Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/sch_generic.h>
  38#include <net/netns/generic.h>
  39#include <net/netfilter/nf_conntrack.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.1"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
  46#define HT_MAP_BITS	4
  47#define HASH_INITVAL	((u32)0xcafef00d)
  48
  49struct  vrf_map {
  50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  51	spinlock_t vmap_lock;
  52
  53	/* shared_tables:
  54	 * count how many distinct tables do not comply with the strict mode
  55	 * requirement.
  56	 * shared_tables value must be 0 in order to enable the strict mode.
  57	 *
  58	 * example of the evolution of shared_tables:
  59	 *                                                        | time
  60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  65	 *
  66	 * shared_tables is a "step function" (or "staircase function")
  67	 * and it is increased by one when the second vrf is associated to a
  68	 * table.
  69	 *
  70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  71	 *
  72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  73	 * value of shared_tables is still 1.
  74	 * This means that no matter how many new vrfs will register on the
  75	 * table 100, the shared_tables will not increase (considering only
  76	 * table 100).
  77	 *
  78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  79	 *
  80	 * Looking at the value of shared_tables we can immediately know if
  81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  82	 * can be enforced iff shared_tables = 0.
  83	 *
  84	 * Conversely, shared_tables is decreased when a vrf is de-associated
  85	 * from a table with exactly two associated vrfs.
  86	 */
  87	u32 shared_tables;
  88
  89	bool strict_mode;
  90};
  91
  92struct vrf_map_elem {
  93	struct hlist_node hnode;
  94	struct list_head vrf_list;  /* VRFs registered to this table */
  95
  96	u32 table_id;
  97	int users;
  98	int ifindex;
  99};
 100
 101static unsigned int vrf_net_id;
 102
 103/* per netns vrf data */
 104struct netns_vrf {
 105	/* protected by rtnl lock */
 106	bool add_fib_rules;
 107
 108	struct vrf_map vmap;
 109	struct ctl_table_header	*ctl_hdr;
 110};
 111
 112struct net_vrf {
 113	struct rtable __rcu	*rth;
 114	struct rt6_info	__rcu	*rt6;
 115#if IS_ENABLED(CONFIG_IPV6)
 116	struct fib6_table	*fib6_table;
 117#endif
 118	u32                     tb_id;
 
 119
 120	struct list_head	me_list;   /* entry in vrf_map_elem */
 121	int			ifindex;
 
 
 
 
 
 
 122};
 123
 124static void vrf_rx_stats(struct net_device *dev, int len)
 125{
 126	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 127
 128	u64_stats_update_begin(&dstats->syncp);
 129	dstats->rx_packets++;
 130	dstats->rx_bytes += len;
 131	u64_stats_update_end(&dstats->syncp);
 132}
 133
 134static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 135{
 136	vrf_dev->stats.tx_errors++;
 137	kfree_skb(skb);
 138}
 139
 140static void vrf_get_stats64(struct net_device *dev,
 141			    struct rtnl_link_stats64 *stats)
 142{
 143	int i;
 144
 145	for_each_possible_cpu(i) {
 146		const struct pcpu_dstats *dstats;
 147		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 148		unsigned int start;
 149
 150		dstats = per_cpu_ptr(dev->dstats, i);
 151		do {
 152			start = u64_stats_fetch_begin(&dstats->syncp);
 153			tbytes = dstats->tx_bytes;
 154			tpkts = dstats->tx_packets;
 155			tdrops = dstats->tx_drops;
 156			rbytes = dstats->rx_bytes;
 157			rpkts = dstats->rx_packets;
 158		} while (u64_stats_fetch_retry(&dstats->syncp, start));
 159		stats->tx_bytes += tbytes;
 160		stats->tx_packets += tpkts;
 161		stats->tx_dropped += tdrops;
 162		stats->rx_bytes += rbytes;
 163		stats->rx_packets += rpkts;
 164	}
 165}
 166
 167static struct vrf_map *netns_vrf_map(struct net *net)
 168{
 169	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 170
 171	return &nn_vrf->vmap;
 172}
 173
 174static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 175{
 176	return netns_vrf_map(dev_net(dev));
 177}
 178
 179static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 180{
 181	struct list_head *me_head = &me->vrf_list;
 182	struct net_vrf *vrf;
 183
 184	if (list_empty(me_head))
 185		return -ENODEV;
 186
 187	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 188
 189	return vrf->ifindex;
 190}
 191
 192static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 193{
 194	struct vrf_map_elem *me;
 195
 196	me = kmalloc(sizeof(*me), flags);
 197	if (!me)
 198		return NULL;
 199
 200	return me;
 201}
 202
 203static void vrf_map_elem_free(struct vrf_map_elem *me)
 204{
 205	kfree(me);
 206}
 207
 208static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 209			      int ifindex, int users)
 210{
 211	me->table_id = table_id;
 212	me->ifindex = ifindex;
 213	me->users = users;
 214	INIT_LIST_HEAD(&me->vrf_list);
 215}
 216
 217static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 218						u32 table_id)
 219{
 220	struct vrf_map_elem *me;
 221	u32 key;
 222
 223	key = jhash_1word(table_id, HASH_INITVAL);
 224	hash_for_each_possible(vmap->ht, me, hnode, key) {
 225		if (me->table_id == table_id)
 226			return me;
 227	}
 228
 229	return NULL;
 230}
 231
 232static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 233{
 234	u32 table_id = me->table_id;
 235	u32 key;
 236
 237	key = jhash_1word(table_id, HASH_INITVAL);
 238	hash_add(vmap->ht, &me->hnode, key);
 239}
 240
 241static void vrf_map_del_elem(struct vrf_map_elem *me)
 242{
 243	hash_del(&me->hnode);
 244}
 245
 246static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 247{
 248	spin_lock(&vmap->vmap_lock);
 249}
 250
 251static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 252{
 253	spin_unlock(&vmap->vmap_lock);
 254}
 255
 256/* called with rtnl lock held */
 257static int
 258vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 259{
 260	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 261	struct net_vrf *vrf = netdev_priv(dev);
 262	struct vrf_map_elem *new_me, *me;
 263	u32 table_id = vrf->tb_id;
 264	bool free_new_me = false;
 265	int users;
 266	int res;
 267
 268	/* we pre-allocate elements used in the spin-locked section (so that we
 269	 * keep the spinlock as short as possible).
 270	 */
 271	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 272	if (!new_me)
 273		return -ENOMEM;
 274
 275	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 276
 277	vrf_map_lock(vmap);
 278
 279	me = vrf_map_lookup_elem(vmap, table_id);
 280	if (!me) {
 281		me = new_me;
 282		vrf_map_add_elem(vmap, me);
 283		goto link_vrf;
 284	}
 285
 286	/* we already have an entry in the vrf_map, so it means there is (at
 287	 * least) a vrf registered on the specific table.
 288	 */
 289	free_new_me = true;
 290	if (vmap->strict_mode) {
 291		/* vrfs cannot share the same table */
 292		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 293		res = -EBUSY;
 294		goto unlock;
 295	}
 296
 297link_vrf:
 298	users = ++me->users;
 299	if (users == 2)
 300		++vmap->shared_tables;
 301
 302	list_add(&vrf->me_list, &me->vrf_list);
 303
 304	res = 0;
 305
 306unlock:
 307	vrf_map_unlock(vmap);
 308
 309	/* clean-up, if needed */
 310	if (free_new_me)
 311		vrf_map_elem_free(new_me);
 312
 313	return res;
 314}
 315
 316/* called with rtnl lock held */
 317static void vrf_map_unregister_dev(struct net_device *dev)
 318{
 319	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 320	struct net_vrf *vrf = netdev_priv(dev);
 321	u32 table_id = vrf->tb_id;
 322	struct vrf_map_elem *me;
 323	int users;
 324
 325	vrf_map_lock(vmap);
 326
 327	me = vrf_map_lookup_elem(vmap, table_id);
 328	if (!me)
 329		goto unlock;
 330
 331	list_del(&vrf->me_list);
 332
 333	users = --me->users;
 334	if (users == 1) {
 335		--vmap->shared_tables;
 336	} else if (users == 0) {
 337		vrf_map_del_elem(me);
 338
 339		/* no one will refer to this element anymore */
 340		vrf_map_elem_free(me);
 341	}
 342
 343unlock:
 344	vrf_map_unlock(vmap);
 345}
 346
 347/* return the vrf device index associated with the table_id */
 348static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 349{
 350	struct vrf_map *vmap = netns_vrf_map(net);
 351	struct vrf_map_elem *me;
 352	int ifindex;
 353
 354	vrf_map_lock(vmap);
 355
 356	if (!vmap->strict_mode) {
 357		ifindex = -EPERM;
 358		goto unlock;
 359	}
 360
 361	me = vrf_map_lookup_elem(vmap, table_id);
 362	if (!me) {
 363		ifindex = -ENODEV;
 364		goto unlock;
 365	}
 366
 367	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 368
 369unlock:
 370	vrf_map_unlock(vmap);
 371
 372	return ifindex;
 373}
 374
 375/* by default VRF devices do not have a qdisc and are expected
 376 * to be created with only a single queue.
 377 */
 378static bool qdisc_tx_is_default(const struct net_device *dev)
 379{
 380	struct netdev_queue *txq;
 381	struct Qdisc *qdisc;
 382
 383	if (dev->num_tx_queues > 1)
 384		return false;
 385
 386	txq = netdev_get_tx_queue(dev, 0);
 387	qdisc = rcu_access_pointer(txq->qdisc);
 388
 389	return !qdisc->enqueue;
 390}
 391
 392/* Local traffic destined to local address. Reinsert the packet to rx
 393 * path, similar to loopback handling.
 394 */
 395static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 396			  struct dst_entry *dst)
 397{
 398	int len = skb->len;
 399
 400	skb_orphan(skb);
 401
 402	skb_dst_set(skb, dst);
 403
 404	/* set pkt_type to avoid skb hitting packet taps twice -
 405	 * once on Tx and again in Rx processing
 406	 */
 407	skb->pkt_type = PACKET_LOOPBACK;
 408
 409	skb->protocol = eth_type_trans(skb, dev);
 410
 411	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
 412		vrf_rx_stats(dev, len);
 413	else
 414		this_cpu_inc(dev->dstats->rx_drops);
 415
 416	return NETDEV_TX_OK;
 417}
 418
 419static void vrf_nf_set_untracked(struct sk_buff *skb)
 420{
 421	if (skb_get_nfct(skb) == 0)
 422		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
 423}
 424
 425static void vrf_nf_reset_ct(struct sk_buff *skb)
 426{
 427	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
 428		nf_reset_ct(skb);
 429}
 430
 431#if IS_ENABLED(CONFIG_IPV6)
 432static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 433			     struct sk_buff *skb)
 434{
 435	int err;
 436
 437	vrf_nf_reset_ct(skb);
 438
 439	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 440		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 441
 442	if (likely(err == 1))
 443		err = dst_output(net, sk, skb);
 444
 445	return err;
 446}
 447
 448static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 449					   struct net_device *dev)
 450{
 451	const struct ipv6hdr *iph;
 452	struct net *net = dev_net(skb->dev);
 453	struct flowi6 fl6;
 454	int ret = NET_XMIT_DROP;
 455	struct dst_entry *dst;
 456	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 457
 458	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 459		goto err;
 460
 461	iph = ipv6_hdr(skb);
 462
 463	memset(&fl6, 0, sizeof(fl6));
 464	/* needed to match OIF rule */
 465	fl6.flowi6_l3mdev = dev->ifindex;
 466	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 467	fl6.daddr = iph->daddr;
 468	fl6.saddr = iph->saddr;
 469	fl6.flowlabel = ip6_flowinfo(iph);
 470	fl6.flowi6_mark = skb->mark;
 471	fl6.flowi6_proto = iph->nexthdr;
 
 472
 473	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 474	if (IS_ERR(dst) || dst == dst_null)
 475		goto err;
 476
 477	skb_dst_drop(skb);
 478
 479	/* if dst.dev is the VRF device again this is locally originated traffic
 480	 * destined to a local address. Short circuit to Rx path.
 
 481	 */
 482	if (dst->dev == dev)
 483		return vrf_local_xmit(skb, dev, dst);
 484
 485	skb_dst_set(skb, dst);
 486
 487	/* strip the ethernet header added for pass through VRF device */
 488	__skb_pull(skb, skb_network_offset(skb));
 489
 490	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
 491	ret = vrf_ip6_local_out(net, skb->sk, skb);
 492	if (unlikely(net_xmit_eval(ret)))
 493		dev->stats.tx_errors++;
 494	else
 495		ret = NET_XMIT_SUCCESS;
 496
 497	return ret;
 498err:
 499	vrf_tx_error(dev, skb);
 500	return NET_XMIT_DROP;
 501}
 502#else
 503static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 504					   struct net_device *dev)
 505{
 506	vrf_tx_error(dev, skb);
 507	return NET_XMIT_DROP;
 508}
 509#endif
 510
 511/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 512static int vrf_ip_local_out(struct net *net, struct sock *sk,
 513			    struct sk_buff *skb)
 514{
 515	int err;
 516
 517	vrf_nf_reset_ct(skb);
 518
 519	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 520		      skb, NULL, skb_dst(skb)->dev, dst_output);
 521	if (likely(err == 1))
 522		err = dst_output(net, sk, skb);
 523
 524	return err;
 525}
 526
 527static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 528					   struct net_device *vrf_dev)
 529{
 530	struct iphdr *ip4h;
 531	int ret = NET_XMIT_DROP;
 532	struct flowi4 fl4;
 533	struct net *net = dev_net(vrf_dev);
 534	struct rtable *rt;
 535
 536	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 537		goto err;
 538
 539	ip4h = ip_hdr(skb);
 540
 541	memset(&fl4, 0, sizeof(fl4));
 542	/* needed to match OIF rule */
 543	fl4.flowi4_l3mdev = vrf_dev->ifindex;
 544	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 545	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 546	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
 547	fl4.flowi4_proto = ip4h->protocol;
 548	fl4.daddr = ip4h->daddr;
 549	fl4.saddr = ip4h->saddr;
 550
 551	rt = ip_route_output_flow(net, &fl4, NULL);
 552	if (IS_ERR(rt))
 553		goto err;
 554
 555	skb_dst_drop(skb);
 556
 557	/* if dst.dev is the VRF device again this is locally originated traffic
 558	 * destined to a local address. Short circuit to Rx path.
 
 559	 */
 560	if (rt->dst.dev == vrf_dev)
 561		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 562
 563	skb_dst_set(skb, &rt->dst);
 564
 565	/* strip the ethernet header added for pass through VRF device */
 566	__skb_pull(skb, skb_network_offset(skb));
 567
 568	if (!ip4h->saddr) {
 569		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 570					       RT_SCOPE_LINK);
 571	}
 572
 573	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
 574	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 575	if (unlikely(net_xmit_eval(ret)))
 576		vrf_dev->stats.tx_errors++;
 577	else
 578		ret = NET_XMIT_SUCCESS;
 579
 580out:
 581	return ret;
 582err:
 583	vrf_tx_error(vrf_dev, skb);
 584	goto out;
 585}
 586
 587static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 588{
 589	switch (skb->protocol) {
 590	case htons(ETH_P_IP):
 591		return vrf_process_v4_outbound(skb, dev);
 592	case htons(ETH_P_IPV6):
 593		return vrf_process_v6_outbound(skb, dev);
 594	default:
 595		vrf_tx_error(dev, skb);
 596		return NET_XMIT_DROP;
 597	}
 598}
 599
 600static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 601{
 602	int len = skb->len;
 603	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 604
 605	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 606		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 607
 608		u64_stats_update_begin(&dstats->syncp);
 609		dstats->tx_packets++;
 610		dstats->tx_bytes += len;
 611		u64_stats_update_end(&dstats->syncp);
 612	} else {
 613		this_cpu_inc(dev->dstats->tx_drops);
 614	}
 615
 616	return ret;
 617}
 618
 619static void vrf_finish_direct(struct sk_buff *skb)
 
 620{
 621	struct net_device *vrf_dev = skb->dev;
 622
 623	if (!list_empty(&vrf_dev->ptype_all) &&
 624	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 625		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 626
 627		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 628		eth_zero_addr(eth->h_dest);
 629		eth->h_proto = skb->protocol;
 630
 
 631		dev_queue_xmit_nit(skb, vrf_dev);
 
 632
 633		skb_pull(skb, ETH_HLEN);
 634	}
 635
 636	vrf_nf_reset_ct(skb);
 637}
 638
 639#if IS_ENABLED(CONFIG_IPV6)
 640/* modelled after ip6_finish_output2 */
 641static int vrf_finish_output6(struct net *net, struct sock *sk,
 642			      struct sk_buff *skb)
 643{
 644	struct dst_entry *dst = skb_dst(skb);
 645	struct net_device *dev = dst->dev;
 646	const struct in6_addr *nexthop;
 647	struct neighbour *neigh;
 648	int ret;
 649
 650	vrf_nf_reset_ct(skb);
 651
 652	skb->protocol = htons(ETH_P_IPV6);
 653	skb->dev = dev;
 654
 655	rcu_read_lock();
 656	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 657	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 658	if (unlikely(!neigh))
 659		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 660	if (!IS_ERR(neigh)) {
 661		sock_confirm_neigh(skb, neigh);
 662		ret = neigh_output(neigh, skb, false);
 663		rcu_read_unlock();
 664		return ret;
 665	}
 666	rcu_read_unlock();
 667
 668	IP6_INC_STATS(dev_net(dst->dev),
 669		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 670	kfree_skb(skb);
 671	return -EINVAL;
 672}
 673
 674/* modelled after ip6_output */
 675static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 678			    net, sk, skb, NULL, skb_dst(skb)->dev,
 679			    vrf_finish_output6,
 680			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 681}
 682
 683/* set dst on skb to send packet to us via dev_xmit path. Allows
 684 * packet to go through device based features such as qdisc, netfilter
 685 * hooks and packet sockets with skb->dev set to vrf device.
 686 */
 687static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 688					    struct sk_buff *skb)
 689{
 690	struct net_vrf *vrf = netdev_priv(vrf_dev);
 691	struct dst_entry *dst = NULL;
 692	struct rt6_info *rt6;
 693
 694	rcu_read_lock();
 695
 696	rt6 = rcu_dereference(vrf->rt6);
 697	if (likely(rt6)) {
 698		dst = &rt6->dst;
 699		dst_hold(dst);
 700	}
 701
 702	rcu_read_unlock();
 703
 704	if (unlikely(!dst)) {
 705		vrf_tx_error(vrf_dev, skb);
 706		return NULL;
 707	}
 708
 709	skb_dst_drop(skb);
 710	skb_dst_set(skb, dst);
 711
 712	return skb;
 713}
 714
 715static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 716				     struct sk_buff *skb)
 717{
 718	vrf_finish_direct(skb);
 719
 720	return vrf_ip6_local_out(net, sk, skb);
 721}
 722
 723static int vrf_output6_direct(struct net *net, struct sock *sk,
 724			      struct sk_buff *skb)
 725{
 726	int err = 1;
 727
 728	skb->protocol = htons(ETH_P_IPV6);
 729
 730	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 731		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 732			      NULL, skb->dev, vrf_output6_direct_finish);
 733
 734	if (likely(err == 1))
 735		vrf_finish_direct(skb);
 736
 737	return err;
 738}
 739
 740static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 741				     struct sk_buff *skb)
 742{
 743	int err;
 744
 745	err = vrf_output6_direct(net, sk, skb);
 746	if (likely(err == 1))
 747		err = vrf_ip6_local_out(net, sk, skb);
 748
 749	return err;
 750}
 751
 752static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 753					  struct sock *sk,
 754					  struct sk_buff *skb)
 755{
 756	struct net *net = dev_net(vrf_dev);
 757	int err;
 758
 759	skb->dev = vrf_dev;
 760
 761	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 762		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 763
 764	if (likely(err == 1))
 765		err = vrf_output6_direct(net, sk, skb);
 766
 
 767	if (likely(err == 1))
 768		return skb;
 
 
 769
 770	return NULL;
 771}
 772
 773static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 774				   struct sock *sk,
 775				   struct sk_buff *skb)
 776{
 777	/* don't divert link scope packets */
 778	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 779		return skb;
 780
 781	vrf_nf_set_untracked(skb);
 782
 783	if (qdisc_tx_is_default(vrf_dev) ||
 784	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 785		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 786
 787	return vrf_ip6_out_redirect(vrf_dev, skb);
 788}
 789
 790/* holding rtnl */
 791static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 792{
 793	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 794	struct net *net = dev_net(dev);
 795	struct dst_entry *dst;
 796
 797	RCU_INIT_POINTER(vrf->rt6, NULL);
 798	synchronize_rcu();
 799
 800	/* move dev in dst's to loopback so this VRF device can be deleted
 801	 * - based on dst_ifdown
 802	 */
 803	if (rt6) {
 804		dst = &rt6->dst;
 805		netdev_ref_replace(dst->dev, net->loopback_dev,
 806				   &dst->dev_tracker, GFP_KERNEL);
 807		dst->dev = net->loopback_dev;
 
 808		dst_release(dst);
 809	}
 810}
 811
 812static int vrf_rt6_create(struct net_device *dev)
 813{
 814	int flags = DST_NOPOLICY | DST_NOXFRM;
 815	struct net_vrf *vrf = netdev_priv(dev);
 816	struct net *net = dev_net(dev);
 817	struct rt6_info *rt6;
 818	int rc = -ENOMEM;
 819
 820	/* IPv6 can be CONFIG enabled and then disabled runtime */
 821	if (!ipv6_mod_enabled())
 822		return 0;
 823
 824	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 825	if (!vrf->fib6_table)
 826		goto out;
 827
 828	/* create a dst for routing packets out a VRF device */
 829	rt6 = ip6_dst_alloc(net, dev, flags);
 830	if (!rt6)
 831		goto out;
 832
 833	rt6->dst.output	= vrf_output6;
 834
 835	rcu_assign_pointer(vrf->rt6, rt6);
 836
 837	rc = 0;
 838out:
 839	return rc;
 840}
 841#else
 842static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 843				   struct sock *sk,
 844				   struct sk_buff *skb)
 845{
 846	return skb;
 847}
 848
 849static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 850{
 851}
 852
 853static int vrf_rt6_create(struct net_device *dev)
 854{
 855	return 0;
 856}
 857#endif
 858
 859/* modelled after ip_finish_output2 */
 860static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 861{
 862	struct dst_entry *dst = skb_dst(skb);
 863	struct rtable *rt = (struct rtable *)dst;
 864	struct net_device *dev = dst->dev;
 865	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 866	struct neighbour *neigh;
 867	bool is_v6gw = false;
 
 868
 869	vrf_nf_reset_ct(skb);
 870
 871	/* Be paranoid, rather than too clever. */
 872	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 873		skb = skb_expand_head(skb, hh_len);
 874		if (!skb) {
 875			dev->stats.tx_errors++;
 876			return -ENOMEM;
 
 
 877		}
 
 
 
 
 
 878	}
 879
 880	rcu_read_lock();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883	if (!IS_ERR(neigh)) {
 884		int ret;
 885
 886		sock_confirm_neigh(skb, neigh);
 887		/* if crossing protocols, can not use the cached header */
 888		ret = neigh_output(neigh, skb, is_v6gw);
 889		rcu_read_unlock();
 890		return ret;
 891	}
 892
 893	rcu_read_unlock();
 
 894	vrf_tx_error(skb->dev, skb);
 895	return -EINVAL;
 896}
 897
 898static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 899{
 900	struct net_device *dev = skb_dst(skb)->dev;
 901
 902	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 903
 904	skb->dev = dev;
 905	skb->protocol = htons(ETH_P_IP);
 906
 907	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 908			    net, sk, skb, NULL, dev,
 909			    vrf_finish_output,
 910			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 911}
 912
 913/* set dst on skb to send packet to us via dev_xmit path. Allows
 914 * packet to go through device based features such as qdisc, netfilter
 915 * hooks and packet sockets with skb->dev set to vrf device.
 916 */
 917static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 918					   struct sk_buff *skb)
 919{
 920	struct net_vrf *vrf = netdev_priv(vrf_dev);
 921	struct dst_entry *dst = NULL;
 922	struct rtable *rth;
 923
 924	rcu_read_lock();
 925
 926	rth = rcu_dereference(vrf->rth);
 927	if (likely(rth)) {
 928		dst = &rth->dst;
 929		dst_hold(dst);
 930	}
 931
 932	rcu_read_unlock();
 933
 934	if (unlikely(!dst)) {
 935		vrf_tx_error(vrf_dev, skb);
 936		return NULL;
 937	}
 938
 939	skb_dst_drop(skb);
 940	skb_dst_set(skb, dst);
 941
 942	return skb;
 943}
 944
 945static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 946				    struct sk_buff *skb)
 947{
 948	vrf_finish_direct(skb);
 949
 950	return vrf_ip_local_out(net, sk, skb);
 951}
 952
 953static int vrf_output_direct(struct net *net, struct sock *sk,
 954			     struct sk_buff *skb)
 955{
 956	int err = 1;
 957
 958	skb->protocol = htons(ETH_P_IP);
 959
 960	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 961		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 962			      NULL, skb->dev, vrf_output_direct_finish);
 963
 964	if (likely(err == 1))
 965		vrf_finish_direct(skb);
 966
 967	return err;
 968}
 969
 970static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 971				    struct sk_buff *skb)
 972{
 973	int err;
 974
 975	err = vrf_output_direct(net, sk, skb);
 976	if (likely(err == 1))
 977		err = vrf_ip_local_out(net, sk, skb);
 978
 979	return err;
 980}
 981
 982static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 983					 struct sock *sk,
 984					 struct sk_buff *skb)
 985{
 986	struct net *net = dev_net(vrf_dev);
 987	int err;
 988
 989	skb->dev = vrf_dev;
 990
 991	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 992		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 993
 994	if (likely(err == 1))
 995		err = vrf_output_direct(net, sk, skb);
 996
 
 997	if (likely(err == 1))
 998		return skb;
 
 
 999
1000	return NULL;
1001}
1002
1003static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004				  struct sock *sk,
1005				  struct sk_buff *skb)
1006{
1007	/* don't divert multicast or local broadcast */
1008	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010		return skb;
1011
1012	vrf_nf_set_untracked(skb);
1013
1014	if (qdisc_tx_is_default(vrf_dev) ||
1015	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016		return vrf_ip_out_direct(vrf_dev, sk, skb);
1017
1018	return vrf_ip_out_redirect(vrf_dev, skb);
1019}
1020
1021/* called with rcu lock held */
1022static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023				  struct sock *sk,
1024				  struct sk_buff *skb,
1025				  u16 proto)
1026{
1027	switch (proto) {
1028	case AF_INET:
1029		return vrf_ip_out(vrf_dev, sk, skb);
1030	case AF_INET6:
1031		return vrf_ip6_out(vrf_dev, sk, skb);
1032	}
1033
1034	return skb;
1035}
1036
1037/* holding rtnl */
1038static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039{
1040	struct rtable *rth = rtnl_dereference(vrf->rth);
1041	struct net *net = dev_net(dev);
1042	struct dst_entry *dst;
1043
1044	RCU_INIT_POINTER(vrf->rth, NULL);
1045	synchronize_rcu();
1046
1047	/* move dev in dst's to loopback so this VRF device can be deleted
1048	 * - based on dst_ifdown
1049	 */
1050	if (rth) {
1051		dst = &rth->dst;
1052		netdev_ref_replace(dst->dev, net->loopback_dev,
1053				   &dst->dev_tracker, GFP_KERNEL);
1054		dst->dev = net->loopback_dev;
 
1055		dst_release(dst);
1056	}
1057}
1058
1059static int vrf_rtable_create(struct net_device *dev)
1060{
1061	struct net_vrf *vrf = netdev_priv(dev);
1062	struct rtable *rth;
1063
1064	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065		return -ENOMEM;
1066
1067	/* create a dst for routing packets out through a VRF device */
1068	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1069	if (!rth)
1070		return -ENOMEM;
1071
1072	rth->dst.output	= vrf_output;
1073
1074	rcu_assign_pointer(vrf->rth, rth);
1075
1076	return 0;
1077}
1078
1079/**************************** device handling ********************/
1080
1081/* cycle interface to flush neighbor cache and move routes across tables */
1082static void cycle_netdev(struct net_device *dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	unsigned int flags = dev->flags;
1086	int ret;
1087
1088	if (!netif_running(dev))
1089		return;
1090
1091	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092	if (ret >= 0)
1093		ret = dev_change_flags(dev, flags, extack);
1094
1095	if (ret < 0) {
1096		netdev_err(dev,
1097			   "Failed to cycle device %s; route tables might be wrong!\n",
1098			   dev->name);
1099	}
1100}
1101
1102static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103			    struct netlink_ext_ack *extack)
1104{
1105	int ret;
1106
1107	/* do not allow loopback device to be enslaved to a VRF.
1108	 * The vrf device acts as the loopback for the vrf.
1109	 */
1110	if (port_dev == dev_net(dev)->loopback_dev) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Can not enslave loopback device to a VRF");
1113		return -EOPNOTSUPP;
1114	}
1115
1116	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118	if (ret < 0)
1119		goto err;
1120
1121	cycle_netdev(port_dev, extack);
1122
1123	return 0;
1124
1125err:
1126	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127	return ret;
1128}
1129
1130static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131			 struct netlink_ext_ack *extack)
1132{
1133	if (netif_is_l3_master(port_dev)) {
1134		NL_SET_ERR_MSG(extack,
1135			       "Can not enslave an L3 master device to a VRF");
1136		return -EINVAL;
1137	}
1138
1139	if (netif_is_l3_slave(port_dev))
1140		return -EINVAL;
1141
1142	return do_vrf_add_slave(dev, port_dev, extack);
1143}
1144
1145/* inverse of do_vrf_add_slave */
1146static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147{
1148	netdev_upper_dev_unlink(port_dev, dev);
1149	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150
1151	cycle_netdev(port_dev, NULL);
1152
1153	return 0;
1154}
1155
1156static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157{
1158	return do_vrf_del_slave(dev, port_dev);
1159}
1160
1161static void vrf_dev_uninit(struct net_device *dev)
1162{
1163	struct net_vrf *vrf = netdev_priv(dev);
1164
1165	vrf_rtable_release(dev, vrf);
1166	vrf_rt6_release(dev, vrf);
 
 
 
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
 
 
 
 
1173	/* create the default dst which points back to us */
1174	if (vrf_rtable_create(dev) != 0)
1175		goto out_nomem;
1176
1177	if (vrf_rt6_create(dev) != 0)
1178		goto out_rth;
1179
1180	dev->flags = IFF_MASTER | IFF_NOARP;
1181
 
 
 
1182	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1183	dev->operstate = IF_OPER_UP;
1184	netdev_lockdep_set_classes(dev);
1185	return 0;
1186
1187out_rth:
1188	vrf_rtable_release(dev, vrf);
 
 
 
1189out_nomem:
1190	return -ENOMEM;
1191}
1192
1193static const struct net_device_ops vrf_netdev_ops = {
1194	.ndo_init		= vrf_dev_init,
1195	.ndo_uninit		= vrf_dev_uninit,
1196	.ndo_start_xmit		= vrf_xmit,
1197	.ndo_set_mac_address	= eth_mac_addr,
1198	.ndo_get_stats64	= vrf_get_stats64,
1199	.ndo_add_slave		= vrf_add_slave,
1200	.ndo_del_slave		= vrf_del_slave,
1201};
1202
1203static u32 vrf_fib_table(const struct net_device *dev)
1204{
1205	struct net_vrf *vrf = netdev_priv(dev);
1206
1207	return vrf->tb_id;
1208}
1209
1210static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211{
1212	kfree_skb(skb);
1213	return 0;
1214}
1215
1216static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217				      struct sk_buff *skb,
1218				      struct net_device *dev)
1219{
1220	struct net *net = dev_net(dev);
1221
1222	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1224
1225	return skb;
1226}
1227
1228static int vrf_prepare_mac_header(struct sk_buff *skb,
1229				  struct net_device *vrf_dev, u16 proto)
1230{
1231	struct ethhdr *eth;
1232	int err;
1233
1234	/* in general, we do not know if there is enough space in the head of
1235	 * the packet for hosting the mac header.
1236	 */
1237	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238	if (unlikely(err))
1239		/* no space in the skb head */
1240		return -ENOBUFS;
1241
1242	__skb_push(skb, ETH_HLEN);
1243	eth = (struct ethhdr *)skb->data;
1244
1245	skb_reset_mac_header(skb);
1246	skb_reset_mac_len(skb);
1247
1248	/* we set the ethernet destination and the source addresses to the
1249	 * address of the VRF device.
1250	 */
1251	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1252	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1253	eth->h_proto = htons(proto);
1254
1255	/* the destination address of the Ethernet frame corresponds to the
1256	 * address set on the VRF interface; therefore, the packet is intended
1257	 * to be processed locally.
1258	 */
1259	skb->protocol = eth->h_proto;
1260	skb->pkt_type = PACKET_HOST;
1261
1262	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1263
1264	skb_pull_inline(skb, ETH_HLEN);
1265
1266	return 0;
1267}
1268
1269/* prepare and add the mac header to the packet if it was not set previously.
1270 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1271 * If the mac header was already set, the original mac header is left
1272 * untouched and the function returns immediately.
1273 */
1274static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1275				       struct net_device *vrf_dev,
1276				       u16 proto, struct net_device *orig_dev)
1277{
1278	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1279		return 0;
1280
1281	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1282}
1283
1284#if IS_ENABLED(CONFIG_IPV6)
1285/* neighbor handling is done with actual device; do not want
1286 * to flip skb->dev for those ndisc packets. This really fails
1287 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1288 * a start.
1289 */
1290static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1291{
1292	const struct ipv6hdr *iph = ipv6_hdr(skb);
1293	bool rc = false;
1294
1295	if (iph->nexthdr == NEXTHDR_ICMP) {
1296		const struct icmp6hdr *icmph;
1297		struct icmp6hdr _icmph;
1298
1299		icmph = skb_header_pointer(skb, sizeof(*iph),
1300					   sizeof(_icmph), &_icmph);
1301		if (!icmph)
1302			goto out;
1303
1304		switch (icmph->icmp6_type) {
1305		case NDISC_ROUTER_SOLICITATION:
1306		case NDISC_ROUTER_ADVERTISEMENT:
1307		case NDISC_NEIGHBOUR_SOLICITATION:
1308		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1309		case NDISC_REDIRECT:
1310			rc = true;
1311			break;
1312		}
1313	}
1314
1315out:
1316	return rc;
1317}
1318
1319static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1320					     const struct net_device *dev,
1321					     struct flowi6 *fl6,
1322					     int ifindex,
1323					     const struct sk_buff *skb,
1324					     int flags)
1325{
1326	struct net_vrf *vrf = netdev_priv(dev);
1327
1328	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1329}
1330
1331static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1332			      int ifindex)
1333{
1334	const struct ipv6hdr *iph = ipv6_hdr(skb);
1335	struct flowi6 fl6 = {
1336		.flowi6_iif     = ifindex,
1337		.flowi6_mark    = skb->mark,
1338		.flowi6_proto   = iph->nexthdr,
1339		.daddr          = iph->daddr,
1340		.saddr          = iph->saddr,
1341		.flowlabel      = ip6_flowinfo(iph),
1342	};
1343	struct net *net = dev_net(vrf_dev);
1344	struct rt6_info *rt6;
1345
1346	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1347				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1348	if (unlikely(!rt6))
1349		return;
1350
1351	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1352		return;
1353
1354	skb_dst_set(skb, &rt6->dst);
1355}
1356
1357static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1358				   struct sk_buff *skb)
1359{
1360	int orig_iif = skb->skb_iif;
1361	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1362	bool is_ndisc = ipv6_ndisc_frame(skb);
1363
1364	/* loopback, multicast & non-ND link-local traffic; do not push through
1365	 * packet taps again. Reset pkt_type for upper layers to process skb.
1366	 * For non-loopback strict packets, determine the dst using the original
1367	 * ifindex.
1368	 */
1369	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1370		skb->dev = vrf_dev;
1371		skb->skb_iif = vrf_dev->ifindex;
1372		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1373
1374		if (skb->pkt_type == PACKET_LOOPBACK)
1375			skb->pkt_type = PACKET_HOST;
1376		else
1377			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1378
1379		goto out;
1380	}
1381
1382	/* if packet is NDISC then keep the ingress interface */
1383	if (!is_ndisc) {
1384		struct net_device *orig_dev = skb->dev;
1385
1386		vrf_rx_stats(vrf_dev, skb->len);
1387		skb->dev = vrf_dev;
1388		skb->skb_iif = vrf_dev->ifindex;
1389
1390		if (!list_empty(&vrf_dev->ptype_all)) {
1391			int err;
1392
1393			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1394							  ETH_P_IPV6,
1395							  orig_dev);
1396			if (likely(!err)) {
1397				skb_push(skb, skb->mac_len);
1398				dev_queue_xmit_nit(skb, vrf_dev);
1399				skb_pull(skb, skb->mac_len);
1400			}
1401		}
1402
1403		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1404	}
1405
1406	if (need_strict)
1407		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1408
1409	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1410out:
1411	return skb;
1412}
1413
1414#else
1415static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1416				   struct sk_buff *skb)
1417{
1418	return skb;
1419}
1420#endif
1421
1422static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1423				  struct sk_buff *skb)
1424{
1425	struct net_device *orig_dev = skb->dev;
1426
1427	skb->dev = vrf_dev;
1428	skb->skb_iif = vrf_dev->ifindex;
1429	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1430
1431	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1432		goto out;
1433
1434	/* loopback traffic; do not push through packet taps again.
1435	 * Reset pkt_type for upper layers to process skb
1436	 */
1437	if (skb->pkt_type == PACKET_LOOPBACK) {
1438		skb->pkt_type = PACKET_HOST;
1439		goto out;
1440	}
1441
1442	vrf_rx_stats(vrf_dev, skb->len);
1443
1444	if (!list_empty(&vrf_dev->ptype_all)) {
1445		int err;
1446
1447		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1448						  orig_dev);
1449		if (likely(!err)) {
1450			skb_push(skb, skb->mac_len);
1451			dev_queue_xmit_nit(skb, vrf_dev);
1452			skb_pull(skb, skb->mac_len);
1453		}
1454	}
1455
1456	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1457out:
1458	return skb;
1459}
1460
1461/* called with rcu lock held */
1462static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463				  struct sk_buff *skb,
1464				  u16 proto)
1465{
1466	switch (proto) {
1467	case AF_INET:
1468		return vrf_ip_rcv(vrf_dev, skb);
1469	case AF_INET6:
1470		return vrf_ip6_rcv(vrf_dev, skb);
1471	}
1472
1473	return skb;
1474}
1475
1476#if IS_ENABLED(CONFIG_IPV6)
1477/* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1481 */
1482static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1483					      struct flowi6 *fl6)
1484{
1485	struct net *net = dev_net(dev);
1486	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487	struct dst_entry *dst = NULL;
1488	struct rt6_info *rt;
1489
1490	/* VRF device does not have a link-local address and
1491	 * sending packets to link-local or mcast addresses over
1492	 * a VRF device does not make sense
1493	 */
1494	if (fl6->flowi6_oif == dev->ifindex) {
1495		dst = &net->ipv6.ip6_null_entry->dst;
1496		return dst;
1497	}
1498
1499	if (!ipv6_addr_any(&fl6->saddr))
1500		flags |= RT6_LOOKUP_F_HAS_SADDR;
1501
1502	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1503	if (rt)
1504		dst = &rt->dst;
1505
1506	return dst;
1507}
1508#endif
1509
1510static const struct l3mdev_ops vrf_l3mdev_ops = {
1511	.l3mdev_fib_table	= vrf_fib_table,
1512	.l3mdev_l3_rcv		= vrf_l3_rcv,
1513	.l3mdev_l3_out		= vrf_l3_out,
1514#if IS_ENABLED(CONFIG_IPV6)
1515	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1516#endif
1517};
1518
1519static void vrf_get_drvinfo(struct net_device *dev,
1520			    struct ethtool_drvinfo *info)
1521{
1522	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1523	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1524}
1525
1526static const struct ethtool_ops vrf_ethtool_ops = {
1527	.get_drvinfo	= vrf_get_drvinfo,
1528};
1529
1530static inline size_t vrf_fib_rule_nl_size(void)
1531{
1532	size_t sz;
1533
1534	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1536	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1537	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1538
1539	return sz;
1540}
1541
1542static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1543{
1544	struct fib_rule_hdr *frh;
1545	struct nlmsghdr *nlh;
1546	struct sk_buff *skb;
1547	int err;
1548
1549	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550	    !ipv6_mod_enabled())
1551		return 0;
1552
1553	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1554	if (!skb)
1555		return -ENOMEM;
1556
1557	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1558	if (!nlh)
1559		goto nla_put_failure;
1560
1561	/* rule only needs to appear once */
1562	nlh->nlmsg_flags |= NLM_F_EXCL;
1563
1564	frh = nlmsg_data(nlh);
1565	memset(frh, 0, sizeof(*frh));
1566	frh->family = family;
1567	frh->action = FR_ACT_TO_TBL;
1568
1569	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570		goto nla_put_failure;
1571
1572	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573		goto nla_put_failure;
1574
1575	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576		goto nla_put_failure;
1577
1578	nlmsg_end(skb, nlh);
1579
1580	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581	skb->sk = dev_net(dev)->rtnl;
1582	if (add_it) {
1583		err = fib_nl_newrule(skb, nlh, NULL);
1584		if (err == -EEXIST)
1585			err = 0;
1586	} else {
1587		err = fib_nl_delrule(skb, nlh, NULL);
1588		if (err == -ENOENT)
1589			err = 0;
1590	}
1591	nlmsg_free(skb);
1592
1593	return err;
1594
1595nla_put_failure:
1596	nlmsg_free(skb);
1597
1598	return -EMSGSIZE;
1599}
1600
1601static int vrf_add_fib_rules(const struct net_device *dev)
1602{
1603	int err;
1604
1605	err = vrf_fib_rule(dev, AF_INET,  true);
1606	if (err < 0)
1607		goto out_err;
1608
1609	err = vrf_fib_rule(dev, AF_INET6, true);
1610	if (err < 0)
1611		goto ipv6_err;
1612
1613#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1615	if (err < 0)
1616		goto ipmr_err;
1617#endif
1618
1619#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1621	if (err < 0)
1622		goto ip6mr_err;
1623#endif
1624
1625	return 0;
1626
1627#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1628ip6mr_err:
1629	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1630#endif
1631
1632#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1633ipmr_err:
1634	vrf_fib_rule(dev, AF_INET6,  false);
1635#endif
1636
1637ipv6_err:
1638	vrf_fib_rule(dev, AF_INET,  false);
1639
1640out_err:
1641	netdev_err(dev, "Failed to add FIB rules.\n");
1642	return err;
1643}
1644
1645static void vrf_setup(struct net_device *dev)
1646{
1647	ether_setup(dev);
1648
1649	/* Initialize the device structure. */
1650	dev->netdev_ops = &vrf_netdev_ops;
1651	dev->l3mdev_ops = &vrf_l3mdev_ops;
1652	dev->ethtool_ops = &vrf_ethtool_ops;
1653	dev->needs_free_netdev = true;
1654
1655	/* Fill in device structure with ethernet-generic values. */
1656	eth_hw_addr_random(dev);
1657
1658	/* don't acquire vrf device's netif_tx_lock when transmitting */
1659	dev->features |= NETIF_F_LLTX;
1660
1661	/* don't allow vrf devices to change network namespaces. */
1662	dev->features |= NETIF_F_NETNS_LOCAL;
1663
1664	/* does not make sense for a VLAN to be added to a vrf device */
1665	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1666
1667	/* enable offload features */
1668	dev->features   |= NETIF_F_GSO_SOFTWARE;
1669	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1671
1672	dev->hw_features = dev->features;
1673	dev->hw_enc_features = dev->features;
1674
1675	/* default to no qdisc; user can add if desired */
1676	dev->priv_flags |= IFF_NO_QUEUE;
1677	dev->priv_flags |= IFF_NO_RX_HANDLER;
1678	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1679
1680	/* VRF devices do not care about MTU, but if the MTU is set
1681	 * too low then the ipv4 and ipv6 protocols are disabled
1682	 * which breaks networking.
1683	 */
1684	dev->min_mtu = IPV6_MIN_MTU;
1685	dev->max_mtu = IP6_MAX_MTU;
1686	dev->mtu = dev->max_mtu;
1687
1688	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1689}
1690
1691static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1692			struct netlink_ext_ack *extack)
1693{
1694	if (tb[IFLA_ADDRESS]) {
1695		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1696			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697			return -EINVAL;
1698		}
1699		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1700			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701			return -EADDRNOTAVAIL;
1702		}
1703	}
1704	return 0;
1705}
1706
1707static void vrf_dellink(struct net_device *dev, struct list_head *head)
1708{
1709	struct net_device *port_dev;
1710	struct list_head *iter;
1711
1712	netdev_for_each_lower_dev(dev, port_dev, iter)
1713		vrf_del_slave(dev, port_dev);
1714
1715	vrf_map_unregister_dev(dev);
1716
1717	unregister_netdevice_queue(dev, head);
1718}
1719
1720static int vrf_newlink(struct net *src_net, struct net_device *dev,
1721		       struct nlattr *tb[], struct nlattr *data[],
1722		       struct netlink_ext_ack *extack)
1723{
1724	struct net_vrf *vrf = netdev_priv(dev);
1725	struct netns_vrf *nn_vrf;
1726	bool *add_fib_rules;
1727	struct net *net;
1728	int err;
1729
1730	if (!data || !data[IFLA_VRF_TABLE]) {
1731		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1732		return -EINVAL;
1733	}
1734
1735	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1736	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1737		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1738				    "Invalid VRF table id");
1739		return -EINVAL;
1740	}
1741
1742	dev->priv_flags |= IFF_L3MDEV_MASTER;
1743
1744	err = register_netdevice(dev);
1745	if (err)
1746		goto out;
1747
1748	/* mapping between table_id and vrf;
1749	 * note: such binding could not be done in the dev init function
1750	 * because dev->ifindex id is not available yet.
1751	 */
1752	vrf->ifindex = dev->ifindex;
1753
1754	err = vrf_map_register_dev(dev, extack);
1755	if (err) {
1756		unregister_netdevice(dev);
1757		goto out;
1758	}
1759
1760	net = dev_net(dev);
1761	nn_vrf = net_generic(net, vrf_net_id);
1762
1763	add_fib_rules = &nn_vrf->add_fib_rules;
1764	if (*add_fib_rules) {
1765		err = vrf_add_fib_rules(dev);
1766		if (err) {
1767			vrf_map_unregister_dev(dev);
1768			unregister_netdevice(dev);
1769			goto out;
1770		}
1771		*add_fib_rules = false;
1772	}
1773
1774out:
1775	return err;
1776}
1777
1778static size_t vrf_nl_getsize(const struct net_device *dev)
1779{
1780	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1781}
1782
1783static int vrf_fillinfo(struct sk_buff *skb,
1784			const struct net_device *dev)
1785{
1786	struct net_vrf *vrf = netdev_priv(dev);
1787
1788	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1789}
1790
1791static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1792				 const struct net_device *slave_dev)
1793{
1794	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1795}
1796
1797static int vrf_fill_slave_info(struct sk_buff *skb,
1798			       const struct net_device *vrf_dev,
1799			       const struct net_device *slave_dev)
1800{
1801	struct net_vrf *vrf = netdev_priv(vrf_dev);
1802
1803	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1804		return -EMSGSIZE;
1805
1806	return 0;
1807}
1808
1809static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1810	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1811};
1812
1813static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1814	.kind		= DRV_NAME,
1815	.priv_size	= sizeof(struct net_vrf),
1816
1817	.get_size	= vrf_nl_getsize,
1818	.policy		= vrf_nl_policy,
1819	.validate	= vrf_validate,
1820	.fill_info	= vrf_fillinfo,
1821
1822	.get_slave_size  = vrf_get_slave_size,
1823	.fill_slave_info = vrf_fill_slave_info,
1824
1825	.newlink	= vrf_newlink,
1826	.dellink	= vrf_dellink,
1827	.setup		= vrf_setup,
1828	.maxtype	= IFLA_VRF_MAX,
1829};
1830
1831static int vrf_device_event(struct notifier_block *unused,
1832			    unsigned long event, void *ptr)
1833{
1834	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1835
1836	/* only care about unregister events to drop slave references */
1837	if (event == NETDEV_UNREGISTER) {
1838		struct net_device *vrf_dev;
1839
1840		if (!netif_is_l3_slave(dev))
1841			goto out;
1842
1843		vrf_dev = netdev_master_upper_dev_get(dev);
1844		vrf_del_slave(vrf_dev, dev);
1845	}
1846out:
1847	return NOTIFY_DONE;
1848}
1849
1850static struct notifier_block vrf_notifier_block __read_mostly = {
1851	.notifier_call = vrf_device_event,
1852};
1853
1854static int vrf_map_init(struct vrf_map *vmap)
1855{
1856	spin_lock_init(&vmap->vmap_lock);
1857	hash_init(vmap->ht);
1858
1859	vmap->strict_mode = false;
1860
1861	return 0;
1862}
1863
1864#ifdef CONFIG_SYSCTL
1865static bool vrf_strict_mode(struct vrf_map *vmap)
1866{
1867	bool strict_mode;
1868
1869	vrf_map_lock(vmap);
1870	strict_mode = vmap->strict_mode;
1871	vrf_map_unlock(vmap);
1872
1873	return strict_mode;
1874}
1875
1876static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1877{
1878	bool *cur_mode;
1879	int res = 0;
1880
1881	vrf_map_lock(vmap);
1882
1883	cur_mode = &vmap->strict_mode;
1884	if (*cur_mode == new_mode)
1885		goto unlock;
1886
1887	if (*cur_mode) {
1888		/* disable strict mode */
1889		*cur_mode = false;
1890	} else {
1891		if (vmap->shared_tables) {
1892			/* we cannot allow strict_mode because there are some
1893			 * vrfs that share one or more tables.
1894			 */
1895			res = -EBUSY;
1896			goto unlock;
1897		}
1898
1899		/* no tables are shared among vrfs, so we can go back
1900		 * to 1:1 association between a vrf with its table.
1901		 */
1902		*cur_mode = true;
1903	}
1904
1905unlock:
1906	vrf_map_unlock(vmap);
1907
1908	return res;
1909}
1910
1911static int vrf_shared_table_handler(struct ctl_table *table, int write,
1912				    void *buffer, size_t *lenp, loff_t *ppos)
1913{
1914	struct net *net = (struct net *)table->extra1;
1915	struct vrf_map *vmap = netns_vrf_map(net);
1916	int proc_strict_mode = 0;
1917	struct ctl_table tmp = {
1918		.procname	= table->procname,
1919		.data		= &proc_strict_mode,
1920		.maxlen		= sizeof(int),
1921		.mode		= table->mode,
1922		.extra1		= SYSCTL_ZERO,
1923		.extra2		= SYSCTL_ONE,
1924	};
1925	int ret;
1926
1927	if (!write)
1928		proc_strict_mode = vrf_strict_mode(vmap);
1929
1930	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1931
1932	if (write && ret == 0)
1933		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1934
1935	return ret;
1936}
1937
1938static const struct ctl_table vrf_table[] = {
1939	{
1940		.procname	= "strict_mode",
1941		.data		= NULL,
1942		.maxlen		= sizeof(int),
1943		.mode		= 0644,
1944		.proc_handler	= vrf_shared_table_handler,
1945		/* set by the vrf_netns_init */
1946		.extra1		= NULL,
1947	},
1948};
1949
1950static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1951{
1952	struct ctl_table *table;
1953
1954	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1955	if (!table)
1956		return -ENOMEM;
1957
1958	/* init the extra1 parameter with the reference to current netns */
1959	table[0].extra1 = net;
1960
1961	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1962						 ARRAY_SIZE(vrf_table));
1963	if (!nn_vrf->ctl_hdr) {
1964		kfree(table);
1965		return -ENOMEM;
1966	}
1967
1968	return 0;
1969}
1970
1971static void vrf_netns_exit_sysctl(struct net *net)
1972{
1973	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974	struct ctl_table *table;
1975
1976	table = nn_vrf->ctl_hdr->ctl_table_arg;
1977	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1978	kfree(table);
1979}
1980#else
1981static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1982{
1983	return 0;
1984}
1985
1986static void vrf_netns_exit_sysctl(struct net *net)
1987{
1988}
1989#endif
1990
1991/* Initialize per network namespace state */
1992static int __net_init vrf_netns_init(struct net *net)
1993{
1994	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1995
1996	nn_vrf->add_fib_rules = true;
1997	vrf_map_init(&nn_vrf->vmap);
1998
1999	return vrf_netns_init_sysctl(net, nn_vrf);
2000}
2001
2002static void __net_exit vrf_netns_exit(struct net *net)
2003{
2004	vrf_netns_exit_sysctl(net);
2005}
2006
2007static struct pernet_operations vrf_net_ops __net_initdata = {
2008	.init = vrf_netns_init,
2009	.exit = vrf_netns_exit,
2010	.id   = &vrf_net_id,
2011	.size = sizeof(struct netns_vrf),
2012};
2013
2014static int __init vrf_init_module(void)
2015{
2016	int rc;
2017
2018	register_netdevice_notifier(&vrf_notifier_block);
2019
2020	rc = register_pernet_subsys(&vrf_net_ops);
2021	if (rc < 0)
2022		goto error;
2023
2024	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2025					  vrf_ifindex_lookup_by_table_id);
2026	if (rc < 0)
2027		goto unreg_pernet;
2028
2029	rc = rtnl_link_register(&vrf_link_ops);
2030	if (rc < 0)
2031		goto table_lookup_unreg;
 
 
2032
2033	return 0;
2034
2035table_lookup_unreg:
2036	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2037				       vrf_ifindex_lookup_by_table_id);
2038
2039unreg_pernet:
2040	unregister_pernet_subsys(&vrf_net_ops);
2041
2042error:
2043	unregister_netdevice_notifier(&vrf_notifier_block);
2044	return rc;
2045}
2046
2047module_init(vrf_init_module);
2048MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2049MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2050MODULE_LICENSE("GPL");
2051MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2052MODULE_VERSION(DRV_VERSION);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
 
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ip.h>
  17#include <linux/init.h>
  18#include <linux/moduleparam.h>
  19#include <linux/netfilter.h>
  20#include <linux/rtnetlink.h>
  21#include <net/rtnetlink.h>
  22#include <linux/u64_stats_sync.h>
  23#include <linux/hashtable.h>
 
  24
  25#include <linux/inetdevice.h>
  26#include <net/arp.h>
  27#include <net/ip.h>
  28#include <net/ip_fib.h>
  29#include <net/ip6_fib.h>
  30#include <net/ip6_route.h>
  31#include <net/route.h>
  32#include <net/addrconf.h>
  33#include <net/l3mdev.h>
  34#include <net/fib_rules.h>
 
  35#include <net/netns/generic.h>
 
  36
  37#define DRV_NAME	"vrf"
  38#define DRV_VERSION	"1.0"
  39
  40#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42static unsigned int vrf_net_id;
  43
 
 
 
 
 
 
 
 
 
  44struct net_vrf {
  45	struct rtable __rcu	*rth;
  46	struct rt6_info	__rcu	*rt6;
  47#if IS_ENABLED(CONFIG_IPV6)
  48	struct fib6_table	*fib6_table;
  49#endif
  50	u32                     tb_id;
  51};
  52
  53struct pcpu_dstats {
  54	u64			tx_pkts;
  55	u64			tx_bytes;
  56	u64			tx_drps;
  57	u64			rx_pkts;
  58	u64			rx_bytes;
  59	u64			rx_drps;
  60	struct u64_stats_sync	syncp;
  61};
  62
  63static void vrf_rx_stats(struct net_device *dev, int len)
  64{
  65	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  66
  67	u64_stats_update_begin(&dstats->syncp);
  68	dstats->rx_pkts++;
  69	dstats->rx_bytes += len;
  70	u64_stats_update_end(&dstats->syncp);
  71}
  72
  73static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  74{
  75	vrf_dev->stats.tx_errors++;
  76	kfree_skb(skb);
  77}
  78
  79static void vrf_get_stats64(struct net_device *dev,
  80			    struct rtnl_link_stats64 *stats)
  81{
  82	int i;
  83
  84	for_each_possible_cpu(i) {
  85		const struct pcpu_dstats *dstats;
  86		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  87		unsigned int start;
  88
  89		dstats = per_cpu_ptr(dev->dstats, i);
  90		do {
  91			start = u64_stats_fetch_begin_irq(&dstats->syncp);
  92			tbytes = dstats->tx_bytes;
  93			tpkts = dstats->tx_pkts;
  94			tdrops = dstats->tx_drps;
  95			rbytes = dstats->rx_bytes;
  96			rpkts = dstats->rx_pkts;
  97		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  98		stats->tx_bytes += tbytes;
  99		stats->tx_packets += tpkts;
 100		stats->tx_dropped += tdrops;
 101		stats->rx_bytes += rbytes;
 102		stats->rx_packets += rpkts;
 103	}
 104}
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106/* by default VRF devices do not have a qdisc and are expected
 107 * to be created with only a single queue.
 108 */
 109static bool qdisc_tx_is_default(const struct net_device *dev)
 110{
 111	struct netdev_queue *txq;
 112	struct Qdisc *qdisc;
 113
 114	if (dev->num_tx_queues > 1)
 115		return false;
 116
 117	txq = netdev_get_tx_queue(dev, 0);
 118	qdisc = rcu_access_pointer(txq->qdisc);
 119
 120	return !qdisc->enqueue;
 121}
 122
 123/* Local traffic destined to local address. Reinsert the packet to rx
 124 * path, similar to loopback handling.
 125 */
 126static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 127			  struct dst_entry *dst)
 128{
 129	int len = skb->len;
 130
 131	skb_orphan(skb);
 132
 133	skb_dst_set(skb, dst);
 134
 135	/* set pkt_type to avoid skb hitting packet taps twice -
 136	 * once on Tx and again in Rx processing
 137	 */
 138	skb->pkt_type = PACKET_LOOPBACK;
 139
 140	skb->protocol = eth_type_trans(skb, dev);
 141
 142	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 143		vrf_rx_stats(dev, len);
 144	else
 145		this_cpu_inc(dev->dstats->rx_drps);
 146
 147	return NETDEV_TX_OK;
 148}
 149
 
 
 
 
 
 
 
 
 
 
 
 
 150#if IS_ENABLED(CONFIG_IPV6)
 151static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 152			     struct sk_buff *skb)
 153{
 154	int err;
 155
 
 
 156	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 157		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 158
 159	if (likely(err == 1))
 160		err = dst_output(net, sk, skb);
 161
 162	return err;
 163}
 164
 165static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 166					   struct net_device *dev)
 167{
 168	const struct ipv6hdr *iph;
 169	struct net *net = dev_net(skb->dev);
 170	struct flowi6 fl6;
 171	int ret = NET_XMIT_DROP;
 172	struct dst_entry *dst;
 173	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 174
 175	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 176		goto err;
 177
 178	iph = ipv6_hdr(skb);
 179
 180	memset(&fl6, 0, sizeof(fl6));
 181	/* needed to match OIF rule */
 182	fl6.flowi6_oif = dev->ifindex;
 183	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 184	fl6.daddr = iph->daddr;
 185	fl6.saddr = iph->saddr;
 186	fl6.flowlabel = ip6_flowinfo(iph);
 187	fl6.flowi6_mark = skb->mark;
 188	fl6.flowi6_proto = iph->nexthdr;
 189	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 190
 191	dst = ip6_route_output(net, NULL, &fl6);
 192	if (dst == dst_null)
 193		goto err;
 194
 195	skb_dst_drop(skb);
 196
 197	/* if dst.dev is loopback or the VRF device again this is locally
 198	 * originated traffic destined to a local address. Short circuit
 199	 * to Rx path
 200	 */
 201	if (dst->dev == dev)
 202		return vrf_local_xmit(skb, dev, dst);
 203
 204	skb_dst_set(skb, dst);
 205
 206	/* strip the ethernet header added for pass through VRF device */
 207	__skb_pull(skb, skb_network_offset(skb));
 208
 
 209	ret = vrf_ip6_local_out(net, skb->sk, skb);
 210	if (unlikely(net_xmit_eval(ret)))
 211		dev->stats.tx_errors++;
 212	else
 213		ret = NET_XMIT_SUCCESS;
 214
 215	return ret;
 216err:
 217	vrf_tx_error(dev, skb);
 218	return NET_XMIT_DROP;
 219}
 220#else
 221static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 222					   struct net_device *dev)
 223{
 224	vrf_tx_error(dev, skb);
 225	return NET_XMIT_DROP;
 226}
 227#endif
 228
 229/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 230static int vrf_ip_local_out(struct net *net, struct sock *sk,
 231			    struct sk_buff *skb)
 232{
 233	int err;
 234
 
 
 235	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 236		      skb, NULL, skb_dst(skb)->dev, dst_output);
 237	if (likely(err == 1))
 238		err = dst_output(net, sk, skb);
 239
 240	return err;
 241}
 242
 243static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 244					   struct net_device *vrf_dev)
 245{
 246	struct iphdr *ip4h;
 247	int ret = NET_XMIT_DROP;
 248	struct flowi4 fl4;
 249	struct net *net = dev_net(vrf_dev);
 250	struct rtable *rt;
 251
 252	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 253		goto err;
 254
 255	ip4h = ip_hdr(skb);
 256
 257	memset(&fl4, 0, sizeof(fl4));
 258	/* needed to match OIF rule */
 259	fl4.flowi4_oif = vrf_dev->ifindex;
 260	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 261	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 262	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 263	fl4.flowi4_proto = ip4h->protocol;
 264	fl4.daddr = ip4h->daddr;
 265	fl4.saddr = ip4h->saddr;
 266
 267	rt = ip_route_output_flow(net, &fl4, NULL);
 268	if (IS_ERR(rt))
 269		goto err;
 270
 271	skb_dst_drop(skb);
 272
 273	/* if dst.dev is loopback or the VRF device again this is locally
 274	 * originated traffic destined to a local address. Short circuit
 275	 * to Rx path
 276	 */
 277	if (rt->dst.dev == vrf_dev)
 278		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 279
 280	skb_dst_set(skb, &rt->dst);
 281
 282	/* strip the ethernet header added for pass through VRF device */
 283	__skb_pull(skb, skb_network_offset(skb));
 284
 285	if (!ip4h->saddr) {
 286		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 287					       RT_SCOPE_LINK);
 288	}
 289
 
 290	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 291	if (unlikely(net_xmit_eval(ret)))
 292		vrf_dev->stats.tx_errors++;
 293	else
 294		ret = NET_XMIT_SUCCESS;
 295
 296out:
 297	return ret;
 298err:
 299	vrf_tx_error(vrf_dev, skb);
 300	goto out;
 301}
 302
 303static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 304{
 305	switch (skb->protocol) {
 306	case htons(ETH_P_IP):
 307		return vrf_process_v4_outbound(skb, dev);
 308	case htons(ETH_P_IPV6):
 309		return vrf_process_v6_outbound(skb, dev);
 310	default:
 311		vrf_tx_error(dev, skb);
 312		return NET_XMIT_DROP;
 313	}
 314}
 315
 316static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 317{
 318	int len = skb->len;
 319	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 320
 321	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 322		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 323
 324		u64_stats_update_begin(&dstats->syncp);
 325		dstats->tx_pkts++;
 326		dstats->tx_bytes += len;
 327		u64_stats_update_end(&dstats->syncp);
 328	} else {
 329		this_cpu_inc(dev->dstats->tx_drps);
 330	}
 331
 332	return ret;
 333}
 334
 335static int vrf_finish_direct(struct net *net, struct sock *sk,
 336			     struct sk_buff *skb)
 337{
 338	struct net_device *vrf_dev = skb->dev;
 339
 340	if (!list_empty(&vrf_dev->ptype_all) &&
 341	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 342		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 343
 344		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 345		eth_zero_addr(eth->h_dest);
 346		eth->h_proto = skb->protocol;
 347
 348		rcu_read_lock_bh();
 349		dev_queue_xmit_nit(skb, vrf_dev);
 350		rcu_read_unlock_bh();
 351
 352		skb_pull(skb, ETH_HLEN);
 353	}
 354
 355	return 1;
 356}
 357
 358#if IS_ENABLED(CONFIG_IPV6)
 359/* modelled after ip6_finish_output2 */
 360static int vrf_finish_output6(struct net *net, struct sock *sk,
 361			      struct sk_buff *skb)
 362{
 363	struct dst_entry *dst = skb_dst(skb);
 364	struct net_device *dev = dst->dev;
 365	const struct in6_addr *nexthop;
 366	struct neighbour *neigh;
 367	int ret;
 368
 369	nf_reset_ct(skb);
 370
 371	skb->protocol = htons(ETH_P_IPV6);
 372	skb->dev = dev;
 373
 374	rcu_read_lock_bh();
 375	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 376	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 377	if (unlikely(!neigh))
 378		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 379	if (!IS_ERR(neigh)) {
 380		sock_confirm_neigh(skb, neigh);
 381		ret = neigh_output(neigh, skb, false);
 382		rcu_read_unlock_bh();
 383		return ret;
 384	}
 385	rcu_read_unlock_bh();
 386
 387	IP6_INC_STATS(dev_net(dst->dev),
 388		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 389	kfree_skb(skb);
 390	return -EINVAL;
 391}
 392
 393/* modelled after ip6_output */
 394static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 395{
 396	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 397			    net, sk, skb, NULL, skb_dst(skb)->dev,
 398			    vrf_finish_output6,
 399			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 400}
 401
 402/* set dst on skb to send packet to us via dev_xmit path. Allows
 403 * packet to go through device based features such as qdisc, netfilter
 404 * hooks and packet sockets with skb->dev set to vrf device.
 405 */
 406static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 407					    struct sk_buff *skb)
 408{
 409	struct net_vrf *vrf = netdev_priv(vrf_dev);
 410	struct dst_entry *dst = NULL;
 411	struct rt6_info *rt6;
 412
 413	rcu_read_lock();
 414
 415	rt6 = rcu_dereference(vrf->rt6);
 416	if (likely(rt6)) {
 417		dst = &rt6->dst;
 418		dst_hold(dst);
 419	}
 420
 421	rcu_read_unlock();
 422
 423	if (unlikely(!dst)) {
 424		vrf_tx_error(vrf_dev, skb);
 425		return NULL;
 426	}
 427
 428	skb_dst_drop(skb);
 429	skb_dst_set(skb, dst);
 430
 431	return skb;
 432}
 433
 
 
 
 
 
 
 
 
 434static int vrf_output6_direct(struct net *net, struct sock *sk,
 435			      struct sk_buff *skb)
 436{
 
 
 437	skb->protocol = htons(ETH_P_IPV6);
 438
 439	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 440			    net, sk, skb, NULL, skb->dev,
 441			    vrf_finish_direct,
 442			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443}
 444
 445static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 446					  struct sock *sk,
 447					  struct sk_buff *skb)
 448{
 449	struct net *net = dev_net(vrf_dev);
 450	int err;
 451
 452	skb->dev = vrf_dev;
 453
 454	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 455		      skb, NULL, vrf_dev, vrf_output6_direct);
 456
 457	if (likely(err == 1))
 458		err = vrf_output6_direct(net, sk, skb);
 459
 460	/* reset skb device */
 461	if (likely(err == 1))
 462		nf_reset_ct(skb);
 463	else
 464		skb = NULL;
 465
 466	return skb;
 467}
 468
 469static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 470				   struct sock *sk,
 471				   struct sk_buff *skb)
 472{
 473	/* don't divert link scope packets */
 474	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 475		return skb;
 476
 477	if (qdisc_tx_is_default(vrf_dev))
 
 
 
 478		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 479
 480	return vrf_ip6_out_redirect(vrf_dev, skb);
 481}
 482
 483/* holding rtnl */
 484static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 485{
 486	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 487	struct net *net = dev_net(dev);
 488	struct dst_entry *dst;
 489
 490	RCU_INIT_POINTER(vrf->rt6, NULL);
 491	synchronize_rcu();
 492
 493	/* move dev in dst's to loopback so this VRF device can be deleted
 494	 * - based on dst_ifdown
 495	 */
 496	if (rt6) {
 497		dst = &rt6->dst;
 498		dev_put(dst->dev);
 
 499		dst->dev = net->loopback_dev;
 500		dev_hold(dst->dev);
 501		dst_release(dst);
 502	}
 503}
 504
 505static int vrf_rt6_create(struct net_device *dev)
 506{
 507	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
 508	struct net_vrf *vrf = netdev_priv(dev);
 509	struct net *net = dev_net(dev);
 510	struct rt6_info *rt6;
 511	int rc = -ENOMEM;
 512
 513	/* IPv6 can be CONFIG enabled and then disabled runtime */
 514	if (!ipv6_mod_enabled())
 515		return 0;
 516
 517	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 518	if (!vrf->fib6_table)
 519		goto out;
 520
 521	/* create a dst for routing packets out a VRF device */
 522	rt6 = ip6_dst_alloc(net, dev, flags);
 523	if (!rt6)
 524		goto out;
 525
 526	rt6->dst.output	= vrf_output6;
 527
 528	rcu_assign_pointer(vrf->rt6, rt6);
 529
 530	rc = 0;
 531out:
 532	return rc;
 533}
 534#else
 535static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 536				   struct sock *sk,
 537				   struct sk_buff *skb)
 538{
 539	return skb;
 540}
 541
 542static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 543{
 544}
 545
 546static int vrf_rt6_create(struct net_device *dev)
 547{
 548	return 0;
 549}
 550#endif
 551
 552/* modelled after ip_finish_output2 */
 553static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 554{
 555	struct dst_entry *dst = skb_dst(skb);
 556	struct rtable *rt = (struct rtable *)dst;
 557	struct net_device *dev = dst->dev;
 558	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 559	struct neighbour *neigh;
 560	bool is_v6gw = false;
 561	int ret = -EINVAL;
 562
 563	nf_reset_ct(skb);
 564
 565	/* Be paranoid, rather than too clever. */
 566	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 567		struct sk_buff *skb2;
 568
 569		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 570		if (!skb2) {
 571			ret = -ENOMEM;
 572			goto err;
 573		}
 574		if (skb->sk)
 575			skb_set_owner_w(skb2, skb->sk);
 576
 577		consume_skb(skb);
 578		skb = skb2;
 579	}
 580
 581	rcu_read_lock_bh();
 582
 583	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 584	if (!IS_ERR(neigh)) {
 
 
 585		sock_confirm_neigh(skb, neigh);
 586		/* if crossing protocols, can not use the cached header */
 587		ret = neigh_output(neigh, skb, is_v6gw);
 588		rcu_read_unlock_bh();
 589		return ret;
 590	}
 591
 592	rcu_read_unlock_bh();
 593err:
 594	vrf_tx_error(skb->dev, skb);
 595	return ret;
 596}
 597
 598static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 599{
 600	struct net_device *dev = skb_dst(skb)->dev;
 601
 602	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 603
 604	skb->dev = dev;
 605	skb->protocol = htons(ETH_P_IP);
 606
 607	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 608			    net, sk, skb, NULL, dev,
 609			    vrf_finish_output,
 610			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 611}
 612
 613/* set dst on skb to send packet to us via dev_xmit path. Allows
 614 * packet to go through device based features such as qdisc, netfilter
 615 * hooks and packet sockets with skb->dev set to vrf device.
 616 */
 617static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 618					   struct sk_buff *skb)
 619{
 620	struct net_vrf *vrf = netdev_priv(vrf_dev);
 621	struct dst_entry *dst = NULL;
 622	struct rtable *rth;
 623
 624	rcu_read_lock();
 625
 626	rth = rcu_dereference(vrf->rth);
 627	if (likely(rth)) {
 628		dst = &rth->dst;
 629		dst_hold(dst);
 630	}
 631
 632	rcu_read_unlock();
 633
 634	if (unlikely(!dst)) {
 635		vrf_tx_error(vrf_dev, skb);
 636		return NULL;
 637	}
 638
 639	skb_dst_drop(skb);
 640	skb_dst_set(skb, dst);
 641
 642	return skb;
 643}
 644
 
 
 
 
 
 
 
 
 645static int vrf_output_direct(struct net *net, struct sock *sk,
 646			     struct sk_buff *skb)
 647{
 
 
 648	skb->protocol = htons(ETH_P_IP);
 649
 650	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 651			    net, sk, skb, NULL, skb->dev,
 652			    vrf_finish_direct,
 653			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 657					 struct sock *sk,
 658					 struct sk_buff *skb)
 659{
 660	struct net *net = dev_net(vrf_dev);
 661	int err;
 662
 663	skb->dev = vrf_dev;
 664
 665	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 666		      skb, NULL, vrf_dev, vrf_output_direct);
 667
 668	if (likely(err == 1))
 669		err = vrf_output_direct(net, sk, skb);
 670
 671	/* reset skb device */
 672	if (likely(err == 1))
 673		nf_reset_ct(skb);
 674	else
 675		skb = NULL;
 676
 677	return skb;
 678}
 679
 680static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 681				  struct sock *sk,
 682				  struct sk_buff *skb)
 683{
 684	/* don't divert multicast or local broadcast */
 685	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 686	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
 687		return skb;
 688
 689	if (qdisc_tx_is_default(vrf_dev))
 
 
 
 690		return vrf_ip_out_direct(vrf_dev, sk, skb);
 691
 692	return vrf_ip_out_redirect(vrf_dev, skb);
 693}
 694
 695/* called with rcu lock held */
 696static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 697				  struct sock *sk,
 698				  struct sk_buff *skb,
 699				  u16 proto)
 700{
 701	switch (proto) {
 702	case AF_INET:
 703		return vrf_ip_out(vrf_dev, sk, skb);
 704	case AF_INET6:
 705		return vrf_ip6_out(vrf_dev, sk, skb);
 706	}
 707
 708	return skb;
 709}
 710
 711/* holding rtnl */
 712static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 713{
 714	struct rtable *rth = rtnl_dereference(vrf->rth);
 715	struct net *net = dev_net(dev);
 716	struct dst_entry *dst;
 717
 718	RCU_INIT_POINTER(vrf->rth, NULL);
 719	synchronize_rcu();
 720
 721	/* move dev in dst's to loopback so this VRF device can be deleted
 722	 * - based on dst_ifdown
 723	 */
 724	if (rth) {
 725		dst = &rth->dst;
 726		dev_put(dst->dev);
 
 727		dst->dev = net->loopback_dev;
 728		dev_hold(dst->dev);
 729		dst_release(dst);
 730	}
 731}
 732
 733static int vrf_rtable_create(struct net_device *dev)
 734{
 735	struct net_vrf *vrf = netdev_priv(dev);
 736	struct rtable *rth;
 737
 738	if (!fib_new_table(dev_net(dev), vrf->tb_id))
 739		return -ENOMEM;
 740
 741	/* create a dst for routing packets out through a VRF device */
 742	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
 743	if (!rth)
 744		return -ENOMEM;
 745
 746	rth->dst.output	= vrf_output;
 747
 748	rcu_assign_pointer(vrf->rth, rth);
 749
 750	return 0;
 751}
 752
 753/**************************** device handling ********************/
 754
 755/* cycle interface to flush neighbor cache and move routes across tables */
 756static void cycle_netdev(struct net_device *dev,
 757			 struct netlink_ext_ack *extack)
 758{
 759	unsigned int flags = dev->flags;
 760	int ret;
 761
 762	if (!netif_running(dev))
 763		return;
 764
 765	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
 766	if (ret >= 0)
 767		ret = dev_change_flags(dev, flags, extack);
 768
 769	if (ret < 0) {
 770		netdev_err(dev,
 771			   "Failed to cycle device %s; route tables might be wrong!\n",
 772			   dev->name);
 773	}
 774}
 775
 776static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 777			    struct netlink_ext_ack *extack)
 778{
 779	int ret;
 780
 781	/* do not allow loopback device to be enslaved to a VRF.
 782	 * The vrf device acts as the loopback for the vrf.
 783	 */
 784	if (port_dev == dev_net(dev)->loopback_dev) {
 785		NL_SET_ERR_MSG(extack,
 786			       "Can not enslave loopback device to a VRF");
 787		return -EOPNOTSUPP;
 788	}
 789
 790	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
 791	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
 792	if (ret < 0)
 793		goto err;
 794
 795	cycle_netdev(port_dev, extack);
 796
 797	return 0;
 798
 799err:
 800	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 801	return ret;
 802}
 803
 804static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 805			 struct netlink_ext_ack *extack)
 806{
 807	if (netif_is_l3_master(port_dev)) {
 808		NL_SET_ERR_MSG(extack,
 809			       "Can not enslave an L3 master device to a VRF");
 810		return -EINVAL;
 811	}
 812
 813	if (netif_is_l3_slave(port_dev))
 814		return -EINVAL;
 815
 816	return do_vrf_add_slave(dev, port_dev, extack);
 817}
 818
 819/* inverse of do_vrf_add_slave */
 820static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 821{
 822	netdev_upper_dev_unlink(port_dev, dev);
 823	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 824
 825	cycle_netdev(port_dev, NULL);
 826
 827	return 0;
 828}
 829
 830static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 831{
 832	return do_vrf_del_slave(dev, port_dev);
 833}
 834
 835static void vrf_dev_uninit(struct net_device *dev)
 836{
 837	struct net_vrf *vrf = netdev_priv(dev);
 838
 839	vrf_rtable_release(dev, vrf);
 840	vrf_rt6_release(dev, vrf);
 841
 842	free_percpu(dev->dstats);
 843	dev->dstats = NULL;
 844}
 845
 846static int vrf_dev_init(struct net_device *dev)
 847{
 848	struct net_vrf *vrf = netdev_priv(dev);
 849
 850	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
 851	if (!dev->dstats)
 852		goto out_nomem;
 853
 854	/* create the default dst which points back to us */
 855	if (vrf_rtable_create(dev) != 0)
 856		goto out_stats;
 857
 858	if (vrf_rt6_create(dev) != 0)
 859		goto out_rth;
 860
 861	dev->flags = IFF_MASTER | IFF_NOARP;
 862
 863	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
 864	dev->mtu = 64 * 1024;
 865
 866	/* similarly, oper state is irrelevant; set to up to avoid confusion */
 867	dev->operstate = IF_OPER_UP;
 
 868	return 0;
 869
 870out_rth:
 871	vrf_rtable_release(dev, vrf);
 872out_stats:
 873	free_percpu(dev->dstats);
 874	dev->dstats = NULL;
 875out_nomem:
 876	return -ENOMEM;
 877}
 878
 879static const struct net_device_ops vrf_netdev_ops = {
 880	.ndo_init		= vrf_dev_init,
 881	.ndo_uninit		= vrf_dev_uninit,
 882	.ndo_start_xmit		= vrf_xmit,
 883	.ndo_set_mac_address	= eth_mac_addr,
 884	.ndo_get_stats64	= vrf_get_stats64,
 885	.ndo_add_slave		= vrf_add_slave,
 886	.ndo_del_slave		= vrf_del_slave,
 887};
 888
 889static u32 vrf_fib_table(const struct net_device *dev)
 890{
 891	struct net_vrf *vrf = netdev_priv(dev);
 892
 893	return vrf->tb_id;
 894}
 895
 896static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 897{
 898	kfree_skb(skb);
 899	return 0;
 900}
 901
 902static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
 903				      struct sk_buff *skb,
 904				      struct net_device *dev)
 905{
 906	struct net *net = dev_net(dev);
 907
 908	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
 909		skb = NULL;    /* kfree_skb(skb) handled by nf code */
 910
 911	return skb;
 912}
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914#if IS_ENABLED(CONFIG_IPV6)
 915/* neighbor handling is done with actual device; do not want
 916 * to flip skb->dev for those ndisc packets. This really fails
 917 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
 918 * a start.
 919 */
 920static bool ipv6_ndisc_frame(const struct sk_buff *skb)
 921{
 922	const struct ipv6hdr *iph = ipv6_hdr(skb);
 923	bool rc = false;
 924
 925	if (iph->nexthdr == NEXTHDR_ICMP) {
 926		const struct icmp6hdr *icmph;
 927		struct icmp6hdr _icmph;
 928
 929		icmph = skb_header_pointer(skb, sizeof(*iph),
 930					   sizeof(_icmph), &_icmph);
 931		if (!icmph)
 932			goto out;
 933
 934		switch (icmph->icmp6_type) {
 935		case NDISC_ROUTER_SOLICITATION:
 936		case NDISC_ROUTER_ADVERTISEMENT:
 937		case NDISC_NEIGHBOUR_SOLICITATION:
 938		case NDISC_NEIGHBOUR_ADVERTISEMENT:
 939		case NDISC_REDIRECT:
 940			rc = true;
 941			break;
 942		}
 943	}
 944
 945out:
 946	return rc;
 947}
 948
 949static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
 950					     const struct net_device *dev,
 951					     struct flowi6 *fl6,
 952					     int ifindex,
 953					     const struct sk_buff *skb,
 954					     int flags)
 955{
 956	struct net_vrf *vrf = netdev_priv(dev);
 957
 958	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
 959}
 960
 961static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
 962			      int ifindex)
 963{
 964	const struct ipv6hdr *iph = ipv6_hdr(skb);
 965	struct flowi6 fl6 = {
 966		.flowi6_iif     = ifindex,
 967		.flowi6_mark    = skb->mark,
 968		.flowi6_proto   = iph->nexthdr,
 969		.daddr          = iph->daddr,
 970		.saddr          = iph->saddr,
 971		.flowlabel      = ip6_flowinfo(iph),
 972	};
 973	struct net *net = dev_net(vrf_dev);
 974	struct rt6_info *rt6;
 975
 976	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
 977				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
 978	if (unlikely(!rt6))
 979		return;
 980
 981	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
 982		return;
 983
 984	skb_dst_set(skb, &rt6->dst);
 985}
 986
 987static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
 988				   struct sk_buff *skb)
 989{
 990	int orig_iif = skb->skb_iif;
 991	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
 992	bool is_ndisc = ipv6_ndisc_frame(skb);
 993
 994	/* loopback, multicast & non-ND link-local traffic; do not push through
 995	 * packet taps again. Reset pkt_type for upper layers to process skb
 
 
 996	 */
 997	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
 998		skb->dev = vrf_dev;
 999		skb->skb_iif = vrf_dev->ifindex;
1000		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
 
1001		if (skb->pkt_type == PACKET_LOOPBACK)
1002			skb->pkt_type = PACKET_HOST;
 
 
 
1003		goto out;
1004	}
1005
1006	/* if packet is NDISC then keep the ingress interface */
1007	if (!is_ndisc) {
 
 
1008		vrf_rx_stats(vrf_dev, skb->len);
1009		skb->dev = vrf_dev;
1010		skb->skb_iif = vrf_dev->ifindex;
1011
1012		if (!list_empty(&vrf_dev->ptype_all)) {
1013			skb_push(skb, skb->mac_len);
1014			dev_queue_xmit_nit(skb, vrf_dev);
1015			skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
 
1016		}
1017
1018		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1019	}
1020
1021	if (need_strict)
1022		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1023
1024	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1025out:
1026	return skb;
1027}
1028
1029#else
1030static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1031				   struct sk_buff *skb)
1032{
1033	return skb;
1034}
1035#endif
1036
1037static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1038				  struct sk_buff *skb)
1039{
 
 
1040	skb->dev = vrf_dev;
1041	skb->skb_iif = vrf_dev->ifindex;
1042	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1043
1044	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1045		goto out;
1046
1047	/* loopback traffic; do not push through packet taps again.
1048	 * Reset pkt_type for upper layers to process skb
1049	 */
1050	if (skb->pkt_type == PACKET_LOOPBACK) {
1051		skb->pkt_type = PACKET_HOST;
1052		goto out;
1053	}
1054
1055	vrf_rx_stats(vrf_dev, skb->len);
1056
1057	if (!list_empty(&vrf_dev->ptype_all)) {
1058		skb_push(skb, skb->mac_len);
1059		dev_queue_xmit_nit(skb, vrf_dev);
1060		skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
1061	}
1062
1063	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1064out:
1065	return skb;
1066}
1067
1068/* called with rcu lock held */
1069static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1070				  struct sk_buff *skb,
1071				  u16 proto)
1072{
1073	switch (proto) {
1074	case AF_INET:
1075		return vrf_ip_rcv(vrf_dev, skb);
1076	case AF_INET6:
1077		return vrf_ip6_rcv(vrf_dev, skb);
1078	}
1079
1080	return skb;
1081}
1082
1083#if IS_ENABLED(CONFIG_IPV6)
1084/* send to link-local or multicast address via interface enslaved to
1085 * VRF device. Force lookup to VRF table without changing flow struct
1086 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1087 * is taken on the dst by this function.
1088 */
1089static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1090					      struct flowi6 *fl6)
1091{
1092	struct net *net = dev_net(dev);
1093	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1094	struct dst_entry *dst = NULL;
1095	struct rt6_info *rt;
1096
1097	/* VRF device does not have a link-local address and
1098	 * sending packets to link-local or mcast addresses over
1099	 * a VRF device does not make sense
1100	 */
1101	if (fl6->flowi6_oif == dev->ifindex) {
1102		dst = &net->ipv6.ip6_null_entry->dst;
1103		return dst;
1104	}
1105
1106	if (!ipv6_addr_any(&fl6->saddr))
1107		flags |= RT6_LOOKUP_F_HAS_SADDR;
1108
1109	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1110	if (rt)
1111		dst = &rt->dst;
1112
1113	return dst;
1114}
1115#endif
1116
1117static const struct l3mdev_ops vrf_l3mdev_ops = {
1118	.l3mdev_fib_table	= vrf_fib_table,
1119	.l3mdev_l3_rcv		= vrf_l3_rcv,
1120	.l3mdev_l3_out		= vrf_l3_out,
1121#if IS_ENABLED(CONFIG_IPV6)
1122	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1123#endif
1124};
1125
1126static void vrf_get_drvinfo(struct net_device *dev,
1127			    struct ethtool_drvinfo *info)
1128{
1129	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1130	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1131}
1132
1133static const struct ethtool_ops vrf_ethtool_ops = {
1134	.get_drvinfo	= vrf_get_drvinfo,
1135};
1136
1137static inline size_t vrf_fib_rule_nl_size(void)
1138{
1139	size_t sz;
1140
1141	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1142	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1143	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1144	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1145
1146	return sz;
1147}
1148
1149static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1150{
1151	struct fib_rule_hdr *frh;
1152	struct nlmsghdr *nlh;
1153	struct sk_buff *skb;
1154	int err;
1155
1156	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1157	    !ipv6_mod_enabled())
1158		return 0;
1159
1160	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1161	if (!skb)
1162		return -ENOMEM;
1163
1164	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1165	if (!nlh)
1166		goto nla_put_failure;
1167
1168	/* rule only needs to appear once */
1169	nlh->nlmsg_flags |= NLM_F_EXCL;
1170
1171	frh = nlmsg_data(nlh);
1172	memset(frh, 0, sizeof(*frh));
1173	frh->family = family;
1174	frh->action = FR_ACT_TO_TBL;
1175
1176	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1177		goto nla_put_failure;
1178
1179	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1180		goto nla_put_failure;
1181
1182	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1183		goto nla_put_failure;
1184
1185	nlmsg_end(skb, nlh);
1186
1187	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1188	skb->sk = dev_net(dev)->rtnl;
1189	if (add_it) {
1190		err = fib_nl_newrule(skb, nlh, NULL);
1191		if (err == -EEXIST)
1192			err = 0;
1193	} else {
1194		err = fib_nl_delrule(skb, nlh, NULL);
1195		if (err == -ENOENT)
1196			err = 0;
1197	}
1198	nlmsg_free(skb);
1199
1200	return err;
1201
1202nla_put_failure:
1203	nlmsg_free(skb);
1204
1205	return -EMSGSIZE;
1206}
1207
1208static int vrf_add_fib_rules(const struct net_device *dev)
1209{
1210	int err;
1211
1212	err = vrf_fib_rule(dev, AF_INET,  true);
1213	if (err < 0)
1214		goto out_err;
1215
1216	err = vrf_fib_rule(dev, AF_INET6, true);
1217	if (err < 0)
1218		goto ipv6_err;
1219
1220#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1221	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1222	if (err < 0)
1223		goto ipmr_err;
1224#endif
1225
1226#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1227	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1228	if (err < 0)
1229		goto ip6mr_err;
1230#endif
1231
1232	return 0;
1233
1234#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1235ip6mr_err:
1236	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1237#endif
1238
1239#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1240ipmr_err:
1241	vrf_fib_rule(dev, AF_INET6,  false);
1242#endif
1243
1244ipv6_err:
1245	vrf_fib_rule(dev, AF_INET,  false);
1246
1247out_err:
1248	netdev_err(dev, "Failed to add FIB rules.\n");
1249	return err;
1250}
1251
1252static void vrf_setup(struct net_device *dev)
1253{
1254	ether_setup(dev);
1255
1256	/* Initialize the device structure. */
1257	dev->netdev_ops = &vrf_netdev_ops;
1258	dev->l3mdev_ops = &vrf_l3mdev_ops;
1259	dev->ethtool_ops = &vrf_ethtool_ops;
1260	dev->needs_free_netdev = true;
1261
1262	/* Fill in device structure with ethernet-generic values. */
1263	eth_hw_addr_random(dev);
1264
1265	/* don't acquire vrf device's netif_tx_lock when transmitting */
1266	dev->features |= NETIF_F_LLTX;
1267
1268	/* don't allow vrf devices to change network namespaces. */
1269	dev->features |= NETIF_F_NETNS_LOCAL;
1270
1271	/* does not make sense for a VLAN to be added to a vrf device */
1272	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1273
1274	/* enable offload features */
1275	dev->features   |= NETIF_F_GSO_SOFTWARE;
1276	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1277	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1278
1279	dev->hw_features = dev->features;
1280	dev->hw_enc_features = dev->features;
1281
1282	/* default to no qdisc; user can add if desired */
1283	dev->priv_flags |= IFF_NO_QUEUE;
1284	dev->priv_flags |= IFF_NO_RX_HANDLER;
1285	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1286
1287	/* VRF devices do not care about MTU, but if the MTU is set
1288	 * too low then the ipv4 and ipv6 protocols are disabled
1289	 * which breaks networking.
1290	 */
1291	dev->min_mtu = IPV6_MIN_MTU;
1292	dev->max_mtu = ETH_MAX_MTU;
 
 
 
1293}
1294
1295static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1296			struct netlink_ext_ack *extack)
1297{
1298	if (tb[IFLA_ADDRESS]) {
1299		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1300			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1301			return -EINVAL;
1302		}
1303		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1304			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1305			return -EADDRNOTAVAIL;
1306		}
1307	}
1308	return 0;
1309}
1310
1311static void vrf_dellink(struct net_device *dev, struct list_head *head)
1312{
1313	struct net_device *port_dev;
1314	struct list_head *iter;
1315
1316	netdev_for_each_lower_dev(dev, port_dev, iter)
1317		vrf_del_slave(dev, port_dev);
1318
 
 
1319	unregister_netdevice_queue(dev, head);
1320}
1321
1322static int vrf_newlink(struct net *src_net, struct net_device *dev,
1323		       struct nlattr *tb[], struct nlattr *data[],
1324		       struct netlink_ext_ack *extack)
1325{
1326	struct net_vrf *vrf = netdev_priv(dev);
 
1327	bool *add_fib_rules;
1328	struct net *net;
1329	int err;
1330
1331	if (!data || !data[IFLA_VRF_TABLE]) {
1332		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1333		return -EINVAL;
1334	}
1335
1336	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1337	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1338		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1339				    "Invalid VRF table id");
1340		return -EINVAL;
1341	}
1342
1343	dev->priv_flags |= IFF_L3MDEV_MASTER;
1344
1345	err = register_netdevice(dev);
1346	if (err)
1347		goto out;
1348
 
 
 
 
 
 
 
 
 
 
 
 
1349	net = dev_net(dev);
1350	add_fib_rules = net_generic(net, vrf_net_id);
 
 
1351	if (*add_fib_rules) {
1352		err = vrf_add_fib_rules(dev);
1353		if (err) {
 
1354			unregister_netdevice(dev);
1355			goto out;
1356		}
1357		*add_fib_rules = false;
1358	}
1359
1360out:
1361	return err;
1362}
1363
1364static size_t vrf_nl_getsize(const struct net_device *dev)
1365{
1366	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1367}
1368
1369static int vrf_fillinfo(struct sk_buff *skb,
1370			const struct net_device *dev)
1371{
1372	struct net_vrf *vrf = netdev_priv(dev);
1373
1374	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1375}
1376
1377static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1378				 const struct net_device *slave_dev)
1379{
1380	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1381}
1382
1383static int vrf_fill_slave_info(struct sk_buff *skb,
1384			       const struct net_device *vrf_dev,
1385			       const struct net_device *slave_dev)
1386{
1387	struct net_vrf *vrf = netdev_priv(vrf_dev);
1388
1389	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1390		return -EMSGSIZE;
1391
1392	return 0;
1393}
1394
1395static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1396	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1397};
1398
1399static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1400	.kind		= DRV_NAME,
1401	.priv_size	= sizeof(struct net_vrf),
1402
1403	.get_size	= vrf_nl_getsize,
1404	.policy		= vrf_nl_policy,
1405	.validate	= vrf_validate,
1406	.fill_info	= vrf_fillinfo,
1407
1408	.get_slave_size  = vrf_get_slave_size,
1409	.fill_slave_info = vrf_fill_slave_info,
1410
1411	.newlink	= vrf_newlink,
1412	.dellink	= vrf_dellink,
1413	.setup		= vrf_setup,
1414	.maxtype	= IFLA_VRF_MAX,
1415};
1416
1417static int vrf_device_event(struct notifier_block *unused,
1418			    unsigned long event, void *ptr)
1419{
1420	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1421
1422	/* only care about unregister events to drop slave references */
1423	if (event == NETDEV_UNREGISTER) {
1424		struct net_device *vrf_dev;
1425
1426		if (!netif_is_l3_slave(dev))
1427			goto out;
1428
1429		vrf_dev = netdev_master_upper_dev_get(dev);
1430		vrf_del_slave(vrf_dev, dev);
1431	}
1432out:
1433	return NOTIFY_DONE;
1434}
1435
1436static struct notifier_block vrf_notifier_block __read_mostly = {
1437	.notifier_call = vrf_device_event,
1438};
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440/* Initialize per network namespace state */
1441static int __net_init vrf_netns_init(struct net *net)
1442{
1443	bool *add_fib_rules = net_generic(net, vrf_net_id);
 
 
 
1444
1445	*add_fib_rules = true;
 
1446
1447	return 0;
 
 
1448}
1449
1450static struct pernet_operations vrf_net_ops __net_initdata = {
1451	.init = vrf_netns_init,
 
1452	.id   = &vrf_net_id,
1453	.size = sizeof(bool),
1454};
1455
1456static int __init vrf_init_module(void)
1457{
1458	int rc;
1459
1460	register_netdevice_notifier(&vrf_notifier_block);
1461
1462	rc = register_pernet_subsys(&vrf_net_ops);
1463	if (rc < 0)
1464		goto error;
1465
 
 
 
 
 
1466	rc = rtnl_link_register(&vrf_link_ops);
1467	if (rc < 0) {
1468		unregister_pernet_subsys(&vrf_net_ops);
1469		goto error;
1470	}
1471
1472	return 0;
 
 
 
 
 
 
 
1473
1474error:
1475	unregister_netdevice_notifier(&vrf_notifier_block);
1476	return rc;
1477}
1478
1479module_init(vrf_init_module);
1480MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1481MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1482MODULE_LICENSE("GPL");
1483MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1484MODULE_VERSION(DRV_VERSION);