Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2023 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/bits.h>
9#include <linux/bitfield.h>
10#include <linux/mutex.h>
11#include <linux/completion.h>
12#include <linux/io.h>
13#include <linux/bug.h>
14#include <linux/interrupt.h>
15#include <linux/platform_device.h>
16#include <linux/netdevice.h>
17
18#include "gsi.h"
19#include "reg.h"
20#include "gsi_reg.h"
21#include "gsi_private.h"
22#include "gsi_trans.h"
23#include "ipa_gsi.h"
24#include "ipa_data.h"
25#include "ipa_version.h"
26
27/**
28 * DOC: The IPA Generic Software Interface
29 *
30 * The generic software interface (GSI) is an integral component of the IPA,
31 * providing a well-defined communication layer between the AP subsystem
32 * and the IPA core. The modem uses the GSI layer as well.
33 *
34 * -------- ---------
35 * | | | |
36 * | AP +<---. .----+ Modem |
37 * | +--. | | .->+ |
38 * | | | | | | | |
39 * -------- | | | | ---------
40 * v | v |
41 * --+-+---+-+--
42 * | GSI |
43 * |-----------|
44 * | |
45 * | IPA |
46 * | |
47 * -------------
48 *
49 * In the above diagram, the AP and Modem represent "execution environments"
50 * (EEs), which are independent operating environments that use the IPA for
51 * data transfer.
52 *
53 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
54 * of data to or from the IPA. A channel is implemented as a ring buffer,
55 * with a DRAM-resident array of "transfer elements" (TREs) available to
56 * describe transfers to or from other EEs through the IPA. A transfer
57 * element can also contain an immediate command, requesting the IPA perform
58 * actions other than data transfer.
59 *
60 * Each TRE refers to a block of data--also located in DRAM. After writing
61 * one or more TREs to a channel, the writer (either the IPA or an EE) writes
62 * a doorbell register to inform the receiving side how many elements have
63 * been written.
64 *
65 * Each channel has a GSI "event ring" associated with it. An event ring
66 * is implemented very much like a channel ring, but is always directed from
67 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
68 * events by adding an entry to the event ring associated with the channel.
69 * The GSI then writes its doorbell for the event ring, causing the target
70 * EE to be interrupted. Each entry in an event ring contains a pointer
71 * to the channel TRE whose completion the event represents.
72 *
73 * Each TRE in a channel ring has a set of flags. One flag indicates whether
74 * the completion of the transfer operation generates an entry (and possibly
75 * an interrupt) in the channel's event ring. Other flags allow transfer
76 * elements to be chained together, forming a single logical transaction.
77 * TRE flags are used to control whether and when interrupts are generated
78 * to signal completion of channel transfers.
79 *
80 * Elements in channel and event rings are completed (or consumed) strictly
81 * in order. Completion of one entry implies the completion of all preceding
82 * entries. A single completion interrupt can therefore communicate the
83 * completion of many transfers.
84 *
85 * Note that all GSI registers are little-endian, which is the assumed
86 * endianness of I/O space accesses. The accessor functions perform byte
87 * swapping if needed (i.e., for a big endian CPU).
88 */
89
90/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
91#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
92
93#define GSI_CMD_TIMEOUT 50 /* milliseconds */
94
95#define GSI_CHANNEL_STOP_RETRIES 10
96#define GSI_CHANNEL_MODEM_HALT_RETRIES 10
97#define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */
98
99#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
100#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
101
102#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
103
104/* An entry in an event ring */
105struct gsi_event {
106 __le64 xfer_ptr;
107 __le16 len;
108 u8 reserved1;
109 u8 code;
110 __le16 reserved2;
111 u8 type;
112 u8 chid;
113};
114
115/** gsi_channel_scratch_gpi - GPI protocol scratch register
116 * @max_outstanding_tre:
117 * Defines the maximum number of TREs allowed in a single transaction
118 * on a channel (in bytes). This determines the amount of prefetch
119 * performed by the hardware. We configure this to equal the size of
120 * the TLV FIFO for the channel.
121 * @outstanding_threshold:
122 * Defines the threshold (in bytes) determining when the sequencer
123 * should update the channel doorbell. We configure this to equal
124 * the size of two TREs.
125 */
126struct gsi_channel_scratch_gpi {
127 u64 reserved1;
128 u16 reserved2;
129 u16 max_outstanding_tre;
130 u16 reserved3;
131 u16 outstanding_threshold;
132};
133
134/** gsi_channel_scratch - channel scratch configuration area
135 *
136 * The exact interpretation of this register is protocol-specific.
137 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
138 */
139union gsi_channel_scratch {
140 struct gsi_channel_scratch_gpi gpi;
141 struct {
142 u32 word1;
143 u32 word2;
144 u32 word3;
145 u32 word4;
146 } data;
147};
148
149/* Check things that can be validated at build time. */
150static void gsi_validate_build(void)
151{
152 /* This is used as a divisor */
153 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
154
155 /* Code assumes the size of channel and event ring element are
156 * the same (and fixed). Make sure the size of an event ring
157 * element is what's expected.
158 */
159 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
160
161 /* Hardware requires a 2^n ring size. We ensure the number of
162 * elements in an event ring is a power of 2 elsewhere; this
163 * ensure the elements themselves meet the requirement.
164 */
165 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
166}
167
168/* Return the channel id associated with a given channel */
169static u32 gsi_channel_id(struct gsi_channel *channel)
170{
171 return channel - &channel->gsi->channel[0];
172}
173
174/* An initialized channel has a non-null GSI pointer */
175static bool gsi_channel_initialized(struct gsi_channel *channel)
176{
177 return !!channel->gsi;
178}
179
180/* Encode the channel protocol for the CH_C_CNTXT_0 register */
181static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
182 const struct reg *reg,
183 enum gsi_channel_type type)
184{
185 u32 val;
186
187 val = reg_encode(reg, CHTYPE_PROTOCOL, type);
188 if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0)
189 return val;
190
191 type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
192
193 return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
194}
195
196/* Update the GSI IRQ type register with the cached value */
197static void gsi_irq_type_update(struct gsi *gsi, u32 val)
198{
199 const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
200
201 gsi->type_enabled_bitmap = val;
202 iowrite32(val, gsi->virt + reg_offset(reg));
203}
204
205static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
206{
207 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
208}
209
210static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
211{
212 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
213}
214
215/* Event ring commands are performed one at a time. Their completion
216 * is signaled by the event ring control GSI interrupt type, which is
217 * only enabled when we issue an event ring command. Only the event
218 * ring being operated on has this interrupt enabled.
219 */
220static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
221{
222 u32 val = BIT(evt_ring_id);
223 const struct reg *reg;
224
225 /* There's a small chance that a previous command completed
226 * after the interrupt was disabled, so make sure we have no
227 * pending interrupts before we enable them.
228 */
229 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
230 iowrite32(~0, gsi->virt + reg_offset(reg));
231
232 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
233 iowrite32(val, gsi->virt + reg_offset(reg));
234 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
235}
236
237/* Disable event ring control interrupts */
238static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
239{
240 const struct reg *reg;
241
242 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
243
244 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
245 iowrite32(0, gsi->virt + reg_offset(reg));
246}
247
248/* Channel commands are performed one at a time. Their completion is
249 * signaled by the channel control GSI interrupt type, which is only
250 * enabled when we issue a channel command. Only the channel being
251 * operated on has this interrupt enabled.
252 */
253static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
254{
255 u32 val = BIT(channel_id);
256 const struct reg *reg;
257
258 /* There's a small chance that a previous command completed
259 * after the interrupt was disabled, so make sure we have no
260 * pending interrupts before we enable them.
261 */
262 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
263 iowrite32(~0, gsi->virt + reg_offset(reg));
264
265 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
266 iowrite32(val, gsi->virt + reg_offset(reg));
267
268 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
269}
270
271/* Disable channel control interrupts */
272static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
273{
274 const struct reg *reg;
275
276 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
277
278 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
279 iowrite32(0, gsi->virt + reg_offset(reg));
280}
281
282static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
283{
284 bool enable_ieob = !gsi->ieob_enabled_bitmap;
285 const struct reg *reg;
286 u32 val;
287
288 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
289
290 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
291 val = gsi->ieob_enabled_bitmap;
292 iowrite32(val, gsi->virt + reg_offset(reg));
293
294 /* Enable the interrupt type if this is the first channel enabled */
295 if (enable_ieob)
296 gsi_irq_type_enable(gsi, GSI_IEOB);
297}
298
299static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
300{
301 const struct reg *reg;
302 u32 val;
303
304 gsi->ieob_enabled_bitmap &= ~event_mask;
305
306 /* Disable the interrupt type if this was the last enabled channel */
307 if (!gsi->ieob_enabled_bitmap)
308 gsi_irq_type_disable(gsi, GSI_IEOB);
309
310 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
311 val = gsi->ieob_enabled_bitmap;
312 iowrite32(val, gsi->virt + reg_offset(reg));
313}
314
315static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
316{
317 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
318}
319
320/* Enable all GSI_interrupt types */
321static void gsi_irq_enable(struct gsi *gsi)
322{
323 const struct reg *reg;
324 u32 val;
325
326 /* Global interrupts include hardware error reports. Enable
327 * that so we can at least report the error should it occur.
328 */
329 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
330 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
331
332 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
333
334 /* General GSI interrupts are reported to all EEs; if they occur
335 * they are unrecoverable (without reset). A breakpoint interrupt
336 * also exists, but we don't support that. We want to be notified
337 * of errors so we can report them, even if they can't be handled.
338 */
339 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
340 val = BUS_ERROR;
341 val |= CMD_FIFO_OVRFLOW;
342 val |= MCS_STACK_OVRFLOW;
343 iowrite32(val, gsi->virt + reg_offset(reg));
344
345 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
346}
347
348/* Disable all GSI interrupt types */
349static void gsi_irq_disable(struct gsi *gsi)
350{
351 const struct reg *reg;
352
353 gsi_irq_type_update(gsi, 0);
354
355 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */
356 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
357 iowrite32(0, gsi->virt + reg_offset(reg));
358
359 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
360 iowrite32(0, gsi->virt + reg_offset(reg));
361}
362
363/* Return the virtual address associated with a ring index */
364void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
365{
366 /* Note: index *must* be used modulo the ring count here */
367 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
368}
369
370/* Return the 32-bit DMA address associated with a ring index */
371static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
372{
373 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
374}
375
376/* Return the ring index of a 32-bit ring offset */
377static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
378{
379 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
380}
381
382/* Issue a GSI command by writing a value to a register, then wait for
383 * completion to be signaled. Returns true if the command completes
384 * or false if it times out.
385 */
386static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
387{
388 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
389 struct completion *completion = &gsi->completion;
390
391 reinit_completion(completion);
392
393 iowrite32(val, gsi->virt + reg);
394
395 return !!wait_for_completion_timeout(completion, timeout);
396}
397
398/* Return the hardware's notion of the current state of an event ring */
399static enum gsi_evt_ring_state
400gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
401{
402 const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
403 u32 val;
404
405 val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
406
407 return reg_decode(reg, EV_CHSTATE, val);
408}
409
410/* Issue an event ring command and wait for it to complete */
411static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
412 enum gsi_evt_cmd_opcode opcode)
413{
414 struct device *dev = gsi->dev;
415 const struct reg *reg;
416 bool timeout;
417 u32 val;
418
419 /* Enable the completion interrupt for the command */
420 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
421
422 reg = gsi_reg(gsi, EV_CH_CMD);
423 val = reg_encode(reg, EV_CHID, evt_ring_id);
424 val |= reg_encode(reg, EV_OPCODE, opcode);
425
426 timeout = !gsi_command(gsi, reg_offset(reg), val);
427
428 gsi_irq_ev_ctrl_disable(gsi);
429
430 if (!timeout)
431 return;
432
433 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
434 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
435}
436
437/* Allocate an event ring in NOT_ALLOCATED state */
438static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
439{
440 enum gsi_evt_ring_state state;
441
442 /* Get initial event ring state */
443 state = gsi_evt_ring_state(gsi, evt_ring_id);
444 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
445 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
446 evt_ring_id, state);
447 return -EINVAL;
448 }
449
450 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
451
452 /* If successful the event ring state will have changed */
453 state = gsi_evt_ring_state(gsi, evt_ring_id);
454 if (state == GSI_EVT_RING_STATE_ALLOCATED)
455 return 0;
456
457 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
458 evt_ring_id, state);
459
460 return -EIO;
461}
462
463/* Reset a GSI event ring in ALLOCATED or ERROR state. */
464static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
465{
466 enum gsi_evt_ring_state state;
467
468 state = gsi_evt_ring_state(gsi, evt_ring_id);
469 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
470 state != GSI_EVT_RING_STATE_ERROR) {
471 dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
472 evt_ring_id, state);
473 return;
474 }
475
476 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
477
478 /* If successful the event ring state will have changed */
479 state = gsi_evt_ring_state(gsi, evt_ring_id);
480 if (state == GSI_EVT_RING_STATE_ALLOCATED)
481 return;
482
483 dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
484 evt_ring_id, state);
485}
486
487/* Issue a hardware de-allocation request for an allocated event ring */
488static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
489{
490 enum gsi_evt_ring_state state;
491
492 state = gsi_evt_ring_state(gsi, evt_ring_id);
493 if (state != GSI_EVT_RING_STATE_ALLOCATED) {
494 dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
495 evt_ring_id, state);
496 return;
497 }
498
499 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
500
501 /* If successful the event ring state will have changed */
502 state = gsi_evt_ring_state(gsi, evt_ring_id);
503 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
504 return;
505
506 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
507 evt_ring_id, state);
508}
509
510/* Fetch the current state of a channel from hardware */
511static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
512{
513 const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
514 u32 channel_id = gsi_channel_id(channel);
515 struct gsi *gsi = channel->gsi;
516 void __iomem *virt = gsi->virt;
517 u32 val;
518
519 reg = gsi_reg(gsi, CH_C_CNTXT_0);
520 val = ioread32(virt + reg_n_offset(reg, channel_id));
521
522 return reg_decode(reg, CHSTATE, val);
523}
524
525/* Issue a channel command and wait for it to complete */
526static void
527gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
528{
529 u32 channel_id = gsi_channel_id(channel);
530 struct gsi *gsi = channel->gsi;
531 struct device *dev = gsi->dev;
532 const struct reg *reg;
533 bool timeout;
534 u32 val;
535
536 /* Enable the completion interrupt for the command */
537 gsi_irq_ch_ctrl_enable(gsi, channel_id);
538
539 reg = gsi_reg(gsi, CH_CMD);
540 val = reg_encode(reg, CH_CHID, channel_id);
541 val |= reg_encode(reg, CH_OPCODE, opcode);
542
543 timeout = !gsi_command(gsi, reg_offset(reg), val);
544
545 gsi_irq_ch_ctrl_disable(gsi);
546
547 if (!timeout)
548 return;
549
550 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
551 opcode, channel_id, gsi_channel_state(channel));
552}
553
554/* Allocate GSI channel in NOT_ALLOCATED state */
555static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
556{
557 struct gsi_channel *channel = &gsi->channel[channel_id];
558 struct device *dev = gsi->dev;
559 enum gsi_channel_state state;
560
561 /* Get initial channel state */
562 state = gsi_channel_state(channel);
563 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
564 dev_err(dev, "channel %u bad state %u before alloc\n",
565 channel_id, state);
566 return -EINVAL;
567 }
568
569 gsi_channel_command(channel, GSI_CH_ALLOCATE);
570
571 /* If successful the channel state will have changed */
572 state = gsi_channel_state(channel);
573 if (state == GSI_CHANNEL_STATE_ALLOCATED)
574 return 0;
575
576 dev_err(dev, "channel %u bad state %u after alloc\n",
577 channel_id, state);
578
579 return -EIO;
580}
581
582/* Start an ALLOCATED channel */
583static int gsi_channel_start_command(struct gsi_channel *channel)
584{
585 struct device *dev = channel->gsi->dev;
586 enum gsi_channel_state state;
587
588 state = gsi_channel_state(channel);
589 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
590 state != GSI_CHANNEL_STATE_STOPPED) {
591 dev_err(dev, "channel %u bad state %u before start\n",
592 gsi_channel_id(channel), state);
593 return -EINVAL;
594 }
595
596 gsi_channel_command(channel, GSI_CH_START);
597
598 /* If successful the channel state will have changed */
599 state = gsi_channel_state(channel);
600 if (state == GSI_CHANNEL_STATE_STARTED)
601 return 0;
602
603 dev_err(dev, "channel %u bad state %u after start\n",
604 gsi_channel_id(channel), state);
605
606 return -EIO;
607}
608
609/* Stop a GSI channel in STARTED state */
610static int gsi_channel_stop_command(struct gsi_channel *channel)
611{
612 struct device *dev = channel->gsi->dev;
613 enum gsi_channel_state state;
614
615 state = gsi_channel_state(channel);
616
617 /* Channel could have entered STOPPED state since last call
618 * if it timed out. If so, we're done.
619 */
620 if (state == GSI_CHANNEL_STATE_STOPPED)
621 return 0;
622
623 if (state != GSI_CHANNEL_STATE_STARTED &&
624 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
625 dev_err(dev, "channel %u bad state %u before stop\n",
626 gsi_channel_id(channel), state);
627 return -EINVAL;
628 }
629
630 gsi_channel_command(channel, GSI_CH_STOP);
631
632 /* If successful the channel state will have changed */
633 state = gsi_channel_state(channel);
634 if (state == GSI_CHANNEL_STATE_STOPPED)
635 return 0;
636
637 /* We may have to try again if stop is in progress */
638 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
639 return -EAGAIN;
640
641 dev_err(dev, "channel %u bad state %u after stop\n",
642 gsi_channel_id(channel), state);
643
644 return -EIO;
645}
646
647/* Reset a GSI channel in ALLOCATED or ERROR state. */
648static void gsi_channel_reset_command(struct gsi_channel *channel)
649{
650 struct device *dev = channel->gsi->dev;
651 enum gsi_channel_state state;
652
653 /* A short delay is required before a RESET command */
654 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
655
656 state = gsi_channel_state(channel);
657 if (state != GSI_CHANNEL_STATE_STOPPED &&
658 state != GSI_CHANNEL_STATE_ERROR) {
659 /* No need to reset a channel already in ALLOCATED state */
660 if (state != GSI_CHANNEL_STATE_ALLOCATED)
661 dev_err(dev, "channel %u bad state %u before reset\n",
662 gsi_channel_id(channel), state);
663 return;
664 }
665
666 gsi_channel_command(channel, GSI_CH_RESET);
667
668 /* If successful the channel state will have changed */
669 state = gsi_channel_state(channel);
670 if (state != GSI_CHANNEL_STATE_ALLOCATED)
671 dev_err(dev, "channel %u bad state %u after reset\n",
672 gsi_channel_id(channel), state);
673}
674
675/* Deallocate an ALLOCATED GSI channel */
676static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
677{
678 struct gsi_channel *channel = &gsi->channel[channel_id];
679 struct device *dev = gsi->dev;
680 enum gsi_channel_state state;
681
682 state = gsi_channel_state(channel);
683 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
684 dev_err(dev, "channel %u bad state %u before dealloc\n",
685 channel_id, state);
686 return;
687 }
688
689 gsi_channel_command(channel, GSI_CH_DE_ALLOC);
690
691 /* If successful the channel state will have changed */
692 state = gsi_channel_state(channel);
693
694 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
695 dev_err(dev, "channel %u bad state %u after dealloc\n",
696 channel_id, state);
697}
698
699/* Ring an event ring doorbell, reporting the last entry processed by the AP.
700 * The index argument (modulo the ring count) is the first unfilled entry, so
701 * we supply one less than that with the doorbell. Update the event ring
702 * index field with the value provided.
703 */
704static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
705{
706 const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
707 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
708 u32 val;
709
710 ring->index = index; /* Next unused entry */
711
712 /* Note: index *must* be used modulo the ring count here */
713 val = gsi_ring_addr(ring, (index - 1) % ring->count);
714 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
715}
716
717/* Program an event ring for use */
718static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
719{
720 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
721 struct gsi_ring *ring = &evt_ring->ring;
722 const struct reg *reg;
723 u32 val;
724
725 reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
726 /* We program all event rings as GPI type/protocol */
727 val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
728 /* EV_EE field is 0 (GSI_EE_AP) */
729 val |= reg_bit(reg, EV_INTYPE);
730 val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
731 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
732
733 reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
734 val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
735 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
736
737 /* The context 2 and 3 registers store the low-order and
738 * high-order 32 bits of the address of the event ring,
739 * respectively.
740 */
741 reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
742 val = lower_32_bits(ring->addr);
743 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
744
745 reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
746 val = upper_32_bits(ring->addr);
747 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
748
749 /* Enable interrupt moderation by setting the moderation delay */
750 reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
751 val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
752 val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */
753 /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
754 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
755
756 /* No MSI write data, and MSI high and low address is 0 */
757 reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
758 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
759
760 reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
761 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
762
763 reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
764 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
765
766 /* We don't need to get event read pointer updates */
767 reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
768 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
769
770 reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
771 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
772
773 /* Finally, tell the hardware our "last processed" event (arbitrary) */
774 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
775}
776
777/* Find the transaction whose completion indicates a channel is quiesced */
778static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
779{
780 struct gsi_trans_info *trans_info = &channel->trans_info;
781 u32 pending_id = trans_info->pending_id;
782 struct gsi_trans *trans;
783 u16 trans_id;
784
785 if (channel->toward_ipa && pending_id != trans_info->free_id) {
786 /* There is a small chance a TX transaction got allocated
787 * just before we disabled transmits, so check for that.
788 * The last allocated, committed, or pending transaction
789 * precedes the first free transaction.
790 */
791 trans_id = trans_info->free_id - 1;
792 } else if (trans_info->polled_id != pending_id) {
793 /* Otherwise (TX or RX) we want to wait for anything that
794 * has completed, or has been polled but not released yet.
795 *
796 * The last completed or polled transaction precedes the
797 * first pending transaction.
798 */
799 trans_id = pending_id - 1;
800 } else {
801 return NULL;
802 }
803
804 /* Caller will wait for this, so take a reference */
805 trans = &trans_info->trans[trans_id % channel->tre_count];
806 refcount_inc(&trans->refcount);
807
808 return trans;
809}
810
811/* Wait for transaction activity on a channel to complete */
812static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
813{
814 struct gsi_trans *trans;
815
816 /* Get the last transaction, and wait for it to complete */
817 trans = gsi_channel_trans_last(channel);
818 if (trans) {
819 wait_for_completion(&trans->completion);
820 gsi_trans_free(trans);
821 }
822}
823
824/* Program a channel for use; there is no gsi_channel_deprogram() */
825static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
826{
827 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
828 u32 channel_id = gsi_channel_id(channel);
829 union gsi_channel_scratch scr = { };
830 struct gsi_channel_scratch_gpi *gpi;
831 struct gsi *gsi = channel->gsi;
832 const struct reg *reg;
833 u32 wrr_weight = 0;
834 u32 offset;
835 u32 val;
836
837 reg = gsi_reg(gsi, CH_C_CNTXT_0);
838
839 /* We program all channels as GPI type/protocol */
840 val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
841 if (channel->toward_ipa)
842 val |= reg_bit(reg, CHTYPE_DIR);
843 if (gsi->version < IPA_VERSION_5_0)
844 val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
845 val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
846 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
847
848 reg = gsi_reg(gsi, CH_C_CNTXT_1);
849 val = reg_encode(reg, CH_R_LENGTH, size);
850 if (gsi->version >= IPA_VERSION_5_0)
851 val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id);
852 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
853
854 /* The context 2 and 3 registers store the low-order and
855 * high-order 32 bits of the address of the channel ring,
856 * respectively.
857 */
858 reg = gsi_reg(gsi, CH_C_CNTXT_2);
859 val = lower_32_bits(channel->tre_ring.addr);
860 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
861
862 reg = gsi_reg(gsi, CH_C_CNTXT_3);
863 val = upper_32_bits(channel->tre_ring.addr);
864 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
865
866 reg = gsi_reg(gsi, CH_C_QOS);
867
868 /* Command channel gets low weighted round-robin priority */
869 if (channel->command)
870 wrr_weight = reg_field_max(reg, WRR_WEIGHT);
871 val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
872
873 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
874
875 /* No need to use the doorbell engine starting at IPA v4.0 */
876 if (gsi->version < IPA_VERSION_4_0 && doorbell)
877 val |= reg_bit(reg, USE_DB_ENG);
878
879 /* v4.0 introduces an escape buffer for prefetch. We use it
880 * on all but the AP command channel.
881 */
882 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
883 /* If not otherwise set, prefetch buffers are used */
884 if (gsi->version < IPA_VERSION_4_5)
885 val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
886 else
887 val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
888 }
889 /* All channels set DB_IN_BYTES */
890 if (gsi->version >= IPA_VERSION_4_9)
891 val |= reg_bit(reg, DB_IN_BYTES);
892
893 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
894
895 /* Now update the scratch registers for GPI protocol */
896 gpi = &scr.gpi;
897 gpi->max_outstanding_tre = channel->trans_tre_max *
898 GSI_RING_ELEMENT_SIZE;
899 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
900
901 reg = gsi_reg(gsi, CH_C_SCRATCH_0);
902 val = scr.data.word1;
903 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
904
905 reg = gsi_reg(gsi, CH_C_SCRATCH_1);
906 val = scr.data.word2;
907 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
908
909 reg = gsi_reg(gsi, CH_C_SCRATCH_2);
910 val = scr.data.word3;
911 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
912
913 /* We must preserve the upper 16 bits of the last scratch register.
914 * The next sequence assumes those bits remain unchanged between the
915 * read and the write.
916 */
917 reg = gsi_reg(gsi, CH_C_SCRATCH_3);
918 offset = reg_n_offset(reg, channel_id);
919 val = ioread32(gsi->virt + offset);
920 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
921 iowrite32(val, gsi->virt + offset);
922
923 /* All done! */
924}
925
926static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
927{
928 struct gsi *gsi = channel->gsi;
929 int ret;
930
931 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
932 if (resume && gsi->version < IPA_VERSION_4_0)
933 return 0;
934
935 mutex_lock(&gsi->mutex);
936
937 ret = gsi_channel_start_command(channel);
938
939 mutex_unlock(&gsi->mutex);
940
941 return ret;
942}
943
944/* Start an allocated GSI channel */
945int gsi_channel_start(struct gsi *gsi, u32 channel_id)
946{
947 struct gsi_channel *channel = &gsi->channel[channel_id];
948 int ret;
949
950 /* Enable NAPI and the completion interrupt */
951 napi_enable(&channel->napi);
952 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
953
954 ret = __gsi_channel_start(channel, false);
955 if (ret) {
956 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
957 napi_disable(&channel->napi);
958 }
959
960 return ret;
961}
962
963static int gsi_channel_stop_retry(struct gsi_channel *channel)
964{
965 u32 retries = GSI_CHANNEL_STOP_RETRIES;
966 int ret;
967
968 do {
969 ret = gsi_channel_stop_command(channel);
970 if (ret != -EAGAIN)
971 break;
972 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
973 } while (retries--);
974
975 return ret;
976}
977
978static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
979{
980 struct gsi *gsi = channel->gsi;
981 int ret;
982
983 /* Wait for any underway transactions to complete before stopping. */
984 gsi_channel_trans_quiesce(channel);
985
986 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
987 if (suspend && gsi->version < IPA_VERSION_4_0)
988 return 0;
989
990 mutex_lock(&gsi->mutex);
991
992 ret = gsi_channel_stop_retry(channel);
993
994 mutex_unlock(&gsi->mutex);
995
996 return ret;
997}
998
999/* Stop a started channel */
1000int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
1001{
1002 struct gsi_channel *channel = &gsi->channel[channel_id];
1003 int ret;
1004
1005 ret = __gsi_channel_stop(channel, false);
1006 if (ret)
1007 return ret;
1008
1009 /* Disable the completion interrupt and NAPI if successful */
1010 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
1011 napi_disable(&channel->napi);
1012
1013 return 0;
1014}
1015
1016/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
1017void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
1018{
1019 struct gsi_channel *channel = &gsi->channel[channel_id];
1020
1021 mutex_lock(&gsi->mutex);
1022
1023 gsi_channel_reset_command(channel);
1024 /* Due to a hardware quirk we may need to reset RX channels twice. */
1025 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
1026 gsi_channel_reset_command(channel);
1027
1028 /* Hardware assumes this is 0 following reset */
1029 channel->tre_ring.index = 0;
1030 gsi_channel_program(channel, doorbell);
1031 gsi_channel_trans_cancel_pending(channel);
1032
1033 mutex_unlock(&gsi->mutex);
1034}
1035
1036/* Stop a started channel for suspend */
1037int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
1038{
1039 struct gsi_channel *channel = &gsi->channel[channel_id];
1040 int ret;
1041
1042 ret = __gsi_channel_stop(channel, true);
1043 if (ret)
1044 return ret;
1045
1046 /* Ensure NAPI polling has finished. */
1047 napi_synchronize(&channel->napi);
1048
1049 return 0;
1050}
1051
1052/* Resume a suspended channel (starting if stopped) */
1053int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
1054{
1055 struct gsi_channel *channel = &gsi->channel[channel_id];
1056
1057 return __gsi_channel_start(channel, true);
1058}
1059
1060/* Prevent all GSI interrupts while suspended */
1061void gsi_suspend(struct gsi *gsi)
1062{
1063 disable_irq(gsi->irq);
1064}
1065
1066/* Allow all GSI interrupts again when resuming */
1067void gsi_resume(struct gsi *gsi)
1068{
1069 enable_irq(gsi->irq);
1070}
1071
1072void gsi_trans_tx_committed(struct gsi_trans *trans)
1073{
1074 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
1075
1076 channel->trans_count++;
1077 channel->byte_count += trans->len;
1078
1079 trans->trans_count = channel->trans_count;
1080 trans->byte_count = channel->byte_count;
1081}
1082
1083void gsi_trans_tx_queued(struct gsi_trans *trans)
1084{
1085 u32 channel_id = trans->channel_id;
1086 struct gsi *gsi = trans->gsi;
1087 struct gsi_channel *channel;
1088 u32 trans_count;
1089 u32 byte_count;
1090
1091 channel = &gsi->channel[channel_id];
1092
1093 byte_count = channel->byte_count - channel->queued_byte_count;
1094 trans_count = channel->trans_count - channel->queued_trans_count;
1095 channel->queued_byte_count = channel->byte_count;
1096 channel->queued_trans_count = channel->trans_count;
1097
1098 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1099}
1100
1101/**
1102 * gsi_trans_tx_completed() - Report completed TX transactions
1103 * @trans: TX channel transaction that has completed
1104 *
1105 * Report that a transaction on a TX channel has completed. At the time a
1106 * transaction is committed, we record *in the transaction* its channel's
1107 * committed transaction and byte counts. Transactions are completed in
1108 * order, and the difference between the channel's byte/transaction count
1109 * when the transaction was committed and when it completes tells us
1110 * exactly how much data has been transferred while the transaction was
1111 * pending.
1112 *
1113 * We report this information to the network stack, which uses it to manage
1114 * the rate at which data is sent to hardware.
1115 */
1116static void gsi_trans_tx_completed(struct gsi_trans *trans)
1117{
1118 u32 channel_id = trans->channel_id;
1119 struct gsi *gsi = trans->gsi;
1120 struct gsi_channel *channel;
1121 u32 trans_count;
1122 u32 byte_count;
1123
1124 channel = &gsi->channel[channel_id];
1125 trans_count = trans->trans_count - channel->compl_trans_count;
1126 byte_count = trans->byte_count - channel->compl_byte_count;
1127
1128 channel->compl_trans_count += trans_count;
1129 channel->compl_byte_count += byte_count;
1130
1131 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1132}
1133
1134/* Channel control interrupt handler */
1135static void gsi_isr_chan_ctrl(struct gsi *gsi)
1136{
1137 const struct reg *reg;
1138 u32 channel_mask;
1139
1140 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
1141 channel_mask = ioread32(gsi->virt + reg_offset(reg));
1142
1143 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
1144 iowrite32(channel_mask, gsi->virt + reg_offset(reg));
1145
1146 while (channel_mask) {
1147 u32 channel_id = __ffs(channel_mask);
1148
1149 channel_mask ^= BIT(channel_id);
1150
1151 complete(&gsi->completion);
1152 }
1153}
1154
1155/* Event ring control interrupt handler */
1156static void gsi_isr_evt_ctrl(struct gsi *gsi)
1157{
1158 const struct reg *reg;
1159 u32 event_mask;
1160
1161 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
1162 event_mask = ioread32(gsi->virt + reg_offset(reg));
1163
1164 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
1165 iowrite32(event_mask, gsi->virt + reg_offset(reg));
1166
1167 while (event_mask) {
1168 u32 evt_ring_id = __ffs(event_mask);
1169
1170 event_mask ^= BIT(evt_ring_id);
1171
1172 complete(&gsi->completion);
1173 }
1174}
1175
1176/* Global channel error interrupt handler */
1177static void
1178gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1179{
1180 if (code == GSI_OUT_OF_RESOURCES) {
1181 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1182 complete(&gsi->completion);
1183 return;
1184 }
1185
1186 /* Report, but otherwise ignore all other error codes */
1187 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1188 channel_id, err_ee, code);
1189}
1190
1191/* Global event error interrupt handler */
1192static void
1193gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1194{
1195 if (code == GSI_OUT_OF_RESOURCES) {
1196 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1197 u32 channel_id = gsi_channel_id(evt_ring->channel);
1198
1199 complete(&gsi->completion);
1200 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1201 channel_id);
1202 return;
1203 }
1204
1205 /* Report, but otherwise ignore all other error codes */
1206 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1207 evt_ring_id, err_ee, code);
1208}
1209
1210/* Global error interrupt handler */
1211static void gsi_isr_glob_err(struct gsi *gsi)
1212{
1213 const struct reg *log_reg;
1214 const struct reg *clr_reg;
1215 enum gsi_err_type type;
1216 enum gsi_err_code code;
1217 u32 offset;
1218 u32 which;
1219 u32 val;
1220 u32 ee;
1221
1222 /* Get the logged error, then reinitialize the log */
1223 log_reg = gsi_reg(gsi, ERROR_LOG);
1224 offset = reg_offset(log_reg);
1225 val = ioread32(gsi->virt + offset);
1226 iowrite32(0, gsi->virt + offset);
1227
1228 clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
1229 iowrite32(~0, gsi->virt + reg_offset(clr_reg));
1230
1231 /* Parse the error value */
1232 ee = reg_decode(log_reg, ERR_EE, val);
1233 type = reg_decode(log_reg, ERR_TYPE, val);
1234 which = reg_decode(log_reg, ERR_VIRT_IDX, val);
1235 code = reg_decode(log_reg, ERR_CODE, val);
1236
1237 if (type == GSI_ERR_TYPE_CHAN)
1238 gsi_isr_glob_chan_err(gsi, ee, which, code);
1239 else if (type == GSI_ERR_TYPE_EVT)
1240 gsi_isr_glob_evt_err(gsi, ee, which, code);
1241 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1242 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1243}
1244
1245/* Generic EE interrupt handler */
1246static void gsi_isr_gp_int1(struct gsi *gsi)
1247{
1248 const struct reg *reg;
1249 u32 result;
1250 u32 val;
1251
1252 /* This interrupt is used to handle completions of GENERIC GSI
1253 * commands. We use these to allocate and halt channels on the
1254 * modem's behalf due to a hardware quirk on IPA v4.2. The modem
1255 * "owns" channels even when the AP allocates them, and have no
1256 * way of knowing whether a modem channel's state has been changed.
1257 *
1258 * We also use GENERIC commands to enable/disable channel flow
1259 * control for IPA v4.2+.
1260 *
1261 * It is recommended that we halt the modem channels we allocated
1262 * when shutting down, but it's possible the channel isn't running
1263 * at the time we issue the HALT command. We'll get an error in
1264 * that case, but it's harmless (the channel is already halted).
1265 * Similarly, we could get an error back when updating flow control
1266 * on a channel because it's not in the proper state.
1267 *
1268 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1269 * error if we receive it.
1270 */
1271 reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1272 val = ioread32(gsi->virt + reg_offset(reg));
1273 result = reg_decode(reg, GENERIC_EE_RESULT, val);
1274
1275 switch (result) {
1276 case GENERIC_EE_SUCCESS:
1277 case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1278 gsi->result = 0;
1279 break;
1280
1281 case GENERIC_EE_RETRY:
1282 gsi->result = -EAGAIN;
1283 break;
1284
1285 default:
1286 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1287 gsi->result = -EIO;
1288 break;
1289 }
1290
1291 complete(&gsi->completion);
1292}
1293
1294/* Inter-EE interrupt handler */
1295static void gsi_isr_glob_ee(struct gsi *gsi)
1296{
1297 const struct reg *reg;
1298 u32 val;
1299
1300 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
1301 val = ioread32(gsi->virt + reg_offset(reg));
1302
1303 if (val & ERROR_INT)
1304 gsi_isr_glob_err(gsi);
1305
1306 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
1307 iowrite32(val, gsi->virt + reg_offset(reg));
1308
1309 val &= ~ERROR_INT;
1310
1311 if (val & GP_INT1) {
1312 val ^= GP_INT1;
1313 gsi_isr_gp_int1(gsi);
1314 }
1315
1316 if (val)
1317 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1318}
1319
1320/* I/O completion interrupt event */
1321static void gsi_isr_ieob(struct gsi *gsi)
1322{
1323 const struct reg *reg;
1324 u32 event_mask;
1325
1326 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
1327 event_mask = ioread32(gsi->virt + reg_offset(reg));
1328
1329 gsi_irq_ieob_disable(gsi, event_mask);
1330
1331 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
1332 iowrite32(event_mask, gsi->virt + reg_offset(reg));
1333
1334 while (event_mask) {
1335 u32 evt_ring_id = __ffs(event_mask);
1336
1337 event_mask ^= BIT(evt_ring_id);
1338
1339 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1340 }
1341}
1342
1343/* General event interrupts represent serious problems, so report them */
1344static void gsi_isr_general(struct gsi *gsi)
1345{
1346 struct device *dev = gsi->dev;
1347 const struct reg *reg;
1348 u32 val;
1349
1350 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
1351 val = ioread32(gsi->virt + reg_offset(reg));
1352
1353 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
1354 iowrite32(val, gsi->virt + reg_offset(reg));
1355
1356 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1357}
1358
1359/**
1360 * gsi_isr() - Top level GSI interrupt service routine
1361 * @irq: Interrupt number (ignored)
1362 * @dev_id: GSI pointer supplied to request_irq()
1363 *
1364 * This is the main handler function registered for the GSI IRQ. Each type
1365 * of interrupt has a separate handler function that is called from here.
1366 */
1367static irqreturn_t gsi_isr(int irq, void *dev_id)
1368{
1369 struct gsi *gsi = dev_id;
1370 const struct reg *reg;
1371 u32 intr_mask;
1372 u32 cnt = 0;
1373 u32 offset;
1374
1375 reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
1376 offset = reg_offset(reg);
1377
1378 /* enum gsi_irq_type_id defines GSI interrupt types */
1379 while ((intr_mask = ioread32(gsi->virt + offset))) {
1380 /* intr_mask contains bitmask of pending GSI interrupts */
1381 do {
1382 u32 gsi_intr = BIT(__ffs(intr_mask));
1383
1384 intr_mask ^= gsi_intr;
1385
1386 /* Note: the IRQ condition for each type is cleared
1387 * when the type-specific register is updated.
1388 */
1389 switch (gsi_intr) {
1390 case GSI_CH_CTRL:
1391 gsi_isr_chan_ctrl(gsi);
1392 break;
1393 case GSI_EV_CTRL:
1394 gsi_isr_evt_ctrl(gsi);
1395 break;
1396 case GSI_GLOB_EE:
1397 gsi_isr_glob_ee(gsi);
1398 break;
1399 case GSI_IEOB:
1400 gsi_isr_ieob(gsi);
1401 break;
1402 case GSI_GENERAL:
1403 gsi_isr_general(gsi);
1404 break;
1405 default:
1406 dev_err(gsi->dev,
1407 "unrecognized interrupt type 0x%08x\n",
1408 gsi_intr);
1409 break;
1410 }
1411 } while (intr_mask);
1412
1413 if (++cnt > GSI_ISR_MAX_ITER) {
1414 dev_err(gsi->dev, "interrupt flood\n");
1415 break;
1416 }
1417 }
1418
1419 return IRQ_HANDLED;
1420}
1421
1422/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1423static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1424{
1425 int ret;
1426
1427 ret = platform_get_irq_byname(pdev, "gsi");
1428 if (ret <= 0)
1429 return ret ? : -EINVAL;
1430
1431 gsi->irq = ret;
1432
1433 return 0;
1434}
1435
1436/* Return the transaction associated with a transfer completion event */
1437static struct gsi_trans *
1438gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1439{
1440 u32 channel_id = event->chid;
1441 struct gsi_channel *channel;
1442 struct gsi_trans *trans;
1443 u32 tre_offset;
1444 u32 tre_index;
1445
1446 channel = &gsi->channel[channel_id];
1447 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1448 return NULL;
1449
1450 /* Event xfer_ptr records the TRE it's associated with */
1451 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1452 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1453
1454 trans = gsi_channel_trans_mapped(channel, tre_index);
1455
1456 if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1457 return NULL;
1458
1459 return trans;
1460}
1461
1462/**
1463 * gsi_evt_ring_update() - Update transaction state from hardware
1464 * @gsi: GSI pointer
1465 * @evt_ring_id: Event ring ID
1466 * @index: Event index in ring reported by hardware
1467 *
1468 * Events for RX channels contain the actual number of bytes received into
1469 * the buffer. Every event has a transaction associated with it, and here
1470 * we update transactions to record their actual received lengths.
1471 *
1472 * When an event for a TX channel arrives we use information in the
1473 * transaction to report the number of requests and bytes that have
1474 * been transferred.
1475 *
1476 * This function is called whenever we learn that the GSI hardware has filled
1477 * new events since the last time we checked. The ring's index field tells
1478 * the first entry in need of processing. The index provided is the
1479 * first *unfilled* event in the ring (following the last filled one).
1480 *
1481 * Events are sequential within the event ring, and transactions are
1482 * sequential within the transaction array.
1483 *
1484 * Note that @index always refers to an element *within* the event ring.
1485 */
1486static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1487{
1488 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1489 struct gsi_ring *ring = &evt_ring->ring;
1490 struct gsi_event *event_done;
1491 struct gsi_event *event;
1492 u32 event_avail;
1493 u32 old_index;
1494
1495 /* Starting with the oldest un-processed event, determine which
1496 * transaction (and which channel) is associated with the event.
1497 * For RX channels, update each completed transaction with the
1498 * number of bytes that were actually received. For TX channels
1499 * associated with a network device, report to the network stack
1500 * the number of transfers and bytes this completion represents.
1501 */
1502 old_index = ring->index;
1503 event = gsi_ring_virt(ring, old_index);
1504
1505 /* Compute the number of events to process before we wrap,
1506 * and determine when we'll be done processing events.
1507 */
1508 event_avail = ring->count - old_index % ring->count;
1509 event_done = gsi_ring_virt(ring, index);
1510 do {
1511 struct gsi_trans *trans;
1512
1513 trans = gsi_event_trans(gsi, event);
1514 if (!trans)
1515 return;
1516
1517 if (trans->direction == DMA_FROM_DEVICE)
1518 trans->len = __le16_to_cpu(event->len);
1519 else
1520 gsi_trans_tx_completed(trans);
1521
1522 gsi_trans_move_complete(trans);
1523
1524 /* Move on to the next event and transaction */
1525 if (--event_avail)
1526 event++;
1527 else
1528 event = gsi_ring_virt(ring, 0);
1529 } while (event != event_done);
1530
1531 /* Tell the hardware we've handled these events */
1532 gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1533}
1534
1535/* Initialize a ring, including allocating DMA memory for its entries */
1536static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1537{
1538 u32 size = count * GSI_RING_ELEMENT_SIZE;
1539 struct device *dev = gsi->dev;
1540 dma_addr_t addr;
1541
1542 /* Hardware requires a 2^n ring size, with alignment equal to size.
1543 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1544 * be a power-of-2 number of pages, which satisfies the requirement.
1545 */
1546 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1547 if (!ring->virt)
1548 return -ENOMEM;
1549
1550 ring->addr = addr;
1551 ring->count = count;
1552 ring->index = 0;
1553
1554 return 0;
1555}
1556
1557/* Free a previously-allocated ring */
1558static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1559{
1560 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1561
1562 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1563}
1564
1565/* Allocate an available event ring id */
1566static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1567{
1568 u32 evt_ring_id;
1569
1570 if (gsi->event_bitmap == ~0U) {
1571 dev_err(gsi->dev, "event rings exhausted\n");
1572 return -ENOSPC;
1573 }
1574
1575 evt_ring_id = ffz(gsi->event_bitmap);
1576 gsi->event_bitmap |= BIT(evt_ring_id);
1577
1578 return (int)evt_ring_id;
1579}
1580
1581/* Free a previously-allocated event ring id */
1582static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1583{
1584 gsi->event_bitmap &= ~BIT(evt_ring_id);
1585}
1586
1587/* Ring a channel doorbell, reporting the first un-filled entry */
1588void gsi_channel_doorbell(struct gsi_channel *channel)
1589{
1590 struct gsi_ring *tre_ring = &channel->tre_ring;
1591 u32 channel_id = gsi_channel_id(channel);
1592 struct gsi *gsi = channel->gsi;
1593 const struct reg *reg;
1594 u32 val;
1595
1596 reg = gsi_reg(gsi, CH_C_DOORBELL_0);
1597 /* Note: index *must* be used modulo the ring count here */
1598 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1599 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
1600}
1601
1602/* Consult hardware, move newly completed transactions to completed state */
1603void gsi_channel_update(struct gsi_channel *channel)
1604{
1605 u32 evt_ring_id = channel->evt_ring_id;
1606 struct gsi *gsi = channel->gsi;
1607 struct gsi_evt_ring *evt_ring;
1608 struct gsi_trans *trans;
1609 struct gsi_ring *ring;
1610 const struct reg *reg;
1611 u32 offset;
1612 u32 index;
1613
1614 evt_ring = &gsi->evt_ring[evt_ring_id];
1615 ring = &evt_ring->ring;
1616
1617 /* See if there's anything new to process; if not, we're done. Note
1618 * that index always refers to an entry *within* the event ring.
1619 */
1620 reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
1621 offset = reg_n_offset(reg, evt_ring_id);
1622 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1623 if (index == ring->index % ring->count)
1624 return;
1625
1626 /* Get the transaction for the latest completed event. */
1627 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1628 if (!trans)
1629 return;
1630
1631 /* For RX channels, update each completed transaction with the number
1632 * of bytes that were actually received. For TX channels, report
1633 * the number of transactions and bytes this completion represents
1634 * up the network stack.
1635 */
1636 gsi_evt_ring_update(gsi, evt_ring_id, index);
1637}
1638
1639/**
1640 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1641 * @channel: Channel to be polled
1642 *
1643 * Return: Transaction pointer, or null if none are available
1644 *
1645 * This function returns the first of a channel's completed transactions.
1646 * If no transactions are in completed state, the hardware is consulted to
1647 * determine whether any new transactions have completed. If so, they're
1648 * moved to completed state and the first such transaction is returned.
1649 * If there are no more completed transactions, a null pointer is returned.
1650 */
1651static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1652{
1653 struct gsi_trans *trans;
1654
1655 /* Get the first completed transaction */
1656 trans = gsi_channel_trans_complete(channel);
1657 if (trans)
1658 gsi_trans_move_polled(trans);
1659
1660 return trans;
1661}
1662
1663/**
1664 * gsi_channel_poll() - NAPI poll function for a channel
1665 * @napi: NAPI structure for the channel
1666 * @budget: Budget supplied by NAPI core
1667 *
1668 * Return: Number of items polled (<= budget)
1669 *
1670 * Single transactions completed by hardware are polled until either
1671 * the budget is exhausted, or there are no more. Each transaction
1672 * polled is passed to gsi_trans_complete(), to perform remaining
1673 * completion processing and retire/free the transaction.
1674 */
1675static int gsi_channel_poll(struct napi_struct *napi, int budget)
1676{
1677 struct gsi_channel *channel;
1678 int count;
1679
1680 channel = container_of(napi, struct gsi_channel, napi);
1681 for (count = 0; count < budget; count++) {
1682 struct gsi_trans *trans;
1683
1684 trans = gsi_channel_poll_one(channel);
1685 if (!trans)
1686 break;
1687 gsi_trans_complete(trans);
1688 }
1689
1690 if (count < budget && napi_complete(napi))
1691 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1692
1693 return count;
1694}
1695
1696/* The event bitmap represents which event ids are available for allocation.
1697 * Set bits are not available, clear bits can be used. This function
1698 * initializes the map so all events supported by the hardware are available,
1699 * then precludes any reserved events from being allocated.
1700 */
1701static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1702{
1703 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1704
1705 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1706
1707 return event_bitmap;
1708}
1709
1710/* Setup function for a single channel */
1711static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1712{
1713 struct gsi_channel *channel = &gsi->channel[channel_id];
1714 u32 evt_ring_id = channel->evt_ring_id;
1715 int ret;
1716
1717 if (!gsi_channel_initialized(channel))
1718 return 0;
1719
1720 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1721 if (ret)
1722 return ret;
1723
1724 gsi_evt_ring_program(gsi, evt_ring_id);
1725
1726 ret = gsi_channel_alloc_command(gsi, channel_id);
1727 if (ret)
1728 goto err_evt_ring_de_alloc;
1729
1730 gsi_channel_program(channel, true);
1731
1732 if (channel->toward_ipa)
1733 netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
1734 gsi_channel_poll);
1735 else
1736 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1737 gsi_channel_poll);
1738
1739 return 0;
1740
1741err_evt_ring_de_alloc:
1742 /* We've done nothing with the event ring yet so don't reset */
1743 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1744
1745 return ret;
1746}
1747
1748/* Inverse of gsi_channel_setup_one() */
1749static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1750{
1751 struct gsi_channel *channel = &gsi->channel[channel_id];
1752 u32 evt_ring_id = channel->evt_ring_id;
1753
1754 if (!gsi_channel_initialized(channel))
1755 return;
1756
1757 netif_napi_del(&channel->napi);
1758
1759 gsi_channel_de_alloc_command(gsi, channel_id);
1760 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1761 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1762}
1763
1764/* We use generic commands only to operate on modem channels. We don't have
1765 * the ability to determine channel state for a modem channel, so we simply
1766 * issue the command and wait for it to complete.
1767 */
1768static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1769 enum gsi_generic_cmd_opcode opcode,
1770 u8 params)
1771{
1772 const struct reg *reg;
1773 bool timeout;
1774 u32 offset;
1775 u32 val;
1776
1777 /* The error global interrupt type is always enabled (until we tear
1778 * down), so we will keep it enabled.
1779 *
1780 * A generic EE command completes with a GSI global interrupt of
1781 * type GP_INT1. We only perform one generic command at a time
1782 * (to allocate, halt, or enable/disable flow control on a modem
1783 * channel), and only from this function. So we enable the GP_INT1
1784 * IRQ type here, and disable it again after the command completes.
1785 */
1786 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1787 val = ERROR_INT | GP_INT1;
1788 iowrite32(val, gsi->virt + reg_offset(reg));
1789
1790 /* First zero the result code field */
1791 reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1792 offset = reg_offset(reg);
1793 val = ioread32(gsi->virt + offset);
1794
1795 val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
1796 iowrite32(val, gsi->virt + offset);
1797
1798 /* Now issue the command */
1799 reg = gsi_reg(gsi, GENERIC_CMD);
1800 val = reg_encode(reg, GENERIC_OPCODE, opcode);
1801 val |= reg_encode(reg, GENERIC_CHID, channel_id);
1802 val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
1803 if (gsi->version >= IPA_VERSION_4_11)
1804 val |= reg_encode(reg, GENERIC_PARAMS, params);
1805
1806 timeout = !gsi_command(gsi, reg_offset(reg), val);
1807
1808 /* Disable the GP_INT1 IRQ type again */
1809 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1810 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
1811
1812 if (!timeout)
1813 return gsi->result;
1814
1815 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1816 opcode, channel_id);
1817
1818 return -ETIMEDOUT;
1819}
1820
1821static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1822{
1823 return gsi_generic_command(gsi, channel_id,
1824 GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1825}
1826
1827static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1828{
1829 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1830 int ret;
1831
1832 do
1833 ret = gsi_generic_command(gsi, channel_id,
1834 GSI_GENERIC_HALT_CHANNEL, 0);
1835 while (ret == -EAGAIN && retries--);
1836
1837 if (ret)
1838 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1839 ret, channel_id);
1840}
1841
1842/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1843void
1844gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1845{
1846 u32 retries = 0;
1847 u32 command;
1848 int ret;
1849
1850 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1851 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1852 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1853 * is underway. In this case we need to retry the command.
1854 */
1855 if (!enable && gsi->version >= IPA_VERSION_4_11)
1856 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1857
1858 do
1859 ret = gsi_generic_command(gsi, channel_id, command, 0);
1860 while (ret == -EAGAIN && retries--);
1861
1862 if (ret)
1863 dev_err(gsi->dev,
1864 "error %d %sabling mode channel %u flow control\n",
1865 ret, enable ? "en" : "dis", channel_id);
1866}
1867
1868/* Setup function for channels */
1869static int gsi_channel_setup(struct gsi *gsi)
1870{
1871 u32 channel_id = 0;
1872 u32 mask;
1873 int ret;
1874
1875 gsi_irq_enable(gsi);
1876
1877 mutex_lock(&gsi->mutex);
1878
1879 do {
1880 ret = gsi_channel_setup_one(gsi, channel_id);
1881 if (ret)
1882 goto err_unwind;
1883 } while (++channel_id < gsi->channel_count);
1884
1885 /* Make sure no channels were defined that hardware does not support */
1886 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1887 struct gsi_channel *channel = &gsi->channel[channel_id++];
1888
1889 if (!gsi_channel_initialized(channel))
1890 continue;
1891
1892 ret = -EINVAL;
1893 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1894 channel_id - 1);
1895 channel_id = gsi->channel_count;
1896 goto err_unwind;
1897 }
1898
1899 /* Allocate modem channels if necessary */
1900 mask = gsi->modem_channel_bitmap;
1901 while (mask) {
1902 u32 modem_channel_id = __ffs(mask);
1903
1904 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1905 if (ret)
1906 goto err_unwind_modem;
1907
1908 /* Clear bit from mask only after success (for unwind) */
1909 mask ^= BIT(modem_channel_id);
1910 }
1911
1912 mutex_unlock(&gsi->mutex);
1913
1914 return 0;
1915
1916err_unwind_modem:
1917 /* Compute which modem channels need to be deallocated */
1918 mask ^= gsi->modem_channel_bitmap;
1919 while (mask) {
1920 channel_id = __fls(mask);
1921
1922 mask ^= BIT(channel_id);
1923
1924 gsi_modem_channel_halt(gsi, channel_id);
1925 }
1926
1927err_unwind:
1928 while (channel_id--)
1929 gsi_channel_teardown_one(gsi, channel_id);
1930
1931 mutex_unlock(&gsi->mutex);
1932
1933 gsi_irq_disable(gsi);
1934
1935 return ret;
1936}
1937
1938/* Inverse of gsi_channel_setup() */
1939static void gsi_channel_teardown(struct gsi *gsi)
1940{
1941 u32 mask = gsi->modem_channel_bitmap;
1942 u32 channel_id;
1943
1944 mutex_lock(&gsi->mutex);
1945
1946 while (mask) {
1947 channel_id = __fls(mask);
1948
1949 mask ^= BIT(channel_id);
1950
1951 gsi_modem_channel_halt(gsi, channel_id);
1952 }
1953
1954 channel_id = gsi->channel_count - 1;
1955 do
1956 gsi_channel_teardown_one(gsi, channel_id);
1957 while (channel_id--);
1958
1959 mutex_unlock(&gsi->mutex);
1960
1961 gsi_irq_disable(gsi);
1962}
1963
1964/* Turn off all GSI interrupts initially */
1965static int gsi_irq_setup(struct gsi *gsi)
1966{
1967 const struct reg *reg;
1968 int ret;
1969
1970 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1971 reg = gsi_reg(gsi, CNTXT_INTSET);
1972 iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
1973
1974 /* Disable all interrupt types */
1975 gsi_irq_type_update(gsi, 0);
1976
1977 /* Clear all type-specific interrupt masks */
1978 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
1979 iowrite32(0, gsi->virt + reg_offset(reg));
1980
1981 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
1982 iowrite32(0, gsi->virt + reg_offset(reg));
1983
1984 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1985 iowrite32(0, gsi->virt + reg_offset(reg));
1986
1987 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
1988 iowrite32(0, gsi->virt + reg_offset(reg));
1989
1990 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1991 if (gsi->version > IPA_VERSION_3_1) {
1992 reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
1993 iowrite32(0, gsi->virt + reg_offset(reg));
1994
1995 reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
1996 iowrite32(0, gsi->virt + reg_offset(reg));
1997 }
1998
1999 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
2000 iowrite32(0, gsi->virt + reg_offset(reg));
2001
2002 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
2003 if (ret)
2004 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
2005
2006 return ret;
2007}
2008
2009static void gsi_irq_teardown(struct gsi *gsi)
2010{
2011 free_irq(gsi->irq, gsi);
2012}
2013
2014/* Get # supported channel and event rings; there is no gsi_ring_teardown() */
2015static int gsi_ring_setup(struct gsi *gsi)
2016{
2017 struct device *dev = gsi->dev;
2018 const struct reg *reg;
2019 u32 count;
2020 u32 val;
2021
2022 if (gsi->version < IPA_VERSION_3_5_1) {
2023 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
2024 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
2025 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
2026
2027 return 0;
2028 }
2029
2030 reg = gsi_reg(gsi, HW_PARAM_2);
2031 val = ioread32(gsi->virt + reg_offset(reg));
2032
2033 count = reg_decode(reg, NUM_CH_PER_EE, val);
2034 if (!count) {
2035 dev_err(dev, "GSI reports zero channels supported\n");
2036 return -EINVAL;
2037 }
2038 if (count > GSI_CHANNEL_COUNT_MAX) {
2039 dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
2040 GSI_CHANNEL_COUNT_MAX, count);
2041 count = GSI_CHANNEL_COUNT_MAX;
2042 }
2043 gsi->channel_count = count;
2044
2045 if (gsi->version < IPA_VERSION_5_0) {
2046 count = reg_decode(reg, NUM_EV_PER_EE, val);
2047 } else {
2048 reg = gsi_reg(gsi, HW_PARAM_4);
2049 count = reg_decode(reg, EV_PER_EE, val);
2050 }
2051 if (!count) {
2052 dev_err(dev, "GSI reports zero event rings supported\n");
2053 return -EINVAL;
2054 }
2055 if (count > GSI_EVT_RING_COUNT_MAX) {
2056 dev_warn(dev,
2057 "limiting to %u event rings; hardware supports %u\n",
2058 GSI_EVT_RING_COUNT_MAX, count);
2059 count = GSI_EVT_RING_COUNT_MAX;
2060 }
2061 gsi->evt_ring_count = count;
2062
2063 return 0;
2064}
2065
2066/* Setup function for GSI. GSI firmware must be loaded and initialized */
2067int gsi_setup(struct gsi *gsi)
2068{
2069 const struct reg *reg;
2070 u32 val;
2071 int ret;
2072
2073 /* Here is where we first touch the GSI hardware */
2074 reg = gsi_reg(gsi, GSI_STATUS);
2075 val = ioread32(gsi->virt + reg_offset(reg));
2076 if (!(val & reg_bit(reg, ENABLED))) {
2077 dev_err(gsi->dev, "GSI has not been enabled\n");
2078 return -EIO;
2079 }
2080
2081 ret = gsi_irq_setup(gsi);
2082 if (ret)
2083 return ret;
2084
2085 ret = gsi_ring_setup(gsi); /* No matching teardown required */
2086 if (ret)
2087 goto err_irq_teardown;
2088
2089 /* Initialize the error log */
2090 reg = gsi_reg(gsi, ERROR_LOG);
2091 iowrite32(0, gsi->virt + reg_offset(reg));
2092
2093 ret = gsi_channel_setup(gsi);
2094 if (ret)
2095 goto err_irq_teardown;
2096
2097 return 0;
2098
2099err_irq_teardown:
2100 gsi_irq_teardown(gsi);
2101
2102 return ret;
2103}
2104
2105/* Inverse of gsi_setup() */
2106void gsi_teardown(struct gsi *gsi)
2107{
2108 gsi_channel_teardown(gsi);
2109 gsi_irq_teardown(gsi);
2110}
2111
2112/* Initialize a channel's event ring */
2113static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
2114{
2115 struct gsi *gsi = channel->gsi;
2116 struct gsi_evt_ring *evt_ring;
2117 int ret;
2118
2119 ret = gsi_evt_ring_id_alloc(gsi);
2120 if (ret < 0)
2121 return ret;
2122 channel->evt_ring_id = ret;
2123
2124 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
2125 evt_ring->channel = channel;
2126
2127 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
2128 if (!ret)
2129 return 0; /* Success! */
2130
2131 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
2132 ret, gsi_channel_id(channel));
2133
2134 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
2135
2136 return ret;
2137}
2138
2139/* Inverse of gsi_channel_evt_ring_init() */
2140static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
2141{
2142 u32 evt_ring_id = channel->evt_ring_id;
2143 struct gsi *gsi = channel->gsi;
2144 struct gsi_evt_ring *evt_ring;
2145
2146 evt_ring = &gsi->evt_ring[evt_ring_id];
2147 gsi_ring_free(gsi, &evt_ring->ring);
2148 gsi_evt_ring_id_free(gsi, evt_ring_id);
2149}
2150
2151static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
2152 const struct ipa_gsi_endpoint_data *data)
2153{
2154 const struct gsi_channel_data *channel_data;
2155 u32 channel_id = data->channel_id;
2156 struct device *dev = gsi->dev;
2157
2158 /* Make sure channel ids are in the range driver supports */
2159 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2160 dev_err(dev, "bad channel id %u; must be less than %u\n",
2161 channel_id, GSI_CHANNEL_COUNT_MAX);
2162 return false;
2163 }
2164
2165 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2166 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2167 return false;
2168 }
2169
2170 if (command && !data->toward_ipa) {
2171 dev_err(dev, "command channel %u is not TX\n", channel_id);
2172 return false;
2173 }
2174
2175 channel_data = &data->channel;
2176
2177 if (!channel_data->tlv_count ||
2178 channel_data->tlv_count > GSI_TLV_MAX) {
2179 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2180 channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2181 return false;
2182 }
2183
2184 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2185 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2186 channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2187 channel_data->tlv_count);
2188 return false;
2189 }
2190
2191 /* We have to allow at least one maximally-sized transaction to
2192 * be outstanding (which would use tlv_count TREs). Given how
2193 * gsi_channel_tre_max() is computed, tre_count has to be almost
2194 * twice the TLV FIFO size to satisfy this requirement.
2195 */
2196 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2197 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2198 channel_id, channel_data->tlv_count,
2199 channel_data->tre_count);
2200 return false;
2201 }
2202
2203 if (!is_power_of_2(channel_data->tre_count)) {
2204 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2205 channel_id, channel_data->tre_count);
2206 return false;
2207 }
2208
2209 if (!is_power_of_2(channel_data->event_count)) {
2210 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2211 channel_id, channel_data->event_count);
2212 return false;
2213 }
2214
2215 return true;
2216}
2217
2218/* Init function for a single channel */
2219static int gsi_channel_init_one(struct gsi *gsi,
2220 const struct ipa_gsi_endpoint_data *data,
2221 bool command)
2222{
2223 struct gsi_channel *channel;
2224 u32 tre_count;
2225 int ret;
2226
2227 if (!gsi_channel_data_valid(gsi, command, data))
2228 return -EINVAL;
2229
2230 /* Worst case we need an event for every outstanding TRE */
2231 if (data->channel.tre_count > data->channel.event_count) {
2232 tre_count = data->channel.event_count;
2233 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2234 data->channel_id, tre_count);
2235 } else {
2236 tre_count = data->channel.tre_count;
2237 }
2238
2239 channel = &gsi->channel[data->channel_id];
2240 memset(channel, 0, sizeof(*channel));
2241
2242 channel->gsi = gsi;
2243 channel->toward_ipa = data->toward_ipa;
2244 channel->command = command;
2245 channel->trans_tre_max = data->channel.tlv_count;
2246 channel->tre_count = tre_count;
2247 channel->event_count = data->channel.event_count;
2248
2249 ret = gsi_channel_evt_ring_init(channel);
2250 if (ret)
2251 goto err_clear_gsi;
2252
2253 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2254 if (ret) {
2255 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2256 ret, data->channel_id);
2257 goto err_channel_evt_ring_exit;
2258 }
2259
2260 ret = gsi_channel_trans_init(gsi, data->channel_id);
2261 if (ret)
2262 goto err_ring_free;
2263
2264 if (command) {
2265 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2266
2267 ret = ipa_cmd_pool_init(channel, tre_max);
2268 }
2269 if (!ret)
2270 return 0; /* Success! */
2271
2272 gsi_channel_trans_exit(channel);
2273err_ring_free:
2274 gsi_ring_free(gsi, &channel->tre_ring);
2275err_channel_evt_ring_exit:
2276 gsi_channel_evt_ring_exit(channel);
2277err_clear_gsi:
2278 channel->gsi = NULL; /* Mark it not (fully) initialized */
2279
2280 return ret;
2281}
2282
2283/* Inverse of gsi_channel_init_one() */
2284static void gsi_channel_exit_one(struct gsi_channel *channel)
2285{
2286 if (!gsi_channel_initialized(channel))
2287 return;
2288
2289 if (channel->command)
2290 ipa_cmd_pool_exit(channel);
2291 gsi_channel_trans_exit(channel);
2292 gsi_ring_free(channel->gsi, &channel->tre_ring);
2293 gsi_channel_evt_ring_exit(channel);
2294}
2295
2296/* Init function for channels */
2297static int gsi_channel_init(struct gsi *gsi, u32 count,
2298 const struct ipa_gsi_endpoint_data *data)
2299{
2300 bool modem_alloc;
2301 int ret = 0;
2302 u32 i;
2303
2304 /* IPA v4.2 requires the AP to allocate channels for the modem */
2305 modem_alloc = gsi->version == IPA_VERSION_4_2;
2306
2307 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2308 gsi->ieob_enabled_bitmap = 0;
2309
2310 /* The endpoint data array is indexed by endpoint name */
2311 for (i = 0; i < count; i++) {
2312 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2313
2314 if (ipa_gsi_endpoint_data_empty(&data[i]))
2315 continue; /* Skip over empty slots */
2316
2317 /* Mark modem channels to be allocated (hardware workaround) */
2318 if (data[i].ee_id == GSI_EE_MODEM) {
2319 if (modem_alloc)
2320 gsi->modem_channel_bitmap |=
2321 BIT(data[i].channel_id);
2322 continue;
2323 }
2324
2325 ret = gsi_channel_init_one(gsi, &data[i], command);
2326 if (ret)
2327 goto err_unwind;
2328 }
2329
2330 return ret;
2331
2332err_unwind:
2333 while (i--) {
2334 if (ipa_gsi_endpoint_data_empty(&data[i]))
2335 continue;
2336 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2337 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2338 continue;
2339 }
2340 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2341 }
2342
2343 return ret;
2344}
2345
2346/* Inverse of gsi_channel_init() */
2347static void gsi_channel_exit(struct gsi *gsi)
2348{
2349 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2350
2351 do
2352 gsi_channel_exit_one(&gsi->channel[channel_id]);
2353 while (channel_id--);
2354 gsi->modem_channel_bitmap = 0;
2355}
2356
2357/* Init function for GSI. GSI hardware does not need to be "ready" */
2358int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2359 enum ipa_version version, u32 count,
2360 const struct ipa_gsi_endpoint_data *data)
2361{
2362 int ret;
2363
2364 gsi_validate_build();
2365
2366 gsi->dev = &pdev->dev;
2367 gsi->version = version;
2368
2369 /* GSI uses NAPI on all channels. Create a dummy network device
2370 * for the channel NAPI contexts to be associated with.
2371 */
2372 init_dummy_netdev(&gsi->dummy_dev);
2373 init_completion(&gsi->completion);
2374
2375 ret = gsi_reg_init(gsi, pdev);
2376 if (ret)
2377 return ret;
2378
2379 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
2380 if (ret)
2381 goto err_reg_exit;
2382
2383 ret = gsi_channel_init(gsi, count, data);
2384 if (ret)
2385 goto err_reg_exit;
2386
2387 mutex_init(&gsi->mutex);
2388
2389 return 0;
2390
2391err_reg_exit:
2392 gsi_reg_exit(gsi);
2393
2394 return ret;
2395}
2396
2397/* Inverse of gsi_init() */
2398void gsi_exit(struct gsi *gsi)
2399{
2400 mutex_destroy(&gsi->mutex);
2401 gsi_channel_exit(gsi);
2402 gsi_reg_exit(gsi);
2403}
2404
2405/* The maximum number of outstanding TREs on a channel. This limits
2406 * a channel's maximum number of transactions outstanding (worst case
2407 * is one TRE per transaction).
2408 *
2409 * The absolute limit is the number of TREs in the channel's TRE ring,
2410 * and in theory we should be able use all of them. But in practice,
2411 * doing that led to the hardware reporting exhaustion of event ring
2412 * slots for writing completion information. So the hardware limit
2413 * would be (tre_count - 1).
2414 *
2415 * We reduce it a bit further though. Transaction resource pools are
2416 * sized to be a little larger than this maximum, to allow resource
2417 * allocations to always be contiguous. The number of entries in a
2418 * TRE ring buffer is a power of 2, and the extra resources in a pool
2419 * tends to nearly double the memory allocated for it. Reducing the
2420 * maximum number of outstanding TREs allows the number of entries in
2421 * a pool to avoid crossing that power-of-2 boundary, and this can
2422 * substantially reduce pool memory requirements. The number we
2423 * reduce it by matches the number added in gsi_trans_pool_init().
2424 */
2425u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2426{
2427 struct gsi_channel *channel = &gsi->channel[channel_id];
2428
2429 /* Hardware limit is channel->tre_count - 1 */
2430 return channel->tre_count - (channel->trans_tre_max - 1);
2431}
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2020 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/bits.h>
9#include <linux/bitfield.h>
10#include <linux/mutex.h>
11#include <linux/completion.h>
12#include <linux/io.h>
13#include <linux/bug.h>
14#include <linux/interrupt.h>
15#include <linux/platform_device.h>
16#include <linux/netdevice.h>
17
18#include "gsi.h"
19#include "gsi_reg.h"
20#include "gsi_private.h"
21#include "gsi_trans.h"
22#include "ipa_gsi.h"
23#include "ipa_data.h"
24
25/**
26 * DOC: The IPA Generic Software Interface
27 *
28 * The generic software interface (GSI) is an integral component of the IPA,
29 * providing a well-defined communication layer between the AP subsystem
30 * and the IPA core. The modem uses the GSI layer as well.
31 *
32 * -------- ---------
33 * | | | |
34 * | AP +<---. .----+ Modem |
35 * | +--. | | .->+ |
36 * | | | | | | | |
37 * -------- | | | | ---------
38 * v | v |
39 * --+-+---+-+--
40 * | GSI |
41 * |-----------|
42 * | |
43 * | IPA |
44 * | |
45 * -------------
46 *
47 * In the above diagram, the AP and Modem represent "execution environments"
48 * (EEs), which are independent operating environments that use the IPA for
49 * data transfer.
50 *
51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52 * of data to or from the IPA. A channel is implemented as a ring buffer,
53 * with a DRAM-resident array of "transfer elements" (TREs) available to
54 * describe transfers to or from other EEs through the IPA. A transfer
55 * element can also contain an immediate command, requesting the IPA perform
56 * actions other than data transfer.
57 *
58 * Each TRE refers to a block of data--also located DRAM. After writing one
59 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
60 * doorbell register to inform the receiving side how many elements have
61 * been written.
62 *
63 * Each channel has a GSI "event ring" associated with it. An event ring
64 * is implemented very much like a channel ring, but is always directed from
65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
66 * events by adding an entry to the event ring associated with the channel.
67 * The GSI then writes its doorbell for the event ring, causing the target
68 * EE to be interrupted. Each entry in an event ring contains a pointer
69 * to the channel TRE whose completion the event represents.
70 *
71 * Each TRE in a channel ring has a set of flags. One flag indicates whether
72 * the completion of the transfer operation generates an entry (and possibly
73 * an interrupt) in the channel's event ring. Other flags allow transfer
74 * elements to be chained together, forming a single logical transaction.
75 * TRE flags are used to control whether and when interrupts are generated
76 * to signal completion of channel transfers.
77 *
78 * Elements in channel and event rings are completed (or consumed) strictly
79 * in order. Completion of one entry implies the completion of all preceding
80 * entries. A single completion interrupt can therefore communicate the
81 * completion of many transfers.
82 *
83 * Note that all GSI registers are little-endian, which is the assumed
84 * endianness of I/O space accesses. The accessor functions perform byte
85 * swapping if needed (i.e., for a big endian CPU).
86 */
87
88/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
90
91#define GSI_CMD_TIMEOUT 5 /* seconds */
92
93#define GSI_CHANNEL_STOP_RX_RETRIES 10
94
95#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
96#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
97
98#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
99
100/* An entry in an event ring */
101struct gsi_event {
102 __le64 xfer_ptr;
103 __le16 len;
104 u8 reserved1;
105 u8 code;
106 __le16 reserved2;
107 u8 type;
108 u8 chid;
109};
110
111/* Hardware values from the error log register error code field */
112enum gsi_err_code {
113 GSI_INVALID_TRE_ERR = 0x1,
114 GSI_OUT_OF_BUFFERS_ERR = 0x2,
115 GSI_OUT_OF_RESOURCES_ERR = 0x3,
116 GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4,
117 GSI_EVT_RING_EMPTY_ERR = 0x5,
118 GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6,
119 GSI_HWO_1_ERR = 0x8,
120};
121
122/* Hardware values from the error log register error type field */
123enum gsi_err_type {
124 GSI_ERR_TYPE_GLOB = 0x1,
125 GSI_ERR_TYPE_CHAN = 0x2,
126 GSI_ERR_TYPE_EVT = 0x3,
127};
128
129/* Hardware values used when programming an event ring */
130enum gsi_evt_chtype {
131 GSI_EVT_CHTYPE_MHI_EV = 0x0,
132 GSI_EVT_CHTYPE_XHCI_EV = 0x1,
133 GSI_EVT_CHTYPE_GPI_EV = 0x2,
134 GSI_EVT_CHTYPE_XDCI_EV = 0x3,
135};
136
137/* Hardware values used when programming a channel */
138enum gsi_channel_protocol {
139 GSI_CHANNEL_PROTOCOL_MHI = 0x0,
140 GSI_CHANNEL_PROTOCOL_XHCI = 0x1,
141 GSI_CHANNEL_PROTOCOL_GPI = 0x2,
142 GSI_CHANNEL_PROTOCOL_XDCI = 0x3,
143};
144
145/* Hardware values representing an event ring immediate command opcode */
146enum gsi_evt_cmd_opcode {
147 GSI_EVT_ALLOCATE = 0x0,
148 GSI_EVT_RESET = 0x9,
149 GSI_EVT_DE_ALLOC = 0xa,
150};
151
152/* Hardware values representing a generic immediate command opcode */
153enum gsi_generic_cmd_opcode {
154 GSI_GENERIC_HALT_CHANNEL = 0x1,
155 GSI_GENERIC_ALLOCATE_CHANNEL = 0x2,
156};
157
158/* Hardware values representing a channel immediate command opcode */
159enum gsi_ch_cmd_opcode {
160 GSI_CH_ALLOCATE = 0x0,
161 GSI_CH_START = 0x1,
162 GSI_CH_STOP = 0x2,
163 GSI_CH_RESET = 0x9,
164 GSI_CH_DE_ALLOC = 0xa,
165};
166
167/** gsi_channel_scratch_gpi - GPI protocol scratch register
168 * @max_outstanding_tre:
169 * Defines the maximum number of TREs allowed in a single transaction
170 * on a channel (in bytes). This determines the amount of prefetch
171 * performed by the hardware. We configure this to equal the size of
172 * the TLV FIFO for the channel.
173 * @outstanding_threshold:
174 * Defines the threshold (in bytes) determining when the sequencer
175 * should update the channel doorbell. We configure this to equal
176 * the size of two TREs.
177 */
178struct gsi_channel_scratch_gpi {
179 u64 reserved1;
180 u16 reserved2;
181 u16 max_outstanding_tre;
182 u16 reserved3;
183 u16 outstanding_threshold;
184};
185
186/** gsi_channel_scratch - channel scratch configuration area
187 *
188 * The exact interpretation of this register is protocol-specific.
189 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
190 */
191union gsi_channel_scratch {
192 struct gsi_channel_scratch_gpi gpi;
193 struct {
194 u32 word1;
195 u32 word2;
196 u32 word3;
197 u32 word4;
198 } data;
199};
200
201/* Check things that can be validated at build time. */
202static void gsi_validate_build(void)
203{
204 /* This is used as a divisor */
205 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
206
207 /* Code assumes the size of channel and event ring element are
208 * the same (and fixed). Make sure the size of an event ring
209 * element is what's expected.
210 */
211 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
212
213 /* Hardware requires a 2^n ring size. We ensure the number of
214 * elements in an event ring is a power of 2 elsewhere; this
215 * ensure the elements themselves meet the requirement.
216 */
217 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
218
219 /* The channel element size must fit in this field */
220 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
221
222 /* The event ring element size must fit in this field */
223 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
224}
225
226/* Return the channel id associated with a given channel */
227static u32 gsi_channel_id(struct gsi_channel *channel)
228{
229 return channel - &channel->gsi->channel[0];
230}
231
232static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
233{
234 u32 val;
235
236 gsi->event_enable_bitmap |= BIT(evt_ring_id);
237 val = gsi->event_enable_bitmap;
238 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
239}
240
241static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
242{
243 u32 val;
244
245 gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
246 val = gsi->event_enable_bitmap;
247 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
248}
249
250/* Enable all GSI_interrupt types */
251static void gsi_irq_enable(struct gsi *gsi)
252{
253 u32 val;
254
255 /* We don't use inter-EE channel or event interrupts */
256 val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
257 val &= ~MSK_INTER_EE_CH_CTRL_FMASK;
258 val &= ~MSK_INTER_EE_EV_CTRL_FMASK;
259 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
260
261 val = GENMASK(gsi->channel_count - 1, 0);
262 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
263
264 val = GENMASK(gsi->evt_ring_count - 1, 0);
265 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
266
267 /* Each IEOB interrupt is enabled (later) as needed by channels */
268 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
269
270 val = GSI_CNTXT_GLOB_IRQ_ALL;
271 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
272
273 /* Never enable GSI_BREAK_POINT */
274 val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK;
275 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
276}
277
278/* Disable all GSI_interrupt types */
279static void gsi_irq_disable(struct gsi *gsi)
280{
281 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
282 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
283 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
284 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
285 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
286 iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
287}
288
289/* Return the virtual address associated with a ring index */
290void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
291{
292 /* Note: index *must* be used modulo the ring count here */
293 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
294}
295
296/* Return the 32-bit DMA address associated with a ring index */
297static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
298{
299 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
300}
301
302/* Return the ring index of a 32-bit ring offset */
303static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
304{
305 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
306}
307
308/* Issue a GSI command by writing a value to a register, then wait for
309 * completion to be signaled. Returns true if the command completes
310 * or false if it times out.
311 */
312static bool
313gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
314{
315 reinit_completion(completion);
316
317 iowrite32(val, gsi->virt + reg);
318
319 return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
320}
321
322/* Return the hardware's notion of the current state of an event ring */
323static enum gsi_evt_ring_state
324gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
325{
326 u32 val;
327
328 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
329
330 return u32_get_bits(val, EV_CHSTATE_FMASK);
331}
332
333/* Issue an event ring command and wait for it to complete */
334static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
335 enum gsi_evt_cmd_opcode opcode)
336{
337 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
338 struct completion *completion = &evt_ring->completion;
339 struct device *dev = gsi->dev;
340 u32 val;
341
342 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
343 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
344
345 if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
346 return 0; /* Success! */
347
348 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
349 opcode, evt_ring_id, evt_ring->state);
350
351 return -ETIMEDOUT;
352}
353
354/* Allocate an event ring in NOT_ALLOCATED state */
355static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
356{
357 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
358 int ret;
359
360 /* Get initial event ring state */
361 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
362 if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
363 dev_err(gsi->dev, "bad event ring state %u before alloc\n",
364 evt_ring->state);
365 return -EINVAL;
366 }
367
368 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
369 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
370 dev_err(gsi->dev, "bad event ring state %u after alloc\n",
371 evt_ring->state);
372 ret = -EIO;
373 }
374
375 return ret;
376}
377
378/* Reset a GSI event ring in ALLOCATED or ERROR state. */
379static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
380{
381 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
382 enum gsi_evt_ring_state state = evt_ring->state;
383 int ret;
384
385 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
386 state != GSI_EVT_RING_STATE_ERROR) {
387 dev_err(gsi->dev, "bad event ring state %u before reset\n",
388 evt_ring->state);
389 return;
390 }
391
392 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
393 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
394 dev_err(gsi->dev, "bad event ring state %u after reset\n",
395 evt_ring->state);
396}
397
398/* Issue a hardware de-allocation request for an allocated event ring */
399static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
400{
401 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
402 int ret;
403
404 if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
405 dev_err(gsi->dev, "bad event ring state %u before dealloc\n",
406 evt_ring->state);
407 return;
408 }
409
410 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
411 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
412 dev_err(gsi->dev, "bad event ring state %u after dealloc\n",
413 evt_ring->state);
414}
415
416/* Fetch the current state of a channel from hardware */
417static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
418{
419 u32 channel_id = gsi_channel_id(channel);
420 void *virt = channel->gsi->virt;
421 u32 val;
422
423 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
424
425 return u32_get_bits(val, CHSTATE_FMASK);
426}
427
428/* Issue a channel command and wait for it to complete */
429static int
430gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
431{
432 struct completion *completion = &channel->completion;
433 u32 channel_id = gsi_channel_id(channel);
434 struct gsi *gsi = channel->gsi;
435 struct device *dev = gsi->dev;
436 u32 val;
437
438 val = u32_encode_bits(channel_id, CH_CHID_FMASK);
439 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
440
441 if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
442 return 0; /* Success! */
443
444 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
445 opcode, channel_id, gsi_channel_state(channel));
446
447 return -ETIMEDOUT;
448}
449
450/* Allocate GSI channel in NOT_ALLOCATED state */
451static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
452{
453 struct gsi_channel *channel = &gsi->channel[channel_id];
454 struct device *dev = gsi->dev;
455 enum gsi_channel_state state;
456 int ret;
457
458 /* Get initial channel state */
459 state = gsi_channel_state(channel);
460 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
461 dev_err(dev, "bad channel state %u before alloc\n", state);
462 return -EINVAL;
463 }
464
465 ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
466
467 /* Channel state will normally have been updated */
468 state = gsi_channel_state(channel);
469 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
470 dev_err(dev, "bad channel state %u after alloc\n", state);
471 ret = -EIO;
472 }
473
474 return ret;
475}
476
477/* Start an ALLOCATED channel */
478static int gsi_channel_start_command(struct gsi_channel *channel)
479{
480 struct device *dev = channel->gsi->dev;
481 enum gsi_channel_state state;
482 int ret;
483
484 state = gsi_channel_state(channel);
485 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
486 state != GSI_CHANNEL_STATE_STOPPED) {
487 dev_err(dev, "bad channel state %u before start\n", state);
488 return -EINVAL;
489 }
490
491 ret = gsi_channel_command(channel, GSI_CH_START);
492
493 /* Channel state will normally have been updated */
494 state = gsi_channel_state(channel);
495 if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
496 dev_err(dev, "bad channel state %u after start\n", state);
497 ret = -EIO;
498 }
499
500 return ret;
501}
502
503/* Stop a GSI channel in STARTED state */
504static int gsi_channel_stop_command(struct gsi_channel *channel)
505{
506 struct device *dev = channel->gsi->dev;
507 enum gsi_channel_state state;
508 int ret;
509
510 state = gsi_channel_state(channel);
511
512 /* Channel could have entered STOPPED state since last call
513 * if it timed out. If so, we're done.
514 */
515 if (state == GSI_CHANNEL_STATE_STOPPED)
516 return 0;
517
518 if (state != GSI_CHANNEL_STATE_STARTED &&
519 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
520 dev_err(dev, "bad channel state %u before stop\n", state);
521 return -EINVAL;
522 }
523
524 ret = gsi_channel_command(channel, GSI_CH_STOP);
525
526 /* Channel state will normally have been updated */
527 state = gsi_channel_state(channel);
528 if (ret || state == GSI_CHANNEL_STATE_STOPPED)
529 return ret;
530
531 /* We may have to try again if stop is in progress */
532 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
533 return -EAGAIN;
534
535 dev_err(dev, "bad channel state %u after stop\n", state);
536
537 return -EIO;
538}
539
540/* Reset a GSI channel in ALLOCATED or ERROR state. */
541static void gsi_channel_reset_command(struct gsi_channel *channel)
542{
543 struct device *dev = channel->gsi->dev;
544 enum gsi_channel_state state;
545 int ret;
546
547 msleep(1); /* A short delay is required before a RESET command */
548
549 state = gsi_channel_state(channel);
550 if (state != GSI_CHANNEL_STATE_STOPPED &&
551 state != GSI_CHANNEL_STATE_ERROR) {
552 dev_err(dev, "bad channel state %u before reset\n", state);
553 return;
554 }
555
556 ret = gsi_channel_command(channel, GSI_CH_RESET);
557
558 /* Channel state will normally have been updated */
559 state = gsi_channel_state(channel);
560 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
561 dev_err(dev, "bad channel state %u after reset\n", state);
562}
563
564/* Deallocate an ALLOCATED GSI channel */
565static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
566{
567 struct gsi_channel *channel = &gsi->channel[channel_id];
568 struct device *dev = gsi->dev;
569 enum gsi_channel_state state;
570 int ret;
571
572 state = gsi_channel_state(channel);
573 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
574 dev_err(dev, "bad channel state %u before dealloc\n", state);
575 return;
576 }
577
578 ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
579
580 /* Channel state will normally have been updated */
581 state = gsi_channel_state(channel);
582 if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
583 dev_err(dev, "bad channel state %u after dealloc\n", state);
584}
585
586/* Ring an event ring doorbell, reporting the last entry processed by the AP.
587 * The index argument (modulo the ring count) is the first unfilled entry, so
588 * we supply one less than that with the doorbell. Update the event ring
589 * index field with the value provided.
590 */
591static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
592{
593 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
594 u32 val;
595
596 ring->index = index; /* Next unused entry */
597
598 /* Note: index *must* be used modulo the ring count here */
599 val = gsi_ring_addr(ring, (index - 1) % ring->count);
600 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
601}
602
603/* Program an event ring for use */
604static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
605{
606 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
607 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
608 u32 val;
609
610 val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
611 val |= EV_INTYPE_FMASK;
612 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
613 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
614
615 val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
616 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
617
618 /* The context 2 and 3 registers store the low-order and
619 * high-order 32 bits of the address of the event ring,
620 * respectively.
621 */
622 val = evt_ring->ring.addr & GENMASK(31, 0);
623 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
624
625 val = evt_ring->ring.addr >> 32;
626 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
627
628 /* Enable interrupt moderation by setting the moderation delay */
629 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
630 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
631 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
632
633 /* No MSI write data, and MSI address high and low address is 0 */
634 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
635 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
636 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
637
638 /* We don't need to get event read pointer updates */
639 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
640 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
641
642 /* Finally, tell the hardware we've completed event 0 (arbitrary) */
643 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
644}
645
646/* Return the last (most recent) transaction completed on a channel. */
647static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
648{
649 struct gsi_trans_info *trans_info = &channel->trans_info;
650 struct gsi_trans *trans;
651
652 spin_lock_bh(&trans_info->spinlock);
653
654 if (!list_empty(&trans_info->complete))
655 trans = list_last_entry(&trans_info->complete,
656 struct gsi_trans, links);
657 else if (!list_empty(&trans_info->polled))
658 trans = list_last_entry(&trans_info->polled,
659 struct gsi_trans, links);
660 else
661 trans = NULL;
662
663 /* Caller will wait for this, so take a reference */
664 if (trans)
665 refcount_inc(&trans->refcount);
666
667 spin_unlock_bh(&trans_info->spinlock);
668
669 return trans;
670}
671
672/* Wait for transaction activity on a channel to complete */
673static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
674{
675 struct gsi_trans *trans;
676
677 /* Get the last transaction, and wait for it to complete */
678 trans = gsi_channel_trans_last(channel);
679 if (trans) {
680 wait_for_completion(&trans->completion);
681 gsi_trans_free(trans);
682 }
683}
684
685/* Stop channel activity. Transactions may not be allocated until thawed. */
686static void gsi_channel_freeze(struct gsi_channel *channel)
687{
688 gsi_channel_trans_quiesce(channel);
689
690 napi_disable(&channel->napi);
691
692 gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
693}
694
695/* Allow transactions to be used on the channel again. */
696static void gsi_channel_thaw(struct gsi_channel *channel)
697{
698 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
699
700 napi_enable(&channel->napi);
701}
702
703/* Program a channel for use */
704static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
705{
706 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
707 u32 channel_id = gsi_channel_id(channel);
708 union gsi_channel_scratch scr = { };
709 struct gsi_channel_scratch_gpi *gpi;
710 struct gsi *gsi = channel->gsi;
711 u32 wrr_weight = 0;
712 u32 val;
713
714 /* Arbitrarily pick TRE 0 as the first channel element to use */
715 channel->tre_ring.index = 0;
716
717 /* We program all channels to use GPI protocol */
718 val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
719 if (channel->toward_ipa)
720 val |= CHTYPE_DIR_FMASK;
721 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
722 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
723 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
724
725 val = u32_encode_bits(size, R_LENGTH_FMASK);
726 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
727
728 /* The context 2 and 3 registers store the low-order and
729 * high-order 32 bits of the address of the channel ring,
730 * respectively.
731 */
732 val = channel->tre_ring.addr & GENMASK(31, 0);
733 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
734
735 val = channel->tre_ring.addr >> 32;
736 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
737
738 /* Command channel gets low weighted round-robin priority */
739 if (channel->command)
740 wrr_weight = field_max(WRR_WEIGHT_FMASK);
741 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
742
743 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
744
745 /* Enable the doorbell engine if requested */
746 if (doorbell)
747 val |= USE_DB_ENG_FMASK;
748
749 if (!channel->use_prefetch)
750 val |= USE_ESCAPE_BUF_ONLY_FMASK;
751
752 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
753
754 /* Now update the scratch registers for GPI protocol */
755 gpi = &scr.gpi;
756 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
757 GSI_RING_ELEMENT_SIZE;
758 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
759
760 val = scr.data.word1;
761 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
762
763 val = scr.data.word2;
764 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
765
766 val = scr.data.word3;
767 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
768
769 /* We must preserve the upper 16 bits of the last scratch register.
770 * The next sequence assumes those bits remain unchanged between the
771 * read and the write.
772 */
773 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
774 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
775 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
776
777 /* All done! */
778}
779
780static void gsi_channel_deprogram(struct gsi_channel *channel)
781{
782 /* Nothing to do */
783}
784
785/* Start an allocated GSI channel */
786int gsi_channel_start(struct gsi *gsi, u32 channel_id)
787{
788 struct gsi_channel *channel = &gsi->channel[channel_id];
789 int ret;
790
791 mutex_lock(&gsi->mutex);
792
793 ret = gsi_channel_start_command(channel);
794
795 mutex_unlock(&gsi->mutex);
796
797 gsi_channel_thaw(channel);
798
799 return ret;
800}
801
802/* Stop a started channel */
803int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
804{
805 struct gsi_channel *channel = &gsi->channel[channel_id];
806 u32 retries;
807 int ret;
808
809 gsi_channel_freeze(channel);
810
811 /* RX channels might require a little time to enter STOPPED state */
812 retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
813
814 mutex_lock(&gsi->mutex);
815
816 do {
817 ret = gsi_channel_stop_command(channel);
818 if (ret != -EAGAIN)
819 break;
820 msleep(1);
821 } while (retries--);
822
823 mutex_unlock(&gsi->mutex);
824
825 /* Thaw the channel if we need to retry (or on error) */
826 if (ret)
827 gsi_channel_thaw(channel);
828
829 return ret;
830}
831
832/* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
833void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
834{
835 struct gsi_channel *channel = &gsi->channel[channel_id];
836
837 mutex_lock(&gsi->mutex);
838
839 gsi_channel_reset_command(channel);
840 /* Due to a hardware quirk we may need to reset RX channels twice. */
841 if (legacy && !channel->toward_ipa)
842 gsi_channel_reset_command(channel);
843
844 gsi_channel_program(channel, legacy);
845 gsi_channel_trans_cancel_pending(channel);
846
847 mutex_unlock(&gsi->mutex);
848}
849
850/* Stop a STARTED channel for suspend (using stop if requested) */
851int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
852{
853 struct gsi_channel *channel = &gsi->channel[channel_id];
854
855 if (stop)
856 return gsi_channel_stop(gsi, channel_id);
857
858 gsi_channel_freeze(channel);
859
860 return 0;
861}
862
863/* Resume a suspended channel (starting will be requested if STOPPED) */
864int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
865{
866 struct gsi_channel *channel = &gsi->channel[channel_id];
867
868 if (start)
869 return gsi_channel_start(gsi, channel_id);
870
871 gsi_channel_thaw(channel);
872
873 return 0;
874}
875
876/**
877 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
878 * @channel: Channel for which to report
879 *
880 * Report to the network stack the number of bytes and transactions that
881 * have been queued to hardware since last call. This and the next function
882 * supply information used by the network stack for throttling.
883 *
884 * For each channel we track the number of transactions used and bytes of
885 * data those transactions represent. We also track what those values are
886 * each time this function is called. Subtracting the two tells us
887 * the number of bytes and transactions that have been added between
888 * successive calls.
889 *
890 * Calling this each time we ring the channel doorbell allows us to
891 * provide accurate information to the network stack about how much
892 * work we've given the hardware at any point in time.
893 */
894void gsi_channel_tx_queued(struct gsi_channel *channel)
895{
896 u32 trans_count;
897 u32 byte_count;
898
899 byte_count = channel->byte_count - channel->queued_byte_count;
900 trans_count = channel->trans_count - channel->queued_trans_count;
901 channel->queued_byte_count = channel->byte_count;
902 channel->queued_trans_count = channel->trans_count;
903
904 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
905 trans_count, byte_count);
906}
907
908/**
909 * gsi_channel_tx_update() - Report completed TX transfers
910 * @channel: Channel that has completed transmitting packets
911 * @trans: Last transation known to be complete
912 *
913 * Compute the number of transactions and bytes that have been transferred
914 * over a TX channel since the given transaction was committed. Report this
915 * information to the network stack.
916 *
917 * At the time a transaction is committed, we record its channel's
918 * committed transaction and byte counts *in the transaction*.
919 * Completions are signaled by the hardware with an interrupt, and
920 * we can determine the latest completed transaction at that time.
921 *
922 * The difference between the byte/transaction count recorded in
923 * the transaction and the count last time we recorded a completion
924 * tells us exactly how much data has been transferred between
925 * completions.
926 *
927 * Calling this each time we learn of a newly-completed transaction
928 * allows us to provide accurate information to the network stack
929 * about how much work has been completed by the hardware at a given
930 * point in time.
931 */
932static void
933gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
934{
935 u64 byte_count = trans->byte_count + trans->len;
936 u64 trans_count = trans->trans_count + 1;
937
938 byte_count -= channel->compl_byte_count;
939 channel->compl_byte_count += byte_count;
940 trans_count -= channel->compl_trans_count;
941 channel->compl_trans_count += trans_count;
942
943 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
944 trans_count, byte_count);
945}
946
947/* Channel control interrupt handler */
948static void gsi_isr_chan_ctrl(struct gsi *gsi)
949{
950 u32 channel_mask;
951
952 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
953 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
954
955 while (channel_mask) {
956 u32 channel_id = __ffs(channel_mask);
957 struct gsi_channel *channel;
958
959 channel_mask ^= BIT(channel_id);
960
961 channel = &gsi->channel[channel_id];
962
963 complete(&channel->completion);
964 }
965}
966
967/* Event ring control interrupt handler */
968static void gsi_isr_evt_ctrl(struct gsi *gsi)
969{
970 u32 event_mask;
971
972 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
973 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
974
975 while (event_mask) {
976 u32 evt_ring_id = __ffs(event_mask);
977 struct gsi_evt_ring *evt_ring;
978
979 event_mask ^= BIT(evt_ring_id);
980
981 evt_ring = &gsi->evt_ring[evt_ring_id];
982 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
983
984 complete(&evt_ring->completion);
985 }
986}
987
988/* Global channel error interrupt handler */
989static void
990gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
991{
992 if (code == GSI_OUT_OF_RESOURCES_ERR) {
993 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
994 complete(&gsi->channel[channel_id].completion);
995 return;
996 }
997
998 /* Report, but otherwise ignore all other error codes */
999 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1000 channel_id, err_ee, code);
1001}
1002
1003/* Global event error interrupt handler */
1004static void
1005gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1006{
1007 if (code == GSI_OUT_OF_RESOURCES_ERR) {
1008 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1009 u32 channel_id = gsi_channel_id(evt_ring->channel);
1010
1011 complete(&evt_ring->completion);
1012 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1013 channel_id);
1014 return;
1015 }
1016
1017 /* Report, but otherwise ignore all other error codes */
1018 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1019 evt_ring_id, err_ee, code);
1020}
1021
1022/* Global error interrupt handler */
1023static void gsi_isr_glob_err(struct gsi *gsi)
1024{
1025 enum gsi_err_type type;
1026 enum gsi_err_code code;
1027 u32 which;
1028 u32 val;
1029 u32 ee;
1030
1031 /* Get the logged error, then reinitialize the log */
1032 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1033 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1034 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1035
1036 ee = u32_get_bits(val, ERR_EE_FMASK);
1037 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1038 type = u32_get_bits(val, ERR_TYPE_FMASK);
1039 code = u32_get_bits(val, ERR_CODE_FMASK);
1040
1041 if (type == GSI_ERR_TYPE_CHAN)
1042 gsi_isr_glob_chan_err(gsi, ee, which, code);
1043 else if (type == GSI_ERR_TYPE_EVT)
1044 gsi_isr_glob_evt_err(gsi, ee, which, code);
1045 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1046 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1047}
1048
1049/* Generic EE interrupt handler */
1050static void gsi_isr_gp_int1(struct gsi *gsi)
1051{
1052 u32 result;
1053 u32 val;
1054
1055 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1056 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1057 if (result != GENERIC_EE_SUCCESS_FVAL)
1058 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1059
1060 complete(&gsi->completion);
1061}
1062
1063/* Inter-EE interrupt handler */
1064static void gsi_isr_glob_ee(struct gsi *gsi)
1065{
1066 u32 val;
1067
1068 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1069
1070 if (val & ERROR_INT_FMASK)
1071 gsi_isr_glob_err(gsi);
1072
1073 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1074
1075 val &= ~ERROR_INT_FMASK;
1076
1077 if (val & EN_GP_INT1_FMASK) {
1078 val ^= EN_GP_INT1_FMASK;
1079 gsi_isr_gp_int1(gsi);
1080 }
1081
1082 if (val)
1083 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1084}
1085
1086/* I/O completion interrupt event */
1087static void gsi_isr_ieob(struct gsi *gsi)
1088{
1089 u32 event_mask;
1090
1091 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1092 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1093
1094 while (event_mask) {
1095 u32 evt_ring_id = __ffs(event_mask);
1096
1097 event_mask ^= BIT(evt_ring_id);
1098
1099 gsi_irq_ieob_disable(gsi, evt_ring_id);
1100 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1101 }
1102}
1103
1104/* General event interrupts represent serious problems, so report them */
1105static void gsi_isr_general(struct gsi *gsi)
1106{
1107 struct device *dev = gsi->dev;
1108 u32 val;
1109
1110 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1111 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1112
1113 if (val)
1114 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1115}
1116
1117/**
1118 * gsi_isr() - Top level GSI interrupt service routine
1119 * @irq: Interrupt number (ignored)
1120 * @dev_id: GSI pointer supplied to request_irq()
1121 *
1122 * This is the main handler function registered for the GSI IRQ. Each type
1123 * of interrupt has a separate handler function that is called from here.
1124 */
1125static irqreturn_t gsi_isr(int irq, void *dev_id)
1126{
1127 struct gsi *gsi = dev_id;
1128 u32 intr_mask;
1129 u32 cnt = 0;
1130
1131 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1132 /* intr_mask contains bitmask of pending GSI interrupts */
1133 do {
1134 u32 gsi_intr = BIT(__ffs(intr_mask));
1135
1136 intr_mask ^= gsi_intr;
1137
1138 switch (gsi_intr) {
1139 case CH_CTRL_FMASK:
1140 gsi_isr_chan_ctrl(gsi);
1141 break;
1142 case EV_CTRL_FMASK:
1143 gsi_isr_evt_ctrl(gsi);
1144 break;
1145 case GLOB_EE_FMASK:
1146 gsi_isr_glob_ee(gsi);
1147 break;
1148 case IEOB_FMASK:
1149 gsi_isr_ieob(gsi);
1150 break;
1151 case GENERAL_FMASK:
1152 gsi_isr_general(gsi);
1153 break;
1154 default:
1155 dev_err(gsi->dev,
1156 "unrecognized interrupt type 0x%08x\n",
1157 gsi_intr);
1158 break;
1159 }
1160 } while (intr_mask);
1161
1162 if (++cnt > GSI_ISR_MAX_ITER) {
1163 dev_err(gsi->dev, "interrupt flood\n");
1164 break;
1165 }
1166 }
1167
1168 return IRQ_HANDLED;
1169}
1170
1171/* Return the transaction associated with a transfer completion event */
1172static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1173 struct gsi_event *event)
1174{
1175 u32 tre_offset;
1176 u32 tre_index;
1177
1178 /* Event xfer_ptr records the TRE it's associated with */
1179 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1180 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1181
1182 return gsi_channel_trans_mapped(channel, tre_index);
1183}
1184
1185/**
1186 * gsi_evt_ring_rx_update() - Record lengths of received data
1187 * @evt_ring: Event ring associated with channel that received packets
1188 * @index: Event index in ring reported by hardware
1189 *
1190 * Events for RX channels contain the actual number of bytes received into
1191 * the buffer. Every event has a transaction associated with it, and here
1192 * we update transactions to record their actual received lengths.
1193 *
1194 * This function is called whenever we learn that the GSI hardware has filled
1195 * new events since the last time we checked. The ring's index field tells
1196 * the first entry in need of processing. The index provided is the
1197 * first *unfilled* event in the ring (following the last filled one).
1198 *
1199 * Events are sequential within the event ring, and transactions are
1200 * sequential within the transaction pool.
1201 *
1202 * Note that @index always refers to an element *within* the event ring.
1203 */
1204static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1205{
1206 struct gsi_channel *channel = evt_ring->channel;
1207 struct gsi_ring *ring = &evt_ring->ring;
1208 struct gsi_trans_info *trans_info;
1209 struct gsi_event *event_done;
1210 struct gsi_event *event;
1211 struct gsi_trans *trans;
1212 u32 byte_count = 0;
1213 u32 old_index;
1214 u32 event_avail;
1215
1216 trans_info = &channel->trans_info;
1217
1218 /* We'll start with the oldest un-processed event. RX channels
1219 * replenish receive buffers in single-TRE transactions, so we
1220 * can just map that event to its transaction. Transactions
1221 * associated with completion events are consecutive.
1222 */
1223 old_index = ring->index;
1224 event = gsi_ring_virt(ring, old_index);
1225 trans = gsi_event_trans(channel, event);
1226
1227 /* Compute the number of events to process before we wrap,
1228 * and determine when we'll be done processing events.
1229 */
1230 event_avail = ring->count - old_index % ring->count;
1231 event_done = gsi_ring_virt(ring, index);
1232 do {
1233 trans->len = __le16_to_cpu(event->len);
1234 byte_count += trans->len;
1235
1236 /* Move on to the next event and transaction */
1237 if (--event_avail)
1238 event++;
1239 else
1240 event = gsi_ring_virt(ring, 0);
1241 trans = gsi_trans_pool_next(&trans_info->pool, trans);
1242 } while (event != event_done);
1243
1244 /* We record RX bytes when they are received */
1245 channel->byte_count += byte_count;
1246 channel->trans_count++;
1247}
1248
1249/* Initialize a ring, including allocating DMA memory for its entries */
1250static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1251{
1252 size_t size = count * GSI_RING_ELEMENT_SIZE;
1253 struct device *dev = gsi->dev;
1254 dma_addr_t addr;
1255
1256 /* Hardware requires a 2^n ring size, with alignment equal to size */
1257 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1258 if (ring->virt && addr % size) {
1259 dma_free_coherent(dev, size, ring->virt, ring->addr);
1260 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1261 size);
1262 return -EINVAL; /* Not a good error value, but distinct */
1263 } else if (!ring->virt) {
1264 return -ENOMEM;
1265 }
1266 ring->addr = addr;
1267 ring->count = count;
1268
1269 return 0;
1270}
1271
1272/* Free a previously-allocated ring */
1273static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1274{
1275 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1276
1277 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1278}
1279
1280/* Allocate an available event ring id */
1281static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1282{
1283 u32 evt_ring_id;
1284
1285 if (gsi->event_bitmap == ~0U) {
1286 dev_err(gsi->dev, "event rings exhausted\n");
1287 return -ENOSPC;
1288 }
1289
1290 evt_ring_id = ffz(gsi->event_bitmap);
1291 gsi->event_bitmap |= BIT(evt_ring_id);
1292
1293 return (int)evt_ring_id;
1294}
1295
1296/* Free a previously-allocated event ring id */
1297static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1298{
1299 gsi->event_bitmap &= ~BIT(evt_ring_id);
1300}
1301
1302/* Ring a channel doorbell, reporting the first un-filled entry */
1303void gsi_channel_doorbell(struct gsi_channel *channel)
1304{
1305 struct gsi_ring *tre_ring = &channel->tre_ring;
1306 u32 channel_id = gsi_channel_id(channel);
1307 struct gsi *gsi = channel->gsi;
1308 u32 val;
1309
1310 /* Note: index *must* be used modulo the ring count here */
1311 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1312 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1313}
1314
1315/* Consult hardware, move any newly completed transactions to completed list */
1316static void gsi_channel_update(struct gsi_channel *channel)
1317{
1318 u32 evt_ring_id = channel->evt_ring_id;
1319 struct gsi *gsi = channel->gsi;
1320 struct gsi_evt_ring *evt_ring;
1321 struct gsi_trans *trans;
1322 struct gsi_ring *ring;
1323 u32 offset;
1324 u32 index;
1325
1326 evt_ring = &gsi->evt_ring[evt_ring_id];
1327 ring = &evt_ring->ring;
1328
1329 /* See if there's anything new to process; if not, we're done. Note
1330 * that index always refers to an entry *within* the event ring.
1331 */
1332 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1333 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1334 if (index == ring->index % ring->count)
1335 return;
1336
1337 /* Get the transaction for the latest completed event. Take a
1338 * reference to keep it from completing before we give the events
1339 * for this and previous transactions back to the hardware.
1340 */
1341 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1342 refcount_inc(&trans->refcount);
1343
1344 /* For RX channels, update each completed transaction with the number
1345 * of bytes that were actually received. For TX channels, report
1346 * the number of transactions and bytes this completion represents
1347 * up the network stack.
1348 */
1349 if (channel->toward_ipa)
1350 gsi_channel_tx_update(channel, trans);
1351 else
1352 gsi_evt_ring_rx_update(evt_ring, index);
1353
1354 gsi_trans_move_complete(trans);
1355
1356 /* Tell the hardware we've handled these events */
1357 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1358
1359 gsi_trans_free(trans);
1360}
1361
1362/**
1363 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1364 * @channel: Channel to be polled
1365 *
1366 * Return: Transaction pointer, or null if none are available
1367 *
1368 * This function returns the first entry on a channel's completed transaction
1369 * list. If that list is empty, the hardware is consulted to determine
1370 * whether any new transactions have completed. If so, they're moved to the
1371 * completed list and the new first entry is returned. If there are no more
1372 * completed transactions, a null pointer is returned.
1373 */
1374static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1375{
1376 struct gsi_trans *trans;
1377
1378 /* Get the first transaction from the completed list */
1379 trans = gsi_channel_trans_complete(channel);
1380 if (!trans) {
1381 /* List is empty; see if there's more to do */
1382 gsi_channel_update(channel);
1383 trans = gsi_channel_trans_complete(channel);
1384 }
1385
1386 if (trans)
1387 gsi_trans_move_polled(trans);
1388
1389 return trans;
1390}
1391
1392/**
1393 * gsi_channel_poll() - NAPI poll function for a channel
1394 * @napi: NAPI structure for the channel
1395 * @budget: Budget supplied by NAPI core
1396 *
1397 * Return: Number of items polled (<= budget)
1398 *
1399 * Single transactions completed by hardware are polled until either
1400 * the budget is exhausted, or there are no more. Each transaction
1401 * polled is passed to gsi_trans_complete(), to perform remaining
1402 * completion processing and retire/free the transaction.
1403 */
1404static int gsi_channel_poll(struct napi_struct *napi, int budget)
1405{
1406 struct gsi_channel *channel;
1407 int count = 0;
1408
1409 channel = container_of(napi, struct gsi_channel, napi);
1410 while (count < budget) {
1411 struct gsi_trans *trans;
1412
1413 count++;
1414 trans = gsi_channel_poll_one(channel);
1415 if (!trans)
1416 break;
1417 gsi_trans_complete(trans);
1418 }
1419
1420 if (count < budget) {
1421 napi_complete(&channel->napi);
1422 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1423 }
1424
1425 return count;
1426}
1427
1428/* The event bitmap represents which event ids are available for allocation.
1429 * Set bits are not available, clear bits can be used. This function
1430 * initializes the map so all events supported by the hardware are available,
1431 * then precludes any reserved events from being allocated.
1432 */
1433static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1434{
1435 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1436
1437 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1438
1439 return event_bitmap;
1440}
1441
1442/* Setup function for event rings */
1443static void gsi_evt_ring_setup(struct gsi *gsi)
1444{
1445 /* Nothing to do */
1446}
1447
1448/* Inverse of gsi_evt_ring_setup() */
1449static void gsi_evt_ring_teardown(struct gsi *gsi)
1450{
1451 /* Nothing to do */
1452}
1453
1454/* Setup function for a single channel */
1455static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1456 bool legacy)
1457{
1458 struct gsi_channel *channel = &gsi->channel[channel_id];
1459 u32 evt_ring_id = channel->evt_ring_id;
1460 int ret;
1461
1462 if (!channel->gsi)
1463 return 0; /* Ignore uninitialized channels */
1464
1465 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1466 if (ret)
1467 return ret;
1468
1469 gsi_evt_ring_program(gsi, evt_ring_id);
1470
1471 ret = gsi_channel_alloc_command(gsi, channel_id);
1472 if (ret)
1473 goto err_evt_ring_de_alloc;
1474
1475 gsi_channel_program(channel, legacy);
1476
1477 if (channel->toward_ipa)
1478 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1479 gsi_channel_poll, NAPI_POLL_WEIGHT);
1480 else
1481 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1482 gsi_channel_poll, NAPI_POLL_WEIGHT);
1483
1484 return 0;
1485
1486err_evt_ring_de_alloc:
1487 /* We've done nothing with the event ring yet so don't reset */
1488 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1489
1490 return ret;
1491}
1492
1493/* Inverse of gsi_channel_setup_one() */
1494static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1495{
1496 struct gsi_channel *channel = &gsi->channel[channel_id];
1497 u32 evt_ring_id = channel->evt_ring_id;
1498
1499 if (!channel->gsi)
1500 return; /* Ignore uninitialized channels */
1501
1502 netif_napi_del(&channel->napi);
1503
1504 gsi_channel_deprogram(channel);
1505 gsi_channel_de_alloc_command(gsi, channel_id);
1506 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1507 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1508}
1509
1510static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1511 enum gsi_generic_cmd_opcode opcode)
1512{
1513 struct completion *completion = &gsi->completion;
1514 u32 val;
1515
1516 /* First zero the result code field */
1517 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1518 val &= ~GENERIC_EE_RESULT_FMASK;
1519 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1520
1521 /* Now issue the command */
1522 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1523 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1524 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1525
1526 if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1527 return 0; /* Success! */
1528
1529 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1530 opcode, channel_id);
1531
1532 return -ETIMEDOUT;
1533}
1534
1535static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1536{
1537 return gsi_generic_command(gsi, channel_id,
1538 GSI_GENERIC_ALLOCATE_CHANNEL);
1539}
1540
1541static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1542{
1543 int ret;
1544
1545 ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1546 if (ret)
1547 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1548 ret, channel_id);
1549}
1550
1551/* Setup function for channels */
1552static int gsi_channel_setup(struct gsi *gsi, bool legacy)
1553{
1554 u32 channel_id = 0;
1555 u32 mask;
1556 int ret;
1557
1558 gsi_evt_ring_setup(gsi);
1559 gsi_irq_enable(gsi);
1560
1561 mutex_lock(&gsi->mutex);
1562
1563 do {
1564 ret = gsi_channel_setup_one(gsi, channel_id, legacy);
1565 if (ret)
1566 goto err_unwind;
1567 } while (++channel_id < gsi->channel_count);
1568
1569 /* Make sure no channels were defined that hardware does not support */
1570 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1571 struct gsi_channel *channel = &gsi->channel[channel_id++];
1572
1573 if (!channel->gsi)
1574 continue; /* Ignore uninitialized channels */
1575
1576 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1577 channel_id - 1);
1578 channel_id = gsi->channel_count;
1579 goto err_unwind;
1580 }
1581
1582 /* Allocate modem channels if necessary */
1583 mask = gsi->modem_channel_bitmap;
1584 while (mask) {
1585 u32 modem_channel_id = __ffs(mask);
1586
1587 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1588 if (ret)
1589 goto err_unwind_modem;
1590
1591 /* Clear bit from mask only after success (for unwind) */
1592 mask ^= BIT(modem_channel_id);
1593 }
1594
1595 mutex_unlock(&gsi->mutex);
1596
1597 return 0;
1598
1599err_unwind_modem:
1600 /* Compute which modem channels need to be deallocated */
1601 mask ^= gsi->modem_channel_bitmap;
1602 while (mask) {
1603 u32 channel_id = __fls(mask);
1604
1605 mask ^= BIT(channel_id);
1606
1607 gsi_modem_channel_halt(gsi, channel_id);
1608 }
1609
1610err_unwind:
1611 while (channel_id--)
1612 gsi_channel_teardown_one(gsi, channel_id);
1613
1614 mutex_unlock(&gsi->mutex);
1615
1616 gsi_irq_disable(gsi);
1617 gsi_evt_ring_teardown(gsi);
1618
1619 return ret;
1620}
1621
1622/* Inverse of gsi_channel_setup() */
1623static void gsi_channel_teardown(struct gsi *gsi)
1624{
1625 u32 mask = gsi->modem_channel_bitmap;
1626 u32 channel_id;
1627
1628 mutex_lock(&gsi->mutex);
1629
1630 while (mask) {
1631 u32 channel_id = __fls(mask);
1632
1633 mask ^= BIT(channel_id);
1634
1635 gsi_modem_channel_halt(gsi, channel_id);
1636 }
1637
1638 channel_id = gsi->channel_count - 1;
1639 do
1640 gsi_channel_teardown_one(gsi, channel_id);
1641 while (channel_id--);
1642
1643 mutex_unlock(&gsi->mutex);
1644
1645 gsi_irq_disable(gsi);
1646 gsi_evt_ring_teardown(gsi);
1647}
1648
1649/* Setup function for GSI. GSI firmware must be loaded and initialized */
1650int gsi_setup(struct gsi *gsi, bool legacy)
1651{
1652 struct device *dev = gsi->dev;
1653 u32 val;
1654
1655 /* Here is where we first touch the GSI hardware */
1656 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1657 if (!(val & ENABLED_FMASK)) {
1658 dev_err(dev, "GSI has not been enabled\n");
1659 return -EIO;
1660 }
1661
1662 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1663
1664 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1665 if (!gsi->channel_count) {
1666 dev_err(dev, "GSI reports zero channels supported\n");
1667 return -EINVAL;
1668 }
1669 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1670 dev_warn(dev,
1671 "limiting to %u channels; hardware supports %u\n",
1672 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1673 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1674 }
1675
1676 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1677 if (!gsi->evt_ring_count) {
1678 dev_err(dev, "GSI reports zero event rings supported\n");
1679 return -EINVAL;
1680 }
1681 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1682 dev_warn(dev,
1683 "limiting to %u event rings; hardware supports %u\n",
1684 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1685 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1686 }
1687
1688 /* Initialize the error log */
1689 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1690
1691 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1692 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1693
1694 return gsi_channel_setup(gsi, legacy);
1695}
1696
1697/* Inverse of gsi_setup() */
1698void gsi_teardown(struct gsi *gsi)
1699{
1700 gsi_channel_teardown(gsi);
1701}
1702
1703/* Initialize a channel's event ring */
1704static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1705{
1706 struct gsi *gsi = channel->gsi;
1707 struct gsi_evt_ring *evt_ring;
1708 int ret;
1709
1710 ret = gsi_evt_ring_id_alloc(gsi);
1711 if (ret < 0)
1712 return ret;
1713 channel->evt_ring_id = ret;
1714
1715 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1716 evt_ring->channel = channel;
1717
1718 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1719 if (!ret)
1720 return 0; /* Success! */
1721
1722 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1723 ret, gsi_channel_id(channel));
1724
1725 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1726
1727 return ret;
1728}
1729
1730/* Inverse of gsi_channel_evt_ring_init() */
1731static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1732{
1733 u32 evt_ring_id = channel->evt_ring_id;
1734 struct gsi *gsi = channel->gsi;
1735 struct gsi_evt_ring *evt_ring;
1736
1737 evt_ring = &gsi->evt_ring[evt_ring_id];
1738 gsi_ring_free(gsi, &evt_ring->ring);
1739 gsi_evt_ring_id_free(gsi, evt_ring_id);
1740}
1741
1742/* Init function for event rings */
1743static void gsi_evt_ring_init(struct gsi *gsi)
1744{
1745 u32 evt_ring_id = 0;
1746
1747 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1748 gsi->event_enable_bitmap = 0;
1749 do
1750 init_completion(&gsi->evt_ring[evt_ring_id].completion);
1751 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1752}
1753
1754/* Inverse of gsi_evt_ring_init() */
1755static void gsi_evt_ring_exit(struct gsi *gsi)
1756{
1757 /* Nothing to do */
1758}
1759
1760static bool gsi_channel_data_valid(struct gsi *gsi,
1761 const struct ipa_gsi_endpoint_data *data)
1762{
1763#ifdef IPA_VALIDATION
1764 u32 channel_id = data->channel_id;
1765 struct device *dev = gsi->dev;
1766
1767 /* Make sure channel ids are in the range driver supports */
1768 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1769 dev_err(dev, "bad channel id %u; must be less than %u\n",
1770 channel_id, GSI_CHANNEL_COUNT_MAX);
1771 return false;
1772 }
1773
1774 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1775 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1776 return false;
1777 }
1778
1779 if (!data->channel.tlv_count ||
1780 data->channel.tlv_count > GSI_TLV_MAX) {
1781 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1782 channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1783 return false;
1784 }
1785
1786 /* We have to allow at least one maximally-sized transaction to
1787 * be outstanding (which would use tlv_count TREs). Given how
1788 * gsi_channel_tre_max() is computed, tre_count has to be almost
1789 * twice the TLV FIFO size to satisfy this requirement.
1790 */
1791 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1792 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1793 channel_id, data->channel.tlv_count,
1794 data->channel.tre_count);
1795 return false;
1796 }
1797
1798 if (!is_power_of_2(data->channel.tre_count)) {
1799 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1800 channel_id, data->channel.tre_count);
1801 return false;
1802 }
1803
1804 if (!is_power_of_2(data->channel.event_count)) {
1805 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1806 channel_id, data->channel.event_count);
1807 return false;
1808 }
1809#endif /* IPA_VALIDATION */
1810
1811 return true;
1812}
1813
1814/* Init function for a single channel */
1815static int gsi_channel_init_one(struct gsi *gsi,
1816 const struct ipa_gsi_endpoint_data *data,
1817 bool command, bool prefetch)
1818{
1819 struct gsi_channel *channel;
1820 u32 tre_count;
1821 int ret;
1822
1823 if (!gsi_channel_data_valid(gsi, data))
1824 return -EINVAL;
1825
1826 /* Worst case we need an event for every outstanding TRE */
1827 if (data->channel.tre_count > data->channel.event_count) {
1828 tre_count = data->channel.event_count;
1829 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1830 data->channel_id, tre_count);
1831 } else {
1832 tre_count = data->channel.tre_count;
1833 }
1834
1835 channel = &gsi->channel[data->channel_id];
1836 memset(channel, 0, sizeof(*channel));
1837
1838 channel->gsi = gsi;
1839 channel->toward_ipa = data->toward_ipa;
1840 channel->command = command;
1841 channel->use_prefetch = command && prefetch;
1842 channel->tlv_count = data->channel.tlv_count;
1843 channel->tre_count = tre_count;
1844 channel->event_count = data->channel.event_count;
1845 init_completion(&channel->completion);
1846
1847 ret = gsi_channel_evt_ring_init(channel);
1848 if (ret)
1849 goto err_clear_gsi;
1850
1851 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1852 if (ret) {
1853 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1854 ret, data->channel_id);
1855 goto err_channel_evt_ring_exit;
1856 }
1857
1858 ret = gsi_channel_trans_init(gsi, data->channel_id);
1859 if (ret)
1860 goto err_ring_free;
1861
1862 if (command) {
1863 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1864
1865 ret = ipa_cmd_pool_init(channel, tre_max);
1866 }
1867 if (!ret)
1868 return 0; /* Success! */
1869
1870 gsi_channel_trans_exit(channel);
1871err_ring_free:
1872 gsi_ring_free(gsi, &channel->tre_ring);
1873err_channel_evt_ring_exit:
1874 gsi_channel_evt_ring_exit(channel);
1875err_clear_gsi:
1876 channel->gsi = NULL; /* Mark it not (fully) initialized */
1877
1878 return ret;
1879}
1880
1881/* Inverse of gsi_channel_init_one() */
1882static void gsi_channel_exit_one(struct gsi_channel *channel)
1883{
1884 if (!channel->gsi)
1885 return; /* Ignore uninitialized channels */
1886
1887 if (channel->command)
1888 ipa_cmd_pool_exit(channel);
1889 gsi_channel_trans_exit(channel);
1890 gsi_ring_free(channel->gsi, &channel->tre_ring);
1891 gsi_channel_evt_ring_exit(channel);
1892}
1893
1894/* Init function for channels */
1895static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1896 const struct ipa_gsi_endpoint_data *data,
1897 bool modem_alloc)
1898{
1899 int ret = 0;
1900 u32 i;
1901
1902 gsi_evt_ring_init(gsi);
1903
1904 /* The endpoint data array is indexed by endpoint name */
1905 for (i = 0; i < count; i++) {
1906 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1907
1908 if (ipa_gsi_endpoint_data_empty(&data[i]))
1909 continue; /* Skip over empty slots */
1910
1911 /* Mark modem channels to be allocated (hardware workaround) */
1912 if (data[i].ee_id == GSI_EE_MODEM) {
1913 if (modem_alloc)
1914 gsi->modem_channel_bitmap |=
1915 BIT(data[i].channel_id);
1916 continue;
1917 }
1918
1919 ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1920 if (ret)
1921 goto err_unwind;
1922 }
1923
1924 return ret;
1925
1926err_unwind:
1927 while (i--) {
1928 if (ipa_gsi_endpoint_data_empty(&data[i]))
1929 continue;
1930 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1931 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1932 continue;
1933 }
1934 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1935 }
1936 gsi_evt_ring_exit(gsi);
1937
1938 return ret;
1939}
1940
1941/* Inverse of gsi_channel_init() */
1942static void gsi_channel_exit(struct gsi *gsi)
1943{
1944 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1945
1946 do
1947 gsi_channel_exit_one(&gsi->channel[channel_id]);
1948 while (channel_id--);
1949 gsi->modem_channel_bitmap = 0;
1950
1951 gsi_evt_ring_exit(gsi);
1952}
1953
1954/* Init function for GSI. GSI hardware does not need to be "ready" */
1955int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1956 u32 count, const struct ipa_gsi_endpoint_data *data,
1957 bool modem_alloc)
1958{
1959 struct device *dev = &pdev->dev;
1960 struct resource *res;
1961 resource_size_t size;
1962 unsigned int irq;
1963 int ret;
1964
1965 gsi_validate_build();
1966
1967 gsi->dev = dev;
1968
1969 /* The GSI layer performs NAPI on all endpoints. NAPI requires a
1970 * network device structure, but the GSI layer does not have one,
1971 * so we must create a dummy network device for this purpose.
1972 */
1973 init_dummy_netdev(&gsi->dummy_dev);
1974
1975 /* Get the GSI IRQ and request for it to wake the system */
1976 ret = platform_get_irq_byname(pdev, "gsi");
1977 if (ret <= 0) {
1978 dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1979 return ret ? : -EINVAL;
1980 }
1981 irq = ret;
1982
1983 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1984 if (ret) {
1985 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1986 return ret;
1987 }
1988 gsi->irq = irq;
1989
1990 ret = enable_irq_wake(gsi->irq);
1991 if (ret)
1992 dev_warn(dev, "error %d enabling gsi wake irq\n", ret);
1993 gsi->irq_wake_enabled = !ret;
1994
1995 /* Get GSI memory range and map it */
1996 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1997 if (!res) {
1998 dev_err(dev, "DT error getting \"gsi\" memory property\n");
1999 ret = -ENODEV;
2000 goto err_disable_irq_wake;
2001 }
2002
2003 size = resource_size(res);
2004 if (res->start > U32_MAX || size > U32_MAX - res->start) {
2005 dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2006 ret = -EINVAL;
2007 goto err_disable_irq_wake;
2008 }
2009
2010 gsi->virt = ioremap(res->start, size);
2011 if (!gsi->virt) {
2012 dev_err(dev, "unable to remap \"gsi\" memory\n");
2013 ret = -ENOMEM;
2014 goto err_disable_irq_wake;
2015 }
2016
2017 ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
2018 if (ret)
2019 goto err_iounmap;
2020
2021 mutex_init(&gsi->mutex);
2022 init_completion(&gsi->completion);
2023
2024 return 0;
2025
2026err_iounmap:
2027 iounmap(gsi->virt);
2028err_disable_irq_wake:
2029 if (gsi->irq_wake_enabled)
2030 (void)disable_irq_wake(gsi->irq);
2031 free_irq(gsi->irq, gsi);
2032
2033 return ret;
2034}
2035
2036/* Inverse of gsi_init() */
2037void gsi_exit(struct gsi *gsi)
2038{
2039 mutex_destroy(&gsi->mutex);
2040 gsi_channel_exit(gsi);
2041 if (gsi->irq_wake_enabled)
2042 (void)disable_irq_wake(gsi->irq);
2043 free_irq(gsi->irq, gsi);
2044 iounmap(gsi->virt);
2045}
2046
2047/* The maximum number of outstanding TREs on a channel. This limits
2048 * a channel's maximum number of transactions outstanding (worst case
2049 * is one TRE per transaction).
2050 *
2051 * The absolute limit is the number of TREs in the channel's TRE ring,
2052 * and in theory we should be able use all of them. But in practice,
2053 * doing that led to the hardware reporting exhaustion of event ring
2054 * slots for writing completion information. So the hardware limit
2055 * would be (tre_count - 1).
2056 *
2057 * We reduce it a bit further though. Transaction resource pools are
2058 * sized to be a little larger than this maximum, to allow resource
2059 * allocations to always be contiguous. The number of entries in a
2060 * TRE ring buffer is a power of 2, and the extra resources in a pool
2061 * tends to nearly double the memory allocated for it. Reducing the
2062 * maximum number of outstanding TREs allows the number of entries in
2063 * a pool to avoid crossing that power-of-2 boundary, and this can
2064 * substantially reduce pool memory requirements. The number we
2065 * reduce it by matches the number added in gsi_trans_pool_init().
2066 */
2067u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2068{
2069 struct gsi_channel *channel = &gsi->channel[channel_id];
2070
2071 /* Hardware limit is channel->tre_count - 1 */
2072 return channel->tre_count - (channel->tlv_count - 1);
2073}
2074
2075/* Returns the maximum number of TREs in a single transaction for a channel */
2076u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2077{
2078 struct gsi_channel *channel = &gsi->channel[channel_id];
2079
2080 return channel->tlv_count;
2081}