Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143 return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153 writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158 writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg) __er16flash(hw, (reg))
162#define er32flash(reg) __er32flash(hw, (reg))
163#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166/**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238}
239
240/**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279}
280
281/**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 if (ret_val)
305 e_warn("Failed to disable ULP\n");
306
307 ret_val = hw->phy.ops.acquire(hw);
308 if (ret_val) {
309 e_dbg("Failed to initialize PHY flow\n");
310 goto out;
311 }
312
313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
314 * inaccessible and resetting the PHY is not blocked, toggle the
315 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 */
317 switch (hw->mac.type) {
318 case e1000_pch_lpt:
319 case e1000_pch_spt:
320 case e1000_pch_cnp:
321 case e1000_pch_tgp:
322 case e1000_pch_adp:
323 case e1000_pch_mtp:
324 case e1000_pch_lnp:
325 case e1000_pch_ptp:
326 case e1000_pch_nvp:
327 if (e1000_phy_is_accessible_pchlan(hw))
328 break;
329
330 /* Before toggling LANPHYPC, see if PHY is accessible by
331 * forcing MAC to SMBus mode first.
332 */
333 mac_reg = er32(CTRL_EXT);
334 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
335 ew32(CTRL_EXT, mac_reg);
336
337 /* Wait 50 milliseconds for MAC to finish any retries
338 * that it might be trying to perform from previous
339 * attempts to acknowledge any phy read requests.
340 */
341 msleep(50);
342
343 fallthrough;
344 case e1000_pch2lan:
345 if (e1000_phy_is_accessible_pchlan(hw))
346 break;
347
348 fallthrough;
349 case e1000_pchlan:
350 if ((hw->mac.type == e1000_pchlan) &&
351 (fwsm & E1000_ICH_FWSM_FW_VALID))
352 break;
353
354 if (hw->phy.ops.check_reset_block(hw)) {
355 e_dbg("Required LANPHYPC toggle blocked by ME\n");
356 ret_val = -E1000_ERR_PHY;
357 break;
358 }
359
360 /* Toggle LANPHYPC Value bit */
361 e1000_toggle_lanphypc_pch_lpt(hw);
362 if (hw->mac.type >= e1000_pch_lpt) {
363 if (e1000_phy_is_accessible_pchlan(hw))
364 break;
365
366 /* Toggling LANPHYPC brings the PHY out of SMBus mode
367 * so ensure that the MAC is also out of SMBus mode
368 */
369 mac_reg = er32(CTRL_EXT);
370 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
371 ew32(CTRL_EXT, mac_reg);
372
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 ret_val = -E1000_ERR_PHY;
377 }
378 break;
379 default:
380 break;
381 }
382
383 hw->phy.ops.release(hw);
384 if (!ret_val) {
385
386 /* Check to see if able to reset PHY. Print error if not */
387 if (hw->phy.ops.check_reset_block(hw)) {
388 e_err("Reset blocked by ME\n");
389 goto out;
390 }
391
392 /* Reset the PHY before any access to it. Doing so, ensures
393 * that the PHY is in a known good state before we read/write
394 * PHY registers. The generic reset is sufficient here,
395 * because we haven't determined the PHY type yet.
396 */
397 ret_val = e1000e_phy_hw_reset_generic(hw);
398 if (ret_val)
399 goto out;
400
401 /* On a successful reset, possibly need to wait for the PHY
402 * to quiesce to an accessible state before returning control
403 * to the calling function. If the PHY does not quiesce, then
404 * return E1000E_BLK_PHY_RESET, as this is the condition that
405 * the PHY is in.
406 */
407 ret_val = hw->phy.ops.check_reset_block(hw);
408 if (ret_val)
409 e_err("ME blocked access to PHY after reset\n");
410 }
411
412out:
413 /* Ungate automatic PHY configuration on non-managed 82579 */
414 if ((hw->mac.type == e1000_pch2lan) &&
415 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
416 usleep_range(10000, 11000);
417 e1000_gate_hw_phy_config_ich8lan(hw, false);
418 }
419
420 return ret_val;
421}
422
423/**
424 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
425 * @hw: pointer to the HW structure
426 *
427 * Initialize family-specific PHY parameters and function pointers.
428 **/
429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
430{
431 struct e1000_phy_info *phy = &hw->phy;
432 s32 ret_val;
433
434 phy->addr = 1;
435 phy->reset_delay_us = 100;
436
437 phy->ops.set_page = e1000_set_page_igp;
438 phy->ops.read_reg = e1000_read_phy_reg_hv;
439 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
440 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
441 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
442 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
443 phy->ops.write_reg = e1000_write_phy_reg_hv;
444 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
445 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
446 phy->ops.power_up = e1000_power_up_phy_copper;
447 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
448 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
449
450 phy->id = e1000_phy_unknown;
451
452 ret_val = e1000_init_phy_workarounds_pchlan(hw);
453 if (ret_val)
454 return ret_val;
455
456 if (phy->id == e1000_phy_unknown)
457 switch (hw->mac.type) {
458 default:
459 ret_val = e1000e_get_phy_id(hw);
460 if (ret_val)
461 return ret_val;
462 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
463 break;
464 fallthrough;
465 case e1000_pch2lan:
466 case e1000_pch_lpt:
467 case e1000_pch_spt:
468 case e1000_pch_cnp:
469 case e1000_pch_tgp:
470 case e1000_pch_adp:
471 case e1000_pch_mtp:
472 case e1000_pch_lnp:
473 case e1000_pch_ptp:
474 case e1000_pch_nvp:
475 /* In case the PHY needs to be in mdio slow mode,
476 * set slow mode and try to get the PHY id again.
477 */
478 ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 if (ret_val)
480 return ret_val;
481 ret_val = e1000e_get_phy_id(hw);
482 if (ret_val)
483 return ret_val;
484 break;
485 }
486 phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488 switch (phy->type) {
489 case e1000_phy_82577:
490 case e1000_phy_82579:
491 case e1000_phy_i217:
492 phy->ops.check_polarity = e1000_check_polarity_82577;
493 phy->ops.force_speed_duplex =
494 e1000_phy_force_speed_duplex_82577;
495 phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 phy->ops.get_info = e1000_get_phy_info_82577;
497 phy->ops.commit = e1000e_phy_sw_reset;
498 break;
499 case e1000_phy_82578:
500 phy->ops.check_polarity = e1000_check_polarity_m88;
501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 phy->ops.get_info = e1000e_get_phy_info_m88;
504 break;
505 default:
506 ret_val = -E1000_ERR_PHY;
507 break;
508 }
509
510 return ret_val;
511}
512
513/**
514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515 * @hw: pointer to the HW structure
516 *
517 * Initialize family-specific PHY parameters and function pointers.
518 **/
519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520{
521 struct e1000_phy_info *phy = &hw->phy;
522 s32 ret_val;
523 u16 i = 0;
524
525 phy->addr = 1;
526 phy->reset_delay_us = 100;
527
528 phy->ops.power_up = e1000_power_up_phy_copper;
529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531 /* We may need to do this twice - once for IGP and if that fails,
532 * we'll set BM func pointers and try again
533 */
534 ret_val = e1000e_determine_phy_address(hw);
535 if (ret_val) {
536 phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 e_dbg("Cannot determine PHY addr. Erroring out\n");
541 return ret_val;
542 }
543 }
544
545 phy->id = 0;
546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 (i++ < 100)) {
548 usleep_range(1000, 1100);
549 ret_val = e1000e_get_phy_id(hw);
550 if (ret_val)
551 return ret_val;
552 }
553
554 /* Verify phy id */
555 switch (phy->id) {
556 case IGP03E1000_E_PHY_ID:
557 phy->type = e1000_phy_igp_3;
558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 phy->ops.get_info = e1000e_get_phy_info_igp;
562 phy->ops.check_polarity = e1000_check_polarity_igp;
563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 break;
565 case IFE_E_PHY_ID:
566 case IFE_PLUS_E_PHY_ID:
567 case IFE_C_E_PHY_ID:
568 phy->type = e1000_phy_ife;
569 phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 phy->ops.get_info = e1000_get_phy_info_ife;
571 phy->ops.check_polarity = e1000_check_polarity_ife;
572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 break;
574 case BME1000_E_PHY_ID:
575 phy->type = e1000_phy_bm;
576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 phy->ops.commit = e1000e_phy_sw_reset;
580 phy->ops.get_info = e1000e_get_phy_info_m88;
581 phy->ops.check_polarity = e1000_check_polarity_m88;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 break;
584 default:
585 return -E1000_ERR_PHY;
586 }
587
588 return 0;
589}
590
591/**
592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593 * @hw: pointer to the HW structure
594 *
595 * Initialize family-specific NVM parameters and function
596 * pointers.
597 **/
598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599{
600 struct e1000_nvm_info *nvm = &hw->nvm;
601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 u32 gfpreg, sector_base_addr, sector_end_addr;
603 u16 i;
604 u32 nvm_size;
605
606 nvm->type = e1000_nvm_flash_sw;
607
608 if (hw->mac.type >= e1000_pch_spt) {
609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 * STRAP register. This is because in SPT the GbE Flash region
611 * is no longer accessed through the flash registers. Instead,
612 * the mechanism has changed, and the Flash region access
613 * registers are now implemented in GbE memory space.
614 */
615 nvm->flash_base_addr = 0;
616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 * NVM_SIZE_MULTIPLIER;
618 nvm->flash_bank_size = nvm_size / 2;
619 /* Adjust to word count */
620 nvm->flash_bank_size /= sizeof(u16);
621 /* Set the base address for flash register access */
622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 } else {
624 /* Can't read flash registers if register set isn't mapped. */
625 if (!hw->flash_address) {
626 e_dbg("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr
641 << FLASH_SECTOR_ADDR_SHIFT;
642
643 /* find total size of the NVM, then cut in half since the total
644 * size represents two separate NVM banks.
645 */
646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 << FLASH_SECTOR_ADDR_SHIFT);
648 nvm->flash_bank_size /= 2;
649 /* Adjust to word count */
650 nvm->flash_bank_size /= sizeof(u16);
651 }
652
653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655 /* Clear shadow ram */
656 for (i = 0; i < nvm->word_size; i++) {
657 dev_spec->shadow_ram[i].modified = false;
658 dev_spec->shadow_ram[i].value = 0xFFFF;
659 }
660
661 return 0;
662}
663
664/**
665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666 * @hw: pointer to the HW structure
667 *
668 * Initialize family-specific MAC parameters and function
669 * pointers.
670 **/
671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672{
673 struct e1000_mac_info *mac = &hw->mac;
674
675 /* Set media type function pointer */
676 hw->phy.media_type = e1000_media_type_copper;
677
678 /* Set mta register count */
679 mac->mta_reg_count = 32;
680 /* Set rar entry count */
681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 if (mac->type == e1000_ich8lan)
683 mac->rar_entry_count--;
684 /* FWSM register */
685 mac->has_fwsm = true;
686 /* ARC subsystem not supported */
687 mac->arc_subsystem_valid = false;
688 /* Adaptive IFS supported */
689 mac->adaptive_ifs = true;
690
691 /* LED and other operations */
692 switch (mac->type) {
693 case e1000_ich8lan:
694 case e1000_ich9lan:
695 case e1000_ich10lan:
696 /* check management mode */
697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 /* ID LED init */
699 mac->ops.id_led_init = e1000e_id_led_init_generic;
700 /* blink LED */
701 mac->ops.blink_led = e1000e_blink_led_generic;
702 /* setup LED */
703 mac->ops.setup_led = e1000e_setup_led_generic;
704 /* cleanup LED */
705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 /* turn on/off LED */
707 mac->ops.led_on = e1000_led_on_ich8lan;
708 mac->ops.led_off = e1000_led_off_ich8lan;
709 break;
710 case e1000_pch2lan:
711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 mac->ops.rar_set = e1000_rar_set_pch2lan;
713 fallthrough;
714 case e1000_pch_lpt:
715 case e1000_pch_spt:
716 case e1000_pch_cnp:
717 case e1000_pch_tgp:
718 case e1000_pch_adp:
719 case e1000_pch_mtp:
720 case e1000_pch_lnp:
721 case e1000_pch_ptp:
722 case e1000_pch_nvp:
723 case e1000_pchlan:
724 /* check management mode */
725 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
726 /* ID LED init */
727 mac->ops.id_led_init = e1000_id_led_init_pchlan;
728 /* setup LED */
729 mac->ops.setup_led = e1000_setup_led_pchlan;
730 /* cleanup LED */
731 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
732 /* turn on/off LED */
733 mac->ops.led_on = e1000_led_on_pchlan;
734 mac->ops.led_off = e1000_led_off_pchlan;
735 break;
736 default:
737 break;
738 }
739
740 if (mac->type >= e1000_pch_lpt) {
741 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
742 mac->ops.rar_set = e1000_rar_set_pch_lpt;
743 mac->ops.setup_physical_interface =
744 e1000_setup_copper_link_pch_lpt;
745 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
746 }
747
748 /* Enable PCS Lock-loss workaround for ICH8 */
749 if (mac->type == e1000_ich8lan)
750 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751
752 return 0;
753}
754
755/**
756 * __e1000_access_emi_reg_locked - Read/write EMI register
757 * @hw: pointer to the HW structure
758 * @address: EMI address to program
759 * @data: pointer to value to read/write from/to the EMI address
760 * @read: boolean flag to indicate read or write
761 *
762 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
763 **/
764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
765 u16 *data, bool read)
766{
767 s32 ret_val;
768
769 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
770 if (ret_val)
771 return ret_val;
772
773 if (read)
774 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
775 else
776 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777
778 return ret_val;
779}
780
781/**
782 * e1000_read_emi_reg_locked - Read Extended Management Interface register
783 * @hw: pointer to the HW structure
784 * @addr: EMI address to program
785 * @data: value to be read from the EMI address
786 *
787 * Assumes the SW/FW/HW Semaphore is already acquired.
788 **/
789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
790{
791 return __e1000_access_emi_reg_locked(hw, addr, data, true);
792}
793
794/**
795 * e1000_write_emi_reg_locked - Write Extended Management Interface register
796 * @hw: pointer to the HW structure
797 * @addr: EMI address to program
798 * @data: value to be written to the EMI address
799 *
800 * Assumes the SW/FW/HW Semaphore is already acquired.
801 **/
802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
803{
804 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
805}
806
807/**
808 * e1000_set_eee_pchlan - Enable/disable EEE support
809 * @hw: pointer to the HW structure
810 *
811 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
812 * the link and the EEE capabilities of the link partner. The LPI Control
813 * register bits will remain set only if/when link is up.
814 *
815 * EEE LPI must not be asserted earlier than one second after link is up.
816 * On 82579, EEE LPI should not be enabled until such time otherwise there
817 * can be link issues with some switches. Other devices can have EEE LPI
818 * enabled immediately upon link up since they have a timer in hardware which
819 * prevents LPI from being asserted too early.
820 **/
821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
822{
823 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
824 s32 ret_val;
825 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
826
827 switch (hw->phy.type) {
828 case e1000_phy_82579:
829 lpa = I82579_EEE_LP_ABILITY;
830 pcs_status = I82579_EEE_PCS_STATUS;
831 adv_addr = I82579_EEE_ADVERTISEMENT;
832 break;
833 case e1000_phy_i217:
834 lpa = I217_EEE_LP_ABILITY;
835 pcs_status = I217_EEE_PCS_STATUS;
836 adv_addr = I217_EEE_ADVERTISEMENT;
837 break;
838 default:
839 return 0;
840 }
841
842 ret_val = hw->phy.ops.acquire(hw);
843 if (ret_val)
844 return ret_val;
845
846 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
847 if (ret_val)
848 goto release;
849
850 /* Clear bits that enable EEE in various speeds */
851 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
852
853 /* Enable EEE if not disabled by user */
854 if (!dev_spec->eee_disable) {
855 /* Save off link partner's EEE ability */
856 ret_val = e1000_read_emi_reg_locked(hw, lpa,
857 &dev_spec->eee_lp_ability);
858 if (ret_val)
859 goto release;
860
861 /* Read EEE advertisement */
862 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
863 if (ret_val)
864 goto release;
865
866 /* Enable EEE only for speeds in which the link partner is
867 * EEE capable and for which we advertise EEE.
868 */
869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
870 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
871
872 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
873 e1e_rphy_locked(hw, MII_LPA, &data);
874 if (data & LPA_100FULL)
875 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
876 else
877 /* EEE is not supported in 100Half, so ignore
878 * partner's EEE in 100 ability if full-duplex
879 * is not advertised.
880 */
881 dev_spec->eee_lp_ability &=
882 ~I82579_EEE_100_SUPPORTED;
883 }
884 }
885
886 if (hw->phy.type == e1000_phy_82579) {
887 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888 &data);
889 if (ret_val)
890 goto release;
891
892 data &= ~I82579_LPI_100_PLL_SHUT;
893 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
894 data);
895 }
896
897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899 if (ret_val)
900 goto release;
901
902 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
903release:
904 hw->phy.ops.release(hw);
905
906 return ret_val;
907}
908
909/**
910 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
911 * @hw: pointer to the HW structure
912 * @link: link up bool flag
913 *
914 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
915 * preventing further DMA write requests. Workaround the issue by disabling
916 * the de-assertion of the clock request when in 1Gpbs mode.
917 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
918 * speeds in order to avoid Tx hangs.
919 **/
920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
921{
922 u32 fextnvm6 = er32(FEXTNVM6);
923 u32 status = er32(STATUS);
924 s32 ret_val = 0;
925 u16 reg;
926
927 if (link && (status & E1000_STATUS_SPEED_1000)) {
928 ret_val = hw->phy.ops.acquire(hw);
929 if (ret_val)
930 return ret_val;
931
932 ret_val =
933 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934 ®);
935 if (ret_val)
936 goto release;
937
938 ret_val =
939 e1000e_write_kmrn_reg_locked(hw,
940 E1000_KMRNCTRLSTA_K1_CONFIG,
941 reg &
942 ~E1000_KMRNCTRLSTA_K1_ENABLE);
943 if (ret_val)
944 goto release;
945
946 usleep_range(10, 20);
947
948 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
949
950 ret_val =
951 e1000e_write_kmrn_reg_locked(hw,
952 E1000_KMRNCTRLSTA_K1_CONFIG,
953 reg);
954release:
955 hw->phy.ops.release(hw);
956 } else {
957 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
958 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
959
960 if ((hw->phy.revision > 5) || !link ||
961 ((status & E1000_STATUS_SPEED_100) &&
962 (status & E1000_STATUS_FD)))
963 goto update_fextnvm6;
964
965 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
966 if (ret_val)
967 return ret_val;
968
969 /* Clear link status transmit timeout */
970 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
971
972 if (status & E1000_STATUS_SPEED_100) {
973 /* Set inband Tx timeout to 5x10us for 100Half */
974 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976 /* Do not extend the K1 entry latency for 100Half */
977 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 } else {
979 /* Set inband Tx timeout to 50x10us for 10Full/Half */
980 reg |= 50 <<
981 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
982
983 /* Extend the K1 entry latency for 10 Mbps */
984 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
985 }
986
987 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
988 if (ret_val)
989 return ret_val;
990
991update_fextnvm6:
992 ew32(FEXTNVM6, fextnvm6);
993 }
994
995 return ret_val;
996}
997
998/**
999 * e1000_platform_pm_pch_lpt - Set platform power management values
1000 * @hw: pointer to the HW structure
1001 * @link: bool indicating link status
1002 *
1003 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 * when link is up (which must not exceed the maximum latency supported
1006 * by the platform), otherwise specify there is no LTR requirement.
1007 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 * Capability register set, on this device LTR is set by writing the
1010 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 * message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1019 u32 lat_enc_d = 0; /* latency decoded */
1020 u16 lat_enc = 0; /* latency encoded */
1021
1022 if (link) {
1023 u16 speed, duplex, scale = 0;
1024 u16 max_snoop, max_nosnoop;
1025 u16 max_ltr_enc; /* max LTR latency encoded */
1026 u64 value;
1027 u32 rxa;
1028
1029 if (!hw->adapter->max_frame_size) {
1030 e_dbg("max_frame_size not set.\n");
1031 return -E1000_ERR_CONFIG;
1032 }
1033
1034 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035 if (!speed) {
1036 e_dbg("Speed not set.\n");
1037 return -E1000_ERR_CONFIG;
1038 }
1039
1040 /* Rx Packet Buffer Allocation size (KB) */
1041 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043 /* Determine the maximum latency tolerated by the device.
1044 *
1045 * Per the PCIe spec, the tolerated latencies are encoded as
1046 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1049 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050 */
1051 rxa *= 512;
1052 value = (rxa > hw->adapter->max_frame_size) ?
1053 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054 0;
1055
1056 while (value > PCI_LTR_VALUE_MASK) {
1057 scale++;
1058 value = DIV_ROUND_UP(value, BIT(5));
1059 }
1060 if (scale > E1000_LTRV_SCALE_MAX) {
1061 e_dbg("Invalid LTR latency scale %d\n", scale);
1062 return -E1000_ERR_CONFIG;
1063 }
1064 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066 /* Determine the maximum latency tolerated by the platform */
1067 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068 &max_snoop);
1069 pci_read_config_word(hw->adapter->pdev,
1070 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078 (1U << (E1000_LTRV_SCALE_FACTOR *
1079 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081 if (lat_enc_d > max_ltr_enc_d)
1082 lat_enc = max_ltr_enc;
1083 }
1084
1085 /* Set Snoop and No-Snoop latencies the same */
1086 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087 ew32(LTRV, reg);
1088
1089 return 0;
1090}
1091
1092/**
1093 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 * @hw: pointer to the HW structure
1095 * @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 * When link is down, configure ULP mode to significantly reduce the power
1098 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1099 * ME firmware to start the ULP configuration. If not on an ME enabled
1100 * system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104 u32 mac_reg;
1105 s32 ret_val = 0;
1106 u16 phy_reg;
1107 u16 oem_reg = 0;
1108
1109 if ((hw->mac.type < e1000_pch_lpt) ||
1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115 return 0;
1116
1117 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118 /* Request ME configure ULP mode in the PHY */
1119 mac_reg = er32(H2ME);
1120 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121 ew32(H2ME, mac_reg);
1122
1123 goto out;
1124 }
1125
1126 if (!to_sx) {
1127 int i = 0;
1128
1129 /* Poll up to 5 seconds for Cable Disconnected indication */
1130 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131 /* Bail if link is re-acquired */
1132 if (er32(STATUS) & E1000_STATUS_LU)
1133 return -E1000_ERR_PHY;
1134
1135 if (i++ == 100)
1136 break;
1137
1138 msleep(50);
1139 }
1140 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141 (er32(FEXT) &
1142 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143 }
1144
1145 ret_val = hw->phy.ops.acquire(hw);
1146 if (ret_val)
1147 goto out;
1148
1149 /* Force SMBus mode in PHY */
1150 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151 if (ret_val)
1152 goto release;
1153 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156 /* Force SMBus mode in MAC */
1157 mac_reg = er32(CTRL_EXT);
1158 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159 ew32(CTRL_EXT, mac_reg);
1160
1161 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1162 * LPLU and disable Gig speed when entering ULP
1163 */
1164 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166 &oem_reg);
1167 if (ret_val)
1168 goto release;
1169
1170 phy_reg = oem_reg;
1171 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174 phy_reg);
1175
1176 if (ret_val)
1177 goto release;
1178 }
1179
1180 /* Set Inband ULP Exit, Reset to SMBus mode and
1181 * Disable SMBus Release on PERST# in PHY
1182 */
1183 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184 if (ret_val)
1185 goto release;
1186 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188 if (to_sx) {
1189 if (er32(WUFC) & E1000_WUFC_LNKC)
1190 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191 else
1192 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196 } else {
1197 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200 }
1201 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203 /* Set Disable SMBus Release on PERST# in MAC */
1204 mac_reg = er32(FEXTNVM7);
1205 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206 ew32(FEXTNVM7, mac_reg);
1207
1208 /* Commit ULP changes in PHY by starting auto ULP configuration */
1209 phy_reg |= I218_ULP_CONFIG1_START;
1210 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215 oem_reg);
1216 if (ret_val)
1217 goto release;
1218 }
1219
1220release:
1221 hw->phy.ops.release(hw);
1222out:
1223 if (ret_val)
1224 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225 else
1226 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228 return ret_val;
1229}
1230
1231/**
1232 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 * @hw: pointer to the HW structure
1234 * @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 * Un-configure ULP mode when link is up, the system is transitioned from
1237 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1238 * system, poll for an indication from ME that ULP has been un-configured.
1239 * If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 * During nominal operation, this function is called when link is acquired
1242 * to disable ULP mode (force=false); otherwise, for example when unloading
1243 * the driver or during Sx->S0 transitions, this is called with force=true
1244 * to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248 s32 ret_val = 0;
1249 u32 mac_reg;
1250 u16 phy_reg;
1251 int i = 0;
1252
1253 if ((hw->mac.type < e1000_pch_lpt) ||
1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259 return 0;
1260
1261 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262 struct e1000_adapter *adapter = hw->adapter;
1263 bool firmware_bug = false;
1264
1265 if (force) {
1266 /* Request ME un-configure ULP mode in the PHY */
1267 mac_reg = er32(H2ME);
1268 mac_reg &= ~E1000_H2ME_ULP;
1269 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270 ew32(H2ME, mac_reg);
1271 }
1272
1273 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274 * If this takes more than 1 second, show a warning indicating a
1275 * firmware bug
1276 */
1277 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278 if (i++ == 250) {
1279 ret_val = -E1000_ERR_PHY;
1280 goto out;
1281 }
1282 if (i > 100 && !firmware_bug)
1283 firmware_bug = true;
1284
1285 usleep_range(10000, 11000);
1286 }
1287 if (firmware_bug)
1288 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289 i * 10);
1290 else
1291 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292 i * 10);
1293
1294 if (force) {
1295 mac_reg = er32(H2ME);
1296 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297 ew32(H2ME, mac_reg);
1298 } else {
1299 /* Clear H2ME.ULP after ME ULP configuration */
1300 mac_reg = er32(H2ME);
1301 mac_reg &= ~E1000_H2ME_ULP;
1302 ew32(H2ME, mac_reg);
1303 }
1304
1305 goto out;
1306 }
1307
1308 ret_val = hw->phy.ops.acquire(hw);
1309 if (ret_val)
1310 goto out;
1311
1312 if (force)
1313 /* Toggle LANPHYPC Value bit */
1314 e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316 /* Unforce SMBus mode in PHY */
1317 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318 if (ret_val) {
1319 /* The MAC might be in PCIe mode, so temporarily force to
1320 * SMBus mode in order to access the PHY.
1321 */
1322 mac_reg = er32(CTRL_EXT);
1323 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324 ew32(CTRL_EXT, mac_reg);
1325
1326 msleep(50);
1327
1328 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329 &phy_reg);
1330 if (ret_val)
1331 goto release;
1332 }
1333 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336 /* Unforce SMBus mode in MAC */
1337 mac_reg = er32(CTRL_EXT);
1338 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339 ew32(CTRL_EXT, mac_reg);
1340
1341 /* When ULP mode was previously entered, K1 was disabled by the
1342 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1343 */
1344 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345 if (ret_val)
1346 goto release;
1347 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350 /* Clear ULP enabled configuration */
1351 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352 if (ret_val)
1353 goto release;
1354 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355 I218_ULP_CONFIG1_STICKY_ULP |
1356 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357 I218_ULP_CONFIG1_WOL_HOST |
1358 I218_ULP_CONFIG1_INBAND_EXIT |
1359 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364 /* Commit ULP changes by starting auto ULP configuration */
1365 phy_reg |= I218_ULP_CONFIG1_START;
1366 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368 /* Clear Disable SMBus Release on PERST# in MAC */
1369 mac_reg = er32(FEXTNVM7);
1370 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371 ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374 hw->phy.ops.release(hw);
1375 if (force) {
1376 e1000_phy_hw_reset(hw);
1377 msleep(50);
1378 }
1379out:
1380 if (ret_val)
1381 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382 else
1383 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385 return ret_val;
1386}
1387
1388/**
1389 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 * @hw: pointer to the HW structure
1391 *
1392 * Checks to see of the link status of the hardware has changed. If a
1393 * change in link status has been detected, then we read the PHY registers
1394 * to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398 struct e1000_mac_info *mac = &hw->mac;
1399 s32 ret_val, tipg_reg = 0;
1400 u16 emi_addr, emi_val = 0;
1401 bool link;
1402 u16 phy_reg;
1403
1404 /* We only want to go out to the PHY registers to see if Auto-Neg
1405 * has completed and/or if our link status has changed. The
1406 * get_link_status flag is set upon receiving a Link Status
1407 * Change or Rx Sequence Error interrupt.
1408 */
1409 if (!mac->get_link_status)
1410 return 0;
1411 mac->get_link_status = false;
1412
1413 /* First we want to see if the MII Status Register reports
1414 * link. If so, then we want to get the current speed/duplex
1415 * of the PHY.
1416 */
1417 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418 if (ret_val)
1419 goto out;
1420
1421 if (hw->mac.type == e1000_pchlan) {
1422 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423 if (ret_val)
1424 goto out;
1425 }
1426
1427 /* When connected at 10Mbps half-duplex, some parts are excessively
1428 * aggressive resulting in many collisions. To avoid this, increase
1429 * the IPG and reduce Rx latency in the PHY.
1430 */
1431 if ((hw->mac.type >= e1000_pch2lan) && link) {
1432 u16 speed, duplex;
1433
1434 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435 tipg_reg = er32(TIPG);
1436 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439 tipg_reg |= 0xFF;
1440 /* Reduce Rx latency in analog PHY */
1441 emi_val = 0;
1442 } else if (hw->mac.type >= e1000_pch_spt &&
1443 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444 tipg_reg |= 0xC;
1445 emi_val = 1;
1446 } else {
1447
1448 /* Roll back the default values */
1449 tipg_reg |= 0x08;
1450 emi_val = 1;
1451 }
1452
1453 ew32(TIPG, tipg_reg);
1454
1455 ret_val = hw->phy.ops.acquire(hw);
1456 if (ret_val)
1457 goto out;
1458
1459 if (hw->mac.type == e1000_pch2lan)
1460 emi_addr = I82579_RX_CONFIG;
1461 else
1462 emi_addr = I217_RX_CONFIG;
1463 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465 if (hw->mac.type >= e1000_pch_lpt) {
1466 u16 phy_reg;
1467
1468 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470 if (speed == SPEED_100 || speed == SPEED_10)
1471 phy_reg |= 0x3E8;
1472 else
1473 phy_reg |= 0xFA;
1474 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476 if (speed == SPEED_1000) {
1477 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478 &phy_reg);
1479
1480 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483 phy_reg);
1484 }
1485 }
1486 hw->phy.ops.release(hw);
1487
1488 if (ret_val)
1489 goto out;
1490
1491 if (hw->mac.type >= e1000_pch_spt) {
1492 u16 data;
1493 u16 ptr_gap;
1494
1495 if (speed == SPEED_1000) {
1496 ret_val = hw->phy.ops.acquire(hw);
1497 if (ret_val)
1498 goto out;
1499
1500 ret_val = e1e_rphy_locked(hw,
1501 PHY_REG(776, 20),
1502 &data);
1503 if (ret_val) {
1504 hw->phy.ops.release(hw);
1505 goto out;
1506 }
1507
1508 ptr_gap = (data & (0x3FF << 2)) >> 2;
1509 if (ptr_gap < 0x18) {
1510 data &= ~(0x3FF << 2);
1511 data |= (0x18 << 2);
1512 ret_val =
1513 e1e_wphy_locked(hw,
1514 PHY_REG(776, 20),
1515 data);
1516 }
1517 hw->phy.ops.release(hw);
1518 if (ret_val)
1519 goto out;
1520 } else {
1521 ret_val = hw->phy.ops.acquire(hw);
1522 if (ret_val)
1523 goto out;
1524
1525 ret_val = e1e_wphy_locked(hw,
1526 PHY_REG(776, 20),
1527 0xC023);
1528 hw->phy.ops.release(hw);
1529 if (ret_val)
1530 goto out;
1531
1532 }
1533 }
1534 }
1535
1536 /* I217 Packet Loss issue:
1537 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538 * on power up.
1539 * Set the Beacon Duration for I217 to 8 usec
1540 */
1541 if (hw->mac.type >= e1000_pch_lpt) {
1542 u32 mac_reg;
1543
1544 mac_reg = er32(FEXTNVM4);
1545 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547 ew32(FEXTNVM4, mac_reg);
1548 }
1549
1550 /* Work-around I218 hang issue */
1551 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556 if (ret_val)
1557 goto out;
1558 }
1559 if (hw->mac.type >= e1000_pch_lpt) {
1560 /* Set platform power management values for
1561 * Latency Tolerance Reporting (LTR)
1562 */
1563 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564 if (ret_val)
1565 goto out;
1566 }
1567
1568 /* Clear link partner's EEE ability */
1569 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571 if (hw->mac.type >= e1000_pch_lpt) {
1572 u32 fextnvm6 = er32(FEXTNVM6);
1573
1574 if (hw->mac.type == e1000_pch_spt) {
1575 /* FEXTNVM6 K1-off workaround - for SPT only */
1576 u32 pcieanacfg = er32(PCIEANACFG);
1577
1578 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580 else
1581 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582 }
1583
1584 ew32(FEXTNVM6, fextnvm6);
1585 }
1586
1587 if (!link)
1588 goto out;
1589
1590 switch (hw->mac.type) {
1591 case e1000_pch2lan:
1592 ret_val = e1000_k1_workaround_lv(hw);
1593 if (ret_val)
1594 return ret_val;
1595 fallthrough;
1596 case e1000_pchlan:
1597 if (hw->phy.type == e1000_phy_82578) {
1598 ret_val = e1000_link_stall_workaround_hv(hw);
1599 if (ret_val)
1600 return ret_val;
1601 }
1602
1603 /* Workaround for PCHx parts in half-duplex:
1604 * Set the number of preambles removed from the packet
1605 * when it is passed from the PHY to the MAC to prevent
1606 * the MAC from misinterpreting the packet type.
1607 */
1608 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615 break;
1616 default:
1617 break;
1618 }
1619
1620 /* Check if there was DownShift, must be checked
1621 * immediately after link-up
1622 */
1623 e1000e_check_downshift(hw);
1624
1625 /* Enable/Disable EEE after link up */
1626 if (hw->phy.type > e1000_phy_82579) {
1627 ret_val = e1000_set_eee_pchlan(hw);
1628 if (ret_val)
1629 return ret_val;
1630 }
1631
1632 /* If we are forcing speed/duplex, then we simply return since
1633 * we have already determined whether we have link or not.
1634 */
1635 if (!mac->autoneg)
1636 return -E1000_ERR_CONFIG;
1637
1638 /* Auto-Neg is enabled. Auto Speed Detection takes care
1639 * of MAC speed/duplex configuration. So we only need to
1640 * configure Collision Distance in the MAC.
1641 */
1642 mac->ops.config_collision_dist(hw);
1643
1644 /* Configure Flow Control now that Auto-Neg has completed.
1645 * First, we need to restore the desired flow control
1646 * settings because we may have had to re-autoneg with a
1647 * different link partner.
1648 */
1649 ret_val = e1000e_config_fc_after_link_up(hw);
1650 if (ret_val)
1651 e_dbg("Error configuring flow control\n");
1652
1653 return ret_val;
1654
1655out:
1656 mac->get_link_status = true;
1657 return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662 struct e1000_hw *hw = &adapter->hw;
1663 s32 rc;
1664
1665 rc = e1000_init_mac_params_ich8lan(hw);
1666 if (rc)
1667 return rc;
1668
1669 rc = e1000_init_nvm_params_ich8lan(hw);
1670 if (rc)
1671 return rc;
1672
1673 switch (hw->mac.type) {
1674 case e1000_ich8lan:
1675 case e1000_ich9lan:
1676 case e1000_ich10lan:
1677 rc = e1000_init_phy_params_ich8lan(hw);
1678 break;
1679 case e1000_pchlan:
1680 case e1000_pch2lan:
1681 case e1000_pch_lpt:
1682 case e1000_pch_spt:
1683 case e1000_pch_cnp:
1684 case e1000_pch_tgp:
1685 case e1000_pch_adp:
1686 case e1000_pch_mtp:
1687 case e1000_pch_lnp:
1688 case e1000_pch_ptp:
1689 case e1000_pch_nvp:
1690 rc = e1000_init_phy_params_pchlan(hw);
1691 break;
1692 default:
1693 break;
1694 }
1695 if (rc)
1696 return rc;
1697
1698 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700 */
1701 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707 hw->mac.ops.blink_led = NULL;
1708 }
1709
1710 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711 (adapter->hw.phy.type != e1000_phy_ife))
1712 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714 /* Enable workaround for 82579 w/ ME enabled */
1715 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719 return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 * @hw: pointer to the HW structure
1727 *
1728 * Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732 mutex_lock(&nvm_mutex);
1733
1734 return 0;
1735}
1736
1737/**
1738 * e1000_release_nvm_ich8lan - Release NVM mutex
1739 * @hw: pointer to the HW structure
1740 *
1741 * Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745 mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 * @hw: pointer to the HW structure
1751 *
1752 * Acquires the software control flag for performing PHY and select
1753 * MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758 s32 ret_val = 0;
1759
1760 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761 &hw->adapter->state)) {
1762 e_dbg("contention for Phy access\n");
1763 return -E1000_ERR_PHY;
1764 }
1765
1766 while (timeout) {
1767 extcnf_ctrl = er32(EXTCNF_CTRL);
1768 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769 break;
1770
1771 mdelay(1);
1772 timeout--;
1773 }
1774
1775 if (!timeout) {
1776 e_dbg("SW has already locked the resource.\n");
1777 ret_val = -E1000_ERR_CONFIG;
1778 goto out;
1779 }
1780
1781 timeout = SW_FLAG_TIMEOUT;
1782
1783 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784 ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786 while (timeout) {
1787 extcnf_ctrl = er32(EXTCNF_CTRL);
1788 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789 break;
1790
1791 mdelay(1);
1792 timeout--;
1793 }
1794
1795 if (!timeout) {
1796 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797 er32(FWSM), extcnf_ctrl);
1798 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799 ew32(EXTCNF_CTRL, extcnf_ctrl);
1800 ret_val = -E1000_ERR_CONFIG;
1801 goto out;
1802 }
1803
1804out:
1805 if (ret_val)
1806 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808 return ret_val;
1809}
1810
1811/**
1812 * e1000_release_swflag_ich8lan - Release software control flag
1813 * @hw: pointer to the HW structure
1814 *
1815 * Releases the software control flag for performing PHY and select
1816 * MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820 u32 extcnf_ctrl;
1821
1822 extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826 ew32(EXTCNF_CTRL, extcnf_ctrl);
1827 } else {
1828 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829 }
1830
1831 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 * e1000_check_mng_mode_ich8lan - Checks management mode
1836 * @hw: pointer to the HW structure
1837 *
1838 * This checks if the adapter has any manageability enabled.
1839 * This is a function pointer entry point only called by read/write
1840 * routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844 u32 fwsm;
1845
1846 fwsm = er32(FWSM);
1847 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848 ((fwsm & E1000_FWSM_MODE_MASK) ==
1849 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 * e1000_check_mng_mode_pchlan - Checks management mode
1854 * @hw: pointer to the HW structure
1855 *
1856 * This checks if the adapter has iAMT enabled.
1857 * This is a function pointer entry point only called by read/write
1858 * routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862 u32 fwsm;
1863
1864 fwsm = er32(FWSM);
1865 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 * e1000_rar_set_pch2lan - Set receive address register
1871 * @hw: pointer to the HW structure
1872 * @addr: pointer to the receive address
1873 * @index: receive address array register
1874 *
1875 * Sets the receive address array register at index to the address passed
1876 * in by addr. For 82579, RAR[0] is the base address register that is to
1877 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 * Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882 u32 rar_low, rar_high;
1883
1884 /* HW expects these in little endian so we reverse the byte order
1885 * from network order (big endian) to little endian
1886 */
1887 rar_low = ((u32)addr[0] |
1888 ((u32)addr[1] << 8) |
1889 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893 /* If MAC address zero, no need to set the AV bit */
1894 if (rar_low || rar_high)
1895 rar_high |= E1000_RAH_AV;
1896
1897 if (index == 0) {
1898 ew32(RAL(index), rar_low);
1899 e1e_flush();
1900 ew32(RAH(index), rar_high);
1901 e1e_flush();
1902 return 0;
1903 }
1904
1905 /* RAR[1-6] are owned by manageability. Skip those and program the
1906 * next address into the SHRA register array.
1907 */
1908 if (index < (u32)(hw->mac.rar_entry_count)) {
1909 s32 ret_val;
1910
1911 ret_val = e1000_acquire_swflag_ich8lan(hw);
1912 if (ret_val)
1913 goto out;
1914
1915 ew32(SHRAL(index - 1), rar_low);
1916 e1e_flush();
1917 ew32(SHRAH(index - 1), rar_high);
1918 e1e_flush();
1919
1920 e1000_release_swflag_ich8lan(hw);
1921
1922 /* verify the register updates */
1923 if ((er32(SHRAL(index - 1)) == rar_low) &&
1924 (er32(SHRAH(index - 1)) == rar_high))
1925 return 0;
1926
1927 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928 (index - 1), er32(FWSM));
1929 }
1930
1931out:
1932 e_dbg("Failed to write receive address at index %d\n", index);
1933 return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 * @hw: pointer to the HW structure
1939 *
1940 * Get the number of available receive registers that the Host can
1941 * program. SHRA[0-10] are the shared receive address registers
1942 * that are shared between the Host and manageability engine (ME).
1943 * ME can reserve any number of addresses and the host needs to be
1944 * able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948 u32 wlock_mac;
1949 u32 num_entries;
1950
1951 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954 switch (wlock_mac) {
1955 case 0:
1956 /* All SHRA[0..10] and RAR[0] available */
1957 num_entries = hw->mac.rar_entry_count;
1958 break;
1959 case 1:
1960 /* Only RAR[0] available */
1961 num_entries = 1;
1962 break;
1963 default:
1964 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965 num_entries = wlock_mac + 1;
1966 break;
1967 }
1968
1969 return num_entries;
1970}
1971
1972/**
1973 * e1000_rar_set_pch_lpt - Set receive address registers
1974 * @hw: pointer to the HW structure
1975 * @addr: pointer to the receive address
1976 * @index: receive address array register
1977 *
1978 * Sets the receive address register array at index to the address passed
1979 * in by addr. For LPT, RAR[0] is the base address register that is to
1980 * contain the MAC address. SHRA[0-10] are the shared receive address
1981 * registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985 u32 rar_low, rar_high;
1986 u32 wlock_mac;
1987
1988 /* HW expects these in little endian so we reverse the byte order
1989 * from network order (big endian) to little endian
1990 */
1991 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996 /* If MAC address zero, no need to set the AV bit */
1997 if (rar_low || rar_high)
1998 rar_high |= E1000_RAH_AV;
1999
2000 if (index == 0) {
2001 ew32(RAL(index), rar_low);
2002 e1e_flush();
2003 ew32(RAH(index), rar_high);
2004 e1e_flush();
2005 return 0;
2006 }
2007
2008 /* The manageability engine (ME) can lock certain SHRAR registers that
2009 * it is using - those registers are unavailable for use.
2010 */
2011 if (index < hw->mac.rar_entry_count) {
2012 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015 /* Check if all SHRAR registers are locked */
2016 if (wlock_mac == 1)
2017 goto out;
2018
2019 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020 s32 ret_val;
2021
2022 ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024 if (ret_val)
2025 goto out;
2026
2027 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028 e1e_flush();
2029 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030 e1e_flush();
2031
2032 e1000_release_swflag_ich8lan(hw);
2033
2034 /* verify the register updates */
2035 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037 return 0;
2038 }
2039 }
2040
2041out:
2042 e_dbg("Failed to write receive address at index %d\n", index);
2043 return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 * @hw: pointer to the HW structure
2049 *
2050 * Checks if firmware is blocking the reset of the PHY.
2051 * This is a function pointer entry point only called by
2052 * reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056 bool blocked = false;
2057 int i = 0;
2058
2059 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060 (i++ < 30))
2061 usleep_range(10000, 11000);
2062 return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 * @hw: pointer to the HW structure
2068 *
2069 * Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074 u16 phy_data;
2075 u32 strap = er32(STRAP);
2076 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2077 s32 ret_val;
2078
2079 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082 if (ret_val)
2083 return ret_val;
2084
2085 phy_data &= ~HV_SMB_ADDR_MASK;
2086 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089 if (hw->phy.type == e1000_phy_i217) {
2090 /* Restore SMBus frequency */
2091 if (freq--) {
2092 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093 phy_data |= (freq & BIT(0)) <<
2094 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095 phy_data |= (freq & BIT(1)) <<
2096 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097 } else {
2098 e_dbg("Unsupported SMB frequency in PHY\n");
2099 }
2100 }
2101
2102 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 * @hw: pointer to the HW structure
2108 *
2109 * SW should configure the LCD from the NVM extended configuration region
2110 * as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114 struct e1000_phy_info *phy = &hw->phy;
2115 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116 s32 ret_val = 0;
2117 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119 /* Initialize the PHY from the NVM on ICH platforms. This
2120 * is needed due to an issue where the NVM configuration is
2121 * not properly autoloaded after power transitions.
2122 * Therefore, after each PHY reset, we will load the
2123 * configuration data out of the NVM manually.
2124 */
2125 switch (hw->mac.type) {
2126 case e1000_ich8lan:
2127 if (phy->type != e1000_phy_igp_3)
2128 return ret_val;
2129
2130 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133 break;
2134 }
2135 fallthrough;
2136 case e1000_pchlan:
2137 case e1000_pch2lan:
2138 case e1000_pch_lpt:
2139 case e1000_pch_spt:
2140 case e1000_pch_cnp:
2141 case e1000_pch_tgp:
2142 case e1000_pch_adp:
2143 case e1000_pch_mtp:
2144 case e1000_pch_lnp:
2145 case e1000_pch_ptp:
2146 case e1000_pch_nvp:
2147 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148 break;
2149 default:
2150 return ret_val;
2151 }
2152
2153 ret_val = hw->phy.ops.acquire(hw);
2154 if (ret_val)
2155 return ret_val;
2156
2157 data = er32(FEXTNVM);
2158 if (!(data & sw_cfg_mask))
2159 goto release;
2160
2161 /* Make sure HW does not configure LCD from PHY
2162 * extended configuration before SW configuration
2163 */
2164 data = er32(EXTCNF_CTRL);
2165 if ((hw->mac.type < e1000_pch2lan) &&
2166 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167 goto release;
2168
2169 cnf_size = er32(EXTCNF_SIZE);
2170 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172 if (!cnf_size)
2173 goto release;
2174
2175 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178 if (((hw->mac.type == e1000_pchlan) &&
2179 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180 (hw->mac.type > e1000_pchlan)) {
2181 /* HW configures the SMBus address and LEDs when the
2182 * OEM and LCD Write Enable bits are set in the NVM.
2183 * When both NVM bits are cleared, SW will configure
2184 * them instead.
2185 */
2186 ret_val = e1000_write_smbus_addr(hw);
2187 if (ret_val)
2188 goto release;
2189
2190 data = er32(LEDCTL);
2191 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192 (u16)data);
2193 if (ret_val)
2194 goto release;
2195 }
2196
2197 /* Configure LCD from extended configuration region. */
2198
2199 /* cnf_base_addr is in DWORD */
2200 word_addr = (u16)(cnf_base_addr << 1);
2201
2202 for (i = 0; i < cnf_size; i++) {
2203 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2204 if (ret_val)
2205 goto release;
2206
2207 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208 1, ®_addr);
2209 if (ret_val)
2210 goto release;
2211
2212 /* Save off the PHY page for future writes. */
2213 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214 phy_page = reg_data;
2215 continue;
2216 }
2217
2218 reg_addr &= PHY_REG_MASK;
2219 reg_addr |= phy_page;
2220
2221 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222 if (ret_val)
2223 goto release;
2224 }
2225
2226release:
2227 hw->phy.ops.release(hw);
2228 return ret_val;
2229}
2230
2231/**
2232 * e1000_k1_gig_workaround_hv - K1 Si workaround
2233 * @hw: pointer to the HW structure
2234 * @link: link up bool flag
2235 *
2236 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2238 * If link is down, the function will restore the default K1 setting located
2239 * in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243 s32 ret_val = 0;
2244 u16 status_reg = 0;
2245 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247 if (hw->mac.type != e1000_pchlan)
2248 return 0;
2249
2250 /* Wrap the whole flow with the sw flag */
2251 ret_val = hw->phy.ops.acquire(hw);
2252 if (ret_val)
2253 return ret_val;
2254
2255 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256 if (link) {
2257 if (hw->phy.type == e1000_phy_82578) {
2258 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259 &status_reg);
2260 if (ret_val)
2261 goto release;
2262
2263 status_reg &= (BM_CS_STATUS_LINK_UP |
2264 BM_CS_STATUS_RESOLVED |
2265 BM_CS_STATUS_SPEED_MASK);
2266
2267 if (status_reg == (BM_CS_STATUS_LINK_UP |
2268 BM_CS_STATUS_RESOLVED |
2269 BM_CS_STATUS_SPEED_1000))
2270 k1_enable = false;
2271 }
2272
2273 if (hw->phy.type == e1000_phy_82577) {
2274 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275 if (ret_val)
2276 goto release;
2277
2278 status_reg &= (HV_M_STATUS_LINK_UP |
2279 HV_M_STATUS_AUTONEG_COMPLETE |
2280 HV_M_STATUS_SPEED_MASK);
2281
2282 if (status_reg == (HV_M_STATUS_LINK_UP |
2283 HV_M_STATUS_AUTONEG_COMPLETE |
2284 HV_M_STATUS_SPEED_1000))
2285 k1_enable = false;
2286 }
2287
2288 /* Link stall fix for link up */
2289 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290 if (ret_val)
2291 goto release;
2292
2293 } else {
2294 /* Link stall fix for link down */
2295 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296 if (ret_val)
2297 goto release;
2298 }
2299
2300 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303 hw->phy.ops.release(hw);
2304
2305 return ret_val;
2306}
2307
2308/**
2309 * e1000_configure_k1_ich8lan - Configure K1 power state
2310 * @hw: pointer to the HW structure
2311 * @k1_enable: K1 state to configure
2312 *
2313 * Configure the K1 power state based on the provided parameter.
2314 * Assumes semaphore already acquired.
2315 *
2316 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320 s32 ret_val;
2321 u32 ctrl_reg = 0;
2322 u32 ctrl_ext = 0;
2323 u32 reg = 0;
2324 u16 kmrn_reg = 0;
2325
2326 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327 &kmrn_reg);
2328 if (ret_val)
2329 return ret_val;
2330
2331 if (k1_enable)
2332 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333 else
2334 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337 kmrn_reg);
2338 if (ret_val)
2339 return ret_val;
2340
2341 usleep_range(20, 40);
2342 ctrl_ext = er32(CTRL_EXT);
2343 ctrl_reg = er32(CTRL);
2344
2345 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346 reg |= E1000_CTRL_FRCSPD;
2347 ew32(CTRL, reg);
2348
2349 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350 e1e_flush();
2351 usleep_range(20, 40);
2352 ew32(CTRL, ctrl_reg);
2353 ew32(CTRL_EXT, ctrl_ext);
2354 e1e_flush();
2355 usleep_range(20, 40);
2356
2357 return 0;
2358}
2359
2360/**
2361 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 * @hw: pointer to the HW structure
2363 * @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2367 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371 s32 ret_val = 0;
2372 u32 mac_reg;
2373 u16 oem_reg;
2374
2375 if (hw->mac.type < e1000_pchlan)
2376 return ret_val;
2377
2378 ret_val = hw->phy.ops.acquire(hw);
2379 if (ret_val)
2380 return ret_val;
2381
2382 if (hw->mac.type == e1000_pchlan) {
2383 mac_reg = er32(EXTCNF_CTRL);
2384 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385 goto release;
2386 }
2387
2388 mac_reg = er32(FEXTNVM);
2389 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390 goto release;
2391
2392 mac_reg = er32(PHY_CTRL);
2393
2394 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395 if (ret_val)
2396 goto release;
2397
2398 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400 if (d0_state) {
2401 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402 oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405 oem_reg |= HV_OEM_BITS_LPLU;
2406 } else {
2407 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409 oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412 E1000_PHY_CTRL_NOND0A_LPLU))
2413 oem_reg |= HV_OEM_BITS_LPLU;
2414 }
2415
2416 /* Set Restart auto-neg to activate the bits */
2417 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418 !hw->phy.ops.check_reset_block(hw))
2419 oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424 hw->phy.ops.release(hw);
2425
2426 return ret_val;
2427}
2428
2429/**
2430 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 * @hw: pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435 s32 ret_val;
2436 u16 data;
2437
2438 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439 if (ret_val)
2440 return ret_val;
2441
2442 data |= HV_KMRN_MDIO_SLOW;
2443
2444 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446 return ret_val;
2447}
2448
2449/**
2450 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 * @hw: pointer to the HW structure
2452 *
2453 * A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457 s32 ret_val = 0;
2458 u16 phy_data;
2459
2460 if (hw->mac.type != e1000_pchlan)
2461 return 0;
2462
2463 /* Set MDIO slow mode before any other MDIO access */
2464 if (hw->phy.type == e1000_phy_82577) {
2465 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466 if (ret_val)
2467 return ret_val;
2468 }
2469
2470 if (((hw->phy.type == e1000_phy_82577) &&
2471 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473 /* Disable generation of early preamble */
2474 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475 if (ret_val)
2476 return ret_val;
2477
2478 /* Preamble tuning for SSC */
2479 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480 if (ret_val)
2481 return ret_val;
2482 }
2483
2484 if (hw->phy.type == e1000_phy_82578) {
2485 /* Return registers to default by doing a soft reset then
2486 * writing 0x3140 to the control register.
2487 */
2488 if (hw->phy.revision < 2) {
2489 e1000e_phy_sw_reset(hw);
2490 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491 if (ret_val)
2492 return ret_val;
2493 }
2494 }
2495
2496 /* Select page 0 */
2497 ret_val = hw->phy.ops.acquire(hw);
2498 if (ret_val)
2499 return ret_val;
2500
2501 hw->phy.addr = 1;
2502 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503 hw->phy.ops.release(hw);
2504 if (ret_val)
2505 return ret_val;
2506
2507 /* Configure the K1 Si workaround during phy reset assuming there is
2508 * link so that it disables K1 if link is in 1Gbps.
2509 */
2510 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511 if (ret_val)
2512 return ret_val;
2513
2514 /* Workaround for link disconnects on a busy hub in half duplex */
2515 ret_val = hw->phy.ops.acquire(hw);
2516 if (ret_val)
2517 return ret_val;
2518 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519 if (ret_val)
2520 goto release;
2521 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522 if (ret_val)
2523 goto release;
2524
2525 /* set MSE higher to enable link to stay up when noise is high */
2526 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528 hw->phy.ops.release(hw);
2529
2530 return ret_val;
2531}
2532
2533/**
2534 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 * @hw: pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539 u32 mac_reg;
2540 u16 i, phy_reg = 0;
2541 s32 ret_val;
2542
2543 ret_val = hw->phy.ops.acquire(hw);
2544 if (ret_val)
2545 return;
2546 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547 if (ret_val)
2548 goto release;
2549
2550 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552 mac_reg = er32(RAL(i));
2553 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554 (u16)(mac_reg & 0xFFFF));
2555 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556 (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558 mac_reg = er32(RAH(i));
2559 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560 (u16)(mac_reg & 0xFFFF));
2561 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562 (u16)((mac_reg & E1000_RAH_AV) >> 16));
2563 }
2564
2565 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568 hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 * with 82579 PHY
2574 * @hw: pointer to the HW structure
2575 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579 s32 ret_val = 0;
2580 u16 phy_reg, data;
2581 u32 mac_reg;
2582 u16 i;
2583
2584 if (hw->mac.type < e1000_pch2lan)
2585 return 0;
2586
2587 /* disable Rx path while enabling/disabling workaround */
2588 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590 if (ret_val)
2591 return ret_val;
2592
2593 if (enable) {
2594 /* Write Rx addresses (rar_entry_count for RAL/H, and
2595 * SHRAL/H) and initial CRC values to the MAC
2596 */
2597 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598 u8 mac_addr[ETH_ALEN] = { 0 };
2599 u32 addr_high, addr_low;
2600
2601 addr_high = er32(RAH(i));
2602 if (!(addr_high & E1000_RAH_AV))
2603 continue;
2604 addr_low = er32(RAL(i));
2605 mac_addr[0] = (addr_low & 0xFF);
2606 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609 mac_addr[4] = (addr_high & 0xFF);
2610 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613 }
2614
2615 /* Write Rx addresses to the PHY */
2616 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618 /* Enable jumbo frame workaround in the MAC */
2619 mac_reg = er32(FFLT_DBG);
2620 mac_reg &= ~BIT(14);
2621 mac_reg |= (7 << 15);
2622 ew32(FFLT_DBG, mac_reg);
2623
2624 mac_reg = er32(RCTL);
2625 mac_reg |= E1000_RCTL_SECRC;
2626 ew32(RCTL, mac_reg);
2627
2628 ret_val = e1000e_read_kmrn_reg(hw,
2629 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630 &data);
2631 if (ret_val)
2632 return ret_val;
2633 ret_val = e1000e_write_kmrn_reg(hw,
2634 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635 data | BIT(0));
2636 if (ret_val)
2637 return ret_val;
2638 ret_val = e1000e_read_kmrn_reg(hw,
2639 E1000_KMRNCTRLSTA_HD_CTRL,
2640 &data);
2641 if (ret_val)
2642 return ret_val;
2643 data &= ~(0xF << 8);
2644 data |= (0xB << 8);
2645 ret_val = e1000e_write_kmrn_reg(hw,
2646 E1000_KMRNCTRLSTA_HD_CTRL,
2647 data);
2648 if (ret_val)
2649 return ret_val;
2650
2651 /* Enable jumbo frame workaround in the PHY */
2652 e1e_rphy(hw, PHY_REG(769, 23), &data);
2653 data &= ~(0x7F << 5);
2654 data |= (0x37 << 5);
2655 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656 if (ret_val)
2657 return ret_val;
2658 e1e_rphy(hw, PHY_REG(769, 16), &data);
2659 data &= ~BIT(13);
2660 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661 if (ret_val)
2662 return ret_val;
2663 e1e_rphy(hw, PHY_REG(776, 20), &data);
2664 data &= ~(0x3FF << 2);
2665 data |= (E1000_TX_PTR_GAP << 2);
2666 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667 if (ret_val)
2668 return ret_val;
2669 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670 if (ret_val)
2671 return ret_val;
2672 e1e_rphy(hw, HV_PM_CTRL, &data);
2673 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674 if (ret_val)
2675 return ret_val;
2676 } else {
2677 /* Write MAC register values back to h/w defaults */
2678 mac_reg = er32(FFLT_DBG);
2679 mac_reg &= ~(0xF << 14);
2680 ew32(FFLT_DBG, mac_reg);
2681
2682 mac_reg = er32(RCTL);
2683 mac_reg &= ~E1000_RCTL_SECRC;
2684 ew32(RCTL, mac_reg);
2685
2686 ret_val = e1000e_read_kmrn_reg(hw,
2687 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688 &data);
2689 if (ret_val)
2690 return ret_val;
2691 ret_val = e1000e_write_kmrn_reg(hw,
2692 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693 data & ~BIT(0));
2694 if (ret_val)
2695 return ret_val;
2696 ret_val = e1000e_read_kmrn_reg(hw,
2697 E1000_KMRNCTRLSTA_HD_CTRL,
2698 &data);
2699 if (ret_val)
2700 return ret_val;
2701 data &= ~(0xF << 8);
2702 data |= (0xB << 8);
2703 ret_val = e1000e_write_kmrn_reg(hw,
2704 E1000_KMRNCTRLSTA_HD_CTRL,
2705 data);
2706 if (ret_val)
2707 return ret_val;
2708
2709 /* Write PHY register values back to h/w defaults */
2710 e1e_rphy(hw, PHY_REG(769, 23), &data);
2711 data &= ~(0x7F << 5);
2712 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713 if (ret_val)
2714 return ret_val;
2715 e1e_rphy(hw, PHY_REG(769, 16), &data);
2716 data |= BIT(13);
2717 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718 if (ret_val)
2719 return ret_val;
2720 e1e_rphy(hw, PHY_REG(776, 20), &data);
2721 data &= ~(0x3FF << 2);
2722 data |= (0x8 << 2);
2723 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724 if (ret_val)
2725 return ret_val;
2726 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727 if (ret_val)
2728 return ret_val;
2729 e1e_rphy(hw, HV_PM_CTRL, &data);
2730 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731 if (ret_val)
2732 return ret_val;
2733 }
2734
2735 /* re-enable Rx path after enabling/disabling workaround */
2736 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 * @hw: pointer to the HW structure
2742 *
2743 * A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747 s32 ret_val = 0;
2748
2749 if (hw->mac.type != e1000_pch2lan)
2750 return 0;
2751
2752 /* Set MDIO slow mode before any other MDIO access */
2753 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754 if (ret_val)
2755 return ret_val;
2756
2757 ret_val = hw->phy.ops.acquire(hw);
2758 if (ret_val)
2759 return ret_val;
2760 /* set MSE higher to enable link to stay up when noise is high */
2761 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762 if (ret_val)
2763 goto release;
2764 /* drop link after 5 times MSE threshold was reached */
2765 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767 hw->phy.ops.release(hw);
2768
2769 return ret_val;
2770}
2771
2772/**
2773 * e1000_k1_workaround_lv - K1 Si workaround
2774 * @hw: pointer to the HW structure
2775 *
2776 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 * Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781 s32 ret_val = 0;
2782 u16 status_reg = 0;
2783
2784 if (hw->mac.type != e1000_pch2lan)
2785 return 0;
2786
2787 /* Set K1 beacon duration based on 10Mbs speed */
2788 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789 if (ret_val)
2790 return ret_val;
2791
2792 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794 if (status_reg &
2795 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796 u16 pm_phy_reg;
2797
2798 /* LV 1G/100 Packet drop issue wa */
2799 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800 if (ret_val)
2801 return ret_val;
2802 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804 if (ret_val)
2805 return ret_val;
2806 } else {
2807 u32 mac_reg;
2808
2809 mac_reg = er32(FEXTNVM4);
2810 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812 ew32(FEXTNVM4, mac_reg);
2813 }
2814 }
2815
2816 return ret_val;
2817}
2818
2819/**
2820 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 * @hw: pointer to the HW structure
2822 * @gate: boolean set to true to gate, false to ungate
2823 *
2824 * Gate/ungate the automatic PHY configuration via hardware; perform
2825 * the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829 u32 extcnf_ctrl;
2830
2831 if (hw->mac.type < e1000_pch2lan)
2832 return;
2833
2834 extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836 if (gate)
2837 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838 else
2839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841 ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 * @hw: pointer to the HW structure
2847 *
2848 * Check the appropriate indication the MAC has finished configuring the
2849 * PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855 /* Wait for basic configuration completes before proceeding */
2856 do {
2857 data = er32(STATUS);
2858 data &= E1000_STATUS_LAN_INIT_DONE;
2859 usleep_range(100, 200);
2860 } while ((!data) && --loop);
2861
2862 /* If basic configuration is incomplete before the above loop
2863 * count reaches 0, loading the configuration from NVM will
2864 * leave the PHY in a bad state possibly resulting in no link.
2865 */
2866 if (loop == 0)
2867 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869 /* Clear the Init Done bit for the next init event */
2870 data = er32(STATUS);
2871 data &= ~E1000_STATUS_LAN_INIT_DONE;
2872 ew32(STATUS, data);
2873}
2874
2875/**
2876 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 * @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881 s32 ret_val = 0;
2882 u16 reg;
2883
2884 if (hw->phy.ops.check_reset_block(hw))
2885 return 0;
2886
2887 /* Allow time for h/w to get to quiescent state after reset */
2888 usleep_range(10000, 11000);
2889
2890 /* Perform any necessary post-reset workarounds */
2891 switch (hw->mac.type) {
2892 case e1000_pchlan:
2893 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894 if (ret_val)
2895 return ret_val;
2896 break;
2897 case e1000_pch2lan:
2898 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899 if (ret_val)
2900 return ret_val;
2901 break;
2902 default:
2903 break;
2904 }
2905
2906 /* Clear the host wakeup bit after lcd reset */
2907 if (hw->mac.type >= e1000_pchlan) {
2908 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2909 reg &= ~BM_WUC_HOST_WU_BIT;
2910 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911 }
2912
2913 /* Configure the LCD with the extended configuration region in NVM */
2914 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915 if (ret_val)
2916 return ret_val;
2917
2918 /* Configure the LCD with the OEM bits in NVM */
2919 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921 if (hw->mac.type == e1000_pch2lan) {
2922 /* Ungate automatic PHY configuration on non-managed 82579 */
2923 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924 usleep_range(10000, 11000);
2925 e1000_gate_hw_phy_config_ich8lan(hw, false);
2926 }
2927
2928 /* Set EEE LPI Update Timer to 200usec */
2929 ret_val = hw->phy.ops.acquire(hw);
2930 if (ret_val)
2931 return ret_val;
2932 ret_val = e1000_write_emi_reg_locked(hw,
2933 I82579_LPI_UPDATE_TIMER,
2934 0x1387);
2935 hw->phy.ops.release(hw);
2936 }
2937
2938 return ret_val;
2939}
2940
2941/**
2942 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 * @hw: pointer to the HW structure
2944 *
2945 * Resets the PHY
2946 * This is a function pointer entry point called by drivers
2947 * or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951 s32 ret_val = 0;
2952
2953 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954 if ((hw->mac.type == e1000_pch2lan) &&
2955 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956 e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958 ret_val = e1000e_phy_hw_reset_generic(hw);
2959 if (ret_val)
2960 return ret_val;
2961
2962 return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 * @hw: pointer to the HW structure
2968 * @active: true to enable LPLU, false to disable
2969 *
2970 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2971 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 * the phy speed. This function will manually set the LPLU bit and restart
2973 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 * since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978 s32 ret_val;
2979 u16 oem_reg;
2980
2981 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982 if (ret_val)
2983 return ret_val;
2984
2985 if (active)
2986 oem_reg |= HV_OEM_BITS_LPLU;
2987 else
2988 oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990 if (!hw->phy.ops.check_reset_block(hw))
2991 oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 * @hw: pointer to the HW structure
2999 * @active: true to enable LPLU, false to disable
3000 *
3001 * Sets the LPLU D0 state according to the active flag. When
3002 * activating LPLU this function also disables smart speed
3003 * and vice versa. LPLU will not be activated unless the
3004 * device autonegotiation advertisement meets standards of
3005 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 * This is a function pointer entry point only called by
3007 * PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011 struct e1000_phy_info *phy = &hw->phy;
3012 u32 phy_ctrl;
3013 s32 ret_val = 0;
3014 u16 data;
3015
3016 if (phy->type == e1000_phy_ife)
3017 return 0;
3018
3019 phy_ctrl = er32(PHY_CTRL);
3020
3021 if (active) {
3022 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023 ew32(PHY_CTRL, phy_ctrl);
3024
3025 if (phy->type != e1000_phy_igp_3)
3026 return 0;
3027
3028 /* Call gig speed drop workaround on LPLU before accessing
3029 * any PHY registers
3030 */
3031 if (hw->mac.type == e1000_ich8lan)
3032 e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034 /* When LPLU is enabled, we should disable SmartSpeed */
3035 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036 if (ret_val)
3037 return ret_val;
3038 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040 if (ret_val)
3041 return ret_val;
3042 } else {
3043 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044 ew32(PHY_CTRL, phy_ctrl);
3045
3046 if (phy->type != e1000_phy_igp_3)
3047 return 0;
3048
3049 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3050 * during Dx states where the power conservation is most
3051 * important. During driver activity we should enable
3052 * SmartSpeed, so performance is maintained.
3053 */
3054 if (phy->smart_speed == e1000_smart_speed_on) {
3055 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056 &data);
3057 if (ret_val)
3058 return ret_val;
3059
3060 data |= IGP01E1000_PSCFR_SMART_SPEED;
3061 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062 data);
3063 if (ret_val)
3064 return ret_val;
3065 } else if (phy->smart_speed == e1000_smart_speed_off) {
3066 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067 &data);
3068 if (ret_val)
3069 return ret_val;
3070
3071 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073 data);
3074 if (ret_val)
3075 return ret_val;
3076 }
3077 }
3078
3079 return 0;
3080}
3081
3082/**
3083 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 * @hw: pointer to the HW structure
3085 * @active: true to enable LPLU, false to disable
3086 *
3087 * Sets the LPLU D3 state according to the active flag. When
3088 * activating LPLU this function also disables smart speed
3089 * and vice versa. LPLU will not be activated unless the
3090 * device autonegotiation advertisement meets standards of
3091 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 * This is a function pointer entry point only called by
3093 * PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097 struct e1000_phy_info *phy = &hw->phy;
3098 u32 phy_ctrl;
3099 s32 ret_val = 0;
3100 u16 data;
3101
3102 phy_ctrl = er32(PHY_CTRL);
3103
3104 if (!active) {
3105 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106 ew32(PHY_CTRL, phy_ctrl);
3107
3108 if (phy->type != e1000_phy_igp_3)
3109 return 0;
3110
3111 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3112 * during Dx states where the power conservation is most
3113 * important. During driver activity we should enable
3114 * SmartSpeed, so performance is maintained.
3115 */
3116 if (phy->smart_speed == e1000_smart_speed_on) {
3117 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118 &data);
3119 if (ret_val)
3120 return ret_val;
3121
3122 data |= IGP01E1000_PSCFR_SMART_SPEED;
3123 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124 data);
3125 if (ret_val)
3126 return ret_val;
3127 } else if (phy->smart_speed == e1000_smart_speed_off) {
3128 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129 &data);
3130 if (ret_val)
3131 return ret_val;
3132
3133 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135 data);
3136 if (ret_val)
3137 return ret_val;
3138 }
3139 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143 ew32(PHY_CTRL, phy_ctrl);
3144
3145 if (phy->type != e1000_phy_igp_3)
3146 return 0;
3147
3148 /* Call gig speed drop workaround on LPLU before accessing
3149 * any PHY registers
3150 */
3151 if (hw->mac.type == e1000_ich8lan)
3152 e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154 /* When LPLU is enabled, we should disable SmartSpeed */
3155 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156 if (ret_val)
3157 return ret_val;
3158
3159 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161 }
3162
3163 return ret_val;
3164}
3165
3166/**
3167 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 * @hw: pointer to the HW structure
3169 * @bank: pointer to the variable that returns the active bank
3170 *
3171 * Reads signature byte from the NVM using the flash access registers.
3172 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176 u32 eecd;
3177 struct e1000_nvm_info *nvm = &hw->nvm;
3178 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180 u32 nvm_dword = 0;
3181 u8 sig_byte = 0;
3182 s32 ret_val;
3183
3184 switch (hw->mac.type) {
3185 case e1000_pch_spt:
3186 case e1000_pch_cnp:
3187 case e1000_pch_tgp:
3188 case e1000_pch_adp:
3189 case e1000_pch_mtp:
3190 case e1000_pch_lnp:
3191 case e1000_pch_ptp:
3192 case e1000_pch_nvp:
3193 bank1_offset = nvm->flash_bank_size;
3194 act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196 /* set bank to 0 in case flash read fails */
3197 *bank = 0;
3198
3199 /* Check bank 0 */
3200 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201 &nvm_dword);
3202 if (ret_val)
3203 return ret_val;
3204 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206 E1000_ICH_NVM_SIG_VALUE) {
3207 *bank = 0;
3208 return 0;
3209 }
3210
3211 /* Check bank 1 */
3212 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213 bank1_offset,
3214 &nvm_dword);
3215 if (ret_val)
3216 return ret_val;
3217 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219 E1000_ICH_NVM_SIG_VALUE) {
3220 *bank = 1;
3221 return 0;
3222 }
3223
3224 e_dbg("ERROR: No valid NVM bank present\n");
3225 return -E1000_ERR_NVM;
3226 case e1000_ich8lan:
3227 case e1000_ich9lan:
3228 eecd = er32(EECD);
3229 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230 E1000_EECD_SEC1VAL_VALID_MASK) {
3231 if (eecd & E1000_EECD_SEC1VAL)
3232 *bank = 1;
3233 else
3234 *bank = 0;
3235
3236 return 0;
3237 }
3238 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239 fallthrough;
3240 default:
3241 /* set bank to 0 in case flash read fails */
3242 *bank = 0;
3243
3244 /* Check bank 0 */
3245 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246 &sig_byte);
3247 if (ret_val)
3248 return ret_val;
3249 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250 E1000_ICH_NVM_SIG_VALUE) {
3251 *bank = 0;
3252 return 0;
3253 }
3254
3255 /* Check bank 1 */
3256 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257 bank1_offset,
3258 &sig_byte);
3259 if (ret_val)
3260 return ret_val;
3261 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262 E1000_ICH_NVM_SIG_VALUE) {
3263 *bank = 1;
3264 return 0;
3265 }
3266
3267 e_dbg("ERROR: No valid NVM bank present\n");
3268 return -E1000_ERR_NVM;
3269 }
3270}
3271
3272/**
3273 * e1000_read_nvm_spt - NVM access for SPT
3274 * @hw: pointer to the HW structure
3275 * @offset: The offset (in bytes) of the word(s) to read.
3276 * @words: Size of data to read in words.
3277 * @data: pointer to the word(s) to read at offset.
3278 *
3279 * Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282 u16 *data)
3283{
3284 struct e1000_nvm_info *nvm = &hw->nvm;
3285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286 u32 act_offset;
3287 s32 ret_val = 0;
3288 u32 bank = 0;
3289 u32 dword = 0;
3290 u16 offset_to_read;
3291 u16 i;
3292
3293 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 (words == 0)) {
3295 e_dbg("nvm parameter(s) out of bounds\n");
3296 ret_val = -E1000_ERR_NVM;
3297 goto out;
3298 }
3299
3300 nvm->ops.acquire(hw);
3301
3302 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 if (ret_val) {
3304 e_dbg("Could not detect valid bank, assuming bank 0\n");
3305 bank = 0;
3306 }
3307
3308 act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 act_offset += offset;
3310
3311 ret_val = 0;
3312
3313 for (i = 0; i < words; i += 2) {
3314 if (words - i == 1) {
3315 if (dev_spec->shadow_ram[offset + i].modified) {
3316 data[i] =
3317 dev_spec->shadow_ram[offset + i].value;
3318 } else {
3319 offset_to_read = act_offset + i -
3320 ((act_offset + i) % 2);
3321 ret_val =
3322 e1000_read_flash_dword_ich8lan(hw,
3323 offset_to_read,
3324 &dword);
3325 if (ret_val)
3326 break;
3327 if ((act_offset + i) % 2 == 0)
3328 data[i] = (u16)(dword & 0xFFFF);
3329 else
3330 data[i] = (u16)((dword >> 16) & 0xFFFF);
3331 }
3332 } else {
3333 offset_to_read = act_offset + i;
3334 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336 ret_val =
3337 e1000_read_flash_dword_ich8lan(hw,
3338 offset_to_read,
3339 &dword);
3340 if (ret_val)
3341 break;
3342 }
3343 if (dev_spec->shadow_ram[offset + i].modified)
3344 data[i] =
3345 dev_spec->shadow_ram[offset + i].value;
3346 else
3347 data[i] = (u16)(dword & 0xFFFF);
3348 if (dev_spec->shadow_ram[offset + i].modified)
3349 data[i + 1] =
3350 dev_spec->shadow_ram[offset + i + 1].value;
3351 else
3352 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353 }
3354 }
3355
3356 nvm->ops.release(hw);
3357
3358out:
3359 if (ret_val)
3360 e_dbg("NVM read error: %d\n", ret_val);
3361
3362 return ret_val;
3363}
3364
3365/**
3366 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 * @hw: pointer to the HW structure
3368 * @offset: The offset (in bytes) of the word(s) to read.
3369 * @words: Size of data to read in words
3370 * @data: Pointer to the word(s) to read at offset.
3371 *
3372 * Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375 u16 *data)
3376{
3377 struct e1000_nvm_info *nvm = &hw->nvm;
3378 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379 u32 act_offset;
3380 s32 ret_val = 0;
3381 u32 bank = 0;
3382 u16 i, word;
3383
3384 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385 (words == 0)) {
3386 e_dbg("nvm parameter(s) out of bounds\n");
3387 ret_val = -E1000_ERR_NVM;
3388 goto out;
3389 }
3390
3391 nvm->ops.acquire(hw);
3392
3393 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394 if (ret_val) {
3395 e_dbg("Could not detect valid bank, assuming bank 0\n");
3396 bank = 0;
3397 }
3398
3399 act_offset = (bank) ? nvm->flash_bank_size : 0;
3400 act_offset += offset;
3401
3402 ret_val = 0;
3403 for (i = 0; i < words; i++) {
3404 if (dev_spec->shadow_ram[offset + i].modified) {
3405 data[i] = dev_spec->shadow_ram[offset + i].value;
3406 } else {
3407 ret_val = e1000_read_flash_word_ich8lan(hw,
3408 act_offset + i,
3409 &word);
3410 if (ret_val)
3411 break;
3412 data[i] = word;
3413 }
3414 }
3415
3416 nvm->ops.release(hw);
3417
3418out:
3419 if (ret_val)
3420 e_dbg("NVM read error: %d\n", ret_val);
3421
3422 return ret_val;
3423}
3424
3425/**
3426 * e1000_flash_cycle_init_ich8lan - Initialize flash
3427 * @hw: pointer to the HW structure
3428 *
3429 * This function does initial flash setup so that a new read/write/erase cycle
3430 * can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434 union ich8_hws_flash_status hsfsts;
3435 s32 ret_val = -E1000_ERR_NVM;
3436
3437 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439 /* Check if the flash descriptor is valid */
3440 if (!hsfsts.hsf_status.fldesvalid) {
3441 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3442 return -E1000_ERR_NVM;
3443 }
3444
3445 /* Clear FCERR and DAEL in hw status by writing 1 */
3446 hsfsts.hsf_status.flcerr = 1;
3447 hsfsts.hsf_status.dael = 1;
3448 if (hw->mac.type >= e1000_pch_spt)
3449 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450 else
3451 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453 /* Either we should have a hardware SPI cycle in progress
3454 * bit to check against, in order to start a new cycle or
3455 * FDONE bit should be changed in the hardware so that it
3456 * is 1 after hardware reset, which can then be used as an
3457 * indication whether a cycle is in progress or has been
3458 * completed.
3459 */
3460
3461 if (!hsfsts.hsf_status.flcinprog) {
3462 /* There is no cycle running at present,
3463 * so we can start a cycle.
3464 * Begin by setting Flash Cycle Done.
3465 */
3466 hsfsts.hsf_status.flcdone = 1;
3467 if (hw->mac.type >= e1000_pch_spt)
3468 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469 else
3470 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471 ret_val = 0;
3472 } else {
3473 s32 i;
3474
3475 /* Otherwise poll for sometime so the current
3476 * cycle has a chance to end before giving up.
3477 */
3478 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480 if (!hsfsts.hsf_status.flcinprog) {
3481 ret_val = 0;
3482 break;
3483 }
3484 udelay(1);
3485 }
3486 if (!ret_val) {
3487 /* Successful in waiting for previous cycle to timeout,
3488 * now set the Flash Cycle Done.
3489 */
3490 hsfsts.hsf_status.flcdone = 1;
3491 if (hw->mac.type >= e1000_pch_spt)
3492 ew32flash(ICH_FLASH_HSFSTS,
3493 hsfsts.regval & 0xFFFF);
3494 else
3495 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496 } else {
3497 e_dbg("Flash controller busy, cannot get access\n");
3498 }
3499 }
3500
3501 return ret_val;
3502}
3503
3504/**
3505 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 * @hw: pointer to the HW structure
3507 * @timeout: maximum time to wait for completion
3508 *
3509 * This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513 union ich8_hws_flash_ctrl hsflctl;
3514 union ich8_hws_flash_status hsfsts;
3515 u32 i = 0;
3516
3517 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518 if (hw->mac.type >= e1000_pch_spt)
3519 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520 else
3521 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522 hsflctl.hsf_ctrl.flcgo = 1;
3523
3524 if (hw->mac.type >= e1000_pch_spt)
3525 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526 else
3527 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529 /* wait till FDONE bit is set to 1 */
3530 do {
3531 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532 if (hsfsts.hsf_status.flcdone)
3533 break;
3534 udelay(1);
3535 } while (i++ < timeout);
3536
3537 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538 return 0;
3539
3540 return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 * e1000_read_flash_dword_ich8lan - Read dword from flash
3545 * @hw: pointer to the HW structure
3546 * @offset: offset to data location
3547 * @data: pointer to the location for storing the data
3548 *
3549 * Reads the flash dword at offset into data. Offset is converted
3550 * to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553 u32 *data)
3554{
3555 /* Must convert word offset into bytes. */
3556 offset <<= 1;
3557 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 * e1000_read_flash_word_ich8lan - Read word from flash
3562 * @hw: pointer to the HW structure
3563 * @offset: offset to data location
3564 * @data: pointer to the location for storing the data
3565 *
3566 * Reads the flash word at offset into data. Offset is converted
3567 * to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570 u16 *data)
3571{
3572 /* Must convert offset into bytes. */
3573 offset <<= 1;
3574
3575 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 * e1000_read_flash_byte_ich8lan - Read byte from flash
3580 * @hw: pointer to the HW structure
3581 * @offset: The offset of the byte to read.
3582 * @data: Pointer to a byte to store the value read.
3583 *
3584 * Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587 u8 *data)
3588{
3589 s32 ret_val;
3590 u16 word = 0;
3591
3592 /* In SPT, only 32 bits access is supported,
3593 * so this function should not be called.
3594 */
3595 if (hw->mac.type >= e1000_pch_spt)
3596 return -E1000_ERR_NVM;
3597 else
3598 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600 if (ret_val)
3601 return ret_val;
3602
3603 *data = (u8)word;
3604
3605 return 0;
3606}
3607
3608/**
3609 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 * @hw: pointer to the HW structure
3611 * @offset: The offset (in bytes) of the byte or word to read.
3612 * @size: Size of data to read, 1=byte 2=word
3613 * @data: Pointer to the word to store the value read.
3614 *
3615 * Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618 u8 size, u16 *data)
3619{
3620 union ich8_hws_flash_status hsfsts;
3621 union ich8_hws_flash_ctrl hsflctl;
3622 u32 flash_linear_addr;
3623 u32 flash_data = 0;
3624 s32 ret_val = -E1000_ERR_NVM;
3625 u8 count = 0;
3626
3627 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628 return -E1000_ERR_NVM;
3629
3630 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631 hw->nvm.flash_base_addr);
3632
3633 do {
3634 udelay(1);
3635 /* Steps */
3636 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637 if (ret_val)
3638 break;
3639
3640 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642 hsflctl.hsf_ctrl.fldbcount = size - 1;
3643 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648 ret_val =
3649 e1000_flash_cycle_ich8lan(hw,
3650 ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652 /* Check if FCERR is set to 1, if set to 1, clear it
3653 * and try the whole sequence a few more times, else
3654 * read in (shift in) the Flash Data0, the order is
3655 * least significant byte first msb to lsb
3656 */
3657 if (!ret_val) {
3658 flash_data = er32flash(ICH_FLASH_FDATA0);
3659 if (size == 1)
3660 *data = (u8)(flash_data & 0x000000FF);
3661 else if (size == 2)
3662 *data = (u16)(flash_data & 0x0000FFFF);
3663 break;
3664 } else {
3665 /* If we've gotten here, then things are probably
3666 * completely hosed, but if the error condition is
3667 * detected, it won't hurt to give it another try...
3668 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669 */
3670 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671 if (hsfsts.hsf_status.flcerr) {
3672 /* Repeat for some time before giving up. */
3673 continue;
3674 } else if (!hsfsts.hsf_status.flcdone) {
3675 e_dbg("Timeout error - flash cycle did not complete.\n");
3676 break;
3677 }
3678 }
3679 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681 return ret_val;
3682}
3683
3684/**
3685 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 * @hw: pointer to the HW structure
3687 * @offset: The offset (in bytes) of the dword to read.
3688 * @data: Pointer to the dword to store the value read.
3689 *
3690 * Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694 u32 *data)
3695{
3696 union ich8_hws_flash_status hsfsts;
3697 union ich8_hws_flash_ctrl hsflctl;
3698 u32 flash_linear_addr;
3699 s32 ret_val = -E1000_ERR_NVM;
3700 u8 count = 0;
3701
3702 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703 return -E1000_ERR_NVM;
3704 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705 hw->nvm.flash_base_addr);
3706
3707 do {
3708 udelay(1);
3709 /* Steps */
3710 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711 if (ret_val)
3712 break;
3713 /* In SPT, This register is in Lan memory space, not flash.
3714 * Therefore, only 32 bit access is supported
3715 */
3716 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721 /* In SPT, This register is in Lan memory space, not flash.
3722 * Therefore, only 32 bit access is supported
3723 */
3724 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727 ret_val =
3728 e1000_flash_cycle_ich8lan(hw,
3729 ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731 /* Check if FCERR is set to 1, if set to 1, clear it
3732 * and try the whole sequence a few more times, else
3733 * read in (shift in) the Flash Data0, the order is
3734 * least significant byte first msb to lsb
3735 */
3736 if (!ret_val) {
3737 *data = er32flash(ICH_FLASH_FDATA0);
3738 break;
3739 } else {
3740 /* If we've gotten here, then things are probably
3741 * completely hosed, but if the error condition is
3742 * detected, it won't hurt to give it another try...
3743 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744 */
3745 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746 if (hsfsts.hsf_status.flcerr) {
3747 /* Repeat for some time before giving up. */
3748 continue;
3749 } else if (!hsfsts.hsf_status.flcdone) {
3750 e_dbg("Timeout error - flash cycle did not complete.\n");
3751 break;
3752 }
3753 }
3754 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756 return ret_val;
3757}
3758
3759/**
3760 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 * @hw: pointer to the HW structure
3762 * @offset: The offset (in bytes) of the word(s) to write.
3763 * @words: Size of data to write in words
3764 * @data: Pointer to the word(s) to write at offset.
3765 *
3766 * Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769 u16 *data)
3770{
3771 struct e1000_nvm_info *nvm = &hw->nvm;
3772 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773 u16 i;
3774
3775 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776 (words == 0)) {
3777 e_dbg("nvm parameter(s) out of bounds\n");
3778 return -E1000_ERR_NVM;
3779 }
3780
3781 nvm->ops.acquire(hw);
3782
3783 for (i = 0; i < words; i++) {
3784 dev_spec->shadow_ram[offset + i].modified = true;
3785 dev_spec->shadow_ram[offset + i].value = data[i];
3786 }
3787
3788 nvm->ops.release(hw);
3789
3790 return 0;
3791}
3792
3793/**
3794 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 * @hw: pointer to the HW structure
3796 *
3797 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 * which writes the checksum to the shadow ram. The changes in the shadow
3799 * ram are then committed to the EEPROM by processing each bank at a time
3800 * checking for the modified bit and writing only the pending changes.
3801 * After a successful commit, the shadow ram is cleared and is ready for
3802 * future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806 struct e1000_nvm_info *nvm = &hw->nvm;
3807 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809 s32 ret_val;
3810 u32 dword = 0;
3811
3812 ret_val = e1000e_update_nvm_checksum_generic(hw);
3813 if (ret_val)
3814 goto out;
3815
3816 if (nvm->type != e1000_nvm_flash_sw)
3817 goto out;
3818
3819 nvm->ops.acquire(hw);
3820
3821 /* We're writing to the opposite bank so if we're on bank 1,
3822 * write to bank 0 etc. We also need to erase the segment that
3823 * is going to be written
3824 */
3825 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826 if (ret_val) {
3827 e_dbg("Could not detect valid bank, assuming bank 0\n");
3828 bank = 0;
3829 }
3830
3831 if (bank == 0) {
3832 new_bank_offset = nvm->flash_bank_size;
3833 old_bank_offset = 0;
3834 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835 if (ret_val)
3836 goto release;
3837 } else {
3838 old_bank_offset = nvm->flash_bank_size;
3839 new_bank_offset = 0;
3840 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841 if (ret_val)
3842 goto release;
3843 }
3844 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845 /* Determine whether to write the value stored
3846 * in the other NVM bank or a modified value stored
3847 * in the shadow RAM
3848 */
3849 ret_val = e1000_read_flash_dword_ich8lan(hw,
3850 i + old_bank_offset,
3851 &dword);
3852
3853 if (dev_spec->shadow_ram[i].modified) {
3854 dword &= 0xffff0000;
3855 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856 }
3857 if (dev_spec->shadow_ram[i + 1].modified) {
3858 dword &= 0x0000ffff;
3859 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860 << 16);
3861 }
3862 if (ret_val)
3863 break;
3864
3865 /* If the word is 0x13, then make sure the signature bits
3866 * (15:14) are 11b until the commit has completed.
3867 * This will allow us to write 10b which indicates the
3868 * signature is valid. We want to do this after the write
3869 * has completed so that we don't mark the segment valid
3870 * while the write is still in progress
3871 */
3872 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875 /* Convert offset to bytes. */
3876 act_offset = (i + new_bank_offset) << 1;
3877
3878 usleep_range(100, 200);
3879
3880 /* Write the data to the new bank. Offset in words */
3881 act_offset = i + new_bank_offset;
3882 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883 dword);
3884 if (ret_val)
3885 break;
3886 }
3887
3888 /* Don't bother writing the segment valid bits if sector
3889 * programming failed.
3890 */
3891 if (ret_val) {
3892 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893 e_dbg("Flash commit failed.\n");
3894 goto release;
3895 }
3896
3897 /* Finally validate the new segment by setting bit 15:14
3898 * to 10b in word 0x13 , this can be done without an
3899 * erase as well since these bits are 11 to start with
3900 * and we need to change bit 14 to 0b
3901 */
3902 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904 /*offset in words but we read dword */
3905 --act_offset;
3906 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908 if (ret_val)
3909 goto release;
3910
3911 dword &= 0xBFFFFFFF;
3912 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914 if (ret_val)
3915 goto release;
3916
3917 /* offset in words but we read dword */
3918 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921 if (ret_val)
3922 goto release;
3923
3924 dword &= 0x00FFFFFF;
3925 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927 if (ret_val)
3928 goto release;
3929
3930 /* Great! Everything worked, we can now clear the cached entries. */
3931 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932 dev_spec->shadow_ram[i].modified = false;
3933 dev_spec->shadow_ram[i].value = 0xFFFF;
3934 }
3935
3936release:
3937 nvm->ops.release(hw);
3938
3939 /* Reload the EEPROM, or else modifications will not appear
3940 * until after the next adapter reset.
3941 */
3942 if (!ret_val) {
3943 nvm->ops.reload(hw);
3944 usleep_range(10000, 11000);
3945 }
3946
3947out:
3948 if (ret_val)
3949 e_dbg("NVM update error: %d\n", ret_val);
3950
3951 return ret_val;
3952}
3953
3954/**
3955 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 * @hw: pointer to the HW structure
3957 *
3958 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 * which writes the checksum to the shadow ram. The changes in the shadow
3960 * ram are then committed to the EEPROM by processing each bank at a time
3961 * checking for the modified bit and writing only the pending changes.
3962 * After a successful commit, the shadow ram is cleared and is ready for
3963 * future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967 struct e1000_nvm_info *nvm = &hw->nvm;
3968 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970 s32 ret_val;
3971 u16 data = 0;
3972
3973 ret_val = e1000e_update_nvm_checksum_generic(hw);
3974 if (ret_val)
3975 goto out;
3976
3977 if (nvm->type != e1000_nvm_flash_sw)
3978 goto out;
3979
3980 nvm->ops.acquire(hw);
3981
3982 /* We're writing to the opposite bank so if we're on bank 1,
3983 * write to bank 0 etc. We also need to erase the segment that
3984 * is going to be written
3985 */
3986 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987 if (ret_val) {
3988 e_dbg("Could not detect valid bank, assuming bank 0\n");
3989 bank = 0;
3990 }
3991
3992 if (bank == 0) {
3993 new_bank_offset = nvm->flash_bank_size;
3994 old_bank_offset = 0;
3995 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996 if (ret_val)
3997 goto release;
3998 } else {
3999 old_bank_offset = nvm->flash_bank_size;
4000 new_bank_offset = 0;
4001 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002 if (ret_val)
4003 goto release;
4004 }
4005 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006 if (dev_spec->shadow_ram[i].modified) {
4007 data = dev_spec->shadow_ram[i].value;
4008 } else {
4009 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010 old_bank_offset,
4011 &data);
4012 if (ret_val)
4013 break;
4014 }
4015
4016 /* If the word is 0x13, then make sure the signature bits
4017 * (15:14) are 11b until the commit has completed.
4018 * This will allow us to write 10b which indicates the
4019 * signature is valid. We want to do this after the write
4020 * has completed so that we don't mark the segment valid
4021 * while the write is still in progress
4022 */
4023 if (i == E1000_ICH_NVM_SIG_WORD)
4024 data |= E1000_ICH_NVM_SIG_MASK;
4025
4026 /* Convert offset to bytes. */
4027 act_offset = (i + new_bank_offset) << 1;
4028
4029 usleep_range(100, 200);
4030 /* Write the bytes to the new bank. */
4031 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032 act_offset,
4033 (u8)data);
4034 if (ret_val)
4035 break;
4036
4037 usleep_range(100, 200);
4038 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039 act_offset + 1,
4040 (u8)(data >> 8));
4041 if (ret_val)
4042 break;
4043 }
4044
4045 /* Don't bother writing the segment valid bits if sector
4046 * programming failed.
4047 */
4048 if (ret_val) {
4049 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050 e_dbg("Flash commit failed.\n");
4051 goto release;
4052 }
4053
4054 /* Finally validate the new segment by setting bit 15:14
4055 * to 10b in word 0x13 , this can be done without an
4056 * erase as well since these bits are 11 to start with
4057 * and we need to change bit 14 to 0b
4058 */
4059 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061 if (ret_val)
4062 goto release;
4063
4064 data &= 0xBFFF;
4065 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066 act_offset * 2 + 1,
4067 (u8)(data >> 8));
4068 if (ret_val)
4069 goto release;
4070
4071 /* And invalidate the previously valid segment by setting
4072 * its signature word (0x13) high_byte to 0b. This can be
4073 * done without an erase because flash erase sets all bits
4074 * to 1's. We can write 1's to 0's without an erase
4075 */
4076 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078 if (ret_val)
4079 goto release;
4080
4081 /* Great! Everything worked, we can now clear the cached entries. */
4082 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083 dev_spec->shadow_ram[i].modified = false;
4084 dev_spec->shadow_ram[i].value = 0xFFFF;
4085 }
4086
4087release:
4088 nvm->ops.release(hw);
4089
4090 /* Reload the EEPROM, or else modifications will not appear
4091 * until after the next adapter reset.
4092 */
4093 if (!ret_val) {
4094 nvm->ops.reload(hw);
4095 usleep_range(10000, 11000);
4096 }
4097
4098out:
4099 if (ret_val)
4100 e_dbg("NVM update error: %d\n", ret_val);
4101
4102 return ret_val;
4103}
4104
4105/**
4106 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 * @hw: pointer to the HW structure
4108 *
4109 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 * calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115 s32 ret_val;
4116 u16 data;
4117 u16 word;
4118 u16 valid_csum_mask;
4119
4120 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4121 * the checksum needs to be fixed. This bit is an indication that
4122 * the NVM was prepared by OEM software and did not calculate
4123 * the checksum...a likely scenario.
4124 */
4125 switch (hw->mac.type) {
4126 case e1000_pch_lpt:
4127 case e1000_pch_spt:
4128 case e1000_pch_cnp:
4129 case e1000_pch_tgp:
4130 case e1000_pch_adp:
4131 case e1000_pch_mtp:
4132 case e1000_pch_lnp:
4133 case e1000_pch_ptp:
4134 case e1000_pch_nvp:
4135 word = NVM_COMPAT;
4136 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137 break;
4138 default:
4139 word = NVM_FUTURE_INIT_WORD1;
4140 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141 break;
4142 }
4143
4144 ret_val = e1000_read_nvm(hw, word, 1, &data);
4145 if (ret_val)
4146 return ret_val;
4147
4148 if (!(data & valid_csum_mask)) {
4149 e_dbg("NVM Checksum valid bit not set\n");
4150
4151 if (hw->mac.type < e1000_pch_tgp) {
4152 data |= valid_csum_mask;
4153 ret_val = e1000_write_nvm(hw, word, 1, &data);
4154 if (ret_val)
4155 return ret_val;
4156 ret_val = e1000e_update_nvm_checksum(hw);
4157 if (ret_val)
4158 return ret_val;
4159 }
4160 }
4161
4162 return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 * @hw: pointer to the HW structure
4168 *
4169 * To prevent malicious write/erase of the NVM, set it to be read-only
4170 * so that the hardware ignores all write/erase cycles of the NVM via
4171 * the flash control registers. The shadow-ram copy of the NVM will
4172 * still be updated, however any updates to this copy will not stick
4173 * across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177 struct e1000_nvm_info *nvm = &hw->nvm;
4178 union ich8_flash_protected_range pr0;
4179 union ich8_hws_flash_status hsfsts;
4180 u32 gfpreg;
4181
4182 nvm->ops.acquire(hw);
4183
4184 gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186 /* Write-protect GbE Sector of NVM */
4187 pr0.regval = er32flash(ICH_FLASH_PR0);
4188 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190 pr0.range.wpe = true;
4191 ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193 /* Lock down a subset of GbE Flash Control Registers, e.g.
4194 * PR0 to prevent the write-protection from being lifted.
4195 * Once FLOCKDN is set, the registers protected by it cannot
4196 * be written until FLOCKDN is cleared by a hardware reset.
4197 */
4198 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199 hsfsts.hsf_status.flockdn = true;
4200 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202 nvm->ops.release(hw);
4203}
4204
4205/**
4206 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 * @hw: pointer to the HW structure
4208 * @offset: The offset (in bytes) of the byte/word to read.
4209 * @size: Size of data to read, 1=byte 2=word
4210 * @data: The byte(s) to write to the NVM.
4211 *
4212 * Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215 u8 size, u16 data)
4216{
4217 union ich8_hws_flash_status hsfsts;
4218 union ich8_hws_flash_ctrl hsflctl;
4219 u32 flash_linear_addr;
4220 u32 flash_data = 0;
4221 s32 ret_val;
4222 u8 count = 0;
4223
4224 if (hw->mac.type >= e1000_pch_spt) {
4225 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226 return -E1000_ERR_NVM;
4227 } else {
4228 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229 return -E1000_ERR_NVM;
4230 }
4231
4232 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233 hw->nvm.flash_base_addr);
4234
4235 do {
4236 udelay(1);
4237 /* Steps */
4238 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239 if (ret_val)
4240 break;
4241 /* In SPT, This register is in Lan memory space, not
4242 * flash. Therefore, only 32 bit access is supported
4243 */
4244 if (hw->mac.type >= e1000_pch_spt)
4245 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246 else
4247 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250 hsflctl.hsf_ctrl.fldbcount = size - 1;
4251 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252 /* In SPT, This register is in Lan memory space,
4253 * not flash. Therefore, only 32 bit access is
4254 * supported
4255 */
4256 if (hw->mac.type >= e1000_pch_spt)
4257 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258 else
4259 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263 if (size == 1)
4264 flash_data = (u32)data & 0x00FF;
4265 else
4266 flash_data = (u32)data;
4267
4268 ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270 /* check if FCERR is set to 1 , if set to 1, clear it
4271 * and try the whole sequence a few more times else done
4272 */
4273 ret_val =
4274 e1000_flash_cycle_ich8lan(hw,
4275 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276 if (!ret_val)
4277 break;
4278
4279 /* If we're here, then things are most likely
4280 * completely hosed, but if the error condition
4281 * is detected, it won't hurt to give it another
4282 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283 */
4284 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285 if (hsfsts.hsf_status.flcerr)
4286 /* Repeat for some time before giving up. */
4287 continue;
4288 if (!hsfsts.hsf_status.flcdone) {
4289 e_dbg("Timeout error - flash cycle did not complete.\n");
4290 break;
4291 }
4292 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294 return ret_val;
4295}
4296
4297/**
4298* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299* @hw: pointer to the HW structure
4300* @offset: The offset (in bytes) of the dwords to read.
4301* @data: The 4 bytes to write to the NVM.
4302*
4303* Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306 u32 data)
4307{
4308 union ich8_hws_flash_status hsfsts;
4309 union ich8_hws_flash_ctrl hsflctl;
4310 u32 flash_linear_addr;
4311 s32 ret_val;
4312 u8 count = 0;
4313
4314 if (hw->mac.type >= e1000_pch_spt) {
4315 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316 return -E1000_ERR_NVM;
4317 }
4318 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319 hw->nvm.flash_base_addr);
4320 do {
4321 udelay(1);
4322 /* Steps */
4323 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324 if (ret_val)
4325 break;
4326
4327 /* In SPT, This register is in Lan memory space, not
4328 * flash. Therefore, only 32 bit access is supported
4329 */
4330 if (hw->mac.type >= e1000_pch_spt)
4331 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332 >> 16;
4333 else
4334 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339 /* In SPT, This register is in Lan memory space,
4340 * not flash. Therefore, only 32 bit access is
4341 * supported
4342 */
4343 if (hw->mac.type >= e1000_pch_spt)
4344 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345 else
4346 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350 ew32flash(ICH_FLASH_FDATA0, data);
4351
4352 /* check if FCERR is set to 1 , if set to 1, clear it
4353 * and try the whole sequence a few more times else done
4354 */
4355 ret_val =
4356 e1000_flash_cycle_ich8lan(hw,
4357 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359 if (!ret_val)
4360 break;
4361
4362 /* If we're here, then things are most likely
4363 * completely hosed, but if the error condition
4364 * is detected, it won't hurt to give it another
4365 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366 */
4367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369 if (hsfsts.hsf_status.flcerr)
4370 /* Repeat for some time before giving up. */
4371 continue;
4372 if (!hsfsts.hsf_status.flcdone) {
4373 e_dbg("Timeout error - flash cycle did not complete.\n");
4374 break;
4375 }
4376 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378 return ret_val;
4379}
4380
4381/**
4382 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 * @hw: pointer to the HW structure
4384 * @offset: The index of the byte to read.
4385 * @data: The byte to write to the NVM.
4386 *
4387 * Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390 u8 data)
4391{
4392 u16 word = (u16)data;
4393
4394 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399* @hw: pointer to the HW structure
4400* @offset: The offset of the word to write.
4401* @dword: The dword to write to the NVM.
4402*
4403* Writes a single dword to the NVM using the flash access registers.
4404* Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407 u32 offset, u32 dword)
4408{
4409 s32 ret_val;
4410 u16 program_retries;
4411
4412 /* Must convert word offset into bytes. */
4413 offset <<= 1;
4414 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416 if (!ret_val)
4417 return ret_val;
4418 for (program_retries = 0; program_retries < 100; program_retries++) {
4419 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420 usleep_range(100, 200);
4421 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422 if (!ret_val)
4423 break;
4424 }
4425 if (program_retries == 100)
4426 return -E1000_ERR_NVM;
4427
4428 return 0;
4429}
4430
4431/**
4432 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 * @hw: pointer to the HW structure
4434 * @offset: The offset of the byte to write.
4435 * @byte: The byte to write to the NVM.
4436 *
4437 * Writes a single byte to the NVM using the flash access registers.
4438 * Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441 u32 offset, u8 byte)
4442{
4443 s32 ret_val;
4444 u16 program_retries;
4445
4446 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447 if (!ret_val)
4448 return ret_val;
4449
4450 for (program_retries = 0; program_retries < 100; program_retries++) {
4451 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452 usleep_range(100, 200);
4453 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454 if (!ret_val)
4455 break;
4456 }
4457 if (program_retries == 100)
4458 return -E1000_ERR_NVM;
4459
4460 return 0;
4461}
4462
4463/**
4464 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 * @hw: pointer to the HW structure
4466 * @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 * bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473 struct e1000_nvm_info *nvm = &hw->nvm;
4474 union ich8_hws_flash_status hsfsts;
4475 union ich8_hws_flash_ctrl hsflctl;
4476 u32 flash_linear_addr;
4477 /* bank size is in 16bit words - adjust to bytes */
4478 u32 flash_bank_size = nvm->flash_bank_size * 2;
4479 s32 ret_val;
4480 s32 count = 0;
4481 s32 j, iteration, sector_size;
4482
4483 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485 /* Determine HW Sector size: Read BERASE bits of hw flash status
4486 * register
4487 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488 * consecutive sectors. The start index for the nth Hw sector
4489 * can be calculated as = bank * 4096 + n * 256
4490 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491 * The start index for the nth Hw sector can be calculated
4492 * as = bank * 4096
4493 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494 * (ich9 only, otherwise error condition)
4495 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496 */
4497 switch (hsfsts.hsf_status.berasesz) {
4498 case 0:
4499 /* Hw sector size 256 */
4500 sector_size = ICH_FLASH_SEG_SIZE_256;
4501 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502 break;
4503 case 1:
4504 sector_size = ICH_FLASH_SEG_SIZE_4K;
4505 iteration = 1;
4506 break;
4507 case 2:
4508 sector_size = ICH_FLASH_SEG_SIZE_8K;
4509 iteration = 1;
4510 break;
4511 case 3:
4512 sector_size = ICH_FLASH_SEG_SIZE_64K;
4513 iteration = 1;
4514 break;
4515 default:
4516 return -E1000_ERR_NVM;
4517 }
4518
4519 /* Start with the base address, then add the sector offset. */
4520 flash_linear_addr = hw->nvm.flash_base_addr;
4521 flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523 for (j = 0; j < iteration; j++) {
4524 do {
4525 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527 /* Steps */
4528 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529 if (ret_val)
4530 return ret_val;
4531
4532 /* Write a value 11 (block Erase) in Flash
4533 * Cycle field in hw flash control
4534 */
4535 if (hw->mac.type >= e1000_pch_spt)
4536 hsflctl.regval =
4537 er32flash(ICH_FLASH_HSFSTS) >> 16;
4538 else
4539 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542 if (hw->mac.type >= e1000_pch_spt)
4543 ew32flash(ICH_FLASH_HSFSTS,
4544 hsflctl.regval << 16);
4545 else
4546 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548 /* Write the last 24 bits of an index within the
4549 * block into Flash Linear address field in Flash
4550 * Address.
4551 */
4552 flash_linear_addr += (j * sector_size);
4553 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556 if (!ret_val)
4557 break;
4558
4559 /* Check if FCERR is set to 1. If 1,
4560 * clear it and try the whole sequence
4561 * a few more times else Done
4562 */
4563 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564 if (hsfsts.hsf_status.flcerr)
4565 /* repeat for some time before giving up */
4566 continue;
4567 else if (!hsfsts.hsf_status.flcdone)
4568 return ret_val;
4569 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570 }
4571
4572 return 0;
4573}
4574
4575/**
4576 * e1000_valid_led_default_ich8lan - Set the default LED settings
4577 * @hw: pointer to the HW structure
4578 * @data: Pointer to the LED settings
4579 *
4580 * Reads the LED default settings from the NVM to data. If the NVM LED
4581 * settings is all 0's or F's, set the LED default to a valid LED default
4582 * setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586 s32 ret_val;
4587
4588 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589 if (ret_val) {
4590 e_dbg("NVM Read Error\n");
4591 return ret_val;
4592 }
4593
4594 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595 *data = ID_LED_DEFAULT_ICH8LAN;
4596
4597 return 0;
4598}
4599
4600/**
4601 * e1000_id_led_init_pchlan - store LED configurations
4602 * @hw: pointer to the HW structure
4603 *
4604 * PCH does not control LEDs via the LEDCTL register, rather it uses
4605 * the PHY LED configuration register.
4606 *
4607 * PCH also does not have an "always on" or "always off" mode which
4608 * complicates the ID feature. Instead of using the "on" mode to indicate
4609 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 * use "link_up" mode. The LEDs will still ID on request if there is no
4611 * link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615 struct e1000_mac_info *mac = &hw->mac;
4616 s32 ret_val;
4617 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619 u16 data, i, temp, shift;
4620
4621 /* Get default ID LED modes */
4622 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623 if (ret_val)
4624 return ret_val;
4625
4626 mac->ledctl_default = er32(LEDCTL);
4627 mac->ledctl_mode1 = mac->ledctl_default;
4628 mac->ledctl_mode2 = mac->ledctl_default;
4629
4630 for (i = 0; i < 4; i++) {
4631 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632 shift = (i * 5);
4633 switch (temp) {
4634 case ID_LED_ON1_DEF2:
4635 case ID_LED_ON1_ON2:
4636 case ID_LED_ON1_OFF2:
4637 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638 mac->ledctl_mode1 |= (ledctl_on << shift);
4639 break;
4640 case ID_LED_OFF1_DEF2:
4641 case ID_LED_OFF1_ON2:
4642 case ID_LED_OFF1_OFF2:
4643 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644 mac->ledctl_mode1 |= (ledctl_off << shift);
4645 break;
4646 default:
4647 /* Do nothing */
4648 break;
4649 }
4650 switch (temp) {
4651 case ID_LED_DEF1_ON2:
4652 case ID_LED_ON1_ON2:
4653 case ID_LED_OFF1_ON2:
4654 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655 mac->ledctl_mode2 |= (ledctl_on << shift);
4656 break;
4657 case ID_LED_DEF1_OFF2:
4658 case ID_LED_ON1_OFF2:
4659 case ID_LED_OFF1_OFF2:
4660 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661 mac->ledctl_mode2 |= (ledctl_off << shift);
4662 break;
4663 default:
4664 /* Do nothing */
4665 break;
4666 }
4667 }
4668
4669 return 0;
4670}
4671
4672/**
4673 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 * @hw: pointer to the HW structure
4675 *
4676 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 * register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681 struct e1000_bus_info *bus = &hw->bus;
4682 s32 ret_val;
4683
4684 ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686 /* ICH devices are "PCI Express"-ish. They have
4687 * a configuration space, but do not contain
4688 * PCI Express Capability registers, so bus width
4689 * must be hardcoded.
4690 */
4691 if (bus->width == e1000_bus_width_unknown)
4692 bus->width = e1000_bus_width_pcie_x1;
4693
4694 return ret_val;
4695}
4696
4697/**
4698 * e1000_reset_hw_ich8lan - Reset the hardware
4699 * @hw: pointer to the HW structure
4700 *
4701 * Does a full reset of the hardware which includes a reset of the PHY and
4702 * MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707 u16 kum_cfg;
4708 u32 ctrl, reg;
4709 s32 ret_val;
4710
4711 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4712 * on the last TLP read/write transaction when MAC is reset.
4713 */
4714 ret_val = e1000e_disable_pcie_master(hw);
4715 if (ret_val)
4716 e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718 e_dbg("Masking off all interrupts\n");
4719 ew32(IMC, 0xffffffff);
4720
4721 /* Disable the Transmit and Receive units. Then delay to allow
4722 * any pending transactions to complete before we hit the MAC
4723 * with the global reset.
4724 */
4725 ew32(RCTL, 0);
4726 ew32(TCTL, E1000_TCTL_PSP);
4727 e1e_flush();
4728
4729 usleep_range(10000, 11000);
4730
4731 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4732 if (hw->mac.type == e1000_ich8lan) {
4733 /* Set Tx and Rx buffer allocation to 8k apiece. */
4734 ew32(PBA, E1000_PBA_8K);
4735 /* Set Packet Buffer Size to 16k. */
4736 ew32(PBS, E1000_PBS_16K);
4737 }
4738
4739 if (hw->mac.type == e1000_pchlan) {
4740 /* Save the NVM K1 bit setting */
4741 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742 if (ret_val)
4743 return ret_val;
4744
4745 if (kum_cfg & E1000_NVM_K1_ENABLE)
4746 dev_spec->nvm_k1_enabled = true;
4747 else
4748 dev_spec->nvm_k1_enabled = false;
4749 }
4750
4751 ctrl = er32(CTRL);
4752
4753 if (!hw->phy.ops.check_reset_block(hw)) {
4754 /* Full-chip reset requires MAC and PHY reset at the same
4755 * time to make sure the interface between MAC and the
4756 * external PHY is reset.
4757 */
4758 ctrl |= E1000_CTRL_PHY_RST;
4759
4760 /* Gate automatic PHY configuration by hardware on
4761 * non-managed 82579
4762 */
4763 if ((hw->mac.type == e1000_pch2lan) &&
4764 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765 e1000_gate_hw_phy_config_ich8lan(hw, true);
4766 }
4767 ret_val = e1000_acquire_swflag_ich8lan(hw);
4768 e_dbg("Issuing a global reset to ich8lan\n");
4769 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770 /* cannot issue a flush here because it hangs the hardware */
4771 msleep(20);
4772
4773 /* Set Phy Config Counter to 50msec */
4774 if (hw->mac.type == e1000_pch2lan) {
4775 reg = er32(FEXTNVM3);
4776 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778 ew32(FEXTNVM3, reg);
4779 }
4780
4781 if (!ret_val)
4782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784 if (ctrl & E1000_CTRL_PHY_RST) {
4785 ret_val = hw->phy.ops.get_cfg_done(hw);
4786 if (ret_val)
4787 return ret_val;
4788
4789 ret_val = e1000_post_phy_reset_ich8lan(hw);
4790 if (ret_val)
4791 return ret_val;
4792 }
4793
4794 /* For PCH, this write will make sure that any noise
4795 * will be detected as a CRC error and be dropped rather than show up
4796 * as a bad packet to the DMA engine.
4797 */
4798 if (hw->mac.type == e1000_pchlan)
4799 ew32(CRC_OFFSET, 0x65656565);
4800
4801 ew32(IMC, 0xffffffff);
4802 er32(ICR);
4803
4804 reg = er32(KABGTXD);
4805 reg |= E1000_KABGTXD_BGSQLBIAS;
4806 ew32(KABGTXD, reg);
4807
4808 return 0;
4809}
4810
4811/**
4812 * e1000_init_hw_ich8lan - Initialize the hardware
4813 * @hw: pointer to the HW structure
4814 *
4815 * Prepares the hardware for transmit and receive by doing the following:
4816 * - initialize hardware bits
4817 * - initialize LED identification
4818 * - setup receive address registers
4819 * - setup flow control
4820 * - setup transmit descriptors
4821 * - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825 struct e1000_mac_info *mac = &hw->mac;
4826 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827 s32 ret_val;
4828 u16 i;
4829
4830 e1000_initialize_hw_bits_ich8lan(hw);
4831
4832 /* Initialize identification LED */
4833 ret_val = mac->ops.id_led_init(hw);
4834 /* An error is not fatal and we should not stop init due to this */
4835 if (ret_val)
4836 e_dbg("Error initializing identification LED\n");
4837
4838 /* Setup the receive address. */
4839 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841 /* Zero out the Multicast HASH table */
4842 e_dbg("Zeroing the MTA\n");
4843 for (i = 0; i < mac->mta_reg_count; i++)
4844 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847 * the ME. Disable wakeup by clearing the host wakeup bit.
4848 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849 */
4850 if (hw->phy.type == e1000_phy_82578) {
4851 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852 i &= ~BM_WUC_HOST_WU_BIT;
4853 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855 if (ret_val)
4856 return ret_val;
4857 }
4858
4859 /* Setup link and flow control */
4860 ret_val = mac->ops.setup_link(hw);
4861
4862 /* Set the transmit descriptor write-back policy for both queues */
4863 txdctl = er32(TXDCTL(0));
4864 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865 E1000_TXDCTL_FULL_TX_DESC_WB);
4866 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868 ew32(TXDCTL(0), txdctl);
4869 txdctl = er32(TXDCTL(1));
4870 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871 E1000_TXDCTL_FULL_TX_DESC_WB);
4872 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874 ew32(TXDCTL(1), txdctl);
4875
4876 /* ICH8 has opposite polarity of no_snoop bits.
4877 * By default, we should use snoop behavior.
4878 */
4879 if (mac->type == e1000_ich8lan)
4880 snoop = PCIE_ICH8_SNOOP_ALL;
4881 else
4882 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883 e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885 /* Enable workaround for packet loss issue on TGP PCH
4886 * Do not gate DMA clock from the modPHY block
4887 */
4888 if (mac->type >= e1000_pch_tgp) {
4889 fflt_dbg = er32(FFLT_DBG);
4890 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891 ew32(FFLT_DBG, fflt_dbg);
4892 }
4893
4894 ctrl_ext = er32(CTRL_EXT);
4895 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896 ew32(CTRL_EXT, ctrl_ext);
4897
4898 /* Clear all of the statistics registers (clear on read). It is
4899 * important that we do this after we have tried to establish link
4900 * because the symbol error count will increment wildly if there
4901 * is no link.
4902 */
4903 e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905 return ret_val;
4906}
4907
4908/**
4909 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 * @hw: pointer to the HW structure
4911 *
4912 * Sets/Clears required hardware bits necessary for correctly setting up the
4913 * hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917 u32 reg;
4918
4919 /* Extended Device Control */
4920 reg = er32(CTRL_EXT);
4921 reg |= BIT(22);
4922 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923 if (hw->mac.type >= e1000_pchlan)
4924 reg |= E1000_CTRL_EXT_PHYPDEN;
4925 ew32(CTRL_EXT, reg);
4926
4927 /* Transmit Descriptor Control 0 */
4928 reg = er32(TXDCTL(0));
4929 reg |= BIT(22);
4930 ew32(TXDCTL(0), reg);
4931
4932 /* Transmit Descriptor Control 1 */
4933 reg = er32(TXDCTL(1));
4934 reg |= BIT(22);
4935 ew32(TXDCTL(1), reg);
4936
4937 /* Transmit Arbitration Control 0 */
4938 reg = er32(TARC(0));
4939 if (hw->mac.type == e1000_ich8lan)
4940 reg |= BIT(28) | BIT(29);
4941 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942 ew32(TARC(0), reg);
4943
4944 /* Transmit Arbitration Control 1 */
4945 reg = er32(TARC(1));
4946 if (er32(TCTL) & E1000_TCTL_MULR)
4947 reg &= ~BIT(28);
4948 else
4949 reg |= BIT(28);
4950 reg |= BIT(24) | BIT(26) | BIT(30);
4951 ew32(TARC(1), reg);
4952
4953 /* Device Status */
4954 if (hw->mac.type == e1000_ich8lan) {
4955 reg = er32(STATUS);
4956 reg &= ~BIT(31);
4957 ew32(STATUS, reg);
4958 }
4959
4960 /* work-around descriptor data corruption issue during nfs v2 udp
4961 * traffic, just disable the nfs filtering capability
4962 */
4963 reg = er32(RFCTL);
4964 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966 /* Disable IPv6 extension header parsing because some malformed
4967 * IPv6 headers can hang the Rx.
4968 */
4969 if (hw->mac.type == e1000_ich8lan)
4970 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971 ew32(RFCTL, reg);
4972
4973 /* Enable ECC on Lynxpoint */
4974 if (hw->mac.type >= e1000_pch_lpt) {
4975 reg = er32(PBECCSTS);
4976 reg |= E1000_PBECCSTS_ECC_ENABLE;
4977 ew32(PBECCSTS, reg);
4978
4979 reg = er32(CTRL);
4980 reg |= E1000_CTRL_MEHE;
4981 ew32(CTRL, reg);
4982 }
4983}
4984
4985/**
4986 * e1000_setup_link_ich8lan - Setup flow control and link settings
4987 * @hw: pointer to the HW structure
4988 *
4989 * Determines which flow control settings to use, then configures flow
4990 * control. Calls the appropriate media-specific link configuration
4991 * function. Assuming the adapter has a valid link partner, a valid link
4992 * should be established. Assumes the hardware has previously been reset
4993 * and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997 s32 ret_val;
4998
4999 if (hw->phy.ops.check_reset_block(hw))
5000 return 0;
5001
5002 /* ICH parts do not have a word in the NVM to determine
5003 * the default flow control setting, so we explicitly
5004 * set it to full.
5005 */
5006 if (hw->fc.requested_mode == e1000_fc_default) {
5007 /* Workaround h/w hang when Tx flow control enabled */
5008 if (hw->mac.type == e1000_pchlan)
5009 hw->fc.requested_mode = e1000_fc_rx_pause;
5010 else
5011 hw->fc.requested_mode = e1000_fc_full;
5012 }
5013
5014 /* Save off the requested flow control mode for use later. Depending
5015 * on the link partner's capabilities, we may or may not use this mode.
5016 */
5017 hw->fc.current_mode = hw->fc.requested_mode;
5018
5019 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021 /* Continue to configure the copper link. */
5022 ret_val = hw->mac.ops.setup_physical_interface(hw);
5023 if (ret_val)
5024 return ret_val;
5025
5026 ew32(FCTTV, hw->fc.pause_time);
5027 if ((hw->phy.type == e1000_phy_82578) ||
5028 (hw->phy.type == e1000_phy_82579) ||
5029 (hw->phy.type == e1000_phy_i217) ||
5030 (hw->phy.type == e1000_phy_82577)) {
5031 ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034 hw->fc.pause_time);
5035 if (ret_val)
5036 return ret_val;
5037 }
5038
5039 return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 * @hw: pointer to the HW structure
5045 *
5046 * Configures the kumeran interface to the PHY to wait the appropriate time
5047 * when polling the PHY, then call the generic setup_copper_link to finish
5048 * configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052 u32 ctrl;
5053 s32 ret_val;
5054 u16 reg_data;
5055
5056 ctrl = er32(CTRL);
5057 ctrl |= E1000_CTRL_SLU;
5058 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059 ew32(CTRL, ctrl);
5060
5061 /* Set the mac to wait the maximum time between each iteration
5062 * and increase the max iterations when polling the phy;
5063 * this fixes erroneous timeouts at 10Mbps.
5064 */
5065 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066 if (ret_val)
5067 return ret_val;
5068 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069 ®_data);
5070 if (ret_val)
5071 return ret_val;
5072 reg_data |= 0x3F;
5073 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074 reg_data);
5075 if (ret_val)
5076 return ret_val;
5077
5078 switch (hw->phy.type) {
5079 case e1000_phy_igp_3:
5080 ret_val = e1000e_copper_link_setup_igp(hw);
5081 if (ret_val)
5082 return ret_val;
5083 break;
5084 case e1000_phy_bm:
5085 case e1000_phy_82578:
5086 ret_val = e1000e_copper_link_setup_m88(hw);
5087 if (ret_val)
5088 return ret_val;
5089 break;
5090 case e1000_phy_82577:
5091 case e1000_phy_82579:
5092 ret_val = e1000_copper_link_setup_82577(hw);
5093 if (ret_val)
5094 return ret_val;
5095 break;
5096 case e1000_phy_ife:
5097 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5098 if (ret_val)
5099 return ret_val;
5100
5101 reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103 switch (hw->phy.mdix) {
5104 case 1:
5105 reg_data &= ~IFE_PMC_FORCE_MDIX;
5106 break;
5107 case 2:
5108 reg_data |= IFE_PMC_FORCE_MDIX;
5109 break;
5110 case 0:
5111 default:
5112 reg_data |= IFE_PMC_AUTO_MDIX;
5113 break;
5114 }
5115 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116 if (ret_val)
5117 return ret_val;
5118 break;
5119 default:
5120 break;
5121 }
5122
5123 return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 * @hw: pointer to the HW structure
5129 *
5130 * Calls the PHY specific link setup function and then calls the
5131 * generic setup_copper_link to finish configuring the link for
5132 * Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136 u32 ctrl;
5137 s32 ret_val;
5138
5139 ctrl = er32(CTRL);
5140 ctrl |= E1000_CTRL_SLU;
5141 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142 ew32(CTRL, ctrl);
5143
5144 ret_val = e1000_copper_link_setup_82577(hw);
5145 if (ret_val)
5146 return ret_val;
5147
5148 return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 * @hw: pointer to the HW structure
5154 * @speed: pointer to store current link speed
5155 * @duplex: pointer to store the current link duplex
5156 *
5157 * Calls the generic get_speed_and_duplex to retrieve the current link
5158 * information and then calls the Kumeran lock loss workaround for links at
5159 * gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162 u16 *duplex)
5163{
5164 s32 ret_val;
5165
5166 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167 if (ret_val)
5168 return ret_val;
5169
5170 if ((hw->mac.type == e1000_ich8lan) &&
5171 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173 }
5174
5175 return ret_val;
5176}
5177
5178/**
5179 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 * @hw: pointer to the HW structure
5181 *
5182 * Work-around for 82566 Kumeran PCS lock loss:
5183 * On link status change (i.e. PCI reset, speed change) and link is up and
5184 * speed is gigabit-
5185 * 0) if workaround is optionally disabled do nothing
5186 * 1) wait 1ms for Kumeran link to come up
5187 * 2) check Kumeran Diagnostic register PCS lock loss bit
5188 * 3) if not set the link is locked (all is good), otherwise...
5189 * 4) reset the PHY
5190 * 5) repeat up to 10 times
5191 * Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196 u32 phy_ctrl;
5197 s32 ret_val;
5198 u16 i, data;
5199 bool link;
5200
5201 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202 return 0;
5203
5204 /* Make sure link is up before proceeding. If not just return.
5205 * Attempting this while link is negotiating fouled up link
5206 * stability
5207 */
5208 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209 if (!link)
5210 return 0;
5211
5212 for (i = 0; i < 10; i++) {
5213 /* read once to clear */
5214 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215 if (ret_val)
5216 return ret_val;
5217 /* and again to get new status */
5218 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219 if (ret_val)
5220 return ret_val;
5221
5222 /* check for PCS lock */
5223 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224 return 0;
5225
5226 /* Issue PHY reset */
5227 e1000_phy_hw_reset(hw);
5228 mdelay(5);
5229 }
5230 /* Disable GigE link negotiation */
5231 phy_ctrl = er32(PHY_CTRL);
5232 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234 ew32(PHY_CTRL, phy_ctrl);
5235
5236 /* Call gig speed drop workaround on Gig disable before accessing
5237 * any PHY registers
5238 */
5239 e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241 /* unable to acquire PCS lock */
5242 return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 * @hw: pointer to the HW structure
5248 * @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 * If ICH8, set the current Kumeran workaround state (enabled - true
5251 * /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254 bool state)
5255{
5256 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258 if (hw->mac.type != e1000_ich8lan) {
5259 e_dbg("Workaround applies to ICH8 only.\n");
5260 return;
5261 }
5262
5263 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 * @hw: pointer to the HW structure
5269 *
5270 * Workaround for 82566 power-down on D3 entry:
5271 * 1) disable gigabit link
5272 * 2) write VR power-down enable
5273 * 3) read it back
5274 * Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278 u32 reg;
5279 u16 data;
5280 u8 retry = 0;
5281
5282 if (hw->phy.type != e1000_phy_igp_3)
5283 return;
5284
5285 /* Try the workaround twice (if needed) */
5286 do {
5287 /* Disable link */
5288 reg = er32(PHY_CTRL);
5289 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291 ew32(PHY_CTRL, reg);
5292
5293 /* Call gig speed drop workaround on Gig disable before
5294 * accessing any PHY registers
5295 */
5296 if (hw->mac.type == e1000_ich8lan)
5297 e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299 /* Write VR power-down enable */
5300 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304 /* Read it back and test */
5305 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308 break;
5309
5310 /* Issue PHY reset and repeat at most one more time */
5311 reg = er32(CTRL);
5312 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313 retry++;
5314 } while (retry);
5315}
5316
5317/**
5318 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 * @hw: pointer to the HW structure
5320 *
5321 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 * LPLU, Gig disable, MDIC PHY reset):
5323 * 1) Set Kumeran Near-end loopback
5324 * 2) Clear Kumeran Near-end loopback
5325 * Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329 s32 ret_val;
5330 u16 reg_data;
5331
5332 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333 return;
5334
5335 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336 ®_data);
5337 if (ret_val)
5338 return;
5339 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341 reg_data);
5342 if (ret_val)
5343 return;
5344 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 * @hw: pointer to the HW structure
5351 *
5352 * During S0 to Sx transition, it is possible the link remains at gig
5353 * instead of negotiating to a lower speed. Before going to Sx, set
5354 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5355 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5356 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 * needs to be written.
5358 * Parts that support (and are linked to a partner which support) EEE in
5359 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 * than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365 u32 phy_ctrl;
5366 s32 ret_val;
5367
5368 phy_ctrl = er32(PHY_CTRL);
5369 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371 if (hw->phy.type == e1000_phy_i217) {
5372 u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378 (hw->mac.type >= e1000_pch_spt)) {
5379 u32 fextnvm6 = er32(FEXTNVM6);
5380
5381 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382 }
5383
5384 ret_val = hw->phy.ops.acquire(hw);
5385 if (ret_val)
5386 goto out;
5387
5388 if (!dev_spec->eee_disable) {
5389 u16 eee_advert;
5390
5391 ret_val =
5392 e1000_read_emi_reg_locked(hw,
5393 I217_EEE_ADVERTISEMENT,
5394 &eee_advert);
5395 if (ret_val)
5396 goto release;
5397
5398 /* Disable LPLU if both link partners support 100BaseT
5399 * EEE and 100Full is advertised on both ends of the
5400 * link, and enable Auto Enable LPI since there will
5401 * be no driver to enable LPI while in Sx.
5402 */
5403 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404 (dev_spec->eee_lp_ability &
5405 I82579_EEE_100_SUPPORTED) &&
5406 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408 E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410 /* Set Auto Enable LPI after link up */
5411 e1e_rphy_locked(hw,
5412 I217_LPI_GPIO_CTRL, &phy_reg);
5413 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414 e1e_wphy_locked(hw,
5415 I217_LPI_GPIO_CTRL, phy_reg);
5416 }
5417 }
5418
5419 /* For i217 Intel Rapid Start Technology support,
5420 * when the system is going into Sx and no manageability engine
5421 * is present, the driver must configure proxy to reset only on
5422 * power good. LPI (Low Power Idle) state must also reset only
5423 * on power good, as well as the MTA (Multicast table array).
5424 * The SMBus release must also be disabled on LCD reset.
5425 */
5426 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427 /* Enable proxy to reset only on power good. */
5428 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432 /* Set bit enable LPI (EEE) to reset only on
5433 * power good.
5434 */
5435 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439 /* Disable the SMB release on LCD reset. */
5440 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443 }
5444
5445 /* Enable MTA to reset for Intel Rapid Start Technology
5446 * Support
5447 */
5448 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453 hw->phy.ops.release(hw);
5454 }
5455out:
5456 ew32(PHY_CTRL, phy_ctrl);
5457
5458 if (hw->mac.type == e1000_ich8lan)
5459 e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461 if (hw->mac.type >= e1000_pchlan) {
5462 e1000_oem_bits_config_ich8lan(hw, false);
5463
5464 /* Reset PHY to activate OEM bits on 82577/8 */
5465 if (hw->mac.type == e1000_pchlan)
5466 e1000e_phy_hw_reset_generic(hw);
5467
5468 ret_val = hw->phy.ops.acquire(hw);
5469 if (ret_val)
5470 return;
5471 e1000_write_smbus_addr(hw);
5472 hw->phy.ops.release(hw);
5473 }
5474}
5475
5476/**
5477 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 * @hw: pointer to the HW structure
5479 *
5480 * During Sx to S0 transitions on non-managed devices or managed devices
5481 * on which PHY resets are not blocked, if the PHY registers cannot be
5482 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 * the PHY.
5484 * On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488 s32 ret_val;
5489
5490 if (hw->mac.type < e1000_pch2lan)
5491 return;
5492
5493 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494 if (ret_val) {
5495 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496 return;
5497 }
5498
5499 /* For i217 Intel Rapid Start Technology support when the system
5500 * is transitioning from Sx and no manageability engine is present
5501 * configure SMBus to restore on reset, disable proxy, and enable
5502 * the reset on MTA (Multicast table array).
5503 */
5504 if (hw->phy.type == e1000_phy_i217) {
5505 u16 phy_reg;
5506
5507 ret_val = hw->phy.ops.acquire(hw);
5508 if (ret_val) {
5509 e_dbg("Failed to setup iRST\n");
5510 return;
5511 }
5512
5513 /* Clear Auto Enable LPI after link up */
5514 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519 /* Restore clear on SMB if no manageability engine
5520 * is present
5521 */
5522 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523 if (ret_val)
5524 goto release;
5525 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528 /* Disable Proxy */
5529 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530 }
5531 /* Enable reset on MTA */
5532 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533 if (ret_val)
5534 goto release;
5535 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538 if (ret_val)
5539 e_dbg("Error %d in resume workarounds\n", ret_val);
5540 hw->phy.ops.release(hw);
5541 }
5542}
5543
5544/**
5545 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 * @hw: pointer to the HW structure
5547 *
5548 * Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552 if (hw->phy.type == e1000_phy_ife)
5553 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555 ew32(LEDCTL, hw->mac.ledctl_default);
5556 return 0;
5557}
5558
5559/**
5560 * e1000_led_on_ich8lan - Turn LEDs on
5561 * @hw: pointer to the HW structure
5562 *
5563 * Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567 if (hw->phy.type == e1000_phy_ife)
5568 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571 ew32(LEDCTL, hw->mac.ledctl_mode2);
5572 return 0;
5573}
5574
5575/**
5576 * e1000_led_off_ich8lan - Turn LEDs off
5577 * @hw: pointer to the HW structure
5578 *
5579 * Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583 if (hw->phy.type == e1000_phy_ife)
5584 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585 (IFE_PSCL_PROBE_MODE |
5586 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588 ew32(LEDCTL, hw->mac.ledctl_mode1);
5589 return 0;
5590}
5591
5592/**
5593 * e1000_setup_led_pchlan - Configures SW controllable LED
5594 * @hw: pointer to the HW structure
5595 *
5596 * This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 * e1000_cleanup_led_pchlan - Restore the default LED operation
5605 * @hw: pointer to the HW structure
5606 *
5607 * Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 * e1000_led_on_pchlan - Turn LEDs on
5616 * @hw: pointer to the HW structure
5617 *
5618 * Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622 u16 data = (u16)hw->mac.ledctl_mode2;
5623 u32 i, led;
5624
5625 /* If no link, then turn LED on by setting the invert bit
5626 * for each LED that's mode is "link_up" in ledctl_mode2.
5627 */
5628 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629 for (i = 0; i < 3; i++) {
5630 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632 E1000_LEDCTL_MODE_LINK_UP)
5633 continue;
5634 if (led & E1000_PHY_LED0_IVRT)
5635 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636 else
5637 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638 }
5639 }
5640
5641 return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 * e1000_led_off_pchlan - Turn LEDs off
5646 * @hw: pointer to the HW structure
5647 *
5648 * Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652 u16 data = (u16)hw->mac.ledctl_mode1;
5653 u32 i, led;
5654
5655 /* If no link, then turn LED off by clearing the invert bit
5656 * for each LED that's mode is "link_up" in ledctl_mode1.
5657 */
5658 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659 for (i = 0; i < 3; i++) {
5660 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662 E1000_LEDCTL_MODE_LINK_UP)
5663 continue;
5664 if (led & E1000_PHY_LED0_IVRT)
5665 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666 else
5667 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668 }
5669 }
5670
5671 return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 * @hw: pointer to the HW structure
5677 *
5678 * Read appropriate register for the config done bit for completion status
5679 * and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 * config done bit, so only an error is logged and continues. If we were
5683 * to return with error, EEPROM-less silicon would not be able to be reset
5684 * or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688 s32 ret_val = 0;
5689 u32 bank = 0;
5690 u32 status;
5691
5692 e1000e_get_cfg_done_generic(hw);
5693
5694 /* Wait for indication from h/w that it has completed basic config */
5695 if (hw->mac.type >= e1000_ich10lan) {
5696 e1000_lan_init_done_ich8lan(hw);
5697 } else {
5698 ret_val = e1000e_get_auto_rd_done(hw);
5699 if (ret_val) {
5700 /* When auto config read does not complete, do not
5701 * return with an error. This can happen in situations
5702 * where there is no eeprom and prevents getting link.
5703 */
5704 e_dbg("Auto Read Done did not complete\n");
5705 ret_val = 0;
5706 }
5707 }
5708
5709 /* Clear PHY Reset Asserted bit */
5710 status = er32(STATUS);
5711 if (status & E1000_STATUS_PHYRA)
5712 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713 else
5714 e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717 if (hw->mac.type <= e1000_ich9lan) {
5718 if (!(er32(EECD) & E1000_EECD_PRES) &&
5719 (hw->phy.type == e1000_phy_igp_3)) {
5720 e1000e_phy_init_script_igp3(hw);
5721 }
5722 } else {
5723 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724 /* Maybe we should do a basic PHY config */
5725 e_dbg("EEPROM not present\n");
5726 ret_val = -E1000_ERR_CONFIG;
5727 }
5728 }
5729
5730 return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742 /* If the management interface is not enabled, then power down */
5743 if (!(hw->mac.ops.check_mng_mode(hw) ||
5744 hw->phy.ops.check_reset_block(hw)))
5745 e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 * @hw: pointer to the HW structure
5751 *
5752 * Clears hardware counters specific to the silicon family and calls
5753 * clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757 u16 phy_data;
5758 s32 ret_val;
5759
5760 e1000e_clear_hw_cntrs_base(hw);
5761
5762 er32(ALGNERRC);
5763 er32(RXERRC);
5764 er32(TNCRS);
5765 er32(CEXTERR);
5766 er32(TSCTC);
5767 er32(TSCTFC);
5768
5769 er32(MGTPRC);
5770 er32(MGTPDC);
5771 er32(MGTPTC);
5772
5773 er32(IAC);
5774 er32(ICRXOC);
5775
5776 /* Clear PHY statistics registers */
5777 if ((hw->phy.type == e1000_phy_82578) ||
5778 (hw->phy.type == e1000_phy_82579) ||
5779 (hw->phy.type == e1000_phy_i217) ||
5780 (hw->phy.type == e1000_phy_82577)) {
5781 ret_val = hw->phy.ops.acquire(hw);
5782 if (ret_val)
5783 return;
5784 ret_val = hw->phy.ops.set_page(hw,
5785 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786 if (ret_val)
5787 goto release;
5788 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803 hw->phy.ops.release(hw);
5804 }
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808 /* check_mng_mode dependent on mac type */
5809 .check_for_link = e1000_check_for_copper_link_ich8lan,
5810 /* cleanup_led dependent on mac type */
5811 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5812 .get_bus_info = e1000_get_bus_info_ich8lan,
5813 .set_lan_id = e1000_set_lan_id_single_port,
5814 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5815 /* led_on dependent on mac type */
5816 /* led_off dependent on mac type */
5817 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5818 .reset_hw = e1000_reset_hw_ich8lan,
5819 .init_hw = e1000_init_hw_ich8lan,
5820 .setup_link = e1000_setup_link_ich8lan,
5821 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822 /* id_led_init dependent on mac type */
5823 .config_collision_dist = e1000e_config_collision_dist_generic,
5824 .rar_set = e1000e_rar_set_generic,
5825 .rar_get_count = e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829 .acquire = e1000_acquire_swflag_ich8lan,
5830 .check_reset_block = e1000_check_reset_block_ich8lan,
5831 .commit = NULL,
5832 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5833 .get_cable_length = e1000e_get_cable_length_igp_2,
5834 .read_reg = e1000e_read_phy_reg_igp,
5835 .release = e1000_release_swflag_ich8lan,
5836 .reset = e1000_phy_hw_reset_ich8lan,
5837 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5838 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5839 .write_reg = e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843 .acquire = e1000_acquire_nvm_ich8lan,
5844 .read = e1000_read_nvm_ich8lan,
5845 .release = e1000_release_nvm_ich8lan,
5846 .reload = e1000e_reload_nvm_generic,
5847 .update = e1000_update_nvm_checksum_ich8lan,
5848 .valid_led_default = e1000_valid_led_default_ich8lan,
5849 .validate = e1000_validate_nvm_checksum_ich8lan,
5850 .write = e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854 .acquire = e1000_acquire_nvm_ich8lan,
5855 .release = e1000_release_nvm_ich8lan,
5856 .read = e1000_read_nvm_spt,
5857 .update = e1000_update_nvm_checksum_spt,
5858 .reload = e1000e_reload_nvm_generic,
5859 .valid_led_default = e1000_valid_led_default_ich8lan,
5860 .validate = e1000_validate_nvm_checksum_ich8lan,
5861 .write = e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865 .mac = e1000_ich8lan,
5866 .flags = FLAG_HAS_WOL
5867 | FLAG_IS_ICH
5868 | FLAG_HAS_CTRLEXT_ON_LOAD
5869 | FLAG_HAS_AMT
5870 | FLAG_HAS_FLASH
5871 | FLAG_APME_IN_WUC,
5872 .pba = 8,
5873 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874 .get_variants = e1000_get_variants_ich8lan,
5875 .mac_ops = &ich8_mac_ops,
5876 .phy_ops = &ich8_phy_ops,
5877 .nvm_ops = &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881 .mac = e1000_ich9lan,
5882 .flags = FLAG_HAS_JUMBO_FRAMES
5883 | FLAG_IS_ICH
5884 | FLAG_HAS_WOL
5885 | FLAG_HAS_CTRLEXT_ON_LOAD
5886 | FLAG_HAS_AMT
5887 | FLAG_HAS_FLASH
5888 | FLAG_APME_IN_WUC,
5889 .pba = 18,
5890 .max_hw_frame_size = DEFAULT_JUMBO,
5891 .get_variants = e1000_get_variants_ich8lan,
5892 .mac_ops = &ich8_mac_ops,
5893 .phy_ops = &ich8_phy_ops,
5894 .nvm_ops = &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898 .mac = e1000_ich10lan,
5899 .flags = FLAG_HAS_JUMBO_FRAMES
5900 | FLAG_IS_ICH
5901 | FLAG_HAS_WOL
5902 | FLAG_HAS_CTRLEXT_ON_LOAD
5903 | FLAG_HAS_AMT
5904 | FLAG_HAS_FLASH
5905 | FLAG_APME_IN_WUC,
5906 .pba = 18,
5907 .max_hw_frame_size = DEFAULT_JUMBO,
5908 .get_variants = e1000_get_variants_ich8lan,
5909 .mac_ops = &ich8_mac_ops,
5910 .phy_ops = &ich8_phy_ops,
5911 .nvm_ops = &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915 .mac = e1000_pchlan,
5916 .flags = FLAG_IS_ICH
5917 | FLAG_HAS_WOL
5918 | FLAG_HAS_CTRLEXT_ON_LOAD
5919 | FLAG_HAS_AMT
5920 | FLAG_HAS_FLASH
5921 | FLAG_HAS_JUMBO_FRAMES
5922 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923 | FLAG_APME_IN_WUC,
5924 .flags2 = FLAG2_HAS_PHY_STATS,
5925 .pba = 26,
5926 .max_hw_frame_size = 4096,
5927 .get_variants = e1000_get_variants_ich8lan,
5928 .mac_ops = &ich8_mac_ops,
5929 .phy_ops = &ich8_phy_ops,
5930 .nvm_ops = &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934 .mac = e1000_pch2lan,
5935 .flags = FLAG_IS_ICH
5936 | FLAG_HAS_WOL
5937 | FLAG_HAS_HW_TIMESTAMP
5938 | FLAG_HAS_CTRLEXT_ON_LOAD
5939 | FLAG_HAS_AMT
5940 | FLAG_HAS_FLASH
5941 | FLAG_HAS_JUMBO_FRAMES
5942 | FLAG_APME_IN_WUC,
5943 .flags2 = FLAG2_HAS_PHY_STATS
5944 | FLAG2_HAS_EEE
5945 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946 .pba = 26,
5947 .max_hw_frame_size = 9022,
5948 .get_variants = e1000_get_variants_ich8lan,
5949 .mac_ops = &ich8_mac_ops,
5950 .phy_ops = &ich8_phy_ops,
5951 .nvm_ops = &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955 .mac = e1000_pch_lpt,
5956 .flags = FLAG_IS_ICH
5957 | FLAG_HAS_WOL
5958 | FLAG_HAS_HW_TIMESTAMP
5959 | FLAG_HAS_CTRLEXT_ON_LOAD
5960 | FLAG_HAS_AMT
5961 | FLAG_HAS_FLASH
5962 | FLAG_HAS_JUMBO_FRAMES
5963 | FLAG_APME_IN_WUC,
5964 .flags2 = FLAG2_HAS_PHY_STATS
5965 | FLAG2_HAS_EEE
5966 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967 .pba = 26,
5968 .max_hw_frame_size = 9022,
5969 .get_variants = e1000_get_variants_ich8lan,
5970 .mac_ops = &ich8_mac_ops,
5971 .phy_ops = &ich8_phy_ops,
5972 .nvm_ops = &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976 .mac = e1000_pch_spt,
5977 .flags = FLAG_IS_ICH
5978 | FLAG_HAS_WOL
5979 | FLAG_HAS_HW_TIMESTAMP
5980 | FLAG_HAS_CTRLEXT_ON_LOAD
5981 | FLAG_HAS_AMT
5982 | FLAG_HAS_FLASH
5983 | FLAG_HAS_JUMBO_FRAMES
5984 | FLAG_APME_IN_WUC,
5985 .flags2 = FLAG2_HAS_PHY_STATS
5986 | FLAG2_HAS_EEE,
5987 .pba = 26,
5988 .max_hw_frame_size = 9022,
5989 .get_variants = e1000_get_variants_ich8lan,
5990 .mac_ops = &ich8_mac_ops,
5991 .phy_ops = &ich8_phy_ops,
5992 .nvm_ops = &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996 .mac = e1000_pch_cnp,
5997 .flags = FLAG_IS_ICH
5998 | FLAG_HAS_WOL
5999 | FLAG_HAS_HW_TIMESTAMP
6000 | FLAG_HAS_CTRLEXT_ON_LOAD
6001 | FLAG_HAS_AMT
6002 | FLAG_HAS_FLASH
6003 | FLAG_HAS_JUMBO_FRAMES
6004 | FLAG_APME_IN_WUC,
6005 .flags2 = FLAG2_HAS_PHY_STATS
6006 | FLAG2_HAS_EEE,
6007 .pba = 26,
6008 .max_hw_frame_size = 9022,
6009 .get_variants = e1000_get_variants_ich8lan,
6010 .mac_ops = &ich8_mac_ops,
6011 .phy_ops = &ich8_phy_ops,
6012 .nvm_ops = &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016 .mac = e1000_pch_tgp,
6017 .flags = FLAG_IS_ICH
6018 | FLAG_HAS_WOL
6019 | FLAG_HAS_HW_TIMESTAMP
6020 | FLAG_HAS_CTRLEXT_ON_LOAD
6021 | FLAG_HAS_AMT
6022 | FLAG_HAS_FLASH
6023 | FLAG_HAS_JUMBO_FRAMES
6024 | FLAG_APME_IN_WUC,
6025 .flags2 = FLAG2_HAS_PHY_STATS
6026 | FLAG2_HAS_EEE,
6027 .pba = 26,
6028 .max_hw_frame_size = 9022,
6029 .get_variants = e1000_get_variants_ich8lan,
6030 .mac_ops = &ich8_mac_ops,
6031 .phy_ops = &ich8_phy_ops,
6032 .nvm_ops = &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036 .mac = e1000_pch_adp,
6037 .flags = FLAG_IS_ICH
6038 | FLAG_HAS_WOL
6039 | FLAG_HAS_HW_TIMESTAMP
6040 | FLAG_HAS_CTRLEXT_ON_LOAD
6041 | FLAG_HAS_AMT
6042 | FLAG_HAS_FLASH
6043 | FLAG_HAS_JUMBO_FRAMES
6044 | FLAG_APME_IN_WUC,
6045 .flags2 = FLAG2_HAS_PHY_STATS
6046 | FLAG2_HAS_EEE,
6047 .pba = 26,
6048 .max_hw_frame_size = 9022,
6049 .get_variants = e1000_get_variants_ich8lan,
6050 .mac_ops = &ich8_mac_ops,
6051 .phy_ops = &ich8_phy_ops,
6052 .nvm_ops = &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056 .mac = e1000_pch_mtp,
6057 .flags = FLAG_IS_ICH
6058 | FLAG_HAS_WOL
6059 | FLAG_HAS_HW_TIMESTAMP
6060 | FLAG_HAS_CTRLEXT_ON_LOAD
6061 | FLAG_HAS_AMT
6062 | FLAG_HAS_FLASH
6063 | FLAG_HAS_JUMBO_FRAMES
6064 | FLAG_APME_IN_WUC,
6065 .flags2 = FLAG2_HAS_PHY_STATS
6066 | FLAG2_HAS_EEE,
6067 .pba = 26,
6068 .max_hw_frame_size = 9022,
6069 .get_variants = e1000_get_variants_ich8lan,
6070 .mac_ops = &ich8_mac_ops,
6071 .phy_ops = &ich8_phy_ops,
6072 .nvm_ops = &spt_nvm_ops,
6073};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143 return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153 writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158 writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg) __er16flash(hw, (reg))
162#define er32flash(reg) __er32flash(hw, (reg))
163#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166/**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238}
239
240/**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279}
280
281/**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 e1000_disable_ulp_lpt_lp(hw, true);
304
305 ret_val = hw->phy.ops.acquire(hw);
306 if (ret_val) {
307 e_dbg("Failed to initialize PHY flow\n");
308 goto out;
309 }
310
311 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
312 * inaccessible and resetting the PHY is not blocked, toggle the
313 * LANPHYPC Value bit to force the interconnect to PCIe mode.
314 */
315 switch (hw->mac.type) {
316 case e1000_pch_lpt:
317 case e1000_pch_spt:
318 case e1000_pch_cnp:
319 if (e1000_phy_is_accessible_pchlan(hw))
320 break;
321
322 /* Before toggling LANPHYPC, see if PHY is accessible by
323 * forcing MAC to SMBus mode first.
324 */
325 mac_reg = er32(CTRL_EXT);
326 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
327 ew32(CTRL_EXT, mac_reg);
328
329 /* Wait 50 milliseconds for MAC to finish any retries
330 * that it might be trying to perform from previous
331 * attempts to acknowledge any phy read requests.
332 */
333 msleep(50);
334
335 /* fall-through */
336 case e1000_pch2lan:
337 if (e1000_phy_is_accessible_pchlan(hw))
338 break;
339
340 /* fall-through */
341 case e1000_pchlan:
342 if ((hw->mac.type == e1000_pchlan) &&
343 (fwsm & E1000_ICH_FWSM_FW_VALID))
344 break;
345
346 if (hw->phy.ops.check_reset_block(hw)) {
347 e_dbg("Required LANPHYPC toggle blocked by ME\n");
348 ret_val = -E1000_ERR_PHY;
349 break;
350 }
351
352 /* Toggle LANPHYPC Value bit */
353 e1000_toggle_lanphypc_pch_lpt(hw);
354 if (hw->mac.type >= e1000_pch_lpt) {
355 if (e1000_phy_is_accessible_pchlan(hw))
356 break;
357
358 /* Toggling LANPHYPC brings the PHY out of SMBus mode
359 * so ensure that the MAC is also out of SMBus mode
360 */
361 mac_reg = er32(CTRL_EXT);
362 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
363 ew32(CTRL_EXT, mac_reg);
364
365 if (e1000_phy_is_accessible_pchlan(hw))
366 break;
367
368 ret_val = -E1000_ERR_PHY;
369 }
370 break;
371 default:
372 break;
373 }
374
375 hw->phy.ops.release(hw);
376 if (!ret_val) {
377
378 /* Check to see if able to reset PHY. Print error if not */
379 if (hw->phy.ops.check_reset_block(hw)) {
380 e_err("Reset blocked by ME\n");
381 goto out;
382 }
383
384 /* Reset the PHY before any access to it. Doing so, ensures
385 * that the PHY is in a known good state before we read/write
386 * PHY registers. The generic reset is sufficient here,
387 * because we haven't determined the PHY type yet.
388 */
389 ret_val = e1000e_phy_hw_reset_generic(hw);
390 if (ret_val)
391 goto out;
392
393 /* On a successful reset, possibly need to wait for the PHY
394 * to quiesce to an accessible state before returning control
395 * to the calling function. If the PHY does not quiesce, then
396 * return E1000E_BLK_PHY_RESET, as this is the condition that
397 * the PHY is in.
398 */
399 ret_val = hw->phy.ops.check_reset_block(hw);
400 if (ret_val)
401 e_err("ME blocked access to PHY after reset\n");
402 }
403
404out:
405 /* Ungate automatic PHY configuration on non-managed 82579 */
406 if ((hw->mac.type == e1000_pch2lan) &&
407 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
408 usleep_range(10000, 11000);
409 e1000_gate_hw_phy_config_ich8lan(hw, false);
410 }
411
412 return ret_val;
413}
414
415/**
416 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
417 * @hw: pointer to the HW structure
418 *
419 * Initialize family-specific PHY parameters and function pointers.
420 **/
421static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
422{
423 struct e1000_phy_info *phy = &hw->phy;
424 s32 ret_val;
425
426 phy->addr = 1;
427 phy->reset_delay_us = 100;
428
429 phy->ops.set_page = e1000_set_page_igp;
430 phy->ops.read_reg = e1000_read_phy_reg_hv;
431 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
432 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
433 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
434 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
435 phy->ops.write_reg = e1000_write_phy_reg_hv;
436 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
437 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
438 phy->ops.power_up = e1000_power_up_phy_copper;
439 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
440 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
441
442 phy->id = e1000_phy_unknown;
443
444 ret_val = e1000_init_phy_workarounds_pchlan(hw);
445 if (ret_val)
446 return ret_val;
447
448 if (phy->id == e1000_phy_unknown)
449 switch (hw->mac.type) {
450 default:
451 ret_val = e1000e_get_phy_id(hw);
452 if (ret_val)
453 return ret_val;
454 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
455 break;
456 /* fall-through */
457 case e1000_pch2lan:
458 case e1000_pch_lpt:
459 case e1000_pch_spt:
460 case e1000_pch_cnp:
461 /* In case the PHY needs to be in mdio slow mode,
462 * set slow mode and try to get the PHY id again.
463 */
464 ret_val = e1000_set_mdio_slow_mode_hv(hw);
465 if (ret_val)
466 return ret_val;
467 ret_val = e1000e_get_phy_id(hw);
468 if (ret_val)
469 return ret_val;
470 break;
471 }
472 phy->type = e1000e_get_phy_type_from_id(phy->id);
473
474 switch (phy->type) {
475 case e1000_phy_82577:
476 case e1000_phy_82579:
477 case e1000_phy_i217:
478 phy->ops.check_polarity = e1000_check_polarity_82577;
479 phy->ops.force_speed_duplex =
480 e1000_phy_force_speed_duplex_82577;
481 phy->ops.get_cable_length = e1000_get_cable_length_82577;
482 phy->ops.get_info = e1000_get_phy_info_82577;
483 phy->ops.commit = e1000e_phy_sw_reset;
484 break;
485 case e1000_phy_82578:
486 phy->ops.check_polarity = e1000_check_polarity_m88;
487 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489 phy->ops.get_info = e1000e_get_phy_info_m88;
490 break;
491 default:
492 ret_val = -E1000_ERR_PHY;
493 break;
494 }
495
496 return ret_val;
497}
498
499/**
500 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501 * @hw: pointer to the HW structure
502 *
503 * Initialize family-specific PHY parameters and function pointers.
504 **/
505static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506{
507 struct e1000_phy_info *phy = &hw->phy;
508 s32 ret_val;
509 u16 i = 0;
510
511 phy->addr = 1;
512 phy->reset_delay_us = 100;
513
514 phy->ops.power_up = e1000_power_up_phy_copper;
515 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516
517 /* We may need to do this twice - once for IGP and if that fails,
518 * we'll set BM func pointers and try again
519 */
520 ret_val = e1000e_determine_phy_address(hw);
521 if (ret_val) {
522 phy->ops.write_reg = e1000e_write_phy_reg_bm;
523 phy->ops.read_reg = e1000e_read_phy_reg_bm;
524 ret_val = e1000e_determine_phy_address(hw);
525 if (ret_val) {
526 e_dbg("Cannot determine PHY addr. Erroring out\n");
527 return ret_val;
528 }
529 }
530
531 phy->id = 0;
532 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533 (i++ < 100)) {
534 usleep_range(1000, 1100);
535 ret_val = e1000e_get_phy_id(hw);
536 if (ret_val)
537 return ret_val;
538 }
539
540 /* Verify phy id */
541 switch (phy->id) {
542 case IGP03E1000_E_PHY_ID:
543 phy->type = e1000_phy_igp_3;
544 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547 phy->ops.get_info = e1000e_get_phy_info_igp;
548 phy->ops.check_polarity = e1000_check_polarity_igp;
549 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550 break;
551 case IFE_E_PHY_ID:
552 case IFE_PLUS_E_PHY_ID:
553 case IFE_C_E_PHY_ID:
554 phy->type = e1000_phy_ife;
555 phy->autoneg_mask = E1000_ALL_NOT_GIG;
556 phy->ops.get_info = e1000_get_phy_info_ife;
557 phy->ops.check_polarity = e1000_check_polarity_ife;
558 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559 break;
560 case BME1000_E_PHY_ID:
561 phy->type = e1000_phy_bm;
562 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 phy->ops.read_reg = e1000e_read_phy_reg_bm;
564 phy->ops.write_reg = e1000e_write_phy_reg_bm;
565 phy->ops.commit = e1000e_phy_sw_reset;
566 phy->ops.get_info = e1000e_get_phy_info_m88;
567 phy->ops.check_polarity = e1000_check_polarity_m88;
568 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569 break;
570 default:
571 return -E1000_ERR_PHY;
572 }
573
574 return 0;
575}
576
577/**
578 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
579 * @hw: pointer to the HW structure
580 *
581 * Initialize family-specific NVM parameters and function
582 * pointers.
583 **/
584static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
585{
586 struct e1000_nvm_info *nvm = &hw->nvm;
587 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
588 u32 gfpreg, sector_base_addr, sector_end_addr;
589 u16 i;
590 u32 nvm_size;
591
592 nvm->type = e1000_nvm_flash_sw;
593
594 if (hw->mac.type >= e1000_pch_spt) {
595 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
596 * STRAP register. This is because in SPT the GbE Flash region
597 * is no longer accessed through the flash registers. Instead,
598 * the mechanism has changed, and the Flash region access
599 * registers are now implemented in GbE memory space.
600 */
601 nvm->flash_base_addr = 0;
602 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
603 * NVM_SIZE_MULTIPLIER;
604 nvm->flash_bank_size = nvm_size / 2;
605 /* Adjust to word count */
606 nvm->flash_bank_size /= sizeof(u16);
607 /* Set the base address for flash register access */
608 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
609 } else {
610 /* Can't read flash registers if register set isn't mapped. */
611 if (!hw->flash_address) {
612 e_dbg("ERROR: Flash registers not mapped\n");
613 return -E1000_ERR_CONFIG;
614 }
615
616 gfpreg = er32flash(ICH_FLASH_GFPREG);
617
618 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
619 * Add 1 to sector_end_addr since this sector is included in
620 * the overall size.
621 */
622 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
623 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
624
625 /* flash_base_addr is byte-aligned */
626 nvm->flash_base_addr = sector_base_addr
627 << FLASH_SECTOR_ADDR_SHIFT;
628
629 /* find total size of the NVM, then cut in half since the total
630 * size represents two separate NVM banks.
631 */
632 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
633 << FLASH_SECTOR_ADDR_SHIFT);
634 nvm->flash_bank_size /= 2;
635 /* Adjust to word count */
636 nvm->flash_bank_size /= sizeof(u16);
637 }
638
639 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
640
641 /* Clear shadow ram */
642 for (i = 0; i < nvm->word_size; i++) {
643 dev_spec->shadow_ram[i].modified = false;
644 dev_spec->shadow_ram[i].value = 0xFFFF;
645 }
646
647 return 0;
648}
649
650/**
651 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
652 * @hw: pointer to the HW structure
653 *
654 * Initialize family-specific MAC parameters and function
655 * pointers.
656 **/
657static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
658{
659 struct e1000_mac_info *mac = &hw->mac;
660
661 /* Set media type function pointer */
662 hw->phy.media_type = e1000_media_type_copper;
663
664 /* Set mta register count */
665 mac->mta_reg_count = 32;
666 /* Set rar entry count */
667 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
668 if (mac->type == e1000_ich8lan)
669 mac->rar_entry_count--;
670 /* FWSM register */
671 mac->has_fwsm = true;
672 /* ARC subsystem not supported */
673 mac->arc_subsystem_valid = false;
674 /* Adaptive IFS supported */
675 mac->adaptive_ifs = true;
676
677 /* LED and other operations */
678 switch (mac->type) {
679 case e1000_ich8lan:
680 case e1000_ich9lan:
681 case e1000_ich10lan:
682 /* check management mode */
683 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
684 /* ID LED init */
685 mac->ops.id_led_init = e1000e_id_led_init_generic;
686 /* blink LED */
687 mac->ops.blink_led = e1000e_blink_led_generic;
688 /* setup LED */
689 mac->ops.setup_led = e1000e_setup_led_generic;
690 /* cleanup LED */
691 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
692 /* turn on/off LED */
693 mac->ops.led_on = e1000_led_on_ich8lan;
694 mac->ops.led_off = e1000_led_off_ich8lan;
695 break;
696 case e1000_pch2lan:
697 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
698 mac->ops.rar_set = e1000_rar_set_pch2lan;
699 /* fall-through */
700 case e1000_pch_lpt:
701 case e1000_pch_spt:
702 case e1000_pch_cnp:
703 case e1000_pchlan:
704 /* check management mode */
705 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
706 /* ID LED init */
707 mac->ops.id_led_init = e1000_id_led_init_pchlan;
708 /* setup LED */
709 mac->ops.setup_led = e1000_setup_led_pchlan;
710 /* cleanup LED */
711 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
712 /* turn on/off LED */
713 mac->ops.led_on = e1000_led_on_pchlan;
714 mac->ops.led_off = e1000_led_off_pchlan;
715 break;
716 default:
717 break;
718 }
719
720 if (mac->type >= e1000_pch_lpt) {
721 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
722 mac->ops.rar_set = e1000_rar_set_pch_lpt;
723 mac->ops.setup_physical_interface =
724 e1000_setup_copper_link_pch_lpt;
725 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
726 }
727
728 /* Enable PCS Lock-loss workaround for ICH8 */
729 if (mac->type == e1000_ich8lan)
730 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
731
732 return 0;
733}
734
735/**
736 * __e1000_access_emi_reg_locked - Read/write EMI register
737 * @hw: pointer to the HW structure
738 * @addr: EMI address to program
739 * @data: pointer to value to read/write from/to the EMI address
740 * @read: boolean flag to indicate read or write
741 *
742 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
743 **/
744static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
745 u16 *data, bool read)
746{
747 s32 ret_val;
748
749 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
750 if (ret_val)
751 return ret_val;
752
753 if (read)
754 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
755 else
756 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
757
758 return ret_val;
759}
760
761/**
762 * e1000_read_emi_reg_locked - Read Extended Management Interface register
763 * @hw: pointer to the HW structure
764 * @addr: EMI address to program
765 * @data: value to be read from the EMI address
766 *
767 * Assumes the SW/FW/HW Semaphore is already acquired.
768 **/
769s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
770{
771 return __e1000_access_emi_reg_locked(hw, addr, data, true);
772}
773
774/**
775 * e1000_write_emi_reg_locked - Write Extended Management Interface register
776 * @hw: pointer to the HW structure
777 * @addr: EMI address to program
778 * @data: value to be written to the EMI address
779 *
780 * Assumes the SW/FW/HW Semaphore is already acquired.
781 **/
782s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
783{
784 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
785}
786
787/**
788 * e1000_set_eee_pchlan - Enable/disable EEE support
789 * @hw: pointer to the HW structure
790 *
791 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
792 * the link and the EEE capabilities of the link partner. The LPI Control
793 * register bits will remain set only if/when link is up.
794 *
795 * EEE LPI must not be asserted earlier than one second after link is up.
796 * On 82579, EEE LPI should not be enabled until such time otherwise there
797 * can be link issues with some switches. Other devices can have EEE LPI
798 * enabled immediately upon link up since they have a timer in hardware which
799 * prevents LPI from being asserted too early.
800 **/
801s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
802{
803 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
804 s32 ret_val;
805 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
806
807 switch (hw->phy.type) {
808 case e1000_phy_82579:
809 lpa = I82579_EEE_LP_ABILITY;
810 pcs_status = I82579_EEE_PCS_STATUS;
811 adv_addr = I82579_EEE_ADVERTISEMENT;
812 break;
813 case e1000_phy_i217:
814 lpa = I217_EEE_LP_ABILITY;
815 pcs_status = I217_EEE_PCS_STATUS;
816 adv_addr = I217_EEE_ADVERTISEMENT;
817 break;
818 default:
819 return 0;
820 }
821
822 ret_val = hw->phy.ops.acquire(hw);
823 if (ret_val)
824 return ret_val;
825
826 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
827 if (ret_val)
828 goto release;
829
830 /* Clear bits that enable EEE in various speeds */
831 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
832
833 /* Enable EEE if not disabled by user */
834 if (!dev_spec->eee_disable) {
835 /* Save off link partner's EEE ability */
836 ret_val = e1000_read_emi_reg_locked(hw, lpa,
837 &dev_spec->eee_lp_ability);
838 if (ret_val)
839 goto release;
840
841 /* Read EEE advertisement */
842 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
843 if (ret_val)
844 goto release;
845
846 /* Enable EEE only for speeds in which the link partner is
847 * EEE capable and for which we advertise EEE.
848 */
849 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
850 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
851
852 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
853 e1e_rphy_locked(hw, MII_LPA, &data);
854 if (data & LPA_100FULL)
855 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
856 else
857 /* EEE is not supported in 100Half, so ignore
858 * partner's EEE in 100 ability if full-duplex
859 * is not advertised.
860 */
861 dev_spec->eee_lp_ability &=
862 ~I82579_EEE_100_SUPPORTED;
863 }
864 }
865
866 if (hw->phy.type == e1000_phy_82579) {
867 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
868 &data);
869 if (ret_val)
870 goto release;
871
872 data &= ~I82579_LPI_100_PLL_SHUT;
873 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
874 data);
875 }
876
877 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
878 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
879 if (ret_val)
880 goto release;
881
882 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
883release:
884 hw->phy.ops.release(hw);
885
886 return ret_val;
887}
888
889/**
890 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
891 * @hw: pointer to the HW structure
892 * @link: link up bool flag
893 *
894 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
895 * preventing further DMA write requests. Workaround the issue by disabling
896 * the de-assertion of the clock request when in 1Gpbs mode.
897 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
898 * speeds in order to avoid Tx hangs.
899 **/
900static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
901{
902 u32 fextnvm6 = er32(FEXTNVM6);
903 u32 status = er32(STATUS);
904 s32 ret_val = 0;
905 u16 reg;
906
907 if (link && (status & E1000_STATUS_SPEED_1000)) {
908 ret_val = hw->phy.ops.acquire(hw);
909 if (ret_val)
910 return ret_val;
911
912 ret_val =
913 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
914 ®);
915 if (ret_val)
916 goto release;
917
918 ret_val =
919 e1000e_write_kmrn_reg_locked(hw,
920 E1000_KMRNCTRLSTA_K1_CONFIG,
921 reg &
922 ~E1000_KMRNCTRLSTA_K1_ENABLE);
923 if (ret_val)
924 goto release;
925
926 usleep_range(10, 20);
927
928 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
929
930 ret_val =
931 e1000e_write_kmrn_reg_locked(hw,
932 E1000_KMRNCTRLSTA_K1_CONFIG,
933 reg);
934release:
935 hw->phy.ops.release(hw);
936 } else {
937 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
938 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
939
940 if ((hw->phy.revision > 5) || !link ||
941 ((status & E1000_STATUS_SPEED_100) &&
942 (status & E1000_STATUS_FD)))
943 goto update_fextnvm6;
944
945 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
946 if (ret_val)
947 return ret_val;
948
949 /* Clear link status transmit timeout */
950 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
951
952 if (status & E1000_STATUS_SPEED_100) {
953 /* Set inband Tx timeout to 5x10us for 100Half */
954 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
955
956 /* Do not extend the K1 entry latency for 100Half */
957 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
958 } else {
959 /* Set inband Tx timeout to 50x10us for 10Full/Half */
960 reg |= 50 <<
961 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
962
963 /* Extend the K1 entry latency for 10 Mbps */
964 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
965 }
966
967 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
968 if (ret_val)
969 return ret_val;
970
971update_fextnvm6:
972 ew32(FEXTNVM6, fextnvm6);
973 }
974
975 return ret_val;
976}
977
978/**
979 * e1000_platform_pm_pch_lpt - Set platform power management values
980 * @hw: pointer to the HW structure
981 * @link: bool indicating link status
982 *
983 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
984 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
985 * when link is up (which must not exceed the maximum latency supported
986 * by the platform), otherwise specify there is no LTR requirement.
987 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
988 * latencies in the LTR Extended Capability Structure in the PCIe Extended
989 * Capability register set, on this device LTR is set by writing the
990 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
991 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
992 * message to the PMC.
993 **/
994static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
995{
996 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
997 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
998 u16 lat_enc = 0; /* latency encoded */
999
1000 if (link) {
1001 u16 speed, duplex, scale = 0;
1002 u16 max_snoop, max_nosnoop;
1003 u16 max_ltr_enc; /* max LTR latency encoded */
1004 u64 value;
1005 u32 rxa;
1006
1007 if (!hw->adapter->max_frame_size) {
1008 e_dbg("max_frame_size not set.\n");
1009 return -E1000_ERR_CONFIG;
1010 }
1011
1012 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013 if (!speed) {
1014 e_dbg("Speed not set.\n");
1015 return -E1000_ERR_CONFIG;
1016 }
1017
1018 /* Rx Packet Buffer Allocation size (KB) */
1019 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020
1021 /* Determine the maximum latency tolerated by the device.
1022 *
1023 * Per the PCIe spec, the tolerated latencies are encoded as
1024 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1027 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028 */
1029 rxa *= 512;
1030 value = (rxa > hw->adapter->max_frame_size) ?
1031 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032 0;
1033
1034 while (value > PCI_LTR_VALUE_MASK) {
1035 scale++;
1036 value = DIV_ROUND_UP(value, BIT(5));
1037 }
1038 if (scale > E1000_LTRV_SCALE_MAX) {
1039 e_dbg("Invalid LTR latency scale %d\n", scale);
1040 return -E1000_ERR_CONFIG;
1041 }
1042 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043
1044 /* Determine the maximum latency tolerated by the platform */
1045 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046 &max_snoop);
1047 pci_read_config_word(hw->adapter->pdev,
1048 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050
1051 if (lat_enc > max_ltr_enc)
1052 lat_enc = max_ltr_enc;
1053 }
1054
1055 /* Set Snoop and No-Snoop latencies the same */
1056 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057 ew32(LTRV, reg);
1058
1059 return 0;
1060}
1061
1062/**
1063 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064 * @hw: pointer to the HW structure
1065 * @to_sx: boolean indicating a system power state transition to Sx
1066 *
1067 * When link is down, configure ULP mode to significantly reduce the power
1068 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1069 * ME firmware to start the ULP configuration. If not on an ME enabled
1070 * system, configure the ULP mode by software.
1071 */
1072s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073{
1074 u32 mac_reg;
1075 s32 ret_val = 0;
1076 u16 phy_reg;
1077 u16 oem_reg = 0;
1078
1079 if ((hw->mac.type < e1000_pch_lpt) ||
1080 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085 return 0;
1086
1087 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088 /* Request ME configure ULP mode in the PHY */
1089 mac_reg = er32(H2ME);
1090 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091 ew32(H2ME, mac_reg);
1092
1093 goto out;
1094 }
1095
1096 if (!to_sx) {
1097 int i = 0;
1098
1099 /* Poll up to 5 seconds for Cable Disconnected indication */
1100 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101 /* Bail if link is re-acquired */
1102 if (er32(STATUS) & E1000_STATUS_LU)
1103 return -E1000_ERR_PHY;
1104
1105 if (i++ == 100)
1106 break;
1107
1108 msleep(50);
1109 }
1110 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111 (er32(FEXT) &
1112 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113 }
1114
1115 ret_val = hw->phy.ops.acquire(hw);
1116 if (ret_val)
1117 goto out;
1118
1119 /* Force SMBus mode in PHY */
1120 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121 if (ret_val)
1122 goto release;
1123 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126 /* Force SMBus mode in MAC */
1127 mac_reg = er32(CTRL_EXT);
1128 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129 ew32(CTRL_EXT, mac_reg);
1130
1131 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1132 * LPLU and disable Gig speed when entering ULP
1133 */
1134 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136 &oem_reg);
1137 if (ret_val)
1138 goto release;
1139
1140 phy_reg = oem_reg;
1141 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142
1143 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144 phy_reg);
1145
1146 if (ret_val)
1147 goto release;
1148 }
1149
1150 /* Set Inband ULP Exit, Reset to SMBus mode and
1151 * Disable SMBus Release on PERST# in PHY
1152 */
1153 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154 if (ret_val)
1155 goto release;
1156 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158 if (to_sx) {
1159 if (er32(WUFC) & E1000_WUFC_LNKC)
1160 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161 else
1162 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163
1164 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166 } else {
1167 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170 }
1171 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172
1173 /* Set Disable SMBus Release on PERST# in MAC */
1174 mac_reg = er32(FEXTNVM7);
1175 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176 ew32(FEXTNVM7, mac_reg);
1177
1178 /* Commit ULP changes in PHY by starting auto ULP configuration */
1179 phy_reg |= I218_ULP_CONFIG1_START;
1180 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181
1182 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185 oem_reg);
1186 if (ret_val)
1187 goto release;
1188 }
1189
1190release:
1191 hw->phy.ops.release(hw);
1192out:
1193 if (ret_val)
1194 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195 else
1196 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197
1198 return ret_val;
1199}
1200
1201/**
1202 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203 * @hw: pointer to the HW structure
1204 * @force: boolean indicating whether or not to force disabling ULP
1205 *
1206 * Un-configure ULP mode when link is up, the system is transitioned from
1207 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1208 * system, poll for an indication from ME that ULP has been un-configured.
1209 * If not on an ME enabled system, un-configure the ULP mode by software.
1210 *
1211 * During nominal operation, this function is called when link is acquired
1212 * to disable ULP mode (force=false); otherwise, for example when unloading
1213 * the driver or during Sx->S0 transitions, this is called with force=true
1214 * to forcibly disable ULP.
1215 */
1216static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217{
1218 s32 ret_val = 0;
1219 u32 mac_reg;
1220 u16 phy_reg;
1221 int i = 0;
1222
1223 if ((hw->mac.type < e1000_pch_lpt) ||
1224 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229 return 0;
1230
1231 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1232 if (force) {
1233 /* Request ME un-configure ULP mode in the PHY */
1234 mac_reg = er32(H2ME);
1235 mac_reg &= ~E1000_H2ME_ULP;
1236 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237 ew32(H2ME, mac_reg);
1238 }
1239
1240 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1241 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242 if (i++ == 30) {
1243 ret_val = -E1000_ERR_PHY;
1244 goto out;
1245 }
1246
1247 usleep_range(10000, 11000);
1248 }
1249 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1250
1251 if (force) {
1252 mac_reg = er32(H2ME);
1253 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254 ew32(H2ME, mac_reg);
1255 } else {
1256 /* Clear H2ME.ULP after ME ULP configuration */
1257 mac_reg = er32(H2ME);
1258 mac_reg &= ~E1000_H2ME_ULP;
1259 ew32(H2ME, mac_reg);
1260 }
1261
1262 goto out;
1263 }
1264
1265 ret_val = hw->phy.ops.acquire(hw);
1266 if (ret_val)
1267 goto out;
1268
1269 if (force)
1270 /* Toggle LANPHYPC Value bit */
1271 e1000_toggle_lanphypc_pch_lpt(hw);
1272
1273 /* Unforce SMBus mode in PHY */
1274 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275 if (ret_val) {
1276 /* The MAC might be in PCIe mode, so temporarily force to
1277 * SMBus mode in order to access the PHY.
1278 */
1279 mac_reg = er32(CTRL_EXT);
1280 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281 ew32(CTRL_EXT, mac_reg);
1282
1283 msleep(50);
1284
1285 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286 &phy_reg);
1287 if (ret_val)
1288 goto release;
1289 }
1290 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292
1293 /* Unforce SMBus mode in MAC */
1294 mac_reg = er32(CTRL_EXT);
1295 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296 ew32(CTRL_EXT, mac_reg);
1297
1298 /* When ULP mode was previously entered, K1 was disabled by the
1299 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1300 */
1301 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302 if (ret_val)
1303 goto release;
1304 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306
1307 /* Clear ULP enabled configuration */
1308 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309 if (ret_val)
1310 goto release;
1311 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312 I218_ULP_CONFIG1_STICKY_ULP |
1313 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314 I218_ULP_CONFIG1_WOL_HOST |
1315 I218_ULP_CONFIG1_INBAND_EXIT |
1316 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321 /* Commit ULP changes by starting auto ULP configuration */
1322 phy_reg |= I218_ULP_CONFIG1_START;
1323 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324
1325 /* Clear Disable SMBus Release on PERST# in MAC */
1326 mac_reg = er32(FEXTNVM7);
1327 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328 ew32(FEXTNVM7, mac_reg);
1329
1330release:
1331 hw->phy.ops.release(hw);
1332 if (force) {
1333 e1000_phy_hw_reset(hw);
1334 msleep(50);
1335 }
1336out:
1337 if (ret_val)
1338 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339 else
1340 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341
1342 return ret_val;
1343}
1344
1345/**
1346 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347 * @hw: pointer to the HW structure
1348 *
1349 * Checks to see of the link status of the hardware has changed. If a
1350 * change in link status has been detected, then we read the PHY registers
1351 * to get the current speed/duplex if link exists.
1352 **/
1353static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354{
1355 struct e1000_mac_info *mac = &hw->mac;
1356 s32 ret_val, tipg_reg = 0;
1357 u16 emi_addr, emi_val = 0;
1358 bool link;
1359 u16 phy_reg;
1360
1361 /* We only want to go out to the PHY registers to see if Auto-Neg
1362 * has completed and/or if our link status has changed. The
1363 * get_link_status flag is set upon receiving a Link Status
1364 * Change or Rx Sequence Error interrupt.
1365 */
1366 if (!mac->get_link_status)
1367 return 0;
1368 mac->get_link_status = false;
1369
1370 /* First we want to see if the MII Status Register reports
1371 * link. If so, then we want to get the current speed/duplex
1372 * of the PHY.
1373 */
1374 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375 if (ret_val)
1376 goto out;
1377
1378 if (hw->mac.type == e1000_pchlan) {
1379 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380 if (ret_val)
1381 goto out;
1382 }
1383
1384 /* When connected at 10Mbps half-duplex, some parts are excessively
1385 * aggressive resulting in many collisions. To avoid this, increase
1386 * the IPG and reduce Rx latency in the PHY.
1387 */
1388 if ((hw->mac.type >= e1000_pch2lan) && link) {
1389 u16 speed, duplex;
1390
1391 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392 tipg_reg = er32(TIPG);
1393 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394
1395 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396 tipg_reg |= 0xFF;
1397 /* Reduce Rx latency in analog PHY */
1398 emi_val = 0;
1399 } else if (hw->mac.type >= e1000_pch_spt &&
1400 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401 tipg_reg |= 0xC;
1402 emi_val = 1;
1403 } else {
1404
1405 /* Roll back the default values */
1406 tipg_reg |= 0x08;
1407 emi_val = 1;
1408 }
1409
1410 ew32(TIPG, tipg_reg);
1411
1412 ret_val = hw->phy.ops.acquire(hw);
1413 if (ret_val)
1414 goto out;
1415
1416 if (hw->mac.type == e1000_pch2lan)
1417 emi_addr = I82579_RX_CONFIG;
1418 else
1419 emi_addr = I217_RX_CONFIG;
1420 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421
1422 if (hw->mac.type >= e1000_pch_lpt) {
1423 u16 phy_reg;
1424
1425 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427 if (speed == SPEED_100 || speed == SPEED_10)
1428 phy_reg |= 0x3E8;
1429 else
1430 phy_reg |= 0xFA;
1431 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432
1433 if (speed == SPEED_1000) {
1434 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1435 &phy_reg);
1436
1437 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1438
1439 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1440 phy_reg);
1441 }
1442 }
1443 hw->phy.ops.release(hw);
1444
1445 if (ret_val)
1446 goto out;
1447
1448 if (hw->mac.type >= e1000_pch_spt) {
1449 u16 data;
1450 u16 ptr_gap;
1451
1452 if (speed == SPEED_1000) {
1453 ret_val = hw->phy.ops.acquire(hw);
1454 if (ret_val)
1455 goto out;
1456
1457 ret_val = e1e_rphy_locked(hw,
1458 PHY_REG(776, 20),
1459 &data);
1460 if (ret_val) {
1461 hw->phy.ops.release(hw);
1462 goto out;
1463 }
1464
1465 ptr_gap = (data & (0x3FF << 2)) >> 2;
1466 if (ptr_gap < 0x18) {
1467 data &= ~(0x3FF << 2);
1468 data |= (0x18 << 2);
1469 ret_val =
1470 e1e_wphy_locked(hw,
1471 PHY_REG(776, 20),
1472 data);
1473 }
1474 hw->phy.ops.release(hw);
1475 if (ret_val)
1476 goto out;
1477 } else {
1478 ret_val = hw->phy.ops.acquire(hw);
1479 if (ret_val)
1480 goto out;
1481
1482 ret_val = e1e_wphy_locked(hw,
1483 PHY_REG(776, 20),
1484 0xC023);
1485 hw->phy.ops.release(hw);
1486 if (ret_val)
1487 goto out;
1488
1489 }
1490 }
1491 }
1492
1493 /* I217 Packet Loss issue:
1494 * ensure that FEXTNVM4 Beacon Duration is set correctly
1495 * on power up.
1496 * Set the Beacon Duration for I217 to 8 usec
1497 */
1498 if (hw->mac.type >= e1000_pch_lpt) {
1499 u32 mac_reg;
1500
1501 mac_reg = er32(FEXTNVM4);
1502 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1503 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1504 ew32(FEXTNVM4, mac_reg);
1505 }
1506
1507 /* Work-around I218 hang issue */
1508 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1509 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1510 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1511 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1512 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1513 if (ret_val)
1514 goto out;
1515 }
1516 if (hw->mac.type >= e1000_pch_lpt) {
1517 /* Set platform power management values for
1518 * Latency Tolerance Reporting (LTR)
1519 */
1520 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1521 if (ret_val)
1522 goto out;
1523 }
1524
1525 /* Clear link partner's EEE ability */
1526 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1527
1528 if (hw->mac.type >= e1000_pch_lpt) {
1529 u32 fextnvm6 = er32(FEXTNVM6);
1530
1531 if (hw->mac.type == e1000_pch_spt) {
1532 /* FEXTNVM6 K1-off workaround - for SPT only */
1533 u32 pcieanacfg = er32(PCIEANACFG);
1534
1535 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1536 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1537 else
1538 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1539 }
1540
1541 ew32(FEXTNVM6, fextnvm6);
1542 }
1543
1544 if (!link)
1545 goto out;
1546
1547 switch (hw->mac.type) {
1548 case e1000_pch2lan:
1549 ret_val = e1000_k1_workaround_lv(hw);
1550 if (ret_val)
1551 return ret_val;
1552 /* fall-thru */
1553 case e1000_pchlan:
1554 if (hw->phy.type == e1000_phy_82578) {
1555 ret_val = e1000_link_stall_workaround_hv(hw);
1556 if (ret_val)
1557 return ret_val;
1558 }
1559
1560 /* Workaround for PCHx parts in half-duplex:
1561 * Set the number of preambles removed from the packet
1562 * when it is passed from the PHY to the MAC to prevent
1563 * the MAC from misinterpreting the packet type.
1564 */
1565 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1566 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1567
1568 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1569 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1570
1571 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1572 break;
1573 default:
1574 break;
1575 }
1576
1577 /* Check if there was DownShift, must be checked
1578 * immediately after link-up
1579 */
1580 e1000e_check_downshift(hw);
1581
1582 /* Enable/Disable EEE after link up */
1583 if (hw->phy.type > e1000_phy_82579) {
1584 ret_val = e1000_set_eee_pchlan(hw);
1585 if (ret_val)
1586 return ret_val;
1587 }
1588
1589 /* If we are forcing speed/duplex, then we simply return since
1590 * we have already determined whether we have link or not.
1591 */
1592 if (!mac->autoneg)
1593 return -E1000_ERR_CONFIG;
1594
1595 /* Auto-Neg is enabled. Auto Speed Detection takes care
1596 * of MAC speed/duplex configuration. So we only need to
1597 * configure Collision Distance in the MAC.
1598 */
1599 mac->ops.config_collision_dist(hw);
1600
1601 /* Configure Flow Control now that Auto-Neg has completed.
1602 * First, we need to restore the desired flow control
1603 * settings because we may have had to re-autoneg with a
1604 * different link partner.
1605 */
1606 ret_val = e1000e_config_fc_after_link_up(hw);
1607 if (ret_val)
1608 e_dbg("Error configuring flow control\n");
1609
1610 return ret_val;
1611
1612out:
1613 mac->get_link_status = true;
1614 return ret_val;
1615}
1616
1617static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1618{
1619 struct e1000_hw *hw = &adapter->hw;
1620 s32 rc;
1621
1622 rc = e1000_init_mac_params_ich8lan(hw);
1623 if (rc)
1624 return rc;
1625
1626 rc = e1000_init_nvm_params_ich8lan(hw);
1627 if (rc)
1628 return rc;
1629
1630 switch (hw->mac.type) {
1631 case e1000_ich8lan:
1632 case e1000_ich9lan:
1633 case e1000_ich10lan:
1634 rc = e1000_init_phy_params_ich8lan(hw);
1635 break;
1636 case e1000_pchlan:
1637 case e1000_pch2lan:
1638 case e1000_pch_lpt:
1639 case e1000_pch_spt:
1640 case e1000_pch_cnp:
1641 rc = e1000_init_phy_params_pchlan(hw);
1642 break;
1643 default:
1644 break;
1645 }
1646 if (rc)
1647 return rc;
1648
1649 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1650 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1651 */
1652 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1653 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1654 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1655 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1656 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1657
1658 hw->mac.ops.blink_led = NULL;
1659 }
1660
1661 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1662 (adapter->hw.phy.type != e1000_phy_ife))
1663 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1664
1665 /* Enable workaround for 82579 w/ ME enabled */
1666 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1667 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1668 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1669
1670 return 0;
1671}
1672
1673static DEFINE_MUTEX(nvm_mutex);
1674
1675/**
1676 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1677 * @hw: pointer to the HW structure
1678 *
1679 * Acquires the mutex for performing NVM operations.
1680 **/
1681static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1682{
1683 mutex_lock(&nvm_mutex);
1684
1685 return 0;
1686}
1687
1688/**
1689 * e1000_release_nvm_ich8lan - Release NVM mutex
1690 * @hw: pointer to the HW structure
1691 *
1692 * Releases the mutex used while performing NVM operations.
1693 **/
1694static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1695{
1696 mutex_unlock(&nvm_mutex);
1697}
1698
1699/**
1700 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1701 * @hw: pointer to the HW structure
1702 *
1703 * Acquires the software control flag for performing PHY and select
1704 * MAC CSR accesses.
1705 **/
1706static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1707{
1708 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1709 s32 ret_val = 0;
1710
1711 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1712 &hw->adapter->state)) {
1713 e_dbg("contention for Phy access\n");
1714 return -E1000_ERR_PHY;
1715 }
1716
1717 while (timeout) {
1718 extcnf_ctrl = er32(EXTCNF_CTRL);
1719 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1720 break;
1721
1722 mdelay(1);
1723 timeout--;
1724 }
1725
1726 if (!timeout) {
1727 e_dbg("SW has already locked the resource.\n");
1728 ret_val = -E1000_ERR_CONFIG;
1729 goto out;
1730 }
1731
1732 timeout = SW_FLAG_TIMEOUT;
1733
1734 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1735 ew32(EXTCNF_CTRL, extcnf_ctrl);
1736
1737 while (timeout) {
1738 extcnf_ctrl = er32(EXTCNF_CTRL);
1739 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1740 break;
1741
1742 mdelay(1);
1743 timeout--;
1744 }
1745
1746 if (!timeout) {
1747 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1748 er32(FWSM), extcnf_ctrl);
1749 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1750 ew32(EXTCNF_CTRL, extcnf_ctrl);
1751 ret_val = -E1000_ERR_CONFIG;
1752 goto out;
1753 }
1754
1755out:
1756 if (ret_val)
1757 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1758
1759 return ret_val;
1760}
1761
1762/**
1763 * e1000_release_swflag_ich8lan - Release software control flag
1764 * @hw: pointer to the HW structure
1765 *
1766 * Releases the software control flag for performing PHY and select
1767 * MAC CSR accesses.
1768 **/
1769static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771 u32 extcnf_ctrl;
1772
1773 extcnf_ctrl = er32(EXTCNF_CTRL);
1774
1775 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1776 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777 ew32(EXTCNF_CTRL, extcnf_ctrl);
1778 } else {
1779 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1780 }
1781
1782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783}
1784
1785/**
1786 * e1000_check_mng_mode_ich8lan - Checks management mode
1787 * @hw: pointer to the HW structure
1788 *
1789 * This checks if the adapter has any manageability enabled.
1790 * This is a function pointer entry point only called by read/write
1791 * routines for the PHY and NVM parts.
1792 **/
1793static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1794{
1795 u32 fwsm;
1796
1797 fwsm = er32(FWSM);
1798 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1799 ((fwsm & E1000_FWSM_MODE_MASK) ==
1800 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1801}
1802
1803/**
1804 * e1000_check_mng_mode_pchlan - Checks management mode
1805 * @hw: pointer to the HW structure
1806 *
1807 * This checks if the adapter has iAMT enabled.
1808 * This is a function pointer entry point only called by read/write
1809 * routines for the PHY and NVM parts.
1810 **/
1811static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1812{
1813 u32 fwsm;
1814
1815 fwsm = er32(FWSM);
1816 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1817 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1818}
1819
1820/**
1821 * e1000_rar_set_pch2lan - Set receive address register
1822 * @hw: pointer to the HW structure
1823 * @addr: pointer to the receive address
1824 * @index: receive address array register
1825 *
1826 * Sets the receive address array register at index to the address passed
1827 * in by addr. For 82579, RAR[0] is the base address register that is to
1828 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1829 * Use SHRA[0-3] in place of those reserved for ME.
1830 **/
1831static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1832{
1833 u32 rar_low, rar_high;
1834
1835 /* HW expects these in little endian so we reverse the byte order
1836 * from network order (big endian) to little endian
1837 */
1838 rar_low = ((u32)addr[0] |
1839 ((u32)addr[1] << 8) |
1840 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1841
1842 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1843
1844 /* If MAC address zero, no need to set the AV bit */
1845 if (rar_low || rar_high)
1846 rar_high |= E1000_RAH_AV;
1847
1848 if (index == 0) {
1849 ew32(RAL(index), rar_low);
1850 e1e_flush();
1851 ew32(RAH(index), rar_high);
1852 e1e_flush();
1853 return 0;
1854 }
1855
1856 /* RAR[1-6] are owned by manageability. Skip those and program the
1857 * next address into the SHRA register array.
1858 */
1859 if (index < (u32)(hw->mac.rar_entry_count)) {
1860 s32 ret_val;
1861
1862 ret_val = e1000_acquire_swflag_ich8lan(hw);
1863 if (ret_val)
1864 goto out;
1865
1866 ew32(SHRAL(index - 1), rar_low);
1867 e1e_flush();
1868 ew32(SHRAH(index - 1), rar_high);
1869 e1e_flush();
1870
1871 e1000_release_swflag_ich8lan(hw);
1872
1873 /* verify the register updates */
1874 if ((er32(SHRAL(index - 1)) == rar_low) &&
1875 (er32(SHRAH(index - 1)) == rar_high))
1876 return 0;
1877
1878 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1879 (index - 1), er32(FWSM));
1880 }
1881
1882out:
1883 e_dbg("Failed to write receive address at index %d\n", index);
1884 return -E1000_ERR_CONFIG;
1885}
1886
1887/**
1888 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1889 * @hw: pointer to the HW structure
1890 *
1891 * Get the number of available receive registers that the Host can
1892 * program. SHRA[0-10] are the shared receive address registers
1893 * that are shared between the Host and manageability engine (ME).
1894 * ME can reserve any number of addresses and the host needs to be
1895 * able to tell how many available registers it has access to.
1896 **/
1897static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1898{
1899 u32 wlock_mac;
1900 u32 num_entries;
1901
1902 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1903 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1904
1905 switch (wlock_mac) {
1906 case 0:
1907 /* All SHRA[0..10] and RAR[0] available */
1908 num_entries = hw->mac.rar_entry_count;
1909 break;
1910 case 1:
1911 /* Only RAR[0] available */
1912 num_entries = 1;
1913 break;
1914 default:
1915 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1916 num_entries = wlock_mac + 1;
1917 break;
1918 }
1919
1920 return num_entries;
1921}
1922
1923/**
1924 * e1000_rar_set_pch_lpt - Set receive address registers
1925 * @hw: pointer to the HW structure
1926 * @addr: pointer to the receive address
1927 * @index: receive address array register
1928 *
1929 * Sets the receive address register array at index to the address passed
1930 * in by addr. For LPT, RAR[0] is the base address register that is to
1931 * contain the MAC address. SHRA[0-10] are the shared receive address
1932 * registers that are shared between the Host and manageability engine (ME).
1933 **/
1934static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1935{
1936 u32 rar_low, rar_high;
1937 u32 wlock_mac;
1938
1939 /* HW expects these in little endian so we reverse the byte order
1940 * from network order (big endian) to little endian
1941 */
1942 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1943 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1944
1945 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1946
1947 /* If MAC address zero, no need to set the AV bit */
1948 if (rar_low || rar_high)
1949 rar_high |= E1000_RAH_AV;
1950
1951 if (index == 0) {
1952 ew32(RAL(index), rar_low);
1953 e1e_flush();
1954 ew32(RAH(index), rar_high);
1955 e1e_flush();
1956 return 0;
1957 }
1958
1959 /* The manageability engine (ME) can lock certain SHRAR registers that
1960 * it is using - those registers are unavailable for use.
1961 */
1962 if (index < hw->mac.rar_entry_count) {
1963 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1964 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1965
1966 /* Check if all SHRAR registers are locked */
1967 if (wlock_mac == 1)
1968 goto out;
1969
1970 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1971 s32 ret_val;
1972
1973 ret_val = e1000_acquire_swflag_ich8lan(hw);
1974
1975 if (ret_val)
1976 goto out;
1977
1978 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1979 e1e_flush();
1980 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1981 e1e_flush();
1982
1983 e1000_release_swflag_ich8lan(hw);
1984
1985 /* verify the register updates */
1986 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1987 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1988 return 0;
1989 }
1990 }
1991
1992out:
1993 e_dbg("Failed to write receive address at index %d\n", index);
1994 return -E1000_ERR_CONFIG;
1995}
1996
1997/**
1998 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999 * @hw: pointer to the HW structure
2000 *
2001 * Checks if firmware is blocking the reset of the PHY.
2002 * This is a function pointer entry point only called by
2003 * reset routines.
2004 **/
2005static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006{
2007 bool blocked = false;
2008 int i = 0;
2009
2010 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2011 (i++ < 30))
2012 usleep_range(10000, 11000);
2013 return blocked ? E1000_BLK_PHY_RESET : 0;
2014}
2015
2016/**
2017 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2018 * @hw: pointer to the HW structure
2019 *
2020 * Assumes semaphore already acquired.
2021 *
2022 **/
2023static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2024{
2025 u16 phy_data;
2026 u32 strap = er32(STRAP);
2027 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2028 E1000_STRAP_SMT_FREQ_SHIFT;
2029 s32 ret_val;
2030
2031 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2032
2033 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2034 if (ret_val)
2035 return ret_val;
2036
2037 phy_data &= ~HV_SMB_ADDR_MASK;
2038 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2039 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2040
2041 if (hw->phy.type == e1000_phy_i217) {
2042 /* Restore SMBus frequency */
2043 if (freq--) {
2044 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2045 phy_data |= (freq & BIT(0)) <<
2046 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2047 phy_data |= (freq & BIT(1)) <<
2048 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2049 } else {
2050 e_dbg("Unsupported SMB frequency in PHY\n");
2051 }
2052 }
2053
2054 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2055}
2056
2057/**
2058 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2059 * @hw: pointer to the HW structure
2060 *
2061 * SW should configure the LCD from the NVM extended configuration region
2062 * as a workaround for certain parts.
2063 **/
2064static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2065{
2066 struct e1000_phy_info *phy = &hw->phy;
2067 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2068 s32 ret_val = 0;
2069 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2070
2071 /* Initialize the PHY from the NVM on ICH platforms. This
2072 * is needed due to an issue where the NVM configuration is
2073 * not properly autoloaded after power transitions.
2074 * Therefore, after each PHY reset, we will load the
2075 * configuration data out of the NVM manually.
2076 */
2077 switch (hw->mac.type) {
2078 case e1000_ich8lan:
2079 if (phy->type != e1000_phy_igp_3)
2080 return ret_val;
2081
2082 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2083 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2084 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2085 break;
2086 }
2087 /* Fall-thru */
2088 case e1000_pchlan:
2089 case e1000_pch2lan:
2090 case e1000_pch_lpt:
2091 case e1000_pch_spt:
2092 case e1000_pch_cnp:
2093 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2094 break;
2095 default:
2096 return ret_val;
2097 }
2098
2099 ret_val = hw->phy.ops.acquire(hw);
2100 if (ret_val)
2101 return ret_val;
2102
2103 data = er32(FEXTNVM);
2104 if (!(data & sw_cfg_mask))
2105 goto release;
2106
2107 /* Make sure HW does not configure LCD from PHY
2108 * extended configuration before SW configuration
2109 */
2110 data = er32(EXTCNF_CTRL);
2111 if ((hw->mac.type < e1000_pch2lan) &&
2112 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2113 goto release;
2114
2115 cnf_size = er32(EXTCNF_SIZE);
2116 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2117 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2118 if (!cnf_size)
2119 goto release;
2120
2121 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2122 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2123
2124 if (((hw->mac.type == e1000_pchlan) &&
2125 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2126 (hw->mac.type > e1000_pchlan)) {
2127 /* HW configures the SMBus address and LEDs when the
2128 * OEM and LCD Write Enable bits are set in the NVM.
2129 * When both NVM bits are cleared, SW will configure
2130 * them instead.
2131 */
2132 ret_val = e1000_write_smbus_addr(hw);
2133 if (ret_val)
2134 goto release;
2135
2136 data = er32(LEDCTL);
2137 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2138 (u16)data);
2139 if (ret_val)
2140 goto release;
2141 }
2142
2143 /* Configure LCD from extended configuration region. */
2144
2145 /* cnf_base_addr is in DWORD */
2146 word_addr = (u16)(cnf_base_addr << 1);
2147
2148 for (i = 0; i < cnf_size; i++) {
2149 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2150 if (ret_val)
2151 goto release;
2152
2153 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2154 1, ®_addr);
2155 if (ret_val)
2156 goto release;
2157
2158 /* Save off the PHY page for future writes. */
2159 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2160 phy_page = reg_data;
2161 continue;
2162 }
2163
2164 reg_addr &= PHY_REG_MASK;
2165 reg_addr |= phy_page;
2166
2167 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2168 if (ret_val)
2169 goto release;
2170 }
2171
2172release:
2173 hw->phy.ops.release(hw);
2174 return ret_val;
2175}
2176
2177/**
2178 * e1000_k1_gig_workaround_hv - K1 Si workaround
2179 * @hw: pointer to the HW structure
2180 * @link: link up bool flag
2181 *
2182 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2183 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2184 * If link is down, the function will restore the default K1 setting located
2185 * in the NVM.
2186 **/
2187static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2188{
2189 s32 ret_val = 0;
2190 u16 status_reg = 0;
2191 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2192
2193 if (hw->mac.type != e1000_pchlan)
2194 return 0;
2195
2196 /* Wrap the whole flow with the sw flag */
2197 ret_val = hw->phy.ops.acquire(hw);
2198 if (ret_val)
2199 return ret_val;
2200
2201 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202 if (link) {
2203 if (hw->phy.type == e1000_phy_82578) {
2204 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2205 &status_reg);
2206 if (ret_val)
2207 goto release;
2208
2209 status_reg &= (BM_CS_STATUS_LINK_UP |
2210 BM_CS_STATUS_RESOLVED |
2211 BM_CS_STATUS_SPEED_MASK);
2212
2213 if (status_reg == (BM_CS_STATUS_LINK_UP |
2214 BM_CS_STATUS_RESOLVED |
2215 BM_CS_STATUS_SPEED_1000))
2216 k1_enable = false;
2217 }
2218
2219 if (hw->phy.type == e1000_phy_82577) {
2220 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2221 if (ret_val)
2222 goto release;
2223
2224 status_reg &= (HV_M_STATUS_LINK_UP |
2225 HV_M_STATUS_AUTONEG_COMPLETE |
2226 HV_M_STATUS_SPEED_MASK);
2227
2228 if (status_reg == (HV_M_STATUS_LINK_UP |
2229 HV_M_STATUS_AUTONEG_COMPLETE |
2230 HV_M_STATUS_SPEED_1000))
2231 k1_enable = false;
2232 }
2233
2234 /* Link stall fix for link up */
2235 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2236 if (ret_val)
2237 goto release;
2238
2239 } else {
2240 /* Link stall fix for link down */
2241 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2242 if (ret_val)
2243 goto release;
2244 }
2245
2246 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2247
2248release:
2249 hw->phy.ops.release(hw);
2250
2251 return ret_val;
2252}
2253
2254/**
2255 * e1000_configure_k1_ich8lan - Configure K1 power state
2256 * @hw: pointer to the HW structure
2257 * @enable: K1 state to configure
2258 *
2259 * Configure the K1 power state based on the provided parameter.
2260 * Assumes semaphore already acquired.
2261 *
2262 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2263 **/
2264s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2265{
2266 s32 ret_val;
2267 u32 ctrl_reg = 0;
2268 u32 ctrl_ext = 0;
2269 u32 reg = 0;
2270 u16 kmrn_reg = 0;
2271
2272 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273 &kmrn_reg);
2274 if (ret_val)
2275 return ret_val;
2276
2277 if (k1_enable)
2278 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279 else
2280 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281
2282 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283 kmrn_reg);
2284 if (ret_val)
2285 return ret_val;
2286
2287 usleep_range(20, 40);
2288 ctrl_ext = er32(CTRL_EXT);
2289 ctrl_reg = er32(CTRL);
2290
2291 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292 reg |= E1000_CTRL_FRCSPD;
2293 ew32(CTRL, reg);
2294
2295 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296 e1e_flush();
2297 usleep_range(20, 40);
2298 ew32(CTRL, ctrl_reg);
2299 ew32(CTRL_EXT, ctrl_ext);
2300 e1e_flush();
2301 usleep_range(20, 40);
2302
2303 return 0;
2304}
2305
2306/**
2307 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308 * @hw: pointer to the HW structure
2309 * @d0_state: boolean if entering d0 or d3 device state
2310 *
2311 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2313 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2314 **/
2315static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316{
2317 s32 ret_val = 0;
2318 u32 mac_reg;
2319 u16 oem_reg;
2320
2321 if (hw->mac.type < e1000_pchlan)
2322 return ret_val;
2323
2324 ret_val = hw->phy.ops.acquire(hw);
2325 if (ret_val)
2326 return ret_val;
2327
2328 if (hw->mac.type == e1000_pchlan) {
2329 mac_reg = er32(EXTCNF_CTRL);
2330 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2331 goto release;
2332 }
2333
2334 mac_reg = er32(FEXTNVM);
2335 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2336 goto release;
2337
2338 mac_reg = er32(PHY_CTRL);
2339
2340 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2341 if (ret_val)
2342 goto release;
2343
2344 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2345
2346 if (d0_state) {
2347 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2348 oem_reg |= HV_OEM_BITS_GBE_DIS;
2349
2350 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2351 oem_reg |= HV_OEM_BITS_LPLU;
2352 } else {
2353 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2354 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2355 oem_reg |= HV_OEM_BITS_GBE_DIS;
2356
2357 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2358 E1000_PHY_CTRL_NOND0A_LPLU))
2359 oem_reg |= HV_OEM_BITS_LPLU;
2360 }
2361
2362 /* Set Restart auto-neg to activate the bits */
2363 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2364 !hw->phy.ops.check_reset_block(hw))
2365 oem_reg |= HV_OEM_BITS_RESTART_AN;
2366
2367 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2368
2369release:
2370 hw->phy.ops.release(hw);
2371
2372 return ret_val;
2373}
2374
2375/**
2376 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2377 * @hw: pointer to the HW structure
2378 **/
2379static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2380{
2381 s32 ret_val;
2382 u16 data;
2383
2384 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2385 if (ret_val)
2386 return ret_val;
2387
2388 data |= HV_KMRN_MDIO_SLOW;
2389
2390 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2391
2392 return ret_val;
2393}
2394
2395/**
2396 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2397 * done after every PHY reset.
2398 **/
2399static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2400{
2401 s32 ret_val = 0;
2402 u16 phy_data;
2403
2404 if (hw->mac.type != e1000_pchlan)
2405 return 0;
2406
2407 /* Set MDIO slow mode before any other MDIO access */
2408 if (hw->phy.type == e1000_phy_82577) {
2409 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2410 if (ret_val)
2411 return ret_val;
2412 }
2413
2414 if (((hw->phy.type == e1000_phy_82577) &&
2415 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2416 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2417 /* Disable generation of early preamble */
2418 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2419 if (ret_val)
2420 return ret_val;
2421
2422 /* Preamble tuning for SSC */
2423 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2424 if (ret_val)
2425 return ret_val;
2426 }
2427
2428 if (hw->phy.type == e1000_phy_82578) {
2429 /* Return registers to default by doing a soft reset then
2430 * writing 0x3140 to the control register.
2431 */
2432 if (hw->phy.revision < 2) {
2433 e1000e_phy_sw_reset(hw);
2434 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2435 if (ret_val)
2436 return ret_val;
2437 }
2438 }
2439
2440 /* Select page 0 */
2441 ret_val = hw->phy.ops.acquire(hw);
2442 if (ret_val)
2443 return ret_val;
2444
2445 hw->phy.addr = 1;
2446 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2447 hw->phy.ops.release(hw);
2448 if (ret_val)
2449 return ret_val;
2450
2451 /* Configure the K1 Si workaround during phy reset assuming there is
2452 * link so that it disables K1 if link is in 1Gbps.
2453 */
2454 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2455 if (ret_val)
2456 return ret_val;
2457
2458 /* Workaround for link disconnects on a busy hub in half duplex */
2459 ret_val = hw->phy.ops.acquire(hw);
2460 if (ret_val)
2461 return ret_val;
2462 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2463 if (ret_val)
2464 goto release;
2465 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2466 if (ret_val)
2467 goto release;
2468
2469 /* set MSE higher to enable link to stay up when noise is high */
2470 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2471release:
2472 hw->phy.ops.release(hw);
2473
2474 return ret_val;
2475}
2476
2477/**
2478 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2479 * @hw: pointer to the HW structure
2480 **/
2481void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482{
2483 u32 mac_reg;
2484 u16 i, phy_reg = 0;
2485 s32 ret_val;
2486
2487 ret_val = hw->phy.ops.acquire(hw);
2488 if (ret_val)
2489 return;
2490 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2491 if (ret_val)
2492 goto release;
2493
2494 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2495 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2496 mac_reg = er32(RAL(i));
2497 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2498 (u16)(mac_reg & 0xFFFF));
2499 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2500 (u16)((mac_reg >> 16) & 0xFFFF));
2501
2502 mac_reg = er32(RAH(i));
2503 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2504 (u16)(mac_reg & 0xFFFF));
2505 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2506 (u16)((mac_reg & E1000_RAH_AV)
2507 >> 16));
2508 }
2509
2510 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511
2512release:
2513 hw->phy.ops.release(hw);
2514}
2515
2516/**
2517 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518 * with 82579 PHY
2519 * @hw: pointer to the HW structure
2520 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 **/
2522s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523{
2524 s32 ret_val = 0;
2525 u16 phy_reg, data;
2526 u32 mac_reg;
2527 u16 i;
2528
2529 if (hw->mac.type < e1000_pch2lan)
2530 return 0;
2531
2532 /* disable Rx path while enabling/disabling workaround */
2533 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2534 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2535 if (ret_val)
2536 return ret_val;
2537
2538 if (enable) {
2539 /* Write Rx addresses (rar_entry_count for RAL/H, and
2540 * SHRAL/H) and initial CRC values to the MAC
2541 */
2542 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2543 u8 mac_addr[ETH_ALEN] = { 0 };
2544 u32 addr_high, addr_low;
2545
2546 addr_high = er32(RAH(i));
2547 if (!(addr_high & E1000_RAH_AV))
2548 continue;
2549 addr_low = er32(RAL(i));
2550 mac_addr[0] = (addr_low & 0xFF);
2551 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2552 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2553 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2554 mac_addr[4] = (addr_high & 0xFF);
2555 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556
2557 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2558 }
2559
2560 /* Write Rx addresses to the PHY */
2561 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562
2563 /* Enable jumbo frame workaround in the MAC */
2564 mac_reg = er32(FFLT_DBG);
2565 mac_reg &= ~BIT(14);
2566 mac_reg |= (7 << 15);
2567 ew32(FFLT_DBG, mac_reg);
2568
2569 mac_reg = er32(RCTL);
2570 mac_reg |= E1000_RCTL_SECRC;
2571 ew32(RCTL, mac_reg);
2572
2573 ret_val = e1000e_read_kmrn_reg(hw,
2574 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2575 &data);
2576 if (ret_val)
2577 return ret_val;
2578 ret_val = e1000e_write_kmrn_reg(hw,
2579 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580 data | BIT(0));
2581 if (ret_val)
2582 return ret_val;
2583 ret_val = e1000e_read_kmrn_reg(hw,
2584 E1000_KMRNCTRLSTA_HD_CTRL,
2585 &data);
2586 if (ret_val)
2587 return ret_val;
2588 data &= ~(0xF << 8);
2589 data |= (0xB << 8);
2590 ret_val = e1000e_write_kmrn_reg(hw,
2591 E1000_KMRNCTRLSTA_HD_CTRL,
2592 data);
2593 if (ret_val)
2594 return ret_val;
2595
2596 /* Enable jumbo frame workaround in the PHY */
2597 e1e_rphy(hw, PHY_REG(769, 23), &data);
2598 data &= ~(0x7F << 5);
2599 data |= (0x37 << 5);
2600 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2601 if (ret_val)
2602 return ret_val;
2603 e1e_rphy(hw, PHY_REG(769, 16), &data);
2604 data &= ~BIT(13);
2605 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2606 if (ret_val)
2607 return ret_val;
2608 e1e_rphy(hw, PHY_REG(776, 20), &data);
2609 data &= ~(0x3FF << 2);
2610 data |= (E1000_TX_PTR_GAP << 2);
2611 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2612 if (ret_val)
2613 return ret_val;
2614 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2615 if (ret_val)
2616 return ret_val;
2617 e1e_rphy(hw, HV_PM_CTRL, &data);
2618 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2619 if (ret_val)
2620 return ret_val;
2621 } else {
2622 /* Write MAC register values back to h/w defaults */
2623 mac_reg = er32(FFLT_DBG);
2624 mac_reg &= ~(0xF << 14);
2625 ew32(FFLT_DBG, mac_reg);
2626
2627 mac_reg = er32(RCTL);
2628 mac_reg &= ~E1000_RCTL_SECRC;
2629 ew32(RCTL, mac_reg);
2630
2631 ret_val = e1000e_read_kmrn_reg(hw,
2632 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 &data);
2634 if (ret_val)
2635 return ret_val;
2636 ret_val = e1000e_write_kmrn_reg(hw,
2637 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 data & ~BIT(0));
2639 if (ret_val)
2640 return ret_val;
2641 ret_val = e1000e_read_kmrn_reg(hw,
2642 E1000_KMRNCTRLSTA_HD_CTRL,
2643 &data);
2644 if (ret_val)
2645 return ret_val;
2646 data &= ~(0xF << 8);
2647 data |= (0xB << 8);
2648 ret_val = e1000e_write_kmrn_reg(hw,
2649 E1000_KMRNCTRLSTA_HD_CTRL,
2650 data);
2651 if (ret_val)
2652 return ret_val;
2653
2654 /* Write PHY register values back to h/w defaults */
2655 e1e_rphy(hw, PHY_REG(769, 23), &data);
2656 data &= ~(0x7F << 5);
2657 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2658 if (ret_val)
2659 return ret_val;
2660 e1e_rphy(hw, PHY_REG(769, 16), &data);
2661 data |= BIT(13);
2662 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2663 if (ret_val)
2664 return ret_val;
2665 e1e_rphy(hw, PHY_REG(776, 20), &data);
2666 data &= ~(0x3FF << 2);
2667 data |= (0x8 << 2);
2668 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2669 if (ret_val)
2670 return ret_val;
2671 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2672 if (ret_val)
2673 return ret_val;
2674 e1e_rphy(hw, HV_PM_CTRL, &data);
2675 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2676 if (ret_val)
2677 return ret_val;
2678 }
2679
2680 /* re-enable Rx path after enabling/disabling workaround */
2681 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2682}
2683
2684/**
2685 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2686 * done after every PHY reset.
2687 **/
2688static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689{
2690 s32 ret_val = 0;
2691
2692 if (hw->mac.type != e1000_pch2lan)
2693 return 0;
2694
2695 /* Set MDIO slow mode before any other MDIO access */
2696 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2697 if (ret_val)
2698 return ret_val;
2699
2700 ret_val = hw->phy.ops.acquire(hw);
2701 if (ret_val)
2702 return ret_val;
2703 /* set MSE higher to enable link to stay up when noise is high */
2704 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2705 if (ret_val)
2706 goto release;
2707 /* drop link after 5 times MSE threshold was reached */
2708 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2709release:
2710 hw->phy.ops.release(hw);
2711
2712 return ret_val;
2713}
2714
2715/**
2716 * e1000_k1_gig_workaround_lv - K1 Si workaround
2717 * @hw: pointer to the HW structure
2718 *
2719 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2720 * Disable K1 in 1000Mbps and 100Mbps
2721 **/
2722static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723{
2724 s32 ret_val = 0;
2725 u16 status_reg = 0;
2726
2727 if (hw->mac.type != e1000_pch2lan)
2728 return 0;
2729
2730 /* Set K1 beacon duration based on 10Mbs speed */
2731 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2732 if (ret_val)
2733 return ret_val;
2734
2735 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2736 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2737 if (status_reg &
2738 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2739 u16 pm_phy_reg;
2740
2741 /* LV 1G/100 Packet drop issue wa */
2742 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2743 if (ret_val)
2744 return ret_val;
2745 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2746 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2747 if (ret_val)
2748 return ret_val;
2749 } else {
2750 u32 mac_reg;
2751
2752 mac_reg = er32(FEXTNVM4);
2753 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2754 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2755 ew32(FEXTNVM4, mac_reg);
2756 }
2757 }
2758
2759 return ret_val;
2760}
2761
2762/**
2763 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2764 * @hw: pointer to the HW structure
2765 * @gate: boolean set to true to gate, false to ungate
2766 *
2767 * Gate/ungate the automatic PHY configuration via hardware; perform
2768 * the configuration via software instead.
2769 **/
2770static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771{
2772 u32 extcnf_ctrl;
2773
2774 if (hw->mac.type < e1000_pch2lan)
2775 return;
2776
2777 extcnf_ctrl = er32(EXTCNF_CTRL);
2778
2779 if (gate)
2780 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2781 else
2782 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783
2784 ew32(EXTCNF_CTRL, extcnf_ctrl);
2785}
2786
2787/**
2788 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2789 * @hw: pointer to the HW structure
2790 *
2791 * Check the appropriate indication the MAC has finished configuring the
2792 * PHY after a software reset.
2793 **/
2794static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795{
2796 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797
2798 /* Wait for basic configuration completes before proceeding */
2799 do {
2800 data = er32(STATUS);
2801 data &= E1000_STATUS_LAN_INIT_DONE;
2802 usleep_range(100, 200);
2803 } while ((!data) && --loop);
2804
2805 /* If basic configuration is incomplete before the above loop
2806 * count reaches 0, loading the configuration from NVM will
2807 * leave the PHY in a bad state possibly resulting in no link.
2808 */
2809 if (loop == 0)
2810 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811
2812 /* Clear the Init Done bit for the next init event */
2813 data = er32(STATUS);
2814 data &= ~E1000_STATUS_LAN_INIT_DONE;
2815 ew32(STATUS, data);
2816}
2817
2818/**
2819 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2820 * @hw: pointer to the HW structure
2821 **/
2822static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823{
2824 s32 ret_val = 0;
2825 u16 reg;
2826
2827 if (hw->phy.ops.check_reset_block(hw))
2828 return 0;
2829
2830 /* Allow time for h/w to get to quiescent state after reset */
2831 usleep_range(10000, 11000);
2832
2833 /* Perform any necessary post-reset workarounds */
2834 switch (hw->mac.type) {
2835 case e1000_pchlan:
2836 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2837 if (ret_val)
2838 return ret_val;
2839 break;
2840 case e1000_pch2lan:
2841 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2842 if (ret_val)
2843 return ret_val;
2844 break;
2845 default:
2846 break;
2847 }
2848
2849 /* Clear the host wakeup bit after lcd reset */
2850 if (hw->mac.type >= e1000_pchlan) {
2851 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2852 reg &= ~BM_WUC_HOST_WU_BIT;
2853 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2854 }
2855
2856 /* Configure the LCD with the extended configuration region in NVM */
2857 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2858 if (ret_val)
2859 return ret_val;
2860
2861 /* Configure the LCD with the OEM bits in NVM */
2862 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863
2864 if (hw->mac.type == e1000_pch2lan) {
2865 /* Ungate automatic PHY configuration on non-managed 82579 */
2866 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2867 usleep_range(10000, 11000);
2868 e1000_gate_hw_phy_config_ich8lan(hw, false);
2869 }
2870
2871 /* Set EEE LPI Update Timer to 200usec */
2872 ret_val = hw->phy.ops.acquire(hw);
2873 if (ret_val)
2874 return ret_val;
2875 ret_val = e1000_write_emi_reg_locked(hw,
2876 I82579_LPI_UPDATE_TIMER,
2877 0x1387);
2878 hw->phy.ops.release(hw);
2879 }
2880
2881 return ret_val;
2882}
2883
2884/**
2885 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2886 * @hw: pointer to the HW structure
2887 *
2888 * Resets the PHY
2889 * This is a function pointer entry point called by drivers
2890 * or other shared routines.
2891 **/
2892static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893{
2894 s32 ret_val = 0;
2895
2896 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2897 if ((hw->mac.type == e1000_pch2lan) &&
2898 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2899 e1000_gate_hw_phy_config_ich8lan(hw, true);
2900
2901 ret_val = e1000e_phy_hw_reset_generic(hw);
2902 if (ret_val)
2903 return ret_val;
2904
2905 return e1000_post_phy_reset_ich8lan(hw);
2906}
2907
2908/**
2909 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2910 * @hw: pointer to the HW structure
2911 * @active: true to enable LPLU, false to disable
2912 *
2913 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2914 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2915 * the phy speed. This function will manually set the LPLU bit and restart
2916 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2917 * since it configures the same bit.
2918 **/
2919static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920{
2921 s32 ret_val;
2922 u16 oem_reg;
2923
2924 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2925 if (ret_val)
2926 return ret_val;
2927
2928 if (active)
2929 oem_reg |= HV_OEM_BITS_LPLU;
2930 else
2931 oem_reg &= ~HV_OEM_BITS_LPLU;
2932
2933 if (!hw->phy.ops.check_reset_block(hw))
2934 oem_reg |= HV_OEM_BITS_RESTART_AN;
2935
2936 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2937}
2938
2939/**
2940 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2941 * @hw: pointer to the HW structure
2942 * @active: true to enable LPLU, false to disable
2943 *
2944 * Sets the LPLU D0 state according to the active flag. When
2945 * activating LPLU this function also disables smart speed
2946 * and vice versa. LPLU will not be activated unless the
2947 * device autonegotiation advertisement meets standards of
2948 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2949 * This is a function pointer entry point only called by
2950 * PHY setup routines.
2951 **/
2952static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953{
2954 struct e1000_phy_info *phy = &hw->phy;
2955 u32 phy_ctrl;
2956 s32 ret_val = 0;
2957 u16 data;
2958
2959 if (phy->type == e1000_phy_ife)
2960 return 0;
2961
2962 phy_ctrl = er32(PHY_CTRL);
2963
2964 if (active) {
2965 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2966 ew32(PHY_CTRL, phy_ctrl);
2967
2968 if (phy->type != e1000_phy_igp_3)
2969 return 0;
2970
2971 /* Call gig speed drop workaround on LPLU before accessing
2972 * any PHY registers
2973 */
2974 if (hw->mac.type == e1000_ich8lan)
2975 e1000e_gig_downshift_workaround_ich8lan(hw);
2976
2977 /* When LPLU is enabled, we should disable SmartSpeed */
2978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2979 if (ret_val)
2980 return ret_val;
2981 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2982 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2983 if (ret_val)
2984 return ret_val;
2985 } else {
2986 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2987 ew32(PHY_CTRL, phy_ctrl);
2988
2989 if (phy->type != e1000_phy_igp_3)
2990 return 0;
2991
2992 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2993 * during Dx states where the power conservation is most
2994 * important. During driver activity we should enable
2995 * SmartSpeed, so performance is maintained.
2996 */
2997 if (phy->smart_speed == e1000_smart_speed_on) {
2998 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2999 &data);
3000 if (ret_val)
3001 return ret_val;
3002
3003 data |= IGP01E1000_PSCFR_SMART_SPEED;
3004 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3005 data);
3006 if (ret_val)
3007 return ret_val;
3008 } else if (phy->smart_speed == e1000_smart_speed_off) {
3009 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010 &data);
3011 if (ret_val)
3012 return ret_val;
3013
3014 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3015 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3016 data);
3017 if (ret_val)
3018 return ret_val;
3019 }
3020 }
3021
3022 return 0;
3023}
3024
3025/**
3026 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3027 * @hw: pointer to the HW structure
3028 * @active: true to enable LPLU, false to disable
3029 *
3030 * Sets the LPLU D3 state according to the active flag. When
3031 * activating LPLU this function also disables smart speed
3032 * and vice versa. LPLU will not be activated unless the
3033 * device autonegotiation advertisement meets standards of
3034 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3035 * This is a function pointer entry point only called by
3036 * PHY setup routines.
3037 **/
3038static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039{
3040 struct e1000_phy_info *phy = &hw->phy;
3041 u32 phy_ctrl;
3042 s32 ret_val = 0;
3043 u16 data;
3044
3045 phy_ctrl = er32(PHY_CTRL);
3046
3047 if (!active) {
3048 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3049 ew32(PHY_CTRL, phy_ctrl);
3050
3051 if (phy->type != e1000_phy_igp_3)
3052 return 0;
3053
3054 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3055 * during Dx states where the power conservation is most
3056 * important. During driver activity we should enable
3057 * SmartSpeed, so performance is maintained.
3058 */
3059 if (phy->smart_speed == e1000_smart_speed_on) {
3060 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061 &data);
3062 if (ret_val)
3063 return ret_val;
3064
3065 data |= IGP01E1000_PSCFR_SMART_SPEED;
3066 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067 data);
3068 if (ret_val)
3069 return ret_val;
3070 } else if (phy->smart_speed == e1000_smart_speed_off) {
3071 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 &data);
3073 if (ret_val)
3074 return ret_val;
3075
3076 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3077 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3078 data);
3079 if (ret_val)
3080 return ret_val;
3081 }
3082 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3083 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3084 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3085 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3086 ew32(PHY_CTRL, phy_ctrl);
3087
3088 if (phy->type != e1000_phy_igp_3)
3089 return 0;
3090
3091 /* Call gig speed drop workaround on LPLU before accessing
3092 * any PHY registers
3093 */
3094 if (hw->mac.type == e1000_ich8lan)
3095 e1000e_gig_downshift_workaround_ich8lan(hw);
3096
3097 /* When LPLU is enabled, we should disable SmartSpeed */
3098 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3099 if (ret_val)
3100 return ret_val;
3101
3102 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3103 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3104 }
3105
3106 return ret_val;
3107}
3108
3109/**
3110 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3111 * @hw: pointer to the HW structure
3112 * @bank: pointer to the variable that returns the active bank
3113 *
3114 * Reads signature byte from the NVM using the flash access registers.
3115 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 **/
3117static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118{
3119 u32 eecd;
3120 struct e1000_nvm_info *nvm = &hw->nvm;
3121 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3122 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3123 u32 nvm_dword = 0;
3124 u8 sig_byte = 0;
3125 s32 ret_val;
3126
3127 switch (hw->mac.type) {
3128 case e1000_pch_spt:
3129 case e1000_pch_cnp:
3130 bank1_offset = nvm->flash_bank_size;
3131 act_offset = E1000_ICH_NVM_SIG_WORD;
3132
3133 /* set bank to 0 in case flash read fails */
3134 *bank = 0;
3135
3136 /* Check bank 0 */
3137 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3138 &nvm_dword);
3139 if (ret_val)
3140 return ret_val;
3141 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3142 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3143 E1000_ICH_NVM_SIG_VALUE) {
3144 *bank = 0;
3145 return 0;
3146 }
3147
3148 /* Check bank 1 */
3149 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3150 bank1_offset,
3151 &nvm_dword);
3152 if (ret_val)
3153 return ret_val;
3154 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3155 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3156 E1000_ICH_NVM_SIG_VALUE) {
3157 *bank = 1;
3158 return 0;
3159 }
3160
3161 e_dbg("ERROR: No valid NVM bank present\n");
3162 return -E1000_ERR_NVM;
3163 case e1000_ich8lan:
3164 case e1000_ich9lan:
3165 eecd = er32(EECD);
3166 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3167 E1000_EECD_SEC1VAL_VALID_MASK) {
3168 if (eecd & E1000_EECD_SEC1VAL)
3169 *bank = 1;
3170 else
3171 *bank = 0;
3172
3173 return 0;
3174 }
3175 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176 /* fall-thru */
3177 default:
3178 /* set bank to 0 in case flash read fails */
3179 *bank = 0;
3180
3181 /* Check bank 0 */
3182 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3183 &sig_byte);
3184 if (ret_val)
3185 return ret_val;
3186 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3187 E1000_ICH_NVM_SIG_VALUE) {
3188 *bank = 0;
3189 return 0;
3190 }
3191
3192 /* Check bank 1 */
3193 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3194 bank1_offset,
3195 &sig_byte);
3196 if (ret_val)
3197 return ret_val;
3198 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3199 E1000_ICH_NVM_SIG_VALUE) {
3200 *bank = 1;
3201 return 0;
3202 }
3203
3204 e_dbg("ERROR: No valid NVM bank present\n");
3205 return -E1000_ERR_NVM;
3206 }
3207}
3208
3209/**
3210 * e1000_read_nvm_spt - NVM access for SPT
3211 * @hw: pointer to the HW structure
3212 * @offset: The offset (in bytes) of the word(s) to read.
3213 * @words: Size of data to read in words.
3214 * @data: pointer to the word(s) to read at offset.
3215 *
3216 * Reads a word(s) from the NVM
3217 **/
3218static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3219 u16 *data)
3220{
3221 struct e1000_nvm_info *nvm = &hw->nvm;
3222 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223 u32 act_offset;
3224 s32 ret_val = 0;
3225 u32 bank = 0;
3226 u32 dword = 0;
3227 u16 offset_to_read;
3228 u16 i;
3229
3230 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3231 (words == 0)) {
3232 e_dbg("nvm parameter(s) out of bounds\n");
3233 ret_val = -E1000_ERR_NVM;
3234 goto out;
3235 }
3236
3237 nvm->ops.acquire(hw);
3238
3239 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3240 if (ret_val) {
3241 e_dbg("Could not detect valid bank, assuming bank 0\n");
3242 bank = 0;
3243 }
3244
3245 act_offset = (bank) ? nvm->flash_bank_size : 0;
3246 act_offset += offset;
3247
3248 ret_val = 0;
3249
3250 for (i = 0; i < words; i += 2) {
3251 if (words - i == 1) {
3252 if (dev_spec->shadow_ram[offset + i].modified) {
3253 data[i] =
3254 dev_spec->shadow_ram[offset + i].value;
3255 } else {
3256 offset_to_read = act_offset + i -
3257 ((act_offset + i) % 2);
3258 ret_val =
3259 e1000_read_flash_dword_ich8lan(hw,
3260 offset_to_read,
3261 &dword);
3262 if (ret_val)
3263 break;
3264 if ((act_offset + i) % 2 == 0)
3265 data[i] = (u16)(dword & 0xFFFF);
3266 else
3267 data[i] = (u16)((dword >> 16) & 0xFFFF);
3268 }
3269 } else {
3270 offset_to_read = act_offset + i;
3271 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3272 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3273 ret_val =
3274 e1000_read_flash_dword_ich8lan(hw,
3275 offset_to_read,
3276 &dword);
3277 if (ret_val)
3278 break;
3279 }
3280 if (dev_spec->shadow_ram[offset + i].modified)
3281 data[i] =
3282 dev_spec->shadow_ram[offset + i].value;
3283 else
3284 data[i] = (u16)(dword & 0xFFFF);
3285 if (dev_spec->shadow_ram[offset + i].modified)
3286 data[i + 1] =
3287 dev_spec->shadow_ram[offset + i + 1].value;
3288 else
3289 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3290 }
3291 }
3292
3293 nvm->ops.release(hw);
3294
3295out:
3296 if (ret_val)
3297 e_dbg("NVM read error: %d\n", ret_val);
3298
3299 return ret_val;
3300}
3301
3302/**
3303 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3304 * @hw: pointer to the HW structure
3305 * @offset: The offset (in bytes) of the word(s) to read.
3306 * @words: Size of data to read in words
3307 * @data: Pointer to the word(s) to read at offset.
3308 *
3309 * Reads a word(s) from the NVM using the flash access registers.
3310 **/
3311static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3312 u16 *data)
3313{
3314 struct e1000_nvm_info *nvm = &hw->nvm;
3315 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3316 u32 act_offset;
3317 s32 ret_val = 0;
3318 u32 bank = 0;
3319 u16 i, word;
3320
3321 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3322 (words == 0)) {
3323 e_dbg("nvm parameter(s) out of bounds\n");
3324 ret_val = -E1000_ERR_NVM;
3325 goto out;
3326 }
3327
3328 nvm->ops.acquire(hw);
3329
3330 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3331 if (ret_val) {
3332 e_dbg("Could not detect valid bank, assuming bank 0\n");
3333 bank = 0;
3334 }
3335
3336 act_offset = (bank) ? nvm->flash_bank_size : 0;
3337 act_offset += offset;
3338
3339 ret_val = 0;
3340 for (i = 0; i < words; i++) {
3341 if (dev_spec->shadow_ram[offset + i].modified) {
3342 data[i] = dev_spec->shadow_ram[offset + i].value;
3343 } else {
3344 ret_val = e1000_read_flash_word_ich8lan(hw,
3345 act_offset + i,
3346 &word);
3347 if (ret_val)
3348 break;
3349 data[i] = word;
3350 }
3351 }
3352
3353 nvm->ops.release(hw);
3354
3355out:
3356 if (ret_val)
3357 e_dbg("NVM read error: %d\n", ret_val);
3358
3359 return ret_val;
3360}
3361
3362/**
3363 * e1000_flash_cycle_init_ich8lan - Initialize flash
3364 * @hw: pointer to the HW structure
3365 *
3366 * This function does initial flash setup so that a new read/write/erase cycle
3367 * can be started.
3368 **/
3369static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3370{
3371 union ich8_hws_flash_status hsfsts;
3372 s32 ret_val = -E1000_ERR_NVM;
3373
3374 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3375
3376 /* Check if the flash descriptor is valid */
3377 if (!hsfsts.hsf_status.fldesvalid) {
3378 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3379 return -E1000_ERR_NVM;
3380 }
3381
3382 /* Clear FCERR and DAEL in hw status by writing 1 */
3383 hsfsts.hsf_status.flcerr = 1;
3384 hsfsts.hsf_status.dael = 1;
3385 if (hw->mac.type >= e1000_pch_spt)
3386 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3387 else
3388 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3389
3390 /* Either we should have a hardware SPI cycle in progress
3391 * bit to check against, in order to start a new cycle or
3392 * FDONE bit should be changed in the hardware so that it
3393 * is 1 after hardware reset, which can then be used as an
3394 * indication whether a cycle is in progress or has been
3395 * completed.
3396 */
3397
3398 if (!hsfsts.hsf_status.flcinprog) {
3399 /* There is no cycle running at present,
3400 * so we can start a cycle.
3401 * Begin by setting Flash Cycle Done.
3402 */
3403 hsfsts.hsf_status.flcdone = 1;
3404 if (hw->mac.type >= e1000_pch_spt)
3405 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3406 else
3407 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3408 ret_val = 0;
3409 } else {
3410 s32 i;
3411
3412 /* Otherwise poll for sometime so the current
3413 * cycle has a chance to end before giving up.
3414 */
3415 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3416 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3417 if (!hsfsts.hsf_status.flcinprog) {
3418 ret_val = 0;
3419 break;
3420 }
3421 udelay(1);
3422 }
3423 if (!ret_val) {
3424 /* Successful in waiting for previous cycle to timeout,
3425 * now set the Flash Cycle Done.
3426 */
3427 hsfsts.hsf_status.flcdone = 1;
3428 if (hw->mac.type >= e1000_pch_spt)
3429 ew32flash(ICH_FLASH_HSFSTS,
3430 hsfsts.regval & 0xFFFF);
3431 else
3432 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3433 } else {
3434 e_dbg("Flash controller busy, cannot get access\n");
3435 }
3436 }
3437
3438 return ret_val;
3439}
3440
3441/**
3442 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3443 * @hw: pointer to the HW structure
3444 * @timeout: maximum time to wait for completion
3445 *
3446 * This function starts a flash cycle and waits for its completion.
3447 **/
3448static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3449{
3450 union ich8_hws_flash_ctrl hsflctl;
3451 union ich8_hws_flash_status hsfsts;
3452 u32 i = 0;
3453
3454 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3455 if (hw->mac.type >= e1000_pch_spt)
3456 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3457 else
3458 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459 hsflctl.hsf_ctrl.flcgo = 1;
3460
3461 if (hw->mac.type >= e1000_pch_spt)
3462 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3463 else
3464 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3465
3466 /* wait till FDONE bit is set to 1 */
3467 do {
3468 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3469 if (hsfsts.hsf_status.flcdone)
3470 break;
3471 udelay(1);
3472 } while (i++ < timeout);
3473
3474 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3475 return 0;
3476
3477 return -E1000_ERR_NVM;
3478}
3479
3480/**
3481 * e1000_read_flash_dword_ich8lan - Read dword from flash
3482 * @hw: pointer to the HW structure
3483 * @offset: offset to data location
3484 * @data: pointer to the location for storing the data
3485 *
3486 * Reads the flash dword at offset into data. Offset is converted
3487 * to bytes before read.
3488 **/
3489static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3490 u32 *data)
3491{
3492 /* Must convert word offset into bytes. */
3493 offset <<= 1;
3494 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3495}
3496
3497/**
3498 * e1000_read_flash_word_ich8lan - Read word from flash
3499 * @hw: pointer to the HW structure
3500 * @offset: offset to data location
3501 * @data: pointer to the location for storing the data
3502 *
3503 * Reads the flash word at offset into data. Offset is converted
3504 * to bytes before read.
3505 **/
3506static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3507 u16 *data)
3508{
3509 /* Must convert offset into bytes. */
3510 offset <<= 1;
3511
3512 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3513}
3514
3515/**
3516 * e1000_read_flash_byte_ich8lan - Read byte from flash
3517 * @hw: pointer to the HW structure
3518 * @offset: The offset of the byte to read.
3519 * @data: Pointer to a byte to store the value read.
3520 *
3521 * Reads a single byte from the NVM using the flash access registers.
3522 **/
3523static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3524 u8 *data)
3525{
3526 s32 ret_val;
3527 u16 word = 0;
3528
3529 /* In SPT, only 32 bits access is supported,
3530 * so this function should not be called.
3531 */
3532 if (hw->mac.type >= e1000_pch_spt)
3533 return -E1000_ERR_NVM;
3534 else
3535 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3536
3537 if (ret_val)
3538 return ret_val;
3539
3540 *data = (u8)word;
3541
3542 return 0;
3543}
3544
3545/**
3546 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3547 * @hw: pointer to the HW structure
3548 * @offset: The offset (in bytes) of the byte or word to read.
3549 * @size: Size of data to read, 1=byte 2=word
3550 * @data: Pointer to the word to store the value read.
3551 *
3552 * Reads a byte or word from the NVM using the flash access registers.
3553 **/
3554static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3555 u8 size, u16 *data)
3556{
3557 union ich8_hws_flash_status hsfsts;
3558 union ich8_hws_flash_ctrl hsflctl;
3559 u32 flash_linear_addr;
3560 u32 flash_data = 0;
3561 s32 ret_val = -E1000_ERR_NVM;
3562 u8 count = 0;
3563
3564 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3565 return -E1000_ERR_NVM;
3566
3567 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3568 hw->nvm.flash_base_addr);
3569
3570 do {
3571 udelay(1);
3572 /* Steps */
3573 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3574 if (ret_val)
3575 break;
3576
3577 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3578 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3579 hsflctl.hsf_ctrl.fldbcount = size - 1;
3580 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3581 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3582
3583 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3584
3585 ret_val =
3586 e1000_flash_cycle_ich8lan(hw,
3587 ICH_FLASH_READ_COMMAND_TIMEOUT);
3588
3589 /* Check if FCERR is set to 1, if set to 1, clear it
3590 * and try the whole sequence a few more times, else
3591 * read in (shift in) the Flash Data0, the order is
3592 * least significant byte first msb to lsb
3593 */
3594 if (!ret_val) {
3595 flash_data = er32flash(ICH_FLASH_FDATA0);
3596 if (size == 1)
3597 *data = (u8)(flash_data & 0x000000FF);
3598 else if (size == 2)
3599 *data = (u16)(flash_data & 0x0000FFFF);
3600 break;
3601 } else {
3602 /* If we've gotten here, then things are probably
3603 * completely hosed, but if the error condition is
3604 * detected, it won't hurt to give it another try...
3605 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3606 */
3607 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3608 if (hsfsts.hsf_status.flcerr) {
3609 /* Repeat for some time before giving up. */
3610 continue;
3611 } else if (!hsfsts.hsf_status.flcdone) {
3612 e_dbg("Timeout error - flash cycle did not complete.\n");
3613 break;
3614 }
3615 }
3616 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3617
3618 return ret_val;
3619}
3620
3621/**
3622 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3623 * @hw: pointer to the HW structure
3624 * @offset: The offset (in bytes) of the dword to read.
3625 * @data: Pointer to the dword to store the value read.
3626 *
3627 * Reads a byte or word from the NVM using the flash access registers.
3628 **/
3629
3630static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3631 u32 *data)
3632{
3633 union ich8_hws_flash_status hsfsts;
3634 union ich8_hws_flash_ctrl hsflctl;
3635 u32 flash_linear_addr;
3636 s32 ret_val = -E1000_ERR_NVM;
3637 u8 count = 0;
3638
3639 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3640 return -E1000_ERR_NVM;
3641 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3642 hw->nvm.flash_base_addr);
3643
3644 do {
3645 udelay(1);
3646 /* Steps */
3647 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3648 if (ret_val)
3649 break;
3650 /* In SPT, This register is in Lan memory space, not flash.
3651 * Therefore, only 32 bit access is supported
3652 */
3653 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654
3655 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3657 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658 /* In SPT, This register is in Lan memory space, not flash.
3659 * Therefore, only 32 bit access is supported
3660 */
3661 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3662 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663
3664 ret_val =
3665 e1000_flash_cycle_ich8lan(hw,
3666 ICH_FLASH_READ_COMMAND_TIMEOUT);
3667
3668 /* Check if FCERR is set to 1, if set to 1, clear it
3669 * and try the whole sequence a few more times, else
3670 * read in (shift in) the Flash Data0, the order is
3671 * least significant byte first msb to lsb
3672 */
3673 if (!ret_val) {
3674 *data = er32flash(ICH_FLASH_FDATA0);
3675 break;
3676 } else {
3677 /* If we've gotten here, then things are probably
3678 * completely hosed, but if the error condition is
3679 * detected, it won't hurt to give it another try...
3680 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681 */
3682 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3683 if (hsfsts.hsf_status.flcerr) {
3684 /* Repeat for some time before giving up. */
3685 continue;
3686 } else if (!hsfsts.hsf_status.flcdone) {
3687 e_dbg("Timeout error - flash cycle did not complete.\n");
3688 break;
3689 }
3690 }
3691 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692
3693 return ret_val;
3694}
3695
3696/**
3697 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3698 * @hw: pointer to the HW structure
3699 * @offset: The offset (in bytes) of the word(s) to write.
3700 * @words: Size of data to write in words
3701 * @data: Pointer to the word(s) to write at offset.
3702 *
3703 * Writes a byte or word to the NVM using the flash access registers.
3704 **/
3705static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3706 u16 *data)
3707{
3708 struct e1000_nvm_info *nvm = &hw->nvm;
3709 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3710 u16 i;
3711
3712 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3713 (words == 0)) {
3714 e_dbg("nvm parameter(s) out of bounds\n");
3715 return -E1000_ERR_NVM;
3716 }
3717
3718 nvm->ops.acquire(hw);
3719
3720 for (i = 0; i < words; i++) {
3721 dev_spec->shadow_ram[offset + i].modified = true;
3722 dev_spec->shadow_ram[offset + i].value = data[i];
3723 }
3724
3725 nvm->ops.release(hw);
3726
3727 return 0;
3728}
3729
3730/**
3731 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3732 * @hw: pointer to the HW structure
3733 *
3734 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3735 * which writes the checksum to the shadow ram. The changes in the shadow
3736 * ram are then committed to the EEPROM by processing each bank at a time
3737 * checking for the modified bit and writing only the pending changes.
3738 * After a successful commit, the shadow ram is cleared and is ready for
3739 * future writes.
3740 **/
3741static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742{
3743 struct e1000_nvm_info *nvm = &hw->nvm;
3744 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3746 s32 ret_val;
3747 u32 dword = 0;
3748
3749 ret_val = e1000e_update_nvm_checksum_generic(hw);
3750 if (ret_val)
3751 goto out;
3752
3753 if (nvm->type != e1000_nvm_flash_sw)
3754 goto out;
3755
3756 nvm->ops.acquire(hw);
3757
3758 /* We're writing to the opposite bank so if we're on bank 1,
3759 * write to bank 0 etc. We also need to erase the segment that
3760 * is going to be written
3761 */
3762 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3763 if (ret_val) {
3764 e_dbg("Could not detect valid bank, assuming bank 0\n");
3765 bank = 0;
3766 }
3767
3768 if (bank == 0) {
3769 new_bank_offset = nvm->flash_bank_size;
3770 old_bank_offset = 0;
3771 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3772 if (ret_val)
3773 goto release;
3774 } else {
3775 old_bank_offset = nvm->flash_bank_size;
3776 new_bank_offset = 0;
3777 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3778 if (ret_val)
3779 goto release;
3780 }
3781 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3782 /* Determine whether to write the value stored
3783 * in the other NVM bank or a modified value stored
3784 * in the shadow RAM
3785 */
3786 ret_val = e1000_read_flash_dword_ich8lan(hw,
3787 i + old_bank_offset,
3788 &dword);
3789
3790 if (dev_spec->shadow_ram[i].modified) {
3791 dword &= 0xffff0000;
3792 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793 }
3794 if (dev_spec->shadow_ram[i + 1].modified) {
3795 dword &= 0x0000ffff;
3796 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3797 << 16);
3798 }
3799 if (ret_val)
3800 break;
3801
3802 /* If the word is 0x13, then make sure the signature bits
3803 * (15:14) are 11b until the commit has completed.
3804 * This will allow us to write 10b which indicates the
3805 * signature is valid. We want to do this after the write
3806 * has completed so that we don't mark the segment valid
3807 * while the write is still in progress
3808 */
3809 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3810 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811
3812 /* Convert offset to bytes. */
3813 act_offset = (i + new_bank_offset) << 1;
3814
3815 usleep_range(100, 200);
3816
3817 /* Write the data to the new bank. Offset in words */
3818 act_offset = i + new_bank_offset;
3819 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3820 dword);
3821 if (ret_val)
3822 break;
3823 }
3824
3825 /* Don't bother writing the segment valid bits if sector
3826 * programming failed.
3827 */
3828 if (ret_val) {
3829 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3830 e_dbg("Flash commit failed.\n");
3831 goto release;
3832 }
3833
3834 /* Finally validate the new segment by setting bit 15:14
3835 * to 10b in word 0x13 , this can be done without an
3836 * erase as well since these bits are 11 to start with
3837 * and we need to change bit 14 to 0b
3838 */
3839 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840
3841 /*offset in words but we read dword */
3842 --act_offset;
3843 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844
3845 if (ret_val)
3846 goto release;
3847
3848 dword &= 0xBFFFFFFF;
3849 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850
3851 if (ret_val)
3852 goto release;
3853
3854 /* And invalidate the previously valid segment by setting
3855 * its signature word (0x13) high_byte to 0b. This can be
3856 * done without an erase because flash erase sets all bits
3857 * to 1's. We can write 1's to 0's without an erase
3858 */
3859 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860
3861 /* offset in words but we read dword */
3862 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3863 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864
3865 if (ret_val)
3866 goto release;
3867
3868 dword &= 0x00FFFFFF;
3869 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870
3871 if (ret_val)
3872 goto release;
3873
3874 /* Great! Everything worked, we can now clear the cached entries. */
3875 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3876 dev_spec->shadow_ram[i].modified = false;
3877 dev_spec->shadow_ram[i].value = 0xFFFF;
3878 }
3879
3880release:
3881 nvm->ops.release(hw);
3882
3883 /* Reload the EEPROM, or else modifications will not appear
3884 * until after the next adapter reset.
3885 */
3886 if (!ret_val) {
3887 nvm->ops.reload(hw);
3888 usleep_range(10000, 11000);
3889 }
3890
3891out:
3892 if (ret_val)
3893 e_dbg("NVM update error: %d\n", ret_val);
3894
3895 return ret_val;
3896}
3897
3898/**
3899 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3900 * @hw: pointer to the HW structure
3901 *
3902 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3903 * which writes the checksum to the shadow ram. The changes in the shadow
3904 * ram are then committed to the EEPROM by processing each bank at a time
3905 * checking for the modified bit and writing only the pending changes.
3906 * After a successful commit, the shadow ram is cleared and is ready for
3907 * future writes.
3908 **/
3909static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910{
3911 struct e1000_nvm_info *nvm = &hw->nvm;
3912 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3913 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3914 s32 ret_val;
3915 u16 data = 0;
3916
3917 ret_val = e1000e_update_nvm_checksum_generic(hw);
3918 if (ret_val)
3919 goto out;
3920
3921 if (nvm->type != e1000_nvm_flash_sw)
3922 goto out;
3923
3924 nvm->ops.acquire(hw);
3925
3926 /* We're writing to the opposite bank so if we're on bank 1,
3927 * write to bank 0 etc. We also need to erase the segment that
3928 * is going to be written
3929 */
3930 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3931 if (ret_val) {
3932 e_dbg("Could not detect valid bank, assuming bank 0\n");
3933 bank = 0;
3934 }
3935
3936 if (bank == 0) {
3937 new_bank_offset = nvm->flash_bank_size;
3938 old_bank_offset = 0;
3939 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3940 if (ret_val)
3941 goto release;
3942 } else {
3943 old_bank_offset = nvm->flash_bank_size;
3944 new_bank_offset = 0;
3945 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3946 if (ret_val)
3947 goto release;
3948 }
3949 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3950 if (dev_spec->shadow_ram[i].modified) {
3951 data = dev_spec->shadow_ram[i].value;
3952 } else {
3953 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3954 old_bank_offset,
3955 &data);
3956 if (ret_val)
3957 break;
3958 }
3959
3960 /* If the word is 0x13, then make sure the signature bits
3961 * (15:14) are 11b until the commit has completed.
3962 * This will allow us to write 10b which indicates the
3963 * signature is valid. We want to do this after the write
3964 * has completed so that we don't mark the segment valid
3965 * while the write is still in progress
3966 */
3967 if (i == E1000_ICH_NVM_SIG_WORD)
3968 data |= E1000_ICH_NVM_SIG_MASK;
3969
3970 /* Convert offset to bytes. */
3971 act_offset = (i + new_bank_offset) << 1;
3972
3973 usleep_range(100, 200);
3974 /* Write the bytes to the new bank. */
3975 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3976 act_offset,
3977 (u8)data);
3978 if (ret_val)
3979 break;
3980
3981 usleep_range(100, 200);
3982 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983 act_offset + 1,
3984 (u8)(data >> 8));
3985 if (ret_val)
3986 break;
3987 }
3988
3989 /* Don't bother writing the segment valid bits if sector
3990 * programming failed.
3991 */
3992 if (ret_val) {
3993 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3994 e_dbg("Flash commit failed.\n");
3995 goto release;
3996 }
3997
3998 /* Finally validate the new segment by setting bit 15:14
3999 * to 10b in word 0x13 , this can be done without an
4000 * erase as well since these bits are 11 to start with
4001 * and we need to change bit 14 to 0b
4002 */
4003 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4004 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4005 if (ret_val)
4006 goto release;
4007
4008 data &= 0xBFFF;
4009 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4010 act_offset * 2 + 1,
4011 (u8)(data >> 8));
4012 if (ret_val)
4013 goto release;
4014
4015 /* And invalidate the previously valid segment by setting
4016 * its signature word (0x13) high_byte to 0b. This can be
4017 * done without an erase because flash erase sets all bits
4018 * to 1's. We can write 1's to 0's without an erase
4019 */
4020 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4021 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4022 if (ret_val)
4023 goto release;
4024
4025 /* Great! Everything worked, we can now clear the cached entries. */
4026 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4027 dev_spec->shadow_ram[i].modified = false;
4028 dev_spec->shadow_ram[i].value = 0xFFFF;
4029 }
4030
4031release:
4032 nvm->ops.release(hw);
4033
4034 /* Reload the EEPROM, or else modifications will not appear
4035 * until after the next adapter reset.
4036 */
4037 if (!ret_val) {
4038 nvm->ops.reload(hw);
4039 usleep_range(10000, 11000);
4040 }
4041
4042out:
4043 if (ret_val)
4044 e_dbg("NVM update error: %d\n", ret_val);
4045
4046 return ret_val;
4047}
4048
4049/**
4050 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4051 * @hw: pointer to the HW structure
4052 *
4053 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4054 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4055 * calculated, in which case we need to calculate the checksum and set bit 6.
4056 **/
4057static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058{
4059 s32 ret_val;
4060 u16 data;
4061 u16 word;
4062 u16 valid_csum_mask;
4063
4064 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4065 * the checksum needs to be fixed. This bit is an indication that
4066 * the NVM was prepared by OEM software and did not calculate
4067 * the checksum...a likely scenario.
4068 */
4069 switch (hw->mac.type) {
4070 case e1000_pch_lpt:
4071 case e1000_pch_spt:
4072 case e1000_pch_cnp:
4073 word = NVM_COMPAT;
4074 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4075 break;
4076 default:
4077 word = NVM_FUTURE_INIT_WORD1;
4078 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4079 break;
4080 }
4081
4082 ret_val = e1000_read_nvm(hw, word, 1, &data);
4083 if (ret_val)
4084 return ret_val;
4085
4086 if (!(data & valid_csum_mask)) {
4087 data |= valid_csum_mask;
4088 ret_val = e1000_write_nvm(hw, word, 1, &data);
4089 if (ret_val)
4090 return ret_val;
4091 ret_val = e1000e_update_nvm_checksum(hw);
4092 if (ret_val)
4093 return ret_val;
4094 }
4095
4096 return e1000e_validate_nvm_checksum_generic(hw);
4097}
4098
4099/**
4100 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4101 * @hw: pointer to the HW structure
4102 *
4103 * To prevent malicious write/erase of the NVM, set it to be read-only
4104 * so that the hardware ignores all write/erase cycles of the NVM via
4105 * the flash control registers. The shadow-ram copy of the NVM will
4106 * still be updated, however any updates to this copy will not stick
4107 * across driver reloads.
4108 **/
4109void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4110{
4111 struct e1000_nvm_info *nvm = &hw->nvm;
4112 union ich8_flash_protected_range pr0;
4113 union ich8_hws_flash_status hsfsts;
4114 u32 gfpreg;
4115
4116 nvm->ops.acquire(hw);
4117
4118 gfpreg = er32flash(ICH_FLASH_GFPREG);
4119
4120 /* Write-protect GbE Sector of NVM */
4121 pr0.regval = er32flash(ICH_FLASH_PR0);
4122 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4123 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4124 pr0.range.wpe = true;
4125 ew32flash(ICH_FLASH_PR0, pr0.regval);
4126
4127 /* Lock down a subset of GbE Flash Control Registers, e.g.
4128 * PR0 to prevent the write-protection from being lifted.
4129 * Once FLOCKDN is set, the registers protected by it cannot
4130 * be written until FLOCKDN is cleared by a hardware reset.
4131 */
4132 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4133 hsfsts.hsf_status.flockdn = true;
4134 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4135
4136 nvm->ops.release(hw);
4137}
4138
4139/**
4140 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4141 * @hw: pointer to the HW structure
4142 * @offset: The offset (in bytes) of the byte/word to read.
4143 * @size: Size of data to read, 1=byte 2=word
4144 * @data: The byte(s) to write to the NVM.
4145 *
4146 * Writes one/two bytes to the NVM using the flash access registers.
4147 **/
4148static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4149 u8 size, u16 data)
4150{
4151 union ich8_hws_flash_status hsfsts;
4152 union ich8_hws_flash_ctrl hsflctl;
4153 u32 flash_linear_addr;
4154 u32 flash_data = 0;
4155 s32 ret_val;
4156 u8 count = 0;
4157
4158 if (hw->mac.type >= e1000_pch_spt) {
4159 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4160 return -E1000_ERR_NVM;
4161 } else {
4162 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163 return -E1000_ERR_NVM;
4164 }
4165
4166 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4167 hw->nvm.flash_base_addr);
4168
4169 do {
4170 udelay(1);
4171 /* Steps */
4172 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4173 if (ret_val)
4174 break;
4175 /* In SPT, This register is in Lan memory space, not
4176 * flash. Therefore, only 32 bit access is supported
4177 */
4178 if (hw->mac.type >= e1000_pch_spt)
4179 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4180 else
4181 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4182
4183 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4184 hsflctl.hsf_ctrl.fldbcount = size - 1;
4185 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4186 /* In SPT, This register is in Lan memory space,
4187 * not flash. Therefore, only 32 bit access is
4188 * supported
4189 */
4190 if (hw->mac.type >= e1000_pch_spt)
4191 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4192 else
4193 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4194
4195 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4196
4197 if (size == 1)
4198 flash_data = (u32)data & 0x00FF;
4199 else
4200 flash_data = (u32)data;
4201
4202 ew32flash(ICH_FLASH_FDATA0, flash_data);
4203
4204 /* check if FCERR is set to 1 , if set to 1, clear it
4205 * and try the whole sequence a few more times else done
4206 */
4207 ret_val =
4208 e1000_flash_cycle_ich8lan(hw,
4209 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4210 if (!ret_val)
4211 break;
4212
4213 /* If we're here, then things are most likely
4214 * completely hosed, but if the error condition
4215 * is detected, it won't hurt to give it another
4216 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4217 */
4218 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4219 if (hsfsts.hsf_status.flcerr)
4220 /* Repeat for some time before giving up. */
4221 continue;
4222 if (!hsfsts.hsf_status.flcdone) {
4223 e_dbg("Timeout error - flash cycle did not complete.\n");
4224 break;
4225 }
4226 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4227
4228 return ret_val;
4229}
4230
4231/**
4232* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4233* @hw: pointer to the HW structure
4234* @offset: The offset (in bytes) of the dwords to read.
4235* @data: The 4 bytes to write to the NVM.
4236*
4237* Writes one/two/four bytes to the NVM using the flash access registers.
4238**/
4239static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4240 u32 data)
4241{
4242 union ich8_hws_flash_status hsfsts;
4243 union ich8_hws_flash_ctrl hsflctl;
4244 u32 flash_linear_addr;
4245 s32 ret_val;
4246 u8 count = 0;
4247
4248 if (hw->mac.type >= e1000_pch_spt) {
4249 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4250 return -E1000_ERR_NVM;
4251 }
4252 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4253 hw->nvm.flash_base_addr);
4254 do {
4255 udelay(1);
4256 /* Steps */
4257 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4258 if (ret_val)
4259 break;
4260
4261 /* In SPT, This register is in Lan memory space, not
4262 * flash. Therefore, only 32 bit access is supported
4263 */
4264 if (hw->mac.type >= e1000_pch_spt)
4265 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4266 >> 16;
4267 else
4268 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4269
4270 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4271 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4272
4273 /* In SPT, This register is in Lan memory space,
4274 * not flash. Therefore, only 32 bit access is
4275 * supported
4276 */
4277 if (hw->mac.type >= e1000_pch_spt)
4278 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4279 else
4280 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4281
4282 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4283
4284 ew32flash(ICH_FLASH_FDATA0, data);
4285
4286 /* check if FCERR is set to 1 , if set to 1, clear it
4287 * and try the whole sequence a few more times else done
4288 */
4289 ret_val =
4290 e1000_flash_cycle_ich8lan(hw,
4291 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4292
4293 if (!ret_val)
4294 break;
4295
4296 /* If we're here, then things are most likely
4297 * completely hosed, but if the error condition
4298 * is detected, it won't hurt to give it another
4299 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4300 */
4301 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4302
4303 if (hsfsts.hsf_status.flcerr)
4304 /* Repeat for some time before giving up. */
4305 continue;
4306 if (!hsfsts.hsf_status.flcdone) {
4307 e_dbg("Timeout error - flash cycle did not complete.\n");
4308 break;
4309 }
4310 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4311
4312 return ret_val;
4313}
4314
4315/**
4316 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4317 * @hw: pointer to the HW structure
4318 * @offset: The index of the byte to read.
4319 * @data: The byte to write to the NVM.
4320 *
4321 * Writes a single byte to the NVM using the flash access registers.
4322 **/
4323static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4324 u8 data)
4325{
4326 u16 word = (u16)data;
4327
4328 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4329}
4330
4331/**
4332* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4333* @hw: pointer to the HW structure
4334* @offset: The offset of the word to write.
4335* @dword: The dword to write to the NVM.
4336*
4337* Writes a single dword to the NVM using the flash access registers.
4338* Goes through a retry algorithm before giving up.
4339**/
4340static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4341 u32 offset, u32 dword)
4342{
4343 s32 ret_val;
4344 u16 program_retries;
4345
4346 /* Must convert word offset into bytes. */
4347 offset <<= 1;
4348 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4349
4350 if (!ret_val)
4351 return ret_val;
4352 for (program_retries = 0; program_retries < 100; program_retries++) {
4353 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4354 usleep_range(100, 200);
4355 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356 if (!ret_val)
4357 break;
4358 }
4359 if (program_retries == 100)
4360 return -E1000_ERR_NVM;
4361
4362 return 0;
4363}
4364
4365/**
4366 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4367 * @hw: pointer to the HW structure
4368 * @offset: The offset of the byte to write.
4369 * @byte: The byte to write to the NVM.
4370 *
4371 * Writes a single byte to the NVM using the flash access registers.
4372 * Goes through a retry algorithm before giving up.
4373 **/
4374static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4375 u32 offset, u8 byte)
4376{
4377 s32 ret_val;
4378 u16 program_retries;
4379
4380 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4381 if (!ret_val)
4382 return ret_val;
4383
4384 for (program_retries = 0; program_retries < 100; program_retries++) {
4385 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4386 usleep_range(100, 200);
4387 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388 if (!ret_val)
4389 break;
4390 }
4391 if (program_retries == 100)
4392 return -E1000_ERR_NVM;
4393
4394 return 0;
4395}
4396
4397/**
4398 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4399 * @hw: pointer to the HW structure
4400 * @bank: 0 for first bank, 1 for second bank, etc.
4401 *
4402 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4403 * bank N is 4096 * N + flash_reg_addr.
4404 **/
4405static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4406{
4407 struct e1000_nvm_info *nvm = &hw->nvm;
4408 union ich8_hws_flash_status hsfsts;
4409 union ich8_hws_flash_ctrl hsflctl;
4410 u32 flash_linear_addr;
4411 /* bank size is in 16bit words - adjust to bytes */
4412 u32 flash_bank_size = nvm->flash_bank_size * 2;
4413 s32 ret_val;
4414 s32 count = 0;
4415 s32 j, iteration, sector_size;
4416
4417 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4418
4419 /* Determine HW Sector size: Read BERASE bits of hw flash status
4420 * register
4421 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4422 * consecutive sectors. The start index for the nth Hw sector
4423 * can be calculated as = bank * 4096 + n * 256
4424 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4425 * The start index for the nth Hw sector can be calculated
4426 * as = bank * 4096
4427 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4428 * (ich9 only, otherwise error condition)
4429 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4430 */
4431 switch (hsfsts.hsf_status.berasesz) {
4432 case 0:
4433 /* Hw sector size 256 */
4434 sector_size = ICH_FLASH_SEG_SIZE_256;
4435 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4436 break;
4437 case 1:
4438 sector_size = ICH_FLASH_SEG_SIZE_4K;
4439 iteration = 1;
4440 break;
4441 case 2:
4442 sector_size = ICH_FLASH_SEG_SIZE_8K;
4443 iteration = 1;
4444 break;
4445 case 3:
4446 sector_size = ICH_FLASH_SEG_SIZE_64K;
4447 iteration = 1;
4448 break;
4449 default:
4450 return -E1000_ERR_NVM;
4451 }
4452
4453 /* Start with the base address, then add the sector offset. */
4454 flash_linear_addr = hw->nvm.flash_base_addr;
4455 flash_linear_addr += (bank) ? flash_bank_size : 0;
4456
4457 for (j = 0; j < iteration; j++) {
4458 do {
4459 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4460
4461 /* Steps */
4462 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463 if (ret_val)
4464 return ret_val;
4465
4466 /* Write a value 11 (block Erase) in Flash
4467 * Cycle field in hw flash control
4468 */
4469 if (hw->mac.type >= e1000_pch_spt)
4470 hsflctl.regval =
4471 er32flash(ICH_FLASH_HSFSTS) >> 16;
4472 else
4473 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4474
4475 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4476 if (hw->mac.type >= e1000_pch_spt)
4477 ew32flash(ICH_FLASH_HSFSTS,
4478 hsflctl.regval << 16);
4479 else
4480 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4481
4482 /* Write the last 24 bits of an index within the
4483 * block into Flash Linear address field in Flash
4484 * Address.
4485 */
4486 flash_linear_addr += (j * sector_size);
4487 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4488
4489 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4490 if (!ret_val)
4491 break;
4492
4493 /* Check if FCERR is set to 1. If 1,
4494 * clear it and try the whole sequence
4495 * a few more times else Done
4496 */
4497 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498 if (hsfsts.hsf_status.flcerr)
4499 /* repeat for some time before giving up */
4500 continue;
4501 else if (!hsfsts.hsf_status.flcdone)
4502 return ret_val;
4503 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504 }
4505
4506 return 0;
4507}
4508
4509/**
4510 * e1000_valid_led_default_ich8lan - Set the default LED settings
4511 * @hw: pointer to the HW structure
4512 * @data: Pointer to the LED settings
4513 *
4514 * Reads the LED default settings from the NVM to data. If the NVM LED
4515 * settings is all 0's or F's, set the LED default to a valid LED default
4516 * setting.
4517 **/
4518static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4519{
4520 s32 ret_val;
4521
4522 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4523 if (ret_val) {
4524 e_dbg("NVM Read Error\n");
4525 return ret_val;
4526 }
4527
4528 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4529 *data = ID_LED_DEFAULT_ICH8LAN;
4530
4531 return 0;
4532}
4533
4534/**
4535 * e1000_id_led_init_pchlan - store LED configurations
4536 * @hw: pointer to the HW structure
4537 *
4538 * PCH does not control LEDs via the LEDCTL register, rather it uses
4539 * the PHY LED configuration register.
4540 *
4541 * PCH also does not have an "always on" or "always off" mode which
4542 * complicates the ID feature. Instead of using the "on" mode to indicate
4543 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4544 * use "link_up" mode. The LEDs will still ID on request if there is no
4545 * link based on logic in e1000_led_[on|off]_pchlan().
4546 **/
4547static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4548{
4549 struct e1000_mac_info *mac = &hw->mac;
4550 s32 ret_val;
4551 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4552 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4553 u16 data, i, temp, shift;
4554
4555 /* Get default ID LED modes */
4556 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4557 if (ret_val)
4558 return ret_val;
4559
4560 mac->ledctl_default = er32(LEDCTL);
4561 mac->ledctl_mode1 = mac->ledctl_default;
4562 mac->ledctl_mode2 = mac->ledctl_default;
4563
4564 for (i = 0; i < 4; i++) {
4565 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4566 shift = (i * 5);
4567 switch (temp) {
4568 case ID_LED_ON1_DEF2:
4569 case ID_LED_ON1_ON2:
4570 case ID_LED_ON1_OFF2:
4571 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4572 mac->ledctl_mode1 |= (ledctl_on << shift);
4573 break;
4574 case ID_LED_OFF1_DEF2:
4575 case ID_LED_OFF1_ON2:
4576 case ID_LED_OFF1_OFF2:
4577 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4578 mac->ledctl_mode1 |= (ledctl_off << shift);
4579 break;
4580 default:
4581 /* Do nothing */
4582 break;
4583 }
4584 switch (temp) {
4585 case ID_LED_DEF1_ON2:
4586 case ID_LED_ON1_ON2:
4587 case ID_LED_OFF1_ON2:
4588 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4589 mac->ledctl_mode2 |= (ledctl_on << shift);
4590 break;
4591 case ID_LED_DEF1_OFF2:
4592 case ID_LED_ON1_OFF2:
4593 case ID_LED_OFF1_OFF2:
4594 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4595 mac->ledctl_mode2 |= (ledctl_off << shift);
4596 break;
4597 default:
4598 /* Do nothing */
4599 break;
4600 }
4601 }
4602
4603 return 0;
4604}
4605
4606/**
4607 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4608 * @hw: pointer to the HW structure
4609 *
4610 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4611 * register, so the the bus width is hard coded.
4612 **/
4613static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4614{
4615 struct e1000_bus_info *bus = &hw->bus;
4616 s32 ret_val;
4617
4618 ret_val = e1000e_get_bus_info_pcie(hw);
4619
4620 /* ICH devices are "PCI Express"-ish. They have
4621 * a configuration space, but do not contain
4622 * PCI Express Capability registers, so bus width
4623 * must be hardcoded.
4624 */
4625 if (bus->width == e1000_bus_width_unknown)
4626 bus->width = e1000_bus_width_pcie_x1;
4627
4628 return ret_val;
4629}
4630
4631/**
4632 * e1000_reset_hw_ich8lan - Reset the hardware
4633 * @hw: pointer to the HW structure
4634 *
4635 * Does a full reset of the hardware which includes a reset of the PHY and
4636 * MAC.
4637 **/
4638static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4639{
4640 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4641 u16 kum_cfg;
4642 u32 ctrl, reg;
4643 s32 ret_val;
4644
4645 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4646 * on the last TLP read/write transaction when MAC is reset.
4647 */
4648 ret_val = e1000e_disable_pcie_master(hw);
4649 if (ret_val)
4650 e_dbg("PCI-E Master disable polling has failed.\n");
4651
4652 e_dbg("Masking off all interrupts\n");
4653 ew32(IMC, 0xffffffff);
4654
4655 /* Disable the Transmit and Receive units. Then delay to allow
4656 * any pending transactions to complete before we hit the MAC
4657 * with the global reset.
4658 */
4659 ew32(RCTL, 0);
4660 ew32(TCTL, E1000_TCTL_PSP);
4661 e1e_flush();
4662
4663 usleep_range(10000, 11000);
4664
4665 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4666 if (hw->mac.type == e1000_ich8lan) {
4667 /* Set Tx and Rx buffer allocation to 8k apiece. */
4668 ew32(PBA, E1000_PBA_8K);
4669 /* Set Packet Buffer Size to 16k. */
4670 ew32(PBS, E1000_PBS_16K);
4671 }
4672
4673 if (hw->mac.type == e1000_pchlan) {
4674 /* Save the NVM K1 bit setting */
4675 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4676 if (ret_val)
4677 return ret_val;
4678
4679 if (kum_cfg & E1000_NVM_K1_ENABLE)
4680 dev_spec->nvm_k1_enabled = true;
4681 else
4682 dev_spec->nvm_k1_enabled = false;
4683 }
4684
4685 ctrl = er32(CTRL);
4686
4687 if (!hw->phy.ops.check_reset_block(hw)) {
4688 /* Full-chip reset requires MAC and PHY reset at the same
4689 * time to make sure the interface between MAC and the
4690 * external PHY is reset.
4691 */
4692 ctrl |= E1000_CTRL_PHY_RST;
4693
4694 /* Gate automatic PHY configuration by hardware on
4695 * non-managed 82579
4696 */
4697 if ((hw->mac.type == e1000_pch2lan) &&
4698 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4699 e1000_gate_hw_phy_config_ich8lan(hw, true);
4700 }
4701 ret_val = e1000_acquire_swflag_ich8lan(hw);
4702 e_dbg("Issuing a global reset to ich8lan\n");
4703 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4704 /* cannot issue a flush here because it hangs the hardware */
4705 msleep(20);
4706
4707 /* Set Phy Config Counter to 50msec */
4708 if (hw->mac.type == e1000_pch2lan) {
4709 reg = er32(FEXTNVM3);
4710 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4711 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4712 ew32(FEXTNVM3, reg);
4713 }
4714
4715 if (!ret_val)
4716 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4717
4718 if (ctrl & E1000_CTRL_PHY_RST) {
4719 ret_val = hw->phy.ops.get_cfg_done(hw);
4720 if (ret_val)
4721 return ret_val;
4722
4723 ret_val = e1000_post_phy_reset_ich8lan(hw);
4724 if (ret_val)
4725 return ret_val;
4726 }
4727
4728 /* For PCH, this write will make sure that any noise
4729 * will be detected as a CRC error and be dropped rather than show up
4730 * as a bad packet to the DMA engine.
4731 */
4732 if (hw->mac.type == e1000_pchlan)
4733 ew32(CRC_OFFSET, 0x65656565);
4734
4735 ew32(IMC, 0xffffffff);
4736 er32(ICR);
4737
4738 reg = er32(KABGTXD);
4739 reg |= E1000_KABGTXD_BGSQLBIAS;
4740 ew32(KABGTXD, reg);
4741
4742 return 0;
4743}
4744
4745/**
4746 * e1000_init_hw_ich8lan - Initialize the hardware
4747 * @hw: pointer to the HW structure
4748 *
4749 * Prepares the hardware for transmit and receive by doing the following:
4750 * - initialize hardware bits
4751 * - initialize LED identification
4752 * - setup receive address registers
4753 * - setup flow control
4754 * - setup transmit descriptors
4755 * - clear statistics
4756 **/
4757static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4758{
4759 struct e1000_mac_info *mac = &hw->mac;
4760 u32 ctrl_ext, txdctl, snoop;
4761 s32 ret_val;
4762 u16 i;
4763
4764 e1000_initialize_hw_bits_ich8lan(hw);
4765
4766 /* Initialize identification LED */
4767 ret_val = mac->ops.id_led_init(hw);
4768 /* An error is not fatal and we should not stop init due to this */
4769 if (ret_val)
4770 e_dbg("Error initializing identification LED\n");
4771
4772 /* Setup the receive address. */
4773 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4774
4775 /* Zero out the Multicast HASH table */
4776 e_dbg("Zeroing the MTA\n");
4777 for (i = 0; i < mac->mta_reg_count; i++)
4778 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4779
4780 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4781 * the ME. Disable wakeup by clearing the host wakeup bit.
4782 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4783 */
4784 if (hw->phy.type == e1000_phy_82578) {
4785 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4786 i &= ~BM_WUC_HOST_WU_BIT;
4787 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4788 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4789 if (ret_val)
4790 return ret_val;
4791 }
4792
4793 /* Setup link and flow control */
4794 ret_val = mac->ops.setup_link(hw);
4795
4796 /* Set the transmit descriptor write-back policy for both queues */
4797 txdctl = er32(TXDCTL(0));
4798 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4799 E1000_TXDCTL_FULL_TX_DESC_WB);
4800 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4801 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4802 ew32(TXDCTL(0), txdctl);
4803 txdctl = er32(TXDCTL(1));
4804 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4805 E1000_TXDCTL_FULL_TX_DESC_WB);
4806 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4807 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4808 ew32(TXDCTL(1), txdctl);
4809
4810 /* ICH8 has opposite polarity of no_snoop bits.
4811 * By default, we should use snoop behavior.
4812 */
4813 if (mac->type == e1000_ich8lan)
4814 snoop = PCIE_ICH8_SNOOP_ALL;
4815 else
4816 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4817 e1000e_set_pcie_no_snoop(hw, snoop);
4818
4819 ctrl_ext = er32(CTRL_EXT);
4820 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4821 ew32(CTRL_EXT, ctrl_ext);
4822
4823 /* Clear all of the statistics registers (clear on read). It is
4824 * important that we do this after we have tried to establish link
4825 * because the symbol error count will increment wildly if there
4826 * is no link.
4827 */
4828 e1000_clear_hw_cntrs_ich8lan(hw);
4829
4830 return ret_val;
4831}
4832
4833/**
4834 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4835 * @hw: pointer to the HW structure
4836 *
4837 * Sets/Clears required hardware bits necessary for correctly setting up the
4838 * hardware for transmit and receive.
4839 **/
4840static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4841{
4842 u32 reg;
4843
4844 /* Extended Device Control */
4845 reg = er32(CTRL_EXT);
4846 reg |= BIT(22);
4847 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4848 if (hw->mac.type >= e1000_pchlan)
4849 reg |= E1000_CTRL_EXT_PHYPDEN;
4850 ew32(CTRL_EXT, reg);
4851
4852 /* Transmit Descriptor Control 0 */
4853 reg = er32(TXDCTL(0));
4854 reg |= BIT(22);
4855 ew32(TXDCTL(0), reg);
4856
4857 /* Transmit Descriptor Control 1 */
4858 reg = er32(TXDCTL(1));
4859 reg |= BIT(22);
4860 ew32(TXDCTL(1), reg);
4861
4862 /* Transmit Arbitration Control 0 */
4863 reg = er32(TARC(0));
4864 if (hw->mac.type == e1000_ich8lan)
4865 reg |= BIT(28) | BIT(29);
4866 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867 ew32(TARC(0), reg);
4868
4869 /* Transmit Arbitration Control 1 */
4870 reg = er32(TARC(1));
4871 if (er32(TCTL) & E1000_TCTL_MULR)
4872 reg &= ~BIT(28);
4873 else
4874 reg |= BIT(28);
4875 reg |= BIT(24) | BIT(26) | BIT(30);
4876 ew32(TARC(1), reg);
4877
4878 /* Device Status */
4879 if (hw->mac.type == e1000_ich8lan) {
4880 reg = er32(STATUS);
4881 reg &= ~BIT(31);
4882 ew32(STATUS, reg);
4883 }
4884
4885 /* work-around descriptor data corruption issue during nfs v2 udp
4886 * traffic, just disable the nfs filtering capability
4887 */
4888 reg = er32(RFCTL);
4889 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4890
4891 /* Disable IPv6 extension header parsing because some malformed
4892 * IPv6 headers can hang the Rx.
4893 */
4894 if (hw->mac.type == e1000_ich8lan)
4895 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4896 ew32(RFCTL, reg);
4897
4898 /* Enable ECC on Lynxpoint */
4899 if (hw->mac.type >= e1000_pch_lpt) {
4900 reg = er32(PBECCSTS);
4901 reg |= E1000_PBECCSTS_ECC_ENABLE;
4902 ew32(PBECCSTS, reg);
4903
4904 reg = er32(CTRL);
4905 reg |= E1000_CTRL_MEHE;
4906 ew32(CTRL, reg);
4907 }
4908}
4909
4910/**
4911 * e1000_setup_link_ich8lan - Setup flow control and link settings
4912 * @hw: pointer to the HW structure
4913 *
4914 * Determines which flow control settings to use, then configures flow
4915 * control. Calls the appropriate media-specific link configuration
4916 * function. Assuming the adapter has a valid link partner, a valid link
4917 * should be established. Assumes the hardware has previously been reset
4918 * and the transmitter and receiver are not enabled.
4919 **/
4920static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921{
4922 s32 ret_val;
4923
4924 if (hw->phy.ops.check_reset_block(hw))
4925 return 0;
4926
4927 /* ICH parts do not have a word in the NVM to determine
4928 * the default flow control setting, so we explicitly
4929 * set it to full.
4930 */
4931 if (hw->fc.requested_mode == e1000_fc_default) {
4932 /* Workaround h/w hang when Tx flow control enabled */
4933 if (hw->mac.type == e1000_pchlan)
4934 hw->fc.requested_mode = e1000_fc_rx_pause;
4935 else
4936 hw->fc.requested_mode = e1000_fc_full;
4937 }
4938
4939 /* Save off the requested flow control mode for use later. Depending
4940 * on the link partner's capabilities, we may or may not use this mode.
4941 */
4942 hw->fc.current_mode = hw->fc.requested_mode;
4943
4944 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945
4946 /* Continue to configure the copper link. */
4947 ret_val = hw->mac.ops.setup_physical_interface(hw);
4948 if (ret_val)
4949 return ret_val;
4950
4951 ew32(FCTTV, hw->fc.pause_time);
4952 if ((hw->phy.type == e1000_phy_82578) ||
4953 (hw->phy.type == e1000_phy_82579) ||
4954 (hw->phy.type == e1000_phy_i217) ||
4955 (hw->phy.type == e1000_phy_82577)) {
4956 ew32(FCRTV_PCH, hw->fc.refresh_time);
4957
4958 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4959 hw->fc.pause_time);
4960 if (ret_val)
4961 return ret_val;
4962 }
4963
4964 return e1000e_set_fc_watermarks(hw);
4965}
4966
4967/**
4968 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4969 * @hw: pointer to the HW structure
4970 *
4971 * Configures the kumeran interface to the PHY to wait the appropriate time
4972 * when polling the PHY, then call the generic setup_copper_link to finish
4973 * configuring the copper link.
4974 **/
4975static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976{
4977 u32 ctrl;
4978 s32 ret_val;
4979 u16 reg_data;
4980
4981 ctrl = er32(CTRL);
4982 ctrl |= E1000_CTRL_SLU;
4983 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4984 ew32(CTRL, ctrl);
4985
4986 /* Set the mac to wait the maximum time between each iteration
4987 * and increase the max iterations when polling the phy;
4988 * this fixes erroneous timeouts at 10Mbps.
4989 */
4990 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4991 if (ret_val)
4992 return ret_val;
4993 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4994 ®_data);
4995 if (ret_val)
4996 return ret_val;
4997 reg_data |= 0x3F;
4998 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999 reg_data);
5000 if (ret_val)
5001 return ret_val;
5002
5003 switch (hw->phy.type) {
5004 case e1000_phy_igp_3:
5005 ret_val = e1000e_copper_link_setup_igp(hw);
5006 if (ret_val)
5007 return ret_val;
5008 break;
5009 case e1000_phy_bm:
5010 case e1000_phy_82578:
5011 ret_val = e1000e_copper_link_setup_m88(hw);
5012 if (ret_val)
5013 return ret_val;
5014 break;
5015 case e1000_phy_82577:
5016 case e1000_phy_82579:
5017 ret_val = e1000_copper_link_setup_82577(hw);
5018 if (ret_val)
5019 return ret_val;
5020 break;
5021 case e1000_phy_ife:
5022 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5023 if (ret_val)
5024 return ret_val;
5025
5026 reg_data &= ~IFE_PMC_AUTO_MDIX;
5027
5028 switch (hw->phy.mdix) {
5029 case 1:
5030 reg_data &= ~IFE_PMC_FORCE_MDIX;
5031 break;
5032 case 2:
5033 reg_data |= IFE_PMC_FORCE_MDIX;
5034 break;
5035 case 0:
5036 default:
5037 reg_data |= IFE_PMC_AUTO_MDIX;
5038 break;
5039 }
5040 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5041 if (ret_val)
5042 return ret_val;
5043 break;
5044 default:
5045 break;
5046 }
5047
5048 return e1000e_setup_copper_link(hw);
5049}
5050
5051/**
5052 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5053 * @hw: pointer to the HW structure
5054 *
5055 * Calls the PHY specific link setup function and then calls the
5056 * generic setup_copper_link to finish configuring the link for
5057 * Lynxpoint PCH devices
5058 **/
5059static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060{
5061 u32 ctrl;
5062 s32 ret_val;
5063
5064 ctrl = er32(CTRL);
5065 ctrl |= E1000_CTRL_SLU;
5066 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5067 ew32(CTRL, ctrl);
5068
5069 ret_val = e1000_copper_link_setup_82577(hw);
5070 if (ret_val)
5071 return ret_val;
5072
5073 return e1000e_setup_copper_link(hw);
5074}
5075
5076/**
5077 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5078 * @hw: pointer to the HW structure
5079 * @speed: pointer to store current link speed
5080 * @duplex: pointer to store the current link duplex
5081 *
5082 * Calls the generic get_speed_and_duplex to retrieve the current link
5083 * information and then calls the Kumeran lock loss workaround for links at
5084 * gigabit speeds.
5085 **/
5086static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5087 u16 *duplex)
5088{
5089 s32 ret_val;
5090
5091 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5092 if (ret_val)
5093 return ret_val;
5094
5095 if ((hw->mac.type == e1000_ich8lan) &&
5096 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5097 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5098 }
5099
5100 return ret_val;
5101}
5102
5103/**
5104 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5105 * @hw: pointer to the HW structure
5106 *
5107 * Work-around for 82566 Kumeran PCS lock loss:
5108 * On link status change (i.e. PCI reset, speed change) and link is up and
5109 * speed is gigabit-
5110 * 0) if workaround is optionally disabled do nothing
5111 * 1) wait 1ms for Kumeran link to come up
5112 * 2) check Kumeran Diagnostic register PCS lock loss bit
5113 * 3) if not set the link is locked (all is good), otherwise...
5114 * 4) reset the PHY
5115 * 5) repeat up to 10 times
5116 * Note: this is only called for IGP3 copper when speed is 1gb.
5117 **/
5118static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119{
5120 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5121 u32 phy_ctrl;
5122 s32 ret_val;
5123 u16 i, data;
5124 bool link;
5125
5126 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5127 return 0;
5128
5129 /* Make sure link is up before proceeding. If not just return.
5130 * Attempting this while link is negotiating fouled up link
5131 * stability
5132 */
5133 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5134 if (!link)
5135 return 0;
5136
5137 for (i = 0; i < 10; i++) {
5138 /* read once to clear */
5139 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5140 if (ret_val)
5141 return ret_val;
5142 /* and again to get new status */
5143 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5144 if (ret_val)
5145 return ret_val;
5146
5147 /* check for PCS lock */
5148 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5149 return 0;
5150
5151 /* Issue PHY reset */
5152 e1000_phy_hw_reset(hw);
5153 mdelay(5);
5154 }
5155 /* Disable GigE link negotiation */
5156 phy_ctrl = er32(PHY_CTRL);
5157 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5158 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5159 ew32(PHY_CTRL, phy_ctrl);
5160
5161 /* Call gig speed drop workaround on Gig disable before accessing
5162 * any PHY registers
5163 */
5164 e1000e_gig_downshift_workaround_ich8lan(hw);
5165
5166 /* unable to acquire PCS lock */
5167 return -E1000_ERR_PHY;
5168}
5169
5170/**
5171 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5172 * @hw: pointer to the HW structure
5173 * @state: boolean value used to set the current Kumeran workaround state
5174 *
5175 * If ICH8, set the current Kumeran workaround state (enabled - true
5176 * /disabled - false).
5177 **/
5178void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5179 bool state)
5180{
5181 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182
5183 if (hw->mac.type != e1000_ich8lan) {
5184 e_dbg("Workaround applies to ICH8 only.\n");
5185 return;
5186 }
5187
5188 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5189}
5190
5191/**
5192 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5193 * @hw: pointer to the HW structure
5194 *
5195 * Workaround for 82566 power-down on D3 entry:
5196 * 1) disable gigabit link
5197 * 2) write VR power-down enable
5198 * 3) read it back
5199 * Continue if successful, else issue LCD reset and repeat
5200 **/
5201void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202{
5203 u32 reg;
5204 u16 data;
5205 u8 retry = 0;
5206
5207 if (hw->phy.type != e1000_phy_igp_3)
5208 return;
5209
5210 /* Try the workaround twice (if needed) */
5211 do {
5212 /* Disable link */
5213 reg = er32(PHY_CTRL);
5214 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5215 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5216 ew32(PHY_CTRL, reg);
5217
5218 /* Call gig speed drop workaround on Gig disable before
5219 * accessing any PHY registers
5220 */
5221 if (hw->mac.type == e1000_ich8lan)
5222 e1000e_gig_downshift_workaround_ich8lan(hw);
5223
5224 /* Write VR power-down enable */
5225 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5226 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5227 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228
5229 /* Read it back and test */
5230 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5233 break;
5234
5235 /* Issue PHY reset and repeat at most one more time */
5236 reg = er32(CTRL);
5237 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5238 retry++;
5239 } while (retry);
5240}
5241
5242/**
5243 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5244 * @hw: pointer to the HW structure
5245 *
5246 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5247 * LPLU, Gig disable, MDIC PHY reset):
5248 * 1) Set Kumeran Near-end loopback
5249 * 2) Clear Kumeran Near-end loopback
5250 * Should only be called for ICH8[m] devices with any 1G Phy.
5251 **/
5252void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253{
5254 s32 ret_val;
5255 u16 reg_data;
5256
5257 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5258 return;
5259
5260 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5261 ®_data);
5262 if (ret_val)
5263 return;
5264 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5265 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266 reg_data);
5267 if (ret_val)
5268 return;
5269 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5271}
5272
5273/**
5274 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5275 * @hw: pointer to the HW structure
5276 *
5277 * During S0 to Sx transition, it is possible the link remains at gig
5278 * instead of negotiating to a lower speed. Before going to Sx, set
5279 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5280 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5281 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5282 * needs to be written.
5283 * Parts that support (and are linked to a partner which support) EEE in
5284 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5285 * than 10Mbps w/o EEE.
5286 **/
5287void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288{
5289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5290 u32 phy_ctrl;
5291 s32 ret_val;
5292
5293 phy_ctrl = er32(PHY_CTRL);
5294 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295
5296 if (hw->phy.type == e1000_phy_i217) {
5297 u16 phy_reg, device_id = hw->adapter->pdev->device;
5298
5299 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5300 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5301 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5302 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5303 (hw->mac.type >= e1000_pch_spt)) {
5304 u32 fextnvm6 = er32(FEXTNVM6);
5305
5306 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5307 }
5308
5309 ret_val = hw->phy.ops.acquire(hw);
5310 if (ret_val)
5311 goto out;
5312
5313 if (!dev_spec->eee_disable) {
5314 u16 eee_advert;
5315
5316 ret_val =
5317 e1000_read_emi_reg_locked(hw,
5318 I217_EEE_ADVERTISEMENT,
5319 &eee_advert);
5320 if (ret_val)
5321 goto release;
5322
5323 /* Disable LPLU if both link partners support 100BaseT
5324 * EEE and 100Full is advertised on both ends of the
5325 * link, and enable Auto Enable LPI since there will
5326 * be no driver to enable LPI while in Sx.
5327 */
5328 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5329 (dev_spec->eee_lp_ability &
5330 I82579_EEE_100_SUPPORTED) &&
5331 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5332 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5333 E1000_PHY_CTRL_NOND0A_LPLU);
5334
5335 /* Set Auto Enable LPI after link up */
5336 e1e_rphy_locked(hw,
5337 I217_LPI_GPIO_CTRL, &phy_reg);
5338 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5339 e1e_wphy_locked(hw,
5340 I217_LPI_GPIO_CTRL, phy_reg);
5341 }
5342 }
5343
5344 /* For i217 Intel Rapid Start Technology support,
5345 * when the system is going into Sx and no manageability engine
5346 * is present, the driver must configure proxy to reset only on
5347 * power good. LPI (Low Power Idle) state must also reset only
5348 * on power good, as well as the MTA (Multicast table array).
5349 * The SMBus release must also be disabled on LCD reset.
5350 */
5351 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5352 /* Enable proxy to reset only on power good. */
5353 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5354 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5355 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356
5357 /* Set bit enable LPI (EEE) to reset only on
5358 * power good.
5359 */
5360 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5361 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5362 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363
5364 /* Disable the SMB release on LCD reset. */
5365 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5366 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5367 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5368 }
5369
5370 /* Enable MTA to reset for Intel Rapid Start Technology
5371 * Support
5372 */
5373 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5374 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5375 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376
5377release:
5378 hw->phy.ops.release(hw);
5379 }
5380out:
5381 ew32(PHY_CTRL, phy_ctrl);
5382
5383 if (hw->mac.type == e1000_ich8lan)
5384 e1000e_gig_downshift_workaround_ich8lan(hw);
5385
5386 if (hw->mac.type >= e1000_pchlan) {
5387 e1000_oem_bits_config_ich8lan(hw, false);
5388
5389 /* Reset PHY to activate OEM bits on 82577/8 */
5390 if (hw->mac.type == e1000_pchlan)
5391 e1000e_phy_hw_reset_generic(hw);
5392
5393 ret_val = hw->phy.ops.acquire(hw);
5394 if (ret_val)
5395 return;
5396 e1000_write_smbus_addr(hw);
5397 hw->phy.ops.release(hw);
5398 }
5399}
5400
5401/**
5402 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5403 * @hw: pointer to the HW structure
5404 *
5405 * During Sx to S0 transitions on non-managed devices or managed devices
5406 * on which PHY resets are not blocked, if the PHY registers cannot be
5407 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408 * the PHY.
5409 * On i217, setup Intel Rapid Start Technology.
5410 **/
5411void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412{
5413 s32 ret_val;
5414
5415 if (hw->mac.type < e1000_pch2lan)
5416 return;
5417
5418 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5419 if (ret_val) {
5420 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5421 return;
5422 }
5423
5424 /* For i217 Intel Rapid Start Technology support when the system
5425 * is transitioning from Sx and no manageability engine is present
5426 * configure SMBus to restore on reset, disable proxy, and enable
5427 * the reset on MTA (Multicast table array).
5428 */
5429 if (hw->phy.type == e1000_phy_i217) {
5430 u16 phy_reg;
5431
5432 ret_val = hw->phy.ops.acquire(hw);
5433 if (ret_val) {
5434 e_dbg("Failed to setup iRST\n");
5435 return;
5436 }
5437
5438 /* Clear Auto Enable LPI after link up */
5439 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5440 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5441 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442
5443 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5444 /* Restore clear on SMB if no manageability engine
5445 * is present
5446 */
5447 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5448 if (ret_val)
5449 goto release;
5450 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5451 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452
5453 /* Disable Proxy */
5454 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455 }
5456 /* Enable reset on MTA */
5457 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5458 if (ret_val)
5459 goto release;
5460 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5461 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5462release:
5463 if (ret_val)
5464 e_dbg("Error %d in resume workarounds\n", ret_val);
5465 hw->phy.ops.release(hw);
5466 }
5467}
5468
5469/**
5470 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5471 * @hw: pointer to the HW structure
5472 *
5473 * Return the LED back to the default configuration.
5474 **/
5475static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476{
5477 if (hw->phy.type == e1000_phy_ife)
5478 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479
5480 ew32(LEDCTL, hw->mac.ledctl_default);
5481 return 0;
5482}
5483
5484/**
5485 * e1000_led_on_ich8lan - Turn LEDs on
5486 * @hw: pointer to the HW structure
5487 *
5488 * Turn on the LEDs.
5489 **/
5490static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491{
5492 if (hw->phy.type == e1000_phy_ife)
5493 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5494 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495
5496 ew32(LEDCTL, hw->mac.ledctl_mode2);
5497 return 0;
5498}
5499
5500/**
5501 * e1000_led_off_ich8lan - Turn LEDs off
5502 * @hw: pointer to the HW structure
5503 *
5504 * Turn off the LEDs.
5505 **/
5506static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507{
5508 if (hw->phy.type == e1000_phy_ife)
5509 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510 (IFE_PSCL_PROBE_MODE |
5511 IFE_PSCL_PROBE_LEDS_OFF));
5512
5513 ew32(LEDCTL, hw->mac.ledctl_mode1);
5514 return 0;
5515}
5516
5517/**
5518 * e1000_setup_led_pchlan - Configures SW controllable LED
5519 * @hw: pointer to the HW structure
5520 *
5521 * This prepares the SW controllable LED for use.
5522 **/
5523static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524{
5525 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5526}
5527
5528/**
5529 * e1000_cleanup_led_pchlan - Restore the default LED operation
5530 * @hw: pointer to the HW structure
5531 *
5532 * Return the LED back to the default configuration.
5533 **/
5534static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535{
5536 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5537}
5538
5539/**
5540 * e1000_led_on_pchlan - Turn LEDs on
5541 * @hw: pointer to the HW structure
5542 *
5543 * Turn on the LEDs.
5544 **/
5545static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546{
5547 u16 data = (u16)hw->mac.ledctl_mode2;
5548 u32 i, led;
5549
5550 /* If no link, then turn LED on by setting the invert bit
5551 * for each LED that's mode is "link_up" in ledctl_mode2.
5552 */
5553 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5554 for (i = 0; i < 3; i++) {
5555 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5556 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5557 E1000_LEDCTL_MODE_LINK_UP)
5558 continue;
5559 if (led & E1000_PHY_LED0_IVRT)
5560 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5561 else
5562 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5563 }
5564 }
5565
5566 return e1e_wphy(hw, HV_LED_CONFIG, data);
5567}
5568
5569/**
5570 * e1000_led_off_pchlan - Turn LEDs off
5571 * @hw: pointer to the HW structure
5572 *
5573 * Turn off the LEDs.
5574 **/
5575static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576{
5577 u16 data = (u16)hw->mac.ledctl_mode1;
5578 u32 i, led;
5579
5580 /* If no link, then turn LED off by clearing the invert bit
5581 * for each LED that's mode is "link_up" in ledctl_mode1.
5582 */
5583 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5584 for (i = 0; i < 3; i++) {
5585 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5586 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5587 E1000_LEDCTL_MODE_LINK_UP)
5588 continue;
5589 if (led & E1000_PHY_LED0_IVRT)
5590 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5591 else
5592 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5593 }
5594 }
5595
5596 return e1e_wphy(hw, HV_LED_CONFIG, data);
5597}
5598
5599/**
5600 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5601 * @hw: pointer to the HW structure
5602 *
5603 * Read appropriate register for the config done bit for completion status
5604 * and configure the PHY through s/w for EEPROM-less parts.
5605 *
5606 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5607 * config done bit, so only an error is logged and continues. If we were
5608 * to return with error, EEPROM-less silicon would not be able to be reset
5609 * or change link.
5610 **/
5611static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612{
5613 s32 ret_val = 0;
5614 u32 bank = 0;
5615 u32 status;
5616
5617 e1000e_get_cfg_done_generic(hw);
5618
5619 /* Wait for indication from h/w that it has completed basic config */
5620 if (hw->mac.type >= e1000_ich10lan) {
5621 e1000_lan_init_done_ich8lan(hw);
5622 } else {
5623 ret_val = e1000e_get_auto_rd_done(hw);
5624 if (ret_val) {
5625 /* When auto config read does not complete, do not
5626 * return with an error. This can happen in situations
5627 * where there is no eeprom and prevents getting link.
5628 */
5629 e_dbg("Auto Read Done did not complete\n");
5630 ret_val = 0;
5631 }
5632 }
5633
5634 /* Clear PHY Reset Asserted bit */
5635 status = er32(STATUS);
5636 if (status & E1000_STATUS_PHYRA)
5637 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5638 else
5639 e_dbg("PHY Reset Asserted not set - needs delay\n");
5640
5641 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5642 if (hw->mac.type <= e1000_ich9lan) {
5643 if (!(er32(EECD) & E1000_EECD_PRES) &&
5644 (hw->phy.type == e1000_phy_igp_3)) {
5645 e1000e_phy_init_script_igp3(hw);
5646 }
5647 } else {
5648 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5649 /* Maybe we should do a basic PHY config */
5650 e_dbg("EEPROM not present\n");
5651 ret_val = -E1000_ERR_CONFIG;
5652 }
5653 }
5654
5655 return ret_val;
5656}
5657
5658/**
5659 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5660 * @hw: pointer to the HW structure
5661 *
5662 * In the case of a PHY power down to save power, or to turn off link during a
5663 * driver unload, or wake on lan is not enabled, remove the link.
5664 **/
5665static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666{
5667 /* If the management interface is not enabled, then power down */
5668 if (!(hw->mac.ops.check_mng_mode(hw) ||
5669 hw->phy.ops.check_reset_block(hw)))
5670 e1000_power_down_phy_copper(hw);
5671}
5672
5673/**
5674 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5675 * @hw: pointer to the HW structure
5676 *
5677 * Clears hardware counters specific to the silicon family and calls
5678 * clear_hw_cntrs_generic to clear all general purpose counters.
5679 **/
5680static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681{
5682 u16 phy_data;
5683 s32 ret_val;
5684
5685 e1000e_clear_hw_cntrs_base(hw);
5686
5687 er32(ALGNERRC);
5688 er32(RXERRC);
5689 er32(TNCRS);
5690 er32(CEXTERR);
5691 er32(TSCTC);
5692 er32(TSCTFC);
5693
5694 er32(MGTPRC);
5695 er32(MGTPDC);
5696 er32(MGTPTC);
5697
5698 er32(IAC);
5699 er32(ICRXOC);
5700
5701 /* Clear PHY statistics registers */
5702 if ((hw->phy.type == e1000_phy_82578) ||
5703 (hw->phy.type == e1000_phy_82579) ||
5704 (hw->phy.type == e1000_phy_i217) ||
5705 (hw->phy.type == e1000_phy_82577)) {
5706 ret_val = hw->phy.ops.acquire(hw);
5707 if (ret_val)
5708 return;
5709 ret_val = hw->phy.ops.set_page(hw,
5710 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5711 if (ret_val)
5712 goto release;
5713 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5714 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5715 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5716 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5717 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5718 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5719 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5720 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5721 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5722 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5723 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5724 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5725 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5726 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5727release:
5728 hw->phy.ops.release(hw);
5729 }
5730}
5731
5732static const struct e1000_mac_operations ich8_mac_ops = {
5733 /* check_mng_mode dependent on mac type */
5734 .check_for_link = e1000_check_for_copper_link_ich8lan,
5735 /* cleanup_led dependent on mac type */
5736 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5737 .get_bus_info = e1000_get_bus_info_ich8lan,
5738 .set_lan_id = e1000_set_lan_id_single_port,
5739 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5740 /* led_on dependent on mac type */
5741 /* led_off dependent on mac type */
5742 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5743 .reset_hw = e1000_reset_hw_ich8lan,
5744 .init_hw = e1000_init_hw_ich8lan,
5745 .setup_link = e1000_setup_link_ich8lan,
5746 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5747 /* id_led_init dependent on mac type */
5748 .config_collision_dist = e1000e_config_collision_dist_generic,
5749 .rar_set = e1000e_rar_set_generic,
5750 .rar_get_count = e1000e_rar_get_count_generic,
5751};
5752
5753static const struct e1000_phy_operations ich8_phy_ops = {
5754 .acquire = e1000_acquire_swflag_ich8lan,
5755 .check_reset_block = e1000_check_reset_block_ich8lan,
5756 .commit = NULL,
5757 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5758 .get_cable_length = e1000e_get_cable_length_igp_2,
5759 .read_reg = e1000e_read_phy_reg_igp,
5760 .release = e1000_release_swflag_ich8lan,
5761 .reset = e1000_phy_hw_reset_ich8lan,
5762 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5763 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5764 .write_reg = e1000e_write_phy_reg_igp,
5765};
5766
5767static const struct e1000_nvm_operations ich8_nvm_ops = {
5768 .acquire = e1000_acquire_nvm_ich8lan,
5769 .read = e1000_read_nvm_ich8lan,
5770 .release = e1000_release_nvm_ich8lan,
5771 .reload = e1000e_reload_nvm_generic,
5772 .update = e1000_update_nvm_checksum_ich8lan,
5773 .valid_led_default = e1000_valid_led_default_ich8lan,
5774 .validate = e1000_validate_nvm_checksum_ich8lan,
5775 .write = e1000_write_nvm_ich8lan,
5776};
5777
5778static const struct e1000_nvm_operations spt_nvm_ops = {
5779 .acquire = e1000_acquire_nvm_ich8lan,
5780 .release = e1000_release_nvm_ich8lan,
5781 .read = e1000_read_nvm_spt,
5782 .update = e1000_update_nvm_checksum_spt,
5783 .reload = e1000e_reload_nvm_generic,
5784 .valid_led_default = e1000_valid_led_default_ich8lan,
5785 .validate = e1000_validate_nvm_checksum_ich8lan,
5786 .write = e1000_write_nvm_ich8lan,
5787};
5788
5789const struct e1000_info e1000_ich8_info = {
5790 .mac = e1000_ich8lan,
5791 .flags = FLAG_HAS_WOL
5792 | FLAG_IS_ICH
5793 | FLAG_HAS_CTRLEXT_ON_LOAD
5794 | FLAG_HAS_AMT
5795 | FLAG_HAS_FLASH
5796 | FLAG_APME_IN_WUC,
5797 .pba = 8,
5798 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5799 .get_variants = e1000_get_variants_ich8lan,
5800 .mac_ops = &ich8_mac_ops,
5801 .phy_ops = &ich8_phy_ops,
5802 .nvm_ops = &ich8_nvm_ops,
5803};
5804
5805const struct e1000_info e1000_ich9_info = {
5806 .mac = e1000_ich9lan,
5807 .flags = FLAG_HAS_JUMBO_FRAMES
5808 | FLAG_IS_ICH
5809 | FLAG_HAS_WOL
5810 | FLAG_HAS_CTRLEXT_ON_LOAD
5811 | FLAG_HAS_AMT
5812 | FLAG_HAS_FLASH
5813 | FLAG_APME_IN_WUC,
5814 .pba = 18,
5815 .max_hw_frame_size = DEFAULT_JUMBO,
5816 .get_variants = e1000_get_variants_ich8lan,
5817 .mac_ops = &ich8_mac_ops,
5818 .phy_ops = &ich8_phy_ops,
5819 .nvm_ops = &ich8_nvm_ops,
5820};
5821
5822const struct e1000_info e1000_ich10_info = {
5823 .mac = e1000_ich10lan,
5824 .flags = FLAG_HAS_JUMBO_FRAMES
5825 | FLAG_IS_ICH
5826 | FLAG_HAS_WOL
5827 | FLAG_HAS_CTRLEXT_ON_LOAD
5828 | FLAG_HAS_AMT
5829 | FLAG_HAS_FLASH
5830 | FLAG_APME_IN_WUC,
5831 .pba = 18,
5832 .max_hw_frame_size = DEFAULT_JUMBO,
5833 .get_variants = e1000_get_variants_ich8lan,
5834 .mac_ops = &ich8_mac_ops,
5835 .phy_ops = &ich8_phy_ops,
5836 .nvm_ops = &ich8_nvm_ops,
5837};
5838
5839const struct e1000_info e1000_pch_info = {
5840 .mac = e1000_pchlan,
5841 .flags = FLAG_IS_ICH
5842 | FLAG_HAS_WOL
5843 | FLAG_HAS_CTRLEXT_ON_LOAD
5844 | FLAG_HAS_AMT
5845 | FLAG_HAS_FLASH
5846 | FLAG_HAS_JUMBO_FRAMES
5847 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5848 | FLAG_APME_IN_WUC,
5849 .flags2 = FLAG2_HAS_PHY_STATS,
5850 .pba = 26,
5851 .max_hw_frame_size = 4096,
5852 .get_variants = e1000_get_variants_ich8lan,
5853 .mac_ops = &ich8_mac_ops,
5854 .phy_ops = &ich8_phy_ops,
5855 .nvm_ops = &ich8_nvm_ops,
5856};
5857
5858const struct e1000_info e1000_pch2_info = {
5859 .mac = e1000_pch2lan,
5860 .flags = FLAG_IS_ICH
5861 | FLAG_HAS_WOL
5862 | FLAG_HAS_HW_TIMESTAMP
5863 | FLAG_HAS_CTRLEXT_ON_LOAD
5864 | FLAG_HAS_AMT
5865 | FLAG_HAS_FLASH
5866 | FLAG_HAS_JUMBO_FRAMES
5867 | FLAG_APME_IN_WUC,
5868 .flags2 = FLAG2_HAS_PHY_STATS
5869 | FLAG2_HAS_EEE
5870 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5871 .pba = 26,
5872 .max_hw_frame_size = 9022,
5873 .get_variants = e1000_get_variants_ich8lan,
5874 .mac_ops = &ich8_mac_ops,
5875 .phy_ops = &ich8_phy_ops,
5876 .nvm_ops = &ich8_nvm_ops,
5877};
5878
5879const struct e1000_info e1000_pch_lpt_info = {
5880 .mac = e1000_pch_lpt,
5881 .flags = FLAG_IS_ICH
5882 | FLAG_HAS_WOL
5883 | FLAG_HAS_HW_TIMESTAMP
5884 | FLAG_HAS_CTRLEXT_ON_LOAD
5885 | FLAG_HAS_AMT
5886 | FLAG_HAS_FLASH
5887 | FLAG_HAS_JUMBO_FRAMES
5888 | FLAG_APME_IN_WUC,
5889 .flags2 = FLAG2_HAS_PHY_STATS
5890 | FLAG2_HAS_EEE
5891 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5892 .pba = 26,
5893 .max_hw_frame_size = 9022,
5894 .get_variants = e1000_get_variants_ich8lan,
5895 .mac_ops = &ich8_mac_ops,
5896 .phy_ops = &ich8_phy_ops,
5897 .nvm_ops = &ich8_nvm_ops,
5898};
5899
5900const struct e1000_info e1000_pch_spt_info = {
5901 .mac = e1000_pch_spt,
5902 .flags = FLAG_IS_ICH
5903 | FLAG_HAS_WOL
5904 | FLAG_HAS_HW_TIMESTAMP
5905 | FLAG_HAS_CTRLEXT_ON_LOAD
5906 | FLAG_HAS_AMT
5907 | FLAG_HAS_FLASH
5908 | FLAG_HAS_JUMBO_FRAMES
5909 | FLAG_APME_IN_WUC,
5910 .flags2 = FLAG2_HAS_PHY_STATS
5911 | FLAG2_HAS_EEE,
5912 .pba = 26,
5913 .max_hw_frame_size = 9022,
5914 .get_variants = e1000_get_variants_ich8lan,
5915 .mac_ops = &ich8_mac_ops,
5916 .phy_ops = &ich8_phy_ops,
5917 .nvm_ops = &spt_nvm_ops,
5918};
5919
5920const struct e1000_info e1000_pch_cnp_info = {
5921 .mac = e1000_pch_cnp,
5922 .flags = FLAG_IS_ICH
5923 | FLAG_HAS_WOL
5924 | FLAG_HAS_HW_TIMESTAMP
5925 | FLAG_HAS_CTRLEXT_ON_LOAD
5926 | FLAG_HAS_AMT
5927 | FLAG_HAS_FLASH
5928 | FLAG_HAS_JUMBO_FRAMES
5929 | FLAG_APME_IN_WUC,
5930 .flags2 = FLAG2_HAS_PHY_STATS
5931 | FLAG2_HAS_EEE,
5932 .pba = 26,
5933 .max_hw_frame_size = 9022,
5934 .get_variants = e1000_get_variants_ich8lan,
5935 .mac_ops = &ich8_mac_ops,
5936 .phy_ops = &ich8_phy_ops,
5937 .nvm_ops = &spt_nvm_ops,
5938};