Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/spinlock.h>
9#include <linux/page-flags.h>
10#include <asm/bug.h>
11#include <trace/events/btrfs.h>
12#include "misc.h"
13#include "ctree.h"
14#include "extent_io.h"
15#include "locking.h"
16#include "accessors.h"
17
18/*
19 * Lockdep class keys for extent_buffer->lock's in this root. For a given
20 * eb, the lockdep key is determined by the btrfs_root it belongs to and
21 * the level the eb occupies in the tree.
22 *
23 * Different roots are used for different purposes and may nest inside each
24 * other and they require separate keysets. As lockdep keys should be
25 * static, assign keysets according to the purpose of the root as indicated
26 * by btrfs_root->root_key.objectid. This ensures that all special purpose
27 * roots have separate keysets.
28 *
29 * Lock-nesting across peer nodes is always done with the immediate parent
30 * node locked thus preventing deadlock. As lockdep doesn't know this, use
31 * subclass to avoid triggering lockdep warning in such cases.
32 *
33 * The key is set by the readpage_end_io_hook after the buffer has passed
34 * csum validation but before the pages are unlocked. It is also set by
35 * btrfs_init_new_buffer on freshly allocated blocks.
36 *
37 * We also add a check to make sure the highest level of the tree is the
38 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
39 * needs update as well.
40 */
41#ifdef CONFIG_DEBUG_LOCK_ALLOC
42#if BTRFS_MAX_LEVEL != 8
43#error
44#endif
45
46#define DEFINE_LEVEL(stem, level) \
47 .names[level] = "btrfs-" stem "-0" #level,
48
49#define DEFINE_NAME(stem) \
50 DEFINE_LEVEL(stem, 0) \
51 DEFINE_LEVEL(stem, 1) \
52 DEFINE_LEVEL(stem, 2) \
53 DEFINE_LEVEL(stem, 3) \
54 DEFINE_LEVEL(stem, 4) \
55 DEFINE_LEVEL(stem, 5) \
56 DEFINE_LEVEL(stem, 6) \
57 DEFINE_LEVEL(stem, 7)
58
59static struct btrfs_lockdep_keyset {
60 u64 id; /* root objectid */
61 /* Longest entry: btrfs-block-group-00 */
62 char names[BTRFS_MAX_LEVEL][24];
63 struct lock_class_key keys[BTRFS_MAX_LEVEL];
64} btrfs_lockdep_keysets[] = {
65 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
66 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
67 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
68 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
69 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
70 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
71 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
72 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
73 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
74 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
75 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
76 { .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
77 { .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
78 { .id = 0, DEFINE_NAME("tree") },
79};
80
81#undef DEFINE_LEVEL
82#undef DEFINE_NAME
83
84void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
85{
86 struct btrfs_lockdep_keyset *ks;
87
88 BUG_ON(level >= ARRAY_SIZE(ks->keys));
89
90 /* Find the matching keyset, id 0 is the default entry */
91 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
92 if (ks->id == objectid)
93 break;
94
95 lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
96}
97
98void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
99{
100 if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
101 btrfs_set_buffer_lockdep_class(root->root_key.objectid,
102 eb, btrfs_header_level(eb));
103}
104
105#endif
106
107#ifdef CONFIG_BTRFS_DEBUG
108static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
109{
110 eb->lock_owner = owner;
111}
112#else
113static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
114#endif
115
116/*
117 * Extent buffer locking
118 * =====================
119 *
120 * We use a rw_semaphore for tree locking, and the semantics are exactly the
121 * same:
122 *
123 * - reader/writer exclusion
124 * - writer/writer exclusion
125 * - reader/reader sharing
126 * - try-lock semantics for readers and writers
127 *
128 * The rwsem implementation does opportunistic spinning which reduces number of
129 * times the locking task needs to sleep.
130 */
131
132/*
133 * __btrfs_tree_read_lock - lock extent buffer for read
134 * @eb: the eb to be locked
135 * @nest: the nesting level to be used for lockdep
136 *
137 * This takes the read lock on the extent buffer, using the specified nesting
138 * level for lockdep purposes.
139 */
140void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
141{
142 u64 start_ns = 0;
143
144 if (trace_btrfs_tree_read_lock_enabled())
145 start_ns = ktime_get_ns();
146
147 down_read_nested(&eb->lock, nest);
148 trace_btrfs_tree_read_lock(eb, start_ns);
149}
150
151void btrfs_tree_read_lock(struct extent_buffer *eb)
152{
153 __btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
154}
155
156/*
157 * Try-lock for read.
158 *
159 * Return 1 if the rwlock has been taken, 0 otherwise
160 */
161int btrfs_try_tree_read_lock(struct extent_buffer *eb)
162{
163 if (down_read_trylock(&eb->lock)) {
164 trace_btrfs_try_tree_read_lock(eb);
165 return 1;
166 }
167 return 0;
168}
169
170/*
171 * Try-lock for write.
172 *
173 * Return 1 if the rwlock has been taken, 0 otherwise
174 */
175int btrfs_try_tree_write_lock(struct extent_buffer *eb)
176{
177 if (down_write_trylock(&eb->lock)) {
178 btrfs_set_eb_lock_owner(eb, current->pid);
179 trace_btrfs_try_tree_write_lock(eb);
180 return 1;
181 }
182 return 0;
183}
184
185/*
186 * Release read lock.
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190 trace_btrfs_tree_read_unlock(eb);
191 up_read(&eb->lock);
192}
193
194/*
195 * Lock eb for write.
196 *
197 * @eb: the eb to lock
198 * @nest: the nesting to use for the lock
199 *
200 * Returns with the eb->lock write locked.
201 */
202void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
203 __acquires(&eb->lock)
204{
205 u64 start_ns = 0;
206
207 if (trace_btrfs_tree_lock_enabled())
208 start_ns = ktime_get_ns();
209
210 down_write_nested(&eb->lock, nest);
211 btrfs_set_eb_lock_owner(eb, current->pid);
212 trace_btrfs_tree_lock(eb, start_ns);
213}
214
215void btrfs_tree_lock(struct extent_buffer *eb)
216{
217 __btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
218}
219
220/*
221 * Release the write lock.
222 */
223void btrfs_tree_unlock(struct extent_buffer *eb)
224{
225 trace_btrfs_tree_unlock(eb);
226 btrfs_set_eb_lock_owner(eb, 0);
227 up_write(&eb->lock);
228}
229
230/*
231 * This releases any locks held in the path starting at level and going all the
232 * way up to the root.
233 *
234 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
235 * cases, such as COW of the block at slot zero in the node. This ignores
236 * those rules, and it should only be called when there are no more updates to
237 * be done higher up in the tree.
238 */
239void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
240{
241 int i;
242
243 if (path->keep_locks)
244 return;
245
246 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
247 if (!path->nodes[i])
248 continue;
249 if (!path->locks[i])
250 continue;
251 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
252 path->locks[i] = 0;
253 }
254}
255
256/*
257 * Loop around taking references on and locking the root node of the tree until
258 * we end up with a lock on the root node.
259 *
260 * Return: root extent buffer with write lock held
261 */
262struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
263{
264 struct extent_buffer *eb;
265
266 while (1) {
267 eb = btrfs_root_node(root);
268
269 btrfs_maybe_reset_lockdep_class(root, eb);
270 btrfs_tree_lock(eb);
271 if (eb == root->node)
272 break;
273 btrfs_tree_unlock(eb);
274 free_extent_buffer(eb);
275 }
276 return eb;
277}
278
279/*
280 * Loop around taking references on and locking the root node of the tree until
281 * we end up with a lock on the root node.
282 *
283 * Return: root extent buffer with read lock held
284 */
285struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
286{
287 struct extent_buffer *eb;
288
289 while (1) {
290 eb = btrfs_root_node(root);
291
292 btrfs_maybe_reset_lockdep_class(root, eb);
293 btrfs_tree_read_lock(eb);
294 if (eb == root->node)
295 break;
296 btrfs_tree_read_unlock(eb);
297 free_extent_buffer(eb);
298 }
299 return eb;
300}
301
302/*
303 * Loop around taking references on and locking the root node of the tree in
304 * nowait mode until we end up with a lock on the root node or returning to
305 * avoid blocking.
306 *
307 * Return: root extent buffer with read lock held or -EAGAIN.
308 */
309struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
310{
311 struct extent_buffer *eb;
312
313 while (1) {
314 eb = btrfs_root_node(root);
315 if (!btrfs_try_tree_read_lock(eb)) {
316 free_extent_buffer(eb);
317 return ERR_PTR(-EAGAIN);
318 }
319 if (eb == root->node)
320 break;
321 btrfs_tree_read_unlock(eb);
322 free_extent_buffer(eb);
323 }
324 return eb;
325}
326
327/*
328 * DREW locks
329 * ==========
330 *
331 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
332 * where you want to provide A-B exclusion but not AA or BB.
333 *
334 * Currently implementation gives more priority to reader. If a reader and a
335 * writer both race to acquire their respective sides of the lock the writer
336 * would yield its lock as soon as it detects a concurrent reader. Additionally
337 * if there are pending readers no new writers would be allowed to come in and
338 * acquire the lock.
339 */
340
341void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
342{
343 atomic_set(&lock->readers, 0);
344 atomic_set(&lock->writers, 0);
345 init_waitqueue_head(&lock->pending_readers);
346 init_waitqueue_head(&lock->pending_writers);
347}
348
349/* Return true if acquisition is successful, false otherwise */
350bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
351{
352 if (atomic_read(&lock->readers))
353 return false;
354
355 atomic_inc(&lock->writers);
356
357 /* Ensure writers count is updated before we check for pending readers */
358 smp_mb__after_atomic();
359 if (atomic_read(&lock->readers)) {
360 btrfs_drew_write_unlock(lock);
361 return false;
362 }
363
364 return true;
365}
366
367void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
368{
369 while (true) {
370 if (btrfs_drew_try_write_lock(lock))
371 return;
372 wait_event(lock->pending_writers, !atomic_read(&lock->readers));
373 }
374}
375
376void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
377{
378 atomic_dec(&lock->writers);
379 cond_wake_up(&lock->pending_readers);
380}
381
382void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
383{
384 atomic_inc(&lock->readers);
385
386 /*
387 * Ensure the pending reader count is perceieved BEFORE this reader
388 * goes to sleep in case of active writers. This guarantees new writers
389 * won't be allowed and that the current reader will be woken up when
390 * the last active writer finishes its jobs.
391 */
392 smp_mb__after_atomic();
393
394 wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
395}
396
397void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398{
399 /*
400 * atomic_dec_and_test implies a full barrier, so woken up writers
401 * are guaranteed to see the decrement
402 */
403 if (atomic_dec_and_test(&lock->readers))
404 wake_up(&lock->pending_writers);
405}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/spinlock.h>
9#include <linux/page-flags.h>
10#include <asm/bug.h>
11#include "ctree.h"
12#include "extent_io.h"
13#include "locking.h"
14
15static void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
16
17/*
18 * if we currently have a spinning reader or writer lock
19 * (indicated by the rw flag) this will bump the count
20 * of blocking holders and drop the spinlock.
21 */
22void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
23{
24 /*
25 * no lock is required. The lock owner may change if
26 * we have a read lock, but it won't change to or away
27 * from us. If we have the write lock, we are the owner
28 * and it'll never change.
29 */
30 if (eb->lock_nested && current->pid == eb->lock_owner)
31 return;
32 if (rw == BTRFS_WRITE_LOCK) {
33 if (atomic_read(&eb->blocking_writers) == 0) {
34 WARN_ON(atomic_read(&eb->spinning_writers) != 1);
35 atomic_dec(&eb->spinning_writers);
36 btrfs_assert_tree_locked(eb);
37 atomic_inc(&eb->blocking_writers);
38 write_unlock(&eb->lock);
39 }
40 } else if (rw == BTRFS_READ_LOCK) {
41 btrfs_assert_tree_read_locked(eb);
42 atomic_inc(&eb->blocking_readers);
43 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
44 atomic_dec(&eb->spinning_readers);
45 read_unlock(&eb->lock);
46 }
47}
48
49/*
50 * if we currently have a blocking lock, take the spinlock
51 * and drop our blocking count
52 */
53void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
54{
55 /*
56 * no lock is required. The lock owner may change if
57 * we have a read lock, but it won't change to or away
58 * from us. If we have the write lock, we are the owner
59 * and it'll never change.
60 */
61 if (eb->lock_nested && current->pid == eb->lock_owner)
62 return;
63
64 if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
65 BUG_ON(atomic_read(&eb->blocking_writers) != 1);
66 write_lock(&eb->lock);
67 WARN_ON(atomic_read(&eb->spinning_writers));
68 atomic_inc(&eb->spinning_writers);
69 /*
70 * atomic_dec_and_test implies a barrier for waitqueue_active
71 */
72 if (atomic_dec_and_test(&eb->blocking_writers) &&
73 waitqueue_active(&eb->write_lock_wq))
74 wake_up(&eb->write_lock_wq);
75 } else if (rw == BTRFS_READ_LOCK_BLOCKING) {
76 BUG_ON(atomic_read(&eb->blocking_readers) == 0);
77 read_lock(&eb->lock);
78 atomic_inc(&eb->spinning_readers);
79 /*
80 * atomic_dec_and_test implies a barrier for waitqueue_active
81 */
82 if (atomic_dec_and_test(&eb->blocking_readers) &&
83 waitqueue_active(&eb->read_lock_wq))
84 wake_up(&eb->read_lock_wq);
85 }
86}
87
88/*
89 * take a spinning read lock. This will wait for any blocking
90 * writers
91 */
92void btrfs_tree_read_lock(struct extent_buffer *eb)
93{
94again:
95 BUG_ON(!atomic_read(&eb->blocking_writers) &&
96 current->pid == eb->lock_owner);
97
98 read_lock(&eb->lock);
99 if (atomic_read(&eb->blocking_writers) &&
100 current->pid == eb->lock_owner) {
101 /*
102 * This extent is already write-locked by our thread. We allow
103 * an additional read lock to be added because it's for the same
104 * thread. btrfs_find_all_roots() depends on this as it may be
105 * called on a partly (write-)locked tree.
106 */
107 BUG_ON(eb->lock_nested);
108 eb->lock_nested = 1;
109 read_unlock(&eb->lock);
110 return;
111 }
112 if (atomic_read(&eb->blocking_writers)) {
113 read_unlock(&eb->lock);
114 wait_event(eb->write_lock_wq,
115 atomic_read(&eb->blocking_writers) == 0);
116 goto again;
117 }
118 atomic_inc(&eb->read_locks);
119 atomic_inc(&eb->spinning_readers);
120}
121
122/*
123 * take a spinning read lock.
124 * returns 1 if we get the read lock and 0 if we don't
125 * this won't wait for blocking writers
126 */
127int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
128{
129 if (atomic_read(&eb->blocking_writers))
130 return 0;
131
132 read_lock(&eb->lock);
133 if (atomic_read(&eb->blocking_writers)) {
134 read_unlock(&eb->lock);
135 return 0;
136 }
137 atomic_inc(&eb->read_locks);
138 atomic_inc(&eb->spinning_readers);
139 return 1;
140}
141
142/*
143 * returns 1 if we get the read lock and 0 if we don't
144 * this won't wait for blocking writers
145 */
146int btrfs_try_tree_read_lock(struct extent_buffer *eb)
147{
148 if (atomic_read(&eb->blocking_writers))
149 return 0;
150
151 if (!read_trylock(&eb->lock))
152 return 0;
153
154 if (atomic_read(&eb->blocking_writers)) {
155 read_unlock(&eb->lock);
156 return 0;
157 }
158 atomic_inc(&eb->read_locks);
159 atomic_inc(&eb->spinning_readers);
160 return 1;
161}
162
163/*
164 * returns 1 if we get the read lock and 0 if we don't
165 * this won't wait for blocking writers or readers
166 */
167int btrfs_try_tree_write_lock(struct extent_buffer *eb)
168{
169 if (atomic_read(&eb->blocking_writers) ||
170 atomic_read(&eb->blocking_readers))
171 return 0;
172
173 write_lock(&eb->lock);
174 if (atomic_read(&eb->blocking_writers) ||
175 atomic_read(&eb->blocking_readers)) {
176 write_unlock(&eb->lock);
177 return 0;
178 }
179 atomic_inc(&eb->write_locks);
180 atomic_inc(&eb->spinning_writers);
181 eb->lock_owner = current->pid;
182 return 1;
183}
184
185/*
186 * drop a spinning read lock
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190 /*
191 * if we're nested, we have the write lock. No new locking
192 * is needed as long as we are the lock owner.
193 * The write unlock will do a barrier for us, and the lock_nested
194 * field only matters to the lock owner.
195 */
196 if (eb->lock_nested && current->pid == eb->lock_owner) {
197 eb->lock_nested = 0;
198 return;
199 }
200 btrfs_assert_tree_read_locked(eb);
201 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
202 atomic_dec(&eb->spinning_readers);
203 atomic_dec(&eb->read_locks);
204 read_unlock(&eb->lock);
205}
206
207/*
208 * drop a blocking read lock
209 */
210void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
211{
212 /*
213 * if we're nested, we have the write lock. No new locking
214 * is needed as long as we are the lock owner.
215 * The write unlock will do a barrier for us, and the lock_nested
216 * field only matters to the lock owner.
217 */
218 if (eb->lock_nested && current->pid == eb->lock_owner) {
219 eb->lock_nested = 0;
220 return;
221 }
222 btrfs_assert_tree_read_locked(eb);
223 WARN_ON(atomic_read(&eb->blocking_readers) == 0);
224 /*
225 * atomic_dec_and_test implies a barrier for waitqueue_active
226 */
227 if (atomic_dec_and_test(&eb->blocking_readers) &&
228 waitqueue_active(&eb->read_lock_wq))
229 wake_up(&eb->read_lock_wq);
230 atomic_dec(&eb->read_locks);
231}
232
233/*
234 * take a spinning write lock. This will wait for both
235 * blocking readers or writers
236 */
237void btrfs_tree_lock(struct extent_buffer *eb)
238{
239 WARN_ON(eb->lock_owner == current->pid);
240again:
241 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
242 wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
243 write_lock(&eb->lock);
244 if (atomic_read(&eb->blocking_readers)) {
245 write_unlock(&eb->lock);
246 wait_event(eb->read_lock_wq,
247 atomic_read(&eb->blocking_readers) == 0);
248 goto again;
249 }
250 if (atomic_read(&eb->blocking_writers)) {
251 write_unlock(&eb->lock);
252 wait_event(eb->write_lock_wq,
253 atomic_read(&eb->blocking_writers) == 0);
254 goto again;
255 }
256 WARN_ON(atomic_read(&eb->spinning_writers));
257 atomic_inc(&eb->spinning_writers);
258 atomic_inc(&eb->write_locks);
259 eb->lock_owner = current->pid;
260}
261
262/*
263 * drop a spinning or a blocking write lock.
264 */
265void btrfs_tree_unlock(struct extent_buffer *eb)
266{
267 int blockers = atomic_read(&eb->blocking_writers);
268
269 BUG_ON(blockers > 1);
270
271 btrfs_assert_tree_locked(eb);
272 eb->lock_owner = 0;
273 atomic_dec(&eb->write_locks);
274
275 if (blockers) {
276 WARN_ON(atomic_read(&eb->spinning_writers));
277 atomic_dec(&eb->blocking_writers);
278 /*
279 * Make sure counter is updated before we wake up waiters.
280 */
281 smp_mb__after_atomic();
282 if (waitqueue_active(&eb->write_lock_wq))
283 wake_up(&eb->write_lock_wq);
284 } else {
285 WARN_ON(atomic_read(&eb->spinning_writers) != 1);
286 atomic_dec(&eb->spinning_writers);
287 write_unlock(&eb->lock);
288 }
289}
290
291void btrfs_assert_tree_locked(struct extent_buffer *eb)
292{
293 BUG_ON(!atomic_read(&eb->write_locks));
294}
295
296static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
297{
298 BUG_ON(!atomic_read(&eb->read_locks));
299}