Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326	case e1000_pch_nvp:
 327		if (e1000_phy_is_accessible_pchlan(hw))
 328			break;
 329
 330		/* Before toggling LANPHYPC, see if PHY is accessible by
 331		 * forcing MAC to SMBus mode first.
 332		 */
 333		mac_reg = er32(CTRL_EXT);
 334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 335		ew32(CTRL_EXT, mac_reg);
 336
 337		/* Wait 50 milliseconds for MAC to finish any retries
 338		 * that it might be trying to perform from previous
 339		 * attempts to acknowledge any phy read requests.
 340		 */
 341		msleep(50);
 342
 343		fallthrough;
 344	case e1000_pch2lan:
 345		if (e1000_phy_is_accessible_pchlan(hw))
 346			break;
 347
 348		fallthrough;
 349	case e1000_pchlan:
 350		if ((hw->mac.type == e1000_pchlan) &&
 351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 352			break;
 353
 354		if (hw->phy.ops.check_reset_block(hw)) {
 355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 356			ret_val = -E1000_ERR_PHY;
 357			break;
 358		}
 359
 360		/* Toggle LANPHYPC Value bit */
 361		e1000_toggle_lanphypc_pch_lpt(hw);
 362		if (hw->mac.type >= e1000_pch_lpt) {
 363			if (e1000_phy_is_accessible_pchlan(hw))
 364				break;
 365
 366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 367			 * so ensure that the MAC is also out of SMBus mode
 368			 */
 369			mac_reg = er32(CTRL_EXT);
 370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 371			ew32(CTRL_EXT, mac_reg);
 372
 373			if (e1000_phy_is_accessible_pchlan(hw))
 374				break;
 375
 376			ret_val = -E1000_ERR_PHY;
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382
 383	hw->phy.ops.release(hw);
 384	if (!ret_val) {
 385
 386		/* Check to see if able to reset PHY.  Print error if not */
 387		if (hw->phy.ops.check_reset_block(hw)) {
 388			e_err("Reset blocked by ME\n");
 389			goto out;
 390		}
 391
 392		/* Reset the PHY before any access to it.  Doing so, ensures
 393		 * that the PHY is in a known good state before we read/write
 394		 * PHY registers.  The generic reset is sufficient here,
 395		 * because we haven't determined the PHY type yet.
 396		 */
 397		ret_val = e1000e_phy_hw_reset_generic(hw);
 398		if (ret_val)
 399			goto out;
 400
 401		/* On a successful reset, possibly need to wait for the PHY
 402		 * to quiesce to an accessible state before returning control
 403		 * to the calling function.  If the PHY does not quiesce, then
 404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 405		 *  the PHY is in.
 406		 */
 407		ret_val = hw->phy.ops.check_reset_block(hw);
 408		if (ret_val)
 409			e_err("ME blocked access to PHY after reset\n");
 410	}
 411
 412out:
 413	/* Ungate automatic PHY configuration on non-managed 82579 */
 414	if ((hw->mac.type == e1000_pch2lan) &&
 415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 416		usleep_range(10000, 11000);
 417		e1000_gate_hw_phy_config_ich8lan(hw, false);
 418	}
 419
 420	return ret_val;
 421}
 422
 423/**
 424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Initialize family-specific PHY parameters and function pointers.
 428 **/
 429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433
 434	phy->addr = 1;
 435	phy->reset_delay_us = 100;
 436
 437	phy->ops.set_page = e1000_set_page_igp;
 438	phy->ops.read_reg = e1000_read_phy_reg_hv;
 439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 443	phy->ops.write_reg = e1000_write_phy_reg_hv;
 444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 446	phy->ops.power_up = e1000_power_up_phy_copper;
 447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 449
 450	phy->id = e1000_phy_unknown;
 451
 452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 453	if (ret_val)
 454		return ret_val;
 455
 456	if (phy->id == e1000_phy_unknown)
 457		switch (hw->mac.type) {
 458		default:
 459			ret_val = e1000e_get_phy_id(hw);
 460			if (ret_val)
 461				return ret_val;
 462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 463				break;
 464			fallthrough;
 465		case e1000_pch2lan:
 466		case e1000_pch_lpt:
 467		case e1000_pch_spt:
 468		case e1000_pch_cnp:
 469		case e1000_pch_tgp:
 470		case e1000_pch_adp:
 471		case e1000_pch_mtp:
 472		case e1000_pch_lnp:
 473		case e1000_pch_ptp:
 474		case e1000_pch_nvp:
 475			/* In case the PHY needs to be in mdio slow mode,
 476			 * set slow mode and try to get the PHY id again.
 477			 */
 478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 479			if (ret_val)
 480				return ret_val;
 481			ret_val = e1000e_get_phy_id(hw);
 482			if (ret_val)
 483				return ret_val;
 484			break;
 485		}
 486	phy->type = e1000e_get_phy_type_from_id(phy->id);
 487
 488	switch (phy->type) {
 489	case e1000_phy_82577:
 490	case e1000_phy_82579:
 491	case e1000_phy_i217:
 492		phy->ops.check_polarity = e1000_check_polarity_82577;
 493		phy->ops.force_speed_duplex =
 494		    e1000_phy_force_speed_duplex_82577;
 495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 496		phy->ops.get_info = e1000_get_phy_info_82577;
 497		phy->ops.commit = e1000e_phy_sw_reset;
 498		break;
 499	case e1000_phy_82578:
 500		phy->ops.check_polarity = e1000_check_polarity_m88;
 501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 503		phy->ops.get_info = e1000e_get_phy_info_m88;
 504		break;
 505	default:
 506		ret_val = -E1000_ERR_PHY;
 507		break;
 508	}
 509
 510	return ret_val;
 511}
 512
 513/**
 514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Initialize family-specific PHY parameters and function pointers.
 518 **/
 519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 520{
 521	struct e1000_phy_info *phy = &hw->phy;
 522	s32 ret_val;
 523	u16 i = 0;
 524
 525	phy->addr = 1;
 526	phy->reset_delay_us = 100;
 527
 528	phy->ops.power_up = e1000_power_up_phy_copper;
 529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 530
 531	/* We may need to do this twice - once for IGP and if that fails,
 532	 * we'll set BM func pointers and try again
 533	 */
 534	ret_val = e1000e_determine_phy_address(hw);
 535	if (ret_val) {
 536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 538		ret_val = e1000e_determine_phy_address(hw);
 539		if (ret_val) {
 540			e_dbg("Cannot determine PHY addr. Erroring out\n");
 541			return ret_val;
 542		}
 543	}
 544
 545	phy->id = 0;
 546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 547	       (i++ < 100)) {
 548		usleep_range(1000, 1100);
 549		ret_val = e1000e_get_phy_id(hw);
 550		if (ret_val)
 551			return ret_val;
 552	}
 553
 554	/* Verify phy id */
 555	switch (phy->id) {
 556	case IGP03E1000_E_PHY_ID:
 557		phy->type = e1000_phy_igp_3;
 558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 561		phy->ops.get_info = e1000e_get_phy_info_igp;
 562		phy->ops.check_polarity = e1000_check_polarity_igp;
 563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 564		break;
 565	case IFE_E_PHY_ID:
 566	case IFE_PLUS_E_PHY_ID:
 567	case IFE_C_E_PHY_ID:
 568		phy->type = e1000_phy_ife;
 569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 570		phy->ops.get_info = e1000_get_phy_info_ife;
 571		phy->ops.check_polarity = e1000_check_polarity_ife;
 572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 573		break;
 574	case BME1000_E_PHY_ID:
 575		phy->type = e1000_phy_bm;
 576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 579		phy->ops.commit = e1000e_phy_sw_reset;
 580		phy->ops.get_info = e1000e_get_phy_info_m88;
 581		phy->ops.check_polarity = e1000_check_polarity_m88;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 583		break;
 584	default:
 585		return -E1000_ERR_PHY;
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Initialize family-specific NVM parameters and function
 596 *  pointers.
 597 **/
 598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 599{
 600	struct e1000_nvm_info *nvm = &hw->nvm;
 601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 602	u32 gfpreg, sector_base_addr, sector_end_addr;
 603	u16 i;
 604	u32 nvm_size;
 605
 606	nvm->type = e1000_nvm_flash_sw;
 607
 608	if (hw->mac.type >= e1000_pch_spt) {
 609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 610		 * STRAP register. This is because in SPT the GbE Flash region
 611		 * is no longer accessed through the flash registers. Instead,
 612		 * the mechanism has changed, and the Flash region access
 613		 * registers are now implemented in GbE memory space.
 614		 */
 615		nvm->flash_base_addr = 0;
 616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 617		    * NVM_SIZE_MULTIPLIER;
 618		nvm->flash_bank_size = nvm_size / 2;
 619		/* Adjust to word count */
 620		nvm->flash_bank_size /= sizeof(u16);
 621		/* Set the base address for flash register access */
 622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 623	} else {
 624		/* Can't read flash registers if register set isn't mapped. */
 625		if (!hw->flash_address) {
 626			e_dbg("ERROR: Flash registers not mapped\n");
 627			return -E1000_ERR_CONFIG;
 628		}
 629
 630		gfpreg = er32flash(ICH_FLASH_GFPREG);
 631
 632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 633		 * Add 1 to sector_end_addr since this sector is included in
 634		 * the overall size.
 635		 */
 636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 638
 639		/* flash_base_addr is byte-aligned */
 640		nvm->flash_base_addr = sector_base_addr
 641		    << FLASH_SECTOR_ADDR_SHIFT;
 642
 643		/* find total size of the NVM, then cut in half since the total
 644		 * size represents two separate NVM banks.
 645		 */
 646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 647					<< FLASH_SECTOR_ADDR_SHIFT);
 648		nvm->flash_bank_size /= 2;
 649		/* Adjust to word count */
 650		nvm->flash_bank_size /= sizeof(u16);
 651	}
 652
 653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 654
 655	/* Clear shadow ram */
 656	for (i = 0; i < nvm->word_size; i++) {
 657		dev_spec->shadow_ram[i].modified = false;
 658		dev_spec->shadow_ram[i].value = 0xFFFF;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Initialize family-specific MAC parameters and function
 669 *  pointers.
 670 **/
 671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 672{
 673	struct e1000_mac_info *mac = &hw->mac;
 674
 675	/* Set media type function pointer */
 676	hw->phy.media_type = e1000_media_type_copper;
 677
 678	/* Set mta register count */
 679	mac->mta_reg_count = 32;
 680	/* Set rar entry count */
 681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 682	if (mac->type == e1000_ich8lan)
 683		mac->rar_entry_count--;
 684	/* FWSM register */
 685	mac->has_fwsm = true;
 686	/* ARC subsystem not supported */
 687	mac->arc_subsystem_valid = false;
 688	/* Adaptive IFS supported */
 689	mac->adaptive_ifs = true;
 690
 691	/* LED and other operations */
 692	switch (mac->type) {
 693	case e1000_ich8lan:
 694	case e1000_ich9lan:
 695	case e1000_ich10lan:
 696		/* check management mode */
 697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 698		/* ID LED init */
 699		mac->ops.id_led_init = e1000e_id_led_init_generic;
 700		/* blink LED */
 701		mac->ops.blink_led = e1000e_blink_led_generic;
 702		/* setup LED */
 703		mac->ops.setup_led = e1000e_setup_led_generic;
 704		/* cleanup LED */
 705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 706		/* turn on/off LED */
 707		mac->ops.led_on = e1000_led_on_ich8lan;
 708		mac->ops.led_off = e1000_led_off_ich8lan;
 709		break;
 710	case e1000_pch2lan:
 711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 712		mac->ops.rar_set = e1000_rar_set_pch2lan;
 713		fallthrough;
 714	case e1000_pch_lpt:
 715	case e1000_pch_spt:
 716	case e1000_pch_cnp:
 717	case e1000_pch_tgp:
 718	case e1000_pch_adp:
 719	case e1000_pch_mtp:
 720	case e1000_pch_lnp:
 721	case e1000_pch_ptp:
 722	case e1000_pch_nvp:
 723	case e1000_pchlan:
 724		/* check management mode */
 725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 726		/* ID LED init */
 727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 728		/* setup LED */
 729		mac->ops.setup_led = e1000_setup_led_pchlan;
 730		/* cleanup LED */
 731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 732		/* turn on/off LED */
 733		mac->ops.led_on = e1000_led_on_pchlan;
 734		mac->ops.led_off = e1000_led_off_pchlan;
 735		break;
 736	default:
 737		break;
 738	}
 739
 740	if (mac->type >= e1000_pch_lpt) {
 741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 743		mac->ops.setup_physical_interface =
 744		    e1000_setup_copper_link_pch_lpt;
 745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 746	}
 747
 748	/* Enable PCS Lock-loss workaround for ICH8 */
 749	if (mac->type == e1000_ich8lan)
 750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 751
 752	return 0;
 753}
 754
 755/**
 756 *  __e1000_access_emi_reg_locked - Read/write EMI register
 757 *  @hw: pointer to the HW structure
 758 *  @address: EMI address to program
 759 *  @data: pointer to value to read/write from/to the EMI address
 760 *  @read: boolean flag to indicate read or write
 761 *
 762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 765					 u16 *data, bool read)
 766{
 767	s32 ret_val;
 768
 769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 770	if (ret_val)
 771		return ret_val;
 772
 773	if (read)
 774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 775	else
 776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 777
 778	return ret_val;
 779}
 780
 781/**
 782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 783 *  @hw: pointer to the HW structure
 784 *  @addr: EMI address to program
 785 *  @data: value to be read from the EMI address
 786 *
 787 *  Assumes the SW/FW/HW Semaphore is already acquired.
 788 **/
 789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 790{
 791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 792}
 793
 794/**
 795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 796 *  @hw: pointer to the HW structure
 797 *  @addr: EMI address to program
 798 *  @data: value to be written to the EMI address
 799 *
 800 *  Assumes the SW/FW/HW Semaphore is already acquired.
 801 **/
 802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 803{
 804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 805}
 806
 807/**
 808 *  e1000_set_eee_pchlan - Enable/disable EEE support
 809 *  @hw: pointer to the HW structure
 810 *
 811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 812 *  the link and the EEE capabilities of the link partner.  The LPI Control
 813 *  register bits will remain set only if/when link is up.
 814 *
 815 *  EEE LPI must not be asserted earlier than one second after link is up.
 816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 817 *  can be link issues with some switches.  Other devices can have EEE LPI
 818 *  enabled immediately upon link up since they have a timer in hardware which
 819 *  prevents LPI from being asserted too early.
 820 **/
 821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 822{
 823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 824	s32 ret_val;
 825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 826
 827	switch (hw->phy.type) {
 828	case e1000_phy_82579:
 829		lpa = I82579_EEE_LP_ABILITY;
 830		pcs_status = I82579_EEE_PCS_STATUS;
 831		adv_addr = I82579_EEE_ADVERTISEMENT;
 832		break;
 833	case e1000_phy_i217:
 834		lpa = I217_EEE_LP_ABILITY;
 835		pcs_status = I217_EEE_PCS_STATUS;
 836		adv_addr = I217_EEE_ADVERTISEMENT;
 837		break;
 838	default:
 839		return 0;
 840	}
 841
 842	ret_val = hw->phy.ops.acquire(hw);
 843	if (ret_val)
 844		return ret_val;
 845
 846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 847	if (ret_val)
 848		goto release;
 849
 850	/* Clear bits that enable EEE in various speeds */
 851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 852
 853	/* Enable EEE if not disabled by user */
 854	if (!dev_spec->eee_disable) {
 855		/* Save off link partner's EEE ability */
 856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 857						    &dev_spec->eee_lp_ability);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Read EEE advertisement */
 862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 863		if (ret_val)
 864			goto release;
 865
 866		/* Enable EEE only for speeds in which the link partner is
 867		 * EEE capable and for which we advertise EEE.
 868		 */
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 871
 872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 873			e1e_rphy_locked(hw, MII_LPA, &data);
 874			if (data & LPA_100FULL)
 875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 876			else
 877				/* EEE is not supported in 100Half, so ignore
 878				 * partner's EEE in 100 ability if full-duplex
 879				 * is not advertised.
 880				 */
 881				dev_spec->eee_lp_ability &=
 882				    ~I82579_EEE_100_SUPPORTED;
 883		}
 884	}
 885
 886	if (hw->phy.type == e1000_phy_82579) {
 887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888						    &data);
 889		if (ret_val)
 890			goto release;
 891
 892		data &= ~I82579_LPI_100_PLL_SHUT;
 893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 894						     data);
 895	}
 896
 897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 899	if (ret_val)
 900		goto release;
 901
 902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 903release:
 904	hw->phy.ops.release(hw);
 905
 906	return ret_val;
 907}
 908
 909/**
 910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 911 *  @hw:   pointer to the HW structure
 912 *  @link: link up bool flag
 913 *
 914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 915 *  preventing further DMA write requests.  Workaround the issue by disabling
 916 *  the de-assertion of the clock request when in 1Gpbs mode.
 917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 918 *  speeds in order to avoid Tx hangs.
 919 **/
 920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 921{
 922	u32 fextnvm6 = er32(FEXTNVM6);
 923	u32 status = er32(STATUS);
 924	s32 ret_val = 0;
 925	u16 reg;
 926
 927	if (link && (status & E1000_STATUS_SPEED_1000)) {
 928		ret_val = hw->phy.ops.acquire(hw);
 929		if (ret_val)
 930			return ret_val;
 931
 932		ret_val =
 933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 934						&reg);
 935		if (ret_val)
 936			goto release;
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg &
 942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 943		if (ret_val)
 944			goto release;
 945
 946		usleep_range(10, 20);
 947
 948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 949
 950		ret_val =
 951		    e1000e_write_kmrn_reg_locked(hw,
 952						 E1000_KMRNCTRLSTA_K1_CONFIG,
 953						 reg);
 954release:
 955		hw->phy.ops.release(hw);
 956	} else {
 957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 959
 960		if ((hw->phy.revision > 5) || !link ||
 961		    ((status & E1000_STATUS_SPEED_100) &&
 962		     (status & E1000_STATUS_FD)))
 963			goto update_fextnvm6;
 964
 965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 966		if (ret_val)
 967			return ret_val;
 968
 969		/* Clear link status transmit timeout */
 970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 971
 972		if (status & E1000_STATUS_SPEED_100) {
 973			/* Set inband Tx timeout to 5x10us for 100Half */
 974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 975
 976			/* Do not extend the K1 entry latency for 100Half */
 977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 978		} else {
 979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 980			reg |= 50 <<
 981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 982
 983			/* Extend the K1 entry latency for 10 Mbps */
 984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 985		}
 986
 987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 988		if (ret_val)
 989			return ret_val;
 990
 991update_fextnvm6:
 992		ew32(FEXTNVM6, fextnvm6);
 993	}
 994
 995	return ret_val;
 996}
 997
 998/**
 999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078			(1U << (E1000_LTRV_SCALE_FACTOR *
1079				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081		if (lat_enc_d > max_ltr_enc_d)
1082			lat_enc = max_ltr_enc;
1083	}
1084
1085	/* Set Snoop and No-Snoop latencies the same */
1086	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087	ew32(LTRV, reg);
1088
1089	return 0;
1090}
1091
1092/**
1093 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 *  @hw: pointer to the HW structure
1095 *  @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 *  When link is down, configure ULP mode to significantly reduce the power
1098 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1099 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1100 *  system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104	u32 mac_reg;
1105	s32 ret_val = 0;
1106	u16 phy_reg;
1107	u16 oem_reg = 0;
1108
1109	if ((hw->mac.type < e1000_pch_lpt) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115		return 0;
1116
1117	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118		/* Request ME configure ULP mode in the PHY */
1119		mac_reg = er32(H2ME);
1120		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121		ew32(H2ME, mac_reg);
1122
1123		goto out;
1124	}
1125
1126	if (!to_sx) {
1127		int i = 0;
1128
1129		/* Poll up to 5 seconds for Cable Disconnected indication */
1130		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131			/* Bail if link is re-acquired */
1132			if (er32(STATUS) & E1000_STATUS_LU)
1133				return -E1000_ERR_PHY;
1134
1135			if (i++ == 100)
1136				break;
1137
1138			msleep(50);
1139		}
1140		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141		      (er32(FEXT) &
1142		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143	}
1144
1145	ret_val = hw->phy.ops.acquire(hw);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Force SMBus mode in PHY */
1150	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151	if (ret_val)
1152		goto release;
1153	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156	/* Force SMBus mode in MAC */
1157	mac_reg = er32(CTRL_EXT);
1158	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159	ew32(CTRL_EXT, mac_reg);
1160
1161	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1162	 * LPLU and disable Gig speed when entering ULP
1163	 */
1164	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166						       &oem_reg);
1167		if (ret_val)
1168			goto release;
1169
1170		phy_reg = oem_reg;
1171		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174							phy_reg);
1175
1176		if (ret_val)
1177			goto release;
1178	}
1179
1180	/* Set Inband ULP Exit, Reset to SMBus mode and
1181	 * Disable SMBus Release on PERST# in PHY
1182	 */
1183	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184	if (ret_val)
1185		goto release;
1186	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188	if (to_sx) {
1189		if (er32(WUFC) & E1000_WUFC_LNKC)
1190			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191		else
1192			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196	} else {
1197		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200	}
1201	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203	/* Set Disable SMBus Release on PERST# in MAC */
1204	mac_reg = er32(FEXTNVM7);
1205	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206	ew32(FEXTNVM7, mac_reg);
1207
1208	/* Commit ULP changes in PHY by starting auto ULP configuration */
1209	phy_reg |= I218_ULP_CONFIG1_START;
1210	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215							oem_reg);
1216		if (ret_val)
1217			goto release;
1218	}
1219
1220release:
1221	hw->phy.ops.release(hw);
1222out:
1223	if (ret_val)
1224		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225	else
1226		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228	return ret_val;
1229}
1230
1231/**
1232 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 *  @hw: pointer to the HW structure
1234 *  @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 *  Un-configure ULP mode when link is up, the system is transitioned from
1237 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1238 *  system, poll for an indication from ME that ULP has been un-configured.
1239 *  If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 *  During nominal operation, this function is called when link is acquired
1242 *  to disable ULP mode (force=false); otherwise, for example when unloading
1243 *  the driver or during Sx->S0 transitions, this is called with force=true
1244 *  to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248	s32 ret_val = 0;
1249	u32 mac_reg;
1250	u16 phy_reg;
1251	int i = 0;
1252
1253	if ((hw->mac.type < e1000_pch_lpt) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259		return 0;
1260
1261	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262		struct e1000_adapter *adapter = hw->adapter;
1263		bool firmware_bug = false;
1264
1265		if (force) {
1266			/* Request ME un-configure ULP mode in the PHY */
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ULP;
1269			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270			ew32(H2ME, mac_reg);
1271		}
1272
1273		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274		 * If this takes more than 1 second, show a warning indicating a
1275		 * firmware bug
1276		 */
1277		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278			if (i++ == 250) {
1279				ret_val = -E1000_ERR_PHY;
1280				goto out;
1281			}
1282			if (i > 100 && !firmware_bug)
1283				firmware_bug = true;
1284
1285			usleep_range(10000, 11000);
1286		}
1287		if (firmware_bug)
1288			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289			       i * 10);
1290		else
1291			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292			      i * 10);
1293
1294		if (force) {
1295			mac_reg = er32(H2ME);
1296			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297			ew32(H2ME, mac_reg);
1298		} else {
1299			/* Clear H2ME.ULP after ME ULP configuration */
1300			mac_reg = er32(H2ME);
1301			mac_reg &= ~E1000_H2ME_ULP;
1302			ew32(H2ME, mac_reg);
1303		}
1304
1305		goto out;
1306	}
1307
1308	ret_val = hw->phy.ops.acquire(hw);
1309	if (ret_val)
1310		goto out;
1311
1312	if (force)
1313		/* Toggle LANPHYPC Value bit */
1314		e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316	/* Unforce SMBus mode in PHY */
1317	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318	if (ret_val) {
1319		/* The MAC might be in PCIe mode, so temporarily force to
1320		 * SMBus mode in order to access the PHY.
1321		 */
1322		mac_reg = er32(CTRL_EXT);
1323		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324		ew32(CTRL_EXT, mac_reg);
1325
1326		msleep(50);
1327
1328		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329						       &phy_reg);
1330		if (ret_val)
1331			goto release;
1332	}
1333	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336	/* Unforce SMBus mode in MAC */
1337	mac_reg = er32(CTRL_EXT);
1338	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339	ew32(CTRL_EXT, mac_reg);
1340
1341	/* When ULP mode was previously entered, K1 was disabled by the
1342	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1343	 */
1344	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345	if (ret_val)
1346		goto release;
1347	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350	/* Clear ULP enabled configuration */
1351	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352	if (ret_val)
1353		goto release;
1354	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355		     I218_ULP_CONFIG1_STICKY_ULP |
1356		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357		     I218_ULP_CONFIG1_WOL_HOST |
1358		     I218_ULP_CONFIG1_INBAND_EXIT |
1359		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364	/* Commit ULP changes by starting auto ULP configuration */
1365	phy_reg |= I218_ULP_CONFIG1_START;
1366	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368	/* Clear Disable SMBus Release on PERST# in MAC */
1369	mac_reg = er32(FEXTNVM7);
1370	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371	ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374	hw->phy.ops.release(hw);
1375	if (force) {
1376		e1000_phy_hw_reset(hw);
1377		msleep(50);
1378	}
1379out:
1380	if (ret_val)
1381		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382	else
1383		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385	return ret_val;
1386}
1387
1388/**
1389 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Checks to see of the link status of the hardware has changed.  If a
1393 *  change in link status has been detected, then we read the PHY registers
1394 *  to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398	struct e1000_mac_info *mac = &hw->mac;
1399	s32 ret_val, tipg_reg = 0;
1400	u16 emi_addr, emi_val = 0;
1401	bool link;
1402	u16 phy_reg;
1403
1404	/* We only want to go out to the PHY registers to see if Auto-Neg
1405	 * has completed and/or if our link status has changed.  The
1406	 * get_link_status flag is set upon receiving a Link Status
1407	 * Change or Rx Sequence Error interrupt.
1408	 */
1409	if (!mac->get_link_status)
1410		return 0;
1411	mac->get_link_status = false;
1412
1413	/* First we want to see if the MII Status Register reports
1414	 * link.  If so, then we want to get the current speed/duplex
1415	 * of the PHY.
1416	 */
1417	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418	if (ret_val)
1419		goto out;
1420
1421	if (hw->mac.type == e1000_pchlan) {
1422		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423		if (ret_val)
1424			goto out;
1425	}
1426
1427	/* When connected at 10Mbps half-duplex, some parts are excessively
1428	 * aggressive resulting in many collisions. To avoid this, increase
1429	 * the IPG and reduce Rx latency in the PHY.
1430	 */
1431	if ((hw->mac.type >= e1000_pch2lan) && link) {
1432		u16 speed, duplex;
1433
1434		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435		tipg_reg = er32(TIPG);
1436		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439			tipg_reg |= 0xFF;
1440			/* Reduce Rx latency in analog PHY */
1441			emi_val = 0;
1442		} else if (hw->mac.type >= e1000_pch_spt &&
1443			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444			tipg_reg |= 0xC;
1445			emi_val = 1;
1446		} else {
1447
1448			/* Roll back the default values */
1449			tipg_reg |= 0x08;
1450			emi_val = 1;
1451		}
1452
1453		ew32(TIPG, tipg_reg);
1454
1455		ret_val = hw->phy.ops.acquire(hw);
1456		if (ret_val)
1457			goto out;
1458
1459		if (hw->mac.type == e1000_pch2lan)
1460			emi_addr = I82579_RX_CONFIG;
1461		else
1462			emi_addr = I217_RX_CONFIG;
1463		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465		if (hw->mac.type >= e1000_pch_lpt) {
1466			u16 phy_reg;
1467
1468			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470			if (speed == SPEED_100 || speed == SPEED_10)
1471				phy_reg |= 0x3E8;
1472			else
1473				phy_reg |= 0xFA;
1474			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476			if (speed == SPEED_1000) {
1477				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478							    &phy_reg);
1479
1480				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483							     phy_reg);
1484			}
1485		}
1486		hw->phy.ops.release(hw);
1487
1488		if (ret_val)
1489			goto out;
1490
1491		if (hw->mac.type >= e1000_pch_spt) {
1492			u16 data;
1493			u16 ptr_gap;
1494
1495			if (speed == SPEED_1000) {
1496				ret_val = hw->phy.ops.acquire(hw);
1497				if (ret_val)
1498					goto out;
1499
1500				ret_val = e1e_rphy_locked(hw,
1501							  PHY_REG(776, 20),
1502							  &data);
1503				if (ret_val) {
1504					hw->phy.ops.release(hw);
1505					goto out;
1506				}
1507
1508				ptr_gap = (data & (0x3FF << 2)) >> 2;
1509				if (ptr_gap < 0x18) {
1510					data &= ~(0x3FF << 2);
1511					data |= (0x18 << 2);
1512					ret_val =
1513					    e1e_wphy_locked(hw,
1514							    PHY_REG(776, 20),
1515							    data);
1516				}
1517				hw->phy.ops.release(hw);
1518				if (ret_val)
1519					goto out;
1520			} else {
1521				ret_val = hw->phy.ops.acquire(hw);
1522				if (ret_val)
1523					goto out;
1524
1525				ret_val = e1e_wphy_locked(hw,
1526							  PHY_REG(776, 20),
1527							  0xC023);
1528				hw->phy.ops.release(hw);
1529				if (ret_val)
1530					goto out;
1531
1532			}
1533		}
1534	}
1535
1536	/* I217 Packet Loss issue:
1537	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538	 * on power up.
1539	 * Set the Beacon Duration for I217 to 8 usec
1540	 */
1541	if (hw->mac.type >= e1000_pch_lpt) {
1542		u32 mac_reg;
1543
1544		mac_reg = er32(FEXTNVM4);
1545		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547		ew32(FEXTNVM4, mac_reg);
1548	}
1549
1550	/* Work-around I218 hang issue */
1551	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556		if (ret_val)
1557			goto out;
1558	}
1559	if (hw->mac.type >= e1000_pch_lpt) {
1560		/* Set platform power management values for
1561		 * Latency Tolerance Reporting (LTR)
1562		 */
1563		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564		if (ret_val)
1565			goto out;
1566	}
1567
1568	/* Clear link partner's EEE ability */
1569	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571	if (hw->mac.type >= e1000_pch_lpt) {
1572		u32 fextnvm6 = er32(FEXTNVM6);
1573
1574		if (hw->mac.type == e1000_pch_spt) {
1575			/* FEXTNVM6 K1-off workaround - for SPT only */
1576			u32 pcieanacfg = er32(PCIEANACFG);
1577
1578			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580			else
1581				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582		}
1583
1584		ew32(FEXTNVM6, fextnvm6);
1585	}
1586
1587	if (!link)
1588		goto out;
1589
1590	switch (hw->mac.type) {
1591	case e1000_pch2lan:
1592		ret_val = e1000_k1_workaround_lv(hw);
1593		if (ret_val)
1594			return ret_val;
1595		fallthrough;
1596	case e1000_pchlan:
1597		if (hw->phy.type == e1000_phy_82578) {
1598			ret_val = e1000_link_stall_workaround_hv(hw);
1599			if (ret_val)
1600				return ret_val;
1601		}
1602
1603		/* Workaround for PCHx parts in half-duplex:
1604		 * Set the number of preambles removed from the packet
1605		 * when it is passed from the PHY to the MAC to prevent
1606		 * the MAC from misinterpreting the packet type.
1607		 */
1608		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615		break;
1616	default:
1617		break;
1618	}
1619
1620	/* Check if there was DownShift, must be checked
1621	 * immediately after link-up
1622	 */
1623	e1000e_check_downshift(hw);
1624
1625	/* Enable/Disable EEE after link up */
1626	if (hw->phy.type > e1000_phy_82579) {
1627		ret_val = e1000_set_eee_pchlan(hw);
1628		if (ret_val)
1629			return ret_val;
1630	}
1631
1632	/* If we are forcing speed/duplex, then we simply return since
1633	 * we have already determined whether we have link or not.
1634	 */
1635	if (!mac->autoneg)
1636		return -E1000_ERR_CONFIG;
1637
1638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1639	 * of MAC speed/duplex configuration.  So we only need to
1640	 * configure Collision Distance in the MAC.
1641	 */
1642	mac->ops.config_collision_dist(hw);
1643
1644	/* Configure Flow Control now that Auto-Neg has completed.
1645	 * First, we need to restore the desired flow control
1646	 * settings because we may have had to re-autoneg with a
1647	 * different link partner.
1648	 */
1649	ret_val = e1000e_config_fc_after_link_up(hw);
1650	if (ret_val)
1651		e_dbg("Error configuring flow control\n");
1652
1653	return ret_val;
1654
1655out:
1656	mac->get_link_status = true;
1657	return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	s32 rc;
1664
1665	rc = e1000_init_mac_params_ich8lan(hw);
1666	if (rc)
1667		return rc;
1668
1669	rc = e1000_init_nvm_params_ich8lan(hw);
1670	if (rc)
1671		return rc;
1672
1673	switch (hw->mac.type) {
1674	case e1000_ich8lan:
1675	case e1000_ich9lan:
1676	case e1000_ich10lan:
1677		rc = e1000_init_phy_params_ich8lan(hw);
1678		break;
1679	case e1000_pchlan:
1680	case e1000_pch2lan:
1681	case e1000_pch_lpt:
1682	case e1000_pch_spt:
1683	case e1000_pch_cnp:
1684	case e1000_pch_tgp:
1685	case e1000_pch_adp:
1686	case e1000_pch_mtp:
1687	case e1000_pch_lnp:
1688	case e1000_pch_ptp:
1689	case e1000_pch_nvp:
1690		rc = e1000_init_phy_params_pchlan(hw);
1691		break;
1692	default:
1693		break;
1694	}
1695	if (rc)
1696		return rc;
1697
1698	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700	 */
1701	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707		hw->mac.ops.blink_led = NULL;
1708	}
1709
1710	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711	    (adapter->hw.phy.type != e1000_phy_ife))
1712		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714	/* Enable workaround for 82579 w/ ME enabled */
1715	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719	return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 *  @hw: pointer to the HW structure
1727 *
1728 *  Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732	mutex_lock(&nvm_mutex);
1733
1734	return 0;
1735}
1736
1737/**
1738 *  e1000_release_nvm_ich8lan - Release NVM mutex
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745	mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 *  @hw: pointer to the HW structure
1751 *
1752 *  Acquires the software control flag for performing PHY and select
1753 *  MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758	s32 ret_val = 0;
1759
1760	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761			     &hw->adapter->state)) {
1762		e_dbg("contention for Phy access\n");
1763		return -E1000_ERR_PHY;
1764	}
1765
1766	while (timeout) {
1767		extcnf_ctrl = er32(EXTCNF_CTRL);
1768		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769			break;
1770
1771		mdelay(1);
1772		timeout--;
1773	}
1774
1775	if (!timeout) {
1776		e_dbg("SW has already locked the resource.\n");
1777		ret_val = -E1000_ERR_CONFIG;
1778		goto out;
1779	}
1780
1781	timeout = SW_FLAG_TIMEOUT;
1782
1783	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784	ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786	while (timeout) {
1787		extcnf_ctrl = er32(EXTCNF_CTRL);
1788		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789			break;
1790
1791		mdelay(1);
1792		timeout--;
1793	}
1794
1795	if (!timeout) {
1796		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797		      er32(FWSM), extcnf_ctrl);
1798		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799		ew32(EXTCNF_CTRL, extcnf_ctrl);
1800		ret_val = -E1000_ERR_CONFIG;
1801		goto out;
1802	}
1803
1804out:
1805	if (ret_val)
1806		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000_release_swflag_ich8lan - Release software control flag
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Releases the software control flag for performing PHY and select
1816 *  MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820	u32 extcnf_ctrl;
1821
1822	extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826		ew32(EXTCNF_CTRL, extcnf_ctrl);
1827	} else {
1828		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829	}
1830
1831	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 *  e1000_check_mng_mode_ich8lan - Checks management mode
1836 *  @hw: pointer to the HW structure
1837 *
1838 *  This checks if the adapter has any manageability enabled.
1839 *  This is a function pointer entry point only called by read/write
1840 *  routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844	u32 fwsm;
1845
1846	fwsm = er32(FWSM);
1847	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848		((fwsm & E1000_FWSM_MODE_MASK) ==
1849		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 *  e1000_check_mng_mode_pchlan - Checks management mode
1854 *  @hw: pointer to the HW structure
1855 *
1856 *  This checks if the adapter has iAMT enabled.
1857 *  This is a function pointer entry point only called by read/write
1858 *  routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862	u32 fwsm;
1863
1864	fwsm = er32(FWSM);
1865	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 *  e1000_rar_set_pch2lan - Set receive address register
1871 *  @hw: pointer to the HW structure
1872 *  @addr: pointer to the receive address
1873 *  @index: receive address array register
1874 *
1875 *  Sets the receive address array register at index to the address passed
1876 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1877 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 *  Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882	u32 rar_low, rar_high;
1883
1884	/* HW expects these in little endian so we reverse the byte order
1885	 * from network order (big endian) to little endian
1886	 */
1887	rar_low = ((u32)addr[0] |
1888		   ((u32)addr[1] << 8) |
1889		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893	/* If MAC address zero, no need to set the AV bit */
1894	if (rar_low || rar_high)
1895		rar_high |= E1000_RAH_AV;
1896
1897	if (index == 0) {
1898		ew32(RAL(index), rar_low);
1899		e1e_flush();
1900		ew32(RAH(index), rar_high);
1901		e1e_flush();
1902		return 0;
1903	}
1904
1905	/* RAR[1-6] are owned by manageability.  Skip those and program the
1906	 * next address into the SHRA register array.
1907	 */
1908	if (index < (u32)(hw->mac.rar_entry_count)) {
1909		s32 ret_val;
1910
1911		ret_val = e1000_acquire_swflag_ich8lan(hw);
1912		if (ret_val)
1913			goto out;
1914
1915		ew32(SHRAL(index - 1), rar_low);
1916		e1e_flush();
1917		ew32(SHRAH(index - 1), rar_high);
1918		e1e_flush();
1919
1920		e1000_release_swflag_ich8lan(hw);
1921
1922		/* verify the register updates */
1923		if ((er32(SHRAL(index - 1)) == rar_low) &&
1924		    (er32(SHRAH(index - 1)) == rar_high))
1925			return 0;
1926
1927		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928		      (index - 1), er32(FWSM));
1929	}
1930
1931out:
1932	e_dbg("Failed to write receive address at index %d\n", index);
1933	return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  Get the number of available receive registers that the Host can
1941 *  program. SHRA[0-10] are the shared receive address registers
1942 *  that are shared between the Host and manageability engine (ME).
1943 *  ME can reserve any number of addresses and the host needs to be
1944 *  able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948	u32 wlock_mac;
1949	u32 num_entries;
1950
1951	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954	switch (wlock_mac) {
1955	case 0:
1956		/* All SHRA[0..10] and RAR[0] available */
1957		num_entries = hw->mac.rar_entry_count;
1958		break;
1959	case 1:
1960		/* Only RAR[0] available */
1961		num_entries = 1;
1962		break;
1963	default:
1964		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965		num_entries = wlock_mac + 1;
1966		break;
1967	}
1968
1969	return num_entries;
1970}
1971
1972/**
1973 *  e1000_rar_set_pch_lpt - Set receive address registers
1974 *  @hw: pointer to the HW structure
1975 *  @addr: pointer to the receive address
1976 *  @index: receive address array register
1977 *
1978 *  Sets the receive address register array at index to the address passed
1979 *  in by addr. For LPT, RAR[0] is the base address register that is to
1980 *  contain the MAC address. SHRA[0-10] are the shared receive address
1981 *  registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985	u32 rar_low, rar_high;
1986	u32 wlock_mac;
1987
1988	/* HW expects these in little endian so we reverse the byte order
1989	 * from network order (big endian) to little endian
1990	 */
1991	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996	/* If MAC address zero, no need to set the AV bit */
1997	if (rar_low || rar_high)
1998		rar_high |= E1000_RAH_AV;
1999
2000	if (index == 0) {
2001		ew32(RAL(index), rar_low);
2002		e1e_flush();
2003		ew32(RAH(index), rar_high);
2004		e1e_flush();
2005		return 0;
2006	}
2007
2008	/* The manageability engine (ME) can lock certain SHRAR registers that
2009	 * it is using - those registers are unavailable for use.
2010	 */
2011	if (index < hw->mac.rar_entry_count) {
2012		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015		/* Check if all SHRAR registers are locked */
2016		if (wlock_mac == 1)
2017			goto out;
2018
2019		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020			s32 ret_val;
2021
2022			ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024			if (ret_val)
2025				goto out;
2026
2027			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028			e1e_flush();
2029			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030			e1e_flush();
2031
2032			e1000_release_swflag_ich8lan(hw);
2033
2034			/* verify the register updates */
2035			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037				return 0;
2038		}
2039	}
2040
2041out:
2042	e_dbg("Failed to write receive address at index %d\n", index);
2043	return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 *  @hw: pointer to the HW structure
2049 *
2050 *  Checks if firmware is blocking the reset of the PHY.
2051 *  This is a function pointer entry point only called by
2052 *  reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056	bool blocked = false;
2057	int i = 0;
2058
2059	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060	       (i++ < 30))
2061		usleep_range(10000, 11000);
2062	return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074	u16 phy_data;
2075	u32 strap = er32(STRAP);
2076	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2077	s32 ret_val;
2078
2079	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082	if (ret_val)
2083		return ret_val;
2084
2085	phy_data &= ~HV_SMB_ADDR_MASK;
2086	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089	if (hw->phy.type == e1000_phy_i217) {
2090		/* Restore SMBus frequency */
2091		if (freq--) {
2092			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093			phy_data |= (freq & BIT(0)) <<
2094			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095			phy_data |= (freq & BIT(1)) <<
2096			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097		} else {
2098			e_dbg("Unsupported SMB frequency in PHY\n");
2099		}
2100	}
2101
2102	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:   pointer to the HW structure
2108 *
2109 *  SW should configure the LCD from the NVM extended configuration region
2110 *  as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114	struct e1000_phy_info *phy = &hw->phy;
2115	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116	s32 ret_val = 0;
2117	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119	/* Initialize the PHY from the NVM on ICH platforms.  This
2120	 * is needed due to an issue where the NVM configuration is
2121	 * not properly autoloaded after power transitions.
2122	 * Therefore, after each PHY reset, we will load the
2123	 * configuration data out of the NVM manually.
2124	 */
2125	switch (hw->mac.type) {
2126	case e1000_ich8lan:
2127		if (phy->type != e1000_phy_igp_3)
2128			return ret_val;
2129
2130		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133			break;
2134		}
2135		fallthrough;
2136	case e1000_pchlan:
2137	case e1000_pch2lan:
2138	case e1000_pch_lpt:
2139	case e1000_pch_spt:
2140	case e1000_pch_cnp:
2141	case e1000_pch_tgp:
2142	case e1000_pch_adp:
2143	case e1000_pch_mtp:
2144	case e1000_pch_lnp:
2145	case e1000_pch_ptp:
2146	case e1000_pch_nvp:
2147		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148		break;
2149	default:
2150		return ret_val;
2151	}
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		return ret_val;
2156
2157	data = er32(FEXTNVM);
2158	if (!(data & sw_cfg_mask))
2159		goto release;
2160
2161	/* Make sure HW does not configure LCD from PHY
2162	 * extended configuration before SW configuration
2163	 */
2164	data = er32(EXTCNF_CTRL);
2165	if ((hw->mac.type < e1000_pch2lan) &&
2166	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167		goto release;
2168
2169	cnf_size = er32(EXTCNF_SIZE);
2170	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172	if (!cnf_size)
2173		goto release;
2174
2175	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178	if (((hw->mac.type == e1000_pchlan) &&
2179	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180	    (hw->mac.type > e1000_pchlan)) {
2181		/* HW configures the SMBus address and LEDs when the
2182		 * OEM and LCD Write Enable bits are set in the NVM.
2183		 * When both NVM bits are cleared, SW will configure
2184		 * them instead.
2185		 */
2186		ret_val = e1000_write_smbus_addr(hw);
2187		if (ret_val)
2188			goto release;
2189
2190		data = er32(LEDCTL);
2191		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192							(u16)data);
2193		if (ret_val)
2194			goto release;
2195	}
2196
2197	/* Configure LCD from extended configuration region. */
2198
2199	/* cnf_base_addr is in DWORD */
2200	word_addr = (u16)(cnf_base_addr << 1);
2201
2202	for (i = 0; i < cnf_size; i++) {
2203		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2204		if (ret_val)
2205			goto release;
2206
2207		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208					 1, &reg_addr);
2209		if (ret_val)
2210			goto release;
2211
2212		/* Save off the PHY page for future writes. */
2213		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214			phy_page = reg_data;
2215			continue;
2216		}
2217
2218		reg_addr &= PHY_REG_MASK;
2219		reg_addr |= phy_page;
2220
2221		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222		if (ret_val)
2223			goto release;
2224	}
2225
2226release:
2227	hw->phy.ops.release(hw);
2228	return ret_val;
2229}
2230
2231/**
2232 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2233 *  @hw:   pointer to the HW structure
2234 *  @link: link up bool flag
2235 *
2236 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2238 *  If link is down, the function will restore the default K1 setting located
2239 *  in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243	s32 ret_val = 0;
2244	u16 status_reg = 0;
2245	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247	if (hw->mac.type != e1000_pchlan)
2248		return 0;
2249
2250	/* Wrap the whole flow with the sw flag */
2251	ret_val = hw->phy.ops.acquire(hw);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256	if (link) {
2257		if (hw->phy.type == e1000_phy_82578) {
2258			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259						  &status_reg);
2260			if (ret_val)
2261				goto release;
2262
2263			status_reg &= (BM_CS_STATUS_LINK_UP |
2264				       BM_CS_STATUS_RESOLVED |
2265				       BM_CS_STATUS_SPEED_MASK);
2266
2267			if (status_reg == (BM_CS_STATUS_LINK_UP |
2268					   BM_CS_STATUS_RESOLVED |
2269					   BM_CS_STATUS_SPEED_1000))
2270				k1_enable = false;
2271		}
2272
2273		if (hw->phy.type == e1000_phy_82577) {
2274			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275			if (ret_val)
2276				goto release;
2277
2278			status_reg &= (HV_M_STATUS_LINK_UP |
2279				       HV_M_STATUS_AUTONEG_COMPLETE |
2280				       HV_M_STATUS_SPEED_MASK);
2281
2282			if (status_reg == (HV_M_STATUS_LINK_UP |
2283					   HV_M_STATUS_AUTONEG_COMPLETE |
2284					   HV_M_STATUS_SPEED_1000))
2285				k1_enable = false;
2286		}
2287
2288		/* Link stall fix for link up */
2289		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290		if (ret_val)
2291			goto release;
2292
2293	} else {
2294		/* Link stall fix for link down */
2295		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296		if (ret_val)
2297			goto release;
2298	}
2299
2300	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303	hw->phy.ops.release(hw);
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_configure_k1_ich8lan - Configure K1 power state
2310 *  @hw: pointer to the HW structure
2311 *  @k1_enable: K1 state to configure
2312 *
2313 *  Configure the K1 power state based on the provided parameter.
2314 *  Assumes semaphore already acquired.
2315 *
2316 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320	s32 ret_val;
2321	u32 ctrl_reg = 0;
2322	u32 ctrl_ext = 0;
2323	u32 reg = 0;
2324	u16 kmrn_reg = 0;
2325
2326	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327					      &kmrn_reg);
2328	if (ret_val)
2329		return ret_val;
2330
2331	if (k1_enable)
2332		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333	else
2334		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337					       kmrn_reg);
2338	if (ret_val)
2339		return ret_val;
2340
2341	usleep_range(20, 40);
2342	ctrl_ext = er32(CTRL_EXT);
2343	ctrl_reg = er32(CTRL);
2344
2345	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346	reg |= E1000_CTRL_FRCSPD;
2347	ew32(CTRL, reg);
2348
2349	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350	e1e_flush();
2351	usleep_range(20, 40);
2352	ew32(CTRL, ctrl_reg);
2353	ew32(CTRL_EXT, ctrl_ext);
2354	e1e_flush();
2355	usleep_range(20, 40);
2356
2357	return 0;
2358}
2359
2360/**
2361 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 *  @hw:       pointer to the HW structure
2363 *  @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2367 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371	s32 ret_val = 0;
2372	u32 mac_reg;
2373	u16 oem_reg;
2374
2375	if (hw->mac.type < e1000_pchlan)
2376		return ret_val;
2377
2378	ret_val = hw->phy.ops.acquire(hw);
2379	if (ret_val)
2380		return ret_val;
2381
2382	if (hw->mac.type == e1000_pchlan) {
2383		mac_reg = er32(EXTCNF_CTRL);
2384		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385			goto release;
2386	}
2387
2388	mac_reg = er32(FEXTNVM);
2389	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390		goto release;
2391
2392	mac_reg = er32(PHY_CTRL);
2393
2394	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395	if (ret_val)
2396		goto release;
2397
2398	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400	if (d0_state) {
2401		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402			oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405			oem_reg |= HV_OEM_BITS_LPLU;
2406	} else {
2407		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409			oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412			       E1000_PHY_CTRL_NOND0A_LPLU))
2413			oem_reg |= HV_OEM_BITS_LPLU;
2414	}
2415
2416	/* Set Restart auto-neg to activate the bits */
2417	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418	    !hw->phy.ops.check_reset_block(hw))
2419		oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424	hw->phy.ops.release(hw);
2425
2426	return ret_val;
2427}
2428
2429/**
2430 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 *  @hw:   pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435	s32 ret_val;
2436	u16 data;
2437
2438	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439	if (ret_val)
2440		return ret_val;
2441
2442	data |= HV_KMRN_MDIO_SLOW;
2443
2444	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446	return ret_val;
2447}
2448
2449/**
2450 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 *  @hw: pointer to the HW structure
2452 *
2453 *  A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457	s32 ret_val = 0;
2458	u16 phy_data;
2459
2460	if (hw->mac.type != e1000_pchlan)
2461		return 0;
2462
2463	/* Set MDIO slow mode before any other MDIO access */
2464	if (hw->phy.type == e1000_phy_82577) {
2465		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (((hw->phy.type == e1000_phy_82577) &&
2471	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473		/* Disable generation of early preamble */
2474		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475		if (ret_val)
2476			return ret_val;
2477
2478		/* Preamble tuning for SSC */
2479		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (hw->phy.type == e1000_phy_82578) {
2485		/* Return registers to default by doing a soft reset then
2486		 * writing 0x3140 to the control register.
2487		 */
2488		if (hw->phy.revision < 2) {
2489			e1000e_phy_sw_reset(hw);
2490			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491			if (ret_val)
2492				return ret_val;
2493		}
2494	}
2495
2496	/* Select page 0 */
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	hw->phy.addr = 1;
2502	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503	hw->phy.ops.release(hw);
2504	if (ret_val)
2505		return ret_val;
2506
2507	/* Configure the K1 Si workaround during phy reset assuming there is
2508	 * link so that it disables K1 if link is in 1Gbps.
2509	 */
2510	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511	if (ret_val)
2512		return ret_val;
2513
2514	/* Workaround for link disconnects on a busy hub in half duplex */
2515	ret_val = hw->phy.ops.acquire(hw);
2516	if (ret_val)
2517		return ret_val;
2518	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519	if (ret_val)
2520		goto release;
2521	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522	if (ret_val)
2523		goto release;
2524
2525	/* set MSE higher to enable link to stay up when noise is high */
2526	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528	hw->phy.ops.release(hw);
2529
2530	return ret_val;
2531}
2532
2533/**
2534 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 *  @hw:   pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539	u32 mac_reg;
2540	u16 i, phy_reg = 0;
2541	s32 ret_val;
2542
2543	ret_val = hw->phy.ops.acquire(hw);
2544	if (ret_val)
2545		return;
2546	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547	if (ret_val)
2548		goto release;
2549
2550	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552		mac_reg = er32(RAL(i));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554					   (u16)(mac_reg & 0xFFFF));
2555		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556					   (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558		mac_reg = er32(RAH(i));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560					   (u16)(mac_reg & 0xFFFF));
2561		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2563	}
2564
2565	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568	hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 *  with 82579 PHY
2574 *  @hw: pointer to the HW structure
2575 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579	s32 ret_val = 0;
2580	u16 phy_reg, data;
2581	u32 mac_reg;
2582	u16 i;
2583
2584	if (hw->mac.type < e1000_pch2lan)
2585		return 0;
2586
2587	/* disable Rx path while enabling/disabling workaround */
2588	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590	if (ret_val)
2591		return ret_val;
2592
2593	if (enable) {
2594		/* Write Rx addresses (rar_entry_count for RAL/H, and
2595		 * SHRAL/H) and initial CRC values to the MAC
2596		 */
2597		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598			u8 mac_addr[ETH_ALEN] = { 0 };
2599			u32 addr_high, addr_low;
2600
2601			addr_high = er32(RAH(i));
2602			if (!(addr_high & E1000_RAH_AV))
2603				continue;
2604			addr_low = er32(RAL(i));
2605			mac_addr[0] = (addr_low & 0xFF);
2606			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609			mac_addr[4] = (addr_high & 0xFF);
2610			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613		}
2614
2615		/* Write Rx addresses to the PHY */
2616		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618		/* Enable jumbo frame workaround in the MAC */
2619		mac_reg = er32(FFLT_DBG);
2620		mac_reg &= ~BIT(14);
2621		mac_reg |= (7 << 15);
2622		ew32(FFLT_DBG, mac_reg);
2623
2624		mac_reg = er32(RCTL);
2625		mac_reg |= E1000_RCTL_SECRC;
2626		ew32(RCTL, mac_reg);
2627
2628		ret_val = e1000e_read_kmrn_reg(hw,
2629					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630					       &data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000e_write_kmrn_reg(hw,
2634						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635						data | BIT(0));
2636		if (ret_val)
2637			return ret_val;
2638		ret_val = e1000e_read_kmrn_reg(hw,
2639					       E1000_KMRNCTRLSTA_HD_CTRL,
2640					       &data);
2641		if (ret_val)
2642			return ret_val;
2643		data &= ~(0xF << 8);
2644		data |= (0xB << 8);
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_HD_CTRL,
2647						data);
2648		if (ret_val)
2649			return ret_val;
2650
2651		/* Enable jumbo frame workaround in the PHY */
2652		e1e_rphy(hw, PHY_REG(769, 23), &data);
2653		data &= ~(0x7F << 5);
2654		data |= (0x37 << 5);
2655		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656		if (ret_val)
2657			return ret_val;
2658		e1e_rphy(hw, PHY_REG(769, 16), &data);
2659		data &= ~BIT(13);
2660		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661		if (ret_val)
2662			return ret_val;
2663		e1e_rphy(hw, PHY_REG(776, 20), &data);
2664		data &= ~(0x3FF << 2);
2665		data |= (E1000_TX_PTR_GAP << 2);
2666		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667		if (ret_val)
2668			return ret_val;
2669		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, HV_PM_CTRL, &data);
2673		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674		if (ret_val)
2675			return ret_val;
2676	} else {
2677		/* Write MAC register values back to h/w defaults */
2678		mac_reg = er32(FFLT_DBG);
2679		mac_reg &= ~(0xF << 14);
2680		ew32(FFLT_DBG, mac_reg);
2681
2682		mac_reg = er32(RCTL);
2683		mac_reg &= ~E1000_RCTL_SECRC;
2684		ew32(RCTL, mac_reg);
2685
2686		ret_val = e1000e_read_kmrn_reg(hw,
2687					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688					       &data);
2689		if (ret_val)
2690			return ret_val;
2691		ret_val = e1000e_write_kmrn_reg(hw,
2692						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693						data & ~BIT(0));
2694		if (ret_val)
2695			return ret_val;
2696		ret_val = e1000e_read_kmrn_reg(hw,
2697					       E1000_KMRNCTRLSTA_HD_CTRL,
2698					       &data);
2699		if (ret_val)
2700			return ret_val;
2701		data &= ~(0xF << 8);
2702		data |= (0xB << 8);
2703		ret_val = e1000e_write_kmrn_reg(hw,
2704						E1000_KMRNCTRLSTA_HD_CTRL,
2705						data);
2706		if (ret_val)
2707			return ret_val;
2708
2709		/* Write PHY register values back to h/w defaults */
2710		e1e_rphy(hw, PHY_REG(769, 23), &data);
2711		data &= ~(0x7F << 5);
2712		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713		if (ret_val)
2714			return ret_val;
2715		e1e_rphy(hw, PHY_REG(769, 16), &data);
2716		data |= BIT(13);
2717		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718		if (ret_val)
2719			return ret_val;
2720		e1e_rphy(hw, PHY_REG(776, 20), &data);
2721		data &= ~(0x3FF << 2);
2722		data |= (0x8 << 2);
2723		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724		if (ret_val)
2725			return ret_val;
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, HV_PM_CTRL, &data);
2730		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731		if (ret_val)
2732			return ret_val;
2733	}
2734
2735	/* re-enable Rx path after enabling/disabling workaround */
2736	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 *  @hw: pointer to the HW structure
2742 *
2743 *  A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747	s32 ret_val = 0;
2748
2749	if (hw->mac.type != e1000_pch2lan)
2750		return 0;
2751
2752	/* Set MDIO slow mode before any other MDIO access */
2753	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754	if (ret_val)
2755		return ret_val;
2756
2757	ret_val = hw->phy.ops.acquire(hw);
2758	if (ret_val)
2759		return ret_val;
2760	/* set MSE higher to enable link to stay up when noise is high */
2761	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762	if (ret_val)
2763		goto release;
2764	/* drop link after 5 times MSE threshold was reached */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767	hw->phy.ops.release(hw);
2768
2769	return ret_val;
2770}
2771
2772/**
2773 *  e1000_k1_workaround_lv - K1 Si workaround
2774 *  @hw:   pointer to the HW structure
2775 *
2776 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 *  Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781	s32 ret_val = 0;
2782	u16 status_reg = 0;
2783
2784	if (hw->mac.type != e1000_pch2lan)
2785		return 0;
2786
2787	/* Set K1 beacon duration based on 10Mbs speed */
2788	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789	if (ret_val)
2790		return ret_val;
2791
2792	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794		if (status_reg &
2795		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796			u16 pm_phy_reg;
2797
2798			/* LV 1G/100 Packet drop issue wa  */
2799			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800			if (ret_val)
2801				return ret_val;
2802			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806		} else {
2807			u32 mac_reg;
2808
2809			mac_reg = er32(FEXTNVM4);
2810			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812			ew32(FEXTNVM4, mac_reg);
2813		}
2814	}
2815
2816	return ret_val;
2817}
2818
2819/**
2820 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 *  @hw:   pointer to the HW structure
2822 *  @gate: boolean set to true to gate, false to ungate
2823 *
2824 *  Gate/ungate the automatic PHY configuration via hardware; perform
2825 *  the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829	u32 extcnf_ctrl;
2830
2831	if (hw->mac.type < e1000_pch2lan)
2832		return;
2833
2834	extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836	if (gate)
2837		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838	else
2839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841	ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 *  @hw: pointer to the HW structure
2847 *
2848 *  Check the appropriate indication the MAC has finished configuring the
2849 *  PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855	/* Wait for basic configuration completes before proceeding */
2856	do {
2857		data = er32(STATUS);
2858		data &= E1000_STATUS_LAN_INIT_DONE;
2859		usleep_range(100, 200);
2860	} while ((!data) && --loop);
2861
2862	/* If basic configuration is incomplete before the above loop
2863	 * count reaches 0, loading the configuration from NVM will
2864	 * leave the PHY in a bad state possibly resulting in no link.
2865	 */
2866	if (loop == 0)
2867		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869	/* Clear the Init Done bit for the next init event */
2870	data = er32(STATUS);
2871	data &= ~E1000_STATUS_LAN_INIT_DONE;
2872	ew32(STATUS, data);
2873}
2874
2875/**
2876 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 *  @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881	s32 ret_val = 0;
2882	u16 reg;
2883
2884	if (hw->phy.ops.check_reset_block(hw))
2885		return 0;
2886
2887	/* Allow time for h/w to get to quiescent state after reset */
2888	usleep_range(10000, 11000);
2889
2890	/* Perform any necessary post-reset workarounds */
2891	switch (hw->mac.type) {
2892	case e1000_pchlan:
2893		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894		if (ret_val)
2895			return ret_val;
2896		break;
2897	case e1000_pch2lan:
2898		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899		if (ret_val)
2900			return ret_val;
2901		break;
2902	default:
2903		break;
2904	}
2905
2906	/* Clear the host wakeup bit after lcd reset */
2907	if (hw->mac.type >= e1000_pchlan) {
2908		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2909		reg &= ~BM_WUC_HOST_WU_BIT;
2910		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911	}
2912
2913	/* Configure the LCD with the extended configuration region in NVM */
2914	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915	if (ret_val)
2916		return ret_val;
2917
2918	/* Configure the LCD with the OEM bits in NVM */
2919	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921	if (hw->mac.type == e1000_pch2lan) {
2922		/* Ungate automatic PHY configuration on non-managed 82579 */
2923		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924			usleep_range(10000, 11000);
2925			e1000_gate_hw_phy_config_ich8lan(hw, false);
2926		}
2927
2928		/* Set EEE LPI Update Timer to 200usec */
2929		ret_val = hw->phy.ops.acquire(hw);
2930		if (ret_val)
2931			return ret_val;
2932		ret_val = e1000_write_emi_reg_locked(hw,
2933						     I82579_LPI_UPDATE_TIMER,
2934						     0x1387);
2935		hw->phy.ops.release(hw);
2936	}
2937
2938	return ret_val;
2939}
2940
2941/**
2942 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 *  @hw: pointer to the HW structure
2944 *
2945 *  Resets the PHY
2946 *  This is a function pointer entry point called by drivers
2947 *  or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951	s32 ret_val = 0;
2952
2953	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954	if ((hw->mac.type == e1000_pch2lan) &&
2955	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956		e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958	ret_val = e1000e_phy_hw_reset_generic(hw);
2959	if (ret_val)
2960		return ret_val;
2961
2962	return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 *  @hw: pointer to the HW structure
2968 *  @active: true to enable LPLU, false to disable
2969 *
2970 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2971 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 *  the phy speed. This function will manually set the LPLU bit and restart
2973 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 *  since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978	s32 ret_val;
2979	u16 oem_reg;
2980
2981	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982	if (ret_val)
2983		return ret_val;
2984
2985	if (active)
2986		oem_reg |= HV_OEM_BITS_LPLU;
2987	else
2988		oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990	if (!hw->phy.ops.check_reset_block(hw))
2991		oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 *  @hw: pointer to the HW structure
2999 *  @active: true to enable LPLU, false to disable
3000 *
3001 *  Sets the LPLU D0 state according to the active flag.  When
3002 *  activating LPLU this function also disables smart speed
3003 *  and vice versa.  LPLU will not be activated unless the
3004 *  device autonegotiation advertisement meets standards of
3005 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 *  This is a function pointer entry point only called by
3007 *  PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011	struct e1000_phy_info *phy = &hw->phy;
3012	u32 phy_ctrl;
3013	s32 ret_val = 0;
3014	u16 data;
3015
3016	if (phy->type == e1000_phy_ife)
3017		return 0;
3018
3019	phy_ctrl = er32(PHY_CTRL);
3020
3021	if (active) {
3022		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023		ew32(PHY_CTRL, phy_ctrl);
3024
3025		if (phy->type != e1000_phy_igp_3)
3026			return 0;
3027
3028		/* Call gig speed drop workaround on LPLU before accessing
3029		 * any PHY registers
3030		 */
3031		if (hw->mac.type == e1000_ich8lan)
3032			e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034		/* When LPLU is enabled, we should disable SmartSpeed */
3035		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036		if (ret_val)
3037			return ret_val;
3038		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040		if (ret_val)
3041			return ret_val;
3042	} else {
3043		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044		ew32(PHY_CTRL, phy_ctrl);
3045
3046		if (phy->type != e1000_phy_igp_3)
3047			return 0;
3048
3049		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3050		 * during Dx states where the power conservation is most
3051		 * important.  During driver activity we should enable
3052		 * SmartSpeed, so performance is maintained.
3053		 */
3054		if (phy->smart_speed == e1000_smart_speed_on) {
3055			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056					   &data);
3057			if (ret_val)
3058				return ret_val;
3059
3060			data |= IGP01E1000_PSCFR_SMART_SPEED;
3061			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062					   data);
3063			if (ret_val)
3064				return ret_val;
3065		} else if (phy->smart_speed == e1000_smart_speed_off) {
3066			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   &data);
3068			if (ret_val)
3069				return ret_val;
3070
3071			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   data);
3074			if (ret_val)
3075				return ret_val;
3076		}
3077	}
3078
3079	return 0;
3080}
3081
3082/**
3083 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 *  @hw: pointer to the HW structure
3085 *  @active: true to enable LPLU, false to disable
3086 *
3087 *  Sets the LPLU D3 state according to the active flag.  When
3088 *  activating LPLU this function also disables smart speed
3089 *  and vice versa.  LPLU will not be activated unless the
3090 *  device autonegotiation advertisement meets standards of
3091 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 *  This is a function pointer entry point only called by
3093 *  PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097	struct e1000_phy_info *phy = &hw->phy;
3098	u32 phy_ctrl;
3099	s32 ret_val = 0;
3100	u16 data;
3101
3102	phy_ctrl = er32(PHY_CTRL);
3103
3104	if (!active) {
3105		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106		ew32(PHY_CTRL, phy_ctrl);
3107
3108		if (phy->type != e1000_phy_igp_3)
3109			return 0;
3110
3111		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3112		 * during Dx states where the power conservation is most
3113		 * important.  During driver activity we should enable
3114		 * SmartSpeed, so performance is maintained.
3115		 */
3116		if (phy->smart_speed == e1000_smart_speed_on) {
3117			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118					   &data);
3119			if (ret_val)
3120				return ret_val;
3121
3122			data |= IGP01E1000_PSCFR_SMART_SPEED;
3123			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124					   data);
3125			if (ret_val)
3126				return ret_val;
3127		} else if (phy->smart_speed == e1000_smart_speed_off) {
3128			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129					   &data);
3130			if (ret_val)
3131				return ret_val;
3132
3133			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135					   data);
3136			if (ret_val)
3137				return ret_val;
3138		}
3139	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143		ew32(PHY_CTRL, phy_ctrl);
3144
3145		if (phy->type != e1000_phy_igp_3)
3146			return 0;
3147
3148		/* Call gig speed drop workaround on LPLU before accessing
3149		 * any PHY registers
3150		 */
3151		if (hw->mac.type == e1000_ich8lan)
3152			e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154		/* When LPLU is enabled, we should disable SmartSpeed */
3155		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156		if (ret_val)
3157			return ret_val;
3158
3159		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161	}
3162
3163	return ret_val;
3164}
3165
3166/**
3167 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 *  @hw: pointer to the HW structure
3169 *  @bank:  pointer to the variable that returns the active bank
3170 *
3171 *  Reads signature byte from the NVM using the flash access registers.
3172 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176	u32 eecd;
3177	struct e1000_nvm_info *nvm = &hw->nvm;
3178	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180	u32 nvm_dword = 0;
3181	u8 sig_byte = 0;
3182	s32 ret_val;
3183
3184	switch (hw->mac.type) {
3185	case e1000_pch_spt:
3186	case e1000_pch_cnp:
3187	case e1000_pch_tgp:
3188	case e1000_pch_adp:
3189	case e1000_pch_mtp:
3190	case e1000_pch_lnp:
3191	case e1000_pch_ptp:
3192	case e1000_pch_nvp:
3193		bank1_offset = nvm->flash_bank_size;
3194		act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196		/* set bank to 0 in case flash read fails */
3197		*bank = 0;
3198
3199		/* Check bank 0 */
3200		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201							 &nvm_dword);
3202		if (ret_val)
3203			return ret_val;
3204		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206		    E1000_ICH_NVM_SIG_VALUE) {
3207			*bank = 0;
3208			return 0;
3209		}
3210
3211		/* Check bank 1 */
3212		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213							 bank1_offset,
3214							 &nvm_dword);
3215		if (ret_val)
3216			return ret_val;
3217		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219		    E1000_ICH_NVM_SIG_VALUE) {
3220			*bank = 1;
3221			return 0;
3222		}
3223
3224		e_dbg("ERROR: No valid NVM bank present\n");
3225		return -E1000_ERR_NVM;
3226	case e1000_ich8lan:
3227	case e1000_ich9lan:
3228		eecd = er32(EECD);
3229		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231			if (eecd & E1000_EECD_SEC1VAL)
3232				*bank = 1;
3233			else
3234				*bank = 0;
3235
3236			return 0;
3237		}
3238		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239		fallthrough;
3240	default:
3241		/* set bank to 0 in case flash read fails */
3242		*bank = 0;
3243
3244		/* Check bank 0 */
3245		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246							&sig_byte);
3247		if (ret_val)
3248			return ret_val;
3249		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250		    E1000_ICH_NVM_SIG_VALUE) {
3251			*bank = 0;
3252			return 0;
3253		}
3254
3255		/* Check bank 1 */
3256		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257							bank1_offset,
3258							&sig_byte);
3259		if (ret_val)
3260			return ret_val;
3261		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262		    E1000_ICH_NVM_SIG_VALUE) {
3263			*bank = 1;
3264			return 0;
3265		}
3266
3267		e_dbg("ERROR: No valid NVM bank present\n");
3268		return -E1000_ERR_NVM;
3269	}
3270}
3271
3272/**
3273 *  e1000_read_nvm_spt - NVM access for SPT
3274 *  @hw: pointer to the HW structure
3275 *  @offset: The offset (in bytes) of the word(s) to read.
3276 *  @words: Size of data to read in words.
3277 *  @data: pointer to the word(s) to read at offset.
3278 *
3279 *  Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282			      u16 *data)
3283{
3284	struct e1000_nvm_info *nvm = &hw->nvm;
3285	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286	u32 act_offset;
3287	s32 ret_val = 0;
3288	u32 bank = 0;
3289	u32 dword = 0;
3290	u16 offset_to_read;
3291	u16 i;
3292
3293	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294	    (words == 0)) {
3295		e_dbg("nvm parameter(s) out of bounds\n");
3296		ret_val = -E1000_ERR_NVM;
3297		goto out;
3298	}
3299
3300	nvm->ops.acquire(hw);
3301
3302	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303	if (ret_val) {
3304		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305		bank = 0;
3306	}
3307
3308	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309	act_offset += offset;
3310
3311	ret_val = 0;
3312
3313	for (i = 0; i < words; i += 2) {
3314		if (words - i == 1) {
3315			if (dev_spec->shadow_ram[offset + i].modified) {
3316				data[i] =
3317				    dev_spec->shadow_ram[offset + i].value;
3318			} else {
3319				offset_to_read = act_offset + i -
3320				    ((act_offset + i) % 2);
3321				ret_val =
3322				  e1000_read_flash_dword_ich8lan(hw,
3323								 offset_to_read,
3324								 &dword);
3325				if (ret_val)
3326					break;
3327				if ((act_offset + i) % 2 == 0)
3328					data[i] = (u16)(dword & 0xFFFF);
3329				else
3330					data[i] = (u16)((dword >> 16) & 0xFFFF);
3331			}
3332		} else {
3333			offset_to_read = act_offset + i;
3334			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336				ret_val =
3337				  e1000_read_flash_dword_ich8lan(hw,
3338								 offset_to_read,
3339								 &dword);
3340				if (ret_val)
3341					break;
3342			}
3343			if (dev_spec->shadow_ram[offset + i].modified)
3344				data[i] =
3345				    dev_spec->shadow_ram[offset + i].value;
3346			else
3347				data[i] = (u16)(dword & 0xFFFF);
3348			if (dev_spec->shadow_ram[offset + i].modified)
3349				data[i + 1] =
3350				    dev_spec->shadow_ram[offset + i + 1].value;
3351			else
3352				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353		}
3354	}
3355
3356	nvm->ops.release(hw);
3357
3358out:
3359	if (ret_val)
3360		e_dbg("NVM read error: %d\n", ret_val);
3361
3362	return ret_val;
3363}
3364
3365/**
3366 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 *  @hw: pointer to the HW structure
3368 *  @offset: The offset (in bytes) of the word(s) to read.
3369 *  @words: Size of data to read in words
3370 *  @data: Pointer to the word(s) to read at offset.
3371 *
3372 *  Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375				  u16 *data)
3376{
3377	struct e1000_nvm_info *nvm = &hw->nvm;
3378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379	u32 act_offset;
3380	s32 ret_val = 0;
3381	u32 bank = 0;
3382	u16 i, word;
3383
3384	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385	    (words == 0)) {
3386		e_dbg("nvm parameter(s) out of bounds\n");
3387		ret_val = -E1000_ERR_NVM;
3388		goto out;
3389	}
3390
3391	nvm->ops.acquire(hw);
3392
3393	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394	if (ret_val) {
3395		e_dbg("Could not detect valid bank, assuming bank 0\n");
3396		bank = 0;
3397	}
3398
3399	act_offset = (bank) ? nvm->flash_bank_size : 0;
3400	act_offset += offset;
3401
3402	ret_val = 0;
3403	for (i = 0; i < words; i++) {
3404		if (dev_spec->shadow_ram[offset + i].modified) {
3405			data[i] = dev_spec->shadow_ram[offset + i].value;
3406		} else {
3407			ret_val = e1000_read_flash_word_ich8lan(hw,
3408								act_offset + i,
3409								&word);
3410			if (ret_val)
3411				break;
3412			data[i] = word;
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3427 *  @hw: pointer to the HW structure
3428 *
3429 *  This function does initial flash setup so that a new read/write/erase cycle
3430 *  can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434	union ich8_hws_flash_status hsfsts;
3435	s32 ret_val = -E1000_ERR_NVM;
3436
3437	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439	/* Check if the flash descriptor is valid */
3440	if (!hsfsts.hsf_status.fldesvalid) {
3441		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3442		return -E1000_ERR_NVM;
3443	}
3444
3445	/* Clear FCERR and DAEL in hw status by writing 1 */
3446	hsfsts.hsf_status.flcerr = 1;
3447	hsfsts.hsf_status.dael = 1;
3448	if (hw->mac.type >= e1000_pch_spt)
3449		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450	else
3451		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453	/* Either we should have a hardware SPI cycle in progress
3454	 * bit to check against, in order to start a new cycle or
3455	 * FDONE bit should be changed in the hardware so that it
3456	 * is 1 after hardware reset, which can then be used as an
3457	 * indication whether a cycle is in progress or has been
3458	 * completed.
3459	 */
3460
3461	if (!hsfsts.hsf_status.flcinprog) {
3462		/* There is no cycle running at present,
3463		 * so we can start a cycle.
3464		 * Begin by setting Flash Cycle Done.
3465		 */
3466		hsfsts.hsf_status.flcdone = 1;
3467		if (hw->mac.type >= e1000_pch_spt)
3468			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469		else
3470			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471		ret_val = 0;
3472	} else {
3473		s32 i;
3474
3475		/* Otherwise poll for sometime so the current
3476		 * cycle has a chance to end before giving up.
3477		 */
3478		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480			if (!hsfsts.hsf_status.flcinprog) {
3481				ret_val = 0;
3482				break;
3483			}
3484			udelay(1);
3485		}
3486		if (!ret_val) {
3487			/* Successful in waiting for previous cycle to timeout,
3488			 * now set the Flash Cycle Done.
3489			 */
3490			hsfsts.hsf_status.flcdone = 1;
3491			if (hw->mac.type >= e1000_pch_spt)
3492				ew32flash(ICH_FLASH_HSFSTS,
3493					  hsfsts.regval & 0xFFFF);
3494			else
3495				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496		} else {
3497			e_dbg("Flash controller busy, cannot get access\n");
3498		}
3499	}
3500
3501	return ret_val;
3502}
3503
3504/**
3505 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 *  @hw: pointer to the HW structure
3507 *  @timeout: maximum time to wait for completion
3508 *
3509 *  This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513	union ich8_hws_flash_ctrl hsflctl;
3514	union ich8_hws_flash_status hsfsts;
3515	u32 i = 0;
3516
3517	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518	if (hw->mac.type >= e1000_pch_spt)
3519		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520	else
3521		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522	hsflctl.hsf_ctrl.flcgo = 1;
3523
3524	if (hw->mac.type >= e1000_pch_spt)
3525		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526	else
3527		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529	/* wait till FDONE bit is set to 1 */
3530	do {
3531		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532		if (hsfsts.hsf_status.flcdone)
3533			break;
3534		udelay(1);
3535	} while (i++ < timeout);
3536
3537	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538		return 0;
3539
3540	return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3545 *  @hw: pointer to the HW structure
3546 *  @offset: offset to data location
3547 *  @data: pointer to the location for storing the data
3548 *
3549 *  Reads the flash dword at offset into data.  Offset is converted
3550 *  to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553					  u32 *data)
3554{
3555	/* Must convert word offset into bytes. */
3556	offset <<= 1;
3557	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 *  e1000_read_flash_word_ich8lan - Read word from flash
3562 *  @hw: pointer to the HW structure
3563 *  @offset: offset to data location
3564 *  @data: pointer to the location for storing the data
3565 *
3566 *  Reads the flash word at offset into data.  Offset is converted
3567 *  to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570					 u16 *data)
3571{
3572	/* Must convert offset into bytes. */
3573	offset <<= 1;
3574
3575	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3580 *  @hw: pointer to the HW structure
3581 *  @offset: The offset of the byte to read.
3582 *  @data: Pointer to a byte to store the value read.
3583 *
3584 *  Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587					 u8 *data)
3588{
3589	s32 ret_val;
3590	u16 word = 0;
3591
3592	/* In SPT, only 32 bits access is supported,
3593	 * so this function should not be called.
3594	 */
3595	if (hw->mac.type >= e1000_pch_spt)
3596		return -E1000_ERR_NVM;
3597	else
3598		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600	if (ret_val)
3601		return ret_val;
3602
3603	*data = (u8)word;
3604
3605	return 0;
3606}
3607
3608/**
3609 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 *  @hw: pointer to the HW structure
3611 *  @offset: The offset (in bytes) of the byte or word to read.
3612 *  @size: Size of data to read, 1=byte 2=word
3613 *  @data: Pointer to the word to store the value read.
3614 *
3615 *  Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618					 u8 size, u16 *data)
3619{
3620	union ich8_hws_flash_status hsfsts;
3621	union ich8_hws_flash_ctrl hsflctl;
3622	u32 flash_linear_addr;
3623	u32 flash_data = 0;
3624	s32 ret_val = -E1000_ERR_NVM;
3625	u8 count = 0;
3626
3627	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628		return -E1000_ERR_NVM;
3629
3630	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631			     hw->nvm.flash_base_addr);
3632
3633	do {
3634		udelay(1);
3635		/* Steps */
3636		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637		if (ret_val)
3638			break;
3639
3640		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642		hsflctl.hsf_ctrl.fldbcount = size - 1;
3643		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648		ret_val =
3649		    e1000_flash_cycle_ich8lan(hw,
3650					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652		/* Check if FCERR is set to 1, if set to 1, clear it
3653		 * and try the whole sequence a few more times, else
3654		 * read in (shift in) the Flash Data0, the order is
3655		 * least significant byte first msb to lsb
3656		 */
3657		if (!ret_val) {
3658			flash_data = er32flash(ICH_FLASH_FDATA0);
3659			if (size == 1)
3660				*data = (u8)(flash_data & 0x000000FF);
3661			else if (size == 2)
3662				*data = (u16)(flash_data & 0x0000FFFF);
3663			break;
3664		} else {
3665			/* If we've gotten here, then things are probably
3666			 * completely hosed, but if the error condition is
3667			 * detected, it won't hurt to give it another try...
3668			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669			 */
3670			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671			if (hsfsts.hsf_status.flcerr) {
3672				/* Repeat for some time before giving up. */
3673				continue;
3674			} else if (!hsfsts.hsf_status.flcdone) {
3675				e_dbg("Timeout error - flash cycle did not complete.\n");
3676				break;
3677			}
3678		}
3679	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681	return ret_val;
3682}
3683
3684/**
3685 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 *  @hw: pointer to the HW structure
3687 *  @offset: The offset (in bytes) of the dword to read.
3688 *  @data: Pointer to the dword to store the value read.
3689 *
3690 *  Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694					   u32 *data)
3695{
3696	union ich8_hws_flash_status hsfsts;
3697	union ich8_hws_flash_ctrl hsflctl;
3698	u32 flash_linear_addr;
3699	s32 ret_val = -E1000_ERR_NVM;
3700	u8 count = 0;
3701
3702	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703		return -E1000_ERR_NVM;
3704	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705			     hw->nvm.flash_base_addr);
3706
3707	do {
3708		udelay(1);
3709		/* Steps */
3710		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711		if (ret_val)
3712			break;
3713		/* In SPT, This register is in Lan memory space, not flash.
3714		 * Therefore, only 32 bit access is supported
3715		 */
3716		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721		/* In SPT, This register is in Lan memory space, not flash.
3722		 * Therefore, only 32 bit access is supported
3723		 */
3724		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727		ret_val =
3728		   e1000_flash_cycle_ich8lan(hw,
3729					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731		/* Check if FCERR is set to 1, if set to 1, clear it
3732		 * and try the whole sequence a few more times, else
3733		 * read in (shift in) the Flash Data0, the order is
3734		 * least significant byte first msb to lsb
3735		 */
3736		if (!ret_val) {
3737			*data = er32flash(ICH_FLASH_FDATA0);
3738			break;
3739		} else {
3740			/* If we've gotten here, then things are probably
3741			 * completely hosed, but if the error condition is
3742			 * detected, it won't hurt to give it another try...
3743			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744			 */
3745			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746			if (hsfsts.hsf_status.flcerr) {
3747				/* Repeat for some time before giving up. */
3748				continue;
3749			} else if (!hsfsts.hsf_status.flcdone) {
3750				e_dbg("Timeout error - flash cycle did not complete.\n");
3751				break;
3752			}
3753		}
3754	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756	return ret_val;
3757}
3758
3759/**
3760 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 *  @hw: pointer to the HW structure
3762 *  @offset: The offset (in bytes) of the word(s) to write.
3763 *  @words: Size of data to write in words
3764 *  @data: Pointer to the word(s) to write at offset.
3765 *
3766 *  Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769				   u16 *data)
3770{
3771	struct e1000_nvm_info *nvm = &hw->nvm;
3772	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773	u16 i;
3774
3775	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776	    (words == 0)) {
3777		e_dbg("nvm parameter(s) out of bounds\n");
3778		return -E1000_ERR_NVM;
3779	}
3780
3781	nvm->ops.acquire(hw);
3782
3783	for (i = 0; i < words; i++) {
3784		dev_spec->shadow_ram[offset + i].modified = true;
3785		dev_spec->shadow_ram[offset + i].value = data[i];
3786	}
3787
3788	nvm->ops.release(hw);
3789
3790	return 0;
3791}
3792
3793/**
3794 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 *  @hw: pointer to the HW structure
3796 *
3797 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 *  which writes the checksum to the shadow ram.  The changes in the shadow
3799 *  ram are then committed to the EEPROM by processing each bank at a time
3800 *  checking for the modified bit and writing only the pending changes.
3801 *  After a successful commit, the shadow ram is cleared and is ready for
3802 *  future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806	struct e1000_nvm_info *nvm = &hw->nvm;
3807	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809	s32 ret_val;
3810	u32 dword = 0;
3811
3812	ret_val = e1000e_update_nvm_checksum_generic(hw);
3813	if (ret_val)
3814		goto out;
3815
3816	if (nvm->type != e1000_nvm_flash_sw)
3817		goto out;
3818
3819	nvm->ops.acquire(hw);
3820
3821	/* We're writing to the opposite bank so if we're on bank 1,
3822	 * write to bank 0 etc.  We also need to erase the segment that
3823	 * is going to be written
3824	 */
3825	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826	if (ret_val) {
3827		e_dbg("Could not detect valid bank, assuming bank 0\n");
3828		bank = 0;
3829	}
3830
3831	if (bank == 0) {
3832		new_bank_offset = nvm->flash_bank_size;
3833		old_bank_offset = 0;
3834		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835		if (ret_val)
3836			goto release;
3837	} else {
3838		old_bank_offset = nvm->flash_bank_size;
3839		new_bank_offset = 0;
3840		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841		if (ret_val)
3842			goto release;
3843	}
3844	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845		/* Determine whether to write the value stored
3846		 * in the other NVM bank or a modified value stored
3847		 * in the shadow RAM
3848		 */
3849		ret_val = e1000_read_flash_dword_ich8lan(hw,
3850							 i + old_bank_offset,
3851							 &dword);
3852
3853		if (dev_spec->shadow_ram[i].modified) {
3854			dword &= 0xffff0000;
3855			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856		}
3857		if (dev_spec->shadow_ram[i + 1].modified) {
3858			dword &= 0x0000ffff;
3859			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860				  << 16);
3861		}
3862		if (ret_val)
3863			break;
3864
3865		/* If the word is 0x13, then make sure the signature bits
3866		 * (15:14) are 11b until the commit has completed.
3867		 * This will allow us to write 10b which indicates the
3868		 * signature is valid.  We want to do this after the write
3869		 * has completed so that we don't mark the segment valid
3870		 * while the write is still in progress
3871		 */
3872		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875		/* Convert offset to bytes. */
3876		act_offset = (i + new_bank_offset) << 1;
3877
3878		usleep_range(100, 200);
3879
3880		/* Write the data to the new bank. Offset in words */
3881		act_offset = i + new_bank_offset;
3882		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883								dword);
3884		if (ret_val)
3885			break;
3886	}
3887
3888	/* Don't bother writing the segment valid bits if sector
3889	 * programming failed.
3890	 */
3891	if (ret_val) {
3892		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893		e_dbg("Flash commit failed.\n");
3894		goto release;
3895	}
3896
3897	/* Finally validate the new segment by setting bit 15:14
3898	 * to 10b in word 0x13 , this can be done without an
3899	 * erase as well since these bits are 11 to start with
3900	 * and we need to change bit 14 to 0b
3901	 */
3902	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904	/*offset in words but we read dword */
3905	--act_offset;
3906	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908	if (ret_val)
3909		goto release;
3910
3911	dword &= 0xBFFFFFFF;
3912	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914	if (ret_val)
3915		goto release;
3916
 
 
 
 
 
 
 
3917	/* offset in words but we read dword */
3918	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921	if (ret_val)
3922		goto release;
3923
3924	dword &= 0x00FFFFFF;
3925	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927	if (ret_val)
3928		goto release;
3929
3930	/* Great!  Everything worked, we can now clear the cached entries. */
3931	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932		dev_spec->shadow_ram[i].modified = false;
3933		dev_spec->shadow_ram[i].value = 0xFFFF;
3934	}
3935
3936release:
3937	nvm->ops.release(hw);
3938
3939	/* Reload the EEPROM, or else modifications will not appear
3940	 * until after the next adapter reset.
3941	 */
3942	if (!ret_val) {
3943		nvm->ops.reload(hw);
3944		usleep_range(10000, 11000);
3945	}
3946
3947out:
3948	if (ret_val)
3949		e_dbg("NVM update error: %d\n", ret_val);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 *  which writes the checksum to the shadow ram.  The changes in the shadow
3960 *  ram are then committed to the EEPROM by processing each bank at a time
3961 *  checking for the modified bit and writing only the pending changes.
3962 *  After a successful commit, the shadow ram is cleared and is ready for
3963 *  future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967	struct e1000_nvm_info *nvm = &hw->nvm;
3968	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970	s32 ret_val;
3971	u16 data = 0;
3972
3973	ret_val = e1000e_update_nvm_checksum_generic(hw);
3974	if (ret_val)
3975		goto out;
3976
3977	if (nvm->type != e1000_nvm_flash_sw)
3978		goto out;
3979
3980	nvm->ops.acquire(hw);
3981
3982	/* We're writing to the opposite bank so if we're on bank 1,
3983	 * write to bank 0 etc.  We also need to erase the segment that
3984	 * is going to be written
3985	 */
3986	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987	if (ret_val) {
3988		e_dbg("Could not detect valid bank, assuming bank 0\n");
3989		bank = 0;
3990	}
3991
3992	if (bank == 0) {
3993		new_bank_offset = nvm->flash_bank_size;
3994		old_bank_offset = 0;
3995		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996		if (ret_val)
3997			goto release;
3998	} else {
3999		old_bank_offset = nvm->flash_bank_size;
4000		new_bank_offset = 0;
4001		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002		if (ret_val)
4003			goto release;
4004	}
4005	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006		if (dev_spec->shadow_ram[i].modified) {
4007			data = dev_spec->shadow_ram[i].value;
4008		} else {
4009			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010								old_bank_offset,
4011								&data);
4012			if (ret_val)
4013				break;
4014		}
4015
4016		/* If the word is 0x13, then make sure the signature bits
4017		 * (15:14) are 11b until the commit has completed.
4018		 * This will allow us to write 10b which indicates the
4019		 * signature is valid.  We want to do this after the write
4020		 * has completed so that we don't mark the segment valid
4021		 * while the write is still in progress
4022		 */
4023		if (i == E1000_ICH_NVM_SIG_WORD)
4024			data |= E1000_ICH_NVM_SIG_MASK;
4025
4026		/* Convert offset to bytes. */
4027		act_offset = (i + new_bank_offset) << 1;
4028
4029		usleep_range(100, 200);
4030		/* Write the bytes to the new bank. */
4031		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032							       act_offset,
4033							       (u8)data);
4034		if (ret_val)
4035			break;
4036
4037		usleep_range(100, 200);
4038		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039							       act_offset + 1,
4040							       (u8)(data >> 8));
4041		if (ret_val)
4042			break;
4043	}
4044
4045	/* Don't bother writing the segment valid bits if sector
4046	 * programming failed.
4047	 */
4048	if (ret_val) {
4049		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050		e_dbg("Flash commit failed.\n");
4051		goto release;
4052	}
4053
4054	/* Finally validate the new segment by setting bit 15:14
4055	 * to 10b in word 0x13 , this can be done without an
4056	 * erase as well since these bits are 11 to start with
4057	 * and we need to change bit 14 to 0b
4058	 */
4059	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061	if (ret_val)
4062		goto release;
4063
4064	data &= 0xBFFF;
4065	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066						       act_offset * 2 + 1,
4067						       (u8)(data >> 8));
4068	if (ret_val)
4069		goto release;
4070
4071	/* And invalidate the previously valid segment by setting
4072	 * its signature word (0x13) high_byte to 0b. This can be
4073	 * done without an erase because flash erase sets all bits
4074	 * to 1's. We can write 1's to 0's without an erase
4075	 */
4076	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078	if (ret_val)
4079		goto release;
4080
4081	/* Great!  Everything worked, we can now clear the cached entries. */
4082	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083		dev_spec->shadow_ram[i].modified = false;
4084		dev_spec->shadow_ram[i].value = 0xFFFF;
4085	}
4086
4087release:
4088	nvm->ops.release(hw);
4089
4090	/* Reload the EEPROM, or else modifications will not appear
4091	 * until after the next adapter reset.
4092	 */
4093	if (!ret_val) {
4094		nvm->ops.reload(hw);
4095		usleep_range(10000, 11000);
4096	}
4097
4098out:
4099	if (ret_val)
4100		e_dbg("NVM update error: %d\n", ret_val);
4101
4102	return ret_val;
4103}
4104
4105/**
4106 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 *  @hw: pointer to the HW structure
4108 *
4109 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 *  calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115	s32 ret_val;
4116	u16 data;
4117	u16 word;
4118	u16 valid_csum_mask;
4119
4120	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4121	 * the checksum needs to be fixed.  This bit is an indication that
4122	 * the NVM was prepared by OEM software and did not calculate
4123	 * the checksum...a likely scenario.
4124	 */
4125	switch (hw->mac.type) {
4126	case e1000_pch_lpt:
4127	case e1000_pch_spt:
4128	case e1000_pch_cnp:
4129	case e1000_pch_tgp:
4130	case e1000_pch_adp:
4131	case e1000_pch_mtp:
4132	case e1000_pch_lnp:
4133	case e1000_pch_ptp:
4134	case e1000_pch_nvp:
4135		word = NVM_COMPAT;
4136		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137		break;
4138	default:
4139		word = NVM_FUTURE_INIT_WORD1;
4140		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141		break;
4142	}
4143
4144	ret_val = e1000_read_nvm(hw, word, 1, &data);
4145	if (ret_val)
4146		return ret_val;
4147
4148	if (!(data & valid_csum_mask)) {
4149		e_dbg("NVM Checksum valid bit not set\n");
4150
4151		if (hw->mac.type < e1000_pch_tgp) {
4152			data |= valid_csum_mask;
4153			ret_val = e1000_write_nvm(hw, word, 1, &data);
4154			if (ret_val)
4155				return ret_val;
4156			ret_val = e1000e_update_nvm_checksum(hw);
4157			if (ret_val)
4158				return ret_val;
4159		}
4160	}
4161
4162	return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  To prevent malicious write/erase of the NVM, set it to be read-only
4170 *  so that the hardware ignores all write/erase cycles of the NVM via
4171 *  the flash control registers.  The shadow-ram copy of the NVM will
4172 *  still be updated, however any updates to this copy will not stick
4173 *  across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177	struct e1000_nvm_info *nvm = &hw->nvm;
4178	union ich8_flash_protected_range pr0;
4179	union ich8_hws_flash_status hsfsts;
4180	u32 gfpreg;
4181
4182	nvm->ops.acquire(hw);
4183
4184	gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186	/* Write-protect GbE Sector of NVM */
4187	pr0.regval = er32flash(ICH_FLASH_PR0);
4188	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190	pr0.range.wpe = true;
4191	ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193	/* Lock down a subset of GbE Flash Control Registers, e.g.
4194	 * PR0 to prevent the write-protection from being lifted.
4195	 * Once FLOCKDN is set, the registers protected by it cannot
4196	 * be written until FLOCKDN is cleared by a hardware reset.
4197	 */
4198	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199	hsfsts.hsf_status.flockdn = true;
4200	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202	nvm->ops.release(hw);
4203}
4204
4205/**
4206 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 *  @hw: pointer to the HW structure
4208 *  @offset: The offset (in bytes) of the byte/word to read.
4209 *  @size: Size of data to read, 1=byte 2=word
4210 *  @data: The byte(s) to write to the NVM.
4211 *
4212 *  Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215					  u8 size, u16 data)
4216{
4217	union ich8_hws_flash_status hsfsts;
4218	union ich8_hws_flash_ctrl hsflctl;
4219	u32 flash_linear_addr;
4220	u32 flash_data = 0;
4221	s32 ret_val;
4222	u8 count = 0;
4223
4224	if (hw->mac.type >= e1000_pch_spt) {
4225		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	} else {
4228		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229			return -E1000_ERR_NVM;
4230	}
4231
4232	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233			     hw->nvm.flash_base_addr);
4234
4235	do {
4236		udelay(1);
4237		/* Steps */
4238		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239		if (ret_val)
4240			break;
4241		/* In SPT, This register is in Lan memory space, not
4242		 * flash.  Therefore, only 32 bit access is supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246		else
4247			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250		hsflctl.hsf_ctrl.fldbcount = size - 1;
4251		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252		/* In SPT, This register is in Lan memory space,
4253		 * not flash.  Therefore, only 32 bit access is
4254		 * supported
4255		 */
4256		if (hw->mac.type >= e1000_pch_spt)
4257			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258		else
4259			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263		if (size == 1)
4264			flash_data = (u32)data & 0x00FF;
4265		else
4266			flash_data = (u32)data;
4267
4268		ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270		/* check if FCERR is set to 1 , if set to 1, clear it
4271		 * and try the whole sequence a few more times else done
4272		 */
4273		ret_val =
4274		    e1000_flash_cycle_ich8lan(hw,
4275					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276		if (!ret_val)
4277			break;
4278
4279		/* If we're here, then things are most likely
4280		 * completely hosed, but if the error condition
4281		 * is detected, it won't hurt to give it another
4282		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283		 */
4284		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285		if (hsfsts.hsf_status.flcerr)
4286			/* Repeat for some time before giving up. */
4287			continue;
4288		if (!hsfsts.hsf_status.flcdone) {
4289			e_dbg("Timeout error - flash cycle did not complete.\n");
4290			break;
4291		}
4292	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294	return ret_val;
4295}
4296
4297/**
4298*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299*  @hw: pointer to the HW structure
4300*  @offset: The offset (in bytes) of the dwords to read.
4301*  @data: The 4 bytes to write to the NVM.
4302*
4303*  Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306					    u32 data)
4307{
4308	union ich8_hws_flash_status hsfsts;
4309	union ich8_hws_flash_ctrl hsflctl;
4310	u32 flash_linear_addr;
4311	s32 ret_val;
4312	u8 count = 0;
4313
4314	if (hw->mac.type >= e1000_pch_spt) {
4315		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316			return -E1000_ERR_NVM;
4317	}
4318	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319			     hw->nvm.flash_base_addr);
4320	do {
4321		udelay(1);
4322		/* Steps */
4323		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324		if (ret_val)
4325			break;
4326
4327		/* In SPT, This register is in Lan memory space, not
4328		 * flash.  Therefore, only 32 bit access is supported
4329		 */
4330		if (hw->mac.type >= e1000_pch_spt)
4331			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332			    >> 16;
4333		else
4334			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339		/* In SPT, This register is in Lan memory space,
4340		 * not flash.  Therefore, only 32 bit access is
4341		 * supported
4342		 */
4343		if (hw->mac.type >= e1000_pch_spt)
4344			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345		else
4346			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350		ew32flash(ICH_FLASH_FDATA0, data);
4351
4352		/* check if FCERR is set to 1 , if set to 1, clear it
4353		 * and try the whole sequence a few more times else done
4354		 */
4355		ret_val =
4356		   e1000_flash_cycle_ich8lan(hw,
4357					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359		if (!ret_val)
4360			break;
4361
4362		/* If we're here, then things are most likely
4363		 * completely hosed, but if the error condition
4364		 * is detected, it won't hurt to give it another
4365		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366		 */
4367		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369		if (hsfsts.hsf_status.flcerr)
4370			/* Repeat for some time before giving up. */
4371			continue;
4372		if (!hsfsts.hsf_status.flcdone) {
4373			e_dbg("Timeout error - flash cycle did not complete.\n");
4374			break;
4375		}
4376	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378	return ret_val;
4379}
4380
4381/**
4382 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The index of the byte to read.
4385 *  @data: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390					  u8 data)
4391{
4392	u16 word = (u16)data;
4393
4394	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399*  @hw: pointer to the HW structure
4400*  @offset: The offset of the word to write.
4401*  @dword: The dword to write to the NVM.
4402*
4403*  Writes a single dword to the NVM using the flash access registers.
4404*  Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407						 u32 offset, u32 dword)
4408{
4409	s32 ret_val;
4410	u16 program_retries;
4411
4412	/* Must convert word offset into bytes. */
4413	offset <<= 1;
4414	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416	if (!ret_val)
4417		return ret_val;
4418	for (program_retries = 0; program_retries < 100; program_retries++) {
4419		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420		usleep_range(100, 200);
4421		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422		if (!ret_val)
4423			break;
4424	}
4425	if (program_retries == 100)
4426		return -E1000_ERR_NVM;
4427
4428	return 0;
4429}
4430
4431/**
4432 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 *  @hw: pointer to the HW structure
4434 *  @offset: The offset of the byte to write.
4435 *  @byte: The byte to write to the NVM.
4436 *
4437 *  Writes a single byte to the NVM using the flash access registers.
4438 *  Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441						u32 offset, u8 byte)
4442{
4443	s32 ret_val;
4444	u16 program_retries;
4445
4446	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447	if (!ret_val)
4448		return ret_val;
4449
4450	for (program_retries = 0; program_retries < 100; program_retries++) {
4451		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452		usleep_range(100, 200);
4453		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454		if (!ret_val)
4455			break;
4456	}
4457	if (program_retries == 100)
4458		return -E1000_ERR_NVM;
4459
4460	return 0;
4461}
4462
4463/**
4464 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 *  @hw: pointer to the HW structure
4466 *  @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 *  bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473	struct e1000_nvm_info *nvm = &hw->nvm;
4474	union ich8_hws_flash_status hsfsts;
4475	union ich8_hws_flash_ctrl hsflctl;
4476	u32 flash_linear_addr;
4477	/* bank size is in 16bit words - adjust to bytes */
4478	u32 flash_bank_size = nvm->flash_bank_size * 2;
4479	s32 ret_val;
4480	s32 count = 0;
4481	s32 j, iteration, sector_size;
4482
4483	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485	/* Determine HW Sector size: Read BERASE bits of hw flash status
4486	 * register
4487	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488	 *     consecutive sectors.  The start index for the nth Hw sector
4489	 *     can be calculated as = bank * 4096 + n * 256
4490	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491	 *     The start index for the nth Hw sector can be calculated
4492	 *     as = bank * 4096
4493	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494	 *     (ich9 only, otherwise error condition)
4495	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496	 */
4497	switch (hsfsts.hsf_status.berasesz) {
4498	case 0:
4499		/* Hw sector size 256 */
4500		sector_size = ICH_FLASH_SEG_SIZE_256;
4501		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502		break;
4503	case 1:
4504		sector_size = ICH_FLASH_SEG_SIZE_4K;
4505		iteration = 1;
4506		break;
4507	case 2:
4508		sector_size = ICH_FLASH_SEG_SIZE_8K;
4509		iteration = 1;
4510		break;
4511	case 3:
4512		sector_size = ICH_FLASH_SEG_SIZE_64K;
4513		iteration = 1;
4514		break;
4515	default:
4516		return -E1000_ERR_NVM;
4517	}
4518
4519	/* Start with the base address, then add the sector offset. */
4520	flash_linear_addr = hw->nvm.flash_base_addr;
4521	flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523	for (j = 0; j < iteration; j++) {
4524		do {
4525			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527			/* Steps */
4528			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529			if (ret_val)
4530				return ret_val;
4531
4532			/* Write a value 11 (block Erase) in Flash
4533			 * Cycle field in hw flash control
4534			 */
4535			if (hw->mac.type >= e1000_pch_spt)
4536				hsflctl.regval =
4537				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4538			else
4539				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542			if (hw->mac.type >= e1000_pch_spt)
4543				ew32flash(ICH_FLASH_HSFSTS,
4544					  hsflctl.regval << 16);
4545			else
4546				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548			/* Write the last 24 bits of an index within the
4549			 * block into Flash Linear address field in Flash
4550			 * Address.
4551			 */
4552			flash_linear_addr += (j * sector_size);
4553			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556			if (!ret_val)
4557				break;
4558
4559			/* Check if FCERR is set to 1.  If 1,
4560			 * clear it and try the whole sequence
4561			 * a few more times else Done
4562			 */
4563			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564			if (hsfsts.hsf_status.flcerr)
4565				/* repeat for some time before giving up */
4566				continue;
4567			else if (!hsfsts.hsf_status.flcdone)
4568				return ret_val;
4569		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570	}
4571
4572	return 0;
4573}
4574
4575/**
4576 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4577 *  @hw: pointer to the HW structure
4578 *  @data: Pointer to the LED settings
4579 *
4580 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4581 *  settings is all 0's or F's, set the LED default to a valid LED default
4582 *  setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586	s32 ret_val;
4587
4588	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589	if (ret_val) {
4590		e_dbg("NVM Read Error\n");
4591		return ret_val;
4592	}
4593
4594	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595		*data = ID_LED_DEFAULT_ICH8LAN;
4596
4597	return 0;
4598}
4599
4600/**
4601 *  e1000_id_led_init_pchlan - store LED configurations
4602 *  @hw: pointer to the HW structure
4603 *
4604 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4605 *  the PHY LED configuration register.
4606 *
4607 *  PCH also does not have an "always on" or "always off" mode which
4608 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4609 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4611 *  link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615	struct e1000_mac_info *mac = &hw->mac;
4616	s32 ret_val;
4617	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619	u16 data, i, temp, shift;
4620
4621	/* Get default ID LED modes */
4622	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623	if (ret_val)
4624		return ret_val;
4625
4626	mac->ledctl_default = er32(LEDCTL);
4627	mac->ledctl_mode1 = mac->ledctl_default;
4628	mac->ledctl_mode2 = mac->ledctl_default;
4629
4630	for (i = 0; i < 4; i++) {
4631		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632		shift = (i * 5);
4633		switch (temp) {
4634		case ID_LED_ON1_DEF2:
4635		case ID_LED_ON1_ON2:
4636		case ID_LED_ON1_OFF2:
4637			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638			mac->ledctl_mode1 |= (ledctl_on << shift);
4639			break;
4640		case ID_LED_OFF1_DEF2:
4641		case ID_LED_OFF1_ON2:
4642		case ID_LED_OFF1_OFF2:
4643			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644			mac->ledctl_mode1 |= (ledctl_off << shift);
4645			break;
4646		default:
4647			/* Do nothing */
4648			break;
4649		}
4650		switch (temp) {
4651		case ID_LED_DEF1_ON2:
4652		case ID_LED_ON1_ON2:
4653		case ID_LED_OFF1_ON2:
4654			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655			mac->ledctl_mode2 |= (ledctl_on << shift);
4656			break;
4657		case ID_LED_DEF1_OFF2:
4658		case ID_LED_ON1_OFF2:
4659		case ID_LED_OFF1_OFF2:
4660			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661			mac->ledctl_mode2 |= (ledctl_off << shift);
4662			break;
4663		default:
4664			/* Do nothing */
4665			break;
4666		}
4667	}
4668
4669	return 0;
4670}
4671
4672/**
4673 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 *  @hw: pointer to the HW structure
4675 *
4676 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 *  register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681	struct e1000_bus_info *bus = &hw->bus;
4682	s32 ret_val;
4683
4684	ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686	/* ICH devices are "PCI Express"-ish.  They have
4687	 * a configuration space, but do not contain
4688	 * PCI Express Capability registers, so bus width
4689	 * must be hardcoded.
4690	 */
4691	if (bus->width == e1000_bus_width_unknown)
4692		bus->width = e1000_bus_width_pcie_x1;
4693
4694	return ret_val;
4695}
4696
4697/**
4698 *  e1000_reset_hw_ich8lan - Reset the hardware
4699 *  @hw: pointer to the HW structure
4700 *
4701 *  Does a full reset of the hardware which includes a reset of the PHY and
4702 *  MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707	u16 kum_cfg;
4708	u32 ctrl, reg;
4709	s32 ret_val;
4710
4711	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4712	 * on the last TLP read/write transaction when MAC is reset.
4713	 */
4714	ret_val = e1000e_disable_pcie_master(hw);
4715	if (ret_val)
4716		e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718	e_dbg("Masking off all interrupts\n");
4719	ew32(IMC, 0xffffffff);
4720
4721	/* Disable the Transmit and Receive units.  Then delay to allow
4722	 * any pending transactions to complete before we hit the MAC
4723	 * with the global reset.
4724	 */
4725	ew32(RCTL, 0);
4726	ew32(TCTL, E1000_TCTL_PSP);
4727	e1e_flush();
4728
4729	usleep_range(10000, 11000);
4730
4731	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4732	if (hw->mac.type == e1000_ich8lan) {
4733		/* Set Tx and Rx buffer allocation to 8k apiece. */
4734		ew32(PBA, E1000_PBA_8K);
4735		/* Set Packet Buffer Size to 16k. */
4736		ew32(PBS, E1000_PBS_16K);
4737	}
4738
4739	if (hw->mac.type == e1000_pchlan) {
4740		/* Save the NVM K1 bit setting */
4741		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742		if (ret_val)
4743			return ret_val;
4744
4745		if (kum_cfg & E1000_NVM_K1_ENABLE)
4746			dev_spec->nvm_k1_enabled = true;
4747		else
4748			dev_spec->nvm_k1_enabled = false;
4749	}
4750
4751	ctrl = er32(CTRL);
4752
4753	if (!hw->phy.ops.check_reset_block(hw)) {
4754		/* Full-chip reset requires MAC and PHY reset at the same
4755		 * time to make sure the interface between MAC and the
4756		 * external PHY is reset.
4757		 */
4758		ctrl |= E1000_CTRL_PHY_RST;
4759
4760		/* Gate automatic PHY configuration by hardware on
4761		 * non-managed 82579
4762		 */
4763		if ((hw->mac.type == e1000_pch2lan) &&
4764		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765			e1000_gate_hw_phy_config_ich8lan(hw, true);
4766	}
4767	ret_val = e1000_acquire_swflag_ich8lan(hw);
4768	e_dbg("Issuing a global reset to ich8lan\n");
4769	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770	/* cannot issue a flush here because it hangs the hardware */
4771	msleep(20);
4772
4773	/* Set Phy Config Counter to 50msec */
4774	if (hw->mac.type == e1000_pch2lan) {
4775		reg = er32(FEXTNVM3);
4776		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778		ew32(FEXTNVM3, reg);
4779	}
4780
4781	if (!ret_val)
4782		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784	if (ctrl & E1000_CTRL_PHY_RST) {
4785		ret_val = hw->phy.ops.get_cfg_done(hw);
4786		if (ret_val)
4787			return ret_val;
4788
4789		ret_val = e1000_post_phy_reset_ich8lan(hw);
4790		if (ret_val)
4791			return ret_val;
4792	}
4793
4794	/* For PCH, this write will make sure that any noise
4795	 * will be detected as a CRC error and be dropped rather than show up
4796	 * as a bad packet to the DMA engine.
4797	 */
4798	if (hw->mac.type == e1000_pchlan)
4799		ew32(CRC_OFFSET, 0x65656565);
4800
4801	ew32(IMC, 0xffffffff);
4802	er32(ICR);
4803
4804	reg = er32(KABGTXD);
4805	reg |= E1000_KABGTXD_BGSQLBIAS;
4806	ew32(KABGTXD, reg);
4807
4808	return 0;
4809}
4810
4811/**
4812 *  e1000_init_hw_ich8lan - Initialize the hardware
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Prepares the hardware for transmit and receive by doing the following:
4816 *   - initialize hardware bits
4817 *   - initialize LED identification
4818 *   - setup receive address registers
4819 *   - setup flow control
4820 *   - setup transmit descriptors
4821 *   - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825	struct e1000_mac_info *mac = &hw->mac;
4826	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827	s32 ret_val;
4828	u16 i;
4829
4830	e1000_initialize_hw_bits_ich8lan(hw);
4831
4832	/* Initialize identification LED */
4833	ret_val = mac->ops.id_led_init(hw);
4834	/* An error is not fatal and we should not stop init due to this */
4835	if (ret_val)
4836		e_dbg("Error initializing identification LED\n");
4837
4838	/* Setup the receive address. */
4839	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841	/* Zero out the Multicast HASH table */
4842	e_dbg("Zeroing the MTA\n");
4843	for (i = 0; i < mac->mta_reg_count; i++)
4844		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4848	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849	 */
4850	if (hw->phy.type == e1000_phy_82578) {
4851		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852		i &= ~BM_WUC_HOST_WU_BIT;
4853		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855		if (ret_val)
4856			return ret_val;
4857	}
4858
4859	/* Setup link and flow control */
4860	ret_val = mac->ops.setup_link(hw);
4861
4862	/* Set the transmit descriptor write-back policy for both queues */
4863	txdctl = er32(TXDCTL(0));
4864	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868	ew32(TXDCTL(0), txdctl);
4869	txdctl = er32(TXDCTL(1));
4870	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871		  E1000_TXDCTL_FULL_TX_DESC_WB);
4872	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874	ew32(TXDCTL(1), txdctl);
4875
4876	/* ICH8 has opposite polarity of no_snoop bits.
4877	 * By default, we should use snoop behavior.
4878	 */
4879	if (mac->type == e1000_ich8lan)
4880		snoop = PCIE_ICH8_SNOOP_ALL;
4881	else
4882		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883	e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885	/* Enable workaround for packet loss issue on TGP PCH
4886	 * Do not gate DMA clock from the modPHY block
4887	 */
4888	if (mac->type >= e1000_pch_tgp) {
4889		fflt_dbg = er32(FFLT_DBG);
4890		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891		ew32(FFLT_DBG, fflt_dbg);
4892	}
4893
4894	ctrl_ext = er32(CTRL_EXT);
4895	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896	ew32(CTRL_EXT, ctrl_ext);
4897
4898	/* Clear all of the statistics registers (clear on read).  It is
4899	 * important that we do this after we have tried to establish link
4900	 * because the symbol error count will increment wildly if there
4901	 * is no link.
4902	 */
4903	e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905	return ret_val;
4906}
4907
4908/**
4909 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 *  @hw: pointer to the HW structure
4911 *
4912 *  Sets/Clears required hardware bits necessary for correctly setting up the
4913 *  hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917	u32 reg;
4918
4919	/* Extended Device Control */
4920	reg = er32(CTRL_EXT);
4921	reg |= BIT(22);
4922	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923	if (hw->mac.type >= e1000_pchlan)
4924		reg |= E1000_CTRL_EXT_PHYPDEN;
4925	ew32(CTRL_EXT, reg);
4926
4927	/* Transmit Descriptor Control 0 */
4928	reg = er32(TXDCTL(0));
4929	reg |= BIT(22);
4930	ew32(TXDCTL(0), reg);
4931
4932	/* Transmit Descriptor Control 1 */
4933	reg = er32(TXDCTL(1));
4934	reg |= BIT(22);
4935	ew32(TXDCTL(1), reg);
4936
4937	/* Transmit Arbitration Control 0 */
4938	reg = er32(TARC(0));
4939	if (hw->mac.type == e1000_ich8lan)
4940		reg |= BIT(28) | BIT(29);
4941	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942	ew32(TARC(0), reg);
4943
4944	/* Transmit Arbitration Control 1 */
4945	reg = er32(TARC(1));
4946	if (er32(TCTL) & E1000_TCTL_MULR)
4947		reg &= ~BIT(28);
4948	else
4949		reg |= BIT(28);
4950	reg |= BIT(24) | BIT(26) | BIT(30);
4951	ew32(TARC(1), reg);
4952
4953	/* Device Status */
4954	if (hw->mac.type == e1000_ich8lan) {
4955		reg = er32(STATUS);
4956		reg &= ~BIT(31);
4957		ew32(STATUS, reg);
4958	}
4959
4960	/* work-around descriptor data corruption issue during nfs v2 udp
4961	 * traffic, just disable the nfs filtering capability
4962	 */
4963	reg = er32(RFCTL);
4964	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966	/* Disable IPv6 extension header parsing because some malformed
4967	 * IPv6 headers can hang the Rx.
4968	 */
4969	if (hw->mac.type == e1000_ich8lan)
4970		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971	ew32(RFCTL, reg);
4972
4973	/* Enable ECC on Lynxpoint */
4974	if (hw->mac.type >= e1000_pch_lpt) {
4975		reg = er32(PBECCSTS);
4976		reg |= E1000_PBECCSTS_ECC_ENABLE;
4977		ew32(PBECCSTS, reg);
4978
4979		reg = er32(CTRL);
4980		reg |= E1000_CTRL_MEHE;
4981		ew32(CTRL, reg);
4982	}
4983}
4984
4985/**
4986 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4987 *  @hw: pointer to the HW structure
4988 *
4989 *  Determines which flow control settings to use, then configures flow
4990 *  control.  Calls the appropriate media-specific link configuration
4991 *  function.  Assuming the adapter has a valid link partner, a valid link
4992 *  should be established.  Assumes the hardware has previously been reset
4993 *  and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997	s32 ret_val;
4998
4999	if (hw->phy.ops.check_reset_block(hw))
5000		return 0;
5001
5002	/* ICH parts do not have a word in the NVM to determine
5003	 * the default flow control setting, so we explicitly
5004	 * set it to full.
5005	 */
5006	if (hw->fc.requested_mode == e1000_fc_default) {
5007		/* Workaround h/w hang when Tx flow control enabled */
5008		if (hw->mac.type == e1000_pchlan)
5009			hw->fc.requested_mode = e1000_fc_rx_pause;
5010		else
5011			hw->fc.requested_mode = e1000_fc_full;
5012	}
5013
5014	/* Save off the requested flow control mode for use later.  Depending
5015	 * on the link partner's capabilities, we may or may not use this mode.
5016	 */
5017	hw->fc.current_mode = hw->fc.requested_mode;
5018
5019	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021	/* Continue to configure the copper link. */
5022	ret_val = hw->mac.ops.setup_physical_interface(hw);
5023	if (ret_val)
5024		return ret_val;
5025
5026	ew32(FCTTV, hw->fc.pause_time);
5027	if ((hw->phy.type == e1000_phy_82578) ||
5028	    (hw->phy.type == e1000_phy_82579) ||
5029	    (hw->phy.type == e1000_phy_i217) ||
5030	    (hw->phy.type == e1000_phy_82577)) {
5031		ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034				   hw->fc.pause_time);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 *  @hw: pointer to the HW structure
5045 *
5046 *  Configures the kumeran interface to the PHY to wait the appropriate time
5047 *  when polling the PHY, then call the generic setup_copper_link to finish
5048 *  configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052	u32 ctrl;
5053	s32 ret_val;
5054	u16 reg_data;
5055
5056	ctrl = er32(CTRL);
5057	ctrl |= E1000_CTRL_SLU;
5058	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059	ew32(CTRL, ctrl);
5060
5061	/* Set the mac to wait the maximum time between each iteration
5062	 * and increase the max iterations when polling the phy;
5063	 * this fixes erroneous timeouts at 10Mbps.
5064	 */
5065	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066	if (ret_val)
5067		return ret_val;
5068	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069				       &reg_data);
5070	if (ret_val)
5071		return ret_val;
5072	reg_data |= 0x3F;
5073	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074					reg_data);
5075	if (ret_val)
5076		return ret_val;
5077
5078	switch (hw->phy.type) {
5079	case e1000_phy_igp_3:
5080		ret_val = e1000e_copper_link_setup_igp(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_bm:
5085	case e1000_phy_82578:
5086		ret_val = e1000e_copper_link_setup_m88(hw);
5087		if (ret_val)
5088			return ret_val;
5089		break;
5090	case e1000_phy_82577:
5091	case e1000_phy_82579:
5092		ret_val = e1000_copper_link_setup_82577(hw);
5093		if (ret_val)
5094			return ret_val;
5095		break;
5096	case e1000_phy_ife:
5097		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5098		if (ret_val)
5099			return ret_val;
5100
5101		reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103		switch (hw->phy.mdix) {
5104		case 1:
5105			reg_data &= ~IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 2:
5108			reg_data |= IFE_PMC_FORCE_MDIX;
5109			break;
5110		case 0:
5111		default:
5112			reg_data |= IFE_PMC_AUTO_MDIX;
5113			break;
5114		}
5115		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116		if (ret_val)
5117			return ret_val;
5118		break;
5119	default:
5120		break;
5121	}
5122
5123	return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 *  @hw: pointer to the HW structure
5129 *
5130 *  Calls the PHY specific link setup function and then calls the
5131 *  generic setup_copper_link to finish configuring the link for
5132 *  Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136	u32 ctrl;
5137	s32 ret_val;
5138
5139	ctrl = er32(CTRL);
5140	ctrl |= E1000_CTRL_SLU;
5141	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142	ew32(CTRL, ctrl);
5143
5144	ret_val = e1000_copper_link_setup_82577(hw);
5145	if (ret_val)
5146		return ret_val;
5147
5148	return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 *  @hw: pointer to the HW structure
5154 *  @speed: pointer to store current link speed
5155 *  @duplex: pointer to store the current link duplex
5156 *
5157 *  Calls the generic get_speed_and_duplex to retrieve the current link
5158 *  information and then calls the Kumeran lock loss workaround for links at
5159 *  gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162					  u16 *duplex)
5163{
5164	s32 ret_val;
5165
5166	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167	if (ret_val)
5168		return ret_val;
5169
5170	if ((hw->mac.type == e1000_ich8lan) &&
5171	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173	}
5174
5175	return ret_val;
5176}
5177
5178/**
5179 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 *  @hw: pointer to the HW structure
5181 *
5182 *  Work-around for 82566 Kumeran PCS lock loss:
5183 *  On link status change (i.e. PCI reset, speed change) and link is up and
5184 *  speed is gigabit-
5185 *    0) if workaround is optionally disabled do nothing
5186 *    1) wait 1ms for Kumeran link to come up
5187 *    2) check Kumeran Diagnostic register PCS lock loss bit
5188 *    3) if not set the link is locked (all is good), otherwise...
5189 *    4) reset the PHY
5190 *    5) repeat up to 10 times
5191 *  Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196	u32 phy_ctrl;
5197	s32 ret_val;
5198	u16 i, data;
5199	bool link;
5200
5201	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202		return 0;
5203
5204	/* Make sure link is up before proceeding.  If not just return.
5205	 * Attempting this while link is negotiating fouled up link
5206	 * stability
5207	 */
5208	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209	if (!link)
5210		return 0;
5211
5212	for (i = 0; i < 10; i++) {
5213		/* read once to clear */
5214		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215		if (ret_val)
5216			return ret_val;
5217		/* and again to get new status */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221
5222		/* check for PCS lock */
5223		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224			return 0;
5225
5226		/* Issue PHY reset */
5227		e1000_phy_hw_reset(hw);
5228		mdelay(5);
5229	}
5230	/* Disable GigE link negotiation */
5231	phy_ctrl = er32(PHY_CTRL);
5232	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234	ew32(PHY_CTRL, phy_ctrl);
5235
5236	/* Call gig speed drop workaround on Gig disable before accessing
5237	 * any PHY registers
5238	 */
5239	e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241	/* unable to acquire PCS lock */
5242	return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 *  @hw: pointer to the HW structure
5248 *  @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 *  If ICH8, set the current Kumeran workaround state (enabled - true
5251 *  /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254						  bool state)
5255{
5256	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258	if (hw->mac.type != e1000_ich8lan) {
5259		e_dbg("Workaround applies to ICH8 only.\n");
5260		return;
5261	}
5262
5263	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 *  @hw: pointer to the HW structure
5269 *
5270 *  Workaround for 82566 power-down on D3 entry:
5271 *    1) disable gigabit link
5272 *    2) write VR power-down enable
5273 *    3) read it back
5274 *  Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278	u32 reg;
5279	u16 data;
5280	u8 retry = 0;
5281
5282	if (hw->phy.type != e1000_phy_igp_3)
5283		return;
5284
5285	/* Try the workaround twice (if needed) */
5286	do {
5287		/* Disable link */
5288		reg = er32(PHY_CTRL);
5289		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291		ew32(PHY_CTRL, reg);
5292
5293		/* Call gig speed drop workaround on Gig disable before
5294		 * accessing any PHY registers
5295		 */
5296		if (hw->mac.type == e1000_ich8lan)
5297			e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299		/* Write VR power-down enable */
5300		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304		/* Read it back and test */
5305		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308			break;
5309
5310		/* Issue PHY reset and repeat at most one more time */
5311		reg = er32(CTRL);
5312		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313		retry++;
5314	} while (retry);
5315}
5316
5317/**
5318 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 *  @hw: pointer to the HW structure
5320 *
5321 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 *  LPLU, Gig disable, MDIC PHY reset):
5323 *    1) Set Kumeran Near-end loopback
5324 *    2) Clear Kumeran Near-end loopback
5325 *  Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329	s32 ret_val;
5330	u16 reg_data;
5331
5332	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333		return;
5334
5335	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336				       &reg_data);
5337	if (ret_val)
5338		return;
5339	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341					reg_data);
5342	if (ret_val)
5343		return;
5344	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 *  @hw: pointer to the HW structure
5351 *
5352 *  During S0 to Sx transition, it is possible the link remains at gig
5353 *  instead of negotiating to a lower speed.  Before going to Sx, set
5354 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5355 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5356 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 *  needs to be written.
5358 *  Parts that support (and are linked to a partner which support) EEE in
5359 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 *  than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365	u32 phy_ctrl;
5366	s32 ret_val;
5367
5368	phy_ctrl = er32(PHY_CTRL);
5369	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371	if (hw->phy.type == e1000_phy_i217) {
5372		u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378		    (hw->mac.type >= e1000_pch_spt)) {
5379			u32 fextnvm6 = er32(FEXTNVM6);
5380
5381			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382		}
5383
5384		ret_val = hw->phy.ops.acquire(hw);
5385		if (ret_val)
5386			goto out;
5387
5388		if (!dev_spec->eee_disable) {
5389			u16 eee_advert;
5390
5391			ret_val =
5392			    e1000_read_emi_reg_locked(hw,
5393						      I217_EEE_ADVERTISEMENT,
5394						      &eee_advert);
5395			if (ret_val)
5396				goto release;
5397
5398			/* Disable LPLU if both link partners support 100BaseT
5399			 * EEE and 100Full is advertised on both ends of the
5400			 * link, and enable Auto Enable LPI since there will
5401			 * be no driver to enable LPI while in Sx.
5402			 */
5403			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404			    (dev_spec->eee_lp_ability &
5405			     I82579_EEE_100_SUPPORTED) &&
5406			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408					      E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410				/* Set Auto Enable LPI after link up */
5411				e1e_rphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, &phy_reg);
5413				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414				e1e_wphy_locked(hw,
5415						I217_LPI_GPIO_CTRL, phy_reg);
5416			}
5417		}
5418
5419		/* For i217 Intel Rapid Start Technology support,
5420		 * when the system is going into Sx and no manageability engine
5421		 * is present, the driver must configure proxy to reset only on
5422		 * power good.  LPI (Low Power Idle) state must also reset only
5423		 * on power good, as well as the MTA (Multicast table array).
5424		 * The SMBus release must also be disabled on LCD reset.
5425		 */
5426		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427			/* Enable proxy to reset only on power good. */
5428			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432			/* Set bit enable LPI (EEE) to reset only on
5433			 * power good.
5434			 */
5435			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439			/* Disable the SMB release on LCD reset. */
5440			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443		}
5444
5445		/* Enable MTA to reset for Intel Rapid Start Technology
5446		 * Support
5447		 */
5448		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453		hw->phy.ops.release(hw);
5454	}
5455out:
5456	ew32(PHY_CTRL, phy_ctrl);
5457
5458	if (hw->mac.type == e1000_ich8lan)
5459		e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461	if (hw->mac.type >= e1000_pchlan) {
5462		e1000_oem_bits_config_ich8lan(hw, false);
5463
5464		/* Reset PHY to activate OEM bits on 82577/8 */
5465		if (hw->mac.type == e1000_pchlan)
5466			e1000e_phy_hw_reset_generic(hw);
5467
5468		ret_val = hw->phy.ops.acquire(hw);
5469		if (ret_val)
5470			return;
5471		e1000_write_smbus_addr(hw);
5472		hw->phy.ops.release(hw);
5473	}
5474}
5475
5476/**
5477 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 *  @hw: pointer to the HW structure
5479 *
5480 *  During Sx to S0 transitions on non-managed devices or managed devices
5481 *  on which PHY resets are not blocked, if the PHY registers cannot be
5482 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 *  the PHY.
5484 *  On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488	s32 ret_val;
5489
5490	if (hw->mac.type < e1000_pch2lan)
5491		return;
5492
5493	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494	if (ret_val) {
5495		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496		return;
5497	}
5498
5499	/* For i217 Intel Rapid Start Technology support when the system
5500	 * is transitioning from Sx and no manageability engine is present
5501	 * configure SMBus to restore on reset, disable proxy, and enable
5502	 * the reset on MTA (Multicast table array).
5503	 */
5504	if (hw->phy.type == e1000_phy_i217) {
5505		u16 phy_reg;
5506
5507		ret_val = hw->phy.ops.acquire(hw);
5508		if (ret_val) {
5509			e_dbg("Failed to setup iRST\n");
5510			return;
5511		}
5512
5513		/* Clear Auto Enable LPI after link up */
5514		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519			/* Restore clear on SMB if no manageability engine
5520			 * is present
5521			 */
5522			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523			if (ret_val)
5524				goto release;
5525			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528			/* Disable Proxy */
5529			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530		}
5531		/* Enable reset on MTA */
5532		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533		if (ret_val)
5534			goto release;
5535		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538		if (ret_val)
5539			e_dbg("Error %d in resume workarounds\n", ret_val);
5540		hw->phy.ops.release(hw);
5541	}
5542}
5543
5544/**
5545 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552	if (hw->phy.type == e1000_phy_ife)
5553		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555	ew32(LEDCTL, hw->mac.ledctl_default);
5556	return 0;
5557}
5558
5559/**
5560 *  e1000_led_on_ich8lan - Turn LEDs on
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567	if (hw->phy.type == e1000_phy_ife)
5568		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571	ew32(LEDCTL, hw->mac.ledctl_mode2);
5572	return 0;
5573}
5574
5575/**
5576 *  e1000_led_off_ich8lan - Turn LEDs off
5577 *  @hw: pointer to the HW structure
5578 *
5579 *  Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583	if (hw->phy.type == e1000_phy_ife)
5584		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585				(IFE_PSCL_PROBE_MODE |
5586				 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588	ew32(LEDCTL, hw->mac.ledctl_mode1);
5589	return 0;
5590}
5591
5592/**
5593 *  e1000_setup_led_pchlan - Configures SW controllable LED
5594 *  @hw: pointer to the HW structure
5595 *
5596 *  This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5605 *  @hw: pointer to the HW structure
5606 *
5607 *  Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 *  e1000_led_on_pchlan - Turn LEDs on
5616 *  @hw: pointer to the HW structure
5617 *
5618 *  Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622	u16 data = (u16)hw->mac.ledctl_mode2;
5623	u32 i, led;
5624
5625	/* If no link, then turn LED on by setting the invert bit
5626	 * for each LED that's mode is "link_up" in ledctl_mode2.
5627	 */
5628	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629		for (i = 0; i < 3; i++) {
5630			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632			    E1000_LEDCTL_MODE_LINK_UP)
5633				continue;
5634			if (led & E1000_PHY_LED0_IVRT)
5635				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636			else
5637				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638		}
5639	}
5640
5641	return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 *  e1000_led_off_pchlan - Turn LEDs off
5646 *  @hw: pointer to the HW structure
5647 *
5648 *  Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652	u16 data = (u16)hw->mac.ledctl_mode1;
5653	u32 i, led;
5654
5655	/* If no link, then turn LED off by clearing the invert bit
5656	 * for each LED that's mode is "link_up" in ledctl_mode1.
5657	 */
5658	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659		for (i = 0; i < 3; i++) {
5660			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662			    E1000_LEDCTL_MODE_LINK_UP)
5663				continue;
5664			if (led & E1000_PHY_LED0_IVRT)
5665				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666			else
5667				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668		}
5669	}
5670
5671	return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Read appropriate register for the config done bit for completion status
5679 *  and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 *  config done bit, so only an error is logged and continues.  If we were
5683 *  to return with error, EEPROM-less silicon would not be able to be reset
5684 *  or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688	s32 ret_val = 0;
5689	u32 bank = 0;
5690	u32 status;
5691
5692	e1000e_get_cfg_done_generic(hw);
5693
5694	/* Wait for indication from h/w that it has completed basic config */
5695	if (hw->mac.type >= e1000_ich10lan) {
5696		e1000_lan_init_done_ich8lan(hw);
5697	} else {
5698		ret_val = e1000e_get_auto_rd_done(hw);
5699		if (ret_val) {
5700			/* When auto config read does not complete, do not
5701			 * return with an error. This can happen in situations
5702			 * where there is no eeprom and prevents getting link.
5703			 */
5704			e_dbg("Auto Read Done did not complete\n");
5705			ret_val = 0;
5706		}
5707	}
5708
5709	/* Clear PHY Reset Asserted bit */
5710	status = er32(STATUS);
5711	if (status & E1000_STATUS_PHYRA)
5712		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713	else
5714		e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717	if (hw->mac.type <= e1000_ich9lan) {
5718		if (!(er32(EECD) & E1000_EECD_PRES) &&
5719		    (hw->phy.type == e1000_phy_igp_3)) {
5720			e1000e_phy_init_script_igp3(hw);
5721		}
5722	} else {
5723		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724			/* Maybe we should do a basic PHY config */
5725			e_dbg("EEPROM not present\n");
5726			ret_val = -E1000_ERR_CONFIG;
5727		}
5728	}
5729
5730	return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742	/* If the management interface is not enabled, then power down */
5743	if (!(hw->mac.ops.check_mng_mode(hw) ||
5744	      hw->phy.ops.check_reset_block(hw)))
5745		e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 *  @hw: pointer to the HW structure
5751 *
5752 *  Clears hardware counters specific to the silicon family and calls
5753 *  clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757	u16 phy_data;
5758	s32 ret_val;
5759
5760	e1000e_clear_hw_cntrs_base(hw);
5761
5762	er32(ALGNERRC);
5763	er32(RXERRC);
5764	er32(TNCRS);
5765	er32(CEXTERR);
5766	er32(TSCTC);
5767	er32(TSCTFC);
5768
5769	er32(MGTPRC);
5770	er32(MGTPDC);
5771	er32(MGTPTC);
5772
5773	er32(IAC);
5774	er32(ICRXOC);
5775
5776	/* Clear PHY statistics registers */
5777	if ((hw->phy.type == e1000_phy_82578) ||
5778	    (hw->phy.type == e1000_phy_82579) ||
5779	    (hw->phy.type == e1000_phy_i217) ||
5780	    (hw->phy.type == e1000_phy_82577)) {
5781		ret_val = hw->phy.ops.acquire(hw);
5782		if (ret_val)
5783			return;
5784		ret_val = hw->phy.ops.set_page(hw,
5785					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786		if (ret_val)
5787			goto release;
5788		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803		hw->phy.ops.release(hw);
5804	}
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808	/* check_mng_mode dependent on mac type */
5809	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5810	/* cleanup_led dependent on mac type */
5811	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5812	.get_bus_info		= e1000_get_bus_info_ich8lan,
5813	.set_lan_id		= e1000_set_lan_id_single_port,
5814	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5815	/* led_on dependent on mac type */
5816	/* led_off dependent on mac type */
5817	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5818	.reset_hw		= e1000_reset_hw_ich8lan,
5819	.init_hw		= e1000_init_hw_ich8lan,
5820	.setup_link		= e1000_setup_link_ich8lan,
5821	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822	/* id_led_init dependent on mac type */
5823	.config_collision_dist	= e1000e_config_collision_dist_generic,
5824	.rar_set		= e1000e_rar_set_generic,
5825	.rar_get_count		= e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829	.acquire		= e1000_acquire_swflag_ich8lan,
5830	.check_reset_block	= e1000_check_reset_block_ich8lan,
5831	.commit			= NULL,
5832	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5833	.get_cable_length	= e1000e_get_cable_length_igp_2,
5834	.read_reg		= e1000e_read_phy_reg_igp,
5835	.release		= e1000_release_swflag_ich8lan,
5836	.reset			= e1000_phy_hw_reset_ich8lan,
5837	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5838	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5839	.write_reg		= e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843	.acquire		= e1000_acquire_nvm_ich8lan,
5844	.read			= e1000_read_nvm_ich8lan,
5845	.release		= e1000_release_nvm_ich8lan,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.update			= e1000_update_nvm_checksum_ich8lan,
5848	.valid_led_default	= e1000_valid_led_default_ich8lan,
5849	.validate		= e1000_validate_nvm_checksum_ich8lan,
5850	.write			= e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854	.acquire		= e1000_acquire_nvm_ich8lan,
5855	.release		= e1000_release_nvm_ich8lan,
5856	.read			= e1000_read_nvm_spt,
5857	.update			= e1000_update_nvm_checksum_spt,
5858	.reload			= e1000e_reload_nvm_generic,
5859	.valid_led_default	= e1000_valid_led_default_ich8lan,
5860	.validate		= e1000_validate_nvm_checksum_ich8lan,
5861	.write			= e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865	.mac			= e1000_ich8lan,
5866	.flags			= FLAG_HAS_WOL
5867				  | FLAG_IS_ICH
5868				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869				  | FLAG_HAS_AMT
5870				  | FLAG_HAS_FLASH
5871				  | FLAG_APME_IN_WUC,
5872	.pba			= 8,
5873	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874	.get_variants		= e1000_get_variants_ich8lan,
5875	.mac_ops		= &ich8_mac_ops,
5876	.phy_ops		= &ich8_phy_ops,
5877	.nvm_ops		= &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881	.mac			= e1000_ich9lan,
5882	.flags			= FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_IS_ICH
5884				  | FLAG_HAS_WOL
5885				  | FLAG_HAS_CTRLEXT_ON_LOAD
5886				  | FLAG_HAS_AMT
5887				  | FLAG_HAS_FLASH
5888				  | FLAG_APME_IN_WUC,
5889	.pba			= 18,
5890	.max_hw_frame_size	= DEFAULT_JUMBO,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898	.mac			= e1000_ich10lan,
5899	.flags			= FLAG_HAS_JUMBO_FRAMES
5900				  | FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_APME_IN_WUC,
5906	.pba			= 18,
5907	.max_hw_frame_size	= DEFAULT_JUMBO,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915	.mac			= e1000_pchlan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_CTRLEXT_ON_LOAD
5919				  | FLAG_HAS_AMT
5920				  | FLAG_HAS_FLASH
5921				  | FLAG_HAS_JUMBO_FRAMES
5922				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS,
5925	.pba			= 26,
5926	.max_hw_frame_size	= 4096,
5927	.get_variants		= e1000_get_variants_ich8lan,
5928	.mac_ops		= &ich8_mac_ops,
5929	.phy_ops		= &ich8_phy_ops,
5930	.nvm_ops		= &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934	.mac			= e1000_pch2lan,
5935	.flags			= FLAG_IS_ICH
5936				  | FLAG_HAS_WOL
5937				  | FLAG_HAS_HW_TIMESTAMP
5938				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939				  | FLAG_HAS_AMT
5940				  | FLAG_HAS_FLASH
5941				  | FLAG_HAS_JUMBO_FRAMES
5942				  | FLAG_APME_IN_WUC,
5943	.flags2			= FLAG2_HAS_PHY_STATS
5944				  | FLAG2_HAS_EEE
5945				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946	.pba			= 26,
5947	.max_hw_frame_size	= 9022,
5948	.get_variants		= e1000_get_variants_ich8lan,
5949	.mac_ops		= &ich8_mac_ops,
5950	.phy_ops		= &ich8_phy_ops,
5951	.nvm_ops		= &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955	.mac			= e1000_pch_lpt,
5956	.flags			= FLAG_IS_ICH
5957				  | FLAG_HAS_WOL
5958				  | FLAG_HAS_HW_TIMESTAMP
5959				  | FLAG_HAS_CTRLEXT_ON_LOAD
5960				  | FLAG_HAS_AMT
5961				  | FLAG_HAS_FLASH
5962				  | FLAG_HAS_JUMBO_FRAMES
5963				  | FLAG_APME_IN_WUC,
5964	.flags2			= FLAG2_HAS_PHY_STATS
5965				  | FLAG2_HAS_EEE
5966				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967	.pba			= 26,
5968	.max_hw_frame_size	= 9022,
5969	.get_variants		= e1000_get_variants_ich8lan,
5970	.mac_ops		= &ich8_mac_ops,
5971	.phy_ops		= &ich8_phy_ops,
5972	.nvm_ops		= &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976	.mac			= e1000_pch_spt,
5977	.flags			= FLAG_IS_ICH
5978				  | FLAG_HAS_WOL
5979				  | FLAG_HAS_HW_TIMESTAMP
5980				  | FLAG_HAS_CTRLEXT_ON_LOAD
5981				  | FLAG_HAS_AMT
5982				  | FLAG_HAS_FLASH
5983				  | FLAG_HAS_JUMBO_FRAMES
5984				  | FLAG_APME_IN_WUC,
5985	.flags2			= FLAG2_HAS_PHY_STATS
5986				  | FLAG2_HAS_EEE,
5987	.pba			= 26,
5988	.max_hw_frame_size	= 9022,
5989	.get_variants		= e1000_get_variants_ich8lan,
5990	.mac_ops		= &ich8_mac_ops,
5991	.phy_ops		= &ich8_phy_ops,
5992	.nvm_ops		= &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996	.mac			= e1000_pch_cnp,
5997	.flags			= FLAG_IS_ICH
5998				  | FLAG_HAS_WOL
5999				  | FLAG_HAS_HW_TIMESTAMP
6000				  | FLAG_HAS_CTRLEXT_ON_LOAD
6001				  | FLAG_HAS_AMT
6002				  | FLAG_HAS_FLASH
6003				  | FLAG_HAS_JUMBO_FRAMES
6004				  | FLAG_APME_IN_WUC,
6005	.flags2			= FLAG2_HAS_PHY_STATS
6006				  | FLAG2_HAS_EEE,
6007	.pba			= 26,
6008	.max_hw_frame_size	= 9022,
6009	.get_variants		= e1000_get_variants_ich8lan,
6010	.mac_ops		= &ich8_mac_ops,
6011	.phy_ops		= &ich8_phy_ops,
6012	.nvm_ops		= &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016	.mac			= e1000_pch_tgp,
6017	.flags			= FLAG_IS_ICH
6018				  | FLAG_HAS_WOL
6019				  | FLAG_HAS_HW_TIMESTAMP
6020				  | FLAG_HAS_CTRLEXT_ON_LOAD
6021				  | FLAG_HAS_AMT
6022				  | FLAG_HAS_FLASH
6023				  | FLAG_HAS_JUMBO_FRAMES
6024				  | FLAG_APME_IN_WUC,
6025	.flags2			= FLAG2_HAS_PHY_STATS
6026				  | FLAG2_HAS_EEE,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036	.mac			= e1000_pch_adp,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056	.mac			= e1000_pch_mtp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 304
 305	ret_val = hw->phy.ops.acquire(hw);
 306	if (ret_val) {
 307		e_dbg("Failed to initialize PHY flow\n");
 308		goto out;
 309	}
 310
 311	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 312	 * inaccessible and resetting the PHY is not blocked, toggle the
 313	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 314	 */
 315	switch (hw->mac.type) {
 316	case e1000_pch_lpt:
 317	case e1000_pch_spt:
 318	case e1000_pch_cnp:
 
 
 
 
 
 
 319		if (e1000_phy_is_accessible_pchlan(hw))
 320			break;
 321
 322		/* Before toggling LANPHYPC, see if PHY is accessible by
 323		 * forcing MAC to SMBus mode first.
 324		 */
 325		mac_reg = er32(CTRL_EXT);
 326		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 327		ew32(CTRL_EXT, mac_reg);
 328
 329		/* Wait 50 milliseconds for MAC to finish any retries
 330		 * that it might be trying to perform from previous
 331		 * attempts to acknowledge any phy read requests.
 332		 */
 333		msleep(50);
 334
 335		/* fall-through */
 336	case e1000_pch2lan:
 337		if (e1000_phy_is_accessible_pchlan(hw))
 338			break;
 339
 340		/* fall-through */
 341	case e1000_pchlan:
 342		if ((hw->mac.type == e1000_pchlan) &&
 343		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 344			break;
 345
 346		if (hw->phy.ops.check_reset_block(hw)) {
 347			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 348			ret_val = -E1000_ERR_PHY;
 349			break;
 350		}
 351
 352		/* Toggle LANPHYPC Value bit */
 353		e1000_toggle_lanphypc_pch_lpt(hw);
 354		if (hw->mac.type >= e1000_pch_lpt) {
 355			if (e1000_phy_is_accessible_pchlan(hw))
 356				break;
 357
 358			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 359			 * so ensure that the MAC is also out of SMBus mode
 360			 */
 361			mac_reg = er32(CTRL_EXT);
 362			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 363			ew32(CTRL_EXT, mac_reg);
 364
 365			if (e1000_phy_is_accessible_pchlan(hw))
 366				break;
 367
 368			ret_val = -E1000_ERR_PHY;
 369		}
 370		break;
 371	default:
 372		break;
 373	}
 374
 375	hw->phy.ops.release(hw);
 376	if (!ret_val) {
 377
 378		/* Check to see if able to reset PHY.  Print error if not */
 379		if (hw->phy.ops.check_reset_block(hw)) {
 380			e_err("Reset blocked by ME\n");
 381			goto out;
 382		}
 383
 384		/* Reset the PHY before any access to it.  Doing so, ensures
 385		 * that the PHY is in a known good state before we read/write
 386		 * PHY registers.  The generic reset is sufficient here,
 387		 * because we haven't determined the PHY type yet.
 388		 */
 389		ret_val = e1000e_phy_hw_reset_generic(hw);
 390		if (ret_val)
 391			goto out;
 392
 393		/* On a successful reset, possibly need to wait for the PHY
 394		 * to quiesce to an accessible state before returning control
 395		 * to the calling function.  If the PHY does not quiesce, then
 396		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 397		 *  the PHY is in.
 398		 */
 399		ret_val = hw->phy.ops.check_reset_block(hw);
 400		if (ret_val)
 401			e_err("ME blocked access to PHY after reset\n");
 402	}
 403
 404out:
 405	/* Ungate automatic PHY configuration on non-managed 82579 */
 406	if ((hw->mac.type == e1000_pch2lan) &&
 407	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 408		usleep_range(10000, 11000);
 409		e1000_gate_hw_phy_config_ich8lan(hw, false);
 410	}
 411
 412	return ret_val;
 413}
 414
 415/**
 416 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 417 *  @hw: pointer to the HW structure
 418 *
 419 *  Initialize family-specific PHY parameters and function pointers.
 420 **/
 421static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 422{
 423	struct e1000_phy_info *phy = &hw->phy;
 424	s32 ret_val;
 425
 426	phy->addr = 1;
 427	phy->reset_delay_us = 100;
 428
 429	phy->ops.set_page = e1000_set_page_igp;
 430	phy->ops.read_reg = e1000_read_phy_reg_hv;
 431	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 432	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 433	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 434	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 435	phy->ops.write_reg = e1000_write_phy_reg_hv;
 436	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 437	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 438	phy->ops.power_up = e1000_power_up_phy_copper;
 439	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 440	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 441
 442	phy->id = e1000_phy_unknown;
 443
 444	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 445	if (ret_val)
 446		return ret_val;
 447
 448	if (phy->id == e1000_phy_unknown)
 449		switch (hw->mac.type) {
 450		default:
 451			ret_val = e1000e_get_phy_id(hw);
 452			if (ret_val)
 453				return ret_val;
 454			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 455				break;
 456			/* fall-through */
 457		case e1000_pch2lan:
 458		case e1000_pch_lpt:
 459		case e1000_pch_spt:
 460		case e1000_pch_cnp:
 
 
 
 
 
 
 461			/* In case the PHY needs to be in mdio slow mode,
 462			 * set slow mode and try to get the PHY id again.
 463			 */
 464			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 465			if (ret_val)
 466				return ret_val;
 467			ret_val = e1000e_get_phy_id(hw);
 468			if (ret_val)
 469				return ret_val;
 470			break;
 471		}
 472	phy->type = e1000e_get_phy_type_from_id(phy->id);
 473
 474	switch (phy->type) {
 475	case e1000_phy_82577:
 476	case e1000_phy_82579:
 477	case e1000_phy_i217:
 478		phy->ops.check_polarity = e1000_check_polarity_82577;
 479		phy->ops.force_speed_duplex =
 480		    e1000_phy_force_speed_duplex_82577;
 481		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 482		phy->ops.get_info = e1000_get_phy_info_82577;
 483		phy->ops.commit = e1000e_phy_sw_reset;
 484		break;
 485	case e1000_phy_82578:
 486		phy->ops.check_polarity = e1000_check_polarity_m88;
 487		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 488		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 489		phy->ops.get_info = e1000e_get_phy_info_m88;
 490		break;
 491	default:
 492		ret_val = -E1000_ERR_PHY;
 493		break;
 494	}
 495
 496	return ret_val;
 497}
 498
 499/**
 500 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 501 *  @hw: pointer to the HW structure
 502 *
 503 *  Initialize family-specific PHY parameters and function pointers.
 504 **/
 505static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 506{
 507	struct e1000_phy_info *phy = &hw->phy;
 508	s32 ret_val;
 509	u16 i = 0;
 510
 511	phy->addr = 1;
 512	phy->reset_delay_us = 100;
 513
 514	phy->ops.power_up = e1000_power_up_phy_copper;
 515	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 516
 517	/* We may need to do this twice - once for IGP and if that fails,
 518	 * we'll set BM func pointers and try again
 519	 */
 520	ret_val = e1000e_determine_phy_address(hw);
 521	if (ret_val) {
 522		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 523		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 524		ret_val = e1000e_determine_phy_address(hw);
 525		if (ret_val) {
 526			e_dbg("Cannot determine PHY addr. Erroring out\n");
 527			return ret_val;
 528		}
 529	}
 530
 531	phy->id = 0;
 532	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 533	       (i++ < 100)) {
 534		usleep_range(1000, 1100);
 535		ret_val = e1000e_get_phy_id(hw);
 536		if (ret_val)
 537			return ret_val;
 538	}
 539
 540	/* Verify phy id */
 541	switch (phy->id) {
 542	case IGP03E1000_E_PHY_ID:
 543		phy->type = e1000_phy_igp_3;
 544		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 545		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 546		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 547		phy->ops.get_info = e1000e_get_phy_info_igp;
 548		phy->ops.check_polarity = e1000_check_polarity_igp;
 549		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 550		break;
 551	case IFE_E_PHY_ID:
 552	case IFE_PLUS_E_PHY_ID:
 553	case IFE_C_E_PHY_ID:
 554		phy->type = e1000_phy_ife;
 555		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 556		phy->ops.get_info = e1000_get_phy_info_ife;
 557		phy->ops.check_polarity = e1000_check_polarity_ife;
 558		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 559		break;
 560	case BME1000_E_PHY_ID:
 561		phy->type = e1000_phy_bm;
 562		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 563		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 564		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 565		phy->ops.commit = e1000e_phy_sw_reset;
 566		phy->ops.get_info = e1000e_get_phy_info_m88;
 567		phy->ops.check_polarity = e1000_check_polarity_m88;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 569		break;
 570	default:
 571		return -E1000_ERR_PHY;
 572	}
 573
 574	return 0;
 575}
 576
 577/**
 578 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 579 *  @hw: pointer to the HW structure
 580 *
 581 *  Initialize family-specific NVM parameters and function
 582 *  pointers.
 583 **/
 584static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_nvm_info *nvm = &hw->nvm;
 587	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 588	u32 gfpreg, sector_base_addr, sector_end_addr;
 589	u16 i;
 590	u32 nvm_size;
 591
 592	nvm->type = e1000_nvm_flash_sw;
 593
 594	if (hw->mac.type >= e1000_pch_spt) {
 595		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 596		 * STRAP register. This is because in SPT the GbE Flash region
 597		 * is no longer accessed through the flash registers. Instead,
 598		 * the mechanism has changed, and the Flash region access
 599		 * registers are now implemented in GbE memory space.
 600		 */
 601		nvm->flash_base_addr = 0;
 602		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 603		    * NVM_SIZE_MULTIPLIER;
 604		nvm->flash_bank_size = nvm_size / 2;
 605		/* Adjust to word count */
 606		nvm->flash_bank_size /= sizeof(u16);
 607		/* Set the base address for flash register access */
 608		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 609	} else {
 610		/* Can't read flash registers if register set isn't mapped. */
 611		if (!hw->flash_address) {
 612			e_dbg("ERROR: Flash registers not mapped\n");
 613			return -E1000_ERR_CONFIG;
 614		}
 615
 616		gfpreg = er32flash(ICH_FLASH_GFPREG);
 617
 618		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 619		 * Add 1 to sector_end_addr since this sector is included in
 620		 * the overall size.
 621		 */
 622		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 623		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 624
 625		/* flash_base_addr is byte-aligned */
 626		nvm->flash_base_addr = sector_base_addr
 627		    << FLASH_SECTOR_ADDR_SHIFT;
 628
 629		/* find total size of the NVM, then cut in half since the total
 630		 * size represents two separate NVM banks.
 631		 */
 632		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 633					<< FLASH_SECTOR_ADDR_SHIFT);
 634		nvm->flash_bank_size /= 2;
 635		/* Adjust to word count */
 636		nvm->flash_bank_size /= sizeof(u16);
 637	}
 638
 639	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 640
 641	/* Clear shadow ram */
 642	for (i = 0; i < nvm->word_size; i++) {
 643		dev_spec->shadow_ram[i].modified = false;
 644		dev_spec->shadow_ram[i].value = 0xFFFF;
 645	}
 646
 647	return 0;
 648}
 649
 650/**
 651 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 652 *  @hw: pointer to the HW structure
 653 *
 654 *  Initialize family-specific MAC parameters and function
 655 *  pointers.
 656 **/
 657static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 658{
 659	struct e1000_mac_info *mac = &hw->mac;
 660
 661	/* Set media type function pointer */
 662	hw->phy.media_type = e1000_media_type_copper;
 663
 664	/* Set mta register count */
 665	mac->mta_reg_count = 32;
 666	/* Set rar entry count */
 667	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 668	if (mac->type == e1000_ich8lan)
 669		mac->rar_entry_count--;
 670	/* FWSM register */
 671	mac->has_fwsm = true;
 672	/* ARC subsystem not supported */
 673	mac->arc_subsystem_valid = false;
 674	/* Adaptive IFS supported */
 675	mac->adaptive_ifs = true;
 676
 677	/* LED and other operations */
 678	switch (mac->type) {
 679	case e1000_ich8lan:
 680	case e1000_ich9lan:
 681	case e1000_ich10lan:
 682		/* check management mode */
 683		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 684		/* ID LED init */
 685		mac->ops.id_led_init = e1000e_id_led_init_generic;
 686		/* blink LED */
 687		mac->ops.blink_led = e1000e_blink_led_generic;
 688		/* setup LED */
 689		mac->ops.setup_led = e1000e_setup_led_generic;
 690		/* cleanup LED */
 691		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 692		/* turn on/off LED */
 693		mac->ops.led_on = e1000_led_on_ich8lan;
 694		mac->ops.led_off = e1000_led_off_ich8lan;
 695		break;
 696	case e1000_pch2lan:
 697		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 698		mac->ops.rar_set = e1000_rar_set_pch2lan;
 699		/* fall-through */
 700	case e1000_pch_lpt:
 701	case e1000_pch_spt:
 702	case e1000_pch_cnp:
 
 
 
 
 
 
 703	case e1000_pchlan:
 704		/* check management mode */
 705		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 706		/* ID LED init */
 707		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 708		/* setup LED */
 709		mac->ops.setup_led = e1000_setup_led_pchlan;
 710		/* cleanup LED */
 711		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 712		/* turn on/off LED */
 713		mac->ops.led_on = e1000_led_on_pchlan;
 714		mac->ops.led_off = e1000_led_off_pchlan;
 715		break;
 716	default:
 717		break;
 718	}
 719
 720	if (mac->type >= e1000_pch_lpt) {
 721		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 722		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 723		mac->ops.setup_physical_interface =
 724		    e1000_setup_copper_link_pch_lpt;
 725		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 726	}
 727
 728	/* Enable PCS Lock-loss workaround for ICH8 */
 729	if (mac->type == e1000_ich8lan)
 730		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 731
 732	return 0;
 733}
 734
 735/**
 736 *  __e1000_access_emi_reg_locked - Read/write EMI register
 737 *  @hw: pointer to the HW structure
 738 *  @addr: EMI address to program
 739 *  @data: pointer to value to read/write from/to the EMI address
 740 *  @read: boolean flag to indicate read or write
 741 *
 742 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 743 **/
 744static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 745					 u16 *data, bool read)
 746{
 747	s32 ret_val;
 748
 749	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 750	if (ret_val)
 751		return ret_val;
 752
 753	if (read)
 754		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 755	else
 756		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 757
 758	return ret_val;
 759}
 760
 761/**
 762 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 763 *  @hw: pointer to the HW structure
 764 *  @addr: EMI address to program
 765 *  @data: value to be read from the EMI address
 766 *
 767 *  Assumes the SW/FW/HW Semaphore is already acquired.
 768 **/
 769s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 770{
 771	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 772}
 773
 774/**
 775 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 776 *  @hw: pointer to the HW structure
 777 *  @addr: EMI address to program
 778 *  @data: value to be written to the EMI address
 779 *
 780 *  Assumes the SW/FW/HW Semaphore is already acquired.
 781 **/
 782s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 783{
 784	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 785}
 786
 787/**
 788 *  e1000_set_eee_pchlan - Enable/disable EEE support
 789 *  @hw: pointer to the HW structure
 790 *
 791 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 792 *  the link and the EEE capabilities of the link partner.  The LPI Control
 793 *  register bits will remain set only if/when link is up.
 794 *
 795 *  EEE LPI must not be asserted earlier than one second after link is up.
 796 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 797 *  can be link issues with some switches.  Other devices can have EEE LPI
 798 *  enabled immediately upon link up since they have a timer in hardware which
 799 *  prevents LPI from being asserted too early.
 800 **/
 801s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 802{
 803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 804	s32 ret_val;
 805	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 806
 807	switch (hw->phy.type) {
 808	case e1000_phy_82579:
 809		lpa = I82579_EEE_LP_ABILITY;
 810		pcs_status = I82579_EEE_PCS_STATUS;
 811		adv_addr = I82579_EEE_ADVERTISEMENT;
 812		break;
 813	case e1000_phy_i217:
 814		lpa = I217_EEE_LP_ABILITY;
 815		pcs_status = I217_EEE_PCS_STATUS;
 816		adv_addr = I217_EEE_ADVERTISEMENT;
 817		break;
 818	default:
 819		return 0;
 820	}
 821
 822	ret_val = hw->phy.ops.acquire(hw);
 823	if (ret_val)
 824		return ret_val;
 825
 826	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 827	if (ret_val)
 828		goto release;
 829
 830	/* Clear bits that enable EEE in various speeds */
 831	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 832
 833	/* Enable EEE if not disabled by user */
 834	if (!dev_spec->eee_disable) {
 835		/* Save off link partner's EEE ability */
 836		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 837						    &dev_spec->eee_lp_ability);
 838		if (ret_val)
 839			goto release;
 840
 841		/* Read EEE advertisement */
 842		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 843		if (ret_val)
 844			goto release;
 845
 846		/* Enable EEE only for speeds in which the link partner is
 847		 * EEE capable and for which we advertise EEE.
 848		 */
 849		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 850			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 851
 852		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 853			e1e_rphy_locked(hw, MII_LPA, &data);
 854			if (data & LPA_100FULL)
 855				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 856			else
 857				/* EEE is not supported in 100Half, so ignore
 858				 * partner's EEE in 100 ability if full-duplex
 859				 * is not advertised.
 860				 */
 861				dev_spec->eee_lp_ability &=
 862				    ~I82579_EEE_100_SUPPORTED;
 863		}
 864	}
 865
 866	if (hw->phy.type == e1000_phy_82579) {
 867		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 868						    &data);
 869		if (ret_val)
 870			goto release;
 871
 872		data &= ~I82579_LPI_100_PLL_SHUT;
 873		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 874						     data);
 875	}
 876
 877	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 878	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 879	if (ret_val)
 880		goto release;
 881
 882	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 883release:
 884	hw->phy.ops.release(hw);
 885
 886	return ret_val;
 887}
 888
 889/**
 890 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 891 *  @hw:   pointer to the HW structure
 892 *  @link: link up bool flag
 893 *
 894 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 895 *  preventing further DMA write requests.  Workaround the issue by disabling
 896 *  the de-assertion of the clock request when in 1Gpbs mode.
 897 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 898 *  speeds in order to avoid Tx hangs.
 899 **/
 900static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 901{
 902	u32 fextnvm6 = er32(FEXTNVM6);
 903	u32 status = er32(STATUS);
 904	s32 ret_val = 0;
 905	u16 reg;
 906
 907	if (link && (status & E1000_STATUS_SPEED_1000)) {
 908		ret_val = hw->phy.ops.acquire(hw);
 909		if (ret_val)
 910			return ret_val;
 911
 912		ret_val =
 913		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 914						&reg);
 915		if (ret_val)
 916			goto release;
 917
 918		ret_val =
 919		    e1000e_write_kmrn_reg_locked(hw,
 920						 E1000_KMRNCTRLSTA_K1_CONFIG,
 921						 reg &
 922						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 923		if (ret_val)
 924			goto release;
 925
 926		usleep_range(10, 20);
 927
 928		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 929
 930		ret_val =
 931		    e1000e_write_kmrn_reg_locked(hw,
 932						 E1000_KMRNCTRLSTA_K1_CONFIG,
 933						 reg);
 934release:
 935		hw->phy.ops.release(hw);
 936	} else {
 937		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 938		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 939
 940		if ((hw->phy.revision > 5) || !link ||
 941		    ((status & E1000_STATUS_SPEED_100) &&
 942		     (status & E1000_STATUS_FD)))
 943			goto update_fextnvm6;
 944
 945		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 946		if (ret_val)
 947			return ret_val;
 948
 949		/* Clear link status transmit timeout */
 950		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 951
 952		if (status & E1000_STATUS_SPEED_100) {
 953			/* Set inband Tx timeout to 5x10us for 100Half */
 954			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 955
 956			/* Do not extend the K1 entry latency for 100Half */
 957			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 958		} else {
 959			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 960			reg |= 50 <<
 961			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 962
 963			/* Extend the K1 entry latency for 10 Mbps */
 964			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 965		}
 966
 967		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 968		if (ret_val)
 969			return ret_val;
 970
 971update_fextnvm6:
 972		ew32(FEXTNVM6, fextnvm6);
 973	}
 974
 975	return ret_val;
 976}
 977
 978/**
 979 *  e1000_platform_pm_pch_lpt - Set platform power management values
 980 *  @hw: pointer to the HW structure
 981 *  @link: bool indicating link status
 982 *
 983 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 984 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 985 *  when link is up (which must not exceed the maximum latency supported
 986 *  by the platform), otherwise specify there is no LTR requirement.
 987 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 988 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 989 *  Capability register set, on this device LTR is set by writing the
 990 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 991 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 992 *  message to the PMC.
 993 **/
 994static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 995{
 996	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 997	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
 998	u16 lat_enc = 0;	/* latency encoded */
 999
1000	if (link) {
1001		u16 speed, duplex, scale = 0;
1002		u16 max_snoop, max_nosnoop;
1003		u16 max_ltr_enc;	/* max LTR latency encoded */
1004		u64 value;
1005		u32 rxa;
1006
1007		if (!hw->adapter->max_frame_size) {
1008			e_dbg("max_frame_size not set.\n");
1009			return -E1000_ERR_CONFIG;
1010		}
1011
1012		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013		if (!speed) {
1014			e_dbg("Speed not set.\n");
1015			return -E1000_ERR_CONFIG;
1016		}
1017
1018		/* Rx Packet Buffer Allocation size (KB) */
1019		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020
1021		/* Determine the maximum latency tolerated by the device.
1022		 *
1023		 * Per the PCIe spec, the tolerated latencies are encoded as
1024		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028		 */
1029		rxa *= 512;
1030		value = (rxa > hw->adapter->max_frame_size) ?
1031			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032			0;
1033
1034		while (value > PCI_LTR_VALUE_MASK) {
1035			scale++;
1036			value = DIV_ROUND_UP(value, BIT(5));
1037		}
1038		if (scale > E1000_LTRV_SCALE_MAX) {
1039			e_dbg("Invalid LTR latency scale %d\n", scale);
1040			return -E1000_ERR_CONFIG;
1041		}
1042		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043
1044		/* Determine the maximum latency tolerated by the platform */
1045		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046				     &max_snoop);
1047		pci_read_config_word(hw->adapter->pdev,
1048				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050
1051		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1052			lat_enc = max_ltr_enc;
1053	}
1054
1055	/* Set Snoop and No-Snoop latencies the same */
1056	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057	ew32(LTRV, reg);
1058
1059	return 0;
1060}
1061
1062/**
1063 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064 *  @hw: pointer to the HW structure
1065 *  @to_sx: boolean indicating a system power state transition to Sx
1066 *
1067 *  When link is down, configure ULP mode to significantly reduce the power
1068 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070 *  system, configure the ULP mode by software.
1071 */
1072s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073{
1074	u32 mac_reg;
1075	s32 ret_val = 0;
1076	u16 phy_reg;
1077	u16 oem_reg = 0;
1078
1079	if ((hw->mac.type < e1000_pch_lpt) ||
1080	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085		return 0;
1086
1087	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088		/* Request ME configure ULP mode in the PHY */
1089		mac_reg = er32(H2ME);
1090		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091		ew32(H2ME, mac_reg);
1092
1093		goto out;
1094	}
1095
1096	if (!to_sx) {
1097		int i = 0;
1098
1099		/* Poll up to 5 seconds for Cable Disconnected indication */
1100		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101			/* Bail if link is re-acquired */
1102			if (er32(STATUS) & E1000_STATUS_LU)
1103				return -E1000_ERR_PHY;
1104
1105			if (i++ == 100)
1106				break;
1107
1108			msleep(50);
1109		}
1110		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111		      (er32(FEXT) &
1112		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113	}
1114
1115	ret_val = hw->phy.ops.acquire(hw);
1116	if (ret_val)
1117		goto out;
1118
1119	/* Force SMBus mode in PHY */
1120	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121	if (ret_val)
1122		goto release;
1123	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126	/* Force SMBus mode in MAC */
1127	mac_reg = er32(CTRL_EXT);
1128	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129	ew32(CTRL_EXT, mac_reg);
1130
1131	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132	 * LPLU and disable Gig speed when entering ULP
1133	 */
1134	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136						       &oem_reg);
1137		if (ret_val)
1138			goto release;
1139
1140		phy_reg = oem_reg;
1141		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142
1143		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144							phy_reg);
1145
1146		if (ret_val)
1147			goto release;
1148	}
1149
1150	/* Set Inband ULP Exit, Reset to SMBus mode and
1151	 * Disable SMBus Release on PERST# in PHY
1152	 */
1153	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154	if (ret_val)
1155		goto release;
1156	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158	if (to_sx) {
1159		if (er32(WUFC) & E1000_WUFC_LNKC)
1160			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161		else
1162			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163
1164		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166	} else {
1167		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170	}
1171	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172
1173	/* Set Disable SMBus Release on PERST# in MAC */
1174	mac_reg = er32(FEXTNVM7);
1175	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176	ew32(FEXTNVM7, mac_reg);
1177
1178	/* Commit ULP changes in PHY by starting auto ULP configuration */
1179	phy_reg |= I218_ULP_CONFIG1_START;
1180	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181
1182	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185							oem_reg);
1186		if (ret_val)
1187			goto release;
1188	}
1189
1190release:
1191	hw->phy.ops.release(hw);
1192out:
1193	if (ret_val)
1194		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195	else
1196		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197
1198	return ret_val;
1199}
1200
1201/**
1202 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203 *  @hw: pointer to the HW structure
1204 *  @force: boolean indicating whether or not to force disabling ULP
1205 *
1206 *  Un-configure ULP mode when link is up, the system is transitioned from
1207 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208 *  system, poll for an indication from ME that ULP has been un-configured.
1209 *  If not on an ME enabled system, un-configure the ULP mode by software.
1210 *
1211 *  During nominal operation, this function is called when link is acquired
1212 *  to disable ULP mode (force=false); otherwise, for example when unloading
1213 *  the driver or during Sx->S0 transitions, this is called with force=true
1214 *  to forcibly disable ULP.
1215 */
1216static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217{
1218	s32 ret_val = 0;
1219	u32 mac_reg;
1220	u16 phy_reg;
1221	int i = 0;
1222
1223	if ((hw->mac.type < e1000_pch_lpt) ||
1224	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229		return 0;
1230
1231	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1232		if (force) {
1233			/* Request ME un-configure ULP mode in the PHY */
1234			mac_reg = er32(H2ME);
1235			mac_reg &= ~E1000_H2ME_ULP;
1236			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237			ew32(H2ME, mac_reg);
1238		}
1239
1240		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1241		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242			if (i++ == 30) {
1243				ret_val = -E1000_ERR_PHY;
1244				goto out;
1245			}
 
 
1246
1247			usleep_range(10000, 11000);
1248		}
1249		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1250
1251		if (force) {
1252			mac_reg = er32(H2ME);
1253			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254			ew32(H2ME, mac_reg);
1255		} else {
1256			/* Clear H2ME.ULP after ME ULP configuration */
1257			mac_reg = er32(H2ME);
1258			mac_reg &= ~E1000_H2ME_ULP;
1259			ew32(H2ME, mac_reg);
1260		}
1261
1262		goto out;
1263	}
1264
1265	ret_val = hw->phy.ops.acquire(hw);
1266	if (ret_val)
1267		goto out;
1268
1269	if (force)
1270		/* Toggle LANPHYPC Value bit */
1271		e1000_toggle_lanphypc_pch_lpt(hw);
1272
1273	/* Unforce SMBus mode in PHY */
1274	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275	if (ret_val) {
1276		/* The MAC might be in PCIe mode, so temporarily force to
1277		 * SMBus mode in order to access the PHY.
1278		 */
1279		mac_reg = er32(CTRL_EXT);
1280		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281		ew32(CTRL_EXT, mac_reg);
1282
1283		msleep(50);
1284
1285		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286						       &phy_reg);
1287		if (ret_val)
1288			goto release;
1289	}
1290	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292
1293	/* Unforce SMBus mode in MAC */
1294	mac_reg = er32(CTRL_EXT);
1295	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296	ew32(CTRL_EXT, mac_reg);
1297
1298	/* When ULP mode was previously entered, K1 was disabled by the
1299	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300	 */
1301	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302	if (ret_val)
1303		goto release;
1304	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306
1307	/* Clear ULP enabled configuration */
1308	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309	if (ret_val)
1310		goto release;
1311	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312		     I218_ULP_CONFIG1_STICKY_ULP |
1313		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314		     I218_ULP_CONFIG1_WOL_HOST |
1315		     I218_ULP_CONFIG1_INBAND_EXIT |
1316		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321	/* Commit ULP changes by starting auto ULP configuration */
1322	phy_reg |= I218_ULP_CONFIG1_START;
1323	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324
1325	/* Clear Disable SMBus Release on PERST# in MAC */
1326	mac_reg = er32(FEXTNVM7);
1327	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328	ew32(FEXTNVM7, mac_reg);
1329
1330release:
1331	hw->phy.ops.release(hw);
1332	if (force) {
1333		e1000_phy_hw_reset(hw);
1334		msleep(50);
1335	}
1336out:
1337	if (ret_val)
1338		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339	else
1340		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341
1342	return ret_val;
1343}
1344
1345/**
1346 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  Checks to see of the link status of the hardware has changed.  If a
1350 *  change in link status has been detected, then we read the PHY registers
1351 *  to get the current speed/duplex if link exists.
1352 **/
1353static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354{
1355	struct e1000_mac_info *mac = &hw->mac;
1356	s32 ret_val, tipg_reg = 0;
1357	u16 emi_addr, emi_val = 0;
1358	bool link;
1359	u16 phy_reg;
1360
1361	/* We only want to go out to the PHY registers to see if Auto-Neg
1362	 * has completed and/or if our link status has changed.  The
1363	 * get_link_status flag is set upon receiving a Link Status
1364	 * Change or Rx Sequence Error interrupt.
1365	 */
1366	if (!mac->get_link_status)
1367		return 0;
1368	mac->get_link_status = false;
1369
1370	/* First we want to see if the MII Status Register reports
1371	 * link.  If so, then we want to get the current speed/duplex
1372	 * of the PHY.
1373	 */
1374	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375	if (ret_val)
1376		goto out;
1377
1378	if (hw->mac.type == e1000_pchlan) {
1379		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380		if (ret_val)
1381			goto out;
1382	}
1383
1384	/* When connected at 10Mbps half-duplex, some parts are excessively
1385	 * aggressive resulting in many collisions. To avoid this, increase
1386	 * the IPG and reduce Rx latency in the PHY.
1387	 */
1388	if ((hw->mac.type >= e1000_pch2lan) && link) {
1389		u16 speed, duplex;
1390
1391		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392		tipg_reg = er32(TIPG);
1393		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394
1395		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396			tipg_reg |= 0xFF;
1397			/* Reduce Rx latency in analog PHY */
1398			emi_val = 0;
1399		} else if (hw->mac.type >= e1000_pch_spt &&
1400			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401			tipg_reg |= 0xC;
1402			emi_val = 1;
1403		} else {
1404
1405			/* Roll back the default values */
1406			tipg_reg |= 0x08;
1407			emi_val = 1;
1408		}
1409
1410		ew32(TIPG, tipg_reg);
1411
1412		ret_val = hw->phy.ops.acquire(hw);
1413		if (ret_val)
1414			goto out;
1415
1416		if (hw->mac.type == e1000_pch2lan)
1417			emi_addr = I82579_RX_CONFIG;
1418		else
1419			emi_addr = I217_RX_CONFIG;
1420		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421
1422		if (hw->mac.type >= e1000_pch_lpt) {
1423			u16 phy_reg;
1424
1425			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427			if (speed == SPEED_100 || speed == SPEED_10)
1428				phy_reg |= 0x3E8;
1429			else
1430				phy_reg |= 0xFA;
1431			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432
1433			if (speed == SPEED_1000) {
1434				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1435							    &phy_reg);
1436
1437				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1438
1439				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1440							     phy_reg);
1441			}
1442		}
1443		hw->phy.ops.release(hw);
1444
1445		if (ret_val)
1446			goto out;
1447
1448		if (hw->mac.type >= e1000_pch_spt) {
1449			u16 data;
1450			u16 ptr_gap;
1451
1452			if (speed == SPEED_1000) {
1453				ret_val = hw->phy.ops.acquire(hw);
1454				if (ret_val)
1455					goto out;
1456
1457				ret_val = e1e_rphy_locked(hw,
1458							  PHY_REG(776, 20),
1459							  &data);
1460				if (ret_val) {
1461					hw->phy.ops.release(hw);
1462					goto out;
1463				}
1464
1465				ptr_gap = (data & (0x3FF << 2)) >> 2;
1466				if (ptr_gap < 0x18) {
1467					data &= ~(0x3FF << 2);
1468					data |= (0x18 << 2);
1469					ret_val =
1470					    e1e_wphy_locked(hw,
1471							    PHY_REG(776, 20),
1472							    data);
1473				}
1474				hw->phy.ops.release(hw);
1475				if (ret_val)
1476					goto out;
1477			} else {
1478				ret_val = hw->phy.ops.acquire(hw);
1479				if (ret_val)
1480					goto out;
1481
1482				ret_val = e1e_wphy_locked(hw,
1483							  PHY_REG(776, 20),
1484							  0xC023);
1485				hw->phy.ops.release(hw);
1486				if (ret_val)
1487					goto out;
1488
1489			}
1490		}
1491	}
1492
1493	/* I217 Packet Loss issue:
1494	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1495	 * on power up.
1496	 * Set the Beacon Duration for I217 to 8 usec
1497	 */
1498	if (hw->mac.type >= e1000_pch_lpt) {
1499		u32 mac_reg;
1500
1501		mac_reg = er32(FEXTNVM4);
1502		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1503		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1504		ew32(FEXTNVM4, mac_reg);
1505	}
1506
1507	/* Work-around I218 hang issue */
1508	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1509	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1510	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1511	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1512		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1513		if (ret_val)
1514			goto out;
1515	}
1516	if (hw->mac.type >= e1000_pch_lpt) {
1517		/* Set platform power management values for
1518		 * Latency Tolerance Reporting (LTR)
1519		 */
1520		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1521		if (ret_val)
1522			goto out;
1523	}
1524
1525	/* Clear link partner's EEE ability */
1526	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1527
1528	if (hw->mac.type >= e1000_pch_lpt) {
1529		u32 fextnvm6 = er32(FEXTNVM6);
1530
1531		if (hw->mac.type == e1000_pch_spt) {
1532			/* FEXTNVM6 K1-off workaround - for SPT only */
1533			u32 pcieanacfg = er32(PCIEANACFG);
1534
1535			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1536				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1537			else
1538				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1539		}
1540
1541		ew32(FEXTNVM6, fextnvm6);
1542	}
1543
1544	if (!link)
1545		goto out;
1546
1547	switch (hw->mac.type) {
1548	case e1000_pch2lan:
1549		ret_val = e1000_k1_workaround_lv(hw);
1550		if (ret_val)
1551			return ret_val;
1552		/* fall-thru */
1553	case e1000_pchlan:
1554		if (hw->phy.type == e1000_phy_82578) {
1555			ret_val = e1000_link_stall_workaround_hv(hw);
1556			if (ret_val)
1557				return ret_val;
1558		}
1559
1560		/* Workaround for PCHx parts in half-duplex:
1561		 * Set the number of preambles removed from the packet
1562		 * when it is passed from the PHY to the MAC to prevent
1563		 * the MAC from misinterpreting the packet type.
1564		 */
1565		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1566		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1567
1568		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1569			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1570
1571		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1572		break;
1573	default:
1574		break;
1575	}
1576
1577	/* Check if there was DownShift, must be checked
1578	 * immediately after link-up
1579	 */
1580	e1000e_check_downshift(hw);
1581
1582	/* Enable/Disable EEE after link up */
1583	if (hw->phy.type > e1000_phy_82579) {
1584		ret_val = e1000_set_eee_pchlan(hw);
1585		if (ret_val)
1586			return ret_val;
1587	}
1588
1589	/* If we are forcing speed/duplex, then we simply return since
1590	 * we have already determined whether we have link or not.
1591	 */
1592	if (!mac->autoneg)
1593		return -E1000_ERR_CONFIG;
1594
1595	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1596	 * of MAC speed/duplex configuration.  So we only need to
1597	 * configure Collision Distance in the MAC.
1598	 */
1599	mac->ops.config_collision_dist(hw);
1600
1601	/* Configure Flow Control now that Auto-Neg has completed.
1602	 * First, we need to restore the desired flow control
1603	 * settings because we may have had to re-autoneg with a
1604	 * different link partner.
1605	 */
1606	ret_val = e1000e_config_fc_after_link_up(hw);
1607	if (ret_val)
1608		e_dbg("Error configuring flow control\n");
1609
1610	return ret_val;
1611
1612out:
1613	mac->get_link_status = true;
1614	return ret_val;
1615}
1616
1617static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1618{
1619	struct e1000_hw *hw = &adapter->hw;
1620	s32 rc;
1621
1622	rc = e1000_init_mac_params_ich8lan(hw);
1623	if (rc)
1624		return rc;
1625
1626	rc = e1000_init_nvm_params_ich8lan(hw);
1627	if (rc)
1628		return rc;
1629
1630	switch (hw->mac.type) {
1631	case e1000_ich8lan:
1632	case e1000_ich9lan:
1633	case e1000_ich10lan:
1634		rc = e1000_init_phy_params_ich8lan(hw);
1635		break;
1636	case e1000_pchlan:
1637	case e1000_pch2lan:
1638	case e1000_pch_lpt:
1639	case e1000_pch_spt:
1640	case e1000_pch_cnp:
 
 
 
 
 
 
1641		rc = e1000_init_phy_params_pchlan(hw);
1642		break;
1643	default:
1644		break;
1645	}
1646	if (rc)
1647		return rc;
1648
1649	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1650	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1651	 */
1652	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1653	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1654	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1655		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1656		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1657
1658		hw->mac.ops.blink_led = NULL;
1659	}
1660
1661	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1662	    (adapter->hw.phy.type != e1000_phy_ife))
1663		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1664
1665	/* Enable workaround for 82579 w/ ME enabled */
1666	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1667	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1668		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1669
1670	return 0;
1671}
1672
1673static DEFINE_MUTEX(nvm_mutex);
1674
1675/**
1676 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Acquires the mutex for performing NVM operations.
1680 **/
1681static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1682{
1683	mutex_lock(&nvm_mutex);
1684
1685	return 0;
1686}
1687
1688/**
1689 *  e1000_release_nvm_ich8lan - Release NVM mutex
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Releases the mutex used while performing NVM operations.
1693 **/
1694static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1695{
1696	mutex_unlock(&nvm_mutex);
1697}
1698
1699/**
1700 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1701 *  @hw: pointer to the HW structure
1702 *
1703 *  Acquires the software control flag for performing PHY and select
1704 *  MAC CSR accesses.
1705 **/
1706static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1707{
1708	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1709	s32 ret_val = 0;
1710
1711	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1712			     &hw->adapter->state)) {
1713		e_dbg("contention for Phy access\n");
1714		return -E1000_ERR_PHY;
1715	}
1716
1717	while (timeout) {
1718		extcnf_ctrl = er32(EXTCNF_CTRL);
1719		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1720			break;
1721
1722		mdelay(1);
1723		timeout--;
1724	}
1725
1726	if (!timeout) {
1727		e_dbg("SW has already locked the resource.\n");
1728		ret_val = -E1000_ERR_CONFIG;
1729		goto out;
1730	}
1731
1732	timeout = SW_FLAG_TIMEOUT;
1733
1734	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1735	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736
1737	while (timeout) {
1738		extcnf_ctrl = er32(EXTCNF_CTRL);
1739		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1740			break;
1741
1742		mdelay(1);
1743		timeout--;
1744	}
1745
1746	if (!timeout) {
1747		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1748		      er32(FWSM), extcnf_ctrl);
1749		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1750		ew32(EXTCNF_CTRL, extcnf_ctrl);
1751		ret_val = -E1000_ERR_CONFIG;
1752		goto out;
1753	}
1754
1755out:
1756	if (ret_val)
1757		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1758
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000_release_swflag_ich8lan - Release software control flag
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Releases the software control flag for performing PHY and select
1767 *  MAC CSR accesses.
1768 **/
1769static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771	u32 extcnf_ctrl;
1772
1773	extcnf_ctrl = er32(EXTCNF_CTRL);
1774
1775	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1776		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777		ew32(EXTCNF_CTRL, extcnf_ctrl);
1778	} else {
1779		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1780	}
1781
1782	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783}
1784
1785/**
1786 *  e1000_check_mng_mode_ich8lan - Checks management mode
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  This checks if the adapter has any manageability enabled.
1790 *  This is a function pointer entry point only called by read/write
1791 *  routines for the PHY and NVM parts.
1792 **/
1793static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1794{
1795	u32 fwsm;
1796
1797	fwsm = er32(FWSM);
1798	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1799		((fwsm & E1000_FWSM_MODE_MASK) ==
1800		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1801}
1802
1803/**
1804 *  e1000_check_mng_mode_pchlan - Checks management mode
1805 *  @hw: pointer to the HW structure
1806 *
1807 *  This checks if the adapter has iAMT enabled.
1808 *  This is a function pointer entry point only called by read/write
1809 *  routines for the PHY and NVM parts.
1810 **/
1811static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1812{
1813	u32 fwsm;
1814
1815	fwsm = er32(FWSM);
1816	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1817	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1818}
1819
1820/**
1821 *  e1000_rar_set_pch2lan - Set receive address register
1822 *  @hw: pointer to the HW structure
1823 *  @addr: pointer to the receive address
1824 *  @index: receive address array register
1825 *
1826 *  Sets the receive address array register at index to the address passed
1827 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1828 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1829 *  Use SHRA[0-3] in place of those reserved for ME.
1830 **/
1831static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1832{
1833	u32 rar_low, rar_high;
1834
1835	/* HW expects these in little endian so we reverse the byte order
1836	 * from network order (big endian) to little endian
1837	 */
1838	rar_low = ((u32)addr[0] |
1839		   ((u32)addr[1] << 8) |
1840		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1841
1842	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1843
1844	/* If MAC address zero, no need to set the AV bit */
1845	if (rar_low || rar_high)
1846		rar_high |= E1000_RAH_AV;
1847
1848	if (index == 0) {
1849		ew32(RAL(index), rar_low);
1850		e1e_flush();
1851		ew32(RAH(index), rar_high);
1852		e1e_flush();
1853		return 0;
1854	}
1855
1856	/* RAR[1-6] are owned by manageability.  Skip those and program the
1857	 * next address into the SHRA register array.
1858	 */
1859	if (index < (u32)(hw->mac.rar_entry_count)) {
1860		s32 ret_val;
1861
1862		ret_val = e1000_acquire_swflag_ich8lan(hw);
1863		if (ret_val)
1864			goto out;
1865
1866		ew32(SHRAL(index - 1), rar_low);
1867		e1e_flush();
1868		ew32(SHRAH(index - 1), rar_high);
1869		e1e_flush();
1870
1871		e1000_release_swflag_ich8lan(hw);
1872
1873		/* verify the register updates */
1874		if ((er32(SHRAL(index - 1)) == rar_low) &&
1875		    (er32(SHRAH(index - 1)) == rar_high))
1876			return 0;
1877
1878		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1879		      (index - 1), er32(FWSM));
1880	}
1881
1882out:
1883	e_dbg("Failed to write receive address at index %d\n", index);
1884	return -E1000_ERR_CONFIG;
1885}
1886
1887/**
1888 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Get the number of available receive registers that the Host can
1892 *  program. SHRA[0-10] are the shared receive address registers
1893 *  that are shared between the Host and manageability engine (ME).
1894 *  ME can reserve any number of addresses and the host needs to be
1895 *  able to tell how many available registers it has access to.
1896 **/
1897static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1898{
1899	u32 wlock_mac;
1900	u32 num_entries;
1901
1902	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1903	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1904
1905	switch (wlock_mac) {
1906	case 0:
1907		/* All SHRA[0..10] and RAR[0] available */
1908		num_entries = hw->mac.rar_entry_count;
1909		break;
1910	case 1:
1911		/* Only RAR[0] available */
1912		num_entries = 1;
1913		break;
1914	default:
1915		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1916		num_entries = wlock_mac + 1;
1917		break;
1918	}
1919
1920	return num_entries;
1921}
1922
1923/**
1924 *  e1000_rar_set_pch_lpt - Set receive address registers
1925 *  @hw: pointer to the HW structure
1926 *  @addr: pointer to the receive address
1927 *  @index: receive address array register
1928 *
1929 *  Sets the receive address register array at index to the address passed
1930 *  in by addr. For LPT, RAR[0] is the base address register that is to
1931 *  contain the MAC address. SHRA[0-10] are the shared receive address
1932 *  registers that are shared between the Host and manageability engine (ME).
1933 **/
1934static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1935{
1936	u32 rar_low, rar_high;
1937	u32 wlock_mac;
1938
1939	/* HW expects these in little endian so we reverse the byte order
1940	 * from network order (big endian) to little endian
1941	 */
1942	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1943		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1944
1945	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1946
1947	/* If MAC address zero, no need to set the AV bit */
1948	if (rar_low || rar_high)
1949		rar_high |= E1000_RAH_AV;
1950
1951	if (index == 0) {
1952		ew32(RAL(index), rar_low);
1953		e1e_flush();
1954		ew32(RAH(index), rar_high);
1955		e1e_flush();
1956		return 0;
1957	}
1958
1959	/* The manageability engine (ME) can lock certain SHRAR registers that
1960	 * it is using - those registers are unavailable for use.
1961	 */
1962	if (index < hw->mac.rar_entry_count) {
1963		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1964		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1965
1966		/* Check if all SHRAR registers are locked */
1967		if (wlock_mac == 1)
1968			goto out;
1969
1970		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1971			s32 ret_val;
1972
1973			ret_val = e1000_acquire_swflag_ich8lan(hw);
1974
1975			if (ret_val)
1976				goto out;
1977
1978			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1979			e1e_flush();
1980			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1981			e1e_flush();
1982
1983			e1000_release_swflag_ich8lan(hw);
1984
1985			/* verify the register updates */
1986			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1987			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1988				return 0;
1989		}
1990	}
1991
1992out:
1993	e_dbg("Failed to write receive address at index %d\n", index);
1994	return -E1000_ERR_CONFIG;
1995}
1996
1997/**
1998 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999 *  @hw: pointer to the HW structure
2000 *
2001 *  Checks if firmware is blocking the reset of the PHY.
2002 *  This is a function pointer entry point only called by
2003 *  reset routines.
2004 **/
2005static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006{
2007	bool blocked = false;
2008	int i = 0;
2009
2010	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2011	       (i++ < 30))
2012		usleep_range(10000, 11000);
2013	return blocked ? E1000_BLK_PHY_RESET : 0;
2014}
2015
2016/**
2017 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2018 *  @hw: pointer to the HW structure
2019 *
2020 *  Assumes semaphore already acquired.
2021 *
2022 **/
2023static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2024{
2025	u16 phy_data;
2026	u32 strap = er32(STRAP);
2027	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2028	    E1000_STRAP_SMT_FREQ_SHIFT;
2029	s32 ret_val;
2030
2031	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2032
2033	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy_data &= ~HV_SMB_ADDR_MASK;
2038	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2039	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2040
2041	if (hw->phy.type == e1000_phy_i217) {
2042		/* Restore SMBus frequency */
2043		if (freq--) {
2044			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2045			phy_data |= (freq & BIT(0)) <<
2046			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2047			phy_data |= (freq & BIT(1)) <<
2048			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2049		} else {
2050			e_dbg("Unsupported SMB frequency in PHY\n");
2051		}
2052	}
2053
2054	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2055}
2056
2057/**
2058 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2059 *  @hw:   pointer to the HW structure
2060 *
2061 *  SW should configure the LCD from the NVM extended configuration region
2062 *  as a workaround for certain parts.
2063 **/
2064static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2065{
2066	struct e1000_phy_info *phy = &hw->phy;
2067	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2068	s32 ret_val = 0;
2069	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2070
2071	/* Initialize the PHY from the NVM on ICH platforms.  This
2072	 * is needed due to an issue where the NVM configuration is
2073	 * not properly autoloaded after power transitions.
2074	 * Therefore, after each PHY reset, we will load the
2075	 * configuration data out of the NVM manually.
2076	 */
2077	switch (hw->mac.type) {
2078	case e1000_ich8lan:
2079		if (phy->type != e1000_phy_igp_3)
2080			return ret_val;
2081
2082		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2083		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2084			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2085			break;
2086		}
2087		/* Fall-thru */
2088	case e1000_pchlan:
2089	case e1000_pch2lan:
2090	case e1000_pch_lpt:
2091	case e1000_pch_spt:
2092	case e1000_pch_cnp:
 
 
 
 
 
 
2093		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2094		break;
2095	default:
2096		return ret_val;
2097	}
2098
2099	ret_val = hw->phy.ops.acquire(hw);
2100	if (ret_val)
2101		return ret_val;
2102
2103	data = er32(FEXTNVM);
2104	if (!(data & sw_cfg_mask))
2105		goto release;
2106
2107	/* Make sure HW does not configure LCD from PHY
2108	 * extended configuration before SW configuration
2109	 */
2110	data = er32(EXTCNF_CTRL);
2111	if ((hw->mac.type < e1000_pch2lan) &&
2112	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2113		goto release;
2114
2115	cnf_size = er32(EXTCNF_SIZE);
2116	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2117	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2118	if (!cnf_size)
2119		goto release;
2120
2121	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2122	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2123
2124	if (((hw->mac.type == e1000_pchlan) &&
2125	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2126	    (hw->mac.type > e1000_pchlan)) {
2127		/* HW configures the SMBus address and LEDs when the
2128		 * OEM and LCD Write Enable bits are set in the NVM.
2129		 * When both NVM bits are cleared, SW will configure
2130		 * them instead.
2131		 */
2132		ret_val = e1000_write_smbus_addr(hw);
2133		if (ret_val)
2134			goto release;
2135
2136		data = er32(LEDCTL);
2137		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2138							(u16)data);
2139		if (ret_val)
2140			goto release;
2141	}
2142
2143	/* Configure LCD from extended configuration region. */
2144
2145	/* cnf_base_addr is in DWORD */
2146	word_addr = (u16)(cnf_base_addr << 1);
2147
2148	for (i = 0; i < cnf_size; i++) {
2149		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2150		if (ret_val)
2151			goto release;
2152
2153		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2154					 1, &reg_addr);
2155		if (ret_val)
2156			goto release;
2157
2158		/* Save off the PHY page for future writes. */
2159		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2160			phy_page = reg_data;
2161			continue;
2162		}
2163
2164		reg_addr &= PHY_REG_MASK;
2165		reg_addr |= phy_page;
2166
2167		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2168		if (ret_val)
2169			goto release;
2170	}
2171
2172release:
2173	hw->phy.ops.release(hw);
2174	return ret_val;
2175}
2176
2177/**
2178 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2179 *  @hw:   pointer to the HW structure
2180 *  @link: link up bool flag
2181 *
2182 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2183 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2184 *  If link is down, the function will restore the default K1 setting located
2185 *  in the NVM.
2186 **/
2187static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2188{
2189	s32 ret_val = 0;
2190	u16 status_reg = 0;
2191	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2192
2193	if (hw->mac.type != e1000_pchlan)
2194		return 0;
2195
2196	/* Wrap the whole flow with the sw flag */
2197	ret_val = hw->phy.ops.acquire(hw);
2198	if (ret_val)
2199		return ret_val;
2200
2201	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202	if (link) {
2203		if (hw->phy.type == e1000_phy_82578) {
2204			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2205						  &status_reg);
2206			if (ret_val)
2207				goto release;
2208
2209			status_reg &= (BM_CS_STATUS_LINK_UP |
2210				       BM_CS_STATUS_RESOLVED |
2211				       BM_CS_STATUS_SPEED_MASK);
2212
2213			if (status_reg == (BM_CS_STATUS_LINK_UP |
2214					   BM_CS_STATUS_RESOLVED |
2215					   BM_CS_STATUS_SPEED_1000))
2216				k1_enable = false;
2217		}
2218
2219		if (hw->phy.type == e1000_phy_82577) {
2220			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2221			if (ret_val)
2222				goto release;
2223
2224			status_reg &= (HV_M_STATUS_LINK_UP |
2225				       HV_M_STATUS_AUTONEG_COMPLETE |
2226				       HV_M_STATUS_SPEED_MASK);
2227
2228			if (status_reg == (HV_M_STATUS_LINK_UP |
2229					   HV_M_STATUS_AUTONEG_COMPLETE |
2230					   HV_M_STATUS_SPEED_1000))
2231				k1_enable = false;
2232		}
2233
2234		/* Link stall fix for link up */
2235		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2236		if (ret_val)
2237			goto release;
2238
2239	} else {
2240		/* Link stall fix for link down */
2241		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2242		if (ret_val)
2243			goto release;
2244	}
2245
2246	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2247
2248release:
2249	hw->phy.ops.release(hw);
2250
2251	return ret_val;
2252}
2253
2254/**
2255 *  e1000_configure_k1_ich8lan - Configure K1 power state
2256 *  @hw: pointer to the HW structure
2257 *  @enable: K1 state to configure
2258 *
2259 *  Configure the K1 power state based on the provided parameter.
2260 *  Assumes semaphore already acquired.
2261 *
2262 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2263 **/
2264s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2265{
2266	s32 ret_val;
2267	u32 ctrl_reg = 0;
2268	u32 ctrl_ext = 0;
2269	u32 reg = 0;
2270	u16 kmrn_reg = 0;
2271
2272	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273					      &kmrn_reg);
2274	if (ret_val)
2275		return ret_val;
2276
2277	if (k1_enable)
2278		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279	else
2280		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281
2282	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283					       kmrn_reg);
2284	if (ret_val)
2285		return ret_val;
2286
2287	usleep_range(20, 40);
2288	ctrl_ext = er32(CTRL_EXT);
2289	ctrl_reg = er32(CTRL);
2290
2291	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292	reg |= E1000_CTRL_FRCSPD;
2293	ew32(CTRL, reg);
2294
2295	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296	e1e_flush();
2297	usleep_range(20, 40);
2298	ew32(CTRL, ctrl_reg);
2299	ew32(CTRL_EXT, ctrl_ext);
2300	e1e_flush();
2301	usleep_range(20, 40);
2302
2303	return 0;
2304}
2305
2306/**
2307 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308 *  @hw:       pointer to the HW structure
2309 *  @d0_state: boolean if entering d0 or d3 device state
2310 *
2311 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2313 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2314 **/
2315static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316{
2317	s32 ret_val = 0;
2318	u32 mac_reg;
2319	u16 oem_reg;
2320
2321	if (hw->mac.type < e1000_pchlan)
2322		return ret_val;
2323
2324	ret_val = hw->phy.ops.acquire(hw);
2325	if (ret_val)
2326		return ret_val;
2327
2328	if (hw->mac.type == e1000_pchlan) {
2329		mac_reg = er32(EXTCNF_CTRL);
2330		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2331			goto release;
2332	}
2333
2334	mac_reg = er32(FEXTNVM);
2335	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2336		goto release;
2337
2338	mac_reg = er32(PHY_CTRL);
2339
2340	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2341	if (ret_val)
2342		goto release;
2343
2344	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2345
2346	if (d0_state) {
2347		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2348			oem_reg |= HV_OEM_BITS_GBE_DIS;
2349
2350		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2351			oem_reg |= HV_OEM_BITS_LPLU;
2352	} else {
2353		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2354			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2355			oem_reg |= HV_OEM_BITS_GBE_DIS;
2356
2357		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2358			       E1000_PHY_CTRL_NOND0A_LPLU))
2359			oem_reg |= HV_OEM_BITS_LPLU;
2360	}
2361
2362	/* Set Restart auto-neg to activate the bits */
2363	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2364	    !hw->phy.ops.check_reset_block(hw))
2365		oem_reg |= HV_OEM_BITS_RESTART_AN;
2366
2367	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2368
2369release:
2370	hw->phy.ops.release(hw);
2371
2372	return ret_val;
2373}
2374
2375/**
2376 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2377 *  @hw:   pointer to the HW structure
2378 **/
2379static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2380{
2381	s32 ret_val;
2382	u16 data;
2383
2384	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2385	if (ret_val)
2386		return ret_val;
2387
2388	data |= HV_KMRN_MDIO_SLOW;
2389
2390	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2391
2392	return ret_val;
2393}
2394
2395/**
2396 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2397 *  done after every PHY reset.
 
 
2398 **/
2399static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2400{
2401	s32 ret_val = 0;
2402	u16 phy_data;
2403
2404	if (hw->mac.type != e1000_pchlan)
2405		return 0;
2406
2407	/* Set MDIO slow mode before any other MDIO access */
2408	if (hw->phy.type == e1000_phy_82577) {
2409		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2410		if (ret_val)
2411			return ret_val;
2412	}
2413
2414	if (((hw->phy.type == e1000_phy_82577) &&
2415	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2416	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2417		/* Disable generation of early preamble */
2418		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2419		if (ret_val)
2420			return ret_val;
2421
2422		/* Preamble tuning for SSC */
2423		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2424		if (ret_val)
2425			return ret_val;
2426	}
2427
2428	if (hw->phy.type == e1000_phy_82578) {
2429		/* Return registers to default by doing a soft reset then
2430		 * writing 0x3140 to the control register.
2431		 */
2432		if (hw->phy.revision < 2) {
2433			e1000e_phy_sw_reset(hw);
2434			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2435			if (ret_val)
2436				return ret_val;
2437		}
2438	}
2439
2440	/* Select page 0 */
2441	ret_val = hw->phy.ops.acquire(hw);
2442	if (ret_val)
2443		return ret_val;
2444
2445	hw->phy.addr = 1;
2446	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2447	hw->phy.ops.release(hw);
2448	if (ret_val)
2449		return ret_val;
2450
2451	/* Configure the K1 Si workaround during phy reset assuming there is
2452	 * link so that it disables K1 if link is in 1Gbps.
2453	 */
2454	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2455	if (ret_val)
2456		return ret_val;
2457
2458	/* Workaround for link disconnects on a busy hub in half duplex */
2459	ret_val = hw->phy.ops.acquire(hw);
2460	if (ret_val)
2461		return ret_val;
2462	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2463	if (ret_val)
2464		goto release;
2465	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2466	if (ret_val)
2467		goto release;
2468
2469	/* set MSE higher to enable link to stay up when noise is high */
2470	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2471release:
2472	hw->phy.ops.release(hw);
2473
2474	return ret_val;
2475}
2476
2477/**
2478 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2479 *  @hw:   pointer to the HW structure
2480 **/
2481void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482{
2483	u32 mac_reg;
2484	u16 i, phy_reg = 0;
2485	s32 ret_val;
2486
2487	ret_val = hw->phy.ops.acquire(hw);
2488	if (ret_val)
2489		return;
2490	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2491	if (ret_val)
2492		goto release;
2493
2494	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2495	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2496		mac_reg = er32(RAL(i));
2497		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2498					   (u16)(mac_reg & 0xFFFF));
2499		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2500					   (u16)((mac_reg >> 16) & 0xFFFF));
2501
2502		mac_reg = er32(RAH(i));
2503		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2504					   (u16)(mac_reg & 0xFFFF));
2505		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2506					   (u16)((mac_reg & E1000_RAH_AV)
2507						 >> 16));
2508	}
2509
2510	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511
2512release:
2513	hw->phy.ops.release(hw);
2514}
2515
2516/**
2517 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518 *  with 82579 PHY
2519 *  @hw: pointer to the HW structure
2520 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521 **/
2522s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523{
2524	s32 ret_val = 0;
2525	u16 phy_reg, data;
2526	u32 mac_reg;
2527	u16 i;
2528
2529	if (hw->mac.type < e1000_pch2lan)
2530		return 0;
2531
2532	/* disable Rx path while enabling/disabling workaround */
2533	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2534	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2535	if (ret_val)
2536		return ret_val;
2537
2538	if (enable) {
2539		/* Write Rx addresses (rar_entry_count for RAL/H, and
2540		 * SHRAL/H) and initial CRC values to the MAC
2541		 */
2542		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2543			u8 mac_addr[ETH_ALEN] = { 0 };
2544			u32 addr_high, addr_low;
2545
2546			addr_high = er32(RAH(i));
2547			if (!(addr_high & E1000_RAH_AV))
2548				continue;
2549			addr_low = er32(RAL(i));
2550			mac_addr[0] = (addr_low & 0xFF);
2551			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2552			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2553			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2554			mac_addr[4] = (addr_high & 0xFF);
2555			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556
2557			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2558		}
2559
2560		/* Write Rx addresses to the PHY */
2561		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562
2563		/* Enable jumbo frame workaround in the MAC */
2564		mac_reg = er32(FFLT_DBG);
2565		mac_reg &= ~BIT(14);
2566		mac_reg |= (7 << 15);
2567		ew32(FFLT_DBG, mac_reg);
2568
2569		mac_reg = er32(RCTL);
2570		mac_reg |= E1000_RCTL_SECRC;
2571		ew32(RCTL, mac_reg);
2572
2573		ret_val = e1000e_read_kmrn_reg(hw,
2574					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2575					       &data);
2576		if (ret_val)
2577			return ret_val;
2578		ret_val = e1000e_write_kmrn_reg(hw,
2579						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580						data | BIT(0));
2581		if (ret_val)
2582			return ret_val;
2583		ret_val = e1000e_read_kmrn_reg(hw,
2584					       E1000_KMRNCTRLSTA_HD_CTRL,
2585					       &data);
2586		if (ret_val)
2587			return ret_val;
2588		data &= ~(0xF << 8);
2589		data |= (0xB << 8);
2590		ret_val = e1000e_write_kmrn_reg(hw,
2591						E1000_KMRNCTRLSTA_HD_CTRL,
2592						data);
2593		if (ret_val)
2594			return ret_val;
2595
2596		/* Enable jumbo frame workaround in the PHY */
2597		e1e_rphy(hw, PHY_REG(769, 23), &data);
2598		data &= ~(0x7F << 5);
2599		data |= (0x37 << 5);
2600		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2601		if (ret_val)
2602			return ret_val;
2603		e1e_rphy(hw, PHY_REG(769, 16), &data);
2604		data &= ~BIT(13);
2605		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2606		if (ret_val)
2607			return ret_val;
2608		e1e_rphy(hw, PHY_REG(776, 20), &data);
2609		data &= ~(0x3FF << 2);
2610		data |= (E1000_TX_PTR_GAP << 2);
2611		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2612		if (ret_val)
2613			return ret_val;
2614		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, HV_PM_CTRL, &data);
2618		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2619		if (ret_val)
2620			return ret_val;
2621	} else {
2622		/* Write MAC register values back to h/w defaults */
2623		mac_reg = er32(FFLT_DBG);
2624		mac_reg &= ~(0xF << 14);
2625		ew32(FFLT_DBG, mac_reg);
2626
2627		mac_reg = er32(RCTL);
2628		mac_reg &= ~E1000_RCTL_SECRC;
2629		ew32(RCTL, mac_reg);
2630
2631		ret_val = e1000e_read_kmrn_reg(hw,
2632					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633					       &data);
2634		if (ret_val)
2635			return ret_val;
2636		ret_val = e1000e_write_kmrn_reg(hw,
2637						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638						data & ~BIT(0));
2639		if (ret_val)
2640			return ret_val;
2641		ret_val = e1000e_read_kmrn_reg(hw,
2642					       E1000_KMRNCTRLSTA_HD_CTRL,
2643					       &data);
2644		if (ret_val)
2645			return ret_val;
2646		data &= ~(0xF << 8);
2647		data |= (0xB << 8);
2648		ret_val = e1000e_write_kmrn_reg(hw,
2649						E1000_KMRNCTRLSTA_HD_CTRL,
2650						data);
2651		if (ret_val)
2652			return ret_val;
2653
2654		/* Write PHY register values back to h/w defaults */
2655		e1e_rphy(hw, PHY_REG(769, 23), &data);
2656		data &= ~(0x7F << 5);
2657		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2658		if (ret_val)
2659			return ret_val;
2660		e1e_rphy(hw, PHY_REG(769, 16), &data);
2661		data |= BIT(13);
2662		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2663		if (ret_val)
2664			return ret_val;
2665		e1e_rphy(hw, PHY_REG(776, 20), &data);
2666		data &= ~(0x3FF << 2);
2667		data |= (0x8 << 2);
2668		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2669		if (ret_val)
2670			return ret_val;
2671		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, HV_PM_CTRL, &data);
2675		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2676		if (ret_val)
2677			return ret_val;
2678	}
2679
2680	/* re-enable Rx path after enabling/disabling workaround */
2681	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2682}
2683
2684/**
2685 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2686 *  done after every PHY reset.
 
 
2687 **/
2688static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689{
2690	s32 ret_val = 0;
2691
2692	if (hw->mac.type != e1000_pch2lan)
2693		return 0;
2694
2695	/* Set MDIO slow mode before any other MDIO access */
2696	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2697	if (ret_val)
2698		return ret_val;
2699
2700	ret_val = hw->phy.ops.acquire(hw);
2701	if (ret_val)
2702		return ret_val;
2703	/* set MSE higher to enable link to stay up when noise is high */
2704	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2705	if (ret_val)
2706		goto release;
2707	/* drop link after 5 times MSE threshold was reached */
2708	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2709release:
2710	hw->phy.ops.release(hw);
2711
2712	return ret_val;
2713}
2714
2715/**
2716 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2717 *  @hw:   pointer to the HW structure
2718 *
2719 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2720 *  Disable K1 in 1000Mbps and 100Mbps
2721 **/
2722static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723{
2724	s32 ret_val = 0;
2725	u16 status_reg = 0;
2726
2727	if (hw->mac.type != e1000_pch2lan)
2728		return 0;
2729
2730	/* Set K1 beacon duration based on 10Mbs speed */
2731	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2732	if (ret_val)
2733		return ret_val;
2734
2735	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2736	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2737		if (status_reg &
2738		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2739			u16 pm_phy_reg;
2740
2741			/* LV 1G/100 Packet drop issue wa  */
2742			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2743			if (ret_val)
2744				return ret_val;
2745			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2746			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2747			if (ret_val)
2748				return ret_val;
2749		} else {
2750			u32 mac_reg;
2751
2752			mac_reg = er32(FEXTNVM4);
2753			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2754			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2755			ew32(FEXTNVM4, mac_reg);
2756		}
2757	}
2758
2759	return ret_val;
2760}
2761
2762/**
2763 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2764 *  @hw:   pointer to the HW structure
2765 *  @gate: boolean set to true to gate, false to ungate
2766 *
2767 *  Gate/ungate the automatic PHY configuration via hardware; perform
2768 *  the configuration via software instead.
2769 **/
2770static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771{
2772	u32 extcnf_ctrl;
2773
2774	if (hw->mac.type < e1000_pch2lan)
2775		return;
2776
2777	extcnf_ctrl = er32(EXTCNF_CTRL);
2778
2779	if (gate)
2780		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2781	else
2782		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783
2784	ew32(EXTCNF_CTRL, extcnf_ctrl);
2785}
2786
2787/**
2788 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2789 *  @hw: pointer to the HW structure
2790 *
2791 *  Check the appropriate indication the MAC has finished configuring the
2792 *  PHY after a software reset.
2793 **/
2794static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795{
2796	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797
2798	/* Wait for basic configuration completes before proceeding */
2799	do {
2800		data = er32(STATUS);
2801		data &= E1000_STATUS_LAN_INIT_DONE;
2802		usleep_range(100, 200);
2803	} while ((!data) && --loop);
2804
2805	/* If basic configuration is incomplete before the above loop
2806	 * count reaches 0, loading the configuration from NVM will
2807	 * leave the PHY in a bad state possibly resulting in no link.
2808	 */
2809	if (loop == 0)
2810		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811
2812	/* Clear the Init Done bit for the next init event */
2813	data = er32(STATUS);
2814	data &= ~E1000_STATUS_LAN_INIT_DONE;
2815	ew32(STATUS, data);
2816}
2817
2818/**
2819 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2820 *  @hw: pointer to the HW structure
2821 **/
2822static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823{
2824	s32 ret_val = 0;
2825	u16 reg;
2826
2827	if (hw->phy.ops.check_reset_block(hw))
2828		return 0;
2829
2830	/* Allow time for h/w to get to quiescent state after reset */
2831	usleep_range(10000, 11000);
2832
2833	/* Perform any necessary post-reset workarounds */
2834	switch (hw->mac.type) {
2835	case e1000_pchlan:
2836		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2837		if (ret_val)
2838			return ret_val;
2839		break;
2840	case e1000_pch2lan:
2841		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2842		if (ret_val)
2843			return ret_val;
2844		break;
2845	default:
2846		break;
2847	}
2848
2849	/* Clear the host wakeup bit after lcd reset */
2850	if (hw->mac.type >= e1000_pchlan) {
2851		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2852		reg &= ~BM_WUC_HOST_WU_BIT;
2853		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2854	}
2855
2856	/* Configure the LCD with the extended configuration region in NVM */
2857	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2858	if (ret_val)
2859		return ret_val;
2860
2861	/* Configure the LCD with the OEM bits in NVM */
2862	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863
2864	if (hw->mac.type == e1000_pch2lan) {
2865		/* Ungate automatic PHY configuration on non-managed 82579 */
2866		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2867			usleep_range(10000, 11000);
2868			e1000_gate_hw_phy_config_ich8lan(hw, false);
2869		}
2870
2871		/* Set EEE LPI Update Timer to 200usec */
2872		ret_val = hw->phy.ops.acquire(hw);
2873		if (ret_val)
2874			return ret_val;
2875		ret_val = e1000_write_emi_reg_locked(hw,
2876						     I82579_LPI_UPDATE_TIMER,
2877						     0x1387);
2878		hw->phy.ops.release(hw);
2879	}
2880
2881	return ret_val;
2882}
2883
2884/**
2885 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2886 *  @hw: pointer to the HW structure
2887 *
2888 *  Resets the PHY
2889 *  This is a function pointer entry point called by drivers
2890 *  or other shared routines.
2891 **/
2892static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893{
2894	s32 ret_val = 0;
2895
2896	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2897	if ((hw->mac.type == e1000_pch2lan) &&
2898	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2899		e1000_gate_hw_phy_config_ich8lan(hw, true);
2900
2901	ret_val = e1000e_phy_hw_reset_generic(hw);
2902	if (ret_val)
2903		return ret_val;
2904
2905	return e1000_post_phy_reset_ich8lan(hw);
2906}
2907
2908/**
2909 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2910 *  @hw: pointer to the HW structure
2911 *  @active: true to enable LPLU, false to disable
2912 *
2913 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2914 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2915 *  the phy speed. This function will manually set the LPLU bit and restart
2916 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2917 *  since it configures the same bit.
2918 **/
2919static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920{
2921	s32 ret_val;
2922	u16 oem_reg;
2923
2924	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2925	if (ret_val)
2926		return ret_val;
2927
2928	if (active)
2929		oem_reg |= HV_OEM_BITS_LPLU;
2930	else
2931		oem_reg &= ~HV_OEM_BITS_LPLU;
2932
2933	if (!hw->phy.ops.check_reset_block(hw))
2934		oem_reg |= HV_OEM_BITS_RESTART_AN;
2935
2936	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2937}
2938
2939/**
2940 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2941 *  @hw: pointer to the HW structure
2942 *  @active: true to enable LPLU, false to disable
2943 *
2944 *  Sets the LPLU D0 state according to the active flag.  When
2945 *  activating LPLU this function also disables smart speed
2946 *  and vice versa.  LPLU will not be activated unless the
2947 *  device autonegotiation advertisement meets standards of
2948 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2949 *  This is a function pointer entry point only called by
2950 *  PHY setup routines.
2951 **/
2952static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953{
2954	struct e1000_phy_info *phy = &hw->phy;
2955	u32 phy_ctrl;
2956	s32 ret_val = 0;
2957	u16 data;
2958
2959	if (phy->type == e1000_phy_ife)
2960		return 0;
2961
2962	phy_ctrl = er32(PHY_CTRL);
2963
2964	if (active) {
2965		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2966		ew32(PHY_CTRL, phy_ctrl);
2967
2968		if (phy->type != e1000_phy_igp_3)
2969			return 0;
2970
2971		/* Call gig speed drop workaround on LPLU before accessing
2972		 * any PHY registers
2973		 */
2974		if (hw->mac.type == e1000_ich8lan)
2975			e1000e_gig_downshift_workaround_ich8lan(hw);
2976
2977		/* When LPLU is enabled, we should disable SmartSpeed */
2978		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2979		if (ret_val)
2980			return ret_val;
2981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2982		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2983		if (ret_val)
2984			return ret_val;
2985	} else {
2986		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2987		ew32(PHY_CTRL, phy_ctrl);
2988
2989		if (phy->type != e1000_phy_igp_3)
2990			return 0;
2991
2992		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2993		 * during Dx states where the power conservation is most
2994		 * important.  During driver activity we should enable
2995		 * SmartSpeed, so performance is maintained.
2996		 */
2997		if (phy->smart_speed == e1000_smart_speed_on) {
2998			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2999					   &data);
3000			if (ret_val)
3001				return ret_val;
3002
3003			data |= IGP01E1000_PSCFR_SMART_SPEED;
3004			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3005					   data);
3006			if (ret_val)
3007				return ret_val;
3008		} else if (phy->smart_speed == e1000_smart_speed_off) {
3009			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010					   &data);
3011			if (ret_val)
3012				return ret_val;
3013
3014			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3015			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3016					   data);
3017			if (ret_val)
3018				return ret_val;
3019		}
3020	}
3021
3022	return 0;
3023}
3024
3025/**
3026 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU D3 state according to the active flag.  When
3031 *  activating LPLU this function also disables smart speed
3032 *  and vice versa.  LPLU will not be activated unless the
3033 *  device autonegotiation advertisement meets standards of
3034 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3035 *  This is a function pointer entry point only called by
3036 *  PHY setup routines.
3037 **/
3038static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039{
3040	struct e1000_phy_info *phy = &hw->phy;
3041	u32 phy_ctrl;
3042	s32 ret_val = 0;
3043	u16 data;
3044
3045	phy_ctrl = er32(PHY_CTRL);
3046
3047	if (!active) {
3048		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3049		ew32(PHY_CTRL, phy_ctrl);
3050
3051		if (phy->type != e1000_phy_igp_3)
3052			return 0;
3053
3054		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3055		 * during Dx states where the power conservation is most
3056		 * important.  During driver activity we should enable
3057		 * SmartSpeed, so performance is maintained.
3058		 */
3059		if (phy->smart_speed == e1000_smart_speed_on) {
3060			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061					   &data);
3062			if (ret_val)
3063				return ret_val;
3064
3065			data |= IGP01E1000_PSCFR_SMART_SPEED;
3066			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   data);
3068			if (ret_val)
3069				return ret_val;
3070		} else if (phy->smart_speed == e1000_smart_speed_off) {
3071			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072					   &data);
3073			if (ret_val)
3074				return ret_val;
3075
3076			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3077			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3078					   data);
3079			if (ret_val)
3080				return ret_val;
3081		}
3082	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3083		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3084		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3085		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3086		ew32(PHY_CTRL, phy_ctrl);
3087
3088		if (phy->type != e1000_phy_igp_3)
3089			return 0;
3090
3091		/* Call gig speed drop workaround on LPLU before accessing
3092		 * any PHY registers
3093		 */
3094		if (hw->mac.type == e1000_ich8lan)
3095			e1000e_gig_downshift_workaround_ich8lan(hw);
3096
3097		/* When LPLU is enabled, we should disable SmartSpeed */
3098		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3099		if (ret_val)
3100			return ret_val;
3101
3102		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3103		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3104	}
3105
3106	return ret_val;
3107}
3108
3109/**
3110 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3111 *  @hw: pointer to the HW structure
3112 *  @bank:  pointer to the variable that returns the active bank
3113 *
3114 *  Reads signature byte from the NVM using the flash access registers.
3115 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116 **/
3117static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118{
3119	u32 eecd;
3120	struct e1000_nvm_info *nvm = &hw->nvm;
3121	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3122	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3123	u32 nvm_dword = 0;
3124	u8 sig_byte = 0;
3125	s32 ret_val;
3126
3127	switch (hw->mac.type) {
3128	case e1000_pch_spt:
3129	case e1000_pch_cnp:
 
 
 
 
 
 
3130		bank1_offset = nvm->flash_bank_size;
3131		act_offset = E1000_ICH_NVM_SIG_WORD;
3132
3133		/* set bank to 0 in case flash read fails */
3134		*bank = 0;
3135
3136		/* Check bank 0 */
3137		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3138							 &nvm_dword);
3139		if (ret_val)
3140			return ret_val;
3141		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3142		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3143		    E1000_ICH_NVM_SIG_VALUE) {
3144			*bank = 0;
3145			return 0;
3146		}
3147
3148		/* Check bank 1 */
3149		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3150							 bank1_offset,
3151							 &nvm_dword);
3152		if (ret_val)
3153			return ret_val;
3154		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3155		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3156		    E1000_ICH_NVM_SIG_VALUE) {
3157			*bank = 1;
3158			return 0;
3159		}
3160
3161		e_dbg("ERROR: No valid NVM bank present\n");
3162		return -E1000_ERR_NVM;
3163	case e1000_ich8lan:
3164	case e1000_ich9lan:
3165		eecd = er32(EECD);
3166		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3167		    E1000_EECD_SEC1VAL_VALID_MASK) {
3168			if (eecd & E1000_EECD_SEC1VAL)
3169				*bank = 1;
3170			else
3171				*bank = 0;
3172
3173			return 0;
3174		}
3175		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176		/* fall-thru */
3177	default:
3178		/* set bank to 0 in case flash read fails */
3179		*bank = 0;
3180
3181		/* Check bank 0 */
3182		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3183							&sig_byte);
3184		if (ret_val)
3185			return ret_val;
3186		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3187		    E1000_ICH_NVM_SIG_VALUE) {
3188			*bank = 0;
3189			return 0;
3190		}
3191
3192		/* Check bank 1 */
3193		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3194							bank1_offset,
3195							&sig_byte);
3196		if (ret_val)
3197			return ret_val;
3198		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3199		    E1000_ICH_NVM_SIG_VALUE) {
3200			*bank = 1;
3201			return 0;
3202		}
3203
3204		e_dbg("ERROR: No valid NVM bank present\n");
3205		return -E1000_ERR_NVM;
3206	}
3207}
3208
3209/**
3210 *  e1000_read_nvm_spt - NVM access for SPT
3211 *  @hw: pointer to the HW structure
3212 *  @offset: The offset (in bytes) of the word(s) to read.
3213 *  @words: Size of data to read in words.
3214 *  @data: pointer to the word(s) to read at offset.
3215 *
3216 *  Reads a word(s) from the NVM
3217 **/
3218static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3219			      u16 *data)
3220{
3221	struct e1000_nvm_info *nvm = &hw->nvm;
3222	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223	u32 act_offset;
3224	s32 ret_val = 0;
3225	u32 bank = 0;
3226	u32 dword = 0;
3227	u16 offset_to_read;
3228	u16 i;
3229
3230	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3231	    (words == 0)) {
3232		e_dbg("nvm parameter(s) out of bounds\n");
3233		ret_val = -E1000_ERR_NVM;
3234		goto out;
3235	}
3236
3237	nvm->ops.acquire(hw);
3238
3239	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3240	if (ret_val) {
3241		e_dbg("Could not detect valid bank, assuming bank 0\n");
3242		bank = 0;
3243	}
3244
3245	act_offset = (bank) ? nvm->flash_bank_size : 0;
3246	act_offset += offset;
3247
3248	ret_val = 0;
3249
3250	for (i = 0; i < words; i += 2) {
3251		if (words - i == 1) {
3252			if (dev_spec->shadow_ram[offset + i].modified) {
3253				data[i] =
3254				    dev_spec->shadow_ram[offset + i].value;
3255			} else {
3256				offset_to_read = act_offset + i -
3257				    ((act_offset + i) % 2);
3258				ret_val =
3259				  e1000_read_flash_dword_ich8lan(hw,
3260								 offset_to_read,
3261								 &dword);
3262				if (ret_val)
3263					break;
3264				if ((act_offset + i) % 2 == 0)
3265					data[i] = (u16)(dword & 0xFFFF);
3266				else
3267					data[i] = (u16)((dword >> 16) & 0xFFFF);
3268			}
3269		} else {
3270			offset_to_read = act_offset + i;
3271			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3272			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3273				ret_val =
3274				  e1000_read_flash_dword_ich8lan(hw,
3275								 offset_to_read,
3276								 &dword);
3277				if (ret_val)
3278					break;
3279			}
3280			if (dev_spec->shadow_ram[offset + i].modified)
3281				data[i] =
3282				    dev_spec->shadow_ram[offset + i].value;
3283			else
3284				data[i] = (u16)(dword & 0xFFFF);
3285			if (dev_spec->shadow_ram[offset + i].modified)
3286				data[i + 1] =
3287				    dev_spec->shadow_ram[offset + i + 1].value;
3288			else
3289				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3290		}
3291	}
3292
3293	nvm->ops.release(hw);
3294
3295out:
3296	if (ret_val)
3297		e_dbg("NVM read error: %d\n", ret_val);
3298
3299	return ret_val;
3300}
3301
3302/**
3303 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3304 *  @hw: pointer to the HW structure
3305 *  @offset: The offset (in bytes) of the word(s) to read.
3306 *  @words: Size of data to read in words
3307 *  @data: Pointer to the word(s) to read at offset.
3308 *
3309 *  Reads a word(s) from the NVM using the flash access registers.
3310 **/
3311static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3312				  u16 *data)
3313{
3314	struct e1000_nvm_info *nvm = &hw->nvm;
3315	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3316	u32 act_offset;
3317	s32 ret_val = 0;
3318	u32 bank = 0;
3319	u16 i, word;
3320
3321	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3322	    (words == 0)) {
3323		e_dbg("nvm parameter(s) out of bounds\n");
3324		ret_val = -E1000_ERR_NVM;
3325		goto out;
3326	}
3327
3328	nvm->ops.acquire(hw);
3329
3330	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3331	if (ret_val) {
3332		e_dbg("Could not detect valid bank, assuming bank 0\n");
3333		bank = 0;
3334	}
3335
3336	act_offset = (bank) ? nvm->flash_bank_size : 0;
3337	act_offset += offset;
3338
3339	ret_val = 0;
3340	for (i = 0; i < words; i++) {
3341		if (dev_spec->shadow_ram[offset + i].modified) {
3342			data[i] = dev_spec->shadow_ram[offset + i].value;
3343		} else {
3344			ret_val = e1000_read_flash_word_ich8lan(hw,
3345								act_offset + i,
3346								&word);
3347			if (ret_val)
3348				break;
3349			data[i] = word;
3350		}
3351	}
3352
3353	nvm->ops.release(hw);
3354
3355out:
3356	if (ret_val)
3357		e_dbg("NVM read error: %d\n", ret_val);
3358
3359	return ret_val;
3360}
3361
3362/**
3363 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3364 *  @hw: pointer to the HW structure
3365 *
3366 *  This function does initial flash setup so that a new read/write/erase cycle
3367 *  can be started.
3368 **/
3369static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3370{
3371	union ich8_hws_flash_status hsfsts;
3372	s32 ret_val = -E1000_ERR_NVM;
3373
3374	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3375
3376	/* Check if the flash descriptor is valid */
3377	if (!hsfsts.hsf_status.fldesvalid) {
3378		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3379		return -E1000_ERR_NVM;
3380	}
3381
3382	/* Clear FCERR and DAEL in hw status by writing 1 */
3383	hsfsts.hsf_status.flcerr = 1;
3384	hsfsts.hsf_status.dael = 1;
3385	if (hw->mac.type >= e1000_pch_spt)
3386		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3387	else
3388		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3389
3390	/* Either we should have a hardware SPI cycle in progress
3391	 * bit to check against, in order to start a new cycle or
3392	 * FDONE bit should be changed in the hardware so that it
3393	 * is 1 after hardware reset, which can then be used as an
3394	 * indication whether a cycle is in progress or has been
3395	 * completed.
3396	 */
3397
3398	if (!hsfsts.hsf_status.flcinprog) {
3399		/* There is no cycle running at present,
3400		 * so we can start a cycle.
3401		 * Begin by setting Flash Cycle Done.
3402		 */
3403		hsfsts.hsf_status.flcdone = 1;
3404		if (hw->mac.type >= e1000_pch_spt)
3405			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3406		else
3407			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3408		ret_val = 0;
3409	} else {
3410		s32 i;
3411
3412		/* Otherwise poll for sometime so the current
3413		 * cycle has a chance to end before giving up.
3414		 */
3415		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3416			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3417			if (!hsfsts.hsf_status.flcinprog) {
3418				ret_val = 0;
3419				break;
3420			}
3421			udelay(1);
3422		}
3423		if (!ret_val) {
3424			/* Successful in waiting for previous cycle to timeout,
3425			 * now set the Flash Cycle Done.
3426			 */
3427			hsfsts.hsf_status.flcdone = 1;
3428			if (hw->mac.type >= e1000_pch_spt)
3429				ew32flash(ICH_FLASH_HSFSTS,
3430					  hsfsts.regval & 0xFFFF);
3431			else
3432				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3433		} else {
3434			e_dbg("Flash controller busy, cannot get access\n");
3435		}
3436	}
3437
3438	return ret_val;
3439}
3440
3441/**
3442 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3443 *  @hw: pointer to the HW structure
3444 *  @timeout: maximum time to wait for completion
3445 *
3446 *  This function starts a flash cycle and waits for its completion.
3447 **/
3448static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3449{
3450	union ich8_hws_flash_ctrl hsflctl;
3451	union ich8_hws_flash_status hsfsts;
3452	u32 i = 0;
3453
3454	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3455	if (hw->mac.type >= e1000_pch_spt)
3456		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3457	else
3458		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459	hsflctl.hsf_ctrl.flcgo = 1;
3460
3461	if (hw->mac.type >= e1000_pch_spt)
3462		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3463	else
3464		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3465
3466	/* wait till FDONE bit is set to 1 */
3467	do {
3468		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3469		if (hsfsts.hsf_status.flcdone)
3470			break;
3471		udelay(1);
3472	} while (i++ < timeout);
3473
3474	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3475		return 0;
3476
3477	return -E1000_ERR_NVM;
3478}
3479
3480/**
3481 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3482 *  @hw: pointer to the HW structure
3483 *  @offset: offset to data location
3484 *  @data: pointer to the location for storing the data
3485 *
3486 *  Reads the flash dword at offset into data.  Offset is converted
3487 *  to bytes before read.
3488 **/
3489static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3490					  u32 *data)
3491{
3492	/* Must convert word offset into bytes. */
3493	offset <<= 1;
3494	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3495}
3496
3497/**
3498 *  e1000_read_flash_word_ich8lan - Read word from flash
3499 *  @hw: pointer to the HW structure
3500 *  @offset: offset to data location
3501 *  @data: pointer to the location for storing the data
3502 *
3503 *  Reads the flash word at offset into data.  Offset is converted
3504 *  to bytes before read.
3505 **/
3506static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3507					 u16 *data)
3508{
3509	/* Must convert offset into bytes. */
3510	offset <<= 1;
3511
3512	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3513}
3514
3515/**
3516 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3517 *  @hw: pointer to the HW structure
3518 *  @offset: The offset of the byte to read.
3519 *  @data: Pointer to a byte to store the value read.
3520 *
3521 *  Reads a single byte from the NVM using the flash access registers.
3522 **/
3523static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3524					 u8 *data)
3525{
3526	s32 ret_val;
3527	u16 word = 0;
3528
3529	/* In SPT, only 32 bits access is supported,
3530	 * so this function should not be called.
3531	 */
3532	if (hw->mac.type >= e1000_pch_spt)
3533		return -E1000_ERR_NVM;
3534	else
3535		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3536
3537	if (ret_val)
3538		return ret_val;
3539
3540	*data = (u8)word;
3541
3542	return 0;
3543}
3544
3545/**
3546 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3547 *  @hw: pointer to the HW structure
3548 *  @offset: The offset (in bytes) of the byte or word to read.
3549 *  @size: Size of data to read, 1=byte 2=word
3550 *  @data: Pointer to the word to store the value read.
3551 *
3552 *  Reads a byte or word from the NVM using the flash access registers.
3553 **/
3554static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3555					 u8 size, u16 *data)
3556{
3557	union ich8_hws_flash_status hsfsts;
3558	union ich8_hws_flash_ctrl hsflctl;
3559	u32 flash_linear_addr;
3560	u32 flash_data = 0;
3561	s32 ret_val = -E1000_ERR_NVM;
3562	u8 count = 0;
3563
3564	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3565		return -E1000_ERR_NVM;
3566
3567	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3568			     hw->nvm.flash_base_addr);
3569
3570	do {
3571		udelay(1);
3572		/* Steps */
3573		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3574		if (ret_val)
3575			break;
3576
3577		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3578		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3579		hsflctl.hsf_ctrl.fldbcount = size - 1;
3580		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3581		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3582
3583		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3584
3585		ret_val =
3586		    e1000_flash_cycle_ich8lan(hw,
3587					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3588
3589		/* Check if FCERR is set to 1, if set to 1, clear it
3590		 * and try the whole sequence a few more times, else
3591		 * read in (shift in) the Flash Data0, the order is
3592		 * least significant byte first msb to lsb
3593		 */
3594		if (!ret_val) {
3595			flash_data = er32flash(ICH_FLASH_FDATA0);
3596			if (size == 1)
3597				*data = (u8)(flash_data & 0x000000FF);
3598			else if (size == 2)
3599				*data = (u16)(flash_data & 0x0000FFFF);
3600			break;
3601		} else {
3602			/* If we've gotten here, then things are probably
3603			 * completely hosed, but if the error condition is
3604			 * detected, it won't hurt to give it another try...
3605			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3606			 */
3607			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3608			if (hsfsts.hsf_status.flcerr) {
3609				/* Repeat for some time before giving up. */
3610				continue;
3611			} else if (!hsfsts.hsf_status.flcdone) {
3612				e_dbg("Timeout error - flash cycle did not complete.\n");
3613				break;
3614			}
3615		}
3616	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3617
3618	return ret_val;
3619}
3620
3621/**
3622 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3623 *  @hw: pointer to the HW structure
3624 *  @offset: The offset (in bytes) of the dword to read.
3625 *  @data: Pointer to the dword to store the value read.
3626 *
3627 *  Reads a byte or word from the NVM using the flash access registers.
3628 **/
3629
3630static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3631					   u32 *data)
3632{
3633	union ich8_hws_flash_status hsfsts;
3634	union ich8_hws_flash_ctrl hsflctl;
3635	u32 flash_linear_addr;
3636	s32 ret_val = -E1000_ERR_NVM;
3637	u8 count = 0;
3638
3639	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3640		return -E1000_ERR_NVM;
3641	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3642			     hw->nvm.flash_base_addr);
3643
3644	do {
3645		udelay(1);
3646		/* Steps */
3647		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3648		if (ret_val)
3649			break;
3650		/* In SPT, This register is in Lan memory space, not flash.
3651		 * Therefore, only 32 bit access is supported
3652		 */
3653		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654
3655		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3657		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658		/* In SPT, This register is in Lan memory space, not flash.
3659		 * Therefore, only 32 bit access is supported
3660		 */
3661		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3662		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663
3664		ret_val =
3665		   e1000_flash_cycle_ich8lan(hw,
3666					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3667
3668		/* Check if FCERR is set to 1, if set to 1, clear it
3669		 * and try the whole sequence a few more times, else
3670		 * read in (shift in) the Flash Data0, the order is
3671		 * least significant byte first msb to lsb
3672		 */
3673		if (!ret_val) {
3674			*data = er32flash(ICH_FLASH_FDATA0);
3675			break;
3676		} else {
3677			/* If we've gotten here, then things are probably
3678			 * completely hosed, but if the error condition is
3679			 * detected, it won't hurt to give it another try...
3680			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681			 */
3682			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3683			if (hsfsts.hsf_status.flcerr) {
3684				/* Repeat for some time before giving up. */
3685				continue;
3686			} else if (!hsfsts.hsf_status.flcdone) {
3687				e_dbg("Timeout error - flash cycle did not complete.\n");
3688				break;
3689			}
3690		}
3691	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692
3693	return ret_val;
3694}
3695
3696/**
3697 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3698 *  @hw: pointer to the HW structure
3699 *  @offset: The offset (in bytes) of the word(s) to write.
3700 *  @words: Size of data to write in words
3701 *  @data: Pointer to the word(s) to write at offset.
3702 *
3703 *  Writes a byte or word to the NVM using the flash access registers.
3704 **/
3705static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3706				   u16 *data)
3707{
3708	struct e1000_nvm_info *nvm = &hw->nvm;
3709	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3710	u16 i;
3711
3712	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3713	    (words == 0)) {
3714		e_dbg("nvm parameter(s) out of bounds\n");
3715		return -E1000_ERR_NVM;
3716	}
3717
3718	nvm->ops.acquire(hw);
3719
3720	for (i = 0; i < words; i++) {
3721		dev_spec->shadow_ram[offset + i].modified = true;
3722		dev_spec->shadow_ram[offset + i].value = data[i];
3723	}
3724
3725	nvm->ops.release(hw);
3726
3727	return 0;
3728}
3729
3730/**
3731 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3732 *  @hw: pointer to the HW structure
3733 *
3734 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3735 *  which writes the checksum to the shadow ram.  The changes in the shadow
3736 *  ram are then committed to the EEPROM by processing each bank at a time
3737 *  checking for the modified bit and writing only the pending changes.
3738 *  After a successful commit, the shadow ram is cleared and is ready for
3739 *  future writes.
3740 **/
3741static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742{
3743	struct e1000_nvm_info *nvm = &hw->nvm;
3744	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3746	s32 ret_val;
3747	u32 dword = 0;
3748
3749	ret_val = e1000e_update_nvm_checksum_generic(hw);
3750	if (ret_val)
3751		goto out;
3752
3753	if (nvm->type != e1000_nvm_flash_sw)
3754		goto out;
3755
3756	nvm->ops.acquire(hw);
3757
3758	/* We're writing to the opposite bank so if we're on bank 1,
3759	 * write to bank 0 etc.  We also need to erase the segment that
3760	 * is going to be written
3761	 */
3762	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3763	if (ret_val) {
3764		e_dbg("Could not detect valid bank, assuming bank 0\n");
3765		bank = 0;
3766	}
3767
3768	if (bank == 0) {
3769		new_bank_offset = nvm->flash_bank_size;
3770		old_bank_offset = 0;
3771		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3772		if (ret_val)
3773			goto release;
3774	} else {
3775		old_bank_offset = nvm->flash_bank_size;
3776		new_bank_offset = 0;
3777		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3778		if (ret_val)
3779			goto release;
3780	}
3781	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3782		/* Determine whether to write the value stored
3783		 * in the other NVM bank or a modified value stored
3784		 * in the shadow RAM
3785		 */
3786		ret_val = e1000_read_flash_dword_ich8lan(hw,
3787							 i + old_bank_offset,
3788							 &dword);
3789
3790		if (dev_spec->shadow_ram[i].modified) {
3791			dword &= 0xffff0000;
3792			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793		}
3794		if (dev_spec->shadow_ram[i + 1].modified) {
3795			dword &= 0x0000ffff;
3796			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3797				  << 16);
3798		}
3799		if (ret_val)
3800			break;
3801
3802		/* If the word is 0x13, then make sure the signature bits
3803		 * (15:14) are 11b until the commit has completed.
3804		 * This will allow us to write 10b which indicates the
3805		 * signature is valid.  We want to do this after the write
3806		 * has completed so that we don't mark the segment valid
3807		 * while the write is still in progress
3808		 */
3809		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3810			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811
3812		/* Convert offset to bytes. */
3813		act_offset = (i + new_bank_offset) << 1;
3814
3815		usleep_range(100, 200);
3816
3817		/* Write the data to the new bank. Offset in words */
3818		act_offset = i + new_bank_offset;
3819		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3820								dword);
3821		if (ret_val)
3822			break;
3823	}
3824
3825	/* Don't bother writing the segment valid bits if sector
3826	 * programming failed.
3827	 */
3828	if (ret_val) {
3829		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3830		e_dbg("Flash commit failed.\n");
3831		goto release;
3832	}
3833
3834	/* Finally validate the new segment by setting bit 15:14
3835	 * to 10b in word 0x13 , this can be done without an
3836	 * erase as well since these bits are 11 to start with
3837	 * and we need to change bit 14 to 0b
3838	 */
3839	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840
3841	/*offset in words but we read dword */
3842	--act_offset;
3843	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844
3845	if (ret_val)
3846		goto release;
3847
3848	dword &= 0xBFFFFFFF;
3849	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850
3851	if (ret_val)
3852		goto release;
3853
3854	/* And invalidate the previously valid segment by setting
3855	 * its signature word (0x13) high_byte to 0b. This can be
3856	 * done without an erase because flash erase sets all bits
3857	 * to 1's. We can write 1's to 0's without an erase
3858	 */
3859	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860
3861	/* offset in words but we read dword */
3862	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3863	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864
3865	if (ret_val)
3866		goto release;
3867
3868	dword &= 0x00FFFFFF;
3869	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870
3871	if (ret_val)
3872		goto release;
3873
3874	/* Great!  Everything worked, we can now clear the cached entries. */
3875	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3876		dev_spec->shadow_ram[i].modified = false;
3877		dev_spec->shadow_ram[i].value = 0xFFFF;
3878	}
3879
3880release:
3881	nvm->ops.release(hw);
3882
3883	/* Reload the EEPROM, or else modifications will not appear
3884	 * until after the next adapter reset.
3885	 */
3886	if (!ret_val) {
3887		nvm->ops.reload(hw);
3888		usleep_range(10000, 11000);
3889	}
3890
3891out:
3892	if (ret_val)
3893		e_dbg("NVM update error: %d\n", ret_val);
3894
3895	return ret_val;
3896}
3897
3898/**
3899 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3900 *  @hw: pointer to the HW structure
3901 *
3902 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3903 *  which writes the checksum to the shadow ram.  The changes in the shadow
3904 *  ram are then committed to the EEPROM by processing each bank at a time
3905 *  checking for the modified bit and writing only the pending changes.
3906 *  After a successful commit, the shadow ram is cleared and is ready for
3907 *  future writes.
3908 **/
3909static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910{
3911	struct e1000_nvm_info *nvm = &hw->nvm;
3912	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3913	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3914	s32 ret_val;
3915	u16 data = 0;
3916
3917	ret_val = e1000e_update_nvm_checksum_generic(hw);
3918	if (ret_val)
3919		goto out;
3920
3921	if (nvm->type != e1000_nvm_flash_sw)
3922		goto out;
3923
3924	nvm->ops.acquire(hw);
3925
3926	/* We're writing to the opposite bank so if we're on bank 1,
3927	 * write to bank 0 etc.  We also need to erase the segment that
3928	 * is going to be written
3929	 */
3930	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3931	if (ret_val) {
3932		e_dbg("Could not detect valid bank, assuming bank 0\n");
3933		bank = 0;
3934	}
3935
3936	if (bank == 0) {
3937		new_bank_offset = nvm->flash_bank_size;
3938		old_bank_offset = 0;
3939		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3940		if (ret_val)
3941			goto release;
3942	} else {
3943		old_bank_offset = nvm->flash_bank_size;
3944		new_bank_offset = 0;
3945		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3946		if (ret_val)
3947			goto release;
3948	}
3949	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3950		if (dev_spec->shadow_ram[i].modified) {
3951			data = dev_spec->shadow_ram[i].value;
3952		} else {
3953			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3954								old_bank_offset,
3955								&data);
3956			if (ret_val)
3957				break;
3958		}
3959
3960		/* If the word is 0x13, then make sure the signature bits
3961		 * (15:14) are 11b until the commit has completed.
3962		 * This will allow us to write 10b which indicates the
3963		 * signature is valid.  We want to do this after the write
3964		 * has completed so that we don't mark the segment valid
3965		 * while the write is still in progress
3966		 */
3967		if (i == E1000_ICH_NVM_SIG_WORD)
3968			data |= E1000_ICH_NVM_SIG_MASK;
3969
3970		/* Convert offset to bytes. */
3971		act_offset = (i + new_bank_offset) << 1;
3972
3973		usleep_range(100, 200);
3974		/* Write the bytes to the new bank. */
3975		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3976							       act_offset,
3977							       (u8)data);
3978		if (ret_val)
3979			break;
3980
3981		usleep_range(100, 200);
3982		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983							       act_offset + 1,
3984							       (u8)(data >> 8));
3985		if (ret_val)
3986			break;
3987	}
3988
3989	/* Don't bother writing the segment valid bits if sector
3990	 * programming failed.
3991	 */
3992	if (ret_val) {
3993		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3994		e_dbg("Flash commit failed.\n");
3995		goto release;
3996	}
3997
3998	/* Finally validate the new segment by setting bit 15:14
3999	 * to 10b in word 0x13 , this can be done without an
4000	 * erase as well since these bits are 11 to start with
4001	 * and we need to change bit 14 to 0b
4002	 */
4003	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4004	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4005	if (ret_val)
4006		goto release;
4007
4008	data &= 0xBFFF;
4009	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4010						       act_offset * 2 + 1,
4011						       (u8)(data >> 8));
4012	if (ret_val)
4013		goto release;
4014
4015	/* And invalidate the previously valid segment by setting
4016	 * its signature word (0x13) high_byte to 0b. This can be
4017	 * done without an erase because flash erase sets all bits
4018	 * to 1's. We can write 1's to 0's without an erase
4019	 */
4020	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4021	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4022	if (ret_val)
4023		goto release;
4024
4025	/* Great!  Everything worked, we can now clear the cached entries. */
4026	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4027		dev_spec->shadow_ram[i].modified = false;
4028		dev_spec->shadow_ram[i].value = 0xFFFF;
4029	}
4030
4031release:
4032	nvm->ops.release(hw);
4033
4034	/* Reload the EEPROM, or else modifications will not appear
4035	 * until after the next adapter reset.
4036	 */
4037	if (!ret_val) {
4038		nvm->ops.reload(hw);
4039		usleep_range(10000, 11000);
4040	}
4041
4042out:
4043	if (ret_val)
4044		e_dbg("NVM update error: %d\n", ret_val);
4045
4046	return ret_val;
4047}
4048
4049/**
4050 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4051 *  @hw: pointer to the HW structure
4052 *
4053 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4054 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4055 *  calculated, in which case we need to calculate the checksum and set bit 6.
4056 **/
4057static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058{
4059	s32 ret_val;
4060	u16 data;
4061	u16 word;
4062	u16 valid_csum_mask;
4063
4064	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4065	 * the checksum needs to be fixed.  This bit is an indication that
4066	 * the NVM was prepared by OEM software and did not calculate
4067	 * the checksum...a likely scenario.
4068	 */
4069	switch (hw->mac.type) {
4070	case e1000_pch_lpt:
4071	case e1000_pch_spt:
4072	case e1000_pch_cnp:
 
 
 
 
 
 
4073		word = NVM_COMPAT;
4074		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4075		break;
4076	default:
4077		word = NVM_FUTURE_INIT_WORD1;
4078		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4079		break;
4080	}
4081
4082	ret_val = e1000_read_nvm(hw, word, 1, &data);
4083	if (ret_val)
4084		return ret_val;
4085
4086	if (!(data & valid_csum_mask)) {
4087		data |= valid_csum_mask;
4088		ret_val = e1000_write_nvm(hw, word, 1, &data);
4089		if (ret_val)
4090			return ret_val;
4091		ret_val = e1000e_update_nvm_checksum(hw);
4092		if (ret_val)
4093			return ret_val;
 
 
 
 
4094	}
4095
4096	return e1000e_validate_nvm_checksum_generic(hw);
4097}
4098
4099/**
4100 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4101 *  @hw: pointer to the HW structure
4102 *
4103 *  To prevent malicious write/erase of the NVM, set it to be read-only
4104 *  so that the hardware ignores all write/erase cycles of the NVM via
4105 *  the flash control registers.  The shadow-ram copy of the NVM will
4106 *  still be updated, however any updates to this copy will not stick
4107 *  across driver reloads.
4108 **/
4109void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4110{
4111	struct e1000_nvm_info *nvm = &hw->nvm;
4112	union ich8_flash_protected_range pr0;
4113	union ich8_hws_flash_status hsfsts;
4114	u32 gfpreg;
4115
4116	nvm->ops.acquire(hw);
4117
4118	gfpreg = er32flash(ICH_FLASH_GFPREG);
4119
4120	/* Write-protect GbE Sector of NVM */
4121	pr0.regval = er32flash(ICH_FLASH_PR0);
4122	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4123	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4124	pr0.range.wpe = true;
4125	ew32flash(ICH_FLASH_PR0, pr0.regval);
4126
4127	/* Lock down a subset of GbE Flash Control Registers, e.g.
4128	 * PR0 to prevent the write-protection from being lifted.
4129	 * Once FLOCKDN is set, the registers protected by it cannot
4130	 * be written until FLOCKDN is cleared by a hardware reset.
4131	 */
4132	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4133	hsfsts.hsf_status.flockdn = true;
4134	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4135
4136	nvm->ops.release(hw);
4137}
4138
4139/**
4140 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4141 *  @hw: pointer to the HW structure
4142 *  @offset: The offset (in bytes) of the byte/word to read.
4143 *  @size: Size of data to read, 1=byte 2=word
4144 *  @data: The byte(s) to write to the NVM.
4145 *
4146 *  Writes one/two bytes to the NVM using the flash access registers.
4147 **/
4148static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4149					  u8 size, u16 data)
4150{
4151	union ich8_hws_flash_status hsfsts;
4152	union ich8_hws_flash_ctrl hsflctl;
4153	u32 flash_linear_addr;
4154	u32 flash_data = 0;
4155	s32 ret_val;
4156	u8 count = 0;
4157
4158	if (hw->mac.type >= e1000_pch_spt) {
4159		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4160			return -E1000_ERR_NVM;
4161	} else {
4162		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163			return -E1000_ERR_NVM;
4164	}
4165
4166	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4167			     hw->nvm.flash_base_addr);
4168
4169	do {
4170		udelay(1);
4171		/* Steps */
4172		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4173		if (ret_val)
4174			break;
4175		/* In SPT, This register is in Lan memory space, not
4176		 * flash.  Therefore, only 32 bit access is supported
4177		 */
4178		if (hw->mac.type >= e1000_pch_spt)
4179			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4180		else
4181			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4182
4183		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4184		hsflctl.hsf_ctrl.fldbcount = size - 1;
4185		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4186		/* In SPT, This register is in Lan memory space,
4187		 * not flash.  Therefore, only 32 bit access is
4188		 * supported
4189		 */
4190		if (hw->mac.type >= e1000_pch_spt)
4191			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4192		else
4193			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4194
4195		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4196
4197		if (size == 1)
4198			flash_data = (u32)data & 0x00FF;
4199		else
4200			flash_data = (u32)data;
4201
4202		ew32flash(ICH_FLASH_FDATA0, flash_data);
4203
4204		/* check if FCERR is set to 1 , if set to 1, clear it
4205		 * and try the whole sequence a few more times else done
4206		 */
4207		ret_val =
4208		    e1000_flash_cycle_ich8lan(hw,
4209					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4210		if (!ret_val)
4211			break;
4212
4213		/* If we're here, then things are most likely
4214		 * completely hosed, but if the error condition
4215		 * is detected, it won't hurt to give it another
4216		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4217		 */
4218		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4219		if (hsfsts.hsf_status.flcerr)
4220			/* Repeat for some time before giving up. */
4221			continue;
4222		if (!hsfsts.hsf_status.flcdone) {
4223			e_dbg("Timeout error - flash cycle did not complete.\n");
4224			break;
4225		}
4226	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4227
4228	return ret_val;
4229}
4230
4231/**
4232*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4233*  @hw: pointer to the HW structure
4234*  @offset: The offset (in bytes) of the dwords to read.
4235*  @data: The 4 bytes to write to the NVM.
4236*
4237*  Writes one/two/four bytes to the NVM using the flash access registers.
4238**/
4239static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4240					    u32 data)
4241{
4242	union ich8_hws_flash_status hsfsts;
4243	union ich8_hws_flash_ctrl hsflctl;
4244	u32 flash_linear_addr;
4245	s32 ret_val;
4246	u8 count = 0;
4247
4248	if (hw->mac.type >= e1000_pch_spt) {
4249		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4250			return -E1000_ERR_NVM;
4251	}
4252	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4253			     hw->nvm.flash_base_addr);
4254	do {
4255		udelay(1);
4256		/* Steps */
4257		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4258		if (ret_val)
4259			break;
4260
4261		/* In SPT, This register is in Lan memory space, not
4262		 * flash.  Therefore, only 32 bit access is supported
4263		 */
4264		if (hw->mac.type >= e1000_pch_spt)
4265			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4266			    >> 16;
4267		else
4268			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4269
4270		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4271		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4272
4273		/* In SPT, This register is in Lan memory space,
4274		 * not flash.  Therefore, only 32 bit access is
4275		 * supported
4276		 */
4277		if (hw->mac.type >= e1000_pch_spt)
4278			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4279		else
4280			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4281
4282		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4283
4284		ew32flash(ICH_FLASH_FDATA0, data);
4285
4286		/* check if FCERR is set to 1 , if set to 1, clear it
4287		 * and try the whole sequence a few more times else done
4288		 */
4289		ret_val =
4290		   e1000_flash_cycle_ich8lan(hw,
4291					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4292
4293		if (!ret_val)
4294			break;
4295
4296		/* If we're here, then things are most likely
4297		 * completely hosed, but if the error condition
4298		 * is detected, it won't hurt to give it another
4299		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4300		 */
4301		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4302
4303		if (hsfsts.hsf_status.flcerr)
4304			/* Repeat for some time before giving up. */
4305			continue;
4306		if (!hsfsts.hsf_status.flcdone) {
4307			e_dbg("Timeout error - flash cycle did not complete.\n");
4308			break;
4309		}
4310	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4311
4312	return ret_val;
4313}
4314
4315/**
4316 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4317 *  @hw: pointer to the HW structure
4318 *  @offset: The index of the byte to read.
4319 *  @data: The byte to write to the NVM.
4320 *
4321 *  Writes a single byte to the NVM using the flash access registers.
4322 **/
4323static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4324					  u8 data)
4325{
4326	u16 word = (u16)data;
4327
4328	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4329}
4330
4331/**
4332*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4333*  @hw: pointer to the HW structure
4334*  @offset: The offset of the word to write.
4335*  @dword: The dword to write to the NVM.
4336*
4337*  Writes a single dword to the NVM using the flash access registers.
4338*  Goes through a retry algorithm before giving up.
4339**/
4340static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4341						 u32 offset, u32 dword)
4342{
4343	s32 ret_val;
4344	u16 program_retries;
4345
4346	/* Must convert word offset into bytes. */
4347	offset <<= 1;
4348	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4349
4350	if (!ret_val)
4351		return ret_val;
4352	for (program_retries = 0; program_retries < 100; program_retries++) {
4353		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4354		usleep_range(100, 200);
4355		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356		if (!ret_val)
4357			break;
4358	}
4359	if (program_retries == 100)
4360		return -E1000_ERR_NVM;
4361
4362	return 0;
4363}
4364
4365/**
4366 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4367 *  @hw: pointer to the HW structure
4368 *  @offset: The offset of the byte to write.
4369 *  @byte: The byte to write to the NVM.
4370 *
4371 *  Writes a single byte to the NVM using the flash access registers.
4372 *  Goes through a retry algorithm before giving up.
4373 **/
4374static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4375						u32 offset, u8 byte)
4376{
4377	s32 ret_val;
4378	u16 program_retries;
4379
4380	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4381	if (!ret_val)
4382		return ret_val;
4383
4384	for (program_retries = 0; program_retries < 100; program_retries++) {
4385		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4386		usleep_range(100, 200);
4387		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388		if (!ret_val)
4389			break;
4390	}
4391	if (program_retries == 100)
4392		return -E1000_ERR_NVM;
4393
4394	return 0;
4395}
4396
4397/**
4398 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4399 *  @hw: pointer to the HW structure
4400 *  @bank: 0 for first bank, 1 for second bank, etc.
4401 *
4402 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4403 *  bank N is 4096 * N + flash_reg_addr.
4404 **/
4405static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4406{
4407	struct e1000_nvm_info *nvm = &hw->nvm;
4408	union ich8_hws_flash_status hsfsts;
4409	union ich8_hws_flash_ctrl hsflctl;
4410	u32 flash_linear_addr;
4411	/* bank size is in 16bit words - adjust to bytes */
4412	u32 flash_bank_size = nvm->flash_bank_size * 2;
4413	s32 ret_val;
4414	s32 count = 0;
4415	s32 j, iteration, sector_size;
4416
4417	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4418
4419	/* Determine HW Sector size: Read BERASE bits of hw flash status
4420	 * register
4421	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4422	 *     consecutive sectors.  The start index for the nth Hw sector
4423	 *     can be calculated as = bank * 4096 + n * 256
4424	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4425	 *     The start index for the nth Hw sector can be calculated
4426	 *     as = bank * 4096
4427	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4428	 *     (ich9 only, otherwise error condition)
4429	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4430	 */
4431	switch (hsfsts.hsf_status.berasesz) {
4432	case 0:
4433		/* Hw sector size 256 */
4434		sector_size = ICH_FLASH_SEG_SIZE_256;
4435		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4436		break;
4437	case 1:
4438		sector_size = ICH_FLASH_SEG_SIZE_4K;
4439		iteration = 1;
4440		break;
4441	case 2:
4442		sector_size = ICH_FLASH_SEG_SIZE_8K;
4443		iteration = 1;
4444		break;
4445	case 3:
4446		sector_size = ICH_FLASH_SEG_SIZE_64K;
4447		iteration = 1;
4448		break;
4449	default:
4450		return -E1000_ERR_NVM;
4451	}
4452
4453	/* Start with the base address, then add the sector offset. */
4454	flash_linear_addr = hw->nvm.flash_base_addr;
4455	flash_linear_addr += (bank) ? flash_bank_size : 0;
4456
4457	for (j = 0; j < iteration; j++) {
4458		do {
4459			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4460
4461			/* Steps */
4462			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463			if (ret_val)
4464				return ret_val;
4465
4466			/* Write a value 11 (block Erase) in Flash
4467			 * Cycle field in hw flash control
4468			 */
4469			if (hw->mac.type >= e1000_pch_spt)
4470				hsflctl.regval =
4471				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4472			else
4473				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4474
4475			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4476			if (hw->mac.type >= e1000_pch_spt)
4477				ew32flash(ICH_FLASH_HSFSTS,
4478					  hsflctl.regval << 16);
4479			else
4480				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4481
4482			/* Write the last 24 bits of an index within the
4483			 * block into Flash Linear address field in Flash
4484			 * Address.
4485			 */
4486			flash_linear_addr += (j * sector_size);
4487			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4488
4489			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4490			if (!ret_val)
4491				break;
4492
4493			/* Check if FCERR is set to 1.  If 1,
4494			 * clear it and try the whole sequence
4495			 * a few more times else Done
4496			 */
4497			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498			if (hsfsts.hsf_status.flcerr)
4499				/* repeat for some time before giving up */
4500				continue;
4501			else if (!hsfsts.hsf_status.flcdone)
4502				return ret_val;
4503		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504	}
4505
4506	return 0;
4507}
4508
4509/**
4510 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4511 *  @hw: pointer to the HW structure
4512 *  @data: Pointer to the LED settings
4513 *
4514 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4515 *  settings is all 0's or F's, set the LED default to a valid LED default
4516 *  setting.
4517 **/
4518static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4519{
4520	s32 ret_val;
4521
4522	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4523	if (ret_val) {
4524		e_dbg("NVM Read Error\n");
4525		return ret_val;
4526	}
4527
4528	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4529		*data = ID_LED_DEFAULT_ICH8LAN;
4530
4531	return 0;
4532}
4533
4534/**
4535 *  e1000_id_led_init_pchlan - store LED configurations
4536 *  @hw: pointer to the HW structure
4537 *
4538 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4539 *  the PHY LED configuration register.
4540 *
4541 *  PCH also does not have an "always on" or "always off" mode which
4542 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4543 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4544 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4545 *  link based on logic in e1000_led_[on|off]_pchlan().
4546 **/
4547static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4548{
4549	struct e1000_mac_info *mac = &hw->mac;
4550	s32 ret_val;
4551	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4552	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4553	u16 data, i, temp, shift;
4554
4555	/* Get default ID LED modes */
4556	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4557	if (ret_val)
4558		return ret_val;
4559
4560	mac->ledctl_default = er32(LEDCTL);
4561	mac->ledctl_mode1 = mac->ledctl_default;
4562	mac->ledctl_mode2 = mac->ledctl_default;
4563
4564	for (i = 0; i < 4; i++) {
4565		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4566		shift = (i * 5);
4567		switch (temp) {
4568		case ID_LED_ON1_DEF2:
4569		case ID_LED_ON1_ON2:
4570		case ID_LED_ON1_OFF2:
4571			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4572			mac->ledctl_mode1 |= (ledctl_on << shift);
4573			break;
4574		case ID_LED_OFF1_DEF2:
4575		case ID_LED_OFF1_ON2:
4576		case ID_LED_OFF1_OFF2:
4577			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4578			mac->ledctl_mode1 |= (ledctl_off << shift);
4579			break;
4580		default:
4581			/* Do nothing */
4582			break;
4583		}
4584		switch (temp) {
4585		case ID_LED_DEF1_ON2:
4586		case ID_LED_ON1_ON2:
4587		case ID_LED_OFF1_ON2:
4588			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4589			mac->ledctl_mode2 |= (ledctl_on << shift);
4590			break;
4591		case ID_LED_DEF1_OFF2:
4592		case ID_LED_ON1_OFF2:
4593		case ID_LED_OFF1_OFF2:
4594			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4595			mac->ledctl_mode2 |= (ledctl_off << shift);
4596			break;
4597		default:
4598			/* Do nothing */
4599			break;
4600		}
4601	}
4602
4603	return 0;
4604}
4605
4606/**
4607 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4608 *  @hw: pointer to the HW structure
4609 *
4610 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4611 *  register, so the the bus width is hard coded.
4612 **/
4613static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4614{
4615	struct e1000_bus_info *bus = &hw->bus;
4616	s32 ret_val;
4617
4618	ret_val = e1000e_get_bus_info_pcie(hw);
4619
4620	/* ICH devices are "PCI Express"-ish.  They have
4621	 * a configuration space, but do not contain
4622	 * PCI Express Capability registers, so bus width
4623	 * must be hardcoded.
4624	 */
4625	if (bus->width == e1000_bus_width_unknown)
4626		bus->width = e1000_bus_width_pcie_x1;
4627
4628	return ret_val;
4629}
4630
4631/**
4632 *  e1000_reset_hw_ich8lan - Reset the hardware
4633 *  @hw: pointer to the HW structure
4634 *
4635 *  Does a full reset of the hardware which includes a reset of the PHY and
4636 *  MAC.
4637 **/
4638static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4639{
4640	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4641	u16 kum_cfg;
4642	u32 ctrl, reg;
4643	s32 ret_val;
4644
4645	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4646	 * on the last TLP read/write transaction when MAC is reset.
4647	 */
4648	ret_val = e1000e_disable_pcie_master(hw);
4649	if (ret_val)
4650		e_dbg("PCI-E Master disable polling has failed.\n");
4651
4652	e_dbg("Masking off all interrupts\n");
4653	ew32(IMC, 0xffffffff);
4654
4655	/* Disable the Transmit and Receive units.  Then delay to allow
4656	 * any pending transactions to complete before we hit the MAC
4657	 * with the global reset.
4658	 */
4659	ew32(RCTL, 0);
4660	ew32(TCTL, E1000_TCTL_PSP);
4661	e1e_flush();
4662
4663	usleep_range(10000, 11000);
4664
4665	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4666	if (hw->mac.type == e1000_ich8lan) {
4667		/* Set Tx and Rx buffer allocation to 8k apiece. */
4668		ew32(PBA, E1000_PBA_8K);
4669		/* Set Packet Buffer Size to 16k. */
4670		ew32(PBS, E1000_PBS_16K);
4671	}
4672
4673	if (hw->mac.type == e1000_pchlan) {
4674		/* Save the NVM K1 bit setting */
4675		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4676		if (ret_val)
4677			return ret_val;
4678
4679		if (kum_cfg & E1000_NVM_K1_ENABLE)
4680			dev_spec->nvm_k1_enabled = true;
4681		else
4682			dev_spec->nvm_k1_enabled = false;
4683	}
4684
4685	ctrl = er32(CTRL);
4686
4687	if (!hw->phy.ops.check_reset_block(hw)) {
4688		/* Full-chip reset requires MAC and PHY reset at the same
4689		 * time to make sure the interface between MAC and the
4690		 * external PHY is reset.
4691		 */
4692		ctrl |= E1000_CTRL_PHY_RST;
4693
4694		/* Gate automatic PHY configuration by hardware on
4695		 * non-managed 82579
4696		 */
4697		if ((hw->mac.type == e1000_pch2lan) &&
4698		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4699			e1000_gate_hw_phy_config_ich8lan(hw, true);
4700	}
4701	ret_val = e1000_acquire_swflag_ich8lan(hw);
4702	e_dbg("Issuing a global reset to ich8lan\n");
4703	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4704	/* cannot issue a flush here because it hangs the hardware */
4705	msleep(20);
4706
4707	/* Set Phy Config Counter to 50msec */
4708	if (hw->mac.type == e1000_pch2lan) {
4709		reg = er32(FEXTNVM3);
4710		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4711		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4712		ew32(FEXTNVM3, reg);
4713	}
4714
4715	if (!ret_val)
4716		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4717
4718	if (ctrl & E1000_CTRL_PHY_RST) {
4719		ret_val = hw->phy.ops.get_cfg_done(hw);
4720		if (ret_val)
4721			return ret_val;
4722
4723		ret_val = e1000_post_phy_reset_ich8lan(hw);
4724		if (ret_val)
4725			return ret_val;
4726	}
4727
4728	/* For PCH, this write will make sure that any noise
4729	 * will be detected as a CRC error and be dropped rather than show up
4730	 * as a bad packet to the DMA engine.
4731	 */
4732	if (hw->mac.type == e1000_pchlan)
4733		ew32(CRC_OFFSET, 0x65656565);
4734
4735	ew32(IMC, 0xffffffff);
4736	er32(ICR);
4737
4738	reg = er32(KABGTXD);
4739	reg |= E1000_KABGTXD_BGSQLBIAS;
4740	ew32(KABGTXD, reg);
4741
4742	return 0;
4743}
4744
4745/**
4746 *  e1000_init_hw_ich8lan - Initialize the hardware
4747 *  @hw: pointer to the HW structure
4748 *
4749 *  Prepares the hardware for transmit and receive by doing the following:
4750 *   - initialize hardware bits
4751 *   - initialize LED identification
4752 *   - setup receive address registers
4753 *   - setup flow control
4754 *   - setup transmit descriptors
4755 *   - clear statistics
4756 **/
4757static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4758{
4759	struct e1000_mac_info *mac = &hw->mac;
4760	u32 ctrl_ext, txdctl, snoop;
4761	s32 ret_val;
4762	u16 i;
4763
4764	e1000_initialize_hw_bits_ich8lan(hw);
4765
4766	/* Initialize identification LED */
4767	ret_val = mac->ops.id_led_init(hw);
4768	/* An error is not fatal and we should not stop init due to this */
4769	if (ret_val)
4770		e_dbg("Error initializing identification LED\n");
4771
4772	/* Setup the receive address. */
4773	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4774
4775	/* Zero out the Multicast HASH table */
4776	e_dbg("Zeroing the MTA\n");
4777	for (i = 0; i < mac->mta_reg_count; i++)
4778		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4779
4780	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4781	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4782	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4783	 */
4784	if (hw->phy.type == e1000_phy_82578) {
4785		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4786		i &= ~BM_WUC_HOST_WU_BIT;
4787		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4788		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4789		if (ret_val)
4790			return ret_val;
4791	}
4792
4793	/* Setup link and flow control */
4794	ret_val = mac->ops.setup_link(hw);
4795
4796	/* Set the transmit descriptor write-back policy for both queues */
4797	txdctl = er32(TXDCTL(0));
4798	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4799		  E1000_TXDCTL_FULL_TX_DESC_WB);
4800	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4801		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4802	ew32(TXDCTL(0), txdctl);
4803	txdctl = er32(TXDCTL(1));
4804	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4805		  E1000_TXDCTL_FULL_TX_DESC_WB);
4806	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4807		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4808	ew32(TXDCTL(1), txdctl);
4809
4810	/* ICH8 has opposite polarity of no_snoop bits.
4811	 * By default, we should use snoop behavior.
4812	 */
4813	if (mac->type == e1000_ich8lan)
4814		snoop = PCIE_ICH8_SNOOP_ALL;
4815	else
4816		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4817	e1000e_set_pcie_no_snoop(hw, snoop);
4818
 
 
 
 
 
 
 
 
 
4819	ctrl_ext = er32(CTRL_EXT);
4820	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4821	ew32(CTRL_EXT, ctrl_ext);
4822
4823	/* Clear all of the statistics registers (clear on read).  It is
4824	 * important that we do this after we have tried to establish link
4825	 * because the symbol error count will increment wildly if there
4826	 * is no link.
4827	 */
4828	e1000_clear_hw_cntrs_ich8lan(hw);
4829
4830	return ret_val;
4831}
4832
4833/**
4834 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4835 *  @hw: pointer to the HW structure
4836 *
4837 *  Sets/Clears required hardware bits necessary for correctly setting up the
4838 *  hardware for transmit and receive.
4839 **/
4840static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4841{
4842	u32 reg;
4843
4844	/* Extended Device Control */
4845	reg = er32(CTRL_EXT);
4846	reg |= BIT(22);
4847	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4848	if (hw->mac.type >= e1000_pchlan)
4849		reg |= E1000_CTRL_EXT_PHYPDEN;
4850	ew32(CTRL_EXT, reg);
4851
4852	/* Transmit Descriptor Control 0 */
4853	reg = er32(TXDCTL(0));
4854	reg |= BIT(22);
4855	ew32(TXDCTL(0), reg);
4856
4857	/* Transmit Descriptor Control 1 */
4858	reg = er32(TXDCTL(1));
4859	reg |= BIT(22);
4860	ew32(TXDCTL(1), reg);
4861
4862	/* Transmit Arbitration Control 0 */
4863	reg = er32(TARC(0));
4864	if (hw->mac.type == e1000_ich8lan)
4865		reg |= BIT(28) | BIT(29);
4866	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867	ew32(TARC(0), reg);
4868
4869	/* Transmit Arbitration Control 1 */
4870	reg = er32(TARC(1));
4871	if (er32(TCTL) & E1000_TCTL_MULR)
4872		reg &= ~BIT(28);
4873	else
4874		reg |= BIT(28);
4875	reg |= BIT(24) | BIT(26) | BIT(30);
4876	ew32(TARC(1), reg);
4877
4878	/* Device Status */
4879	if (hw->mac.type == e1000_ich8lan) {
4880		reg = er32(STATUS);
4881		reg &= ~BIT(31);
4882		ew32(STATUS, reg);
4883	}
4884
4885	/* work-around descriptor data corruption issue during nfs v2 udp
4886	 * traffic, just disable the nfs filtering capability
4887	 */
4888	reg = er32(RFCTL);
4889	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4890
4891	/* Disable IPv6 extension header parsing because some malformed
4892	 * IPv6 headers can hang the Rx.
4893	 */
4894	if (hw->mac.type == e1000_ich8lan)
4895		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4896	ew32(RFCTL, reg);
4897
4898	/* Enable ECC on Lynxpoint */
4899	if (hw->mac.type >= e1000_pch_lpt) {
4900		reg = er32(PBECCSTS);
4901		reg |= E1000_PBECCSTS_ECC_ENABLE;
4902		ew32(PBECCSTS, reg);
4903
4904		reg = er32(CTRL);
4905		reg |= E1000_CTRL_MEHE;
4906		ew32(CTRL, reg);
4907	}
4908}
4909
4910/**
4911 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4912 *  @hw: pointer to the HW structure
4913 *
4914 *  Determines which flow control settings to use, then configures flow
4915 *  control.  Calls the appropriate media-specific link configuration
4916 *  function.  Assuming the adapter has a valid link partner, a valid link
4917 *  should be established.  Assumes the hardware has previously been reset
4918 *  and the transmitter and receiver are not enabled.
4919 **/
4920static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921{
4922	s32 ret_val;
4923
4924	if (hw->phy.ops.check_reset_block(hw))
4925		return 0;
4926
4927	/* ICH parts do not have a word in the NVM to determine
4928	 * the default flow control setting, so we explicitly
4929	 * set it to full.
4930	 */
4931	if (hw->fc.requested_mode == e1000_fc_default) {
4932		/* Workaround h/w hang when Tx flow control enabled */
4933		if (hw->mac.type == e1000_pchlan)
4934			hw->fc.requested_mode = e1000_fc_rx_pause;
4935		else
4936			hw->fc.requested_mode = e1000_fc_full;
4937	}
4938
4939	/* Save off the requested flow control mode for use later.  Depending
4940	 * on the link partner's capabilities, we may or may not use this mode.
4941	 */
4942	hw->fc.current_mode = hw->fc.requested_mode;
4943
4944	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945
4946	/* Continue to configure the copper link. */
4947	ret_val = hw->mac.ops.setup_physical_interface(hw);
4948	if (ret_val)
4949		return ret_val;
4950
4951	ew32(FCTTV, hw->fc.pause_time);
4952	if ((hw->phy.type == e1000_phy_82578) ||
4953	    (hw->phy.type == e1000_phy_82579) ||
4954	    (hw->phy.type == e1000_phy_i217) ||
4955	    (hw->phy.type == e1000_phy_82577)) {
4956		ew32(FCRTV_PCH, hw->fc.refresh_time);
4957
4958		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4959				   hw->fc.pause_time);
4960		if (ret_val)
4961			return ret_val;
4962	}
4963
4964	return e1000e_set_fc_watermarks(hw);
4965}
4966
4967/**
4968 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4969 *  @hw: pointer to the HW structure
4970 *
4971 *  Configures the kumeran interface to the PHY to wait the appropriate time
4972 *  when polling the PHY, then call the generic setup_copper_link to finish
4973 *  configuring the copper link.
4974 **/
4975static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 ctrl;
4978	s32 ret_val;
4979	u16 reg_data;
4980
4981	ctrl = er32(CTRL);
4982	ctrl |= E1000_CTRL_SLU;
4983	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4984	ew32(CTRL, ctrl);
4985
4986	/* Set the mac to wait the maximum time between each iteration
4987	 * and increase the max iterations when polling the phy;
4988	 * this fixes erroneous timeouts at 10Mbps.
4989	 */
4990	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4991	if (ret_val)
4992		return ret_val;
4993	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4994				       &reg_data);
4995	if (ret_val)
4996		return ret_val;
4997	reg_data |= 0x3F;
4998	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999					reg_data);
5000	if (ret_val)
5001		return ret_val;
5002
5003	switch (hw->phy.type) {
5004	case e1000_phy_igp_3:
5005		ret_val = e1000e_copper_link_setup_igp(hw);
5006		if (ret_val)
5007			return ret_val;
5008		break;
5009	case e1000_phy_bm:
5010	case e1000_phy_82578:
5011		ret_val = e1000e_copper_link_setup_m88(hw);
5012		if (ret_val)
5013			return ret_val;
5014		break;
5015	case e1000_phy_82577:
5016	case e1000_phy_82579:
5017		ret_val = e1000_copper_link_setup_82577(hw);
5018		if (ret_val)
5019			return ret_val;
5020		break;
5021	case e1000_phy_ife:
5022		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5023		if (ret_val)
5024			return ret_val;
5025
5026		reg_data &= ~IFE_PMC_AUTO_MDIX;
5027
5028		switch (hw->phy.mdix) {
5029		case 1:
5030			reg_data &= ~IFE_PMC_FORCE_MDIX;
5031			break;
5032		case 2:
5033			reg_data |= IFE_PMC_FORCE_MDIX;
5034			break;
5035		case 0:
5036		default:
5037			reg_data |= IFE_PMC_AUTO_MDIX;
5038			break;
5039		}
5040		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5041		if (ret_val)
5042			return ret_val;
5043		break;
5044	default:
5045		break;
5046	}
5047
5048	return e1000e_setup_copper_link(hw);
5049}
5050
5051/**
5052 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5053 *  @hw: pointer to the HW structure
5054 *
5055 *  Calls the PHY specific link setup function and then calls the
5056 *  generic setup_copper_link to finish configuring the link for
5057 *  Lynxpoint PCH devices
5058 **/
5059static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060{
5061	u32 ctrl;
5062	s32 ret_val;
5063
5064	ctrl = er32(CTRL);
5065	ctrl |= E1000_CTRL_SLU;
5066	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5067	ew32(CTRL, ctrl);
5068
5069	ret_val = e1000_copper_link_setup_82577(hw);
5070	if (ret_val)
5071		return ret_val;
5072
5073	return e1000e_setup_copper_link(hw);
5074}
5075
5076/**
5077 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5078 *  @hw: pointer to the HW structure
5079 *  @speed: pointer to store current link speed
5080 *  @duplex: pointer to store the current link duplex
5081 *
5082 *  Calls the generic get_speed_and_duplex to retrieve the current link
5083 *  information and then calls the Kumeran lock loss workaround for links at
5084 *  gigabit speeds.
5085 **/
5086static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5087					  u16 *duplex)
5088{
5089	s32 ret_val;
5090
5091	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5092	if (ret_val)
5093		return ret_val;
5094
5095	if ((hw->mac.type == e1000_ich8lan) &&
5096	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5097		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5098	}
5099
5100	return ret_val;
5101}
5102
5103/**
5104 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5105 *  @hw: pointer to the HW structure
5106 *
5107 *  Work-around for 82566 Kumeran PCS lock loss:
5108 *  On link status change (i.e. PCI reset, speed change) and link is up and
5109 *  speed is gigabit-
5110 *    0) if workaround is optionally disabled do nothing
5111 *    1) wait 1ms for Kumeran link to come up
5112 *    2) check Kumeran Diagnostic register PCS lock loss bit
5113 *    3) if not set the link is locked (all is good), otherwise...
5114 *    4) reset the PHY
5115 *    5) repeat up to 10 times
5116 *  Note: this is only called for IGP3 copper when speed is 1gb.
5117 **/
5118static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119{
5120	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5121	u32 phy_ctrl;
5122	s32 ret_val;
5123	u16 i, data;
5124	bool link;
5125
5126	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5127		return 0;
5128
5129	/* Make sure link is up before proceeding.  If not just return.
5130	 * Attempting this while link is negotiating fouled up link
5131	 * stability
5132	 */
5133	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5134	if (!link)
5135		return 0;
5136
5137	for (i = 0; i < 10; i++) {
5138		/* read once to clear */
5139		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5140		if (ret_val)
5141			return ret_val;
5142		/* and again to get new status */
5143		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5144		if (ret_val)
5145			return ret_val;
5146
5147		/* check for PCS lock */
5148		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5149			return 0;
5150
5151		/* Issue PHY reset */
5152		e1000_phy_hw_reset(hw);
5153		mdelay(5);
5154	}
5155	/* Disable GigE link negotiation */
5156	phy_ctrl = er32(PHY_CTRL);
5157	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5158		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5159	ew32(PHY_CTRL, phy_ctrl);
5160
5161	/* Call gig speed drop workaround on Gig disable before accessing
5162	 * any PHY registers
5163	 */
5164	e1000e_gig_downshift_workaround_ich8lan(hw);
5165
5166	/* unable to acquire PCS lock */
5167	return -E1000_ERR_PHY;
5168}
5169
5170/**
5171 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5172 *  @hw: pointer to the HW structure
5173 *  @state: boolean value used to set the current Kumeran workaround state
5174 *
5175 *  If ICH8, set the current Kumeran workaround state (enabled - true
5176 *  /disabled - false).
5177 **/
5178void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5179						  bool state)
5180{
5181	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182
5183	if (hw->mac.type != e1000_ich8lan) {
5184		e_dbg("Workaround applies to ICH8 only.\n");
5185		return;
5186	}
5187
5188	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5189}
5190
5191/**
5192 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5193 *  @hw: pointer to the HW structure
5194 *
5195 *  Workaround for 82566 power-down on D3 entry:
5196 *    1) disable gigabit link
5197 *    2) write VR power-down enable
5198 *    3) read it back
5199 *  Continue if successful, else issue LCD reset and repeat
5200 **/
5201void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202{
5203	u32 reg;
5204	u16 data;
5205	u8 retry = 0;
5206
5207	if (hw->phy.type != e1000_phy_igp_3)
5208		return;
5209
5210	/* Try the workaround twice (if needed) */
5211	do {
5212		/* Disable link */
5213		reg = er32(PHY_CTRL);
5214		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5215			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5216		ew32(PHY_CTRL, reg);
5217
5218		/* Call gig speed drop workaround on Gig disable before
5219		 * accessing any PHY registers
5220		 */
5221		if (hw->mac.type == e1000_ich8lan)
5222			e1000e_gig_downshift_workaround_ich8lan(hw);
5223
5224		/* Write VR power-down enable */
5225		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5226		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5227		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228
5229		/* Read it back and test */
5230		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5233			break;
5234
5235		/* Issue PHY reset and repeat at most one more time */
5236		reg = er32(CTRL);
5237		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5238		retry++;
5239	} while (retry);
5240}
5241
5242/**
5243 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5244 *  @hw: pointer to the HW structure
5245 *
5246 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5247 *  LPLU, Gig disable, MDIC PHY reset):
5248 *    1) Set Kumeran Near-end loopback
5249 *    2) Clear Kumeran Near-end loopback
5250 *  Should only be called for ICH8[m] devices with any 1G Phy.
5251 **/
5252void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253{
5254	s32 ret_val;
5255	u16 reg_data;
5256
5257	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5258		return;
5259
5260	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5261				       &reg_data);
5262	if (ret_val)
5263		return;
5264	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5265	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266					reg_data);
5267	if (ret_val)
5268		return;
5269	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5271}
5272
5273/**
5274 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5275 *  @hw: pointer to the HW structure
5276 *
5277 *  During S0 to Sx transition, it is possible the link remains at gig
5278 *  instead of negotiating to a lower speed.  Before going to Sx, set
5279 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5280 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5281 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5282 *  needs to be written.
5283 *  Parts that support (and are linked to a partner which support) EEE in
5284 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5285 *  than 10Mbps w/o EEE.
5286 **/
5287void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288{
5289	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5290	u32 phy_ctrl;
5291	s32 ret_val;
5292
5293	phy_ctrl = er32(PHY_CTRL);
5294	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295
5296	if (hw->phy.type == e1000_phy_i217) {
5297		u16 phy_reg, device_id = hw->adapter->pdev->device;
5298
5299		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5300		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5302		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5303		    (hw->mac.type >= e1000_pch_spt)) {
5304			u32 fextnvm6 = er32(FEXTNVM6);
5305
5306			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5307		}
5308
5309		ret_val = hw->phy.ops.acquire(hw);
5310		if (ret_val)
5311			goto out;
5312
5313		if (!dev_spec->eee_disable) {
5314			u16 eee_advert;
5315
5316			ret_val =
5317			    e1000_read_emi_reg_locked(hw,
5318						      I217_EEE_ADVERTISEMENT,
5319						      &eee_advert);
5320			if (ret_val)
5321				goto release;
5322
5323			/* Disable LPLU if both link partners support 100BaseT
5324			 * EEE and 100Full is advertised on both ends of the
5325			 * link, and enable Auto Enable LPI since there will
5326			 * be no driver to enable LPI while in Sx.
5327			 */
5328			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5329			    (dev_spec->eee_lp_ability &
5330			     I82579_EEE_100_SUPPORTED) &&
5331			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5332				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5333					      E1000_PHY_CTRL_NOND0A_LPLU);
5334
5335				/* Set Auto Enable LPI after link up */
5336				e1e_rphy_locked(hw,
5337						I217_LPI_GPIO_CTRL, &phy_reg);
5338				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5339				e1e_wphy_locked(hw,
5340						I217_LPI_GPIO_CTRL, phy_reg);
5341			}
5342		}
5343
5344		/* For i217 Intel Rapid Start Technology support,
5345		 * when the system is going into Sx and no manageability engine
5346		 * is present, the driver must configure proxy to reset only on
5347		 * power good.  LPI (Low Power Idle) state must also reset only
5348		 * on power good, as well as the MTA (Multicast table array).
5349		 * The SMBus release must also be disabled on LCD reset.
5350		 */
5351		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5352			/* Enable proxy to reset only on power good. */
5353			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5354			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5355			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356
5357			/* Set bit enable LPI (EEE) to reset only on
5358			 * power good.
5359			 */
5360			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5361			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5362			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363
5364			/* Disable the SMB release on LCD reset. */
5365			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5366			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5367			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5368		}
5369
5370		/* Enable MTA to reset for Intel Rapid Start Technology
5371		 * Support
5372		 */
5373		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5374		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5375		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376
5377release:
5378		hw->phy.ops.release(hw);
5379	}
5380out:
5381	ew32(PHY_CTRL, phy_ctrl);
5382
5383	if (hw->mac.type == e1000_ich8lan)
5384		e1000e_gig_downshift_workaround_ich8lan(hw);
5385
5386	if (hw->mac.type >= e1000_pchlan) {
5387		e1000_oem_bits_config_ich8lan(hw, false);
5388
5389		/* Reset PHY to activate OEM bits on 82577/8 */
5390		if (hw->mac.type == e1000_pchlan)
5391			e1000e_phy_hw_reset_generic(hw);
5392
5393		ret_val = hw->phy.ops.acquire(hw);
5394		if (ret_val)
5395			return;
5396		e1000_write_smbus_addr(hw);
5397		hw->phy.ops.release(hw);
5398	}
5399}
5400
5401/**
5402 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5403 *  @hw: pointer to the HW structure
5404 *
5405 *  During Sx to S0 transitions on non-managed devices or managed devices
5406 *  on which PHY resets are not blocked, if the PHY registers cannot be
5407 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408 *  the PHY.
5409 *  On i217, setup Intel Rapid Start Technology.
5410 **/
5411void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412{
5413	s32 ret_val;
5414
5415	if (hw->mac.type < e1000_pch2lan)
5416		return;
5417
5418	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5419	if (ret_val) {
5420		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5421		return;
5422	}
5423
5424	/* For i217 Intel Rapid Start Technology support when the system
5425	 * is transitioning from Sx and no manageability engine is present
5426	 * configure SMBus to restore on reset, disable proxy, and enable
5427	 * the reset on MTA (Multicast table array).
5428	 */
5429	if (hw->phy.type == e1000_phy_i217) {
5430		u16 phy_reg;
5431
5432		ret_val = hw->phy.ops.acquire(hw);
5433		if (ret_val) {
5434			e_dbg("Failed to setup iRST\n");
5435			return;
5436		}
5437
5438		/* Clear Auto Enable LPI after link up */
5439		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5440		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5441		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442
5443		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5444			/* Restore clear on SMB if no manageability engine
5445			 * is present
5446			 */
5447			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5448			if (ret_val)
5449				goto release;
5450			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5451			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452
5453			/* Disable Proxy */
5454			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455		}
5456		/* Enable reset on MTA */
5457		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5458		if (ret_val)
5459			goto release;
5460		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5461		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5462release:
5463		if (ret_val)
5464			e_dbg("Error %d in resume workarounds\n", ret_val);
5465		hw->phy.ops.release(hw);
5466	}
5467}
5468
5469/**
5470 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5471 *  @hw: pointer to the HW structure
5472 *
5473 *  Return the LED back to the default configuration.
5474 **/
5475static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476{
5477	if (hw->phy.type == e1000_phy_ife)
5478		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479
5480	ew32(LEDCTL, hw->mac.ledctl_default);
5481	return 0;
5482}
5483
5484/**
5485 *  e1000_led_on_ich8lan - Turn LEDs on
5486 *  @hw: pointer to the HW structure
5487 *
5488 *  Turn on the LEDs.
5489 **/
5490static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491{
5492	if (hw->phy.type == e1000_phy_ife)
5493		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5494				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495
5496	ew32(LEDCTL, hw->mac.ledctl_mode2);
5497	return 0;
5498}
5499
5500/**
5501 *  e1000_led_off_ich8lan - Turn LEDs off
5502 *  @hw: pointer to the HW structure
5503 *
5504 *  Turn off the LEDs.
5505 **/
5506static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507{
5508	if (hw->phy.type == e1000_phy_ife)
5509		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510				(IFE_PSCL_PROBE_MODE |
5511				 IFE_PSCL_PROBE_LEDS_OFF));
5512
5513	ew32(LEDCTL, hw->mac.ledctl_mode1);
5514	return 0;
5515}
5516
5517/**
5518 *  e1000_setup_led_pchlan - Configures SW controllable LED
5519 *  @hw: pointer to the HW structure
5520 *
5521 *  This prepares the SW controllable LED for use.
5522 **/
5523static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524{
5525	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5526}
5527
5528/**
5529 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5530 *  @hw: pointer to the HW structure
5531 *
5532 *  Return the LED back to the default configuration.
5533 **/
5534static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535{
5536	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5537}
5538
5539/**
5540 *  e1000_led_on_pchlan - Turn LEDs on
5541 *  @hw: pointer to the HW structure
5542 *
5543 *  Turn on the LEDs.
5544 **/
5545static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546{
5547	u16 data = (u16)hw->mac.ledctl_mode2;
5548	u32 i, led;
5549
5550	/* If no link, then turn LED on by setting the invert bit
5551	 * for each LED that's mode is "link_up" in ledctl_mode2.
5552	 */
5553	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5554		for (i = 0; i < 3; i++) {
5555			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5556			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5557			    E1000_LEDCTL_MODE_LINK_UP)
5558				continue;
5559			if (led & E1000_PHY_LED0_IVRT)
5560				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5561			else
5562				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5563		}
5564	}
5565
5566	return e1e_wphy(hw, HV_LED_CONFIG, data);
5567}
5568
5569/**
5570 *  e1000_led_off_pchlan - Turn LEDs off
5571 *  @hw: pointer to the HW structure
5572 *
5573 *  Turn off the LEDs.
5574 **/
5575static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576{
5577	u16 data = (u16)hw->mac.ledctl_mode1;
5578	u32 i, led;
5579
5580	/* If no link, then turn LED off by clearing the invert bit
5581	 * for each LED that's mode is "link_up" in ledctl_mode1.
5582	 */
5583	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5584		for (i = 0; i < 3; i++) {
5585			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5586			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5587			    E1000_LEDCTL_MODE_LINK_UP)
5588				continue;
5589			if (led & E1000_PHY_LED0_IVRT)
5590				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5591			else
5592				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5593		}
5594	}
5595
5596	return e1e_wphy(hw, HV_LED_CONFIG, data);
5597}
5598
5599/**
5600 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5601 *  @hw: pointer to the HW structure
5602 *
5603 *  Read appropriate register for the config done bit for completion status
5604 *  and configure the PHY through s/w for EEPROM-less parts.
5605 *
5606 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5607 *  config done bit, so only an error is logged and continues.  If we were
5608 *  to return with error, EEPROM-less silicon would not be able to be reset
5609 *  or change link.
5610 **/
5611static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612{
5613	s32 ret_val = 0;
5614	u32 bank = 0;
5615	u32 status;
5616
5617	e1000e_get_cfg_done_generic(hw);
5618
5619	/* Wait for indication from h/w that it has completed basic config */
5620	if (hw->mac.type >= e1000_ich10lan) {
5621		e1000_lan_init_done_ich8lan(hw);
5622	} else {
5623		ret_val = e1000e_get_auto_rd_done(hw);
5624		if (ret_val) {
5625			/* When auto config read does not complete, do not
5626			 * return with an error. This can happen in situations
5627			 * where there is no eeprom and prevents getting link.
5628			 */
5629			e_dbg("Auto Read Done did not complete\n");
5630			ret_val = 0;
5631		}
5632	}
5633
5634	/* Clear PHY Reset Asserted bit */
5635	status = er32(STATUS);
5636	if (status & E1000_STATUS_PHYRA)
5637		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5638	else
5639		e_dbg("PHY Reset Asserted not set - needs delay\n");
5640
5641	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5642	if (hw->mac.type <= e1000_ich9lan) {
5643		if (!(er32(EECD) & E1000_EECD_PRES) &&
5644		    (hw->phy.type == e1000_phy_igp_3)) {
5645			e1000e_phy_init_script_igp3(hw);
5646		}
5647	} else {
5648		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5649			/* Maybe we should do a basic PHY config */
5650			e_dbg("EEPROM not present\n");
5651			ret_val = -E1000_ERR_CONFIG;
5652		}
5653	}
5654
5655	return ret_val;
5656}
5657
5658/**
5659 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5660 * @hw: pointer to the HW structure
5661 *
5662 * In the case of a PHY power down to save power, or to turn off link during a
5663 * driver unload, or wake on lan is not enabled, remove the link.
5664 **/
5665static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666{
5667	/* If the management interface is not enabled, then power down */
5668	if (!(hw->mac.ops.check_mng_mode(hw) ||
5669	      hw->phy.ops.check_reset_block(hw)))
5670		e1000_power_down_phy_copper(hw);
5671}
5672
5673/**
5674 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5675 *  @hw: pointer to the HW structure
5676 *
5677 *  Clears hardware counters specific to the silicon family and calls
5678 *  clear_hw_cntrs_generic to clear all general purpose counters.
5679 **/
5680static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681{
5682	u16 phy_data;
5683	s32 ret_val;
5684
5685	e1000e_clear_hw_cntrs_base(hw);
5686
5687	er32(ALGNERRC);
5688	er32(RXERRC);
5689	er32(TNCRS);
5690	er32(CEXTERR);
5691	er32(TSCTC);
5692	er32(TSCTFC);
5693
5694	er32(MGTPRC);
5695	er32(MGTPDC);
5696	er32(MGTPTC);
5697
5698	er32(IAC);
5699	er32(ICRXOC);
5700
5701	/* Clear PHY statistics registers */
5702	if ((hw->phy.type == e1000_phy_82578) ||
5703	    (hw->phy.type == e1000_phy_82579) ||
5704	    (hw->phy.type == e1000_phy_i217) ||
5705	    (hw->phy.type == e1000_phy_82577)) {
5706		ret_val = hw->phy.ops.acquire(hw);
5707		if (ret_val)
5708			return;
5709		ret_val = hw->phy.ops.set_page(hw,
5710					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5711		if (ret_val)
5712			goto release;
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5727release:
5728		hw->phy.ops.release(hw);
5729	}
5730}
5731
5732static const struct e1000_mac_operations ich8_mac_ops = {
5733	/* check_mng_mode dependent on mac type */
5734	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5735	/* cleanup_led dependent on mac type */
5736	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5737	.get_bus_info		= e1000_get_bus_info_ich8lan,
5738	.set_lan_id		= e1000_set_lan_id_single_port,
5739	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5740	/* led_on dependent on mac type */
5741	/* led_off dependent on mac type */
5742	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5743	.reset_hw		= e1000_reset_hw_ich8lan,
5744	.init_hw		= e1000_init_hw_ich8lan,
5745	.setup_link		= e1000_setup_link_ich8lan,
5746	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5747	/* id_led_init dependent on mac type */
5748	.config_collision_dist	= e1000e_config_collision_dist_generic,
5749	.rar_set		= e1000e_rar_set_generic,
5750	.rar_get_count		= e1000e_rar_get_count_generic,
5751};
5752
5753static const struct e1000_phy_operations ich8_phy_ops = {
5754	.acquire		= e1000_acquire_swflag_ich8lan,
5755	.check_reset_block	= e1000_check_reset_block_ich8lan,
5756	.commit			= NULL,
5757	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5758	.get_cable_length	= e1000e_get_cable_length_igp_2,
5759	.read_reg		= e1000e_read_phy_reg_igp,
5760	.release		= e1000_release_swflag_ich8lan,
5761	.reset			= e1000_phy_hw_reset_ich8lan,
5762	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5763	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5764	.write_reg		= e1000e_write_phy_reg_igp,
5765};
5766
5767static const struct e1000_nvm_operations ich8_nvm_ops = {
5768	.acquire		= e1000_acquire_nvm_ich8lan,
5769	.read			= e1000_read_nvm_ich8lan,
5770	.release		= e1000_release_nvm_ich8lan,
5771	.reload			= e1000e_reload_nvm_generic,
5772	.update			= e1000_update_nvm_checksum_ich8lan,
5773	.valid_led_default	= e1000_valid_led_default_ich8lan,
5774	.validate		= e1000_validate_nvm_checksum_ich8lan,
5775	.write			= e1000_write_nvm_ich8lan,
5776};
5777
5778static const struct e1000_nvm_operations spt_nvm_ops = {
5779	.acquire		= e1000_acquire_nvm_ich8lan,
5780	.release		= e1000_release_nvm_ich8lan,
5781	.read			= e1000_read_nvm_spt,
5782	.update			= e1000_update_nvm_checksum_spt,
5783	.reload			= e1000e_reload_nvm_generic,
5784	.valid_led_default	= e1000_valid_led_default_ich8lan,
5785	.validate		= e1000_validate_nvm_checksum_ich8lan,
5786	.write			= e1000_write_nvm_ich8lan,
5787};
5788
5789const struct e1000_info e1000_ich8_info = {
5790	.mac			= e1000_ich8lan,
5791	.flags			= FLAG_HAS_WOL
5792				  | FLAG_IS_ICH
5793				  | FLAG_HAS_CTRLEXT_ON_LOAD
5794				  | FLAG_HAS_AMT
5795				  | FLAG_HAS_FLASH
5796				  | FLAG_APME_IN_WUC,
5797	.pba			= 8,
5798	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5799	.get_variants		= e1000_get_variants_ich8lan,
5800	.mac_ops		= &ich8_mac_ops,
5801	.phy_ops		= &ich8_phy_ops,
5802	.nvm_ops		= &ich8_nvm_ops,
5803};
5804
5805const struct e1000_info e1000_ich9_info = {
5806	.mac			= e1000_ich9lan,
5807	.flags			= FLAG_HAS_JUMBO_FRAMES
5808				  | FLAG_IS_ICH
5809				  | FLAG_HAS_WOL
5810				  | FLAG_HAS_CTRLEXT_ON_LOAD
5811				  | FLAG_HAS_AMT
5812				  | FLAG_HAS_FLASH
5813				  | FLAG_APME_IN_WUC,
5814	.pba			= 18,
5815	.max_hw_frame_size	= DEFAULT_JUMBO,
5816	.get_variants		= e1000_get_variants_ich8lan,
5817	.mac_ops		= &ich8_mac_ops,
5818	.phy_ops		= &ich8_phy_ops,
5819	.nvm_ops		= &ich8_nvm_ops,
5820};
5821
5822const struct e1000_info e1000_ich10_info = {
5823	.mac			= e1000_ich10lan,
5824	.flags			= FLAG_HAS_JUMBO_FRAMES
5825				  | FLAG_IS_ICH
5826				  | FLAG_HAS_WOL
5827				  | FLAG_HAS_CTRLEXT_ON_LOAD
5828				  | FLAG_HAS_AMT
5829				  | FLAG_HAS_FLASH
5830				  | FLAG_APME_IN_WUC,
5831	.pba			= 18,
5832	.max_hw_frame_size	= DEFAULT_JUMBO,
5833	.get_variants		= e1000_get_variants_ich8lan,
5834	.mac_ops		= &ich8_mac_ops,
5835	.phy_ops		= &ich8_phy_ops,
5836	.nvm_ops		= &ich8_nvm_ops,
5837};
5838
5839const struct e1000_info e1000_pch_info = {
5840	.mac			= e1000_pchlan,
5841	.flags			= FLAG_IS_ICH
5842				  | FLAG_HAS_WOL
5843				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844				  | FLAG_HAS_AMT
5845				  | FLAG_HAS_FLASH
5846				  | FLAG_HAS_JUMBO_FRAMES
5847				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5848				  | FLAG_APME_IN_WUC,
5849	.flags2			= FLAG2_HAS_PHY_STATS,
5850	.pba			= 26,
5851	.max_hw_frame_size	= 4096,
5852	.get_variants		= e1000_get_variants_ich8lan,
5853	.mac_ops		= &ich8_mac_ops,
5854	.phy_ops		= &ich8_phy_ops,
5855	.nvm_ops		= &ich8_nvm_ops,
5856};
5857
5858const struct e1000_info e1000_pch2_info = {
5859	.mac			= e1000_pch2lan,
5860	.flags			= FLAG_IS_ICH
5861				  | FLAG_HAS_WOL
5862				  | FLAG_HAS_HW_TIMESTAMP
5863				  | FLAG_HAS_CTRLEXT_ON_LOAD
5864				  | FLAG_HAS_AMT
5865				  | FLAG_HAS_FLASH
5866				  | FLAG_HAS_JUMBO_FRAMES
5867				  | FLAG_APME_IN_WUC,
5868	.flags2			= FLAG2_HAS_PHY_STATS
5869				  | FLAG2_HAS_EEE
5870				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5871	.pba			= 26,
5872	.max_hw_frame_size	= 9022,
5873	.get_variants		= e1000_get_variants_ich8lan,
5874	.mac_ops		= &ich8_mac_ops,
5875	.phy_ops		= &ich8_phy_ops,
5876	.nvm_ops		= &ich8_nvm_ops,
5877};
5878
5879const struct e1000_info e1000_pch_lpt_info = {
5880	.mac			= e1000_pch_lpt,
5881	.flags			= FLAG_IS_ICH
5882				  | FLAG_HAS_WOL
5883				  | FLAG_HAS_HW_TIMESTAMP
5884				  | FLAG_HAS_CTRLEXT_ON_LOAD
5885				  | FLAG_HAS_AMT
5886				  | FLAG_HAS_FLASH
5887				  | FLAG_HAS_JUMBO_FRAMES
5888				  | FLAG_APME_IN_WUC,
5889	.flags2			= FLAG2_HAS_PHY_STATS
5890				  | FLAG2_HAS_EEE
5891				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5892	.pba			= 26,
5893	.max_hw_frame_size	= 9022,
5894	.get_variants		= e1000_get_variants_ich8lan,
5895	.mac_ops		= &ich8_mac_ops,
5896	.phy_ops		= &ich8_phy_ops,
5897	.nvm_ops		= &ich8_nvm_ops,
5898};
5899
5900const struct e1000_info e1000_pch_spt_info = {
5901	.mac			= e1000_pch_spt,
5902	.flags			= FLAG_IS_ICH
5903				  | FLAG_HAS_WOL
5904				  | FLAG_HAS_HW_TIMESTAMP
5905				  | FLAG_HAS_CTRLEXT_ON_LOAD
5906				  | FLAG_HAS_AMT
5907				  | FLAG_HAS_FLASH
5908				  | FLAG_HAS_JUMBO_FRAMES
5909				  | FLAG_APME_IN_WUC,
5910	.flags2			= FLAG2_HAS_PHY_STATS
5911				  | FLAG2_HAS_EEE,
5912	.pba			= 26,
5913	.max_hw_frame_size	= 9022,
5914	.get_variants		= e1000_get_variants_ich8lan,
5915	.mac_ops		= &ich8_mac_ops,
5916	.phy_ops		= &ich8_phy_ops,
5917	.nvm_ops		= &spt_nvm_ops,
5918};
5919
5920const struct e1000_info e1000_pch_cnp_info = {
5921	.mac			= e1000_pch_cnp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5922	.flags			= FLAG_IS_ICH
5923				  | FLAG_HAS_WOL
5924				  | FLAG_HAS_HW_TIMESTAMP
5925				  | FLAG_HAS_CTRLEXT_ON_LOAD
5926				  | FLAG_HAS_AMT
5927				  | FLAG_HAS_FLASH
5928				  | FLAG_HAS_JUMBO_FRAMES
5929				  | FLAG_APME_IN_WUC,
5930	.flags2			= FLAG2_HAS_PHY_STATS
5931				  | FLAG2_HAS_EEE,
5932	.pba			= 26,
5933	.max_hw_frame_size	= 9022,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &spt_nvm_ops,
5938};