Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 16#include "accessors.h"
 17
 18/*
 19 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 20 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 21 * the level the eb occupies in the tree.
 22 *
 23 * Different roots are used for different purposes and may nest inside each
 24 * other and they require separate keysets.  As lockdep keys should be
 25 * static, assign keysets according to the purpose of the root as indicated
 26 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 27 * roots have separate keysets.
 28 *
 29 * Lock-nesting across peer nodes is always done with the immediate parent
 30 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 31 * subclass to avoid triggering lockdep warning in such cases.
 32 *
 33 * The key is set by the readpage_end_io_hook after the buffer has passed
 34 * csum validation but before the pages are unlocked.  It is also set by
 35 * btrfs_init_new_buffer on freshly allocated blocks.
 36 *
 37 * We also add a check to make sure the highest level of the tree is the
 38 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 39 * needs update as well.
 40 */
 41#ifdef CONFIG_DEBUG_LOCK_ALLOC
 42#if BTRFS_MAX_LEVEL != 8
 43#error
 44#endif
 45
 46#define DEFINE_LEVEL(stem, level)					\
 47	.names[level] = "btrfs-" stem "-0" #level,
 48
 49#define DEFINE_NAME(stem)						\
 50	DEFINE_LEVEL(stem, 0)						\
 51	DEFINE_LEVEL(stem, 1)						\
 52	DEFINE_LEVEL(stem, 2)						\
 53	DEFINE_LEVEL(stem, 3)						\
 54	DEFINE_LEVEL(stem, 4)						\
 55	DEFINE_LEVEL(stem, 5)						\
 56	DEFINE_LEVEL(stem, 6)						\
 57	DEFINE_LEVEL(stem, 7)
 58
 59static struct btrfs_lockdep_keyset {
 60	u64			id;		/* root objectid */
 61	/* Longest entry: btrfs-block-group-00 */
 62	char			names[BTRFS_MAX_LEVEL][24];
 63	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 64} btrfs_lockdep_keysets[] = {
 65	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 66	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 67	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 68	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 69	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 70	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 71	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 72	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 73	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 74	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 75	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 76	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 77	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 78	{ .id = 0,				DEFINE_NAME("tree")	},
 79};
 80
 81#undef DEFINE_LEVEL
 82#undef DEFINE_NAME
 83
 84void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 85{
 86	struct btrfs_lockdep_keyset *ks;
 87
 88	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 89
 90	/* Find the matching keyset, id 0 is the default entry */
 91	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 92		if (ks->id == objectid)
 93			break;
 94
 95	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 96}
 97
 98void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 99{
100	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
101		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
102					       eb, btrfs_header_level(eb));
103}
104
105#endif
106
107#ifdef CONFIG_BTRFS_DEBUG
108static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
109{
110	eb->lock_owner = owner;
 
111}
112#else
113static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
114#endif
115
116/*
117 * Extent buffer locking
118 * =====================
119 *
120 * We use a rw_semaphore for tree locking, and the semantics are exactly the
121 * same:
122 *
123 * - reader/writer exclusion
124 * - writer/writer exclusion
125 * - reader/reader sharing
126 * - try-lock semantics for readers and writers
127 *
128 * The rwsem implementation does opportunistic spinning which reduces number of
129 * times the locking task needs to sleep.
130 */
131
132/*
133 * __btrfs_tree_read_lock - lock extent buffer for read
134 * @eb:		the eb to be locked
135 * @nest:	the nesting level to be used for lockdep
136 *
137 * This takes the read lock on the extent buffer, using the specified nesting
138 * level for lockdep purposes.
139 */
140void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
141{
142	u64 start_ns = 0;
 
 
143
144	if (trace_btrfs_tree_read_lock_enabled())
145		start_ns = ktime_get_ns();
 
 
146
147	down_read_nested(&eb->lock, nest);
148	trace_btrfs_tree_read_lock(eb, start_ns);
 
149}
150
151void btrfs_tree_read_lock(struct extent_buffer *eb)
152{
153	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 
154}
155
156/*
157 * Try-lock for read.
158 *
159 * Return 1 if the rwlock has been taken, 0 otherwise
160 */
161int btrfs_try_tree_read_lock(struct extent_buffer *eb)
162{
163	if (down_read_trylock(&eb->lock)) {
164		trace_btrfs_try_tree_read_lock(eb);
165		return 1;
166	}
167	return 0;
168}
169
170/*
171 * Try-lock for write.
172 *
173 * Return 1 if the rwlock has been taken, 0 otherwise
174 */
175int btrfs_try_tree_write_lock(struct extent_buffer *eb)
176{
177	if (down_write_trylock(&eb->lock)) {
178		btrfs_set_eb_lock_owner(eb, current->pid);
179		trace_btrfs_try_tree_write_lock(eb);
180		return 1;
181	}
182	return 0;
183}
184
185/*
186 * Release read lock.
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190	trace_btrfs_tree_read_unlock(eb);
191	up_read(&eb->lock);
192}
193
194/*
195 * Lock eb for write.
196 *
197 * @eb:		the eb to lock
198 * @nest:	the nesting to use for the lock
199 *
200 * Returns with the eb->lock write locked.
201 */
202void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
203	__acquires(&eb->lock)
204{
205	u64 start_ns = 0;
 
206
207	if (trace_btrfs_tree_lock_enabled())
208		start_ns = ktime_get_ns();
 
 
209
210	down_write_nested(&eb->lock, nest);
211	btrfs_set_eb_lock_owner(eb, current->pid);
212	trace_btrfs_tree_lock(eb, start_ns);
213}
214
215void btrfs_tree_lock(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216{
217	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
 
 
 
 
 
 
 
 
 
 
 
218}
219
220/*
221 * Release the write lock.
222 */
223void btrfs_tree_unlock(struct extent_buffer *eb)
224{
225	trace_btrfs_tree_unlock(eb);
226	btrfs_set_eb_lock_owner(eb, 0);
227	up_write(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
228}
229
230/*
231 * This releases any locks held in the path starting at level and going all the
232 * way up to the root.
233 *
234 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
235 * cases, such as COW of the block at slot zero in the node.  This ignores
236 * those rules, and it should only be called when there are no more updates to
237 * be done higher up in the tree.
238 */
239void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
240{
241	int i;
242
243	if (path->keep_locks)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244		return;
 
 
 
 
 
 
 
 
 
 
 
245
246	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
247		if (!path->nodes[i])
248			continue;
249		if (!path->locks[i])
250			continue;
251		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
252		path->locks[i] = 0;
 
 
 
 
 
 
 
253	}
 
 
 
 
254}
255
256/*
257 * Loop around taking references on and locking the root node of the tree until
258 * we end up with a lock on the root node.
259 *
260 * Return: root extent buffer with write lock held
261 */
262struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
263{
264	struct extent_buffer *eb;
 
265
266	while (1) {
267		eb = btrfs_root_node(root);
268
269		btrfs_maybe_reset_lockdep_class(root, eb);
270		btrfs_tree_lock(eb);
271		if (eb == root->node)
272			break;
273		btrfs_tree_unlock(eb);
274		free_extent_buffer(eb);
275	}
276	return eb;
 
 
 
277}
278
279/*
280 * Loop around taking references on and locking the root node of the tree until
281 * we end up with a lock on the root node.
282 *
283 * Return: root extent buffer with read lock held
284 */
285struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
286{
287	struct extent_buffer *eb;
288
289	while (1) {
290		eb = btrfs_root_node(root);
291
292		btrfs_maybe_reset_lockdep_class(root, eb);
293		btrfs_tree_read_lock(eb);
294		if (eb == root->node)
295			break;
296		btrfs_tree_read_unlock(eb);
297		free_extent_buffer(eb);
298	}
299	return eb;
 
 
 
 
300}
301
302/*
303 * Loop around taking references on and locking the root node of the tree in
304 * nowait mode until we end up with a lock on the root node or returning to
305 * avoid blocking.
306 *
307 * Return: root extent buffer with read lock held or -EAGAIN.
308 */
309struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
310{
311	struct extent_buffer *eb;
312
313	while (1) {
314		eb = btrfs_root_node(root);
315		if (!btrfs_try_tree_read_lock(eb)) {
316			free_extent_buffer(eb);
317			return ERR_PTR(-EAGAIN);
318		}
319		if (eb == root->node)
320			break;
321		btrfs_tree_read_unlock(eb);
322		free_extent_buffer(eb);
323	}
324	return eb;
 
 
 
325}
326
327/*
328 * DREW locks
329 * ==========
330 *
331 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
332 * where you want to provide A-B exclusion but not AA or BB.
333 *
334 * Currently implementation gives more priority to reader. If a reader and a
335 * writer both race to acquire their respective sides of the lock the writer
336 * would yield its lock as soon as it detects a concurrent reader. Additionally
337 * if there are pending readers no new writers would be allowed to come in and
338 * acquire the lock.
339 */
340
341void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
342{
343	atomic_set(&lock->readers, 0);
344	atomic_set(&lock->writers, 0);
345	init_waitqueue_head(&lock->pending_readers);
346	init_waitqueue_head(&lock->pending_writers);
 
 
 
 
 
 
 
 
 
 
 
 
 
347}
348
349/* Return true if acquisition is successful, false otherwise */
350bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
 
 
 
351{
352	if (atomic_read(&lock->readers))
353		return false;
354
355	atomic_inc(&lock->writers);
356
357	/* Ensure writers count is updated before we check for pending readers */
358	smp_mb__after_atomic();
359	if (atomic_read(&lock->readers)) {
360		btrfs_drew_write_unlock(lock);
361		return false;
362	}
363
364	return true;
365}
366
367void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
368{
369	while (true) {
370		if (btrfs_drew_try_write_lock(lock))
371			return;
372		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
 
 
373	}
 
 
 
 
374}
375
376void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
377{
378	atomic_dec(&lock->writers);
379	cond_wake_up(&lock->pending_readers);
380}
381
382void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
383{
384	atomic_inc(&lock->readers);
385
386	/*
387	 * Ensure the pending reader count is perceieved BEFORE this reader
388	 * goes to sleep in case of active writers. This guarantees new writers
389	 * won't be allowed and that the current reader will be woken up when
390	 * the last active writer finishes its jobs.
391	 */
392	smp_mb__after_atomic();
393
394	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
395}
 
 
396
397void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398{
399	/*
400	 * atomic_dec_and_test implies a full barrier, so woken up writers
401	 * are guaranteed to see the decrement
402	 */
403	if (atomic_dec_and_test(&lock->readers))
404		wake_up(&lock->pending_writers);
 
 
 
 
 
405}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16#ifdef CONFIG_BTRFS_DEBUG
 17static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb)
 18{
 19	WARN_ON(eb->spinning_writers);
 20	eb->spinning_writers++;
 21}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 24{
 25	WARN_ON(eb->spinning_writers != 1);
 26	eb->spinning_writers--;
 27}
 28
 29static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb)
 30{
 31	WARN_ON(eb->spinning_writers);
 32}
 33
 34static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb)
 35{
 36	atomic_inc(&eb->spinning_readers);
 37}
 38
 39static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb)
 40{
 41	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
 42	atomic_dec(&eb->spinning_readers);
 43}
 44
 45static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb)
 
 
 
 
 
 46{
 47	atomic_inc(&eb->read_locks);
 
 
 
 
 48}
 49
 50static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb)
 
 
 
 
 
 51{
 52	atomic_dec(&eb->read_locks);
 
 
 
 
 
 53}
 54
 55static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
 
 
 
 56{
 57	BUG_ON(!atomic_read(&eb->read_locks));
 
 58}
 59
 60static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 61{
 62	eb->write_locks++;
 63}
 64
 65static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb)
 66{
 67	eb->write_locks--;
 68}
 69
 70void btrfs_assert_tree_locked(struct extent_buffer *eb)
 71{
 72	BUG_ON(!eb->write_locks);
 73}
 74
 75#else
 76static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { }
 77static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { }
 78static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { }
 79static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { }
 80static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { }
 81static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { }
 82static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { }
 83static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { }
 84void btrfs_assert_tree_locked(struct extent_buffer *eb) { }
 85static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { }
 86static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { }
 87#endif
 88
 89void btrfs_set_lock_blocking_read(struct extent_buffer *eb)
 90{
 91	trace_btrfs_set_lock_blocking_read(eb);
 92	/*
 93	 * No lock is required.  The lock owner may change if we have a read
 94	 * lock, but it won't change to or away from us.  If we have the write
 95	 * lock, we are the owner and it'll never change.
 96	 */
 97	if (eb->lock_nested && current->pid == eb->lock_owner)
 98		return;
 99	btrfs_assert_tree_read_locked(eb);
100	atomic_inc(&eb->blocking_readers);
101	btrfs_assert_spinning_readers_put(eb);
102	read_unlock(&eb->lock);
103}
104
105void btrfs_set_lock_blocking_write(struct extent_buffer *eb)
 
 
 
106{
107	trace_btrfs_set_lock_blocking_write(eb);
108	/*
109	 * No lock is required.  The lock owner may change if we have a read
110	 * lock, but it won't change to or away from us.  If we have the write
111	 * lock, we are the owner and it'll never change.
112	 */
113	if (eb->lock_nested && current->pid == eb->lock_owner)
114		return;
115	if (eb->blocking_writers == 0) {
116		btrfs_assert_spinning_writers_put(eb);
117		btrfs_assert_tree_locked(eb);
118		eb->blocking_writers++;
119		write_unlock(&eb->lock);
120	}
121}
122
123/*
124 * take a spinning read lock.  This will wait for any blocking
125 * writers
 
 
 
 
 
126 */
127void btrfs_tree_read_lock(struct extent_buffer *eb)
128{
129	u64 start_ns = 0;
130
131	if (trace_btrfs_tree_read_lock_enabled())
132		start_ns = ktime_get_ns();
133again:
134	read_lock(&eb->lock);
135	BUG_ON(eb->blocking_writers == 0 &&
136	       current->pid == eb->lock_owner);
137	if (eb->blocking_writers && current->pid == eb->lock_owner) {
138		/*
139		 * This extent is already write-locked by our thread. We allow
140		 * an additional read lock to be added because it's for the same
141		 * thread. btrfs_find_all_roots() depends on this as it may be
142		 * called on a partly (write-)locked tree.
143		 */
144		BUG_ON(eb->lock_nested);
145		eb->lock_nested = true;
146		read_unlock(&eb->lock);
147		trace_btrfs_tree_read_lock(eb, start_ns);
148		return;
149	}
150	if (eb->blocking_writers) {
151		read_unlock(&eb->lock);
152		wait_event(eb->write_lock_wq,
153			   eb->blocking_writers == 0);
154		goto again;
155	}
156	btrfs_assert_tree_read_locks_get(eb);
157	btrfs_assert_spinning_readers_get(eb);
158	trace_btrfs_tree_read_lock(eb, start_ns);
159}
160
161/*
162 * take a spinning read lock.
163 * returns 1 if we get the read lock and 0 if we don't
164 * this won't wait for blocking writers
165 */
166int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
167{
168	if (eb->blocking_writers)
169		return 0;
170
171	read_lock(&eb->lock);
172	if (eb->blocking_writers) {
173		read_unlock(&eb->lock);
174		return 0;
175	}
176	btrfs_assert_tree_read_locks_get(eb);
177	btrfs_assert_spinning_readers_get(eb);
178	trace_btrfs_tree_read_lock_atomic(eb);
179	return 1;
180}
181
182/*
183 * returns 1 if we get the read lock and 0 if we don't
184 * this won't wait for blocking writers
 
 
185 */
186int btrfs_try_tree_read_lock(struct extent_buffer *eb)
187{
188	if (eb->blocking_writers)
189		return 0;
190
191	if (!read_trylock(&eb->lock))
192		return 0;
193
194	if (eb->blocking_writers) {
195		read_unlock(&eb->lock);
196		return 0;
 
 
 
197	}
198	btrfs_assert_tree_read_locks_get(eb);
199	btrfs_assert_spinning_readers_get(eb);
200	trace_btrfs_try_tree_read_lock(eb);
201	return 1;
202}
203
204/*
205 * returns 1 if we get the read lock and 0 if we don't
206 * this won't wait for blocking writers or readers
 
 
207 */
208int btrfs_try_tree_write_lock(struct extent_buffer *eb)
209{
210	if (eb->blocking_writers || atomic_read(&eb->blocking_readers))
211		return 0;
 
 
212
213	write_lock(&eb->lock);
214	if (eb->blocking_writers || atomic_read(&eb->blocking_readers)) {
215		write_unlock(&eb->lock);
216		return 0;
 
 
217	}
218	btrfs_assert_tree_write_locks_get(eb);
219	btrfs_assert_spinning_writers_get(eb);
220	eb->lock_owner = current->pid;
221	trace_btrfs_try_tree_write_lock(eb);
222	return 1;
223}
224
225/*
226 * drop a spinning read lock
 
 
 
 
227 */
228void btrfs_tree_read_unlock(struct extent_buffer *eb)
229{
230	trace_btrfs_tree_read_unlock(eb);
231	/*
232	 * if we're nested, we have the write lock.  No new locking
233	 * is needed as long as we are the lock owner.
234	 * The write unlock will do a barrier for us, and the lock_nested
235	 * field only matters to the lock owner.
236	 */
237	if (eb->lock_nested && current->pid == eb->lock_owner) {
238		eb->lock_nested = false;
239		return;
 
 
240	}
241	btrfs_assert_tree_read_locked(eb);
242	btrfs_assert_spinning_readers_put(eb);
243	btrfs_assert_tree_read_locks_put(eb);
244	read_unlock(&eb->lock);
245}
246
247/*
248 * drop a blocking read lock
 
 
 
 
 
 
 
 
 
 
249 */
250void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
 
251{
252	trace_btrfs_tree_read_unlock_blocking(eb);
253	/*
254	 * if we're nested, we have the write lock.  No new locking
255	 * is needed as long as we are the lock owner.
256	 * The write unlock will do a barrier for us, and the lock_nested
257	 * field only matters to the lock owner.
258	 */
259	if (eb->lock_nested && current->pid == eb->lock_owner) {
260		eb->lock_nested = false;
261		return;
262	}
263	btrfs_assert_tree_read_locked(eb);
264	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
265	/* atomic_dec_and_test implies a barrier */
266	if (atomic_dec_and_test(&eb->blocking_readers))
267		cond_wake_up_nomb(&eb->read_lock_wq);
268	btrfs_assert_tree_read_locks_put(eb);
269}
270
271/*
272 * take a spinning write lock.  This will wait for both
273 * blocking readers or writers
274 */
275void btrfs_tree_lock(struct extent_buffer *eb)
276{
277	u64 start_ns = 0;
 
 
 
 
 
 
 
 
 
 
278
279	if (trace_btrfs_tree_lock_enabled())
280		start_ns = ktime_get_ns();
281
282	WARN_ON(eb->lock_owner == current->pid);
283again:
284	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
285	wait_event(eb->write_lock_wq, eb->blocking_writers == 0);
286	write_lock(&eb->lock);
287	if (atomic_read(&eb->blocking_readers) || eb->blocking_writers) {
288		write_unlock(&eb->lock);
289		goto again;
290	}
291	btrfs_assert_spinning_writers_get(eb);
292	btrfs_assert_tree_write_locks_get(eb);
293	eb->lock_owner = current->pid;
294	trace_btrfs_tree_lock(eb, start_ns);
295}
296
297/*
298 * drop a spinning or a blocking write lock.
299 */
300void btrfs_tree_unlock(struct extent_buffer *eb)
 
 
 
301{
302	int blockers = eb->blocking_writers;
303
304	BUG_ON(blockers > 1);
 
 
 
 
 
 
305
306	btrfs_assert_tree_locked(eb);
307	trace_btrfs_tree_unlock(eb);
308	eb->lock_owner = 0;
309	btrfs_assert_tree_write_locks_put(eb);
310
311	if (blockers) {
312		btrfs_assert_no_spinning_writers(eb);
313		eb->blocking_writers--;
314		/*
315		 * We need to order modifying blocking_writers above with
316		 * actually waking up the sleepers to ensure they see the
317		 * updated value of blocking_writers
318		 */
319		cond_wake_up(&eb->write_lock_wq);
320	} else {
321		btrfs_assert_spinning_writers_put(eb);
322		write_unlock(&eb->lock);
323	}
324}