Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (C) 2018-2023 Linaro Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/bits.h>
   9#include <linux/bitfield.h>
  10#include <linux/mutex.h>
  11#include <linux/completion.h>
  12#include <linux/io.h>
  13#include <linux/bug.h>
  14#include <linux/interrupt.h>
  15#include <linux/platform_device.h>
  16#include <linux/netdevice.h>
  17
  18#include "gsi.h"
  19#include "reg.h"
  20#include "gsi_reg.h"
  21#include "gsi_private.h"
  22#include "gsi_trans.h"
  23#include "ipa_gsi.h"
  24#include "ipa_data.h"
  25#include "ipa_version.h"
  26
  27/**
  28 * DOC: The IPA Generic Software Interface
  29 *
  30 * The generic software interface (GSI) is an integral component of the IPA,
  31 * providing a well-defined communication layer between the AP subsystem
  32 * and the IPA core.  The modem uses the GSI layer as well.
  33 *
  34 *	--------	     ---------
  35 *	|      |	     |	     |
  36 *	|  AP  +<---.	.----+ Modem |
  37 *	|      +--. |	| .->+	     |
  38 *	|      |  | |	| |  |	     |
  39 *	--------  | |	| |  ---------
  40 *		  v |	v |
  41 *		--+-+---+-+--
  42 *		|    GSI    |
  43 *		|-----------|
  44 *		|	    |
  45 *		|    IPA    |
  46 *		|	    |
  47 *		-------------
  48 *
  49 * In the above diagram, the AP and Modem represent "execution environments"
  50 * (EEs), which are independent operating environments that use the IPA for
  51 * data transfer.
  52 *
  53 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
  54 * of data to or from the IPA.  A channel is implemented as a ring buffer,
  55 * with a DRAM-resident array of "transfer elements" (TREs) available to
  56 * describe transfers to or from other EEs through the IPA.  A transfer
  57 * element can also contain an immediate command, requesting the IPA perform
  58 * actions other than data transfer.
  59 *
  60 * Each TRE refers to a block of data--also located in DRAM.  After writing
  61 * one or more TREs to a channel, the writer (either the IPA or an EE) writes
  62 * a doorbell register to inform the receiving side how many elements have
  63 * been written.
  64 *
  65 * Each channel has a GSI "event ring" associated with it.  An event ring
  66 * is implemented very much like a channel ring, but is always directed from
  67 * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
  68 * events by adding an entry to the event ring associated with the channel.
  69 * The GSI then writes its doorbell for the event ring, causing the target
  70 * EE to be interrupted.  Each entry in an event ring contains a pointer
  71 * to the channel TRE whose completion the event represents.
  72 *
  73 * Each TRE in a channel ring has a set of flags.  One flag indicates whether
  74 * the completion of the transfer operation generates an entry (and possibly
  75 * an interrupt) in the channel's event ring.  Other flags allow transfer
  76 * elements to be chained together, forming a single logical transaction.
  77 * TRE flags are used to control whether and when interrupts are generated
  78 * to signal completion of channel transfers.
  79 *
  80 * Elements in channel and event rings are completed (or consumed) strictly
  81 * in order.  Completion of one entry implies the completion of all preceding
  82 * entries.  A single completion interrupt can therefore communicate the
  83 * completion of many transfers.
  84 *
  85 * Note that all GSI registers are little-endian, which is the assumed
  86 * endianness of I/O space accesses.  The accessor functions perform byte
  87 * swapping if needed (i.e., for a big endian CPU).
  88 */
  89
  90/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
  91#define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
  92
  93#define GSI_CMD_TIMEOUT			50	/* milliseconds */
  94
  95#define GSI_CHANNEL_STOP_RETRIES	10
  96#define GSI_CHANNEL_MODEM_HALT_RETRIES	10
  97#define GSI_CHANNEL_MODEM_FLOW_RETRIES	5	/* disable flow control only */
  98
  99#define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
 100#define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
 101
 102#define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
 103
 104/* An entry in an event ring */
 105struct gsi_event {
 106	__le64 xfer_ptr;
 107	__le16 len;
 108	u8 reserved1;
 109	u8 code;
 110	__le16 reserved2;
 111	u8 type;
 112	u8 chid;
 113};
 114
 115/** gsi_channel_scratch_gpi - GPI protocol scratch register
 116 * @max_outstanding_tre:
 117 *	Defines the maximum number of TREs allowed in a single transaction
 118 *	on a channel (in bytes).  This determines the amount of prefetch
 119 *	performed by the hardware.  We configure this to equal the size of
 120 *	the TLV FIFO for the channel.
 121 * @outstanding_threshold:
 122 *	Defines the threshold (in bytes) determining when the sequencer
 123 *	should update the channel doorbell.  We configure this to equal
 124 *	the size of two TREs.
 125 */
 126struct gsi_channel_scratch_gpi {
 127	u64 reserved1;
 128	u16 reserved2;
 129	u16 max_outstanding_tre;
 130	u16 reserved3;
 131	u16 outstanding_threshold;
 132};
 133
 134/** gsi_channel_scratch - channel scratch configuration area
 135 *
 136 * The exact interpretation of this register is protocol-specific.
 137 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
 138 */
 139union gsi_channel_scratch {
 140	struct gsi_channel_scratch_gpi gpi;
 141	struct {
 142		u32 word1;
 143		u32 word2;
 144		u32 word3;
 145		u32 word4;
 146	} data;
 147};
 148
 149/* Check things that can be validated at build time. */
 150static void gsi_validate_build(void)
 151{
 152	/* This is used as a divisor */
 153	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
 154
 155	/* Code assumes the size of channel and event ring element are
 156	 * the same (and fixed).  Make sure the size of an event ring
 157	 * element is what's expected.
 158	 */
 159	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
 160
 161	/* Hardware requires a 2^n ring size.  We ensure the number of
 162	 * elements in an event ring is a power of 2 elsewhere; this
 163	 * ensure the elements themselves meet the requirement.
 164	 */
 165	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
 166}
 167
 168/* Return the channel id associated with a given channel */
 169static u32 gsi_channel_id(struct gsi_channel *channel)
 170{
 171	return channel - &channel->gsi->channel[0];
 172}
 173
 174/* An initialized channel has a non-null GSI pointer */
 175static bool gsi_channel_initialized(struct gsi_channel *channel)
 176{
 177	return !!channel->gsi;
 178}
 179
 180/* Encode the channel protocol for the CH_C_CNTXT_0 register */
 181static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
 182				    const struct reg *reg,
 183				    enum gsi_channel_type type)
 184{
 185	u32 val;
 186
 187	val = reg_encode(reg, CHTYPE_PROTOCOL, type);
 188	if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0)
 189		return val;
 190
 191	type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
 192
 193	return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
 194}
 195
 196/* Update the GSI IRQ type register with the cached value */
 197static void gsi_irq_type_update(struct gsi *gsi, u32 val)
 198{
 199	const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
 200
 201	gsi->type_enabled_bitmap = val;
 202	iowrite32(val, gsi->virt + reg_offset(reg));
 203}
 204
 205static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
 206{
 207	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
 208}
 209
 210static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
 211{
 212	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
 213}
 214
 215/* Event ring commands are performed one at a time.  Their completion
 216 * is signaled by the event ring control GSI interrupt type, which is
 217 * only enabled when we issue an event ring command.  Only the event
 218 * ring being operated on has this interrupt enabled.
 219 */
 220static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
 221{
 222	u32 val = BIT(evt_ring_id);
 223	const struct reg *reg;
 224
 225	/* There's a small chance that a previous command completed
 226	 * after the interrupt was disabled, so make sure we have no
 227	 * pending interrupts before we enable them.
 228	 */
 229	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
 230	iowrite32(~0, gsi->virt + reg_offset(reg));
 231
 232	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
 233	iowrite32(val, gsi->virt + reg_offset(reg));
 234	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
 235}
 236
 237/* Disable event ring control interrupts */
 238static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
 239{
 240	const struct reg *reg;
 241
 242	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
 243
 244	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
 245	iowrite32(0, gsi->virt + reg_offset(reg));
 246}
 247
 248/* Channel commands are performed one at a time.  Their completion is
 249 * signaled by the channel control GSI interrupt type, which is only
 250 * enabled when we issue a channel command.  Only the channel being
 251 * operated on has this interrupt enabled.
 252 */
 253static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
 254{
 255	u32 val = BIT(channel_id);
 256	const struct reg *reg;
 257
 258	/* There's a small chance that a previous command completed
 259	 * after the interrupt was disabled, so make sure we have no
 260	 * pending interrupts before we enable them.
 261	 */
 262	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
 263	iowrite32(~0, gsi->virt + reg_offset(reg));
 264
 265	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
 266	iowrite32(val, gsi->virt + reg_offset(reg));
 267
 268	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
 269}
 270
 271/* Disable channel control interrupts */
 272static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
 273{
 274	const struct reg *reg;
 275
 276	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
 277
 278	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
 279	iowrite32(0, gsi->virt + reg_offset(reg));
 280}
 281
 282static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
 283{
 284	bool enable_ieob = !gsi->ieob_enabled_bitmap;
 285	const struct reg *reg;
 286	u32 val;
 287
 288	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
 289
 290	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
 291	val = gsi->ieob_enabled_bitmap;
 292	iowrite32(val, gsi->virt + reg_offset(reg));
 293
 294	/* Enable the interrupt type if this is the first channel enabled */
 295	if (enable_ieob)
 296		gsi_irq_type_enable(gsi, GSI_IEOB);
 297}
 298
 299static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
 300{
 301	const struct reg *reg;
 302	u32 val;
 303
 304	gsi->ieob_enabled_bitmap &= ~event_mask;
 305
 306	/* Disable the interrupt type if this was the last enabled channel */
 307	if (!gsi->ieob_enabled_bitmap)
 308		gsi_irq_type_disable(gsi, GSI_IEOB);
 309
 310	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
 311	val = gsi->ieob_enabled_bitmap;
 312	iowrite32(val, gsi->virt + reg_offset(reg));
 313}
 314
 315static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
 316{
 317	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
 318}
 319
 320/* Enable all GSI_interrupt types */
 321static void gsi_irq_enable(struct gsi *gsi)
 322{
 323	const struct reg *reg;
 324	u32 val;
 325
 326	/* Global interrupts include hardware error reports.  Enable
 327	 * that so we can at least report the error should it occur.
 328	 */
 329	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
 330	iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
 331
 332	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
 333
 334	/* General GSI interrupts are reported to all EEs; if they occur
 335	 * they are unrecoverable (without reset).  A breakpoint interrupt
 336	 * also exists, but we don't support that.  We want to be notified
 337	 * of errors so we can report them, even if they can't be handled.
 338	 */
 339	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
 340	val = BUS_ERROR;
 341	val |= CMD_FIFO_OVRFLOW;
 342	val |= MCS_STACK_OVRFLOW;
 343	iowrite32(val, gsi->virt + reg_offset(reg));
 344
 345	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
 346}
 347
 348/* Disable all GSI interrupt types */
 349static void gsi_irq_disable(struct gsi *gsi)
 350{
 351	const struct reg *reg;
 352
 353	gsi_irq_type_update(gsi, 0);
 354
 355	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
 356	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
 357	iowrite32(0, gsi->virt + reg_offset(reg));
 358
 359	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
 360	iowrite32(0, gsi->virt + reg_offset(reg));
 361}
 362
 363/* Return the virtual address associated with a ring index */
 364void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
 365{
 366	/* Note: index *must* be used modulo the ring count here */
 367	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
 368}
 369
 370/* Return the 32-bit DMA address associated with a ring index */
 371static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
 372{
 373	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
 374}
 375
 376/* Return the ring index of a 32-bit ring offset */
 377static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
 378{
 379	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
 380}
 381
 382/* Issue a GSI command by writing a value to a register, then wait for
 383 * completion to be signaled.  Returns true if the command completes
 384 * or false if it times out.
 385 */
 386static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
 387{
 388	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
 389	struct completion *completion = &gsi->completion;
 390
 391	reinit_completion(completion);
 392
 393	iowrite32(val, gsi->virt + reg);
 394
 395	return !!wait_for_completion_timeout(completion, timeout);
 396}
 397
 398/* Return the hardware's notion of the current state of an event ring */
 399static enum gsi_evt_ring_state
 400gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
 401{
 402	const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
 403	u32 val;
 404
 405	val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
 406
 407	return reg_decode(reg, EV_CHSTATE, val);
 408}
 409
 410/* Issue an event ring command and wait for it to complete */
 411static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
 412				 enum gsi_evt_cmd_opcode opcode)
 413{
 414	struct device *dev = gsi->dev;
 415	const struct reg *reg;
 416	bool timeout;
 417	u32 val;
 418
 419	/* Enable the completion interrupt for the command */
 420	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
 421
 422	reg = gsi_reg(gsi, EV_CH_CMD);
 423	val = reg_encode(reg, EV_CHID, evt_ring_id);
 424	val |= reg_encode(reg, EV_OPCODE, opcode);
 425
 426	timeout = !gsi_command(gsi, reg_offset(reg), val);
 427
 428	gsi_irq_ev_ctrl_disable(gsi);
 429
 430	if (!timeout)
 431		return;
 432
 433	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
 434		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
 435}
 436
 437/* Allocate an event ring in NOT_ALLOCATED state */
 438static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
 439{
 440	enum gsi_evt_ring_state state;
 441
 442	/* Get initial event ring state */
 443	state = gsi_evt_ring_state(gsi, evt_ring_id);
 444	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
 445		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
 446			evt_ring_id, state);
 447		return -EINVAL;
 448	}
 449
 450	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
 451
 452	/* If successful the event ring state will have changed */
 453	state = gsi_evt_ring_state(gsi, evt_ring_id);
 454	if (state == GSI_EVT_RING_STATE_ALLOCATED)
 455		return 0;
 456
 457	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
 458		evt_ring_id, state);
 459
 460	return -EIO;
 461}
 462
 463/* Reset a GSI event ring in ALLOCATED or ERROR state. */
 464static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
 465{
 466	enum gsi_evt_ring_state state;
 467
 468	state = gsi_evt_ring_state(gsi, evt_ring_id);
 469	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
 470	    state != GSI_EVT_RING_STATE_ERROR) {
 471		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
 472			evt_ring_id, state);
 473		return;
 474	}
 475
 476	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
 477
 478	/* If successful the event ring state will have changed */
 479	state = gsi_evt_ring_state(gsi, evt_ring_id);
 480	if (state == GSI_EVT_RING_STATE_ALLOCATED)
 481		return;
 482
 483	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
 484		evt_ring_id, state);
 485}
 486
 487/* Issue a hardware de-allocation request for an allocated event ring */
 488static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
 489{
 490	enum gsi_evt_ring_state state;
 491
 492	state = gsi_evt_ring_state(gsi, evt_ring_id);
 493	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
 494		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
 495			evt_ring_id, state);
 496		return;
 497	}
 498
 499	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
 500
 501	/* If successful the event ring state will have changed */
 502	state = gsi_evt_ring_state(gsi, evt_ring_id);
 503	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
 504		return;
 505
 506	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
 507		evt_ring_id, state);
 508}
 509
 510/* Fetch the current state of a channel from hardware */
 511static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
 512{
 513	const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
 514	u32 channel_id = gsi_channel_id(channel);
 515	struct gsi *gsi = channel->gsi;
 516	void __iomem *virt = gsi->virt;
 517	u32 val;
 518
 519	reg = gsi_reg(gsi, CH_C_CNTXT_0);
 520	val = ioread32(virt + reg_n_offset(reg, channel_id));
 521
 522	return reg_decode(reg, CHSTATE, val);
 523}
 524
 525/* Issue a channel command and wait for it to complete */
 526static void
 527gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
 528{
 529	u32 channel_id = gsi_channel_id(channel);
 530	struct gsi *gsi = channel->gsi;
 531	struct device *dev = gsi->dev;
 532	const struct reg *reg;
 533	bool timeout;
 534	u32 val;
 535
 536	/* Enable the completion interrupt for the command */
 537	gsi_irq_ch_ctrl_enable(gsi, channel_id);
 538
 539	reg = gsi_reg(gsi, CH_CMD);
 540	val = reg_encode(reg, CH_CHID, channel_id);
 541	val |= reg_encode(reg, CH_OPCODE, opcode);
 542
 543	timeout = !gsi_command(gsi, reg_offset(reg), val);
 544
 545	gsi_irq_ch_ctrl_disable(gsi);
 546
 547	if (!timeout)
 548		return;
 549
 550	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
 551		opcode, channel_id, gsi_channel_state(channel));
 552}
 553
 554/* Allocate GSI channel in NOT_ALLOCATED state */
 555static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
 556{
 557	struct gsi_channel *channel = &gsi->channel[channel_id];
 558	struct device *dev = gsi->dev;
 559	enum gsi_channel_state state;
 560
 561	/* Get initial channel state */
 562	state = gsi_channel_state(channel);
 563	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
 564		dev_err(dev, "channel %u bad state %u before alloc\n",
 565			channel_id, state);
 566		return -EINVAL;
 567	}
 568
 569	gsi_channel_command(channel, GSI_CH_ALLOCATE);
 570
 571	/* If successful the channel state will have changed */
 572	state = gsi_channel_state(channel);
 573	if (state == GSI_CHANNEL_STATE_ALLOCATED)
 574		return 0;
 575
 576	dev_err(dev, "channel %u bad state %u after alloc\n",
 577		channel_id, state);
 578
 579	return -EIO;
 580}
 581
 582/* Start an ALLOCATED channel */
 583static int gsi_channel_start_command(struct gsi_channel *channel)
 584{
 585	struct device *dev = channel->gsi->dev;
 586	enum gsi_channel_state state;
 587
 588	state = gsi_channel_state(channel);
 589	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
 590	    state != GSI_CHANNEL_STATE_STOPPED) {
 591		dev_err(dev, "channel %u bad state %u before start\n",
 592			gsi_channel_id(channel), state);
 593		return -EINVAL;
 594	}
 595
 596	gsi_channel_command(channel, GSI_CH_START);
 597
 598	/* If successful the channel state will have changed */
 599	state = gsi_channel_state(channel);
 600	if (state == GSI_CHANNEL_STATE_STARTED)
 601		return 0;
 602
 603	dev_err(dev, "channel %u bad state %u after start\n",
 604		gsi_channel_id(channel), state);
 605
 606	return -EIO;
 607}
 608
 609/* Stop a GSI channel in STARTED state */
 610static int gsi_channel_stop_command(struct gsi_channel *channel)
 611{
 612	struct device *dev = channel->gsi->dev;
 613	enum gsi_channel_state state;
 614
 615	state = gsi_channel_state(channel);
 616
 617	/* Channel could have entered STOPPED state since last call
 618	 * if it timed out.  If so, we're done.
 619	 */
 620	if (state == GSI_CHANNEL_STATE_STOPPED)
 621		return 0;
 622
 623	if (state != GSI_CHANNEL_STATE_STARTED &&
 624	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
 625		dev_err(dev, "channel %u bad state %u before stop\n",
 626			gsi_channel_id(channel), state);
 627		return -EINVAL;
 628	}
 629
 630	gsi_channel_command(channel, GSI_CH_STOP);
 631
 632	/* If successful the channel state will have changed */
 633	state = gsi_channel_state(channel);
 634	if (state == GSI_CHANNEL_STATE_STOPPED)
 635		return 0;
 636
 637	/* We may have to try again if stop is in progress */
 638	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
 639		return -EAGAIN;
 640
 641	dev_err(dev, "channel %u bad state %u after stop\n",
 642		gsi_channel_id(channel), state);
 643
 644	return -EIO;
 645}
 646
 647/* Reset a GSI channel in ALLOCATED or ERROR state. */
 648static void gsi_channel_reset_command(struct gsi_channel *channel)
 649{
 650	struct device *dev = channel->gsi->dev;
 651	enum gsi_channel_state state;
 652
 653	/* A short delay is required before a RESET command */
 654	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
 655
 656	state = gsi_channel_state(channel);
 657	if (state != GSI_CHANNEL_STATE_STOPPED &&
 658	    state != GSI_CHANNEL_STATE_ERROR) {
 659		/* No need to reset a channel already in ALLOCATED state */
 660		if (state != GSI_CHANNEL_STATE_ALLOCATED)
 661			dev_err(dev, "channel %u bad state %u before reset\n",
 662				gsi_channel_id(channel), state);
 663		return;
 664	}
 665
 666	gsi_channel_command(channel, GSI_CH_RESET);
 667
 668	/* If successful the channel state will have changed */
 669	state = gsi_channel_state(channel);
 670	if (state != GSI_CHANNEL_STATE_ALLOCATED)
 671		dev_err(dev, "channel %u bad state %u after reset\n",
 672			gsi_channel_id(channel), state);
 673}
 674
 675/* Deallocate an ALLOCATED GSI channel */
 676static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
 677{
 678	struct gsi_channel *channel = &gsi->channel[channel_id];
 679	struct device *dev = gsi->dev;
 680	enum gsi_channel_state state;
 681
 682	state = gsi_channel_state(channel);
 683	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
 684		dev_err(dev, "channel %u bad state %u before dealloc\n",
 685			channel_id, state);
 686		return;
 687	}
 688
 689	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
 690
 691	/* If successful the channel state will have changed */
 692	state = gsi_channel_state(channel);
 693
 694	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
 695		dev_err(dev, "channel %u bad state %u after dealloc\n",
 696			channel_id, state);
 697}
 698
 699/* Ring an event ring doorbell, reporting the last entry processed by the AP.
 700 * The index argument (modulo the ring count) is the first unfilled entry, so
 701 * we supply one less than that with the doorbell.  Update the event ring
 702 * index field with the value provided.
 703 */
 704static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
 705{
 706	const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
 707	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
 708	u32 val;
 709
 710	ring->index = index;	/* Next unused entry */
 711
 712	/* Note: index *must* be used modulo the ring count here */
 713	val = gsi_ring_addr(ring, (index - 1) % ring->count);
 714	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 715}
 716
 717/* Program an event ring for use */
 718static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
 719{
 720	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 721	struct gsi_ring *ring = &evt_ring->ring;
 722	const struct reg *reg;
 723	u32 val;
 724
 725	reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
 726	/* We program all event rings as GPI type/protocol */
 727	val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
 728	/* EV_EE field is 0 (GSI_EE_AP) */
 729	val |= reg_bit(reg, EV_INTYPE);
 730	val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
 731	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 732
 733	reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
 734	val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
 735	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 736
 737	/* The context 2 and 3 registers store the low-order and
 738	 * high-order 32 bits of the address of the event ring,
 739	 * respectively.
 740	 */
 741	reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
 742	val = lower_32_bits(ring->addr);
 743	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 744
 745	reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
 746	val = upper_32_bits(ring->addr);
 747	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 748
 749	/* Enable interrupt moderation by setting the moderation delay */
 750	reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
 751	val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
 752	val |= reg_encode(reg, EV_MODC, 1);	/* comes from channel */
 753	/* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
 754	iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
 755
 756	/* No MSI write data, and MSI high and low address is 0 */
 757	reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
 758	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
 759
 760	reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
 761	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
 762
 763	reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
 764	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
 765
 766	/* We don't need to get event read pointer updates */
 767	reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
 768	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
 769
 770	reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
 771	iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
 772
 773	/* Finally, tell the hardware our "last processed" event (arbitrary) */
 774	gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
 775}
 776
 777/* Find the transaction whose completion indicates a channel is quiesced */
 778static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
 779{
 780	struct gsi_trans_info *trans_info = &channel->trans_info;
 781	u32 pending_id = trans_info->pending_id;
 782	struct gsi_trans *trans;
 783	u16 trans_id;
 784
 785	if (channel->toward_ipa && pending_id != trans_info->free_id) {
 786		/* There is a small chance a TX transaction got allocated
 787		 * just before we disabled transmits, so check for that.
 788		 * The last allocated, committed, or pending transaction
 789		 * precedes the first free transaction.
 790		 */
 791		trans_id = trans_info->free_id - 1;
 792	} else if (trans_info->polled_id != pending_id) {
 793		/* Otherwise (TX or RX) we want to wait for anything that
 794		 * has completed, or has been polled but not released yet.
 795		 *
 796		 * The last completed or polled transaction precedes the
 797		 * first pending transaction.
 798		 */
 799		trans_id = pending_id - 1;
 800	} else {
 801		return NULL;
 802	}
 803
 804	/* Caller will wait for this, so take a reference */
 805	trans = &trans_info->trans[trans_id % channel->tre_count];
 806	refcount_inc(&trans->refcount);
 807
 808	return trans;
 809}
 810
 811/* Wait for transaction activity on a channel to complete */
 812static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
 813{
 814	struct gsi_trans *trans;
 815
 816	/* Get the last transaction, and wait for it to complete */
 817	trans = gsi_channel_trans_last(channel);
 818	if (trans) {
 819		wait_for_completion(&trans->completion);
 820		gsi_trans_free(trans);
 821	}
 822}
 823
 824/* Program a channel for use; there is no gsi_channel_deprogram() */
 825static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
 826{
 827	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
 828	u32 channel_id = gsi_channel_id(channel);
 829	union gsi_channel_scratch scr = { };
 830	struct gsi_channel_scratch_gpi *gpi;
 831	struct gsi *gsi = channel->gsi;
 832	const struct reg *reg;
 833	u32 wrr_weight = 0;
 834	u32 offset;
 835	u32 val;
 836
 837	reg = gsi_reg(gsi, CH_C_CNTXT_0);
 838
 839	/* We program all channels as GPI type/protocol */
 840	val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
 841	if (channel->toward_ipa)
 842		val |= reg_bit(reg, CHTYPE_DIR);
 843	if (gsi->version < IPA_VERSION_5_0)
 844		val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
 845	val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
 846	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 847
 848	reg = gsi_reg(gsi, CH_C_CNTXT_1);
 849	val = reg_encode(reg, CH_R_LENGTH, size);
 850	if (gsi->version >= IPA_VERSION_5_0)
 851		val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id);
 852	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 853
 854	/* The context 2 and 3 registers store the low-order and
 855	 * high-order 32 bits of the address of the channel ring,
 856	 * respectively.
 857	 */
 858	reg = gsi_reg(gsi, CH_C_CNTXT_2);
 859	val = lower_32_bits(channel->tre_ring.addr);
 860	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 861
 862	reg = gsi_reg(gsi, CH_C_CNTXT_3);
 863	val = upper_32_bits(channel->tre_ring.addr);
 864	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 865
 866	reg = gsi_reg(gsi, CH_C_QOS);
 867
 868	/* Command channel gets low weighted round-robin priority */
 869	if (channel->command)
 870		wrr_weight = reg_field_max(reg, WRR_WEIGHT);
 871	val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
 872
 873	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
 874
 875	/* No need to use the doorbell engine starting at IPA v4.0 */
 876	if (gsi->version < IPA_VERSION_4_0 && doorbell)
 877		val |= reg_bit(reg, USE_DB_ENG);
 878
 879	/* v4.0 introduces an escape buffer for prefetch.  We use it
 880	 * on all but the AP command channel.
 881	 */
 882	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
 883		/* If not otherwise set, prefetch buffers are used */
 884		if (gsi->version < IPA_VERSION_4_5)
 885			val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
 886		else
 887			val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
 888	}
 889	/* All channels set DB_IN_BYTES */
 890	if (gsi->version >= IPA_VERSION_4_9)
 891		val |= reg_bit(reg, DB_IN_BYTES);
 892
 893	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 894
 895	/* Now update the scratch registers for GPI protocol */
 896	gpi = &scr.gpi;
 897	gpi->max_outstanding_tre = channel->trans_tre_max *
 898					GSI_RING_ELEMENT_SIZE;
 899	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
 900
 901	reg = gsi_reg(gsi, CH_C_SCRATCH_0);
 902	val = scr.data.word1;
 903	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 904
 905	reg = gsi_reg(gsi, CH_C_SCRATCH_1);
 906	val = scr.data.word2;
 907	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 908
 909	reg = gsi_reg(gsi, CH_C_SCRATCH_2);
 910	val = scr.data.word3;
 911	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
 912
 913	/* We must preserve the upper 16 bits of the last scratch register.
 914	 * The next sequence assumes those bits remain unchanged between the
 915	 * read and the write.
 916	 */
 917	reg = gsi_reg(gsi, CH_C_SCRATCH_3);
 918	offset = reg_n_offset(reg, channel_id);
 919	val = ioread32(gsi->virt + offset);
 920	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
 921	iowrite32(val, gsi->virt + offset);
 922
 923	/* All done! */
 924}
 925
 926static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
 927{
 928	struct gsi *gsi = channel->gsi;
 929	int ret;
 930
 931	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
 932	if (resume && gsi->version < IPA_VERSION_4_0)
 933		return 0;
 934
 935	mutex_lock(&gsi->mutex);
 936
 937	ret = gsi_channel_start_command(channel);
 938
 939	mutex_unlock(&gsi->mutex);
 940
 941	return ret;
 942}
 943
 944/* Start an allocated GSI channel */
 945int gsi_channel_start(struct gsi *gsi, u32 channel_id)
 946{
 947	struct gsi_channel *channel = &gsi->channel[channel_id];
 948	int ret;
 949
 950	/* Enable NAPI and the completion interrupt */
 951	napi_enable(&channel->napi);
 952	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
 953
 954	ret = __gsi_channel_start(channel, false);
 955	if (ret) {
 956		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
 957		napi_disable(&channel->napi);
 958	}
 959
 960	return ret;
 961}
 962
 963static int gsi_channel_stop_retry(struct gsi_channel *channel)
 964{
 965	u32 retries = GSI_CHANNEL_STOP_RETRIES;
 966	int ret;
 967
 968	do {
 969		ret = gsi_channel_stop_command(channel);
 970		if (ret != -EAGAIN)
 971			break;
 972		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
 973	} while (retries--);
 974
 975	return ret;
 976}
 977
 978static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
 979{
 980	struct gsi *gsi = channel->gsi;
 981	int ret;
 982
 983	/* Wait for any underway transactions to complete before stopping. */
 984	gsi_channel_trans_quiesce(channel);
 985
 986	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
 987	if (suspend && gsi->version < IPA_VERSION_4_0)
 988		return 0;
 989
 990	mutex_lock(&gsi->mutex);
 991
 992	ret = gsi_channel_stop_retry(channel);
 993
 994	mutex_unlock(&gsi->mutex);
 995
 996	return ret;
 997}
 998
 999/* Stop a started channel */
1000int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
1001{
1002	struct gsi_channel *channel = &gsi->channel[channel_id];
1003	int ret;
1004
1005	ret = __gsi_channel_stop(channel, false);
1006	if (ret)
1007		return ret;
1008
1009	/* Disable the completion interrupt and NAPI if successful */
1010	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
1011	napi_disable(&channel->napi);
1012
1013	return 0;
1014}
1015
1016/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
1017void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
1018{
1019	struct gsi_channel *channel = &gsi->channel[channel_id];
1020
1021	mutex_lock(&gsi->mutex);
1022
1023	gsi_channel_reset_command(channel);
1024	/* Due to a hardware quirk we may need to reset RX channels twice. */
1025	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
1026		gsi_channel_reset_command(channel);
1027
1028	/* Hardware assumes this is 0 following reset */
1029	channel->tre_ring.index = 0;
1030	gsi_channel_program(channel, doorbell);
1031	gsi_channel_trans_cancel_pending(channel);
1032
1033	mutex_unlock(&gsi->mutex);
1034}
1035
1036/* Stop a started channel for suspend */
1037int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
1038{
1039	struct gsi_channel *channel = &gsi->channel[channel_id];
1040	int ret;
1041
1042	ret = __gsi_channel_stop(channel, true);
1043	if (ret)
1044		return ret;
1045
1046	/* Ensure NAPI polling has finished. */
1047	napi_synchronize(&channel->napi);
1048
1049	return 0;
1050}
1051
1052/* Resume a suspended channel (starting if stopped) */
1053int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
1054{
1055	struct gsi_channel *channel = &gsi->channel[channel_id];
1056
1057	return __gsi_channel_start(channel, true);
1058}
1059
1060/* Prevent all GSI interrupts while suspended */
1061void gsi_suspend(struct gsi *gsi)
1062{
1063	disable_irq(gsi->irq);
1064}
1065
1066/* Allow all GSI interrupts again when resuming */
1067void gsi_resume(struct gsi *gsi)
1068{
1069	enable_irq(gsi->irq);
1070}
1071
1072void gsi_trans_tx_committed(struct gsi_trans *trans)
1073{
1074	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
1075
1076	channel->trans_count++;
1077	channel->byte_count += trans->len;
1078
1079	trans->trans_count = channel->trans_count;
1080	trans->byte_count = channel->byte_count;
1081}
1082
1083void gsi_trans_tx_queued(struct gsi_trans *trans)
1084{
1085	u32 channel_id = trans->channel_id;
1086	struct gsi *gsi = trans->gsi;
1087	struct gsi_channel *channel;
1088	u32 trans_count;
1089	u32 byte_count;
1090
1091	channel = &gsi->channel[channel_id];
1092
1093	byte_count = channel->byte_count - channel->queued_byte_count;
1094	trans_count = channel->trans_count - channel->queued_trans_count;
1095	channel->queued_byte_count = channel->byte_count;
1096	channel->queued_trans_count = channel->trans_count;
1097
1098	ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1099}
1100
1101/**
1102 * gsi_trans_tx_completed() - Report completed TX transactions
1103 * @trans:	TX channel transaction that has completed
1104 *
1105 * Report that a transaction on a TX channel has completed.  At the time a
1106 * transaction is committed, we record *in the transaction* its channel's
1107 * committed transaction and byte counts.  Transactions are completed in
1108 * order, and the difference between the channel's byte/transaction count
1109 * when the transaction was committed and when it completes tells us
1110 * exactly how much data has been transferred while the transaction was
1111 * pending.
1112 *
1113 * We report this information to the network stack, which uses it to manage
1114 * the rate at which data is sent to hardware.
1115 */
1116static void gsi_trans_tx_completed(struct gsi_trans *trans)
1117{
1118	u32 channel_id = trans->channel_id;
1119	struct gsi *gsi = trans->gsi;
1120	struct gsi_channel *channel;
1121	u32 trans_count;
1122	u32 byte_count;
1123
1124	channel = &gsi->channel[channel_id];
1125	trans_count = trans->trans_count - channel->compl_trans_count;
1126	byte_count = trans->byte_count - channel->compl_byte_count;
1127
1128	channel->compl_trans_count += trans_count;
1129	channel->compl_byte_count += byte_count;
1130
1131	ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1132}
1133
1134/* Channel control interrupt handler */
1135static void gsi_isr_chan_ctrl(struct gsi *gsi)
1136{
1137	const struct reg *reg;
1138	u32 channel_mask;
1139
1140	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
1141	channel_mask = ioread32(gsi->virt + reg_offset(reg));
1142
1143	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
1144	iowrite32(channel_mask, gsi->virt + reg_offset(reg));
1145
1146	while (channel_mask) {
1147		u32 channel_id = __ffs(channel_mask);
1148
1149		channel_mask ^= BIT(channel_id);
1150
1151		complete(&gsi->completion);
1152	}
1153}
1154
1155/* Event ring control interrupt handler */
1156static void gsi_isr_evt_ctrl(struct gsi *gsi)
1157{
1158	const struct reg *reg;
1159	u32 event_mask;
1160
1161	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
1162	event_mask = ioread32(gsi->virt + reg_offset(reg));
1163
1164	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
1165	iowrite32(event_mask, gsi->virt + reg_offset(reg));
1166
1167	while (event_mask) {
1168		u32 evt_ring_id = __ffs(event_mask);
1169
1170		event_mask ^= BIT(evt_ring_id);
1171
1172		complete(&gsi->completion);
1173	}
1174}
1175
1176/* Global channel error interrupt handler */
1177static void
1178gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1179{
1180	if (code == GSI_OUT_OF_RESOURCES) {
1181		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1182		complete(&gsi->completion);
1183		return;
1184	}
1185
1186	/* Report, but otherwise ignore all other error codes */
1187	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1188		channel_id, err_ee, code);
1189}
1190
1191/* Global event error interrupt handler */
1192static void
1193gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1194{
1195	if (code == GSI_OUT_OF_RESOURCES) {
1196		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1197		u32 channel_id = gsi_channel_id(evt_ring->channel);
1198
1199		complete(&gsi->completion);
1200		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1201			channel_id);
1202		return;
1203	}
1204
1205	/* Report, but otherwise ignore all other error codes */
1206	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1207		evt_ring_id, err_ee, code);
1208}
1209
1210/* Global error interrupt handler */
1211static void gsi_isr_glob_err(struct gsi *gsi)
1212{
1213	const struct reg *log_reg;
1214	const struct reg *clr_reg;
1215	enum gsi_err_type type;
1216	enum gsi_err_code code;
1217	u32 offset;
1218	u32 which;
1219	u32 val;
1220	u32 ee;
1221
1222	/* Get the logged error, then reinitialize the log */
1223	log_reg = gsi_reg(gsi, ERROR_LOG);
1224	offset = reg_offset(log_reg);
1225	val = ioread32(gsi->virt + offset);
1226	iowrite32(0, gsi->virt + offset);
1227
1228	clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
1229	iowrite32(~0, gsi->virt + reg_offset(clr_reg));
1230
1231	/* Parse the error value */
1232	ee = reg_decode(log_reg, ERR_EE, val);
1233	type = reg_decode(log_reg, ERR_TYPE, val);
1234	which = reg_decode(log_reg, ERR_VIRT_IDX, val);
1235	code = reg_decode(log_reg, ERR_CODE, val);
1236
1237	if (type == GSI_ERR_TYPE_CHAN)
1238		gsi_isr_glob_chan_err(gsi, ee, which, code);
1239	else if (type == GSI_ERR_TYPE_EVT)
1240		gsi_isr_glob_evt_err(gsi, ee, which, code);
1241	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1242		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1243}
1244
1245/* Generic EE interrupt handler */
1246static void gsi_isr_gp_int1(struct gsi *gsi)
1247{
1248	const struct reg *reg;
1249	u32 result;
1250	u32 val;
1251
1252	/* This interrupt is used to handle completions of GENERIC GSI
1253	 * commands.  We use these to allocate and halt channels on the
1254	 * modem's behalf due to a hardware quirk on IPA v4.2.  The modem
1255	 * "owns" channels even when the AP allocates them, and have no
1256	 * way of knowing whether a modem channel's state has been changed.
1257	 *
1258	 * We also use GENERIC commands to enable/disable channel flow
1259	 * control for IPA v4.2+.
1260	 *
1261	 * It is recommended that we halt the modem channels we allocated
1262	 * when shutting down, but it's possible the channel isn't running
1263	 * at the time we issue the HALT command.  We'll get an error in
1264	 * that case, but it's harmless (the channel is already halted).
1265	 * Similarly, we could get an error back when updating flow control
1266	 * on a channel because it's not in the proper state.
1267	 *
1268	 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1269	 * error if we receive it.
1270	 */
1271	reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1272	val = ioread32(gsi->virt + reg_offset(reg));
1273	result = reg_decode(reg, GENERIC_EE_RESULT, val);
1274
1275	switch (result) {
1276	case GENERIC_EE_SUCCESS:
1277	case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1278		gsi->result = 0;
1279		break;
1280
1281	case GENERIC_EE_RETRY:
1282		gsi->result = -EAGAIN;
1283		break;
1284
1285	default:
1286		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1287		gsi->result = -EIO;
1288		break;
1289	}
1290
1291	complete(&gsi->completion);
1292}
1293
1294/* Inter-EE interrupt handler */
1295static void gsi_isr_glob_ee(struct gsi *gsi)
1296{
1297	const struct reg *reg;
1298	u32 val;
1299
1300	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
1301	val = ioread32(gsi->virt + reg_offset(reg));
1302
1303	if (val & ERROR_INT)
1304		gsi_isr_glob_err(gsi);
1305
1306	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
1307	iowrite32(val, gsi->virt + reg_offset(reg));
1308
1309	val &= ~ERROR_INT;
1310
1311	if (val & GP_INT1) {
1312		val ^= GP_INT1;
1313		gsi_isr_gp_int1(gsi);
1314	}
1315
1316	if (val)
1317		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1318}
1319
1320/* I/O completion interrupt event */
1321static void gsi_isr_ieob(struct gsi *gsi)
1322{
1323	const struct reg *reg;
1324	u32 event_mask;
1325
1326	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
1327	event_mask = ioread32(gsi->virt + reg_offset(reg));
1328
1329	gsi_irq_ieob_disable(gsi, event_mask);
1330
1331	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
1332	iowrite32(event_mask, gsi->virt + reg_offset(reg));
1333
1334	while (event_mask) {
1335		u32 evt_ring_id = __ffs(event_mask);
1336
1337		event_mask ^= BIT(evt_ring_id);
1338
1339		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1340	}
1341}
1342
1343/* General event interrupts represent serious problems, so report them */
1344static void gsi_isr_general(struct gsi *gsi)
1345{
1346	struct device *dev = gsi->dev;
1347	const struct reg *reg;
1348	u32 val;
1349
1350	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
1351	val = ioread32(gsi->virt + reg_offset(reg));
1352
1353	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
1354	iowrite32(val, gsi->virt + reg_offset(reg));
1355
1356	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1357}
1358
1359/**
1360 * gsi_isr() - Top level GSI interrupt service routine
1361 * @irq:	Interrupt number (ignored)
1362 * @dev_id:	GSI pointer supplied to request_irq()
1363 *
1364 * This is the main handler function registered for the GSI IRQ. Each type
1365 * of interrupt has a separate handler function that is called from here.
1366 */
1367static irqreturn_t gsi_isr(int irq, void *dev_id)
1368{
1369	struct gsi *gsi = dev_id;
1370	const struct reg *reg;
1371	u32 intr_mask;
1372	u32 cnt = 0;
1373	u32 offset;
1374
1375	reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
1376	offset = reg_offset(reg);
1377
1378	/* enum gsi_irq_type_id defines GSI interrupt types */
1379	while ((intr_mask = ioread32(gsi->virt + offset))) {
1380		/* intr_mask contains bitmask of pending GSI interrupts */
1381		do {
1382			u32 gsi_intr = BIT(__ffs(intr_mask));
1383
1384			intr_mask ^= gsi_intr;
1385
1386			/* Note: the IRQ condition for each type is cleared
1387			 * when the type-specific register is updated.
1388			 */
1389			switch (gsi_intr) {
1390			case GSI_CH_CTRL:
1391				gsi_isr_chan_ctrl(gsi);
1392				break;
1393			case GSI_EV_CTRL:
1394				gsi_isr_evt_ctrl(gsi);
1395				break;
1396			case GSI_GLOB_EE:
1397				gsi_isr_glob_ee(gsi);
1398				break;
1399			case GSI_IEOB:
1400				gsi_isr_ieob(gsi);
1401				break;
1402			case GSI_GENERAL:
1403				gsi_isr_general(gsi);
1404				break;
1405			default:
1406				dev_err(gsi->dev,
1407					"unrecognized interrupt type 0x%08x\n",
1408					gsi_intr);
1409				break;
1410			}
1411		} while (intr_mask);
1412
1413		if (++cnt > GSI_ISR_MAX_ITER) {
1414			dev_err(gsi->dev, "interrupt flood\n");
1415			break;
1416		}
1417	}
1418
1419	return IRQ_HANDLED;
1420}
1421
1422/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1423static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1424{
1425	int ret;
1426
1427	ret = platform_get_irq_byname(pdev, "gsi");
1428	if (ret <= 0)
1429		return ret ? : -EINVAL;
1430
1431	gsi->irq = ret;
1432
1433	return 0;
1434}
1435
1436/* Return the transaction associated with a transfer completion event */
1437static struct gsi_trans *
1438gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1439{
1440	u32 channel_id = event->chid;
1441	struct gsi_channel *channel;
1442	struct gsi_trans *trans;
1443	u32 tre_offset;
1444	u32 tre_index;
1445
1446	channel = &gsi->channel[channel_id];
1447	if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1448		return NULL;
1449
1450	/* Event xfer_ptr records the TRE it's associated with */
1451	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1452	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1453
1454	trans = gsi_channel_trans_mapped(channel, tre_index);
1455
1456	if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1457		return NULL;
1458
1459	return trans;
1460}
1461
1462/**
1463 * gsi_evt_ring_update() - Update transaction state from hardware
1464 * @gsi:		GSI pointer
1465 * @evt_ring_id:	Event ring ID
1466 * @index:		Event index in ring reported by hardware
1467 *
1468 * Events for RX channels contain the actual number of bytes received into
1469 * the buffer.  Every event has a transaction associated with it, and here
1470 * we update transactions to record their actual received lengths.
1471 *
1472 * When an event for a TX channel arrives we use information in the
1473 * transaction to report the number of requests and bytes that have
1474 * been transferred.
1475 *
1476 * This function is called whenever we learn that the GSI hardware has filled
1477 * new events since the last time we checked.  The ring's index field tells
1478 * the first entry in need of processing.  The index provided is the
1479 * first *unfilled* event in the ring (following the last filled one).
1480 *
1481 * Events are sequential within the event ring, and transactions are
1482 * sequential within the transaction array.
1483 *
1484 * Note that @index always refers to an element *within* the event ring.
1485 */
1486static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1487{
1488	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1489	struct gsi_ring *ring = &evt_ring->ring;
1490	struct gsi_event *event_done;
1491	struct gsi_event *event;
1492	u32 event_avail;
1493	u32 old_index;
1494
1495	/* Starting with the oldest un-processed event, determine which
1496	 * transaction (and which channel) is associated with the event.
1497	 * For RX channels, update each completed transaction with the
1498	 * number of bytes that were actually received.  For TX channels
1499	 * associated with a network device, report to the network stack
1500	 * the number of transfers and bytes this completion represents.
1501	 */
1502	old_index = ring->index;
1503	event = gsi_ring_virt(ring, old_index);
1504
1505	/* Compute the number of events to process before we wrap,
1506	 * and determine when we'll be done processing events.
1507	 */
1508	event_avail = ring->count - old_index % ring->count;
1509	event_done = gsi_ring_virt(ring, index);
1510	do {
1511		struct gsi_trans *trans;
1512
1513		trans = gsi_event_trans(gsi, event);
1514		if (!trans)
1515			return;
1516
1517		if (trans->direction == DMA_FROM_DEVICE)
1518			trans->len = __le16_to_cpu(event->len);
1519		else
1520			gsi_trans_tx_completed(trans);
1521
1522		gsi_trans_move_complete(trans);
1523
1524		/* Move on to the next event and transaction */
1525		if (--event_avail)
1526			event++;
1527		else
1528			event = gsi_ring_virt(ring, 0);
1529	} while (event != event_done);
1530
1531	/* Tell the hardware we've handled these events */
1532	gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1533}
1534
1535/* Initialize a ring, including allocating DMA memory for its entries */
1536static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1537{
1538	u32 size = count * GSI_RING_ELEMENT_SIZE;
1539	struct device *dev = gsi->dev;
1540	dma_addr_t addr;
1541
1542	/* Hardware requires a 2^n ring size, with alignment equal to size.
1543	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1544	 * be a power-of-2 number of pages, which satisfies the requirement.
1545	 */
1546	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1547	if (!ring->virt)
1548		return -ENOMEM;
1549
1550	ring->addr = addr;
1551	ring->count = count;
1552	ring->index = 0;
1553
1554	return 0;
1555}
1556
1557/* Free a previously-allocated ring */
1558static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1559{
1560	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1561
1562	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1563}
1564
1565/* Allocate an available event ring id */
1566static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1567{
1568	u32 evt_ring_id;
1569
1570	if (gsi->event_bitmap == ~0U) {
1571		dev_err(gsi->dev, "event rings exhausted\n");
1572		return -ENOSPC;
1573	}
1574
1575	evt_ring_id = ffz(gsi->event_bitmap);
1576	gsi->event_bitmap |= BIT(evt_ring_id);
1577
1578	return (int)evt_ring_id;
1579}
1580
1581/* Free a previously-allocated event ring id */
1582static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1583{
1584	gsi->event_bitmap &= ~BIT(evt_ring_id);
1585}
1586
1587/* Ring a channel doorbell, reporting the first un-filled entry */
1588void gsi_channel_doorbell(struct gsi_channel *channel)
1589{
1590	struct gsi_ring *tre_ring = &channel->tre_ring;
1591	u32 channel_id = gsi_channel_id(channel);
1592	struct gsi *gsi = channel->gsi;
1593	const struct reg *reg;
1594	u32 val;
1595
1596	reg = gsi_reg(gsi, CH_C_DOORBELL_0);
1597	/* Note: index *must* be used modulo the ring count here */
1598	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1599	iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
1600}
1601
1602/* Consult hardware, move newly completed transactions to completed state */
1603void gsi_channel_update(struct gsi_channel *channel)
1604{
1605	u32 evt_ring_id = channel->evt_ring_id;
1606	struct gsi *gsi = channel->gsi;
1607	struct gsi_evt_ring *evt_ring;
1608	struct gsi_trans *trans;
1609	struct gsi_ring *ring;
1610	const struct reg *reg;
1611	u32 offset;
1612	u32 index;
1613
1614	evt_ring = &gsi->evt_ring[evt_ring_id];
1615	ring = &evt_ring->ring;
1616
1617	/* See if there's anything new to process; if not, we're done.  Note
1618	 * that index always refers to an entry *within* the event ring.
1619	 */
1620	reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
1621	offset = reg_n_offset(reg, evt_ring_id);
1622	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1623	if (index == ring->index % ring->count)
1624		return;
1625
1626	/* Get the transaction for the latest completed event. */
1627	trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1628	if (!trans)
1629		return;
1630
1631	/* For RX channels, update each completed transaction with the number
1632	 * of bytes that were actually received.  For TX channels, report
1633	 * the number of transactions and bytes this completion represents
1634	 * up the network stack.
1635	 */
1636	gsi_evt_ring_update(gsi, evt_ring_id, index);
1637}
1638
1639/**
1640 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1641 * @channel:	Channel to be polled
1642 *
1643 * Return:	Transaction pointer, or null if none are available
1644 *
1645 * This function returns the first of a channel's completed transactions.
1646 * If no transactions are in completed state, the hardware is consulted to
1647 * determine whether any new transactions have completed.  If so, they're
1648 * moved to completed state and the first such transaction is returned.
1649 * If there are no more completed transactions, a null pointer is returned.
1650 */
1651static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1652{
1653	struct gsi_trans *trans;
1654
1655	/* Get the first completed transaction */
1656	trans = gsi_channel_trans_complete(channel);
1657	if (trans)
1658		gsi_trans_move_polled(trans);
1659
1660	return trans;
1661}
1662
1663/**
1664 * gsi_channel_poll() - NAPI poll function for a channel
1665 * @napi:	NAPI structure for the channel
1666 * @budget:	Budget supplied by NAPI core
1667 *
1668 * Return:	Number of items polled (<= budget)
1669 *
1670 * Single transactions completed by hardware are polled until either
1671 * the budget is exhausted, or there are no more.  Each transaction
1672 * polled is passed to gsi_trans_complete(), to perform remaining
1673 * completion processing and retire/free the transaction.
1674 */
1675static int gsi_channel_poll(struct napi_struct *napi, int budget)
1676{
1677	struct gsi_channel *channel;
1678	int count;
1679
1680	channel = container_of(napi, struct gsi_channel, napi);
1681	for (count = 0; count < budget; count++) {
1682		struct gsi_trans *trans;
1683
1684		trans = gsi_channel_poll_one(channel);
1685		if (!trans)
1686			break;
1687		gsi_trans_complete(trans);
1688	}
1689
1690	if (count < budget && napi_complete(napi))
1691		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1692
1693	return count;
1694}
1695
1696/* The event bitmap represents which event ids are available for allocation.
1697 * Set bits are not available, clear bits can be used.  This function
1698 * initializes the map so all events supported by the hardware are available,
1699 * then precludes any reserved events from being allocated.
1700 */
1701static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1702{
1703	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1704
1705	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1706
1707	return event_bitmap;
1708}
1709
1710/* Setup function for a single channel */
1711static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1712{
1713	struct gsi_channel *channel = &gsi->channel[channel_id];
1714	u32 evt_ring_id = channel->evt_ring_id;
1715	int ret;
1716
1717	if (!gsi_channel_initialized(channel))
1718		return 0;
1719
1720	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1721	if (ret)
1722		return ret;
1723
1724	gsi_evt_ring_program(gsi, evt_ring_id);
1725
1726	ret = gsi_channel_alloc_command(gsi, channel_id);
1727	if (ret)
1728		goto err_evt_ring_de_alloc;
1729
1730	gsi_channel_program(channel, true);
1731
1732	if (channel->toward_ipa)
1733		netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
1734				  gsi_channel_poll);
1735	else
1736		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1737			       gsi_channel_poll);
1738
1739	return 0;
1740
1741err_evt_ring_de_alloc:
1742	/* We've done nothing with the event ring yet so don't reset */
1743	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1744
1745	return ret;
1746}
1747
1748/* Inverse of gsi_channel_setup_one() */
1749static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1750{
1751	struct gsi_channel *channel = &gsi->channel[channel_id];
1752	u32 evt_ring_id = channel->evt_ring_id;
1753
1754	if (!gsi_channel_initialized(channel))
1755		return;
1756
1757	netif_napi_del(&channel->napi);
1758
1759	gsi_channel_de_alloc_command(gsi, channel_id);
1760	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1761	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1762}
1763
1764/* We use generic commands only to operate on modem channels.  We don't have
1765 * the ability to determine channel state for a modem channel, so we simply
1766 * issue the command and wait for it to complete.
1767 */
1768static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1769			       enum gsi_generic_cmd_opcode opcode,
1770			       u8 params)
1771{
1772	const struct reg *reg;
1773	bool timeout;
1774	u32 offset;
1775	u32 val;
1776
1777	/* The error global interrupt type is always enabled (until we tear
1778	 * down), so we will keep it enabled.
1779	 *
1780	 * A generic EE command completes with a GSI global interrupt of
1781	 * type GP_INT1.  We only perform one generic command at a time
1782	 * (to allocate, halt, or enable/disable flow control on a modem
1783	 * channel), and only from this function.  So we enable the GP_INT1
1784	 * IRQ type here, and disable it again after the command completes.
1785	 */
1786	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1787	val = ERROR_INT | GP_INT1;
1788	iowrite32(val, gsi->virt + reg_offset(reg));
1789
1790	/* First zero the result code field */
1791	reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1792	offset = reg_offset(reg);
1793	val = ioread32(gsi->virt + offset);
1794
1795	val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
1796	iowrite32(val, gsi->virt + offset);
1797
1798	/* Now issue the command */
1799	reg = gsi_reg(gsi, GENERIC_CMD);
1800	val = reg_encode(reg, GENERIC_OPCODE, opcode);
1801	val |= reg_encode(reg, GENERIC_CHID, channel_id);
1802	val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
1803	if (gsi->version >= IPA_VERSION_4_11)
1804		val |= reg_encode(reg, GENERIC_PARAMS, params);
1805
1806	timeout = !gsi_command(gsi, reg_offset(reg), val);
1807
1808	/* Disable the GP_INT1 IRQ type again */
1809	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1810	iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
1811
1812	if (!timeout)
1813		return gsi->result;
1814
1815	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1816		opcode, channel_id);
1817
1818	return -ETIMEDOUT;
1819}
1820
1821static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1822{
1823	return gsi_generic_command(gsi, channel_id,
1824				   GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1825}
1826
1827static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1828{
1829	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1830	int ret;
1831
1832	do
1833		ret = gsi_generic_command(gsi, channel_id,
1834					  GSI_GENERIC_HALT_CHANNEL, 0);
1835	while (ret == -EAGAIN && retries--);
1836
1837	if (ret)
1838		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1839			ret, channel_id);
1840}
1841
1842/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1843void
1844gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1845{
1846	u32 retries = 0;
1847	u32 command;
1848	int ret;
1849
1850	command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1851			 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1852	/* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1853	 * is underway.  In this case we need to retry the command.
1854	 */
1855	if (!enable && gsi->version >= IPA_VERSION_4_11)
1856		retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1857
1858	do
1859		ret = gsi_generic_command(gsi, channel_id, command, 0);
1860	while (ret == -EAGAIN && retries--);
1861
1862	if (ret)
1863		dev_err(gsi->dev,
1864			"error %d %sabling mode channel %u flow control\n",
1865			ret, enable ? "en" : "dis", channel_id);
1866}
1867
1868/* Setup function for channels */
1869static int gsi_channel_setup(struct gsi *gsi)
1870{
1871	u32 channel_id = 0;
1872	u32 mask;
1873	int ret;
1874
1875	gsi_irq_enable(gsi);
1876
1877	mutex_lock(&gsi->mutex);
1878
1879	do {
1880		ret = gsi_channel_setup_one(gsi, channel_id);
1881		if (ret)
1882			goto err_unwind;
1883	} while (++channel_id < gsi->channel_count);
1884
1885	/* Make sure no channels were defined that hardware does not support */
1886	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1887		struct gsi_channel *channel = &gsi->channel[channel_id++];
1888
1889		if (!gsi_channel_initialized(channel))
1890			continue;
1891
1892		ret = -EINVAL;
1893		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1894			channel_id - 1);
1895		channel_id = gsi->channel_count;
1896		goto err_unwind;
1897	}
1898
1899	/* Allocate modem channels if necessary */
1900	mask = gsi->modem_channel_bitmap;
1901	while (mask) {
1902		u32 modem_channel_id = __ffs(mask);
1903
1904		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1905		if (ret)
1906			goto err_unwind_modem;
1907
1908		/* Clear bit from mask only after success (for unwind) */
1909		mask ^= BIT(modem_channel_id);
1910	}
1911
1912	mutex_unlock(&gsi->mutex);
1913
1914	return 0;
1915
1916err_unwind_modem:
1917	/* Compute which modem channels need to be deallocated */
1918	mask ^= gsi->modem_channel_bitmap;
1919	while (mask) {
1920		channel_id = __fls(mask);
1921
1922		mask ^= BIT(channel_id);
1923
1924		gsi_modem_channel_halt(gsi, channel_id);
1925	}
1926
1927err_unwind:
1928	while (channel_id--)
1929		gsi_channel_teardown_one(gsi, channel_id);
1930
1931	mutex_unlock(&gsi->mutex);
1932
1933	gsi_irq_disable(gsi);
1934
1935	return ret;
1936}
1937
1938/* Inverse of gsi_channel_setup() */
1939static void gsi_channel_teardown(struct gsi *gsi)
1940{
1941	u32 mask = gsi->modem_channel_bitmap;
1942	u32 channel_id;
1943
1944	mutex_lock(&gsi->mutex);
1945
1946	while (mask) {
1947		channel_id = __fls(mask);
1948
1949		mask ^= BIT(channel_id);
1950
1951		gsi_modem_channel_halt(gsi, channel_id);
1952	}
1953
1954	channel_id = gsi->channel_count - 1;
1955	do
1956		gsi_channel_teardown_one(gsi, channel_id);
1957	while (channel_id--);
1958
1959	mutex_unlock(&gsi->mutex);
1960
1961	gsi_irq_disable(gsi);
1962}
1963
1964/* Turn off all GSI interrupts initially */
1965static int gsi_irq_setup(struct gsi *gsi)
1966{
1967	const struct reg *reg;
1968	int ret;
1969
1970	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1971	reg = gsi_reg(gsi, CNTXT_INTSET);
1972	iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
1973
1974	/* Disable all interrupt types */
1975	gsi_irq_type_update(gsi, 0);
1976
1977	/* Clear all type-specific interrupt masks */
1978	reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
1979	iowrite32(0, gsi->virt + reg_offset(reg));
1980
1981	reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
1982	iowrite32(0, gsi->virt + reg_offset(reg));
1983
1984	reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1985	iowrite32(0, gsi->virt + reg_offset(reg));
1986
1987	reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
1988	iowrite32(0, gsi->virt + reg_offset(reg));
1989
1990	/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1991	if (gsi->version > IPA_VERSION_3_1) {
1992		reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
1993		iowrite32(0, gsi->virt + reg_offset(reg));
1994
1995		reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
1996		iowrite32(0, gsi->virt + reg_offset(reg));
1997	}
1998
1999	reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
2000	iowrite32(0, gsi->virt + reg_offset(reg));
2001
2002	ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
2003	if (ret)
2004		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
2005
2006	return ret;
2007}
2008
2009static void gsi_irq_teardown(struct gsi *gsi)
2010{
2011	free_irq(gsi->irq, gsi);
2012}
2013
2014/* Get # supported channel and event rings; there is no gsi_ring_teardown() */
2015static int gsi_ring_setup(struct gsi *gsi)
2016{
2017	struct device *dev = gsi->dev;
2018	const struct reg *reg;
2019	u32 count;
2020	u32 val;
2021
2022	if (gsi->version < IPA_VERSION_3_5_1) {
2023		/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
2024		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
2025		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
2026
2027		return 0;
2028	}
2029
2030	reg = gsi_reg(gsi, HW_PARAM_2);
2031	val = ioread32(gsi->virt + reg_offset(reg));
2032
2033	count = reg_decode(reg, NUM_CH_PER_EE, val);
2034	if (!count) {
2035		dev_err(dev, "GSI reports zero channels supported\n");
2036		return -EINVAL;
2037	}
2038	if (count > GSI_CHANNEL_COUNT_MAX) {
2039		dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
2040			 GSI_CHANNEL_COUNT_MAX, count);
2041		count = GSI_CHANNEL_COUNT_MAX;
2042	}
2043	gsi->channel_count = count;
2044
2045	if (gsi->version < IPA_VERSION_5_0) {
2046		count = reg_decode(reg, NUM_EV_PER_EE, val);
2047	} else {
2048		reg = gsi_reg(gsi, HW_PARAM_4);
2049		count = reg_decode(reg, EV_PER_EE, val);
2050	}
2051	if (!count) {
2052		dev_err(dev, "GSI reports zero event rings supported\n");
2053		return -EINVAL;
2054	}
2055	if (count > GSI_EVT_RING_COUNT_MAX) {
2056		dev_warn(dev,
2057			 "limiting to %u event rings; hardware supports %u\n",
2058			 GSI_EVT_RING_COUNT_MAX, count);
2059		count = GSI_EVT_RING_COUNT_MAX;
2060	}
2061	gsi->evt_ring_count = count;
2062
2063	return 0;
2064}
2065
2066/* Setup function for GSI.  GSI firmware must be loaded and initialized */
2067int gsi_setup(struct gsi *gsi)
2068{
2069	const struct reg *reg;
2070	u32 val;
2071	int ret;
2072
2073	/* Here is where we first touch the GSI hardware */
2074	reg = gsi_reg(gsi, GSI_STATUS);
2075	val = ioread32(gsi->virt + reg_offset(reg));
2076	if (!(val & reg_bit(reg, ENABLED))) {
2077		dev_err(gsi->dev, "GSI has not been enabled\n");
2078		return -EIO;
2079	}
2080
2081	ret = gsi_irq_setup(gsi);
2082	if (ret)
2083		return ret;
2084
2085	ret = gsi_ring_setup(gsi);	/* No matching teardown required */
2086	if (ret)
2087		goto err_irq_teardown;
2088
2089	/* Initialize the error log */
2090	reg = gsi_reg(gsi, ERROR_LOG);
2091	iowrite32(0, gsi->virt + reg_offset(reg));
2092
2093	ret = gsi_channel_setup(gsi);
2094	if (ret)
2095		goto err_irq_teardown;
2096
2097	return 0;
2098
2099err_irq_teardown:
2100	gsi_irq_teardown(gsi);
2101
2102	return ret;
2103}
2104
2105/* Inverse of gsi_setup() */
2106void gsi_teardown(struct gsi *gsi)
2107{
2108	gsi_channel_teardown(gsi);
2109	gsi_irq_teardown(gsi);
2110}
2111
2112/* Initialize a channel's event ring */
2113static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
2114{
2115	struct gsi *gsi = channel->gsi;
2116	struct gsi_evt_ring *evt_ring;
2117	int ret;
2118
2119	ret = gsi_evt_ring_id_alloc(gsi);
2120	if (ret < 0)
2121		return ret;
2122	channel->evt_ring_id = ret;
2123
2124	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
2125	evt_ring->channel = channel;
2126
2127	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
2128	if (!ret)
2129		return 0;	/* Success! */
2130
2131	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
2132		ret, gsi_channel_id(channel));
2133
2134	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
2135
2136	return ret;
2137}
2138
2139/* Inverse of gsi_channel_evt_ring_init() */
2140static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
2141{
2142	u32 evt_ring_id = channel->evt_ring_id;
2143	struct gsi *gsi = channel->gsi;
2144	struct gsi_evt_ring *evt_ring;
2145
2146	evt_ring = &gsi->evt_ring[evt_ring_id];
2147	gsi_ring_free(gsi, &evt_ring->ring);
2148	gsi_evt_ring_id_free(gsi, evt_ring_id);
2149}
2150
2151static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
2152				   const struct ipa_gsi_endpoint_data *data)
2153{
2154	const struct gsi_channel_data *channel_data;
2155	u32 channel_id = data->channel_id;
2156	struct device *dev = gsi->dev;
2157
2158	/* Make sure channel ids are in the range driver supports */
2159	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2160		dev_err(dev, "bad channel id %u; must be less than %u\n",
2161			channel_id, GSI_CHANNEL_COUNT_MAX);
2162		return false;
2163	}
2164
2165	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2166		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2167		return false;
2168	}
2169
2170	if (command && !data->toward_ipa) {
2171		dev_err(dev, "command channel %u is not TX\n", channel_id);
2172		return false;
2173	}
2174
2175	channel_data = &data->channel;
2176
2177	if (!channel_data->tlv_count ||
2178	    channel_data->tlv_count > GSI_TLV_MAX) {
2179		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2180			channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2181		return false;
2182	}
2183
2184	if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2185		dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2186			channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2187			channel_data->tlv_count);
2188		return false;
2189	}
2190
2191	/* We have to allow at least one maximally-sized transaction to
2192	 * be outstanding (which would use tlv_count TREs).  Given how
2193	 * gsi_channel_tre_max() is computed, tre_count has to be almost
2194	 * twice the TLV FIFO size to satisfy this requirement.
2195	 */
2196	if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2197		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2198			channel_id, channel_data->tlv_count,
2199			channel_data->tre_count);
2200		return false;
2201	}
2202
2203	if (!is_power_of_2(channel_data->tre_count)) {
2204		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2205			channel_id, channel_data->tre_count);
2206		return false;
2207	}
2208
2209	if (!is_power_of_2(channel_data->event_count)) {
2210		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2211			channel_id, channel_data->event_count);
2212		return false;
2213	}
2214
2215	return true;
2216}
2217
2218/* Init function for a single channel */
2219static int gsi_channel_init_one(struct gsi *gsi,
2220				const struct ipa_gsi_endpoint_data *data,
2221				bool command)
2222{
2223	struct gsi_channel *channel;
2224	u32 tre_count;
2225	int ret;
2226
2227	if (!gsi_channel_data_valid(gsi, command, data))
2228		return -EINVAL;
2229
2230	/* Worst case we need an event for every outstanding TRE */
2231	if (data->channel.tre_count > data->channel.event_count) {
2232		tre_count = data->channel.event_count;
2233		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2234			 data->channel_id, tre_count);
2235	} else {
2236		tre_count = data->channel.tre_count;
2237	}
2238
2239	channel = &gsi->channel[data->channel_id];
2240	memset(channel, 0, sizeof(*channel));
2241
2242	channel->gsi = gsi;
2243	channel->toward_ipa = data->toward_ipa;
2244	channel->command = command;
2245	channel->trans_tre_max = data->channel.tlv_count;
2246	channel->tre_count = tre_count;
2247	channel->event_count = data->channel.event_count;
2248
2249	ret = gsi_channel_evt_ring_init(channel);
2250	if (ret)
2251		goto err_clear_gsi;
2252
2253	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2254	if (ret) {
2255		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2256			ret, data->channel_id);
2257		goto err_channel_evt_ring_exit;
2258	}
2259
2260	ret = gsi_channel_trans_init(gsi, data->channel_id);
2261	if (ret)
2262		goto err_ring_free;
2263
2264	if (command) {
2265		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2266
2267		ret = ipa_cmd_pool_init(channel, tre_max);
2268	}
2269	if (!ret)
2270		return 0;	/* Success! */
2271
2272	gsi_channel_trans_exit(channel);
2273err_ring_free:
2274	gsi_ring_free(gsi, &channel->tre_ring);
2275err_channel_evt_ring_exit:
2276	gsi_channel_evt_ring_exit(channel);
2277err_clear_gsi:
2278	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2279
2280	return ret;
2281}
2282
2283/* Inverse of gsi_channel_init_one() */
2284static void gsi_channel_exit_one(struct gsi_channel *channel)
2285{
2286	if (!gsi_channel_initialized(channel))
2287		return;
2288
2289	if (channel->command)
2290		ipa_cmd_pool_exit(channel);
2291	gsi_channel_trans_exit(channel);
2292	gsi_ring_free(channel->gsi, &channel->tre_ring);
2293	gsi_channel_evt_ring_exit(channel);
2294}
2295
2296/* Init function for channels */
2297static int gsi_channel_init(struct gsi *gsi, u32 count,
2298			    const struct ipa_gsi_endpoint_data *data)
2299{
2300	bool modem_alloc;
2301	int ret = 0;
2302	u32 i;
2303
2304	/* IPA v4.2 requires the AP to allocate channels for the modem */
2305	modem_alloc = gsi->version == IPA_VERSION_4_2;
2306
2307	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2308	gsi->ieob_enabled_bitmap = 0;
2309
2310	/* The endpoint data array is indexed by endpoint name */
2311	for (i = 0; i < count; i++) {
2312		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2313
2314		if (ipa_gsi_endpoint_data_empty(&data[i]))
2315			continue;	/* Skip over empty slots */
2316
2317		/* Mark modem channels to be allocated (hardware workaround) */
2318		if (data[i].ee_id == GSI_EE_MODEM) {
2319			if (modem_alloc)
2320				gsi->modem_channel_bitmap |=
2321						BIT(data[i].channel_id);
2322			continue;
2323		}
2324
2325		ret = gsi_channel_init_one(gsi, &data[i], command);
2326		if (ret)
2327			goto err_unwind;
2328	}
2329
2330	return ret;
2331
2332err_unwind:
2333	while (i--) {
2334		if (ipa_gsi_endpoint_data_empty(&data[i]))
2335			continue;
2336		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2337			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2338			continue;
2339		}
2340		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2341	}
2342
2343	return ret;
2344}
2345
2346/* Inverse of gsi_channel_init() */
2347static void gsi_channel_exit(struct gsi *gsi)
2348{
2349	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2350
2351	do
2352		gsi_channel_exit_one(&gsi->channel[channel_id]);
2353	while (channel_id--);
2354	gsi->modem_channel_bitmap = 0;
2355}
2356
2357/* Init function for GSI.  GSI hardware does not need to be "ready" */
2358int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2359	     enum ipa_version version, u32 count,
2360	     const struct ipa_gsi_endpoint_data *data)
2361{
2362	int ret;
2363
2364	gsi_validate_build();
2365
2366	gsi->dev = &pdev->dev;
2367	gsi->version = version;
2368
2369	/* GSI uses NAPI on all channels.  Create a dummy network device
2370	 * for the channel NAPI contexts to be associated with.
2371	 */
2372	init_dummy_netdev(&gsi->dummy_dev);
2373	init_completion(&gsi->completion);
2374
2375	ret = gsi_reg_init(gsi, pdev);
2376	if (ret)
2377		return ret;
2378
2379	ret = gsi_irq_init(gsi, pdev);	/* No matching exit required */
2380	if (ret)
2381		goto err_reg_exit;
2382
2383	ret = gsi_channel_init(gsi, count, data);
2384	if (ret)
2385		goto err_reg_exit;
2386
2387	mutex_init(&gsi->mutex);
2388
2389	return 0;
2390
2391err_reg_exit:
2392	gsi_reg_exit(gsi);
2393
2394	return ret;
2395}
2396
2397/* Inverse of gsi_init() */
2398void gsi_exit(struct gsi *gsi)
2399{
2400	mutex_destroy(&gsi->mutex);
2401	gsi_channel_exit(gsi);
2402	gsi_reg_exit(gsi);
2403}
2404
2405/* The maximum number of outstanding TREs on a channel.  This limits
2406 * a channel's maximum number of transactions outstanding (worst case
2407 * is one TRE per transaction).
2408 *
2409 * The absolute limit is the number of TREs in the channel's TRE ring,
2410 * and in theory we should be able use all of them.  But in practice,
2411 * doing that led to the hardware reporting exhaustion of event ring
2412 * slots for writing completion information.  So the hardware limit
2413 * would be (tre_count - 1).
2414 *
2415 * We reduce it a bit further though.  Transaction resource pools are
2416 * sized to be a little larger than this maximum, to allow resource
2417 * allocations to always be contiguous.  The number of entries in a
2418 * TRE ring buffer is a power of 2, and the extra resources in a pool
2419 * tends to nearly double the memory allocated for it.  Reducing the
2420 * maximum number of outstanding TREs allows the number of entries in
2421 * a pool to avoid crossing that power-of-2 boundary, and this can
2422 * substantially reduce pool memory requirements.  The number we
2423 * reduce it by matches the number added in gsi_trans_pool_init().
2424 */
2425u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2426{
2427	struct gsi_channel *channel = &gsi->channel[channel_id];
2428
2429	/* Hardware limit is channel->tre_count - 1 */
2430	return channel->tre_count - (channel->trans_tre_max - 1);
2431}