Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/sch_generic.h>
  38#include <net/netns/generic.h>
  39#include <net/netfilter/nf_conntrack.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.1"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
  46#define HT_MAP_BITS	4
  47#define HASH_INITVAL	((u32)0xcafef00d)
  48
  49struct  vrf_map {
  50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  51	spinlock_t vmap_lock;
  52
  53	/* shared_tables:
  54	 * count how many distinct tables do not comply with the strict mode
  55	 * requirement.
  56	 * shared_tables value must be 0 in order to enable the strict mode.
  57	 *
  58	 * example of the evolution of shared_tables:
  59	 *                                                        | time
  60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  65	 *
  66	 * shared_tables is a "step function" (or "staircase function")
  67	 * and it is increased by one when the second vrf is associated to a
  68	 * table.
  69	 *
  70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  71	 *
  72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  73	 * value of shared_tables is still 1.
  74	 * This means that no matter how many new vrfs will register on the
  75	 * table 100, the shared_tables will not increase (considering only
  76	 * table 100).
  77	 *
  78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  79	 *
  80	 * Looking at the value of shared_tables we can immediately know if
  81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  82	 * can be enforced iff shared_tables = 0.
  83	 *
  84	 * Conversely, shared_tables is decreased when a vrf is de-associated
  85	 * from a table with exactly two associated vrfs.
  86	 */
  87	u32 shared_tables;
  88
  89	bool strict_mode;
  90};
  91
  92struct vrf_map_elem {
  93	struct hlist_node hnode;
  94	struct list_head vrf_list;  /* VRFs registered to this table */
  95
  96	u32 table_id;
  97	int users;
  98	int ifindex;
  99};
 100
 101static unsigned int vrf_net_id;
 102
 103/* per netns vrf data */
 104struct netns_vrf {
 105	/* protected by rtnl lock */
 106	bool add_fib_rules;
 107
 108	struct vrf_map vmap;
 109	struct ctl_table_header	*ctl_hdr;
 110};
 111
 112struct net_vrf {
 113	struct rtable __rcu	*rth;
 114	struct rt6_info	__rcu	*rt6;
 115#if IS_ENABLED(CONFIG_IPV6)
 116	struct fib6_table	*fib6_table;
 117#endif
 118	u32                     tb_id;
 119
 120	struct list_head	me_list;   /* entry in vrf_map_elem */
 121	int			ifindex;
 122};
 123
 
 
 
 
 
 
 
 
 
 
 124static void vrf_rx_stats(struct net_device *dev, int len)
 125{
 126	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 127
 128	u64_stats_update_begin(&dstats->syncp);
 129	dstats->rx_packets++;
 130	dstats->rx_bytes += len;
 131	u64_stats_update_end(&dstats->syncp);
 132}
 133
 134static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 135{
 136	vrf_dev->stats.tx_errors++;
 137	kfree_skb(skb);
 138}
 139
 140static void vrf_get_stats64(struct net_device *dev,
 141			    struct rtnl_link_stats64 *stats)
 142{
 143	int i;
 144
 145	for_each_possible_cpu(i) {
 146		const struct pcpu_dstats *dstats;
 147		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 148		unsigned int start;
 149
 150		dstats = per_cpu_ptr(dev->dstats, i);
 151		do {
 152			start = u64_stats_fetch_begin(&dstats->syncp);
 153			tbytes = dstats->tx_bytes;
 154			tpkts = dstats->tx_packets;
 155			tdrops = dstats->tx_drops;
 156			rbytes = dstats->rx_bytes;
 157			rpkts = dstats->rx_packets;
 158		} while (u64_stats_fetch_retry(&dstats->syncp, start));
 159		stats->tx_bytes += tbytes;
 160		stats->tx_packets += tpkts;
 161		stats->tx_dropped += tdrops;
 162		stats->rx_bytes += rbytes;
 163		stats->rx_packets += rpkts;
 164	}
 165}
 166
 167static struct vrf_map *netns_vrf_map(struct net *net)
 168{
 169	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 170
 171	return &nn_vrf->vmap;
 172}
 173
 174static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 175{
 176	return netns_vrf_map(dev_net(dev));
 177}
 178
 179static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 180{
 181	struct list_head *me_head = &me->vrf_list;
 182	struct net_vrf *vrf;
 183
 184	if (list_empty(me_head))
 185		return -ENODEV;
 186
 187	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 188
 189	return vrf->ifindex;
 190}
 191
 192static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 193{
 194	struct vrf_map_elem *me;
 195
 196	me = kmalloc(sizeof(*me), flags);
 197	if (!me)
 198		return NULL;
 199
 200	return me;
 201}
 202
 203static void vrf_map_elem_free(struct vrf_map_elem *me)
 204{
 205	kfree(me);
 206}
 207
 208static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 209			      int ifindex, int users)
 210{
 211	me->table_id = table_id;
 212	me->ifindex = ifindex;
 213	me->users = users;
 214	INIT_LIST_HEAD(&me->vrf_list);
 215}
 216
 217static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 218						u32 table_id)
 219{
 220	struct vrf_map_elem *me;
 221	u32 key;
 222
 223	key = jhash_1word(table_id, HASH_INITVAL);
 224	hash_for_each_possible(vmap->ht, me, hnode, key) {
 225		if (me->table_id == table_id)
 226			return me;
 227	}
 228
 229	return NULL;
 230}
 231
 232static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 233{
 234	u32 table_id = me->table_id;
 235	u32 key;
 236
 237	key = jhash_1word(table_id, HASH_INITVAL);
 238	hash_add(vmap->ht, &me->hnode, key);
 239}
 240
 241static void vrf_map_del_elem(struct vrf_map_elem *me)
 242{
 243	hash_del(&me->hnode);
 244}
 245
 246static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 247{
 248	spin_lock(&vmap->vmap_lock);
 249}
 250
 251static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 252{
 253	spin_unlock(&vmap->vmap_lock);
 254}
 255
 256/* called with rtnl lock held */
 257static int
 258vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 259{
 260	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 261	struct net_vrf *vrf = netdev_priv(dev);
 262	struct vrf_map_elem *new_me, *me;
 263	u32 table_id = vrf->tb_id;
 264	bool free_new_me = false;
 265	int users;
 266	int res;
 267
 268	/* we pre-allocate elements used in the spin-locked section (so that we
 269	 * keep the spinlock as short as possible).
 270	 */
 271	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 272	if (!new_me)
 273		return -ENOMEM;
 274
 275	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 276
 277	vrf_map_lock(vmap);
 278
 279	me = vrf_map_lookup_elem(vmap, table_id);
 280	if (!me) {
 281		me = new_me;
 282		vrf_map_add_elem(vmap, me);
 283		goto link_vrf;
 284	}
 285
 286	/* we already have an entry in the vrf_map, so it means there is (at
 287	 * least) a vrf registered on the specific table.
 288	 */
 289	free_new_me = true;
 290	if (vmap->strict_mode) {
 291		/* vrfs cannot share the same table */
 292		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 293		res = -EBUSY;
 294		goto unlock;
 295	}
 296
 297link_vrf:
 298	users = ++me->users;
 299	if (users == 2)
 300		++vmap->shared_tables;
 301
 302	list_add(&vrf->me_list, &me->vrf_list);
 303
 304	res = 0;
 305
 306unlock:
 307	vrf_map_unlock(vmap);
 308
 309	/* clean-up, if needed */
 310	if (free_new_me)
 311		vrf_map_elem_free(new_me);
 312
 313	return res;
 314}
 315
 316/* called with rtnl lock held */
 317static void vrf_map_unregister_dev(struct net_device *dev)
 318{
 319	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 320	struct net_vrf *vrf = netdev_priv(dev);
 321	u32 table_id = vrf->tb_id;
 322	struct vrf_map_elem *me;
 323	int users;
 324
 325	vrf_map_lock(vmap);
 326
 327	me = vrf_map_lookup_elem(vmap, table_id);
 328	if (!me)
 329		goto unlock;
 330
 331	list_del(&vrf->me_list);
 332
 333	users = --me->users;
 334	if (users == 1) {
 335		--vmap->shared_tables;
 336	} else if (users == 0) {
 337		vrf_map_del_elem(me);
 338
 339		/* no one will refer to this element anymore */
 340		vrf_map_elem_free(me);
 341	}
 342
 343unlock:
 344	vrf_map_unlock(vmap);
 345}
 346
 347/* return the vrf device index associated with the table_id */
 348static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 349{
 350	struct vrf_map *vmap = netns_vrf_map(net);
 351	struct vrf_map_elem *me;
 352	int ifindex;
 353
 354	vrf_map_lock(vmap);
 355
 356	if (!vmap->strict_mode) {
 357		ifindex = -EPERM;
 358		goto unlock;
 359	}
 360
 361	me = vrf_map_lookup_elem(vmap, table_id);
 362	if (!me) {
 363		ifindex = -ENODEV;
 364		goto unlock;
 365	}
 366
 367	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 368
 369unlock:
 370	vrf_map_unlock(vmap);
 371
 372	return ifindex;
 373}
 374
 375/* by default VRF devices do not have a qdisc and are expected
 376 * to be created with only a single queue.
 377 */
 378static bool qdisc_tx_is_default(const struct net_device *dev)
 379{
 380	struct netdev_queue *txq;
 381	struct Qdisc *qdisc;
 382
 383	if (dev->num_tx_queues > 1)
 384		return false;
 385
 386	txq = netdev_get_tx_queue(dev, 0);
 387	qdisc = rcu_access_pointer(txq->qdisc);
 388
 389	return !qdisc->enqueue;
 390}
 391
 392/* Local traffic destined to local address. Reinsert the packet to rx
 393 * path, similar to loopback handling.
 394 */
 395static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 396			  struct dst_entry *dst)
 397{
 398	int len = skb->len;
 399
 400	skb_orphan(skb);
 401
 402	skb_dst_set(skb, dst);
 403
 404	/* set pkt_type to avoid skb hitting packet taps twice -
 405	 * once on Tx and again in Rx processing
 406	 */
 407	skb->pkt_type = PACKET_LOOPBACK;
 408
 409	skb->protocol = eth_type_trans(skb, dev);
 410
 411	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
 412		vrf_rx_stats(dev, len);
 413	else
 414		this_cpu_inc(dev->dstats->rx_drops);
 415
 416	return NETDEV_TX_OK;
 417}
 418
 419static void vrf_nf_set_untracked(struct sk_buff *skb)
 420{
 421	if (skb_get_nfct(skb) == 0)
 422		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
 423}
 424
 425static void vrf_nf_reset_ct(struct sk_buff *skb)
 426{
 427	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
 428		nf_reset_ct(skb);
 429}
 430
 431#if IS_ENABLED(CONFIG_IPV6)
 432static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 433			     struct sk_buff *skb)
 434{
 435	int err;
 436
 437	vrf_nf_reset_ct(skb);
 438
 439	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 440		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 441
 442	if (likely(err == 1))
 443		err = dst_output(net, sk, skb);
 444
 445	return err;
 446}
 447
 448static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 449					   struct net_device *dev)
 450{
 451	const struct ipv6hdr *iph;
 452	struct net *net = dev_net(skb->dev);
 453	struct flowi6 fl6;
 454	int ret = NET_XMIT_DROP;
 455	struct dst_entry *dst;
 456	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 457
 458	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 459		goto err;
 460
 461	iph = ipv6_hdr(skb);
 462
 463	memset(&fl6, 0, sizeof(fl6));
 464	/* needed to match OIF rule */
 465	fl6.flowi6_l3mdev = dev->ifindex;
 466	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 467	fl6.daddr = iph->daddr;
 468	fl6.saddr = iph->saddr;
 469	fl6.flowlabel = ip6_flowinfo(iph);
 470	fl6.flowi6_mark = skb->mark;
 471	fl6.flowi6_proto = iph->nexthdr;
 
 472
 473	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 474	if (IS_ERR(dst) || dst == dst_null)
 475		goto err;
 476
 477	skb_dst_drop(skb);
 478
 479	/* if dst.dev is the VRF device again this is locally originated traffic
 480	 * destined to a local address. Short circuit to Rx path.
 
 481	 */
 482	if (dst->dev == dev)
 483		return vrf_local_xmit(skb, dev, dst);
 484
 485	skb_dst_set(skb, dst);
 486
 487	/* strip the ethernet header added for pass through VRF device */
 488	__skb_pull(skb, skb_network_offset(skb));
 489
 490	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
 491	ret = vrf_ip6_local_out(net, skb->sk, skb);
 492	if (unlikely(net_xmit_eval(ret)))
 493		dev->stats.tx_errors++;
 494	else
 495		ret = NET_XMIT_SUCCESS;
 496
 497	return ret;
 498err:
 499	vrf_tx_error(dev, skb);
 500	return NET_XMIT_DROP;
 501}
 502#else
 503static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 504					   struct net_device *dev)
 505{
 506	vrf_tx_error(dev, skb);
 507	return NET_XMIT_DROP;
 508}
 509#endif
 510
 511/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 512static int vrf_ip_local_out(struct net *net, struct sock *sk,
 513			    struct sk_buff *skb)
 514{
 515	int err;
 516
 517	vrf_nf_reset_ct(skb);
 518
 519	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 520		      skb, NULL, skb_dst(skb)->dev, dst_output);
 521	if (likely(err == 1))
 522		err = dst_output(net, sk, skb);
 523
 524	return err;
 525}
 526
 527static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 528					   struct net_device *vrf_dev)
 529{
 530	struct iphdr *ip4h;
 531	int ret = NET_XMIT_DROP;
 532	struct flowi4 fl4;
 533	struct net *net = dev_net(vrf_dev);
 534	struct rtable *rt;
 535
 536	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 537		goto err;
 538
 539	ip4h = ip_hdr(skb);
 540
 541	memset(&fl4, 0, sizeof(fl4));
 542	/* needed to match OIF rule */
 543	fl4.flowi4_l3mdev = vrf_dev->ifindex;
 544	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 545	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 546	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
 547	fl4.flowi4_proto = ip4h->protocol;
 548	fl4.daddr = ip4h->daddr;
 549	fl4.saddr = ip4h->saddr;
 550
 551	rt = ip_route_output_flow(net, &fl4, NULL);
 552	if (IS_ERR(rt))
 553		goto err;
 554
 555	skb_dst_drop(skb);
 556
 557	/* if dst.dev is the VRF device again this is locally originated traffic
 558	 * destined to a local address. Short circuit to Rx path.
 
 559	 */
 560	if (rt->dst.dev == vrf_dev)
 561		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 562
 563	skb_dst_set(skb, &rt->dst);
 564
 565	/* strip the ethernet header added for pass through VRF device */
 566	__skb_pull(skb, skb_network_offset(skb));
 567
 568	if (!ip4h->saddr) {
 569		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 570					       RT_SCOPE_LINK);
 571	}
 572
 573	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
 574	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 575	if (unlikely(net_xmit_eval(ret)))
 576		vrf_dev->stats.tx_errors++;
 577	else
 578		ret = NET_XMIT_SUCCESS;
 579
 580out:
 581	return ret;
 582err:
 583	vrf_tx_error(vrf_dev, skb);
 584	goto out;
 585}
 586
 587static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 588{
 589	switch (skb->protocol) {
 590	case htons(ETH_P_IP):
 591		return vrf_process_v4_outbound(skb, dev);
 592	case htons(ETH_P_IPV6):
 593		return vrf_process_v6_outbound(skb, dev);
 594	default:
 595		vrf_tx_error(dev, skb);
 596		return NET_XMIT_DROP;
 597	}
 598}
 599
 600static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 601{
 602	int len = skb->len;
 603	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 604
 605	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 606		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 607
 608		u64_stats_update_begin(&dstats->syncp);
 609		dstats->tx_packets++;
 610		dstats->tx_bytes += len;
 611		u64_stats_update_end(&dstats->syncp);
 612	} else {
 613		this_cpu_inc(dev->dstats->tx_drops);
 614	}
 615
 616	return ret;
 617}
 618
 619static void vrf_finish_direct(struct sk_buff *skb)
 
 620{
 621	struct net_device *vrf_dev = skb->dev;
 622
 623	if (!list_empty(&vrf_dev->ptype_all) &&
 624	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 625		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 626
 627		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 628		eth_zero_addr(eth->h_dest);
 629		eth->h_proto = skb->protocol;
 630
 
 631		dev_queue_xmit_nit(skb, vrf_dev);
 
 632
 633		skb_pull(skb, ETH_HLEN);
 634	}
 635
 636	vrf_nf_reset_ct(skb);
 637}
 638
 639#if IS_ENABLED(CONFIG_IPV6)
 640/* modelled after ip6_finish_output2 */
 641static int vrf_finish_output6(struct net *net, struct sock *sk,
 642			      struct sk_buff *skb)
 643{
 644	struct dst_entry *dst = skb_dst(skb);
 645	struct net_device *dev = dst->dev;
 646	const struct in6_addr *nexthop;
 647	struct neighbour *neigh;
 648	int ret;
 649
 650	vrf_nf_reset_ct(skb);
 651
 652	skb->protocol = htons(ETH_P_IPV6);
 653	skb->dev = dev;
 654
 655	rcu_read_lock();
 656	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 657	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 658	if (unlikely(!neigh))
 659		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 660	if (!IS_ERR(neigh)) {
 661		sock_confirm_neigh(skb, neigh);
 662		ret = neigh_output(neigh, skb, false);
 663		rcu_read_unlock();
 664		return ret;
 665	}
 666	rcu_read_unlock();
 667
 668	IP6_INC_STATS(dev_net(dst->dev),
 669		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 670	kfree_skb(skb);
 671	return -EINVAL;
 672}
 673
 674/* modelled after ip6_output */
 675static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 678			    net, sk, skb, NULL, skb_dst(skb)->dev,
 679			    vrf_finish_output6,
 680			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 681}
 682
 683/* set dst on skb to send packet to us via dev_xmit path. Allows
 684 * packet to go through device based features such as qdisc, netfilter
 685 * hooks and packet sockets with skb->dev set to vrf device.
 686 */
 687static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 688					    struct sk_buff *skb)
 689{
 690	struct net_vrf *vrf = netdev_priv(vrf_dev);
 691	struct dst_entry *dst = NULL;
 692	struct rt6_info *rt6;
 693
 694	rcu_read_lock();
 695
 696	rt6 = rcu_dereference(vrf->rt6);
 697	if (likely(rt6)) {
 698		dst = &rt6->dst;
 699		dst_hold(dst);
 700	}
 701
 702	rcu_read_unlock();
 703
 704	if (unlikely(!dst)) {
 705		vrf_tx_error(vrf_dev, skb);
 706		return NULL;
 707	}
 708
 709	skb_dst_drop(skb);
 710	skb_dst_set(skb, dst);
 711
 712	return skb;
 713}
 714
 715static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 716				     struct sk_buff *skb)
 717{
 718	vrf_finish_direct(skb);
 719
 720	return vrf_ip6_local_out(net, sk, skb);
 721}
 722
 723static int vrf_output6_direct(struct net *net, struct sock *sk,
 724			      struct sk_buff *skb)
 725{
 726	int err = 1;
 727
 728	skb->protocol = htons(ETH_P_IPV6);
 729
 730	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 731		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 732			      NULL, skb->dev, vrf_output6_direct_finish);
 733
 734	if (likely(err == 1))
 735		vrf_finish_direct(skb);
 736
 737	return err;
 738}
 739
 740static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 741				     struct sk_buff *skb)
 742{
 743	int err;
 744
 745	err = vrf_output6_direct(net, sk, skb);
 746	if (likely(err == 1))
 747		err = vrf_ip6_local_out(net, sk, skb);
 748
 749	return err;
 750}
 751
 752static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 753					  struct sock *sk,
 754					  struct sk_buff *skb)
 755{
 756	struct net *net = dev_net(vrf_dev);
 757	int err;
 758
 759	skb->dev = vrf_dev;
 760
 761	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 762		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 763
 764	if (likely(err == 1))
 765		err = vrf_output6_direct(net, sk, skb);
 766
 
 767	if (likely(err == 1))
 768		return skb;
 
 
 769
 770	return NULL;
 771}
 772
 773static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 774				   struct sock *sk,
 775				   struct sk_buff *skb)
 776{
 777	/* don't divert link scope packets */
 778	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 779		return skb;
 780
 781	vrf_nf_set_untracked(skb);
 782
 783	if (qdisc_tx_is_default(vrf_dev) ||
 784	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 785		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 786
 787	return vrf_ip6_out_redirect(vrf_dev, skb);
 788}
 789
 790/* holding rtnl */
 791static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 792{
 793	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 794	struct net *net = dev_net(dev);
 795	struct dst_entry *dst;
 796
 797	RCU_INIT_POINTER(vrf->rt6, NULL);
 798	synchronize_rcu();
 799
 800	/* move dev in dst's to loopback so this VRF device can be deleted
 801	 * - based on dst_ifdown
 802	 */
 803	if (rt6) {
 804		dst = &rt6->dst;
 805		netdev_ref_replace(dst->dev, net->loopback_dev,
 806				   &dst->dev_tracker, GFP_KERNEL);
 807		dst->dev = net->loopback_dev;
 
 808		dst_release(dst);
 809	}
 810}
 811
 812static int vrf_rt6_create(struct net_device *dev)
 813{
 814	int flags = DST_NOPOLICY | DST_NOXFRM;
 815	struct net_vrf *vrf = netdev_priv(dev);
 816	struct net *net = dev_net(dev);
 817	struct rt6_info *rt6;
 818	int rc = -ENOMEM;
 819
 820	/* IPv6 can be CONFIG enabled and then disabled runtime */
 821	if (!ipv6_mod_enabled())
 822		return 0;
 823
 824	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 825	if (!vrf->fib6_table)
 826		goto out;
 827
 828	/* create a dst for routing packets out a VRF device */
 829	rt6 = ip6_dst_alloc(net, dev, flags);
 830	if (!rt6)
 831		goto out;
 832
 833	rt6->dst.output	= vrf_output6;
 834
 835	rcu_assign_pointer(vrf->rt6, rt6);
 836
 837	rc = 0;
 838out:
 839	return rc;
 840}
 841#else
 842static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 843				   struct sock *sk,
 844				   struct sk_buff *skb)
 845{
 846	return skb;
 847}
 848
 849static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 850{
 851}
 852
 853static int vrf_rt6_create(struct net_device *dev)
 854{
 855	return 0;
 856}
 857#endif
 858
 859/* modelled after ip_finish_output2 */
 860static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 861{
 862	struct dst_entry *dst = skb_dst(skb);
 863	struct rtable *rt = (struct rtable *)dst;
 864	struct net_device *dev = dst->dev;
 865	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 866	struct neighbour *neigh;
 867	bool is_v6gw = false;
 
 868
 869	vrf_nf_reset_ct(skb);
 870
 871	/* Be paranoid, rather than too clever. */
 872	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 873		skb = skb_expand_head(skb, hh_len);
 874		if (!skb) {
 875			dev->stats.tx_errors++;
 876			return -ENOMEM;
 
 
 877		}
 
 
 
 
 
 878	}
 879
 880	rcu_read_lock();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883	if (!IS_ERR(neigh)) {
 884		int ret;
 885
 886		sock_confirm_neigh(skb, neigh);
 887		/* if crossing protocols, can not use the cached header */
 888		ret = neigh_output(neigh, skb, is_v6gw);
 889		rcu_read_unlock();
 890		return ret;
 891	}
 892
 893	rcu_read_unlock();
 
 894	vrf_tx_error(skb->dev, skb);
 895	return -EINVAL;
 896}
 897
 898static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 899{
 900	struct net_device *dev = skb_dst(skb)->dev;
 901
 902	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 903
 904	skb->dev = dev;
 905	skb->protocol = htons(ETH_P_IP);
 906
 907	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 908			    net, sk, skb, NULL, dev,
 909			    vrf_finish_output,
 910			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 911}
 912
 913/* set dst on skb to send packet to us via dev_xmit path. Allows
 914 * packet to go through device based features such as qdisc, netfilter
 915 * hooks and packet sockets with skb->dev set to vrf device.
 916 */
 917static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 918					   struct sk_buff *skb)
 919{
 920	struct net_vrf *vrf = netdev_priv(vrf_dev);
 921	struct dst_entry *dst = NULL;
 922	struct rtable *rth;
 923
 924	rcu_read_lock();
 925
 926	rth = rcu_dereference(vrf->rth);
 927	if (likely(rth)) {
 928		dst = &rth->dst;
 929		dst_hold(dst);
 930	}
 931
 932	rcu_read_unlock();
 933
 934	if (unlikely(!dst)) {
 935		vrf_tx_error(vrf_dev, skb);
 936		return NULL;
 937	}
 938
 939	skb_dst_drop(skb);
 940	skb_dst_set(skb, dst);
 941
 942	return skb;
 943}
 944
 945static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 946				    struct sk_buff *skb)
 947{
 948	vrf_finish_direct(skb);
 949
 950	return vrf_ip_local_out(net, sk, skb);
 951}
 952
 953static int vrf_output_direct(struct net *net, struct sock *sk,
 954			     struct sk_buff *skb)
 955{
 956	int err = 1;
 957
 958	skb->protocol = htons(ETH_P_IP);
 959
 960	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 961		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 962			      NULL, skb->dev, vrf_output_direct_finish);
 963
 964	if (likely(err == 1))
 965		vrf_finish_direct(skb);
 966
 967	return err;
 968}
 969
 970static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 971				    struct sk_buff *skb)
 972{
 973	int err;
 974
 975	err = vrf_output_direct(net, sk, skb);
 976	if (likely(err == 1))
 977		err = vrf_ip_local_out(net, sk, skb);
 978
 979	return err;
 980}
 981
 982static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 983					 struct sock *sk,
 984					 struct sk_buff *skb)
 985{
 986	struct net *net = dev_net(vrf_dev);
 987	int err;
 988
 989	skb->dev = vrf_dev;
 990
 991	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 992		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 993
 994	if (likely(err == 1))
 995		err = vrf_output_direct(net, sk, skb);
 996
 
 997	if (likely(err == 1))
 998		return skb;
 
 
 999
1000	return NULL;
1001}
1002
1003static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004				  struct sock *sk,
1005				  struct sk_buff *skb)
1006{
1007	/* don't divert multicast or local broadcast */
1008	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010		return skb;
1011
1012	vrf_nf_set_untracked(skb);
1013
1014	if (qdisc_tx_is_default(vrf_dev) ||
1015	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016		return vrf_ip_out_direct(vrf_dev, sk, skb);
1017
1018	return vrf_ip_out_redirect(vrf_dev, skb);
1019}
1020
1021/* called with rcu lock held */
1022static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023				  struct sock *sk,
1024				  struct sk_buff *skb,
1025				  u16 proto)
1026{
1027	switch (proto) {
1028	case AF_INET:
1029		return vrf_ip_out(vrf_dev, sk, skb);
1030	case AF_INET6:
1031		return vrf_ip6_out(vrf_dev, sk, skb);
1032	}
1033
1034	return skb;
1035}
1036
1037/* holding rtnl */
1038static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039{
1040	struct rtable *rth = rtnl_dereference(vrf->rth);
1041	struct net *net = dev_net(dev);
1042	struct dst_entry *dst;
1043
1044	RCU_INIT_POINTER(vrf->rth, NULL);
1045	synchronize_rcu();
1046
1047	/* move dev in dst's to loopback so this VRF device can be deleted
1048	 * - based on dst_ifdown
1049	 */
1050	if (rth) {
1051		dst = &rth->dst;
1052		netdev_ref_replace(dst->dev, net->loopback_dev,
1053				   &dst->dev_tracker, GFP_KERNEL);
1054		dst->dev = net->loopback_dev;
 
1055		dst_release(dst);
1056	}
1057}
1058
1059static int vrf_rtable_create(struct net_device *dev)
1060{
1061	struct net_vrf *vrf = netdev_priv(dev);
1062	struct rtable *rth;
1063
1064	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065		return -ENOMEM;
1066
1067	/* create a dst for routing packets out through a VRF device */
1068	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1069	if (!rth)
1070		return -ENOMEM;
1071
1072	rth->dst.output	= vrf_output;
1073
1074	rcu_assign_pointer(vrf->rth, rth);
1075
1076	return 0;
1077}
1078
1079/**************************** device handling ********************/
1080
1081/* cycle interface to flush neighbor cache and move routes across tables */
1082static void cycle_netdev(struct net_device *dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	unsigned int flags = dev->flags;
1086	int ret;
1087
1088	if (!netif_running(dev))
1089		return;
1090
1091	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092	if (ret >= 0)
1093		ret = dev_change_flags(dev, flags, extack);
1094
1095	if (ret < 0) {
1096		netdev_err(dev,
1097			   "Failed to cycle device %s; route tables might be wrong!\n",
1098			   dev->name);
1099	}
1100}
1101
1102static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103			    struct netlink_ext_ack *extack)
1104{
1105	int ret;
1106
1107	/* do not allow loopback device to be enslaved to a VRF.
1108	 * The vrf device acts as the loopback for the vrf.
1109	 */
1110	if (port_dev == dev_net(dev)->loopback_dev) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Can not enslave loopback device to a VRF");
1113		return -EOPNOTSUPP;
1114	}
1115
1116	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118	if (ret < 0)
1119		goto err;
1120
1121	cycle_netdev(port_dev, extack);
1122
1123	return 0;
1124
1125err:
1126	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127	return ret;
1128}
1129
1130static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131			 struct netlink_ext_ack *extack)
1132{
1133	if (netif_is_l3_master(port_dev)) {
1134		NL_SET_ERR_MSG(extack,
1135			       "Can not enslave an L3 master device to a VRF");
1136		return -EINVAL;
1137	}
1138
1139	if (netif_is_l3_slave(port_dev))
1140		return -EINVAL;
1141
1142	return do_vrf_add_slave(dev, port_dev, extack);
1143}
1144
1145/* inverse of do_vrf_add_slave */
1146static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147{
1148	netdev_upper_dev_unlink(port_dev, dev);
1149	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150
1151	cycle_netdev(port_dev, NULL);
1152
1153	return 0;
1154}
1155
1156static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157{
1158	return do_vrf_del_slave(dev, port_dev);
1159}
1160
1161static void vrf_dev_uninit(struct net_device *dev)
1162{
1163	struct net_vrf *vrf = netdev_priv(dev);
1164
1165	vrf_rtable_release(dev, vrf);
1166	vrf_rt6_release(dev, vrf);
 
 
 
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
 
 
 
 
1173	/* create the default dst which points back to us */
1174	if (vrf_rtable_create(dev) != 0)
1175		goto out_nomem;
1176
1177	if (vrf_rt6_create(dev) != 0)
1178		goto out_rth;
1179
1180	dev->flags = IFF_MASTER | IFF_NOARP;
1181
 
 
 
1182	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1183	dev->operstate = IF_OPER_UP;
1184	netdev_lockdep_set_classes(dev);
1185	return 0;
1186
1187out_rth:
1188	vrf_rtable_release(dev, vrf);
 
 
 
1189out_nomem:
1190	return -ENOMEM;
1191}
1192
1193static const struct net_device_ops vrf_netdev_ops = {
1194	.ndo_init		= vrf_dev_init,
1195	.ndo_uninit		= vrf_dev_uninit,
1196	.ndo_start_xmit		= vrf_xmit,
1197	.ndo_set_mac_address	= eth_mac_addr,
1198	.ndo_get_stats64	= vrf_get_stats64,
1199	.ndo_add_slave		= vrf_add_slave,
1200	.ndo_del_slave		= vrf_del_slave,
1201};
1202
1203static u32 vrf_fib_table(const struct net_device *dev)
1204{
1205	struct net_vrf *vrf = netdev_priv(dev);
1206
1207	return vrf->tb_id;
1208}
1209
1210static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211{
1212	kfree_skb(skb);
1213	return 0;
1214}
1215
1216static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217				      struct sk_buff *skb,
1218				      struct net_device *dev)
1219{
1220	struct net *net = dev_net(dev);
1221
1222	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1224
1225	return skb;
1226}
1227
1228static int vrf_prepare_mac_header(struct sk_buff *skb,
1229				  struct net_device *vrf_dev, u16 proto)
1230{
1231	struct ethhdr *eth;
1232	int err;
1233
1234	/* in general, we do not know if there is enough space in the head of
1235	 * the packet for hosting the mac header.
1236	 */
1237	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238	if (unlikely(err))
1239		/* no space in the skb head */
1240		return -ENOBUFS;
1241
1242	__skb_push(skb, ETH_HLEN);
1243	eth = (struct ethhdr *)skb->data;
1244
1245	skb_reset_mac_header(skb);
1246	skb_reset_mac_len(skb);
1247
1248	/* we set the ethernet destination and the source addresses to the
1249	 * address of the VRF device.
1250	 */
1251	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1252	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1253	eth->h_proto = htons(proto);
1254
1255	/* the destination address of the Ethernet frame corresponds to the
1256	 * address set on the VRF interface; therefore, the packet is intended
1257	 * to be processed locally.
1258	 */
1259	skb->protocol = eth->h_proto;
1260	skb->pkt_type = PACKET_HOST;
1261
1262	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1263
1264	skb_pull_inline(skb, ETH_HLEN);
1265
1266	return 0;
1267}
1268
1269/* prepare and add the mac header to the packet if it was not set previously.
1270 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1271 * If the mac header was already set, the original mac header is left
1272 * untouched and the function returns immediately.
1273 */
1274static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1275				       struct net_device *vrf_dev,
1276				       u16 proto, struct net_device *orig_dev)
1277{
1278	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1279		return 0;
1280
1281	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1282}
1283
1284#if IS_ENABLED(CONFIG_IPV6)
1285/* neighbor handling is done with actual device; do not want
1286 * to flip skb->dev for those ndisc packets. This really fails
1287 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1288 * a start.
1289 */
1290static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1291{
1292	const struct ipv6hdr *iph = ipv6_hdr(skb);
1293	bool rc = false;
1294
1295	if (iph->nexthdr == NEXTHDR_ICMP) {
1296		const struct icmp6hdr *icmph;
1297		struct icmp6hdr _icmph;
1298
1299		icmph = skb_header_pointer(skb, sizeof(*iph),
1300					   sizeof(_icmph), &_icmph);
1301		if (!icmph)
1302			goto out;
1303
1304		switch (icmph->icmp6_type) {
1305		case NDISC_ROUTER_SOLICITATION:
1306		case NDISC_ROUTER_ADVERTISEMENT:
1307		case NDISC_NEIGHBOUR_SOLICITATION:
1308		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1309		case NDISC_REDIRECT:
1310			rc = true;
1311			break;
1312		}
1313	}
1314
1315out:
1316	return rc;
1317}
1318
1319static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1320					     const struct net_device *dev,
1321					     struct flowi6 *fl6,
1322					     int ifindex,
1323					     const struct sk_buff *skb,
1324					     int flags)
1325{
1326	struct net_vrf *vrf = netdev_priv(dev);
1327
1328	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1329}
1330
1331static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1332			      int ifindex)
1333{
1334	const struct ipv6hdr *iph = ipv6_hdr(skb);
1335	struct flowi6 fl6 = {
1336		.flowi6_iif     = ifindex,
1337		.flowi6_mark    = skb->mark,
1338		.flowi6_proto   = iph->nexthdr,
1339		.daddr          = iph->daddr,
1340		.saddr          = iph->saddr,
1341		.flowlabel      = ip6_flowinfo(iph),
1342	};
1343	struct net *net = dev_net(vrf_dev);
1344	struct rt6_info *rt6;
1345
1346	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1347				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1348	if (unlikely(!rt6))
1349		return;
1350
1351	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1352		return;
1353
1354	skb_dst_set(skb, &rt6->dst);
1355}
1356
1357static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1358				   struct sk_buff *skb)
1359{
1360	int orig_iif = skb->skb_iif;
1361	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1362	bool is_ndisc = ipv6_ndisc_frame(skb);
1363
1364	/* loopback, multicast & non-ND link-local traffic; do not push through
1365	 * packet taps again. Reset pkt_type for upper layers to process skb.
1366	 * For non-loopback strict packets, determine the dst using the original
1367	 * ifindex.
1368	 */
1369	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1370		skb->dev = vrf_dev;
1371		skb->skb_iif = vrf_dev->ifindex;
1372		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1373
1374		if (skb->pkt_type == PACKET_LOOPBACK)
1375			skb->pkt_type = PACKET_HOST;
1376		else
1377			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1378
1379		goto out;
1380	}
1381
1382	/* if packet is NDISC then keep the ingress interface */
1383	if (!is_ndisc) {
1384		struct net_device *orig_dev = skb->dev;
1385
1386		vrf_rx_stats(vrf_dev, skb->len);
1387		skb->dev = vrf_dev;
1388		skb->skb_iif = vrf_dev->ifindex;
1389
1390		if (!list_empty(&vrf_dev->ptype_all)) {
1391			int err;
1392
1393			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1394							  ETH_P_IPV6,
1395							  orig_dev);
1396			if (likely(!err)) {
1397				skb_push(skb, skb->mac_len);
1398				dev_queue_xmit_nit(skb, vrf_dev);
1399				skb_pull(skb, skb->mac_len);
1400			}
1401		}
1402
1403		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1404	}
1405
1406	if (need_strict)
1407		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1408
1409	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1410out:
1411	return skb;
1412}
1413
1414#else
1415static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1416				   struct sk_buff *skb)
1417{
1418	return skb;
1419}
1420#endif
1421
1422static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1423				  struct sk_buff *skb)
1424{
1425	struct net_device *orig_dev = skb->dev;
1426
1427	skb->dev = vrf_dev;
1428	skb->skb_iif = vrf_dev->ifindex;
1429	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1430
1431	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1432		goto out;
1433
1434	/* loopback traffic; do not push through packet taps again.
1435	 * Reset pkt_type for upper layers to process skb
1436	 */
1437	if (skb->pkt_type == PACKET_LOOPBACK) {
1438		skb->pkt_type = PACKET_HOST;
1439		goto out;
1440	}
1441
1442	vrf_rx_stats(vrf_dev, skb->len);
1443
1444	if (!list_empty(&vrf_dev->ptype_all)) {
1445		int err;
1446
1447		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1448						  orig_dev);
1449		if (likely(!err)) {
1450			skb_push(skb, skb->mac_len);
1451			dev_queue_xmit_nit(skb, vrf_dev);
1452			skb_pull(skb, skb->mac_len);
1453		}
1454	}
1455
1456	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1457out:
1458	return skb;
1459}
1460
1461/* called with rcu lock held */
1462static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463				  struct sk_buff *skb,
1464				  u16 proto)
1465{
1466	switch (proto) {
1467	case AF_INET:
1468		return vrf_ip_rcv(vrf_dev, skb);
1469	case AF_INET6:
1470		return vrf_ip6_rcv(vrf_dev, skb);
1471	}
1472
1473	return skb;
1474}
1475
1476#if IS_ENABLED(CONFIG_IPV6)
1477/* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1481 */
1482static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1483					      struct flowi6 *fl6)
1484{
1485	struct net *net = dev_net(dev);
1486	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487	struct dst_entry *dst = NULL;
1488	struct rt6_info *rt;
1489
1490	/* VRF device does not have a link-local address and
1491	 * sending packets to link-local or mcast addresses over
1492	 * a VRF device does not make sense
1493	 */
1494	if (fl6->flowi6_oif == dev->ifindex) {
1495		dst = &net->ipv6.ip6_null_entry->dst;
1496		return dst;
1497	}
1498
1499	if (!ipv6_addr_any(&fl6->saddr))
1500		flags |= RT6_LOOKUP_F_HAS_SADDR;
1501
1502	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1503	if (rt)
1504		dst = &rt->dst;
1505
1506	return dst;
1507}
1508#endif
1509
1510static const struct l3mdev_ops vrf_l3mdev_ops = {
1511	.l3mdev_fib_table	= vrf_fib_table,
1512	.l3mdev_l3_rcv		= vrf_l3_rcv,
1513	.l3mdev_l3_out		= vrf_l3_out,
1514#if IS_ENABLED(CONFIG_IPV6)
1515	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1516#endif
1517};
1518
1519static void vrf_get_drvinfo(struct net_device *dev,
1520			    struct ethtool_drvinfo *info)
1521{
1522	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1523	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1524}
1525
1526static const struct ethtool_ops vrf_ethtool_ops = {
1527	.get_drvinfo	= vrf_get_drvinfo,
1528};
1529
1530static inline size_t vrf_fib_rule_nl_size(void)
1531{
1532	size_t sz;
1533
1534	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1536	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1537	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1538
1539	return sz;
1540}
1541
1542static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1543{
1544	struct fib_rule_hdr *frh;
1545	struct nlmsghdr *nlh;
1546	struct sk_buff *skb;
1547	int err;
1548
1549	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550	    !ipv6_mod_enabled())
1551		return 0;
1552
1553	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1554	if (!skb)
1555		return -ENOMEM;
1556
1557	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1558	if (!nlh)
1559		goto nla_put_failure;
1560
1561	/* rule only needs to appear once */
1562	nlh->nlmsg_flags |= NLM_F_EXCL;
1563
1564	frh = nlmsg_data(nlh);
1565	memset(frh, 0, sizeof(*frh));
1566	frh->family = family;
1567	frh->action = FR_ACT_TO_TBL;
1568
1569	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570		goto nla_put_failure;
1571
1572	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573		goto nla_put_failure;
1574
1575	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576		goto nla_put_failure;
1577
1578	nlmsg_end(skb, nlh);
1579
1580	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581	skb->sk = dev_net(dev)->rtnl;
1582	if (add_it) {
1583		err = fib_nl_newrule(skb, nlh, NULL);
1584		if (err == -EEXIST)
1585			err = 0;
1586	} else {
1587		err = fib_nl_delrule(skb, nlh, NULL);
1588		if (err == -ENOENT)
1589			err = 0;
1590	}
1591	nlmsg_free(skb);
1592
1593	return err;
1594
1595nla_put_failure:
1596	nlmsg_free(skb);
1597
1598	return -EMSGSIZE;
1599}
1600
1601static int vrf_add_fib_rules(const struct net_device *dev)
1602{
1603	int err;
1604
1605	err = vrf_fib_rule(dev, AF_INET,  true);
1606	if (err < 0)
1607		goto out_err;
1608
1609	err = vrf_fib_rule(dev, AF_INET6, true);
1610	if (err < 0)
1611		goto ipv6_err;
1612
1613#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1615	if (err < 0)
1616		goto ipmr_err;
1617#endif
1618
1619#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1621	if (err < 0)
1622		goto ip6mr_err;
1623#endif
1624
1625	return 0;
1626
1627#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1628ip6mr_err:
1629	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1630#endif
1631
1632#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1633ipmr_err:
1634	vrf_fib_rule(dev, AF_INET6,  false);
1635#endif
1636
1637ipv6_err:
1638	vrf_fib_rule(dev, AF_INET,  false);
1639
1640out_err:
1641	netdev_err(dev, "Failed to add FIB rules.\n");
1642	return err;
1643}
1644
1645static void vrf_setup(struct net_device *dev)
1646{
1647	ether_setup(dev);
1648
1649	/* Initialize the device structure. */
1650	dev->netdev_ops = &vrf_netdev_ops;
1651	dev->l3mdev_ops = &vrf_l3mdev_ops;
1652	dev->ethtool_ops = &vrf_ethtool_ops;
1653	dev->needs_free_netdev = true;
1654
1655	/* Fill in device structure with ethernet-generic values. */
1656	eth_hw_addr_random(dev);
1657
1658	/* don't acquire vrf device's netif_tx_lock when transmitting */
1659	dev->features |= NETIF_F_LLTX;
1660
1661	/* don't allow vrf devices to change network namespaces. */
1662	dev->features |= NETIF_F_NETNS_LOCAL;
1663
1664	/* does not make sense for a VLAN to be added to a vrf device */
1665	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1666
1667	/* enable offload features */
1668	dev->features   |= NETIF_F_GSO_SOFTWARE;
1669	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1671
1672	dev->hw_features = dev->features;
1673	dev->hw_enc_features = dev->features;
1674
1675	/* default to no qdisc; user can add if desired */
1676	dev->priv_flags |= IFF_NO_QUEUE;
1677	dev->priv_flags |= IFF_NO_RX_HANDLER;
1678	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1679
1680	/* VRF devices do not care about MTU, but if the MTU is set
1681	 * too low then the ipv4 and ipv6 protocols are disabled
1682	 * which breaks networking.
1683	 */
1684	dev->min_mtu = IPV6_MIN_MTU;
1685	dev->max_mtu = IP6_MAX_MTU;
1686	dev->mtu = dev->max_mtu;
1687
1688	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1689}
1690
1691static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1692			struct netlink_ext_ack *extack)
1693{
1694	if (tb[IFLA_ADDRESS]) {
1695		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1696			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697			return -EINVAL;
1698		}
1699		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1700			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701			return -EADDRNOTAVAIL;
1702		}
1703	}
1704	return 0;
1705}
1706
1707static void vrf_dellink(struct net_device *dev, struct list_head *head)
1708{
1709	struct net_device *port_dev;
1710	struct list_head *iter;
1711
1712	netdev_for_each_lower_dev(dev, port_dev, iter)
1713		vrf_del_slave(dev, port_dev);
1714
1715	vrf_map_unregister_dev(dev);
1716
1717	unregister_netdevice_queue(dev, head);
1718}
1719
1720static int vrf_newlink(struct net *src_net, struct net_device *dev,
1721		       struct nlattr *tb[], struct nlattr *data[],
1722		       struct netlink_ext_ack *extack)
1723{
1724	struct net_vrf *vrf = netdev_priv(dev);
1725	struct netns_vrf *nn_vrf;
1726	bool *add_fib_rules;
1727	struct net *net;
1728	int err;
1729
1730	if (!data || !data[IFLA_VRF_TABLE]) {
1731		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1732		return -EINVAL;
1733	}
1734
1735	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1736	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1737		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1738				    "Invalid VRF table id");
1739		return -EINVAL;
1740	}
1741
1742	dev->priv_flags |= IFF_L3MDEV_MASTER;
1743
1744	err = register_netdevice(dev);
1745	if (err)
1746		goto out;
1747
1748	/* mapping between table_id and vrf;
1749	 * note: such binding could not be done in the dev init function
1750	 * because dev->ifindex id is not available yet.
1751	 */
1752	vrf->ifindex = dev->ifindex;
1753
1754	err = vrf_map_register_dev(dev, extack);
1755	if (err) {
1756		unregister_netdevice(dev);
1757		goto out;
1758	}
1759
1760	net = dev_net(dev);
1761	nn_vrf = net_generic(net, vrf_net_id);
1762
1763	add_fib_rules = &nn_vrf->add_fib_rules;
1764	if (*add_fib_rules) {
1765		err = vrf_add_fib_rules(dev);
1766		if (err) {
1767			vrf_map_unregister_dev(dev);
1768			unregister_netdevice(dev);
1769			goto out;
1770		}
1771		*add_fib_rules = false;
1772	}
1773
1774out:
1775	return err;
1776}
1777
1778static size_t vrf_nl_getsize(const struct net_device *dev)
1779{
1780	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1781}
1782
1783static int vrf_fillinfo(struct sk_buff *skb,
1784			const struct net_device *dev)
1785{
1786	struct net_vrf *vrf = netdev_priv(dev);
1787
1788	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1789}
1790
1791static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1792				 const struct net_device *slave_dev)
1793{
1794	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1795}
1796
1797static int vrf_fill_slave_info(struct sk_buff *skb,
1798			       const struct net_device *vrf_dev,
1799			       const struct net_device *slave_dev)
1800{
1801	struct net_vrf *vrf = netdev_priv(vrf_dev);
1802
1803	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1804		return -EMSGSIZE;
1805
1806	return 0;
1807}
1808
1809static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1810	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1811};
1812
1813static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1814	.kind		= DRV_NAME,
1815	.priv_size	= sizeof(struct net_vrf),
1816
1817	.get_size	= vrf_nl_getsize,
1818	.policy		= vrf_nl_policy,
1819	.validate	= vrf_validate,
1820	.fill_info	= vrf_fillinfo,
1821
1822	.get_slave_size  = vrf_get_slave_size,
1823	.fill_slave_info = vrf_fill_slave_info,
1824
1825	.newlink	= vrf_newlink,
1826	.dellink	= vrf_dellink,
1827	.setup		= vrf_setup,
1828	.maxtype	= IFLA_VRF_MAX,
1829};
1830
1831static int vrf_device_event(struct notifier_block *unused,
1832			    unsigned long event, void *ptr)
1833{
1834	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1835
1836	/* only care about unregister events to drop slave references */
1837	if (event == NETDEV_UNREGISTER) {
1838		struct net_device *vrf_dev;
1839
1840		if (!netif_is_l3_slave(dev))
1841			goto out;
1842
1843		vrf_dev = netdev_master_upper_dev_get(dev);
1844		vrf_del_slave(vrf_dev, dev);
1845	}
1846out:
1847	return NOTIFY_DONE;
1848}
1849
1850static struct notifier_block vrf_notifier_block __read_mostly = {
1851	.notifier_call = vrf_device_event,
1852};
1853
1854static int vrf_map_init(struct vrf_map *vmap)
1855{
1856	spin_lock_init(&vmap->vmap_lock);
1857	hash_init(vmap->ht);
1858
1859	vmap->strict_mode = false;
1860
1861	return 0;
1862}
1863
1864#ifdef CONFIG_SYSCTL
1865static bool vrf_strict_mode(struct vrf_map *vmap)
1866{
1867	bool strict_mode;
1868
1869	vrf_map_lock(vmap);
1870	strict_mode = vmap->strict_mode;
1871	vrf_map_unlock(vmap);
1872
1873	return strict_mode;
1874}
1875
1876static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1877{
1878	bool *cur_mode;
1879	int res = 0;
1880
1881	vrf_map_lock(vmap);
1882
1883	cur_mode = &vmap->strict_mode;
1884	if (*cur_mode == new_mode)
1885		goto unlock;
1886
1887	if (*cur_mode) {
1888		/* disable strict mode */
1889		*cur_mode = false;
1890	} else {
1891		if (vmap->shared_tables) {
1892			/* we cannot allow strict_mode because there are some
1893			 * vrfs that share one or more tables.
1894			 */
1895			res = -EBUSY;
1896			goto unlock;
1897		}
1898
1899		/* no tables are shared among vrfs, so we can go back
1900		 * to 1:1 association between a vrf with its table.
1901		 */
1902		*cur_mode = true;
1903	}
1904
1905unlock:
1906	vrf_map_unlock(vmap);
1907
1908	return res;
1909}
1910
1911static int vrf_shared_table_handler(struct ctl_table *table, int write,
1912				    void *buffer, size_t *lenp, loff_t *ppos)
1913{
1914	struct net *net = (struct net *)table->extra1;
1915	struct vrf_map *vmap = netns_vrf_map(net);
1916	int proc_strict_mode = 0;
1917	struct ctl_table tmp = {
1918		.procname	= table->procname,
1919		.data		= &proc_strict_mode,
1920		.maxlen		= sizeof(int),
1921		.mode		= table->mode,
1922		.extra1		= SYSCTL_ZERO,
1923		.extra2		= SYSCTL_ONE,
1924	};
1925	int ret;
1926
1927	if (!write)
1928		proc_strict_mode = vrf_strict_mode(vmap);
1929
1930	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1931
1932	if (write && ret == 0)
1933		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1934
1935	return ret;
1936}
1937
1938static const struct ctl_table vrf_table[] = {
1939	{
1940		.procname	= "strict_mode",
1941		.data		= NULL,
1942		.maxlen		= sizeof(int),
1943		.mode		= 0644,
1944		.proc_handler	= vrf_shared_table_handler,
1945		/* set by the vrf_netns_init */
1946		.extra1		= NULL,
1947	},
 
1948};
1949
1950static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1951{
1952	struct ctl_table *table;
1953
1954	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1955	if (!table)
1956		return -ENOMEM;
1957
1958	/* init the extra1 parameter with the reference to current netns */
1959	table[0].extra1 = net;
1960
1961	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1962						 ARRAY_SIZE(vrf_table));
1963	if (!nn_vrf->ctl_hdr) {
1964		kfree(table);
1965		return -ENOMEM;
1966	}
1967
1968	return 0;
1969}
1970
1971static void vrf_netns_exit_sysctl(struct net *net)
1972{
1973	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974	struct ctl_table *table;
1975
1976	table = nn_vrf->ctl_hdr->ctl_table_arg;
1977	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1978	kfree(table);
1979}
1980#else
1981static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1982{
1983	return 0;
1984}
1985
1986static void vrf_netns_exit_sysctl(struct net *net)
1987{
1988}
1989#endif
1990
1991/* Initialize per network namespace state */
1992static int __net_init vrf_netns_init(struct net *net)
1993{
1994	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1995
1996	nn_vrf->add_fib_rules = true;
1997	vrf_map_init(&nn_vrf->vmap);
1998
1999	return vrf_netns_init_sysctl(net, nn_vrf);
2000}
2001
2002static void __net_exit vrf_netns_exit(struct net *net)
2003{
2004	vrf_netns_exit_sysctl(net);
2005}
2006
2007static struct pernet_operations vrf_net_ops __net_initdata = {
2008	.init = vrf_netns_init,
2009	.exit = vrf_netns_exit,
2010	.id   = &vrf_net_id,
2011	.size = sizeof(struct netns_vrf),
2012};
2013
2014static int __init vrf_init_module(void)
2015{
2016	int rc;
2017
2018	register_netdevice_notifier(&vrf_notifier_block);
2019
2020	rc = register_pernet_subsys(&vrf_net_ops);
2021	if (rc < 0)
2022		goto error;
2023
2024	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2025					  vrf_ifindex_lookup_by_table_id);
2026	if (rc < 0)
2027		goto unreg_pernet;
2028
2029	rc = rtnl_link_register(&vrf_link_ops);
2030	if (rc < 0)
2031		goto table_lookup_unreg;
2032
2033	return 0;
2034
2035table_lookup_unreg:
2036	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2037				       vrf_ifindex_lookup_by_table_id);
2038
2039unreg_pernet:
2040	unregister_pernet_subsys(&vrf_net_ops);
2041
2042error:
2043	unregister_netdevice_notifier(&vrf_notifier_block);
2044	return rc;
2045}
2046
2047module_init(vrf_init_module);
2048MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2049MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2050MODULE_LICENSE("GPL");
2051MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2052MODULE_VERSION(DRV_VERSION);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
 
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ip.h>
  17#include <linux/init.h>
  18#include <linux/moduleparam.h>
  19#include <linux/netfilter.h>
  20#include <linux/rtnetlink.h>
  21#include <net/rtnetlink.h>
  22#include <linux/u64_stats_sync.h>
  23#include <linux/hashtable.h>
  24#include <linux/spinlock_types.h>
  25
  26#include <linux/inetdevice.h>
  27#include <net/arp.h>
  28#include <net/ip.h>
  29#include <net/ip_fib.h>
  30#include <net/ip6_fib.h>
  31#include <net/ip6_route.h>
  32#include <net/route.h>
  33#include <net/addrconf.h>
  34#include <net/l3mdev.h>
  35#include <net/fib_rules.h>
 
  36#include <net/netns/generic.h>
 
  37
  38#define DRV_NAME	"vrf"
  39#define DRV_VERSION	"1.1"
  40
  41#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  42
  43#define HT_MAP_BITS	4
  44#define HASH_INITVAL	((u32)0xcafef00d)
  45
  46struct  vrf_map {
  47	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  48	spinlock_t vmap_lock;
  49
  50	/* shared_tables:
  51	 * count how many distinct tables do not comply with the strict mode
  52	 * requirement.
  53	 * shared_tables value must be 0 in order to enable the strict mode.
  54	 *
  55	 * example of the evolution of shared_tables:
  56	 *                                                        | time
  57	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  58	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  59	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  60	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  61	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  62	 *
  63	 * shared_tables is a "step function" (or "staircase function")
  64	 * and it is increased by one when the second vrf is associated to a
  65	 * table.
  66	 *
  67	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  68	 *
  69	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  70	 * value of shared_tables is still 1.
  71	 * This means that no matter how many new vrfs will register on the
  72	 * table 100, the shared_tables will not increase (considering only
  73	 * table 100).
  74	 *
  75	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  76	 *
  77	 * Looking at the value of shared_tables we can immediately know if
  78	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  79	 * can be enforced iff shared_tables = 0.
  80	 *
  81	 * Conversely, shared_tables is decreased when a vrf is de-associated
  82	 * from a table with exactly two associated vrfs.
  83	 */
  84	u32 shared_tables;
  85
  86	bool strict_mode;
  87};
  88
  89struct vrf_map_elem {
  90	struct hlist_node hnode;
  91	struct list_head vrf_list;  /* VRFs registered to this table */
  92
  93	u32 table_id;
  94	int users;
  95	int ifindex;
  96};
  97
  98static unsigned int vrf_net_id;
  99
 100/* per netns vrf data */
 101struct netns_vrf {
 102	/* protected by rtnl lock */
 103	bool add_fib_rules;
 104
 105	struct vrf_map vmap;
 106	struct ctl_table_header	*ctl_hdr;
 107};
 108
 109struct net_vrf {
 110	struct rtable __rcu	*rth;
 111	struct rt6_info	__rcu	*rt6;
 112#if IS_ENABLED(CONFIG_IPV6)
 113	struct fib6_table	*fib6_table;
 114#endif
 115	u32                     tb_id;
 116
 117	struct list_head	me_list;   /* entry in vrf_map_elem */
 118	int			ifindex;
 119};
 120
 121struct pcpu_dstats {
 122	u64			tx_pkts;
 123	u64			tx_bytes;
 124	u64			tx_drps;
 125	u64			rx_pkts;
 126	u64			rx_bytes;
 127	u64			rx_drps;
 128	struct u64_stats_sync	syncp;
 129};
 130
 131static void vrf_rx_stats(struct net_device *dev, int len)
 132{
 133	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 134
 135	u64_stats_update_begin(&dstats->syncp);
 136	dstats->rx_pkts++;
 137	dstats->rx_bytes += len;
 138	u64_stats_update_end(&dstats->syncp);
 139}
 140
 141static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 142{
 143	vrf_dev->stats.tx_errors++;
 144	kfree_skb(skb);
 145}
 146
 147static void vrf_get_stats64(struct net_device *dev,
 148			    struct rtnl_link_stats64 *stats)
 149{
 150	int i;
 151
 152	for_each_possible_cpu(i) {
 153		const struct pcpu_dstats *dstats;
 154		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 155		unsigned int start;
 156
 157		dstats = per_cpu_ptr(dev->dstats, i);
 158		do {
 159			start = u64_stats_fetch_begin_irq(&dstats->syncp);
 160			tbytes = dstats->tx_bytes;
 161			tpkts = dstats->tx_pkts;
 162			tdrops = dstats->tx_drps;
 163			rbytes = dstats->rx_bytes;
 164			rpkts = dstats->rx_pkts;
 165		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 166		stats->tx_bytes += tbytes;
 167		stats->tx_packets += tpkts;
 168		stats->tx_dropped += tdrops;
 169		stats->rx_bytes += rbytes;
 170		stats->rx_packets += rpkts;
 171	}
 172}
 173
 174static struct vrf_map *netns_vrf_map(struct net *net)
 175{
 176	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 177
 178	return &nn_vrf->vmap;
 179}
 180
 181static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 182{
 183	return netns_vrf_map(dev_net(dev));
 184}
 185
 186static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 187{
 188	struct list_head *me_head = &me->vrf_list;
 189	struct net_vrf *vrf;
 190
 191	if (list_empty(me_head))
 192		return -ENODEV;
 193
 194	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 195
 196	return vrf->ifindex;
 197}
 198
 199static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 200{
 201	struct vrf_map_elem *me;
 202
 203	me = kmalloc(sizeof(*me), flags);
 204	if (!me)
 205		return NULL;
 206
 207	return me;
 208}
 209
 210static void vrf_map_elem_free(struct vrf_map_elem *me)
 211{
 212	kfree(me);
 213}
 214
 215static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 216			      int ifindex, int users)
 217{
 218	me->table_id = table_id;
 219	me->ifindex = ifindex;
 220	me->users = users;
 221	INIT_LIST_HEAD(&me->vrf_list);
 222}
 223
 224static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 225						u32 table_id)
 226{
 227	struct vrf_map_elem *me;
 228	u32 key;
 229
 230	key = jhash_1word(table_id, HASH_INITVAL);
 231	hash_for_each_possible(vmap->ht, me, hnode, key) {
 232		if (me->table_id == table_id)
 233			return me;
 234	}
 235
 236	return NULL;
 237}
 238
 239static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 240{
 241	u32 table_id = me->table_id;
 242	u32 key;
 243
 244	key = jhash_1word(table_id, HASH_INITVAL);
 245	hash_add(vmap->ht, &me->hnode, key);
 246}
 247
 248static void vrf_map_del_elem(struct vrf_map_elem *me)
 249{
 250	hash_del(&me->hnode);
 251}
 252
 253static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 254{
 255	spin_lock(&vmap->vmap_lock);
 256}
 257
 258static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 259{
 260	spin_unlock(&vmap->vmap_lock);
 261}
 262
 263/* called with rtnl lock held */
 264static int
 265vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 266{
 267	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 268	struct net_vrf *vrf = netdev_priv(dev);
 269	struct vrf_map_elem *new_me, *me;
 270	u32 table_id = vrf->tb_id;
 271	bool free_new_me = false;
 272	int users;
 273	int res;
 274
 275	/* we pre-allocate elements used in the spin-locked section (so that we
 276	 * keep the spinlock as short as possibile).
 277	 */
 278	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 279	if (!new_me)
 280		return -ENOMEM;
 281
 282	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 283
 284	vrf_map_lock(vmap);
 285
 286	me = vrf_map_lookup_elem(vmap, table_id);
 287	if (!me) {
 288		me = new_me;
 289		vrf_map_add_elem(vmap, me);
 290		goto link_vrf;
 291	}
 292
 293	/* we already have an entry in the vrf_map, so it means there is (at
 294	 * least) a vrf registered on the specific table.
 295	 */
 296	free_new_me = true;
 297	if (vmap->strict_mode) {
 298		/* vrfs cannot share the same table */
 299		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 300		res = -EBUSY;
 301		goto unlock;
 302	}
 303
 304link_vrf:
 305	users = ++me->users;
 306	if (users == 2)
 307		++vmap->shared_tables;
 308
 309	list_add(&vrf->me_list, &me->vrf_list);
 310
 311	res = 0;
 312
 313unlock:
 314	vrf_map_unlock(vmap);
 315
 316	/* clean-up, if needed */
 317	if (free_new_me)
 318		vrf_map_elem_free(new_me);
 319
 320	return res;
 321}
 322
 323/* called with rtnl lock held */
 324static void vrf_map_unregister_dev(struct net_device *dev)
 325{
 326	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 327	struct net_vrf *vrf = netdev_priv(dev);
 328	u32 table_id = vrf->tb_id;
 329	struct vrf_map_elem *me;
 330	int users;
 331
 332	vrf_map_lock(vmap);
 333
 334	me = vrf_map_lookup_elem(vmap, table_id);
 335	if (!me)
 336		goto unlock;
 337
 338	list_del(&vrf->me_list);
 339
 340	users = --me->users;
 341	if (users == 1) {
 342		--vmap->shared_tables;
 343	} else if (users == 0) {
 344		vrf_map_del_elem(me);
 345
 346		/* no one will refer to this element anymore */
 347		vrf_map_elem_free(me);
 348	}
 349
 350unlock:
 351	vrf_map_unlock(vmap);
 352}
 353
 354/* return the vrf device index associated with the table_id */
 355static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 356{
 357	struct vrf_map *vmap = netns_vrf_map(net);
 358	struct vrf_map_elem *me;
 359	int ifindex;
 360
 361	vrf_map_lock(vmap);
 362
 363	if (!vmap->strict_mode) {
 364		ifindex = -EPERM;
 365		goto unlock;
 366	}
 367
 368	me = vrf_map_lookup_elem(vmap, table_id);
 369	if (!me) {
 370		ifindex = -ENODEV;
 371		goto unlock;
 372	}
 373
 374	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 375
 376unlock:
 377	vrf_map_unlock(vmap);
 378
 379	return ifindex;
 380}
 381
 382/* by default VRF devices do not have a qdisc and are expected
 383 * to be created with only a single queue.
 384 */
 385static bool qdisc_tx_is_default(const struct net_device *dev)
 386{
 387	struct netdev_queue *txq;
 388	struct Qdisc *qdisc;
 389
 390	if (dev->num_tx_queues > 1)
 391		return false;
 392
 393	txq = netdev_get_tx_queue(dev, 0);
 394	qdisc = rcu_access_pointer(txq->qdisc);
 395
 396	return !qdisc->enqueue;
 397}
 398
 399/* Local traffic destined to local address. Reinsert the packet to rx
 400 * path, similar to loopback handling.
 401 */
 402static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 403			  struct dst_entry *dst)
 404{
 405	int len = skb->len;
 406
 407	skb_orphan(skb);
 408
 409	skb_dst_set(skb, dst);
 410
 411	/* set pkt_type to avoid skb hitting packet taps twice -
 412	 * once on Tx and again in Rx processing
 413	 */
 414	skb->pkt_type = PACKET_LOOPBACK;
 415
 416	skb->protocol = eth_type_trans(skb, dev);
 417
 418	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 419		vrf_rx_stats(dev, len);
 420	else
 421		this_cpu_inc(dev->dstats->rx_drps);
 422
 423	return NETDEV_TX_OK;
 424}
 425
 
 
 
 
 
 
 
 
 
 
 
 
 426#if IS_ENABLED(CONFIG_IPV6)
 427static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 428			     struct sk_buff *skb)
 429{
 430	int err;
 431
 
 
 432	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 433		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 434
 435	if (likely(err == 1))
 436		err = dst_output(net, sk, skb);
 437
 438	return err;
 439}
 440
 441static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 442					   struct net_device *dev)
 443{
 444	const struct ipv6hdr *iph;
 445	struct net *net = dev_net(skb->dev);
 446	struct flowi6 fl6;
 447	int ret = NET_XMIT_DROP;
 448	struct dst_entry *dst;
 449	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 450
 451	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 452		goto err;
 453
 454	iph = ipv6_hdr(skb);
 455
 456	memset(&fl6, 0, sizeof(fl6));
 457	/* needed to match OIF rule */
 458	fl6.flowi6_oif = dev->ifindex;
 459	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 460	fl6.daddr = iph->daddr;
 461	fl6.saddr = iph->saddr;
 462	fl6.flowlabel = ip6_flowinfo(iph);
 463	fl6.flowi6_mark = skb->mark;
 464	fl6.flowi6_proto = iph->nexthdr;
 465	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 466
 467	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 468	if (IS_ERR(dst) || dst == dst_null)
 469		goto err;
 470
 471	skb_dst_drop(skb);
 472
 473	/* if dst.dev is loopback or the VRF device again this is locally
 474	 * originated traffic destined to a local address. Short circuit
 475	 * to Rx path
 476	 */
 477	if (dst->dev == dev)
 478		return vrf_local_xmit(skb, dev, dst);
 479
 480	skb_dst_set(skb, dst);
 481
 482	/* strip the ethernet header added for pass through VRF device */
 483	__skb_pull(skb, skb_network_offset(skb));
 484
 
 485	ret = vrf_ip6_local_out(net, skb->sk, skb);
 486	if (unlikely(net_xmit_eval(ret)))
 487		dev->stats.tx_errors++;
 488	else
 489		ret = NET_XMIT_SUCCESS;
 490
 491	return ret;
 492err:
 493	vrf_tx_error(dev, skb);
 494	return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498					   struct net_device *dev)
 499{
 500	vrf_tx_error(dev, skb);
 501	return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507			    struct sk_buff *skb)
 508{
 509	int err;
 510
 
 
 511	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512		      skb, NULL, skb_dst(skb)->dev, dst_output);
 513	if (likely(err == 1))
 514		err = dst_output(net, sk, skb);
 515
 516	return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520					   struct net_device *vrf_dev)
 521{
 522	struct iphdr *ip4h;
 523	int ret = NET_XMIT_DROP;
 524	struct flowi4 fl4;
 525	struct net *net = dev_net(vrf_dev);
 526	struct rtable *rt;
 527
 528	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529		goto err;
 530
 531	ip4h = ip_hdr(skb);
 532
 533	memset(&fl4, 0, sizeof(fl4));
 534	/* needed to match OIF rule */
 535	fl4.flowi4_oif = vrf_dev->ifindex;
 536	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539	fl4.flowi4_proto = ip4h->protocol;
 540	fl4.daddr = ip4h->daddr;
 541	fl4.saddr = ip4h->saddr;
 542
 543	rt = ip_route_output_flow(net, &fl4, NULL);
 544	if (IS_ERR(rt))
 545		goto err;
 546
 547	skb_dst_drop(skb);
 548
 549	/* if dst.dev is loopback or the VRF device again this is locally
 550	 * originated traffic destined to a local address. Short circuit
 551	 * to Rx path
 552	 */
 553	if (rt->dst.dev == vrf_dev)
 554		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 555
 556	skb_dst_set(skb, &rt->dst);
 557
 558	/* strip the ethernet header added for pass through VRF device */
 559	__skb_pull(skb, skb_network_offset(skb));
 560
 561	if (!ip4h->saddr) {
 562		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 563					       RT_SCOPE_LINK);
 564	}
 565
 
 566	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 567	if (unlikely(net_xmit_eval(ret)))
 568		vrf_dev->stats.tx_errors++;
 569	else
 570		ret = NET_XMIT_SUCCESS;
 571
 572out:
 573	return ret;
 574err:
 575	vrf_tx_error(vrf_dev, skb);
 576	goto out;
 577}
 578
 579static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 580{
 581	switch (skb->protocol) {
 582	case htons(ETH_P_IP):
 583		return vrf_process_v4_outbound(skb, dev);
 584	case htons(ETH_P_IPV6):
 585		return vrf_process_v6_outbound(skb, dev);
 586	default:
 587		vrf_tx_error(dev, skb);
 588		return NET_XMIT_DROP;
 589	}
 590}
 591
 592static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 593{
 594	int len = skb->len;
 595	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 596
 597	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 598		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 599
 600		u64_stats_update_begin(&dstats->syncp);
 601		dstats->tx_pkts++;
 602		dstats->tx_bytes += len;
 603		u64_stats_update_end(&dstats->syncp);
 604	} else {
 605		this_cpu_inc(dev->dstats->tx_drps);
 606	}
 607
 608	return ret;
 609}
 610
 611static int vrf_finish_direct(struct net *net, struct sock *sk,
 612			     struct sk_buff *skb)
 613{
 614	struct net_device *vrf_dev = skb->dev;
 615
 616	if (!list_empty(&vrf_dev->ptype_all) &&
 617	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 618		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 619
 620		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 621		eth_zero_addr(eth->h_dest);
 622		eth->h_proto = skb->protocol;
 623
 624		rcu_read_lock_bh();
 625		dev_queue_xmit_nit(skb, vrf_dev);
 626		rcu_read_unlock_bh();
 627
 628		skb_pull(skb, ETH_HLEN);
 629	}
 630
 631	return 1;
 632}
 633
 634#if IS_ENABLED(CONFIG_IPV6)
 635/* modelled after ip6_finish_output2 */
 636static int vrf_finish_output6(struct net *net, struct sock *sk,
 637			      struct sk_buff *skb)
 638{
 639	struct dst_entry *dst = skb_dst(skb);
 640	struct net_device *dev = dst->dev;
 641	const struct in6_addr *nexthop;
 642	struct neighbour *neigh;
 643	int ret;
 644
 645	nf_reset_ct(skb);
 646
 647	skb->protocol = htons(ETH_P_IPV6);
 648	skb->dev = dev;
 649
 650	rcu_read_lock_bh();
 651	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 652	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 653	if (unlikely(!neigh))
 654		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 655	if (!IS_ERR(neigh)) {
 656		sock_confirm_neigh(skb, neigh);
 657		ret = neigh_output(neigh, skb, false);
 658		rcu_read_unlock_bh();
 659		return ret;
 660	}
 661	rcu_read_unlock_bh();
 662
 663	IP6_INC_STATS(dev_net(dst->dev),
 664		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 665	kfree_skb(skb);
 666	return -EINVAL;
 667}
 668
 669/* modelled after ip6_output */
 670static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 671{
 672	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 673			    net, sk, skb, NULL, skb_dst(skb)->dev,
 674			    vrf_finish_output6,
 675			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 676}
 677
 678/* set dst on skb to send packet to us via dev_xmit path. Allows
 679 * packet to go through device based features such as qdisc, netfilter
 680 * hooks and packet sockets with skb->dev set to vrf device.
 681 */
 682static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 683					    struct sk_buff *skb)
 684{
 685	struct net_vrf *vrf = netdev_priv(vrf_dev);
 686	struct dst_entry *dst = NULL;
 687	struct rt6_info *rt6;
 688
 689	rcu_read_lock();
 690
 691	rt6 = rcu_dereference(vrf->rt6);
 692	if (likely(rt6)) {
 693		dst = &rt6->dst;
 694		dst_hold(dst);
 695	}
 696
 697	rcu_read_unlock();
 698
 699	if (unlikely(!dst)) {
 700		vrf_tx_error(vrf_dev, skb);
 701		return NULL;
 702	}
 703
 704	skb_dst_drop(skb);
 705	skb_dst_set(skb, dst);
 706
 707	return skb;
 708}
 709
 
 
 
 
 
 
 
 
 710static int vrf_output6_direct(struct net *net, struct sock *sk,
 711			      struct sk_buff *skb)
 712{
 
 
 713	skb->protocol = htons(ETH_P_IPV6);
 714
 715	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 716			    net, sk, skb, NULL, skb->dev,
 717			    vrf_finish_direct,
 718			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 722					  struct sock *sk,
 723					  struct sk_buff *skb)
 724{
 725	struct net *net = dev_net(vrf_dev);
 726	int err;
 727
 728	skb->dev = vrf_dev;
 729
 730	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 731		      skb, NULL, vrf_dev, vrf_output6_direct);
 732
 733	if (likely(err == 1))
 734		err = vrf_output6_direct(net, sk, skb);
 735
 736	/* reset skb device */
 737	if (likely(err == 1))
 738		nf_reset_ct(skb);
 739	else
 740		skb = NULL;
 741
 742	return skb;
 743}
 744
 745static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 746				   struct sock *sk,
 747				   struct sk_buff *skb)
 748{
 749	/* don't divert link scope packets */
 750	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 751		return skb;
 752
 
 
 753	if (qdisc_tx_is_default(vrf_dev) ||
 754	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 755		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 756
 757	return vrf_ip6_out_redirect(vrf_dev, skb);
 758}
 759
 760/* holding rtnl */
 761static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 762{
 763	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 764	struct net *net = dev_net(dev);
 765	struct dst_entry *dst;
 766
 767	RCU_INIT_POINTER(vrf->rt6, NULL);
 768	synchronize_rcu();
 769
 770	/* move dev in dst's to loopback so this VRF device can be deleted
 771	 * - based on dst_ifdown
 772	 */
 773	if (rt6) {
 774		dst = &rt6->dst;
 775		dev_put(dst->dev);
 
 776		dst->dev = net->loopback_dev;
 777		dev_hold(dst->dev);
 778		dst_release(dst);
 779	}
 780}
 781
 782static int vrf_rt6_create(struct net_device *dev)
 783{
 784	int flags = DST_NOPOLICY | DST_NOXFRM;
 785	struct net_vrf *vrf = netdev_priv(dev);
 786	struct net *net = dev_net(dev);
 787	struct rt6_info *rt6;
 788	int rc = -ENOMEM;
 789
 790	/* IPv6 can be CONFIG enabled and then disabled runtime */
 791	if (!ipv6_mod_enabled())
 792		return 0;
 793
 794	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 795	if (!vrf->fib6_table)
 796		goto out;
 797
 798	/* create a dst for routing packets out a VRF device */
 799	rt6 = ip6_dst_alloc(net, dev, flags);
 800	if (!rt6)
 801		goto out;
 802
 803	rt6->dst.output	= vrf_output6;
 804
 805	rcu_assign_pointer(vrf->rt6, rt6);
 806
 807	rc = 0;
 808out:
 809	return rc;
 810}
 811#else
 812static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 813				   struct sock *sk,
 814				   struct sk_buff *skb)
 815{
 816	return skb;
 817}
 818
 819static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 820{
 821}
 822
 823static int vrf_rt6_create(struct net_device *dev)
 824{
 825	return 0;
 826}
 827#endif
 828
 829/* modelled after ip_finish_output2 */
 830static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 831{
 832	struct dst_entry *dst = skb_dst(skb);
 833	struct rtable *rt = (struct rtable *)dst;
 834	struct net_device *dev = dst->dev;
 835	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 836	struct neighbour *neigh;
 837	bool is_v6gw = false;
 838	int ret = -EINVAL;
 839
 840	nf_reset_ct(skb);
 841
 842	/* Be paranoid, rather than too clever. */
 843	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 844		struct sk_buff *skb2;
 845
 846		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 847		if (!skb2) {
 848			ret = -ENOMEM;
 849			goto err;
 850		}
 851		if (skb->sk)
 852			skb_set_owner_w(skb2, skb->sk);
 853
 854		consume_skb(skb);
 855		skb = skb2;
 856	}
 857
 858	rcu_read_lock_bh();
 859
 860	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 861	if (!IS_ERR(neigh)) {
 
 
 862		sock_confirm_neigh(skb, neigh);
 863		/* if crossing protocols, can not use the cached header */
 864		ret = neigh_output(neigh, skb, is_v6gw);
 865		rcu_read_unlock_bh();
 866		return ret;
 867	}
 868
 869	rcu_read_unlock_bh();
 870err:
 871	vrf_tx_error(skb->dev, skb);
 872	return ret;
 873}
 874
 875static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 876{
 877	struct net_device *dev = skb_dst(skb)->dev;
 878
 879	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 880
 881	skb->dev = dev;
 882	skb->protocol = htons(ETH_P_IP);
 883
 884	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 885			    net, sk, skb, NULL, dev,
 886			    vrf_finish_output,
 887			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 888}
 889
 890/* set dst on skb to send packet to us via dev_xmit path. Allows
 891 * packet to go through device based features such as qdisc, netfilter
 892 * hooks and packet sockets with skb->dev set to vrf device.
 893 */
 894static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 895					   struct sk_buff *skb)
 896{
 897	struct net_vrf *vrf = netdev_priv(vrf_dev);
 898	struct dst_entry *dst = NULL;
 899	struct rtable *rth;
 900
 901	rcu_read_lock();
 902
 903	rth = rcu_dereference(vrf->rth);
 904	if (likely(rth)) {
 905		dst = &rth->dst;
 906		dst_hold(dst);
 907	}
 908
 909	rcu_read_unlock();
 910
 911	if (unlikely(!dst)) {
 912		vrf_tx_error(vrf_dev, skb);
 913		return NULL;
 914	}
 915
 916	skb_dst_drop(skb);
 917	skb_dst_set(skb, dst);
 918
 919	return skb;
 920}
 921
 
 
 
 
 
 
 
 
 922static int vrf_output_direct(struct net *net, struct sock *sk,
 923			     struct sk_buff *skb)
 924{
 
 
 925	skb->protocol = htons(ETH_P_IP);
 926
 927	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 928			    net, sk, skb, NULL, skb->dev,
 929			    vrf_finish_direct,
 930			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931}
 932
 933static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 934					 struct sock *sk,
 935					 struct sk_buff *skb)
 936{
 937	struct net *net = dev_net(vrf_dev);
 938	int err;
 939
 940	skb->dev = vrf_dev;
 941
 942	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 943		      skb, NULL, vrf_dev, vrf_output_direct);
 944
 945	if (likely(err == 1))
 946		err = vrf_output_direct(net, sk, skb);
 947
 948	/* reset skb device */
 949	if (likely(err == 1))
 950		nf_reset_ct(skb);
 951	else
 952		skb = NULL;
 953
 954	return skb;
 955}
 956
 957static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 958				  struct sock *sk,
 959				  struct sk_buff *skb)
 960{
 961	/* don't divert multicast or local broadcast */
 962	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 963	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
 964		return skb;
 965
 
 
 966	if (qdisc_tx_is_default(vrf_dev) ||
 967	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
 968		return vrf_ip_out_direct(vrf_dev, sk, skb);
 969
 970	return vrf_ip_out_redirect(vrf_dev, skb);
 971}
 972
 973/* called with rcu lock held */
 974static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 975				  struct sock *sk,
 976				  struct sk_buff *skb,
 977				  u16 proto)
 978{
 979	switch (proto) {
 980	case AF_INET:
 981		return vrf_ip_out(vrf_dev, sk, skb);
 982	case AF_INET6:
 983		return vrf_ip6_out(vrf_dev, sk, skb);
 984	}
 985
 986	return skb;
 987}
 988
 989/* holding rtnl */
 990static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 991{
 992	struct rtable *rth = rtnl_dereference(vrf->rth);
 993	struct net *net = dev_net(dev);
 994	struct dst_entry *dst;
 995
 996	RCU_INIT_POINTER(vrf->rth, NULL);
 997	synchronize_rcu();
 998
 999	/* move dev in dst's to loopback so this VRF device can be deleted
1000	 * - based on dst_ifdown
1001	 */
1002	if (rth) {
1003		dst = &rth->dst;
1004		dev_put(dst->dev);
 
1005		dst->dev = net->loopback_dev;
1006		dev_hold(dst->dev);
1007		dst_release(dst);
1008	}
1009}
1010
1011static int vrf_rtable_create(struct net_device *dev)
1012{
1013	struct net_vrf *vrf = netdev_priv(dev);
1014	struct rtable *rth;
1015
1016	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1017		return -ENOMEM;
1018
1019	/* create a dst for routing packets out through a VRF device */
1020	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1021	if (!rth)
1022		return -ENOMEM;
1023
1024	rth->dst.output	= vrf_output;
1025
1026	rcu_assign_pointer(vrf->rth, rth);
1027
1028	return 0;
1029}
1030
1031/**************************** device handling ********************/
1032
1033/* cycle interface to flush neighbor cache and move routes across tables */
1034static void cycle_netdev(struct net_device *dev,
1035			 struct netlink_ext_ack *extack)
1036{
1037	unsigned int flags = dev->flags;
1038	int ret;
1039
1040	if (!netif_running(dev))
1041		return;
1042
1043	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1044	if (ret >= 0)
1045		ret = dev_change_flags(dev, flags, extack);
1046
1047	if (ret < 0) {
1048		netdev_err(dev,
1049			   "Failed to cycle device %s; route tables might be wrong!\n",
1050			   dev->name);
1051	}
1052}
1053
1054static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1055			    struct netlink_ext_ack *extack)
1056{
1057	int ret;
1058
1059	/* do not allow loopback device to be enslaved to a VRF.
1060	 * The vrf device acts as the loopback for the vrf.
1061	 */
1062	if (port_dev == dev_net(dev)->loopback_dev) {
1063		NL_SET_ERR_MSG(extack,
1064			       "Can not enslave loopback device to a VRF");
1065		return -EOPNOTSUPP;
1066	}
1067
1068	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1069	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1070	if (ret < 0)
1071		goto err;
1072
1073	cycle_netdev(port_dev, extack);
1074
1075	return 0;
1076
1077err:
1078	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1079	return ret;
1080}
1081
1082static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	if (netif_is_l3_master(port_dev)) {
1086		NL_SET_ERR_MSG(extack,
1087			       "Can not enslave an L3 master device to a VRF");
1088		return -EINVAL;
1089	}
1090
1091	if (netif_is_l3_slave(port_dev))
1092		return -EINVAL;
1093
1094	return do_vrf_add_slave(dev, port_dev, extack);
1095}
1096
1097/* inverse of do_vrf_add_slave */
1098static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1099{
1100	netdev_upper_dev_unlink(port_dev, dev);
1101	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1102
1103	cycle_netdev(port_dev, NULL);
1104
1105	return 0;
1106}
1107
1108static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1109{
1110	return do_vrf_del_slave(dev, port_dev);
1111}
1112
1113static void vrf_dev_uninit(struct net_device *dev)
1114{
1115	struct net_vrf *vrf = netdev_priv(dev);
1116
1117	vrf_rtable_release(dev, vrf);
1118	vrf_rt6_release(dev, vrf);
1119
1120	free_percpu(dev->dstats);
1121	dev->dstats = NULL;
1122}
1123
1124static int vrf_dev_init(struct net_device *dev)
1125{
1126	struct net_vrf *vrf = netdev_priv(dev);
1127
1128	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1129	if (!dev->dstats)
1130		goto out_nomem;
1131
1132	/* create the default dst which points back to us */
1133	if (vrf_rtable_create(dev) != 0)
1134		goto out_stats;
1135
1136	if (vrf_rt6_create(dev) != 0)
1137		goto out_rth;
1138
1139	dev->flags = IFF_MASTER | IFF_NOARP;
1140
1141	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
1142	dev->mtu = 64 * 1024;
1143
1144	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1145	dev->operstate = IF_OPER_UP;
1146	netdev_lockdep_set_classes(dev);
1147	return 0;
1148
1149out_rth:
1150	vrf_rtable_release(dev, vrf);
1151out_stats:
1152	free_percpu(dev->dstats);
1153	dev->dstats = NULL;
1154out_nomem:
1155	return -ENOMEM;
1156}
1157
1158static const struct net_device_ops vrf_netdev_ops = {
1159	.ndo_init		= vrf_dev_init,
1160	.ndo_uninit		= vrf_dev_uninit,
1161	.ndo_start_xmit		= vrf_xmit,
1162	.ndo_set_mac_address	= eth_mac_addr,
1163	.ndo_get_stats64	= vrf_get_stats64,
1164	.ndo_add_slave		= vrf_add_slave,
1165	.ndo_del_slave		= vrf_del_slave,
1166};
1167
1168static u32 vrf_fib_table(const struct net_device *dev)
1169{
1170	struct net_vrf *vrf = netdev_priv(dev);
1171
1172	return vrf->tb_id;
1173}
1174
1175static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1176{
1177	kfree_skb(skb);
1178	return 0;
1179}
1180
1181static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1182				      struct sk_buff *skb,
1183				      struct net_device *dev)
1184{
1185	struct net *net = dev_net(dev);
1186
1187	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1188		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1189
1190	return skb;
1191}
1192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193#if IS_ENABLED(CONFIG_IPV6)
1194/* neighbor handling is done with actual device; do not want
1195 * to flip skb->dev for those ndisc packets. This really fails
1196 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1197 * a start.
1198 */
1199static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1200{
1201	const struct ipv6hdr *iph = ipv6_hdr(skb);
1202	bool rc = false;
1203
1204	if (iph->nexthdr == NEXTHDR_ICMP) {
1205		const struct icmp6hdr *icmph;
1206		struct icmp6hdr _icmph;
1207
1208		icmph = skb_header_pointer(skb, sizeof(*iph),
1209					   sizeof(_icmph), &_icmph);
1210		if (!icmph)
1211			goto out;
1212
1213		switch (icmph->icmp6_type) {
1214		case NDISC_ROUTER_SOLICITATION:
1215		case NDISC_ROUTER_ADVERTISEMENT:
1216		case NDISC_NEIGHBOUR_SOLICITATION:
1217		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1218		case NDISC_REDIRECT:
1219			rc = true;
1220			break;
1221		}
1222	}
1223
1224out:
1225	return rc;
1226}
1227
1228static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1229					     const struct net_device *dev,
1230					     struct flowi6 *fl6,
1231					     int ifindex,
1232					     const struct sk_buff *skb,
1233					     int flags)
1234{
1235	struct net_vrf *vrf = netdev_priv(dev);
1236
1237	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1238}
1239
1240static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1241			      int ifindex)
1242{
1243	const struct ipv6hdr *iph = ipv6_hdr(skb);
1244	struct flowi6 fl6 = {
1245		.flowi6_iif     = ifindex,
1246		.flowi6_mark    = skb->mark,
1247		.flowi6_proto   = iph->nexthdr,
1248		.daddr          = iph->daddr,
1249		.saddr          = iph->saddr,
1250		.flowlabel      = ip6_flowinfo(iph),
1251	};
1252	struct net *net = dev_net(vrf_dev);
1253	struct rt6_info *rt6;
1254
1255	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1256				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1257	if (unlikely(!rt6))
1258		return;
1259
1260	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1261		return;
1262
1263	skb_dst_set(skb, &rt6->dst);
1264}
1265
1266static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1267				   struct sk_buff *skb)
1268{
1269	int orig_iif = skb->skb_iif;
1270	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1271	bool is_ndisc = ipv6_ndisc_frame(skb);
1272
1273	/* loopback, multicast & non-ND link-local traffic; do not push through
1274	 * packet taps again. Reset pkt_type for upper layers to process skb
 
 
1275	 */
1276	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1277		skb->dev = vrf_dev;
1278		skb->skb_iif = vrf_dev->ifindex;
1279		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
 
1280		if (skb->pkt_type == PACKET_LOOPBACK)
1281			skb->pkt_type = PACKET_HOST;
 
 
 
1282		goto out;
1283	}
1284
1285	/* if packet is NDISC then keep the ingress interface */
1286	if (!is_ndisc) {
 
 
1287		vrf_rx_stats(vrf_dev, skb->len);
1288		skb->dev = vrf_dev;
1289		skb->skb_iif = vrf_dev->ifindex;
1290
1291		if (!list_empty(&vrf_dev->ptype_all)) {
1292			skb_push(skb, skb->mac_len);
1293			dev_queue_xmit_nit(skb, vrf_dev);
1294			skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
 
1295		}
1296
1297		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1298	}
1299
1300	if (need_strict)
1301		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1302
1303	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1304out:
1305	return skb;
1306}
1307
1308#else
1309static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1310				   struct sk_buff *skb)
1311{
1312	return skb;
1313}
1314#endif
1315
1316static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1317				  struct sk_buff *skb)
1318{
 
 
1319	skb->dev = vrf_dev;
1320	skb->skb_iif = vrf_dev->ifindex;
1321	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1322
1323	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1324		goto out;
1325
1326	/* loopback traffic; do not push through packet taps again.
1327	 * Reset pkt_type for upper layers to process skb
1328	 */
1329	if (skb->pkt_type == PACKET_LOOPBACK) {
1330		skb->pkt_type = PACKET_HOST;
1331		goto out;
1332	}
1333
1334	vrf_rx_stats(vrf_dev, skb->len);
1335
1336	if (!list_empty(&vrf_dev->ptype_all)) {
1337		skb_push(skb, skb->mac_len);
1338		dev_queue_xmit_nit(skb, vrf_dev);
1339		skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
1340	}
1341
1342	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1343out:
1344	return skb;
1345}
1346
1347/* called with rcu lock held */
1348static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1349				  struct sk_buff *skb,
1350				  u16 proto)
1351{
1352	switch (proto) {
1353	case AF_INET:
1354		return vrf_ip_rcv(vrf_dev, skb);
1355	case AF_INET6:
1356		return vrf_ip6_rcv(vrf_dev, skb);
1357	}
1358
1359	return skb;
1360}
1361
1362#if IS_ENABLED(CONFIG_IPV6)
1363/* send to link-local or multicast address via interface enslaved to
1364 * VRF device. Force lookup to VRF table without changing flow struct
1365 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1366 * is taken on the dst by this function.
1367 */
1368static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1369					      struct flowi6 *fl6)
1370{
1371	struct net *net = dev_net(dev);
1372	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1373	struct dst_entry *dst = NULL;
1374	struct rt6_info *rt;
1375
1376	/* VRF device does not have a link-local address and
1377	 * sending packets to link-local or mcast addresses over
1378	 * a VRF device does not make sense
1379	 */
1380	if (fl6->flowi6_oif == dev->ifindex) {
1381		dst = &net->ipv6.ip6_null_entry->dst;
1382		return dst;
1383	}
1384
1385	if (!ipv6_addr_any(&fl6->saddr))
1386		flags |= RT6_LOOKUP_F_HAS_SADDR;
1387
1388	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1389	if (rt)
1390		dst = &rt->dst;
1391
1392	return dst;
1393}
1394#endif
1395
1396static const struct l3mdev_ops vrf_l3mdev_ops = {
1397	.l3mdev_fib_table	= vrf_fib_table,
1398	.l3mdev_l3_rcv		= vrf_l3_rcv,
1399	.l3mdev_l3_out		= vrf_l3_out,
1400#if IS_ENABLED(CONFIG_IPV6)
1401	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1402#endif
1403};
1404
1405static void vrf_get_drvinfo(struct net_device *dev,
1406			    struct ethtool_drvinfo *info)
1407{
1408	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1409	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1410}
1411
1412static const struct ethtool_ops vrf_ethtool_ops = {
1413	.get_drvinfo	= vrf_get_drvinfo,
1414};
1415
1416static inline size_t vrf_fib_rule_nl_size(void)
1417{
1418	size_t sz;
1419
1420	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1421	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1422	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1423	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1424
1425	return sz;
1426}
1427
1428static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1429{
1430	struct fib_rule_hdr *frh;
1431	struct nlmsghdr *nlh;
1432	struct sk_buff *skb;
1433	int err;
1434
1435	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1436	    !ipv6_mod_enabled())
1437		return 0;
1438
1439	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1440	if (!skb)
1441		return -ENOMEM;
1442
1443	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1444	if (!nlh)
1445		goto nla_put_failure;
1446
1447	/* rule only needs to appear once */
1448	nlh->nlmsg_flags |= NLM_F_EXCL;
1449
1450	frh = nlmsg_data(nlh);
1451	memset(frh, 0, sizeof(*frh));
1452	frh->family = family;
1453	frh->action = FR_ACT_TO_TBL;
1454
1455	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1456		goto nla_put_failure;
1457
1458	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1459		goto nla_put_failure;
1460
1461	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1462		goto nla_put_failure;
1463
1464	nlmsg_end(skb, nlh);
1465
1466	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1467	skb->sk = dev_net(dev)->rtnl;
1468	if (add_it) {
1469		err = fib_nl_newrule(skb, nlh, NULL);
1470		if (err == -EEXIST)
1471			err = 0;
1472	} else {
1473		err = fib_nl_delrule(skb, nlh, NULL);
1474		if (err == -ENOENT)
1475			err = 0;
1476	}
1477	nlmsg_free(skb);
1478
1479	return err;
1480
1481nla_put_failure:
1482	nlmsg_free(skb);
1483
1484	return -EMSGSIZE;
1485}
1486
1487static int vrf_add_fib_rules(const struct net_device *dev)
1488{
1489	int err;
1490
1491	err = vrf_fib_rule(dev, AF_INET,  true);
1492	if (err < 0)
1493		goto out_err;
1494
1495	err = vrf_fib_rule(dev, AF_INET6, true);
1496	if (err < 0)
1497		goto ipv6_err;
1498
1499#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1500	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1501	if (err < 0)
1502		goto ipmr_err;
1503#endif
1504
1505#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1506	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1507	if (err < 0)
1508		goto ip6mr_err;
1509#endif
1510
1511	return 0;
1512
1513#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1514ip6mr_err:
1515	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1516#endif
1517
1518#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1519ipmr_err:
1520	vrf_fib_rule(dev, AF_INET6,  false);
1521#endif
1522
1523ipv6_err:
1524	vrf_fib_rule(dev, AF_INET,  false);
1525
1526out_err:
1527	netdev_err(dev, "Failed to add FIB rules.\n");
1528	return err;
1529}
1530
1531static void vrf_setup(struct net_device *dev)
1532{
1533	ether_setup(dev);
1534
1535	/* Initialize the device structure. */
1536	dev->netdev_ops = &vrf_netdev_ops;
1537	dev->l3mdev_ops = &vrf_l3mdev_ops;
1538	dev->ethtool_ops = &vrf_ethtool_ops;
1539	dev->needs_free_netdev = true;
1540
1541	/* Fill in device structure with ethernet-generic values. */
1542	eth_hw_addr_random(dev);
1543
1544	/* don't acquire vrf device's netif_tx_lock when transmitting */
1545	dev->features |= NETIF_F_LLTX;
1546
1547	/* don't allow vrf devices to change network namespaces. */
1548	dev->features |= NETIF_F_NETNS_LOCAL;
1549
1550	/* does not make sense for a VLAN to be added to a vrf device */
1551	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1552
1553	/* enable offload features */
1554	dev->features   |= NETIF_F_GSO_SOFTWARE;
1555	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1556	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1557
1558	dev->hw_features = dev->features;
1559	dev->hw_enc_features = dev->features;
1560
1561	/* default to no qdisc; user can add if desired */
1562	dev->priv_flags |= IFF_NO_QUEUE;
1563	dev->priv_flags |= IFF_NO_RX_HANDLER;
1564	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1565
1566	/* VRF devices do not care about MTU, but if the MTU is set
1567	 * too low then the ipv4 and ipv6 protocols are disabled
1568	 * which breaks networking.
1569	 */
1570	dev->min_mtu = IPV6_MIN_MTU;
1571	dev->max_mtu = ETH_MAX_MTU;
 
 
 
1572}
1573
1574static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1575			struct netlink_ext_ack *extack)
1576{
1577	if (tb[IFLA_ADDRESS]) {
1578		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1579			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1580			return -EINVAL;
1581		}
1582		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1583			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1584			return -EADDRNOTAVAIL;
1585		}
1586	}
1587	return 0;
1588}
1589
1590static void vrf_dellink(struct net_device *dev, struct list_head *head)
1591{
1592	struct net_device *port_dev;
1593	struct list_head *iter;
1594
1595	netdev_for_each_lower_dev(dev, port_dev, iter)
1596		vrf_del_slave(dev, port_dev);
1597
1598	vrf_map_unregister_dev(dev);
1599
1600	unregister_netdevice_queue(dev, head);
1601}
1602
1603static int vrf_newlink(struct net *src_net, struct net_device *dev,
1604		       struct nlattr *tb[], struct nlattr *data[],
1605		       struct netlink_ext_ack *extack)
1606{
1607	struct net_vrf *vrf = netdev_priv(dev);
1608	struct netns_vrf *nn_vrf;
1609	bool *add_fib_rules;
1610	struct net *net;
1611	int err;
1612
1613	if (!data || !data[IFLA_VRF_TABLE]) {
1614		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1615		return -EINVAL;
1616	}
1617
1618	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1619	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1620		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1621				    "Invalid VRF table id");
1622		return -EINVAL;
1623	}
1624
1625	dev->priv_flags |= IFF_L3MDEV_MASTER;
1626
1627	err = register_netdevice(dev);
1628	if (err)
1629		goto out;
1630
1631	/* mapping between table_id and vrf;
1632	 * note: such binding could not be done in the dev init function
1633	 * because dev->ifindex id is not available yet.
1634	 */
1635	vrf->ifindex = dev->ifindex;
1636
1637	err = vrf_map_register_dev(dev, extack);
1638	if (err) {
1639		unregister_netdevice(dev);
1640		goto out;
1641	}
1642
1643	net = dev_net(dev);
1644	nn_vrf = net_generic(net, vrf_net_id);
1645
1646	add_fib_rules = &nn_vrf->add_fib_rules;
1647	if (*add_fib_rules) {
1648		err = vrf_add_fib_rules(dev);
1649		if (err) {
1650			vrf_map_unregister_dev(dev);
1651			unregister_netdevice(dev);
1652			goto out;
1653		}
1654		*add_fib_rules = false;
1655	}
1656
1657out:
1658	return err;
1659}
1660
1661static size_t vrf_nl_getsize(const struct net_device *dev)
1662{
1663	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1664}
1665
1666static int vrf_fillinfo(struct sk_buff *skb,
1667			const struct net_device *dev)
1668{
1669	struct net_vrf *vrf = netdev_priv(dev);
1670
1671	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1672}
1673
1674static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1675				 const struct net_device *slave_dev)
1676{
1677	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1678}
1679
1680static int vrf_fill_slave_info(struct sk_buff *skb,
1681			       const struct net_device *vrf_dev,
1682			       const struct net_device *slave_dev)
1683{
1684	struct net_vrf *vrf = netdev_priv(vrf_dev);
1685
1686	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1687		return -EMSGSIZE;
1688
1689	return 0;
1690}
1691
1692static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1693	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1694};
1695
1696static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1697	.kind		= DRV_NAME,
1698	.priv_size	= sizeof(struct net_vrf),
1699
1700	.get_size	= vrf_nl_getsize,
1701	.policy		= vrf_nl_policy,
1702	.validate	= vrf_validate,
1703	.fill_info	= vrf_fillinfo,
1704
1705	.get_slave_size  = vrf_get_slave_size,
1706	.fill_slave_info = vrf_fill_slave_info,
1707
1708	.newlink	= vrf_newlink,
1709	.dellink	= vrf_dellink,
1710	.setup		= vrf_setup,
1711	.maxtype	= IFLA_VRF_MAX,
1712};
1713
1714static int vrf_device_event(struct notifier_block *unused,
1715			    unsigned long event, void *ptr)
1716{
1717	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718
1719	/* only care about unregister events to drop slave references */
1720	if (event == NETDEV_UNREGISTER) {
1721		struct net_device *vrf_dev;
1722
1723		if (!netif_is_l3_slave(dev))
1724			goto out;
1725
1726		vrf_dev = netdev_master_upper_dev_get(dev);
1727		vrf_del_slave(vrf_dev, dev);
1728	}
1729out:
1730	return NOTIFY_DONE;
1731}
1732
1733static struct notifier_block vrf_notifier_block __read_mostly = {
1734	.notifier_call = vrf_device_event,
1735};
1736
1737static int vrf_map_init(struct vrf_map *vmap)
1738{
1739	spin_lock_init(&vmap->vmap_lock);
1740	hash_init(vmap->ht);
1741
1742	vmap->strict_mode = false;
1743
1744	return 0;
1745}
1746
1747#ifdef CONFIG_SYSCTL
1748static bool vrf_strict_mode(struct vrf_map *vmap)
1749{
1750	bool strict_mode;
1751
1752	vrf_map_lock(vmap);
1753	strict_mode = vmap->strict_mode;
1754	vrf_map_unlock(vmap);
1755
1756	return strict_mode;
1757}
1758
1759static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1760{
1761	bool *cur_mode;
1762	int res = 0;
1763
1764	vrf_map_lock(vmap);
1765
1766	cur_mode = &vmap->strict_mode;
1767	if (*cur_mode == new_mode)
1768		goto unlock;
1769
1770	if (*cur_mode) {
1771		/* disable strict mode */
1772		*cur_mode = false;
1773	} else {
1774		if (vmap->shared_tables) {
1775			/* we cannot allow strict_mode because there are some
1776			 * vrfs that share one or more tables.
1777			 */
1778			res = -EBUSY;
1779			goto unlock;
1780		}
1781
1782		/* no tables are shared among vrfs, so we can go back
1783		 * to 1:1 association between a vrf with its table.
1784		 */
1785		*cur_mode = true;
1786	}
1787
1788unlock:
1789	vrf_map_unlock(vmap);
1790
1791	return res;
1792}
1793
1794static int vrf_shared_table_handler(struct ctl_table *table, int write,
1795				    void *buffer, size_t *lenp, loff_t *ppos)
1796{
1797	struct net *net = (struct net *)table->extra1;
1798	struct vrf_map *vmap = netns_vrf_map(net);
1799	int proc_strict_mode = 0;
1800	struct ctl_table tmp = {
1801		.procname	= table->procname,
1802		.data		= &proc_strict_mode,
1803		.maxlen		= sizeof(int),
1804		.mode		= table->mode,
1805		.extra1		= SYSCTL_ZERO,
1806		.extra2		= SYSCTL_ONE,
1807	};
1808	int ret;
1809
1810	if (!write)
1811		proc_strict_mode = vrf_strict_mode(vmap);
1812
1813	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1814
1815	if (write && ret == 0)
1816		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1817
1818	return ret;
1819}
1820
1821static const struct ctl_table vrf_table[] = {
1822	{
1823		.procname	= "strict_mode",
1824		.data		= NULL,
1825		.maxlen		= sizeof(int),
1826		.mode		= 0644,
1827		.proc_handler	= vrf_shared_table_handler,
1828		/* set by the vrf_netns_init */
1829		.extra1		= NULL,
1830	},
1831	{ },
1832};
1833
1834static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1835{
1836	struct ctl_table *table;
1837
1838	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1839	if (!table)
1840		return -ENOMEM;
1841
1842	/* init the extra1 parameter with the reference to current netns */
1843	table[0].extra1 = net;
1844
1845	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
 
1846	if (!nn_vrf->ctl_hdr) {
1847		kfree(table);
1848		return -ENOMEM;
1849	}
1850
1851	return 0;
1852}
1853
1854static void vrf_netns_exit_sysctl(struct net *net)
1855{
1856	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1857	struct ctl_table *table;
1858
1859	table = nn_vrf->ctl_hdr->ctl_table_arg;
1860	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1861	kfree(table);
1862}
1863#else
1864static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1865{
1866	return 0;
1867}
1868
1869static void vrf_netns_exit_sysctl(struct net *net)
1870{
1871}
1872#endif
1873
1874/* Initialize per network namespace state */
1875static int __net_init vrf_netns_init(struct net *net)
1876{
1877	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1878
1879	nn_vrf->add_fib_rules = true;
1880	vrf_map_init(&nn_vrf->vmap);
1881
1882	return vrf_netns_init_sysctl(net, nn_vrf);
1883}
1884
1885static void __net_exit vrf_netns_exit(struct net *net)
1886{
1887	vrf_netns_exit_sysctl(net);
1888}
1889
1890static struct pernet_operations vrf_net_ops __net_initdata = {
1891	.init = vrf_netns_init,
1892	.exit = vrf_netns_exit,
1893	.id   = &vrf_net_id,
1894	.size = sizeof(struct netns_vrf),
1895};
1896
1897static int __init vrf_init_module(void)
1898{
1899	int rc;
1900
1901	register_netdevice_notifier(&vrf_notifier_block);
1902
1903	rc = register_pernet_subsys(&vrf_net_ops);
1904	if (rc < 0)
1905		goto error;
1906
1907	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1908					  vrf_ifindex_lookup_by_table_id);
1909	if (rc < 0)
1910		goto unreg_pernet;
1911
1912	rc = rtnl_link_register(&vrf_link_ops);
1913	if (rc < 0)
1914		goto table_lookup_unreg;
1915
1916	return 0;
1917
1918table_lookup_unreg:
1919	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1920				       vrf_ifindex_lookup_by_table_id);
1921
1922unreg_pernet:
1923	unregister_pernet_subsys(&vrf_net_ops);
1924
1925error:
1926	unregister_netdevice_notifier(&vrf_notifier_block);
1927	return rc;
1928}
1929
1930module_init(vrf_init_module);
1931MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1932MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1933MODULE_LICENSE("GPL");
1934MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1935MODULE_VERSION(DRV_VERSION);