Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/slab.h>
  11#include <linux/workqueue.h>
  12#include "ctree.h"
  13#include "volumes.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "dev-replace.h"
  17#include "block-group.h"
  18
  19#undef DEBUG
  20
  21/*
  22 * This is the implementation for the generic read ahead framework.
  23 *
  24 * To trigger a readahead, btrfs_reada_add must be called. It will start
  25 * a read ahead for the given range [start, end) on tree root. The returned
  26 * handle can either be used to wait on the readahead to finish
  27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  28 *
  29 * The read ahead works as follows:
  30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  31 * reada_start_machine will then search for extents to prefetch and trigger
  32 * some reads. When a read finishes for a node, all contained node/leaf
  33 * pointers that lie in the given range will also be enqueued. The reads will
  34 * be triggered in sequential order, thus giving a big win over a naive
  35 * enumeration. It will also make use of multi-device layouts. Each disk
  36 * will have its on read pointer and all disks will by utilized in parallel.
  37 * Also will no two disks read both sides of a mirror simultaneously, as this
  38 * would waste seeking capacity. Instead both disks will read different parts
  39 * of the filesystem.
  40 * Any number of readaheads can be started in parallel. The read order will be
  41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  42 * than the 2 started one after another.
  43 */
  44
  45#define MAX_IN_FLIGHT 6
  46
  47struct reada_extctl {
  48	struct list_head	list;
  49	struct reada_control	*rc;
  50	u64			generation;
  51};
  52
  53struct reada_extent {
  54	u64			logical;
  55	struct btrfs_key	top;
  56	struct list_head	extctl;
  57	int 			refcnt;
  58	spinlock_t		lock;
  59	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
  60	int			nzones;
  61	int			scheduled;
  62};
  63
  64struct reada_zone {
  65	u64			start;
  66	u64			end;
  67	u64			elems;
  68	struct list_head	list;
  69	spinlock_t		lock;
  70	int			locked;
  71	struct btrfs_device	*device;
  72	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  73							   * self */
  74	int			ndevs;
  75	struct kref		refcnt;
  76};
  77
  78struct reada_machine_work {
  79	struct btrfs_work	work;
  80	struct btrfs_fs_info	*fs_info;
  81};
  82
  83static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  84static void reada_control_release(struct kref *kref);
  85static void reada_zone_release(struct kref *kref);
  86static void reada_start_machine(struct btrfs_fs_info *fs_info);
  87static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  88
  89static int reada_add_block(struct reada_control *rc, u64 logical,
  90			   struct btrfs_key *top, u64 generation);
  91
  92/* recurses */
  93/* in case of err, eb might be NULL */
  94static void __readahead_hook(struct btrfs_fs_info *fs_info,
  95			     struct reada_extent *re, struct extent_buffer *eb,
  96			     int err)
  97{
  98	int nritems;
  99	int i;
 100	u64 bytenr;
 101	u64 generation;
 102	struct list_head list;
 103
 104	spin_lock(&re->lock);
 105	/*
 106	 * just take the full list from the extent. afterwards we
 107	 * don't need the lock anymore
 108	 */
 109	list_replace_init(&re->extctl, &list);
 110	re->scheduled = 0;
 111	spin_unlock(&re->lock);
 112
 113	/*
 114	 * this is the error case, the extent buffer has not been
 115	 * read correctly. We won't access anything from it and
 116	 * just cleanup our data structures. Effectively this will
 117	 * cut the branch below this node from read ahead.
 118	 */
 119	if (err)
 120		goto cleanup;
 121
 122	/*
 123	 * FIXME: currently we just set nritems to 0 if this is a leaf,
 124	 * effectively ignoring the content. In a next step we could
 125	 * trigger more readahead depending from the content, e.g.
 126	 * fetch the checksums for the extents in the leaf.
 127	 */
 128	if (!btrfs_header_level(eb))
 129		goto cleanup;
 130
 131	nritems = btrfs_header_nritems(eb);
 132	generation = btrfs_header_generation(eb);
 133	for (i = 0; i < nritems; i++) {
 134		struct reada_extctl *rec;
 135		u64 n_gen;
 136		struct btrfs_key key;
 137		struct btrfs_key next_key;
 138
 139		btrfs_node_key_to_cpu(eb, &key, i);
 140		if (i + 1 < nritems)
 141			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 142		else
 143			next_key = re->top;
 144		bytenr = btrfs_node_blockptr(eb, i);
 145		n_gen = btrfs_node_ptr_generation(eb, i);
 146
 147		list_for_each_entry(rec, &list, list) {
 148			struct reada_control *rc = rec->rc;
 149
 150			/*
 151			 * if the generation doesn't match, just ignore this
 152			 * extctl. This will probably cut off a branch from
 153			 * prefetch. Alternatively one could start a new (sub-)
 154			 * prefetch for this branch, starting again from root.
 155			 * FIXME: move the generation check out of this loop
 156			 */
 157#ifdef DEBUG
 158			if (rec->generation != generation) {
 159				btrfs_debug(fs_info,
 160					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 161					    key.objectid, key.type, key.offset,
 162					    rec->generation, generation);
 163			}
 164#endif
 165			if (rec->generation == generation &&
 166			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 167			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 168				reada_add_block(rc, bytenr, &next_key, n_gen);
 169		}
 170	}
 171
 172cleanup:
 173	/*
 174	 * free extctl records
 175	 */
 176	while (!list_empty(&list)) {
 177		struct reada_control *rc;
 178		struct reada_extctl *rec;
 179
 180		rec = list_first_entry(&list, struct reada_extctl, list);
 181		list_del(&rec->list);
 182		rc = rec->rc;
 183		kfree(rec);
 184
 185		kref_get(&rc->refcnt);
 186		if (atomic_dec_and_test(&rc->elems)) {
 187			kref_put(&rc->refcnt, reada_control_release);
 188			wake_up(&rc->wait);
 189		}
 190		kref_put(&rc->refcnt, reada_control_release);
 191
 192		reada_extent_put(fs_info, re);	/* one ref for each entry */
 193	}
 194
 195	return;
 196}
 197
 198int btree_readahead_hook(struct extent_buffer *eb, int err)
 199{
 200	struct btrfs_fs_info *fs_info = eb->fs_info;
 201	int ret = 0;
 202	struct reada_extent *re;
 203
 204	/* find extent */
 205	spin_lock(&fs_info->reada_lock);
 206	re = radix_tree_lookup(&fs_info->reada_tree,
 207			       eb->start >> PAGE_SHIFT);
 208	if (re)
 209		re->refcnt++;
 210	spin_unlock(&fs_info->reada_lock);
 211	if (!re) {
 212		ret = -1;
 213		goto start_machine;
 214	}
 215
 216	__readahead_hook(fs_info, re, eb, err);
 217	reada_extent_put(fs_info, re);	/* our ref */
 218
 219start_machine:
 220	reada_start_machine(fs_info);
 221	return ret;
 222}
 223
 224static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
 225					  struct btrfs_bio *bbio)
 226{
 227	struct btrfs_fs_info *fs_info = dev->fs_info;
 228	int ret;
 229	struct reada_zone *zone;
 230	struct btrfs_block_group *cache = NULL;
 231	u64 start;
 232	u64 end;
 233	int i;
 234
 235	zone = NULL;
 236	spin_lock(&fs_info->reada_lock);
 237	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 238				     logical >> PAGE_SHIFT, 1);
 239	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
 240		kref_get(&zone->refcnt);
 241		spin_unlock(&fs_info->reada_lock);
 242		return zone;
 243	}
 244
 245	spin_unlock(&fs_info->reada_lock);
 246
 247	cache = btrfs_lookup_block_group(fs_info, logical);
 248	if (!cache)
 249		return NULL;
 250
 251	start = cache->start;
 252	end = start + cache->length - 1;
 253	btrfs_put_block_group(cache);
 254
 255	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
 256	if (!zone)
 257		return NULL;
 258
 259	ret = radix_tree_preload(GFP_KERNEL);
 260	if (ret) {
 261		kfree(zone);
 262		return NULL;
 263	}
 264
 265	zone->start = start;
 266	zone->end = end;
 267	INIT_LIST_HEAD(&zone->list);
 268	spin_lock_init(&zone->lock);
 269	zone->locked = 0;
 270	kref_init(&zone->refcnt);
 271	zone->elems = 0;
 272	zone->device = dev; /* our device always sits at index 0 */
 273	for (i = 0; i < bbio->num_stripes; ++i) {
 274		/* bounds have already been checked */
 275		zone->devs[i] = bbio->stripes[i].dev;
 276	}
 277	zone->ndevs = bbio->num_stripes;
 278
 279	spin_lock(&fs_info->reada_lock);
 280	ret = radix_tree_insert(&dev->reada_zones,
 281				(unsigned long)(zone->end >> PAGE_SHIFT),
 282				zone);
 283
 284	if (ret == -EEXIST) {
 285		kfree(zone);
 286		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 287					     logical >> PAGE_SHIFT, 1);
 288		if (ret == 1 && logical >= zone->start && logical <= zone->end)
 289			kref_get(&zone->refcnt);
 290		else
 291			zone = NULL;
 292	}
 293	spin_unlock(&fs_info->reada_lock);
 294	radix_tree_preload_end();
 295
 296	return zone;
 297}
 298
 299static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
 300					      u64 logical,
 301					      struct btrfs_key *top)
 302{
 303	int ret;
 304	struct reada_extent *re = NULL;
 305	struct reada_extent *re_exist = NULL;
 306	struct btrfs_bio *bbio = NULL;
 307	struct btrfs_device *dev;
 308	struct btrfs_device *prev_dev;
 309	u64 length;
 310	int real_stripes;
 311	int nzones = 0;
 312	unsigned long index = logical >> PAGE_SHIFT;
 313	int dev_replace_is_ongoing;
 314	int have_zone = 0;
 315
 316	spin_lock(&fs_info->reada_lock);
 317	re = radix_tree_lookup(&fs_info->reada_tree, index);
 318	if (re)
 319		re->refcnt++;
 320	spin_unlock(&fs_info->reada_lock);
 321
 322	if (re)
 323		return re;
 324
 325	re = kzalloc(sizeof(*re), GFP_KERNEL);
 326	if (!re)
 327		return NULL;
 328
 329	re->logical = logical;
 330	re->top = *top;
 331	INIT_LIST_HEAD(&re->extctl);
 332	spin_lock_init(&re->lock);
 333	re->refcnt = 1;
 334
 335	/*
 336	 * map block
 337	 */
 338	length = fs_info->nodesize;
 339	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 340			&length, &bbio, 0);
 341	if (ret || !bbio || length < fs_info->nodesize)
 342		goto error;
 343
 344	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 345		btrfs_err(fs_info,
 346			   "readahead: more than %d copies not supported",
 347			   BTRFS_MAX_MIRRORS);
 348		goto error;
 349	}
 350
 351	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 352	for (nzones = 0; nzones < real_stripes; ++nzones) {
 353		struct reada_zone *zone;
 354
 355		dev = bbio->stripes[nzones].dev;
 356
 357		/* cannot read ahead on missing device. */
 358		if (!dev->bdev)
 359			continue;
 360
 361		zone = reada_find_zone(dev, logical, bbio);
 362		if (!zone)
 363			continue;
 364
 365		re->zones[re->nzones++] = zone;
 366		spin_lock(&zone->lock);
 367		if (!zone->elems)
 368			kref_get(&zone->refcnt);
 369		++zone->elems;
 370		spin_unlock(&zone->lock);
 371		spin_lock(&fs_info->reada_lock);
 372		kref_put(&zone->refcnt, reada_zone_release);
 373		spin_unlock(&fs_info->reada_lock);
 374	}
 375	if (re->nzones == 0) {
 376		/* not a single zone found, error and out */
 377		goto error;
 378	}
 379
 380	/* Insert extent in reada tree + all per-device trees, all or nothing */
 381	down_read(&fs_info->dev_replace.rwsem);
 382	ret = radix_tree_preload(GFP_KERNEL);
 383	if (ret) {
 384		up_read(&fs_info->dev_replace.rwsem);
 385		goto error;
 386	}
 387
 388	spin_lock(&fs_info->reada_lock);
 389	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 390	if (ret == -EEXIST) {
 391		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 392		re_exist->refcnt++;
 393		spin_unlock(&fs_info->reada_lock);
 394		radix_tree_preload_end();
 395		up_read(&fs_info->dev_replace.rwsem);
 396		goto error;
 397	}
 398	if (ret) {
 399		spin_unlock(&fs_info->reada_lock);
 400		radix_tree_preload_end();
 401		up_read(&fs_info->dev_replace.rwsem);
 402		goto error;
 403	}
 404	radix_tree_preload_end();
 405	prev_dev = NULL;
 406	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 407			&fs_info->dev_replace);
 408	for (nzones = 0; nzones < re->nzones; ++nzones) {
 409		dev = re->zones[nzones]->device;
 410
 411		if (dev == prev_dev) {
 412			/*
 413			 * in case of DUP, just add the first zone. As both
 414			 * are on the same device, there's nothing to gain
 415			 * from adding both.
 416			 * Also, it wouldn't work, as the tree is per device
 417			 * and adding would fail with EEXIST
 418			 */
 419			continue;
 420		}
 421		if (!dev->bdev)
 422			continue;
 423
 424		if (dev_replace_is_ongoing &&
 425		    dev == fs_info->dev_replace.tgtdev) {
 426			/*
 427			 * as this device is selected for reading only as
 428			 * a last resort, skip it for read ahead.
 429			 */
 430			continue;
 431		}
 432		prev_dev = dev;
 433		ret = radix_tree_insert(&dev->reada_extents, index, re);
 434		if (ret) {
 435			while (--nzones >= 0) {
 436				dev = re->zones[nzones]->device;
 437				BUG_ON(dev == NULL);
 438				/* ignore whether the entry was inserted */
 439				radix_tree_delete(&dev->reada_extents, index);
 440			}
 441			radix_tree_delete(&fs_info->reada_tree, index);
 442			spin_unlock(&fs_info->reada_lock);
 443			up_read(&fs_info->dev_replace.rwsem);
 444			goto error;
 445		}
 446		have_zone = 1;
 447	}
 448	spin_unlock(&fs_info->reada_lock);
 449	up_read(&fs_info->dev_replace.rwsem);
 450
 451	if (!have_zone)
 452		goto error;
 453
 454	btrfs_put_bbio(bbio);
 455	return re;
 456
 457error:
 458	for (nzones = 0; nzones < re->nzones; ++nzones) {
 459		struct reada_zone *zone;
 460
 461		zone = re->zones[nzones];
 462		kref_get(&zone->refcnt);
 463		spin_lock(&zone->lock);
 464		--zone->elems;
 465		if (zone->elems == 0) {
 466			/*
 467			 * no fs_info->reada_lock needed, as this can't be
 468			 * the last ref
 469			 */
 470			kref_put(&zone->refcnt, reada_zone_release);
 471		}
 472		spin_unlock(&zone->lock);
 473
 474		spin_lock(&fs_info->reada_lock);
 475		kref_put(&zone->refcnt, reada_zone_release);
 476		spin_unlock(&fs_info->reada_lock);
 477	}
 478	btrfs_put_bbio(bbio);
 479	kfree(re);
 480	return re_exist;
 481}
 482
 483static void reada_extent_put(struct btrfs_fs_info *fs_info,
 484			     struct reada_extent *re)
 485{
 486	int i;
 487	unsigned long index = re->logical >> PAGE_SHIFT;
 488
 489	spin_lock(&fs_info->reada_lock);
 490	if (--re->refcnt) {
 491		spin_unlock(&fs_info->reada_lock);
 492		return;
 493	}
 494
 495	radix_tree_delete(&fs_info->reada_tree, index);
 496	for (i = 0; i < re->nzones; ++i) {
 497		struct reada_zone *zone = re->zones[i];
 498
 499		radix_tree_delete(&zone->device->reada_extents, index);
 500	}
 501
 502	spin_unlock(&fs_info->reada_lock);
 503
 504	for (i = 0; i < re->nzones; ++i) {
 505		struct reada_zone *zone = re->zones[i];
 506
 507		kref_get(&zone->refcnt);
 508		spin_lock(&zone->lock);
 509		--zone->elems;
 510		if (zone->elems == 0) {
 511			/* no fs_info->reada_lock needed, as this can't be
 512			 * the last ref */
 513			kref_put(&zone->refcnt, reada_zone_release);
 514		}
 515		spin_unlock(&zone->lock);
 516
 517		spin_lock(&fs_info->reada_lock);
 518		kref_put(&zone->refcnt, reada_zone_release);
 519		spin_unlock(&fs_info->reada_lock);
 520	}
 521
 522	kfree(re);
 523}
 524
 525static void reada_zone_release(struct kref *kref)
 526{
 527	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 528
 529	radix_tree_delete(&zone->device->reada_zones,
 530			  zone->end >> PAGE_SHIFT);
 531
 532	kfree(zone);
 533}
 534
 535static void reada_control_release(struct kref *kref)
 536{
 537	struct reada_control *rc = container_of(kref, struct reada_control,
 538						refcnt);
 539
 540	kfree(rc);
 541}
 542
 543static int reada_add_block(struct reada_control *rc, u64 logical,
 544			   struct btrfs_key *top, u64 generation)
 545{
 546	struct btrfs_fs_info *fs_info = rc->fs_info;
 547	struct reada_extent *re;
 548	struct reada_extctl *rec;
 549
 550	/* takes one ref */
 551	re = reada_find_extent(fs_info, logical, top);
 552	if (!re)
 553		return -1;
 554
 555	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
 556	if (!rec) {
 557		reada_extent_put(fs_info, re);
 558		return -ENOMEM;
 559	}
 560
 561	rec->rc = rc;
 562	rec->generation = generation;
 563	atomic_inc(&rc->elems);
 564
 565	spin_lock(&re->lock);
 566	list_add_tail(&rec->list, &re->extctl);
 567	spin_unlock(&re->lock);
 568
 569	/* leave the ref on the extent */
 570
 571	return 0;
 572}
 573
 574/*
 575 * called with fs_info->reada_lock held
 576 */
 577static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 578{
 579	int i;
 580	unsigned long index = zone->end >> PAGE_SHIFT;
 581
 582	for (i = 0; i < zone->ndevs; ++i) {
 583		struct reada_zone *peer;
 584		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 585		if (peer && peer->device != zone->device)
 586			peer->locked = lock;
 587	}
 588}
 589
 590/*
 591 * called with fs_info->reada_lock held
 592 */
 593static int reada_pick_zone(struct btrfs_device *dev)
 594{
 595	struct reada_zone *top_zone = NULL;
 596	struct reada_zone *top_locked_zone = NULL;
 597	u64 top_elems = 0;
 598	u64 top_locked_elems = 0;
 599	unsigned long index = 0;
 600	int ret;
 601
 602	if (dev->reada_curr_zone) {
 603		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 604		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 605		dev->reada_curr_zone = NULL;
 606	}
 607	/* pick the zone with the most elements */
 608	while (1) {
 609		struct reada_zone *zone;
 610
 611		ret = radix_tree_gang_lookup(&dev->reada_zones,
 612					     (void **)&zone, index, 1);
 613		if (ret == 0)
 614			break;
 615		index = (zone->end >> PAGE_SHIFT) + 1;
 616		if (zone->locked) {
 617			if (zone->elems > top_locked_elems) {
 618				top_locked_elems = zone->elems;
 619				top_locked_zone = zone;
 620			}
 621		} else {
 622			if (zone->elems > top_elems) {
 623				top_elems = zone->elems;
 624				top_zone = zone;
 625			}
 626		}
 627	}
 628	if (top_zone)
 629		dev->reada_curr_zone = top_zone;
 630	else if (top_locked_zone)
 631		dev->reada_curr_zone = top_locked_zone;
 632	else
 633		return 0;
 634
 635	dev->reada_next = dev->reada_curr_zone->start;
 636	kref_get(&dev->reada_curr_zone->refcnt);
 637	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 638
 639	return 1;
 640}
 641
 642static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
 643				    int mirror_num, struct extent_buffer **eb)
 644{
 645	struct extent_buffer *buf = NULL;
 646	int ret;
 647
 648	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 649	if (IS_ERR(buf))
 650		return 0;
 651
 652	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 653
 654	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
 655	if (ret) {
 656		free_extent_buffer_stale(buf);
 657		return ret;
 658	}
 659
 660	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
 661		free_extent_buffer_stale(buf);
 662		return -EIO;
 663	} else if (extent_buffer_uptodate(buf)) {
 664		*eb = buf;
 665	} else {
 666		free_extent_buffer(buf);
 667	}
 668	return 0;
 669}
 670
 671static int reada_start_machine_dev(struct btrfs_device *dev)
 672{
 673	struct btrfs_fs_info *fs_info = dev->fs_info;
 674	struct reada_extent *re = NULL;
 675	int mirror_num = 0;
 676	struct extent_buffer *eb = NULL;
 677	u64 logical;
 678	int ret;
 679	int i;
 680
 681	spin_lock(&fs_info->reada_lock);
 682	if (dev->reada_curr_zone == NULL) {
 683		ret = reada_pick_zone(dev);
 684		if (!ret) {
 685			spin_unlock(&fs_info->reada_lock);
 686			return 0;
 687		}
 688	}
 689	/*
 690	 * FIXME currently we issue the reads one extent at a time. If we have
 691	 * a contiguous block of extents, we could also coagulate them or use
 692	 * plugging to speed things up
 693	 */
 694	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 695				     dev->reada_next >> PAGE_SHIFT, 1);
 696	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
 697		ret = reada_pick_zone(dev);
 698		if (!ret) {
 699			spin_unlock(&fs_info->reada_lock);
 700			return 0;
 701		}
 702		re = NULL;
 703		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 704					dev->reada_next >> PAGE_SHIFT, 1);
 705	}
 706	if (ret == 0) {
 707		spin_unlock(&fs_info->reada_lock);
 708		return 0;
 709	}
 710	dev->reada_next = re->logical + fs_info->nodesize;
 711	re->refcnt++;
 712
 713	spin_unlock(&fs_info->reada_lock);
 714
 715	spin_lock(&re->lock);
 716	if (re->scheduled || list_empty(&re->extctl)) {
 717		spin_unlock(&re->lock);
 718		reada_extent_put(fs_info, re);
 719		return 0;
 720	}
 721	re->scheduled = 1;
 722	spin_unlock(&re->lock);
 723
 724	/*
 725	 * find mirror num
 726	 */
 727	for (i = 0; i < re->nzones; ++i) {
 728		if (re->zones[i]->device == dev) {
 729			mirror_num = i + 1;
 730			break;
 731		}
 732	}
 733	logical = re->logical;
 734
 735	atomic_inc(&dev->reada_in_flight);
 736	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
 737	if (ret)
 738		__readahead_hook(fs_info, re, NULL, ret);
 739	else if (eb)
 740		__readahead_hook(fs_info, re, eb, ret);
 741
 742	if (eb)
 743		free_extent_buffer(eb);
 744
 745	atomic_dec(&dev->reada_in_flight);
 746	reada_extent_put(fs_info, re);
 747
 748	return 1;
 749
 750}
 751
 752static void reada_start_machine_worker(struct btrfs_work *work)
 753{
 754	struct reada_machine_work *rmw;
 755	int old_ioprio;
 756
 757	rmw = container_of(work, struct reada_machine_work, work);
 758
 759	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 760				       task_nice_ioprio(current));
 761	set_task_ioprio(current, BTRFS_IOPRIO_READA);
 762	__reada_start_machine(rmw->fs_info);
 763	set_task_ioprio(current, old_ioprio);
 764
 765	atomic_dec(&rmw->fs_info->reada_works_cnt);
 766
 767	kfree(rmw);
 768}
 769
 770static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 771{
 772	struct btrfs_device *device;
 773	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 774	u64 enqueued;
 775	u64 total = 0;
 776	int i;
 777
 778again:
 779	do {
 780		enqueued = 0;
 781		mutex_lock(&fs_devices->device_list_mutex);
 782		list_for_each_entry(device, &fs_devices->devices, dev_list) {
 783			if (atomic_read(&device->reada_in_flight) <
 784			    MAX_IN_FLIGHT)
 785				enqueued += reada_start_machine_dev(device);
 786		}
 787		mutex_unlock(&fs_devices->device_list_mutex);
 788		total += enqueued;
 789	} while (enqueued && total < 10000);
 790	if (fs_devices->seed) {
 791		fs_devices = fs_devices->seed;
 792		goto again;
 793	}
 794
 795	if (enqueued == 0)
 796		return;
 797
 798	/*
 799	 * If everything is already in the cache, this is effectively single
 800	 * threaded. To a) not hold the caller for too long and b) to utilize
 801	 * more cores, we broke the loop above after 10000 iterations and now
 802	 * enqueue to workers to finish it. This will distribute the load to
 803	 * the cores.
 804	 */
 805	for (i = 0; i < 2; ++i) {
 806		reada_start_machine(fs_info);
 807		if (atomic_read(&fs_info->reada_works_cnt) >
 808		    BTRFS_MAX_MIRRORS * 2)
 809			break;
 810	}
 811}
 812
 813static void reada_start_machine(struct btrfs_fs_info *fs_info)
 814{
 815	struct reada_machine_work *rmw;
 816
 817	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
 818	if (!rmw) {
 819		/* FIXME we cannot handle this properly right now */
 820		BUG();
 821	}
 822	btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
 823	rmw->fs_info = fs_info;
 824
 825	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 826	atomic_inc(&fs_info->reada_works_cnt);
 827}
 828
 829#ifdef DEBUG
 830static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 831{
 832	struct btrfs_device *device;
 833	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 834	unsigned long index;
 835	int ret;
 836	int i;
 837	int j;
 838	int cnt;
 839
 840	spin_lock(&fs_info->reada_lock);
 841	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 842		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
 843			atomic_read(&device->reada_in_flight));
 844		index = 0;
 845		while (1) {
 846			struct reada_zone *zone;
 847			ret = radix_tree_gang_lookup(&device->reada_zones,
 848						     (void **)&zone, index, 1);
 849			if (ret == 0)
 850				break;
 851			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
 852				    zone->start, zone->end, zone->elems,
 853				    zone->locked);
 854			for (j = 0; j < zone->ndevs; ++j) {
 855				pr_cont(" %lld",
 856					zone->devs[j]->devid);
 857			}
 858			if (device->reada_curr_zone == zone)
 859				pr_cont(" curr off %llu",
 860					device->reada_next - zone->start);
 861			pr_cont("\n");
 862			index = (zone->end >> PAGE_SHIFT) + 1;
 863		}
 864		cnt = 0;
 865		index = 0;
 866		while (all) {
 867			struct reada_extent *re = NULL;
 868
 869			ret = radix_tree_gang_lookup(&device->reada_extents,
 870						     (void **)&re, index, 1);
 871			if (ret == 0)
 872				break;
 873			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
 874				re->logical, fs_info->nodesize,
 875				list_empty(&re->extctl), re->scheduled);
 876
 877			for (i = 0; i < re->nzones; ++i) {
 878				pr_cont(" zone %llu-%llu devs",
 879					re->zones[i]->start,
 880					re->zones[i]->end);
 881				for (j = 0; j < re->zones[i]->ndevs; ++j) {
 882					pr_cont(" %lld",
 883						re->zones[i]->devs[j]->devid);
 884				}
 885			}
 886			pr_cont("\n");
 887			index = (re->logical >> PAGE_SHIFT) + 1;
 888			if (++cnt > 15)
 889				break;
 890		}
 891	}
 892
 893	index = 0;
 894	cnt = 0;
 895	while (all) {
 896		struct reada_extent *re = NULL;
 897
 898		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 899					     index, 1);
 900		if (ret == 0)
 901			break;
 902		if (!re->scheduled) {
 903			index = (re->logical >> PAGE_SHIFT) + 1;
 904			continue;
 905		}
 906		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
 907			re->logical, fs_info->nodesize,
 908			list_empty(&re->extctl), re->scheduled);
 909		for (i = 0; i < re->nzones; ++i) {
 910			pr_cont(" zone %llu-%llu devs",
 911				re->zones[i]->start,
 912				re->zones[i]->end);
 913			for (j = 0; j < re->zones[i]->ndevs; ++j) {
 914				pr_cont(" %lld",
 915				       re->zones[i]->devs[j]->devid);
 916			}
 917		}
 918		pr_cont("\n");
 919		index = (re->logical >> PAGE_SHIFT) + 1;
 920	}
 921	spin_unlock(&fs_info->reada_lock);
 922}
 923#endif
 924
 925/*
 926 * interface
 927 */
 928struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 929			struct btrfs_key *key_start, struct btrfs_key *key_end)
 930{
 931	struct reada_control *rc;
 932	u64 start;
 933	u64 generation;
 934	int ret;
 935	struct extent_buffer *node;
 936	static struct btrfs_key max_key = {
 937		.objectid = (u64)-1,
 938		.type = (u8)-1,
 939		.offset = (u64)-1
 940	};
 941
 942	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
 943	if (!rc)
 944		return ERR_PTR(-ENOMEM);
 945
 946	rc->fs_info = root->fs_info;
 947	rc->key_start = *key_start;
 948	rc->key_end = *key_end;
 949	atomic_set(&rc->elems, 0);
 950	init_waitqueue_head(&rc->wait);
 951	kref_init(&rc->refcnt);
 952	kref_get(&rc->refcnt); /* one ref for having elements */
 953
 954	node = btrfs_root_node(root);
 955	start = node->start;
 956	generation = btrfs_header_generation(node);
 957	free_extent_buffer(node);
 958
 959	ret = reada_add_block(rc, start, &max_key, generation);
 960	if (ret) {
 961		kfree(rc);
 962		return ERR_PTR(ret);
 963	}
 964
 965	reada_start_machine(root->fs_info);
 966
 967	return rc;
 968}
 969
 970#ifdef DEBUG
 971int btrfs_reada_wait(void *handle)
 972{
 973	struct reada_control *rc = handle;
 974	struct btrfs_fs_info *fs_info = rc->fs_info;
 975
 976	while (atomic_read(&rc->elems)) {
 977		if (!atomic_read(&fs_info->reada_works_cnt))
 978			reada_start_machine(fs_info);
 979		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 980				   5 * HZ);
 981		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 982	}
 983
 984	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 985
 986	kref_put(&rc->refcnt, reada_control_release);
 987
 988	return 0;
 989}
 990#else
 991int btrfs_reada_wait(void *handle)
 992{
 993	struct reada_control *rc = handle;
 994	struct btrfs_fs_info *fs_info = rc->fs_info;
 995
 996	while (atomic_read(&rc->elems)) {
 997		if (!atomic_read(&fs_info->reada_works_cnt))
 998			reada_start_machine(fs_info);
 999		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1000				   (HZ + 9) / 10);
1001	}
1002
1003	kref_put(&rc->refcnt, reada_control_release);
1004
1005	return 0;
1006}
1007#endif
1008
1009void btrfs_reada_detach(void *handle)
1010{
1011	struct reada_control *rc = handle;
1012
1013	kref_put(&rc->refcnt, reada_control_release);
1014}