Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43
  44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE		0
  49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  52#define DESCRIPTOR_STATUS		(1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  54#define DESCRIPTOR_PING			(1 << 7)
  55#define DESCRIPTOR_YY			(1 << 6)
  56#define DESCRIPTOR_NO_IRQ		(0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  60#define DESCRIPTOR_WAIT			(3 << 0)
  61
  62#define DESCRIPTOR_CMD			(0xf << 12)
  63
  64struct descriptor {
  65	__le16 req_count;
  66	__le16 control;
  67	__le32 data_address;
  68	__le32 branch_address;
  69	__le16 res_count;
  70	__le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)	(regs)
  74#define CONTROL_CLEAR(regs)	((regs) + 4)
  75#define COMMAND_PTR(regs)	((regs) + 12)
  76#define CONTEXT_MATCH(regs)	((regs) + 16)
  77
  78#define AR_BUFFER_SIZE	(32*1024)
  79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD	4096
  84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88	struct fw_ohci *ohci;
  89	struct page *pages[AR_BUFFERS];
  90	void *buffer;
  91	struct descriptor *descriptors;
  92	dma_addr_t descriptors_bus;
  93	void *pointer;
  94	unsigned int last_buffer_index;
  95	u32 regs;
  96	struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102				     struct descriptor *d,
 103				     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110	struct list_head list;
 111	dma_addr_t buffer_bus;
 112	size_t buffer_size;
 113	size_t used;
 114	struct descriptor buffer[];
 115};
 116
 117struct context {
 118	struct fw_ohci *ohci;
 119	u32 regs;
 120	int total_allocation;
 121	u32 current_bus;
 122	bool running;
 123	bool flushing;
 124
 125	/*
 126	 * List of page-sized buffers for storing DMA descriptors.
 127	 * Head of list contains buffers in use and tail of list contains
 128	 * free buffers.
 129	 */
 130	struct list_head buffer_list;
 131
 132	/*
 133	 * Pointer to a buffer inside buffer_list that contains the tail
 134	 * end of the current DMA program.
 135	 */
 136	struct descriptor_buffer *buffer_tail;
 137
 138	/*
 139	 * The descriptor containing the branch address of the first
 140	 * descriptor that has not yet been filled by the device.
 141	 */
 142	struct descriptor *last;
 143
 144	/*
 145	 * The last descriptor block in the DMA program. It contains the branch
 146	 * address that must be updated upon appending a new descriptor.
 147	 */
 148	struct descriptor *prev;
 149	int prev_z;
 150
 151	descriptor_callback_t callback;
 152
 153	struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164	struct fw_iso_context base;
 165	struct context context;
 166	void *header;
 167	size_t header_length;
 168	unsigned long flushing_completions;
 169	u32 mc_buffer_bus;
 170	u16 mc_completed;
 171	u16 last_timestamp;
 172	u8 sync;
 173	u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179	struct fw_card card;
 180
 181	__iomem char *registers;
 182	int node_id;
 183	int generation;
 184	int request_generation;	/* for timestamping incoming requests */
 185	unsigned quirks;
 186	unsigned int pri_req_max;
 187	u32 bus_time;
 188	bool bus_time_running;
 189	bool is_root;
 190	bool csr_state_setclear_abdicate;
 191	int n_ir;
 192	int n_it;
 193	/*
 194	 * Spinlock for accessing fw_ohci data.  Never call out of
 195	 * this driver with this lock held.
 196	 */
 197	spinlock_t lock;
 198
 199	struct mutex phy_reg_mutex;
 200
 201	void *misc_buffer;
 202	dma_addr_t misc_buffer_bus;
 203
 204	struct ar_context ar_request_ctx;
 205	struct ar_context ar_response_ctx;
 206	struct context at_request_ctx;
 207	struct context at_response_ctx;
 208
 209	u32 it_context_support;
 210	u32 it_context_mask;     /* unoccupied IT contexts */
 211	struct iso_context *it_context_list;
 212	u64 ir_context_channels; /* unoccupied channels */
 213	u32 ir_context_support;
 214	u32 ir_context_mask;     /* unoccupied IR contexts */
 215	struct iso_context *ir_context_list;
 216	u64 mc_channels; /* channels in use by the multichannel IR context */
 217	bool mc_allocated;
 218
 219	__be32    *config_rom;
 220	dma_addr_t config_rom_bus;
 221	__be32    *next_config_rom;
 222	dma_addr_t next_config_rom_bus;
 223	__be32     next_header;
 224
 225	__le32    *self_id;
 226	dma_addr_t self_id_bus;
 227	struct work_struct bus_reset_work;
 228
 229	u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 396#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 397
 398static int param_debug;
 399module_param_named(debug, param_debug, int, 0644);
 400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 401	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 402	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 403	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 404	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 405	", or a combination, or all = -1)");
 406
 407static bool param_remote_dma;
 408module_param_named(remote_dma, param_remote_dma, bool, 0444);
 409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 410
 411static void log_irqs(struct fw_ohci *ohci, u32 evt)
 412{
 413	if (likely(!(param_debug &
 414			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 415		return;
 416
 417	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 418	    !(evt & OHCI1394_busReset))
 419		return;
 420
 421	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 422	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 423	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 424	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 425	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 426	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 427	    evt & OHCI1394_isochRx		? " IR"			: "",
 428	    evt & OHCI1394_isochTx		? " IT"			: "",
 429	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 430	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 431	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 432	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 433	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 434	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 435	    evt & OHCI1394_busReset		? " busReset"		: "",
 436	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 437		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 438		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 439		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 440		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 441		    OHCI1394_cycleInconsistent |
 442		    OHCI1394_regAccessFail | OHCI1394_busReset)
 443						? " ?"			: "");
 444}
 445
 446static const char *speed[] = {
 447	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 448};
 449static const char *power[] = {
 450	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 451	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 452};
 453static const char port[] = { '.', '-', 'p', 'c', };
 454
 455static char _p(u32 *s, int shift)
 456{
 457	return port[*s >> shift & 3];
 458}
 459
 460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 461{
 462	u32 *s;
 463
 464	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 465		return;
 466
 467	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 468		    self_id_count, generation, ohci->node_id);
 469
 470	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 471		if ((*s & 1 << 23) == 0)
 472			ohci_notice(ohci,
 473			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 474			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 475			    speed[*s >> 14 & 3], *s >> 16 & 63,
 476			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 477			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 478		else
 479			ohci_notice(ohci,
 480			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 481			    *s, *s >> 24 & 63,
 482			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 483			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 484}
 485
 486static const char *evts[] = {
 487	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 488	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 489	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 490	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 491	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 492	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 493	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 494	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 495	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 496	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 497	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 498	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 499	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 500	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 501	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 502	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 503	[0x20] = "pending/cancelled",
 504};
 505static const char *tcodes[] = {
 506	[0x0] = "QW req",		[0x1] = "BW req",
 507	[0x2] = "W resp",		[0x3] = "-reserved-",
 508	[0x4] = "QR req",		[0x5] = "BR req",
 509	[0x6] = "QR resp",		[0x7] = "BR resp",
 510	[0x8] = "cycle start",		[0x9] = "Lk req",
 511	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 512	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 513	[0xe] = "link internal",	[0xf] = "-reserved-",
 514};
 515
 516static void log_ar_at_event(struct fw_ohci *ohci,
 517			    char dir, int speed, u32 *header, int evt)
 518{
 519	int tcode = header[0] >> 4 & 0xf;
 520	char specific[12];
 521
 522	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 523		return;
 524
 525	if (unlikely(evt >= ARRAY_SIZE(evts)))
 526			evt = 0x1f;
 527
 528	if (evt == OHCI1394_evt_bus_reset) {
 529		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 530			    dir, (header[2] >> 16) & 0xff);
 531		return;
 532	}
 533
 534	switch (tcode) {
 535	case 0x0: case 0x6: case 0x8:
 536		snprintf(specific, sizeof(specific), " = %08x",
 537			 be32_to_cpu((__force __be32)header[3]));
 538		break;
 539	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 540		snprintf(specific, sizeof(specific), " %x,%x",
 541			 header[3] >> 16, header[3] & 0xffff);
 542		break;
 543	default:
 544		specific[0] = '\0';
 545	}
 546
 547	switch (tcode) {
 548	case 0xa:
 549		ohci_notice(ohci, "A%c %s, %s\n",
 550			    dir, evts[evt], tcodes[tcode]);
 551		break;
 552	case 0xe:
 553		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 554			    dir, evts[evt], header[1], header[2]);
 555		break;
 556	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 557		ohci_notice(ohci,
 558			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 559			    dir, speed, header[0] >> 10 & 0x3f,
 560			    header[1] >> 16, header[0] >> 16, evts[evt],
 561			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 562		break;
 563	default:
 564		ohci_notice(ohci,
 565			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 566			    dir, speed, header[0] >> 10 & 0x3f,
 567			    header[1] >> 16, header[0] >> 16, evts[evt],
 568			    tcodes[tcode], specific);
 569	}
 570}
 571
 572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 573{
 574	writel(data, ohci->registers + offset);
 575}
 576
 577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 578{
 579	return readl(ohci->registers + offset);
 580}
 581
 582static inline void flush_writes(const struct fw_ohci *ohci)
 583{
 584	/* Do a dummy read to flush writes. */
 585	reg_read(ohci, OHCI1394_Version);
 586}
 587
 588/*
 589 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 592 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 593 */
 594static int read_phy_reg(struct fw_ohci *ohci, int addr)
 595{
 596	u32 val;
 597	int i;
 598
 599	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 600	for (i = 0; i < 3 + 100; i++) {
 601		val = reg_read(ohci, OHCI1394_PhyControl);
 602		if (!~val)
 603			return -ENODEV; /* Card was ejected. */
 604
 605		if (val & OHCI1394_PhyControl_ReadDone)
 606			return OHCI1394_PhyControl_ReadData(val);
 607
 608		/*
 609		 * Try a few times without waiting.  Sleeping is necessary
 610		 * only when the link/PHY interface is busy.
 611		 */
 612		if (i >= 3)
 613			msleep(1);
 614	}
 615	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 616	dump_stack();
 617
 618	return -EBUSY;
 619}
 620
 621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 622{
 623	int i;
 624
 625	reg_write(ohci, OHCI1394_PhyControl,
 626		  OHCI1394_PhyControl_Write(addr, val));
 627	for (i = 0; i < 3 + 100; i++) {
 628		val = reg_read(ohci, OHCI1394_PhyControl);
 629		if (!~val)
 630			return -ENODEV; /* Card was ejected. */
 631
 632		if (!(val & OHCI1394_PhyControl_WritePending))
 633			return 0;
 634
 635		if (i >= 3)
 636			msleep(1);
 637	}
 638	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 639	dump_stack();
 640
 641	return -EBUSY;
 642}
 643
 644static int update_phy_reg(struct fw_ohci *ohci, int addr,
 645			  int clear_bits, int set_bits)
 646{
 647	int ret = read_phy_reg(ohci, addr);
 648	if (ret < 0)
 649		return ret;
 650
 651	/*
 652	 * The interrupt status bits are cleared by writing a one bit.
 653	 * Avoid clearing them unless explicitly requested in set_bits.
 654	 */
 655	if (addr == 5)
 656		clear_bits |= PHY_INT_STATUS_BITS;
 657
 658	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 659}
 660
 661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 662{
 663	int ret;
 664
 665	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 666	if (ret < 0)
 667		return ret;
 668
 669	return read_phy_reg(ohci, addr);
 670}
 671
 672static int ohci_read_phy_reg(struct fw_card *card, int addr)
 673{
 674	struct fw_ohci *ohci = fw_ohci(card);
 675	int ret;
 676
 677	mutex_lock(&ohci->phy_reg_mutex);
 678	ret = read_phy_reg(ohci, addr);
 679	mutex_unlock(&ohci->phy_reg_mutex);
 680
 681	return ret;
 682}
 683
 684static int ohci_update_phy_reg(struct fw_card *card, int addr,
 685			       int clear_bits, int set_bits)
 686{
 687	struct fw_ohci *ohci = fw_ohci(card);
 688	int ret;
 689
 690	mutex_lock(&ohci->phy_reg_mutex);
 691	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 692	mutex_unlock(&ohci->phy_reg_mutex);
 693
 694	return ret;
 695}
 696
 697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 698{
 699	return page_private(ctx->pages[i]);
 700}
 701
 702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 703{
 704	struct descriptor *d;
 705
 706	d = &ctx->descriptors[index];
 707	d->branch_address  &= cpu_to_le32(~0xf);
 708	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 709	d->transfer_status =  0;
 710
 711	wmb(); /* finish init of new descriptors before branch_address update */
 712	d = &ctx->descriptors[ctx->last_buffer_index];
 713	d->branch_address  |= cpu_to_le32(1);
 714
 715	ctx->last_buffer_index = index;
 716
 717	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 718}
 719
 720static void ar_context_release(struct ar_context *ctx)
 721{
 722	struct device *dev = ctx->ohci->card.device;
 723	unsigned int i;
 724
 725	if (!ctx->buffer)
 726		return;
 727
 728	vunmap(ctx->buffer);
 729
 730	for (i = 0; i < AR_BUFFERS; i++) {
 731		if (ctx->pages[i])
 732			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 733				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 734	}
 
 
 735}
 736
 737static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 738{
 739	struct fw_ohci *ohci = ctx->ohci;
 740
 741	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 742		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 743		flush_writes(ohci);
 744
 745		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 746	}
 747	/* FIXME: restart? */
 748}
 749
 750static inline unsigned int ar_next_buffer_index(unsigned int index)
 751{
 752	return (index + 1) % AR_BUFFERS;
 753}
 754
 755static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 756{
 757	return ar_next_buffer_index(ctx->last_buffer_index);
 758}
 759
 760/*
 761 * We search for the buffer that contains the last AR packet DMA data written
 762 * by the controller.
 763 */
 764static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 765						 unsigned int *buffer_offset)
 766{
 767	unsigned int i, next_i, last = ctx->last_buffer_index;
 768	__le16 res_count, next_res_count;
 769
 770	i = ar_first_buffer_index(ctx);
 771	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 772
 773	/* A buffer that is not yet completely filled must be the last one. */
 774	while (i != last && res_count == 0) {
 775
 776		/* Peek at the next descriptor. */
 777		next_i = ar_next_buffer_index(i);
 778		rmb(); /* read descriptors in order */
 779		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 780		/*
 781		 * If the next descriptor is still empty, we must stop at this
 782		 * descriptor.
 783		 */
 784		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 785			/*
 786			 * The exception is when the DMA data for one packet is
 787			 * split over three buffers; in this case, the middle
 788			 * buffer's descriptor might be never updated by the
 789			 * controller and look still empty, and we have to peek
 790			 * at the third one.
 791			 */
 792			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 793				next_i = ar_next_buffer_index(next_i);
 794				rmb();
 795				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 796				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 797					goto next_buffer_is_active;
 798			}
 799
 800			break;
 801		}
 802
 803next_buffer_is_active:
 804		i = next_i;
 805		res_count = next_res_count;
 806	}
 807
 808	rmb(); /* read res_count before the DMA data */
 809
 810	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 811	if (*buffer_offset > PAGE_SIZE) {
 812		*buffer_offset = 0;
 813		ar_context_abort(ctx, "corrupted descriptor");
 814	}
 815
 816	return i;
 817}
 818
 819static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 820				    unsigned int end_buffer_index,
 821				    unsigned int end_buffer_offset)
 822{
 823	unsigned int i;
 824
 825	i = ar_first_buffer_index(ctx);
 826	while (i != end_buffer_index) {
 827		dma_sync_single_for_cpu(ctx->ohci->card.device,
 828					ar_buffer_bus(ctx, i),
 829					PAGE_SIZE, DMA_FROM_DEVICE);
 830		i = ar_next_buffer_index(i);
 831	}
 832	if (end_buffer_offset > 0)
 833		dma_sync_single_for_cpu(ctx->ohci->card.device,
 834					ar_buffer_bus(ctx, i),
 835					end_buffer_offset, DMA_FROM_DEVICE);
 836}
 837
 838#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 839#define cond_le32_to_cpu(v) \
 840	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 841#else
 842#define cond_le32_to_cpu(v) le32_to_cpu(v)
 843#endif
 844
 845static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 846{
 847	struct fw_ohci *ohci = ctx->ohci;
 848	struct fw_packet p;
 849	u32 status, length, tcode;
 850	int evt;
 851
 852	p.header[0] = cond_le32_to_cpu(buffer[0]);
 853	p.header[1] = cond_le32_to_cpu(buffer[1]);
 854	p.header[2] = cond_le32_to_cpu(buffer[2]);
 855
 856	tcode = (p.header[0] >> 4) & 0x0f;
 857	switch (tcode) {
 858	case TCODE_WRITE_QUADLET_REQUEST:
 859	case TCODE_READ_QUADLET_RESPONSE:
 860		p.header[3] = (__force __u32) buffer[3];
 861		p.header_length = 16;
 862		p.payload_length = 0;
 863		break;
 864
 865	case TCODE_READ_BLOCK_REQUEST :
 866		p.header[3] = cond_le32_to_cpu(buffer[3]);
 867		p.header_length = 16;
 868		p.payload_length = 0;
 869		break;
 870
 871	case TCODE_WRITE_BLOCK_REQUEST:
 872	case TCODE_READ_BLOCK_RESPONSE:
 873	case TCODE_LOCK_REQUEST:
 874	case TCODE_LOCK_RESPONSE:
 875		p.header[3] = cond_le32_to_cpu(buffer[3]);
 876		p.header_length = 16;
 877		p.payload_length = p.header[3] >> 16;
 878		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 879			ar_context_abort(ctx, "invalid packet length");
 880			return NULL;
 881		}
 882		break;
 883
 884	case TCODE_WRITE_RESPONSE:
 885	case TCODE_READ_QUADLET_REQUEST:
 886	case OHCI_TCODE_PHY_PACKET:
 887		p.header_length = 12;
 888		p.payload_length = 0;
 889		break;
 890
 891	default:
 892		ar_context_abort(ctx, "invalid tcode");
 893		return NULL;
 894	}
 895
 896	p.payload = (void *) buffer + p.header_length;
 897
 898	/* FIXME: What to do about evt_* errors? */
 899	length = (p.header_length + p.payload_length + 3) / 4;
 900	status = cond_le32_to_cpu(buffer[length]);
 901	evt    = (status >> 16) & 0x1f;
 902
 903	p.ack        = evt - 16;
 904	p.speed      = (status >> 21) & 0x7;
 905	p.timestamp  = status & 0xffff;
 906	p.generation = ohci->request_generation;
 907
 908	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 909
 910	/*
 911	 * Several controllers, notably from NEC and VIA, forget to
 912	 * write ack_complete status at PHY packet reception.
 913	 */
 914	if (evt == OHCI1394_evt_no_status &&
 915	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 916		p.ack = ACK_COMPLETE;
 917
 918	/*
 919	 * The OHCI bus reset handler synthesizes a PHY packet with
 920	 * the new generation number when a bus reset happens (see
 921	 * section 8.4.2.3).  This helps us determine when a request
 922	 * was received and make sure we send the response in the same
 923	 * generation.  We only need this for requests; for responses
 924	 * we use the unique tlabel for finding the matching
 925	 * request.
 926	 *
 927	 * Alas some chips sometimes emit bus reset packets with a
 928	 * wrong generation.  We set the correct generation for these
 929	 * at a slightly incorrect time (in bus_reset_work).
 930	 */
 931	if (evt == OHCI1394_evt_bus_reset) {
 932		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 933			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 934	} else if (ctx == &ohci->ar_request_ctx) {
 935		fw_core_handle_request(&ohci->card, &p);
 936	} else {
 937		fw_core_handle_response(&ohci->card, &p);
 938	}
 939
 940	return buffer + length + 1;
 941}
 942
 943static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 944{
 945	void *next;
 946
 947	while (p < end) {
 948		next = handle_ar_packet(ctx, p);
 949		if (!next)
 950			return p;
 951		p = next;
 952	}
 953
 954	return p;
 955}
 956
 957static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 958{
 959	unsigned int i;
 960
 961	i = ar_first_buffer_index(ctx);
 962	while (i != end_buffer) {
 963		dma_sync_single_for_device(ctx->ohci->card.device,
 964					   ar_buffer_bus(ctx, i),
 965					   PAGE_SIZE, DMA_FROM_DEVICE);
 966		ar_context_link_page(ctx, i);
 967		i = ar_next_buffer_index(i);
 968	}
 969}
 970
 971static void ar_context_tasklet(unsigned long data)
 972{
 973	struct ar_context *ctx = (struct ar_context *)data;
 974	unsigned int end_buffer_index, end_buffer_offset;
 975	void *p, *end;
 976
 977	p = ctx->pointer;
 978	if (!p)
 979		return;
 980
 981	end_buffer_index = ar_search_last_active_buffer(ctx,
 982							&end_buffer_offset);
 983	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 984	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 985
 986	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 987		/*
 988		 * The filled part of the overall buffer wraps around; handle
 989		 * all packets up to the buffer end here.  If the last packet
 990		 * wraps around, its tail will be visible after the buffer end
 991		 * because the buffer start pages are mapped there again.
 992		 */
 993		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 994		p = handle_ar_packets(ctx, p, buffer_end);
 995		if (p < buffer_end)
 996			goto error;
 997		/* adjust p to point back into the actual buffer */
 998		p -= AR_BUFFERS * PAGE_SIZE;
 999	}
1000
1001	p = handle_ar_packets(ctx, p, end);
1002	if (p != end) {
1003		if (p > end)
1004			ar_context_abort(ctx, "inconsistent descriptor");
1005		goto error;
1006	}
1007
1008	ctx->pointer = p;
1009	ar_recycle_buffers(ctx, end_buffer_index);
1010
1011	return;
1012
1013error:
1014	ctx->pointer = NULL;
1015}
1016
1017static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018			   unsigned int descriptors_offset, u32 regs)
1019{
1020	struct device *dev = ohci->card.device;
1021	unsigned int i;
1022	dma_addr_t dma_addr;
1023	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024	struct descriptor *d;
1025
1026	ctx->regs        = regs;
1027	ctx->ohci        = ohci;
1028	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030	for (i = 0; i < AR_BUFFERS; i++) {
1031		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032						DMA_FROM_DEVICE, GFP_KERNEL);
1033		if (!ctx->pages[i])
1034			goto out_of_memory;
 
 
 
 
 
 
 
1035		set_page_private(ctx->pages[i], dma_addr);
1036		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037					   DMA_FROM_DEVICE);
1038	}
1039
1040	for (i = 0; i < AR_BUFFERS; i++)
1041		pages[i]              = ctx->pages[i];
1042	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043		pages[AR_BUFFERS + i] = ctx->pages[i];
1044	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045	if (!ctx->buffer)
1046		goto out_of_memory;
1047
1048	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051	for (i = 0; i < AR_BUFFERS; i++) {
1052		d = &ctx->descriptors[i];
1053		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055						DESCRIPTOR_STATUS |
1056						DESCRIPTOR_BRANCH_ALWAYS);
1057		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060	}
1061
1062	return 0;
1063
1064out_of_memory:
1065	ar_context_release(ctx);
1066
1067	return -ENOMEM;
1068}
1069
1070static void ar_context_run(struct ar_context *ctx)
1071{
1072	unsigned int i;
1073
1074	for (i = 0; i < AR_BUFFERS; i++)
1075		ar_context_link_page(ctx, i);
1076
1077	ctx->pointer = ctx->buffer;
1078
1079	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081}
1082
1083static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084{
1085	__le16 branch;
1086
1087	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089	/* figure out which descriptor the branch address goes in */
1090	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091		return d;
1092	else
1093		return d + z - 1;
1094}
1095
1096static void context_tasklet(unsigned long data)
1097{
1098	struct context *ctx = (struct context *) data;
1099	struct descriptor *d, *last;
1100	u32 address;
1101	int z;
1102	struct descriptor_buffer *desc;
1103
1104	desc = list_entry(ctx->buffer_list.next,
1105			struct descriptor_buffer, list);
1106	last = ctx->last;
1107	while (last->branch_address != 0) {
1108		struct descriptor_buffer *old_desc = desc;
1109		address = le32_to_cpu(last->branch_address);
1110		z = address & 0xf;
1111		address &= ~0xf;
1112		ctx->current_bus = address;
1113
1114		/* If the branch address points to a buffer outside of the
1115		 * current buffer, advance to the next buffer. */
1116		if (address < desc->buffer_bus ||
1117				address >= desc->buffer_bus + desc->used)
1118			desc = list_entry(desc->list.next,
1119					struct descriptor_buffer, list);
1120		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121		last = find_branch_descriptor(d, z);
1122
1123		if (!ctx->callback(ctx, d, last))
1124			break;
1125
1126		if (old_desc != desc) {
1127			/* If we've advanced to the next buffer, move the
1128			 * previous buffer to the free list. */
1129			unsigned long flags;
1130			old_desc->used = 0;
1131			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134		}
1135		ctx->last = last;
1136	}
1137}
1138
1139/*
1140 * Allocate a new buffer and add it to the list of free buffers for this
1141 * context.  Must be called with ohci->lock held.
1142 */
1143static int context_add_buffer(struct context *ctx)
1144{
1145	struct descriptor_buffer *desc;
1146	dma_addr_t bus_addr;
1147	int offset;
1148
1149	/*
1150	 * 16MB of descriptors should be far more than enough for any DMA
1151	 * program.  This will catch run-away userspace or DoS attacks.
1152	 */
1153	if (ctx->total_allocation >= 16*1024*1024)
1154		return -ENOMEM;
1155
1156	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
 
1157	if (!desc)
1158		return -ENOMEM;
1159
1160	offset = (void *)&desc->buffer - (void *)desc;
1161	/*
1162	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165	 * Work around this by always leaving at least 0x10 bytes of padding.
1166	 */
1167	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168	desc->buffer_bus = bus_addr + offset;
1169	desc->used = 0;
1170
1171	list_add_tail(&desc->list, &ctx->buffer_list);
1172	ctx->total_allocation += PAGE_SIZE;
1173
1174	return 0;
1175}
1176
1177static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178			u32 regs, descriptor_callback_t callback)
1179{
1180	ctx->ohci = ohci;
1181	ctx->regs = regs;
1182	ctx->total_allocation = 0;
1183
1184	INIT_LIST_HEAD(&ctx->buffer_list);
1185	if (context_add_buffer(ctx) < 0)
1186		return -ENOMEM;
1187
1188	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189			struct descriptor_buffer, list);
1190
1191	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192	ctx->callback = callback;
1193
1194	/*
1195	 * We put a dummy descriptor in the buffer that has a NULL
1196	 * branch address and looks like it's been sent.  That way we
1197	 * have a descriptor to append DMA programs to.
1198	 */
1199	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203	ctx->last = ctx->buffer_tail->buffer;
1204	ctx->prev = ctx->buffer_tail->buffer;
1205	ctx->prev_z = 1;
1206
1207	return 0;
1208}
1209
1210static void context_release(struct context *ctx)
1211{
1212	struct fw_card *card = &ctx->ohci->card;
1213	struct descriptor_buffer *desc, *tmp;
1214
1215	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218	}
1219}
1220
1221/* Must be called with ohci->lock held */
1222static struct descriptor *context_get_descriptors(struct context *ctx,
1223						  int z, dma_addr_t *d_bus)
1224{
1225	struct descriptor *d = NULL;
1226	struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228	if (z * sizeof(*d) > desc->buffer_size)
1229		return NULL;
1230
1231	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232		/* No room for the descriptor in this buffer, so advance to the
1233		 * next one. */
1234
1235		if (desc->list.next == &ctx->buffer_list) {
1236			/* If there is no free buffer next in the list,
1237			 * allocate one. */
1238			if (context_add_buffer(ctx) < 0)
1239				return NULL;
1240		}
1241		desc = list_entry(desc->list.next,
1242				struct descriptor_buffer, list);
1243		ctx->buffer_tail = desc;
1244	}
1245
1246	d = desc->buffer + desc->used / sizeof(*d);
1247	memset(d, 0, z * sizeof(*d));
1248	*d_bus = desc->buffer_bus + desc->used;
1249
1250	return d;
1251}
1252
1253static void context_run(struct context *ctx, u32 extra)
1254{
1255	struct fw_ohci *ohci = ctx->ohci;
1256
1257	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258		  le32_to_cpu(ctx->last->branch_address));
1259	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261	ctx->running = true;
1262	flush_writes(ohci);
1263}
1264
1265static void context_append(struct context *ctx,
1266			   struct descriptor *d, int z, int extra)
1267{
1268	dma_addr_t d_bus;
1269	struct descriptor_buffer *desc = ctx->buffer_tail;
1270	struct descriptor *d_branch;
1271
1272	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274	desc->used += (z + extra) * sizeof(*d);
1275
1276	wmb(); /* finish init of new descriptors before branch_address update */
1277
1278	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281	/*
1282	 * VT6306 incorrectly checks only the single descriptor at the
1283	 * CommandPtr when the wake bit is written, so if it's a
1284	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285	 * the branch address in the first descriptor.
1286	 *
1287	 * Not doing this for transmit contexts since not sure how it interacts
1288	 * with skip addresses.
1289	 */
1290	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291	    d_branch != ctx->prev &&
1292	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295	}
1296
1297	ctx->prev = d;
1298	ctx->prev_z = z;
1299}
1300
1301static void context_stop(struct context *ctx)
1302{
1303	struct fw_ohci *ohci = ctx->ohci;
1304	u32 reg;
1305	int i;
1306
1307	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308	ctx->running = false;
1309
1310	for (i = 0; i < 1000; i++) {
1311		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312		if ((reg & CONTEXT_ACTIVE) == 0)
1313			return;
1314
1315		if (i)
1316			udelay(10);
1317	}
1318	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319}
1320
1321struct driver_data {
1322	u8 inline_data[8];
1323	struct fw_packet *packet;
1324};
1325
1326/*
1327 * This function apppends a packet to the DMA queue for transmission.
1328 * Must always be called with the ochi->lock held to ensure proper
1329 * generation handling and locking around packet queue manipulation.
1330 */
1331static int at_context_queue_packet(struct context *ctx,
1332				   struct fw_packet *packet)
1333{
1334	struct fw_ohci *ohci = ctx->ohci;
1335	dma_addr_t d_bus, payload_bus;
1336	struct driver_data *driver_data;
1337	struct descriptor *d, *last;
1338	__le32 *header;
1339	int z, tcode;
1340
1341	d = context_get_descriptors(ctx, 4, &d_bus);
1342	if (d == NULL) {
1343		packet->ack = RCODE_SEND_ERROR;
1344		return -1;
1345	}
1346
1347	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348	d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350	/*
1351	 * The DMA format for asynchronous link packets is different
1352	 * from the IEEE1394 layout, so shift the fields around
1353	 * accordingly.
1354	 */
1355
1356	tcode = (packet->header[0] >> 4) & 0x0f;
1357	header = (__le32 *) &d[1];
1358	switch (tcode) {
1359	case TCODE_WRITE_QUADLET_REQUEST:
1360	case TCODE_WRITE_BLOCK_REQUEST:
1361	case TCODE_WRITE_RESPONSE:
1362	case TCODE_READ_QUADLET_REQUEST:
1363	case TCODE_READ_BLOCK_REQUEST:
1364	case TCODE_READ_QUADLET_RESPONSE:
1365	case TCODE_READ_BLOCK_RESPONSE:
1366	case TCODE_LOCK_REQUEST:
1367	case TCODE_LOCK_RESPONSE:
1368		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369					(packet->speed << 16));
1370		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371					(packet->header[0] & 0xffff0000));
1372		header[2] = cpu_to_le32(packet->header[2]);
1373
1374		if (TCODE_IS_BLOCK_PACKET(tcode))
1375			header[3] = cpu_to_le32(packet->header[3]);
1376		else
1377			header[3] = (__force __le32) packet->header[3];
1378
1379		d[0].req_count = cpu_to_le16(packet->header_length);
1380		break;
1381
1382	case TCODE_LINK_INTERNAL:
1383		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384					(packet->speed << 16));
1385		header[1] = cpu_to_le32(packet->header[1]);
1386		header[2] = cpu_to_le32(packet->header[2]);
1387		d[0].req_count = cpu_to_le16(12);
1388
1389		if (is_ping_packet(&packet->header[1]))
1390			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391		break;
1392
1393	case TCODE_STREAM_DATA:
1394		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395					(packet->speed << 16));
1396		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397		d[0].req_count = cpu_to_le16(8);
1398		break;
1399
1400	default:
1401		/* BUG(); */
1402		packet->ack = RCODE_SEND_ERROR;
1403		return -1;
1404	}
1405
1406	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407	driver_data = (struct driver_data *) &d[3];
1408	driver_data->packet = packet;
1409	packet->driver_data = driver_data;
1410
1411	if (packet->payload_length > 0) {
1412		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413			payload_bus = dma_map_single(ohci->card.device,
1414						     packet->payload,
1415						     packet->payload_length,
1416						     DMA_TO_DEVICE);
1417			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418				packet->ack = RCODE_SEND_ERROR;
1419				return -1;
1420			}
1421			packet->payload_bus	= payload_bus;
1422			packet->payload_mapped	= true;
1423		} else {
1424			memcpy(driver_data->inline_data, packet->payload,
1425			       packet->payload_length);
1426			payload_bus = d_bus + 3 * sizeof(*d);
1427		}
1428
1429		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430		d[2].data_address = cpu_to_le32(payload_bus);
1431		last = &d[2];
1432		z = 3;
1433	} else {
1434		last = &d[0];
1435		z = 2;
1436	}
1437
1438	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439				     DESCRIPTOR_IRQ_ALWAYS |
1440				     DESCRIPTOR_BRANCH_ALWAYS);
1441
1442	/* FIXME: Document how the locking works. */
1443	if (ohci->generation != packet->generation) {
1444		if (packet->payload_mapped)
1445			dma_unmap_single(ohci->card.device, payload_bus,
1446					 packet->payload_length, DMA_TO_DEVICE);
1447		packet->ack = RCODE_GENERATION;
1448		return -1;
1449	}
1450
1451	context_append(ctx, d, z, 4 - z);
1452
1453	if (ctx->running)
1454		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455	else
1456		context_run(ctx, 0);
1457
1458	return 0;
1459}
1460
1461static void at_context_flush(struct context *ctx)
1462{
1463	tasklet_disable(&ctx->tasklet);
1464
1465	ctx->flushing = true;
1466	context_tasklet((unsigned long)ctx);
1467	ctx->flushing = false;
1468
1469	tasklet_enable(&ctx->tasklet);
1470}
1471
1472static int handle_at_packet(struct context *context,
1473			    struct descriptor *d,
1474			    struct descriptor *last)
1475{
1476	struct driver_data *driver_data;
1477	struct fw_packet *packet;
1478	struct fw_ohci *ohci = context->ohci;
1479	int evt;
1480
1481	if (last->transfer_status == 0 && !context->flushing)
1482		/* This descriptor isn't done yet, stop iteration. */
1483		return 0;
1484
1485	driver_data = (struct driver_data *) &d[3];
1486	packet = driver_data->packet;
1487	if (packet == NULL)
1488		/* This packet was cancelled, just continue. */
1489		return 1;
1490
1491	if (packet->payload_mapped)
1492		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493				 packet->payload_length, DMA_TO_DEVICE);
1494
1495	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496	packet->timestamp = le16_to_cpu(last->res_count);
1497
1498	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500	switch (evt) {
1501	case OHCI1394_evt_timeout:
1502		/* Async response transmit timed out. */
1503		packet->ack = RCODE_CANCELLED;
1504		break;
1505
1506	case OHCI1394_evt_flushed:
1507		/*
1508		 * The packet was flushed should give same error as
1509		 * when we try to use a stale generation count.
1510		 */
1511		packet->ack = RCODE_GENERATION;
1512		break;
1513
1514	case OHCI1394_evt_missing_ack:
1515		if (context->flushing)
1516			packet->ack = RCODE_GENERATION;
1517		else {
1518			/*
1519			 * Using a valid (current) generation count, but the
1520			 * node is not on the bus or not sending acks.
1521			 */
1522			packet->ack = RCODE_NO_ACK;
1523		}
1524		break;
1525
1526	case ACK_COMPLETE + 0x10:
1527	case ACK_PENDING + 0x10:
1528	case ACK_BUSY_X + 0x10:
1529	case ACK_BUSY_A + 0x10:
1530	case ACK_BUSY_B + 0x10:
1531	case ACK_DATA_ERROR + 0x10:
1532	case ACK_TYPE_ERROR + 0x10:
1533		packet->ack = evt - 0x10;
1534		break;
1535
1536	case OHCI1394_evt_no_status:
1537		if (context->flushing) {
1538			packet->ack = RCODE_GENERATION;
1539			break;
1540		}
1541		fallthrough;
1542
1543	default:
1544		packet->ack = RCODE_SEND_ERROR;
1545		break;
1546	}
1547
1548	packet->callback(packet, &ohci->card, packet->ack);
1549
1550	return 1;
1551}
1552
1553#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558
1559static void handle_local_rom(struct fw_ohci *ohci,
1560			     struct fw_packet *packet, u32 csr)
1561{
1562	struct fw_packet response;
1563	int tcode, length, i;
1564
1565	tcode = HEADER_GET_TCODE(packet->header[0]);
1566	if (TCODE_IS_BLOCK_PACKET(tcode))
1567		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568	else
1569		length = 4;
1570
1571	i = csr - CSR_CONFIG_ROM;
1572	if (i + length > CONFIG_ROM_SIZE) {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_ADDRESS_ERROR, NULL, 0);
1575	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1576		fw_fill_response(&response, packet->header,
1577				 RCODE_TYPE_ERROR, NULL, 0);
1578	} else {
1579		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580				 (void *) ohci->config_rom + i, length);
1581	}
1582
1583	fw_core_handle_response(&ohci->card, &response);
1584}
1585
1586static void handle_local_lock(struct fw_ohci *ohci,
1587			      struct fw_packet *packet, u32 csr)
1588{
1589	struct fw_packet response;
1590	int tcode, length, ext_tcode, sel, try;
1591	__be32 *payload, lock_old;
1592	u32 lock_arg, lock_data;
1593
1594	tcode = HEADER_GET_TCODE(packet->header[0]);
1595	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1596	payload = packet->payload;
1597	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1598
1599	if (tcode == TCODE_LOCK_REQUEST &&
1600	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1601		lock_arg = be32_to_cpu(payload[0]);
1602		lock_data = be32_to_cpu(payload[1]);
1603	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1604		lock_arg = 0;
1605		lock_data = 0;
1606	} else {
1607		fw_fill_response(&response, packet->header,
1608				 RCODE_TYPE_ERROR, NULL, 0);
1609		goto out;
1610	}
1611
1612	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1613	reg_write(ohci, OHCI1394_CSRData, lock_data);
1614	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1615	reg_write(ohci, OHCI1394_CSRControl, sel);
1616
1617	for (try = 0; try < 20; try++)
1618		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1619			lock_old = cpu_to_be32(reg_read(ohci,
1620							OHCI1394_CSRData));
1621			fw_fill_response(&response, packet->header,
1622					 RCODE_COMPLETE,
1623					 &lock_old, sizeof(lock_old));
1624			goto out;
1625		}
1626
1627	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1628	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1629
1630 out:
1631	fw_core_handle_response(&ohci->card, &response);
1632}
1633
1634static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1635{
1636	u64 offset, csr;
1637
1638	if (ctx == &ctx->ohci->at_request_ctx) {
1639		packet->ack = ACK_PENDING;
1640		packet->callback(packet, &ctx->ohci->card, packet->ack);
1641	}
1642
1643	offset =
1644		((unsigned long long)
1645		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1646		packet->header[2];
1647	csr = offset - CSR_REGISTER_BASE;
1648
1649	/* Handle config rom reads. */
1650	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1651		handle_local_rom(ctx->ohci, packet, csr);
1652	else switch (csr) {
1653	case CSR_BUS_MANAGER_ID:
1654	case CSR_BANDWIDTH_AVAILABLE:
1655	case CSR_CHANNELS_AVAILABLE_HI:
1656	case CSR_CHANNELS_AVAILABLE_LO:
1657		handle_local_lock(ctx->ohci, packet, csr);
1658		break;
1659	default:
1660		if (ctx == &ctx->ohci->at_request_ctx)
1661			fw_core_handle_request(&ctx->ohci->card, packet);
1662		else
1663			fw_core_handle_response(&ctx->ohci->card, packet);
1664		break;
1665	}
1666
1667	if (ctx == &ctx->ohci->at_response_ctx) {
1668		packet->ack = ACK_COMPLETE;
1669		packet->callback(packet, &ctx->ohci->card, packet->ack);
1670	}
1671}
1672
1673static u32 get_cycle_time(struct fw_ohci *ohci);
1674
1675static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676{
1677	unsigned long flags;
1678	int ret;
1679
1680	spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683	    ctx->ohci->generation == packet->generation) {
1684		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685
1686		// Timestamping on behalf of the hardware.
1687		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1688
1689		handle_local_request(ctx, packet);
1690		return;
1691	}
1692
1693	ret = at_context_queue_packet(ctx, packet);
1694	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1695
1696	if (ret < 0) {
1697		// Timestamping on behalf of the hardware.
1698		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1699
1700		packet->callback(packet, &ctx->ohci->card, packet->ack);
1701	}
1702}
1703
1704static void detect_dead_context(struct fw_ohci *ohci,
1705				const char *name, unsigned int regs)
1706{
1707	u32 ctl;
1708
1709	ctl = reg_read(ohci, CONTROL_SET(regs));
1710	if (ctl & CONTEXT_DEAD)
1711		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1712			name, evts[ctl & 0x1f]);
1713}
1714
1715static void handle_dead_contexts(struct fw_ohci *ohci)
1716{
1717	unsigned int i;
1718	char name[8];
1719
1720	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1721	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1722	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1723	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1724	for (i = 0; i < 32; ++i) {
1725		if (!(ohci->it_context_support & (1 << i)))
1726			continue;
1727		sprintf(name, "IT%u", i);
1728		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1729	}
1730	for (i = 0; i < 32; ++i) {
1731		if (!(ohci->ir_context_support & (1 << i)))
1732			continue;
1733		sprintf(name, "IR%u", i);
1734		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1735	}
1736	/* TODO: maybe try to flush and restart the dead contexts */
1737}
1738
1739static u32 cycle_timer_ticks(u32 cycle_timer)
1740{
1741	u32 ticks;
1742
1743	ticks = cycle_timer & 0xfff;
1744	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1745	ticks += (3072 * 8000) * (cycle_timer >> 25);
1746
1747	return ticks;
1748}
1749
1750/*
1751 * Some controllers exhibit one or more of the following bugs when updating the
1752 * iso cycle timer register:
1753 *  - When the lowest six bits are wrapping around to zero, a read that happens
1754 *    at the same time will return garbage in the lowest ten bits.
1755 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1756 *    not incremented for about 60 ns.
1757 *  - Occasionally, the entire register reads zero.
1758 *
1759 * To catch these, we read the register three times and ensure that the
1760 * difference between each two consecutive reads is approximately the same, i.e.
1761 * less than twice the other.  Furthermore, any negative difference indicates an
1762 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1763 * execute, so we have enough precision to compute the ratio of the differences.)
1764 */
1765static u32 get_cycle_time(struct fw_ohci *ohci)
1766{
1767	u32 c0, c1, c2;
1768	u32 t0, t1, t2;
1769	s32 diff01, diff12;
1770	int i;
1771
1772	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1773		return 0;
1774
1775	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1776
1777	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1778		i = 0;
1779		c1 = c2;
1780		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781		do {
1782			c0 = c1;
1783			c1 = c2;
1784			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785			t0 = cycle_timer_ticks(c0);
1786			t1 = cycle_timer_ticks(c1);
1787			t2 = cycle_timer_ticks(c2);
1788			diff01 = t1 - t0;
1789			diff12 = t2 - t1;
1790		} while ((diff01 <= 0 || diff12 <= 0 ||
1791			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1792			 && i++ < 20);
1793	}
1794
1795	return c2;
1796}
1797
1798/*
1799 * This function has to be called at least every 64 seconds.  The bus_time
1800 * field stores not only the upper 25 bits of the BUS_TIME register but also
1801 * the most significant bit of the cycle timer in bit 6 so that we can detect
1802 * changes in this bit.
1803 */
1804static u32 update_bus_time(struct fw_ohci *ohci)
1805{
1806	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1807
1808	if (unlikely(!ohci->bus_time_running)) {
1809		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1810		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1811		                 (cycle_time_seconds & 0x40);
1812		ohci->bus_time_running = true;
1813	}
1814
1815	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1816		ohci->bus_time += 0x40;
1817
1818	return ohci->bus_time | cycle_time_seconds;
1819}
1820
1821static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1822{
1823	int reg;
1824
1825	mutex_lock(&ohci->phy_reg_mutex);
1826	reg = write_phy_reg(ohci, 7, port_index);
1827	if (reg >= 0)
1828		reg = read_phy_reg(ohci, 8);
1829	mutex_unlock(&ohci->phy_reg_mutex);
1830	if (reg < 0)
1831		return reg;
1832
1833	switch (reg & 0x0f) {
1834	case 0x06:
1835		return 2;	/* is child node (connected to parent node) */
1836	case 0x0e:
1837		return 3;	/* is parent node (connected to child node) */
1838	}
1839	return 1;		/* not connected */
1840}
1841
1842static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1843	int self_id_count)
1844{
1845	int i;
1846	u32 entry;
1847
1848	for (i = 0; i < self_id_count; i++) {
1849		entry = ohci->self_id_buffer[i];
1850		if ((self_id & 0xff000000) == (entry & 0xff000000))
1851			return -1;
1852		if ((self_id & 0xff000000) < (entry & 0xff000000))
1853			return i;
1854	}
1855	return i;
1856}
1857
1858static int initiated_reset(struct fw_ohci *ohci)
1859{
1860	int reg;
1861	int ret = 0;
1862
1863	mutex_lock(&ohci->phy_reg_mutex);
1864	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1865	if (reg >= 0) {
1866		reg = read_phy_reg(ohci, 8);
1867		reg |= 0x40;
1868		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1869		if (reg >= 0) {
1870			reg = read_phy_reg(ohci, 12); /* read register 12 */
1871			if (reg >= 0) {
1872				if ((reg & 0x08) == 0x08) {
1873					/* bit 3 indicates "initiated reset" */
1874					ret = 0x2;
1875				}
1876			}
1877		}
1878	}
1879	mutex_unlock(&ohci->phy_reg_mutex);
1880	return ret;
1881}
1882
1883/*
1884 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1885 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1886 * Construct the selfID from phy register contents.
1887 */
1888static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1889{
1890	int reg, i, pos, status;
1891	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1892	u32 self_id = 0x8040c800;
1893
1894	reg = reg_read(ohci, OHCI1394_NodeID);
1895	if (!(reg & OHCI1394_NodeID_idValid)) {
1896		ohci_notice(ohci,
1897			    "node ID not valid, new bus reset in progress\n");
1898		return -EBUSY;
1899	}
1900	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1901
1902	reg = ohci_read_phy_reg(&ohci->card, 4);
1903	if (reg < 0)
1904		return reg;
1905	self_id |= ((reg & 0x07) << 8); /* power class */
1906
1907	reg = ohci_read_phy_reg(&ohci->card, 1);
1908	if (reg < 0)
1909		return reg;
1910	self_id |= ((reg & 0x3f) << 16); /* gap count */
1911
1912	for (i = 0; i < 3; i++) {
1913		status = get_status_for_port(ohci, i);
1914		if (status < 0)
1915			return status;
1916		self_id |= ((status & 0x3) << (6 - (i * 2)));
1917	}
1918
1919	self_id |= initiated_reset(ohci);
1920
1921	pos = get_self_id_pos(ohci, self_id, self_id_count);
1922	if (pos >= 0) {
1923		memmove(&(ohci->self_id_buffer[pos+1]),
1924			&(ohci->self_id_buffer[pos]),
1925			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1926		ohci->self_id_buffer[pos] = self_id;
1927		self_id_count++;
1928	}
1929	return self_id_count;
1930}
1931
1932static void bus_reset_work(struct work_struct *work)
1933{
1934	struct fw_ohci *ohci =
1935		container_of(work, struct fw_ohci, bus_reset_work);
1936	int self_id_count, generation, new_generation, i, j;
1937	u32 reg;
1938	void *free_rom = NULL;
1939	dma_addr_t free_rom_bus = 0;
1940	bool is_new_root;
1941
1942	reg = reg_read(ohci, OHCI1394_NodeID);
1943	if (!(reg & OHCI1394_NodeID_idValid)) {
1944		ohci_notice(ohci,
1945			    "node ID not valid, new bus reset in progress\n");
1946		return;
1947	}
1948	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1949		ohci_notice(ohci, "malconfigured bus\n");
1950		return;
1951	}
1952	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1953			       OHCI1394_NodeID_nodeNumber);
1954
1955	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1956	if (!(ohci->is_root && is_new_root))
1957		reg_write(ohci, OHCI1394_LinkControlSet,
1958			  OHCI1394_LinkControl_cycleMaster);
1959	ohci->is_root = is_new_root;
1960
1961	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1962	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1963		ohci_notice(ohci, "self ID receive error\n");
1964		return;
1965	}
1966	/*
1967	 * The count in the SelfIDCount register is the number of
1968	 * bytes in the self ID receive buffer.  Since we also receive
1969	 * the inverted quadlets and a header quadlet, we shift one
1970	 * bit extra to get the actual number of self IDs.
1971	 */
1972	self_id_count = (reg >> 3) & 0xff;
1973
1974	if (self_id_count > 252) {
1975		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1976		return;
1977	}
1978
1979	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1980	rmb();
1981
1982	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1983		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1984		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1985
1986		if (id != ~id2) {
1987			/*
1988			 * If the invalid data looks like a cycle start packet,
1989			 * it's likely to be the result of the cycle master
1990			 * having a wrong gap count.  In this case, the self IDs
1991			 * so far are valid and should be processed so that the
1992			 * bus manager can then correct the gap count.
1993			 */
1994			if (id == 0xffff008f) {
1995				ohci_notice(ohci, "ignoring spurious self IDs\n");
1996				self_id_count = j;
1997				break;
1998			}
1999
2000			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2001				    j, self_id_count, id, id2);
2002			return;
2003		}
2004		ohci->self_id_buffer[j] = id;
2005	}
2006
2007	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2008		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2009		if (self_id_count < 0) {
2010			ohci_notice(ohci,
2011				    "could not construct local self ID\n");
2012			return;
2013		}
2014	}
2015
2016	if (self_id_count == 0) {
2017		ohci_notice(ohci, "no self IDs\n");
2018		return;
2019	}
2020	rmb();
2021
2022	/*
2023	 * Check the consistency of the self IDs we just read.  The
2024	 * problem we face is that a new bus reset can start while we
2025	 * read out the self IDs from the DMA buffer. If this happens,
2026	 * the DMA buffer will be overwritten with new self IDs and we
2027	 * will read out inconsistent data.  The OHCI specification
2028	 * (section 11.2) recommends a technique similar to
2029	 * linux/seqlock.h, where we remember the generation of the
2030	 * self IDs in the buffer before reading them out and compare
2031	 * it to the current generation after reading them out.  If
2032	 * the two generations match we know we have a consistent set
2033	 * of self IDs.
2034	 */
2035
2036	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2037	if (new_generation != generation) {
2038		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2039		return;
2040	}
2041
2042	/* FIXME: Document how the locking works. */
2043	spin_lock_irq(&ohci->lock);
2044
2045	ohci->generation = -1; /* prevent AT packet queueing */
2046	context_stop(&ohci->at_request_ctx);
2047	context_stop(&ohci->at_response_ctx);
2048
2049	spin_unlock_irq(&ohci->lock);
2050
2051	/*
2052	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2053	 * packets in the AT queues and software needs to drain them.
2054	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2055	 */
2056	at_context_flush(&ohci->at_request_ctx);
2057	at_context_flush(&ohci->at_response_ctx);
2058
2059	spin_lock_irq(&ohci->lock);
2060
2061	ohci->generation = generation;
2062	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2063
2064	if (ohci->quirks & QUIRK_RESET_PACKET)
2065		ohci->request_generation = generation;
2066
2067	/*
2068	 * This next bit is unrelated to the AT context stuff but we
2069	 * have to do it under the spinlock also.  If a new config rom
2070	 * was set up before this reset, the old one is now no longer
2071	 * in use and we can free it. Update the config rom pointers
2072	 * to point to the current config rom and clear the
2073	 * next_config_rom pointer so a new update can take place.
2074	 */
2075
2076	if (ohci->next_config_rom != NULL) {
2077		if (ohci->next_config_rom != ohci->config_rom) {
2078			free_rom      = ohci->config_rom;
2079			free_rom_bus  = ohci->config_rom_bus;
2080		}
2081		ohci->config_rom      = ohci->next_config_rom;
2082		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2083		ohci->next_config_rom = NULL;
2084
2085		/*
2086		 * Restore config_rom image and manually update
2087		 * config_rom registers.  Writing the header quadlet
2088		 * will indicate that the config rom is ready, so we
2089		 * do that last.
2090		 */
2091		reg_write(ohci, OHCI1394_BusOptions,
2092			  be32_to_cpu(ohci->config_rom[2]));
2093		ohci->config_rom[0] = ohci->next_header;
2094		reg_write(ohci, OHCI1394_ConfigROMhdr,
2095			  be32_to_cpu(ohci->next_header));
2096	}
2097
2098	if (param_remote_dma) {
2099		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2100		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2101	}
2102
2103	spin_unlock_irq(&ohci->lock);
2104
2105	if (free_rom)
2106		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
 
2107
2108	log_selfids(ohci, generation, self_id_count);
2109
2110	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2111				 self_id_count, ohci->self_id_buffer,
2112				 ohci->csr_state_setclear_abdicate);
2113	ohci->csr_state_setclear_abdicate = false;
2114}
2115
2116static irqreturn_t irq_handler(int irq, void *data)
2117{
2118	struct fw_ohci *ohci = data;
2119	u32 event, iso_event;
2120	int i;
2121
2122	event = reg_read(ohci, OHCI1394_IntEventClear);
2123
2124	if (!event || !~event)
2125		return IRQ_NONE;
2126
2127	/*
2128	 * busReset and postedWriteErr must not be cleared yet
2129	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2130	 */
2131	reg_write(ohci, OHCI1394_IntEventClear,
2132		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2133	log_irqs(ohci, event);
2134
2135	if (event & OHCI1394_selfIDComplete)
2136		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2137
2138	if (event & OHCI1394_RQPkt)
2139		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2140
2141	if (event & OHCI1394_RSPkt)
2142		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2143
2144	if (event & OHCI1394_reqTxComplete)
2145		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2146
2147	if (event & OHCI1394_respTxComplete)
2148		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2149
2150	if (event & OHCI1394_isochRx) {
2151		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2152		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2153
2154		while (iso_event) {
2155			i = ffs(iso_event) - 1;
2156			tasklet_schedule(
2157				&ohci->ir_context_list[i].context.tasklet);
2158			iso_event &= ~(1 << i);
2159		}
2160	}
2161
2162	if (event & OHCI1394_isochTx) {
2163		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2164		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2165
2166		while (iso_event) {
2167			i = ffs(iso_event) - 1;
2168			tasklet_schedule(
2169				&ohci->it_context_list[i].context.tasklet);
2170			iso_event &= ~(1 << i);
2171		}
2172	}
2173
2174	if (unlikely(event & OHCI1394_regAccessFail))
2175		ohci_err(ohci, "register access failure\n");
2176
2177	if (unlikely(event & OHCI1394_postedWriteErr)) {
2178		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2179		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2180		reg_write(ohci, OHCI1394_IntEventClear,
2181			  OHCI1394_postedWriteErr);
2182		if (printk_ratelimit())
2183			ohci_err(ohci, "PCI posted write error\n");
2184	}
2185
2186	if (unlikely(event & OHCI1394_cycleTooLong)) {
2187		if (printk_ratelimit())
2188			ohci_notice(ohci, "isochronous cycle too long\n");
2189		reg_write(ohci, OHCI1394_LinkControlSet,
2190			  OHCI1394_LinkControl_cycleMaster);
2191	}
2192
2193	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2194		/*
2195		 * We need to clear this event bit in order to make
2196		 * cycleMatch isochronous I/O work.  In theory we should
2197		 * stop active cycleMatch iso contexts now and restart
2198		 * them at least two cycles later.  (FIXME?)
2199		 */
2200		if (printk_ratelimit())
2201			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2202	}
2203
2204	if (unlikely(event & OHCI1394_unrecoverableError))
2205		handle_dead_contexts(ohci);
2206
2207	if (event & OHCI1394_cycle64Seconds) {
2208		spin_lock(&ohci->lock);
2209		update_bus_time(ohci);
2210		spin_unlock(&ohci->lock);
2211	} else
2212		flush_writes(ohci);
2213
2214	return IRQ_HANDLED;
2215}
2216
2217static int software_reset(struct fw_ohci *ohci)
2218{
2219	u32 val;
2220	int i;
2221
2222	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2223	for (i = 0; i < 500; i++) {
2224		val = reg_read(ohci, OHCI1394_HCControlSet);
2225		if (!~val)
2226			return -ENODEV; /* Card was ejected. */
2227
2228		if (!(val & OHCI1394_HCControl_softReset))
2229			return 0;
2230
2231		msleep(1);
2232	}
2233
2234	return -EBUSY;
2235}
2236
2237static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2238{
2239	size_t size = length * 4;
2240
2241	memcpy(dest, src, size);
2242	if (size < CONFIG_ROM_SIZE)
2243		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2244}
2245
2246static int configure_1394a_enhancements(struct fw_ohci *ohci)
2247{
2248	bool enable_1394a;
2249	int ret, clear, set, offset;
2250
2251	/* Check if the driver should configure link and PHY. */
2252	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2253	      OHCI1394_HCControl_programPhyEnable))
2254		return 0;
2255
2256	/* Paranoia: check whether the PHY supports 1394a, too. */
2257	enable_1394a = false;
2258	ret = read_phy_reg(ohci, 2);
2259	if (ret < 0)
2260		return ret;
2261	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2262		ret = read_paged_phy_reg(ohci, 1, 8);
2263		if (ret < 0)
2264			return ret;
2265		if (ret >= 1)
2266			enable_1394a = true;
2267	}
2268
2269	if (ohci->quirks & QUIRK_NO_1394A)
2270		enable_1394a = false;
2271
2272	/* Configure PHY and link consistently. */
2273	if (enable_1394a) {
2274		clear = 0;
2275		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2276	} else {
2277		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2278		set = 0;
2279	}
2280	ret = update_phy_reg(ohci, 5, clear, set);
2281	if (ret < 0)
2282		return ret;
2283
2284	if (enable_1394a)
2285		offset = OHCI1394_HCControlSet;
2286	else
2287		offset = OHCI1394_HCControlClear;
2288	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2289
2290	/* Clean up: configuration has been taken care of. */
2291	reg_write(ohci, OHCI1394_HCControlClear,
2292		  OHCI1394_HCControl_programPhyEnable);
2293
2294	return 0;
2295}
2296
2297static int probe_tsb41ba3d(struct fw_ohci *ohci)
2298{
2299	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2300	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2301	int reg, i;
2302
2303	reg = read_phy_reg(ohci, 2);
2304	if (reg < 0)
2305		return reg;
2306	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2307		return 0;
2308
2309	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2310		reg = read_paged_phy_reg(ohci, 1, i + 10);
2311		if (reg < 0)
2312			return reg;
2313		if (reg != id[i])
2314			return 0;
2315	}
2316	return 1;
2317}
2318
2319static int ohci_enable(struct fw_card *card,
2320		       const __be32 *config_rom, size_t length)
2321{
2322	struct fw_ohci *ohci = fw_ohci(card);
2323	u32 lps, version, irqs;
2324	int i, ret;
2325
2326	ret = software_reset(ohci);
2327	if (ret < 0) {
2328		ohci_err(ohci, "failed to reset ohci card\n");
2329		return ret;
2330	}
2331
2332	/*
2333	 * Now enable LPS, which we need in order to start accessing
2334	 * most of the registers.  In fact, on some cards (ALI M5251),
2335	 * accessing registers in the SClk domain without LPS enabled
2336	 * will lock up the machine.  Wait 50msec to make sure we have
2337	 * full link enabled.  However, with some cards (well, at least
2338	 * a JMicron PCIe card), we have to try again sometimes.
2339	 *
2340	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2341	 * cannot actually use the phy at that time.  These need tens of
2342	 * millisecods pause between LPS write and first phy access too.
2343	 */
2344
2345	reg_write(ohci, OHCI1394_HCControlSet,
2346		  OHCI1394_HCControl_LPS |
2347		  OHCI1394_HCControl_postedWriteEnable);
2348	flush_writes(ohci);
2349
2350	for (lps = 0, i = 0; !lps && i < 3; i++) {
2351		msleep(50);
2352		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2353		      OHCI1394_HCControl_LPS;
2354	}
2355
2356	if (!lps) {
2357		ohci_err(ohci, "failed to set Link Power Status\n");
2358		return -EIO;
2359	}
2360
2361	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2362		ret = probe_tsb41ba3d(ohci);
2363		if (ret < 0)
2364			return ret;
2365		if (ret)
2366			ohci_notice(ohci, "local TSB41BA3D phy\n");
2367		else
2368			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2369	}
2370
2371	reg_write(ohci, OHCI1394_HCControlClear,
2372		  OHCI1394_HCControl_noByteSwapData);
2373
2374	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2375	reg_write(ohci, OHCI1394_LinkControlSet,
2376		  OHCI1394_LinkControl_cycleTimerEnable |
2377		  OHCI1394_LinkControl_cycleMaster);
2378
2379	reg_write(ohci, OHCI1394_ATRetries,
2380		  OHCI1394_MAX_AT_REQ_RETRIES |
2381		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2382		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2383		  (200 << 16));
2384
2385	ohci->bus_time_running = false;
2386
2387	for (i = 0; i < 32; i++)
2388		if (ohci->ir_context_support & (1 << i))
2389			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2390				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2391
2392	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2393	if (version >= OHCI_VERSION_1_1) {
2394		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2395			  0xfffffffe);
2396		card->broadcast_channel_auto_allocated = true;
2397	}
2398
2399	/* Get implemented bits of the priority arbitration request counter. */
2400	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2401	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2402	reg_write(ohci, OHCI1394_FairnessControl, 0);
2403	card->priority_budget_implemented = ohci->pri_req_max != 0;
2404
2405	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2406	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2407	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2408
2409	ret = configure_1394a_enhancements(ohci);
2410	if (ret < 0)
2411		return ret;
2412
2413	/* Activate link_on bit and contender bit in our self ID packets.*/
2414	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2415	if (ret < 0)
2416		return ret;
2417
2418	/*
2419	 * When the link is not yet enabled, the atomic config rom
2420	 * update mechanism described below in ohci_set_config_rom()
2421	 * is not active.  We have to update ConfigRomHeader and
2422	 * BusOptions manually, and the write to ConfigROMmap takes
2423	 * effect immediately.  We tie this to the enabling of the
2424	 * link, so we have a valid config rom before enabling - the
2425	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2426	 * values before enabling.
2427	 *
2428	 * However, when the ConfigROMmap is written, some controllers
2429	 * always read back quadlets 0 and 2 from the config rom to
2430	 * the ConfigRomHeader and BusOptions registers on bus reset.
2431	 * They shouldn't do that in this initial case where the link
2432	 * isn't enabled.  This means we have to use the same
2433	 * workaround here, setting the bus header to 0 and then write
2434	 * the right values in the bus reset tasklet.
2435	 */
2436
2437	if (config_rom) {
2438		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2439							    &ohci->next_config_rom_bus, GFP_KERNEL);
 
 
2440		if (ohci->next_config_rom == NULL)
2441			return -ENOMEM;
2442
2443		copy_config_rom(ohci->next_config_rom, config_rom, length);
2444	} else {
2445		/*
2446		 * In the suspend case, config_rom is NULL, which
2447		 * means that we just reuse the old config rom.
2448		 */
2449		ohci->next_config_rom = ohci->config_rom;
2450		ohci->next_config_rom_bus = ohci->config_rom_bus;
2451	}
2452
2453	ohci->next_header = ohci->next_config_rom[0];
2454	ohci->next_config_rom[0] = 0;
2455	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2456	reg_write(ohci, OHCI1394_BusOptions,
2457		  be32_to_cpu(ohci->next_config_rom[2]));
2458	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2459
2460	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2461
2462	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2463		OHCI1394_RQPkt | OHCI1394_RSPkt |
2464		OHCI1394_isochTx | OHCI1394_isochRx |
2465		OHCI1394_postedWriteErr |
2466		OHCI1394_selfIDComplete |
2467		OHCI1394_regAccessFail |
2468		OHCI1394_cycleInconsistent |
2469		OHCI1394_unrecoverableError |
2470		OHCI1394_cycleTooLong |
2471		OHCI1394_masterIntEnable;
2472	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2473		irqs |= OHCI1394_busReset;
2474	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2475
2476	reg_write(ohci, OHCI1394_HCControlSet,
2477		  OHCI1394_HCControl_linkEnable |
2478		  OHCI1394_HCControl_BIBimageValid);
2479
2480	reg_write(ohci, OHCI1394_LinkControlSet,
2481		  OHCI1394_LinkControl_rcvSelfID |
2482		  OHCI1394_LinkControl_rcvPhyPkt);
2483
2484	ar_context_run(&ohci->ar_request_ctx);
2485	ar_context_run(&ohci->ar_response_ctx);
2486
2487	flush_writes(ohci);
2488
2489	/* We are ready to go, reset bus to finish initialization. */
2490	fw_schedule_bus_reset(&ohci->card, false, true);
2491
2492	return 0;
2493}
2494
2495static int ohci_set_config_rom(struct fw_card *card,
2496			       const __be32 *config_rom, size_t length)
2497{
2498	struct fw_ohci *ohci;
2499	__be32 *next_config_rom;
2500	dma_addr_t next_config_rom_bus;
2501
2502	ohci = fw_ohci(card);
2503
2504	/*
2505	 * When the OHCI controller is enabled, the config rom update
2506	 * mechanism is a bit tricky, but easy enough to use.  See
2507	 * section 5.5.6 in the OHCI specification.
2508	 *
2509	 * The OHCI controller caches the new config rom address in a
2510	 * shadow register (ConfigROMmapNext) and needs a bus reset
2511	 * for the changes to take place.  When the bus reset is
2512	 * detected, the controller loads the new values for the
2513	 * ConfigRomHeader and BusOptions registers from the specified
2514	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2515	 * shadow register. All automatically and atomically.
2516	 *
2517	 * Now, there's a twist to this story.  The automatic load of
2518	 * ConfigRomHeader and BusOptions doesn't honor the
2519	 * noByteSwapData bit, so with a be32 config rom, the
2520	 * controller will load be32 values in to these registers
2521	 * during the atomic update, even on litte endian
2522	 * architectures.  The workaround we use is to put a 0 in the
2523	 * header quadlet; 0 is endian agnostic and means that the
2524	 * config rom isn't ready yet.  In the bus reset tasklet we
2525	 * then set up the real values for the two registers.
2526	 *
2527	 * We use ohci->lock to avoid racing with the code that sets
2528	 * ohci->next_config_rom to NULL (see bus_reset_work).
2529	 */
2530
2531	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2532					      &next_config_rom_bus, GFP_KERNEL);
 
2533	if (next_config_rom == NULL)
2534		return -ENOMEM;
2535
2536	spin_lock_irq(&ohci->lock);
2537
2538	/*
2539	 * If there is not an already pending config_rom update,
2540	 * push our new allocation into the ohci->next_config_rom
2541	 * and then mark the local variable as null so that we
2542	 * won't deallocate the new buffer.
2543	 *
2544	 * OTOH, if there is a pending config_rom update, just
2545	 * use that buffer with the new config_rom data, and
2546	 * let this routine free the unused DMA allocation.
2547	 */
2548
2549	if (ohci->next_config_rom == NULL) {
2550		ohci->next_config_rom = next_config_rom;
2551		ohci->next_config_rom_bus = next_config_rom_bus;
2552		next_config_rom = NULL;
2553	}
2554
2555	copy_config_rom(ohci->next_config_rom, config_rom, length);
2556
2557	ohci->next_header = config_rom[0];
2558	ohci->next_config_rom[0] = 0;
2559
2560	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2561
2562	spin_unlock_irq(&ohci->lock);
2563
2564	/* If we didn't use the DMA allocation, delete it. */
2565	if (next_config_rom != NULL) {
2566		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2567				   next_config_rom_bus);
2568	}
2569
2570	/*
2571	 * Now initiate a bus reset to have the changes take
2572	 * effect. We clean up the old config rom memory and DMA
2573	 * mappings in the bus reset tasklet, since the OHCI
2574	 * controller could need to access it before the bus reset
2575	 * takes effect.
2576	 */
2577
2578	fw_schedule_bus_reset(&ohci->card, true, true);
2579
2580	return 0;
2581}
2582
2583static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2584{
2585	struct fw_ohci *ohci = fw_ohci(card);
2586
2587	at_context_transmit(&ohci->at_request_ctx, packet);
2588}
2589
2590static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2591{
2592	struct fw_ohci *ohci = fw_ohci(card);
2593
2594	at_context_transmit(&ohci->at_response_ctx, packet);
2595}
2596
2597static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2598{
2599	struct fw_ohci *ohci = fw_ohci(card);
2600	struct context *ctx = &ohci->at_request_ctx;
2601	struct driver_data *driver_data = packet->driver_data;
2602	int ret = -ENOENT;
2603
2604	tasklet_disable_in_atomic(&ctx->tasklet);
2605
2606	if (packet->ack != 0)
2607		goto out;
2608
2609	if (packet->payload_mapped)
2610		dma_unmap_single(ohci->card.device, packet->payload_bus,
2611				 packet->payload_length, DMA_TO_DEVICE);
2612
2613	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2614	driver_data->packet = NULL;
2615	packet->ack = RCODE_CANCELLED;
2616
2617	// Timestamping on behalf of the hardware.
2618	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2619
2620	packet->callback(packet, &ohci->card, packet->ack);
2621	ret = 0;
2622 out:
2623	tasklet_enable(&ctx->tasklet);
2624
2625	return ret;
2626}
2627
2628static int ohci_enable_phys_dma(struct fw_card *card,
2629				int node_id, int generation)
2630{
2631	struct fw_ohci *ohci = fw_ohci(card);
2632	unsigned long flags;
2633	int n, ret = 0;
2634
2635	if (param_remote_dma)
2636		return 0;
2637
2638	/*
2639	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2640	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2641	 */
2642
2643	spin_lock_irqsave(&ohci->lock, flags);
2644
2645	if (ohci->generation != generation) {
2646		ret = -ESTALE;
2647		goto out;
2648	}
2649
2650	/*
2651	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2652	 * enabled for _all_ nodes on remote buses.
2653	 */
2654
2655	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2656	if (n < 32)
2657		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2658	else
2659		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2660
2661	flush_writes(ohci);
2662 out:
2663	spin_unlock_irqrestore(&ohci->lock, flags);
2664
2665	return ret;
2666}
2667
2668static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2669{
2670	struct fw_ohci *ohci = fw_ohci(card);
2671	unsigned long flags;
2672	u32 value;
2673
2674	switch (csr_offset) {
2675	case CSR_STATE_CLEAR:
2676	case CSR_STATE_SET:
2677		if (ohci->is_root &&
2678		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2679		     OHCI1394_LinkControl_cycleMaster))
2680			value = CSR_STATE_BIT_CMSTR;
2681		else
2682			value = 0;
2683		if (ohci->csr_state_setclear_abdicate)
2684			value |= CSR_STATE_BIT_ABDICATE;
2685
2686		return value;
2687
2688	case CSR_NODE_IDS:
2689		return reg_read(ohci, OHCI1394_NodeID) << 16;
2690
2691	case CSR_CYCLE_TIME:
2692		return get_cycle_time(ohci);
2693
2694	case CSR_BUS_TIME:
2695		/*
2696		 * We might be called just after the cycle timer has wrapped
2697		 * around but just before the cycle64Seconds handler, so we
2698		 * better check here, too, if the bus time needs to be updated.
2699		 */
2700		spin_lock_irqsave(&ohci->lock, flags);
2701		value = update_bus_time(ohci);
2702		spin_unlock_irqrestore(&ohci->lock, flags);
2703		return value;
2704
2705	case CSR_BUSY_TIMEOUT:
2706		value = reg_read(ohci, OHCI1394_ATRetries);
2707		return (value >> 4) & 0x0ffff00f;
2708
2709	case CSR_PRIORITY_BUDGET:
2710		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2711			(ohci->pri_req_max << 8);
2712
2713	default:
2714		WARN_ON(1);
2715		return 0;
2716	}
2717}
2718
2719static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2720{
2721	struct fw_ohci *ohci = fw_ohci(card);
2722	unsigned long flags;
2723
2724	switch (csr_offset) {
2725	case CSR_STATE_CLEAR:
2726		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2727			reg_write(ohci, OHCI1394_LinkControlClear,
2728				  OHCI1394_LinkControl_cycleMaster);
2729			flush_writes(ohci);
2730		}
2731		if (value & CSR_STATE_BIT_ABDICATE)
2732			ohci->csr_state_setclear_abdicate = false;
2733		break;
2734
2735	case CSR_STATE_SET:
2736		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2737			reg_write(ohci, OHCI1394_LinkControlSet,
2738				  OHCI1394_LinkControl_cycleMaster);
2739			flush_writes(ohci);
2740		}
2741		if (value & CSR_STATE_BIT_ABDICATE)
2742			ohci->csr_state_setclear_abdicate = true;
2743		break;
2744
2745	case CSR_NODE_IDS:
2746		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2747		flush_writes(ohci);
2748		break;
2749
2750	case CSR_CYCLE_TIME:
2751		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2752		reg_write(ohci, OHCI1394_IntEventSet,
2753			  OHCI1394_cycleInconsistent);
2754		flush_writes(ohci);
2755		break;
2756
2757	case CSR_BUS_TIME:
2758		spin_lock_irqsave(&ohci->lock, flags);
2759		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2760		                 (value & ~0x7f);
2761		spin_unlock_irqrestore(&ohci->lock, flags);
2762		break;
2763
2764	case CSR_BUSY_TIMEOUT:
2765		value = (value & 0xf) | ((value & 0xf) << 4) |
2766			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2767		reg_write(ohci, OHCI1394_ATRetries, value);
2768		flush_writes(ohci);
2769		break;
2770
2771	case CSR_PRIORITY_BUDGET:
2772		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2773		flush_writes(ohci);
2774		break;
2775
2776	default:
2777		WARN_ON(1);
2778		break;
2779	}
2780}
2781
2782static void flush_iso_completions(struct iso_context *ctx)
2783{
2784	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2785			      ctx->header_length, ctx->header,
2786			      ctx->base.callback_data);
2787	ctx->header_length = 0;
2788}
2789
2790static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2791{
2792	u32 *ctx_hdr;
2793
2794	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2795		if (ctx->base.drop_overflow_headers)
2796			return;
2797		flush_iso_completions(ctx);
2798	}
2799
2800	ctx_hdr = ctx->header + ctx->header_length;
2801	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2802
2803	/*
2804	 * The two iso header quadlets are byteswapped to little
2805	 * endian by the controller, but we want to present them
2806	 * as big endian for consistency with the bus endianness.
2807	 */
2808	if (ctx->base.header_size > 0)
2809		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2810	if (ctx->base.header_size > 4)
2811		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2812	if (ctx->base.header_size > 8)
2813		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2814	ctx->header_length += ctx->base.header_size;
2815}
2816
2817static int handle_ir_packet_per_buffer(struct context *context,
2818				       struct descriptor *d,
2819				       struct descriptor *last)
2820{
2821	struct iso_context *ctx =
2822		container_of(context, struct iso_context, context);
2823	struct descriptor *pd;
2824	u32 buffer_dma;
2825
2826	for (pd = d; pd <= last; pd++)
2827		if (pd->transfer_status)
2828			break;
2829	if (pd > last)
2830		/* Descriptor(s) not done yet, stop iteration */
2831		return 0;
2832
2833	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2834		d++;
2835		buffer_dma = le32_to_cpu(d->data_address);
2836		dma_sync_single_range_for_cpu(context->ohci->card.device,
2837					      buffer_dma & PAGE_MASK,
2838					      buffer_dma & ~PAGE_MASK,
2839					      le16_to_cpu(d->req_count),
2840					      DMA_FROM_DEVICE);
2841	}
2842
2843	copy_iso_headers(ctx, (u32 *) (last + 1));
2844
2845	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2846		flush_iso_completions(ctx);
2847
2848	return 1;
2849}
2850
2851/* d == last because each descriptor block is only a single descriptor. */
2852static int handle_ir_buffer_fill(struct context *context,
2853				 struct descriptor *d,
2854				 struct descriptor *last)
2855{
2856	struct iso_context *ctx =
2857		container_of(context, struct iso_context, context);
2858	unsigned int req_count, res_count, completed;
2859	u32 buffer_dma;
2860
2861	req_count = le16_to_cpu(last->req_count);
2862	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2863	completed = req_count - res_count;
2864	buffer_dma = le32_to_cpu(last->data_address);
2865
2866	if (completed > 0) {
2867		ctx->mc_buffer_bus = buffer_dma;
2868		ctx->mc_completed = completed;
2869	}
2870
2871	if (res_count != 0)
2872		/* Descriptor(s) not done yet, stop iteration */
2873		return 0;
2874
2875	dma_sync_single_range_for_cpu(context->ohci->card.device,
2876				      buffer_dma & PAGE_MASK,
2877				      buffer_dma & ~PAGE_MASK,
2878				      completed, DMA_FROM_DEVICE);
2879
2880	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2881		ctx->base.callback.mc(&ctx->base,
2882				      buffer_dma + completed,
2883				      ctx->base.callback_data);
2884		ctx->mc_completed = 0;
2885	}
2886
2887	return 1;
2888}
2889
2890static void flush_ir_buffer_fill(struct iso_context *ctx)
2891{
2892	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2893				      ctx->mc_buffer_bus & PAGE_MASK,
2894				      ctx->mc_buffer_bus & ~PAGE_MASK,
2895				      ctx->mc_completed, DMA_FROM_DEVICE);
2896
2897	ctx->base.callback.mc(&ctx->base,
2898			      ctx->mc_buffer_bus + ctx->mc_completed,
2899			      ctx->base.callback_data);
2900	ctx->mc_completed = 0;
2901}
2902
2903static inline void sync_it_packet_for_cpu(struct context *context,
2904					  struct descriptor *pd)
2905{
2906	__le16 control;
2907	u32 buffer_dma;
2908
2909	/* only packets beginning with OUTPUT_MORE* have data buffers */
2910	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2911		return;
2912
2913	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2914	pd += 2;
2915
2916	/*
2917	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2918	 * data buffer is in the context program's coherent page and must not
2919	 * be synced.
2920	 */
2921	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2922	    (context->current_bus          & PAGE_MASK)) {
2923		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2924			return;
2925		pd++;
2926	}
2927
2928	do {
2929		buffer_dma = le32_to_cpu(pd->data_address);
2930		dma_sync_single_range_for_cpu(context->ohci->card.device,
2931					      buffer_dma & PAGE_MASK,
2932					      buffer_dma & ~PAGE_MASK,
2933					      le16_to_cpu(pd->req_count),
2934					      DMA_TO_DEVICE);
2935		control = pd->control;
2936		pd++;
2937	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2938}
2939
2940static int handle_it_packet(struct context *context,
2941			    struct descriptor *d,
2942			    struct descriptor *last)
2943{
2944	struct iso_context *ctx =
2945		container_of(context, struct iso_context, context);
2946	struct descriptor *pd;
2947	__be32 *ctx_hdr;
2948
2949	for (pd = d; pd <= last; pd++)
2950		if (pd->transfer_status)
2951			break;
2952	if (pd > last)
2953		/* Descriptor(s) not done yet, stop iteration */
2954		return 0;
2955
2956	sync_it_packet_for_cpu(context, d);
2957
2958	if (ctx->header_length + 4 > PAGE_SIZE) {
2959		if (ctx->base.drop_overflow_headers)
2960			return 1;
2961		flush_iso_completions(ctx);
2962	}
2963
2964	ctx_hdr = ctx->header + ctx->header_length;
2965	ctx->last_timestamp = le16_to_cpu(last->res_count);
2966	/* Present this value as big-endian to match the receive code */
2967	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2968			       le16_to_cpu(pd->res_count));
2969	ctx->header_length += 4;
2970
2971	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2972		flush_iso_completions(ctx);
2973
2974	return 1;
2975}
2976
2977static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2978{
2979	u32 hi = channels >> 32, lo = channels;
2980
2981	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2982	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2983	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2984	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
2985	ohci->mc_channels = channels;
2986}
2987
2988static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2989				int type, int channel, size_t header_size)
2990{
2991	struct fw_ohci *ohci = fw_ohci(card);
2992	struct iso_context *ctx;
2993	descriptor_callback_t callback;
2994	u64 *channels;
2995	u32 *mask, regs;
2996	int index, ret = -EBUSY;
2997
2998	spin_lock_irq(&ohci->lock);
2999
3000	switch (type) {
3001	case FW_ISO_CONTEXT_TRANSMIT:
3002		mask     = &ohci->it_context_mask;
3003		callback = handle_it_packet;
3004		index    = ffs(*mask) - 1;
3005		if (index >= 0) {
3006			*mask &= ~(1 << index);
3007			regs = OHCI1394_IsoXmitContextBase(index);
3008			ctx  = &ohci->it_context_list[index];
3009		}
3010		break;
3011
3012	case FW_ISO_CONTEXT_RECEIVE:
3013		channels = &ohci->ir_context_channels;
3014		mask     = &ohci->ir_context_mask;
3015		callback = handle_ir_packet_per_buffer;
3016		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3017		if (index >= 0) {
3018			*channels &= ~(1ULL << channel);
3019			*mask     &= ~(1 << index);
3020			regs = OHCI1394_IsoRcvContextBase(index);
3021			ctx  = &ohci->ir_context_list[index];
3022		}
3023		break;
3024
3025	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3026		mask     = &ohci->ir_context_mask;
3027		callback = handle_ir_buffer_fill;
3028		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3029		if (index >= 0) {
3030			ohci->mc_allocated = true;
3031			*mask &= ~(1 << index);
3032			regs = OHCI1394_IsoRcvContextBase(index);
3033			ctx  = &ohci->ir_context_list[index];
3034		}
3035		break;
3036
3037	default:
3038		index = -1;
3039		ret = -ENOSYS;
3040	}
3041
3042	spin_unlock_irq(&ohci->lock);
3043
3044	if (index < 0)
3045		return ERR_PTR(ret);
3046
3047	memset(ctx, 0, sizeof(*ctx));
3048	ctx->header_length = 0;
3049	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3050	if (ctx->header == NULL) {
3051		ret = -ENOMEM;
3052		goto out;
3053	}
3054	ret = context_init(&ctx->context, ohci, regs, callback);
3055	if (ret < 0)
3056		goto out_with_header;
3057
3058	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3059		set_multichannel_mask(ohci, 0);
3060		ctx->mc_completed = 0;
3061	}
3062
3063	return &ctx->base;
3064
3065 out_with_header:
3066	free_page((unsigned long)ctx->header);
3067 out:
3068	spin_lock_irq(&ohci->lock);
3069
3070	switch (type) {
3071	case FW_ISO_CONTEXT_RECEIVE:
3072		*channels |= 1ULL << channel;
3073		break;
3074
3075	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3076		ohci->mc_allocated = false;
3077		break;
3078	}
3079	*mask |= 1 << index;
3080
3081	spin_unlock_irq(&ohci->lock);
3082
3083	return ERR_PTR(ret);
3084}
3085
3086static int ohci_start_iso(struct fw_iso_context *base,
3087			  s32 cycle, u32 sync, u32 tags)
3088{
3089	struct iso_context *ctx = container_of(base, struct iso_context, base);
3090	struct fw_ohci *ohci = ctx->context.ohci;
3091	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3092	int index;
3093
3094	/* the controller cannot start without any queued packets */
3095	if (ctx->context.last->branch_address == 0)
3096		return -ENODATA;
3097
3098	switch (ctx->base.type) {
3099	case FW_ISO_CONTEXT_TRANSMIT:
3100		index = ctx - ohci->it_context_list;
3101		match = 0;
3102		if (cycle >= 0)
3103			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3104				(cycle & 0x7fff) << 16;
3105
3106		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3107		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3108		context_run(&ctx->context, match);
3109		break;
3110
3111	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3112		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3113		fallthrough;
3114	case FW_ISO_CONTEXT_RECEIVE:
3115		index = ctx - ohci->ir_context_list;
3116		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3117		if (cycle >= 0) {
3118			match |= (cycle & 0x07fff) << 12;
3119			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3120		}
3121
3122		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3123		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3124		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3125		context_run(&ctx->context, control);
3126
3127		ctx->sync = sync;
3128		ctx->tags = tags;
3129
3130		break;
3131	}
3132
3133	return 0;
3134}
3135
3136static int ohci_stop_iso(struct fw_iso_context *base)
3137{
3138	struct fw_ohci *ohci = fw_ohci(base->card);
3139	struct iso_context *ctx = container_of(base, struct iso_context, base);
3140	int index;
3141
3142	switch (ctx->base.type) {
3143	case FW_ISO_CONTEXT_TRANSMIT:
3144		index = ctx - ohci->it_context_list;
3145		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3146		break;
3147
3148	case FW_ISO_CONTEXT_RECEIVE:
3149	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150		index = ctx - ohci->ir_context_list;
3151		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3152		break;
3153	}
3154	flush_writes(ohci);
3155	context_stop(&ctx->context);
3156	tasklet_kill(&ctx->context.tasklet);
3157
3158	return 0;
3159}
3160
3161static void ohci_free_iso_context(struct fw_iso_context *base)
3162{
3163	struct fw_ohci *ohci = fw_ohci(base->card);
3164	struct iso_context *ctx = container_of(base, struct iso_context, base);
3165	unsigned long flags;
3166	int index;
3167
3168	ohci_stop_iso(base);
3169	context_release(&ctx->context);
3170	free_page((unsigned long)ctx->header);
3171
3172	spin_lock_irqsave(&ohci->lock, flags);
3173
3174	switch (base->type) {
3175	case FW_ISO_CONTEXT_TRANSMIT:
3176		index = ctx - ohci->it_context_list;
3177		ohci->it_context_mask |= 1 << index;
3178		break;
3179
3180	case FW_ISO_CONTEXT_RECEIVE:
3181		index = ctx - ohci->ir_context_list;
3182		ohci->ir_context_mask |= 1 << index;
3183		ohci->ir_context_channels |= 1ULL << base->channel;
3184		break;
3185
3186	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3187		index = ctx - ohci->ir_context_list;
3188		ohci->ir_context_mask |= 1 << index;
3189		ohci->ir_context_channels |= ohci->mc_channels;
3190		ohci->mc_channels = 0;
3191		ohci->mc_allocated = false;
3192		break;
3193	}
3194
3195	spin_unlock_irqrestore(&ohci->lock, flags);
3196}
3197
3198static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3199{
3200	struct fw_ohci *ohci = fw_ohci(base->card);
3201	unsigned long flags;
3202	int ret;
3203
3204	switch (base->type) {
3205	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3206
3207		spin_lock_irqsave(&ohci->lock, flags);
3208
3209		/* Don't allow multichannel to grab other contexts' channels. */
3210		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3211			*channels = ohci->ir_context_channels;
3212			ret = -EBUSY;
3213		} else {
3214			set_multichannel_mask(ohci, *channels);
3215			ret = 0;
3216		}
3217
3218		spin_unlock_irqrestore(&ohci->lock, flags);
3219
3220		break;
3221	default:
3222		ret = -EINVAL;
3223	}
3224
3225	return ret;
3226}
3227
3228#ifdef CONFIG_PM
3229static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3230{
3231	int i;
3232	struct iso_context *ctx;
3233
3234	for (i = 0 ; i < ohci->n_ir ; i++) {
3235		ctx = &ohci->ir_context_list[i];
3236		if (ctx->context.running)
3237			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3238	}
3239
3240	for (i = 0 ; i < ohci->n_it ; i++) {
3241		ctx = &ohci->it_context_list[i];
3242		if (ctx->context.running)
3243			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3244	}
3245}
3246#endif
3247
3248static int queue_iso_transmit(struct iso_context *ctx,
3249			      struct fw_iso_packet *packet,
3250			      struct fw_iso_buffer *buffer,
3251			      unsigned long payload)
3252{
3253	struct descriptor *d, *last, *pd;
3254	struct fw_iso_packet *p;
3255	__le32 *header;
3256	dma_addr_t d_bus, page_bus;
3257	u32 z, header_z, payload_z, irq;
3258	u32 payload_index, payload_end_index, next_page_index;
3259	int page, end_page, i, length, offset;
3260
3261	p = packet;
3262	payload_index = payload;
3263
3264	if (p->skip)
3265		z = 1;
3266	else
3267		z = 2;
3268	if (p->header_length > 0)
3269		z++;
3270
3271	/* Determine the first page the payload isn't contained in. */
3272	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3273	if (p->payload_length > 0)
3274		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3275	else
3276		payload_z = 0;
3277
3278	z += payload_z;
3279
3280	/* Get header size in number of descriptors. */
3281	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3282
3283	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3284	if (d == NULL)
3285		return -ENOMEM;
3286
3287	if (!p->skip) {
3288		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3289		d[0].req_count = cpu_to_le16(8);
3290		/*
3291		 * Link the skip address to this descriptor itself.  This causes
3292		 * a context to skip a cycle whenever lost cycles or FIFO
3293		 * overruns occur, without dropping the data.  The application
3294		 * should then decide whether this is an error condition or not.
3295		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3296		 */
3297		d[0].branch_address = cpu_to_le32(d_bus | z);
3298
3299		header = (__le32 *) &d[1];
3300		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3301					IT_HEADER_TAG(p->tag) |
3302					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3303					IT_HEADER_CHANNEL(ctx->base.channel) |
3304					IT_HEADER_SPEED(ctx->base.speed));
3305		header[1] =
3306			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3307							  p->payload_length));
3308	}
3309
3310	if (p->header_length > 0) {
3311		d[2].req_count    = cpu_to_le16(p->header_length);
3312		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3313		memcpy(&d[z], p->header, p->header_length);
3314	}
3315
3316	pd = d + z - payload_z;
3317	payload_end_index = payload_index + p->payload_length;
3318	for (i = 0; i < payload_z; i++) {
3319		page               = payload_index >> PAGE_SHIFT;
3320		offset             = payload_index & ~PAGE_MASK;
3321		next_page_index    = (page + 1) << PAGE_SHIFT;
3322		length             =
3323			min(next_page_index, payload_end_index) - payload_index;
3324		pd[i].req_count    = cpu_to_le16(length);
3325
3326		page_bus = page_private(buffer->pages[page]);
3327		pd[i].data_address = cpu_to_le32(page_bus + offset);
3328
3329		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3330						 page_bus, offset, length,
3331						 DMA_TO_DEVICE);
3332
3333		payload_index += length;
3334	}
3335
3336	if (p->interrupt)
3337		irq = DESCRIPTOR_IRQ_ALWAYS;
3338	else
3339		irq = DESCRIPTOR_NO_IRQ;
3340
3341	last = z == 2 ? d : d + z - 1;
3342	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3343				     DESCRIPTOR_STATUS |
3344				     DESCRIPTOR_BRANCH_ALWAYS |
3345				     irq);
3346
3347	context_append(&ctx->context, d, z, header_z);
3348
3349	return 0;
3350}
3351
3352static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3353				       struct fw_iso_packet *packet,
3354				       struct fw_iso_buffer *buffer,
3355				       unsigned long payload)
3356{
3357	struct device *device = ctx->context.ohci->card.device;
3358	struct descriptor *d, *pd;
3359	dma_addr_t d_bus, page_bus;
3360	u32 z, header_z, rest;
3361	int i, j, length;
3362	int page, offset, packet_count, header_size, payload_per_buffer;
3363
3364	/*
3365	 * The OHCI controller puts the isochronous header and trailer in the
3366	 * buffer, so we need at least 8 bytes.
3367	 */
3368	packet_count = packet->header_length / ctx->base.header_size;
3369	header_size  = max(ctx->base.header_size, (size_t)8);
3370
3371	/* Get header size in number of descriptors. */
3372	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3373	page     = payload >> PAGE_SHIFT;
3374	offset   = payload & ~PAGE_MASK;
3375	payload_per_buffer = packet->payload_length / packet_count;
3376
3377	for (i = 0; i < packet_count; i++) {
3378		/* d points to the header descriptor */
3379		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3380		d = context_get_descriptors(&ctx->context,
3381				z + header_z, &d_bus);
3382		if (d == NULL)
3383			return -ENOMEM;
3384
3385		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3386					      DESCRIPTOR_INPUT_MORE);
3387		if (packet->skip && i == 0)
3388			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3389		d->req_count    = cpu_to_le16(header_size);
3390		d->res_count    = d->req_count;
3391		d->transfer_status = 0;
3392		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3393
3394		rest = payload_per_buffer;
3395		pd = d;
3396		for (j = 1; j < z; j++) {
3397			pd++;
3398			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3399						  DESCRIPTOR_INPUT_MORE);
3400
3401			if (offset + rest < PAGE_SIZE)
3402				length = rest;
3403			else
3404				length = PAGE_SIZE - offset;
3405			pd->req_count = cpu_to_le16(length);
3406			pd->res_count = pd->req_count;
3407			pd->transfer_status = 0;
3408
3409			page_bus = page_private(buffer->pages[page]);
3410			pd->data_address = cpu_to_le32(page_bus + offset);
3411
3412			dma_sync_single_range_for_device(device, page_bus,
3413							 offset, length,
3414							 DMA_FROM_DEVICE);
3415
3416			offset = (offset + length) & ~PAGE_MASK;
3417			rest -= length;
3418			if (offset == 0)
3419				page++;
3420		}
3421		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3422					  DESCRIPTOR_INPUT_LAST |
3423					  DESCRIPTOR_BRANCH_ALWAYS);
3424		if (packet->interrupt && i == packet_count - 1)
3425			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3426
3427		context_append(&ctx->context, d, z, header_z);
3428	}
3429
3430	return 0;
3431}
3432
3433static int queue_iso_buffer_fill(struct iso_context *ctx,
3434				 struct fw_iso_packet *packet,
3435				 struct fw_iso_buffer *buffer,
3436				 unsigned long payload)
3437{
3438	struct descriptor *d;
3439	dma_addr_t d_bus, page_bus;
3440	int page, offset, rest, z, i, length;
3441
3442	page   = payload >> PAGE_SHIFT;
3443	offset = payload & ~PAGE_MASK;
3444	rest   = packet->payload_length;
3445
3446	/* We need one descriptor for each page in the buffer. */
3447	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3448
3449	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3450		return -EFAULT;
3451
3452	for (i = 0; i < z; i++) {
3453		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3454		if (d == NULL)
3455			return -ENOMEM;
3456
3457		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3458					 DESCRIPTOR_BRANCH_ALWAYS);
3459		if (packet->skip && i == 0)
3460			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3461		if (packet->interrupt && i == z - 1)
3462			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3463
3464		if (offset + rest < PAGE_SIZE)
3465			length = rest;
3466		else
3467			length = PAGE_SIZE - offset;
3468		d->req_count = cpu_to_le16(length);
3469		d->res_count = d->req_count;
3470		d->transfer_status = 0;
3471
3472		page_bus = page_private(buffer->pages[page]);
3473		d->data_address = cpu_to_le32(page_bus + offset);
3474
3475		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3476						 page_bus, offset, length,
3477						 DMA_FROM_DEVICE);
3478
3479		rest -= length;
3480		offset = 0;
3481		page++;
3482
3483		context_append(&ctx->context, d, 1, 0);
3484	}
3485
3486	return 0;
3487}
3488
3489static int ohci_queue_iso(struct fw_iso_context *base,
3490			  struct fw_iso_packet *packet,
3491			  struct fw_iso_buffer *buffer,
3492			  unsigned long payload)
3493{
3494	struct iso_context *ctx = container_of(base, struct iso_context, base);
3495	unsigned long flags;
3496	int ret = -ENOSYS;
3497
3498	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3499	switch (base->type) {
3500	case FW_ISO_CONTEXT_TRANSMIT:
3501		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3502		break;
3503	case FW_ISO_CONTEXT_RECEIVE:
3504		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3505		break;
3506	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3507		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3508		break;
3509	}
3510	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3511
3512	return ret;
3513}
3514
3515static void ohci_flush_queue_iso(struct fw_iso_context *base)
3516{
3517	struct context *ctx =
3518			&container_of(base, struct iso_context, base)->context;
3519
3520	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3521}
3522
3523static int ohci_flush_iso_completions(struct fw_iso_context *base)
3524{
3525	struct iso_context *ctx = container_of(base, struct iso_context, base);
3526	int ret = 0;
3527
3528	tasklet_disable_in_atomic(&ctx->context.tasklet);
3529
3530	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3531		context_tasklet((unsigned long)&ctx->context);
3532
3533		switch (base->type) {
3534		case FW_ISO_CONTEXT_TRANSMIT:
3535		case FW_ISO_CONTEXT_RECEIVE:
3536			if (ctx->header_length != 0)
3537				flush_iso_completions(ctx);
3538			break;
3539		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3540			if (ctx->mc_completed != 0)
3541				flush_ir_buffer_fill(ctx);
3542			break;
3543		default:
3544			ret = -ENOSYS;
3545		}
3546
3547		clear_bit_unlock(0, &ctx->flushing_completions);
3548		smp_mb__after_atomic();
3549	}
3550
3551	tasklet_enable(&ctx->context.tasklet);
3552
3553	return ret;
3554}
3555
3556static const struct fw_card_driver ohci_driver = {
3557	.enable			= ohci_enable,
3558	.read_phy_reg		= ohci_read_phy_reg,
3559	.update_phy_reg		= ohci_update_phy_reg,
3560	.set_config_rom		= ohci_set_config_rom,
3561	.send_request		= ohci_send_request,
3562	.send_response		= ohci_send_response,
3563	.cancel_packet		= ohci_cancel_packet,
3564	.enable_phys_dma	= ohci_enable_phys_dma,
3565	.read_csr		= ohci_read_csr,
3566	.write_csr		= ohci_write_csr,
3567
3568	.allocate_iso_context	= ohci_allocate_iso_context,
3569	.free_iso_context	= ohci_free_iso_context,
3570	.set_iso_channels	= ohci_set_iso_channels,
3571	.queue_iso		= ohci_queue_iso,
3572	.flush_queue_iso	= ohci_flush_queue_iso,
3573	.flush_iso_completions	= ohci_flush_iso_completions,
3574	.start_iso		= ohci_start_iso,
3575	.stop_iso		= ohci_stop_iso,
3576};
3577
3578#ifdef CONFIG_PPC_PMAC
3579static void pmac_ohci_on(struct pci_dev *dev)
3580{
3581	if (machine_is(powermac)) {
3582		struct device_node *ofn = pci_device_to_OF_node(dev);
3583
3584		if (ofn) {
3585			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3586			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3587		}
3588	}
3589}
3590
3591static void pmac_ohci_off(struct pci_dev *dev)
3592{
3593	if (machine_is(powermac)) {
3594		struct device_node *ofn = pci_device_to_OF_node(dev);
3595
3596		if (ofn) {
3597			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3598			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3599		}
3600	}
3601}
3602#else
3603static inline void pmac_ohci_on(struct pci_dev *dev) {}
3604static inline void pmac_ohci_off(struct pci_dev *dev) {}
3605#endif /* CONFIG_PPC_PMAC */
3606
3607static void release_ohci(struct device *dev, void *data)
3608{
3609	struct pci_dev *pdev = to_pci_dev(dev);
3610	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3611
3612	pmac_ohci_off(pdev);
3613
3614	ar_context_release(&ohci->ar_response_ctx);
3615	ar_context_release(&ohci->ar_request_ctx);
3616
3617	dev_notice(dev, "removed fw-ohci device\n");
3618}
3619
3620static int pci_probe(struct pci_dev *dev,
3621			       const struct pci_device_id *ent)
3622{
3623	struct fw_ohci *ohci;
3624	u32 bus_options, max_receive, link_speed, version;
3625	u64 guid;
3626	int i, err;
3627	size_t size;
3628
3629	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3630		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3631		return -ENOSYS;
3632	}
3633
3634	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3635	if (ohci == NULL)
3636		return -ENOMEM;
 
 
 
3637	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3638	pci_set_drvdata(dev, ohci);
3639	pmac_ohci_on(dev);
3640	devres_add(&dev->dev, ohci);
3641
3642	err = pcim_enable_device(dev);
3643	if (err) {
3644		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3645		return err;
3646	}
3647
3648	pci_set_master(dev);
3649	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
 
3650
3651	spin_lock_init(&ohci->lock);
3652	mutex_init(&ohci->phy_reg_mutex);
3653
3654	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3655
3656	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3657	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3658		ohci_err(ohci, "invalid MMIO resource\n");
3659		return -ENXIO;
 
3660	}
3661
3662	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3663	if (err) {
3664		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3665		return -ENXIO;
 
 
 
 
 
 
 
3666	}
3667	ohci->registers = pcim_iomap_table(dev)[0];
3668
3669	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3670		if ((ohci_quirks[i].vendor == dev->vendor) &&
3671		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3672		     ohci_quirks[i].device == dev->device) &&
3673		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3674		     ohci_quirks[i].revision >= dev->revision)) {
3675			ohci->quirks = ohci_quirks[i].flags;
3676			break;
3677		}
3678	if (param_quirks)
3679		ohci->quirks = param_quirks;
3680
3681	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3682		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3683
3684	/*
3685	 * Because dma_alloc_coherent() allocates at least one page,
3686	 * we save space by using a common buffer for the AR request/
3687	 * response descriptors and the self IDs buffer.
3688	 */
3689	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3690	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3691	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3692						GFP_KERNEL);
3693	if (!ohci->misc_buffer)
3694		return -ENOMEM;
 
 
 
 
3695
3696	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3697			      OHCI1394_AsReqRcvContextControlSet);
3698	if (err < 0)
3699		return err;
3700
3701	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3702			      OHCI1394_AsRspRcvContextControlSet);
3703	if (err < 0)
3704		return err;
3705
3706	err = context_init(&ohci->at_request_ctx, ohci,
3707			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3708	if (err < 0)
3709		return err;
3710
3711	err = context_init(&ohci->at_response_ctx, ohci,
3712			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3713	if (err < 0)
3714		return err;
3715
3716	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3717	ohci->ir_context_channels = ~0ULL;
3718	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3719	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3720	ohci->ir_context_mask = ohci->ir_context_support;
3721	ohci->n_ir = hweight32(ohci->ir_context_mask);
3722	size = sizeof(struct iso_context) * ohci->n_ir;
3723	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3724	if (!ohci->ir_context_list)
3725		return -ENOMEM;
3726
3727	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3728	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3729	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3730	if (!ohci->it_context_support) {
3731		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3732		ohci->it_context_support = 0xf;
3733	}
3734	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3735	ohci->it_context_mask = ohci->it_context_support;
3736	ohci->n_it = hweight32(ohci->it_context_mask);
3737	size = sizeof(struct iso_context) * ohci->n_it;
3738	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3739	if (!ohci->it_context_list)
3740		return -ENOMEM;
 
 
 
3741
3742	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3743	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3744
3745	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3746	max_receive = (bus_options >> 12) & 0xf;
3747	link_speed = bus_options & 0x7;
3748	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3749		reg_read(ohci, OHCI1394_GUIDLo);
3750
3751	if (!(ohci->quirks & QUIRK_NO_MSI))
3752		pci_enable_msi(dev);
3753	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3754			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3755	if (err < 0) {
3756		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
 
3757		goto fail_msi;
3758	}
3759
3760	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3761	if (err)
3762		goto fail_msi;
3763
3764	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3765	ohci_notice(ohci,
3766		    "added OHCI v%x.%x device as card %d, "
3767		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3768		    version >> 16, version & 0xff, ohci->card.index,
3769		    ohci->n_ir, ohci->n_it, ohci->quirks,
3770		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3771			", physUB" : "");
3772
3773	return 0;
3774
 
 
3775 fail_msi:
3776	devm_free_irq(&dev->dev, dev->irq, ohci);
3777	pci_disable_msi(dev);
3778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779	return err;
3780}
3781
3782static void pci_remove(struct pci_dev *dev)
3783{
3784	struct fw_ohci *ohci = pci_get_drvdata(dev);
3785
3786	/*
3787	 * If the removal is happening from the suspend state, LPS won't be
3788	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3789	 */
3790	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3791		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3792		flush_writes(ohci);
3793	}
3794	cancel_work_sync(&ohci->bus_reset_work);
3795	fw_core_remove_card(&ohci->card);
3796
3797	/*
3798	 * FIXME: Fail all pending packets here, now that the upper
3799	 * layers can't queue any more.
3800	 */
3801
3802	software_reset(ohci);
 
3803
3804	devm_free_irq(&dev->dev, dev->irq, ohci);
 
 
 
 
 
 
 
 
 
 
 
 
 
3805	pci_disable_msi(dev);
 
 
 
 
 
3806
3807	dev_notice(&dev->dev, "removing fw-ohci device\n");
3808}
3809
3810#ifdef CONFIG_PM
3811static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812{
3813	struct fw_ohci *ohci = pci_get_drvdata(dev);
3814	int err;
3815
3816	software_reset(ohci);
3817	err = pci_save_state(dev);
3818	if (err) {
3819		ohci_err(ohci, "pci_save_state failed\n");
3820		return err;
3821	}
3822	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823	if (err)
3824		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825	pmac_ohci_off(dev);
3826
3827	return 0;
3828}
3829
3830static int pci_resume(struct pci_dev *dev)
3831{
3832	struct fw_ohci *ohci = pci_get_drvdata(dev);
3833	int err;
3834
3835	pmac_ohci_on(dev);
3836	pci_set_power_state(dev, PCI_D0);
3837	pci_restore_state(dev);
3838	err = pci_enable_device(dev);
3839	if (err) {
3840		ohci_err(ohci, "pci_enable_device failed\n");
3841		return err;
3842	}
3843
3844	/* Some systems don't setup GUID register on resume from ram  */
3845	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846					!reg_read(ohci, OHCI1394_GUIDHi)) {
3847		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849	}
3850
3851	err = ohci_enable(&ohci->card, NULL, 0);
3852	if (err)
3853		return err;
3854
3855	ohci_resume_iso_dma(ohci);
3856
3857	return 0;
3858}
3859#endif
3860
3861static const struct pci_device_id pci_table[] = {
3862	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863	{ }
3864};
3865
3866MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868static struct pci_driver fw_ohci_pci_driver = {
3869	.name		= ohci_driver_name,
3870	.id_table	= pci_table,
3871	.probe		= pci_probe,
3872	.remove		= pci_remove,
3873#ifdef CONFIG_PM
3874	.resume		= pci_resume,
3875	.suspend	= pci_suspend,
3876#endif
3877};
3878
3879static int __init fw_ohci_init(void)
3880{
3881	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882	if (!selfid_workqueue)
3883		return -ENOMEM;
3884
3885	return pci_register_driver(&fw_ohci_pci_driver);
3886}
3887
3888static void __exit fw_ohci_cleanup(void)
3889{
3890	pci_unregister_driver(&fw_ohci_pci_driver);
3891	destroy_workqueue(selfid_workqueue);
3892}
3893
3894module_init(fw_ohci_init);
3895module_exit(fw_ohci_cleanup);
3896
3897MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899MODULE_LICENSE("GPL");
3900
3901/* Provide a module alias so root-on-sbp2 initrds don't break. */
3902MODULE_ALIAS("ohci1394");
v4.6
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE		0
  62#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  63#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  64#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  65#define DESCRIPTOR_STATUS		(1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  67#define DESCRIPTOR_PING			(1 << 7)
  68#define DESCRIPTOR_YY			(1 << 6)
  69#define DESCRIPTOR_NO_IRQ		(0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  73#define DESCRIPTOR_WAIT			(3 << 0)
  74
  75#define DESCRIPTOR_CMD			(0xf << 12)
  76
  77struct descriptor {
  78	__le16 req_count;
  79	__le16 control;
  80	__le32 data_address;
  81	__le32 branch_address;
  82	__le16 res_count;
  83	__le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)	(regs)
  87#define CONTROL_CLEAR(regs)	((regs) + 4)
  88#define COMMAND_PTR(regs)	((regs) + 12)
  89#define CONTEXT_MATCH(regs)	((regs) + 16)
  90
  91#define AR_BUFFER_SIZE	(32*1024)
  92#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD	4096
  97#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101	struct fw_ohci *ohci;
 102	struct page *pages[AR_BUFFERS];
 103	void *buffer;
 104	struct descriptor *descriptors;
 105	dma_addr_t descriptors_bus;
 106	void *pointer;
 107	unsigned int last_buffer_index;
 108	u32 regs;
 109	struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115				     struct descriptor *d,
 116				     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123	struct list_head list;
 124	dma_addr_t buffer_bus;
 125	size_t buffer_size;
 126	size_t used;
 127	struct descriptor buffer[0];
 128};
 129
 130struct context {
 131	struct fw_ohci *ohci;
 132	u32 regs;
 133	int total_allocation;
 134	u32 current_bus;
 135	bool running;
 136	bool flushing;
 137
 138	/*
 139	 * List of page-sized buffers for storing DMA descriptors.
 140	 * Head of list contains buffers in use and tail of list contains
 141	 * free buffers.
 142	 */
 143	struct list_head buffer_list;
 144
 145	/*
 146	 * Pointer to a buffer inside buffer_list that contains the tail
 147	 * end of the current DMA program.
 148	 */
 149	struct descriptor_buffer *buffer_tail;
 150
 151	/*
 152	 * The descriptor containing the branch address of the first
 153	 * descriptor that has not yet been filled by the device.
 154	 */
 155	struct descriptor *last;
 156
 157	/*
 158	 * The last descriptor block in the DMA program. It contains the branch
 159	 * address that must be updated upon appending a new descriptor.
 160	 */
 161	struct descriptor *prev;
 162	int prev_z;
 163
 164	descriptor_callback_t callback;
 165
 166	struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177	struct fw_iso_context base;
 178	struct context context;
 179	void *header;
 180	size_t header_length;
 181	unsigned long flushing_completions;
 182	u32 mc_buffer_bus;
 183	u16 mc_completed;
 184	u16 last_timestamp;
 185	u8 sync;
 186	u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192	struct fw_card card;
 193
 194	__iomem char *registers;
 195	int node_id;
 196	int generation;
 197	int request_generation;	/* for timestamping incoming requests */
 198	unsigned quirks;
 199	unsigned int pri_req_max;
 200	u32 bus_time;
 201	bool bus_time_running;
 202	bool is_root;
 203	bool csr_state_setclear_abdicate;
 204	int n_ir;
 205	int n_it;
 206	/*
 207	 * Spinlock for accessing fw_ohci data.  Never call out of
 208	 * this driver with this lock held.
 209	 */
 210	spinlock_t lock;
 211
 212	struct mutex phy_reg_mutex;
 213
 214	void *misc_buffer;
 215	dma_addr_t misc_buffer_bus;
 216
 217	struct ar_context ar_request_ctx;
 218	struct ar_context ar_response_ctx;
 219	struct context at_request_ctx;
 220	struct context at_response_ctx;
 221
 222	u32 it_context_support;
 223	u32 it_context_mask;     /* unoccupied IT contexts */
 224	struct iso_context *it_context_list;
 225	u64 ir_context_channels; /* unoccupied channels */
 226	u32 ir_context_support;
 227	u32 ir_context_mask;     /* unoccupied IR contexts */
 228	struct iso_context *ir_context_list;
 229	u64 mc_channels; /* channels in use by the multichannel IR context */
 230	bool mc_allocated;
 231
 232	__be32    *config_rom;
 233	dma_addr_t config_rom_bus;
 234	__be32    *next_config_rom;
 235	dma_addr_t next_config_rom_bus;
 236	__be32     next_header;
 237
 238	__le32    *self_id;
 239	dma_addr_t self_id_bus;
 240	struct work_struct bus_reset_work;
 241
 242	u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249	return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 253#define IR_CONTEXT_BUFFER_FILL		0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 258
 259#define CONTEXT_RUN	0x8000
 260#define CONTEXT_WAKE	0x1000
 261#define CONTEXT_DEAD	0x0800
 262#define CONTEXT_ACTIVE	0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 267
 268#define OHCI1394_REGISTER_SIZE		0x800
 269#define OHCI1394_PCI_HCI_Control	0x40
 270#define SELF_ID_BUF_SIZE		0x800
 271#define OHCI_TCODE_PHY_PACKET		0x0e
 272#define OHCI_VERSION_1_1		0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 284#define PCI_REV_ID_VIA_VT6306		0x46
 285#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 286
 287#define QUIRK_CYCLE_TIMER		0x1
 288#define QUIRK_RESET_PACKET		0x2
 289#define QUIRK_BE_HEADERS		0x4
 290#define QUIRK_NO_1394A			0x8
 291#define QUIRK_NO_MSI			0x10
 292#define QUIRK_TI_SLLZ059		0x20
 293#define QUIRK_IR_WAKE			0x40
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297	unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300		QUIRK_CYCLE_TIMER},
 301
 302	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303		QUIRK_BE_HEADERS},
 304
 305	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306		QUIRK_NO_MSI},
 307
 308	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 309		QUIRK_RESET_PACKET},
 310
 311	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 312		QUIRK_NO_MSI},
 313
 314	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 315		QUIRK_CYCLE_TIMER},
 316
 317	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 318		QUIRK_NO_MSI},
 319
 320	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 321		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 322
 323	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 324		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 325
 326	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 327		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 330		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 333		QUIRK_RESET_PACKET},
 334
 335	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 336		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 337
 338	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 339		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 340
 341	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 342		QUIRK_NO_MSI},
 343
 344	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 345		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 346};
 347
 348/* This overrides anything that was found in ohci_quirks[]. */
 349static int param_quirks;
 350module_param_named(quirks, param_quirks, int, 0644);
 351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 352	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 353	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 354	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 355	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 356	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 357	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 358	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 359	")");
 360
 361#define OHCI_PARAM_DEBUG_AT_AR		1
 362#define OHCI_PARAM_DEBUG_SELFIDS	2
 363#define OHCI_PARAM_DEBUG_IRQS		4
 364#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 365
 366static int param_debug;
 367module_param_named(debug, param_debug, int, 0644);
 368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 369	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 370	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 371	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 372	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 373	", or a combination, or all = -1)");
 374
 375static bool param_remote_dma;
 376module_param_named(remote_dma, param_remote_dma, bool, 0444);
 377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 378
 379static void log_irqs(struct fw_ohci *ohci, u32 evt)
 380{
 381	if (likely(!(param_debug &
 382			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 383		return;
 384
 385	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 386	    !(evt & OHCI1394_busReset))
 387		return;
 388
 389	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 390	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 391	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 392	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 393	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 394	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 395	    evt & OHCI1394_isochRx		? " IR"			: "",
 396	    evt & OHCI1394_isochTx		? " IT"			: "",
 397	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 398	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 399	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 400	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 401	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 402	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 403	    evt & OHCI1394_busReset		? " busReset"		: "",
 404	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 405		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 406		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 407		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 408		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 409		    OHCI1394_cycleInconsistent |
 410		    OHCI1394_regAccessFail | OHCI1394_busReset)
 411						? " ?"			: "");
 412}
 413
 414static const char *speed[] = {
 415	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 416};
 417static const char *power[] = {
 418	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 419	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 420};
 421static const char port[] = { '.', '-', 'p', 'c', };
 422
 423static char _p(u32 *s, int shift)
 424{
 425	return port[*s >> shift & 3];
 426}
 427
 428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 429{
 430	u32 *s;
 431
 432	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 433		return;
 434
 435	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 436		    self_id_count, generation, ohci->node_id);
 437
 438	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 439		if ((*s & 1 << 23) == 0)
 440			ohci_notice(ohci,
 441			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 442			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 443			    speed[*s >> 14 & 3], *s >> 16 & 63,
 444			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 445			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 446		else
 447			ohci_notice(ohci,
 448			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 449			    *s, *s >> 24 & 63,
 450			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 451			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 452}
 453
 454static const char *evts[] = {
 455	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 456	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 457	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 458	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 459	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 460	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 461	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 462	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 463	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 464	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 465	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 466	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 467	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 468	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 469	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 470	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 471	[0x20] = "pending/cancelled",
 472};
 473static const char *tcodes[] = {
 474	[0x0] = "QW req",		[0x1] = "BW req",
 475	[0x2] = "W resp",		[0x3] = "-reserved-",
 476	[0x4] = "QR req",		[0x5] = "BR req",
 477	[0x6] = "QR resp",		[0x7] = "BR resp",
 478	[0x8] = "cycle start",		[0x9] = "Lk req",
 479	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 480	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 481	[0xe] = "link internal",	[0xf] = "-reserved-",
 482};
 483
 484static void log_ar_at_event(struct fw_ohci *ohci,
 485			    char dir, int speed, u32 *header, int evt)
 486{
 487	int tcode = header[0] >> 4 & 0xf;
 488	char specific[12];
 489
 490	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 491		return;
 492
 493	if (unlikely(evt >= ARRAY_SIZE(evts)))
 494			evt = 0x1f;
 495
 496	if (evt == OHCI1394_evt_bus_reset) {
 497		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 498			    dir, (header[2] >> 16) & 0xff);
 499		return;
 500	}
 501
 502	switch (tcode) {
 503	case 0x0: case 0x6: case 0x8:
 504		snprintf(specific, sizeof(specific), " = %08x",
 505			 be32_to_cpu((__force __be32)header[3]));
 506		break;
 507	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 508		snprintf(specific, sizeof(specific), " %x,%x",
 509			 header[3] >> 16, header[3] & 0xffff);
 510		break;
 511	default:
 512		specific[0] = '\0';
 513	}
 514
 515	switch (tcode) {
 516	case 0xa:
 517		ohci_notice(ohci, "A%c %s, %s\n",
 518			    dir, evts[evt], tcodes[tcode]);
 519		break;
 520	case 0xe:
 521		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 522			    dir, evts[evt], header[1], header[2]);
 523		break;
 524	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 525		ohci_notice(ohci,
 526			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 527			    dir, speed, header[0] >> 10 & 0x3f,
 528			    header[1] >> 16, header[0] >> 16, evts[evt],
 529			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 530		break;
 531	default:
 532		ohci_notice(ohci,
 533			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 534			    dir, speed, header[0] >> 10 & 0x3f,
 535			    header[1] >> 16, header[0] >> 16, evts[evt],
 536			    tcodes[tcode], specific);
 537	}
 538}
 539
 540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 541{
 542	writel(data, ohci->registers + offset);
 543}
 544
 545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 546{
 547	return readl(ohci->registers + offset);
 548}
 549
 550static inline void flush_writes(const struct fw_ohci *ohci)
 551{
 552	/* Do a dummy read to flush writes. */
 553	reg_read(ohci, OHCI1394_Version);
 554}
 555
 556/*
 557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 561 */
 562static int read_phy_reg(struct fw_ohci *ohci, int addr)
 563{
 564	u32 val;
 565	int i;
 566
 567	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 568	for (i = 0; i < 3 + 100; i++) {
 569		val = reg_read(ohci, OHCI1394_PhyControl);
 570		if (!~val)
 571			return -ENODEV; /* Card was ejected. */
 572
 573		if (val & OHCI1394_PhyControl_ReadDone)
 574			return OHCI1394_PhyControl_ReadData(val);
 575
 576		/*
 577		 * Try a few times without waiting.  Sleeping is necessary
 578		 * only when the link/PHY interface is busy.
 579		 */
 580		if (i >= 3)
 581			msleep(1);
 582	}
 583	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 584	dump_stack();
 585
 586	return -EBUSY;
 587}
 588
 589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 590{
 591	int i;
 592
 593	reg_write(ohci, OHCI1394_PhyControl,
 594		  OHCI1394_PhyControl_Write(addr, val));
 595	for (i = 0; i < 3 + 100; i++) {
 596		val = reg_read(ohci, OHCI1394_PhyControl);
 597		if (!~val)
 598			return -ENODEV; /* Card was ejected. */
 599
 600		if (!(val & OHCI1394_PhyControl_WritePending))
 601			return 0;
 602
 603		if (i >= 3)
 604			msleep(1);
 605	}
 606	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 607	dump_stack();
 608
 609	return -EBUSY;
 610}
 611
 612static int update_phy_reg(struct fw_ohci *ohci, int addr,
 613			  int clear_bits, int set_bits)
 614{
 615	int ret = read_phy_reg(ohci, addr);
 616	if (ret < 0)
 617		return ret;
 618
 619	/*
 620	 * The interrupt status bits are cleared by writing a one bit.
 621	 * Avoid clearing them unless explicitly requested in set_bits.
 622	 */
 623	if (addr == 5)
 624		clear_bits |= PHY_INT_STATUS_BITS;
 625
 626	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 627}
 628
 629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 630{
 631	int ret;
 632
 633	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 634	if (ret < 0)
 635		return ret;
 636
 637	return read_phy_reg(ohci, addr);
 638}
 639
 640static int ohci_read_phy_reg(struct fw_card *card, int addr)
 641{
 642	struct fw_ohci *ohci = fw_ohci(card);
 643	int ret;
 644
 645	mutex_lock(&ohci->phy_reg_mutex);
 646	ret = read_phy_reg(ohci, addr);
 647	mutex_unlock(&ohci->phy_reg_mutex);
 648
 649	return ret;
 650}
 651
 652static int ohci_update_phy_reg(struct fw_card *card, int addr,
 653			       int clear_bits, int set_bits)
 654{
 655	struct fw_ohci *ohci = fw_ohci(card);
 656	int ret;
 657
 658	mutex_lock(&ohci->phy_reg_mutex);
 659	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 660	mutex_unlock(&ohci->phy_reg_mutex);
 661
 662	return ret;
 663}
 664
 665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 666{
 667	return page_private(ctx->pages[i]);
 668}
 669
 670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 671{
 672	struct descriptor *d;
 673
 674	d = &ctx->descriptors[index];
 675	d->branch_address  &= cpu_to_le32(~0xf);
 676	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 677	d->transfer_status =  0;
 678
 679	wmb(); /* finish init of new descriptors before branch_address update */
 680	d = &ctx->descriptors[ctx->last_buffer_index];
 681	d->branch_address  |= cpu_to_le32(1);
 682
 683	ctx->last_buffer_index = index;
 684
 685	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 686}
 687
 688static void ar_context_release(struct ar_context *ctx)
 689{
 
 690	unsigned int i;
 691
 
 
 
 692	vunmap(ctx->buffer);
 693
 694	for (i = 0; i < AR_BUFFERS; i++)
 695		if (ctx->pages[i]) {
 696			dma_unmap_page(ctx->ohci->card.device,
 697				       ar_buffer_bus(ctx, i),
 698				       PAGE_SIZE, DMA_FROM_DEVICE);
 699			__free_page(ctx->pages[i]);
 700		}
 701}
 702
 703static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 704{
 705	struct fw_ohci *ohci = ctx->ohci;
 706
 707	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 708		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 709		flush_writes(ohci);
 710
 711		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 712	}
 713	/* FIXME: restart? */
 714}
 715
 716static inline unsigned int ar_next_buffer_index(unsigned int index)
 717{
 718	return (index + 1) % AR_BUFFERS;
 719}
 720
 721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 722{
 723	return ar_next_buffer_index(ctx->last_buffer_index);
 724}
 725
 726/*
 727 * We search for the buffer that contains the last AR packet DMA data written
 728 * by the controller.
 729 */
 730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 731						 unsigned int *buffer_offset)
 732{
 733	unsigned int i, next_i, last = ctx->last_buffer_index;
 734	__le16 res_count, next_res_count;
 735
 736	i = ar_first_buffer_index(ctx);
 737	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 738
 739	/* A buffer that is not yet completely filled must be the last one. */
 740	while (i != last && res_count == 0) {
 741
 742		/* Peek at the next descriptor. */
 743		next_i = ar_next_buffer_index(i);
 744		rmb(); /* read descriptors in order */
 745		next_res_count = ACCESS_ONCE(
 746				ctx->descriptors[next_i].res_count);
 747		/*
 748		 * If the next descriptor is still empty, we must stop at this
 749		 * descriptor.
 750		 */
 751		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 752			/*
 753			 * The exception is when the DMA data for one packet is
 754			 * split over three buffers; in this case, the middle
 755			 * buffer's descriptor might be never updated by the
 756			 * controller and look still empty, and we have to peek
 757			 * at the third one.
 758			 */
 759			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 760				next_i = ar_next_buffer_index(next_i);
 761				rmb();
 762				next_res_count = ACCESS_ONCE(
 763					ctx->descriptors[next_i].res_count);
 764				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 765					goto next_buffer_is_active;
 766			}
 767
 768			break;
 769		}
 770
 771next_buffer_is_active:
 772		i = next_i;
 773		res_count = next_res_count;
 774	}
 775
 776	rmb(); /* read res_count before the DMA data */
 777
 778	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 779	if (*buffer_offset > PAGE_SIZE) {
 780		*buffer_offset = 0;
 781		ar_context_abort(ctx, "corrupted descriptor");
 782	}
 783
 784	return i;
 785}
 786
 787static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 788				    unsigned int end_buffer_index,
 789				    unsigned int end_buffer_offset)
 790{
 791	unsigned int i;
 792
 793	i = ar_first_buffer_index(ctx);
 794	while (i != end_buffer_index) {
 795		dma_sync_single_for_cpu(ctx->ohci->card.device,
 796					ar_buffer_bus(ctx, i),
 797					PAGE_SIZE, DMA_FROM_DEVICE);
 798		i = ar_next_buffer_index(i);
 799	}
 800	if (end_buffer_offset > 0)
 801		dma_sync_single_for_cpu(ctx->ohci->card.device,
 802					ar_buffer_bus(ctx, i),
 803					end_buffer_offset, DMA_FROM_DEVICE);
 804}
 805
 806#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 807#define cond_le32_to_cpu(v) \
 808	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 809#else
 810#define cond_le32_to_cpu(v) le32_to_cpu(v)
 811#endif
 812
 813static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 814{
 815	struct fw_ohci *ohci = ctx->ohci;
 816	struct fw_packet p;
 817	u32 status, length, tcode;
 818	int evt;
 819
 820	p.header[0] = cond_le32_to_cpu(buffer[0]);
 821	p.header[1] = cond_le32_to_cpu(buffer[1]);
 822	p.header[2] = cond_le32_to_cpu(buffer[2]);
 823
 824	tcode = (p.header[0] >> 4) & 0x0f;
 825	switch (tcode) {
 826	case TCODE_WRITE_QUADLET_REQUEST:
 827	case TCODE_READ_QUADLET_RESPONSE:
 828		p.header[3] = (__force __u32) buffer[3];
 829		p.header_length = 16;
 830		p.payload_length = 0;
 831		break;
 832
 833	case TCODE_READ_BLOCK_REQUEST :
 834		p.header[3] = cond_le32_to_cpu(buffer[3]);
 835		p.header_length = 16;
 836		p.payload_length = 0;
 837		break;
 838
 839	case TCODE_WRITE_BLOCK_REQUEST:
 840	case TCODE_READ_BLOCK_RESPONSE:
 841	case TCODE_LOCK_REQUEST:
 842	case TCODE_LOCK_RESPONSE:
 843		p.header[3] = cond_le32_to_cpu(buffer[3]);
 844		p.header_length = 16;
 845		p.payload_length = p.header[3] >> 16;
 846		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 847			ar_context_abort(ctx, "invalid packet length");
 848			return NULL;
 849		}
 850		break;
 851
 852	case TCODE_WRITE_RESPONSE:
 853	case TCODE_READ_QUADLET_REQUEST:
 854	case OHCI_TCODE_PHY_PACKET:
 855		p.header_length = 12;
 856		p.payload_length = 0;
 857		break;
 858
 859	default:
 860		ar_context_abort(ctx, "invalid tcode");
 861		return NULL;
 862	}
 863
 864	p.payload = (void *) buffer + p.header_length;
 865
 866	/* FIXME: What to do about evt_* errors? */
 867	length = (p.header_length + p.payload_length + 3) / 4;
 868	status = cond_le32_to_cpu(buffer[length]);
 869	evt    = (status >> 16) & 0x1f;
 870
 871	p.ack        = evt - 16;
 872	p.speed      = (status >> 21) & 0x7;
 873	p.timestamp  = status & 0xffff;
 874	p.generation = ohci->request_generation;
 875
 876	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 877
 878	/*
 879	 * Several controllers, notably from NEC and VIA, forget to
 880	 * write ack_complete status at PHY packet reception.
 881	 */
 882	if (evt == OHCI1394_evt_no_status &&
 883	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 884		p.ack = ACK_COMPLETE;
 885
 886	/*
 887	 * The OHCI bus reset handler synthesizes a PHY packet with
 888	 * the new generation number when a bus reset happens (see
 889	 * section 8.4.2.3).  This helps us determine when a request
 890	 * was received and make sure we send the response in the same
 891	 * generation.  We only need this for requests; for responses
 892	 * we use the unique tlabel for finding the matching
 893	 * request.
 894	 *
 895	 * Alas some chips sometimes emit bus reset packets with a
 896	 * wrong generation.  We set the correct generation for these
 897	 * at a slightly incorrect time (in bus_reset_work).
 898	 */
 899	if (evt == OHCI1394_evt_bus_reset) {
 900		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 901			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 902	} else if (ctx == &ohci->ar_request_ctx) {
 903		fw_core_handle_request(&ohci->card, &p);
 904	} else {
 905		fw_core_handle_response(&ohci->card, &p);
 906	}
 907
 908	return buffer + length + 1;
 909}
 910
 911static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 912{
 913	void *next;
 914
 915	while (p < end) {
 916		next = handle_ar_packet(ctx, p);
 917		if (!next)
 918			return p;
 919		p = next;
 920	}
 921
 922	return p;
 923}
 924
 925static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 926{
 927	unsigned int i;
 928
 929	i = ar_first_buffer_index(ctx);
 930	while (i != end_buffer) {
 931		dma_sync_single_for_device(ctx->ohci->card.device,
 932					   ar_buffer_bus(ctx, i),
 933					   PAGE_SIZE, DMA_FROM_DEVICE);
 934		ar_context_link_page(ctx, i);
 935		i = ar_next_buffer_index(i);
 936	}
 937}
 938
 939static void ar_context_tasklet(unsigned long data)
 940{
 941	struct ar_context *ctx = (struct ar_context *)data;
 942	unsigned int end_buffer_index, end_buffer_offset;
 943	void *p, *end;
 944
 945	p = ctx->pointer;
 946	if (!p)
 947		return;
 948
 949	end_buffer_index = ar_search_last_active_buffer(ctx,
 950							&end_buffer_offset);
 951	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 952	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 953
 954	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 955		/*
 956		 * The filled part of the overall buffer wraps around; handle
 957		 * all packets up to the buffer end here.  If the last packet
 958		 * wraps around, its tail will be visible after the buffer end
 959		 * because the buffer start pages are mapped there again.
 960		 */
 961		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 962		p = handle_ar_packets(ctx, p, buffer_end);
 963		if (p < buffer_end)
 964			goto error;
 965		/* adjust p to point back into the actual buffer */
 966		p -= AR_BUFFERS * PAGE_SIZE;
 967	}
 968
 969	p = handle_ar_packets(ctx, p, end);
 970	if (p != end) {
 971		if (p > end)
 972			ar_context_abort(ctx, "inconsistent descriptor");
 973		goto error;
 974	}
 975
 976	ctx->pointer = p;
 977	ar_recycle_buffers(ctx, end_buffer_index);
 978
 979	return;
 980
 981error:
 982	ctx->pointer = NULL;
 983}
 984
 985static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 986			   unsigned int descriptors_offset, u32 regs)
 987{
 
 988	unsigned int i;
 989	dma_addr_t dma_addr;
 990	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 991	struct descriptor *d;
 992
 993	ctx->regs        = regs;
 994	ctx->ohci        = ohci;
 995	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 996
 997	for (i = 0; i < AR_BUFFERS; i++) {
 998		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 999		if (!ctx->pages[i])
1000			goto out_of_memory;
1001		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002					0, PAGE_SIZE, DMA_FROM_DEVICE);
1003		if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004			__free_page(ctx->pages[i]);
1005			ctx->pages[i] = NULL;
1006			goto out_of_memory;
1007		}
1008		set_page_private(ctx->pages[i], dma_addr);
 
 
1009	}
1010
1011	for (i = 0; i < AR_BUFFERS; i++)
1012		pages[i]              = ctx->pages[i];
1013	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014		pages[AR_BUFFERS + i] = ctx->pages[i];
1015	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1016	if (!ctx->buffer)
1017		goto out_of_memory;
1018
1019	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1020	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021
1022	for (i = 0; i < AR_BUFFERS; i++) {
1023		d = &ctx->descriptors[i];
1024		d->req_count      = cpu_to_le16(PAGE_SIZE);
1025		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1026						DESCRIPTOR_STATUS |
1027						DESCRIPTOR_BRANCH_ALWAYS);
1028		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1029		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1030			ar_next_buffer_index(i) * sizeof(struct descriptor));
1031	}
1032
1033	return 0;
1034
1035out_of_memory:
1036	ar_context_release(ctx);
1037
1038	return -ENOMEM;
1039}
1040
1041static void ar_context_run(struct ar_context *ctx)
1042{
1043	unsigned int i;
1044
1045	for (i = 0; i < AR_BUFFERS; i++)
1046		ar_context_link_page(ctx, i);
1047
1048	ctx->pointer = ctx->buffer;
1049
1050	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1051	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1052}
1053
1054static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055{
1056	__le16 branch;
1057
1058	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059
1060	/* figure out which descriptor the branch address goes in */
1061	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1062		return d;
1063	else
1064		return d + z - 1;
1065}
1066
1067static void context_tasklet(unsigned long data)
1068{
1069	struct context *ctx = (struct context *) data;
1070	struct descriptor *d, *last;
1071	u32 address;
1072	int z;
1073	struct descriptor_buffer *desc;
1074
1075	desc = list_entry(ctx->buffer_list.next,
1076			struct descriptor_buffer, list);
1077	last = ctx->last;
1078	while (last->branch_address != 0) {
1079		struct descriptor_buffer *old_desc = desc;
1080		address = le32_to_cpu(last->branch_address);
1081		z = address & 0xf;
1082		address &= ~0xf;
1083		ctx->current_bus = address;
1084
1085		/* If the branch address points to a buffer outside of the
1086		 * current buffer, advance to the next buffer. */
1087		if (address < desc->buffer_bus ||
1088				address >= desc->buffer_bus + desc->used)
1089			desc = list_entry(desc->list.next,
1090					struct descriptor_buffer, list);
1091		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1092		last = find_branch_descriptor(d, z);
1093
1094		if (!ctx->callback(ctx, d, last))
1095			break;
1096
1097		if (old_desc != desc) {
1098			/* If we've advanced to the next buffer, move the
1099			 * previous buffer to the free list. */
1100			unsigned long flags;
1101			old_desc->used = 0;
1102			spin_lock_irqsave(&ctx->ohci->lock, flags);
1103			list_move_tail(&old_desc->list, &ctx->buffer_list);
1104			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105		}
1106		ctx->last = last;
1107	}
1108}
1109
1110/*
1111 * Allocate a new buffer and add it to the list of free buffers for this
1112 * context.  Must be called with ohci->lock held.
1113 */
1114static int context_add_buffer(struct context *ctx)
1115{
1116	struct descriptor_buffer *desc;
1117	dma_addr_t uninitialized_var(bus_addr);
1118	int offset;
1119
1120	/*
1121	 * 16MB of descriptors should be far more than enough for any DMA
1122	 * program.  This will catch run-away userspace or DoS attacks.
1123	 */
1124	if (ctx->total_allocation >= 16*1024*1024)
1125		return -ENOMEM;
1126
1127	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1128			&bus_addr, GFP_ATOMIC);
1129	if (!desc)
1130		return -ENOMEM;
1131
1132	offset = (void *)&desc->buffer - (void *)desc;
1133	desc->buffer_size = PAGE_SIZE - offset;
 
 
 
 
 
 
1134	desc->buffer_bus = bus_addr + offset;
1135	desc->used = 0;
1136
1137	list_add_tail(&desc->list, &ctx->buffer_list);
1138	ctx->total_allocation += PAGE_SIZE;
1139
1140	return 0;
1141}
1142
1143static int context_init(struct context *ctx, struct fw_ohci *ohci,
1144			u32 regs, descriptor_callback_t callback)
1145{
1146	ctx->ohci = ohci;
1147	ctx->regs = regs;
1148	ctx->total_allocation = 0;
1149
1150	INIT_LIST_HEAD(&ctx->buffer_list);
1151	if (context_add_buffer(ctx) < 0)
1152		return -ENOMEM;
1153
1154	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1155			struct descriptor_buffer, list);
1156
1157	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1158	ctx->callback = callback;
1159
1160	/*
1161	 * We put a dummy descriptor in the buffer that has a NULL
1162	 * branch address and looks like it's been sent.  That way we
1163	 * have a descriptor to append DMA programs to.
1164	 */
1165	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1166	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1167	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1168	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1169	ctx->last = ctx->buffer_tail->buffer;
1170	ctx->prev = ctx->buffer_tail->buffer;
1171	ctx->prev_z = 1;
1172
1173	return 0;
1174}
1175
1176static void context_release(struct context *ctx)
1177{
1178	struct fw_card *card = &ctx->ohci->card;
1179	struct descriptor_buffer *desc, *tmp;
1180
1181	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1182		dma_free_coherent(card->device, PAGE_SIZE, desc,
1183			desc->buffer_bus -
1184			((void *)&desc->buffer - (void *)desc));
1185}
1186
1187/* Must be called with ohci->lock held */
1188static struct descriptor *context_get_descriptors(struct context *ctx,
1189						  int z, dma_addr_t *d_bus)
1190{
1191	struct descriptor *d = NULL;
1192	struct descriptor_buffer *desc = ctx->buffer_tail;
1193
1194	if (z * sizeof(*d) > desc->buffer_size)
1195		return NULL;
1196
1197	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1198		/* No room for the descriptor in this buffer, so advance to the
1199		 * next one. */
1200
1201		if (desc->list.next == &ctx->buffer_list) {
1202			/* If there is no free buffer next in the list,
1203			 * allocate one. */
1204			if (context_add_buffer(ctx) < 0)
1205				return NULL;
1206		}
1207		desc = list_entry(desc->list.next,
1208				struct descriptor_buffer, list);
1209		ctx->buffer_tail = desc;
1210	}
1211
1212	d = desc->buffer + desc->used / sizeof(*d);
1213	memset(d, 0, z * sizeof(*d));
1214	*d_bus = desc->buffer_bus + desc->used;
1215
1216	return d;
1217}
1218
1219static void context_run(struct context *ctx, u32 extra)
1220{
1221	struct fw_ohci *ohci = ctx->ohci;
1222
1223	reg_write(ohci, COMMAND_PTR(ctx->regs),
1224		  le32_to_cpu(ctx->last->branch_address));
1225	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1226	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1227	ctx->running = true;
1228	flush_writes(ohci);
1229}
1230
1231static void context_append(struct context *ctx,
1232			   struct descriptor *d, int z, int extra)
1233{
1234	dma_addr_t d_bus;
1235	struct descriptor_buffer *desc = ctx->buffer_tail;
1236	struct descriptor *d_branch;
1237
1238	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1239
1240	desc->used += (z + extra) * sizeof(*d);
1241
1242	wmb(); /* finish init of new descriptors before branch_address update */
1243
1244	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1245	d_branch->branch_address = cpu_to_le32(d_bus | z);
1246
1247	/*
1248	 * VT6306 incorrectly checks only the single descriptor at the
1249	 * CommandPtr when the wake bit is written, so if it's a
1250	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1251	 * the branch address in the first descriptor.
1252	 *
1253	 * Not doing this for transmit contexts since not sure how it interacts
1254	 * with skip addresses.
1255	 */
1256	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1257	    d_branch != ctx->prev &&
1258	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1259	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1260		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1261	}
1262
1263	ctx->prev = d;
1264	ctx->prev_z = z;
1265}
1266
1267static void context_stop(struct context *ctx)
1268{
1269	struct fw_ohci *ohci = ctx->ohci;
1270	u32 reg;
1271	int i;
1272
1273	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1274	ctx->running = false;
1275
1276	for (i = 0; i < 1000; i++) {
1277		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1278		if ((reg & CONTEXT_ACTIVE) == 0)
1279			return;
1280
1281		if (i)
1282			udelay(10);
1283	}
1284	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1285}
1286
1287struct driver_data {
1288	u8 inline_data[8];
1289	struct fw_packet *packet;
1290};
1291
1292/*
1293 * This function apppends a packet to the DMA queue for transmission.
1294 * Must always be called with the ochi->lock held to ensure proper
1295 * generation handling and locking around packet queue manipulation.
1296 */
1297static int at_context_queue_packet(struct context *ctx,
1298				   struct fw_packet *packet)
1299{
1300	struct fw_ohci *ohci = ctx->ohci;
1301	dma_addr_t d_bus, uninitialized_var(payload_bus);
1302	struct driver_data *driver_data;
1303	struct descriptor *d, *last;
1304	__le32 *header;
1305	int z, tcode;
1306
1307	d = context_get_descriptors(ctx, 4, &d_bus);
1308	if (d == NULL) {
1309		packet->ack = RCODE_SEND_ERROR;
1310		return -1;
1311	}
1312
1313	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1314	d[0].res_count = cpu_to_le16(packet->timestamp);
1315
1316	/*
1317	 * The DMA format for asynchronous link packets is different
1318	 * from the IEEE1394 layout, so shift the fields around
1319	 * accordingly.
1320	 */
1321
1322	tcode = (packet->header[0] >> 4) & 0x0f;
1323	header = (__le32 *) &d[1];
1324	switch (tcode) {
1325	case TCODE_WRITE_QUADLET_REQUEST:
1326	case TCODE_WRITE_BLOCK_REQUEST:
1327	case TCODE_WRITE_RESPONSE:
1328	case TCODE_READ_QUADLET_REQUEST:
1329	case TCODE_READ_BLOCK_REQUEST:
1330	case TCODE_READ_QUADLET_RESPONSE:
1331	case TCODE_READ_BLOCK_RESPONSE:
1332	case TCODE_LOCK_REQUEST:
1333	case TCODE_LOCK_RESPONSE:
1334		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1335					(packet->speed << 16));
1336		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1337					(packet->header[0] & 0xffff0000));
1338		header[2] = cpu_to_le32(packet->header[2]);
1339
1340		if (TCODE_IS_BLOCK_PACKET(tcode))
1341			header[3] = cpu_to_le32(packet->header[3]);
1342		else
1343			header[3] = (__force __le32) packet->header[3];
1344
1345		d[0].req_count = cpu_to_le16(packet->header_length);
1346		break;
1347
1348	case TCODE_LINK_INTERNAL:
1349		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1350					(packet->speed << 16));
1351		header[1] = cpu_to_le32(packet->header[1]);
1352		header[2] = cpu_to_le32(packet->header[2]);
1353		d[0].req_count = cpu_to_le16(12);
1354
1355		if (is_ping_packet(&packet->header[1]))
1356			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1357		break;
1358
1359	case TCODE_STREAM_DATA:
1360		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1361					(packet->speed << 16));
1362		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1363		d[0].req_count = cpu_to_le16(8);
1364		break;
1365
1366	default:
1367		/* BUG(); */
1368		packet->ack = RCODE_SEND_ERROR;
1369		return -1;
1370	}
1371
1372	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1373	driver_data = (struct driver_data *) &d[3];
1374	driver_data->packet = packet;
1375	packet->driver_data = driver_data;
1376
1377	if (packet->payload_length > 0) {
1378		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1379			payload_bus = dma_map_single(ohci->card.device,
1380						     packet->payload,
1381						     packet->payload_length,
1382						     DMA_TO_DEVICE);
1383			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1384				packet->ack = RCODE_SEND_ERROR;
1385				return -1;
1386			}
1387			packet->payload_bus	= payload_bus;
1388			packet->payload_mapped	= true;
1389		} else {
1390			memcpy(driver_data->inline_data, packet->payload,
1391			       packet->payload_length);
1392			payload_bus = d_bus + 3 * sizeof(*d);
1393		}
1394
1395		d[2].req_count    = cpu_to_le16(packet->payload_length);
1396		d[2].data_address = cpu_to_le32(payload_bus);
1397		last = &d[2];
1398		z = 3;
1399	} else {
1400		last = &d[0];
1401		z = 2;
1402	}
1403
1404	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1405				     DESCRIPTOR_IRQ_ALWAYS |
1406				     DESCRIPTOR_BRANCH_ALWAYS);
1407
1408	/* FIXME: Document how the locking works. */
1409	if (ohci->generation != packet->generation) {
1410		if (packet->payload_mapped)
1411			dma_unmap_single(ohci->card.device, payload_bus,
1412					 packet->payload_length, DMA_TO_DEVICE);
1413		packet->ack = RCODE_GENERATION;
1414		return -1;
1415	}
1416
1417	context_append(ctx, d, z, 4 - z);
1418
1419	if (ctx->running)
1420		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1421	else
1422		context_run(ctx, 0);
1423
1424	return 0;
1425}
1426
1427static void at_context_flush(struct context *ctx)
1428{
1429	tasklet_disable(&ctx->tasklet);
1430
1431	ctx->flushing = true;
1432	context_tasklet((unsigned long)ctx);
1433	ctx->flushing = false;
1434
1435	tasklet_enable(&ctx->tasklet);
1436}
1437
1438static int handle_at_packet(struct context *context,
1439			    struct descriptor *d,
1440			    struct descriptor *last)
1441{
1442	struct driver_data *driver_data;
1443	struct fw_packet *packet;
1444	struct fw_ohci *ohci = context->ohci;
1445	int evt;
1446
1447	if (last->transfer_status == 0 && !context->flushing)
1448		/* This descriptor isn't done yet, stop iteration. */
1449		return 0;
1450
1451	driver_data = (struct driver_data *) &d[3];
1452	packet = driver_data->packet;
1453	if (packet == NULL)
1454		/* This packet was cancelled, just continue. */
1455		return 1;
1456
1457	if (packet->payload_mapped)
1458		dma_unmap_single(ohci->card.device, packet->payload_bus,
1459				 packet->payload_length, DMA_TO_DEVICE);
1460
1461	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1462	packet->timestamp = le16_to_cpu(last->res_count);
1463
1464	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1465
1466	switch (evt) {
1467	case OHCI1394_evt_timeout:
1468		/* Async response transmit timed out. */
1469		packet->ack = RCODE_CANCELLED;
1470		break;
1471
1472	case OHCI1394_evt_flushed:
1473		/*
1474		 * The packet was flushed should give same error as
1475		 * when we try to use a stale generation count.
1476		 */
1477		packet->ack = RCODE_GENERATION;
1478		break;
1479
1480	case OHCI1394_evt_missing_ack:
1481		if (context->flushing)
1482			packet->ack = RCODE_GENERATION;
1483		else {
1484			/*
1485			 * Using a valid (current) generation count, but the
1486			 * node is not on the bus or not sending acks.
1487			 */
1488			packet->ack = RCODE_NO_ACK;
1489		}
1490		break;
1491
1492	case ACK_COMPLETE + 0x10:
1493	case ACK_PENDING + 0x10:
1494	case ACK_BUSY_X + 0x10:
1495	case ACK_BUSY_A + 0x10:
1496	case ACK_BUSY_B + 0x10:
1497	case ACK_DATA_ERROR + 0x10:
1498	case ACK_TYPE_ERROR + 0x10:
1499		packet->ack = evt - 0x10;
1500		break;
1501
1502	case OHCI1394_evt_no_status:
1503		if (context->flushing) {
1504			packet->ack = RCODE_GENERATION;
1505			break;
1506		}
1507		/* fall through */
1508
1509	default:
1510		packet->ack = RCODE_SEND_ERROR;
1511		break;
1512	}
1513
1514	packet->callback(packet, &ohci->card, packet->ack);
1515
1516	return 1;
1517}
1518
1519#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1520#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1521#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1522#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1523#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1524
1525static void handle_local_rom(struct fw_ohci *ohci,
1526			     struct fw_packet *packet, u32 csr)
1527{
1528	struct fw_packet response;
1529	int tcode, length, i;
1530
1531	tcode = HEADER_GET_TCODE(packet->header[0]);
1532	if (TCODE_IS_BLOCK_PACKET(tcode))
1533		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534	else
1535		length = 4;
1536
1537	i = csr - CSR_CONFIG_ROM;
1538	if (i + length > CONFIG_ROM_SIZE) {
1539		fw_fill_response(&response, packet->header,
1540				 RCODE_ADDRESS_ERROR, NULL, 0);
1541	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1542		fw_fill_response(&response, packet->header,
1543				 RCODE_TYPE_ERROR, NULL, 0);
1544	} else {
1545		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1546				 (void *) ohci->config_rom + i, length);
1547	}
1548
1549	fw_core_handle_response(&ohci->card, &response);
1550}
1551
1552static void handle_local_lock(struct fw_ohci *ohci,
1553			      struct fw_packet *packet, u32 csr)
1554{
1555	struct fw_packet response;
1556	int tcode, length, ext_tcode, sel, try;
1557	__be32 *payload, lock_old;
1558	u32 lock_arg, lock_data;
1559
1560	tcode = HEADER_GET_TCODE(packet->header[0]);
1561	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1562	payload = packet->payload;
1563	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1564
1565	if (tcode == TCODE_LOCK_REQUEST &&
1566	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1567		lock_arg = be32_to_cpu(payload[0]);
1568		lock_data = be32_to_cpu(payload[1]);
1569	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1570		lock_arg = 0;
1571		lock_data = 0;
1572	} else {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_TYPE_ERROR, NULL, 0);
1575		goto out;
1576	}
1577
1578	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1579	reg_write(ohci, OHCI1394_CSRData, lock_data);
1580	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1581	reg_write(ohci, OHCI1394_CSRControl, sel);
1582
1583	for (try = 0; try < 20; try++)
1584		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1585			lock_old = cpu_to_be32(reg_read(ohci,
1586							OHCI1394_CSRData));
1587			fw_fill_response(&response, packet->header,
1588					 RCODE_COMPLETE,
1589					 &lock_old, sizeof(lock_old));
1590			goto out;
1591		}
1592
1593	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1594	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1595
1596 out:
1597	fw_core_handle_response(&ohci->card, &response);
1598}
1599
1600static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1601{
1602	u64 offset, csr;
1603
1604	if (ctx == &ctx->ohci->at_request_ctx) {
1605		packet->ack = ACK_PENDING;
1606		packet->callback(packet, &ctx->ohci->card, packet->ack);
1607	}
1608
1609	offset =
1610		((unsigned long long)
1611		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1612		packet->header[2];
1613	csr = offset - CSR_REGISTER_BASE;
1614
1615	/* Handle config rom reads. */
1616	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1617		handle_local_rom(ctx->ohci, packet, csr);
1618	else switch (csr) {
1619	case CSR_BUS_MANAGER_ID:
1620	case CSR_BANDWIDTH_AVAILABLE:
1621	case CSR_CHANNELS_AVAILABLE_HI:
1622	case CSR_CHANNELS_AVAILABLE_LO:
1623		handle_local_lock(ctx->ohci, packet, csr);
1624		break;
1625	default:
1626		if (ctx == &ctx->ohci->at_request_ctx)
1627			fw_core_handle_request(&ctx->ohci->card, packet);
1628		else
1629			fw_core_handle_response(&ctx->ohci->card, packet);
1630		break;
1631	}
1632
1633	if (ctx == &ctx->ohci->at_response_ctx) {
1634		packet->ack = ACK_COMPLETE;
1635		packet->callback(packet, &ctx->ohci->card, packet->ack);
1636	}
1637}
1638
 
 
1639static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1640{
1641	unsigned long flags;
1642	int ret;
1643
1644	spin_lock_irqsave(&ctx->ohci->lock, flags);
1645
1646	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1647	    ctx->ohci->generation == packet->generation) {
1648		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 
 
 
 
1649		handle_local_request(ctx, packet);
1650		return;
1651	}
1652
1653	ret = at_context_queue_packet(ctx, packet);
1654	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655
1656	if (ret < 0)
 
 
 
1657		packet->callback(packet, &ctx->ohci->card, packet->ack);
1658
1659}
1660
1661static void detect_dead_context(struct fw_ohci *ohci,
1662				const char *name, unsigned int regs)
1663{
1664	u32 ctl;
1665
1666	ctl = reg_read(ohci, CONTROL_SET(regs));
1667	if (ctl & CONTEXT_DEAD)
1668		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1669			name, evts[ctl & 0x1f]);
1670}
1671
1672static void handle_dead_contexts(struct fw_ohci *ohci)
1673{
1674	unsigned int i;
1675	char name[8];
1676
1677	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1678	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1679	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1680	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1681	for (i = 0; i < 32; ++i) {
1682		if (!(ohci->it_context_support & (1 << i)))
1683			continue;
1684		sprintf(name, "IT%u", i);
1685		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1686	}
1687	for (i = 0; i < 32; ++i) {
1688		if (!(ohci->ir_context_support & (1 << i)))
1689			continue;
1690		sprintf(name, "IR%u", i);
1691		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1692	}
1693	/* TODO: maybe try to flush and restart the dead contexts */
1694}
1695
1696static u32 cycle_timer_ticks(u32 cycle_timer)
1697{
1698	u32 ticks;
1699
1700	ticks = cycle_timer & 0xfff;
1701	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1702	ticks += (3072 * 8000) * (cycle_timer >> 25);
1703
1704	return ticks;
1705}
1706
1707/*
1708 * Some controllers exhibit one or more of the following bugs when updating the
1709 * iso cycle timer register:
1710 *  - When the lowest six bits are wrapping around to zero, a read that happens
1711 *    at the same time will return garbage in the lowest ten bits.
1712 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1713 *    not incremented for about 60 ns.
1714 *  - Occasionally, the entire register reads zero.
1715 *
1716 * To catch these, we read the register three times and ensure that the
1717 * difference between each two consecutive reads is approximately the same, i.e.
1718 * less than twice the other.  Furthermore, any negative difference indicates an
1719 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1720 * execute, so we have enough precision to compute the ratio of the differences.)
1721 */
1722static u32 get_cycle_time(struct fw_ohci *ohci)
1723{
1724	u32 c0, c1, c2;
1725	u32 t0, t1, t2;
1726	s32 diff01, diff12;
1727	int i;
1728
 
 
 
1729	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730
1731	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1732		i = 0;
1733		c1 = c2;
1734		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735		do {
1736			c0 = c1;
1737			c1 = c2;
1738			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739			t0 = cycle_timer_ticks(c0);
1740			t1 = cycle_timer_ticks(c1);
1741			t2 = cycle_timer_ticks(c2);
1742			diff01 = t1 - t0;
1743			diff12 = t2 - t1;
1744		} while ((diff01 <= 0 || diff12 <= 0 ||
1745			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1746			 && i++ < 20);
1747	}
1748
1749	return c2;
1750}
1751
1752/*
1753 * This function has to be called at least every 64 seconds.  The bus_time
1754 * field stores not only the upper 25 bits of the BUS_TIME register but also
1755 * the most significant bit of the cycle timer in bit 6 so that we can detect
1756 * changes in this bit.
1757 */
1758static u32 update_bus_time(struct fw_ohci *ohci)
1759{
1760	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1761
1762	if (unlikely(!ohci->bus_time_running)) {
1763		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1764		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1765		                 (cycle_time_seconds & 0x40);
1766		ohci->bus_time_running = true;
1767	}
1768
1769	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1770		ohci->bus_time += 0x40;
1771
1772	return ohci->bus_time | cycle_time_seconds;
1773}
1774
1775static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1776{
1777	int reg;
1778
1779	mutex_lock(&ohci->phy_reg_mutex);
1780	reg = write_phy_reg(ohci, 7, port_index);
1781	if (reg >= 0)
1782		reg = read_phy_reg(ohci, 8);
1783	mutex_unlock(&ohci->phy_reg_mutex);
1784	if (reg < 0)
1785		return reg;
1786
1787	switch (reg & 0x0f) {
1788	case 0x06:
1789		return 2;	/* is child node (connected to parent node) */
1790	case 0x0e:
1791		return 3;	/* is parent node (connected to child node) */
1792	}
1793	return 1;		/* not connected */
1794}
1795
1796static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1797	int self_id_count)
1798{
1799	int i;
1800	u32 entry;
1801
1802	for (i = 0; i < self_id_count; i++) {
1803		entry = ohci->self_id_buffer[i];
1804		if ((self_id & 0xff000000) == (entry & 0xff000000))
1805			return -1;
1806		if ((self_id & 0xff000000) < (entry & 0xff000000))
1807			return i;
1808	}
1809	return i;
1810}
1811
1812static int initiated_reset(struct fw_ohci *ohci)
1813{
1814	int reg;
1815	int ret = 0;
1816
1817	mutex_lock(&ohci->phy_reg_mutex);
1818	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1819	if (reg >= 0) {
1820		reg = read_phy_reg(ohci, 8);
1821		reg |= 0x40;
1822		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1823		if (reg >= 0) {
1824			reg = read_phy_reg(ohci, 12); /* read register 12 */
1825			if (reg >= 0) {
1826				if ((reg & 0x08) == 0x08) {
1827					/* bit 3 indicates "initiated reset" */
1828					ret = 0x2;
1829				}
1830			}
1831		}
1832	}
1833	mutex_unlock(&ohci->phy_reg_mutex);
1834	return ret;
1835}
1836
1837/*
1838 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1839 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1840 * Construct the selfID from phy register contents.
1841 */
1842static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1843{
1844	int reg, i, pos, status;
1845	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1846	u32 self_id = 0x8040c800;
1847
1848	reg = reg_read(ohci, OHCI1394_NodeID);
1849	if (!(reg & OHCI1394_NodeID_idValid)) {
1850		ohci_notice(ohci,
1851			    "node ID not valid, new bus reset in progress\n");
1852		return -EBUSY;
1853	}
1854	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1855
1856	reg = ohci_read_phy_reg(&ohci->card, 4);
1857	if (reg < 0)
1858		return reg;
1859	self_id |= ((reg & 0x07) << 8); /* power class */
1860
1861	reg = ohci_read_phy_reg(&ohci->card, 1);
1862	if (reg < 0)
1863		return reg;
1864	self_id |= ((reg & 0x3f) << 16); /* gap count */
1865
1866	for (i = 0; i < 3; i++) {
1867		status = get_status_for_port(ohci, i);
1868		if (status < 0)
1869			return status;
1870		self_id |= ((status & 0x3) << (6 - (i * 2)));
1871	}
1872
1873	self_id |= initiated_reset(ohci);
1874
1875	pos = get_self_id_pos(ohci, self_id, self_id_count);
1876	if (pos >= 0) {
1877		memmove(&(ohci->self_id_buffer[pos+1]),
1878			&(ohci->self_id_buffer[pos]),
1879			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1880		ohci->self_id_buffer[pos] = self_id;
1881		self_id_count++;
1882	}
1883	return self_id_count;
1884}
1885
1886static void bus_reset_work(struct work_struct *work)
1887{
1888	struct fw_ohci *ohci =
1889		container_of(work, struct fw_ohci, bus_reset_work);
1890	int self_id_count, generation, new_generation, i, j;
1891	u32 reg;
1892	void *free_rom = NULL;
1893	dma_addr_t free_rom_bus = 0;
1894	bool is_new_root;
1895
1896	reg = reg_read(ohci, OHCI1394_NodeID);
1897	if (!(reg & OHCI1394_NodeID_idValid)) {
1898		ohci_notice(ohci,
1899			    "node ID not valid, new bus reset in progress\n");
1900		return;
1901	}
1902	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1903		ohci_notice(ohci, "malconfigured bus\n");
1904		return;
1905	}
1906	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1907			       OHCI1394_NodeID_nodeNumber);
1908
1909	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1910	if (!(ohci->is_root && is_new_root))
1911		reg_write(ohci, OHCI1394_LinkControlSet,
1912			  OHCI1394_LinkControl_cycleMaster);
1913	ohci->is_root = is_new_root;
1914
1915	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1916	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1917		ohci_notice(ohci, "self ID receive error\n");
1918		return;
1919	}
1920	/*
1921	 * The count in the SelfIDCount register is the number of
1922	 * bytes in the self ID receive buffer.  Since we also receive
1923	 * the inverted quadlets and a header quadlet, we shift one
1924	 * bit extra to get the actual number of self IDs.
1925	 */
1926	self_id_count = (reg >> 3) & 0xff;
1927
1928	if (self_id_count > 252) {
1929		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1930		return;
1931	}
1932
1933	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1934	rmb();
1935
1936	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1937		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1938		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1939
1940		if (id != ~id2) {
1941			/*
1942			 * If the invalid data looks like a cycle start packet,
1943			 * it's likely to be the result of the cycle master
1944			 * having a wrong gap count.  In this case, the self IDs
1945			 * so far are valid and should be processed so that the
1946			 * bus manager can then correct the gap count.
1947			 */
1948			if (id == 0xffff008f) {
1949				ohci_notice(ohci, "ignoring spurious self IDs\n");
1950				self_id_count = j;
1951				break;
1952			}
1953
1954			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1955				    j, self_id_count, id, id2);
1956			return;
1957		}
1958		ohci->self_id_buffer[j] = id;
1959	}
1960
1961	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1962		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1963		if (self_id_count < 0) {
1964			ohci_notice(ohci,
1965				    "could not construct local self ID\n");
1966			return;
1967		}
1968	}
1969
1970	if (self_id_count == 0) {
1971		ohci_notice(ohci, "no self IDs\n");
1972		return;
1973	}
1974	rmb();
1975
1976	/*
1977	 * Check the consistency of the self IDs we just read.  The
1978	 * problem we face is that a new bus reset can start while we
1979	 * read out the self IDs from the DMA buffer. If this happens,
1980	 * the DMA buffer will be overwritten with new self IDs and we
1981	 * will read out inconsistent data.  The OHCI specification
1982	 * (section 11.2) recommends a technique similar to
1983	 * linux/seqlock.h, where we remember the generation of the
1984	 * self IDs in the buffer before reading them out and compare
1985	 * it to the current generation after reading them out.  If
1986	 * the two generations match we know we have a consistent set
1987	 * of self IDs.
1988	 */
1989
1990	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1991	if (new_generation != generation) {
1992		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1993		return;
1994	}
1995
1996	/* FIXME: Document how the locking works. */
1997	spin_lock_irq(&ohci->lock);
1998
1999	ohci->generation = -1; /* prevent AT packet queueing */
2000	context_stop(&ohci->at_request_ctx);
2001	context_stop(&ohci->at_response_ctx);
2002
2003	spin_unlock_irq(&ohci->lock);
2004
2005	/*
2006	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2007	 * packets in the AT queues and software needs to drain them.
2008	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2009	 */
2010	at_context_flush(&ohci->at_request_ctx);
2011	at_context_flush(&ohci->at_response_ctx);
2012
2013	spin_lock_irq(&ohci->lock);
2014
2015	ohci->generation = generation;
2016	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2017
2018	if (ohci->quirks & QUIRK_RESET_PACKET)
2019		ohci->request_generation = generation;
2020
2021	/*
2022	 * This next bit is unrelated to the AT context stuff but we
2023	 * have to do it under the spinlock also.  If a new config rom
2024	 * was set up before this reset, the old one is now no longer
2025	 * in use and we can free it. Update the config rom pointers
2026	 * to point to the current config rom and clear the
2027	 * next_config_rom pointer so a new update can take place.
2028	 */
2029
2030	if (ohci->next_config_rom != NULL) {
2031		if (ohci->next_config_rom != ohci->config_rom) {
2032			free_rom      = ohci->config_rom;
2033			free_rom_bus  = ohci->config_rom_bus;
2034		}
2035		ohci->config_rom      = ohci->next_config_rom;
2036		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2037		ohci->next_config_rom = NULL;
2038
2039		/*
2040		 * Restore config_rom image and manually update
2041		 * config_rom registers.  Writing the header quadlet
2042		 * will indicate that the config rom is ready, so we
2043		 * do that last.
2044		 */
2045		reg_write(ohci, OHCI1394_BusOptions,
2046			  be32_to_cpu(ohci->config_rom[2]));
2047		ohci->config_rom[0] = ohci->next_header;
2048		reg_write(ohci, OHCI1394_ConfigROMhdr,
2049			  be32_to_cpu(ohci->next_header));
2050	}
2051
2052	if (param_remote_dma) {
2053		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2054		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2055	}
2056
2057	spin_unlock_irq(&ohci->lock);
2058
2059	if (free_rom)
2060		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2061				  free_rom, free_rom_bus);
2062
2063	log_selfids(ohci, generation, self_id_count);
2064
2065	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2066				 self_id_count, ohci->self_id_buffer,
2067				 ohci->csr_state_setclear_abdicate);
2068	ohci->csr_state_setclear_abdicate = false;
2069}
2070
2071static irqreturn_t irq_handler(int irq, void *data)
2072{
2073	struct fw_ohci *ohci = data;
2074	u32 event, iso_event;
2075	int i;
2076
2077	event = reg_read(ohci, OHCI1394_IntEventClear);
2078
2079	if (!event || !~event)
2080		return IRQ_NONE;
2081
2082	/*
2083	 * busReset and postedWriteErr must not be cleared yet
2084	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2085	 */
2086	reg_write(ohci, OHCI1394_IntEventClear,
2087		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2088	log_irqs(ohci, event);
2089
2090	if (event & OHCI1394_selfIDComplete)
2091		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2092
2093	if (event & OHCI1394_RQPkt)
2094		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2095
2096	if (event & OHCI1394_RSPkt)
2097		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2098
2099	if (event & OHCI1394_reqTxComplete)
2100		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2101
2102	if (event & OHCI1394_respTxComplete)
2103		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2104
2105	if (event & OHCI1394_isochRx) {
2106		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2107		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2108
2109		while (iso_event) {
2110			i = ffs(iso_event) - 1;
2111			tasklet_schedule(
2112				&ohci->ir_context_list[i].context.tasklet);
2113			iso_event &= ~(1 << i);
2114		}
2115	}
2116
2117	if (event & OHCI1394_isochTx) {
2118		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2119		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2120
2121		while (iso_event) {
2122			i = ffs(iso_event) - 1;
2123			tasklet_schedule(
2124				&ohci->it_context_list[i].context.tasklet);
2125			iso_event &= ~(1 << i);
2126		}
2127	}
2128
2129	if (unlikely(event & OHCI1394_regAccessFail))
2130		ohci_err(ohci, "register access failure\n");
2131
2132	if (unlikely(event & OHCI1394_postedWriteErr)) {
2133		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2134		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2135		reg_write(ohci, OHCI1394_IntEventClear,
2136			  OHCI1394_postedWriteErr);
2137		if (printk_ratelimit())
2138			ohci_err(ohci, "PCI posted write error\n");
2139	}
2140
2141	if (unlikely(event & OHCI1394_cycleTooLong)) {
2142		if (printk_ratelimit())
2143			ohci_notice(ohci, "isochronous cycle too long\n");
2144		reg_write(ohci, OHCI1394_LinkControlSet,
2145			  OHCI1394_LinkControl_cycleMaster);
2146	}
2147
2148	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2149		/*
2150		 * We need to clear this event bit in order to make
2151		 * cycleMatch isochronous I/O work.  In theory we should
2152		 * stop active cycleMatch iso contexts now and restart
2153		 * them at least two cycles later.  (FIXME?)
2154		 */
2155		if (printk_ratelimit())
2156			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2157	}
2158
2159	if (unlikely(event & OHCI1394_unrecoverableError))
2160		handle_dead_contexts(ohci);
2161
2162	if (event & OHCI1394_cycle64Seconds) {
2163		spin_lock(&ohci->lock);
2164		update_bus_time(ohci);
2165		spin_unlock(&ohci->lock);
2166	} else
2167		flush_writes(ohci);
2168
2169	return IRQ_HANDLED;
2170}
2171
2172static int software_reset(struct fw_ohci *ohci)
2173{
2174	u32 val;
2175	int i;
2176
2177	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2178	for (i = 0; i < 500; i++) {
2179		val = reg_read(ohci, OHCI1394_HCControlSet);
2180		if (!~val)
2181			return -ENODEV; /* Card was ejected. */
2182
2183		if (!(val & OHCI1394_HCControl_softReset))
2184			return 0;
2185
2186		msleep(1);
2187	}
2188
2189	return -EBUSY;
2190}
2191
2192static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2193{
2194	size_t size = length * 4;
2195
2196	memcpy(dest, src, size);
2197	if (size < CONFIG_ROM_SIZE)
2198		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2199}
2200
2201static int configure_1394a_enhancements(struct fw_ohci *ohci)
2202{
2203	bool enable_1394a;
2204	int ret, clear, set, offset;
2205
2206	/* Check if the driver should configure link and PHY. */
2207	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2208	      OHCI1394_HCControl_programPhyEnable))
2209		return 0;
2210
2211	/* Paranoia: check whether the PHY supports 1394a, too. */
2212	enable_1394a = false;
2213	ret = read_phy_reg(ohci, 2);
2214	if (ret < 0)
2215		return ret;
2216	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2217		ret = read_paged_phy_reg(ohci, 1, 8);
2218		if (ret < 0)
2219			return ret;
2220		if (ret >= 1)
2221			enable_1394a = true;
2222	}
2223
2224	if (ohci->quirks & QUIRK_NO_1394A)
2225		enable_1394a = false;
2226
2227	/* Configure PHY and link consistently. */
2228	if (enable_1394a) {
2229		clear = 0;
2230		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2231	} else {
2232		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2233		set = 0;
2234	}
2235	ret = update_phy_reg(ohci, 5, clear, set);
2236	if (ret < 0)
2237		return ret;
2238
2239	if (enable_1394a)
2240		offset = OHCI1394_HCControlSet;
2241	else
2242		offset = OHCI1394_HCControlClear;
2243	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2244
2245	/* Clean up: configuration has been taken care of. */
2246	reg_write(ohci, OHCI1394_HCControlClear,
2247		  OHCI1394_HCControl_programPhyEnable);
2248
2249	return 0;
2250}
2251
2252static int probe_tsb41ba3d(struct fw_ohci *ohci)
2253{
2254	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2255	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2256	int reg, i;
2257
2258	reg = read_phy_reg(ohci, 2);
2259	if (reg < 0)
2260		return reg;
2261	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2262		return 0;
2263
2264	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2265		reg = read_paged_phy_reg(ohci, 1, i + 10);
2266		if (reg < 0)
2267			return reg;
2268		if (reg != id[i])
2269			return 0;
2270	}
2271	return 1;
2272}
2273
2274static int ohci_enable(struct fw_card *card,
2275		       const __be32 *config_rom, size_t length)
2276{
2277	struct fw_ohci *ohci = fw_ohci(card);
2278	u32 lps, version, irqs;
2279	int i, ret;
2280
2281	ret = software_reset(ohci);
2282	if (ret < 0) {
2283		ohci_err(ohci, "failed to reset ohci card\n");
2284		return ret;
2285	}
2286
2287	/*
2288	 * Now enable LPS, which we need in order to start accessing
2289	 * most of the registers.  In fact, on some cards (ALI M5251),
2290	 * accessing registers in the SClk domain without LPS enabled
2291	 * will lock up the machine.  Wait 50msec to make sure we have
2292	 * full link enabled.  However, with some cards (well, at least
2293	 * a JMicron PCIe card), we have to try again sometimes.
2294	 *
2295	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2296	 * cannot actually use the phy at that time.  These need tens of
2297	 * millisecods pause between LPS write and first phy access too.
2298	 */
2299
2300	reg_write(ohci, OHCI1394_HCControlSet,
2301		  OHCI1394_HCControl_LPS |
2302		  OHCI1394_HCControl_postedWriteEnable);
2303	flush_writes(ohci);
2304
2305	for (lps = 0, i = 0; !lps && i < 3; i++) {
2306		msleep(50);
2307		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2308		      OHCI1394_HCControl_LPS;
2309	}
2310
2311	if (!lps) {
2312		ohci_err(ohci, "failed to set Link Power Status\n");
2313		return -EIO;
2314	}
2315
2316	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2317		ret = probe_tsb41ba3d(ohci);
2318		if (ret < 0)
2319			return ret;
2320		if (ret)
2321			ohci_notice(ohci, "local TSB41BA3D phy\n");
2322		else
2323			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2324	}
2325
2326	reg_write(ohci, OHCI1394_HCControlClear,
2327		  OHCI1394_HCControl_noByteSwapData);
2328
2329	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2330	reg_write(ohci, OHCI1394_LinkControlSet,
2331		  OHCI1394_LinkControl_cycleTimerEnable |
2332		  OHCI1394_LinkControl_cycleMaster);
2333
2334	reg_write(ohci, OHCI1394_ATRetries,
2335		  OHCI1394_MAX_AT_REQ_RETRIES |
2336		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2337		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2338		  (200 << 16));
2339
2340	ohci->bus_time_running = false;
2341
2342	for (i = 0; i < 32; i++)
2343		if (ohci->ir_context_support & (1 << i))
2344			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2345				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2346
2347	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2348	if (version >= OHCI_VERSION_1_1) {
2349		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2350			  0xfffffffe);
2351		card->broadcast_channel_auto_allocated = true;
2352	}
2353
2354	/* Get implemented bits of the priority arbitration request counter. */
2355	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2356	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2357	reg_write(ohci, OHCI1394_FairnessControl, 0);
2358	card->priority_budget_implemented = ohci->pri_req_max != 0;
2359
2360	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2361	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2362	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2363
2364	ret = configure_1394a_enhancements(ohci);
2365	if (ret < 0)
2366		return ret;
2367
2368	/* Activate link_on bit and contender bit in our self ID packets.*/
2369	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2370	if (ret < 0)
2371		return ret;
2372
2373	/*
2374	 * When the link is not yet enabled, the atomic config rom
2375	 * update mechanism described below in ohci_set_config_rom()
2376	 * is not active.  We have to update ConfigRomHeader and
2377	 * BusOptions manually, and the write to ConfigROMmap takes
2378	 * effect immediately.  We tie this to the enabling of the
2379	 * link, so we have a valid config rom before enabling - the
2380	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2381	 * values before enabling.
2382	 *
2383	 * However, when the ConfigROMmap is written, some controllers
2384	 * always read back quadlets 0 and 2 from the config rom to
2385	 * the ConfigRomHeader and BusOptions registers on bus reset.
2386	 * They shouldn't do that in this initial case where the link
2387	 * isn't enabled.  This means we have to use the same
2388	 * workaround here, setting the bus header to 0 and then write
2389	 * the right values in the bus reset tasklet.
2390	 */
2391
2392	if (config_rom) {
2393		ohci->next_config_rom =
2394			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2395					   &ohci->next_config_rom_bus,
2396					   GFP_KERNEL);
2397		if (ohci->next_config_rom == NULL)
2398			return -ENOMEM;
2399
2400		copy_config_rom(ohci->next_config_rom, config_rom, length);
2401	} else {
2402		/*
2403		 * In the suspend case, config_rom is NULL, which
2404		 * means that we just reuse the old config rom.
2405		 */
2406		ohci->next_config_rom = ohci->config_rom;
2407		ohci->next_config_rom_bus = ohci->config_rom_bus;
2408	}
2409
2410	ohci->next_header = ohci->next_config_rom[0];
2411	ohci->next_config_rom[0] = 0;
2412	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2413	reg_write(ohci, OHCI1394_BusOptions,
2414		  be32_to_cpu(ohci->next_config_rom[2]));
2415	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2416
2417	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2418
2419	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2420		OHCI1394_RQPkt | OHCI1394_RSPkt |
2421		OHCI1394_isochTx | OHCI1394_isochRx |
2422		OHCI1394_postedWriteErr |
2423		OHCI1394_selfIDComplete |
2424		OHCI1394_regAccessFail |
2425		OHCI1394_cycleInconsistent |
2426		OHCI1394_unrecoverableError |
2427		OHCI1394_cycleTooLong |
2428		OHCI1394_masterIntEnable;
2429	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2430		irqs |= OHCI1394_busReset;
2431	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2432
2433	reg_write(ohci, OHCI1394_HCControlSet,
2434		  OHCI1394_HCControl_linkEnable |
2435		  OHCI1394_HCControl_BIBimageValid);
2436
2437	reg_write(ohci, OHCI1394_LinkControlSet,
2438		  OHCI1394_LinkControl_rcvSelfID |
2439		  OHCI1394_LinkControl_rcvPhyPkt);
2440
2441	ar_context_run(&ohci->ar_request_ctx);
2442	ar_context_run(&ohci->ar_response_ctx);
2443
2444	flush_writes(ohci);
2445
2446	/* We are ready to go, reset bus to finish initialization. */
2447	fw_schedule_bus_reset(&ohci->card, false, true);
2448
2449	return 0;
2450}
2451
2452static int ohci_set_config_rom(struct fw_card *card,
2453			       const __be32 *config_rom, size_t length)
2454{
2455	struct fw_ohci *ohci;
2456	__be32 *next_config_rom;
2457	dma_addr_t uninitialized_var(next_config_rom_bus);
2458
2459	ohci = fw_ohci(card);
2460
2461	/*
2462	 * When the OHCI controller is enabled, the config rom update
2463	 * mechanism is a bit tricky, but easy enough to use.  See
2464	 * section 5.5.6 in the OHCI specification.
2465	 *
2466	 * The OHCI controller caches the new config rom address in a
2467	 * shadow register (ConfigROMmapNext) and needs a bus reset
2468	 * for the changes to take place.  When the bus reset is
2469	 * detected, the controller loads the new values for the
2470	 * ConfigRomHeader and BusOptions registers from the specified
2471	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2472	 * shadow register. All automatically and atomically.
2473	 *
2474	 * Now, there's a twist to this story.  The automatic load of
2475	 * ConfigRomHeader and BusOptions doesn't honor the
2476	 * noByteSwapData bit, so with a be32 config rom, the
2477	 * controller will load be32 values in to these registers
2478	 * during the atomic update, even on litte endian
2479	 * architectures.  The workaround we use is to put a 0 in the
2480	 * header quadlet; 0 is endian agnostic and means that the
2481	 * config rom isn't ready yet.  In the bus reset tasklet we
2482	 * then set up the real values for the two registers.
2483	 *
2484	 * We use ohci->lock to avoid racing with the code that sets
2485	 * ohci->next_config_rom to NULL (see bus_reset_work).
2486	 */
2487
2488	next_config_rom =
2489		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2490				   &next_config_rom_bus, GFP_KERNEL);
2491	if (next_config_rom == NULL)
2492		return -ENOMEM;
2493
2494	spin_lock_irq(&ohci->lock);
2495
2496	/*
2497	 * If there is not an already pending config_rom update,
2498	 * push our new allocation into the ohci->next_config_rom
2499	 * and then mark the local variable as null so that we
2500	 * won't deallocate the new buffer.
2501	 *
2502	 * OTOH, if there is a pending config_rom update, just
2503	 * use that buffer with the new config_rom data, and
2504	 * let this routine free the unused DMA allocation.
2505	 */
2506
2507	if (ohci->next_config_rom == NULL) {
2508		ohci->next_config_rom = next_config_rom;
2509		ohci->next_config_rom_bus = next_config_rom_bus;
2510		next_config_rom = NULL;
2511	}
2512
2513	copy_config_rom(ohci->next_config_rom, config_rom, length);
2514
2515	ohci->next_header = config_rom[0];
2516	ohci->next_config_rom[0] = 0;
2517
2518	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2519
2520	spin_unlock_irq(&ohci->lock);
2521
2522	/* If we didn't use the DMA allocation, delete it. */
2523	if (next_config_rom != NULL)
2524		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2525				  next_config_rom, next_config_rom_bus);
 
2526
2527	/*
2528	 * Now initiate a bus reset to have the changes take
2529	 * effect. We clean up the old config rom memory and DMA
2530	 * mappings in the bus reset tasklet, since the OHCI
2531	 * controller could need to access it before the bus reset
2532	 * takes effect.
2533	 */
2534
2535	fw_schedule_bus_reset(&ohci->card, true, true);
2536
2537	return 0;
2538}
2539
2540static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2541{
2542	struct fw_ohci *ohci = fw_ohci(card);
2543
2544	at_context_transmit(&ohci->at_request_ctx, packet);
2545}
2546
2547static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2548{
2549	struct fw_ohci *ohci = fw_ohci(card);
2550
2551	at_context_transmit(&ohci->at_response_ctx, packet);
2552}
2553
2554static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2555{
2556	struct fw_ohci *ohci = fw_ohci(card);
2557	struct context *ctx = &ohci->at_request_ctx;
2558	struct driver_data *driver_data = packet->driver_data;
2559	int ret = -ENOENT;
2560
2561	tasklet_disable(&ctx->tasklet);
2562
2563	if (packet->ack != 0)
2564		goto out;
2565
2566	if (packet->payload_mapped)
2567		dma_unmap_single(ohci->card.device, packet->payload_bus,
2568				 packet->payload_length, DMA_TO_DEVICE);
2569
2570	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2571	driver_data->packet = NULL;
2572	packet->ack = RCODE_CANCELLED;
 
 
 
 
2573	packet->callback(packet, &ohci->card, packet->ack);
2574	ret = 0;
2575 out:
2576	tasklet_enable(&ctx->tasklet);
2577
2578	return ret;
2579}
2580
2581static int ohci_enable_phys_dma(struct fw_card *card,
2582				int node_id, int generation)
2583{
2584	struct fw_ohci *ohci = fw_ohci(card);
2585	unsigned long flags;
2586	int n, ret = 0;
2587
2588	if (param_remote_dma)
2589		return 0;
2590
2591	/*
2592	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2593	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2594	 */
2595
2596	spin_lock_irqsave(&ohci->lock, flags);
2597
2598	if (ohci->generation != generation) {
2599		ret = -ESTALE;
2600		goto out;
2601	}
2602
2603	/*
2604	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2605	 * enabled for _all_ nodes on remote buses.
2606	 */
2607
2608	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2609	if (n < 32)
2610		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2611	else
2612		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2613
2614	flush_writes(ohci);
2615 out:
2616	spin_unlock_irqrestore(&ohci->lock, flags);
2617
2618	return ret;
2619}
2620
2621static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2622{
2623	struct fw_ohci *ohci = fw_ohci(card);
2624	unsigned long flags;
2625	u32 value;
2626
2627	switch (csr_offset) {
2628	case CSR_STATE_CLEAR:
2629	case CSR_STATE_SET:
2630		if (ohci->is_root &&
2631		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2632		     OHCI1394_LinkControl_cycleMaster))
2633			value = CSR_STATE_BIT_CMSTR;
2634		else
2635			value = 0;
2636		if (ohci->csr_state_setclear_abdicate)
2637			value |= CSR_STATE_BIT_ABDICATE;
2638
2639		return value;
2640
2641	case CSR_NODE_IDS:
2642		return reg_read(ohci, OHCI1394_NodeID) << 16;
2643
2644	case CSR_CYCLE_TIME:
2645		return get_cycle_time(ohci);
2646
2647	case CSR_BUS_TIME:
2648		/*
2649		 * We might be called just after the cycle timer has wrapped
2650		 * around but just before the cycle64Seconds handler, so we
2651		 * better check here, too, if the bus time needs to be updated.
2652		 */
2653		spin_lock_irqsave(&ohci->lock, flags);
2654		value = update_bus_time(ohci);
2655		spin_unlock_irqrestore(&ohci->lock, flags);
2656		return value;
2657
2658	case CSR_BUSY_TIMEOUT:
2659		value = reg_read(ohci, OHCI1394_ATRetries);
2660		return (value >> 4) & 0x0ffff00f;
2661
2662	case CSR_PRIORITY_BUDGET:
2663		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2664			(ohci->pri_req_max << 8);
2665
2666	default:
2667		WARN_ON(1);
2668		return 0;
2669	}
2670}
2671
2672static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2673{
2674	struct fw_ohci *ohci = fw_ohci(card);
2675	unsigned long flags;
2676
2677	switch (csr_offset) {
2678	case CSR_STATE_CLEAR:
2679		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2680			reg_write(ohci, OHCI1394_LinkControlClear,
2681				  OHCI1394_LinkControl_cycleMaster);
2682			flush_writes(ohci);
2683		}
2684		if (value & CSR_STATE_BIT_ABDICATE)
2685			ohci->csr_state_setclear_abdicate = false;
2686		break;
2687
2688	case CSR_STATE_SET:
2689		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2690			reg_write(ohci, OHCI1394_LinkControlSet,
2691				  OHCI1394_LinkControl_cycleMaster);
2692			flush_writes(ohci);
2693		}
2694		if (value & CSR_STATE_BIT_ABDICATE)
2695			ohci->csr_state_setclear_abdicate = true;
2696		break;
2697
2698	case CSR_NODE_IDS:
2699		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2700		flush_writes(ohci);
2701		break;
2702
2703	case CSR_CYCLE_TIME:
2704		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2705		reg_write(ohci, OHCI1394_IntEventSet,
2706			  OHCI1394_cycleInconsistent);
2707		flush_writes(ohci);
2708		break;
2709
2710	case CSR_BUS_TIME:
2711		spin_lock_irqsave(&ohci->lock, flags);
2712		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2713		                 (value & ~0x7f);
2714		spin_unlock_irqrestore(&ohci->lock, flags);
2715		break;
2716
2717	case CSR_BUSY_TIMEOUT:
2718		value = (value & 0xf) | ((value & 0xf) << 4) |
2719			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2720		reg_write(ohci, OHCI1394_ATRetries, value);
2721		flush_writes(ohci);
2722		break;
2723
2724	case CSR_PRIORITY_BUDGET:
2725		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2726		flush_writes(ohci);
2727		break;
2728
2729	default:
2730		WARN_ON(1);
2731		break;
2732	}
2733}
2734
2735static void flush_iso_completions(struct iso_context *ctx)
2736{
2737	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2738			      ctx->header_length, ctx->header,
2739			      ctx->base.callback_data);
2740	ctx->header_length = 0;
2741}
2742
2743static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2744{
2745	u32 *ctx_hdr;
2746
2747	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2748		if (ctx->base.drop_overflow_headers)
2749			return;
2750		flush_iso_completions(ctx);
2751	}
2752
2753	ctx_hdr = ctx->header + ctx->header_length;
2754	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2755
2756	/*
2757	 * The two iso header quadlets are byteswapped to little
2758	 * endian by the controller, but we want to present them
2759	 * as big endian for consistency with the bus endianness.
2760	 */
2761	if (ctx->base.header_size > 0)
2762		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2763	if (ctx->base.header_size > 4)
2764		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2765	if (ctx->base.header_size > 8)
2766		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2767	ctx->header_length += ctx->base.header_size;
2768}
2769
2770static int handle_ir_packet_per_buffer(struct context *context,
2771				       struct descriptor *d,
2772				       struct descriptor *last)
2773{
2774	struct iso_context *ctx =
2775		container_of(context, struct iso_context, context);
2776	struct descriptor *pd;
2777	u32 buffer_dma;
2778
2779	for (pd = d; pd <= last; pd++)
2780		if (pd->transfer_status)
2781			break;
2782	if (pd > last)
2783		/* Descriptor(s) not done yet, stop iteration */
2784		return 0;
2785
2786	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2787		d++;
2788		buffer_dma = le32_to_cpu(d->data_address);
2789		dma_sync_single_range_for_cpu(context->ohci->card.device,
2790					      buffer_dma & PAGE_MASK,
2791					      buffer_dma & ~PAGE_MASK,
2792					      le16_to_cpu(d->req_count),
2793					      DMA_FROM_DEVICE);
2794	}
2795
2796	copy_iso_headers(ctx, (u32 *) (last + 1));
2797
2798	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2799		flush_iso_completions(ctx);
2800
2801	return 1;
2802}
2803
2804/* d == last because each descriptor block is only a single descriptor. */
2805static int handle_ir_buffer_fill(struct context *context,
2806				 struct descriptor *d,
2807				 struct descriptor *last)
2808{
2809	struct iso_context *ctx =
2810		container_of(context, struct iso_context, context);
2811	unsigned int req_count, res_count, completed;
2812	u32 buffer_dma;
2813
2814	req_count = le16_to_cpu(last->req_count);
2815	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2816	completed = req_count - res_count;
2817	buffer_dma = le32_to_cpu(last->data_address);
2818
2819	if (completed > 0) {
2820		ctx->mc_buffer_bus = buffer_dma;
2821		ctx->mc_completed = completed;
2822	}
2823
2824	if (res_count != 0)
2825		/* Descriptor(s) not done yet, stop iteration */
2826		return 0;
2827
2828	dma_sync_single_range_for_cpu(context->ohci->card.device,
2829				      buffer_dma & PAGE_MASK,
2830				      buffer_dma & ~PAGE_MASK,
2831				      completed, DMA_FROM_DEVICE);
2832
2833	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2834		ctx->base.callback.mc(&ctx->base,
2835				      buffer_dma + completed,
2836				      ctx->base.callback_data);
2837		ctx->mc_completed = 0;
2838	}
2839
2840	return 1;
2841}
2842
2843static void flush_ir_buffer_fill(struct iso_context *ctx)
2844{
2845	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2846				      ctx->mc_buffer_bus & PAGE_MASK,
2847				      ctx->mc_buffer_bus & ~PAGE_MASK,
2848				      ctx->mc_completed, DMA_FROM_DEVICE);
2849
2850	ctx->base.callback.mc(&ctx->base,
2851			      ctx->mc_buffer_bus + ctx->mc_completed,
2852			      ctx->base.callback_data);
2853	ctx->mc_completed = 0;
2854}
2855
2856static inline void sync_it_packet_for_cpu(struct context *context,
2857					  struct descriptor *pd)
2858{
2859	__le16 control;
2860	u32 buffer_dma;
2861
2862	/* only packets beginning with OUTPUT_MORE* have data buffers */
2863	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2864		return;
2865
2866	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2867	pd += 2;
2868
2869	/*
2870	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2871	 * data buffer is in the context program's coherent page and must not
2872	 * be synced.
2873	 */
2874	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2875	    (context->current_bus          & PAGE_MASK)) {
2876		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2877			return;
2878		pd++;
2879	}
2880
2881	do {
2882		buffer_dma = le32_to_cpu(pd->data_address);
2883		dma_sync_single_range_for_cpu(context->ohci->card.device,
2884					      buffer_dma & PAGE_MASK,
2885					      buffer_dma & ~PAGE_MASK,
2886					      le16_to_cpu(pd->req_count),
2887					      DMA_TO_DEVICE);
2888		control = pd->control;
2889		pd++;
2890	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2891}
2892
2893static int handle_it_packet(struct context *context,
2894			    struct descriptor *d,
2895			    struct descriptor *last)
2896{
2897	struct iso_context *ctx =
2898		container_of(context, struct iso_context, context);
2899	struct descriptor *pd;
2900	__be32 *ctx_hdr;
2901
2902	for (pd = d; pd <= last; pd++)
2903		if (pd->transfer_status)
2904			break;
2905	if (pd > last)
2906		/* Descriptor(s) not done yet, stop iteration */
2907		return 0;
2908
2909	sync_it_packet_for_cpu(context, d);
2910
2911	if (ctx->header_length + 4 > PAGE_SIZE) {
2912		if (ctx->base.drop_overflow_headers)
2913			return 1;
2914		flush_iso_completions(ctx);
2915	}
2916
2917	ctx_hdr = ctx->header + ctx->header_length;
2918	ctx->last_timestamp = le16_to_cpu(last->res_count);
2919	/* Present this value as big-endian to match the receive code */
2920	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2921			       le16_to_cpu(pd->res_count));
2922	ctx->header_length += 4;
2923
2924	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2925		flush_iso_completions(ctx);
2926
2927	return 1;
2928}
2929
2930static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2931{
2932	u32 hi = channels >> 32, lo = channels;
2933
2934	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2935	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2936	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2937	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2938	mmiowb();
2939	ohci->mc_channels = channels;
2940}
2941
2942static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2943				int type, int channel, size_t header_size)
2944{
2945	struct fw_ohci *ohci = fw_ohci(card);
2946	struct iso_context *uninitialized_var(ctx);
2947	descriptor_callback_t uninitialized_var(callback);
2948	u64 *uninitialized_var(channels);
2949	u32 *uninitialized_var(mask), uninitialized_var(regs);
2950	int index, ret = -EBUSY;
2951
2952	spin_lock_irq(&ohci->lock);
2953
2954	switch (type) {
2955	case FW_ISO_CONTEXT_TRANSMIT:
2956		mask     = &ohci->it_context_mask;
2957		callback = handle_it_packet;
2958		index    = ffs(*mask) - 1;
2959		if (index >= 0) {
2960			*mask &= ~(1 << index);
2961			regs = OHCI1394_IsoXmitContextBase(index);
2962			ctx  = &ohci->it_context_list[index];
2963		}
2964		break;
2965
2966	case FW_ISO_CONTEXT_RECEIVE:
2967		channels = &ohci->ir_context_channels;
2968		mask     = &ohci->ir_context_mask;
2969		callback = handle_ir_packet_per_buffer;
2970		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2971		if (index >= 0) {
2972			*channels &= ~(1ULL << channel);
2973			*mask     &= ~(1 << index);
2974			regs = OHCI1394_IsoRcvContextBase(index);
2975			ctx  = &ohci->ir_context_list[index];
2976		}
2977		break;
2978
2979	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2980		mask     = &ohci->ir_context_mask;
2981		callback = handle_ir_buffer_fill;
2982		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2983		if (index >= 0) {
2984			ohci->mc_allocated = true;
2985			*mask &= ~(1 << index);
2986			regs = OHCI1394_IsoRcvContextBase(index);
2987			ctx  = &ohci->ir_context_list[index];
2988		}
2989		break;
2990
2991	default:
2992		index = -1;
2993		ret = -ENOSYS;
2994	}
2995
2996	spin_unlock_irq(&ohci->lock);
2997
2998	if (index < 0)
2999		return ERR_PTR(ret);
3000
3001	memset(ctx, 0, sizeof(*ctx));
3002	ctx->header_length = 0;
3003	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3004	if (ctx->header == NULL) {
3005		ret = -ENOMEM;
3006		goto out;
3007	}
3008	ret = context_init(&ctx->context, ohci, regs, callback);
3009	if (ret < 0)
3010		goto out_with_header;
3011
3012	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3013		set_multichannel_mask(ohci, 0);
3014		ctx->mc_completed = 0;
3015	}
3016
3017	return &ctx->base;
3018
3019 out_with_header:
3020	free_page((unsigned long)ctx->header);
3021 out:
3022	spin_lock_irq(&ohci->lock);
3023
3024	switch (type) {
3025	case FW_ISO_CONTEXT_RECEIVE:
3026		*channels |= 1ULL << channel;
3027		break;
3028
3029	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3030		ohci->mc_allocated = false;
3031		break;
3032	}
3033	*mask |= 1 << index;
3034
3035	spin_unlock_irq(&ohci->lock);
3036
3037	return ERR_PTR(ret);
3038}
3039
3040static int ohci_start_iso(struct fw_iso_context *base,
3041			  s32 cycle, u32 sync, u32 tags)
3042{
3043	struct iso_context *ctx = container_of(base, struct iso_context, base);
3044	struct fw_ohci *ohci = ctx->context.ohci;
3045	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3046	int index;
3047
3048	/* the controller cannot start without any queued packets */
3049	if (ctx->context.last->branch_address == 0)
3050		return -ENODATA;
3051
3052	switch (ctx->base.type) {
3053	case FW_ISO_CONTEXT_TRANSMIT:
3054		index = ctx - ohci->it_context_list;
3055		match = 0;
3056		if (cycle >= 0)
3057			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3058				(cycle & 0x7fff) << 16;
3059
3060		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3061		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3062		context_run(&ctx->context, match);
3063		break;
3064
3065	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3066		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3067		/* fall through */
3068	case FW_ISO_CONTEXT_RECEIVE:
3069		index = ctx - ohci->ir_context_list;
3070		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3071		if (cycle >= 0) {
3072			match |= (cycle & 0x07fff) << 12;
3073			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3074		}
3075
3076		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3077		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3078		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3079		context_run(&ctx->context, control);
3080
3081		ctx->sync = sync;
3082		ctx->tags = tags;
3083
3084		break;
3085	}
3086
3087	return 0;
3088}
3089
3090static int ohci_stop_iso(struct fw_iso_context *base)
3091{
3092	struct fw_ohci *ohci = fw_ohci(base->card);
3093	struct iso_context *ctx = container_of(base, struct iso_context, base);
3094	int index;
3095
3096	switch (ctx->base.type) {
3097	case FW_ISO_CONTEXT_TRANSMIT:
3098		index = ctx - ohci->it_context_list;
3099		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3100		break;
3101
3102	case FW_ISO_CONTEXT_RECEIVE:
3103	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3104		index = ctx - ohci->ir_context_list;
3105		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3106		break;
3107	}
3108	flush_writes(ohci);
3109	context_stop(&ctx->context);
3110	tasklet_kill(&ctx->context.tasklet);
3111
3112	return 0;
3113}
3114
3115static void ohci_free_iso_context(struct fw_iso_context *base)
3116{
3117	struct fw_ohci *ohci = fw_ohci(base->card);
3118	struct iso_context *ctx = container_of(base, struct iso_context, base);
3119	unsigned long flags;
3120	int index;
3121
3122	ohci_stop_iso(base);
3123	context_release(&ctx->context);
3124	free_page((unsigned long)ctx->header);
3125
3126	spin_lock_irqsave(&ohci->lock, flags);
3127
3128	switch (base->type) {
3129	case FW_ISO_CONTEXT_TRANSMIT:
3130		index = ctx - ohci->it_context_list;
3131		ohci->it_context_mask |= 1 << index;
3132		break;
3133
3134	case FW_ISO_CONTEXT_RECEIVE:
3135		index = ctx - ohci->ir_context_list;
3136		ohci->ir_context_mask |= 1 << index;
3137		ohci->ir_context_channels |= 1ULL << base->channel;
3138		break;
3139
3140	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3141		index = ctx - ohci->ir_context_list;
3142		ohci->ir_context_mask |= 1 << index;
3143		ohci->ir_context_channels |= ohci->mc_channels;
3144		ohci->mc_channels = 0;
3145		ohci->mc_allocated = false;
3146		break;
3147	}
3148
3149	spin_unlock_irqrestore(&ohci->lock, flags);
3150}
3151
3152static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3153{
3154	struct fw_ohci *ohci = fw_ohci(base->card);
3155	unsigned long flags;
3156	int ret;
3157
3158	switch (base->type) {
3159	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3160
3161		spin_lock_irqsave(&ohci->lock, flags);
3162
3163		/* Don't allow multichannel to grab other contexts' channels. */
3164		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3165			*channels = ohci->ir_context_channels;
3166			ret = -EBUSY;
3167		} else {
3168			set_multichannel_mask(ohci, *channels);
3169			ret = 0;
3170		}
3171
3172		spin_unlock_irqrestore(&ohci->lock, flags);
3173
3174		break;
3175	default:
3176		ret = -EINVAL;
3177	}
3178
3179	return ret;
3180}
3181
3182#ifdef CONFIG_PM
3183static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3184{
3185	int i;
3186	struct iso_context *ctx;
3187
3188	for (i = 0 ; i < ohci->n_ir ; i++) {
3189		ctx = &ohci->ir_context_list[i];
3190		if (ctx->context.running)
3191			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3192	}
3193
3194	for (i = 0 ; i < ohci->n_it ; i++) {
3195		ctx = &ohci->it_context_list[i];
3196		if (ctx->context.running)
3197			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3198	}
3199}
3200#endif
3201
3202static int queue_iso_transmit(struct iso_context *ctx,
3203			      struct fw_iso_packet *packet,
3204			      struct fw_iso_buffer *buffer,
3205			      unsigned long payload)
3206{
3207	struct descriptor *d, *last, *pd;
3208	struct fw_iso_packet *p;
3209	__le32 *header;
3210	dma_addr_t d_bus, page_bus;
3211	u32 z, header_z, payload_z, irq;
3212	u32 payload_index, payload_end_index, next_page_index;
3213	int page, end_page, i, length, offset;
3214
3215	p = packet;
3216	payload_index = payload;
3217
3218	if (p->skip)
3219		z = 1;
3220	else
3221		z = 2;
3222	if (p->header_length > 0)
3223		z++;
3224
3225	/* Determine the first page the payload isn't contained in. */
3226	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3227	if (p->payload_length > 0)
3228		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3229	else
3230		payload_z = 0;
3231
3232	z += payload_z;
3233
3234	/* Get header size in number of descriptors. */
3235	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3236
3237	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3238	if (d == NULL)
3239		return -ENOMEM;
3240
3241	if (!p->skip) {
3242		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3243		d[0].req_count = cpu_to_le16(8);
3244		/*
3245		 * Link the skip address to this descriptor itself.  This causes
3246		 * a context to skip a cycle whenever lost cycles or FIFO
3247		 * overruns occur, without dropping the data.  The application
3248		 * should then decide whether this is an error condition or not.
3249		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3250		 */
3251		d[0].branch_address = cpu_to_le32(d_bus | z);
3252
3253		header = (__le32 *) &d[1];
3254		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3255					IT_HEADER_TAG(p->tag) |
3256					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3257					IT_HEADER_CHANNEL(ctx->base.channel) |
3258					IT_HEADER_SPEED(ctx->base.speed));
3259		header[1] =
3260			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3261							  p->payload_length));
3262	}
3263
3264	if (p->header_length > 0) {
3265		d[2].req_count    = cpu_to_le16(p->header_length);
3266		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3267		memcpy(&d[z], p->header, p->header_length);
3268	}
3269
3270	pd = d + z - payload_z;
3271	payload_end_index = payload_index + p->payload_length;
3272	for (i = 0; i < payload_z; i++) {
3273		page               = payload_index >> PAGE_SHIFT;
3274		offset             = payload_index & ~PAGE_MASK;
3275		next_page_index    = (page + 1) << PAGE_SHIFT;
3276		length             =
3277			min(next_page_index, payload_end_index) - payload_index;
3278		pd[i].req_count    = cpu_to_le16(length);
3279
3280		page_bus = page_private(buffer->pages[page]);
3281		pd[i].data_address = cpu_to_le32(page_bus + offset);
3282
3283		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3284						 page_bus, offset, length,
3285						 DMA_TO_DEVICE);
3286
3287		payload_index += length;
3288	}
3289
3290	if (p->interrupt)
3291		irq = DESCRIPTOR_IRQ_ALWAYS;
3292	else
3293		irq = DESCRIPTOR_NO_IRQ;
3294
3295	last = z == 2 ? d : d + z - 1;
3296	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3297				     DESCRIPTOR_STATUS |
3298				     DESCRIPTOR_BRANCH_ALWAYS |
3299				     irq);
3300
3301	context_append(&ctx->context, d, z, header_z);
3302
3303	return 0;
3304}
3305
3306static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3307				       struct fw_iso_packet *packet,
3308				       struct fw_iso_buffer *buffer,
3309				       unsigned long payload)
3310{
3311	struct device *device = ctx->context.ohci->card.device;
3312	struct descriptor *d, *pd;
3313	dma_addr_t d_bus, page_bus;
3314	u32 z, header_z, rest;
3315	int i, j, length;
3316	int page, offset, packet_count, header_size, payload_per_buffer;
3317
3318	/*
3319	 * The OHCI controller puts the isochronous header and trailer in the
3320	 * buffer, so we need at least 8 bytes.
3321	 */
3322	packet_count = packet->header_length / ctx->base.header_size;
3323	header_size  = max(ctx->base.header_size, (size_t)8);
3324
3325	/* Get header size in number of descriptors. */
3326	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3327	page     = payload >> PAGE_SHIFT;
3328	offset   = payload & ~PAGE_MASK;
3329	payload_per_buffer = packet->payload_length / packet_count;
3330
3331	for (i = 0; i < packet_count; i++) {
3332		/* d points to the header descriptor */
3333		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3334		d = context_get_descriptors(&ctx->context,
3335				z + header_z, &d_bus);
3336		if (d == NULL)
3337			return -ENOMEM;
3338
3339		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3340					      DESCRIPTOR_INPUT_MORE);
3341		if (packet->skip && i == 0)
3342			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3343		d->req_count    = cpu_to_le16(header_size);
3344		d->res_count    = d->req_count;
3345		d->transfer_status = 0;
3346		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3347
3348		rest = payload_per_buffer;
3349		pd = d;
3350		for (j = 1; j < z; j++) {
3351			pd++;
3352			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3353						  DESCRIPTOR_INPUT_MORE);
3354
3355			if (offset + rest < PAGE_SIZE)
3356				length = rest;
3357			else
3358				length = PAGE_SIZE - offset;
3359			pd->req_count = cpu_to_le16(length);
3360			pd->res_count = pd->req_count;
3361			pd->transfer_status = 0;
3362
3363			page_bus = page_private(buffer->pages[page]);
3364			pd->data_address = cpu_to_le32(page_bus + offset);
3365
3366			dma_sync_single_range_for_device(device, page_bus,
3367							 offset, length,
3368							 DMA_FROM_DEVICE);
3369
3370			offset = (offset + length) & ~PAGE_MASK;
3371			rest -= length;
3372			if (offset == 0)
3373				page++;
3374		}
3375		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3376					  DESCRIPTOR_INPUT_LAST |
3377					  DESCRIPTOR_BRANCH_ALWAYS);
3378		if (packet->interrupt && i == packet_count - 1)
3379			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3380
3381		context_append(&ctx->context, d, z, header_z);
3382	}
3383
3384	return 0;
3385}
3386
3387static int queue_iso_buffer_fill(struct iso_context *ctx,
3388				 struct fw_iso_packet *packet,
3389				 struct fw_iso_buffer *buffer,
3390				 unsigned long payload)
3391{
3392	struct descriptor *d;
3393	dma_addr_t d_bus, page_bus;
3394	int page, offset, rest, z, i, length;
3395
3396	page   = payload >> PAGE_SHIFT;
3397	offset = payload & ~PAGE_MASK;
3398	rest   = packet->payload_length;
3399
3400	/* We need one descriptor for each page in the buffer. */
3401	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3402
3403	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3404		return -EFAULT;
3405
3406	for (i = 0; i < z; i++) {
3407		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3408		if (d == NULL)
3409			return -ENOMEM;
3410
3411		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3412					 DESCRIPTOR_BRANCH_ALWAYS);
3413		if (packet->skip && i == 0)
3414			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3415		if (packet->interrupt && i == z - 1)
3416			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3417
3418		if (offset + rest < PAGE_SIZE)
3419			length = rest;
3420		else
3421			length = PAGE_SIZE - offset;
3422		d->req_count = cpu_to_le16(length);
3423		d->res_count = d->req_count;
3424		d->transfer_status = 0;
3425
3426		page_bus = page_private(buffer->pages[page]);
3427		d->data_address = cpu_to_le32(page_bus + offset);
3428
3429		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3430						 page_bus, offset, length,
3431						 DMA_FROM_DEVICE);
3432
3433		rest -= length;
3434		offset = 0;
3435		page++;
3436
3437		context_append(&ctx->context, d, 1, 0);
3438	}
3439
3440	return 0;
3441}
3442
3443static int ohci_queue_iso(struct fw_iso_context *base,
3444			  struct fw_iso_packet *packet,
3445			  struct fw_iso_buffer *buffer,
3446			  unsigned long payload)
3447{
3448	struct iso_context *ctx = container_of(base, struct iso_context, base);
3449	unsigned long flags;
3450	int ret = -ENOSYS;
3451
3452	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3453	switch (base->type) {
3454	case FW_ISO_CONTEXT_TRANSMIT:
3455		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3456		break;
3457	case FW_ISO_CONTEXT_RECEIVE:
3458		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3459		break;
3460	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3461		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3462		break;
3463	}
3464	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3465
3466	return ret;
3467}
3468
3469static void ohci_flush_queue_iso(struct fw_iso_context *base)
3470{
3471	struct context *ctx =
3472			&container_of(base, struct iso_context, base)->context;
3473
3474	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3475}
3476
3477static int ohci_flush_iso_completions(struct fw_iso_context *base)
3478{
3479	struct iso_context *ctx = container_of(base, struct iso_context, base);
3480	int ret = 0;
3481
3482	tasklet_disable(&ctx->context.tasklet);
3483
3484	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3485		context_tasklet((unsigned long)&ctx->context);
3486
3487		switch (base->type) {
3488		case FW_ISO_CONTEXT_TRANSMIT:
3489		case FW_ISO_CONTEXT_RECEIVE:
3490			if (ctx->header_length != 0)
3491				flush_iso_completions(ctx);
3492			break;
3493		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3494			if (ctx->mc_completed != 0)
3495				flush_ir_buffer_fill(ctx);
3496			break;
3497		default:
3498			ret = -ENOSYS;
3499		}
3500
3501		clear_bit_unlock(0, &ctx->flushing_completions);
3502		smp_mb__after_atomic();
3503	}
3504
3505	tasklet_enable(&ctx->context.tasklet);
3506
3507	return ret;
3508}
3509
3510static const struct fw_card_driver ohci_driver = {
3511	.enable			= ohci_enable,
3512	.read_phy_reg		= ohci_read_phy_reg,
3513	.update_phy_reg		= ohci_update_phy_reg,
3514	.set_config_rom		= ohci_set_config_rom,
3515	.send_request		= ohci_send_request,
3516	.send_response		= ohci_send_response,
3517	.cancel_packet		= ohci_cancel_packet,
3518	.enable_phys_dma	= ohci_enable_phys_dma,
3519	.read_csr		= ohci_read_csr,
3520	.write_csr		= ohci_write_csr,
3521
3522	.allocate_iso_context	= ohci_allocate_iso_context,
3523	.free_iso_context	= ohci_free_iso_context,
3524	.set_iso_channels	= ohci_set_iso_channels,
3525	.queue_iso		= ohci_queue_iso,
3526	.flush_queue_iso	= ohci_flush_queue_iso,
3527	.flush_iso_completions	= ohci_flush_iso_completions,
3528	.start_iso		= ohci_start_iso,
3529	.stop_iso		= ohci_stop_iso,
3530};
3531
3532#ifdef CONFIG_PPC_PMAC
3533static void pmac_ohci_on(struct pci_dev *dev)
3534{
3535	if (machine_is(powermac)) {
3536		struct device_node *ofn = pci_device_to_OF_node(dev);
3537
3538		if (ofn) {
3539			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3540			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3541		}
3542	}
3543}
3544
3545static void pmac_ohci_off(struct pci_dev *dev)
3546{
3547	if (machine_is(powermac)) {
3548		struct device_node *ofn = pci_device_to_OF_node(dev);
3549
3550		if (ofn) {
3551			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3552			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3553		}
3554	}
3555}
3556#else
3557static inline void pmac_ohci_on(struct pci_dev *dev) {}
3558static inline void pmac_ohci_off(struct pci_dev *dev) {}
3559#endif /* CONFIG_PPC_PMAC */
3560
 
 
 
 
 
 
 
 
 
 
 
 
 
3561static int pci_probe(struct pci_dev *dev,
3562			       const struct pci_device_id *ent)
3563{
3564	struct fw_ohci *ohci;
3565	u32 bus_options, max_receive, link_speed, version;
3566	u64 guid;
3567	int i, err;
3568	size_t size;
3569
3570	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3571		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3572		return -ENOSYS;
3573	}
3574
3575	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3576	if (ohci == NULL) {
3577		err = -ENOMEM;
3578		goto fail;
3579	}
3580
3581	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3582
3583	pmac_ohci_on(dev);
 
3584
3585	err = pci_enable_device(dev);
3586	if (err) {
3587		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3588		goto fail_free;
3589	}
3590
3591	pci_set_master(dev);
3592	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3593	pci_set_drvdata(dev, ohci);
3594
3595	spin_lock_init(&ohci->lock);
3596	mutex_init(&ohci->phy_reg_mutex);
3597
3598	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3599
3600	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3601	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3602		ohci_err(ohci, "invalid MMIO resource\n");
3603		err = -ENXIO;
3604		goto fail_disable;
3605	}
3606
3607	err = pci_request_region(dev, 0, ohci_driver_name);
3608	if (err) {
3609		ohci_err(ohci, "MMIO resource unavailable\n");
3610		goto fail_disable;
3611	}
3612
3613	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3614	if (ohci->registers == NULL) {
3615		ohci_err(ohci, "failed to remap registers\n");
3616		err = -ENXIO;
3617		goto fail_iomem;
3618	}
 
3619
3620	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3621		if ((ohci_quirks[i].vendor == dev->vendor) &&
3622		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3623		     ohci_quirks[i].device == dev->device) &&
3624		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3625		     ohci_quirks[i].revision >= dev->revision)) {
3626			ohci->quirks = ohci_quirks[i].flags;
3627			break;
3628		}
3629	if (param_quirks)
3630		ohci->quirks = param_quirks;
3631
 
 
 
3632	/*
3633	 * Because dma_alloc_coherent() allocates at least one page,
3634	 * we save space by using a common buffer for the AR request/
3635	 * response descriptors and the self IDs buffer.
3636	 */
3637	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3638	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3639	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3640					       PAGE_SIZE,
3641					       &ohci->misc_buffer_bus,
3642					       GFP_KERNEL);
3643	if (!ohci->misc_buffer) {
3644		err = -ENOMEM;
3645		goto fail_iounmap;
3646	}
3647
3648	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3649			      OHCI1394_AsReqRcvContextControlSet);
3650	if (err < 0)
3651		goto fail_misc_buf;
3652
3653	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3654			      OHCI1394_AsRspRcvContextControlSet);
3655	if (err < 0)
3656		goto fail_arreq_ctx;
3657
3658	err = context_init(&ohci->at_request_ctx, ohci,
3659			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3660	if (err < 0)
3661		goto fail_arrsp_ctx;
3662
3663	err = context_init(&ohci->at_response_ctx, ohci,
3664			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3665	if (err < 0)
3666		goto fail_atreq_ctx;
3667
3668	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3669	ohci->ir_context_channels = ~0ULL;
3670	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3671	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3672	ohci->ir_context_mask = ohci->ir_context_support;
3673	ohci->n_ir = hweight32(ohci->ir_context_mask);
3674	size = sizeof(struct iso_context) * ohci->n_ir;
3675	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
 
 
3676
3677	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3678	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3679	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3680	if (!ohci->it_context_support) {
3681		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3682		ohci->it_context_support = 0xf;
3683	}
3684	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3685	ohci->it_context_mask = ohci->it_context_support;
3686	ohci->n_it = hweight32(ohci->it_context_mask);
3687	size = sizeof(struct iso_context) * ohci->n_it;
3688	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3689
3690	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3691		err = -ENOMEM;
3692		goto fail_contexts;
3693	}
3694
3695	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3696	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3697
3698	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3699	max_receive = (bus_options >> 12) & 0xf;
3700	link_speed = bus_options & 0x7;
3701	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3702		reg_read(ohci, OHCI1394_GUIDLo);
3703
3704	if (!(ohci->quirks & QUIRK_NO_MSI))
3705		pci_enable_msi(dev);
3706	if (request_irq(dev->irq, irq_handler,
3707			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3708			ohci_driver_name, ohci)) {
3709		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3710		err = -EIO;
3711		goto fail_msi;
3712	}
3713
3714	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3715	if (err)
3716		goto fail_irq;
3717
3718	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3719	ohci_notice(ohci,
3720		    "added OHCI v%x.%x device as card %d, "
3721		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3722		    version >> 16, version & 0xff, ohci->card.index,
3723		    ohci->n_ir, ohci->n_it, ohci->quirks,
3724		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3725			", physUB" : "");
3726
3727	return 0;
3728
3729 fail_irq:
3730	free_irq(dev->irq, ohci);
3731 fail_msi:
 
3732	pci_disable_msi(dev);
3733 fail_contexts:
3734	kfree(ohci->ir_context_list);
3735	kfree(ohci->it_context_list);
3736	context_release(&ohci->at_response_ctx);
3737 fail_atreq_ctx:
3738	context_release(&ohci->at_request_ctx);
3739 fail_arrsp_ctx:
3740	ar_context_release(&ohci->ar_response_ctx);
3741 fail_arreq_ctx:
3742	ar_context_release(&ohci->ar_request_ctx);
3743 fail_misc_buf:
3744	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3745			  ohci->misc_buffer, ohci->misc_buffer_bus);
3746 fail_iounmap:
3747	pci_iounmap(dev, ohci->registers);
3748 fail_iomem:
3749	pci_release_region(dev, 0);
3750 fail_disable:
3751	pci_disable_device(dev);
3752 fail_free:
3753	kfree(ohci);
3754	pmac_ohci_off(dev);
3755 fail:
3756	return err;
3757}
3758
3759static void pci_remove(struct pci_dev *dev)
3760{
3761	struct fw_ohci *ohci = pci_get_drvdata(dev);
3762
3763	/*
3764	 * If the removal is happening from the suspend state, LPS won't be
3765	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3766	 */
3767	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3768		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3769		flush_writes(ohci);
3770	}
3771	cancel_work_sync(&ohci->bus_reset_work);
3772	fw_core_remove_card(&ohci->card);
3773
3774	/*
3775	 * FIXME: Fail all pending packets here, now that the upper
3776	 * layers can't queue any more.
3777	 */
3778
3779	software_reset(ohci);
3780	free_irq(dev->irq, ohci);
3781
3782	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3783		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3784				  ohci->next_config_rom, ohci->next_config_rom_bus);
3785	if (ohci->config_rom)
3786		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3787				  ohci->config_rom, ohci->config_rom_bus);
3788	ar_context_release(&ohci->ar_request_ctx);
3789	ar_context_release(&ohci->ar_response_ctx);
3790	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3791			  ohci->misc_buffer, ohci->misc_buffer_bus);
3792	context_release(&ohci->at_request_ctx);
3793	context_release(&ohci->at_response_ctx);
3794	kfree(ohci->it_context_list);
3795	kfree(ohci->ir_context_list);
3796	pci_disable_msi(dev);
3797	pci_iounmap(dev, ohci->registers);
3798	pci_release_region(dev, 0);
3799	pci_disable_device(dev);
3800	kfree(ohci);
3801	pmac_ohci_off(dev);
3802
3803	dev_notice(&dev->dev, "removed fw-ohci device\n");
3804}
3805
3806#ifdef CONFIG_PM
3807static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3808{
3809	struct fw_ohci *ohci = pci_get_drvdata(dev);
3810	int err;
3811
3812	software_reset(ohci);
3813	err = pci_save_state(dev);
3814	if (err) {
3815		ohci_err(ohci, "pci_save_state failed\n");
3816		return err;
3817	}
3818	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3819	if (err)
3820		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3821	pmac_ohci_off(dev);
3822
3823	return 0;
3824}
3825
3826static int pci_resume(struct pci_dev *dev)
3827{
3828	struct fw_ohci *ohci = pci_get_drvdata(dev);
3829	int err;
3830
3831	pmac_ohci_on(dev);
3832	pci_set_power_state(dev, PCI_D0);
3833	pci_restore_state(dev);
3834	err = pci_enable_device(dev);
3835	if (err) {
3836		ohci_err(ohci, "pci_enable_device failed\n");
3837		return err;
3838	}
3839
3840	/* Some systems don't setup GUID register on resume from ram  */
3841	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3842					!reg_read(ohci, OHCI1394_GUIDHi)) {
3843		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3844		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3845	}
3846
3847	err = ohci_enable(&ohci->card, NULL, 0);
3848	if (err)
3849		return err;
3850
3851	ohci_resume_iso_dma(ohci);
3852
3853	return 0;
3854}
3855#endif
3856
3857static const struct pci_device_id pci_table[] = {
3858	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3859	{ }
3860};
3861
3862MODULE_DEVICE_TABLE(pci, pci_table);
3863
3864static struct pci_driver fw_ohci_pci_driver = {
3865	.name		= ohci_driver_name,
3866	.id_table	= pci_table,
3867	.probe		= pci_probe,
3868	.remove		= pci_remove,
3869#ifdef CONFIG_PM
3870	.resume		= pci_resume,
3871	.suspend	= pci_suspend,
3872#endif
3873};
3874
3875static int __init fw_ohci_init(void)
3876{
3877	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3878	if (!selfid_workqueue)
3879		return -ENOMEM;
3880
3881	return pci_register_driver(&fw_ohci_pci_driver);
3882}
3883
3884static void __exit fw_ohci_cleanup(void)
3885{
3886	pci_unregister_driver(&fw_ohci_pci_driver);
3887	destroy_workqueue(selfid_workqueue);
3888}
3889
3890module_init(fw_ohci_init);
3891module_exit(fw_ohci_cleanup);
3892
3893MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3894MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3895MODULE_LICENSE("GPL");
3896
3897/* Provide a module alias so root-on-sbp2 initrds don't break. */
3898MODULE_ALIAS("ohci1394");