Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked, unsigned long reason)
 543{
 544	unsigned long flags;
 545	bool ret, prev;
 546
 547	BUG_ON(!rfkill);
 548
 549	if (WARN(reason &
 550	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 551	    "hw_state reason not supported: 0x%lx", reason))
 552		return blocked;
 553
 554	spin_lock_irqsave(&rfkill->lock, flags);
 555	prev = !!(rfkill->hard_block_reasons & reason);
 556	if (blocked) {
 557		rfkill->state |= RFKILL_BLOCK_HW;
 558		rfkill->hard_block_reasons |= reason;
 559	} else {
 560		rfkill->hard_block_reasons &= ~reason;
 561		if (!rfkill->hard_block_reasons)
 562			rfkill->state &= ~RFKILL_BLOCK_HW;
 563	}
 564	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 565	spin_unlock_irqrestore(&rfkill->lock, flags);
 566
 567	rfkill_led_trigger_event(rfkill);
 568	rfkill_global_led_trigger_event();
 569
 570	if (rfkill->registered && prev != blocked)
 571		schedule_work(&rfkill->uevent_work);
 572
 573	return ret;
 574}
 575EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 576
 577static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 578{
 579	u32 bit = RFKILL_BLOCK_SW;
 580
 581	/* if in a ops->set_block right now, use other bit */
 582	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 583		bit = RFKILL_BLOCK_SW_PREV;
 584
 585	if (blocked)
 586		rfkill->state |= bit;
 587	else
 588		rfkill->state &= ~bit;
 589}
 590
 591bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 592{
 593	unsigned long flags;
 594	bool prev, hwblock;
 595
 596	BUG_ON(!rfkill);
 597
 598	spin_lock_irqsave(&rfkill->lock, flags);
 599	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 602	blocked = blocked || hwblock;
 603	spin_unlock_irqrestore(&rfkill->lock, flags);
 604
 605	if (!rfkill->registered)
 606		return blocked;
 607
 608	if (prev != blocked && !hwblock)
 609		schedule_work(&rfkill->uevent_work);
 610
 611	rfkill_led_trigger_event(rfkill);
 612	rfkill_global_led_trigger_event();
 613
 614	return blocked;
 615}
 616EXPORT_SYMBOL(rfkill_set_sw_state);
 617
 618void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 619{
 620	unsigned long flags;
 621
 622	BUG_ON(!rfkill);
 623	BUG_ON(rfkill->registered);
 624
 625	spin_lock_irqsave(&rfkill->lock, flags);
 626	__rfkill_set_sw_state(rfkill, blocked);
 627	rfkill->persistent = true;
 628	spin_unlock_irqrestore(&rfkill->lock, flags);
 629}
 630EXPORT_SYMBOL(rfkill_init_sw_state);
 631
 632void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 633{
 634	unsigned long flags;
 635	bool swprev, hwprev;
 636
 637	BUG_ON(!rfkill);
 638
 639	spin_lock_irqsave(&rfkill->lock, flags);
 640
 641	/*
 642	 * No need to care about prev/setblock ... this is for uevent only
 643	 * and that will get triggered by rfkill_set_block anyway.
 644	 */
 645	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 646	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 647	__rfkill_set_sw_state(rfkill, sw);
 648	if (hw)
 649		rfkill->state |= RFKILL_BLOCK_HW;
 650	else
 651		rfkill->state &= ~RFKILL_BLOCK_HW;
 652
 653	spin_unlock_irqrestore(&rfkill->lock, flags);
 654
 655	if (!rfkill->registered) {
 656		rfkill->persistent = true;
 657	} else {
 658		if (swprev != sw || hwprev != hw)
 659			schedule_work(&rfkill->uevent_work);
 660
 661		rfkill_led_trigger_event(rfkill);
 662		rfkill_global_led_trigger_event();
 663	}
 664}
 665EXPORT_SYMBOL(rfkill_set_states);
 666
 667static const char * const rfkill_types[] = {
 668	NULL, /* RFKILL_TYPE_ALL */
 669	"wlan",
 670	"bluetooth",
 671	"ultrawideband",
 672	"wimax",
 673	"wwan",
 674	"gps",
 675	"fm",
 676	"nfc",
 677};
 678
 679enum rfkill_type rfkill_find_type(const char *name)
 680{
 681	int i;
 682
 683	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 684
 685	if (!name)
 686		return RFKILL_TYPE_ALL;
 687
 688	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 689		if (!strcmp(name, rfkill_types[i]))
 690			return i;
 691	return RFKILL_TYPE_ALL;
 692}
 693EXPORT_SYMBOL(rfkill_find_type);
 694
 695static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 696			 char *buf)
 697{
 698	struct rfkill *rfkill = to_rfkill(dev);
 699
 700	return sysfs_emit(buf, "%s\n", rfkill->name);
 701}
 702static DEVICE_ATTR_RO(name);
 703
 704static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 705			 char *buf)
 706{
 707	struct rfkill *rfkill = to_rfkill(dev);
 708
 709	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 710}
 711static DEVICE_ATTR_RO(type);
 712
 713static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 714			  char *buf)
 715{
 716	struct rfkill *rfkill = to_rfkill(dev);
 717
 718	return sysfs_emit(buf, "%d\n", rfkill->idx);
 719}
 720static DEVICE_ATTR_RO(index);
 721
 722static ssize_t persistent_show(struct device *dev,
 723			       struct device_attribute *attr, char *buf)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726
 727	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 728}
 729static DEVICE_ATTR_RO(persistent);
 730
 731static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 732			 char *buf)
 733{
 734	struct rfkill *rfkill = to_rfkill(dev);
 735
 736	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 737}
 738static DEVICE_ATTR_RO(hard);
 739
 740static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 741			 char *buf)
 742{
 743	struct rfkill *rfkill = to_rfkill(dev);
 744
 745	mutex_lock(&rfkill_global_mutex);
 746	rfkill_sync(rfkill);
 747	mutex_unlock(&rfkill_global_mutex);
 748
 749	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 750}
 751
 752static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 753			  const char *buf, size_t count)
 754{
 755	struct rfkill *rfkill = to_rfkill(dev);
 756	unsigned long state;
 757	int err;
 758
 759	if (!capable(CAP_NET_ADMIN))
 760		return -EPERM;
 761
 762	err = kstrtoul(buf, 0, &state);
 763	if (err)
 764		return err;
 765
 766	if (state > 1 )
 767		return -EINVAL;
 768
 769	mutex_lock(&rfkill_global_mutex);
 770	rfkill_sync(rfkill);
 771	rfkill_set_block(rfkill, state);
 772	mutex_unlock(&rfkill_global_mutex);
 773
 774	return count;
 775}
 776static DEVICE_ATTR_RW(soft);
 777
 778static ssize_t hard_block_reasons_show(struct device *dev,
 779				       struct device_attribute *attr,
 780				       char *buf)
 781{
 782	struct rfkill *rfkill = to_rfkill(dev);
 783
 784	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 785}
 786static DEVICE_ATTR_RO(hard_block_reasons);
 787
 788static u8 user_state_from_blocked(unsigned long state)
 789{
 790	if (state & RFKILL_BLOCK_HW)
 791		return RFKILL_USER_STATE_HARD_BLOCKED;
 792	if (state & RFKILL_BLOCK_SW)
 793		return RFKILL_USER_STATE_SOFT_BLOCKED;
 794
 795	return RFKILL_USER_STATE_UNBLOCKED;
 796}
 797
 798static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 799			  char *buf)
 800{
 801	struct rfkill *rfkill = to_rfkill(dev);
 802
 803	mutex_lock(&rfkill_global_mutex);
 804	rfkill_sync(rfkill);
 805	mutex_unlock(&rfkill_global_mutex);
 806
 807	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 808}
 809
 810static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 811			   const char *buf, size_t count)
 812{
 813	struct rfkill *rfkill = to_rfkill(dev);
 814	unsigned long state;
 815	int err;
 816
 817	if (!capable(CAP_NET_ADMIN))
 818		return -EPERM;
 819
 820	err = kstrtoul(buf, 0, &state);
 821	if (err)
 822		return err;
 823
 824	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 825	    state != RFKILL_USER_STATE_UNBLOCKED)
 826		return -EINVAL;
 827
 828	mutex_lock(&rfkill_global_mutex);
 829	rfkill_sync(rfkill);
 830	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 831	mutex_unlock(&rfkill_global_mutex);
 832
 833	return count;
 834}
 835static DEVICE_ATTR_RW(state);
 836
 837static struct attribute *rfkill_dev_attrs[] = {
 838	&dev_attr_name.attr,
 839	&dev_attr_type.attr,
 840	&dev_attr_index.attr,
 841	&dev_attr_persistent.attr,
 842	&dev_attr_state.attr,
 843	&dev_attr_soft.attr,
 844	&dev_attr_hard.attr,
 845	&dev_attr_hard_block_reasons.attr,
 846	NULL,
 847};
 848ATTRIBUTE_GROUPS(rfkill_dev);
 849
 850static void rfkill_release(struct device *dev)
 851{
 852	struct rfkill *rfkill = to_rfkill(dev);
 853
 854	kfree(rfkill);
 855}
 856
 857static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 858{
 859	struct rfkill *rfkill = to_rfkill(dev);
 860	unsigned long flags;
 861	unsigned long reasons;
 862	u32 state;
 863	int error;
 864
 865	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 866	if (error)
 867		return error;
 868	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 869			       rfkill_types[rfkill->type]);
 870	if (error)
 871		return error;
 872	spin_lock_irqsave(&rfkill->lock, flags);
 873	state = rfkill->state;
 874	reasons = rfkill->hard_block_reasons;
 875	spin_unlock_irqrestore(&rfkill->lock, flags);
 876	error = add_uevent_var(env, "RFKILL_STATE=%d",
 877			       user_state_from_blocked(state));
 878	if (error)
 879		return error;
 880	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 881}
 882
 883void rfkill_pause_polling(struct rfkill *rfkill)
 884{
 885	BUG_ON(!rfkill);
 886
 887	if (!rfkill->ops->poll)
 888		return;
 889
 890	rfkill->polling_paused = true;
 891	cancel_delayed_work_sync(&rfkill->poll_work);
 892}
 893EXPORT_SYMBOL(rfkill_pause_polling);
 894
 895void rfkill_resume_polling(struct rfkill *rfkill)
 896{
 897	BUG_ON(!rfkill);
 898
 899	if (!rfkill->ops->poll)
 900		return;
 901
 902	rfkill->polling_paused = false;
 903
 904	if (rfkill->suspended)
 905		return;
 906
 907	queue_delayed_work(system_power_efficient_wq,
 908			   &rfkill->poll_work, 0);
 909}
 910EXPORT_SYMBOL(rfkill_resume_polling);
 911
 912#ifdef CONFIG_PM_SLEEP
 913static int rfkill_suspend(struct device *dev)
 914{
 915	struct rfkill *rfkill = to_rfkill(dev);
 916
 917	rfkill->suspended = true;
 918	cancel_delayed_work_sync(&rfkill->poll_work);
 919
 920	return 0;
 921}
 922
 923static int rfkill_resume(struct device *dev)
 924{
 925	struct rfkill *rfkill = to_rfkill(dev);
 926	bool cur;
 927
 928	rfkill->suspended = false;
 929
 930	if (!rfkill->registered)
 931		return 0;
 932
 933	if (!rfkill->persistent) {
 934		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 935		rfkill_set_block(rfkill, cur);
 936	}
 937
 938	if (rfkill->ops->poll && !rfkill->polling_paused)
 939		queue_delayed_work(system_power_efficient_wq,
 940				   &rfkill->poll_work, 0);
 941
 942	return 0;
 943}
 944
 945static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 946#define RFKILL_PM_OPS (&rfkill_pm_ops)
 947#else
 948#define RFKILL_PM_OPS NULL
 949#endif
 950
 951static struct class rfkill_class = {
 952	.name		= "rfkill",
 953	.dev_release	= rfkill_release,
 954	.dev_groups	= rfkill_dev_groups,
 955	.dev_uevent	= rfkill_dev_uevent,
 956	.pm		= RFKILL_PM_OPS,
 957};
 958
 959bool rfkill_blocked(struct rfkill *rfkill)
 960{
 961	unsigned long flags;
 962	u32 state;
 963
 964	spin_lock_irqsave(&rfkill->lock, flags);
 965	state = rfkill->state;
 966	spin_unlock_irqrestore(&rfkill->lock, flags);
 967
 968	return !!(state & RFKILL_BLOCK_ANY);
 969}
 970EXPORT_SYMBOL(rfkill_blocked);
 971
 972bool rfkill_soft_blocked(struct rfkill *rfkill)
 973{
 974	unsigned long flags;
 975	u32 state;
 976
 977	spin_lock_irqsave(&rfkill->lock, flags);
 978	state = rfkill->state;
 979	spin_unlock_irqrestore(&rfkill->lock, flags);
 980
 981	return !!(state & RFKILL_BLOCK_SW);
 982}
 983EXPORT_SYMBOL(rfkill_soft_blocked);
 984
 985struct rfkill * __must_check rfkill_alloc(const char *name,
 986					  struct device *parent,
 987					  const enum rfkill_type type,
 988					  const struct rfkill_ops *ops,
 989					  void *ops_data)
 990{
 991	struct rfkill *rfkill;
 992	struct device *dev;
 993
 994	if (WARN_ON(!ops))
 995		return NULL;
 996
 997	if (WARN_ON(!ops->set_block))
 998		return NULL;
 999
1000	if (WARN_ON(!name))
1001		return NULL;
1002
1003	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1004		return NULL;
1005
1006	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1007	if (!rfkill)
1008		return NULL;
1009
1010	spin_lock_init(&rfkill->lock);
1011	INIT_LIST_HEAD(&rfkill->node);
1012	rfkill->type = type;
1013	strcpy(rfkill->name, name);
1014	rfkill->ops = ops;
1015	rfkill->data = ops_data;
1016
1017	dev = &rfkill->dev;
1018	dev->class = &rfkill_class;
1019	dev->parent = parent;
1020	device_initialize(dev);
1021
1022	return rfkill;
1023}
1024EXPORT_SYMBOL(rfkill_alloc);
1025
1026static void rfkill_poll(struct work_struct *work)
1027{
1028	struct rfkill *rfkill;
1029
1030	rfkill = container_of(work, struct rfkill, poll_work.work);
1031
1032	/*
1033	 * Poll hardware state -- driver will use one of the
1034	 * rfkill_set{,_hw,_sw}_state functions and use its
1035	 * return value to update the current status.
1036	 */
1037	rfkill->ops->poll(rfkill, rfkill->data);
1038
1039	queue_delayed_work(system_power_efficient_wq,
1040		&rfkill->poll_work,
1041		round_jiffies_relative(POLL_INTERVAL));
1042}
1043
1044static void rfkill_uevent_work(struct work_struct *work)
1045{
1046	struct rfkill *rfkill;
1047
1048	rfkill = container_of(work, struct rfkill, uevent_work);
1049
1050	mutex_lock(&rfkill_global_mutex);
1051	rfkill_event(rfkill);
1052	mutex_unlock(&rfkill_global_mutex);
1053}
1054
1055static void rfkill_sync_work(struct work_struct *work)
1056{
1057	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
 
 
 
1058
1059	mutex_lock(&rfkill_global_mutex);
1060	rfkill_sync(rfkill);
 
1061	mutex_unlock(&rfkill_global_mutex);
1062}
1063
1064int __must_check rfkill_register(struct rfkill *rfkill)
1065{
1066	static unsigned long rfkill_no;
1067	struct device *dev;
1068	int error;
1069
1070	if (!rfkill)
1071		return -EINVAL;
1072
1073	dev = &rfkill->dev;
1074
1075	mutex_lock(&rfkill_global_mutex);
1076
1077	if (rfkill->registered) {
1078		error = -EALREADY;
1079		goto unlock;
1080	}
1081
1082	rfkill->idx = rfkill_no;
1083	dev_set_name(dev, "rfkill%lu", rfkill_no);
1084	rfkill_no++;
1085
1086	list_add_tail(&rfkill->node, &rfkill_list);
1087
1088	error = device_add(dev);
1089	if (error)
1090		goto remove;
1091
1092	error = rfkill_led_trigger_register(rfkill);
1093	if (error)
1094		goto devdel;
1095
1096	rfkill->registered = true;
1097
1098	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1099	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1100	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1101
1102	if (rfkill->ops->poll)
1103		queue_delayed_work(system_power_efficient_wq,
1104			&rfkill->poll_work,
1105			round_jiffies_relative(POLL_INTERVAL));
1106
1107	if (!rfkill->persistent || rfkill_epo_lock_active) {
1108		rfkill->need_sync = true;
1109		schedule_work(&rfkill->sync_work);
1110	} else {
1111#ifdef CONFIG_RFKILL_INPUT
1112		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1113
1114		if (!atomic_read(&rfkill_input_disabled))
1115			__rfkill_switch_all(rfkill->type, soft_blocked);
1116#endif
1117	}
1118
1119	rfkill_global_led_trigger_event();
1120	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1121
1122	mutex_unlock(&rfkill_global_mutex);
1123	return 0;
1124
1125 devdel:
1126	device_del(&rfkill->dev);
1127 remove:
1128	list_del_init(&rfkill->node);
1129 unlock:
1130	mutex_unlock(&rfkill_global_mutex);
1131	return error;
1132}
1133EXPORT_SYMBOL(rfkill_register);
1134
1135void rfkill_unregister(struct rfkill *rfkill)
1136{
1137	BUG_ON(!rfkill);
1138
1139	if (rfkill->ops->poll)
1140		cancel_delayed_work_sync(&rfkill->poll_work);
1141
1142	cancel_work_sync(&rfkill->uevent_work);
1143	cancel_work_sync(&rfkill->sync_work);
1144
1145	rfkill->registered = false;
1146
1147	device_del(&rfkill->dev);
1148
1149	mutex_lock(&rfkill_global_mutex);
1150	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1151	list_del_init(&rfkill->node);
1152	rfkill_global_led_trigger_event();
1153	mutex_unlock(&rfkill_global_mutex);
1154
1155	rfkill_led_trigger_unregister(rfkill);
1156}
1157EXPORT_SYMBOL(rfkill_unregister);
1158
1159void rfkill_destroy(struct rfkill *rfkill)
1160{
1161	if (rfkill)
1162		put_device(&rfkill->dev);
1163}
1164EXPORT_SYMBOL(rfkill_destroy);
1165
1166static int rfkill_fop_open(struct inode *inode, struct file *file)
1167{
1168	struct rfkill_data *data;
1169	struct rfkill *rfkill;
1170	struct rfkill_int_event *ev, *tmp;
1171
1172	data = kzalloc(sizeof(*data), GFP_KERNEL);
1173	if (!data)
1174		return -ENOMEM;
1175
1176	data->max_size = RFKILL_EVENT_SIZE_V1;
1177
1178	INIT_LIST_HEAD(&data->events);
1179	mutex_init(&data->mtx);
1180	init_waitqueue_head(&data->read_wait);
1181
1182	mutex_lock(&rfkill_global_mutex);
 
1183	/*
1184	 * start getting events from elsewhere but hold mtx to get
1185	 * startup events added first
1186	 */
1187
1188	list_for_each_entry(rfkill, &rfkill_list, node) {
1189		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1190		if (!ev)
1191			goto free;
1192		rfkill_sync(rfkill);
1193		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1194		mutex_lock(&data->mtx);
1195		list_add_tail(&ev->list, &data->events);
1196		mutex_unlock(&data->mtx);
1197	}
1198	list_add(&data->list, &rfkill_fds);
 
1199	mutex_unlock(&rfkill_global_mutex);
1200
1201	file->private_data = data;
1202
1203	return stream_open(inode, file);
1204
1205 free:
 
1206	mutex_unlock(&rfkill_global_mutex);
1207	mutex_destroy(&data->mtx);
1208	list_for_each_entry_safe(ev, tmp, &data->events, list)
1209		kfree(ev);
1210	kfree(data);
1211	return -ENOMEM;
1212}
1213
1214static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1215{
1216	struct rfkill_data *data = file->private_data;
1217	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1218
1219	poll_wait(file, &data->read_wait, wait);
1220
1221	mutex_lock(&data->mtx);
1222	if (!list_empty(&data->events))
1223		res = EPOLLIN | EPOLLRDNORM;
1224	mutex_unlock(&data->mtx);
1225
1226	return res;
1227}
1228
1229static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1230			       size_t count, loff_t *pos)
1231{
1232	struct rfkill_data *data = file->private_data;
1233	struct rfkill_int_event *ev;
1234	unsigned long sz;
1235	int ret;
1236
1237	mutex_lock(&data->mtx);
1238
1239	while (list_empty(&data->events)) {
1240		if (file->f_flags & O_NONBLOCK) {
1241			ret = -EAGAIN;
1242			goto out;
1243		}
1244		mutex_unlock(&data->mtx);
1245		/* since we re-check and it just compares pointers,
1246		 * using !list_empty() without locking isn't a problem
1247		 */
1248		ret = wait_event_interruptible(data->read_wait,
1249					       !list_empty(&data->events));
1250		mutex_lock(&data->mtx);
1251
1252		if (ret)
1253			goto out;
1254	}
1255
1256	ev = list_first_entry(&data->events, struct rfkill_int_event,
1257				list);
1258
1259	sz = min_t(unsigned long, sizeof(ev->ev), count);
1260	sz = min_t(unsigned long, sz, data->max_size);
1261	ret = sz;
1262	if (copy_to_user(buf, &ev->ev, sz))
1263		ret = -EFAULT;
1264
1265	list_del(&ev->list);
1266	kfree(ev);
1267 out:
1268	mutex_unlock(&data->mtx);
1269	return ret;
1270}
1271
1272static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1273				size_t count, loff_t *pos)
1274{
1275	struct rfkill_data *data = file->private_data;
1276	struct rfkill *rfkill;
1277	struct rfkill_event_ext ev;
1278	int ret;
1279
1280	/* we don't need the 'hard' variable but accept it */
1281	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1282		return -EINVAL;
1283
1284	/*
1285	 * Copy as much data as we can accept into our 'ev' buffer,
1286	 * but tell userspace how much we've copied so it can determine
1287	 * our API version even in a write() call, if it cares.
1288	 */
1289	count = min(count, sizeof(ev));
1290	count = min_t(size_t, count, data->max_size);
1291	if (copy_from_user(&ev, buf, count))
1292		return -EFAULT;
1293
1294	if (ev.type >= NUM_RFKILL_TYPES)
1295		return -EINVAL;
1296
1297	mutex_lock(&rfkill_global_mutex);
1298
1299	switch (ev.op) {
1300	case RFKILL_OP_CHANGE_ALL:
1301		rfkill_update_global_state(ev.type, ev.soft);
1302		list_for_each_entry(rfkill, &rfkill_list, node)
1303			if (rfkill->type == ev.type ||
1304			    ev.type == RFKILL_TYPE_ALL)
1305				rfkill_set_block(rfkill, ev.soft);
1306		ret = 0;
1307		break;
1308	case RFKILL_OP_CHANGE:
1309		list_for_each_entry(rfkill, &rfkill_list, node)
1310			if (rfkill->idx == ev.idx &&
1311			    (rfkill->type == ev.type ||
1312			     ev.type == RFKILL_TYPE_ALL))
1313				rfkill_set_block(rfkill, ev.soft);
1314		ret = 0;
1315		break;
1316	default:
1317		ret = -EINVAL;
1318		break;
1319	}
1320
1321	mutex_unlock(&rfkill_global_mutex);
1322
1323	return ret ?: count;
1324}
1325
1326static int rfkill_fop_release(struct inode *inode, struct file *file)
1327{
1328	struct rfkill_data *data = file->private_data;
1329	struct rfkill_int_event *ev, *tmp;
1330
1331	mutex_lock(&rfkill_global_mutex);
1332	list_del(&data->list);
1333	mutex_unlock(&rfkill_global_mutex);
1334
1335	mutex_destroy(&data->mtx);
1336	list_for_each_entry_safe(ev, tmp, &data->events, list)
1337		kfree(ev);
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340	if (data->input_handler)
1341		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1342			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1343#endif
1344
1345	kfree(data);
1346
1347	return 0;
1348}
1349
 
1350static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1351			     unsigned long arg)
1352{
1353	struct rfkill_data *data = file->private_data;
1354	int ret = -ENOTTY;
1355	u32 size;
1356
1357	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1358		return -ENOTTY;
 
 
 
1359
1360	mutex_lock(&data->mtx);
1361	switch (_IOC_NR(cmd)) {
1362#ifdef CONFIG_RFKILL_INPUT
1363	case RFKILL_IOC_NOINPUT:
1364		if (!data->input_handler) {
1365			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1366				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1367			data->input_handler = true;
1368		}
1369		ret = 0;
1370		break;
1371#endif
1372	case RFKILL_IOC_MAX_SIZE:
1373		if (get_user(size, (__u32 __user *)arg)) {
1374			ret = -EFAULT;
1375			break;
1376		}
1377		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1378			ret = -EINVAL;
1379			break;
1380		}
1381		data->max_size = size;
1382		ret = 0;
1383		break;
1384	default:
1385		break;
1386	}
 
1387	mutex_unlock(&data->mtx);
1388
1389	return ret;
1390}
 
1391
1392static const struct file_operations rfkill_fops = {
1393	.owner		= THIS_MODULE,
1394	.open		= rfkill_fop_open,
1395	.read		= rfkill_fop_read,
1396	.write		= rfkill_fop_write,
1397	.poll		= rfkill_fop_poll,
1398	.release	= rfkill_fop_release,
 
1399	.unlocked_ioctl	= rfkill_fop_ioctl,
1400	.compat_ioctl	= compat_ptr_ioctl,
 
1401	.llseek		= no_llseek,
1402};
1403
1404#define RFKILL_NAME "rfkill"
1405
1406static struct miscdevice rfkill_miscdev = {
1407	.fops	= &rfkill_fops,
1408	.name	= RFKILL_NAME,
1409	.minor	= RFKILL_MINOR,
1410};
1411
1412static int __init rfkill_init(void)
1413{
1414	int error;
1415
1416	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1417
1418	error = class_register(&rfkill_class);
1419	if (error)
1420		goto error_class;
1421
1422	error = misc_register(&rfkill_miscdev);
1423	if (error)
1424		goto error_misc;
1425
1426	error = rfkill_global_led_trigger_register();
1427	if (error)
1428		goto error_led_trigger;
1429
1430#ifdef CONFIG_RFKILL_INPUT
1431	error = rfkill_handler_init();
1432	if (error)
1433		goto error_input;
1434#endif
1435
1436	return 0;
1437
1438#ifdef CONFIG_RFKILL_INPUT
1439error_input:
1440	rfkill_global_led_trigger_unregister();
1441#endif
1442error_led_trigger:
1443	misc_deregister(&rfkill_miscdev);
1444error_misc:
1445	class_unregister(&rfkill_class);
1446error_class:
1447	return error;
1448}
1449subsys_initcall(rfkill_init);
1450
1451static void __exit rfkill_exit(void)
1452{
1453#ifdef CONFIG_RFKILL_INPUT
1454	rfkill_handler_exit();
1455#endif
1456	rfkill_global_led_trigger_unregister();
1457	misc_deregister(&rfkill_miscdev);
1458	class_unregister(&rfkill_class);
1459}
1460module_exit(rfkill_exit);
1461
1462MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1463MODULE_ALIAS("devname:" RFKILL_NAME);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
 
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
 
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
 
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 
 
 
 
 
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 
 
 
 
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 
 
 
 
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 
 
 
 
 
 
 
 
 
 
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 
 
 
 
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 
 
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 
 
 
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev;
1006	int error;
1007
1008	if (!rfkill)
1009		return -EINVAL;
1010
1011	dev = &rfkill->dev;
1012
1013	mutex_lock(&rfkill_global_mutex);
1014
1015	if (rfkill->registered) {
1016		error = -EALREADY;
1017		goto unlock;
1018	}
1019
1020	rfkill->idx = rfkill_no;
1021	dev_set_name(dev, "rfkill%lu", rfkill_no);
1022	rfkill_no++;
1023
1024	list_add_tail(&rfkill->node, &rfkill_list);
1025
1026	error = device_add(dev);
1027	if (error)
1028		goto remove;
1029
1030	error = rfkill_led_trigger_register(rfkill);
1031	if (error)
1032		goto devdel;
1033
1034	rfkill->registered = true;
1035
1036	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039
1040	if (rfkill->ops->poll)
1041		queue_delayed_work(system_power_efficient_wq,
1042			&rfkill->poll_work,
1043			round_jiffies_relative(POLL_INTERVAL));
1044
1045	if (!rfkill->persistent || rfkill_epo_lock_active) {
 
1046		schedule_work(&rfkill->sync_work);
1047	} else {
1048#ifdef CONFIG_RFKILL_INPUT
1049		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050
1051		if (!atomic_read(&rfkill_input_disabled))
1052			__rfkill_switch_all(rfkill->type, soft_blocked);
1053#endif
1054	}
1055
1056	rfkill_global_led_trigger_event();
1057	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058
1059	mutex_unlock(&rfkill_global_mutex);
1060	return 0;
1061
1062 devdel:
1063	device_del(&rfkill->dev);
1064 remove:
1065	list_del_init(&rfkill->node);
1066 unlock:
1067	mutex_unlock(&rfkill_global_mutex);
1068	return error;
1069}
1070EXPORT_SYMBOL(rfkill_register);
1071
1072void rfkill_unregister(struct rfkill *rfkill)
1073{
1074	BUG_ON(!rfkill);
1075
1076	if (rfkill->ops->poll)
1077		cancel_delayed_work_sync(&rfkill->poll_work);
1078
1079	cancel_work_sync(&rfkill->uevent_work);
1080	cancel_work_sync(&rfkill->sync_work);
1081
1082	rfkill->registered = false;
1083
1084	device_del(&rfkill->dev);
1085
1086	mutex_lock(&rfkill_global_mutex);
1087	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088	list_del_init(&rfkill->node);
1089	rfkill_global_led_trigger_event();
1090	mutex_unlock(&rfkill_global_mutex);
1091
1092	rfkill_led_trigger_unregister(rfkill);
1093}
1094EXPORT_SYMBOL(rfkill_unregister);
1095
1096void rfkill_destroy(struct rfkill *rfkill)
1097{
1098	if (rfkill)
1099		put_device(&rfkill->dev);
1100}
1101EXPORT_SYMBOL(rfkill_destroy);
1102
1103static int rfkill_fop_open(struct inode *inode, struct file *file)
1104{
1105	struct rfkill_data *data;
1106	struct rfkill *rfkill;
1107	struct rfkill_int_event *ev, *tmp;
1108
1109	data = kzalloc(sizeof(*data), GFP_KERNEL);
1110	if (!data)
1111		return -ENOMEM;
1112
 
 
1113	INIT_LIST_HEAD(&data->events);
1114	mutex_init(&data->mtx);
1115	init_waitqueue_head(&data->read_wait);
1116
1117	mutex_lock(&rfkill_global_mutex);
1118	mutex_lock(&data->mtx);
1119	/*
1120	 * start getting events from elsewhere but hold mtx to get
1121	 * startup events added first
1122	 */
1123
1124	list_for_each_entry(rfkill, &rfkill_list, node) {
1125		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126		if (!ev)
1127			goto free;
 
1128		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
 
1129		list_add_tail(&ev->list, &data->events);
 
1130	}
1131	list_add(&data->list, &rfkill_fds);
1132	mutex_unlock(&data->mtx);
1133	mutex_unlock(&rfkill_global_mutex);
1134
1135	file->private_data = data;
1136
1137	return stream_open(inode, file);
1138
1139 free:
1140	mutex_unlock(&data->mtx);
1141	mutex_unlock(&rfkill_global_mutex);
1142	mutex_destroy(&data->mtx);
1143	list_for_each_entry_safe(ev, tmp, &data->events, list)
1144		kfree(ev);
1145	kfree(data);
1146	return -ENOMEM;
1147}
1148
1149static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150{
1151	struct rfkill_data *data = file->private_data;
1152	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1153
1154	poll_wait(file, &data->read_wait, wait);
1155
1156	mutex_lock(&data->mtx);
1157	if (!list_empty(&data->events))
1158		res = EPOLLIN | EPOLLRDNORM;
1159	mutex_unlock(&data->mtx);
1160
1161	return res;
1162}
1163
1164static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165			       size_t count, loff_t *pos)
1166{
1167	struct rfkill_data *data = file->private_data;
1168	struct rfkill_int_event *ev;
1169	unsigned long sz;
1170	int ret;
1171
1172	mutex_lock(&data->mtx);
1173
1174	while (list_empty(&data->events)) {
1175		if (file->f_flags & O_NONBLOCK) {
1176			ret = -EAGAIN;
1177			goto out;
1178		}
1179		mutex_unlock(&data->mtx);
1180		/* since we re-check and it just compares pointers,
1181		 * using !list_empty() without locking isn't a problem
1182		 */
1183		ret = wait_event_interruptible(data->read_wait,
1184					       !list_empty(&data->events));
1185		mutex_lock(&data->mtx);
1186
1187		if (ret)
1188			goto out;
1189	}
1190
1191	ev = list_first_entry(&data->events, struct rfkill_int_event,
1192				list);
1193
1194	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1195	ret = sz;
1196	if (copy_to_user(buf, &ev->ev, sz))
1197		ret = -EFAULT;
1198
1199	list_del(&ev->list);
1200	kfree(ev);
1201 out:
1202	mutex_unlock(&data->mtx);
1203	return ret;
1204}
1205
1206static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207				size_t count, loff_t *pos)
1208{
 
1209	struct rfkill *rfkill;
1210	struct rfkill_event ev;
1211	int ret;
1212
1213	/* we don't need the 'hard' variable but accept it */
1214	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215		return -EINVAL;
1216
1217	/*
1218	 * Copy as much data as we can accept into our 'ev' buffer,
1219	 * but tell userspace how much we've copied so it can determine
1220	 * our API version even in a write() call, if it cares.
1221	 */
1222	count = min(count, sizeof(ev));
 
1223	if (copy_from_user(&ev, buf, count))
1224		return -EFAULT;
1225
1226	if (ev.type >= NUM_RFKILL_TYPES)
1227		return -EINVAL;
1228
1229	mutex_lock(&rfkill_global_mutex);
1230
1231	switch (ev.op) {
1232	case RFKILL_OP_CHANGE_ALL:
1233		rfkill_update_global_state(ev.type, ev.soft);
1234		list_for_each_entry(rfkill, &rfkill_list, node)
1235			if (rfkill->type == ev.type ||
1236			    ev.type == RFKILL_TYPE_ALL)
1237				rfkill_set_block(rfkill, ev.soft);
1238		ret = 0;
1239		break;
1240	case RFKILL_OP_CHANGE:
1241		list_for_each_entry(rfkill, &rfkill_list, node)
1242			if (rfkill->idx == ev.idx &&
1243			    (rfkill->type == ev.type ||
1244			     ev.type == RFKILL_TYPE_ALL))
1245				rfkill_set_block(rfkill, ev.soft);
1246		ret = 0;
1247		break;
1248	default:
1249		ret = -EINVAL;
1250		break;
1251	}
1252
1253	mutex_unlock(&rfkill_global_mutex);
1254
1255	return ret ?: count;
1256}
1257
1258static int rfkill_fop_release(struct inode *inode, struct file *file)
1259{
1260	struct rfkill_data *data = file->private_data;
1261	struct rfkill_int_event *ev, *tmp;
1262
1263	mutex_lock(&rfkill_global_mutex);
1264	list_del(&data->list);
1265	mutex_unlock(&rfkill_global_mutex);
1266
1267	mutex_destroy(&data->mtx);
1268	list_for_each_entry_safe(ev, tmp, &data->events, list)
1269		kfree(ev);
1270
1271#ifdef CONFIG_RFKILL_INPUT
1272	if (data->input_handler)
1273		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275#endif
1276
1277	kfree(data);
1278
1279	return 0;
1280}
1281
1282#ifdef CONFIG_RFKILL_INPUT
1283static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284			     unsigned long arg)
1285{
1286	struct rfkill_data *data = file->private_data;
 
 
1287
1288	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289		return -ENOSYS;
1290
1291	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292		return -ENOSYS;
1293
1294	mutex_lock(&data->mtx);
1295
1296	if (!data->input_handler) {
1297		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300	}
1301
1302	mutex_unlock(&data->mtx);
1303
1304	return 0;
1305}
1306#endif
1307
1308static const struct file_operations rfkill_fops = {
1309	.owner		= THIS_MODULE,
1310	.open		= rfkill_fop_open,
1311	.read		= rfkill_fop_read,
1312	.write		= rfkill_fop_write,
1313	.poll		= rfkill_fop_poll,
1314	.release	= rfkill_fop_release,
1315#ifdef CONFIG_RFKILL_INPUT
1316	.unlocked_ioctl	= rfkill_fop_ioctl,
1317	.compat_ioctl	= compat_ptr_ioctl,
1318#endif
1319	.llseek		= no_llseek,
1320};
1321
1322#define RFKILL_NAME "rfkill"
1323
1324static struct miscdevice rfkill_miscdev = {
1325	.fops	= &rfkill_fops,
1326	.name	= RFKILL_NAME,
1327	.minor	= RFKILL_MINOR,
1328};
1329
1330static int __init rfkill_init(void)
1331{
1332	int error;
1333
1334	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1335
1336	error = class_register(&rfkill_class);
1337	if (error)
1338		goto error_class;
1339
1340	error = misc_register(&rfkill_miscdev);
1341	if (error)
1342		goto error_misc;
1343
1344	error = rfkill_global_led_trigger_register();
1345	if (error)
1346		goto error_led_trigger;
1347
1348#ifdef CONFIG_RFKILL_INPUT
1349	error = rfkill_handler_init();
1350	if (error)
1351		goto error_input;
1352#endif
1353
1354	return 0;
1355
1356#ifdef CONFIG_RFKILL_INPUT
1357error_input:
1358	rfkill_global_led_trigger_unregister();
1359#endif
1360error_led_trigger:
1361	misc_deregister(&rfkill_miscdev);
1362error_misc:
1363	class_unregister(&rfkill_class);
1364error_class:
1365	return error;
1366}
1367subsys_initcall(rfkill_init);
1368
1369static void __exit rfkill_exit(void)
1370{
1371#ifdef CONFIG_RFKILL_INPUT
1372	rfkill_handler_exit();
1373#endif
1374	rfkill_global_led_trigger_unregister();
1375	misc_deregister(&rfkill_miscdev);
1376	class_unregister(&rfkill_class);
1377}
1378module_exit(rfkill_exit);
1379
1380MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381MODULE_ALIAS("devname:" RFKILL_NAME);