Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Copyright (C) 2011 STRATO.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/pagemap.h>
 21#include <linux/writeback.h>
 22#include <linux/blkdev.h>
 23#include <linux/rbtree.h>
 24#include <linux/slab.h>
 25#include <linux/workqueue.h>
 26#include "ctree.h"
 27#include "volumes.h"
 28#include "disk-io.h"
 29#include "transaction.h"
 30#include "dev-replace.h"
 31
 32#undef DEBUG
 33
 34/*
 35 * This is the implementation for the generic read ahead framework.
 36 *
 37 * To trigger a readahead, btrfs_reada_add must be called. It will start
 38 * a read ahead for the given range [start, end) on tree root. The returned
 39 * handle can either be used to wait on the readahead to finish
 40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
 41 *
 42 * The read ahead works as follows:
 43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
 44 * reada_start_machine will then search for extents to prefetch and trigger
 45 * some reads. When a read finishes for a node, all contained node/leaf
 46 * pointers that lie in the given range will also be enqueued. The reads will
 47 * be triggered in sequential order, thus giving a big win over a naive
 48 * enumeration. It will also make use of multi-device layouts. Each disk
 49 * will have its on read pointer and all disks will by utilized in parallel.
 50 * Also will no two disks read both sides of a mirror simultaneously, as this
 51 * would waste seeking capacity. Instead both disks will read different parts
 52 * of the filesystem.
 53 * Any number of readaheads can be started in parallel. The read order will be
 54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
 55 * than the 2 started one after another.
 56 */
 57
 58#define MAX_IN_FLIGHT 6
 59
 60struct reada_extctl {
 61	struct list_head	list;
 62	struct reada_control	*rc;
 63	u64			generation;
 64};
 65
 66struct reada_extent {
 67	u64			logical;
 68	struct btrfs_key	top;
 69	int			err;
 70	struct list_head	extctl;
 71	int 			refcnt;
 72	spinlock_t		lock;
 73	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
 74	int			nzones;
 75	int			scheduled;
 76};
 77
 78struct reada_zone {
 79	u64			start;
 80	u64			end;
 81	u64			elems;
 82	struct list_head	list;
 83	spinlock_t		lock;
 84	int			locked;
 85	struct btrfs_device	*device;
 86	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
 87							   * self */
 88	int			ndevs;
 89	struct kref		refcnt;
 90};
 91
 92struct reada_machine_work {
 93	struct btrfs_work	work;
 94	struct btrfs_fs_info	*fs_info;
 95};
 96
 97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
 98static void reada_control_release(struct kref *kref);
 99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
104			   struct btrfs_key *top, u64 generation);
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static void __readahead_hook(struct btrfs_fs_info *fs_info,
109			     struct reada_extent *re, struct extent_buffer *eb,
110			     int err)
111{
112	int nritems;
113	int i;
114	u64 bytenr;
115	u64 generation;
116	struct list_head list;
117
118	spin_lock(&re->lock);
119	/*
120	 * just take the full list from the extent. afterwards we
121	 * don't need the lock anymore
122	 */
123	list_replace_init(&re->extctl, &list);
124	re->scheduled = 0;
125	spin_unlock(&re->lock);
126
127	/*
128	 * this is the error case, the extent buffer has not been
129	 * read correctly. We won't access anything from it and
130	 * just cleanup our data structures. Effectively this will
131	 * cut the branch below this node from read ahead.
132	 */
133	if (err)
134		goto cleanup;
135
136	/*
137	 * FIXME: currently we just set nritems to 0 if this is a leaf,
138	 * effectively ignoring the content. In a next step we could
139	 * trigger more readahead depending from the content, e.g.
140	 * fetch the checksums for the extents in the leaf.
141	 */
142	if (!btrfs_header_level(eb))
143		goto cleanup;
144
145	nritems = btrfs_header_nritems(eb);
146	generation = btrfs_header_generation(eb);
147	for (i = 0; i < nritems; i++) {
148		struct reada_extctl *rec;
149		u64 n_gen;
150		struct btrfs_key key;
151		struct btrfs_key next_key;
152
153		btrfs_node_key_to_cpu(eb, &key, i);
154		if (i + 1 < nritems)
155			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156		else
157			next_key = re->top;
158		bytenr = btrfs_node_blockptr(eb, i);
159		n_gen = btrfs_node_ptr_generation(eb, i);
160
161		list_for_each_entry(rec, &list, list) {
162			struct reada_control *rc = rec->rc;
163
164			/*
165			 * if the generation doesn't match, just ignore this
166			 * extctl. This will probably cut off a branch from
167			 * prefetch. Alternatively one could start a new (sub-)
168			 * prefetch for this branch, starting again from root.
169			 * FIXME: move the generation check out of this loop
170			 */
171#ifdef DEBUG
172			if (rec->generation != generation) {
173				btrfs_debug(fs_info,
174					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175					    key.objectid, key.type, key.offset,
176					    rec->generation, generation);
177			}
178#endif
179			if (rec->generation == generation &&
180			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182				reada_add_block(rc, bytenr, &next_key, n_gen);
183		}
184	}
185
186cleanup:
187	/*
188	 * free extctl records
189	 */
190	while (!list_empty(&list)) {
191		struct reada_control *rc;
192		struct reada_extctl *rec;
193
194		rec = list_first_entry(&list, struct reada_extctl, list);
195		list_del(&rec->list);
196		rc = rec->rc;
197		kfree(rec);
198
199		kref_get(&rc->refcnt);
200		if (atomic_dec_and_test(&rc->elems)) {
201			kref_put(&rc->refcnt, reada_control_release);
202			wake_up(&rc->wait);
203		}
204		kref_put(&rc->refcnt, reada_control_release);
205
206		reada_extent_put(fs_info, re);	/* one ref for each entry */
207	}
208
209	return;
210}
211
212int btree_readahead_hook(struct btrfs_fs_info *fs_info,
213			 struct extent_buffer *eb, int err)
214{
215	int ret = 0;
216	struct reada_extent *re;
217
218	/* find extent */
219	spin_lock(&fs_info->reada_lock);
220	re = radix_tree_lookup(&fs_info->reada_tree,
221			       eb->start >> PAGE_SHIFT);
222	if (re)
223		re->refcnt++;
224	spin_unlock(&fs_info->reada_lock);
225	if (!re) {
226		ret = -1;
227		goto start_machine;
228	}
229
230	__readahead_hook(fs_info, re, eb, err);
231	reada_extent_put(fs_info, re);	/* our ref */
232
233start_machine:
234	reada_start_machine(fs_info);
235	return ret;
236}
237
238static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
239					  struct btrfs_device *dev, u64 logical,
240					  struct btrfs_bio *bbio)
241{
242	int ret;
243	struct reada_zone *zone;
244	struct btrfs_block_group_cache *cache = NULL;
245	u64 start;
246	u64 end;
247	int i;
248
249	zone = NULL;
250	spin_lock(&fs_info->reada_lock);
251	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252				     logical >> PAGE_SHIFT, 1);
253	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254		kref_get(&zone->refcnt);
255		spin_unlock(&fs_info->reada_lock);
256		return zone;
257	}
258
259	spin_unlock(&fs_info->reada_lock);
260
261	cache = btrfs_lookup_block_group(fs_info, logical);
262	if (!cache)
263		return NULL;
264
265	start = cache->key.objectid;
266	end = start + cache->key.offset - 1;
267	btrfs_put_block_group(cache);
268
269	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270	if (!zone)
271		return NULL;
272
273	zone->start = start;
274	zone->end = end;
275	INIT_LIST_HEAD(&zone->list);
276	spin_lock_init(&zone->lock);
277	zone->locked = 0;
278	kref_init(&zone->refcnt);
279	zone->elems = 0;
280	zone->device = dev; /* our device always sits at index 0 */
281	for (i = 0; i < bbio->num_stripes; ++i) {
282		/* bounds have already been checked */
283		zone->devs[i] = bbio->stripes[i].dev;
284	}
285	zone->ndevs = bbio->num_stripes;
286
287	spin_lock(&fs_info->reada_lock);
288	ret = radix_tree_insert(&dev->reada_zones,
289				(unsigned long)(zone->end >> PAGE_SHIFT),
290				zone);
291
292	if (ret == -EEXIST) {
293		kfree(zone);
294		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
295					     logical >> PAGE_SHIFT, 1);
296		if (ret == 1 && logical >= zone->start && logical <= zone->end)
297			kref_get(&zone->refcnt);
298		else
299			zone = NULL;
300	}
301	spin_unlock(&fs_info->reada_lock);
302
303	return zone;
304}
305
306static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
307					      u64 logical,
308					      struct btrfs_key *top)
309{
310	int ret;
311	struct reada_extent *re = NULL;
312	struct reada_extent *re_exist = NULL;
313	struct btrfs_bio *bbio = NULL;
314	struct btrfs_device *dev;
315	struct btrfs_device *prev_dev;
316	u32 blocksize;
317	u64 length;
318	int real_stripes;
319	int nzones = 0;
320	unsigned long index = logical >> PAGE_SHIFT;
321	int dev_replace_is_ongoing;
322	int have_zone = 0;
323
324	spin_lock(&fs_info->reada_lock);
325	re = radix_tree_lookup(&fs_info->reada_tree, index);
326	if (re)
327		re->refcnt++;
328	spin_unlock(&fs_info->reada_lock);
329
330	if (re)
331		return re;
332
333	re = kzalloc(sizeof(*re), GFP_KERNEL);
334	if (!re)
335		return NULL;
336
337	blocksize = fs_info->nodesize;
338	re->logical = logical;
339	re->top = *top;
340	INIT_LIST_HEAD(&re->extctl);
341	spin_lock_init(&re->lock);
342	re->refcnt = 1;
343
344	/*
345	 * map block
346	 */
347	length = blocksize;
348	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
349			&length, &bbio, 0);
350	if (ret || !bbio || length < blocksize)
351		goto error;
352
353	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
354		btrfs_err(fs_info,
355			   "readahead: more than %d copies not supported",
356			   BTRFS_MAX_MIRRORS);
357		goto error;
358	}
359
360	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
361	for (nzones = 0; nzones < real_stripes; ++nzones) {
362		struct reada_zone *zone;
363
364		dev = bbio->stripes[nzones].dev;
365
366		/* cannot read ahead on missing device. */
367		 if (!dev->bdev)
368			continue;
369
370		zone = reada_find_zone(fs_info, dev, logical, bbio);
371		if (!zone)
372			continue;
373
374		re->zones[re->nzones++] = zone;
375		spin_lock(&zone->lock);
376		if (!zone->elems)
377			kref_get(&zone->refcnt);
378		++zone->elems;
379		spin_unlock(&zone->lock);
380		spin_lock(&fs_info->reada_lock);
381		kref_put(&zone->refcnt, reada_zone_release);
382		spin_unlock(&fs_info->reada_lock);
383	}
384	if (re->nzones == 0) {
385		/* not a single zone found, error and out */
386		goto error;
387	}
388
389	/* insert extent in reada_tree + all per-device trees, all or nothing */
390	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
391	spin_lock(&fs_info->reada_lock);
392	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
393	if (ret == -EEXIST) {
394		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
395		re_exist->refcnt++;
396		spin_unlock(&fs_info->reada_lock);
397		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
398		goto error;
399	}
400	if (ret) {
401		spin_unlock(&fs_info->reada_lock);
402		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
403		goto error;
404	}
405	prev_dev = NULL;
406	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407			&fs_info->dev_replace);
408	for (nzones = 0; nzones < re->nzones; ++nzones) {
409		dev = re->zones[nzones]->device;
410
411		if (dev == prev_dev) {
412			/*
413			 * in case of DUP, just add the first zone. As both
414			 * are on the same device, there's nothing to gain
415			 * from adding both.
416			 * Also, it wouldn't work, as the tree is per device
417			 * and adding would fail with EEXIST
418			 */
419			continue;
420		}
421		if (!dev->bdev)
422			continue;
423
424		if (dev_replace_is_ongoing &&
425		    dev == fs_info->dev_replace.tgtdev) {
426			/*
427			 * as this device is selected for reading only as
428			 * a last resort, skip it for read ahead.
429			 */
430			continue;
431		}
432		prev_dev = dev;
433		ret = radix_tree_insert(&dev->reada_extents, index, re);
434		if (ret) {
435			while (--nzones >= 0) {
436				dev = re->zones[nzones]->device;
437				BUG_ON(dev == NULL);
438				/* ignore whether the entry was inserted */
439				radix_tree_delete(&dev->reada_extents, index);
440			}
441			radix_tree_delete(&fs_info->reada_tree, index);
442			spin_unlock(&fs_info->reada_lock);
443			btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
444			goto error;
445		}
446		have_zone = 1;
447	}
448	spin_unlock(&fs_info->reada_lock);
449	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
450
451	if (!have_zone)
452		goto error;
453
454	btrfs_put_bbio(bbio);
455	return re;
456
457error:
458	for (nzones = 0; nzones < re->nzones; ++nzones) {
459		struct reada_zone *zone;
460
461		zone = re->zones[nzones];
462		kref_get(&zone->refcnt);
463		spin_lock(&zone->lock);
464		--zone->elems;
465		if (zone->elems == 0) {
466			/*
467			 * no fs_info->reada_lock needed, as this can't be
468			 * the last ref
469			 */
470			kref_put(&zone->refcnt, reada_zone_release);
471		}
472		spin_unlock(&zone->lock);
473
474		spin_lock(&fs_info->reada_lock);
475		kref_put(&zone->refcnt, reada_zone_release);
476		spin_unlock(&fs_info->reada_lock);
477	}
478	btrfs_put_bbio(bbio);
479	kfree(re);
480	return re_exist;
481}
482
483static void reada_extent_put(struct btrfs_fs_info *fs_info,
484			     struct reada_extent *re)
485{
486	int i;
487	unsigned long index = re->logical >> PAGE_SHIFT;
488
489	spin_lock(&fs_info->reada_lock);
490	if (--re->refcnt) {
491		spin_unlock(&fs_info->reada_lock);
492		return;
493	}
494
495	radix_tree_delete(&fs_info->reada_tree, index);
496	for (i = 0; i < re->nzones; ++i) {
497		struct reada_zone *zone = re->zones[i];
498
499		radix_tree_delete(&zone->device->reada_extents, index);
500	}
501
502	spin_unlock(&fs_info->reada_lock);
503
504	for (i = 0; i < re->nzones; ++i) {
505		struct reada_zone *zone = re->zones[i];
506
507		kref_get(&zone->refcnt);
508		spin_lock(&zone->lock);
509		--zone->elems;
510		if (zone->elems == 0) {
511			/* no fs_info->reada_lock needed, as this can't be
512			 * the last ref */
513			kref_put(&zone->refcnt, reada_zone_release);
514		}
515		spin_unlock(&zone->lock);
516
517		spin_lock(&fs_info->reada_lock);
518		kref_put(&zone->refcnt, reada_zone_release);
519		spin_unlock(&fs_info->reada_lock);
520	}
521
522	kfree(re);
523}
524
525static void reada_zone_release(struct kref *kref)
526{
527	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
528
529	radix_tree_delete(&zone->device->reada_zones,
530			  zone->end >> PAGE_SHIFT);
531
532	kfree(zone);
533}
534
535static void reada_control_release(struct kref *kref)
536{
537	struct reada_control *rc = container_of(kref, struct reada_control,
538						refcnt);
539
540	kfree(rc);
541}
542
543static int reada_add_block(struct reada_control *rc, u64 logical,
544			   struct btrfs_key *top, u64 generation)
545{
546	struct btrfs_fs_info *fs_info = rc->fs_info;
547	struct reada_extent *re;
548	struct reada_extctl *rec;
549
550	/* takes one ref */
551	re = reada_find_extent(fs_info, logical, top);
552	if (!re)
553		return -1;
554
555	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
556	if (!rec) {
557		reada_extent_put(fs_info, re);
558		return -ENOMEM;
559	}
560
561	rec->rc = rc;
562	rec->generation = generation;
563	atomic_inc(&rc->elems);
564
565	spin_lock(&re->lock);
566	list_add_tail(&rec->list, &re->extctl);
567	spin_unlock(&re->lock);
568
569	/* leave the ref on the extent */
570
571	return 0;
572}
573
574/*
575 * called with fs_info->reada_lock held
576 */
577static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
578{
579	int i;
580	unsigned long index = zone->end >> PAGE_SHIFT;
581
582	for (i = 0; i < zone->ndevs; ++i) {
583		struct reada_zone *peer;
584		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
585		if (peer && peer->device != zone->device)
586			peer->locked = lock;
587	}
588}
589
590/*
591 * called with fs_info->reada_lock held
592 */
593static int reada_pick_zone(struct btrfs_device *dev)
594{
595	struct reada_zone *top_zone = NULL;
596	struct reada_zone *top_locked_zone = NULL;
597	u64 top_elems = 0;
598	u64 top_locked_elems = 0;
599	unsigned long index = 0;
600	int ret;
601
602	if (dev->reada_curr_zone) {
603		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
604		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
605		dev->reada_curr_zone = NULL;
606	}
607	/* pick the zone with the most elements */
608	while (1) {
609		struct reada_zone *zone;
610
611		ret = radix_tree_gang_lookup(&dev->reada_zones,
612					     (void **)&zone, index, 1);
613		if (ret == 0)
614			break;
615		index = (zone->end >> PAGE_SHIFT) + 1;
616		if (zone->locked) {
617			if (zone->elems > top_locked_elems) {
618				top_locked_elems = zone->elems;
619				top_locked_zone = zone;
620			}
621		} else {
622			if (zone->elems > top_elems) {
623				top_elems = zone->elems;
624				top_zone = zone;
625			}
626		}
627	}
628	if (top_zone)
629		dev->reada_curr_zone = top_zone;
630	else if (top_locked_zone)
631		dev->reada_curr_zone = top_locked_zone;
632	else
633		return 0;
634
635	dev->reada_next = dev->reada_curr_zone->start;
636	kref_get(&dev->reada_curr_zone->refcnt);
637	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
638
639	return 1;
640}
641
642static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
643				   struct btrfs_device *dev)
644{
645	struct reada_extent *re = NULL;
646	int mirror_num = 0;
647	struct extent_buffer *eb = NULL;
648	u64 logical;
649	int ret;
650	int i;
651
652	spin_lock(&fs_info->reada_lock);
653	if (dev->reada_curr_zone == NULL) {
654		ret = reada_pick_zone(dev);
655		if (!ret) {
656			spin_unlock(&fs_info->reada_lock);
657			return 0;
658		}
659	}
660	/*
661	 * FIXME currently we issue the reads one extent at a time. If we have
662	 * a contiguous block of extents, we could also coagulate them or use
663	 * plugging to speed things up
664	 */
665	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
666				     dev->reada_next >> PAGE_SHIFT, 1);
667	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
668		ret = reada_pick_zone(dev);
669		if (!ret) {
670			spin_unlock(&fs_info->reada_lock);
671			return 0;
672		}
673		re = NULL;
674		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
675					dev->reada_next >> PAGE_SHIFT, 1);
676	}
677	if (ret == 0) {
678		spin_unlock(&fs_info->reada_lock);
679		return 0;
680	}
681	dev->reada_next = re->logical + fs_info->nodesize;
682	re->refcnt++;
683
684	spin_unlock(&fs_info->reada_lock);
685
686	spin_lock(&re->lock);
687	if (re->scheduled || list_empty(&re->extctl)) {
688		spin_unlock(&re->lock);
689		reada_extent_put(fs_info, re);
690		return 0;
691	}
692	re->scheduled = 1;
693	spin_unlock(&re->lock);
694
695	/*
696	 * find mirror num
697	 */
698	for (i = 0; i < re->nzones; ++i) {
699		if (re->zones[i]->device == dev) {
700			mirror_num = i + 1;
701			break;
702		}
703	}
704	logical = re->logical;
705
706	atomic_inc(&dev->reada_in_flight);
707	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
708	if (ret)
709		__readahead_hook(fs_info, re, NULL, ret);
710	else if (eb)
711		__readahead_hook(fs_info, re, eb, ret);
712
713	if (eb)
714		free_extent_buffer(eb);
715
716	atomic_dec(&dev->reada_in_flight);
717	reada_extent_put(fs_info, re);
718
719	return 1;
720
721}
722
723static void reada_start_machine_worker(struct btrfs_work *work)
724{
725	struct reada_machine_work *rmw;
726	struct btrfs_fs_info *fs_info;
727	int old_ioprio;
728
729	rmw = container_of(work, struct reada_machine_work, work);
730	fs_info = rmw->fs_info;
731
732	kfree(rmw);
733
734	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
735				       task_nice_ioprio(current));
736	set_task_ioprio(current, BTRFS_IOPRIO_READA);
737	__reada_start_machine(fs_info);
738	set_task_ioprio(current, old_ioprio);
739
740	atomic_dec(&fs_info->reada_works_cnt);
741}
742
743static void __reada_start_machine(struct btrfs_fs_info *fs_info)
744{
745	struct btrfs_device *device;
746	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
747	u64 enqueued;
748	u64 total = 0;
749	int i;
750
751	do {
752		enqueued = 0;
753		mutex_lock(&fs_devices->device_list_mutex);
754		list_for_each_entry(device, &fs_devices->devices, dev_list) {
755			if (atomic_read(&device->reada_in_flight) <
756			    MAX_IN_FLIGHT)
757				enqueued += reada_start_machine_dev(fs_info,
758								    device);
759		}
760		mutex_unlock(&fs_devices->device_list_mutex);
761		total += enqueued;
762	} while (enqueued && total < 10000);
763
764	if (enqueued == 0)
765		return;
766
767	/*
768	 * If everything is already in the cache, this is effectively single
769	 * threaded. To a) not hold the caller for too long and b) to utilize
770	 * more cores, we broke the loop above after 10000 iterations and now
771	 * enqueue to workers to finish it. This will distribute the load to
772	 * the cores.
773	 */
774	for (i = 0; i < 2; ++i) {
775		reada_start_machine(fs_info);
776		if (atomic_read(&fs_info->reada_works_cnt) >
777		    BTRFS_MAX_MIRRORS * 2)
778			break;
779	}
780}
781
782static void reada_start_machine(struct btrfs_fs_info *fs_info)
783{
784	struct reada_machine_work *rmw;
785
786	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
787	if (!rmw) {
788		/* FIXME we cannot handle this properly right now */
789		BUG();
790	}
791	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
792			reada_start_machine_worker, NULL, NULL);
793	rmw->fs_info = fs_info;
794
795	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
796	atomic_inc(&fs_info->reada_works_cnt);
797}
798
799#ifdef DEBUG
800static void dump_devs(struct btrfs_fs_info *fs_info, int all)
801{
802	struct btrfs_device *device;
803	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
804	unsigned long index;
805	int ret;
806	int i;
807	int j;
808	int cnt;
809
810	spin_lock(&fs_info->reada_lock);
811	list_for_each_entry(device, &fs_devices->devices, dev_list) {
812		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
813			atomic_read(&device->reada_in_flight));
814		index = 0;
815		while (1) {
816			struct reada_zone *zone;
817			ret = radix_tree_gang_lookup(&device->reada_zones,
818						     (void **)&zone, index, 1);
819			if (ret == 0)
820				break;
821			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
822				    zone->start, zone->end, zone->elems,
823				    zone->locked);
824			for (j = 0; j < zone->ndevs; ++j) {
825				pr_cont(" %lld",
826					zone->devs[j]->devid);
827			}
828			if (device->reada_curr_zone == zone)
829				pr_cont(" curr off %llu",
830					device->reada_next - zone->start);
831			pr_cont("\n");
832			index = (zone->end >> PAGE_SHIFT) + 1;
833		}
834		cnt = 0;
835		index = 0;
836		while (all) {
837			struct reada_extent *re = NULL;
838
839			ret = radix_tree_gang_lookup(&device->reada_extents,
840						     (void **)&re, index, 1);
841			if (ret == 0)
842				break;
843			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
844				re->logical, fs_info->nodesize,
845				list_empty(&re->extctl), re->scheduled);
846
847			for (i = 0; i < re->nzones; ++i) {
848				pr_cont(" zone %llu-%llu devs",
849					re->zones[i]->start,
850					re->zones[i]->end);
851				for (j = 0; j < re->zones[i]->ndevs; ++j) {
852					pr_cont(" %lld",
853						re->zones[i]->devs[j]->devid);
854				}
855			}
856			pr_cont("\n");
857			index = (re->logical >> PAGE_SHIFT) + 1;
858			if (++cnt > 15)
859				break;
860		}
861	}
862
863	index = 0;
864	cnt = 0;
865	while (all) {
866		struct reada_extent *re = NULL;
867
868		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
869					     index, 1);
870		if (ret == 0)
871			break;
872		if (!re->scheduled) {
873			index = (re->logical >> PAGE_SHIFT) + 1;
874			continue;
875		}
876		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
877			re->logical, fs_info->nodesize,
878			list_empty(&re->extctl), re->scheduled);
879		for (i = 0; i < re->nzones; ++i) {
880			pr_cont(" zone %llu-%llu devs",
881				re->zones[i]->start,
882				re->zones[i]->end);
883			for (j = 0; j < re->zones[i]->ndevs; ++j) {
884				pr_cont(" %lld",
885				       re->zones[i]->devs[j]->devid);
886			}
887		}
888		pr_cont("\n");
889		index = (re->logical >> PAGE_SHIFT) + 1;
890	}
891	spin_unlock(&fs_info->reada_lock);
892}
893#endif
894
895/*
896 * interface
897 */
898struct reada_control *btrfs_reada_add(struct btrfs_root *root,
899			struct btrfs_key *key_start, struct btrfs_key *key_end)
900{
901	struct reada_control *rc;
902	u64 start;
903	u64 generation;
904	int ret;
905	struct extent_buffer *node;
906	static struct btrfs_key max_key = {
907		.objectid = (u64)-1,
908		.type = (u8)-1,
909		.offset = (u64)-1
910	};
911
912	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
913	if (!rc)
914		return ERR_PTR(-ENOMEM);
915
916	rc->fs_info = root->fs_info;
917	rc->key_start = *key_start;
918	rc->key_end = *key_end;
919	atomic_set(&rc->elems, 0);
920	init_waitqueue_head(&rc->wait);
921	kref_init(&rc->refcnt);
922	kref_get(&rc->refcnt); /* one ref for having elements */
923
924	node = btrfs_root_node(root);
925	start = node->start;
926	generation = btrfs_header_generation(node);
927	free_extent_buffer(node);
928
929	ret = reada_add_block(rc, start, &max_key, generation);
930	if (ret) {
931		kfree(rc);
932		return ERR_PTR(ret);
933	}
934
935	reada_start_machine(root->fs_info);
936
937	return rc;
938}
939
940#ifdef DEBUG
941int btrfs_reada_wait(void *handle)
942{
943	struct reada_control *rc = handle;
944	struct btrfs_fs_info *fs_info = rc->fs_info;
945
946	while (atomic_read(&rc->elems)) {
947		if (!atomic_read(&fs_info->reada_works_cnt))
948			reada_start_machine(fs_info);
949		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
950				   5 * HZ);
951		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
952	}
953
954	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
955
956	kref_put(&rc->refcnt, reada_control_release);
957
958	return 0;
959}
960#else
961int btrfs_reada_wait(void *handle)
962{
963	struct reada_control *rc = handle;
964	struct btrfs_fs_info *fs_info = rc->fs_info;
965
966	while (atomic_read(&rc->elems)) {
967		if (!atomic_read(&fs_info->reada_works_cnt))
968			reada_start_machine(fs_info);
969		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
970				   (HZ + 9) / 10);
971	}
972
973	kref_put(&rc->refcnt, reada_control_release);
974
975	return 0;
976}
977#endif
978
979void btrfs_reada_detach(void *handle)
980{
981	struct reada_control *rc = handle;
982
983	kref_put(&rc->refcnt, reada_control_release);
984}