffer_bus ||
1086				address >= desc->buffer_bus + desc->used)
1087			desc = list_entry(desc->list.next,
1088					struct descriptor_buffer, list);
1089		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1090		last = find_branch_descriptor(d, z);
1091
1092		if (!ctx->callback(ctx, d, last))
1093			break;
1094
1095		if (old_desc != desc) {
1096			/* If we've advanced to the next buffer, move the
1097			 * previous buffer to the free list. */
1098			unsigned long flags;
1099			old_desc->used = 0;
1100			spin_lock_irqsave(&ctx->ohci->lock, flags);
1101			list_move_tail(&old_desc->list, &ctx->buffer_list);
1102			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1103		}
1104		ctx->last = last;
1105	}
1106}
1107
1108/*
1109 * Allocate a new buffer and add it to the list of free buffers for this
1110 * context.  Must be called with ohci->lock held.
1111 */
1112static int context_add_buffer(struct context *ctx)
1113{
1114	struct descriptor_buffer *desc;
1115	dma_addr_t uninitialized_var(bus_addr);
1116	int offset;
1117
1118	/*
1119	 * 16MB of descriptors should be far more than enough for any DMA
1120	 * program.  This will catch run-away userspace or DoS attacks.
1121	 */
1122	if (ctx->total_allocation >= 16*1024*1024)
1123		return -ENOMEM;
1124
1125	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1126			&bus_addr, GFP_ATOMIC);
1127	if (!desc)
1128		return -ENOMEM;
1129
1130	offset = (void *)&desc->buffer - (void *)desc;
1131	/*
1132	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1133	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1134	 * an IOMMU is in use and the oversized read crosses a page boundary.
1135	 * Work around this by always leaving at least 0x10 bytes of padding.
1136	 */
1137	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1138	desc->buffer_bus = bus_addr + offset;
1139	desc->used = 0;
1140
1141	list_add_tail(&desc->list, &ctx->buffer_list);
1142	ctx->total_allocation += PAGE_SIZE;
1143
1144	return 0;
1145}
1146
1147static int context_init(struct context *ctx, struct fw_ohci *ohci,
1148			u32 regs, descriptor_callback_t callback)
1149{
1150	ctx->ohci = ohci;
1151	ctx->regs = regs;
1152	ctx->total_allocation = 0;
1153
1154	INIT_LIST_HEAD(&ctx->buffer_list);
1155	if (context_add_buffer(ctx) < 0)
1156		return -ENOMEM;
1157
1158	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1159			struct descriptor_buffer, list);
1160
1161	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1162	ctx->callback = callback;
1163
1164	/*
1165	 * We put a dummy descriptor in the buffer that has a NULL
1166	 * branch address and looks like it's been sent.  That way we
1167	 * have a descriptor to append DMA programs to.
1168	 */
1169	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1170	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1171	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1172	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1173	ctx->last = ctx->buffer_tail->buffer;
1174	ctx->prev = ctx->buffer_tail->buffer;
1175	ctx->prev_z = 1;
1176
1177	return 0;
1178}
1179
1180static void context_release(struct context *ctx)
1181{
1182	struct fw_card *card = &ctx->ohci->card;
1183	struct descriptor_buffer *desc, *tmp;
1184
1185	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1186		dma_free_coherent(card->device, PAGE_SIZE, desc,
1187			desc->buffer_bus -
1188			((void *)&desc->buffer - (void *)desc));
1189}
1190
1191/* Must be called with ohci->lock held */
1192static struct descriptor *context_get_descriptors(struct context *ctx,
1193						  int z, dma_addr_t *d_bus)
1194{
1195	struct descriptor *d = NULL;
1196	struct descriptor_buffer *desc = ctx->buffer_tail;
1197
1198	if (z * sizeof(*d) > desc->buffer_size)
1199		return NULL;
1200
1201	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1202		/* No room for the descriptor in this buffer, so advance to the
1203		 * next one. */
1204
1205		if (desc->list.next == &ctx->buffer_list) {
1206			/* If there is no free buffer next in the list,
1207			 * allocate one. */
1208			if (context_add_buffer(ctx) < 0)
1209				return NULL;
1210		}
1211		desc = list_entry(desc->list.next,
1212				struct descriptor_buffer, list);
1213		ctx->buffer_tail = desc;
1214	}
1215
1216	d = desc->buffer + desc->used / sizeof(*d);
1217	memset(d, 0, z * sizeof(*d));
1218	*d_bus = desc->buffer_bus + desc->used;
1219
1220	return d;
1221}
1222
1223static void context_run(struct context *ctx, u32 extra)
1224{
1225	struct fw_ohci *ohci = ctx->ohci;
1226
1227	reg_write(ohci, COMMAND_PTR(ctx->regs),
1228		  le32_to_cpu(ctx->last->branch_address));
1229	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1230	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1231	ctx->running = true;
1232	flush_writes(ohci);
1233}
1234
1235static void context_append(struct context *ctx,
1236			   struct descriptor *d, int z, int extra)
1237{
1238	dma_addr_t d_bus;
1239	struct descriptor_buffer *desc = ctx->buffer_tail;
1240	struct descriptor *d_branch;
1241
1242	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1243
1244	desc->used += (z + extra) * sizeof(*d);
1245
1246	wmb(); /* finish init of new descriptors before branch_address update */
1247
1248	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1249	d_branch->branch_address = cpu_to_le32(d_bus | z);
1250
1251	/*
1252	 * VT6306 incorrectly checks only the single descriptor at the
1253	 * CommandPtr when the wake bit is written, so if it's a
1254	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1255	 * the branch address in the first descriptor.
1256	 *
1257	 * Not doing this for transmit contexts since not sure how it interacts
1258	 * with skip addresses.
1259	 */
1260	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1261	    d_branch != ctx->prev &&
1262	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1263	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1264		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1265	}
1266
1267	ctx->prev = d;
1268	ctx->prev_z = z;
1269}
1270
1271static void context_stop(struct context *ctx)
1272{
1273	struct fw_ohci *ohci = ctx->ohci;
1274	u32 reg;
1275	int i;
1276
1277	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1278	ctx->running = false;
1279
1280	for (i = 0; i < 1000; i++) {
1281		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1282		if ((reg & CONTEXT_ACTIVE) == 0)
1283			return;
1284
1285		if (i)
1286			udelay(10);
1287	}
1288	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1289}
1290
1291struct driver_data {
1292	u8 inline_data[8];
1293	struct fw_packet *packet;
1294};
1295
1296/*
1297 * This function apppends a packet to the DMA queue for transmission.
1298 * Must always be called with the ochi->lock held to ensure proper
1299 * generation handling and locking around packet queue manipulation.
1300 */
1301static int at_context_queue_packet(struct context *ctx,
1302				   struct fw_packet *packet)
1303{
1304	struct fw_ohci *ohci = ctx->ohci;
1305	dma_addr_t d_bus, uninitialized_var(payload_bus);
1306	struct driver_data *driver_data;
1307	struct descriptor *d, *last;
1308	__le32 *header;
1309	int z, tcode;
1310
1311	d = context_get_descriptors(ctx, 4, &d_bus);
1312	if (d == NULL) {
1313		packet->ack = RCODE_SEND_ERROR;
1314		return -1;
1315	}
1316
1317	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1318	d[0].res_count = cpu_to_le16(packet->timestamp);
1319
1320	/*
1321	 * The DMA format for asynchronous link packets is different
1322	 * from the IEEE1394 layout, so shift the fields around
1323	 * accordingly.
1324	 */
1325
1326	tcode = (packet->header[0] >> 4) & 0x0f;
1327	header = (__le32 *) &d[1];
1328	switch (tcode) {
1329	case TCODE_WRITE_QUADLET_REQUEST:
1330	case TCODE_WRITE_BLOCK_REQUEST:
1331	case TCODE_WRITE_RESPONSE:
1332	case TCODE_READ_QUADLET_REQUEST:
1333	case TCODE_READ_BLOCK_REQUEST:
1334	case TCODE_READ_QUADLET_RESPONSE:
1335	case TCODE_READ_BLOCK_RESPONSE:
1336	case TCODE_LOCK_REQUEST:
1337	case TCODE_LOCK_RESPONSE:
1338		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1339					(packet->speed << 16));
1340		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1341					(packet->header[0] & 0xffff0000));
1342		header[2] = cpu_to_le32(packet->header[2]);
1343
1344		if (TCODE_IS_BLOCK_PACKET(tcode))
1345			header[3] = cpu_to_le32(packet->header[3]);
1346		else
1347			header[3] = (__force __le32) packet->header[3];
1348
1349		d[0].req_count = cpu_to_le16(packet->header_length);
1350		break;
1351
1352	case TCODE_LINK_INTERNAL:
1353		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1354					(packet->speed << 16));
1355		header[1] = cpu_to_le32(packet->header[1]);
1356		header[2] = cpu_to_le32(packet->header[2]);
1357		d[0].req_count = cpu_to_le16(12);
1358
1359		if (is_ping_packet(&packet->header[1]))
1360			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1361		break;
1362
1363	case TCODE_STREAM_DATA:
1364		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1365					(packet->speed << 16));
1366		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1367		d[0].req_count = cpu_to_le16(8);
1368		break;
1369
1370	default:
1371		/* BUG(); */
1372		packet->ack = RCODE_SEND_ERROR;
1373		return -1;
1374	}
1375
1376	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1377	driver_data = (struct driver_data *) &d[3];
1378	driver_data->packet = packet;
1379	packet->driver_data = driver_data;
1380
1381	if (packet->payload_length > 0) {
1382		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1383			payload_bus = dma_map_single(ohci->card.device,
1384						     packet->payload,
1385						     packet->payload_length,
1386						     DMA_TO_DEVICE);
1387			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1388				packet->ack = RCODE_SEND_ERROR;
1389				return -1;
1390			}
1391			packet->payload_bus	= payload_bus;
1392			packet->payload_mapped	= true;
1393		} else {
1394			memcpy(driver_data->inline_data, packet->payload,
1395			       packet->payload_length);
1396			payload_bus = d_bus + 3 * sizeof(*d);
1397		}
1398
1399		d[2].req_count    = cpu_to_le16(packet->payload_length);
1400		d[2].data_address = cpu_to_le32(payload_bus);
1401		last = &d[2];
1402		z = 3;
1403	} else {
1404		last = &d[0];
1405		z = 2;
1406	}
1407
1408	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1409				     DESCRIPTOR_IRQ_ALWAYS |
1410				     DESCRIPTOR_BRANCH_ALWAYS);
1411
1412	/* FIXME: Document how the locking works. */
1413	if (ohci->generation != packet->generation) {
1414		if (packet->payload_mapped)
1415			dma_unmap_single(ohci->card.device, payload_bus,
1416					 packet->payload_length, DMA_TO_DEVICE);
1417		packet->ack = RCODE_GENERATION;
1418		return -1;
1419	}
1420
1421	context_append(ctx, d, z, 4 - z);
1422
1423	if (ctx->running)
1424		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1425	else
1426		context_run(ctx, 0);
1427
1428	return 0;
1429}
1430
1431static void at_context_flush(struct context *ctx)
1432{
1433	tasklet_disable(&ctx->tasklet);
1434
1435	ctx->flushing = true;
1436	context_tasklet((unsigned long)ctx);
1437	ctx->flushing = false;
1438
1439	tasklet_enable(&ctx->tasklet);
1440}
1441
1442static int handle_at_packet(struct context *context,
1443			    struct descriptor *d,
1444			    struct descriptor *last)
1445{
1446	struct driver_data *driver_data;
1447	struct fw_packet *packet;
1448	struct fw_ohci *ohci = context->ohci;
1449	int evt;
1450
1451	if (last->transfer_status == 0 && !context->flushing)
1452		/* This descriptor isn't done yet, stop iteration. */
1453		return 0;
1454
1455	driver_data = (struct driver_data *) &d[3];
1456	packet = driver_data->packet;
1457	if (packet == NULL)
1458		/* This packet was cancelled, just continue. */
1459		return 1;
1460
1461	if (packet->payload_mapped)
1462		dma_unmap_single(ohci->card.device, packet->payload_bus,
1463				 packet->payload_length, DMA_TO_DEVICE);
1464
1465	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1466	packet->timestamp = le16_to_cpu(last->res_count);
1467
1468	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1469
1470	switch (evt) {
1471	case OHCI1394_evt_timeout:
1472		/* Async response transmit timed out. */
1473		packet->ack = RCODE_CANCELLED;
1474		break;
1475
1476	case OHCI1394_evt_flushed:
1477		/*
1478		 * The packet was flushed should give same error as
1479		 * when we try to use a stale generation count.
1480		 */
1481		packet->ack = RCODE_GENERATION;
1482		break;
1483
1484	case OHCI1394_evt_missing_ack:
1485		if (context->flushing)
1486			packet->ack = RCODE_GENERATION;
1487		else {
1488			/*
1489			 * Using a valid (current) generation count, but the
1490			 * node is not on the bus or not sending acks.
1491			 */
1492			packet->ack = RCODE_NO_ACK;
1493		}
1494		break;
1495
1496	case ACK_COMPLETE + 0x10:
1497	case ACK_PENDING + 0x10:
1498	case ACK_BUSY_X + 0x10:
1499	case ACK_BUSY_A + 0x10:
1500	case ACK_BUSY_B + 0x10:
1501	case ACK_DATA_ERROR + 0x10:
1502	case ACK_TYPE_ERROR + 0x10:
1503		packet->ack = evt - 0x10;
1504		break;
1505
1506	case OHCI1394_evt_no_status:
1507		if (context->flushing) {
1508			packet->ack = RCODE_GENERATION;
1509			break;
1510		}
1511		/* fall through */
1512
1513	default:
1514		packet->ack = RCODE_SEND_ERROR;
1515		break;
1516	}
1517
1518	packet->callback(packet, &ohci->card, packet->ack);
1519
1520	return 1;
1521}
1522
1523#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1524#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1525#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1526#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1527#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1528
1529static void handle_local_rom(struct fw_ohci *ohci,
1530			     struct fw_packet *packet, u32 csr)
1531{
1532	struct fw_packet response;
1533	int tcode, length, i;
1534
1535	tcode = HEADER_GET_TCODE(packet->header[0]);
1536	if (TCODE_IS_BLOCK_PACKET(tcode))
1537		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1538	else
1539		length = 4;
1540
1541	i = csr - CSR_CONFIG_ROM;
1542	if (i + length > CONFIG_ROM_SIZE) {
1543		fw_fill_response(&response, packet->header,
1544				 RCODE_ADDRESS_ERROR, NULL, 0);
1545	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1546		fw_fill_response(&response, packet->header,
1547				 RCODE_TYPE_ERROR, NULL, 0);
1548	} else {
1549		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1550				 (void *) ohci->config_rom + i, length);
1551	}
1552
1553	fw_core_handle_response(&ohci->card, &response);
1554}
1555
1556static void handle_local_lock(struct fw_ohci *ohci,
1557			      struct fw_packet *packet, u32 csr)
1558{
1559	struct fw_packet response;
1560	int tcode, length, ext_tcode, sel, try;
1561	__be32 *payload, lock_old;
1562	u32 lock_arg, lock_data;
1563
1564	tcode = HEADER_GET_TCODE(packet->header[0]);
1565	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1566	payload = packet->payload;
1567	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1568
1569	if (tcode == TCODE_LOCK_REQUEST &&
1570	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1571		lock_arg = be32_to_cpu(payload[0]);
1572		lock_data = be32_to_cpu(payload[1]);
1573	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1574		lock_arg = 0;
1575		lock_data = 0;
1576	} else {
1577		fw_fill_response(&response, packet->header,
1578				 RCODE_TYPE_ERROR, NULL, 0);
1579		goto out;
1580	}
1581
1582	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1583	reg_write(ohci, OHCI1394_CSRData, lock_data);
1584	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1585	reg_write(ohci, OHCI1394_CSRControl, sel);
1586
1587	for (try = 0; try < 20; try++)
1588		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1589			lock_old = cpu_to_be32(reg_read(ohci,
1590							OHCI1394_CSRData));
1591			fw_fill_response(&response, packet->header,
1592					 RCODE_COMPLETE,
1593					 &lock_old, sizeof(lock_old));
1594			goto out;
1595		}
1596
1597	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1598	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1599
1600 out:
1601	fw_core_handle_response(&ohci->card, &response);
1602}
1603
1604static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1605{
1606	u64 offset, csr;
1607
1608	if (ctx == &ctx->ohci->at_request_ctx) {
1609		packet->ack = ACK_PENDING;
1610		packet->callback(packet, &ctx->ohci->card, packet->ack);
1611	}
1612
1613	offset =
1614		((unsigned long long)
1615		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1616		packet->header[2];
1617	csr = offset - CSR_REGISTER_BASE;
1618
1619	/* Handle config rom reads. */
1620	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1621		handle_local_rom(ctx->ohci, packet, csr);
1622	else switch (csr) {
1623	case CSR_BUS_MANAGER_ID:
1624	case CSR_BANDWIDTH_AVAILABLE:
1625	case CSR_CHANNELS_AVAILABLE_HI:
1626	case CSR_CHANNELS_AVAILABLE_LO:
1627		handle_local_lock(ctx->ohci, packet, csr);
1628		break;
1629	default:
1630		if (ctx == &ctx->ohci->at_request_ctx)
1631			fw_core_handle_request(&ctx->ohci->card, packet);
1632		else
1633			fw_core_handle_response(&ctx->ohci->card, packet);
1634		break;
1635	}
1636
1637	if (ctx == &ctx->ohci->at_response_ctx) {
1638		packet->ack = ACK_COMPLETE;
1639		packet->callback(packet, &ctx->ohci->card, packet->ack);
1640	}
1641}
1642
 
 
1643static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1644{
1645	unsigned long flags;
1646	int ret;
1647
1648	spin_lock_irqsave(&ctx->ohci->lock, flags);
1649
1650	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1651	    ctx->ohci->generation == packet->generation) {
1652		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 
 
 
 
1653		handle_local_request(ctx, packet);
1654		return;
1655	}
1656
1657	ret = at_context_queue_packet(ctx, packet);
1658	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1659
1660	if (ret < 0)
 
 
 
1661		packet->callback(packet, &ctx->ohci->card, packet->ack);
1662
1663}
1664
1665static void detect_dead_context(struct fw_ohci *ohci,
1666				const char *name, unsigned int regs)
1667{
1668	u32 ctl;
1669
1670	ctl = reg_read(ohci, CONTROL_SET(regs));
1671	if (ctl & CONTEXT_DEAD)
1672		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1673			name, evts[ctl & 0x1f]);
1674}
1675
1676static void handle_dead_contexts(struct fw_ohci *ohci)
1677{
1678	unsigned int i;
1679	char name[8];
1680
1681	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1682	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1683	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1684	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1685	for (i = 0; i < 32; ++i) {
1686		if (!(ohci->it_context_support & (1 << i)))
1687			continue;
1688		sprintf(name, "IT%u", i);
1689		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1690	}
1691	for (i = 0; i < 32; ++i) {
1692		if (!(ohci->ir_context_support & (1 << i)))
1693			continue;
1694		sprintf(name, "IR%u", i);
1695		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1696	}
1697	/* TODO: maybe try to flush and restart the dead contexts */
1698}
1699
1700static u32 cycle_timer_ticks(u32 cycle_timer)
1701{
1702	u32 ticks;
1703
1704	ticks = cycle_timer & 0xfff;
1705	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1706	ticks += (3072 * 8000) * (cycle_timer >> 25);
1707
1708	return ticks;
1709}
1710
1711/*
1712 * Some controllers exhibit one or more of the following bugs when updating the
1713 * iso cycle timer register:
1714 *  - When the lowest six bits are wrapping around to zero, a read that happens
1715 *    at the same time will return garbage in the lowest ten bits.
1716 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1717 *    not incremented for about 60 ns.
1718 *  - Occasionally, the entire register reads zero.
1719 *
1720 * To catch these, we read the register three times and ensure that the
1721 * difference between each two consecutive reads is approximately the same, i.e.
1722 * less than twice the other.  Furthermore, any negative difference indicates an
1723 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1724 * execute, so we have enough precision to compute the ratio of the differences.)
1725 */
1726static u32 get_cycle_time(struct fw_ohci *ohci)
1727{
1728	u32 c0, c1, c2;
1729	u32 t0, t1, t2;
1730	s32 diff01, diff12;
1731	int i;
1732
 
 
 
1733	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1734
1735	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1736		i = 0;
1737		c1 = c2;
1738		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739		do {
1740			c0 = c1;
1741			c1 = c2;
1742			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1743			t0 = cycle_timer_ticks(c0);
1744			t1 = cycle_timer_ticks(c1);
1745			t2 = cycle_timer_ticks(c2);
1746			diff01 = t1 - t0;
1747			diff12 = t2 - t1;
1748		} while ((diff01 <= 0 || diff12 <= 0 ||
1749			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1750			 && i++ < 20);
1751	}
1752
1753	return c2;
1754}
1755
1756/*
1757 * This function has to be called at least every 64 seconds.  The bus_time
1758 * field stores not only the upper 25 bits of the BUS_TIME register but also
1759 * the most significant bit of the cycle timer in bit 6 so that we can detect
1760 * changes in this bit.
1761 */
1762static u32 update_bus_time(struct fw_ohci *ohci)
1763{
1764	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1765
1766	if (unlikely(!ohci->bus_time_running)) {
1767		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1768		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1769		                 (cycle_time_seconds & 0x40);
1770		ohci->bus_time_running = true;
1771	}
1772
1773	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1774		ohci->bus_time += 0x40;
1775
1776	return ohci->bus_time | cycle_time_seconds;
1777}
1778
1779static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1780{
1781	int reg;
1782
1783	mutex_lock(&ohci->phy_reg_mutex);
1784	reg = write_phy_reg(ohci, 7, port_index);
1785	if (reg >= 0)
1786		reg = read_phy_reg(ohci, 8);
1787	mutex_unlock(&ohci->phy_reg_mutex);
1788	if (reg < 0)
1789		return reg;
1790
1791	switch (reg & 0x0f) {
1792	case 0x06:
1793		return 2;	/* is child node (connected to parent node) */
1794	case 0x0e:
1795		return 3;	/* is parent node (connected to child node) */
1796	}
1797	return 1;		/* not connected */
1798}
1799
1800static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1801	int self_id_count)
1802{
1803	int i;
1804	u32 entry;
1805
1806	for (i = 0; i < self_id_count; i++) {
1807		entry = ohci->self_id_buffer[i];
1808		if ((self_id & 0xff000000) == (entry & 0xff000000))
1809			return -1;
1810		if ((self_id & 0xff000000) < (entry & 0xff000000))
1811			return i;
1812	}
1813	return i;
1814}
1815
1816static int initiated_reset(struct fw_ohci *ohci)
1817{
1818	int reg;
1819	int ret = 0;
1820
1821	mutex_lock(&ohci->phy_reg_mutex);
1822	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1823	if (reg >= 0) {
1824		reg = read_phy_reg(ohci, 8);
1825		reg |= 0x40;
1826		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1827		if (reg >= 0) {
1828			reg = read_phy_reg(ohci, 12); /* read register 12 */
1829			if (reg >= 0) {
1830				if ((reg & 0x08) == 0x08) {
1831					/* bit 3 indicates "initiated reset" */
1832					ret = 0x2;
1833				}
1834			}
1835		}
1836	}
1837	mutex_unlock(&ohci->phy_reg_mutex);
1838	return ret;
1839}
1840
1841/*
1842 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1843 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1844 * Construct the selfID from phy register contents.
1845 */
1846static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1847{
1848	int reg, i, pos, status;
1849	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1850	u32 self_id = 0x8040c800;
1851
1852	reg = reg_read(ohci, OHCI1394_NodeID);
1853	if (!(reg & OHCI1394_NodeID_idValid)) {
1854		ohci_notice(ohci,
1855			    "node ID not valid, new bus reset in progress\n");
1856		return -EBUSY;
1857	}
1858	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1859
1860	reg = ohci_read_phy_reg(&ohci->card, 4);
1861	if (reg < 0)
1862		return reg;
1863	self_id |= ((reg & 0x07) << 8); /* power class */
1864
1865	reg = ohci_read_phy_reg(&ohci->card, 1);
1866	if (reg < 0)
1867		return reg;
1868	self_id |= ((reg & 0x3f) << 16); /* gap count */
1869
1870	for (i = 0; i < 3; i++) {
1871		status = get_status_for_port(ohci, i);
1872		if (status < 0)
1873			return status;
1874		self_id |= ((status & 0x3) << (6 - (i * 2)));
1875	}
1876
1877	self_id |= initiated_reset(ohci);
1878
1879	pos = get_self_id_pos(ohci, self_id, self_id_count);
1880	if (pos >= 0) {
1881		memmove(&(ohci->self_id_buffer[pos+1]),
1882			&(ohci->self_id_buffer[pos]),
1883			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1884		ohci->self_id_buffer[pos] = self_id;
1885		self_id_count++;
1886	}
1887	return self_id_count;
1888}
1889
1890static void bus_reset_work(struct work_struct *work)
1891{
1892	struct fw_ohci *ohci =
1893		container_of(work, struct fw_ohci, bus_reset_work);
1894	int self_id_count, generation, new_generation, i, j;
1895	u32 reg;
1896	void *free_rom = NULL;
1897	dma_addr_t free_rom_bus = 0;
1898	bool is_new_root;
1899
1900	reg = reg_read(ohci, OHCI1394_NodeID);
1901	if (!(reg & OHCI1394_NodeID_idValid)) {
1902		ohci_notice(ohci,
1903			    "node ID not valid, new bus reset in progress\n");
1904		return;
1905	}
1906	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1907		ohci_notice(ohci, "malconfigured bus\n");
1908		return;
1909	}
1910	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1911			       OHCI1394_NodeID_nodeNumber);
1912
1913	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1914	if (!(ohci->is_root && is_new_root))
1915		reg_write(ohci, OHCI1394_LinkControlSet,
1916			  OHCI1394_LinkControl_cycleMaster);
1917	ohci->is_root = is_new_root;
1918
1919	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1920	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1921		ohci_notice(ohci, "self ID receive error\n");
1922		return;
1923	}
1924	/*
1925	 * The count in the SelfIDCount register is the number of
1926	 * bytes in the self ID receive buffer.  Since we also receive
1927	 * the inverted quadlets and a header quadlet, we shift one
1928	 * bit extra to get the actual number of self IDs.
1929	 */
1930	self_id_count = (reg >> 3) & 0xff;
1931
1932	if (self_id_count > 252) {
1933		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1934		return;
1935	}
1936
1937	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1938	rmb();
1939
1940	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1941		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1942		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1943
1944		if (id != ~id2) {
1945			/*
1946			 * If the invalid data looks like a cycle start packet,
1947			 * it's likely to be the result of the cycle master
1948			 * having a wrong gap count.  In this case, the self IDs
1949			 * so far are valid and should be processed so that the
1950			 * bus manager can then correct the gap count.
1951			 */
1952			if (id == 0xffff008f) {
1953				ohci_notice(ohci, "ignoring spurious self IDs\n");
1954				self_id_count = j;
1955				break;
1956			}
1957
1958			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1959				    j, self_id_count, id, id2);
1960			return;
1961		}
1962		ohci->self_id_buffer[j] = id;
1963	}
1964
1965	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1966		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1967		if (self_id_count < 0) {
1968			ohci_notice(ohci,
1969				    "could not construct local self ID\n");
1970			return;
1971		}
1972	}
1973
1974	if (self_id_count == 0) {
1975		ohci_notice(ohci, "no self IDs\n");
1976		return;
1977	}
1978	rmb();
1979
1980	/*
1981	 * Check the consistency of the self IDs we just read.  The
1982	 * problem we face is that a new bus reset can start while we
1983	 * read out the self IDs from the DMA buffer. If this happens,
1984	 * the DMA buffer will be overwritten with new self IDs and we
1985	 * will read out inconsistent data.  The OHCI specification
1986	 * (section 11.2) recommends a technique similar to
1987	 * linux/seqlock.h, where we remember the generation of the
1988	 * self IDs in the buffer before reading them out and compare
1989	 * it to the current generation after reading them out.  If
1990	 * the two generations match we know we have a consistent set
1991	 * of self IDs.
1992	 */
1993
1994	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1995	if (new_generation != generation) {
1996		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1997		return;
1998	}
1999
2000	/* FIXME: Document how the locking works. */
2001	spin_lock_irq(&ohci->lock);
2002
2003	ohci->generation = -1; /* prevent AT packet queueing */
2004	context_stop(&ohci->at_request_ctx);
2005	context_stop(&ohci->at_response_ctx);
2006
2007	spin_unlock_irq(&ohci->lock);
2008
2009	/*
2010	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2011	 * packets in the AT queues and software needs to drain them.
2012	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2013	 */
2014	at_context_flush(&ohci->at_request_ctx);
2015	at_context_flush(&ohci->at_response_ctx);
2016
2017	spin_lock_irq(&ohci->lock);
2018
2019	ohci->generation = generation;
2020	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2021
2022	if (ohci->quirks & QUIRK_RESET_PACKET)
2023		ohci->request_generation = generation;
2024
2025	/*
2026	 * This next bit is unrelated to the AT context stuff but we
2027	 * have to do it under the spinlock also.  If a new config rom
2028	 * was set up before this reset, the old one is now no longer
2029	 * in use and we can free it. Update the config rom pointers
2030	 * to point to the current config rom and clear the
2031	 * next_config_rom pointer so a new update can take place.
2032	 */
2033
2034	if (ohci->next_config_rom != NULL) {
2035		if (ohci->next_config_rom != ohci->config_rom) {
2036			free_rom      = ohci->config_rom;
2037			free_rom_bus  = ohci->config_rom_bus;
2038		}
2039		ohci->config_rom      = ohci->next_config_rom;
2040		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2041		ohci->next_config_rom = NULL;
2042
2043		/*
2044		 * Restore config_rom image and manually update
2045		 * config_rom registers.  Writing the header quadlet
2046		 * will indicate that the config rom is ready, so we
2047		 * do that last.
2048		 */
2049		reg_write(ohci, OHCI1394_BusOptions,
2050			  be32_to_cpu(ohci->config_rom[2]));
2051		ohci->config_rom[0] = ohci->next_header;
2052		reg_write(ohci, OHCI1394_ConfigROMhdr,
2053			  be32_to_cpu(ohci->next_header));
2054	}
2055
2056	if (param_remote_dma) {
2057		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2058		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2059	}
2060
2061	spin_unlock_irq(&ohci->lock);
2062
2063	if (free_rom)
2064		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2065				  free_rom, free_rom_bus);
2066
2067	log_selfids(ohci, generation, self_id_count);
2068
2069	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2070				 self_id_count, ohci->self_id_buffer,
2071				 ohci->csr_state_setclear_abdicate);
2072	ohci->csr_state_setclear_abdicate = false;
2073}
2074
2075static irqreturn_t irq_handler(int irq, void *data)
2076{
2077	struct fw_ohci *ohci = data;
2078	u32 event, iso_event;
2079	int i;
2080
2081	event = reg_read(ohci, OHCI1394_IntEventClear);
2082
2083	if (!event || !~event)
2084		return IRQ_NONE;
2085
2086	/*
2087	 * busReset and postedWriteErr must not be cleared yet
2088	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2089	 */
2090	reg_write(ohci, OHCI1394_IntEventClear,
2091		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2092	log_irqs(ohci, event);
2093
2094	if (event & OHCI1394_selfIDComplete)
2095		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2096
2097	if (event & OHCI1394_RQPkt)
2098		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2099
2100	if (event & OHCI1394_RSPkt)
2101		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2102
2103	if (event & OHCI1394_reqTxComplete)
2104		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2105
2106	if (event & OHCI1394_respTxComplete)
2107		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2108
2109	if (event & OHCI1394_isochRx) {
2110		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2111		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2112
2113		while (iso_event) {
2114			i = ffs(iso_event) - 1;
2115			tasklet_schedule(
2116				&ohci->ir_context_list[i].context.tasklet);
2117			iso_event &= ~(1 << i);
2118		}
2119	}
2120
2121	if (event & OHCI1394_isochTx) {
2122		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2123		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2124
2125		while (iso_event) {
2126			i = ffs(iso_event) - 1;
2127			tasklet_schedule(
2128				&ohci->it_context_list[i].context.tasklet);
2129			iso_event &= ~(1 << i);
2130		}
2131	}
2132
2133	if (unlikely(event & OHCI1394_regAccessFail))
2134		ohci_err(ohci, "register access failure\n");
2135
2136	if (unlikely(event & OHCI1394_postedWriteErr)) {
2137		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2138		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2139		reg_write(ohci, OHCI1394_IntEventClear,
2140			  OHCI1394_postedWriteErr);
2141		if (printk_ratelimit())
2142			ohci_err(ohci, "PCI posted write error\n");
2143	}
2144
2145	if (unlikely(event & OHCI1394_cycleTooLong)) {
2146		if (printk_ratelimit())
2147			ohci_notice(ohci, "isochronous cycle too long\n");
2148		reg_write(ohci, OHCI1394_LinkControlSet,
2149			  OHCI1394_LinkControl_cycleMaster);
2150	}
2151
2152	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2153		/*
2154		 * We need to clear this event bit in order to make
2155		 * cycleMatch isochronous I/O work.  In theory we should
2156		 * stop active cycleMatch iso contexts now and restart
2157		 * them at least two cycles later.  (FIXME?)
2158		 */
2159		if (printk_ratelimit())
2160			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2161	}
2162
2163	if (unlikely(event & OHCI1394_unrecoverableError))
2164		handle_dead_contexts(ohci);
2165
2166	if (event & OHCI1394_cycle64Seconds) {
2167		spin_lock(&ohci->lock);
2168		update_bus_time(ohci);
2169		spin_unlock(&ohci->lock);
2170	} else
2171		flush_writes(ohci);
2172
2173	return IRQ_HANDLED;
2174}
2175
2176static int software_reset(struct fw_ohci *ohci)
2177{
2178	u32 val;
2179	int i;
2180
2181	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2182	for (i = 0; i < 500; i++) {
2183		val = reg_read(ohci, OHCI1394_HCControlSet);
2184		if (!~val)
2185			return -ENODEV; /* Card was ejected. */
2186
2187		if (!(val & OHCI1394_HCControl_softReset))
2188			return 0;
2189
2190		msleep(1);
2191	}
2192
2193	return -EBUSY;
2194}
2195
2196static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2197{
2198	size_t size = length * 4;
2199
2200	memcpy(dest, src, size);
2201	if (size < CONFIG_ROM_SIZE)
2202		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2203}
2204
2205static int configure_1394a_enhancements(struct fw_ohci *ohci)
2206{
2207	bool enable_1394a;
2208	int ret, clear, set, offset;
2209
2210	/* Check if the driver should configure link and PHY. */
2211	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2212	      OHCI1394_HCControl_programPhyEnable))
2213		return 0;
2214
2215	/* Paranoia: check whether the PHY supports 1394a, too. */
2216	enable_1394a = false;
2217	ret = read_phy_reg(ohci, 2);
2218	if (ret < 0)
2219		return ret;
2220	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2221		ret = read_paged_phy_reg(ohci, 1, 8);
2222		if (ret < 0)
2223			return ret;
2224		if (ret >= 1)
2225			enable_1394a = true;
2226	}
2227
2228	if (ohci->quirks & QUIRK_NO_1394A)
2229		enable_1394a = false;
2230
2231	/* Configure PHY and link consistently. */
2232	if (enable_1394a) {
2233		clear = 0;
2234		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2235	} else {
2236		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2237		set = 0;
2238	}
2239	ret = update_phy_reg(ohci, 5, clear, set);
2240	if (ret < 0)
2241		return ret;
2242
2243	if (enable_1394a)
2244		offset = OHCI1394_HCControlSet;
2245	else
2246		offset = OHCI1394_HCControlClear;
2247	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2248
2249	/* Clean up: configuration has been taken care of. */
2250	reg_write(ohci, OHCI1394_HCControlClear,
2251		  OHCI1394_HCControl_programPhyEnable);
2252
2253	return 0;
2254}
2255
2256static int probe_tsb41ba3d(struct fw_ohci *ohci)
2257{
2258	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2259	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2260	int reg, i;
2261
2262	reg = read_phy_reg(ohci, 2);
2263	if (reg < 0)
2264		return reg;
2265	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2266		return 0;
2267
2268	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2269		reg = read_paged_phy_reg(ohci, 1, i + 10);
2270		if (reg < 0)
2271			return reg;
2272		if (reg != id[i])
2273			return 0;
2274	}
2275	return 1;
2276}
2277
2278static int ohci_enable(struct fw_card *card,
2279		       const __be32 *config_rom, size_t length)
2280{
2281	struct fw_ohci *ohci = fw_ohci(card);
2282	u32 lps, version, irqs;
2283	int i, ret;
2284
2285	ret = software_reset(ohci);
2286	if (ret < 0) {
2287		ohci_err(ohci, "failed to reset ohci card\n");
2288		return ret;
2289	}
2290
2291	/*
2292	 * Now enable LPS, which we need in order to start accessing
2293	 * most of the registers.  In fact, on some cards (ALI M5251),
2294	 * accessing registers in the SClk domain without LPS enabled
2295	 * will lock up the machine.  Wait 50msec to make sure we have
2296	 * full link enabled.  However, with some cards (well, at least
2297	 * a JMicron PCIe card), we have to try again sometimes.
2298	 *
2299	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300	 * cannot actually use the phy at that time.  These need tens of
2301	 * millisecods pause between LPS write and first phy access too.
2302	 */
2303
2304	reg_write(ohci, OHCI1394_HCControlSet,
2305		  OHCI1394_HCControl_LPS |
2306		  OHCI1394_HCControl_postedWriteEnable);
2307	flush_writes(ohci);
2308
2309	for (lps = 0, i = 0; !lps && i < 3; i++) {
2310		msleep(50);
2311		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2312		      OHCI1394_HCControl_LPS;
2313	}
2314
2315	if (!lps) {
2316		ohci_err(ohci, "failed to set Link Power Status\n");
2317		return -EIO;
2318	}
2319
2320	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321		ret = probe_tsb41ba3d(ohci);
2322		if (ret < 0)
2323			return ret;
2324		if (ret)
2325			ohci_notice(ohci, "local TSB41BA3D phy\n");
2326		else
2327			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2328	}
2329
2330	reg_write(ohci, OHCI1394_HCControlClear,
2331		  OHCI1394_HCControl_noByteSwapData);
2332
2333	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334	reg_write(ohci, OHCI1394_LinkControlSet,
2335		  OHCI1394_LinkControl_cycleTimerEnable |
2336		  OHCI1394_LinkControl_cycleMaster);
2337
2338	reg_write(ohci, OHCI1394_ATRetries,
2339		  OHCI1394_MAX_AT_REQ_RETRIES |
2340		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2342		  (200 << 16));
2343
2344	ohci->bus_time_running = false;
2345
2346	for (i = 0; i < 32; i++)
2347		if (ohci->ir_context_support & (1 << i))
2348			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2349				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2350
2351	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2352	if (version >= OHCI_VERSION_1_1) {
2353		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2354			  0xfffffffe);
2355		card->broadcast_channel_auto_allocated = true;
2356	}
2357
2358	/* Get implemented bits of the priority arbitration request counter. */
2359	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2360	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2361	reg_write(ohci, OHCI1394_FairnessControl, 0);
2362	card->priority_budget_implemented = ohci->pri_req_max != 0;
2363
2364	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2365	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2366	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2367
2368	ret = configure_1394a_enhancements(ohci);
2369	if (ret < 0)
2370		return ret;
2371
2372	/* Activate link_on bit and contender bit in our self ID packets.*/
2373	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2374	if (ret < 0)
2375		return ret;
2376
2377	/*
2378	 * When the link is not yet enabled, the atomic config rom
2379	 * update mechanism described below in ohci_set_config_rom()
2380	 * is not active.  We have to update ConfigRomHeader and
2381	 * BusOptions manually, and the write to ConfigROMmap takes
2382	 * effect immediately.  We tie this to the enabling of the
2383	 * link, so we have a valid config rom before enabling - the
2384	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2385	 * values before enabling.
2386	 *
2387	 * However, when the ConfigROMmap is written, some controllers
2388	 * always read back quadlets 0 and 2 from the config rom to
2389	 * the ConfigRomHeader and BusOptions registers on bus reset.
2390	 * They shouldn't do that in this initial case where the link
2391	 * isn't enabled.  This means we have to use the same
2392	 * workaround here, setting the bus header to 0 and then write
2393	 * the right values in the bus reset tasklet.
2394	 */
2395
2396	if (config_rom) {
2397		ohci->next_config_rom =
2398			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2399					   &ohci->next_config_rom_bus,
2400					   GFP_KERNEL);
2401		if (ohci->next_config_rom == NULL)
2402			return -ENOMEM;
2403
2404		copy_config_rom(ohci->next_config_rom, config_rom, length);
2405	} else {
2406		/*
2407		 * In the suspend case, config_rom is NULL, which
2408		 * means that we just reuse the old config rom.
2409		 */
2410		ohci->next_config_rom = ohci->config_rom;
2411		ohci->next_config_rom_bus = ohci->config_rom_bus;
2412	}
2413
2414	ohci->next_header = ohci->next_config_rom[0];
2415	ohci->next_config_rom[0] = 0;
2416	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417	reg_write(ohci, OHCI1394_BusOptions,
2418		  be32_to_cpu(ohci->next_config_rom[2]));
2419	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2420
2421	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2422
2423	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2424		OHCI1394_RQPkt | OHCI1394_RSPkt |
2425		OHCI1394_isochTx | OHCI1394_isochRx |
2426		OHCI1394_postedWriteErr |
2427		OHCI1394_selfIDComplete |
2428		OHCI1394_regAccessFail |
2429		OHCI1394_cycleInconsistent |
2430		OHCI1394_unrecoverableError |
2431		OHCI1394_cycleTooLong |
2432		OHCI1394_masterIntEnable;
2433	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2434		irqs |= OHCI1394_busReset;
2435	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2436
2437	reg_write(ohci, OHCI1394_HCControlSet,
2438		  OHCI1394_HCControl_linkEnable |
2439		  OHCI1394_HCControl_BIBimageValid);
2440
2441	reg_write(ohci, OHCI1394_LinkControlSet,
2442		  OHCI1394_LinkControl_rcvSelfID |
2443		  OHCI1394_LinkControl_rcvPhyPkt);
2444
2445	ar_context_run(&ohci->ar_request_ctx);
2446	ar_context_run(&ohci->ar_response_ctx);
2447
2448	flush_writes(ohci);
2449
2450	/* We are ready to go, reset bus to finish initialization. */
2451	fw_schedule_bus_reset(&ohci->card, false, true);
2452
2453	return 0;
2454}
2455
2456static int ohci_set_config_rom(struct fw_card *card,
2457			       const __be32 *config_rom, size_t length)
2458{
2459	struct fw_ohci *ohci;
2460	__be32 *next_config_rom;
2461	dma_addr_t uninitialized_var(next_config_rom_bus);
2462
2463	ohci = fw_ohci(card);
2464
2465	/*
2466	 * When the OHCI controller is enabled, the config rom update
2467	 * mechanism is a bit tricky, but easy enough to use.  See
2468	 * section 5.5.6 in the OHCI specification.
2469	 *
2470	 * The OHCI controller caches the new config rom address in a
2471	 * shadow register (ConfigROMmapNext) and needs a bus reset
2472	 * for the changes to take place.  When the bus reset is
2473	 * detected, the controller loads the new values for the
2474	 * ConfigRomHeader and BusOptions registers from the specified
2475	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476	 * shadow register. All automatically and atomically.
2477	 *
2478	 * Now, there's a twist to this story.  The automatic load of
2479	 * ConfigRomHeader and BusOptions doesn't honor the
2480	 * noByteSwapData bit, so with a be32 config rom, the
2481	 * controller will load be32 values in to these registers
2482	 * during the atomic update, even on litte endian
2483	 * architectures.  The workaround we use is to put a 0 in the
2484	 * header quadlet; 0 is endian agnostic and means that the
2485	 * config rom isn't ready yet.  In the bus reset tasklet we
2486	 * then set up the real values for the two registers.
2487	 *
2488	 * We use ohci->lock to avoid racing with the code that sets
2489	 * ohci->next_config_rom to NULL (see bus_reset_work).
2490	 */
2491
2492	next_config_rom =
2493		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494				   &next_config_rom_bus, GFP_KERNEL);
2495	if (next_config_rom == NULL)
2496		return -ENOMEM;
2497
2498	spin_lock_irq(&ohci->lock);
2499
2500	/*
2501	 * If there is not an already pending config_rom update,
2502	 * push our new allocation into the ohci->next_config_rom
2503	 * and then mark the local variable as null so that we
2504	 * won't deallocate the new buffer.
2505	 *
2506	 * OTOH, if there is a pending config_rom update, just
2507	 * use that buffer with the new config_rom data, and
2508	 * let this routine free the unused DMA allocation.
2509	 */
2510
2511	if (ohci->next_config_rom == NULL) {
2512		ohci->next_config_rom = next_config_rom;
2513		ohci->next_config_rom_bus = next_config_rom_bus;
2514		next_config_rom = NULL;
2515	}
2516
2517	copy_config_rom(ohci->next_config_rom, config_rom, length);
2518
2519	ohci->next_header = config_rom[0];
2520	ohci->next_config_rom[0] = 0;
2521
2522	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2523
2524	spin_unlock_irq(&ohci->lock);
2525
2526	/* If we didn't use the DMA allocation, delete it. */
2527	if (next_config_rom != NULL)
2528		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2529				  next_config_rom, next_config_rom_bus);
 
2530
2531	/*
2532	 * Now initiate a bus reset to have the changes take
2533	 * effect. We clean up the old config rom memory and DMA
2534	 * mappings in the bus reset tasklet, since the OHCI
2535	 * controller could need to access it before the bus reset
2536	 * takes effect.
2537	 */
2538
2539	fw_schedule_bus_reset(&ohci->card, true, true);
2540
2541	return 0;
2542}
2543
2544static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2545{
2546	struct fw_ohci *ohci = fw_ohci(card);
2547
2548	at_context_transmit(&ohci->at_request_ctx, packet);
2549}
2550
2551static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2552{
2553	struct fw_ohci *ohci = fw_ohci(card);
2554
2555	at_context_transmit(&ohci->at_response_ctx, packet);
2556}
2557
2558static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2559{
2560	struct fw_ohci *ohci = fw_ohci(card);
2561	struct context *ctx = &ohci->at_request_ctx;
2562	struct driver_data *driver_data = packet->driver_data;
2563	int ret = -ENOENT;
2564
2565	tasklet_disable(&ctx->tasklet);
2566
2567	if (packet->ack != 0)
2568		goto out;
2569
2570	if (packet->payload_mapped)
2571		dma_unmap_single(ohci->card.device, packet->payload_bus,
2572				 packet->payload_length, DMA_TO_DEVICE);
2573
2574	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575	driver_data->packet = NULL;
2576	packet->ack = RCODE_CANCELLED;
 
 
 
 
2577	packet->callback(packet, &ohci->card, packet->ack);
2578	ret = 0;
2579 out:
2580	tasklet_enable(&ctx->tasklet);
2581
2582	return ret;
2583}
2584
2585static int ohci_enable_phys_dma(struct fw_card *card,
2586				int node_id, int generation)
2587{
2588	struct fw_ohci *ohci = fw_ohci(card);
2589	unsigned long flags;
2590	int n, ret = 0;
2591
2592	if (param_remote_dma)
2593		return 0;
2594
2595	/*
2596	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2597	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2598	 */
2599
2600	spin_lock_irqsave(&ohci->lock, flags);
2601
2602	if (ohci->generation != generation) {
2603		ret = -ESTALE;
2604		goto out;
2605	}
2606
2607	/*
2608	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2609	 * enabled for _all_ nodes on remote buses.
2610	 */
2611
2612	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2613	if (n < 32)
2614		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2615	else
2616		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2617
2618	flush_writes(ohci);
2619 out:
2620	spin_unlock_irqrestore(&ohci->lock, flags);
2621
2622	return ret;
2623}
2624
2625static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2626{
2627	struct fw_ohci *ohci = fw_ohci(card);
2628	unsigned long flags;
2629	u32 value;
2630
2631	switch (csr_offset) {
2632	case CSR_STATE_CLEAR:
2633	case CSR_STATE_SET:
2634		if (ohci->is_root &&
2635		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2636		     OHCI1394_LinkControl_cycleMaster))
2637			value = CSR_STATE_BIT_CMSTR;
2638		else
2639			value = 0;
2640		if (ohci->csr_state_setclear_abdicate)
2641			value |= CSR_STATE_BIT_ABDICATE;
2642
2643		return value;
2644
2645	case CSR_NODE_IDS:
2646		return reg_read(ohci, OHCI1394_NodeID) << 16;
2647
2648	case CSR_CYCLE_TIME:
2649		return get_cycle_time(ohci);
2650
2651	case CSR_BUS_TIME:
2652		/*
2653		 * We might be called just after the cycle timer has wrapped
2654		 * around but just before the cycle64Seconds handler, so we
2655		 * better check here, too, if the bus time needs to be updated.
2656		 */
2657		spin_lock_irqsave(&ohci->lock, flags);
2658		value = update_bus_time(ohci);
2659		spin_unlock_irqrestore(&ohci->lock, flags);
2660		return value;
2661
2662	case CSR_BUSY_TIMEOUT:
2663		value = reg_read(ohci, OHCI1394_ATRetries);
2664		return (value >> 4) & 0x0ffff00f;
2665
2666	case CSR_PRIORITY_BUDGET:
2667		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2668			(ohci->pri_req_max << 8);
2669
2670	default:
2671		WARN_ON(1);
2672		return 0;
2673	}
2674}
2675
2676static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2677{
2678	struct fw_ohci *ohci = fw_ohci(card);
2679	unsigned long flags;
2680
2681	switch (csr_offset) {
2682	case CSR_STATE_CLEAR:
2683		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684			reg_write(ohci, OHCI1394_LinkControlClear,
2685				  OHCI1394_LinkControl_cycleMaster);
2686			flush_writes(ohci);
2687		}
2688		if (value & CSR_STATE_BIT_ABDICATE)
2689			ohci->csr_state_setclear_abdicate = false;
2690		break;
2691
2692	case CSR_STATE_SET:
2693		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2694			reg_write(ohci, OHCI1394_LinkControlSet,
2695				  OHCI1394_LinkControl_cycleMaster);
2696			flush_writes(ohci);
2697		}
2698		if (value & CSR_STATE_BIT_ABDICATE)
2699			ohci->csr_state_setclear_abdicate = true;
2700		break;
2701
2702	case CSR_NODE_IDS:
2703		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2704		flush_writes(ohci);
2705		break;
2706
2707	case CSR_CYCLE_TIME:
2708		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2709		reg_write(ohci, OHCI1394_IntEventSet,
2710			  OHCI1394_cycleInconsistent);
2711		flush_writes(ohci);
2712		break;
2713
2714	case CSR_BUS_TIME:
2715		spin_lock_irqsave(&ohci->lock, flags);
2716		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2717		                 (value & ~0x7f);
2718		spin_unlock_irqrestore(&ohci->lock, flags);
2719		break;
2720
2721	case CSR_BUSY_TIMEOUT:
2722		value = (value & 0xf) | ((value & 0xf) << 4) |
2723			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2724		reg_write(ohci, OHCI1394_ATRetries, value);
2725		flush_writes(ohci);
2726		break;
2727
2728	case CSR_PRIORITY_BUDGET:
2729		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2730		flush_writes(ohci);
2731		break;
2732
2733	default:
2734		WARN_ON(1);
2735		break;
2736	}
2737}
2738
2739static void flush_iso_completions(struct iso_context *ctx)
2740{
2741	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2742			      ctx->header_length, ctx->header,
2743			      ctx->base.callback_data);
2744	ctx->header_length = 0;
2745}
2746
2747static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2748{
2749	u32 *ctx_hdr;
2750
2751	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2752		if (ctx->base.drop_overflow_headers)
2753			return;
2754		flush_iso_completions(ctx);
2755	}
2756
2757	ctx_hdr = ctx->header + ctx->header_length;
2758	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2759
2760	/*
2761	 * The two iso header quadlets are byteswapped to little
2762	 * endian by the controller, but we want to present them
2763	 * as big endian for consistency with the bus endianness.
2764	 */
2765	if (ctx->base.header_size > 0)
2766		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2767	if (ctx->base.header_size > 4)
2768		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2769	if (ctx->base.header_size > 8)
2770		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2771	ctx->header_length += ctx->base.header_size;
2772}
2773
2774static int handle_ir_packet_per_buffer(struct context *context,
2775				       struct descriptor *d,
2776				       struct descriptor *last)
2777{
2778	struct iso_context *ctx =
2779		container_of(context, struct iso_context, context);
2780	struct descriptor *pd;
2781	u32 buffer_dma;
2782
2783	for (pd = d; pd <= last; pd++)
2784		if (pd->transfer_status)
2785			break;
2786	if (pd > last)
2787		/* Descriptor(s) not done yet, stop iteration */
2788		return 0;
2789
2790	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2791		d++;
2792		buffer_dma = le32_to_cpu(d->data_address);
2793		dma_sync_single_range_for_cpu(context->ohci->card.device,
2794					      buffer_dma & PAGE_MASK,
2795					      buffer_dma & ~PAGE_MASK,
2796					      le16_to_cpu(d->req_count),
2797					      DMA_FROM_DEVICE);
2798	}
2799
2800	copy_iso_headers(ctx, (u32 *) (last + 1));
2801
2802	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2803		flush_iso_completions(ctx);
2804
2805	return 1;
2806}
2807
2808/* d == last because each descriptor block is only a single descriptor. */
2809static int handle_ir_buffer_fill(struct context *context,
2810				 struct descriptor *d,
2811				 struct descriptor *last)
2812{
2813	struct iso_context *ctx =
2814		container_of(context, struct iso_context, context);
2815	unsigned int req_count, res_count, completed;
2816	u32 buffer_dma;
2817
2818	req_count = le16_to_cpu(last->req_count);
2819	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2820	completed = req_count - res_count;
2821	buffer_dma = le32_to_cpu(last->data_address);
2822
2823	if (completed > 0) {
2824		ctx->mc_buffer_bus = buffer_dma;
2825		ctx->mc_completed = completed;
2826	}
2827
2828	if (res_count != 0)
2829		/* Descriptor(s) not done yet, stop iteration */
2830		return 0;
2831
2832	dma_sync_single_range_for_cpu(context->ohci->card.device,
2833				      buffer_dma & PAGE_MASK,
2834				      buffer_dma & ~PAGE_MASK,
2835				      completed, DMA_FROM_DEVICE);
2836
2837	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2838		ctx->base.callback.mc(&ctx->base,
2839				      buffer_dma + completed,
2840				      ctx->base.callback_data);
2841		ctx->mc_completed = 0;
2842	}
2843
2844	return 1;
2845}
2846
2847static void flush_ir_buffer_fill(struct iso_context *ctx)
2848{
2849	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2850				      ctx->mc_buffer_bus & PAGE_MASK,
2851				      ctx->mc_buffer_bus & ~PAGE_MASK,
2852				      ctx->mc_completed, DMA_FROM_DEVICE);
2853
2854	ctx->base.callback.mc(&ctx->base,
2855			      ctx->mc_buffer_bus + ctx->mc_completed,
2856			      ctx->base.callback_data);
2857	ctx->mc_completed = 0;
2858}
2859
2860static inline void sync_it_packet_for_cpu(struct context *context,
2861					  struct descriptor *pd)
2862{
2863	__le16 control;
2864	u32 buffer_dma;
2865
2866	/* only packets beginning with OUTPUT_MORE* have data buffers */
2867	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868		return;
2869
2870	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2871	pd += 2;
2872
2873	/*
2874	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2875	 * data buffer is in the context program's coherent page and must not
2876	 * be synced.
2877	 */
2878	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2879	    (context->current_bus          & PAGE_MASK)) {
2880		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2881			return;
2882		pd++;
2883	}
2884
2885	do {
2886		buffer_dma = le32_to_cpu(pd->data_address);
2887		dma_sync_single_range_for_cpu(context->ohci->card.device,
2888					      buffer_dma & PAGE_MASK,
2889					      buffer_dma & ~PAGE_MASK,
2890					      le16_to_cpu(pd->req_count),
2891					      DMA_TO_DEVICE);
2892		control = pd->control;
2893		pd++;
2894	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2895}
2896
2897static int handle_it_packet(struct context *context,
2898			    struct descriptor *d,
2899			    struct descriptor *last)
2900{
2901	struct iso_context *ctx =
2902		container_of(context, struct iso_context, context);
2903	struct descriptor *pd;
2904	__be32 *ctx_hdr;
2905
2906	for (pd = d; pd <= last; pd++)
2907		if (pd->transfer_status)
2908			break;
2909	if (pd > last)
2910		/* Descriptor(s) not done yet, stop iteration */
2911		return 0;
2912
2913	sync_it_packet_for_cpu(context, d);
2914
2915	if (ctx->header_length + 4 > PAGE_SIZE) {
2916		if (ctx->base.drop_overflow_headers)
2917			return 1;
2918		flush_iso_completions(ctx);
2919	}
2920
2921	ctx_hdr = ctx->header + ctx->header_length;
2922	ctx->last_timestamp = le16_to_cpu(last->res_count);
2923	/* Present this value as big-endian to match the receive code */
2924	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2925			       le16_to_cpu(pd->res_count));
2926	ctx->header_length += 4;
2927
2928	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2929		flush_iso_completions(ctx);
2930
2931	return 1;
2932}
2933
2934static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2935{
2936	u32 hi = channels >> 32, lo = channels;
2937
2938	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2939	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2940	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2941	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2942	mmiowb();
2943	ohci->mc_channels = channels;
2944}
2945
2946static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2947				int type, int channel, size_t header_size)
2948{
2949	struct fw_ohci *ohci = fw_ohci(card);
2950	struct iso_context *uninitialized_var(ctx);
2951	descriptor_callback_t uninitialized_var(callback);
2952	u64 *uninitialized_var(channels);
2953	u32 *uninitialized_var(mask), uninitialized_var(regs);
2954	int index, ret = -EBUSY;
2955
2956	spin_lock_irq(&ohci->lock);
2957
2958	switch (type) {
2959	case FW_ISO_CONTEXT_TRANSMIT:
2960		mask     = &ohci->it_context_mask;
2961		callback = handle_it_packet;
2962		index    = ffs(*mask) - 1;
2963		if (index >= 0) {
2964			*mask &= ~(1 << index);
2965			regs = OHCI1394_IsoXmitContextBase(index);
2966			ctx  = &ohci->it_context_list[index];
2967		}
2968		break;
2969
2970	case FW_ISO_CONTEXT_RECEIVE:
2971		channels = &ohci->ir_context_channels;
2972		mask     = &ohci->ir_context_mask;
2973		callback = handle_ir_packet_per_buffer;
2974		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2975		if (index >= 0) {
2976			*channels &= ~(1ULL << channel);
2977			*mask     &= ~(1 << index);
2978			regs = OHCI1394_IsoRcvContextBase(index);
2979			ctx  = &ohci->ir_context_list[index];
2980		}
2981		break;
2982
2983	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2984		mask     = &ohci->ir_context_mask;
2985		callback = handle_ir_buffer_fill;
2986		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2987		if (index >= 0) {
2988			ohci->mc_allocated = true;
2989			*mask &= ~(1 << index);
2990			regs = OHCI1394_IsoRcvContextBase(index);
2991			ctx  = &ohci->ir_context_list[index];
2992		}
2993		break;
2994
2995	default:
2996		index = -1;
2997		ret = -ENOSYS;
2998	}
2999
3000	spin_unlock_irq(&ohci->lock);
3001
3002	if (index < 0)
3003		return ERR_PTR(ret);
3004
3005	memset(ctx, 0, sizeof(*ctx));
3006	ctx->header_length = 0;
3007	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3008	if (ctx->header == NULL) {
3009		ret = -ENOMEM;
3010		goto out;
3011	}
3012	ret = context_init(&ctx->context, ohci, regs, callback);
3013	if (ret < 0)
3014		goto out_with_header;
3015
3016	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3017		set_multichannel_mask(ohci, 0);
3018		ctx->mc_completed = 0;
3019	}
3020
3021	return &ctx->base;
3022
3023 out_with_header:
3024	free_page((unsigned long)ctx->header);
3025 out:
3026	spin_lock_irq(&ohci->lock);
3027
3028	switch (type) {
3029	case FW_ISO_CONTEXT_RECEIVE:
3030		*channels |= 1ULL << channel;
3031		break;
3032
3033	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034		ohci->mc_allocated = false;
3035		break;
3036	}
3037	*mask |= 1 << index;
3038
3039	spin_unlock_irq(&ohci->lock);
3040
3041	return ERR_PTR(ret);
3042}
3043
3044static int ohci_start_iso(struct fw_iso_context *base,
3045			  s32 cycle, u32 sync, u32 tags)
3046{
3047	struct iso_context *ctx = container_of(base, struct iso_context, base);
3048	struct fw_ohci *ohci = ctx->context.ohci;
3049	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3050	int index;
3051
3052	/* the controller cannot start without any queued packets */
3053	if (ctx->context.last->branch_address == 0)
3054		return -ENODATA;
3055
3056	switch (ctx->base.type) {
3057	case FW_ISO_CONTEXT_TRANSMIT:
3058		index = ctx - ohci->it_context_list;
3059		match = 0;
3060		if (cycle >= 0)
3061			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3062				(cycle & 0x7fff) << 16;
3063
3064		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3065		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3066		context_run(&ctx->context, match);
3067		break;
3068
3069	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3070		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3071		/* fall through */
3072	case FW_ISO_CONTEXT_RECEIVE:
3073		index = ctx - ohci->ir_context_list;
3074		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3075		if (cycle >= 0) {
3076			match |= (cycle & 0x07fff) << 12;
3077			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3078		}
3079
3080		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3081		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3082		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3083		context_run(&ctx->context, control);
3084
3085		ctx->sync = sync;
3086		ctx->tags = tags;
3087
3088		break;
3089	}
3090
3091	return 0;
3092}
3093
3094static int ohci_stop_iso(struct fw_iso_context *base)
3095{
3096	struct fw_ohci *ohci = fw_ohci(base->card);
3097	struct iso_context *ctx = container_of(base, struct iso_context, base);
3098	int index;
3099
3100	switch (ctx->base.type) {
3101	case FW_ISO_CONTEXT_TRANSMIT:
3102		index = ctx - ohci->it_context_list;
3103		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3104		break;
3105
3106	case FW_ISO_CONTEXT_RECEIVE:
3107	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3108		index = ctx - ohci->ir_context_list;
3109		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3110		break;
3111	}
3112	flush_writes(ohci);
3113	context_stop(&ctx->context);
3114	tasklet_kill(&ctx->context.tasklet);
3115
3116	return 0;
3117}
3118
3119static void ohci_free_iso_context(struct fw_iso_context *base)
3120{
3121	struct fw_ohci *ohci = fw_ohci(base->card);
3122	struct iso_context *ctx = container_of(base, struct iso_context, base);
3123	unsigned long flags;
3124	int index;
3125
3126	ohci_stop_iso(base);
3127	context_release(&ctx->context);
3128	free_page((unsigned long)ctx->header);
3129
3130	spin_lock_irqsave(&ohci->lock, flags);
3131
3132	switch (base->type) {
3133	case FW_ISO_CONTEXT_TRANSMIT:
3134		index = ctx - ohci->it_context_list;
3135		ohci->it_context_mask |= 1 << index;
3136		break;
3137
3138	case FW_ISO_CONTEXT_RECEIVE:
3139		index = ctx - ohci->ir_context_list;
3140		ohci->ir_context_mask |= 1 << index;
3141		ohci->ir_context_channels |= 1ULL << base->channel;
3142		break;
3143
3144	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3145		index = ctx - ohci->ir_context_list;
3146		ohci->ir_context_mask |= 1 << index;
3147		ohci->ir_context_channels |= ohci->mc_channels;
3148		ohci->mc_channels = 0;
3149		ohci->mc_allocated = false;
3150		break;
3151	}
3152
3153	spin_unlock_irqrestore(&ohci->lock, flags);
3154}
3155
3156static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3157{
3158	struct fw_ohci *ohci = fw_ohci(base->card);
3159	unsigned long flags;
3160	int ret;
3161
3162	switch (base->type) {
3163	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164
3165		spin_lock_irqsave(&ohci->lock, flags);
3166
3167		/* Don't allow multichannel to grab other contexts' channels. */
3168		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3169			*channels = ohci->ir_context_channels;
3170			ret = -EBUSY;
3171		} else {
3172			set_multichannel_mask(ohci, *channels);
3173			ret = 0;
3174		}
3175
3176		spin_unlock_irqrestore(&ohci->lock, flags);
3177
3178		break;
3179	default:
3180		ret = -EINVAL;
3181	}
3182
3183	return ret;
3184}
3185
3186#ifdef CONFIG_PM
3187static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3188{
3189	int i;
3190	struct iso_context *ctx;
3191
3192	for (i = 0 ; i < ohci->n_ir ; i++) {
3193		ctx = &ohci->ir_context_list[i];
3194		if (ctx->context.running)
3195			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3196	}
3197
3198	for (i = 0 ; i < ohci->n_it ; i++) {
3199		ctx = &ohci->it_context_list[i];
3200		if (ctx->context.running)
3201			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3202	}
3203}
3204#endif
3205
3206static int queue_iso_transmit(struct iso_context *ctx,
3207			      struct fw_iso_packet *packet,
3208			      struct fw_iso_buffer *buffer,
3209			      unsigned long payload)
3210{
3211	struct descriptor *d, *last, *pd;
3212	struct fw_iso_packet *p;
3213	__le32 *header;
3214	dma_addr_t d_bus, page_bus;
3215	u32 z, header_z, payload_z, irq;
3216	u32 payload_index, payload_end_index, next_page_index;
3217	int page, end_page, i, length, offset;
3218
3219	p = packet;
3220	payload_index = payload;
3221
3222	if (p->skip)
3223		z = 1;
3224	else
3225		z = 2;
3226	if (p->header_length > 0)
3227		z++;
3228
3229	/* Determine the first page the payload isn't contained in. */
3230	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3231	if (p->payload_length > 0)
3232		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3233	else
3234		payload_z = 0;
3235
3236	z += payload_z;
3237
3238	/* Get header size in number of descriptors. */
3239	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3240
3241	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3242	if (d == NULL)
3243		return -ENOMEM;
3244
3245	if (!p->skip) {
3246		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3247		d[0].req_count = cpu_to_le16(8);
3248		/*
3249		 * Link the skip address to this descriptor itself.  This causes
3250		 * a context to skip a cycle whenever lost cycles or FIFO
3251		 * overruns occur, without dropping the data.  The application
3252		 * should then decide whether this is an error condition or not.
3253		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3254		 */
3255		d[0].branch_address = cpu_to_le32(d_bus | z);
3256
3257		header = (__le32 *) &d[1];
3258		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3259					IT_HEADER_TAG(p->tag) |
3260					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3261					IT_HEADER_CHANNEL(ctx->base.channel) |
3262					IT_HEADER_SPEED(ctx->base.speed));
3263		header[1] =
3264			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3265							  p->payload_length));
3266	}
3267
3268	if (p->header_length > 0) {
3269		d[2].req_count    = cpu_to_le16(p->header_length);
3270		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3271		memcpy(&d[z], p->header, p->header_length);
3272	}
3273
3274	pd = d + z - payload_z;
3275	payload_end_index = payload_index + p->payload_length;
3276	for (i = 0; i < payload_z; i++) {
3277		page               = payload_index >> PAGE_SHIFT;
3278		offset             = payload_index & ~PAGE_MASK;
3279		next_page_index    = (page + 1) << PAGE_SHIFT;
3280		length             =
3281			min(next_page_index, payload_end_index) - payload_index;
3282		pd[i].req_count    = cpu_to_le16(length);
3283
3284		page_bus = page_private(buffer->pages[page]);
3285		pd[i].data_address = cpu_to_le32(page_bus + offset);
3286
3287		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3288						 page_bus, offset, length,
3289						 DMA_TO_DEVICE);
3290
3291		payload_index += length;
3292	}
3293
3294	if (p->interrupt)
3295		irq = DESCRIPTOR_IRQ_ALWAYS;
3296	else
3297		irq = DESCRIPTOR_NO_IRQ;
3298
3299	last = z == 2 ? d : d + z - 1;
3300	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3301				     DESCRIPTOR_STATUS |
3302				     DESCRIPTOR_BRANCH_ALWAYS |
3303				     irq);
3304
3305	context_append(&ctx->context, d, z, header_z);
3306
3307	return 0;
3308}
3309
3310static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3311				       struct fw_iso_packet *packet,
3312				       struct fw_iso_buffer *buffer,
3313				       unsigned long payload)
3314{
3315	struct device *device = ctx->context.ohci->card.device;
3316	struct descriptor *d, *pd;
3317	dma_addr_t d_bus, page_bus;
3318	u32 z, header_z, rest;
3319	int i, j, length;
3320	int page, offset, packet_count, header_size, payload_per_buffer;
3321
3322	/*
3323	 * The OHCI controller puts the isochronous header and trailer in the
3324	 * buffer, so we need at least 8 bytes.
3325	 */
3326	packet_count = packet->header_length / ctx->base.header_size;
3327	header_size  = max(ctx->base.header_size, (size_t)8);
3328
3329	/* Get header size in number of descriptors. */
3330	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3331	page     = payload >> PAGE_SHIFT;
3332	offset   = payload & ~PAGE_MASK;
3333	payload_per_buffer = packet->payload_length / packet_count;
3334
3335	for (i = 0; i < packet_count; i++) {
3336		/* d points to the header descriptor */
3337		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3338		d = context_get_descriptors(&ctx->context,
3339				z + header_z, &d_bus);
3340		if (d == NULL)
3341			return -ENOMEM;
3342
3343		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3344					      DESCRIPTOR_INPUT_MORE);
3345		if (packet->skip && i == 0)
3346			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3347		d->req_count    = cpu_to_le16(header_size);
3348		d->res_count    = d->req_count;
3349		d->transfer_status = 0;
3350		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3351
3352		rest = payload_per_buffer;
3353		pd = d;
3354		for (j = 1; j < z; j++) {
3355			pd++;
3356			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3357						  DESCRIPTOR_INPUT_MORE);
3358
3359			if (offset + rest < PAGE_SIZE)
3360				length = rest;
3361			else
3362				length = PAGE_SIZE - offset;
3363			pd->req_count = cpu_to_le16(length);
3364			pd->res_count = pd->req_count;
3365			pd->transfer_status = 0;
3366
3367			page_bus = page_private(buffer->pages[page]);
3368			pd->data_address = cpu_to_le32(page_bus + offset);
3369
3370			dma_sync_single_range_for_device(device, page_bus,
3371							 offset, length,
3372							 DMA_FROM_DEVICE);
3373
3374			offset = (offset + length) & ~PAGE_MASK;
3375			rest -= length;
3376			if (offset == 0)
3377				page++;
3378		}
3379		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3380					  DESCRIPTOR_INPUT_LAST |
3381					  DESCRIPTOR_BRANCH_ALWAYS);
3382		if (packet->interrupt && i == packet_count - 1)
3383			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3384
3385		context_append(&ctx->context, d, z, header_z);
3386	}
3387
3388	return 0;
3389}
3390
3391static int queue_iso_buffer_fill(struct iso_context *ctx,
3392				 struct fw_iso_packet *packet,
3393				 struct fw_iso_buffer *buffer,
3394				 unsigned long payload)
3395{
3396	struct descriptor *d;
3397	dma_addr_t d_bus, page_bus;
3398	int page, offset, rest, z, i, length;
3399
3400	page   = payload >> PAGE_SHIFT;
3401	offset = payload & ~PAGE_MASK;
3402	rest   = packet->payload_length;
3403
3404	/* We need one descriptor for each page in the buffer. */
3405	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3406
3407	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3408		return -EFAULT;
3409
3410	for (i = 0; i < z; i++) {
3411		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3412		if (d == NULL)
3413			return -ENOMEM;
3414
3415		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3416					 DESCRIPTOR_BRANCH_ALWAYS);
3417		if (packet->skip && i == 0)
3418			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3419		if (packet->interrupt && i == z - 1)
3420			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3421
3422		if (offset + rest < PAGE_SIZE)
3423			length = rest;
3424		else
3425			length = PAGE_SIZE - offset;
3426		d->req_count = cpu_to_le16(length);
3427		d->res_count = d->req_count;
3428		d->transfer_status = 0;
3429
3430		page_bus = page_private(buffer->pages[page]);
3431		d->data_address = cpu_to_le32(page_bus + offset);
3432
3433		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3434						 page_bus, offset, length,
3435						 DMA_FROM_DEVICE);
3436
3437		rest -= length;
3438		offset = 0;
3439		page++;
3440
3441		context_append(&ctx->context, d, 1, 0);
3442	}
3443
3444	return 0;
3445}
3446
3447static int ohci_queue_iso(struct fw_iso_context *base,
3448			  struct fw_iso_packet *packet,
3449			  struct fw_iso_buffer *buffer,
3450			  unsigned long payload)
3451{
3452	struct iso_context *ctx = container_of(base, struct iso_context, base);
3453	unsigned long flags;
3454	int ret = -ENOSYS;
3455
3456	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3457	switch (base->type) {
3458	case FW_ISO_CONTEXT_TRANSMIT:
3459		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3460		break;
3461	case FW_ISO_CONTEXT_RECEIVE:
3462		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3463		break;
3464	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3465		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3466		break;
3467	}
3468	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3469
3470	return ret;
3471}
3472
3473static void ohci_flush_queue_iso(struct fw_iso_context *base)
3474{
3475	struct context *ctx =
3476			&container_of(base, struct iso_context, base)->context;
3477
3478	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3479}
3480
3481static int ohci_flush_iso_completions(struct fw_iso_context *base)
3482{
3483	struct iso_context *ctx = container_of(base, struct iso_context, base);
3484	int ret = 0;
3485
3486	tasklet_disable(&ctx->context.tasklet);
3487
3488	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3489		context_tasklet((unsigned long)&ctx->context);
3490
3491		switch (base->type) {
3492		case FW_ISO_CONTEXT_TRANSMIT:
3493		case FW_ISO_CONTEXT_RECEIVE:
3494			if (ctx->header_length != 0)
3495				flush_iso_completions(ctx);
3496			break;
3497		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3498			if (ctx->mc_completed != 0)
3499				flush_ir_buffer_fill(ctx);
3500			break;
3501		default:
3502			ret = -ENOSYS;
3503		}
3504
3505		clear_bit_unlock(0, &ctx->flushing_completions);
3506		smp_mb__after_atomic();
3507	}
3508
3509	tasklet_enable(&ctx->context.tasklet);
3510
3511	return ret;
3512}
3513
3514static const struct fw_card_driver ohci_driver = {
3515	.enable			= ohci_enable,
3516	.read_phy_reg		= ohci_read_phy_reg,
3517	.update_phy_reg		= ohci_update_phy_reg,
3518	.set_config_rom		= ohci_set_config_rom,
3519	.send_request		= ohci_send_request,
3520	.send_response		= ohci_send_response,
3521	.cancel_packet		= ohci_cancel_packet,
3522	.enable_phys_dma	= ohci_enable_phys_dma,
3523	.read_csr		= ohci_read_csr,
3524	.write_csr		= ohci_write_csr,
3525
3526	.allocate_iso_context	= ohci_allocate_iso_context,
3527	.free_iso_context	= ohci_free_iso_context,
3528	.set_iso_channels	= ohci_set_iso_channels,
3529	.queue_iso		= ohci_queue_iso,
3530	.flush_queue_iso	= ohci_flush_queue_iso,
3531	.flush_iso_completions	= ohci_flush_iso_completions,
3532	.start_iso		= ohci_start_iso,
3533	.stop_iso		= ohci_stop_iso,
3534};
3535
3536#ifdef CONFIG_PPC_PMAC
3537static void pmac_ohci_on(struct pci_dev *dev)
3538{
3539	if (machine_is(powermac)) {
3540		struct device_node *ofn = pci_device_to_OF_node(dev);
3541
3542		if (ofn) {
3543			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3544			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3545		}
3546	}
3547}
3548
3549static void pmac_ohci_off(struct pci_dev *dev)
3550{
3551	if (machine_is(powermac)) {
3552		struct device_node *ofn = pci_device_to_OF_node(dev);
3553
3554		if (ofn) {
3555			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3556			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3557		}
3558	}
3559}
3560#else
3561static inline void pmac_ohci_on(struct pci_dev *dev) {}
3562static inline void pmac_ohci_off(struct pci_dev *dev) {}
3563#endif /* CONFIG_PPC_PMAC */
3564
 
 
 
 
 
 
 
 
 
 
 
 
 
3565static int pci_probe(struct pci_dev *dev,
3566			       const struct pci_device_id *ent)
3567{
3568	struct fw_ohci *ohci;
3569	u32 bus_options, max_receive, link_speed, version;
3570	u64 guid;
3571	int i, err;
3572	size_t size;
3573
3574	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3575		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3576		return -ENOSYS;
3577	}
3578
3579	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3580	if (ohci == NULL) {
3581		err = -ENOMEM;
3582		goto fail;
3583	}
3584
3585	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3586
3587	pmac_ohci_on(dev);
 
3588
3589	err = pci_enable_device(dev);
3590	if (err) {
3591		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3592		goto fail_free;
3593	}
3594
3595	pci_set_master(dev);
3596	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3597	pci_set_drvdata(dev, ohci);
3598
3599	spin_lock_init(&ohci->lock);
3600	mutex_init(&ohci->phy_reg_mutex);
3601
3602	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3603
3604	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3605	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3606		ohci_err(ohci, "invalid MMIO resource\n");
3607		err = -ENXIO;
3608		goto fail_disable;
3609	}
3610
3611	err = pci_request_region(dev, 0, ohci_driver_name);
3612	if (err) {
3613		ohci_err(ohci, "MMIO resource unavailable\n");
3614		goto fail_disable;
3615	}
3616
3617	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3618	if (ohci->registers == NULL) {
3619		ohci_err(ohci, "failed to remap registers\n");
3620		err = -ENXIO;
3621		goto fail_iomem;
3622	}
 
3623
3624	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3625		if ((ohci_quirks[i].vendor == dev->vendor) &&
3626		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3627		     ohci_quirks[i].device == dev->device) &&
3628		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3629		     ohci_quirks[i].revision >= dev->revision)) {
3630			ohci->quirks = ohci_quirks[i].flags;
3631			break;
3632		}
3633	if (param_quirks)
3634		ohci->quirks = param_quirks;
3635
 
 
 
3636	/*
3637	 * Because dma_alloc_coherent() allocates at least one page,
3638	 * we save space by using a common buffer for the AR request/
3639	 * response descriptors and the self IDs buffer.
3640	 */
3641	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3642	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3643	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3644					       PAGE_SIZE,
3645					       &ohci->misc_buffer_bus,
3646					       GFP_KERNEL);
3647	if (!ohci->misc_buffer) {
3648		err = -ENOMEM;
3649		goto fail_iounmap;
3650	}
3651
3652	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3653			      OHCI1394_AsReqRcvContextControlSet);
3654	if (err < 0)
3655		goto fail_misc_buf;
3656
3657	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3658			      OHCI1394_AsRspRcvContextControlSet);
3659	if (err < 0)
3660		goto fail_arreq_ctx;
3661
3662	err = context_init(&ohci->at_request_ctx, ohci,
3663			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3664	if (err < 0)
3665		goto fail_arrsp_ctx;
3666
3667	err = context_init(&ohci->at_response_ctx, ohci,
3668			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3669	if (err < 0)
3670		goto fail_atreq_ctx;
3671
3672	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3673	ohci->ir_context_channels = ~0ULL;
3674	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3675	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3676	ohci->ir_context_mask = ohci->ir_context_support;
3677	ohci->n_ir = hweight32(ohci->ir_context_mask);
3678	size = sizeof(struct iso_context) * ohci->n_ir;
3679	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
 
 
3680
3681	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3682	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3683	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3684	if (!ohci->it_context_support) {
3685		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3686		ohci->it_context_support = 0xf;
3687	}
3688	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3689	ohci->it_context_mask = ohci->it_context_support;
3690	ohci->n_it = hweight32(ohci->it_context_mask);
3691	size = sizeof(struct iso_context) * ohci->n_it;
3692	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3693
3694	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3695		err = -ENOMEM;
3696		goto fail_contexts;
3697	}
3698
3699	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3700	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3701
3702	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3703	max_receive = (bus_options >> 12) & 0xf;
3704	link_speed = bus_options & 0x7;
3705	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3706		reg_read(ohci, OHCI1394_GUIDLo);
3707
3708	if (!(ohci->quirks & QUIRK_NO_MSI))
3709		pci_enable_msi(dev);
3710	if (request_irq(dev->irq, irq_handler,
3711			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3712			ohci_driver_name, ohci)) {
3713		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3714		err = -EIO;
3715		goto fail_msi;
3716	}
3717
3718	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3719	if (err)
3720		goto fail_irq;
3721
3722	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3723	ohci_notice(ohci,
3724		    "added OHCI v%x.%x device as card %d, "
3725		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3726		    version >> 16, version & 0xff, ohci->card.index,
3727		    ohci->n_ir, ohci->n_it, ohci->quirks,
3728		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3729			", physUB" : "");
3730
3731	return 0;
3732
3733 fail_irq:
3734	free_irq(dev->irq, ohci);
3735 fail_msi:
 
3736	pci_disable_msi(dev);
3737 fail_contexts:
3738	kfree(ohci->ir_context_list);
3739	kfree(ohci->it_context_list);
3740	context_release(&ohci->at_response_ctx);
3741 fail_atreq_ctx:
3742	context_release(&ohci->at_request_ctx);
3743 fail_arrsp_ctx:
3744	ar_context_release(&ohci->ar_response_ctx);
3745 fail_arreq_ctx:
3746	ar_context_release(&ohci->ar_request_ctx);
3747 fail_misc_buf:
3748	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3749			  ohci->misc_buffer, ohci->misc_buffer_bus);
3750 fail_iounmap:
3751	pci_iounmap(dev, ohci->registers);
3752 fail_iomem:
3753	pci_release_region(dev, 0);
3754 fail_disable:
3755	pci_disable_device(dev);
3756 fail_free:
3757	kfree(ohci);
3758	pmac_ohci_off(dev);
3759 fail:
3760	return err;
3761}
3762
3763static void pci_remove(struct pci_dev *dev)
3764{
3765	struct fw_ohci *ohci = pci_get_drvdata(dev);
3766
3767	/*
3768	 * If the removal is happening from the suspend state, LPS won't be
3769	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3770	 */
3771	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3772		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3773		flush_writes(ohci);
3774	}
3775	cancel_work_sync(&ohci->bus_reset_work);
3776	fw_core_remove_card(&ohci->card);
3777
3778	/*
3779	 * FIXME: Fail all pending packets here, now that the upper
3780	 * layers can't queue any more.
3781	 */
3782
3783	software_reset(ohci);
3784	free_irq(dev->irq, ohci);
3785
3786	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3787		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3788				  ohci->next_config_rom, ohci->next_config_rom_bus);
3789	if (ohci->config_rom)
3790		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3791				  ohci->config_rom, ohci->config_rom_bus);
3792	ar_context_release(&ohci->ar_request_ctx);
3793	ar_context_release(&ohci->ar_response_ctx);
3794	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3795			  ohci->misc_buffer, ohci->misc_buffer_bus);
3796	context_release(&ohci->at_request_ctx);
3797	context_release(&ohci->at_response_ctx);
3798	kfree(ohci->it_context_list);
3799	kfree(ohci->ir_context_list);
3800	pci_disable_msi(dev);
3801	pci_iounmap(dev, ohci->registers);
3802	pci_release_region(dev, 0);
3803	pci_disable_device(dev);
3804	kfree(ohci);
3805	pmac_ohci_off(dev);
3806
3807	dev_notice(&dev->dev, "removed fw-ohci device\n");
3808}
3809
3810#ifdef CONFIG_PM
3811static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812{
3813	struct fw_ohci *ohci = pci_get_drvdata(dev);
3814	int err;
3815
3816	software_reset(ohci);
3817	err = pci_save_state(dev);
3818	if (err) {
3819		ohci_err(ohci, "pci_save_state failed\n");
3820		return err;
3821	}
3822	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823	if (err)
3824		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825	pmac_ohci_off(dev);
3826
3827	return 0;
3828}
3829
3830static int pci_resume(struct pci_dev *dev)
3831{
3832	struct fw_ohci *ohci = pci_get_drvdata(dev);
3833	int err;
3834
3835	pmac_ohci_on(dev);
3836	pci_set_power_state(dev, PCI_D0);
3837	pci_restore_state(dev);
3838	err = pci_enable_device(dev);
3839	if (err) {
3840		ohci_err(ohci, "pci_enable_device failed\n");
3841		return err;
3842	}
3843
3844	/* Some systems don't setup GUID register on resume from ram  */
3845	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846					!reg_read(ohci, OHCI1394_GUIDHi)) {
3847		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849	}
3850
3851	err = ohci_enable(&ohci->card, NULL, 0);
3852	if (err)
3853		return err;
3854
3855	ohci_resume_iso_dma(ohci);
3856
3857	return 0;
3858}
3859#endif
3860
3861static const struct pci_device_id pci_table[] = {
3862	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863	{ }
3864};
3865
3866MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868static struct pci_driver fw_ohci_pci_driver = {
3869	.name		= ohci_driver_name,
3870	.id_table	= pci_table,
3871	.probe		= pci_probe,
3872	.remove		= pci_remove,
3873#ifdef CONFIG_PM
3874	.resume		= pci_resume,
3875	.suspend	= pci_suspend,
3876#endif
3877};
3878
3879static int __init fw_ohci_init(void)
3880{
3881	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882	if (!selfid_workqueue)
3883		return -ENOMEM;
3884
3885	return pci_register_driver(&fw_ohci_pci_driver);
3886}
3887
3888static void __exit fw_ohci_cleanup(void)
3889{
3890	pci_unregister_driver(&fw_ohci_pci_driver);
3891	destroy_workqueue(selfid_workqueue);
3892}
3893
3894module_init(fw_ohci_init);
3895module_exit(fw_ohci_cleanup);
3896
3897MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899MODULE_LICENSE("GPL");
3900
3901/* Provide a module alias so root-on-sbp2 initrds don't break. */
3902MODULE_ALIAS("ohci1394");