Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 16#include "accessors.h"
 17
 18/*
 19 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 20 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 21 * the level the eb occupies in the tree.
 22 *
 23 * Different roots are used for different purposes and may nest inside each
 24 * other and they require separate keysets.  As lockdep keys should be
 25 * static, assign keysets according to the purpose of the root as indicated
 26 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 27 * roots have separate keysets.
 28 *
 29 * Lock-nesting across peer nodes is always done with the immediate parent
 30 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 31 * subclass to avoid triggering lockdep warning in such cases.
 32 *
 33 * The key is set by the readpage_end_io_hook after the buffer has passed
 34 * csum validation but before the pages are unlocked.  It is also set by
 35 * btrfs_init_new_buffer on freshly allocated blocks.
 36 *
 37 * We also add a check to make sure the highest level of the tree is the
 38 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 39 * needs update as well.
 40 */
 41#ifdef CONFIG_DEBUG_LOCK_ALLOC
 42#if BTRFS_MAX_LEVEL != 8
 43#error
 44#endif
 45
 46#define DEFINE_LEVEL(stem, level)					\
 47	.names[level] = "btrfs-" stem "-0" #level,
 48
 49#define DEFINE_NAME(stem)						\
 50	DEFINE_LEVEL(stem, 0)						\
 51	DEFINE_LEVEL(stem, 1)						\
 52	DEFINE_LEVEL(stem, 2)						\
 53	DEFINE_LEVEL(stem, 3)						\
 54	DEFINE_LEVEL(stem, 4)						\
 55	DEFINE_LEVEL(stem, 5)						\
 56	DEFINE_LEVEL(stem, 6)						\
 57	DEFINE_LEVEL(stem, 7)
 58
 59static struct btrfs_lockdep_keyset {
 60	u64			id;		/* root objectid */
 61	/* Longest entry: btrfs-block-group-00 */
 62	char			names[BTRFS_MAX_LEVEL][24];
 63	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 64} btrfs_lockdep_keysets[] = {
 65	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 66	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 67	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 68	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 69	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 70	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 71	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 72	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 73	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 74	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 75	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 76	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 77	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 78	{ .id = 0,				DEFINE_NAME("tree")	},
 79};
 80
 81#undef DEFINE_LEVEL
 82#undef DEFINE_NAME
 83
 84void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 85{
 86	struct btrfs_lockdep_keyset *ks;
 87
 88	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 89
 90	/* Find the matching keyset, id 0 is the default entry */
 91	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 92		if (ks->id == objectid)
 93			break;
 94
 95	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 96}
 97
 98void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 99{
100	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
101		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
102					       eb, btrfs_header_level(eb));
103}
104
105#endif
106
107#ifdef CONFIG_BTRFS_DEBUG
108static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
109{
110	eb->lock_owner = owner;
111}
112#else
113static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
114#endif
115
116/*
117 * Extent buffer locking
118 * =====================
119 *
120 * We use a rw_semaphore for tree locking, and the semantics are exactly the
121 * same:
122 *
123 * - reader/writer exclusion
124 * - writer/writer exclusion
125 * - reader/reader sharing
126 * - try-lock semantics for readers and writers
127 *
128 * The rwsem implementation does opportunistic spinning which reduces number of
129 * times the locking task needs to sleep.
130 */
131
132/*
133 * __btrfs_tree_read_lock - lock extent buffer for read
134 * @eb:		the eb to be locked
135 * @nest:	the nesting level to be used for lockdep
136 *
137 * This takes the read lock on the extent buffer, using the specified nesting
138 * level for lockdep purposes.
139 */
140void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
141{
142	u64 start_ns = 0;
143
144	if (trace_btrfs_tree_read_lock_enabled())
145		start_ns = ktime_get_ns();
146
147	down_read_nested(&eb->lock, nest);
 
148	trace_btrfs_tree_read_lock(eb, start_ns);
149}
150
151void btrfs_tree_read_lock(struct extent_buffer *eb)
152{
153	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
154}
155
156/*
157 * Try-lock for read.
158 *
159 * Return 1 if the rwlock has been taken, 0 otherwise
160 */
161int btrfs_try_tree_read_lock(struct extent_buffer *eb)
162{
163	if (down_read_trylock(&eb->lock)) {
 
164		trace_btrfs_try_tree_read_lock(eb);
165		return 1;
166	}
167	return 0;
168}
169
170/*
171 * Try-lock for write.
172 *
173 * Return 1 if the rwlock has been taken, 0 otherwise
174 */
175int btrfs_try_tree_write_lock(struct extent_buffer *eb)
176{
177	if (down_write_trylock(&eb->lock)) {
178		btrfs_set_eb_lock_owner(eb, current->pid);
179		trace_btrfs_try_tree_write_lock(eb);
180		return 1;
181	}
182	return 0;
183}
184
185/*
186 * Release read lock.
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190	trace_btrfs_tree_read_unlock(eb);
 
191	up_read(&eb->lock);
192}
193
194/*
195 * Lock eb for write.
196 *
197 * @eb:		the eb to lock
198 * @nest:	the nesting to use for the lock
199 *
200 * Returns with the eb->lock write locked.
201 */
202void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
203	__acquires(&eb->lock)
204{
205	u64 start_ns = 0;
206
207	if (trace_btrfs_tree_lock_enabled())
208		start_ns = ktime_get_ns();
209
210	down_write_nested(&eb->lock, nest);
211	btrfs_set_eb_lock_owner(eb, current->pid);
212	trace_btrfs_tree_lock(eb, start_ns);
213}
214
215void btrfs_tree_lock(struct extent_buffer *eb)
216{
217	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
218}
219
220/*
221 * Release the write lock.
222 */
223void btrfs_tree_unlock(struct extent_buffer *eb)
224{
225	trace_btrfs_tree_unlock(eb);
226	btrfs_set_eb_lock_owner(eb, 0);
227	up_write(&eb->lock);
228}
229
230/*
231 * This releases any locks held in the path starting at level and going all the
232 * way up to the root.
233 *
234 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
235 * cases, such as COW of the block at slot zero in the node.  This ignores
236 * those rules, and it should only be called when there are no more updates to
237 * be done higher up in the tree.
238 */
239void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
240{
241	int i;
242
243	if (path->keep_locks)
244		return;
245
246	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
247		if (!path->nodes[i])
248			continue;
249		if (!path->locks[i])
250			continue;
251		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
252		path->locks[i] = 0;
253	}
254}
255
256/*
257 * Loop around taking references on and locking the root node of the tree until
258 * we end up with a lock on the root node.
259 *
260 * Return: root extent buffer with write lock held
261 */
262struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
263{
264	struct extent_buffer *eb;
265
266	while (1) {
267		eb = btrfs_root_node(root);
268
269		btrfs_maybe_reset_lockdep_class(root, eb);
270		btrfs_tree_lock(eb);
271		if (eb == root->node)
272			break;
273		btrfs_tree_unlock(eb);
274		free_extent_buffer(eb);
275	}
276	return eb;
277}
278
279/*
280 * Loop around taking references on and locking the root node of the tree until
281 * we end up with a lock on the root node.
282 *
283 * Return: root extent buffer with read lock held
284 */
285struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
286{
287	struct extent_buffer *eb;
288
289	while (1) {
290		eb = btrfs_root_node(root);
291
292		btrfs_maybe_reset_lockdep_class(root, eb);
293		btrfs_tree_read_lock(eb);
294		if (eb == root->node)
295			break;
296		btrfs_tree_read_unlock(eb);
297		free_extent_buffer(eb);
298	}
299	return eb;
300}
301
302/*
303 * Loop around taking references on and locking the root node of the tree in
304 * nowait mode until we end up with a lock on the root node or returning to
305 * avoid blocking.
306 *
307 * Return: root extent buffer with read lock held or -EAGAIN.
308 */
309struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
310{
311	struct extent_buffer *eb;
312
313	while (1) {
314		eb = btrfs_root_node(root);
315		if (!btrfs_try_tree_read_lock(eb)) {
316			free_extent_buffer(eb);
317			return ERR_PTR(-EAGAIN);
318		}
319		if (eb == root->node)
320			break;
321		btrfs_tree_read_unlock(eb);
322		free_extent_buffer(eb);
323	}
324	return eb;
325}
326
327/*
328 * DREW locks
329 * ==========
330 *
331 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
332 * where you want to provide A-B exclusion but not AA or BB.
333 *
334 * Currently implementation gives more priority to reader. If a reader and a
335 * writer both race to acquire their respective sides of the lock the writer
336 * would yield its lock as soon as it detects a concurrent reader. Additionally
337 * if there are pending readers no new writers would be allowed to come in and
338 * acquire the lock.
339 */
340
341void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
342{
 
 
 
 
 
 
343	atomic_set(&lock->readers, 0);
344	atomic_set(&lock->writers, 0);
345	init_waitqueue_head(&lock->pending_readers);
346	init_waitqueue_head(&lock->pending_writers);
 
 
 
 
 
 
 
347}
348
349/* Return true if acquisition is successful, false otherwise */
350bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
351{
352	if (atomic_read(&lock->readers))
353		return false;
354
355	atomic_inc(&lock->writers);
356
357	/* Ensure writers count is updated before we check for pending readers */
358	smp_mb__after_atomic();
359	if (atomic_read(&lock->readers)) {
360		btrfs_drew_write_unlock(lock);
361		return false;
362	}
363
364	return true;
365}
366
367void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
368{
369	while (true) {
370		if (btrfs_drew_try_write_lock(lock))
371			return;
372		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
373	}
374}
375
376void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
377{
378	atomic_dec(&lock->writers);
379	cond_wake_up(&lock->pending_readers);
380}
381
382void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
383{
384	atomic_inc(&lock->readers);
385
386	/*
387	 * Ensure the pending reader count is perceieved BEFORE this reader
388	 * goes to sleep in case of active writers. This guarantees new writers
389	 * won't be allowed and that the current reader will be woken up when
390	 * the last active writer finishes its jobs.
391	 */
392	smp_mb__after_atomic();
393
394	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
 
395}
396
397void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398{
399	/*
400	 * atomic_dec_and_test implies a full barrier, so woken up writers
401	 * are guaranteed to see the decrement
402	 */
403	if (atomic_dec_and_test(&lock->readers))
404		wake_up(&lock->pending_writers);
405}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16/*
 17 * Extent buffer locking
 18 * =====================
 19 *
 20 * We use a rw_semaphore for tree locking, and the semantics are exactly the
 21 * same:
 22 *
 23 * - reader/writer exclusion
 24 * - writer/writer exclusion
 25 * - reader/reader sharing
 26 * - try-lock semantics for readers and writers
 27 *
 28 * The rwsem implementation does opportunistic spinning which reduces number of
 29 * times the locking task needs to sleep.
 30 */
 31
 32/*
 33 * __btrfs_tree_read_lock - lock extent buffer for read
 34 * @eb:		the eb to be locked
 35 * @nest:	the nesting level to be used for lockdep
 36 *
 37 * This takes the read lock on the extent buffer, using the specified nesting
 38 * level for lockdep purposes.
 39 */
 40void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
 41{
 42	u64 start_ns = 0;
 43
 44	if (trace_btrfs_tree_read_lock_enabled())
 45		start_ns = ktime_get_ns();
 46
 47	down_read_nested(&eb->lock, nest);
 48	eb->lock_owner = current->pid;
 49	trace_btrfs_tree_read_lock(eb, start_ns);
 50}
 51
 52void btrfs_tree_read_lock(struct extent_buffer *eb)
 53{
 54	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 55}
 56
 57/*
 58 * Try-lock for read.
 59 *
 60 * Return 1 if the rwlock has been taken, 0 otherwise
 61 */
 62int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 63{
 64	if (down_read_trylock(&eb->lock)) {
 65		eb->lock_owner = current->pid;
 66		trace_btrfs_try_tree_read_lock(eb);
 67		return 1;
 68	}
 69	return 0;
 70}
 71
 72/*
 73 * Try-lock for write.
 74 *
 75 * Return 1 if the rwlock has been taken, 0 otherwise
 76 */
 77int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 78{
 79	if (down_write_trylock(&eb->lock)) {
 80		eb->lock_owner = current->pid;
 81		trace_btrfs_try_tree_write_lock(eb);
 82		return 1;
 83	}
 84	return 0;
 85}
 86
 87/*
 88 * Release read lock.
 89 */
 90void btrfs_tree_read_unlock(struct extent_buffer *eb)
 91{
 92	trace_btrfs_tree_read_unlock(eb);
 93	eb->lock_owner = 0;
 94	up_read(&eb->lock);
 95}
 96
 97/*
 98 * __btrfs_tree_lock - lock eb for write
 
 99 * @eb:		the eb to lock
100 * @nest:	the nesting to use for the lock
101 *
102 * Returns with the eb->lock write locked.
103 */
104void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
105	__acquires(&eb->lock)
106{
107	u64 start_ns = 0;
108
109	if (trace_btrfs_tree_lock_enabled())
110		start_ns = ktime_get_ns();
111
112	down_write_nested(&eb->lock, nest);
113	eb->lock_owner = current->pid;
114	trace_btrfs_tree_lock(eb, start_ns);
115}
116
117void btrfs_tree_lock(struct extent_buffer *eb)
118{
119	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
120}
121
122/*
123 * Release the write lock.
124 */
125void btrfs_tree_unlock(struct extent_buffer *eb)
126{
127	trace_btrfs_tree_unlock(eb);
128	eb->lock_owner = 0;
129	up_write(&eb->lock);
130}
131
132/*
133 * This releases any locks held in the path starting at level and going all the
134 * way up to the root.
135 *
136 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
137 * cases, such as COW of the block at slot zero in the node.  This ignores
138 * those rules, and it should only be called when there are no more updates to
139 * be done higher up in the tree.
140 */
141void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
142{
143	int i;
144
145	if (path->keep_locks)
146		return;
147
148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
149		if (!path->nodes[i])
150			continue;
151		if (!path->locks[i])
152			continue;
153		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
154		path->locks[i] = 0;
155	}
156}
157
158/*
159 * Loop around taking references on and locking the root node of the tree until
160 * we end up with a lock on the root node.
161 *
162 * Return: root extent buffer with write lock held
163 */
164struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
165{
166	struct extent_buffer *eb;
167
168	while (1) {
169		eb = btrfs_root_node(root);
 
 
170		btrfs_tree_lock(eb);
171		if (eb == root->node)
172			break;
173		btrfs_tree_unlock(eb);
174		free_extent_buffer(eb);
175	}
176	return eb;
177}
178
179/*
180 * Loop around taking references on and locking the root node of the tree until
181 * we end up with a lock on the root node.
182 *
183 * Return: root extent buffer with read lock held
184 */
185struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
186{
187	struct extent_buffer *eb;
188
189	while (1) {
190		eb = btrfs_root_node(root);
 
 
191		btrfs_tree_read_lock(eb);
192		if (eb == root->node)
193			break;
194		btrfs_tree_read_unlock(eb);
195		free_extent_buffer(eb);
196	}
197	return eb;
198}
199
200/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201 * DREW locks
202 * ==========
203 *
204 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
205 * where you want to provide A-B exclusion but not AA or BB.
206 *
207 * Currently implementation gives more priority to reader. If a reader and a
208 * writer both race to acquire their respective sides of the lock the writer
209 * would yield its lock as soon as it detects a concurrent reader. Additionally
210 * if there are pending readers no new writers would be allowed to come in and
211 * acquire the lock.
212 */
213
214int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
215{
216	int ret;
217
218	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
219	if (ret)
220		return ret;
221
222	atomic_set(&lock->readers, 0);
 
223	init_waitqueue_head(&lock->pending_readers);
224	init_waitqueue_head(&lock->pending_writers);
225
226	return 0;
227}
228
229void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
230{
231	percpu_counter_destroy(&lock->writers);
232}
233
234/* Return true if acquisition is successful, false otherwise */
235bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
236{
237	if (atomic_read(&lock->readers))
238		return false;
239
240	percpu_counter_inc(&lock->writers);
241
242	/* Ensure writers count is updated before we check for pending readers */
243	smp_mb();
244	if (atomic_read(&lock->readers)) {
245		btrfs_drew_write_unlock(lock);
246		return false;
247	}
248
249	return true;
250}
251
252void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
253{
254	while (true) {
255		if (btrfs_drew_try_write_lock(lock))
256			return;
257		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
258	}
259}
260
261void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
262{
263	percpu_counter_dec(&lock->writers);
264	cond_wake_up(&lock->pending_readers);
265}
266
267void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
268{
269	atomic_inc(&lock->readers);
270
271	/*
272	 * Ensure the pending reader count is perceieved BEFORE this reader
273	 * goes to sleep in case of active writers. This guarantees new writers
274	 * won't be allowed and that the current reader will be woken up when
275	 * the last active writer finishes its jobs.
276	 */
277	smp_mb__after_atomic();
278
279	wait_event(lock->pending_readers,
280		   percpu_counter_sum(&lock->writers) == 0);
281}
282
283void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
284{
285	/*
286	 * atomic_dec_and_test implies a full barrier, so woken up writers
287	 * are guaranteed to see the decrement
288	 */
289	if (atomic_dec_and_test(&lock->readers))
290		wake_up(&lock->pending_writers);
291}