Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 
 
 
 
 
 
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 
 
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 
 
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 
 
 
 
 
 
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314static void regmap_parse_inplace_noop(void *buf)
 315{
 316}
 317
 318static unsigned int regmap_parse_8(const void *buf)
 319{
 320	const u8 *b = buf;
 321
 322	return b[0];
 323}
 324
 325static unsigned int regmap_parse_16_be(const void *buf)
 326{
 327	return get_unaligned_be16(buf);
 
 
 328}
 329
 330static unsigned int regmap_parse_16_le(const void *buf)
 331{
 332	return get_unaligned_le16(buf);
 
 
 333}
 334
 335static void regmap_parse_16_be_inplace(void *buf)
 336{
 337	u16 v = get_unaligned_be16(buf);
 338
 339	memcpy(buf, &v, sizeof(v));
 340}
 341
 342static void regmap_parse_16_le_inplace(void *buf)
 343{
 344	u16 v = get_unaligned_le16(buf);
 345
 346	memcpy(buf, &v, sizeof(v));
 347}
 348
 349static unsigned int regmap_parse_16_native(const void *buf)
 350{
 351	u16 v;
 352
 353	memcpy(&v, buf, sizeof(v));
 354	return v;
 355}
 356
 357static unsigned int regmap_parse_24_be(const void *buf)
 358{
 359	return get_unaligned_be24(buf);
 
 
 
 
 
 360}
 361
 362static unsigned int regmap_parse_32_be(const void *buf)
 363{
 364	return get_unaligned_be32(buf);
 
 
 365}
 366
 367static unsigned int regmap_parse_32_le(const void *buf)
 368{
 369	return get_unaligned_le32(buf);
 
 
 370}
 371
 372static void regmap_parse_32_be_inplace(void *buf)
 373{
 374	u32 v = get_unaligned_be32(buf);
 375
 376	memcpy(buf, &v, sizeof(v));
 377}
 378
 379static void regmap_parse_32_le_inplace(void *buf)
 380{
 381	u32 v = get_unaligned_le32(buf);
 382
 383	memcpy(buf, &v, sizeof(v));
 384}
 385
 386static unsigned int regmap_parse_32_native(const void *buf)
 387{
 388	u32 v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390	memcpy(&v, buf, sizeof(v));
 391	return v;
 392}
 393
 
 
 
 
 
 
 394static void regmap_lock_hwlock(void *__map)
 395{
 396	struct regmap *map = __map;
 397
 398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 399}
 400
 401static void regmap_lock_hwlock_irq(void *__map)
 402{
 403	struct regmap *map = __map;
 404
 405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 406}
 407
 408static void regmap_lock_hwlock_irqsave(void *__map)
 409{
 410	struct regmap *map = __map;
 411
 412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 413				    &map->spinlock_flags);
 414}
 415
 416static void regmap_unlock_hwlock(void *__map)
 417{
 418	struct regmap *map = __map;
 419
 420	hwspin_unlock(map->hwlock);
 421}
 422
 423static void regmap_unlock_hwlock_irq(void *__map)
 424{
 425	struct regmap *map = __map;
 426
 427	hwspin_unlock_irq(map->hwlock);
 428}
 429
 430static void regmap_unlock_hwlock_irqrestore(void *__map)
 431{
 432	struct regmap *map = __map;
 433
 434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 435}
 436
 437static void regmap_lock_unlock_none(void *__map)
 438{
 439
 440}
 441
 442static void regmap_lock_mutex(void *__map)
 443{
 444	struct regmap *map = __map;
 445	mutex_lock(&map->mutex);
 446}
 447
 448static void regmap_unlock_mutex(void *__map)
 449{
 450	struct regmap *map = __map;
 451	mutex_unlock(&map->mutex);
 452}
 453
 454static void regmap_lock_spinlock(void *__map)
 455__acquires(&map->spinlock)
 456{
 457	struct regmap *map = __map;
 458	unsigned long flags;
 459
 460	spin_lock_irqsave(&map->spinlock, flags);
 461	map->spinlock_flags = flags;
 462}
 463
 464static void regmap_unlock_spinlock(void *__map)
 465__releases(&map->spinlock)
 466{
 467	struct regmap *map = __map;
 468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 469}
 470
 471static void regmap_lock_raw_spinlock(void *__map)
 472__acquires(&map->raw_spinlock)
 473{
 474	struct regmap *map = __map;
 475	unsigned long flags;
 476
 477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 478	map->raw_spinlock_flags = flags;
 479}
 480
 481static void regmap_unlock_raw_spinlock(void *__map)
 482__releases(&map->raw_spinlock)
 483{
 484	struct regmap *map = __map;
 485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 486}
 487
 488static void dev_get_regmap_release(struct device *dev, void *res)
 489{
 490	/*
 491	 * We don't actually have anything to do here; the goal here
 492	 * is not to manage the regmap but to provide a simple way to
 493	 * get the regmap back given a struct device.
 494	 */
 495}
 496
 497static bool _regmap_range_add(struct regmap *map,
 498			      struct regmap_range_node *data)
 499{
 500	struct rb_root *root = &map->range_tree;
 501	struct rb_node **new = &(root->rb_node), *parent = NULL;
 502
 503	while (*new) {
 504		struct regmap_range_node *this =
 505			rb_entry(*new, struct regmap_range_node, node);
 506
 507		parent = *new;
 508		if (data->range_max < this->range_min)
 509			new = &((*new)->rb_left);
 510		else if (data->range_min > this->range_max)
 511			new = &((*new)->rb_right);
 512		else
 513			return false;
 514	}
 515
 516	rb_link_node(&data->node, parent, new);
 517	rb_insert_color(&data->node, root);
 518
 519	return true;
 520}
 521
 522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 523						      unsigned int reg)
 524{
 525	struct rb_node *node = map->range_tree.rb_node;
 526
 527	while (node) {
 528		struct regmap_range_node *this =
 529			rb_entry(node, struct regmap_range_node, node);
 530
 531		if (reg < this->range_min)
 532			node = node->rb_left;
 533		else if (reg > this->range_max)
 534			node = node->rb_right;
 535		else
 536			return this;
 537	}
 538
 539	return NULL;
 540}
 541
 542static void regmap_range_exit(struct regmap *map)
 543{
 544	struct rb_node *next;
 545	struct regmap_range_node *range_node;
 546
 547	next = rb_first(&map->range_tree);
 548	while (next) {
 549		range_node = rb_entry(next, struct regmap_range_node, node);
 550		next = rb_next(&range_node->node);
 551		rb_erase(&range_node->node, &map->range_tree);
 552		kfree(range_node);
 553	}
 554
 555	kfree(map->selector_work_buf);
 556}
 557
 558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 559{
 560	if (config->name) {
 561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 562
 563		if (!name)
 564			return -ENOMEM;
 565
 566		kfree_const(map->name);
 567		map->name = name;
 568	}
 569
 570	return 0;
 571}
 572
 573int regmap_attach_dev(struct device *dev, struct regmap *map,
 574		      const struct regmap_config *config)
 575{
 576	struct regmap **m;
 577	int ret;
 578
 579	map->dev = dev;
 580
 581	ret = regmap_set_name(map, config);
 582	if (ret)
 583		return ret;
 584
 585	regmap_debugfs_exit(map);
 586	regmap_debugfs_init(map);
 587
 588	/* Add a devres resource for dev_get_regmap() */
 589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 590	if (!m) {
 591		regmap_debugfs_exit(map);
 592		return -ENOMEM;
 593	}
 594	*m = map;
 595	devres_add(dev, m);
 596
 597	return 0;
 598}
 599EXPORT_SYMBOL_GPL(regmap_attach_dev);
 600
 601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 602					const struct regmap_config *config)
 603{
 604	enum regmap_endian endian;
 605
 606	/* Retrieve the endianness specification from the regmap config */
 607	endian = config->reg_format_endian;
 608
 609	/* If the regmap config specified a non-default value, use that */
 610	if (endian != REGMAP_ENDIAN_DEFAULT)
 611		return endian;
 612
 613	/* Retrieve the endianness specification from the bus config */
 614	if (bus && bus->reg_format_endian_default)
 615		endian = bus->reg_format_endian_default;
 616
 617	/* If the bus specified a non-default value, use that */
 618	if (endian != REGMAP_ENDIAN_DEFAULT)
 619		return endian;
 620
 621	/* Use this if no other value was found */
 622	return REGMAP_ENDIAN_BIG;
 623}
 624
 625enum regmap_endian regmap_get_val_endian(struct device *dev,
 626					 const struct regmap_bus *bus,
 627					 const struct regmap_config *config)
 628{
 629	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 630	enum regmap_endian endian;
 631
 632	/* Retrieve the endianness specification from the regmap config */
 633	endian = config->val_format_endian;
 634
 635	/* If the regmap config specified a non-default value, use that */
 636	if (endian != REGMAP_ENDIAN_DEFAULT)
 637		return endian;
 638
 639	/* If the firmware node exist try to get endianness from it */
 640	if (fwnode_property_read_bool(fwnode, "big-endian"))
 641		endian = REGMAP_ENDIAN_BIG;
 642	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 643		endian = REGMAP_ENDIAN_LITTLE;
 644	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 645		endian = REGMAP_ENDIAN_NATIVE;
 646
 647	/* If the endianness was specified in fwnode, use that */
 648	if (endian != REGMAP_ENDIAN_DEFAULT)
 649		return endian;
 
 
 
 
 
 650
 651	/* Retrieve the endianness specification from the bus config */
 652	if (bus && bus->val_format_endian_default)
 653		endian = bus->val_format_endian_default;
 654
 655	/* If the bus specified a non-default value, use that */
 656	if (endian != REGMAP_ENDIAN_DEFAULT)
 657		return endian;
 658
 659	/* Use this if no other value was found */
 660	return REGMAP_ENDIAN_BIG;
 661}
 662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 663
 664struct regmap *__regmap_init(struct device *dev,
 665			     const struct regmap_bus *bus,
 666			     void *bus_context,
 667			     const struct regmap_config *config,
 668			     struct lock_class_key *lock_key,
 669			     const char *lock_name)
 670{
 671	struct regmap *map;
 672	int ret = -EINVAL;
 673	enum regmap_endian reg_endian, val_endian;
 674	int i, j;
 675
 676	if (!config)
 677		goto err;
 678
 679	map = kzalloc(sizeof(*map), GFP_KERNEL);
 680	if (map == NULL) {
 681		ret = -ENOMEM;
 682		goto err;
 683	}
 684
 685	ret = regmap_set_name(map, config);
 686	if (ret)
 687		goto err_map;
 688
 689	ret = -EINVAL; /* Later error paths rely on this */
 
 
 690
 691	if (config->disable_locking) {
 692		map->lock = map->unlock = regmap_lock_unlock_none;
 693		map->can_sleep = config->can_sleep;
 694		regmap_debugfs_disable(map);
 695	} else if (config->lock && config->unlock) {
 696		map->lock = config->lock;
 697		map->unlock = config->unlock;
 698		map->lock_arg = config->lock_arg;
 699		map->can_sleep = config->can_sleep;
 700	} else if (config->use_hwlock) {
 701		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 702		if (!map->hwlock) {
 703			ret = -ENXIO;
 704			goto err_name;
 705		}
 706
 707		switch (config->hwlock_mode) {
 708		case HWLOCK_IRQSTATE:
 709			map->lock = regmap_lock_hwlock_irqsave;
 710			map->unlock = regmap_unlock_hwlock_irqrestore;
 711			break;
 712		case HWLOCK_IRQ:
 713			map->lock = regmap_lock_hwlock_irq;
 714			map->unlock = regmap_unlock_hwlock_irq;
 715			break;
 716		default:
 717			map->lock = regmap_lock_hwlock;
 718			map->unlock = regmap_unlock_hwlock;
 719			break;
 720		}
 721
 722		map->lock_arg = map;
 723	} else {
 724		if ((bus && bus->fast_io) ||
 725		    config->fast_io) {
 726			if (config->use_raw_spinlock) {
 727				raw_spin_lock_init(&map->raw_spinlock);
 728				map->lock = regmap_lock_raw_spinlock;
 729				map->unlock = regmap_unlock_raw_spinlock;
 730				lockdep_set_class_and_name(&map->raw_spinlock,
 731							   lock_key, lock_name);
 732			} else {
 733				spin_lock_init(&map->spinlock);
 734				map->lock = regmap_lock_spinlock;
 735				map->unlock = regmap_unlock_spinlock;
 736				lockdep_set_class_and_name(&map->spinlock,
 737							   lock_key, lock_name);
 738			}
 739		} else {
 740			mutex_init(&map->mutex);
 741			map->lock = regmap_lock_mutex;
 742			map->unlock = regmap_unlock_mutex;
 743			map->can_sleep = true;
 744			lockdep_set_class_and_name(&map->mutex,
 745						   lock_key, lock_name);
 746		}
 747		map->lock_arg = map;
 748	}
 749
 750	/*
 751	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 752	 * scratch buffers with sleeping allocations.
 753	 */
 754	if ((bus && bus->fast_io) || config->fast_io)
 755		map->alloc_flags = GFP_ATOMIC;
 756	else
 757		map->alloc_flags = GFP_KERNEL;
 758
 759	map->reg_base = config->reg_base;
 760
 761	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 762	map->format.pad_bytes = config->pad_bits / 8;
 763	map->format.reg_shift = config->reg_shift;
 764	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 765	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 766			config->val_bits + config->pad_bits, 8);
 767	map->reg_shift = config->pad_bits % 8;
 768	if (config->reg_stride)
 769		map->reg_stride = config->reg_stride;
 770	else
 771		map->reg_stride = 1;
 772	if (is_power_of_2(map->reg_stride))
 773		map->reg_stride_order = ilog2(map->reg_stride);
 774	else
 775		map->reg_stride_order = -1;
 776	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 777	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 778	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 779	if (bus) {
 780		map->max_raw_read = bus->max_raw_read;
 781		map->max_raw_write = bus->max_raw_write;
 782	} else if (config->max_raw_read && config->max_raw_write) {
 783		map->max_raw_read = config->max_raw_read;
 784		map->max_raw_write = config->max_raw_write;
 785	}
 786	map->dev = dev;
 787	map->bus = bus;
 788	map->bus_context = bus_context;
 789	map->max_register = config->max_register;
 790	map->wr_table = config->wr_table;
 791	map->rd_table = config->rd_table;
 792	map->volatile_table = config->volatile_table;
 793	map->precious_table = config->precious_table;
 794	map->wr_noinc_table = config->wr_noinc_table;
 795	map->rd_noinc_table = config->rd_noinc_table;
 796	map->writeable_reg = config->writeable_reg;
 797	map->readable_reg = config->readable_reg;
 798	map->volatile_reg = config->volatile_reg;
 799	map->precious_reg = config->precious_reg;
 800	map->writeable_noinc_reg = config->writeable_noinc_reg;
 801	map->readable_noinc_reg = config->readable_noinc_reg;
 802	map->cache_type = config->cache_type;
 803
 804	spin_lock_init(&map->async_lock);
 805	INIT_LIST_HEAD(&map->async_list);
 806	INIT_LIST_HEAD(&map->async_free);
 807	init_waitqueue_head(&map->async_waitq);
 808
 809	if (config->read_flag_mask ||
 810	    config->write_flag_mask ||
 811	    config->zero_flag_mask) {
 812		map->read_flag_mask = config->read_flag_mask;
 813		map->write_flag_mask = config->write_flag_mask;
 814	} else if (bus) {
 815		map->read_flag_mask = bus->read_flag_mask;
 816	}
 817
 818	if (config && config->read && config->write) {
 819		map->reg_read  = _regmap_bus_read;
 820		if (config->reg_update_bits)
 821			map->reg_update_bits = config->reg_update_bits;
 822
 823		/* Bulk read/write */
 824		map->read = config->read;
 825		map->write = config->write;
 826
 827		reg_endian = REGMAP_ENDIAN_NATIVE;
 828		val_endian = REGMAP_ENDIAN_NATIVE;
 829	} else if (!bus) {
 830		map->reg_read  = config->reg_read;
 831		map->reg_write = config->reg_write;
 832		map->reg_update_bits = config->reg_update_bits;
 833
 834		map->defer_caching = false;
 835		goto skip_format_initialization;
 836	} else if (!bus->read || !bus->write) {
 837		map->reg_read = _regmap_bus_reg_read;
 838		map->reg_write = _regmap_bus_reg_write;
 839		map->reg_update_bits = bus->reg_update_bits;
 840
 841		map->defer_caching = false;
 842		goto skip_format_initialization;
 843	} else {
 844		map->reg_read  = _regmap_bus_read;
 845		map->reg_update_bits = bus->reg_update_bits;
 846		/* Bulk read/write */
 847		map->read = bus->read;
 848		map->write = bus->write;
 849
 850		reg_endian = regmap_get_reg_endian(bus, config);
 851		val_endian = regmap_get_val_endian(dev, bus, config);
 852	}
 853
 
 
 
 854	switch (config->reg_bits + map->reg_shift) {
 855	case 2:
 856		switch (config->val_bits) {
 857		case 6:
 858			map->format.format_write = regmap_format_2_6_write;
 859			break;
 860		default:
 861			goto err_hwlock;
 862		}
 863		break;
 864
 865	case 4:
 866		switch (config->val_bits) {
 867		case 12:
 868			map->format.format_write = regmap_format_4_12_write;
 869			break;
 870		default:
 871			goto err_hwlock;
 872		}
 873		break;
 874
 875	case 7:
 876		switch (config->val_bits) {
 877		case 9:
 878			map->format.format_write = regmap_format_7_9_write;
 879			break;
 880		case 17:
 881			map->format.format_write = regmap_format_7_17_write;
 882			break;
 883		default:
 884			goto err_hwlock;
 885		}
 886		break;
 887
 888	case 10:
 889		switch (config->val_bits) {
 890		case 14:
 891			map->format.format_write = regmap_format_10_14_write;
 892			break;
 893		default:
 894			goto err_hwlock;
 895		}
 896		break;
 897
 898	case 12:
 899		switch (config->val_bits) {
 900		case 20:
 901			map->format.format_write = regmap_format_12_20_write;
 902			break;
 903		default:
 904			goto err_hwlock;
 905		}
 906		break;
 907
 908	case 8:
 909		map->format.format_reg = regmap_format_8;
 910		break;
 911
 912	case 16:
 913		switch (reg_endian) {
 914		case REGMAP_ENDIAN_BIG:
 915			map->format.format_reg = regmap_format_16_be;
 916			break;
 917		case REGMAP_ENDIAN_LITTLE:
 918			map->format.format_reg = regmap_format_16_le;
 919			break;
 920		case REGMAP_ENDIAN_NATIVE:
 921			map->format.format_reg = regmap_format_16_native;
 922			break;
 923		default:
 924			goto err_hwlock;
 925		}
 926		break;
 927
 928	case 24:
 
 
 
 
 
 
 929		switch (reg_endian) {
 930		case REGMAP_ENDIAN_BIG:
 931			map->format.format_reg = regmap_format_24_be;
 
 
 
 
 
 
 932			break;
 933		default:
 934			goto err_hwlock;
 935		}
 936		break;
 937
 938	case 32:
 
 939		switch (reg_endian) {
 940		case REGMAP_ENDIAN_BIG:
 941			map->format.format_reg = regmap_format_32_be;
 942			break;
 943		case REGMAP_ENDIAN_LITTLE:
 944			map->format.format_reg = regmap_format_32_le;
 945			break;
 946		case REGMAP_ENDIAN_NATIVE:
 947			map->format.format_reg = regmap_format_32_native;
 948			break;
 949		default:
 950			goto err_hwlock;
 951		}
 952		break;
 
 953
 954	default:
 955		goto err_hwlock;
 956	}
 957
 958	if (val_endian == REGMAP_ENDIAN_NATIVE)
 959		map->format.parse_inplace = regmap_parse_inplace_noop;
 960
 961	switch (config->val_bits) {
 962	case 8:
 963		map->format.format_val = regmap_format_8;
 964		map->format.parse_val = regmap_parse_8;
 965		map->format.parse_inplace = regmap_parse_inplace_noop;
 966		break;
 967	case 16:
 968		switch (val_endian) {
 969		case REGMAP_ENDIAN_BIG:
 970			map->format.format_val = regmap_format_16_be;
 971			map->format.parse_val = regmap_parse_16_be;
 972			map->format.parse_inplace = regmap_parse_16_be_inplace;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_val = regmap_format_16_le;
 976			map->format.parse_val = regmap_parse_16_le;
 977			map->format.parse_inplace = regmap_parse_16_le_inplace;
 978			break;
 979		case REGMAP_ENDIAN_NATIVE:
 980			map->format.format_val = regmap_format_16_native;
 981			map->format.parse_val = regmap_parse_16_native;
 982			break;
 983		default:
 984			goto err_hwlock;
 985		}
 986		break;
 987	case 24:
 988		switch (val_endian) {
 989		case REGMAP_ENDIAN_BIG:
 990			map->format.format_val = regmap_format_24_be;
 991			map->format.parse_val = regmap_parse_24_be;
 992			break;
 993		default:
 994			goto err_hwlock;
 995		}
 
 996		break;
 997	case 32:
 998		switch (val_endian) {
 999		case REGMAP_ENDIAN_BIG:
1000			map->format.format_val = regmap_format_32_be;
1001			map->format.parse_val = regmap_parse_32_be;
1002			map->format.parse_inplace = regmap_parse_32_be_inplace;
1003			break;
1004		case REGMAP_ENDIAN_LITTLE:
1005			map->format.format_val = regmap_format_32_le;
1006			map->format.parse_val = regmap_parse_32_le;
1007			map->format.parse_inplace = regmap_parse_32_le_inplace;
1008			break;
1009		case REGMAP_ENDIAN_NATIVE:
1010			map->format.format_val = regmap_format_32_native;
1011			map->format.parse_val = regmap_parse_32_native;
1012			break;
1013		default:
1014			goto err_hwlock;
1015		}
1016		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017	}
1018
1019	if (map->format.format_write) {
1020		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021		    (val_endian != REGMAP_ENDIAN_BIG))
1022			goto err_hwlock;
1023		map->use_single_write = true;
1024	}
1025
1026	if (!map->format.format_write &&
1027	    !(map->format.format_reg && map->format.format_val))
1028		goto err_hwlock;
1029
1030	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031	if (map->work_buf == NULL) {
1032		ret = -ENOMEM;
1033		goto err_hwlock;
1034	}
1035
1036	if (map->format.format_write) {
1037		map->defer_caching = false;
1038		map->reg_write = _regmap_bus_formatted_write;
1039	} else if (map->format.format_val) {
1040		map->defer_caching = true;
1041		map->reg_write = _regmap_bus_raw_write;
1042	}
1043
1044skip_format_initialization:
1045
1046	map->range_tree = RB_ROOT;
1047	for (i = 0; i < config->num_ranges; i++) {
1048		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049		struct regmap_range_node *new;
1050
1051		/* Sanity check */
1052		if (range_cfg->range_max < range_cfg->range_min) {
1053			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054				range_cfg->range_max, range_cfg->range_min);
1055			goto err_range;
1056		}
1057
1058		if (range_cfg->range_max > map->max_register) {
1059			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060				range_cfg->range_max, map->max_register);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->selector_reg > map->max_register) {
1065			dev_err(map->dev,
1066				"Invalid range %d: selector out of map\n", i);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->window_len == 0) {
1071			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1072				i);
1073			goto err_range;
1074		}
1075
1076		/* Make sure, that this register range has no selector
1077		   or data window within its boundary */
1078		for (j = 0; j < config->num_ranges; j++) {
1079			unsigned int sel_reg = config->ranges[j].selector_reg;
1080			unsigned int win_min = config->ranges[j].window_start;
1081			unsigned int win_max = win_min +
1082					       config->ranges[j].window_len - 1;
1083
1084			/* Allow data window inside its own virtual range */
1085			if (j == i)
1086				continue;
1087
1088			if (range_cfg->range_min <= sel_reg &&
1089			    sel_reg <= range_cfg->range_max) {
1090				dev_err(map->dev,
1091					"Range %d: selector for %d in window\n",
1092					i, j);
1093				goto err_range;
1094			}
1095
1096			if (!(win_max < range_cfg->range_min ||
1097			      win_min > range_cfg->range_max)) {
1098				dev_err(map->dev,
1099					"Range %d: window for %d in window\n",
1100					i, j);
1101				goto err_range;
1102			}
1103		}
1104
1105		new = kzalloc(sizeof(*new), GFP_KERNEL);
1106		if (new == NULL) {
1107			ret = -ENOMEM;
1108			goto err_range;
1109		}
1110
1111		new->map = map;
1112		new->name = range_cfg->name;
1113		new->range_min = range_cfg->range_min;
1114		new->range_max = range_cfg->range_max;
1115		new->selector_reg = range_cfg->selector_reg;
1116		new->selector_mask = range_cfg->selector_mask;
1117		new->selector_shift = range_cfg->selector_shift;
1118		new->window_start = range_cfg->window_start;
1119		new->window_len = range_cfg->window_len;
1120
1121		if (!_regmap_range_add(map, new)) {
1122			dev_err(map->dev, "Failed to add range %d\n", i);
1123			kfree(new);
1124			goto err_range;
1125		}
1126
1127		if (map->selector_work_buf == NULL) {
1128			map->selector_work_buf =
1129				kzalloc(map->format.buf_size, GFP_KERNEL);
1130			if (map->selector_work_buf == NULL) {
1131				ret = -ENOMEM;
1132				goto err_range;
1133			}
1134		}
1135	}
1136
1137	ret = regcache_init(map, config);
1138	if (ret != 0)
1139		goto err_range;
1140
1141	if (dev) {
1142		ret = regmap_attach_dev(dev, map, config);
1143		if (ret != 0)
1144			goto err_regcache;
1145	} else {
1146		regmap_debugfs_init(map);
1147	}
1148
1149	return map;
1150
1151err_regcache:
1152	regcache_exit(map);
1153err_range:
1154	regmap_range_exit(map);
1155	kfree(map->work_buf);
1156err_hwlock:
1157	if (map->hwlock)
1158		hwspin_lock_free(map->hwlock);
1159err_name:
1160	kfree_const(map->name);
1161err_map:
1162	kfree(map);
1163err:
1164	return ERR_PTR(ret);
1165}
1166EXPORT_SYMBOL_GPL(__regmap_init);
1167
1168static void devm_regmap_release(struct device *dev, void *res)
1169{
1170	regmap_exit(*(struct regmap **)res);
1171}
1172
1173struct regmap *__devm_regmap_init(struct device *dev,
1174				  const struct regmap_bus *bus,
1175				  void *bus_context,
1176				  const struct regmap_config *config,
1177				  struct lock_class_key *lock_key,
1178				  const char *lock_name)
1179{
1180	struct regmap **ptr, *regmap;
1181
1182	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1183	if (!ptr)
1184		return ERR_PTR(-ENOMEM);
1185
1186	regmap = __regmap_init(dev, bus, bus_context, config,
1187			       lock_key, lock_name);
1188	if (!IS_ERR(regmap)) {
1189		*ptr = regmap;
1190		devres_add(dev, ptr);
1191	} else {
1192		devres_free(ptr);
1193	}
1194
1195	return regmap;
1196}
1197EXPORT_SYMBOL_GPL(__devm_regmap_init);
1198
1199static void regmap_field_init(struct regmap_field *rm_field,
1200	struct regmap *regmap, struct reg_field reg_field)
1201{
1202	rm_field->regmap = regmap;
1203	rm_field->reg = reg_field.reg;
1204	rm_field->shift = reg_field.lsb;
1205	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1206
1207	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1208
1209	rm_field->id_size = reg_field.id_size;
1210	rm_field->id_offset = reg_field.id_offset;
1211}
1212
1213/**
1214 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1215 *
1216 * @dev: Device that will be interacted with
1217 * @regmap: regmap bank in which this register field is located.
1218 * @reg_field: Register field with in the bank.
1219 *
1220 * The return value will be an ERR_PTR() on error or a valid pointer
1221 * to a struct regmap_field. The regmap_field will be automatically freed
1222 * by the device management code.
1223 */
1224struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225		struct regmap *regmap, struct reg_field reg_field)
1226{
1227	struct regmap_field *rm_field = devm_kzalloc(dev,
1228					sizeof(*rm_field), GFP_KERNEL);
1229	if (!rm_field)
1230		return ERR_PTR(-ENOMEM);
1231
1232	regmap_field_init(rm_field, regmap, reg_field);
1233
1234	return rm_field;
1235
1236}
1237EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1238
1239
1240/**
1241 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1242 *
1243 * @regmap: regmap bank in which this register field is located.
1244 * @rm_field: regmap register fields within the bank.
1245 * @reg_field: Register fields within the bank.
1246 * @num_fields: Number of register fields.
1247 *
1248 * The return value will be an -ENOMEM on error or zero for success.
1249 * Newly allocated regmap_fields should be freed by calling
1250 * regmap_field_bulk_free()
1251 */
1252int regmap_field_bulk_alloc(struct regmap *regmap,
1253			    struct regmap_field **rm_field,
1254			    const struct reg_field *reg_field,
1255			    int num_fields)
1256{
1257	struct regmap_field *rf;
1258	int i;
1259
1260	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1261	if (!rf)
1262		return -ENOMEM;
1263
1264	for (i = 0; i < num_fields; i++) {
1265		regmap_field_init(&rf[i], regmap, reg_field[i]);
1266		rm_field[i] = &rf[i];
1267	}
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1272
1273/**
1274 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1275 * fields.
1276 *
1277 * @dev: Device that will be interacted with
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1282 *
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields will be automatically freed by the
1285 * device management code.
1286 */
1287int devm_regmap_field_bulk_alloc(struct device *dev,
1288				 struct regmap *regmap,
1289				 struct regmap_field **rm_field,
1290				 const struct reg_field *reg_field,
1291				 int num_fields)
1292{
1293	struct regmap_field *rf;
1294	int i;
1295
1296	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1297	if (!rf)
1298		return -ENOMEM;
1299
1300	for (i = 0; i < num_fields; i++) {
1301		regmap_field_init(&rf[i], regmap, reg_field[i]);
1302		rm_field[i] = &rf[i];
1303	}
1304
1305	return 0;
1306}
1307EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1308
1309/**
1310 * regmap_field_bulk_free() - Free register field allocated using
1311 *                       regmap_field_bulk_alloc.
1312 *
1313 * @field: regmap fields which should be freed.
1314 */
1315void regmap_field_bulk_free(struct regmap_field *field)
1316{
1317	kfree(field);
1318}
1319EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1320
1321/**
1322 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323 *                            devm_regmap_field_bulk_alloc.
1324 *
1325 * @dev: Device that will be interacted with
1326 * @field: regmap field which should be freed.
1327 *
1328 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329 * drivers need not call this function, as the memory allocated via devm
1330 * will be freed as per device-driver life-cycle.
1331 */
1332void devm_regmap_field_bulk_free(struct device *dev,
1333				 struct regmap_field *field)
1334{
1335	devm_kfree(dev, field);
1336}
1337EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1338
1339/**
1340 * devm_regmap_field_free() - Free a register field allocated using
1341 *                            devm_regmap_field_alloc.
1342 *
1343 * @dev: Device that will be interacted with
1344 * @field: regmap field which should be freed.
1345 *
1346 * Free register field allocated using devm_regmap_field_alloc(). Usually
1347 * drivers need not call this function, as the memory allocated via devm
1348 * will be freed as per device-driver life-cyle.
1349 */
1350void devm_regmap_field_free(struct device *dev,
1351	struct regmap_field *field)
1352{
1353	devm_kfree(dev, field);
1354}
1355EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1356
1357/**
1358 * regmap_field_alloc() - Allocate and initialise a register field.
1359 *
1360 * @regmap: regmap bank in which this register field is located.
1361 * @reg_field: Register field with in the bank.
1362 *
1363 * The return value will be an ERR_PTR() on error or a valid pointer
1364 * to a struct regmap_field. The regmap_field should be freed by the
1365 * user once its finished working with it using regmap_field_free().
1366 */
1367struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368		struct reg_field reg_field)
1369{
1370	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1371
1372	if (!rm_field)
1373		return ERR_PTR(-ENOMEM);
1374
1375	regmap_field_init(rm_field, regmap, reg_field);
1376
1377	return rm_field;
1378}
1379EXPORT_SYMBOL_GPL(regmap_field_alloc);
1380
1381/**
1382 * regmap_field_free() - Free register field allocated using
1383 *                       regmap_field_alloc.
1384 *
1385 * @field: regmap field which should be freed.
1386 */
1387void regmap_field_free(struct regmap_field *field)
1388{
1389	kfree(field);
1390}
1391EXPORT_SYMBOL_GPL(regmap_field_free);
1392
1393/**
1394 * regmap_reinit_cache() - Reinitialise the current register cache
1395 *
1396 * @map: Register map to operate on.
1397 * @config: New configuration.  Only the cache data will be used.
1398 *
1399 * Discard any existing register cache for the map and initialize a
1400 * new cache.  This can be used to restore the cache to defaults or to
1401 * update the cache configuration to reflect runtime discovery of the
1402 * hardware.
1403 *
1404 * No explicit locking is done here, the user needs to ensure that
1405 * this function will not race with other calls to regmap.
1406 */
1407int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1408{
1409	int ret;
1410
1411	regcache_exit(map);
1412	regmap_debugfs_exit(map);
1413
1414	map->max_register = config->max_register;
1415	map->writeable_reg = config->writeable_reg;
1416	map->readable_reg = config->readable_reg;
1417	map->volatile_reg = config->volatile_reg;
1418	map->precious_reg = config->precious_reg;
1419	map->writeable_noinc_reg = config->writeable_noinc_reg;
1420	map->readable_noinc_reg = config->readable_noinc_reg;
1421	map->cache_type = config->cache_type;
1422
1423	ret = regmap_set_name(map, config);
1424	if (ret)
1425		return ret;
1426
1427	regmap_debugfs_init(map);
1428
1429	map->cache_bypass = false;
1430	map->cache_only = false;
1431
1432	return regcache_init(map, config);
1433}
1434EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1435
1436/**
1437 * regmap_exit() - Free a previously allocated register map
1438 *
1439 * @map: Register map to operate on.
1440 */
1441void regmap_exit(struct regmap *map)
1442{
1443	struct regmap_async *async;
1444
1445	regcache_exit(map);
1446	regmap_debugfs_exit(map);
1447	regmap_range_exit(map);
1448	if (map->bus && map->bus->free_context)
1449		map->bus->free_context(map->bus_context);
1450	kfree(map->work_buf);
1451	while (!list_empty(&map->async_free)) {
1452		async = list_first_entry_or_null(&map->async_free,
1453						 struct regmap_async,
1454						 list);
1455		list_del(&async->list);
1456		kfree(async->work_buf);
1457		kfree(async);
1458	}
1459	if (map->hwlock)
1460		hwspin_lock_free(map->hwlock);
1461	if (map->lock == regmap_lock_mutex)
1462		mutex_destroy(&map->mutex);
1463	kfree_const(map->name);
1464	kfree(map->patch);
1465	if (map->bus && map->bus->free_on_exit)
1466		kfree(map->bus);
1467	kfree(map);
1468}
1469EXPORT_SYMBOL_GPL(regmap_exit);
1470
1471static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1472{
1473	struct regmap **r = res;
1474	if (!r || !*r) {
1475		WARN_ON(!r || !*r);
1476		return 0;
1477	}
1478
1479	/* If the user didn't specify a name match any */
1480	if (data)
1481		return (*r)->name && !strcmp((*r)->name, data);
1482	else
1483		return 1;
1484}
1485
1486/**
1487 * dev_get_regmap() - Obtain the regmap (if any) for a device
1488 *
1489 * @dev: Device to retrieve the map for
1490 * @name: Optional name for the register map, usually NULL.
1491 *
1492 * Returns the regmap for the device if one is present, or NULL.  If
1493 * name is specified then it must match the name specified when
1494 * registering the device, if it is NULL then the first regmap found
1495 * will be used.  Devices with multiple register maps are very rare,
1496 * generic code should normally not need to specify a name.
1497 */
1498struct regmap *dev_get_regmap(struct device *dev, const char *name)
1499{
1500	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501					dev_get_regmap_match, (void *)name);
1502
1503	if (!r)
1504		return NULL;
1505	return *r;
1506}
1507EXPORT_SYMBOL_GPL(dev_get_regmap);
1508
1509/**
1510 * regmap_get_device() - Obtain the device from a regmap
1511 *
1512 * @map: Register map to operate on.
1513 *
1514 * Returns the underlying device that the regmap has been created for.
1515 */
1516struct device *regmap_get_device(struct regmap *map)
1517{
1518	return map->dev;
1519}
1520EXPORT_SYMBOL_GPL(regmap_get_device);
1521
1522static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523			       struct regmap_range_node *range,
1524			       unsigned int val_num)
1525{
1526	void *orig_work_buf;
1527	unsigned int win_offset;
1528	unsigned int win_page;
1529	bool page_chg;
1530	int ret;
1531
1532	win_offset = (*reg - range->range_min) % range->window_len;
1533	win_page = (*reg - range->range_min) / range->window_len;
1534
1535	if (val_num > 1) {
1536		/* Bulk write shouldn't cross range boundary */
1537		if (*reg + val_num - 1 > range->range_max)
1538			return -EINVAL;
1539
1540		/* ... or single page boundary */
1541		if (val_num > range->window_len - win_offset)
1542			return -EINVAL;
1543	}
1544
1545	/* It is possible to have selector register inside data window.
1546	   In that case, selector register is located on every page and
1547	   it needs no page switching, when accessed alone. */
1548	if (val_num > 1 ||
1549	    range->window_start + win_offset != range->selector_reg) {
1550		/* Use separate work_buf during page switching */
1551		orig_work_buf = map->work_buf;
1552		map->work_buf = map->selector_work_buf;
1553
1554		ret = _regmap_update_bits(map, range->selector_reg,
1555					  range->selector_mask,
1556					  win_page << range->selector_shift,
1557					  &page_chg, false);
1558
1559		map->work_buf = orig_work_buf;
1560
1561		if (ret != 0)
1562			return ret;
1563	}
1564
1565	*reg = range->window_start + win_offset;
1566
1567	return 0;
1568}
1569
1570static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1571					  unsigned long mask)
1572{
1573	u8 *buf;
1574	int i;
1575
1576	if (!mask || !map->work_buf)
1577		return;
1578
1579	buf = map->work_buf;
1580
1581	for (i = 0; i < max_bytes; i++)
1582		buf[i] |= (mask >> (8 * i)) & 0xff;
1583}
1584
1585static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1586{
1587	reg += map->reg_base;
1588
1589	if (map->format.reg_shift > 0)
1590		reg >>= map->format.reg_shift;
1591	else if (map->format.reg_shift < 0)
1592		reg <<= -(map->format.reg_shift);
1593
1594	return reg;
1595}
1596
1597static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598				  const void *val, size_t val_len, bool noinc)
1599{
1600	struct regmap_range_node *range;
1601	unsigned long flags;
1602	void *work_val = map->work_buf + map->format.reg_bytes +
1603		map->format.pad_bytes;
1604	void *buf;
1605	int ret = -ENOTSUPP;
1606	size_t len;
1607	int i;
1608
1609	/* Check for unwritable or noinc registers in range
1610	 * before we start
1611	 */
1612	if (!regmap_writeable_noinc(map, reg)) {
1613		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614			unsigned int element =
1615				reg + regmap_get_offset(map, i);
1616			if (!regmap_writeable(map, element) ||
1617				regmap_writeable_noinc(map, element))
1618				return -EINVAL;
1619		}
1620	}
1621
1622	if (!map->cache_bypass && map->format.parse_val) {
1623		unsigned int ival, offset;
1624		int val_bytes = map->format.val_bytes;
1625
1626		/* Cache the last written value for noinc writes */
1627		i = noinc ? val_len - val_bytes : 0;
1628		for (; i < val_len; i += val_bytes) {
1629			ival = map->format.parse_val(val + i);
1630			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1631			ret = regcache_write(map, reg + offset, ival);
1632			if (ret) {
1633				dev_err(map->dev,
1634					"Error in caching of register: %x ret: %d\n",
1635					reg + offset, ret);
1636				return ret;
1637			}
1638		}
1639		if (map->cache_only) {
1640			map->cache_dirty = true;
1641			return 0;
1642		}
1643	}
1644
1645	range = _regmap_range_lookup(map, reg);
1646	if (range) {
1647		int val_num = val_len / map->format.val_bytes;
1648		int win_offset = (reg - range->range_min) % range->window_len;
1649		int win_residue = range->window_len - win_offset;
1650
1651		/* If the write goes beyond the end of the window split it */
1652		while (val_num > win_residue) {
1653			dev_dbg(map->dev, "Writing window %d/%zu\n",
1654				win_residue, val_len / map->format.val_bytes);
1655			ret = _regmap_raw_write_impl(map, reg, val,
1656						     win_residue *
1657						     map->format.val_bytes, noinc);
1658			if (ret != 0)
1659				return ret;
1660
1661			reg += win_residue;
1662			val_num -= win_residue;
1663			val += win_residue * map->format.val_bytes;
1664			val_len -= win_residue * map->format.val_bytes;
1665
1666			win_offset = (reg - range->range_min) %
1667				range->window_len;
1668			win_residue = range->window_len - win_offset;
1669		}
1670
1671		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1672		if (ret != 0)
1673			return ret;
1674	}
1675
1676	reg = regmap_reg_addr(map, reg);
1677	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1678	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1679				      map->write_flag_mask);
1680
1681	/*
1682	 * Essentially all I/O mechanisms will be faster with a single
1683	 * buffer to write.  Since register syncs often generate raw
1684	 * writes of single registers optimise that case.
1685	 */
1686	if (val != work_val && val_len == map->format.val_bytes) {
1687		memcpy(work_val, val, map->format.val_bytes);
1688		val = work_val;
1689	}
1690
1691	if (map->async && map->bus && map->bus->async_write) {
1692		struct regmap_async *async;
1693
1694		trace_regmap_async_write_start(map, reg, val_len);
1695
1696		spin_lock_irqsave(&map->async_lock, flags);
1697		async = list_first_entry_or_null(&map->async_free,
1698						 struct regmap_async,
1699						 list);
1700		if (async)
1701			list_del(&async->list);
1702		spin_unlock_irqrestore(&map->async_lock, flags);
1703
1704		if (!async) {
1705			async = map->bus->async_alloc();
1706			if (!async)
1707				return -ENOMEM;
1708
1709			async->work_buf = kzalloc(map->format.buf_size,
1710						  GFP_KERNEL | GFP_DMA);
1711			if (!async->work_buf) {
1712				kfree(async);
1713				return -ENOMEM;
1714			}
1715		}
1716
1717		async->map = map;
1718
1719		/* If the caller supplied the value we can use it safely. */
1720		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1721		       map->format.reg_bytes + map->format.val_bytes);
1722
1723		spin_lock_irqsave(&map->async_lock, flags);
1724		list_add_tail(&async->list, &map->async_list);
1725		spin_unlock_irqrestore(&map->async_lock, flags);
1726
1727		if (val != work_val)
1728			ret = map->bus->async_write(map->bus_context,
1729						    async->work_buf,
1730						    map->format.reg_bytes +
1731						    map->format.pad_bytes,
1732						    val, val_len, async);
1733		else
1734			ret = map->bus->async_write(map->bus_context,
1735						    async->work_buf,
1736						    map->format.reg_bytes +
1737						    map->format.pad_bytes +
1738						    val_len, NULL, 0, async);
1739
1740		if (ret != 0) {
1741			dev_err(map->dev, "Failed to schedule write: %d\n",
1742				ret);
1743
1744			spin_lock_irqsave(&map->async_lock, flags);
1745			list_move(&async->list, &map->async_free);
1746			spin_unlock_irqrestore(&map->async_lock, flags);
1747		}
1748
1749		return ret;
1750	}
1751
1752	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1753
1754	/* If we're doing a single register write we can probably just
1755	 * send the work_buf directly, otherwise try to do a gather
1756	 * write.
1757	 */
1758	if (val == work_val)
1759		ret = map->write(map->bus_context, map->work_buf,
1760				 map->format.reg_bytes +
1761				 map->format.pad_bytes +
1762				 val_len);
1763	else if (map->bus && map->bus->gather_write)
1764		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1765					     map->format.reg_bytes +
1766					     map->format.pad_bytes,
1767					     val, val_len);
1768	else
1769		ret = -ENOTSUPP;
1770
1771	/* If that didn't work fall back on linearising by hand. */
1772	if (ret == -ENOTSUPP) {
1773		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1774		buf = kzalloc(len, GFP_KERNEL);
1775		if (!buf)
1776			return -ENOMEM;
1777
1778		memcpy(buf, map->work_buf, map->format.reg_bytes);
1779		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1780		       val, val_len);
1781		ret = map->write(map->bus_context, buf, len);
1782
1783		kfree(buf);
1784	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1785		/* regcache_drop_region() takes lock that we already have,
1786		 * thus call map->cache_ops->drop() directly
1787		 */
1788		if (map->cache_ops && map->cache_ops->drop)
1789			map->cache_ops->drop(map, reg, reg + 1);
1790	}
1791
1792	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1793
1794	return ret;
1795}
1796
1797/**
1798 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1799 *
1800 * @map: Map to check.
1801 */
1802bool regmap_can_raw_write(struct regmap *map)
1803{
1804	return map->write && map->format.format_val && map->format.format_reg;
 
1805}
1806EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1807
1808/**
1809 * regmap_get_raw_read_max - Get the maximum size we can read
1810 *
1811 * @map: Map to check.
1812 */
1813size_t regmap_get_raw_read_max(struct regmap *map)
1814{
1815	return map->max_raw_read;
1816}
1817EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1818
1819/**
1820 * regmap_get_raw_write_max - Get the maximum size we can read
1821 *
1822 * @map: Map to check.
1823 */
1824size_t regmap_get_raw_write_max(struct regmap *map)
1825{
1826	return map->max_raw_write;
1827}
1828EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1829
1830static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1831				       unsigned int val)
1832{
1833	int ret;
1834	struct regmap_range_node *range;
1835	struct regmap *map = context;
1836
1837	WARN_ON(!map->format.format_write);
1838
1839	range = _regmap_range_lookup(map, reg);
1840	if (range) {
1841		ret = _regmap_select_page(map, &reg, range, 1);
1842		if (ret != 0)
1843			return ret;
1844	}
1845
1846	reg = regmap_reg_addr(map, reg);
1847	map->format.format_write(map, reg, val);
1848
1849	trace_regmap_hw_write_start(map, reg, 1);
1850
1851	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
 
1852
1853	trace_regmap_hw_write_done(map, reg, 1);
1854
1855	return ret;
1856}
1857
1858static int _regmap_bus_reg_write(void *context, unsigned int reg,
1859				 unsigned int val)
1860{
1861	struct regmap *map = context;
1862	struct regmap_range_node *range;
1863	int ret;
1864
1865	range = _regmap_range_lookup(map, reg);
1866	if (range) {
1867		ret = _regmap_select_page(map, &reg, range, 1);
1868		if (ret != 0)
1869			return ret;
1870	}
1871
1872	reg = regmap_reg_addr(map, reg);
1873	return map->bus->reg_write(map->bus_context, reg, val);
1874}
1875
1876static int _regmap_bus_raw_write(void *context, unsigned int reg,
1877				 unsigned int val)
1878{
1879	struct regmap *map = context;
1880
1881	WARN_ON(!map->format.format_val);
1882
1883	map->format.format_val(map->work_buf + map->format.reg_bytes
1884			       + map->format.pad_bytes, val, 0);
1885	return _regmap_raw_write_impl(map, reg,
1886				      map->work_buf +
1887				      map->format.reg_bytes +
1888				      map->format.pad_bytes,
1889				      map->format.val_bytes,
1890				      false);
1891}
1892
1893static inline void *_regmap_map_get_context(struct regmap *map)
1894{
1895	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1896}
1897
1898int _regmap_write(struct regmap *map, unsigned int reg,
1899		  unsigned int val)
1900{
1901	int ret;
1902	void *context = _regmap_map_get_context(map);
1903
1904	if (!regmap_writeable(map, reg))
1905		return -EIO;
1906
1907	if (!map->cache_bypass && !map->defer_caching) {
1908		ret = regcache_write(map, reg, val);
1909		if (ret != 0)
1910			return ret;
1911		if (map->cache_only) {
1912			map->cache_dirty = true;
1913			return 0;
1914		}
1915	}
1916
1917	ret = map->reg_write(context, reg, val);
1918	if (ret == 0) {
1919		if (regmap_should_log(map))
1920			dev_info(map->dev, "%x <= %x\n", reg, val);
1921
1922		trace_regmap_reg_write(map, reg, val);
1923	}
1924
1925	return ret;
1926}
1927
1928/**
1929 * regmap_write() - Write a value to a single register
1930 *
1931 * @map: Register map to write to
1932 * @reg: Register to write to
1933 * @val: Value to be written
1934 *
1935 * A value of zero will be returned on success, a negative errno will
1936 * be returned in error cases.
1937 */
1938int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1939{
1940	int ret;
1941
1942	if (!IS_ALIGNED(reg, map->reg_stride))
1943		return -EINVAL;
1944
1945	map->lock(map->lock_arg);
1946
1947	ret = _regmap_write(map, reg, val);
1948
1949	map->unlock(map->lock_arg);
1950
1951	return ret;
1952}
1953EXPORT_SYMBOL_GPL(regmap_write);
1954
1955/**
1956 * regmap_write_async() - Write a value to a single register asynchronously
1957 *
1958 * @map: Register map to write to
1959 * @reg: Register to write to
1960 * @val: Value to be written
1961 *
1962 * A value of zero will be returned on success, a negative errno will
1963 * be returned in error cases.
1964 */
1965int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1966{
1967	int ret;
1968
1969	if (!IS_ALIGNED(reg, map->reg_stride))
1970		return -EINVAL;
1971
1972	map->lock(map->lock_arg);
1973
1974	map->async = true;
1975
1976	ret = _regmap_write(map, reg, val);
1977
1978	map->async = false;
1979
1980	map->unlock(map->lock_arg);
1981
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regmap_write_async);
1985
1986int _regmap_raw_write(struct regmap *map, unsigned int reg,
1987		      const void *val, size_t val_len, bool noinc)
1988{
1989	size_t val_bytes = map->format.val_bytes;
1990	size_t val_count = val_len / val_bytes;
1991	size_t chunk_count, chunk_bytes;
1992	size_t chunk_regs = val_count;
1993	int ret, i;
1994
1995	if (!val_count)
1996		return -EINVAL;
1997
1998	if (map->use_single_write)
1999		chunk_regs = 1;
2000	else if (map->max_raw_write && val_len > map->max_raw_write)
2001		chunk_regs = map->max_raw_write / val_bytes;
2002
2003	chunk_count = val_count / chunk_regs;
2004	chunk_bytes = chunk_regs * val_bytes;
2005
2006	/* Write as many bytes as possible with chunk_size */
2007	for (i = 0; i < chunk_count; i++) {
2008		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2009		if (ret)
2010			return ret;
2011
2012		reg += regmap_get_offset(map, chunk_regs);
2013		val += chunk_bytes;
2014		val_len -= chunk_bytes;
2015	}
2016
2017	/* Write remaining bytes */
2018	if (val_len)
2019		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2020
2021	return ret;
2022}
2023
2024/**
2025 * regmap_raw_write() - Write raw values to one or more registers
2026 *
2027 * @map: Register map to write to
2028 * @reg: Initial register to write to
2029 * @val: Block of data to be written, laid out for direct transmission to the
2030 *       device
2031 * @val_len: Length of data pointed to by val.
2032 *
2033 * This function is intended to be used for things like firmware
2034 * download where a large block of data needs to be transferred to the
2035 * device.  No formatting will be done on the data provided.
2036 *
2037 * A value of zero will be returned on success, a negative errno will
2038 * be returned in error cases.
2039 */
2040int regmap_raw_write(struct regmap *map, unsigned int reg,
2041		     const void *val, size_t val_len)
2042{
2043	int ret;
2044
2045	if (!regmap_can_raw_write(map))
2046		return -EINVAL;
2047	if (val_len % map->format.val_bytes)
2048		return -EINVAL;
2049
2050	map->lock(map->lock_arg);
2051
2052	ret = _regmap_raw_write(map, reg, val, val_len, false);
2053
2054	map->unlock(map->lock_arg);
2055
2056	return ret;
2057}
2058EXPORT_SYMBOL_GPL(regmap_raw_write);
2059
2060static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2061				  void *val, unsigned int val_len, bool write)
2062{
2063	size_t val_bytes = map->format.val_bytes;
2064	size_t val_count = val_len / val_bytes;
2065	unsigned int lastval;
2066	u8 *u8p;
2067	u16 *u16p;
2068	u32 *u32p;
2069	int ret;
2070	int i;
2071
2072	switch (val_bytes) {
2073	case 1:
2074		u8p = val;
2075		if (write)
2076			lastval = (unsigned int)u8p[val_count - 1];
2077		break;
2078	case 2:
2079		u16p = val;
2080		if (write)
2081			lastval = (unsigned int)u16p[val_count - 1];
2082		break;
2083	case 4:
2084		u32p = val;
2085		if (write)
2086			lastval = (unsigned int)u32p[val_count - 1];
2087		break;
2088	default:
2089		return -EINVAL;
2090	}
2091
2092	/*
2093	 * Update the cache with the last value we write, the rest is just
2094	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2095	 * sure a single read from the cache will work.
2096	 */
2097	if (write) {
2098		if (!map->cache_bypass && !map->defer_caching) {
2099			ret = regcache_write(map, reg, lastval);
2100			if (ret != 0)
2101				return ret;
2102			if (map->cache_only) {
2103				map->cache_dirty = true;
2104				return 0;
2105			}
2106		}
2107		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2108	} else {
2109		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2110	}
2111
2112	if (!ret && regmap_should_log(map)) {
2113		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2114		for (i = 0; i < val_count; i++) {
2115			switch (val_bytes) {
2116			case 1:
2117				pr_cont("%x", u8p[i]);
2118				break;
2119			case 2:
2120				pr_cont("%x", u16p[i]);
2121				break;
2122			case 4:
2123				pr_cont("%x", u32p[i]);
2124				break;
2125			default:
2126				break;
2127			}
2128			if (i == (val_count - 1))
2129				pr_cont("]\n");
2130			else
2131				pr_cont(",");
2132		}
2133	}
2134
2135	return 0;
2136}
2137
2138/**
2139 * regmap_noinc_write(): Write data to a register without incrementing the
2140 *			register number
2141 *
2142 * @map: Register map to write to
2143 * @reg: Register to write to
2144 * @val: Pointer to data buffer
2145 * @val_len: Length of output buffer in bytes.
2146 *
2147 * The regmap API usually assumes that bulk bus write operations will write a
2148 * range of registers. Some devices have certain registers for which a write
2149 * operation can write to an internal FIFO.
2150 *
2151 * The target register must be volatile but registers after it can be
2152 * completely unrelated cacheable registers.
2153 *
2154 * This will attempt multiple writes as required to write val_len bytes.
2155 *
2156 * A value of zero will be returned on success, a negative errno will be
2157 * returned in error cases.
2158 */
2159int regmap_noinc_write(struct regmap *map, unsigned int reg,
2160		      const void *val, size_t val_len)
2161{
2162	size_t write_len;
2163	int ret;
2164
2165	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2166		return -EINVAL;
 
 
2167	if (val_len % map->format.val_bytes)
2168		return -EINVAL;
2169	if (!IS_ALIGNED(reg, map->reg_stride))
2170		return -EINVAL;
2171	if (val_len == 0)
2172		return -EINVAL;
2173
2174	map->lock(map->lock_arg);
2175
2176	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2177		ret = -EINVAL;
2178		goto out_unlock;
2179	}
2180
2181	/*
2182	 * Use the accelerated operation if we can. The val drops the const
2183	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2184	 */
2185	if (map->bus->reg_noinc_write) {
2186		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2187		goto out_unlock;
2188	}
2189
2190	while (val_len) {
2191		if (map->max_raw_write && map->max_raw_write < val_len)
2192			write_len = map->max_raw_write;
2193		else
2194			write_len = val_len;
2195		ret = _regmap_raw_write(map, reg, val, write_len, true);
2196		if (ret)
2197			goto out_unlock;
2198		val = ((u8 *)val) + write_len;
2199		val_len -= write_len;
2200	}
2201
2202out_unlock:
2203	map->unlock(map->lock_arg);
2204	return ret;
2205}
2206EXPORT_SYMBOL_GPL(regmap_noinc_write);
2207
2208/**
2209 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2210 *                                   register field.
2211 *
2212 * @field: Register field to write to
2213 * @mask: Bitmask to change
2214 * @val: Value to be written
2215 * @change: Boolean indicating if a write was done
2216 * @async: Boolean indicating asynchronously
2217 * @force: Boolean indicating use force update
2218 *
2219 * Perform a read/modify/write cycle on the register field with change,
2220 * async, force option.
2221 *
2222 * A value of zero will be returned on success, a negative errno will
2223 * be returned in error cases.
2224 */
2225int regmap_field_update_bits_base(struct regmap_field *field,
2226				  unsigned int mask, unsigned int val,
2227				  bool *change, bool async, bool force)
2228{
2229	mask = (mask << field->shift) & field->mask;
2230
2231	return regmap_update_bits_base(field->regmap, field->reg,
2232				       mask, val << field->shift,
2233				       change, async, force);
2234}
2235EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2236
2237/**
2238 * regmap_field_test_bits() - Check if all specified bits are set in a
2239 *                            register field.
2240 *
2241 * @field: Register field to operate on
2242 * @bits: Bits to test
2243 *
2244 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2245 * tested bits is not set and 1 if all tested bits are set.
2246 */
2247int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2248{
2249	unsigned int val, ret;
2250
2251	ret = regmap_field_read(field, &val);
2252	if (ret)
2253		return ret;
2254
2255	return (val & bits) == bits;
2256}
2257EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2258
2259/**
2260 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2261 *                                    register field with port ID
2262 *
2263 * @field: Register field to write to
2264 * @id: port ID
2265 * @mask: Bitmask to change
2266 * @val: Value to be written
2267 * @change: Boolean indicating if a write was done
2268 * @async: Boolean indicating asynchronously
2269 * @force: Boolean indicating use force update
2270 *
2271 * A value of zero will be returned on success, a negative errno will
2272 * be returned in error cases.
2273 */
2274int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2275				   unsigned int mask, unsigned int val,
2276				   bool *change, bool async, bool force)
2277{
2278	if (id >= field->id_size)
2279		return -EINVAL;
2280
2281	mask = (mask << field->shift) & field->mask;
2282
2283	return regmap_update_bits_base(field->regmap,
2284				       field->reg + (field->id_offset * id),
2285				       mask, val << field->shift,
2286				       change, async, force);
2287}
2288EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2289
2290/**
2291 * regmap_bulk_write() - Write multiple registers to the device
2292 *
2293 * @map: Register map to write to
2294 * @reg: First register to be write from
2295 * @val: Block of data to be written, in native register size for device
2296 * @val_count: Number of registers to write
2297 *
2298 * This function is intended to be used for writing a large block of
2299 * data to the device either in single transfer or multiple transfer.
2300 *
2301 * A value of zero will be returned on success, a negative errno will
2302 * be returned in error cases.
2303 */
2304int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2305		     size_t val_count)
2306{
2307	int ret = 0, i;
2308	size_t val_bytes = map->format.val_bytes;
2309
2310	if (!IS_ALIGNED(reg, map->reg_stride))
2311		return -EINVAL;
2312
2313	/*
2314	 * Some devices don't support bulk write, for them we have a series of
2315	 * single write operations.
2316	 */
2317	if (!map->write || !map->format.parse_inplace) {
2318		map->lock(map->lock_arg);
2319		for (i = 0; i < val_count; i++) {
2320			unsigned int ival;
2321
2322			switch (val_bytes) {
2323			case 1:
2324				ival = *(u8 *)(val + (i * val_bytes));
2325				break;
2326			case 2:
2327				ival = *(u16 *)(val + (i * val_bytes));
2328				break;
2329			case 4:
2330				ival = *(u32 *)(val + (i * val_bytes));
2331				break;
 
 
 
 
 
2332			default:
2333				ret = -EINVAL;
2334				goto out;
2335			}
2336
2337			ret = _regmap_write(map,
2338					    reg + regmap_get_offset(map, i),
2339					    ival);
2340			if (ret != 0)
2341				goto out;
2342		}
2343out:
2344		map->unlock(map->lock_arg);
2345	} else {
2346		void *wval;
2347
2348		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2349		if (!wval)
2350			return -ENOMEM;
2351
2352		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2353			map->format.parse_inplace(wval + i);
2354
2355		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2356
2357		kfree(wval);
2358	}
2359
2360	if (!ret)
2361		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2362
2363	return ret;
2364}
2365EXPORT_SYMBOL_GPL(regmap_bulk_write);
2366
2367/*
2368 * _regmap_raw_multi_reg_write()
2369 *
2370 * the (register,newvalue) pairs in regs have not been formatted, but
2371 * they are all in the same page and have been changed to being page
2372 * relative. The page register has been written if that was necessary.
2373 */
2374static int _regmap_raw_multi_reg_write(struct regmap *map,
2375				       const struct reg_sequence *regs,
2376				       size_t num_regs)
2377{
2378	int ret;
2379	void *buf;
2380	int i;
2381	u8 *u8;
2382	size_t val_bytes = map->format.val_bytes;
2383	size_t reg_bytes = map->format.reg_bytes;
2384	size_t pad_bytes = map->format.pad_bytes;
2385	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2386	size_t len = pair_size * num_regs;
2387
2388	if (!len)
2389		return -EINVAL;
2390
2391	buf = kzalloc(len, GFP_KERNEL);
2392	if (!buf)
2393		return -ENOMEM;
2394
2395	/* We have to linearise by hand. */
2396
2397	u8 = buf;
2398
2399	for (i = 0; i < num_regs; i++) {
2400		unsigned int reg = regs[i].reg;
2401		unsigned int val = regs[i].def;
2402		trace_regmap_hw_write_start(map, reg, 1);
2403		reg = regmap_reg_addr(map, reg);
2404		map->format.format_reg(u8, reg, map->reg_shift);
2405		u8 += reg_bytes + pad_bytes;
2406		map->format.format_val(u8, val, 0);
2407		u8 += val_bytes;
2408	}
2409	u8 = buf;
2410	*u8 |= map->write_flag_mask;
2411
2412	ret = map->write(map->bus_context, buf, len);
2413
2414	kfree(buf);
2415
2416	for (i = 0; i < num_regs; i++) {
2417		int reg = regs[i].reg;
2418		trace_regmap_hw_write_done(map, reg, 1);
2419	}
2420	return ret;
2421}
2422
2423static unsigned int _regmap_register_page(struct regmap *map,
2424					  unsigned int reg,
2425					  struct regmap_range_node *range)
2426{
2427	unsigned int win_page = (reg - range->range_min) / range->window_len;
2428
2429	return win_page;
2430}
2431
2432static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2433					       struct reg_sequence *regs,
2434					       size_t num_regs)
2435{
2436	int ret;
2437	int i, n;
2438	struct reg_sequence *base;
2439	unsigned int this_page = 0;
2440	unsigned int page_change = 0;
2441	/*
2442	 * the set of registers are not neccessarily in order, but
2443	 * since the order of write must be preserved this algorithm
2444	 * chops the set each time the page changes. This also applies
2445	 * if there is a delay required at any point in the sequence.
2446	 */
2447	base = regs;
2448	for (i = 0, n = 0; i < num_regs; i++, n++) {
2449		unsigned int reg = regs[i].reg;
2450		struct regmap_range_node *range;
2451
2452		range = _regmap_range_lookup(map, reg);
2453		if (range) {
2454			unsigned int win_page = _regmap_register_page(map, reg,
2455								      range);
2456
2457			if (i == 0)
2458				this_page = win_page;
2459			if (win_page != this_page) {
2460				this_page = win_page;
2461				page_change = 1;
2462			}
2463		}
2464
2465		/* If we have both a page change and a delay make sure to
2466		 * write the regs and apply the delay before we change the
2467		 * page.
2468		 */
2469
2470		if (page_change || regs[i].delay_us) {
2471
2472				/* For situations where the first write requires
2473				 * a delay we need to make sure we don't call
2474				 * raw_multi_reg_write with n=0
2475				 * This can't occur with page breaks as we
2476				 * never write on the first iteration
2477				 */
2478				if (regs[i].delay_us && i == 0)
2479					n = 1;
2480
2481				ret = _regmap_raw_multi_reg_write(map, base, n);
2482				if (ret != 0)
2483					return ret;
2484
2485				if (regs[i].delay_us) {
2486					if (map->can_sleep)
2487						fsleep(regs[i].delay_us);
2488					else
2489						udelay(regs[i].delay_us);
2490				}
2491
2492				base += n;
2493				n = 0;
2494
2495				if (page_change) {
2496					ret = _regmap_select_page(map,
2497								  &base[n].reg,
2498								  range, 1);
2499					if (ret != 0)
2500						return ret;
2501
2502					page_change = 0;
2503				}
2504
2505		}
2506
2507	}
2508	if (n > 0)
2509		return _regmap_raw_multi_reg_write(map, base, n);
2510	return 0;
2511}
2512
2513static int _regmap_multi_reg_write(struct regmap *map,
2514				   const struct reg_sequence *regs,
2515				   size_t num_regs)
2516{
2517	int i;
2518	int ret;
2519
2520	if (!map->can_multi_write) {
2521		for (i = 0; i < num_regs; i++) {
2522			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2523			if (ret != 0)
2524				return ret;
2525
2526			if (regs[i].delay_us) {
2527				if (map->can_sleep)
2528					fsleep(regs[i].delay_us);
2529				else
2530					udelay(regs[i].delay_us);
2531			}
2532		}
2533		return 0;
2534	}
2535
2536	if (!map->format.parse_inplace)
2537		return -EINVAL;
2538
2539	if (map->writeable_reg)
2540		for (i = 0; i < num_regs; i++) {
2541			int reg = regs[i].reg;
2542			if (!map->writeable_reg(map->dev, reg))
2543				return -EINVAL;
2544			if (!IS_ALIGNED(reg, map->reg_stride))
2545				return -EINVAL;
2546		}
2547
2548	if (!map->cache_bypass) {
2549		for (i = 0; i < num_regs; i++) {
2550			unsigned int val = regs[i].def;
2551			unsigned int reg = regs[i].reg;
2552			ret = regcache_write(map, reg, val);
2553			if (ret) {
2554				dev_err(map->dev,
2555				"Error in caching of register: %x ret: %d\n",
2556								reg, ret);
2557				return ret;
2558			}
2559		}
2560		if (map->cache_only) {
2561			map->cache_dirty = true;
2562			return 0;
2563		}
2564	}
2565
2566	WARN_ON(!map->bus);
2567
2568	for (i = 0; i < num_regs; i++) {
2569		unsigned int reg = regs[i].reg;
2570		struct regmap_range_node *range;
2571
2572		/* Coalesce all the writes between a page break or a delay
2573		 * in a sequence
2574		 */
2575		range = _regmap_range_lookup(map, reg);
2576		if (range || regs[i].delay_us) {
2577			size_t len = sizeof(struct reg_sequence)*num_regs;
2578			struct reg_sequence *base = kmemdup(regs, len,
2579							   GFP_KERNEL);
2580			if (!base)
2581				return -ENOMEM;
2582			ret = _regmap_range_multi_paged_reg_write(map, base,
2583								  num_regs);
2584			kfree(base);
2585
2586			return ret;
2587		}
2588	}
2589	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2590}
2591
2592/**
2593 * regmap_multi_reg_write() - Write multiple registers to the device
2594 *
2595 * @map: Register map to write to
2596 * @regs: Array of structures containing register,value to be written
2597 * @num_regs: Number of registers to write
2598 *
2599 * Write multiple registers to the device where the set of register, value
2600 * pairs are supplied in any order, possibly not all in a single range.
2601 *
2602 * The 'normal' block write mode will send ultimately send data on the
2603 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2604 * addressed. However, this alternative block multi write mode will send
2605 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2606 * must of course support the mode.
2607 *
2608 * A value of zero will be returned on success, a negative errno will be
2609 * returned in error cases.
2610 */
2611int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2612			   int num_regs)
2613{
2614	int ret;
2615
2616	map->lock(map->lock_arg);
2617
2618	ret = _regmap_multi_reg_write(map, regs, num_regs);
2619
2620	map->unlock(map->lock_arg);
2621
2622	return ret;
2623}
2624EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2625
2626/**
2627 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2628 *                                     device but not the cache
2629 *
2630 * @map: Register map to write to
2631 * @regs: Array of structures containing register,value to be written
2632 * @num_regs: Number of registers to write
2633 *
2634 * Write multiple registers to the device but not the cache where the set
2635 * of register are supplied in any order.
2636 *
2637 * This function is intended to be used for writing a large block of data
2638 * atomically to the device in single transfer for those I2C client devices
2639 * that implement this alternative block write mode.
2640 *
2641 * A value of zero will be returned on success, a negative errno will
2642 * be returned in error cases.
2643 */
2644int regmap_multi_reg_write_bypassed(struct regmap *map,
2645				    const struct reg_sequence *regs,
2646				    int num_regs)
2647{
2648	int ret;
2649	bool bypass;
2650
2651	map->lock(map->lock_arg);
2652
2653	bypass = map->cache_bypass;
2654	map->cache_bypass = true;
2655
2656	ret = _regmap_multi_reg_write(map, regs, num_regs);
2657
2658	map->cache_bypass = bypass;
2659
2660	map->unlock(map->lock_arg);
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2665
2666/**
2667 * regmap_raw_write_async() - Write raw values to one or more registers
2668 *                            asynchronously
2669 *
2670 * @map: Register map to write to
2671 * @reg: Initial register to write to
2672 * @val: Block of data to be written, laid out for direct transmission to the
2673 *       device.  Must be valid until regmap_async_complete() is called.
2674 * @val_len: Length of data pointed to by val.
2675 *
2676 * This function is intended to be used for things like firmware
2677 * download where a large block of data needs to be transferred to the
2678 * device.  No formatting will be done on the data provided.
2679 *
2680 * If supported by the underlying bus the write will be scheduled
2681 * asynchronously, helping maximise I/O speed on higher speed buses
2682 * like SPI.  regmap_async_complete() can be called to ensure that all
2683 * asynchrnous writes have been completed.
2684 *
2685 * A value of zero will be returned on success, a negative errno will
2686 * be returned in error cases.
2687 */
2688int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2689			   const void *val, size_t val_len)
2690{
2691	int ret;
2692
2693	if (val_len % map->format.val_bytes)
2694		return -EINVAL;
2695	if (!IS_ALIGNED(reg, map->reg_stride))
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	map->async = true;
2701
2702	ret = _regmap_raw_write(map, reg, val, val_len, false);
2703
2704	map->async = false;
2705
2706	map->unlock(map->lock_arg);
2707
2708	return ret;
2709}
2710EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2711
2712static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2713			    unsigned int val_len, bool noinc)
2714{
2715	struct regmap_range_node *range;
2716	int ret;
2717
2718	if (!map->read)
 
 
2719		return -EINVAL;
2720
2721	range = _regmap_range_lookup(map, reg);
2722	if (range) {
2723		ret = _regmap_select_page(map, &reg, range,
2724					  noinc ? 1 : val_len / map->format.val_bytes);
2725		if (ret != 0)
2726			return ret;
2727	}
2728
2729	reg = regmap_reg_addr(map, reg);
2730	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2731	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2732				      map->read_flag_mask);
2733	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2734
2735	ret = map->read(map->bus_context, map->work_buf,
2736			map->format.reg_bytes + map->format.pad_bytes,
2737			val, val_len);
2738
2739	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2740
2741	return ret;
2742}
2743
2744static int _regmap_bus_reg_read(void *context, unsigned int reg,
2745				unsigned int *val)
2746{
2747	struct regmap *map = context;
2748	struct regmap_range_node *range;
2749	int ret;
2750
2751	range = _regmap_range_lookup(map, reg);
2752	if (range) {
2753		ret = _regmap_select_page(map, &reg, range, 1);
2754		if (ret != 0)
2755			return ret;
2756	}
2757
2758	reg = regmap_reg_addr(map, reg);
2759	return map->bus->reg_read(map->bus_context, reg, val);
2760}
2761
2762static int _regmap_bus_read(void *context, unsigned int reg,
2763			    unsigned int *val)
2764{
2765	int ret;
2766	struct regmap *map = context;
2767	void *work_val = map->work_buf + map->format.reg_bytes +
2768		map->format.pad_bytes;
2769
2770	if (!map->format.parse_val)
2771		return -EINVAL;
2772
2773	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2774	if (ret == 0)
2775		*val = map->format.parse_val(work_val);
2776
2777	return ret;
2778}
2779
2780static int _regmap_read(struct regmap *map, unsigned int reg,
2781			unsigned int *val)
2782{
2783	int ret;
2784	void *context = _regmap_map_get_context(map);
2785
2786	if (!map->cache_bypass) {
2787		ret = regcache_read(map, reg, val);
2788		if (ret == 0)
2789			return 0;
2790	}
2791
2792	if (map->cache_only)
2793		return -EBUSY;
2794
2795	if (!regmap_readable(map, reg))
2796		return -EIO;
2797
2798	ret = map->reg_read(context, reg, val);
2799	if (ret == 0) {
2800		if (regmap_should_log(map))
2801			dev_info(map->dev, "%x => %x\n", reg, *val);
2802
2803		trace_regmap_reg_read(map, reg, *val);
2804
2805		if (!map->cache_bypass)
2806			regcache_write(map, reg, *val);
2807	}
2808
2809	return ret;
2810}
2811
2812/**
2813 * regmap_read() - Read a value from a single register
2814 *
2815 * @map: Register map to read from
2816 * @reg: Register to be read from
2817 * @val: Pointer to store read value
2818 *
2819 * A value of zero will be returned on success, a negative errno will
2820 * be returned in error cases.
2821 */
2822int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2823{
2824	int ret;
2825
2826	if (!IS_ALIGNED(reg, map->reg_stride))
2827		return -EINVAL;
2828
2829	map->lock(map->lock_arg);
2830
2831	ret = _regmap_read(map, reg, val);
2832
2833	map->unlock(map->lock_arg);
2834
2835	return ret;
2836}
2837EXPORT_SYMBOL_GPL(regmap_read);
2838
2839/**
2840 * regmap_raw_read() - Read raw data from the device
2841 *
2842 * @map: Register map to read from
2843 * @reg: First register to be read from
2844 * @val: Pointer to store read value
2845 * @val_len: Size of data to read
2846 *
2847 * A value of zero will be returned on success, a negative errno will
2848 * be returned in error cases.
2849 */
2850int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2851		    size_t val_len)
2852{
2853	size_t val_bytes = map->format.val_bytes;
2854	size_t val_count = val_len / val_bytes;
2855	unsigned int v;
2856	int ret, i;
2857
 
 
2858	if (val_len % map->format.val_bytes)
2859		return -EINVAL;
2860	if (!IS_ALIGNED(reg, map->reg_stride))
2861		return -EINVAL;
2862	if (val_count == 0)
2863		return -EINVAL;
2864
2865	map->lock(map->lock_arg);
2866
2867	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2868	    map->cache_type == REGCACHE_NONE) {
2869		size_t chunk_count, chunk_bytes;
2870		size_t chunk_regs = val_count;
2871
2872		if (!map->cache_bypass && map->cache_only) {
2873			ret = -EBUSY;
2874			goto out;
2875		}
2876
2877		if (!map->read) {
2878			ret = -ENOTSUPP;
2879			goto out;
2880		}
2881
2882		if (map->use_single_read)
2883			chunk_regs = 1;
2884		else if (map->max_raw_read && val_len > map->max_raw_read)
2885			chunk_regs = map->max_raw_read / val_bytes;
2886
2887		chunk_count = val_count / chunk_regs;
2888		chunk_bytes = chunk_regs * val_bytes;
2889
2890		/* Read bytes that fit into whole chunks */
2891		for (i = 0; i < chunk_count; i++) {
2892			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2893			if (ret != 0)
2894				goto out;
2895
2896			reg += regmap_get_offset(map, chunk_regs);
2897			val += chunk_bytes;
2898			val_len -= chunk_bytes;
2899		}
2900
2901		/* Read remaining bytes */
2902		if (val_len) {
2903			ret = _regmap_raw_read(map, reg, val, val_len, false);
2904			if (ret != 0)
2905				goto out;
2906		}
2907	} else {
2908		/* Otherwise go word by word for the cache; should be low
2909		 * cost as we expect to hit the cache.
2910		 */
2911		for (i = 0; i < val_count; i++) {
2912			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2913					   &v);
2914			if (ret != 0)
2915				goto out;
2916
2917			map->format.format_val(val + (i * val_bytes), v, 0);
2918		}
2919	}
2920
2921 out:
2922	map->unlock(map->lock_arg);
2923
2924	return ret;
2925}
2926EXPORT_SYMBOL_GPL(regmap_raw_read);
2927
2928/**
2929 * regmap_noinc_read(): Read data from a register without incrementing the
2930 *			register number
2931 *
2932 * @map: Register map to read from
2933 * @reg: Register to read from
2934 * @val: Pointer to data buffer
2935 * @val_len: Length of output buffer in bytes.
2936 *
2937 * The regmap API usually assumes that bulk read operations will read a
2938 * range of registers. Some devices have certain registers for which a read
2939 * operation read will read from an internal FIFO.
2940 *
2941 * The target register must be volatile but registers after it can be
2942 * completely unrelated cacheable registers.
2943 *
2944 * This will attempt multiple reads as required to read val_len bytes.
2945 *
2946 * A value of zero will be returned on success, a negative errno will be
2947 * returned in error cases.
2948 */
2949int regmap_noinc_read(struct regmap *map, unsigned int reg,
2950		      void *val, size_t val_len)
2951{
2952	size_t read_len;
2953	int ret;
2954
2955	if (!map->read)
 
 
2956		return -ENOTSUPP;
2957
2958	if (val_len % map->format.val_bytes)
2959		return -EINVAL;
2960	if (!IS_ALIGNED(reg, map->reg_stride))
2961		return -EINVAL;
2962	if (val_len == 0)
2963		return -EINVAL;
2964
2965	map->lock(map->lock_arg);
2966
2967	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2968		ret = -EINVAL;
2969		goto out_unlock;
2970	}
2971
2972	/*
2973	 * We have not defined the FIFO semantics for cache, as the
2974	 * cache is just one value deep. Should we return the last
2975	 * written value? Just avoid this by always reading the FIFO
2976	 * even when using cache. Cache only will not work.
2977	 */
2978	if (!map->cache_bypass && map->cache_only) {
2979		ret = -EBUSY;
2980		goto out_unlock;
2981	}
2982
2983	/* Use the accelerated operation if we can */
2984	if (map->bus->reg_noinc_read) {
2985		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2986		goto out_unlock;
2987	}
2988
2989	while (val_len) {
2990		if (map->max_raw_read && map->max_raw_read < val_len)
2991			read_len = map->max_raw_read;
2992		else
2993			read_len = val_len;
2994		ret = _regmap_raw_read(map, reg, val, read_len, true);
2995		if (ret)
2996			goto out_unlock;
2997		val = ((u8 *)val) + read_len;
2998		val_len -= read_len;
2999	}
3000
3001out_unlock:
3002	map->unlock(map->lock_arg);
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_noinc_read);
3006
3007/**
3008 * regmap_field_read(): Read a value to a single register field
3009 *
3010 * @field: Register field to read from
3011 * @val: Pointer to store read value
3012 *
3013 * A value of zero will be returned on success, a negative errno will
3014 * be returned in error cases.
3015 */
3016int regmap_field_read(struct regmap_field *field, unsigned int *val)
3017{
3018	int ret;
3019	unsigned int reg_val;
3020	ret = regmap_read(field->regmap, field->reg, &reg_val);
3021	if (ret != 0)
3022		return ret;
3023
3024	reg_val &= field->mask;
3025	reg_val >>= field->shift;
3026	*val = reg_val;
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_field_read);
3031
3032/**
3033 * regmap_fields_read() - Read a value to a single register field with port ID
3034 *
3035 * @field: Register field to read from
3036 * @id: port ID
3037 * @val: Pointer to store read value
3038 *
3039 * A value of zero will be returned on success, a negative errno will
3040 * be returned in error cases.
3041 */
3042int regmap_fields_read(struct regmap_field *field, unsigned int id,
3043		       unsigned int *val)
3044{
3045	int ret;
3046	unsigned int reg_val;
3047
3048	if (id >= field->id_size)
3049		return -EINVAL;
3050
3051	ret = regmap_read(field->regmap,
3052			  field->reg + (field->id_offset * id),
3053			  &reg_val);
3054	if (ret != 0)
3055		return ret;
3056
3057	reg_val &= field->mask;
3058	reg_val >>= field->shift;
3059	*val = reg_val;
3060
3061	return ret;
3062}
3063EXPORT_SYMBOL_GPL(regmap_fields_read);
3064
3065/**
3066 * regmap_bulk_read() - Read multiple registers from the device
3067 *
3068 * @map: Register map to read from
3069 * @reg: First register to be read from
3070 * @val: Pointer to store read value, in native register size for device
3071 * @val_count: Number of registers to read
3072 *
3073 * A value of zero will be returned on success, a negative errno will
3074 * be returned in error cases.
3075 */
3076int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3077		     size_t val_count)
3078{
3079	int ret, i;
3080	size_t val_bytes = map->format.val_bytes;
3081	bool vol = regmap_volatile_range(map, reg, val_count);
3082
3083	if (!IS_ALIGNED(reg, map->reg_stride))
3084		return -EINVAL;
3085	if (val_count == 0)
3086		return -EINVAL;
3087
3088	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3089		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3090		if (ret != 0)
3091			return ret;
3092
3093		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3094			map->format.parse_inplace(val + i);
3095	} else {
 
 
 
3096		u32 *u32 = val;
3097		u16 *u16 = val;
3098		u8 *u8 = val;
3099
3100		map->lock(map->lock_arg);
3101
3102		for (i = 0; i < val_count; i++) {
3103			unsigned int ival;
3104
3105			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3106					   &ival);
3107			if (ret != 0)
3108				goto out;
3109
3110			switch (map->format.val_bytes) {
 
 
 
 
 
3111			case 4:
3112				u32[i] = ival;
3113				break;
3114			case 2:
3115				u16[i] = ival;
3116				break;
3117			case 1:
3118				u8[i] = ival;
3119				break;
3120			default:
3121				ret = -EINVAL;
3122				goto out;
3123			}
3124		}
3125
3126out:
3127		map->unlock(map->lock_arg);
3128	}
3129
3130	if (!ret)
3131		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3132
3133	return ret;
3134}
3135EXPORT_SYMBOL_GPL(regmap_bulk_read);
3136
3137static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3138			       unsigned int mask, unsigned int val,
3139			       bool *change, bool force_write)
3140{
3141	int ret;
3142	unsigned int tmp, orig;
3143
3144	if (change)
3145		*change = false;
3146
3147	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3148		reg = regmap_reg_addr(map, reg);
3149		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3150		if (ret == 0 && change)
3151			*change = true;
3152	} else {
3153		ret = _regmap_read(map, reg, &orig);
3154		if (ret != 0)
3155			return ret;
3156
3157		tmp = orig & ~mask;
3158		tmp |= val & mask;
3159
3160		if (force_write || (tmp != orig) || map->force_write_field) {
3161			ret = _regmap_write(map, reg, tmp);
3162			if (ret == 0 && change)
3163				*change = true;
3164		}
3165	}
3166
3167	return ret;
3168}
3169
3170/**
3171 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3172 *
3173 * @map: Register map to update
3174 * @reg: Register to update
3175 * @mask: Bitmask to change
3176 * @val: New value for bitmask
3177 * @change: Boolean indicating if a write was done
3178 * @async: Boolean indicating asynchronously
3179 * @force: Boolean indicating use force update
3180 *
3181 * Perform a read/modify/write cycle on a register map with change, async, force
3182 * options.
3183 *
3184 * If async is true:
3185 *
3186 * With most buses the read must be done synchronously so this is most useful
3187 * for devices with a cache which do not need to interact with the hardware to
3188 * determine the current register value.
3189 *
3190 * Returns zero for success, a negative number on error.
3191 */
3192int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3193			    unsigned int mask, unsigned int val,
3194			    bool *change, bool async, bool force)
3195{
3196	int ret;
3197
3198	map->lock(map->lock_arg);
3199
3200	map->async = async;
3201
3202	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3203
3204	map->async = false;
3205
3206	map->unlock(map->lock_arg);
3207
3208	return ret;
3209}
3210EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3211
3212/**
3213 * regmap_test_bits() - Check if all specified bits are set in a register.
3214 *
3215 * @map: Register map to operate on
3216 * @reg: Register to read from
3217 * @bits: Bits to test
3218 *
3219 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3220 * bits are set and a negative error number if the underlying regmap_read()
3221 * fails.
3222 */
3223int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3224{
3225	unsigned int val, ret;
3226
3227	ret = regmap_read(map, reg, &val);
3228	if (ret)
3229		return ret;
3230
3231	return (val & bits) == bits;
3232}
3233EXPORT_SYMBOL_GPL(regmap_test_bits);
3234
3235void regmap_async_complete_cb(struct regmap_async *async, int ret)
3236{
3237	struct regmap *map = async->map;
3238	bool wake;
3239
3240	trace_regmap_async_io_complete(map);
3241
3242	spin_lock(&map->async_lock);
3243	list_move(&async->list, &map->async_free);
3244	wake = list_empty(&map->async_list);
3245
3246	if (ret != 0)
3247		map->async_ret = ret;
3248
3249	spin_unlock(&map->async_lock);
3250
3251	if (wake)
3252		wake_up(&map->async_waitq);
3253}
3254EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3255
3256static int regmap_async_is_done(struct regmap *map)
3257{
3258	unsigned long flags;
3259	int ret;
3260
3261	spin_lock_irqsave(&map->async_lock, flags);
3262	ret = list_empty(&map->async_list);
3263	spin_unlock_irqrestore(&map->async_lock, flags);
3264
3265	return ret;
3266}
3267
3268/**
3269 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3270 *
3271 * @map: Map to operate on.
3272 *
3273 * Blocks until any pending asynchronous I/O has completed.  Returns
3274 * an error code for any failed I/O operations.
3275 */
3276int regmap_async_complete(struct regmap *map)
3277{
3278	unsigned long flags;
3279	int ret;
3280
3281	/* Nothing to do with no async support */
3282	if (!map->bus || !map->bus->async_write)
3283		return 0;
3284
3285	trace_regmap_async_complete_start(map);
3286
3287	wait_event(map->async_waitq, regmap_async_is_done(map));
3288
3289	spin_lock_irqsave(&map->async_lock, flags);
3290	ret = map->async_ret;
3291	map->async_ret = 0;
3292	spin_unlock_irqrestore(&map->async_lock, flags);
3293
3294	trace_regmap_async_complete_done(map);
3295
3296	return ret;
3297}
3298EXPORT_SYMBOL_GPL(regmap_async_complete);
3299
3300/**
3301 * regmap_register_patch - Register and apply register updates to be applied
3302 *                         on device initialistion
3303 *
3304 * @map: Register map to apply updates to.
3305 * @regs: Values to update.
3306 * @num_regs: Number of entries in regs.
3307 *
3308 * Register a set of register updates to be applied to the device
3309 * whenever the device registers are synchronised with the cache and
3310 * apply them immediately.  Typically this is used to apply
3311 * corrections to be applied to the device defaults on startup, such
3312 * as the updates some vendors provide to undocumented registers.
3313 *
3314 * The caller must ensure that this function cannot be called
3315 * concurrently with either itself or regcache_sync().
3316 */
3317int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3318			  int num_regs)
3319{
3320	struct reg_sequence *p;
3321	int ret;
3322	bool bypass;
3323
3324	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3325	    num_regs))
3326		return 0;
3327
3328	p = krealloc(map->patch,
3329		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3330		     GFP_KERNEL);
3331	if (p) {
3332		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3333		map->patch = p;
3334		map->patch_regs += num_regs;
3335	} else {
3336		return -ENOMEM;
3337	}
3338
3339	map->lock(map->lock_arg);
3340
3341	bypass = map->cache_bypass;
3342
3343	map->cache_bypass = true;
3344	map->async = true;
3345
3346	ret = _regmap_multi_reg_write(map, regs, num_regs);
3347
3348	map->async = false;
3349	map->cache_bypass = bypass;
3350
3351	map->unlock(map->lock_arg);
3352
3353	regmap_async_complete(map);
3354
3355	return ret;
3356}
3357EXPORT_SYMBOL_GPL(regmap_register_patch);
3358
3359/**
3360 * regmap_get_val_bytes() - Report the size of a register value
3361 *
3362 * @map: Register map to operate on.
3363 *
3364 * Report the size of a register value, mainly intended to for use by
3365 * generic infrastructure built on top of regmap.
3366 */
3367int regmap_get_val_bytes(struct regmap *map)
3368{
3369	if (map->format.format_write)
3370		return -EINVAL;
3371
3372	return map->format.val_bytes;
3373}
3374EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3375
3376/**
3377 * regmap_get_max_register() - Report the max register value
3378 *
3379 * @map: Register map to operate on.
3380 *
3381 * Report the max register value, mainly intended to for use by
3382 * generic infrastructure built on top of regmap.
3383 */
3384int regmap_get_max_register(struct regmap *map)
3385{
3386	return map->max_register ? map->max_register : -EINVAL;
3387}
3388EXPORT_SYMBOL_GPL(regmap_get_max_register);
3389
3390/**
3391 * regmap_get_reg_stride() - Report the register address stride
3392 *
3393 * @map: Register map to operate on.
3394 *
3395 * Report the register address stride, mainly intended to for use by
3396 * generic infrastructure built on top of regmap.
3397 */
3398int regmap_get_reg_stride(struct regmap *map)
3399{
3400	return map->reg_stride;
3401}
3402EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3403
3404/**
3405 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3406 *
3407 * @map: Register map to operate on.
3408 *
3409 * Returns true if an access to the register might sleep, else false.
3410 */
3411bool regmap_might_sleep(struct regmap *map)
3412{
3413	return map->can_sleep;
3414}
3415EXPORT_SYMBOL_GPL(regmap_might_sleep);
3416
3417int regmap_parse_val(struct regmap *map, const void *buf,
3418			unsigned int *val)
3419{
3420	if (!map->format.parse_val)
3421		return -EINVAL;
3422
3423	*val = map->format.parse_val(buf);
3424
3425	return 0;
3426}
3427EXPORT_SYMBOL_GPL(regmap_parse_val);
3428
3429static int __init regmap_initcall(void)
3430{
3431	regmap_debugfs_initcall();
3432
3433	return 0;
3434}
3435postcore_initcall(regmap_initcall);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
 
  20
  21#define CREATE_TRACE_POINTS
  22#include "trace.h"
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34#ifdef LOG_DEVICE
  35static inline bool regmap_should_log(struct regmap *map)
  36{
  37	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  38}
  39#else
  40static inline bool regmap_should_log(struct regmap *map) { return false; }
  41#endif
  42
  43
  44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  45			       unsigned int mask, unsigned int val,
  46			       bool *change, bool force_write);
  47
  48static int _regmap_bus_reg_read(void *context, unsigned int reg,
  49				unsigned int *val);
  50static int _regmap_bus_read(void *context, unsigned int reg,
  51			    unsigned int *val);
  52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  53				       unsigned int val);
  54static int _regmap_bus_reg_write(void *context, unsigned int reg,
  55				 unsigned int val);
  56static int _regmap_bus_raw_write(void *context, unsigned int reg,
  57				 unsigned int val);
  58
  59bool regmap_reg_in_ranges(unsigned int reg,
  60			  const struct regmap_range *ranges,
  61			  unsigned int nranges)
  62{
  63	const struct regmap_range *r;
  64	int i;
  65
  66	for (i = 0, r = ranges; i < nranges; i++, r++)
  67		if (regmap_reg_in_range(reg, r))
  68			return true;
  69	return false;
  70}
  71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  72
  73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  74			      const struct regmap_access_table *table)
  75{
  76	/* Check "no ranges" first */
  77	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  78		return false;
  79
  80	/* In case zero "yes ranges" are supplied, any reg is OK */
  81	if (!table->n_yes_ranges)
  82		return true;
  83
  84	return regmap_reg_in_ranges(reg, table->yes_ranges,
  85				    table->n_yes_ranges);
  86}
  87EXPORT_SYMBOL_GPL(regmap_check_range_table);
  88
  89bool regmap_writeable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->writeable_reg)
  95		return map->writeable_reg(map->dev, reg);
  96
  97	if (map->wr_table)
  98		return regmap_check_range_table(map, reg, map->wr_table);
  99
 100	return true;
 101}
 102
 103bool regmap_cached(struct regmap *map, unsigned int reg)
 104{
 105	int ret;
 106	unsigned int val;
 107
 108	if (map->cache_type == REGCACHE_NONE)
 109		return false;
 110
 111	if (!map->cache_ops)
 112		return false;
 113
 114	if (map->max_register && reg > map->max_register)
 115		return false;
 116
 117	map->lock(map->lock_arg);
 118	ret = regcache_read(map, reg, &val);
 119	map->unlock(map->lock_arg);
 120	if (ret)
 121		return false;
 122
 123	return true;
 124}
 125
 126bool regmap_readable(struct regmap *map, unsigned int reg)
 127{
 128	if (!map->reg_read)
 129		return false;
 130
 131	if (map->max_register && reg > map->max_register)
 132		return false;
 133
 134	if (map->format.format_write)
 135		return false;
 136
 137	if (map->readable_reg)
 138		return map->readable_reg(map->dev, reg);
 139
 140	if (map->rd_table)
 141		return regmap_check_range_table(map, reg, map->rd_table);
 142
 143	return true;
 144}
 145
 146bool regmap_volatile(struct regmap *map, unsigned int reg)
 147{
 148	if (!map->format.format_write && !regmap_readable(map, reg))
 149		return false;
 150
 151	if (map->volatile_reg)
 152		return map->volatile_reg(map->dev, reg);
 153
 154	if (map->volatile_table)
 155		return regmap_check_range_table(map, reg, map->volatile_table);
 156
 157	if (map->cache_ops)
 158		return false;
 159	else
 160		return true;
 161}
 162
 163bool regmap_precious(struct regmap *map, unsigned int reg)
 164{
 165	if (!regmap_readable(map, reg))
 166		return false;
 167
 168	if (map->precious_reg)
 169		return map->precious_reg(map->dev, reg);
 170
 171	if (map->precious_table)
 172		return regmap_check_range_table(map, reg, map->precious_table);
 173
 174	return false;
 175}
 176
 177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 178{
 179	if (map->writeable_noinc_reg)
 180		return map->writeable_noinc_reg(map->dev, reg);
 181
 182	if (map->wr_noinc_table)
 183		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 184
 185	return true;
 186}
 187
 188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 189{
 190	if (map->readable_noinc_reg)
 191		return map->readable_noinc_reg(map->dev, reg);
 192
 193	if (map->rd_noinc_table)
 194		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 195
 196	return true;
 197}
 198
 199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 200	size_t num)
 201{
 202	unsigned int i;
 203
 204	for (i = 0; i < num; i++)
 205		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 206			return false;
 207
 208	return true;
 209}
 210
 
 
 
 
 
 
 
 
 
 
 
 
 211static void regmap_format_2_6_write(struct regmap *map,
 212				     unsigned int reg, unsigned int val)
 213{
 214	u8 *out = map->work_buf;
 215
 216	*out = (reg << 6) | val;
 217}
 218
 219static void regmap_format_4_12_write(struct regmap *map,
 220				     unsigned int reg, unsigned int val)
 221{
 222	__be16 *out = map->work_buf;
 223	*out = cpu_to_be16((reg << 12) | val);
 224}
 225
 226static void regmap_format_7_9_write(struct regmap *map,
 227				    unsigned int reg, unsigned int val)
 228{
 229	__be16 *out = map->work_buf;
 230	*out = cpu_to_be16((reg << 9) | val);
 231}
 232
 
 
 
 
 
 
 
 
 
 
 233static void regmap_format_10_14_write(struct regmap *map,
 234				    unsigned int reg, unsigned int val)
 235{
 236	u8 *out = map->work_buf;
 237
 238	out[2] = val;
 239	out[1] = (val >> 8) | (reg << 6);
 240	out[0] = reg >> 2;
 241}
 242
 243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 244{
 245	u8 *b = buf;
 246
 247	b[0] = val << shift;
 248}
 249
 250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be16 *b = buf;
 253
 254	b[0] = cpu_to_be16(val << shift);
 255}
 256
 257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le16 *b = buf;
 260
 261	b[0] = cpu_to_le16(val << shift);
 262}
 263
 264static void regmap_format_16_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u16 *)buf = val << shift;
 
 
 268}
 269
 270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 271{
 272	u8 *b = buf;
 273
 274	val <<= shift;
 275
 276	b[0] = val >> 16;
 277	b[1] = val >> 8;
 278	b[2] = val;
 279}
 280
 281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__be32 *b = buf;
 284
 285	b[0] = cpu_to_be32(val << shift);
 286}
 287
 288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 289{
 290	__le32 *b = buf;
 291
 292	b[0] = cpu_to_le32(val << shift);
 293}
 294
 295static void regmap_format_32_native(void *buf, unsigned int val,
 296				    unsigned int shift)
 297{
 298	*(u32 *)buf = val << shift;
 299}
 300
 301#ifdef CONFIG_64BIT
 302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	__be64 *b = buf;
 305
 306	b[0] = cpu_to_be64((u64)val << shift);
 307}
 308
 309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 310{
 311	__le64 *b = buf;
 312
 313	b[0] = cpu_to_le64((u64)val << shift);
 314}
 315
 316static void regmap_format_64_native(void *buf, unsigned int val,
 317				    unsigned int shift)
 318{
 319	*(u64 *)buf = (u64)val << shift;
 320}
 321#endif
 322
 323static void regmap_parse_inplace_noop(void *buf)
 324{
 325}
 326
 327static unsigned int regmap_parse_8(const void *buf)
 328{
 329	const u8 *b = buf;
 330
 331	return b[0];
 332}
 333
 334static unsigned int regmap_parse_16_be(const void *buf)
 335{
 336	const __be16 *b = buf;
 337
 338	return be16_to_cpu(b[0]);
 339}
 340
 341static unsigned int regmap_parse_16_le(const void *buf)
 342{
 343	const __le16 *b = buf;
 344
 345	return le16_to_cpu(b[0]);
 346}
 347
 348static void regmap_parse_16_be_inplace(void *buf)
 349{
 350	__be16 *b = buf;
 351
 352	b[0] = be16_to_cpu(b[0]);
 353}
 354
 355static void regmap_parse_16_le_inplace(void *buf)
 356{
 357	__le16 *b = buf;
 358
 359	b[0] = le16_to_cpu(b[0]);
 360}
 361
 362static unsigned int regmap_parse_16_native(const void *buf)
 363{
 364	return *(u16 *)buf;
 
 
 
 365}
 366
 367static unsigned int regmap_parse_24(const void *buf)
 368{
 369	const u8 *b = buf;
 370	unsigned int ret = b[2];
 371	ret |= ((unsigned int)b[1]) << 8;
 372	ret |= ((unsigned int)b[0]) << 16;
 373
 374	return ret;
 375}
 376
 377static unsigned int regmap_parse_32_be(const void *buf)
 378{
 379	const __be32 *b = buf;
 380
 381	return be32_to_cpu(b[0]);
 382}
 383
 384static unsigned int regmap_parse_32_le(const void *buf)
 385{
 386	const __le32 *b = buf;
 387
 388	return le32_to_cpu(b[0]);
 389}
 390
 391static void regmap_parse_32_be_inplace(void *buf)
 392{
 393	__be32 *b = buf;
 394
 395	b[0] = be32_to_cpu(b[0]);
 396}
 397
 398static void regmap_parse_32_le_inplace(void *buf)
 399{
 400	__le32 *b = buf;
 401
 402	b[0] = le32_to_cpu(b[0]);
 403}
 404
 405static unsigned int regmap_parse_32_native(const void *buf)
 406{
 407	return *(u32 *)buf;
 408}
 409
 410#ifdef CONFIG_64BIT
 411static unsigned int regmap_parse_64_be(const void *buf)
 412{
 413	const __be64 *b = buf;
 414
 415	return be64_to_cpu(b[0]);
 416}
 417
 418static unsigned int regmap_parse_64_le(const void *buf)
 419{
 420	const __le64 *b = buf;
 421
 422	return le64_to_cpu(b[0]);
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	__be64 *b = buf;
 428
 429	b[0] = be64_to_cpu(b[0]);
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	__le64 *b = buf;
 435
 436	b[0] = le64_to_cpu(b[0]);
 
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	return *(u64 *)buf;
 442}
 443#endif
 444
 445static void regmap_lock_hwlock(void *__map)
 446{
 447	struct regmap *map = __map;
 448
 449	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 450}
 451
 452static void regmap_lock_hwlock_irq(void *__map)
 453{
 454	struct regmap *map = __map;
 455
 456	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 457}
 458
 459static void regmap_lock_hwlock_irqsave(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 464				    &map->spinlock_flags);
 465}
 466
 467static void regmap_unlock_hwlock(void *__map)
 468{
 469	struct regmap *map = __map;
 470
 471	hwspin_unlock(map->hwlock);
 472}
 473
 474static void regmap_unlock_hwlock_irq(void *__map)
 475{
 476	struct regmap *map = __map;
 477
 478	hwspin_unlock_irq(map->hwlock);
 479}
 480
 481static void regmap_unlock_hwlock_irqrestore(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 486}
 487
 488static void regmap_lock_unlock_none(void *__map)
 489{
 490
 491}
 492
 493static void regmap_lock_mutex(void *__map)
 494{
 495	struct regmap *map = __map;
 496	mutex_lock(&map->mutex);
 497}
 498
 499static void regmap_unlock_mutex(void *__map)
 500{
 501	struct regmap *map = __map;
 502	mutex_unlock(&map->mutex);
 503}
 504
 505static void regmap_lock_spinlock(void *__map)
 506__acquires(&map->spinlock)
 507{
 508	struct regmap *map = __map;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&map->spinlock, flags);
 512	map->spinlock_flags = flags;
 513}
 514
 515static void regmap_unlock_spinlock(void *__map)
 516__releases(&map->spinlock)
 517{
 518	struct regmap *map = __map;
 519	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522static void dev_get_regmap_release(struct device *dev, void *res)
 523{
 524	/*
 525	 * We don't actually have anything to do here; the goal here
 526	 * is not to manage the regmap but to provide a simple way to
 527	 * get the regmap back given a struct device.
 528	 */
 529}
 530
 531static bool _regmap_range_add(struct regmap *map,
 532			      struct regmap_range_node *data)
 533{
 534	struct rb_root *root = &map->range_tree;
 535	struct rb_node **new = &(root->rb_node), *parent = NULL;
 536
 537	while (*new) {
 538		struct regmap_range_node *this =
 539			rb_entry(*new, struct regmap_range_node, node);
 540
 541		parent = *new;
 542		if (data->range_max < this->range_min)
 543			new = &((*new)->rb_left);
 544		else if (data->range_min > this->range_max)
 545			new = &((*new)->rb_right);
 546		else
 547			return false;
 548	}
 549
 550	rb_link_node(&data->node, parent, new);
 551	rb_insert_color(&data->node, root);
 552
 553	return true;
 554}
 555
 556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 557						      unsigned int reg)
 558{
 559	struct rb_node *node = map->range_tree.rb_node;
 560
 561	while (node) {
 562		struct regmap_range_node *this =
 563			rb_entry(node, struct regmap_range_node, node);
 564
 565		if (reg < this->range_min)
 566			node = node->rb_left;
 567		else if (reg > this->range_max)
 568			node = node->rb_right;
 569		else
 570			return this;
 571	}
 572
 573	return NULL;
 574}
 575
 576static void regmap_range_exit(struct regmap *map)
 577{
 578	struct rb_node *next;
 579	struct regmap_range_node *range_node;
 580
 581	next = rb_first(&map->range_tree);
 582	while (next) {
 583		range_node = rb_entry(next, struct regmap_range_node, node);
 584		next = rb_next(&range_node->node);
 585		rb_erase(&range_node->node, &map->range_tree);
 586		kfree(range_node);
 587	}
 588
 589	kfree(map->selector_work_buf);
 590}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592int regmap_attach_dev(struct device *dev, struct regmap *map,
 593		      const struct regmap_config *config)
 594{
 595	struct regmap **m;
 
 596
 597	map->dev = dev;
 598
 599	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 600
 601	/* Add a devres resource for dev_get_regmap() */
 602	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 603	if (!m) {
 604		regmap_debugfs_exit(map);
 605		return -ENOMEM;
 606	}
 607	*m = map;
 608	devres_add(dev, m);
 609
 610	return 0;
 611}
 612EXPORT_SYMBOL_GPL(regmap_attach_dev);
 613
 614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 615					const struct regmap_config *config)
 616{
 617	enum regmap_endian endian;
 618
 619	/* Retrieve the endianness specification from the regmap config */
 620	endian = config->reg_format_endian;
 621
 622	/* If the regmap config specified a non-default value, use that */
 623	if (endian != REGMAP_ENDIAN_DEFAULT)
 624		return endian;
 625
 626	/* Retrieve the endianness specification from the bus config */
 627	if (bus && bus->reg_format_endian_default)
 628		endian = bus->reg_format_endian_default;
 629
 630	/* If the bus specified a non-default value, use that */
 631	if (endian != REGMAP_ENDIAN_DEFAULT)
 632		return endian;
 633
 634	/* Use this if no other value was found */
 635	return REGMAP_ENDIAN_BIG;
 636}
 637
 638enum regmap_endian regmap_get_val_endian(struct device *dev,
 639					 const struct regmap_bus *bus,
 640					 const struct regmap_config *config)
 641{
 642	struct device_node *np;
 643	enum regmap_endian endian;
 644
 645	/* Retrieve the endianness specification from the regmap config */
 646	endian = config->val_format_endian;
 647
 648	/* If the regmap config specified a non-default value, use that */
 649	if (endian != REGMAP_ENDIAN_DEFAULT)
 650		return endian;
 651
 652	/* If the dev and dev->of_node exist try to get endianness from DT */
 653	if (dev && dev->of_node) {
 654		np = dev->of_node;
 655
 656		/* Parse the device's DT node for an endianness specification */
 657		if (of_property_read_bool(np, "big-endian"))
 658			endian = REGMAP_ENDIAN_BIG;
 659		else if (of_property_read_bool(np, "little-endian"))
 660			endian = REGMAP_ENDIAN_LITTLE;
 661		else if (of_property_read_bool(np, "native-endian"))
 662			endian = REGMAP_ENDIAN_NATIVE;
 663
 664		/* If the endianness was specified in DT, use that */
 665		if (endian != REGMAP_ENDIAN_DEFAULT)
 666			return endian;
 667	}
 668
 669	/* Retrieve the endianness specification from the bus config */
 670	if (bus && bus->val_format_endian_default)
 671		endian = bus->val_format_endian_default;
 672
 673	/* If the bus specified a non-default value, use that */
 674	if (endian != REGMAP_ENDIAN_DEFAULT)
 675		return endian;
 676
 677	/* Use this if no other value was found */
 678	return REGMAP_ENDIAN_BIG;
 679}
 680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 681
 682struct regmap *__regmap_init(struct device *dev,
 683			     const struct regmap_bus *bus,
 684			     void *bus_context,
 685			     const struct regmap_config *config,
 686			     struct lock_class_key *lock_key,
 687			     const char *lock_name)
 688{
 689	struct regmap *map;
 690	int ret = -EINVAL;
 691	enum regmap_endian reg_endian, val_endian;
 692	int i, j;
 693
 694	if (!config)
 695		goto err;
 696
 697	map = kzalloc(sizeof(*map), GFP_KERNEL);
 698	if (map == NULL) {
 699		ret = -ENOMEM;
 700		goto err;
 701	}
 702
 703	if (config->name) {
 704		map->name = kstrdup_const(config->name, GFP_KERNEL);
 705		if (!map->name) {
 706			ret = -ENOMEM;
 707			goto err_map;
 708		}
 709	}
 710
 711	if (config->disable_locking) {
 712		map->lock = map->unlock = regmap_lock_unlock_none;
 
 713		regmap_debugfs_disable(map);
 714	} else if (config->lock && config->unlock) {
 715		map->lock = config->lock;
 716		map->unlock = config->unlock;
 717		map->lock_arg = config->lock_arg;
 
 718	} else if (config->use_hwlock) {
 719		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 720		if (!map->hwlock) {
 721			ret = -ENXIO;
 722			goto err_name;
 723		}
 724
 725		switch (config->hwlock_mode) {
 726		case HWLOCK_IRQSTATE:
 727			map->lock = regmap_lock_hwlock_irqsave;
 728			map->unlock = regmap_unlock_hwlock_irqrestore;
 729			break;
 730		case HWLOCK_IRQ:
 731			map->lock = regmap_lock_hwlock_irq;
 732			map->unlock = regmap_unlock_hwlock_irq;
 733			break;
 734		default:
 735			map->lock = regmap_lock_hwlock;
 736			map->unlock = regmap_unlock_hwlock;
 737			break;
 738		}
 739
 740		map->lock_arg = map;
 741	} else {
 742		if ((bus && bus->fast_io) ||
 743		    config->fast_io) {
 744			spin_lock_init(&map->spinlock);
 745			map->lock = regmap_lock_spinlock;
 746			map->unlock = regmap_unlock_spinlock;
 747			lockdep_set_class_and_name(&map->spinlock,
 748						   lock_key, lock_name);
 
 
 
 
 
 
 
 
 749		} else {
 750			mutex_init(&map->mutex);
 751			map->lock = regmap_lock_mutex;
 752			map->unlock = regmap_unlock_mutex;
 
 753			lockdep_set_class_and_name(&map->mutex,
 754						   lock_key, lock_name);
 755		}
 756		map->lock_arg = map;
 757	}
 758
 759	/*
 760	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 761	 * scratch buffers with sleeping allocations.
 762	 */
 763	if ((bus && bus->fast_io) || config->fast_io)
 764		map->alloc_flags = GFP_ATOMIC;
 765	else
 766		map->alloc_flags = GFP_KERNEL;
 767
 
 
 768	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 769	map->format.pad_bytes = config->pad_bits / 8;
 
 770	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 771	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 772			config->val_bits + config->pad_bits, 8);
 773	map->reg_shift = config->pad_bits % 8;
 774	if (config->reg_stride)
 775		map->reg_stride = config->reg_stride;
 776	else
 777		map->reg_stride = 1;
 778	if (is_power_of_2(map->reg_stride))
 779		map->reg_stride_order = ilog2(map->reg_stride);
 780	else
 781		map->reg_stride_order = -1;
 782	map->use_single_read = config->use_single_read || !bus || !bus->read;
 783	map->use_single_write = config->use_single_write || !bus || !bus->write;
 784	map->can_multi_write = config->can_multi_write && bus && bus->write;
 785	if (bus) {
 786		map->max_raw_read = bus->max_raw_read;
 787		map->max_raw_write = bus->max_raw_write;
 
 
 
 788	}
 789	map->dev = dev;
 790	map->bus = bus;
 791	map->bus_context = bus_context;
 792	map->max_register = config->max_register;
 793	map->wr_table = config->wr_table;
 794	map->rd_table = config->rd_table;
 795	map->volatile_table = config->volatile_table;
 796	map->precious_table = config->precious_table;
 797	map->wr_noinc_table = config->wr_noinc_table;
 798	map->rd_noinc_table = config->rd_noinc_table;
 799	map->writeable_reg = config->writeable_reg;
 800	map->readable_reg = config->readable_reg;
 801	map->volatile_reg = config->volatile_reg;
 802	map->precious_reg = config->precious_reg;
 803	map->writeable_noinc_reg = config->writeable_noinc_reg;
 804	map->readable_noinc_reg = config->readable_noinc_reg;
 805	map->cache_type = config->cache_type;
 806
 807	spin_lock_init(&map->async_lock);
 808	INIT_LIST_HEAD(&map->async_list);
 809	INIT_LIST_HEAD(&map->async_free);
 810	init_waitqueue_head(&map->async_waitq);
 811
 812	if (config->read_flag_mask ||
 813	    config->write_flag_mask ||
 814	    config->zero_flag_mask) {
 815		map->read_flag_mask = config->read_flag_mask;
 816		map->write_flag_mask = config->write_flag_mask;
 817	} else if (bus) {
 818		map->read_flag_mask = bus->read_flag_mask;
 819	}
 820
 821	if (!bus) {
 
 
 
 
 
 
 
 
 
 
 
 822		map->reg_read  = config->reg_read;
 823		map->reg_write = config->reg_write;
 
 824
 825		map->defer_caching = false;
 826		goto skip_format_initialization;
 827	} else if (!bus->read || !bus->write) {
 828		map->reg_read = _regmap_bus_reg_read;
 829		map->reg_write = _regmap_bus_reg_write;
 
 830
 831		map->defer_caching = false;
 832		goto skip_format_initialization;
 833	} else {
 834		map->reg_read  = _regmap_bus_read;
 835		map->reg_update_bits = bus->reg_update_bits;
 
 
 
 
 
 
 836	}
 837
 838	reg_endian = regmap_get_reg_endian(bus, config);
 839	val_endian = regmap_get_val_endian(dev, bus, config);
 840
 841	switch (config->reg_bits + map->reg_shift) {
 842	case 2:
 843		switch (config->val_bits) {
 844		case 6:
 845			map->format.format_write = regmap_format_2_6_write;
 846			break;
 847		default:
 848			goto err_hwlock;
 849		}
 850		break;
 851
 852	case 4:
 853		switch (config->val_bits) {
 854		case 12:
 855			map->format.format_write = regmap_format_4_12_write;
 856			break;
 857		default:
 858			goto err_hwlock;
 859		}
 860		break;
 861
 862	case 7:
 863		switch (config->val_bits) {
 864		case 9:
 865			map->format.format_write = regmap_format_7_9_write;
 866			break;
 
 
 
 867		default:
 868			goto err_hwlock;
 869		}
 870		break;
 871
 872	case 10:
 873		switch (config->val_bits) {
 874		case 14:
 875			map->format.format_write = regmap_format_10_14_write;
 876			break;
 877		default:
 878			goto err_hwlock;
 879		}
 880		break;
 881
 
 
 
 
 
 
 
 
 
 
 882	case 8:
 883		map->format.format_reg = regmap_format_8;
 884		break;
 885
 886	case 16:
 887		switch (reg_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_reg = regmap_format_16_be;
 890			break;
 891		case REGMAP_ENDIAN_LITTLE:
 892			map->format.format_reg = regmap_format_16_le;
 893			break;
 894		case REGMAP_ENDIAN_NATIVE:
 895			map->format.format_reg = regmap_format_16_native;
 896			break;
 897		default:
 898			goto err_hwlock;
 899		}
 900		break;
 901
 902	case 24:
 903		if (reg_endian != REGMAP_ENDIAN_BIG)
 904			goto err_hwlock;
 905		map->format.format_reg = regmap_format_24;
 906		break;
 907
 908	case 32:
 909		switch (reg_endian) {
 910		case REGMAP_ENDIAN_BIG:
 911			map->format.format_reg = regmap_format_32_be;
 912			break;
 913		case REGMAP_ENDIAN_LITTLE:
 914			map->format.format_reg = regmap_format_32_le;
 915			break;
 916		case REGMAP_ENDIAN_NATIVE:
 917			map->format.format_reg = regmap_format_32_native;
 918			break;
 919		default:
 920			goto err_hwlock;
 921		}
 922		break;
 923
 924#ifdef CONFIG_64BIT
 925	case 64:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_64_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_64_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_64_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940#endif
 941
 942	default:
 943		goto err_hwlock;
 944	}
 945
 946	if (val_endian == REGMAP_ENDIAN_NATIVE)
 947		map->format.parse_inplace = regmap_parse_inplace_noop;
 948
 949	switch (config->val_bits) {
 950	case 8:
 951		map->format.format_val = regmap_format_8;
 952		map->format.parse_val = regmap_parse_8;
 953		map->format.parse_inplace = regmap_parse_inplace_noop;
 954		break;
 955	case 16:
 956		switch (val_endian) {
 957		case REGMAP_ENDIAN_BIG:
 958			map->format.format_val = regmap_format_16_be;
 959			map->format.parse_val = regmap_parse_16_be;
 960			map->format.parse_inplace = regmap_parse_16_be_inplace;
 961			break;
 962		case REGMAP_ENDIAN_LITTLE:
 963			map->format.format_val = regmap_format_16_le;
 964			map->format.parse_val = regmap_parse_16_le;
 965			map->format.parse_inplace = regmap_parse_16_le_inplace;
 966			break;
 967		case REGMAP_ENDIAN_NATIVE:
 968			map->format.format_val = regmap_format_16_native;
 969			map->format.parse_val = regmap_parse_16_native;
 970			break;
 971		default:
 972			goto err_hwlock;
 973		}
 974		break;
 975	case 24:
 976		if (val_endian != REGMAP_ENDIAN_BIG)
 
 
 
 
 
 977			goto err_hwlock;
 978		map->format.format_val = regmap_format_24;
 979		map->format.parse_val = regmap_parse_24;
 980		break;
 981	case 32:
 982		switch (val_endian) {
 983		case REGMAP_ENDIAN_BIG:
 984			map->format.format_val = regmap_format_32_be;
 985			map->format.parse_val = regmap_parse_32_be;
 986			map->format.parse_inplace = regmap_parse_32_be_inplace;
 987			break;
 988		case REGMAP_ENDIAN_LITTLE:
 989			map->format.format_val = regmap_format_32_le;
 990			map->format.parse_val = regmap_parse_32_le;
 991			map->format.parse_inplace = regmap_parse_32_le_inplace;
 992			break;
 993		case REGMAP_ENDIAN_NATIVE:
 994			map->format.format_val = regmap_format_32_native;
 995			map->format.parse_val = regmap_parse_32_native;
 996			break;
 997		default:
 998			goto err_hwlock;
 999		}
1000		break;
1001#ifdef CONFIG_64BIT
1002	case 64:
1003		switch (val_endian) {
1004		case REGMAP_ENDIAN_BIG:
1005			map->format.format_val = regmap_format_64_be;
1006			map->format.parse_val = regmap_parse_64_be;
1007			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008			break;
1009		case REGMAP_ENDIAN_LITTLE:
1010			map->format.format_val = regmap_format_64_le;
1011			map->format.parse_val = regmap_parse_64_le;
1012			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013			break;
1014		case REGMAP_ENDIAN_NATIVE:
1015			map->format.format_val = regmap_format_64_native;
1016			map->format.parse_val = regmap_parse_64_native;
1017			break;
1018		default:
1019			goto err_hwlock;
1020		}
1021		break;
1022#endif
1023	}
1024
1025	if (map->format.format_write) {
1026		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027		    (val_endian != REGMAP_ENDIAN_BIG))
1028			goto err_hwlock;
1029		map->use_single_write = true;
1030	}
1031
1032	if (!map->format.format_write &&
1033	    !(map->format.format_reg && map->format.format_val))
1034		goto err_hwlock;
1035
1036	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037	if (map->work_buf == NULL) {
1038		ret = -ENOMEM;
1039		goto err_hwlock;
1040	}
1041
1042	if (map->format.format_write) {
1043		map->defer_caching = false;
1044		map->reg_write = _regmap_bus_formatted_write;
1045	} else if (map->format.format_val) {
1046		map->defer_caching = true;
1047		map->reg_write = _regmap_bus_raw_write;
1048	}
1049
1050skip_format_initialization:
1051
1052	map->range_tree = RB_ROOT;
1053	for (i = 0; i < config->num_ranges; i++) {
1054		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055		struct regmap_range_node *new;
1056
1057		/* Sanity check */
1058		if (range_cfg->range_max < range_cfg->range_min) {
1059			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060				range_cfg->range_max, range_cfg->range_min);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->range_max > map->max_register) {
1065			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066				range_cfg->range_max, map->max_register);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->selector_reg > map->max_register) {
1071			dev_err(map->dev,
1072				"Invalid range %d: selector out of map\n", i);
1073			goto err_range;
1074		}
1075
1076		if (range_cfg->window_len == 0) {
1077			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078				i);
1079			goto err_range;
1080		}
1081
1082		/* Make sure, that this register range has no selector
1083		   or data window within its boundary */
1084		for (j = 0; j < config->num_ranges; j++) {
1085			unsigned sel_reg = config->ranges[j].selector_reg;
1086			unsigned win_min = config->ranges[j].window_start;
1087			unsigned win_max = win_min +
1088					   config->ranges[j].window_len - 1;
1089
1090			/* Allow data window inside its own virtual range */
1091			if (j == i)
1092				continue;
1093
1094			if (range_cfg->range_min <= sel_reg &&
1095			    sel_reg <= range_cfg->range_max) {
1096				dev_err(map->dev,
1097					"Range %d: selector for %d in window\n",
1098					i, j);
1099				goto err_range;
1100			}
1101
1102			if (!(win_max < range_cfg->range_min ||
1103			      win_min > range_cfg->range_max)) {
1104				dev_err(map->dev,
1105					"Range %d: window for %d in window\n",
1106					i, j);
1107				goto err_range;
1108			}
1109		}
1110
1111		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112		if (new == NULL) {
1113			ret = -ENOMEM;
1114			goto err_range;
1115		}
1116
1117		new->map = map;
1118		new->name = range_cfg->name;
1119		new->range_min = range_cfg->range_min;
1120		new->range_max = range_cfg->range_max;
1121		new->selector_reg = range_cfg->selector_reg;
1122		new->selector_mask = range_cfg->selector_mask;
1123		new->selector_shift = range_cfg->selector_shift;
1124		new->window_start = range_cfg->window_start;
1125		new->window_len = range_cfg->window_len;
1126
1127		if (!_regmap_range_add(map, new)) {
1128			dev_err(map->dev, "Failed to add range %d\n", i);
1129			kfree(new);
1130			goto err_range;
1131		}
1132
1133		if (map->selector_work_buf == NULL) {
1134			map->selector_work_buf =
1135				kzalloc(map->format.buf_size, GFP_KERNEL);
1136			if (map->selector_work_buf == NULL) {
1137				ret = -ENOMEM;
1138				goto err_range;
1139			}
1140		}
1141	}
1142
1143	ret = regcache_init(map, config);
1144	if (ret != 0)
1145		goto err_range;
1146
1147	if (dev) {
1148		ret = regmap_attach_dev(dev, map, config);
1149		if (ret != 0)
1150			goto err_regcache;
1151	} else {
1152		regmap_debugfs_init(map, config->name);
1153	}
1154
1155	return map;
1156
1157err_regcache:
1158	regcache_exit(map);
1159err_range:
1160	regmap_range_exit(map);
1161	kfree(map->work_buf);
1162err_hwlock:
1163	if (map->hwlock)
1164		hwspin_lock_free(map->hwlock);
1165err_name:
1166	kfree_const(map->name);
1167err_map:
1168	kfree(map);
1169err:
1170	return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176	regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180				  const struct regmap_bus *bus,
1181				  void *bus_context,
1182				  const struct regmap_config *config,
1183				  struct lock_class_key *lock_key,
1184				  const char *lock_name)
1185{
1186	struct regmap **ptr, *regmap;
1187
1188	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189	if (!ptr)
1190		return ERR_PTR(-ENOMEM);
1191
1192	regmap = __regmap_init(dev, bus, bus_context, config,
1193			       lock_key, lock_name);
1194	if (!IS_ERR(regmap)) {
1195		*ptr = regmap;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206	struct regmap *regmap, struct reg_field reg_field)
1207{
1208	rm_field->regmap = regmap;
1209	rm_field->reg = reg_field.reg;
1210	rm_field->shift = reg_field.lsb;
1211	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 
 
 
1212	rm_field->id_size = reg_field.id_size;
1213	rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228		struct regmap *regmap, struct reg_field reg_field)
1229{
1230	struct regmap_field *rm_field = devm_kzalloc(dev,
1231					sizeof(*rm_field), GFP_KERNEL);
1232	if (!rm_field)
1233		return ERR_PTR(-ENOMEM);
1234
1235	regmap_field_init(rm_field, regmap, reg_field);
1236
1237	return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 *                            devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254	struct regmap_field *field)
1255{
1256	devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271		struct reg_field reg_field)
1272{
1273	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275	if (!rm_field)
1276		return ERR_PTR(-ENOMEM);
1277
1278	regmap_field_init(rm_field, regmap, reg_field);
1279
1280	return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 *                       regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292	kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration.  Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache.  This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
 
 
1312	regcache_exit(map);
1313	regmap_debugfs_exit(map);
1314
1315	map->max_register = config->max_register;
1316	map->writeable_reg = config->writeable_reg;
1317	map->readable_reg = config->readable_reg;
1318	map->volatile_reg = config->volatile_reg;
1319	map->precious_reg = config->precious_reg;
1320	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321	map->readable_noinc_reg = config->readable_noinc_reg;
1322	map->cache_type = config->cache_type;
1323
1324	regmap_debugfs_init(map, config->name);
 
 
 
 
1325
1326	map->cache_bypass = false;
1327	map->cache_only = false;
1328
1329	return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340	struct regmap_async *async;
1341
1342	regcache_exit(map);
1343	regmap_debugfs_exit(map);
1344	regmap_range_exit(map);
1345	if (map->bus && map->bus->free_context)
1346		map->bus->free_context(map->bus_context);
1347	kfree(map->work_buf);
1348	while (!list_empty(&map->async_free)) {
1349		async = list_first_entry_or_null(&map->async_free,
1350						 struct regmap_async,
1351						 list);
1352		list_del(&async->list);
1353		kfree(async->work_buf);
1354		kfree(async);
1355	}
1356	if (map->hwlock)
1357		hwspin_lock_free(map->hwlock);
 
 
1358	kfree_const(map->name);
 
 
 
1359	kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365	struct regmap **r = res;
1366	if (!r || !*r) {
1367		WARN_ON(!r || !*r);
1368		return 0;
1369	}
1370
1371	/* If the user didn't specify a name match any */
1372	if (data)
1373		return (*r)->name == data;
1374	else
1375		return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL.  If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used.  Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393					dev_get_regmap_match, (void *)name);
1394
1395	if (!r)
1396		return NULL;
1397	return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410	return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415			       struct regmap_range_node *range,
1416			       unsigned int val_num)
1417{
1418	void *orig_work_buf;
1419	unsigned int win_offset;
1420	unsigned int win_page;
1421	bool page_chg;
1422	int ret;
1423
1424	win_offset = (*reg - range->range_min) % range->window_len;
1425	win_page = (*reg - range->range_min) / range->window_len;
1426
1427	if (val_num > 1) {
1428		/* Bulk write shouldn't cross range boundary */
1429		if (*reg + val_num - 1 > range->range_max)
1430			return -EINVAL;
1431
1432		/* ... or single page boundary */
1433		if (val_num > range->window_len - win_offset)
1434			return -EINVAL;
1435	}
1436
1437	/* It is possible to have selector register inside data window.
1438	   In that case, selector register is located on every page and
1439	   it needs no page switching, when accessed alone. */
1440	if (val_num > 1 ||
1441	    range->window_start + win_offset != range->selector_reg) {
1442		/* Use separate work_buf during page switching */
1443		orig_work_buf = map->work_buf;
1444		map->work_buf = map->selector_work_buf;
1445
1446		ret = _regmap_update_bits(map, range->selector_reg,
1447					  range->selector_mask,
1448					  win_page << range->selector_shift,
1449					  &page_chg, false);
1450
1451		map->work_buf = orig_work_buf;
1452
1453		if (ret != 0)
1454			return ret;
1455	}
1456
1457	*reg = range->window_start + win_offset;
1458
1459	return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463					  unsigned long mask)
1464{
1465	u8 *buf;
1466	int i;
1467
1468	if (!mask || !map->work_buf)
1469		return;
1470
1471	buf = map->work_buf;
1472
1473	for (i = 0; i < max_bytes; i++)
1474		buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
 
 
 
 
 
 
 
 
 
 
 
 
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478				  const void *val, size_t val_len)
1479{
1480	struct regmap_range_node *range;
1481	unsigned long flags;
1482	void *work_val = map->work_buf + map->format.reg_bytes +
1483		map->format.pad_bytes;
1484	void *buf;
1485	int ret = -ENOTSUPP;
1486	size_t len;
1487	int i;
1488
1489	WARN_ON(!map->bus);
1490
1491	/* Check for unwritable registers before we start */
1492	for (i = 0; i < val_len / map->format.val_bytes; i++)
1493		if (!regmap_writeable(map,
1494				     reg + regmap_get_offset(map, i)))
1495			return -EINVAL;
 
 
 
 
 
1496
1497	if (!map->cache_bypass && map->format.parse_val) {
1498		unsigned int ival;
1499		int val_bytes = map->format.val_bytes;
1500		for (i = 0; i < val_len / val_bytes; i++) {
1501			ival = map->format.parse_val(val + (i * val_bytes));
1502			ret = regcache_write(map,
1503					     reg + regmap_get_offset(map, i),
1504					     ival);
 
 
1505			if (ret) {
1506				dev_err(map->dev,
1507					"Error in caching of register: %x ret: %d\n",
1508					reg + i, ret);
1509				return ret;
1510			}
1511		}
1512		if (map->cache_only) {
1513			map->cache_dirty = true;
1514			return 0;
1515		}
1516	}
1517
1518	range = _regmap_range_lookup(map, reg);
1519	if (range) {
1520		int val_num = val_len / map->format.val_bytes;
1521		int win_offset = (reg - range->range_min) % range->window_len;
1522		int win_residue = range->window_len - win_offset;
1523
1524		/* If the write goes beyond the end of the window split it */
1525		while (val_num > win_residue) {
1526			dev_dbg(map->dev, "Writing window %d/%zu\n",
1527				win_residue, val_len / map->format.val_bytes);
1528			ret = _regmap_raw_write_impl(map, reg, val,
1529						     win_residue *
1530						     map->format.val_bytes);
1531			if (ret != 0)
1532				return ret;
1533
1534			reg += win_residue;
1535			val_num -= win_residue;
1536			val += win_residue * map->format.val_bytes;
1537			val_len -= win_residue * map->format.val_bytes;
1538
1539			win_offset = (reg - range->range_min) %
1540				range->window_len;
1541			win_residue = range->window_len - win_offset;
1542		}
1543
1544		ret = _regmap_select_page(map, &reg, range, val_num);
1545		if (ret != 0)
1546			return ret;
1547	}
1548
 
1549	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551				      map->write_flag_mask);
1552
1553	/*
1554	 * Essentially all I/O mechanisms will be faster with a single
1555	 * buffer to write.  Since register syncs often generate raw
1556	 * writes of single registers optimise that case.
1557	 */
1558	if (val != work_val && val_len == map->format.val_bytes) {
1559		memcpy(work_val, val, map->format.val_bytes);
1560		val = work_val;
1561	}
1562
1563	if (map->async && map->bus->async_write) {
1564		struct regmap_async *async;
1565
1566		trace_regmap_async_write_start(map, reg, val_len);
1567
1568		spin_lock_irqsave(&map->async_lock, flags);
1569		async = list_first_entry_or_null(&map->async_free,
1570						 struct regmap_async,
1571						 list);
1572		if (async)
1573			list_del(&async->list);
1574		spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576		if (!async) {
1577			async = map->bus->async_alloc();
1578			if (!async)
1579				return -ENOMEM;
1580
1581			async->work_buf = kzalloc(map->format.buf_size,
1582						  GFP_KERNEL | GFP_DMA);
1583			if (!async->work_buf) {
1584				kfree(async);
1585				return -ENOMEM;
1586			}
1587		}
1588
1589		async->map = map;
1590
1591		/* If the caller supplied the value we can use it safely. */
1592		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593		       map->format.reg_bytes + map->format.val_bytes);
1594
1595		spin_lock_irqsave(&map->async_lock, flags);
1596		list_add_tail(&async->list, &map->async_list);
1597		spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599		if (val != work_val)
1600			ret = map->bus->async_write(map->bus_context,
1601						    async->work_buf,
1602						    map->format.reg_bytes +
1603						    map->format.pad_bytes,
1604						    val, val_len, async);
1605		else
1606			ret = map->bus->async_write(map->bus_context,
1607						    async->work_buf,
1608						    map->format.reg_bytes +
1609						    map->format.pad_bytes +
1610						    val_len, NULL, 0, async);
1611
1612		if (ret != 0) {
1613			dev_err(map->dev, "Failed to schedule write: %d\n",
1614				ret);
1615
1616			spin_lock_irqsave(&map->async_lock, flags);
1617			list_move(&async->list, &map->async_free);
1618			spin_unlock_irqrestore(&map->async_lock, flags);
1619		}
1620
1621		return ret;
1622	}
1623
1624	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626	/* If we're doing a single register write we can probably just
1627	 * send the work_buf directly, otherwise try to do a gather
1628	 * write.
1629	 */
1630	if (val == work_val)
1631		ret = map->bus->write(map->bus_context, map->work_buf,
1632				      map->format.reg_bytes +
1633				      map->format.pad_bytes +
1634				      val_len);
1635	else if (map->bus->gather_write)
1636		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637					     map->format.reg_bytes +
1638					     map->format.pad_bytes,
1639					     val, val_len);
1640	else
1641		ret = -ENOTSUPP;
1642
1643	/* If that didn't work fall back on linearising by hand. */
1644	if (ret == -ENOTSUPP) {
1645		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646		buf = kzalloc(len, GFP_KERNEL);
1647		if (!buf)
1648			return -ENOMEM;
1649
1650		memcpy(buf, map->work_buf, map->format.reg_bytes);
1651		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652		       val, val_len);
1653		ret = map->bus->write(map->bus_context, buf, len);
1654
1655		kfree(buf);
1656	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657		/* regcache_drop_region() takes lock that we already have,
1658		 * thus call map->cache_ops->drop() directly
1659		 */
1660		if (map->cache_ops && map->cache_ops->drop)
1661			map->cache_ops->drop(map, reg, reg + 1);
1662	}
1663
1664	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666	return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676	return map->bus && map->bus->write && map->format.format_val &&
1677		map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688	return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699	return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704				       unsigned int val)
1705{
1706	int ret;
1707	struct regmap_range_node *range;
1708	struct regmap *map = context;
1709
1710	WARN_ON(!map->bus || !map->format.format_write);
1711
1712	range = _regmap_range_lookup(map, reg);
1713	if (range) {
1714		ret = _regmap_select_page(map, &reg, range, 1);
1715		if (ret != 0)
1716			return ret;
1717	}
1718
 
1719	map->format.format_write(map, reg, val);
1720
1721	trace_regmap_hw_write_start(map, reg, 1);
1722
1723	ret = map->bus->write(map->bus_context, map->work_buf,
1724			      map->format.buf_size);
1725
1726	trace_regmap_hw_write_done(map, reg, 1);
1727
1728	return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732				 unsigned int val)
1733{
1734	struct regmap *map = context;
 
 
1735
 
 
 
 
 
 
 
 
1736	return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740				 unsigned int val)
1741{
1742	struct regmap *map = context;
1743
1744	WARN_ON(!map->bus || !map->format.format_val);
1745
1746	map->format.format_val(map->work_buf + map->format.reg_bytes
1747			       + map->format.pad_bytes, val, 0);
1748	return _regmap_raw_write_impl(map, reg,
1749				      map->work_buf +
1750				      map->format.reg_bytes +
1751				      map->format.pad_bytes,
1752				      map->format.val_bytes);
 
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757	return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761		  unsigned int val)
1762{
1763	int ret;
1764	void *context = _regmap_map_get_context(map);
1765
1766	if (!regmap_writeable(map, reg))
1767		return -EIO;
1768
1769	if (!map->cache_bypass && !map->defer_caching) {
1770		ret = regcache_write(map, reg, val);
1771		if (ret != 0)
1772			return ret;
1773		if (map->cache_only) {
1774			map->cache_dirty = true;
1775			return 0;
1776		}
1777	}
1778
1779	if (regmap_should_log(map))
1780		dev_info(map->dev, "%x <= %x\n", reg, val);
 
 
1781
1782	trace_regmap_reg_write(map, reg, val);
 
1783
1784	return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799	int ret;
1800
1801	if (!IS_ALIGNED(reg, map->reg_stride))
1802		return -EINVAL;
1803
1804	map->lock(map->lock_arg);
1805
1806	ret = _regmap_write(map, reg, val);
1807
1808	map->unlock(map->lock_arg);
1809
1810	return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826	int ret;
1827
1828	if (!IS_ALIGNED(reg, map->reg_stride))
1829		return -EINVAL;
1830
1831	map->lock(map->lock_arg);
1832
1833	map->async = true;
1834
1835	ret = _regmap_write(map, reg, val);
1836
1837	map->async = false;
1838
1839	map->unlock(map->lock_arg);
1840
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846		      const void *val, size_t val_len)
1847{
1848	size_t val_bytes = map->format.val_bytes;
1849	size_t val_count = val_len / val_bytes;
1850	size_t chunk_count, chunk_bytes;
1851	size_t chunk_regs = val_count;
1852	int ret, i;
1853
1854	if (!val_count)
1855		return -EINVAL;
1856
1857	if (map->use_single_write)
1858		chunk_regs = 1;
1859	else if (map->max_raw_write && val_len > map->max_raw_write)
1860		chunk_regs = map->max_raw_write / val_bytes;
1861
1862	chunk_count = val_count / chunk_regs;
1863	chunk_bytes = chunk_regs * val_bytes;
1864
1865	/* Write as many bytes as possible with chunk_size */
1866	for (i = 0; i < chunk_count; i++) {
1867		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868		if (ret)
1869			return ret;
1870
1871		reg += regmap_get_offset(map, chunk_regs);
1872		val += chunk_bytes;
1873		val_len -= chunk_bytes;
1874	}
1875
1876	/* Write remaining bytes */
1877	if (val_len)
1878		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880	return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 *       device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device.  No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900		     const void *val, size_t val_len)
1901{
1902	int ret;
1903
1904	if (!regmap_can_raw_write(map))
1905		return -EINVAL;
1906	if (val_len % map->format.val_bytes)
1907		return -EINVAL;
1908
1909	map->lock(map->lock_arg);
1910
1911	ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913	map->unlock(map->lock_arg);
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 *			register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941		      const void *val, size_t val_len)
1942{
1943	size_t write_len;
1944	int ret;
1945
1946	if (!map->bus)
1947		return -EINVAL;
1948	if (!map->bus->write)
1949		return -ENOTSUPP;
1950	if (val_len % map->format.val_bytes)
1951		return -EINVAL;
1952	if (!IS_ALIGNED(reg, map->reg_stride))
1953		return -EINVAL;
1954	if (val_len == 0)
1955		return -EINVAL;
1956
1957	map->lock(map->lock_arg);
1958
1959	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960		ret = -EINVAL;
1961		goto out_unlock;
1962	}
1963
 
 
 
 
 
 
 
 
 
1964	while (val_len) {
1965		if (map->max_raw_write && map->max_raw_write < val_len)
1966			write_len = map->max_raw_write;
1967		else
1968			write_len = val_len;
1969		ret = _regmap_raw_write(map, reg, val, write_len);
1970		if (ret)
1971			goto out_unlock;
1972		val = ((u8 *)val) + write_len;
1973		val_len -= write_len;
1974	}
1975
1976out_unlock:
1977	map->unlock(map->lock_arg);
1978	return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 *                                   register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000				  unsigned int mask, unsigned int val,
2001				  bool *change, bool async, bool force)
2002{
2003	mask = (mask << field->shift) & field->mask;
2004
2005	return regmap_update_bits_base(field->regmap, field->reg,
2006				       mask, val << field->shift,
2007				       change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 *                                    register field with port ID
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027				   unsigned int mask, unsigned int val,
2028				   bool *change, bool async, bool force)
2029{
2030	if (id >= field->id_size)
2031		return -EINVAL;
2032
2033	mask = (mask << field->shift) & field->mask;
2034
2035	return regmap_update_bits_base(field->regmap,
2036				       field->reg + (field->id_offset * id),
2037				       mask, val << field->shift,
2038				       change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057		     size_t val_count)
2058{
2059	int ret = 0, i;
2060	size_t val_bytes = map->format.val_bytes;
2061
2062	if (!IS_ALIGNED(reg, map->reg_stride))
2063		return -EINVAL;
2064
2065	/*
2066	 * Some devices don't support bulk write, for them we have a series of
2067	 * single write operations.
2068	 */
2069	if (!map->bus || !map->format.parse_inplace) {
2070		map->lock(map->lock_arg);
2071		for (i = 0; i < val_count; i++) {
2072			unsigned int ival;
2073
2074			switch (val_bytes) {
2075			case 1:
2076				ival = *(u8 *)(val + (i * val_bytes));
2077				break;
2078			case 2:
2079				ival = *(u16 *)(val + (i * val_bytes));
2080				break;
2081			case 4:
2082				ival = *(u32 *)(val + (i * val_bytes));
2083				break;
2084#ifdef CONFIG_64BIT
2085			case 8:
2086				ival = *(u64 *)(val + (i * val_bytes));
2087				break;
2088#endif
2089			default:
2090				ret = -EINVAL;
2091				goto out;
2092			}
2093
2094			ret = _regmap_write(map,
2095					    reg + regmap_get_offset(map, i),
2096					    ival);
2097			if (ret != 0)
2098				goto out;
2099		}
2100out:
2101		map->unlock(map->lock_arg);
2102	} else {
2103		void *wval;
2104
2105		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106		if (!wval)
2107			return -ENOMEM;
2108
2109		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110			map->format.parse_inplace(wval + i);
2111
2112		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114		kfree(wval);
2115	}
 
 
 
 
2116	return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128				       const struct reg_sequence *regs,
2129				       size_t num_regs)
2130{
2131	int ret;
2132	void *buf;
2133	int i;
2134	u8 *u8;
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t reg_bytes = map->format.reg_bytes;
2137	size_t pad_bytes = map->format.pad_bytes;
2138	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139	size_t len = pair_size * num_regs;
2140
2141	if (!len)
2142		return -EINVAL;
2143
2144	buf = kzalloc(len, GFP_KERNEL);
2145	if (!buf)
2146		return -ENOMEM;
2147
2148	/* We have to linearise by hand. */
2149
2150	u8 = buf;
2151
2152	for (i = 0; i < num_regs; i++) {
2153		unsigned int reg = regs[i].reg;
2154		unsigned int val = regs[i].def;
2155		trace_regmap_hw_write_start(map, reg, 1);
 
2156		map->format.format_reg(u8, reg, map->reg_shift);
2157		u8 += reg_bytes + pad_bytes;
2158		map->format.format_val(u8, val, 0);
2159		u8 += val_bytes;
2160	}
2161	u8 = buf;
2162	*u8 |= map->write_flag_mask;
2163
2164	ret = map->bus->write(map->bus_context, buf, len);
2165
2166	kfree(buf);
2167
2168	for (i = 0; i < num_regs; i++) {
2169		int reg = regs[i].reg;
2170		trace_regmap_hw_write_done(map, reg, 1);
2171	}
2172	return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176					  unsigned int reg,
2177					  struct regmap_range_node *range)
2178{
2179	unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181	return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185					       struct reg_sequence *regs,
2186					       size_t num_regs)
2187{
2188	int ret;
2189	int i, n;
2190	struct reg_sequence *base;
2191	unsigned int this_page = 0;
2192	unsigned int page_change = 0;
2193	/*
2194	 * the set of registers are not neccessarily in order, but
2195	 * since the order of write must be preserved this algorithm
2196	 * chops the set each time the page changes. This also applies
2197	 * if there is a delay required at any point in the sequence.
2198	 */
2199	base = regs;
2200	for (i = 0, n = 0; i < num_regs; i++, n++) {
2201		unsigned int reg = regs[i].reg;
2202		struct regmap_range_node *range;
2203
2204		range = _regmap_range_lookup(map, reg);
2205		if (range) {
2206			unsigned int win_page = _regmap_register_page(map, reg,
2207								      range);
2208
2209			if (i == 0)
2210				this_page = win_page;
2211			if (win_page != this_page) {
2212				this_page = win_page;
2213				page_change = 1;
2214			}
2215		}
2216
2217		/* If we have both a page change and a delay make sure to
2218		 * write the regs and apply the delay before we change the
2219		 * page.
2220		 */
2221
2222		if (page_change || regs[i].delay_us) {
2223
2224				/* For situations where the first write requires
2225				 * a delay we need to make sure we don't call
2226				 * raw_multi_reg_write with n=0
2227				 * This can't occur with page breaks as we
2228				 * never write on the first iteration
2229				 */
2230				if (regs[i].delay_us && i == 0)
2231					n = 1;
2232
2233				ret = _regmap_raw_multi_reg_write(map, base, n);
2234				if (ret != 0)
2235					return ret;
2236
2237				if (regs[i].delay_us)
2238					udelay(regs[i].delay_us);
 
 
 
 
2239
2240				base += n;
2241				n = 0;
2242
2243				if (page_change) {
2244					ret = _regmap_select_page(map,
2245								  &base[n].reg,
2246								  range, 1);
2247					if (ret != 0)
2248						return ret;
2249
2250					page_change = 0;
2251				}
2252
2253		}
2254
2255	}
2256	if (n > 0)
2257		return _regmap_raw_multi_reg_write(map, base, n);
2258	return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262				   const struct reg_sequence *regs,
2263				   size_t num_regs)
2264{
2265	int i;
2266	int ret;
2267
2268	if (!map->can_multi_write) {
2269		for (i = 0; i < num_regs; i++) {
2270			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271			if (ret != 0)
2272				return ret;
2273
2274			if (regs[i].delay_us)
2275				udelay(regs[i].delay_us);
 
 
 
 
2276		}
2277		return 0;
2278	}
2279
2280	if (!map->format.parse_inplace)
2281		return -EINVAL;
2282
2283	if (map->writeable_reg)
2284		for (i = 0; i < num_regs; i++) {
2285			int reg = regs[i].reg;
2286			if (!map->writeable_reg(map->dev, reg))
2287				return -EINVAL;
2288			if (!IS_ALIGNED(reg, map->reg_stride))
2289				return -EINVAL;
2290		}
2291
2292	if (!map->cache_bypass) {
2293		for (i = 0; i < num_regs; i++) {
2294			unsigned int val = regs[i].def;
2295			unsigned int reg = regs[i].reg;
2296			ret = regcache_write(map, reg, val);
2297			if (ret) {
2298				dev_err(map->dev,
2299				"Error in caching of register: %x ret: %d\n",
2300								reg, ret);
2301				return ret;
2302			}
2303		}
2304		if (map->cache_only) {
2305			map->cache_dirty = true;
2306			return 0;
2307		}
2308	}
2309
2310	WARN_ON(!map->bus);
2311
2312	for (i = 0; i < num_regs; i++) {
2313		unsigned int reg = regs[i].reg;
2314		struct regmap_range_node *range;
2315
2316		/* Coalesce all the writes between a page break or a delay
2317		 * in a sequence
2318		 */
2319		range = _regmap_range_lookup(map, reg);
2320		if (range || regs[i].delay_us) {
2321			size_t len = sizeof(struct reg_sequence)*num_regs;
2322			struct reg_sequence *base = kmemdup(regs, len,
2323							   GFP_KERNEL);
2324			if (!base)
2325				return -ENOMEM;
2326			ret = _regmap_range_multi_paged_reg_write(map, base,
2327								  num_regs);
2328			kfree(base);
2329
2330			return ret;
2331		}
2332	}
2333	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356			   int num_regs)
2357{
2358	int ret;
2359
2360	map->lock(map->lock_arg);
2361
2362	ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364	map->unlock(map->lock_arg);
2365
2366	return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 *                                     device but not the cache
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389				    const struct reg_sequence *regs,
2390				    int num_regs)
2391{
2392	int ret;
2393	bool bypass;
2394
2395	map->lock(map->lock_arg);
2396
2397	bypass = map->cache_bypass;
2398	map->cache_bypass = true;
2399
2400	ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402	map->cache_bypass = bypass;
2403
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 *                            asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 *       device.  Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device.  No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI.  regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433			   const void *val, size_t val_len)
2434{
2435	int ret;
2436
2437	if (val_len % map->format.val_bytes)
2438		return -EINVAL;
2439	if (!IS_ALIGNED(reg, map->reg_stride))
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	map->async = true;
2445
2446	ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448	map->async = false;
2449
2450	map->unlock(map->lock_arg);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457			    unsigned int val_len)
2458{
2459	struct regmap_range_node *range;
2460	int ret;
2461
2462	WARN_ON(!map->bus);
2463
2464	if (!map->bus || !map->bus->read)
2465		return -EINVAL;
2466
2467	range = _regmap_range_lookup(map, reg);
2468	if (range) {
2469		ret = _regmap_select_page(map, &reg, range,
2470					  val_len / map->format.val_bytes);
2471		if (ret != 0)
2472			return ret;
2473	}
2474
 
2475	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477				      map->read_flag_mask);
2478	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480	ret = map->bus->read(map->bus_context, map->work_buf,
2481			     map->format.reg_bytes + map->format.pad_bytes,
2482			     val, val_len);
2483
2484	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486	return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490				unsigned int *val)
2491{
2492	struct regmap *map = context;
 
 
2493
 
 
 
 
 
 
 
 
2494	return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498			    unsigned int *val)
2499{
2500	int ret;
2501	struct regmap *map = context;
2502	void *work_val = map->work_buf + map->format.reg_bytes +
2503		map->format.pad_bytes;
2504
2505	if (!map->format.parse_val)
2506		return -EINVAL;
2507
2508	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509	if (ret == 0)
2510		*val = map->format.parse_val(work_val);
2511
2512	return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516			unsigned int *val)
2517{
2518	int ret;
2519	void *context = _regmap_map_get_context(map);
2520
2521	if (!map->cache_bypass) {
2522		ret = regcache_read(map, reg, val);
2523		if (ret == 0)
2524			return 0;
2525	}
2526
2527	if (map->cache_only)
2528		return -EBUSY;
2529
2530	if (!regmap_readable(map, reg))
2531		return -EIO;
2532
2533	ret = map->reg_read(context, reg, val);
2534	if (ret == 0) {
2535		if (regmap_should_log(map))
2536			dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538		trace_regmap_reg_read(map, reg, *val);
2539
2540		if (!map->cache_bypass)
2541			regcache_write(map, reg, *val);
2542	}
2543
2544	return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559	int ret;
2560
2561	if (!IS_ALIGNED(reg, map->reg_stride))
2562		return -EINVAL;
2563
2564	map->lock(map->lock_arg);
2565
2566	ret = _regmap_read(map, reg, val);
2567
2568	map->unlock(map->lock_arg);
2569
2570	return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586		    size_t val_len)
2587{
2588	size_t val_bytes = map->format.val_bytes;
2589	size_t val_count = val_len / val_bytes;
2590	unsigned int v;
2591	int ret, i;
2592
2593	if (!map->bus)
2594		return -EINVAL;
2595	if (val_len % map->format.val_bytes)
2596		return -EINVAL;
2597	if (!IS_ALIGNED(reg, map->reg_stride))
2598		return -EINVAL;
2599	if (val_count == 0)
2600		return -EINVAL;
2601
2602	map->lock(map->lock_arg);
2603
2604	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605	    map->cache_type == REGCACHE_NONE) {
2606		size_t chunk_count, chunk_bytes;
2607		size_t chunk_regs = val_count;
2608
2609		if (!map->bus->read) {
 
 
 
 
 
2610			ret = -ENOTSUPP;
2611			goto out;
2612		}
2613
2614		if (map->use_single_read)
2615			chunk_regs = 1;
2616		else if (map->max_raw_read && val_len > map->max_raw_read)
2617			chunk_regs = map->max_raw_read / val_bytes;
2618
2619		chunk_count = val_count / chunk_regs;
2620		chunk_bytes = chunk_regs * val_bytes;
2621
2622		/* Read bytes that fit into whole chunks */
2623		for (i = 0; i < chunk_count; i++) {
2624			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625			if (ret != 0)
2626				goto out;
2627
2628			reg += regmap_get_offset(map, chunk_regs);
2629			val += chunk_bytes;
2630			val_len -= chunk_bytes;
2631		}
2632
2633		/* Read remaining bytes */
2634		if (val_len) {
2635			ret = _regmap_raw_read(map, reg, val, val_len);
2636			if (ret != 0)
2637				goto out;
2638		}
2639	} else {
2640		/* Otherwise go word by word for the cache; should be low
2641		 * cost as we expect to hit the cache.
2642		 */
2643		for (i = 0; i < val_count; i++) {
2644			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645					   &v);
2646			if (ret != 0)
2647				goto out;
2648
2649			map->format.format_val(val + (i * val_bytes), v, 0);
2650		}
2651	}
2652
2653 out:
2654	map->unlock(map->lock_arg);
2655
2656	return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 *			register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682		      void *val, size_t val_len)
2683{
2684	size_t read_len;
2685	int ret;
2686
2687	if (!map->bus)
2688		return -EINVAL;
2689	if (!map->bus->read)
2690		return -ENOTSUPP;
 
2691	if (val_len % map->format.val_bytes)
2692		return -EINVAL;
2693	if (!IS_ALIGNED(reg, map->reg_stride))
2694		return -EINVAL;
2695	if (val_len == 0)
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701		ret = -EINVAL;
2702		goto out_unlock;
2703	}
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705	while (val_len) {
2706		if (map->max_raw_read && map->max_raw_read < val_len)
2707			read_len = map->max_raw_read;
2708		else
2709			read_len = val_len;
2710		ret = _regmap_raw_read(map, reg, val, read_len);
2711		if (ret)
2712			goto out_unlock;
2713		val = ((u8 *)val) + read_len;
2714		val_len -= read_len;
2715	}
2716
2717out_unlock:
2718	map->unlock(map->lock_arg);
2719	return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734	int ret;
2735	unsigned int reg_val;
2736	ret = regmap_read(field->regmap, field->reg, &reg_val);
2737	if (ret != 0)
2738		return ret;
2739
2740	reg_val &= field->mask;
2741	reg_val >>= field->shift;
2742	*val = reg_val;
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759		       unsigned int *val)
2760{
2761	int ret;
2762	unsigned int reg_val;
2763
2764	if (id >= field->id_size)
2765		return -EINVAL;
2766
2767	ret = regmap_read(field->regmap,
2768			  field->reg + (field->id_offset * id),
2769			  &reg_val);
2770	if (ret != 0)
2771		return ret;
2772
2773	reg_val &= field->mask;
2774	reg_val >>= field->shift;
2775	*val = reg_val;
2776
2777	return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793		     size_t val_count)
2794{
2795	int ret, i;
2796	size_t val_bytes = map->format.val_bytes;
2797	bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799	if (!IS_ALIGNED(reg, map->reg_stride))
2800		return -EINVAL;
2801	if (val_count == 0)
2802		return -EINVAL;
2803
2804	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806		if (ret != 0)
2807			return ret;
2808
2809		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810			map->format.parse_inplace(val + i);
2811	} else {
2812#ifdef CONFIG_64BIT
2813		u64 *u64 = val;
2814#endif
2815		u32 *u32 = val;
2816		u16 *u16 = val;
2817		u8 *u8 = val;
2818
2819		map->lock(map->lock_arg);
2820
2821		for (i = 0; i < val_count; i++) {
2822			unsigned int ival;
2823
2824			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825					   &ival);
2826			if (ret != 0)
2827				goto out;
2828
2829			switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831			case 8:
2832				u64[i] = ival;
2833				break;
2834#endif
2835			case 4:
2836				u32[i] = ival;
2837				break;
2838			case 2:
2839				u16[i] = ival;
2840				break;
2841			case 1:
2842				u8[i] = ival;
2843				break;
2844			default:
2845				ret = -EINVAL;
2846				goto out;
2847			}
2848		}
2849
2850out:
2851		map->unlock(map->lock_arg);
2852	}
2853
 
 
 
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859			       unsigned int mask, unsigned int val,
2860			       bool *change, bool force_write)
2861{
2862	int ret;
2863	unsigned int tmp, orig;
2864
2865	if (change)
2866		*change = false;
2867
2868	if (regmap_volatile(map, reg) && map->reg_update_bits) {
 
2869		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870		if (ret == 0 && change)
2871			*change = true;
2872	} else {
2873		ret = _regmap_read(map, reg, &orig);
2874		if (ret != 0)
2875			return ret;
2876
2877		tmp = orig & ~mask;
2878		tmp |= val & mask;
2879
2880		if (force_write || (tmp != orig)) {
2881			ret = _regmap_write(map, reg, tmp);
2882			if (ret == 0 && change)
2883				*change = true;
2884		}
2885	}
2886
2887	return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913			    unsigned int mask, unsigned int val,
2914			    bool *change, bool async, bool force)
2915{
2916	int ret;
2917
2918	map->lock(map->lock_arg);
2919
2920	map->async = async;
2921
2922	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924	map->async = false;
2925
2926	map->unlock(map->lock_arg);
2927
2928	return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934	struct regmap *map = async->map;
2935	bool wake;
2936
2937	trace_regmap_async_io_complete(map);
2938
2939	spin_lock(&map->async_lock);
2940	list_move(&async->list, &map->async_free);
2941	wake = list_empty(&map->async_list);
2942
2943	if (ret != 0)
2944		map->async_ret = ret;
2945
2946	spin_unlock(&map->async_lock);
2947
2948	if (wake)
2949		wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955	unsigned long flags;
2956	int ret;
2957
2958	spin_lock_irqsave(&map->async_lock, flags);
2959	ret = list_empty(&map->async_list);
2960	spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962	return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed.  Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975	unsigned long flags;
2976	int ret;
2977
2978	/* Nothing to do with no async support */
2979	if (!map->bus || !map->bus->async_write)
2980		return 0;
2981
2982	trace_regmap_async_complete_start(map);
2983
2984	wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986	spin_lock_irqsave(&map->async_lock, flags);
2987	ret = map->async_ret;
2988	map->async_ret = 0;
2989	spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991	trace_regmap_async_complete_done(map);
2992
2993	return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 *                         on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately.  Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015			  int num_regs)
3016{
3017	struct reg_sequence *p;
3018	int ret;
3019	bool bypass;
3020
3021	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022	    num_regs))
3023		return 0;
3024
3025	p = krealloc(map->patch,
3026		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027		     GFP_KERNEL);
3028	if (p) {
3029		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030		map->patch = p;
3031		map->patch_regs += num_regs;
3032	} else {
3033		return -ENOMEM;
3034	}
3035
3036	map->lock(map->lock_arg);
3037
3038	bypass = map->cache_bypass;
3039
3040	map->cache_bypass = true;
3041	map->async = true;
3042
3043	ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045	map->async = false;
3046	map->cache_bypass = bypass;
3047
3048	map->unlock(map->lock_arg);
3049
3050	regmap_async_complete(map);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066	if (map->format.format_write)
3067		return -EINVAL;
3068
3069	return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083	return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097	return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
 
 
 
 
 
 
 
 
 
 
 
 
 
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102			unsigned int *val)
3103{
3104	if (!map->format.parse_val)
3105		return -EINVAL;
3106
3107	*val = map->format.parse_val(buf);
3108
3109	return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115	regmap_debugfs_initcall();
3116
3117	return 0;
3118}
3119postcore_initcall(regmap_initcall);