Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/slab.h>
  11#include <linux/workqueue.h>
  12#include "ctree.h"
  13#include "volumes.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "dev-replace.h"
  17#include "block-group.h"
  18
  19#undef DEBUG
  20
  21/*
  22 * This is the implementation for the generic read ahead framework.
  23 *
  24 * To trigger a readahead, btrfs_reada_add must be called. It will start
  25 * a read ahead for the given range [start, end) on tree root. The returned
  26 * handle can either be used to wait on the readahead to finish
  27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  28 *
  29 * The read ahead works as follows:
  30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  31 * reada_start_machine will then search for extents to prefetch and trigger
  32 * some reads. When a read finishes for a node, all contained node/leaf
  33 * pointers that lie in the given range will also be enqueued. The reads will
  34 * be triggered in sequential order, thus giving a big win over a naive
  35 * enumeration. It will also make use of multi-device layouts. Each disk
  36 * will have its on read pointer and all disks will by utilized in parallel.
  37 * Also will no two disks read both sides of a mirror simultaneously, as this
  38 * would waste seeking capacity. Instead both disks will read different parts
  39 * of the filesystem.
  40 * Any number of readaheads can be started in parallel. The read order will be
  41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  42 * than the 2 started one after another.
  43 */
  44
  45#define MAX_IN_FLIGHT 6
  46
  47struct reada_extctl {
  48	struct list_head	list;
  49	struct reada_control	*rc;
  50	u64			generation;
  51};
  52
  53struct reada_extent {
  54	u64			logical;
  55	u64			owner_root;
  56	struct btrfs_key	top;
  57	struct list_head	extctl;
  58	int 			refcnt;
  59	spinlock_t		lock;
  60	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
  61	int			nzones;
  62	int			scheduled;
  63	int			level;
  64};
  65
  66struct reada_zone {
  67	u64			start;
  68	u64			end;
  69	u64			elems;
  70	struct list_head	list;
  71	spinlock_t		lock;
  72	int			locked;
  73	struct btrfs_device	*device;
  74	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  75							   * self */
  76	int			ndevs;
  77	struct kref		refcnt;
  78};
  79
  80struct reada_machine_work {
  81	struct btrfs_work	work;
  82	struct btrfs_fs_info	*fs_info;
  83};
  84
  85static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  86static void reada_control_release(struct kref *kref);
  87static void reada_zone_release(struct kref *kref);
  88static void reada_start_machine(struct btrfs_fs_info *fs_info);
  89static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  90
  91static int reada_add_block(struct reada_control *rc, u64 logical,
  92			   struct btrfs_key *top, u64 owner_root,
  93			   u64 generation, int level);
  94
  95/* recurses */
  96/* in case of err, eb might be NULL */
  97static void __readahead_hook(struct btrfs_fs_info *fs_info,
  98			     struct reada_extent *re, struct extent_buffer *eb,
  99			     int err)
 100{
 101	int nritems;
 102	int i;
 103	u64 bytenr;
 104	u64 generation;
 105	struct list_head list;
 106
 107	spin_lock(&re->lock);
 108	/*
 109	 * just take the full list from the extent. afterwards we
 110	 * don't need the lock anymore
 111	 */
 112	list_replace_init(&re->extctl, &list);
 113	re->scheduled = 0;
 114	spin_unlock(&re->lock);
 115
 116	/*
 117	 * this is the error case, the extent buffer has not been
 118	 * read correctly. We won't access anything from it and
 119	 * just cleanup our data structures. Effectively this will
 120	 * cut the branch below this node from read ahead.
 121	 */
 122	if (err)
 123		goto cleanup;
 124
 125	/*
 126	 * FIXME: currently we just set nritems to 0 if this is a leaf,
 127	 * effectively ignoring the content. In a next step we could
 128	 * trigger more readahead depending from the content, e.g.
 129	 * fetch the checksums for the extents in the leaf.
 130	 */
 131	if (!btrfs_header_level(eb))
 132		goto cleanup;
 133
 134	nritems = btrfs_header_nritems(eb);
 135	generation = btrfs_header_generation(eb);
 136	for (i = 0; i < nritems; i++) {
 137		struct reada_extctl *rec;
 138		u64 n_gen;
 139		struct btrfs_key key;
 140		struct btrfs_key next_key;
 141
 142		btrfs_node_key_to_cpu(eb, &key, i);
 143		if (i + 1 < nritems)
 144			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 145		else
 146			next_key = re->top;
 147		bytenr = btrfs_node_blockptr(eb, i);
 148		n_gen = btrfs_node_ptr_generation(eb, i);
 149
 150		list_for_each_entry(rec, &list, list) {
 151			struct reada_control *rc = rec->rc;
 152
 153			/*
 154			 * if the generation doesn't match, just ignore this
 155			 * extctl. This will probably cut off a branch from
 156			 * prefetch. Alternatively one could start a new (sub-)
 157			 * prefetch for this branch, starting again from root.
 158			 * FIXME: move the generation check out of this loop
 159			 */
 160#ifdef DEBUG
 161			if (rec->generation != generation) {
 162				btrfs_debug(fs_info,
 163					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 164					    key.objectid, key.type, key.offset,
 165					    rec->generation, generation);
 166			}
 167#endif
 168			if (rec->generation == generation &&
 169			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 170			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 171				reada_add_block(rc, bytenr, &next_key,
 172						btrfs_header_owner(eb), n_gen,
 173						btrfs_header_level(eb) - 1);
 174		}
 175	}
 176
 177cleanup:
 178	/*
 179	 * free extctl records
 180	 */
 181	while (!list_empty(&list)) {
 182		struct reada_control *rc;
 183		struct reada_extctl *rec;
 184
 185		rec = list_first_entry(&list, struct reada_extctl, list);
 186		list_del(&rec->list);
 187		rc = rec->rc;
 188		kfree(rec);
 189
 190		kref_get(&rc->refcnt);
 191		if (atomic_dec_and_test(&rc->elems)) {
 192			kref_put(&rc->refcnt, reada_control_release);
 193			wake_up(&rc->wait);
 194		}
 195		kref_put(&rc->refcnt, reada_control_release);
 196
 197		reada_extent_put(fs_info, re);	/* one ref for each entry */
 198	}
 199
 200	return;
 201}
 202
 203int btree_readahead_hook(struct extent_buffer *eb, int err)
 204{
 205	struct btrfs_fs_info *fs_info = eb->fs_info;
 206	int ret = 0;
 207	struct reada_extent *re;
 208
 209	/* find extent */
 210	spin_lock(&fs_info->reada_lock);
 211	re = radix_tree_lookup(&fs_info->reada_tree,
 212			       eb->start >> fs_info->sectorsize_bits);
 213	if (re)
 214		re->refcnt++;
 215	spin_unlock(&fs_info->reada_lock);
 216	if (!re) {
 217		ret = -1;
 218		goto start_machine;
 219	}
 220
 221	__readahead_hook(fs_info, re, eb, err);
 222	reada_extent_put(fs_info, re);	/* our ref */
 223
 224start_machine:
 225	reada_start_machine(fs_info);
 226	return ret;
 227}
 228
 229static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
 230					  struct btrfs_bio *bbio)
 231{
 232	struct btrfs_fs_info *fs_info = dev->fs_info;
 233	int ret;
 234	struct reada_zone *zone;
 235	struct btrfs_block_group *cache = NULL;
 236	u64 start;
 237	u64 end;
 238	int i;
 239
 240	zone = NULL;
 241	spin_lock(&fs_info->reada_lock);
 242	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 243				     logical >> fs_info->sectorsize_bits, 1);
 244	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
 245		kref_get(&zone->refcnt);
 246		spin_unlock(&fs_info->reada_lock);
 247		return zone;
 248	}
 249
 250	spin_unlock(&fs_info->reada_lock);
 251
 252	cache = btrfs_lookup_block_group(fs_info, logical);
 253	if (!cache)
 254		return NULL;
 255
 256	start = cache->start;
 257	end = start + cache->length - 1;
 258	btrfs_put_block_group(cache);
 259
 260	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
 261	if (!zone)
 262		return NULL;
 263
 264	ret = radix_tree_preload(GFP_KERNEL);
 265	if (ret) {
 266		kfree(zone);
 267		return NULL;
 268	}
 269
 270	zone->start = start;
 271	zone->end = end;
 272	INIT_LIST_HEAD(&zone->list);
 273	spin_lock_init(&zone->lock);
 274	zone->locked = 0;
 275	kref_init(&zone->refcnt);
 276	zone->elems = 0;
 277	zone->device = dev; /* our device always sits at index 0 */
 278	for (i = 0; i < bbio->num_stripes; ++i) {
 279		/* bounds have already been checked */
 280		zone->devs[i] = bbio->stripes[i].dev;
 281	}
 282	zone->ndevs = bbio->num_stripes;
 283
 284	spin_lock(&fs_info->reada_lock);
 285	ret = radix_tree_insert(&dev->reada_zones,
 286			(unsigned long)(zone->end >> fs_info->sectorsize_bits),
 287			zone);
 288
 289	if (ret == -EEXIST) {
 290		kfree(zone);
 291		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 292					logical >> fs_info->sectorsize_bits, 1);
 293		if (ret == 1 && logical >= zone->start && logical <= zone->end)
 294			kref_get(&zone->refcnt);
 295		else
 296			zone = NULL;
 297	}
 298	spin_unlock(&fs_info->reada_lock);
 299	radix_tree_preload_end();
 300
 301	return zone;
 302}
 303
 304static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
 305					      u64 logical,
 306					      struct btrfs_key *top,
 307					      u64 owner_root, int level)
 308{
 309	int ret;
 310	struct reada_extent *re = NULL;
 311	struct reada_extent *re_exist = NULL;
 312	struct btrfs_bio *bbio = NULL;
 313	struct btrfs_device *dev;
 314	struct btrfs_device *prev_dev;
 315	u64 length;
 316	int real_stripes;
 317	int nzones = 0;
 318	unsigned long index = logical >> fs_info->sectorsize_bits;
 319	int dev_replace_is_ongoing;
 320	int have_zone = 0;
 321
 322	spin_lock(&fs_info->reada_lock);
 323	re = radix_tree_lookup(&fs_info->reada_tree, index);
 324	if (re)
 325		re->refcnt++;
 326	spin_unlock(&fs_info->reada_lock);
 327
 328	if (re)
 329		return re;
 330
 331	re = kzalloc(sizeof(*re), GFP_KERNEL);
 332	if (!re)
 333		return NULL;
 334
 335	re->logical = logical;
 336	re->top = *top;
 337	INIT_LIST_HEAD(&re->extctl);
 338	spin_lock_init(&re->lock);
 339	re->refcnt = 1;
 340	re->owner_root = owner_root;
 341	re->level = level;
 342
 343	/*
 344	 * map block
 345	 */
 346	length = fs_info->nodesize;
 347	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 348			&length, &bbio, 0);
 349	if (ret || !bbio || length < fs_info->nodesize)
 350		goto error;
 351
 352	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 353		btrfs_err(fs_info,
 354			   "readahead: more than %d copies not supported",
 355			   BTRFS_MAX_MIRRORS);
 356		goto error;
 357	}
 358
 359	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 360	for (nzones = 0; nzones < real_stripes; ++nzones) {
 361		struct reada_zone *zone;
 362
 363		dev = bbio->stripes[nzones].dev;
 364
 365		/* cannot read ahead on missing device. */
 366		if (!dev->bdev)
 367			continue;
 368
 369		zone = reada_find_zone(dev, logical, bbio);
 370		if (!zone)
 371			continue;
 372
 373		re->zones[re->nzones++] = zone;
 374		spin_lock(&zone->lock);
 375		if (!zone->elems)
 376			kref_get(&zone->refcnt);
 377		++zone->elems;
 378		spin_unlock(&zone->lock);
 379		spin_lock(&fs_info->reada_lock);
 380		kref_put(&zone->refcnt, reada_zone_release);
 381		spin_unlock(&fs_info->reada_lock);
 382	}
 383	if (re->nzones == 0) {
 384		/* not a single zone found, error and out */
 385		goto error;
 386	}
 387
 388	/* Insert extent in reada tree + all per-device trees, all or nothing */
 389	down_read(&fs_info->dev_replace.rwsem);
 390	ret = radix_tree_preload(GFP_KERNEL);
 391	if (ret) {
 392		up_read(&fs_info->dev_replace.rwsem);
 393		goto error;
 394	}
 395
 396	spin_lock(&fs_info->reada_lock);
 397	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 398	if (ret == -EEXIST) {
 399		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 400		re_exist->refcnt++;
 401		spin_unlock(&fs_info->reada_lock);
 402		radix_tree_preload_end();
 403		up_read(&fs_info->dev_replace.rwsem);
 404		goto error;
 405	}
 406	if (ret) {
 407		spin_unlock(&fs_info->reada_lock);
 408		radix_tree_preload_end();
 409		up_read(&fs_info->dev_replace.rwsem);
 410		goto error;
 411	}
 412	radix_tree_preload_end();
 413	prev_dev = NULL;
 414	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 415			&fs_info->dev_replace);
 416	for (nzones = 0; nzones < re->nzones; ++nzones) {
 417		dev = re->zones[nzones]->device;
 418
 419		if (dev == prev_dev) {
 420			/*
 421			 * in case of DUP, just add the first zone. As both
 422			 * are on the same device, there's nothing to gain
 423			 * from adding both.
 424			 * Also, it wouldn't work, as the tree is per device
 425			 * and adding would fail with EEXIST
 426			 */
 427			continue;
 428		}
 429		if (!dev->bdev)
 430			continue;
 431
 432		if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
 433			continue;
 434
 435		if (dev_replace_is_ongoing &&
 436		    dev == fs_info->dev_replace.tgtdev) {
 437			/*
 438			 * as this device is selected for reading only as
 439			 * a last resort, skip it for read ahead.
 440			 */
 441			continue;
 442		}
 443		prev_dev = dev;
 444		ret = radix_tree_insert(&dev->reada_extents, index, re);
 445		if (ret) {
 446			while (--nzones >= 0) {
 447				dev = re->zones[nzones]->device;
 448				BUG_ON(dev == NULL);
 449				/* ignore whether the entry was inserted */
 450				radix_tree_delete(&dev->reada_extents, index);
 451			}
 452			radix_tree_delete(&fs_info->reada_tree, index);
 453			spin_unlock(&fs_info->reada_lock);
 454			up_read(&fs_info->dev_replace.rwsem);
 455			goto error;
 456		}
 457		have_zone = 1;
 458	}
 459	if (!have_zone)
 460		radix_tree_delete(&fs_info->reada_tree, index);
 461	spin_unlock(&fs_info->reada_lock);
 462	up_read(&fs_info->dev_replace.rwsem);
 463
 464	if (!have_zone)
 465		goto error;
 466
 467	btrfs_put_bbio(bbio);
 468	return re;
 469
 470error:
 471	for (nzones = 0; nzones < re->nzones; ++nzones) {
 472		struct reada_zone *zone;
 473
 474		zone = re->zones[nzones];
 475		kref_get(&zone->refcnt);
 476		spin_lock(&zone->lock);
 477		--zone->elems;
 478		if (zone->elems == 0) {
 479			/*
 480			 * no fs_info->reada_lock needed, as this can't be
 481			 * the last ref
 482			 */
 483			kref_put(&zone->refcnt, reada_zone_release);
 484		}
 485		spin_unlock(&zone->lock);
 486
 487		spin_lock(&fs_info->reada_lock);
 488		kref_put(&zone->refcnt, reada_zone_release);
 489		spin_unlock(&fs_info->reada_lock);
 490	}
 491	btrfs_put_bbio(bbio);
 492	kfree(re);
 493	return re_exist;
 494}
 495
 496static void reada_extent_put(struct btrfs_fs_info *fs_info,
 497			     struct reada_extent *re)
 498{
 499	int i;
 500	unsigned long index = re->logical >> fs_info->sectorsize_bits;
 501
 502	spin_lock(&fs_info->reada_lock);
 503	if (--re->refcnt) {
 504		spin_unlock(&fs_info->reada_lock);
 505		return;
 506	}
 507
 508	radix_tree_delete(&fs_info->reada_tree, index);
 509	for (i = 0; i < re->nzones; ++i) {
 510		struct reada_zone *zone = re->zones[i];
 511
 512		radix_tree_delete(&zone->device->reada_extents, index);
 513	}
 514
 515	spin_unlock(&fs_info->reada_lock);
 516
 517	for (i = 0; i < re->nzones; ++i) {
 518		struct reada_zone *zone = re->zones[i];
 519
 520		kref_get(&zone->refcnt);
 521		spin_lock(&zone->lock);
 522		--zone->elems;
 523		if (zone->elems == 0) {
 524			/* no fs_info->reada_lock needed, as this can't be
 525			 * the last ref */
 526			kref_put(&zone->refcnt, reada_zone_release);
 527		}
 528		spin_unlock(&zone->lock);
 529
 530		spin_lock(&fs_info->reada_lock);
 531		kref_put(&zone->refcnt, reada_zone_release);
 532		spin_unlock(&fs_info->reada_lock);
 533	}
 534
 535	kfree(re);
 536}
 537
 538static void reada_zone_release(struct kref *kref)
 539{
 540	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 541	struct btrfs_fs_info *fs_info = zone->device->fs_info;
 542
 543	lockdep_assert_held(&fs_info->reada_lock);
 544
 545	radix_tree_delete(&zone->device->reada_zones,
 546			  zone->end >> fs_info->sectorsize_bits);
 547
 548	kfree(zone);
 549}
 550
 551static void reada_control_release(struct kref *kref)
 552{
 553	struct reada_control *rc = container_of(kref, struct reada_control,
 554						refcnt);
 555
 556	kfree(rc);
 557}
 558
 559static int reada_add_block(struct reada_control *rc, u64 logical,
 560			   struct btrfs_key *top, u64 owner_root,
 561			   u64 generation, int level)
 562{
 563	struct btrfs_fs_info *fs_info = rc->fs_info;
 564	struct reada_extent *re;
 565	struct reada_extctl *rec;
 566
 567	/* takes one ref */
 568	re = reada_find_extent(fs_info, logical, top, owner_root, level);
 569	if (!re)
 570		return -1;
 571
 572	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
 573	if (!rec) {
 574		reada_extent_put(fs_info, re);
 575		return -ENOMEM;
 576	}
 577
 578	rec->rc = rc;
 579	rec->generation = generation;
 580	atomic_inc(&rc->elems);
 581
 582	spin_lock(&re->lock);
 583	list_add_tail(&rec->list, &re->extctl);
 584	spin_unlock(&re->lock);
 585
 586	/* leave the ref on the extent */
 587
 588	return 0;
 589}
 590
 591/*
 592 * called with fs_info->reada_lock held
 593 */
 594static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 595{
 596	int i;
 597	unsigned long index = zone->end >> zone->device->fs_info->sectorsize_bits;
 598
 599	for (i = 0; i < zone->ndevs; ++i) {
 600		struct reada_zone *peer;
 601		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 602		if (peer && peer->device != zone->device)
 603			peer->locked = lock;
 604	}
 605}
 606
 607/*
 608 * called with fs_info->reada_lock held
 609 */
 610static int reada_pick_zone(struct btrfs_device *dev)
 611{
 612	struct reada_zone *top_zone = NULL;
 613	struct reada_zone *top_locked_zone = NULL;
 614	u64 top_elems = 0;
 615	u64 top_locked_elems = 0;
 616	unsigned long index = 0;
 617	int ret;
 618
 619	if (dev->reada_curr_zone) {
 620		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 621		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 622		dev->reada_curr_zone = NULL;
 623	}
 624	/* pick the zone with the most elements */
 625	while (1) {
 626		struct reada_zone *zone;
 627
 628		ret = radix_tree_gang_lookup(&dev->reada_zones,
 629					     (void **)&zone, index, 1);
 630		if (ret == 0)
 631			break;
 632		index = (zone->end >> dev->fs_info->sectorsize_bits) + 1;
 633		if (zone->locked) {
 634			if (zone->elems > top_locked_elems) {
 635				top_locked_elems = zone->elems;
 636				top_locked_zone = zone;
 637			}
 638		} else {
 639			if (zone->elems > top_elems) {
 640				top_elems = zone->elems;
 641				top_zone = zone;
 642			}
 643		}
 644	}
 645	if (top_zone)
 646		dev->reada_curr_zone = top_zone;
 647	else if (top_locked_zone)
 648		dev->reada_curr_zone = top_locked_zone;
 649	else
 650		return 0;
 651
 652	dev->reada_next = dev->reada_curr_zone->start;
 653	kref_get(&dev->reada_curr_zone->refcnt);
 654	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 655
 656	return 1;
 657}
 658
 659static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
 660				    u64 owner_root, int level, int mirror_num,
 661				    struct extent_buffer **eb)
 662{
 663	struct extent_buffer *buf = NULL;
 664	int ret;
 665
 666	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
 667	if (IS_ERR(buf))
 668		return 0;
 669
 670	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 671
 672	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
 673	if (ret) {
 674		free_extent_buffer_stale(buf);
 675		return ret;
 676	}
 677
 678	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
 679		free_extent_buffer_stale(buf);
 680		return -EIO;
 681	} else if (extent_buffer_uptodate(buf)) {
 682		*eb = buf;
 683	} else {
 684		free_extent_buffer(buf);
 685	}
 686	return 0;
 687}
 688
 689static int reada_start_machine_dev(struct btrfs_device *dev)
 690{
 691	struct btrfs_fs_info *fs_info = dev->fs_info;
 692	struct reada_extent *re = NULL;
 693	int mirror_num = 0;
 694	struct extent_buffer *eb = NULL;
 695	u64 logical;
 696	int ret;
 697	int i;
 698
 699	spin_lock(&fs_info->reada_lock);
 700	if (dev->reada_curr_zone == NULL) {
 701		ret = reada_pick_zone(dev);
 702		if (!ret) {
 703			spin_unlock(&fs_info->reada_lock);
 704			return 0;
 705		}
 706	}
 707	/*
 708	 * FIXME currently we issue the reads one extent at a time. If we have
 709	 * a contiguous block of extents, we could also coagulate them or use
 710	 * plugging to speed things up
 711	 */
 712	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 713				dev->reada_next >> fs_info->sectorsize_bits, 1);
 714	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
 715		ret = reada_pick_zone(dev);
 716		if (!ret) {
 717			spin_unlock(&fs_info->reada_lock);
 718			return 0;
 719		}
 720		re = NULL;
 721		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 722				dev->reada_next >> fs_info->sectorsize_bits, 1);
 723	}
 724	if (ret == 0) {
 725		spin_unlock(&fs_info->reada_lock);
 726		return 0;
 727	}
 728	dev->reada_next = re->logical + fs_info->nodesize;
 729	re->refcnt++;
 730
 731	spin_unlock(&fs_info->reada_lock);
 732
 733	spin_lock(&re->lock);
 734	if (re->scheduled || list_empty(&re->extctl)) {
 735		spin_unlock(&re->lock);
 736		reada_extent_put(fs_info, re);
 737		return 0;
 738	}
 739	re->scheduled = 1;
 740	spin_unlock(&re->lock);
 741
 742	/*
 743	 * find mirror num
 744	 */
 745	for (i = 0; i < re->nzones; ++i) {
 746		if (re->zones[i]->device == dev) {
 747			mirror_num = i + 1;
 748			break;
 749		}
 750	}
 751	logical = re->logical;
 752
 753	atomic_inc(&dev->reada_in_flight);
 754	ret = reada_tree_block_flagged(fs_info, logical, re->owner_root,
 755				       re->level, mirror_num, &eb);
 756	if (ret)
 757		__readahead_hook(fs_info, re, NULL, ret);
 758	else if (eb)
 759		__readahead_hook(fs_info, re, eb, ret);
 760
 761	if (eb)
 762		free_extent_buffer(eb);
 763
 764	atomic_dec(&dev->reada_in_flight);
 765	reada_extent_put(fs_info, re);
 766
 767	return 1;
 768
 769}
 770
 771static void reada_start_machine_worker(struct btrfs_work *work)
 772{
 773	struct reada_machine_work *rmw;
 774	int old_ioprio;
 775
 776	rmw = container_of(work, struct reada_machine_work, work);
 777
 778	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 779				       task_nice_ioprio(current));
 780	set_task_ioprio(current, BTRFS_IOPRIO_READA);
 781	__reada_start_machine(rmw->fs_info);
 782	set_task_ioprio(current, old_ioprio);
 783
 784	atomic_dec(&rmw->fs_info->reada_works_cnt);
 785
 786	kfree(rmw);
 787}
 788
 789/* Try to start up to 10k READA requests for a group of devices */
 790static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
 791{
 792	u64 enqueued;
 793	u64 total = 0;
 794	struct btrfs_device *device;
 795
 796	do {
 797		enqueued = 0;
 798		list_for_each_entry(device, &fs_devices->devices, dev_list) {
 799			if (atomic_read(&device->reada_in_flight) <
 800			    MAX_IN_FLIGHT)
 801				enqueued += reada_start_machine_dev(device);
 802		}
 803		total += enqueued;
 804	} while (enqueued && total < 10000);
 805
 806	return total;
 807}
 808
 809static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 810{
 811	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 812	int i;
 813	u64 enqueued = 0;
 814
 815	mutex_lock(&fs_devices->device_list_mutex);
 816
 817	enqueued += reada_start_for_fsdevs(fs_devices);
 818	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 819		enqueued += reada_start_for_fsdevs(seed_devs);
 820
 821	mutex_unlock(&fs_devices->device_list_mutex);
 822	if (enqueued == 0)
 823		return;
 824
 825	/*
 826	 * If everything is already in the cache, this is effectively single
 827	 * threaded. To a) not hold the caller for too long and b) to utilize
 828	 * more cores, we broke the loop above after 10000 iterations and now
 829	 * enqueue to workers to finish it. This will distribute the load to
 830	 * the cores.
 831	 */
 832	for (i = 0; i < 2; ++i) {
 833		reada_start_machine(fs_info);
 834		if (atomic_read(&fs_info->reada_works_cnt) >
 835		    BTRFS_MAX_MIRRORS * 2)
 836			break;
 837	}
 838}
 839
 840static void reada_start_machine(struct btrfs_fs_info *fs_info)
 841{
 842	struct reada_machine_work *rmw;
 843
 844	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
 845	if (!rmw) {
 846		/* FIXME we cannot handle this properly right now */
 847		BUG();
 848	}
 849	btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
 850	rmw->fs_info = fs_info;
 851
 852	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 853	atomic_inc(&fs_info->reada_works_cnt);
 854}
 855
 856#ifdef DEBUG
 857static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 858{
 859	struct btrfs_device *device;
 860	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 861	unsigned long index;
 862	int ret;
 863	int i;
 864	int j;
 865	int cnt;
 866
 867	spin_lock(&fs_info->reada_lock);
 868	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 869		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
 870			atomic_read(&device->reada_in_flight));
 871		index = 0;
 872		while (1) {
 873			struct reada_zone *zone;
 874			ret = radix_tree_gang_lookup(&device->reada_zones,
 875						     (void **)&zone, index, 1);
 876			if (ret == 0)
 877				break;
 878			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
 879				    zone->start, zone->end, zone->elems,
 880				    zone->locked);
 881			for (j = 0; j < zone->ndevs; ++j) {
 882				pr_cont(" %lld",
 883					zone->devs[j]->devid);
 884			}
 885			if (device->reada_curr_zone == zone)
 886				pr_cont(" curr off %llu",
 887					device->reada_next - zone->start);
 888			pr_cont("\n");
 889			index = (zone->end >> fs_info->sectorsize_bits) + 1;
 890		}
 891		cnt = 0;
 892		index = 0;
 893		while (all) {
 894			struct reada_extent *re = NULL;
 895
 896			ret = radix_tree_gang_lookup(&device->reada_extents,
 897						     (void **)&re, index, 1);
 898			if (ret == 0)
 899				break;
 900			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
 901				re->logical, fs_info->nodesize,
 902				list_empty(&re->extctl), re->scheduled);
 903
 904			for (i = 0; i < re->nzones; ++i) {
 905				pr_cont(" zone %llu-%llu devs",
 906					re->zones[i]->start,
 907					re->zones[i]->end);
 908				for (j = 0; j < re->zones[i]->ndevs; ++j) {
 909					pr_cont(" %lld",
 910						re->zones[i]->devs[j]->devid);
 911				}
 912			}
 913			pr_cont("\n");
 914			index = (re->logical >> fs_info->sectorsize_bits) + 1;
 915			if (++cnt > 15)
 916				break;
 917		}
 918	}
 919
 920	index = 0;
 921	cnt = 0;
 922	while (all) {
 923		struct reada_extent *re = NULL;
 924
 925		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 926					     index, 1);
 927		if (ret == 0)
 928			break;
 929		if (!re->scheduled) {
 930			index = (re->logical >> fs_info->sectorsize_bits) + 1;
 931			continue;
 932		}
 933		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
 934			re->logical, fs_info->nodesize,
 935			list_empty(&re->extctl), re->scheduled);
 936		for (i = 0; i < re->nzones; ++i) {
 937			pr_cont(" zone %llu-%llu devs",
 938				re->zones[i]->start,
 939				re->zones[i]->end);
 940			for (j = 0; j < re->zones[i]->ndevs; ++j) {
 941				pr_cont(" %lld",
 942				       re->zones[i]->devs[j]->devid);
 943			}
 944		}
 945		pr_cont("\n");
 946		index = (re->logical >> fs_info->sectorsize_bits) + 1;
 947	}
 948	spin_unlock(&fs_info->reada_lock);
 949}
 950#endif
 951
 952/*
 953 * interface
 954 */
 955struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 956			struct btrfs_key *key_start, struct btrfs_key *key_end)
 957{
 958	struct reada_control *rc;
 959	u64 start;
 960	u64 generation;
 961	int ret;
 962	int level;
 963	struct extent_buffer *node;
 964	static struct btrfs_key max_key = {
 965		.objectid = (u64)-1,
 966		.type = (u8)-1,
 967		.offset = (u64)-1
 968	};
 969
 970	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
 971	if (!rc)
 972		return ERR_PTR(-ENOMEM);
 973
 974	rc->fs_info = root->fs_info;
 975	rc->key_start = *key_start;
 976	rc->key_end = *key_end;
 977	atomic_set(&rc->elems, 0);
 978	init_waitqueue_head(&rc->wait);
 979	kref_init(&rc->refcnt);
 980	kref_get(&rc->refcnt); /* one ref for having elements */
 981
 982	node = btrfs_root_node(root);
 983	start = node->start;
 984	generation = btrfs_header_generation(node);
 985	level = btrfs_header_level(node);
 986	free_extent_buffer(node);
 987
 988	ret = reada_add_block(rc, start, &max_key, root->root_key.objectid,
 989			      generation, level);
 990	if (ret) {
 991		kfree(rc);
 992		return ERR_PTR(ret);
 993	}
 994
 995	reada_start_machine(root->fs_info);
 996
 997	return rc;
 998}
 999
1000#ifdef DEBUG
1001int btrfs_reada_wait(void *handle)
1002{
1003	struct reada_control *rc = handle;
1004	struct btrfs_fs_info *fs_info = rc->fs_info;
1005
1006	while (atomic_read(&rc->elems)) {
1007		if (!atomic_read(&fs_info->reada_works_cnt))
1008			reada_start_machine(fs_info);
1009		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1010				   5 * HZ);
1011		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1012	}
1013
1014	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1015
1016	kref_put(&rc->refcnt, reada_control_release);
1017
1018	return 0;
1019}
1020#else
1021int btrfs_reada_wait(void *handle)
1022{
1023	struct reada_control *rc = handle;
1024	struct btrfs_fs_info *fs_info = rc->fs_info;
1025
1026	while (atomic_read(&rc->elems)) {
1027		if (!atomic_read(&fs_info->reada_works_cnt))
1028			reada_start_machine(fs_info);
1029		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1030				   (HZ + 9) / 10);
1031	}
1032
1033	kref_put(&rc->refcnt, reada_control_release);
1034
1035	return 0;
1036}
1037#endif
1038
1039void btrfs_reada_detach(void *handle)
1040{
1041	struct reada_control *rc = handle;
1042
1043	kref_put(&rc->refcnt, reada_control_release);
1044}
1045
1046/*
1047 * Before removing a device (device replace or device remove ioctls), call this
1048 * function to wait for all existing readahead requests on the device and to
1049 * make sure no one queues more readahead requests for the device.
1050 *
1051 * Must be called without holding neither the device list mutex nor the device
1052 * replace semaphore, otherwise it will deadlock.
1053 */
1054void btrfs_reada_remove_dev(struct btrfs_device *dev)
1055{
1056	struct btrfs_fs_info *fs_info = dev->fs_info;
1057
1058	/* Serialize with readahead extent creation at reada_find_extent(). */
1059	spin_lock(&fs_info->reada_lock);
1060	set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1061	spin_unlock(&fs_info->reada_lock);
1062
1063	/*
1064	 * There might be readahead requests added to the radix trees which
1065	 * were not yet added to the readahead work queue. We need to start
1066	 * them and wait for their completion, otherwise we can end up with
1067	 * use-after-free problems when dropping the last reference on the
1068	 * readahead extents and their zones, as they need to access the
1069	 * device structure.
1070	 */
1071	reada_start_machine(fs_info);
1072	btrfs_flush_workqueue(fs_info->readahead_workers);
1073}
1074
1075/*
1076 * If when removing a device (device replace or device remove ioctls) an error
1077 * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1078 * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1079 * called before.
1080 */
1081void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1082{
1083	spin_lock(&dev->fs_info->reada_lock);
1084	clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1085	spin_unlock(&dev->fs_info->reada_lock);
1086}