Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/sch_generic.h>
  38#include <net/netns/generic.h>
  39#include <net/netfilter/nf_conntrack.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.1"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
  46#define HT_MAP_BITS	4
  47#define HASH_INITVAL	((u32)0xcafef00d)
  48
  49struct  vrf_map {
  50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  51	spinlock_t vmap_lock;
  52
  53	/* shared_tables:
  54	 * count how many distinct tables do not comply with the strict mode
  55	 * requirement.
  56	 * shared_tables value must be 0 in order to enable the strict mode.
  57	 *
  58	 * example of the evolution of shared_tables:
  59	 *                                                        | time
  60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  65	 *
  66	 * shared_tables is a "step function" (or "staircase function")
  67	 * and it is increased by one when the second vrf is associated to a
  68	 * table.
  69	 *
  70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  71	 *
  72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  73	 * value of shared_tables is still 1.
  74	 * This means that no matter how many new vrfs will register on the
  75	 * table 100, the shared_tables will not increase (considering only
  76	 * table 100).
  77	 *
  78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  79	 *
  80	 * Looking at the value of shared_tables we can immediately know if
  81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  82	 * can be enforced iff shared_tables = 0.
  83	 *
  84	 * Conversely, shared_tables is decreased when a vrf is de-associated
  85	 * from a table with exactly two associated vrfs.
  86	 */
  87	u32 shared_tables;
  88
  89	bool strict_mode;
  90};
  91
  92struct vrf_map_elem {
  93	struct hlist_node hnode;
  94	struct list_head vrf_list;  /* VRFs registered to this table */
  95
  96	u32 table_id;
  97	int users;
  98	int ifindex;
  99};
 100
 101static unsigned int vrf_net_id;
 102
 103/* per netns vrf data */
 104struct netns_vrf {
 105	/* protected by rtnl lock */
 106	bool add_fib_rules;
 107
 108	struct vrf_map vmap;
 109	struct ctl_table_header	*ctl_hdr;
 110};
 111
 112struct net_vrf {
 113	struct rtable __rcu	*rth;
 114	struct rt6_info	__rcu	*rt6;
 115#if IS_ENABLED(CONFIG_IPV6)
 116	struct fib6_table	*fib6_table;
 117#endif
 118	u32                     tb_id;
 119
 120	struct list_head	me_list;   /* entry in vrf_map_elem */
 121	int			ifindex;
 122};
 123
 
 
 
 
 
 
 
 
 
 
 124static void vrf_rx_stats(struct net_device *dev, int len)
 125{
 126	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 127
 128	u64_stats_update_begin(&dstats->syncp);
 129	dstats->rx_packets++;
 130	dstats->rx_bytes += len;
 131	u64_stats_update_end(&dstats->syncp);
 132}
 133
 134static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 135{
 136	vrf_dev->stats.tx_errors++;
 137	kfree_skb(skb);
 138}
 139
 140static void vrf_get_stats64(struct net_device *dev,
 141			    struct rtnl_link_stats64 *stats)
 142{
 143	int i;
 144
 145	for_each_possible_cpu(i) {
 146		const struct pcpu_dstats *dstats;
 147		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 148		unsigned int start;
 149
 150		dstats = per_cpu_ptr(dev->dstats, i);
 151		do {
 152			start = u64_stats_fetch_begin(&dstats->syncp);
 153			tbytes = dstats->tx_bytes;
 154			tpkts = dstats->tx_packets;
 155			tdrops = dstats->tx_drops;
 156			rbytes = dstats->rx_bytes;
 157			rpkts = dstats->rx_packets;
 158		} while (u64_stats_fetch_retry(&dstats->syncp, start));
 159		stats->tx_bytes += tbytes;
 160		stats->tx_packets += tpkts;
 161		stats->tx_dropped += tdrops;
 162		stats->rx_bytes += rbytes;
 163		stats->rx_packets += rpkts;
 164	}
 165}
 166
 167static struct vrf_map *netns_vrf_map(struct net *net)
 168{
 169	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 170
 171	return &nn_vrf->vmap;
 172}
 173
 174static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 175{
 176	return netns_vrf_map(dev_net(dev));
 177}
 178
 179static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 180{
 181	struct list_head *me_head = &me->vrf_list;
 182	struct net_vrf *vrf;
 183
 184	if (list_empty(me_head))
 185		return -ENODEV;
 186
 187	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 188
 189	return vrf->ifindex;
 190}
 191
 192static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 193{
 194	struct vrf_map_elem *me;
 195
 196	me = kmalloc(sizeof(*me), flags);
 197	if (!me)
 198		return NULL;
 199
 200	return me;
 201}
 202
 203static void vrf_map_elem_free(struct vrf_map_elem *me)
 204{
 205	kfree(me);
 206}
 207
 208static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 209			      int ifindex, int users)
 210{
 211	me->table_id = table_id;
 212	me->ifindex = ifindex;
 213	me->users = users;
 214	INIT_LIST_HEAD(&me->vrf_list);
 215}
 216
 217static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 218						u32 table_id)
 219{
 220	struct vrf_map_elem *me;
 221	u32 key;
 222
 223	key = jhash_1word(table_id, HASH_INITVAL);
 224	hash_for_each_possible(vmap->ht, me, hnode, key) {
 225		if (me->table_id == table_id)
 226			return me;
 227	}
 228
 229	return NULL;
 230}
 231
 232static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 233{
 234	u32 table_id = me->table_id;
 235	u32 key;
 236
 237	key = jhash_1word(table_id, HASH_INITVAL);
 238	hash_add(vmap->ht, &me->hnode, key);
 239}
 240
 241static void vrf_map_del_elem(struct vrf_map_elem *me)
 242{
 243	hash_del(&me->hnode);
 244}
 245
 246static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 247{
 248	spin_lock(&vmap->vmap_lock);
 249}
 250
 251static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 252{
 253	spin_unlock(&vmap->vmap_lock);
 254}
 255
 256/* called with rtnl lock held */
 257static int
 258vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 259{
 260	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 261	struct net_vrf *vrf = netdev_priv(dev);
 262	struct vrf_map_elem *new_me, *me;
 263	u32 table_id = vrf->tb_id;
 264	bool free_new_me = false;
 265	int users;
 266	int res;
 267
 268	/* we pre-allocate elements used in the spin-locked section (so that we
 269	 * keep the spinlock as short as possible).
 270	 */
 271	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 272	if (!new_me)
 273		return -ENOMEM;
 274
 275	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 276
 277	vrf_map_lock(vmap);
 278
 279	me = vrf_map_lookup_elem(vmap, table_id);
 280	if (!me) {
 281		me = new_me;
 282		vrf_map_add_elem(vmap, me);
 283		goto link_vrf;
 284	}
 285
 286	/* we already have an entry in the vrf_map, so it means there is (at
 287	 * least) a vrf registered on the specific table.
 288	 */
 289	free_new_me = true;
 290	if (vmap->strict_mode) {
 291		/* vrfs cannot share the same table */
 292		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 293		res = -EBUSY;
 294		goto unlock;
 295	}
 296
 297link_vrf:
 298	users = ++me->users;
 299	if (users == 2)
 300		++vmap->shared_tables;
 301
 302	list_add(&vrf->me_list, &me->vrf_list);
 303
 304	res = 0;
 305
 306unlock:
 307	vrf_map_unlock(vmap);
 308
 309	/* clean-up, if needed */
 310	if (free_new_me)
 311		vrf_map_elem_free(new_me);
 312
 313	return res;
 314}
 315
 316/* called with rtnl lock held */
 317static void vrf_map_unregister_dev(struct net_device *dev)
 318{
 319	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 320	struct net_vrf *vrf = netdev_priv(dev);
 321	u32 table_id = vrf->tb_id;
 322	struct vrf_map_elem *me;
 323	int users;
 324
 325	vrf_map_lock(vmap);
 326
 327	me = vrf_map_lookup_elem(vmap, table_id);
 328	if (!me)
 329		goto unlock;
 330
 331	list_del(&vrf->me_list);
 332
 333	users = --me->users;
 334	if (users == 1) {
 335		--vmap->shared_tables;
 336	} else if (users == 0) {
 337		vrf_map_del_elem(me);
 338
 339		/* no one will refer to this element anymore */
 340		vrf_map_elem_free(me);
 341	}
 342
 343unlock:
 344	vrf_map_unlock(vmap);
 345}
 346
 347/* return the vrf device index associated with the table_id */
 348static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 349{
 350	struct vrf_map *vmap = netns_vrf_map(net);
 351	struct vrf_map_elem *me;
 352	int ifindex;
 353
 354	vrf_map_lock(vmap);
 355
 356	if (!vmap->strict_mode) {
 357		ifindex = -EPERM;
 358		goto unlock;
 359	}
 360
 361	me = vrf_map_lookup_elem(vmap, table_id);
 362	if (!me) {
 363		ifindex = -ENODEV;
 364		goto unlock;
 365	}
 366
 367	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 368
 369unlock:
 370	vrf_map_unlock(vmap);
 371
 372	return ifindex;
 373}
 374
 375/* by default VRF devices do not have a qdisc and are expected
 376 * to be created with only a single queue.
 377 */
 378static bool qdisc_tx_is_default(const struct net_device *dev)
 379{
 380	struct netdev_queue *txq;
 381	struct Qdisc *qdisc;
 382
 383	if (dev->num_tx_queues > 1)
 384		return false;
 385
 386	txq = netdev_get_tx_queue(dev, 0);
 387	qdisc = rcu_access_pointer(txq->qdisc);
 388
 389	return !qdisc->enqueue;
 390}
 391
 392/* Local traffic destined to local address. Reinsert the packet to rx
 393 * path, similar to loopback handling.
 394 */
 395static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 396			  struct dst_entry *dst)
 397{
 398	int len = skb->len;
 399
 400	skb_orphan(skb);
 401
 402	skb_dst_set(skb, dst);
 403
 404	/* set pkt_type to avoid skb hitting packet taps twice -
 405	 * once on Tx and again in Rx processing
 406	 */
 407	skb->pkt_type = PACKET_LOOPBACK;
 408
 409	skb->protocol = eth_type_trans(skb, dev);
 410
 411	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
 412		vrf_rx_stats(dev, len);
 413	else
 414		this_cpu_inc(dev->dstats->rx_drops);
 415
 416	return NETDEV_TX_OK;
 417}
 418
 419static void vrf_nf_set_untracked(struct sk_buff *skb)
 420{
 421	if (skb_get_nfct(skb) == 0)
 422		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
 423}
 424
 425static void vrf_nf_reset_ct(struct sk_buff *skb)
 426{
 427	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
 428		nf_reset_ct(skb);
 429}
 430
 431#if IS_ENABLED(CONFIG_IPV6)
 432static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 433			     struct sk_buff *skb)
 434{
 435	int err;
 436
 437	vrf_nf_reset_ct(skb);
 438
 439	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 440		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 441
 442	if (likely(err == 1))
 443		err = dst_output(net, sk, skb);
 444
 445	return err;
 446}
 447
 448static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 449					   struct net_device *dev)
 450{
 451	const struct ipv6hdr *iph;
 452	struct net *net = dev_net(skb->dev);
 453	struct flowi6 fl6;
 454	int ret = NET_XMIT_DROP;
 455	struct dst_entry *dst;
 456	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 457
 458	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 459		goto err;
 460
 461	iph = ipv6_hdr(skb);
 462
 463	memset(&fl6, 0, sizeof(fl6));
 464	/* needed to match OIF rule */
 465	fl6.flowi6_l3mdev = dev->ifindex;
 466	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 467	fl6.daddr = iph->daddr;
 468	fl6.saddr = iph->saddr;
 469	fl6.flowlabel = ip6_flowinfo(iph);
 470	fl6.flowi6_mark = skb->mark;
 471	fl6.flowi6_proto = iph->nexthdr;
 472
 473	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 474	if (IS_ERR(dst) || dst == dst_null)
 475		goto err;
 476
 477	skb_dst_drop(skb);
 478
 479	/* if dst.dev is the VRF device again this is locally originated traffic
 480	 * destined to a local address. Short circuit to Rx path.
 481	 */
 482	if (dst->dev == dev)
 483		return vrf_local_xmit(skb, dev, dst);
 484
 485	skb_dst_set(skb, dst);
 486
 487	/* strip the ethernet header added for pass through VRF device */
 488	__skb_pull(skb, skb_network_offset(skb));
 489
 490	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
 491	ret = vrf_ip6_local_out(net, skb->sk, skb);
 492	if (unlikely(net_xmit_eval(ret)))
 493		dev->stats.tx_errors++;
 494	else
 495		ret = NET_XMIT_SUCCESS;
 496
 497	return ret;
 498err:
 499	vrf_tx_error(dev, skb);
 500	return NET_XMIT_DROP;
 501}
 502#else
 503static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 504					   struct net_device *dev)
 505{
 506	vrf_tx_error(dev, skb);
 507	return NET_XMIT_DROP;
 508}
 509#endif
 510
 511/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 512static int vrf_ip_local_out(struct net *net, struct sock *sk,
 513			    struct sk_buff *skb)
 514{
 515	int err;
 516
 517	vrf_nf_reset_ct(skb);
 518
 519	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 520		      skb, NULL, skb_dst(skb)->dev, dst_output);
 521	if (likely(err == 1))
 522		err = dst_output(net, sk, skb);
 523
 524	return err;
 525}
 526
 527static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 528					   struct net_device *vrf_dev)
 529{
 530	struct iphdr *ip4h;
 531	int ret = NET_XMIT_DROP;
 532	struct flowi4 fl4;
 533	struct net *net = dev_net(vrf_dev);
 534	struct rtable *rt;
 535
 536	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 537		goto err;
 538
 539	ip4h = ip_hdr(skb);
 540
 541	memset(&fl4, 0, sizeof(fl4));
 542	/* needed to match OIF rule */
 543	fl4.flowi4_l3mdev = vrf_dev->ifindex;
 544	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 545	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 546	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
 547	fl4.flowi4_proto = ip4h->protocol;
 548	fl4.daddr = ip4h->daddr;
 549	fl4.saddr = ip4h->saddr;
 550
 551	rt = ip_route_output_flow(net, &fl4, NULL);
 552	if (IS_ERR(rt))
 553		goto err;
 554
 555	skb_dst_drop(skb);
 556
 557	/* if dst.dev is the VRF device again this is locally originated traffic
 558	 * destined to a local address. Short circuit to Rx path.
 559	 */
 560	if (rt->dst.dev == vrf_dev)
 561		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 562
 563	skb_dst_set(skb, &rt->dst);
 564
 565	/* strip the ethernet header added for pass through VRF device */
 566	__skb_pull(skb, skb_network_offset(skb));
 567
 568	if (!ip4h->saddr) {
 569		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 570					       RT_SCOPE_LINK);
 571	}
 572
 573	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
 574	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 575	if (unlikely(net_xmit_eval(ret)))
 576		vrf_dev->stats.tx_errors++;
 577	else
 578		ret = NET_XMIT_SUCCESS;
 579
 580out:
 581	return ret;
 582err:
 583	vrf_tx_error(vrf_dev, skb);
 584	goto out;
 585}
 586
 587static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 588{
 589	switch (skb->protocol) {
 590	case htons(ETH_P_IP):
 591		return vrf_process_v4_outbound(skb, dev);
 592	case htons(ETH_P_IPV6):
 593		return vrf_process_v6_outbound(skb, dev);
 594	default:
 595		vrf_tx_error(dev, skb);
 596		return NET_XMIT_DROP;
 597	}
 598}
 599
 600static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 601{
 602	int len = skb->len;
 603	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 604
 605	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 606		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 607
 608		u64_stats_update_begin(&dstats->syncp);
 609		dstats->tx_packets++;
 610		dstats->tx_bytes += len;
 611		u64_stats_update_end(&dstats->syncp);
 612	} else {
 613		this_cpu_inc(dev->dstats->tx_drops);
 614	}
 615
 616	return ret;
 617}
 618
 619static void vrf_finish_direct(struct sk_buff *skb)
 620{
 621	struct net_device *vrf_dev = skb->dev;
 622
 623	if (!list_empty(&vrf_dev->ptype_all) &&
 624	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 625		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 626
 627		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 628		eth_zero_addr(eth->h_dest);
 629		eth->h_proto = skb->protocol;
 630
 
 631		dev_queue_xmit_nit(skb, vrf_dev);
 
 632
 633		skb_pull(skb, ETH_HLEN);
 634	}
 635
 636	vrf_nf_reset_ct(skb);
 637}
 638
 639#if IS_ENABLED(CONFIG_IPV6)
 640/* modelled after ip6_finish_output2 */
 641static int vrf_finish_output6(struct net *net, struct sock *sk,
 642			      struct sk_buff *skb)
 643{
 644	struct dst_entry *dst = skb_dst(skb);
 645	struct net_device *dev = dst->dev;
 646	const struct in6_addr *nexthop;
 647	struct neighbour *neigh;
 648	int ret;
 649
 650	vrf_nf_reset_ct(skb);
 651
 652	skb->protocol = htons(ETH_P_IPV6);
 653	skb->dev = dev;
 654
 655	rcu_read_lock();
 656	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 657	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 658	if (unlikely(!neigh))
 659		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 660	if (!IS_ERR(neigh)) {
 661		sock_confirm_neigh(skb, neigh);
 662		ret = neigh_output(neigh, skb, false);
 663		rcu_read_unlock();
 664		return ret;
 665	}
 666	rcu_read_unlock();
 667
 668	IP6_INC_STATS(dev_net(dst->dev),
 669		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 670	kfree_skb(skb);
 671	return -EINVAL;
 672}
 673
 674/* modelled after ip6_output */
 675static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 678			    net, sk, skb, NULL, skb_dst(skb)->dev,
 679			    vrf_finish_output6,
 680			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 681}
 682
 683/* set dst on skb to send packet to us via dev_xmit path. Allows
 684 * packet to go through device based features such as qdisc, netfilter
 685 * hooks and packet sockets with skb->dev set to vrf device.
 686 */
 687static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 688					    struct sk_buff *skb)
 689{
 690	struct net_vrf *vrf = netdev_priv(vrf_dev);
 691	struct dst_entry *dst = NULL;
 692	struct rt6_info *rt6;
 693
 694	rcu_read_lock();
 695
 696	rt6 = rcu_dereference(vrf->rt6);
 697	if (likely(rt6)) {
 698		dst = &rt6->dst;
 699		dst_hold(dst);
 700	}
 701
 702	rcu_read_unlock();
 703
 704	if (unlikely(!dst)) {
 705		vrf_tx_error(vrf_dev, skb);
 706		return NULL;
 707	}
 708
 709	skb_dst_drop(skb);
 710	skb_dst_set(skb, dst);
 711
 712	return skb;
 713}
 714
 715static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 716				     struct sk_buff *skb)
 717{
 718	vrf_finish_direct(skb);
 719
 720	return vrf_ip6_local_out(net, sk, skb);
 721}
 722
 723static int vrf_output6_direct(struct net *net, struct sock *sk,
 724			      struct sk_buff *skb)
 725{
 726	int err = 1;
 727
 728	skb->protocol = htons(ETH_P_IPV6);
 729
 730	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 731		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 732			      NULL, skb->dev, vrf_output6_direct_finish);
 733
 734	if (likely(err == 1))
 735		vrf_finish_direct(skb);
 736
 737	return err;
 738}
 739
 740static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 741				     struct sk_buff *skb)
 742{
 743	int err;
 744
 745	err = vrf_output6_direct(net, sk, skb);
 746	if (likely(err == 1))
 747		err = vrf_ip6_local_out(net, sk, skb);
 748
 749	return err;
 750}
 751
 752static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 753					  struct sock *sk,
 754					  struct sk_buff *skb)
 755{
 756	struct net *net = dev_net(vrf_dev);
 757	int err;
 758
 759	skb->dev = vrf_dev;
 760
 761	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 762		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 763
 764	if (likely(err == 1))
 765		err = vrf_output6_direct(net, sk, skb);
 766
 767	if (likely(err == 1))
 768		return skb;
 769
 770	return NULL;
 771}
 772
 773static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 774				   struct sock *sk,
 775				   struct sk_buff *skb)
 776{
 777	/* don't divert link scope packets */
 778	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 779		return skb;
 780
 781	vrf_nf_set_untracked(skb);
 782
 783	if (qdisc_tx_is_default(vrf_dev) ||
 784	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 785		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 786
 787	return vrf_ip6_out_redirect(vrf_dev, skb);
 788}
 789
 790/* holding rtnl */
 791static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 792{
 793	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 794	struct net *net = dev_net(dev);
 795	struct dst_entry *dst;
 796
 797	RCU_INIT_POINTER(vrf->rt6, NULL);
 798	synchronize_rcu();
 799
 800	/* move dev in dst's to loopback so this VRF device can be deleted
 801	 * - based on dst_ifdown
 802	 */
 803	if (rt6) {
 804		dst = &rt6->dst;
 805		netdev_ref_replace(dst->dev, net->loopback_dev,
 806				   &dst->dev_tracker, GFP_KERNEL);
 807		dst->dev = net->loopback_dev;
 808		dst_release(dst);
 809	}
 810}
 811
 812static int vrf_rt6_create(struct net_device *dev)
 813{
 814	int flags = DST_NOPOLICY | DST_NOXFRM;
 815	struct net_vrf *vrf = netdev_priv(dev);
 816	struct net *net = dev_net(dev);
 817	struct rt6_info *rt6;
 818	int rc = -ENOMEM;
 819
 820	/* IPv6 can be CONFIG enabled and then disabled runtime */
 821	if (!ipv6_mod_enabled())
 822		return 0;
 823
 824	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 825	if (!vrf->fib6_table)
 826		goto out;
 827
 828	/* create a dst for routing packets out a VRF device */
 829	rt6 = ip6_dst_alloc(net, dev, flags);
 830	if (!rt6)
 831		goto out;
 832
 833	rt6->dst.output	= vrf_output6;
 834
 835	rcu_assign_pointer(vrf->rt6, rt6);
 836
 837	rc = 0;
 838out:
 839	return rc;
 840}
 841#else
 842static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 843				   struct sock *sk,
 844				   struct sk_buff *skb)
 845{
 846	return skb;
 847}
 848
 849static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 850{
 851}
 852
 853static int vrf_rt6_create(struct net_device *dev)
 854{
 855	return 0;
 856}
 857#endif
 858
 859/* modelled after ip_finish_output2 */
 860static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 861{
 862	struct dst_entry *dst = skb_dst(skb);
 863	struct rtable *rt = (struct rtable *)dst;
 864	struct net_device *dev = dst->dev;
 865	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 866	struct neighbour *neigh;
 867	bool is_v6gw = false;
 868
 869	vrf_nf_reset_ct(skb);
 870
 871	/* Be paranoid, rather than too clever. */
 872	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 873		skb = skb_expand_head(skb, hh_len);
 874		if (!skb) {
 875			dev->stats.tx_errors++;
 876			return -ENOMEM;
 877		}
 878	}
 879
 880	rcu_read_lock();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883	if (!IS_ERR(neigh)) {
 884		int ret;
 885
 886		sock_confirm_neigh(skb, neigh);
 887		/* if crossing protocols, can not use the cached header */
 888		ret = neigh_output(neigh, skb, is_v6gw);
 889		rcu_read_unlock();
 890		return ret;
 891	}
 892
 893	rcu_read_unlock();
 894	vrf_tx_error(skb->dev, skb);
 895	return -EINVAL;
 896}
 897
 898static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 899{
 900	struct net_device *dev = skb_dst(skb)->dev;
 901
 902	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 903
 904	skb->dev = dev;
 905	skb->protocol = htons(ETH_P_IP);
 906
 907	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 908			    net, sk, skb, NULL, dev,
 909			    vrf_finish_output,
 910			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 911}
 912
 913/* set dst on skb to send packet to us via dev_xmit path. Allows
 914 * packet to go through device based features such as qdisc, netfilter
 915 * hooks and packet sockets with skb->dev set to vrf device.
 916 */
 917static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 918					   struct sk_buff *skb)
 919{
 920	struct net_vrf *vrf = netdev_priv(vrf_dev);
 921	struct dst_entry *dst = NULL;
 922	struct rtable *rth;
 923
 924	rcu_read_lock();
 925
 926	rth = rcu_dereference(vrf->rth);
 927	if (likely(rth)) {
 928		dst = &rth->dst;
 929		dst_hold(dst);
 930	}
 931
 932	rcu_read_unlock();
 933
 934	if (unlikely(!dst)) {
 935		vrf_tx_error(vrf_dev, skb);
 936		return NULL;
 937	}
 938
 939	skb_dst_drop(skb);
 940	skb_dst_set(skb, dst);
 941
 942	return skb;
 943}
 944
 945static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 946				    struct sk_buff *skb)
 947{
 948	vrf_finish_direct(skb);
 949
 950	return vrf_ip_local_out(net, sk, skb);
 951}
 952
 953static int vrf_output_direct(struct net *net, struct sock *sk,
 954			     struct sk_buff *skb)
 955{
 956	int err = 1;
 957
 958	skb->protocol = htons(ETH_P_IP);
 959
 960	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 961		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 962			      NULL, skb->dev, vrf_output_direct_finish);
 963
 964	if (likely(err == 1))
 965		vrf_finish_direct(skb);
 966
 967	return err;
 968}
 969
 970static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 971				    struct sk_buff *skb)
 972{
 973	int err;
 974
 975	err = vrf_output_direct(net, sk, skb);
 976	if (likely(err == 1))
 977		err = vrf_ip_local_out(net, sk, skb);
 978
 979	return err;
 980}
 981
 982static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 983					 struct sock *sk,
 984					 struct sk_buff *skb)
 985{
 986	struct net *net = dev_net(vrf_dev);
 987	int err;
 988
 989	skb->dev = vrf_dev;
 990
 991	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 992		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 993
 994	if (likely(err == 1))
 995		err = vrf_output_direct(net, sk, skb);
 996
 997	if (likely(err == 1))
 998		return skb;
 999
1000	return NULL;
1001}
1002
1003static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004				  struct sock *sk,
1005				  struct sk_buff *skb)
1006{
1007	/* don't divert multicast or local broadcast */
1008	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010		return skb;
1011
1012	vrf_nf_set_untracked(skb);
1013
1014	if (qdisc_tx_is_default(vrf_dev) ||
1015	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016		return vrf_ip_out_direct(vrf_dev, sk, skb);
1017
1018	return vrf_ip_out_redirect(vrf_dev, skb);
1019}
1020
1021/* called with rcu lock held */
1022static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023				  struct sock *sk,
1024				  struct sk_buff *skb,
1025				  u16 proto)
1026{
1027	switch (proto) {
1028	case AF_INET:
1029		return vrf_ip_out(vrf_dev, sk, skb);
1030	case AF_INET6:
1031		return vrf_ip6_out(vrf_dev, sk, skb);
1032	}
1033
1034	return skb;
1035}
1036
1037/* holding rtnl */
1038static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039{
1040	struct rtable *rth = rtnl_dereference(vrf->rth);
1041	struct net *net = dev_net(dev);
1042	struct dst_entry *dst;
1043
1044	RCU_INIT_POINTER(vrf->rth, NULL);
1045	synchronize_rcu();
1046
1047	/* move dev in dst's to loopback so this VRF device can be deleted
1048	 * - based on dst_ifdown
1049	 */
1050	if (rth) {
1051		dst = &rth->dst;
1052		netdev_ref_replace(dst->dev, net->loopback_dev,
1053				   &dst->dev_tracker, GFP_KERNEL);
1054		dst->dev = net->loopback_dev;
1055		dst_release(dst);
1056	}
1057}
1058
1059static int vrf_rtable_create(struct net_device *dev)
1060{
1061	struct net_vrf *vrf = netdev_priv(dev);
1062	struct rtable *rth;
1063
1064	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065		return -ENOMEM;
1066
1067	/* create a dst for routing packets out through a VRF device */
1068	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1069	if (!rth)
1070		return -ENOMEM;
1071
1072	rth->dst.output	= vrf_output;
1073
1074	rcu_assign_pointer(vrf->rth, rth);
1075
1076	return 0;
1077}
1078
1079/**************************** device handling ********************/
1080
1081/* cycle interface to flush neighbor cache and move routes across tables */
1082static void cycle_netdev(struct net_device *dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	unsigned int flags = dev->flags;
1086	int ret;
1087
1088	if (!netif_running(dev))
1089		return;
1090
1091	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092	if (ret >= 0)
1093		ret = dev_change_flags(dev, flags, extack);
1094
1095	if (ret < 0) {
1096		netdev_err(dev,
1097			   "Failed to cycle device %s; route tables might be wrong!\n",
1098			   dev->name);
1099	}
1100}
1101
1102static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103			    struct netlink_ext_ack *extack)
1104{
1105	int ret;
1106
1107	/* do not allow loopback device to be enslaved to a VRF.
1108	 * The vrf device acts as the loopback for the vrf.
1109	 */
1110	if (port_dev == dev_net(dev)->loopback_dev) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Can not enslave loopback device to a VRF");
1113		return -EOPNOTSUPP;
1114	}
1115
1116	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118	if (ret < 0)
1119		goto err;
1120
1121	cycle_netdev(port_dev, extack);
1122
1123	return 0;
1124
1125err:
1126	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127	return ret;
1128}
1129
1130static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131			 struct netlink_ext_ack *extack)
1132{
1133	if (netif_is_l3_master(port_dev)) {
1134		NL_SET_ERR_MSG(extack,
1135			       "Can not enslave an L3 master device to a VRF");
1136		return -EINVAL;
1137	}
1138
1139	if (netif_is_l3_slave(port_dev))
1140		return -EINVAL;
1141
1142	return do_vrf_add_slave(dev, port_dev, extack);
1143}
1144
1145/* inverse of do_vrf_add_slave */
1146static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147{
1148	netdev_upper_dev_unlink(port_dev, dev);
1149	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150
1151	cycle_netdev(port_dev, NULL);
1152
1153	return 0;
1154}
1155
1156static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157{
1158	return do_vrf_del_slave(dev, port_dev);
1159}
1160
1161static void vrf_dev_uninit(struct net_device *dev)
1162{
1163	struct net_vrf *vrf = netdev_priv(dev);
1164
1165	vrf_rtable_release(dev, vrf);
1166	vrf_rt6_release(dev, vrf);
 
 
 
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
 
 
 
 
1173	/* create the default dst which points back to us */
1174	if (vrf_rtable_create(dev) != 0)
1175		goto out_nomem;
1176
1177	if (vrf_rt6_create(dev) != 0)
1178		goto out_rth;
1179
1180	dev->flags = IFF_MASTER | IFF_NOARP;
1181
1182	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1183	dev->operstate = IF_OPER_UP;
1184	netdev_lockdep_set_classes(dev);
1185	return 0;
1186
1187out_rth:
1188	vrf_rtable_release(dev, vrf);
 
 
 
1189out_nomem:
1190	return -ENOMEM;
1191}
1192
1193static const struct net_device_ops vrf_netdev_ops = {
1194	.ndo_init		= vrf_dev_init,
1195	.ndo_uninit		= vrf_dev_uninit,
1196	.ndo_start_xmit		= vrf_xmit,
1197	.ndo_set_mac_address	= eth_mac_addr,
1198	.ndo_get_stats64	= vrf_get_stats64,
1199	.ndo_add_slave		= vrf_add_slave,
1200	.ndo_del_slave		= vrf_del_slave,
1201};
1202
1203static u32 vrf_fib_table(const struct net_device *dev)
1204{
1205	struct net_vrf *vrf = netdev_priv(dev);
1206
1207	return vrf->tb_id;
1208}
1209
1210static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211{
1212	kfree_skb(skb);
1213	return 0;
1214}
1215
1216static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217				      struct sk_buff *skb,
1218				      struct net_device *dev)
1219{
1220	struct net *net = dev_net(dev);
1221
1222	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1224
1225	return skb;
1226}
1227
1228static int vrf_prepare_mac_header(struct sk_buff *skb,
1229				  struct net_device *vrf_dev, u16 proto)
1230{
1231	struct ethhdr *eth;
1232	int err;
1233
1234	/* in general, we do not know if there is enough space in the head of
1235	 * the packet for hosting the mac header.
1236	 */
1237	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238	if (unlikely(err))
1239		/* no space in the skb head */
1240		return -ENOBUFS;
1241
1242	__skb_push(skb, ETH_HLEN);
1243	eth = (struct ethhdr *)skb->data;
1244
1245	skb_reset_mac_header(skb);
1246	skb_reset_mac_len(skb);
1247
1248	/* we set the ethernet destination and the source addresses to the
1249	 * address of the VRF device.
1250	 */
1251	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1252	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1253	eth->h_proto = htons(proto);
1254
1255	/* the destination address of the Ethernet frame corresponds to the
1256	 * address set on the VRF interface; therefore, the packet is intended
1257	 * to be processed locally.
1258	 */
1259	skb->protocol = eth->h_proto;
1260	skb->pkt_type = PACKET_HOST;
1261
1262	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1263
1264	skb_pull_inline(skb, ETH_HLEN);
1265
1266	return 0;
1267}
1268
1269/* prepare and add the mac header to the packet if it was not set previously.
1270 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1271 * If the mac header was already set, the original mac header is left
1272 * untouched and the function returns immediately.
1273 */
1274static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1275				       struct net_device *vrf_dev,
1276				       u16 proto, struct net_device *orig_dev)
1277{
1278	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1279		return 0;
1280
1281	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1282}
1283
1284#if IS_ENABLED(CONFIG_IPV6)
1285/* neighbor handling is done with actual device; do not want
1286 * to flip skb->dev for those ndisc packets. This really fails
1287 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1288 * a start.
1289 */
1290static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1291{
1292	const struct ipv6hdr *iph = ipv6_hdr(skb);
1293	bool rc = false;
1294
1295	if (iph->nexthdr == NEXTHDR_ICMP) {
1296		const struct icmp6hdr *icmph;
1297		struct icmp6hdr _icmph;
1298
1299		icmph = skb_header_pointer(skb, sizeof(*iph),
1300					   sizeof(_icmph), &_icmph);
1301		if (!icmph)
1302			goto out;
1303
1304		switch (icmph->icmp6_type) {
1305		case NDISC_ROUTER_SOLICITATION:
1306		case NDISC_ROUTER_ADVERTISEMENT:
1307		case NDISC_NEIGHBOUR_SOLICITATION:
1308		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1309		case NDISC_REDIRECT:
1310			rc = true;
1311			break;
1312		}
1313	}
1314
1315out:
1316	return rc;
1317}
1318
1319static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1320					     const struct net_device *dev,
1321					     struct flowi6 *fl6,
1322					     int ifindex,
1323					     const struct sk_buff *skb,
1324					     int flags)
1325{
1326	struct net_vrf *vrf = netdev_priv(dev);
1327
1328	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1329}
1330
1331static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1332			      int ifindex)
1333{
1334	const struct ipv6hdr *iph = ipv6_hdr(skb);
1335	struct flowi6 fl6 = {
1336		.flowi6_iif     = ifindex,
1337		.flowi6_mark    = skb->mark,
1338		.flowi6_proto   = iph->nexthdr,
1339		.daddr          = iph->daddr,
1340		.saddr          = iph->saddr,
1341		.flowlabel      = ip6_flowinfo(iph),
1342	};
1343	struct net *net = dev_net(vrf_dev);
1344	struct rt6_info *rt6;
1345
1346	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1347				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1348	if (unlikely(!rt6))
1349		return;
1350
1351	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1352		return;
1353
1354	skb_dst_set(skb, &rt6->dst);
1355}
1356
1357static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1358				   struct sk_buff *skb)
1359{
1360	int orig_iif = skb->skb_iif;
1361	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1362	bool is_ndisc = ipv6_ndisc_frame(skb);
1363
1364	/* loopback, multicast & non-ND link-local traffic; do not push through
1365	 * packet taps again. Reset pkt_type for upper layers to process skb.
1366	 * For non-loopback strict packets, determine the dst using the original
1367	 * ifindex.
1368	 */
1369	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1370		skb->dev = vrf_dev;
1371		skb->skb_iif = vrf_dev->ifindex;
1372		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1373
1374		if (skb->pkt_type == PACKET_LOOPBACK)
1375			skb->pkt_type = PACKET_HOST;
1376		else
1377			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1378
1379		goto out;
1380	}
1381
1382	/* if packet is NDISC then keep the ingress interface */
1383	if (!is_ndisc) {
1384		struct net_device *orig_dev = skb->dev;
1385
1386		vrf_rx_stats(vrf_dev, skb->len);
1387		skb->dev = vrf_dev;
1388		skb->skb_iif = vrf_dev->ifindex;
1389
1390		if (!list_empty(&vrf_dev->ptype_all)) {
1391			int err;
1392
1393			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1394							  ETH_P_IPV6,
1395							  orig_dev);
1396			if (likely(!err)) {
1397				skb_push(skb, skb->mac_len);
1398				dev_queue_xmit_nit(skb, vrf_dev);
1399				skb_pull(skb, skb->mac_len);
1400			}
1401		}
1402
1403		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1404	}
1405
1406	if (need_strict)
1407		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1408
1409	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1410out:
1411	return skb;
1412}
1413
1414#else
1415static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1416				   struct sk_buff *skb)
1417{
1418	return skb;
1419}
1420#endif
1421
1422static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1423				  struct sk_buff *skb)
1424{
1425	struct net_device *orig_dev = skb->dev;
1426
1427	skb->dev = vrf_dev;
1428	skb->skb_iif = vrf_dev->ifindex;
1429	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1430
1431	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1432		goto out;
1433
1434	/* loopback traffic; do not push through packet taps again.
1435	 * Reset pkt_type for upper layers to process skb
1436	 */
1437	if (skb->pkt_type == PACKET_LOOPBACK) {
1438		skb->pkt_type = PACKET_HOST;
1439		goto out;
1440	}
1441
1442	vrf_rx_stats(vrf_dev, skb->len);
1443
1444	if (!list_empty(&vrf_dev->ptype_all)) {
1445		int err;
1446
1447		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1448						  orig_dev);
1449		if (likely(!err)) {
1450			skb_push(skb, skb->mac_len);
1451			dev_queue_xmit_nit(skb, vrf_dev);
1452			skb_pull(skb, skb->mac_len);
1453		}
1454	}
1455
1456	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1457out:
1458	return skb;
1459}
1460
1461/* called with rcu lock held */
1462static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463				  struct sk_buff *skb,
1464				  u16 proto)
1465{
1466	switch (proto) {
1467	case AF_INET:
1468		return vrf_ip_rcv(vrf_dev, skb);
1469	case AF_INET6:
1470		return vrf_ip6_rcv(vrf_dev, skb);
1471	}
1472
1473	return skb;
1474}
1475
1476#if IS_ENABLED(CONFIG_IPV6)
1477/* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1481 */
1482static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1483					      struct flowi6 *fl6)
1484{
1485	struct net *net = dev_net(dev);
1486	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487	struct dst_entry *dst = NULL;
1488	struct rt6_info *rt;
1489
1490	/* VRF device does not have a link-local address and
1491	 * sending packets to link-local or mcast addresses over
1492	 * a VRF device does not make sense
1493	 */
1494	if (fl6->flowi6_oif == dev->ifindex) {
1495		dst = &net->ipv6.ip6_null_entry->dst;
1496		return dst;
1497	}
1498
1499	if (!ipv6_addr_any(&fl6->saddr))
1500		flags |= RT6_LOOKUP_F_HAS_SADDR;
1501
1502	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1503	if (rt)
1504		dst = &rt->dst;
1505
1506	return dst;
1507}
1508#endif
1509
1510static const struct l3mdev_ops vrf_l3mdev_ops = {
1511	.l3mdev_fib_table	= vrf_fib_table,
1512	.l3mdev_l3_rcv		= vrf_l3_rcv,
1513	.l3mdev_l3_out		= vrf_l3_out,
1514#if IS_ENABLED(CONFIG_IPV6)
1515	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1516#endif
1517};
1518
1519static void vrf_get_drvinfo(struct net_device *dev,
1520			    struct ethtool_drvinfo *info)
1521{
1522	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1523	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1524}
1525
1526static const struct ethtool_ops vrf_ethtool_ops = {
1527	.get_drvinfo	= vrf_get_drvinfo,
1528};
1529
1530static inline size_t vrf_fib_rule_nl_size(void)
1531{
1532	size_t sz;
1533
1534	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1536	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1537	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1538
1539	return sz;
1540}
1541
1542static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1543{
1544	struct fib_rule_hdr *frh;
1545	struct nlmsghdr *nlh;
1546	struct sk_buff *skb;
1547	int err;
1548
1549	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550	    !ipv6_mod_enabled())
1551		return 0;
1552
1553	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1554	if (!skb)
1555		return -ENOMEM;
1556
1557	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1558	if (!nlh)
1559		goto nla_put_failure;
1560
1561	/* rule only needs to appear once */
1562	nlh->nlmsg_flags |= NLM_F_EXCL;
1563
1564	frh = nlmsg_data(nlh);
1565	memset(frh, 0, sizeof(*frh));
1566	frh->family = family;
1567	frh->action = FR_ACT_TO_TBL;
1568
1569	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570		goto nla_put_failure;
1571
1572	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573		goto nla_put_failure;
1574
1575	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576		goto nla_put_failure;
1577
1578	nlmsg_end(skb, nlh);
1579
1580	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581	skb->sk = dev_net(dev)->rtnl;
1582	if (add_it) {
1583		err = fib_nl_newrule(skb, nlh, NULL);
1584		if (err == -EEXIST)
1585			err = 0;
1586	} else {
1587		err = fib_nl_delrule(skb, nlh, NULL);
1588		if (err == -ENOENT)
1589			err = 0;
1590	}
1591	nlmsg_free(skb);
1592
1593	return err;
1594
1595nla_put_failure:
1596	nlmsg_free(skb);
1597
1598	return -EMSGSIZE;
1599}
1600
1601static int vrf_add_fib_rules(const struct net_device *dev)
1602{
1603	int err;
1604
1605	err = vrf_fib_rule(dev, AF_INET,  true);
1606	if (err < 0)
1607		goto out_err;
1608
1609	err = vrf_fib_rule(dev, AF_INET6, true);
1610	if (err < 0)
1611		goto ipv6_err;
1612
1613#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1615	if (err < 0)
1616		goto ipmr_err;
1617#endif
1618
1619#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1621	if (err < 0)
1622		goto ip6mr_err;
1623#endif
1624
1625	return 0;
1626
1627#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1628ip6mr_err:
1629	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1630#endif
1631
1632#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1633ipmr_err:
1634	vrf_fib_rule(dev, AF_INET6,  false);
1635#endif
1636
1637ipv6_err:
1638	vrf_fib_rule(dev, AF_INET,  false);
1639
1640out_err:
1641	netdev_err(dev, "Failed to add FIB rules.\n");
1642	return err;
1643}
1644
1645static void vrf_setup(struct net_device *dev)
1646{
1647	ether_setup(dev);
1648
1649	/* Initialize the device structure. */
1650	dev->netdev_ops = &vrf_netdev_ops;
1651	dev->l3mdev_ops = &vrf_l3mdev_ops;
1652	dev->ethtool_ops = &vrf_ethtool_ops;
1653	dev->needs_free_netdev = true;
1654
1655	/* Fill in device structure with ethernet-generic values. */
1656	eth_hw_addr_random(dev);
1657
1658	/* don't acquire vrf device's netif_tx_lock when transmitting */
1659	dev->features |= NETIF_F_LLTX;
1660
1661	/* don't allow vrf devices to change network namespaces. */
1662	dev->features |= NETIF_F_NETNS_LOCAL;
1663
1664	/* does not make sense for a VLAN to be added to a vrf device */
1665	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1666
1667	/* enable offload features */
1668	dev->features   |= NETIF_F_GSO_SOFTWARE;
1669	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1671
1672	dev->hw_features = dev->features;
1673	dev->hw_enc_features = dev->features;
1674
1675	/* default to no qdisc; user can add if desired */
1676	dev->priv_flags |= IFF_NO_QUEUE;
1677	dev->priv_flags |= IFF_NO_RX_HANDLER;
1678	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1679
1680	/* VRF devices do not care about MTU, but if the MTU is set
1681	 * too low then the ipv4 and ipv6 protocols are disabled
1682	 * which breaks networking.
1683	 */
1684	dev->min_mtu = IPV6_MIN_MTU;
1685	dev->max_mtu = IP6_MAX_MTU;
1686	dev->mtu = dev->max_mtu;
1687
1688	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1689}
1690
1691static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1692			struct netlink_ext_ack *extack)
1693{
1694	if (tb[IFLA_ADDRESS]) {
1695		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1696			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697			return -EINVAL;
1698		}
1699		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1700			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701			return -EADDRNOTAVAIL;
1702		}
1703	}
1704	return 0;
1705}
1706
1707static void vrf_dellink(struct net_device *dev, struct list_head *head)
1708{
1709	struct net_device *port_dev;
1710	struct list_head *iter;
1711
1712	netdev_for_each_lower_dev(dev, port_dev, iter)
1713		vrf_del_slave(dev, port_dev);
1714
1715	vrf_map_unregister_dev(dev);
1716
1717	unregister_netdevice_queue(dev, head);
1718}
1719
1720static int vrf_newlink(struct net *src_net, struct net_device *dev,
1721		       struct nlattr *tb[], struct nlattr *data[],
1722		       struct netlink_ext_ack *extack)
1723{
1724	struct net_vrf *vrf = netdev_priv(dev);
1725	struct netns_vrf *nn_vrf;
1726	bool *add_fib_rules;
1727	struct net *net;
1728	int err;
1729
1730	if (!data || !data[IFLA_VRF_TABLE]) {
1731		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1732		return -EINVAL;
1733	}
1734
1735	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1736	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1737		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1738				    "Invalid VRF table id");
1739		return -EINVAL;
1740	}
1741
1742	dev->priv_flags |= IFF_L3MDEV_MASTER;
1743
1744	err = register_netdevice(dev);
1745	if (err)
1746		goto out;
1747
1748	/* mapping between table_id and vrf;
1749	 * note: such binding could not be done in the dev init function
1750	 * because dev->ifindex id is not available yet.
1751	 */
1752	vrf->ifindex = dev->ifindex;
1753
1754	err = vrf_map_register_dev(dev, extack);
1755	if (err) {
1756		unregister_netdevice(dev);
1757		goto out;
1758	}
1759
1760	net = dev_net(dev);
1761	nn_vrf = net_generic(net, vrf_net_id);
1762
1763	add_fib_rules = &nn_vrf->add_fib_rules;
1764	if (*add_fib_rules) {
1765		err = vrf_add_fib_rules(dev);
1766		if (err) {
1767			vrf_map_unregister_dev(dev);
1768			unregister_netdevice(dev);
1769			goto out;
1770		}
1771		*add_fib_rules = false;
1772	}
1773
1774out:
1775	return err;
1776}
1777
1778static size_t vrf_nl_getsize(const struct net_device *dev)
1779{
1780	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1781}
1782
1783static int vrf_fillinfo(struct sk_buff *skb,
1784			const struct net_device *dev)
1785{
1786	struct net_vrf *vrf = netdev_priv(dev);
1787
1788	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1789}
1790
1791static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1792				 const struct net_device *slave_dev)
1793{
1794	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1795}
1796
1797static int vrf_fill_slave_info(struct sk_buff *skb,
1798			       const struct net_device *vrf_dev,
1799			       const struct net_device *slave_dev)
1800{
1801	struct net_vrf *vrf = netdev_priv(vrf_dev);
1802
1803	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1804		return -EMSGSIZE;
1805
1806	return 0;
1807}
1808
1809static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1810	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1811};
1812
1813static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1814	.kind		= DRV_NAME,
1815	.priv_size	= sizeof(struct net_vrf),
1816
1817	.get_size	= vrf_nl_getsize,
1818	.policy		= vrf_nl_policy,
1819	.validate	= vrf_validate,
1820	.fill_info	= vrf_fillinfo,
1821
1822	.get_slave_size  = vrf_get_slave_size,
1823	.fill_slave_info = vrf_fill_slave_info,
1824
1825	.newlink	= vrf_newlink,
1826	.dellink	= vrf_dellink,
1827	.setup		= vrf_setup,
1828	.maxtype	= IFLA_VRF_MAX,
1829};
1830
1831static int vrf_device_event(struct notifier_block *unused,
1832			    unsigned long event, void *ptr)
1833{
1834	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1835
1836	/* only care about unregister events to drop slave references */
1837	if (event == NETDEV_UNREGISTER) {
1838		struct net_device *vrf_dev;
1839
1840		if (!netif_is_l3_slave(dev))
1841			goto out;
1842
1843		vrf_dev = netdev_master_upper_dev_get(dev);
1844		vrf_del_slave(vrf_dev, dev);
1845	}
1846out:
1847	return NOTIFY_DONE;
1848}
1849
1850static struct notifier_block vrf_notifier_block __read_mostly = {
1851	.notifier_call = vrf_device_event,
1852};
1853
1854static int vrf_map_init(struct vrf_map *vmap)
1855{
1856	spin_lock_init(&vmap->vmap_lock);
1857	hash_init(vmap->ht);
1858
1859	vmap->strict_mode = false;
1860
1861	return 0;
1862}
1863
1864#ifdef CONFIG_SYSCTL
1865static bool vrf_strict_mode(struct vrf_map *vmap)
1866{
1867	bool strict_mode;
1868
1869	vrf_map_lock(vmap);
1870	strict_mode = vmap->strict_mode;
1871	vrf_map_unlock(vmap);
1872
1873	return strict_mode;
1874}
1875
1876static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1877{
1878	bool *cur_mode;
1879	int res = 0;
1880
1881	vrf_map_lock(vmap);
1882
1883	cur_mode = &vmap->strict_mode;
1884	if (*cur_mode == new_mode)
1885		goto unlock;
1886
1887	if (*cur_mode) {
1888		/* disable strict mode */
1889		*cur_mode = false;
1890	} else {
1891		if (vmap->shared_tables) {
1892			/* we cannot allow strict_mode because there are some
1893			 * vrfs that share one or more tables.
1894			 */
1895			res = -EBUSY;
1896			goto unlock;
1897		}
1898
1899		/* no tables are shared among vrfs, so we can go back
1900		 * to 1:1 association between a vrf with its table.
1901		 */
1902		*cur_mode = true;
1903	}
1904
1905unlock:
1906	vrf_map_unlock(vmap);
1907
1908	return res;
1909}
1910
1911static int vrf_shared_table_handler(struct ctl_table *table, int write,
1912				    void *buffer, size_t *lenp, loff_t *ppos)
1913{
1914	struct net *net = (struct net *)table->extra1;
1915	struct vrf_map *vmap = netns_vrf_map(net);
1916	int proc_strict_mode = 0;
1917	struct ctl_table tmp = {
1918		.procname	= table->procname,
1919		.data		= &proc_strict_mode,
1920		.maxlen		= sizeof(int),
1921		.mode		= table->mode,
1922		.extra1		= SYSCTL_ZERO,
1923		.extra2		= SYSCTL_ONE,
1924	};
1925	int ret;
1926
1927	if (!write)
1928		proc_strict_mode = vrf_strict_mode(vmap);
1929
1930	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1931
1932	if (write && ret == 0)
1933		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1934
1935	return ret;
1936}
1937
1938static const struct ctl_table vrf_table[] = {
1939	{
1940		.procname	= "strict_mode",
1941		.data		= NULL,
1942		.maxlen		= sizeof(int),
1943		.mode		= 0644,
1944		.proc_handler	= vrf_shared_table_handler,
1945		/* set by the vrf_netns_init */
1946		.extra1		= NULL,
1947	},
 
1948};
1949
1950static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1951{
1952	struct ctl_table *table;
1953
1954	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1955	if (!table)
1956		return -ENOMEM;
1957
1958	/* init the extra1 parameter with the reference to current netns */
1959	table[0].extra1 = net;
1960
1961	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1962						 ARRAY_SIZE(vrf_table));
1963	if (!nn_vrf->ctl_hdr) {
1964		kfree(table);
1965		return -ENOMEM;
1966	}
1967
1968	return 0;
1969}
1970
1971static void vrf_netns_exit_sysctl(struct net *net)
1972{
1973	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974	struct ctl_table *table;
1975
1976	table = nn_vrf->ctl_hdr->ctl_table_arg;
1977	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1978	kfree(table);
1979}
1980#else
1981static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1982{
1983	return 0;
1984}
1985
1986static void vrf_netns_exit_sysctl(struct net *net)
1987{
1988}
1989#endif
1990
1991/* Initialize per network namespace state */
1992static int __net_init vrf_netns_init(struct net *net)
1993{
1994	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1995
1996	nn_vrf->add_fib_rules = true;
1997	vrf_map_init(&nn_vrf->vmap);
1998
1999	return vrf_netns_init_sysctl(net, nn_vrf);
2000}
2001
2002static void __net_exit vrf_netns_exit(struct net *net)
2003{
2004	vrf_netns_exit_sysctl(net);
2005}
2006
2007static struct pernet_operations vrf_net_ops __net_initdata = {
2008	.init = vrf_netns_init,
2009	.exit = vrf_netns_exit,
2010	.id   = &vrf_net_id,
2011	.size = sizeof(struct netns_vrf),
2012};
2013
2014static int __init vrf_init_module(void)
2015{
2016	int rc;
2017
2018	register_netdevice_notifier(&vrf_notifier_block);
2019
2020	rc = register_pernet_subsys(&vrf_net_ops);
2021	if (rc < 0)
2022		goto error;
2023
2024	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2025					  vrf_ifindex_lookup_by_table_id);
2026	if (rc < 0)
2027		goto unreg_pernet;
2028
2029	rc = rtnl_link_register(&vrf_link_ops);
2030	if (rc < 0)
2031		goto table_lookup_unreg;
2032
2033	return 0;
2034
2035table_lookup_unreg:
2036	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2037				       vrf_ifindex_lookup_by_table_id);
2038
2039unreg_pernet:
2040	unregister_pernet_subsys(&vrf_net_ops);
2041
2042error:
2043	unregister_netdevice_notifier(&vrf_notifier_block);
2044	return rc;
2045}
2046
2047module_init(vrf_init_module);
2048MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2049MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2050MODULE_LICENSE("GPL");
2051MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2052MODULE_VERSION(DRV_VERSION);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/sch_generic.h>
  38#include <net/netns/generic.h>
  39#include <net/netfilter/nf_conntrack.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.1"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
  46#define HT_MAP_BITS	4
  47#define HASH_INITVAL	((u32)0xcafef00d)
  48
  49struct  vrf_map {
  50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  51	spinlock_t vmap_lock;
  52
  53	/* shared_tables:
  54	 * count how many distinct tables do not comply with the strict mode
  55	 * requirement.
  56	 * shared_tables value must be 0 in order to enable the strict mode.
  57	 *
  58	 * example of the evolution of shared_tables:
  59	 *                                                        | time
  60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  65	 *
  66	 * shared_tables is a "step function" (or "staircase function")
  67	 * and it is increased by one when the second vrf is associated to a
  68	 * table.
  69	 *
  70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  71	 *
  72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  73	 * value of shared_tables is still 1.
  74	 * This means that no matter how many new vrfs will register on the
  75	 * table 100, the shared_tables will not increase (considering only
  76	 * table 100).
  77	 *
  78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  79	 *
  80	 * Looking at the value of shared_tables we can immediately know if
  81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  82	 * can be enforced iff shared_tables = 0.
  83	 *
  84	 * Conversely, shared_tables is decreased when a vrf is de-associated
  85	 * from a table with exactly two associated vrfs.
  86	 */
  87	u32 shared_tables;
  88
  89	bool strict_mode;
  90};
  91
  92struct vrf_map_elem {
  93	struct hlist_node hnode;
  94	struct list_head vrf_list;  /* VRFs registered to this table */
  95
  96	u32 table_id;
  97	int users;
  98	int ifindex;
  99};
 100
 101static unsigned int vrf_net_id;
 102
 103/* per netns vrf data */
 104struct netns_vrf {
 105	/* protected by rtnl lock */
 106	bool add_fib_rules;
 107
 108	struct vrf_map vmap;
 109	struct ctl_table_header	*ctl_hdr;
 110};
 111
 112struct net_vrf {
 113	struct rtable __rcu	*rth;
 114	struct rt6_info	__rcu	*rt6;
 115#if IS_ENABLED(CONFIG_IPV6)
 116	struct fib6_table	*fib6_table;
 117#endif
 118	u32                     tb_id;
 119
 120	struct list_head	me_list;   /* entry in vrf_map_elem */
 121	int			ifindex;
 122};
 123
 124struct pcpu_dstats {
 125	u64			tx_pkts;
 126	u64			tx_bytes;
 127	u64			tx_drps;
 128	u64			rx_pkts;
 129	u64			rx_bytes;
 130	u64			rx_drps;
 131	struct u64_stats_sync	syncp;
 132};
 133
 134static void vrf_rx_stats(struct net_device *dev, int len)
 135{
 136	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 137
 138	u64_stats_update_begin(&dstats->syncp);
 139	dstats->rx_pkts++;
 140	dstats->rx_bytes += len;
 141	u64_stats_update_end(&dstats->syncp);
 142}
 143
 144static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 145{
 146	vrf_dev->stats.tx_errors++;
 147	kfree_skb(skb);
 148}
 149
 150static void vrf_get_stats64(struct net_device *dev,
 151			    struct rtnl_link_stats64 *stats)
 152{
 153	int i;
 154
 155	for_each_possible_cpu(i) {
 156		const struct pcpu_dstats *dstats;
 157		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 158		unsigned int start;
 159
 160		dstats = per_cpu_ptr(dev->dstats, i);
 161		do {
 162			start = u64_stats_fetch_begin(&dstats->syncp);
 163			tbytes = dstats->tx_bytes;
 164			tpkts = dstats->tx_pkts;
 165			tdrops = dstats->tx_drps;
 166			rbytes = dstats->rx_bytes;
 167			rpkts = dstats->rx_pkts;
 168		} while (u64_stats_fetch_retry(&dstats->syncp, start));
 169		stats->tx_bytes += tbytes;
 170		stats->tx_packets += tpkts;
 171		stats->tx_dropped += tdrops;
 172		stats->rx_bytes += rbytes;
 173		stats->rx_packets += rpkts;
 174	}
 175}
 176
 177static struct vrf_map *netns_vrf_map(struct net *net)
 178{
 179	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 180
 181	return &nn_vrf->vmap;
 182}
 183
 184static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 185{
 186	return netns_vrf_map(dev_net(dev));
 187}
 188
 189static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 190{
 191	struct list_head *me_head = &me->vrf_list;
 192	struct net_vrf *vrf;
 193
 194	if (list_empty(me_head))
 195		return -ENODEV;
 196
 197	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 198
 199	return vrf->ifindex;
 200}
 201
 202static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 203{
 204	struct vrf_map_elem *me;
 205
 206	me = kmalloc(sizeof(*me), flags);
 207	if (!me)
 208		return NULL;
 209
 210	return me;
 211}
 212
 213static void vrf_map_elem_free(struct vrf_map_elem *me)
 214{
 215	kfree(me);
 216}
 217
 218static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 219			      int ifindex, int users)
 220{
 221	me->table_id = table_id;
 222	me->ifindex = ifindex;
 223	me->users = users;
 224	INIT_LIST_HEAD(&me->vrf_list);
 225}
 226
 227static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 228						u32 table_id)
 229{
 230	struct vrf_map_elem *me;
 231	u32 key;
 232
 233	key = jhash_1word(table_id, HASH_INITVAL);
 234	hash_for_each_possible(vmap->ht, me, hnode, key) {
 235		if (me->table_id == table_id)
 236			return me;
 237	}
 238
 239	return NULL;
 240}
 241
 242static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 243{
 244	u32 table_id = me->table_id;
 245	u32 key;
 246
 247	key = jhash_1word(table_id, HASH_INITVAL);
 248	hash_add(vmap->ht, &me->hnode, key);
 249}
 250
 251static void vrf_map_del_elem(struct vrf_map_elem *me)
 252{
 253	hash_del(&me->hnode);
 254}
 255
 256static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 257{
 258	spin_lock(&vmap->vmap_lock);
 259}
 260
 261static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 262{
 263	spin_unlock(&vmap->vmap_lock);
 264}
 265
 266/* called with rtnl lock held */
 267static int
 268vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 269{
 270	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 271	struct net_vrf *vrf = netdev_priv(dev);
 272	struct vrf_map_elem *new_me, *me;
 273	u32 table_id = vrf->tb_id;
 274	bool free_new_me = false;
 275	int users;
 276	int res;
 277
 278	/* we pre-allocate elements used in the spin-locked section (so that we
 279	 * keep the spinlock as short as possible).
 280	 */
 281	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 282	if (!new_me)
 283		return -ENOMEM;
 284
 285	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 286
 287	vrf_map_lock(vmap);
 288
 289	me = vrf_map_lookup_elem(vmap, table_id);
 290	if (!me) {
 291		me = new_me;
 292		vrf_map_add_elem(vmap, me);
 293		goto link_vrf;
 294	}
 295
 296	/* we already have an entry in the vrf_map, so it means there is (at
 297	 * least) a vrf registered on the specific table.
 298	 */
 299	free_new_me = true;
 300	if (vmap->strict_mode) {
 301		/* vrfs cannot share the same table */
 302		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 303		res = -EBUSY;
 304		goto unlock;
 305	}
 306
 307link_vrf:
 308	users = ++me->users;
 309	if (users == 2)
 310		++vmap->shared_tables;
 311
 312	list_add(&vrf->me_list, &me->vrf_list);
 313
 314	res = 0;
 315
 316unlock:
 317	vrf_map_unlock(vmap);
 318
 319	/* clean-up, if needed */
 320	if (free_new_me)
 321		vrf_map_elem_free(new_me);
 322
 323	return res;
 324}
 325
 326/* called with rtnl lock held */
 327static void vrf_map_unregister_dev(struct net_device *dev)
 328{
 329	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 330	struct net_vrf *vrf = netdev_priv(dev);
 331	u32 table_id = vrf->tb_id;
 332	struct vrf_map_elem *me;
 333	int users;
 334
 335	vrf_map_lock(vmap);
 336
 337	me = vrf_map_lookup_elem(vmap, table_id);
 338	if (!me)
 339		goto unlock;
 340
 341	list_del(&vrf->me_list);
 342
 343	users = --me->users;
 344	if (users == 1) {
 345		--vmap->shared_tables;
 346	} else if (users == 0) {
 347		vrf_map_del_elem(me);
 348
 349		/* no one will refer to this element anymore */
 350		vrf_map_elem_free(me);
 351	}
 352
 353unlock:
 354	vrf_map_unlock(vmap);
 355}
 356
 357/* return the vrf device index associated with the table_id */
 358static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 359{
 360	struct vrf_map *vmap = netns_vrf_map(net);
 361	struct vrf_map_elem *me;
 362	int ifindex;
 363
 364	vrf_map_lock(vmap);
 365
 366	if (!vmap->strict_mode) {
 367		ifindex = -EPERM;
 368		goto unlock;
 369	}
 370
 371	me = vrf_map_lookup_elem(vmap, table_id);
 372	if (!me) {
 373		ifindex = -ENODEV;
 374		goto unlock;
 375	}
 376
 377	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 378
 379unlock:
 380	vrf_map_unlock(vmap);
 381
 382	return ifindex;
 383}
 384
 385/* by default VRF devices do not have a qdisc and are expected
 386 * to be created with only a single queue.
 387 */
 388static bool qdisc_tx_is_default(const struct net_device *dev)
 389{
 390	struct netdev_queue *txq;
 391	struct Qdisc *qdisc;
 392
 393	if (dev->num_tx_queues > 1)
 394		return false;
 395
 396	txq = netdev_get_tx_queue(dev, 0);
 397	qdisc = rcu_access_pointer(txq->qdisc);
 398
 399	return !qdisc->enqueue;
 400}
 401
 402/* Local traffic destined to local address. Reinsert the packet to rx
 403 * path, similar to loopback handling.
 404 */
 405static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 406			  struct dst_entry *dst)
 407{
 408	int len = skb->len;
 409
 410	skb_orphan(skb);
 411
 412	skb_dst_set(skb, dst);
 413
 414	/* set pkt_type to avoid skb hitting packet taps twice -
 415	 * once on Tx and again in Rx processing
 416	 */
 417	skb->pkt_type = PACKET_LOOPBACK;
 418
 419	skb->protocol = eth_type_trans(skb, dev);
 420
 421	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
 422		vrf_rx_stats(dev, len);
 423	else
 424		this_cpu_inc(dev->dstats->rx_drps);
 425
 426	return NETDEV_TX_OK;
 427}
 428
 429static void vrf_nf_set_untracked(struct sk_buff *skb)
 430{
 431	if (skb_get_nfct(skb) == 0)
 432		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
 433}
 434
 435static void vrf_nf_reset_ct(struct sk_buff *skb)
 436{
 437	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
 438		nf_reset_ct(skb);
 439}
 440
 441#if IS_ENABLED(CONFIG_IPV6)
 442static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 443			     struct sk_buff *skb)
 444{
 445	int err;
 446
 447	vrf_nf_reset_ct(skb);
 448
 449	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 450		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 451
 452	if (likely(err == 1))
 453		err = dst_output(net, sk, skb);
 454
 455	return err;
 456}
 457
 458static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 459					   struct net_device *dev)
 460{
 461	const struct ipv6hdr *iph;
 462	struct net *net = dev_net(skb->dev);
 463	struct flowi6 fl6;
 464	int ret = NET_XMIT_DROP;
 465	struct dst_entry *dst;
 466	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 467
 468	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 469		goto err;
 470
 471	iph = ipv6_hdr(skb);
 472
 473	memset(&fl6, 0, sizeof(fl6));
 474	/* needed to match OIF rule */
 475	fl6.flowi6_l3mdev = dev->ifindex;
 476	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 477	fl6.daddr = iph->daddr;
 478	fl6.saddr = iph->saddr;
 479	fl6.flowlabel = ip6_flowinfo(iph);
 480	fl6.flowi6_mark = skb->mark;
 481	fl6.flowi6_proto = iph->nexthdr;
 482
 483	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 484	if (IS_ERR(dst) || dst == dst_null)
 485		goto err;
 486
 487	skb_dst_drop(skb);
 488
 489	/* if dst.dev is the VRF device again this is locally originated traffic
 490	 * destined to a local address. Short circuit to Rx path.
 491	 */
 492	if (dst->dev == dev)
 493		return vrf_local_xmit(skb, dev, dst);
 494
 495	skb_dst_set(skb, dst);
 496
 497	/* strip the ethernet header added for pass through VRF device */
 498	__skb_pull(skb, skb_network_offset(skb));
 499
 500	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
 501	ret = vrf_ip6_local_out(net, skb->sk, skb);
 502	if (unlikely(net_xmit_eval(ret)))
 503		dev->stats.tx_errors++;
 504	else
 505		ret = NET_XMIT_SUCCESS;
 506
 507	return ret;
 508err:
 509	vrf_tx_error(dev, skb);
 510	return NET_XMIT_DROP;
 511}
 512#else
 513static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 514					   struct net_device *dev)
 515{
 516	vrf_tx_error(dev, skb);
 517	return NET_XMIT_DROP;
 518}
 519#endif
 520
 521/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 522static int vrf_ip_local_out(struct net *net, struct sock *sk,
 523			    struct sk_buff *skb)
 524{
 525	int err;
 526
 527	vrf_nf_reset_ct(skb);
 528
 529	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 530		      skb, NULL, skb_dst(skb)->dev, dst_output);
 531	if (likely(err == 1))
 532		err = dst_output(net, sk, skb);
 533
 534	return err;
 535}
 536
 537static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 538					   struct net_device *vrf_dev)
 539{
 540	struct iphdr *ip4h;
 541	int ret = NET_XMIT_DROP;
 542	struct flowi4 fl4;
 543	struct net *net = dev_net(vrf_dev);
 544	struct rtable *rt;
 545
 546	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 547		goto err;
 548
 549	ip4h = ip_hdr(skb);
 550
 551	memset(&fl4, 0, sizeof(fl4));
 552	/* needed to match OIF rule */
 553	fl4.flowi4_l3mdev = vrf_dev->ifindex;
 554	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 555	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 556	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
 557	fl4.flowi4_proto = ip4h->protocol;
 558	fl4.daddr = ip4h->daddr;
 559	fl4.saddr = ip4h->saddr;
 560
 561	rt = ip_route_output_flow(net, &fl4, NULL);
 562	if (IS_ERR(rt))
 563		goto err;
 564
 565	skb_dst_drop(skb);
 566
 567	/* if dst.dev is the VRF device again this is locally originated traffic
 568	 * destined to a local address. Short circuit to Rx path.
 569	 */
 570	if (rt->dst.dev == vrf_dev)
 571		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 572
 573	skb_dst_set(skb, &rt->dst);
 574
 575	/* strip the ethernet header added for pass through VRF device */
 576	__skb_pull(skb, skb_network_offset(skb));
 577
 578	if (!ip4h->saddr) {
 579		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 580					       RT_SCOPE_LINK);
 581	}
 582
 583	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
 584	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 585	if (unlikely(net_xmit_eval(ret)))
 586		vrf_dev->stats.tx_errors++;
 587	else
 588		ret = NET_XMIT_SUCCESS;
 589
 590out:
 591	return ret;
 592err:
 593	vrf_tx_error(vrf_dev, skb);
 594	goto out;
 595}
 596
 597static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 598{
 599	switch (skb->protocol) {
 600	case htons(ETH_P_IP):
 601		return vrf_process_v4_outbound(skb, dev);
 602	case htons(ETH_P_IPV6):
 603		return vrf_process_v6_outbound(skb, dev);
 604	default:
 605		vrf_tx_error(dev, skb);
 606		return NET_XMIT_DROP;
 607	}
 608}
 609
 610static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 611{
 612	int len = skb->len;
 613	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 614
 615	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 616		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 617
 618		u64_stats_update_begin(&dstats->syncp);
 619		dstats->tx_pkts++;
 620		dstats->tx_bytes += len;
 621		u64_stats_update_end(&dstats->syncp);
 622	} else {
 623		this_cpu_inc(dev->dstats->tx_drps);
 624	}
 625
 626	return ret;
 627}
 628
 629static void vrf_finish_direct(struct sk_buff *skb)
 630{
 631	struct net_device *vrf_dev = skb->dev;
 632
 633	if (!list_empty(&vrf_dev->ptype_all) &&
 634	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 635		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 636
 637		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 638		eth_zero_addr(eth->h_dest);
 639		eth->h_proto = skb->protocol;
 640
 641		rcu_read_lock_bh();
 642		dev_queue_xmit_nit(skb, vrf_dev);
 643		rcu_read_unlock_bh();
 644
 645		skb_pull(skb, ETH_HLEN);
 646	}
 647
 648	vrf_nf_reset_ct(skb);
 649}
 650
 651#if IS_ENABLED(CONFIG_IPV6)
 652/* modelled after ip6_finish_output2 */
 653static int vrf_finish_output6(struct net *net, struct sock *sk,
 654			      struct sk_buff *skb)
 655{
 656	struct dst_entry *dst = skb_dst(skb);
 657	struct net_device *dev = dst->dev;
 658	const struct in6_addr *nexthop;
 659	struct neighbour *neigh;
 660	int ret;
 661
 662	vrf_nf_reset_ct(skb);
 663
 664	skb->protocol = htons(ETH_P_IPV6);
 665	skb->dev = dev;
 666
 667	rcu_read_lock_bh();
 668	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 669	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 670	if (unlikely(!neigh))
 671		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 672	if (!IS_ERR(neigh)) {
 673		sock_confirm_neigh(skb, neigh);
 674		ret = neigh_output(neigh, skb, false);
 675		rcu_read_unlock_bh();
 676		return ret;
 677	}
 678	rcu_read_unlock_bh();
 679
 680	IP6_INC_STATS(dev_net(dst->dev),
 681		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 682	kfree_skb(skb);
 683	return -EINVAL;
 684}
 685
 686/* modelled after ip6_output */
 687static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 688{
 689	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 690			    net, sk, skb, NULL, skb_dst(skb)->dev,
 691			    vrf_finish_output6,
 692			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 693}
 694
 695/* set dst on skb to send packet to us via dev_xmit path. Allows
 696 * packet to go through device based features such as qdisc, netfilter
 697 * hooks and packet sockets with skb->dev set to vrf device.
 698 */
 699static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 700					    struct sk_buff *skb)
 701{
 702	struct net_vrf *vrf = netdev_priv(vrf_dev);
 703	struct dst_entry *dst = NULL;
 704	struct rt6_info *rt6;
 705
 706	rcu_read_lock();
 707
 708	rt6 = rcu_dereference(vrf->rt6);
 709	if (likely(rt6)) {
 710		dst = &rt6->dst;
 711		dst_hold(dst);
 712	}
 713
 714	rcu_read_unlock();
 715
 716	if (unlikely(!dst)) {
 717		vrf_tx_error(vrf_dev, skb);
 718		return NULL;
 719	}
 720
 721	skb_dst_drop(skb);
 722	skb_dst_set(skb, dst);
 723
 724	return skb;
 725}
 726
 727static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 728				     struct sk_buff *skb)
 729{
 730	vrf_finish_direct(skb);
 731
 732	return vrf_ip6_local_out(net, sk, skb);
 733}
 734
 735static int vrf_output6_direct(struct net *net, struct sock *sk,
 736			      struct sk_buff *skb)
 737{
 738	int err = 1;
 739
 740	skb->protocol = htons(ETH_P_IPV6);
 741
 742	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 743		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 744			      NULL, skb->dev, vrf_output6_direct_finish);
 745
 746	if (likely(err == 1))
 747		vrf_finish_direct(skb);
 748
 749	return err;
 750}
 751
 752static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 753				     struct sk_buff *skb)
 754{
 755	int err;
 756
 757	err = vrf_output6_direct(net, sk, skb);
 758	if (likely(err == 1))
 759		err = vrf_ip6_local_out(net, sk, skb);
 760
 761	return err;
 762}
 763
 764static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 765					  struct sock *sk,
 766					  struct sk_buff *skb)
 767{
 768	struct net *net = dev_net(vrf_dev);
 769	int err;
 770
 771	skb->dev = vrf_dev;
 772
 773	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 774		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 775
 776	if (likely(err == 1))
 777		err = vrf_output6_direct(net, sk, skb);
 778
 779	if (likely(err == 1))
 780		return skb;
 781
 782	return NULL;
 783}
 784
 785static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 786				   struct sock *sk,
 787				   struct sk_buff *skb)
 788{
 789	/* don't divert link scope packets */
 790	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 791		return skb;
 792
 793	vrf_nf_set_untracked(skb);
 794
 795	if (qdisc_tx_is_default(vrf_dev) ||
 796	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 797		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 798
 799	return vrf_ip6_out_redirect(vrf_dev, skb);
 800}
 801
 802/* holding rtnl */
 803static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 804{
 805	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 806	struct net *net = dev_net(dev);
 807	struct dst_entry *dst;
 808
 809	RCU_INIT_POINTER(vrf->rt6, NULL);
 810	synchronize_rcu();
 811
 812	/* move dev in dst's to loopback so this VRF device can be deleted
 813	 * - based on dst_ifdown
 814	 */
 815	if (rt6) {
 816		dst = &rt6->dst;
 817		netdev_ref_replace(dst->dev, net->loopback_dev,
 818				   &dst->dev_tracker, GFP_KERNEL);
 819		dst->dev = net->loopback_dev;
 820		dst_release(dst);
 821	}
 822}
 823
 824static int vrf_rt6_create(struct net_device *dev)
 825{
 826	int flags = DST_NOPOLICY | DST_NOXFRM;
 827	struct net_vrf *vrf = netdev_priv(dev);
 828	struct net *net = dev_net(dev);
 829	struct rt6_info *rt6;
 830	int rc = -ENOMEM;
 831
 832	/* IPv6 can be CONFIG enabled and then disabled runtime */
 833	if (!ipv6_mod_enabled())
 834		return 0;
 835
 836	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 837	if (!vrf->fib6_table)
 838		goto out;
 839
 840	/* create a dst for routing packets out a VRF device */
 841	rt6 = ip6_dst_alloc(net, dev, flags);
 842	if (!rt6)
 843		goto out;
 844
 845	rt6->dst.output	= vrf_output6;
 846
 847	rcu_assign_pointer(vrf->rt6, rt6);
 848
 849	rc = 0;
 850out:
 851	return rc;
 852}
 853#else
 854static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 855				   struct sock *sk,
 856				   struct sk_buff *skb)
 857{
 858	return skb;
 859}
 860
 861static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 862{
 863}
 864
 865static int vrf_rt6_create(struct net_device *dev)
 866{
 867	return 0;
 868}
 869#endif
 870
 871/* modelled after ip_finish_output2 */
 872static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 873{
 874	struct dst_entry *dst = skb_dst(skb);
 875	struct rtable *rt = (struct rtable *)dst;
 876	struct net_device *dev = dst->dev;
 877	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 878	struct neighbour *neigh;
 879	bool is_v6gw = false;
 880
 881	vrf_nf_reset_ct(skb);
 882
 883	/* Be paranoid, rather than too clever. */
 884	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 885		skb = skb_expand_head(skb, hh_len);
 886		if (!skb) {
 887			dev->stats.tx_errors++;
 888			return -ENOMEM;
 889		}
 890	}
 891
 892	rcu_read_lock_bh();
 893
 894	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 895	if (!IS_ERR(neigh)) {
 896		int ret;
 897
 898		sock_confirm_neigh(skb, neigh);
 899		/* if crossing protocols, can not use the cached header */
 900		ret = neigh_output(neigh, skb, is_v6gw);
 901		rcu_read_unlock_bh();
 902		return ret;
 903	}
 904
 905	rcu_read_unlock_bh();
 906	vrf_tx_error(skb->dev, skb);
 907	return -EINVAL;
 908}
 909
 910static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 911{
 912	struct net_device *dev = skb_dst(skb)->dev;
 913
 914	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 915
 916	skb->dev = dev;
 917	skb->protocol = htons(ETH_P_IP);
 918
 919	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 920			    net, sk, skb, NULL, dev,
 921			    vrf_finish_output,
 922			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 923}
 924
 925/* set dst on skb to send packet to us via dev_xmit path. Allows
 926 * packet to go through device based features such as qdisc, netfilter
 927 * hooks and packet sockets with skb->dev set to vrf device.
 928 */
 929static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 930					   struct sk_buff *skb)
 931{
 932	struct net_vrf *vrf = netdev_priv(vrf_dev);
 933	struct dst_entry *dst = NULL;
 934	struct rtable *rth;
 935
 936	rcu_read_lock();
 937
 938	rth = rcu_dereference(vrf->rth);
 939	if (likely(rth)) {
 940		dst = &rth->dst;
 941		dst_hold(dst);
 942	}
 943
 944	rcu_read_unlock();
 945
 946	if (unlikely(!dst)) {
 947		vrf_tx_error(vrf_dev, skb);
 948		return NULL;
 949	}
 950
 951	skb_dst_drop(skb);
 952	skb_dst_set(skb, dst);
 953
 954	return skb;
 955}
 956
 957static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 958				    struct sk_buff *skb)
 959{
 960	vrf_finish_direct(skb);
 961
 962	return vrf_ip_local_out(net, sk, skb);
 963}
 964
 965static int vrf_output_direct(struct net *net, struct sock *sk,
 966			     struct sk_buff *skb)
 967{
 968	int err = 1;
 969
 970	skb->protocol = htons(ETH_P_IP);
 971
 972	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 973		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 974			      NULL, skb->dev, vrf_output_direct_finish);
 975
 976	if (likely(err == 1))
 977		vrf_finish_direct(skb);
 978
 979	return err;
 980}
 981
 982static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 983				    struct sk_buff *skb)
 984{
 985	int err;
 986
 987	err = vrf_output_direct(net, sk, skb);
 988	if (likely(err == 1))
 989		err = vrf_ip_local_out(net, sk, skb);
 990
 991	return err;
 992}
 993
 994static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 995					 struct sock *sk,
 996					 struct sk_buff *skb)
 997{
 998	struct net *net = dev_net(vrf_dev);
 999	int err;
1000
1001	skb->dev = vrf_dev;
1002
1003	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1004		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1005
1006	if (likely(err == 1))
1007		err = vrf_output_direct(net, sk, skb);
1008
1009	if (likely(err == 1))
1010		return skb;
1011
1012	return NULL;
1013}
1014
1015static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1016				  struct sock *sk,
1017				  struct sk_buff *skb)
1018{
1019	/* don't divert multicast or local broadcast */
1020	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1021	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1022		return skb;
1023
1024	vrf_nf_set_untracked(skb);
1025
1026	if (qdisc_tx_is_default(vrf_dev) ||
1027	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1028		return vrf_ip_out_direct(vrf_dev, sk, skb);
1029
1030	return vrf_ip_out_redirect(vrf_dev, skb);
1031}
1032
1033/* called with rcu lock held */
1034static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1035				  struct sock *sk,
1036				  struct sk_buff *skb,
1037				  u16 proto)
1038{
1039	switch (proto) {
1040	case AF_INET:
1041		return vrf_ip_out(vrf_dev, sk, skb);
1042	case AF_INET6:
1043		return vrf_ip6_out(vrf_dev, sk, skb);
1044	}
1045
1046	return skb;
1047}
1048
1049/* holding rtnl */
1050static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1051{
1052	struct rtable *rth = rtnl_dereference(vrf->rth);
1053	struct net *net = dev_net(dev);
1054	struct dst_entry *dst;
1055
1056	RCU_INIT_POINTER(vrf->rth, NULL);
1057	synchronize_rcu();
1058
1059	/* move dev in dst's to loopback so this VRF device can be deleted
1060	 * - based on dst_ifdown
1061	 */
1062	if (rth) {
1063		dst = &rth->dst;
1064		netdev_ref_replace(dst->dev, net->loopback_dev,
1065				   &dst->dev_tracker, GFP_KERNEL);
1066		dst->dev = net->loopback_dev;
1067		dst_release(dst);
1068	}
1069}
1070
1071static int vrf_rtable_create(struct net_device *dev)
1072{
1073	struct net_vrf *vrf = netdev_priv(dev);
1074	struct rtable *rth;
1075
1076	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1077		return -ENOMEM;
1078
1079	/* create a dst for routing packets out through a VRF device */
1080	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1081	if (!rth)
1082		return -ENOMEM;
1083
1084	rth->dst.output	= vrf_output;
1085
1086	rcu_assign_pointer(vrf->rth, rth);
1087
1088	return 0;
1089}
1090
1091/**************************** device handling ********************/
1092
1093/* cycle interface to flush neighbor cache and move routes across tables */
1094static void cycle_netdev(struct net_device *dev,
1095			 struct netlink_ext_ack *extack)
1096{
1097	unsigned int flags = dev->flags;
1098	int ret;
1099
1100	if (!netif_running(dev))
1101		return;
1102
1103	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1104	if (ret >= 0)
1105		ret = dev_change_flags(dev, flags, extack);
1106
1107	if (ret < 0) {
1108		netdev_err(dev,
1109			   "Failed to cycle device %s; route tables might be wrong!\n",
1110			   dev->name);
1111	}
1112}
1113
1114static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1115			    struct netlink_ext_ack *extack)
1116{
1117	int ret;
1118
1119	/* do not allow loopback device to be enslaved to a VRF.
1120	 * The vrf device acts as the loopback for the vrf.
1121	 */
1122	if (port_dev == dev_net(dev)->loopback_dev) {
1123		NL_SET_ERR_MSG(extack,
1124			       "Can not enslave loopback device to a VRF");
1125		return -EOPNOTSUPP;
1126	}
1127
1128	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1129	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1130	if (ret < 0)
1131		goto err;
1132
1133	cycle_netdev(port_dev, extack);
1134
1135	return 0;
1136
1137err:
1138	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1139	return ret;
1140}
1141
1142static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1143			 struct netlink_ext_ack *extack)
1144{
1145	if (netif_is_l3_master(port_dev)) {
1146		NL_SET_ERR_MSG(extack,
1147			       "Can not enslave an L3 master device to a VRF");
1148		return -EINVAL;
1149	}
1150
1151	if (netif_is_l3_slave(port_dev))
1152		return -EINVAL;
1153
1154	return do_vrf_add_slave(dev, port_dev, extack);
1155}
1156
1157/* inverse of do_vrf_add_slave */
1158static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1159{
1160	netdev_upper_dev_unlink(port_dev, dev);
1161	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1162
1163	cycle_netdev(port_dev, NULL);
1164
1165	return 0;
1166}
1167
1168static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1169{
1170	return do_vrf_del_slave(dev, port_dev);
1171}
1172
1173static void vrf_dev_uninit(struct net_device *dev)
1174{
1175	struct net_vrf *vrf = netdev_priv(dev);
1176
1177	vrf_rtable_release(dev, vrf);
1178	vrf_rt6_release(dev, vrf);
1179
1180	free_percpu(dev->dstats);
1181	dev->dstats = NULL;
1182}
1183
1184static int vrf_dev_init(struct net_device *dev)
1185{
1186	struct net_vrf *vrf = netdev_priv(dev);
1187
1188	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1189	if (!dev->dstats)
1190		goto out_nomem;
1191
1192	/* create the default dst which points back to us */
1193	if (vrf_rtable_create(dev) != 0)
1194		goto out_stats;
1195
1196	if (vrf_rt6_create(dev) != 0)
1197		goto out_rth;
1198
1199	dev->flags = IFF_MASTER | IFF_NOARP;
1200
1201	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1202	dev->operstate = IF_OPER_UP;
1203	netdev_lockdep_set_classes(dev);
1204	return 0;
1205
1206out_rth:
1207	vrf_rtable_release(dev, vrf);
1208out_stats:
1209	free_percpu(dev->dstats);
1210	dev->dstats = NULL;
1211out_nomem:
1212	return -ENOMEM;
1213}
1214
1215static const struct net_device_ops vrf_netdev_ops = {
1216	.ndo_init		= vrf_dev_init,
1217	.ndo_uninit		= vrf_dev_uninit,
1218	.ndo_start_xmit		= vrf_xmit,
1219	.ndo_set_mac_address	= eth_mac_addr,
1220	.ndo_get_stats64	= vrf_get_stats64,
1221	.ndo_add_slave		= vrf_add_slave,
1222	.ndo_del_slave		= vrf_del_slave,
1223};
1224
1225static u32 vrf_fib_table(const struct net_device *dev)
1226{
1227	struct net_vrf *vrf = netdev_priv(dev);
1228
1229	return vrf->tb_id;
1230}
1231
1232static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1233{
1234	kfree_skb(skb);
1235	return 0;
1236}
1237
1238static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1239				      struct sk_buff *skb,
1240				      struct net_device *dev)
1241{
1242	struct net *net = dev_net(dev);
1243
1244	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1245		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1246
1247	return skb;
1248}
1249
1250static int vrf_prepare_mac_header(struct sk_buff *skb,
1251				  struct net_device *vrf_dev, u16 proto)
1252{
1253	struct ethhdr *eth;
1254	int err;
1255
1256	/* in general, we do not know if there is enough space in the head of
1257	 * the packet for hosting the mac header.
1258	 */
1259	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1260	if (unlikely(err))
1261		/* no space in the skb head */
1262		return -ENOBUFS;
1263
1264	__skb_push(skb, ETH_HLEN);
1265	eth = (struct ethhdr *)skb->data;
1266
1267	skb_reset_mac_header(skb);
1268	skb_reset_mac_len(skb);
1269
1270	/* we set the ethernet destination and the source addresses to the
1271	 * address of the VRF device.
1272	 */
1273	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1274	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1275	eth->h_proto = htons(proto);
1276
1277	/* the destination address of the Ethernet frame corresponds to the
1278	 * address set on the VRF interface; therefore, the packet is intended
1279	 * to be processed locally.
1280	 */
1281	skb->protocol = eth->h_proto;
1282	skb->pkt_type = PACKET_HOST;
1283
1284	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1285
1286	skb_pull_inline(skb, ETH_HLEN);
1287
1288	return 0;
1289}
1290
1291/* prepare and add the mac header to the packet if it was not set previously.
1292 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1293 * If the mac header was already set, the original mac header is left
1294 * untouched and the function returns immediately.
1295 */
1296static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1297				       struct net_device *vrf_dev,
1298				       u16 proto, struct net_device *orig_dev)
1299{
1300	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1301		return 0;
1302
1303	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1304}
1305
1306#if IS_ENABLED(CONFIG_IPV6)
1307/* neighbor handling is done with actual device; do not want
1308 * to flip skb->dev for those ndisc packets. This really fails
1309 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1310 * a start.
1311 */
1312static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1313{
1314	const struct ipv6hdr *iph = ipv6_hdr(skb);
1315	bool rc = false;
1316
1317	if (iph->nexthdr == NEXTHDR_ICMP) {
1318		const struct icmp6hdr *icmph;
1319		struct icmp6hdr _icmph;
1320
1321		icmph = skb_header_pointer(skb, sizeof(*iph),
1322					   sizeof(_icmph), &_icmph);
1323		if (!icmph)
1324			goto out;
1325
1326		switch (icmph->icmp6_type) {
1327		case NDISC_ROUTER_SOLICITATION:
1328		case NDISC_ROUTER_ADVERTISEMENT:
1329		case NDISC_NEIGHBOUR_SOLICITATION:
1330		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1331		case NDISC_REDIRECT:
1332			rc = true;
1333			break;
1334		}
1335	}
1336
1337out:
1338	return rc;
1339}
1340
1341static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1342					     const struct net_device *dev,
1343					     struct flowi6 *fl6,
1344					     int ifindex,
1345					     const struct sk_buff *skb,
1346					     int flags)
1347{
1348	struct net_vrf *vrf = netdev_priv(dev);
1349
1350	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1351}
1352
1353static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1354			      int ifindex)
1355{
1356	const struct ipv6hdr *iph = ipv6_hdr(skb);
1357	struct flowi6 fl6 = {
1358		.flowi6_iif     = ifindex,
1359		.flowi6_mark    = skb->mark,
1360		.flowi6_proto   = iph->nexthdr,
1361		.daddr          = iph->daddr,
1362		.saddr          = iph->saddr,
1363		.flowlabel      = ip6_flowinfo(iph),
1364	};
1365	struct net *net = dev_net(vrf_dev);
1366	struct rt6_info *rt6;
1367
1368	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1369				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1370	if (unlikely(!rt6))
1371		return;
1372
1373	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1374		return;
1375
1376	skb_dst_set(skb, &rt6->dst);
1377}
1378
1379static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1380				   struct sk_buff *skb)
1381{
1382	int orig_iif = skb->skb_iif;
1383	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1384	bool is_ndisc = ipv6_ndisc_frame(skb);
1385
1386	/* loopback, multicast & non-ND link-local traffic; do not push through
1387	 * packet taps again. Reset pkt_type for upper layers to process skb.
1388	 * For non-loopback strict packets, determine the dst using the original
1389	 * ifindex.
1390	 */
1391	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1392		skb->dev = vrf_dev;
1393		skb->skb_iif = vrf_dev->ifindex;
1394		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1395
1396		if (skb->pkt_type == PACKET_LOOPBACK)
1397			skb->pkt_type = PACKET_HOST;
1398		else
1399			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1400
1401		goto out;
1402	}
1403
1404	/* if packet is NDISC then keep the ingress interface */
1405	if (!is_ndisc) {
1406		struct net_device *orig_dev = skb->dev;
1407
1408		vrf_rx_stats(vrf_dev, skb->len);
1409		skb->dev = vrf_dev;
1410		skb->skb_iif = vrf_dev->ifindex;
1411
1412		if (!list_empty(&vrf_dev->ptype_all)) {
1413			int err;
1414
1415			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1416							  ETH_P_IPV6,
1417							  orig_dev);
1418			if (likely(!err)) {
1419				skb_push(skb, skb->mac_len);
1420				dev_queue_xmit_nit(skb, vrf_dev);
1421				skb_pull(skb, skb->mac_len);
1422			}
1423		}
1424
1425		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1426	}
1427
1428	if (need_strict)
1429		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1430
1431	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1432out:
1433	return skb;
1434}
1435
1436#else
1437static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1438				   struct sk_buff *skb)
1439{
1440	return skb;
1441}
1442#endif
1443
1444static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1445				  struct sk_buff *skb)
1446{
1447	struct net_device *orig_dev = skb->dev;
1448
1449	skb->dev = vrf_dev;
1450	skb->skb_iif = vrf_dev->ifindex;
1451	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1452
1453	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1454		goto out;
1455
1456	/* loopback traffic; do not push through packet taps again.
1457	 * Reset pkt_type for upper layers to process skb
1458	 */
1459	if (skb->pkt_type == PACKET_LOOPBACK) {
1460		skb->pkt_type = PACKET_HOST;
1461		goto out;
1462	}
1463
1464	vrf_rx_stats(vrf_dev, skb->len);
1465
1466	if (!list_empty(&vrf_dev->ptype_all)) {
1467		int err;
1468
1469		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1470						  orig_dev);
1471		if (likely(!err)) {
1472			skb_push(skb, skb->mac_len);
1473			dev_queue_xmit_nit(skb, vrf_dev);
1474			skb_pull(skb, skb->mac_len);
1475		}
1476	}
1477
1478	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1479out:
1480	return skb;
1481}
1482
1483/* called with rcu lock held */
1484static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1485				  struct sk_buff *skb,
1486				  u16 proto)
1487{
1488	switch (proto) {
1489	case AF_INET:
1490		return vrf_ip_rcv(vrf_dev, skb);
1491	case AF_INET6:
1492		return vrf_ip6_rcv(vrf_dev, skb);
1493	}
1494
1495	return skb;
1496}
1497
1498#if IS_ENABLED(CONFIG_IPV6)
1499/* send to link-local or multicast address via interface enslaved to
1500 * VRF device. Force lookup to VRF table without changing flow struct
1501 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1502 * is taken on the dst by this function.
1503 */
1504static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1505					      struct flowi6 *fl6)
1506{
1507	struct net *net = dev_net(dev);
1508	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1509	struct dst_entry *dst = NULL;
1510	struct rt6_info *rt;
1511
1512	/* VRF device does not have a link-local address and
1513	 * sending packets to link-local or mcast addresses over
1514	 * a VRF device does not make sense
1515	 */
1516	if (fl6->flowi6_oif == dev->ifindex) {
1517		dst = &net->ipv6.ip6_null_entry->dst;
1518		return dst;
1519	}
1520
1521	if (!ipv6_addr_any(&fl6->saddr))
1522		flags |= RT6_LOOKUP_F_HAS_SADDR;
1523
1524	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1525	if (rt)
1526		dst = &rt->dst;
1527
1528	return dst;
1529}
1530#endif
1531
1532static const struct l3mdev_ops vrf_l3mdev_ops = {
1533	.l3mdev_fib_table	= vrf_fib_table,
1534	.l3mdev_l3_rcv		= vrf_l3_rcv,
1535	.l3mdev_l3_out		= vrf_l3_out,
1536#if IS_ENABLED(CONFIG_IPV6)
1537	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1538#endif
1539};
1540
1541static void vrf_get_drvinfo(struct net_device *dev,
1542			    struct ethtool_drvinfo *info)
1543{
1544	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1545	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1546}
1547
1548static const struct ethtool_ops vrf_ethtool_ops = {
1549	.get_drvinfo	= vrf_get_drvinfo,
1550};
1551
1552static inline size_t vrf_fib_rule_nl_size(void)
1553{
1554	size_t sz;
1555
1556	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1557	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1558	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1559	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1560
1561	return sz;
1562}
1563
1564static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1565{
1566	struct fib_rule_hdr *frh;
1567	struct nlmsghdr *nlh;
1568	struct sk_buff *skb;
1569	int err;
1570
1571	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1572	    !ipv6_mod_enabled())
1573		return 0;
1574
1575	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1576	if (!skb)
1577		return -ENOMEM;
1578
1579	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1580	if (!nlh)
1581		goto nla_put_failure;
1582
1583	/* rule only needs to appear once */
1584	nlh->nlmsg_flags |= NLM_F_EXCL;
1585
1586	frh = nlmsg_data(nlh);
1587	memset(frh, 0, sizeof(*frh));
1588	frh->family = family;
1589	frh->action = FR_ACT_TO_TBL;
1590
1591	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1592		goto nla_put_failure;
1593
1594	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1595		goto nla_put_failure;
1596
1597	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1598		goto nla_put_failure;
1599
1600	nlmsg_end(skb, nlh);
1601
1602	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1603	skb->sk = dev_net(dev)->rtnl;
1604	if (add_it) {
1605		err = fib_nl_newrule(skb, nlh, NULL);
1606		if (err == -EEXIST)
1607			err = 0;
1608	} else {
1609		err = fib_nl_delrule(skb, nlh, NULL);
1610		if (err == -ENOENT)
1611			err = 0;
1612	}
1613	nlmsg_free(skb);
1614
1615	return err;
1616
1617nla_put_failure:
1618	nlmsg_free(skb);
1619
1620	return -EMSGSIZE;
1621}
1622
1623static int vrf_add_fib_rules(const struct net_device *dev)
1624{
1625	int err;
1626
1627	err = vrf_fib_rule(dev, AF_INET,  true);
1628	if (err < 0)
1629		goto out_err;
1630
1631	err = vrf_fib_rule(dev, AF_INET6, true);
1632	if (err < 0)
1633		goto ipv6_err;
1634
1635#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1636	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1637	if (err < 0)
1638		goto ipmr_err;
1639#endif
1640
1641#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1642	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1643	if (err < 0)
1644		goto ip6mr_err;
1645#endif
1646
1647	return 0;
1648
1649#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1650ip6mr_err:
1651	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1652#endif
1653
1654#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1655ipmr_err:
1656	vrf_fib_rule(dev, AF_INET6,  false);
1657#endif
1658
1659ipv6_err:
1660	vrf_fib_rule(dev, AF_INET,  false);
1661
1662out_err:
1663	netdev_err(dev, "Failed to add FIB rules.\n");
1664	return err;
1665}
1666
1667static void vrf_setup(struct net_device *dev)
1668{
1669	ether_setup(dev);
1670
1671	/* Initialize the device structure. */
1672	dev->netdev_ops = &vrf_netdev_ops;
1673	dev->l3mdev_ops = &vrf_l3mdev_ops;
1674	dev->ethtool_ops = &vrf_ethtool_ops;
1675	dev->needs_free_netdev = true;
1676
1677	/* Fill in device structure with ethernet-generic values. */
1678	eth_hw_addr_random(dev);
1679
1680	/* don't acquire vrf device's netif_tx_lock when transmitting */
1681	dev->features |= NETIF_F_LLTX;
1682
1683	/* don't allow vrf devices to change network namespaces. */
1684	dev->features |= NETIF_F_NETNS_LOCAL;
1685
1686	/* does not make sense for a VLAN to be added to a vrf device */
1687	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1688
1689	/* enable offload features */
1690	dev->features   |= NETIF_F_GSO_SOFTWARE;
1691	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1692	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1693
1694	dev->hw_features = dev->features;
1695	dev->hw_enc_features = dev->features;
1696
1697	/* default to no qdisc; user can add if desired */
1698	dev->priv_flags |= IFF_NO_QUEUE;
1699	dev->priv_flags |= IFF_NO_RX_HANDLER;
1700	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1701
1702	/* VRF devices do not care about MTU, but if the MTU is set
1703	 * too low then the ipv4 and ipv6 protocols are disabled
1704	 * which breaks networking.
1705	 */
1706	dev->min_mtu = IPV6_MIN_MTU;
1707	dev->max_mtu = IP6_MAX_MTU;
1708	dev->mtu = dev->max_mtu;
 
 
1709}
1710
1711static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1712			struct netlink_ext_ack *extack)
1713{
1714	if (tb[IFLA_ADDRESS]) {
1715		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1716			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1717			return -EINVAL;
1718		}
1719		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1720			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1721			return -EADDRNOTAVAIL;
1722		}
1723	}
1724	return 0;
1725}
1726
1727static void vrf_dellink(struct net_device *dev, struct list_head *head)
1728{
1729	struct net_device *port_dev;
1730	struct list_head *iter;
1731
1732	netdev_for_each_lower_dev(dev, port_dev, iter)
1733		vrf_del_slave(dev, port_dev);
1734
1735	vrf_map_unregister_dev(dev);
1736
1737	unregister_netdevice_queue(dev, head);
1738}
1739
1740static int vrf_newlink(struct net *src_net, struct net_device *dev,
1741		       struct nlattr *tb[], struct nlattr *data[],
1742		       struct netlink_ext_ack *extack)
1743{
1744	struct net_vrf *vrf = netdev_priv(dev);
1745	struct netns_vrf *nn_vrf;
1746	bool *add_fib_rules;
1747	struct net *net;
1748	int err;
1749
1750	if (!data || !data[IFLA_VRF_TABLE]) {
1751		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1752		return -EINVAL;
1753	}
1754
1755	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1756	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1757		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1758				    "Invalid VRF table id");
1759		return -EINVAL;
1760	}
1761
1762	dev->priv_flags |= IFF_L3MDEV_MASTER;
1763
1764	err = register_netdevice(dev);
1765	if (err)
1766		goto out;
1767
1768	/* mapping between table_id and vrf;
1769	 * note: such binding could not be done in the dev init function
1770	 * because dev->ifindex id is not available yet.
1771	 */
1772	vrf->ifindex = dev->ifindex;
1773
1774	err = vrf_map_register_dev(dev, extack);
1775	if (err) {
1776		unregister_netdevice(dev);
1777		goto out;
1778	}
1779
1780	net = dev_net(dev);
1781	nn_vrf = net_generic(net, vrf_net_id);
1782
1783	add_fib_rules = &nn_vrf->add_fib_rules;
1784	if (*add_fib_rules) {
1785		err = vrf_add_fib_rules(dev);
1786		if (err) {
1787			vrf_map_unregister_dev(dev);
1788			unregister_netdevice(dev);
1789			goto out;
1790		}
1791		*add_fib_rules = false;
1792	}
1793
1794out:
1795	return err;
1796}
1797
1798static size_t vrf_nl_getsize(const struct net_device *dev)
1799{
1800	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1801}
1802
1803static int vrf_fillinfo(struct sk_buff *skb,
1804			const struct net_device *dev)
1805{
1806	struct net_vrf *vrf = netdev_priv(dev);
1807
1808	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1809}
1810
1811static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1812				 const struct net_device *slave_dev)
1813{
1814	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1815}
1816
1817static int vrf_fill_slave_info(struct sk_buff *skb,
1818			       const struct net_device *vrf_dev,
1819			       const struct net_device *slave_dev)
1820{
1821	struct net_vrf *vrf = netdev_priv(vrf_dev);
1822
1823	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1824		return -EMSGSIZE;
1825
1826	return 0;
1827}
1828
1829static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1830	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1831};
1832
1833static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1834	.kind		= DRV_NAME,
1835	.priv_size	= sizeof(struct net_vrf),
1836
1837	.get_size	= vrf_nl_getsize,
1838	.policy		= vrf_nl_policy,
1839	.validate	= vrf_validate,
1840	.fill_info	= vrf_fillinfo,
1841
1842	.get_slave_size  = vrf_get_slave_size,
1843	.fill_slave_info = vrf_fill_slave_info,
1844
1845	.newlink	= vrf_newlink,
1846	.dellink	= vrf_dellink,
1847	.setup		= vrf_setup,
1848	.maxtype	= IFLA_VRF_MAX,
1849};
1850
1851static int vrf_device_event(struct notifier_block *unused,
1852			    unsigned long event, void *ptr)
1853{
1854	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1855
1856	/* only care about unregister events to drop slave references */
1857	if (event == NETDEV_UNREGISTER) {
1858		struct net_device *vrf_dev;
1859
1860		if (!netif_is_l3_slave(dev))
1861			goto out;
1862
1863		vrf_dev = netdev_master_upper_dev_get(dev);
1864		vrf_del_slave(vrf_dev, dev);
1865	}
1866out:
1867	return NOTIFY_DONE;
1868}
1869
1870static struct notifier_block vrf_notifier_block __read_mostly = {
1871	.notifier_call = vrf_device_event,
1872};
1873
1874static int vrf_map_init(struct vrf_map *vmap)
1875{
1876	spin_lock_init(&vmap->vmap_lock);
1877	hash_init(vmap->ht);
1878
1879	vmap->strict_mode = false;
1880
1881	return 0;
1882}
1883
1884#ifdef CONFIG_SYSCTL
1885static bool vrf_strict_mode(struct vrf_map *vmap)
1886{
1887	bool strict_mode;
1888
1889	vrf_map_lock(vmap);
1890	strict_mode = vmap->strict_mode;
1891	vrf_map_unlock(vmap);
1892
1893	return strict_mode;
1894}
1895
1896static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1897{
1898	bool *cur_mode;
1899	int res = 0;
1900
1901	vrf_map_lock(vmap);
1902
1903	cur_mode = &vmap->strict_mode;
1904	if (*cur_mode == new_mode)
1905		goto unlock;
1906
1907	if (*cur_mode) {
1908		/* disable strict mode */
1909		*cur_mode = false;
1910	} else {
1911		if (vmap->shared_tables) {
1912			/* we cannot allow strict_mode because there are some
1913			 * vrfs that share one or more tables.
1914			 */
1915			res = -EBUSY;
1916			goto unlock;
1917		}
1918
1919		/* no tables are shared among vrfs, so we can go back
1920		 * to 1:1 association between a vrf with its table.
1921		 */
1922		*cur_mode = true;
1923	}
1924
1925unlock:
1926	vrf_map_unlock(vmap);
1927
1928	return res;
1929}
1930
1931static int vrf_shared_table_handler(struct ctl_table *table, int write,
1932				    void *buffer, size_t *lenp, loff_t *ppos)
1933{
1934	struct net *net = (struct net *)table->extra1;
1935	struct vrf_map *vmap = netns_vrf_map(net);
1936	int proc_strict_mode = 0;
1937	struct ctl_table tmp = {
1938		.procname	= table->procname,
1939		.data		= &proc_strict_mode,
1940		.maxlen		= sizeof(int),
1941		.mode		= table->mode,
1942		.extra1		= SYSCTL_ZERO,
1943		.extra2		= SYSCTL_ONE,
1944	};
1945	int ret;
1946
1947	if (!write)
1948		proc_strict_mode = vrf_strict_mode(vmap);
1949
1950	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1951
1952	if (write && ret == 0)
1953		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1954
1955	return ret;
1956}
1957
1958static const struct ctl_table vrf_table[] = {
1959	{
1960		.procname	= "strict_mode",
1961		.data		= NULL,
1962		.maxlen		= sizeof(int),
1963		.mode		= 0644,
1964		.proc_handler	= vrf_shared_table_handler,
1965		/* set by the vrf_netns_init */
1966		.extra1		= NULL,
1967	},
1968	{ },
1969};
1970
1971static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1972{
1973	struct ctl_table *table;
1974
1975	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1976	if (!table)
1977		return -ENOMEM;
1978
1979	/* init the extra1 parameter with the reference to current netns */
1980	table[0].extra1 = net;
1981
1982	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
 
1983	if (!nn_vrf->ctl_hdr) {
1984		kfree(table);
1985		return -ENOMEM;
1986	}
1987
1988	return 0;
1989}
1990
1991static void vrf_netns_exit_sysctl(struct net *net)
1992{
1993	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1994	struct ctl_table *table;
1995
1996	table = nn_vrf->ctl_hdr->ctl_table_arg;
1997	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1998	kfree(table);
1999}
2000#else
2001static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
2002{
2003	return 0;
2004}
2005
2006static void vrf_netns_exit_sysctl(struct net *net)
2007{
2008}
2009#endif
2010
2011/* Initialize per network namespace state */
2012static int __net_init vrf_netns_init(struct net *net)
2013{
2014	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2015
2016	nn_vrf->add_fib_rules = true;
2017	vrf_map_init(&nn_vrf->vmap);
2018
2019	return vrf_netns_init_sysctl(net, nn_vrf);
2020}
2021
2022static void __net_exit vrf_netns_exit(struct net *net)
2023{
2024	vrf_netns_exit_sysctl(net);
2025}
2026
2027static struct pernet_operations vrf_net_ops __net_initdata = {
2028	.init = vrf_netns_init,
2029	.exit = vrf_netns_exit,
2030	.id   = &vrf_net_id,
2031	.size = sizeof(struct netns_vrf),
2032};
2033
2034static int __init vrf_init_module(void)
2035{
2036	int rc;
2037
2038	register_netdevice_notifier(&vrf_notifier_block);
2039
2040	rc = register_pernet_subsys(&vrf_net_ops);
2041	if (rc < 0)
2042		goto error;
2043
2044	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2045					  vrf_ifindex_lookup_by_table_id);
2046	if (rc < 0)
2047		goto unreg_pernet;
2048
2049	rc = rtnl_link_register(&vrf_link_ops);
2050	if (rc < 0)
2051		goto table_lookup_unreg;
2052
2053	return 0;
2054
2055table_lookup_unreg:
2056	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2057				       vrf_ifindex_lookup_by_table_id);
2058
2059unreg_pernet:
2060	unregister_pernet_subsys(&vrf_net_ops);
2061
2062error:
2063	unregister_netdevice_notifier(&vrf_notifier_block);
2064	return rc;
2065}
2066
2067module_init(vrf_init_module);
2068MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2069MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2070MODULE_LICENSE("GPL");
2071MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2072MODULE_VERSION(DRV_VERSION);