Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/string.h>
  29#include <linux/debugfs.h>
  30#include <linux/rculist.h>
  31#include <linux/remoteproc.h>
  32#include <linux/iommu.h>
  33#include <linux/idr.h>
  34#include <linux/elf.h>
  35#include <linux/crc32.h>
  36#include <linux/of_reserved_mem.h>
  37#include <linux/virtio_ids.h>
  38#include <linux/virtio_ring.h>
  39#include <asm/byteorder.h>
  40#include <linux/platform_device.h>
  41
  42#include "remoteproc_internal.h"
  43
  44#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  45
  46static DEFINE_MUTEX(rproc_list_mutex);
  47static LIST_HEAD(rproc_list);
  48static struct notifier_block rproc_panic_nb;
  49
 
 
  50typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  51				 void *, int offset, int avail);
  52
  53static int rproc_alloc_carveout(struct rproc *rproc,
  54				struct rproc_mem_entry *mem);
  55static int rproc_release_carveout(struct rproc *rproc,
  56				  struct rproc_mem_entry *mem);
  57
  58/* Unique indices for remoteproc devices */
  59static DEFINE_IDA(rproc_dev_index);
  60static struct workqueue_struct *rproc_recovery_wq;
  61
  62static const char * const rproc_crash_names[] = {
  63	[RPROC_MMUFAULT]	= "mmufault",
  64	[RPROC_WATCHDOG]	= "watchdog",
  65	[RPROC_FATAL_ERROR]	= "fatal error",
  66};
  67
  68/* translate rproc_crash_type to string */
  69static const char *rproc_crash_to_string(enum rproc_crash_type type)
  70{
  71	if (type < ARRAY_SIZE(rproc_crash_names))
  72		return rproc_crash_names[type];
  73	return "unknown";
  74}
  75
  76/*
  77 * This is the IOMMU fault handler we register with the IOMMU API
  78 * (when relevant; not all remote processors access memory through
  79 * an IOMMU).
  80 *
  81 * IOMMU core will invoke this handler whenever the remote processor
  82 * will try to access an unmapped device address.
  83 */
  84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  85			     unsigned long iova, int flags, void *token)
  86{
  87	struct rproc *rproc = token;
  88
  89	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  90
  91	rproc_report_crash(rproc, RPROC_MMUFAULT);
  92
  93	/*
  94	 * Let the iommu core know we're not really handling this fault;
  95	 * we just used it as a recovery trigger.
  96	 */
  97	return -ENOSYS;
  98}
  99
 100static int rproc_enable_iommu(struct rproc *rproc)
 101{
 102	struct iommu_domain *domain;
 103	struct device *dev = rproc->dev.parent;
 104	int ret;
 105
 106	if (!rproc->has_iommu) {
 107		dev_dbg(dev, "iommu not present\n");
 108		return 0;
 109	}
 110
 111	domain = iommu_domain_alloc(dev->bus);
 112	if (!domain) {
 113		dev_err(dev, "can't alloc iommu domain\n");
 114		return -ENOMEM;
 115	}
 116
 117	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 118
 119	ret = iommu_attach_device(domain, dev);
 120	if (ret) {
 121		dev_err(dev, "can't attach iommu device: %d\n", ret);
 122		goto free_domain;
 123	}
 124
 125	rproc->domain = domain;
 126
 127	return 0;
 128
 129free_domain:
 130	iommu_domain_free(domain);
 131	return ret;
 132}
 133
 134static void rproc_disable_iommu(struct rproc *rproc)
 135{
 136	struct iommu_domain *domain = rproc->domain;
 137	struct device *dev = rproc->dev.parent;
 138
 139	if (!domain)
 140		return;
 141
 142	iommu_detach_device(domain, dev);
 143	iommu_domain_free(domain);
 144}
 145
 146phys_addr_t rproc_va_to_pa(void *cpu_addr)
 147{
 148	/*
 149	 * Return physical address according to virtual address location
 150	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 151	 * - in kernel: if region allocated in generic dma memory pool
 152	 */
 153	if (is_vmalloc_addr(cpu_addr)) {
 154		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 155				    offset_in_page(cpu_addr);
 156	}
 157
 158	WARN_ON(!virt_addr_valid(cpu_addr));
 159	return virt_to_phys(cpu_addr);
 160}
 161EXPORT_SYMBOL(rproc_va_to_pa);
 162
 163/**
 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 165 * @rproc: handle of a remote processor
 166 * @da: remoteproc device address to translate
 167 * @len: length of the memory region @da is pointing to
 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 169 *
 170 * Some remote processors will ask us to allocate them physically contiguous
 171 * memory regions (which we call "carveouts"), and map them to specific
 172 * device addresses (which are hardcoded in the firmware). They may also have
 173 * dedicated memory regions internal to the processors, and use them either
 174 * exclusively or alongside carveouts.
 175 *
 176 * They may then ask us to copy objects into specific device addresses (e.g.
 177 * code/data sections) or expose us certain symbols in other device address
 178 * (e.g. their trace buffer).
 179 *
 180 * This function is a helper function with which we can go over the allocated
 181 * carveouts and translate specific device addresses to kernel virtual addresses
 182 * so we can access the referenced memory. This function also allows to perform
 183 * translations on the internal remoteproc memory regions through a platform
 184 * implementation specific da_to_va ops, if present.
 185 *
 
 
 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 187 * but only on kernel direct mapped RAM memory. Instead, we're just using
 188 * here the output of the DMA API for the carveouts, which should be more
 189 * correct.
 190 *
 191 * Return: a valid kernel address on success or NULL on failure
 192 */
 193void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 194{
 195	struct rproc_mem_entry *carveout;
 196	void *ptr = NULL;
 197
 198	if (rproc->ops->da_to_va) {
 199		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 200		if (ptr)
 201			goto out;
 202	}
 203
 204	list_for_each_entry(carveout, &rproc->carveouts, node) {
 205		int offset = da - carveout->da;
 206
 207		/*  Verify that carveout is allocated */
 208		if (!carveout->va)
 209			continue;
 210
 211		/* try next carveout if da is too small */
 212		if (offset < 0)
 213			continue;
 214
 215		/* try next carveout if da is too large */
 216		if (offset + len > carveout->len)
 217			continue;
 218
 219		ptr = carveout->va + offset;
 220
 221		if (is_iomem)
 222			*is_iomem = carveout->is_iomem;
 223
 224		break;
 225	}
 226
 227out:
 228	return ptr;
 229}
 230EXPORT_SYMBOL(rproc_da_to_va);
 231
 232/**
 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 234 * @rproc: handle of a remote processor
 235 * @name: carveout name to find (format string)
 236 * @...: optional parameters matching @name string
 237 *
 238 * Platform driver has the capability to register some pre-allacoted carveout
 239 * (physically contiguous memory regions) before rproc firmware loading and
 240 * associated resource table analysis. These regions may be dedicated memory
 241 * regions internal to the coprocessor or specified DDR region with specific
 242 * attributes
 243 *
 244 * This function is a helper function with which we can go over the
 245 * allocated carveouts and return associated region characteristics like
 246 * coprocessor address, length or processor virtual address.
 247 *
 248 * Return: a valid pointer on carveout entry on success or NULL on failure.
 249 */
 250__printf(2, 3)
 251struct rproc_mem_entry *
 252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 253{
 254	va_list args;
 255	char _name[32];
 256	struct rproc_mem_entry *carveout, *mem = NULL;
 257
 258	if (!name)
 259		return NULL;
 260
 261	va_start(args, name);
 262	vsnprintf(_name, sizeof(_name), name, args);
 263	va_end(args);
 264
 265	list_for_each_entry(carveout, &rproc->carveouts, node) {
 266		/* Compare carveout and requested names */
 267		if (!strcmp(carveout->name, _name)) {
 268			mem = carveout;
 269			break;
 270		}
 271	}
 272
 273	return mem;
 274}
 275
 276/**
 277 * rproc_check_carveout_da() - Check specified carveout da configuration
 278 * @rproc: handle of a remote processor
 279 * @mem: pointer on carveout to check
 280 * @da: area device address
 281 * @len: associated area size
 282 *
 283 * This function is a helper function to verify requested device area (couple
 284 * da, len) is part of specified carveout.
 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 286 * checked.
 287 *
 288 * Return: 0 if carveout matches request else error
 289 */
 290static int rproc_check_carveout_da(struct rproc *rproc,
 291				   struct rproc_mem_entry *mem, u32 da, u32 len)
 292{
 293	struct device *dev = &rproc->dev;
 294	int delta;
 295
 296	/* Check requested resource length */
 297	if (len > mem->len) {
 298		dev_err(dev, "Registered carveout doesn't fit len request\n");
 299		return -EINVAL;
 300	}
 301
 302	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 303		/* Address doesn't match registered carveout configuration */
 304		return -EINVAL;
 305	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 306		delta = da - mem->da;
 307
 308		/* Check requested resource belongs to registered carveout */
 309		if (delta < 0) {
 310			dev_err(dev,
 311				"Registered carveout doesn't fit da request\n");
 312			return -EINVAL;
 313		}
 314
 315		if (delta + len > mem->len) {
 316			dev_err(dev,
 317				"Registered carveout doesn't fit len request\n");
 318			return -EINVAL;
 319		}
 320	}
 321
 322	return 0;
 323}
 324
 325int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 326{
 327	struct rproc *rproc = rvdev->rproc;
 328	struct device *dev = &rproc->dev;
 329	struct rproc_vring *rvring = &rvdev->vring[i];
 330	struct fw_rsc_vdev *rsc;
 331	int ret, notifyid;
 332	struct rproc_mem_entry *mem;
 333	size_t size;
 334
 335	/* actual size of vring (in bytes) */
 336	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
 337
 338	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 339
 340	/* Search for pre-registered carveout */
 341	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 342					  i);
 343	if (mem) {
 344		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 345			return -ENOMEM;
 346	} else {
 347		/* Register carveout in list */
 348		mem = rproc_mem_entry_init(dev, NULL, 0,
 349					   size, rsc->vring[i].da,
 350					   rproc_alloc_carveout,
 351					   rproc_release_carveout,
 352					   "vdev%dvring%d",
 353					   rvdev->index, i);
 354		if (!mem) {
 355			dev_err(dev, "Can't allocate memory entry structure\n");
 356			return -ENOMEM;
 357		}
 358
 359		rproc_add_carveout(rproc, mem);
 360	}
 361
 362	/*
 363	 * Assign an rproc-wide unique index for this vring
 364	 * TODO: assign a notifyid for rvdev updates as well
 365	 * TODO: support predefined notifyids (via resource table)
 366	 */
 367	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 368	if (ret < 0) {
 369		dev_err(dev, "idr_alloc failed: %d\n", ret);
 370		return ret;
 371	}
 372	notifyid = ret;
 373
 374	/* Potentially bump max_notifyid */
 375	if (notifyid > rproc->max_notifyid)
 376		rproc->max_notifyid = notifyid;
 377
 378	rvring->notifyid = notifyid;
 379
 380	/* Let the rproc know the notifyid of this vring.*/
 381	rsc->vring[i].notifyid = notifyid;
 382	return 0;
 383}
 384
 385int
 386rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 387{
 388	struct rproc *rproc = rvdev->rproc;
 389	struct device *dev = &rproc->dev;
 390	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 391	struct rproc_vring *rvring = &rvdev->vring[i];
 392
 393	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 394		i, vring->da, vring->num, vring->align);
 395
 396	/* verify queue size and vring alignment are sane */
 397	if (!vring->num || !vring->align) {
 398		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 399			vring->num, vring->align);
 400		return -EINVAL;
 401	}
 402
 403	rvring->num = vring->num;
 404	rvring->align = vring->align;
 405	rvring->rvdev = rvdev;
 406
 407	return 0;
 408}
 409
 410void rproc_free_vring(struct rproc_vring *rvring)
 411{
 412	struct rproc *rproc = rvring->rvdev->rproc;
 413	int idx = rvring - rvring->rvdev->vring;
 414	struct fw_rsc_vdev *rsc;
 415
 416	idr_remove(&rproc->notifyids, rvring->notifyid);
 417
 418	/*
 419	 * At this point rproc_stop() has been called and the installed resource
 420	 * table in the remote processor memory may no longer be accessible. As
 421	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
 422	 * resource table (rproc->cached_table).  The cached resource table is
 423	 * only available when a remote processor has been booted by the
 424	 * remoteproc core, otherwise it is NULL.
 425	 *
 426	 * Based on the above, reset the virtio device section in the cached
 427	 * resource table only if there is one to work with.
 428	 */
 429	if (rproc->table_ptr) {
 430		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 431		rsc->vring[idx].da = 0;
 432		rsc->vring[idx].notifyid = -1;
 433	}
 434}
 435
 436void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
 437{
 438	if (rvdev && rproc)
 439		list_add_tail(&rvdev->node, &rproc->rvdevs);
 
 440}
 441
 442void rproc_remove_rvdev(struct rproc_vdev *rvdev)
 443{
 444	if (rvdev)
 445		list_del(&rvdev->node);
 
 
 
 
 446}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447/**
 448 * rproc_handle_vdev() - handle a vdev fw resource
 449 * @rproc: the remote processor
 450 * @ptr: the vring resource descriptor
 451 * @offset: offset of the resource entry
 452 * @avail: size of available data (for sanity checking the image)
 453 *
 454 * This resource entry requests the host to statically register a virtio
 455 * device (vdev), and setup everything needed to support it. It contains
 456 * everything needed to make it possible: the virtio device id, virtio
 457 * device features, vrings information, virtio config space, etc...
 458 *
 459 * Before registering the vdev, the vrings are allocated from non-cacheable
 460 * physically contiguous memory. Currently we only support two vrings per
 461 * remote processor (temporary limitation). We might also want to consider
 462 * doing the vring allocation only later when ->find_vqs() is invoked, and
 463 * then release them upon ->del_vqs().
 464 *
 465 * Note: @da is currently not really handled correctly: we dynamically
 466 * allocate it using the DMA API, ignoring requested hard coded addresses,
 467 * and we don't take care of any required IOMMU programming. This is all
 468 * going to be taken care of when the generic iommu-based DMA API will be
 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 470 * use RSC_DEVMEM resource entries to map their required @da to the physical
 471 * address of their base CMA region (ouch, hacky!).
 472 *
 473 * Return: 0 on success, or an appropriate error code otherwise
 474 */
 475static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 476			     int offset, int avail)
 477{
 478	struct fw_rsc_vdev *rsc = ptr;
 479	struct device *dev = &rproc->dev;
 480	struct rproc_vdev *rvdev;
 481	size_t rsc_size;
 482	struct rproc_vdev_data rvdev_data;
 483	struct platform_device *pdev;
 484
 485	/* make sure resource isn't truncated */
 486	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
 487	if (size_add(rsc_size, rsc->config_len) > avail) {
 488		dev_err(dev, "vdev rsc is truncated\n");
 489		return -EINVAL;
 490	}
 491
 492	/* make sure reserved bytes are zeroes */
 493	if (rsc->reserved[0] || rsc->reserved[1]) {
 494		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 495		return -EINVAL;
 496	}
 497
 498	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 499		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 500
 501	/* we currently support only two vrings per rvdev */
 502	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 503		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 504		return -EINVAL;
 505	}
 506
 507	rvdev_data.id = rsc->id;
 508	rvdev_data.index = rproc->nb_vdev++;
 509	rvdev_data.rsc_offset = offset;
 510	rvdev_data.rsc = rsc;
 511
 512	/*
 513	 * When there is more than one remote processor, rproc->nb_vdev number is
 514	 * same for each separate instances of "rproc". If rvdev_data.index is used
 515	 * as device id, then we get duplication in sysfs, so need to use
 516	 * PLATFORM_DEVID_AUTO to auto select device id.
 517	 */
 518	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
 519					     sizeof(rvdev_data));
 520	if (IS_ERR(pdev)) {
 521		dev_err(dev, "failed to create rproc-virtio device\n");
 522		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	}
 524
 
 
 
 
 
 
 
 525	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527
 528/**
 529 * rproc_handle_trace() - handle a shared trace buffer resource
 530 * @rproc: the remote processor
 531 * @ptr: the trace resource descriptor
 532 * @offset: offset of the resource entry
 533 * @avail: size of available data (for sanity checking the image)
 534 *
 535 * In case the remote processor dumps trace logs into memory,
 536 * export it via debugfs.
 537 *
 538 * Currently, the 'da' member of @rsc should contain the device address
 539 * where the remote processor is dumping the traces. Later we could also
 540 * support dynamically allocating this address using the generic
 541 * DMA API (but currently there isn't a use case for that).
 542 *
 543 * Return: 0 on success, or an appropriate error code otherwise
 544 */
 545static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 546			      int offset, int avail)
 547{
 548	struct fw_rsc_trace *rsc = ptr;
 549	struct rproc_debug_trace *trace;
 550	struct device *dev = &rproc->dev;
 551	char name[15];
 552
 553	if (sizeof(*rsc) > avail) {
 554		dev_err(dev, "trace rsc is truncated\n");
 555		return -EINVAL;
 556	}
 557
 558	/* make sure reserved bytes are zeroes */
 559	if (rsc->reserved) {
 560		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 561		return -EINVAL;
 562	}
 563
 564	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 565	if (!trace)
 566		return -ENOMEM;
 567
 568	/* set the trace buffer dma properties */
 569	trace->trace_mem.len = rsc->len;
 570	trace->trace_mem.da = rsc->da;
 571
 572	/* set pointer on rproc device */
 573	trace->rproc = rproc;
 574
 575	/* make sure snprintf always null terminates, even if truncating */
 576	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 577
 578	/* create the debugfs entry */
 579	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 
 
 
 
 580
 581	list_add_tail(&trace->node, &rproc->traces);
 582
 583	rproc->num_traces++;
 584
 585	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 586		name, rsc->da, rsc->len);
 587
 588	return 0;
 589}
 590
 591/**
 592 * rproc_handle_devmem() - handle devmem resource entry
 593 * @rproc: remote processor handle
 594 * @ptr: the devmem resource entry
 595 * @offset: offset of the resource entry
 596 * @avail: size of available data (for sanity checking the image)
 597 *
 598 * Remote processors commonly need to access certain on-chip peripherals.
 599 *
 600 * Some of these remote processors access memory via an iommu device,
 601 * and might require us to configure their iommu before they can access
 602 * the on-chip peripherals they need.
 603 *
 604 * This resource entry is a request to map such a peripheral device.
 605 *
 606 * These devmem entries will contain the physical address of the device in
 607 * the 'pa' member. If a specific device address is expected, then 'da' will
 608 * contain it (currently this is the only use case supported). 'len' will
 609 * contain the size of the physical region we need to map.
 610 *
 611 * Currently we just "trust" those devmem entries to contain valid physical
 612 * addresses, but this is going to change: we want the implementations to
 613 * tell us ranges of physical addresses the firmware is allowed to request,
 614 * and not allow firmwares to request access to physical addresses that
 615 * are outside those ranges.
 616 *
 617 * Return: 0 on success, or an appropriate error code otherwise
 618 */
 619static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 620			       int offset, int avail)
 621{
 622	struct fw_rsc_devmem *rsc = ptr;
 623	struct rproc_mem_entry *mapping;
 624	struct device *dev = &rproc->dev;
 625	int ret;
 626
 627	/* no point in handling this resource without a valid iommu domain */
 628	if (!rproc->domain)
 629		return -EINVAL;
 630
 631	if (sizeof(*rsc) > avail) {
 632		dev_err(dev, "devmem rsc is truncated\n");
 633		return -EINVAL;
 634	}
 635
 636	/* make sure reserved bytes are zeroes */
 637	if (rsc->reserved) {
 638		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 639		return -EINVAL;
 640	}
 641
 642	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 643	if (!mapping)
 644		return -ENOMEM;
 645
 646	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
 647			GFP_KERNEL);
 648	if (ret) {
 649		dev_err(dev, "failed to map devmem: %d\n", ret);
 650		goto out;
 651	}
 652
 653	/*
 654	 * We'll need this info later when we'll want to unmap everything
 655	 * (e.g. on shutdown).
 656	 *
 657	 * We can't trust the remote processor not to change the resource
 658	 * table, so we must maintain this info independently.
 659	 */
 660	mapping->da = rsc->da;
 661	mapping->len = rsc->len;
 662	list_add_tail(&mapping->node, &rproc->mappings);
 663
 664	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 665		rsc->pa, rsc->da, rsc->len);
 666
 667	return 0;
 668
 669out:
 670	kfree(mapping);
 671	return ret;
 672}
 673
 674/**
 675 * rproc_alloc_carveout() - allocated specified carveout
 676 * @rproc: rproc handle
 677 * @mem: the memory entry to allocate
 678 *
 679 * This function allocate specified memory entry @mem using
 680 * dma_alloc_coherent() as default allocator
 681 *
 682 * Return: 0 on success, or an appropriate error code otherwise
 683 */
 684static int rproc_alloc_carveout(struct rproc *rproc,
 685				struct rproc_mem_entry *mem)
 686{
 687	struct rproc_mem_entry *mapping = NULL;
 688	struct device *dev = &rproc->dev;
 689	dma_addr_t dma;
 690	void *va;
 691	int ret;
 692
 693	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 694	if (!va) {
 695		dev_err(dev->parent,
 696			"failed to allocate dma memory: len 0x%zx\n",
 697			mem->len);
 698		return -ENOMEM;
 699	}
 700
 701	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 702		va, &dma, mem->len);
 703
 704	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 705		/*
 706		 * Check requested da is equal to dma address
 707		 * and print a warn message in case of missalignment.
 708		 * Don't stop rproc_start sequence as coprocessor may
 709		 * build pa to da translation on its side.
 710		 */
 711		if (mem->da != (u32)dma)
 712			dev_warn(dev->parent,
 713				 "Allocated carveout doesn't fit device address request\n");
 714	}
 715
 716	/*
 717	 * Ok, this is non-standard.
 718	 *
 719	 * Sometimes we can't rely on the generic iommu-based DMA API
 720	 * to dynamically allocate the device address and then set the IOMMU
 721	 * tables accordingly, because some remote processors might
 722	 * _require_ us to use hard coded device addresses that their
 723	 * firmware was compiled with.
 724	 *
 725	 * In this case, we must use the IOMMU API directly and map
 726	 * the memory to the device address as expected by the remote
 727	 * processor.
 728	 *
 729	 * Obviously such remote processor devices should not be configured
 730	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 731	 * physical address in this case.
 732	 */
 733	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 734		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 735		if (!mapping) {
 736			ret = -ENOMEM;
 737			goto dma_free;
 738		}
 739
 740		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 741				mem->flags, GFP_KERNEL);
 742		if (ret) {
 743			dev_err(dev, "iommu_map failed: %d\n", ret);
 744			goto free_mapping;
 745		}
 746
 747		/*
 748		 * We'll need this info later when we'll want to unmap
 749		 * everything (e.g. on shutdown).
 750		 *
 751		 * We can't trust the remote processor not to change the
 752		 * resource table, so we must maintain this info independently.
 753		 */
 754		mapping->da = mem->da;
 755		mapping->len = mem->len;
 756		list_add_tail(&mapping->node, &rproc->mappings);
 757
 758		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 759			mem->da, &dma);
 760	}
 761
 762	if (mem->da == FW_RSC_ADDR_ANY) {
 763		/* Update device address as undefined by requester */
 764		if ((u64)dma & HIGH_BITS_MASK)
 765			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 766
 767		mem->da = (u32)dma;
 768	}
 769
 770	mem->dma = dma;
 771	mem->va = va;
 772
 773	return 0;
 774
 775free_mapping:
 776	kfree(mapping);
 777dma_free:
 778	dma_free_coherent(dev->parent, mem->len, va, dma);
 779	return ret;
 780}
 781
 782/**
 783 * rproc_release_carveout() - release acquired carveout
 784 * @rproc: rproc handle
 785 * @mem: the memory entry to release
 786 *
 787 * This function releases specified memory entry @mem allocated via
 788 * rproc_alloc_carveout() function by @rproc.
 789 *
 790 * Return: 0 on success, or an appropriate error code otherwise
 791 */
 792static int rproc_release_carveout(struct rproc *rproc,
 793				  struct rproc_mem_entry *mem)
 794{
 795	struct device *dev = &rproc->dev;
 796
 797	/* clean up carveout allocations */
 798	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 799	return 0;
 800}
 801
 802/**
 803 * rproc_handle_carveout() - handle phys contig memory allocation requests
 804 * @rproc: rproc handle
 805 * @ptr: the resource entry
 806 * @offset: offset of the resource entry
 807 * @avail: size of available data (for image validation)
 808 *
 809 * This function will handle firmware requests for allocation of physically
 810 * contiguous memory regions.
 811 *
 812 * These request entries should come first in the firmware's resource table,
 813 * as other firmware entries might request placing other data objects inside
 814 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 815 *
 816 * Allocating memory this way helps utilizing the reserved physical memory
 817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 819 * pressure is important; it may have a substantial impact on performance.
 820 *
 821 * Return: 0 on success, or an appropriate error code otherwise
 822 */
 823static int rproc_handle_carveout(struct rproc *rproc,
 824				 void *ptr, int offset, int avail)
 
 825{
 826	struct fw_rsc_carveout *rsc = ptr;
 827	struct rproc_mem_entry *carveout;
 828	struct device *dev = &rproc->dev;
 829
 830	if (sizeof(*rsc) > avail) {
 831		dev_err(dev, "carveout rsc is truncated\n");
 832		return -EINVAL;
 833	}
 834
 835	/* make sure reserved bytes are zeroes */
 836	if (rsc->reserved) {
 837		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 838		return -EINVAL;
 839	}
 840
 841	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 842		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 843
 844	/*
 845	 * Check carveout rsc already part of a registered carveout,
 846	 * Search by name, then check the da and length
 847	 */
 848	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 849
 850	if (carveout) {
 851		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 852			dev_err(dev,
 853				"Carveout already associated to resource table\n");
 854			return -ENOMEM;
 855		}
 856
 857		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 858			return -ENOMEM;
 859
 860		/* Update memory carveout with resource table info */
 861		carveout->rsc_offset = offset;
 862		carveout->flags = rsc->flags;
 863
 864		return 0;
 865	}
 866
 867	/* Register carveout in list */
 868	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 869					rproc_alloc_carveout,
 870					rproc_release_carveout, rsc->name);
 871	if (!carveout) {
 872		dev_err(dev, "Can't allocate memory entry structure\n");
 873		return -ENOMEM;
 874	}
 875
 876	carveout->flags = rsc->flags;
 877	carveout->rsc_offset = offset;
 878	rproc_add_carveout(rproc, carveout);
 879
 880	return 0;
 881}
 882
 883/**
 884 * rproc_add_carveout() - register an allocated carveout region
 885 * @rproc: rproc handle
 886 * @mem: memory entry to register
 887 *
 888 * This function registers specified memory entry in @rproc carveouts list.
 889 * Specified carveout should have been allocated before registering.
 890 */
 891void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 892{
 893	list_add_tail(&mem->node, &rproc->carveouts);
 894}
 895EXPORT_SYMBOL(rproc_add_carveout);
 896
 897/**
 898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 899 * @dev: pointer on device struct
 900 * @va: virtual address
 901 * @dma: dma address
 902 * @len: memory carveout length
 903 * @da: device address
 904 * @alloc: memory carveout allocation function
 905 * @release: memory carveout release function
 906 * @name: carveout name
 907 *
 908 * This function allocates a rproc_mem_entry struct and fill it with parameters
 909 * provided by client.
 910 *
 911 * Return: a valid pointer on success, or NULL on failure
 912 */
 913__printf(8, 9)
 914struct rproc_mem_entry *
 915rproc_mem_entry_init(struct device *dev,
 916		     void *va, dma_addr_t dma, size_t len, u32 da,
 917		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 918		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 919		     const char *name, ...)
 920{
 921	struct rproc_mem_entry *mem;
 922	va_list args;
 923
 924	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 925	if (!mem)
 926		return mem;
 927
 928	mem->va = va;
 929	mem->dma = dma;
 930	mem->da = da;
 931	mem->len = len;
 932	mem->alloc = alloc;
 933	mem->release = release;
 934	mem->rsc_offset = FW_RSC_ADDR_ANY;
 935	mem->of_resm_idx = -1;
 936
 937	va_start(args, name);
 938	vsnprintf(mem->name, sizeof(mem->name), name, args);
 939	va_end(args);
 940
 941	return mem;
 942}
 943EXPORT_SYMBOL(rproc_mem_entry_init);
 944
 945/**
 946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 947 * from a reserved memory phandle
 948 * @dev: pointer on device struct
 949 * @of_resm_idx: reserved memory phandle index in "memory-region"
 950 * @len: memory carveout length
 951 * @da: device address
 952 * @name: carveout name
 953 *
 954 * This function allocates a rproc_mem_entry struct and fill it with parameters
 955 * provided by client.
 956 *
 957 * Return: a valid pointer on success, or NULL on failure
 958 */
 959__printf(5, 6)
 960struct rproc_mem_entry *
 961rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
 962			     u32 da, const char *name, ...)
 963{
 964	struct rproc_mem_entry *mem;
 965	va_list args;
 966
 967	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 968	if (!mem)
 969		return mem;
 970
 971	mem->da = da;
 972	mem->len = len;
 973	mem->rsc_offset = FW_RSC_ADDR_ANY;
 974	mem->of_resm_idx = of_resm_idx;
 975
 976	va_start(args, name);
 977	vsnprintf(mem->name, sizeof(mem->name), name, args);
 978	va_end(args);
 979
 980	return mem;
 981}
 982EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
 983
 984/**
 985 * rproc_of_parse_firmware() - parse and return the firmware-name
 986 * @dev: pointer on device struct representing a rproc
 987 * @index: index to use for the firmware-name retrieval
 988 * @fw_name: pointer to a character string, in which the firmware
 989 *           name is returned on success and unmodified otherwise.
 990 *
 991 * This is an OF helper function that parses a device's DT node for
 992 * the "firmware-name" property and returns the firmware name pointer
 993 * in @fw_name on success.
 994 *
 995 * Return: 0 on success, or an appropriate failure.
 996 */
 997int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
 998{
 999	int ret;
1000
1001	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1002					    index, fw_name);
1003	return ret ? ret : 0;
1004}
1005EXPORT_SYMBOL(rproc_of_parse_firmware);
1006
1007/*
1008 * A lookup table for resource handlers. The indices are defined in
1009 * enum fw_resource_type.
1010 */
1011static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012	[RSC_CARVEOUT] = rproc_handle_carveout,
1013	[RSC_DEVMEM] = rproc_handle_devmem,
1014	[RSC_TRACE] = rproc_handle_trace,
1015	[RSC_VDEV] = rproc_handle_vdev,
1016};
1017
1018/* handle firmware resource entries before booting the remote processor */
1019static int rproc_handle_resources(struct rproc *rproc,
1020				  rproc_handle_resource_t handlers[RSC_LAST])
1021{
1022	struct device *dev = &rproc->dev;
1023	rproc_handle_resource_t handler;
1024	int ret = 0, i;
1025
1026	if (!rproc->table_ptr)
1027		return 0;
1028
1029	for (i = 0; i < rproc->table_ptr->num; i++) {
1030		int offset = rproc->table_ptr->offset[i];
1031		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032		int avail = rproc->table_sz - offset - sizeof(*hdr);
1033		void *rsc = (void *)hdr + sizeof(*hdr);
1034
1035		/* make sure table isn't truncated */
1036		if (avail < 0) {
1037			dev_err(dev, "rsc table is truncated\n");
1038			return -EINVAL;
1039		}
1040
1041		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1042
1043		if (hdr->type >= RSC_VENDOR_START &&
1044		    hdr->type <= RSC_VENDOR_END) {
1045			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1046					       offset + sizeof(*hdr), avail);
1047			if (ret == RSC_HANDLED)
1048				continue;
1049			else if (ret < 0)
1050				break;
1051
1052			dev_warn(dev, "unsupported vendor resource %d\n",
1053				 hdr->type);
1054			continue;
1055		}
1056
1057		if (hdr->type >= RSC_LAST) {
1058			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1059			continue;
1060		}
1061
1062		handler = handlers[hdr->type];
1063		if (!handler)
1064			continue;
1065
1066		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1067		if (ret)
1068			break;
1069	}
1070
1071	return ret;
1072}
1073
1074static int rproc_prepare_subdevices(struct rproc *rproc)
1075{
1076	struct rproc_subdev *subdev;
1077	int ret;
1078
1079	list_for_each_entry(subdev, &rproc->subdevs, node) {
1080		if (subdev->prepare) {
1081			ret = subdev->prepare(subdev);
1082			if (ret)
1083				goto unroll_preparation;
1084		}
1085	}
1086
1087	return 0;
1088
1089unroll_preparation:
1090	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091		if (subdev->unprepare)
1092			subdev->unprepare(subdev);
1093	}
1094
1095	return ret;
1096}
1097
1098static int rproc_start_subdevices(struct rproc *rproc)
1099{
1100	struct rproc_subdev *subdev;
1101	int ret;
1102
1103	list_for_each_entry(subdev, &rproc->subdevs, node) {
1104		if (subdev->start) {
1105			ret = subdev->start(subdev);
1106			if (ret)
1107				goto unroll_registration;
1108		}
1109	}
1110
1111	return 0;
1112
1113unroll_registration:
1114	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1115		if (subdev->stop)
1116			subdev->stop(subdev, true);
1117	}
1118
1119	return ret;
1120}
1121
1122static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1123{
1124	struct rproc_subdev *subdev;
1125
1126	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1127		if (subdev->stop)
1128			subdev->stop(subdev, crashed);
1129	}
1130}
1131
1132static void rproc_unprepare_subdevices(struct rproc *rproc)
1133{
1134	struct rproc_subdev *subdev;
1135
1136	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137		if (subdev->unprepare)
1138			subdev->unprepare(subdev);
1139	}
1140}
1141
1142/**
1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1144 * in the list
1145 * @rproc: the remote processor handle
1146 *
1147 * This function parses registered carveout list, performs allocation
1148 * if alloc() ops registered and updates resource table information
1149 * if rsc_offset set.
1150 *
1151 * Return: 0 on success
1152 */
1153static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1154{
1155	struct rproc_mem_entry *entry, *tmp;
1156	struct fw_rsc_carveout *rsc;
1157	struct device *dev = &rproc->dev;
1158	u64 pa;
1159	int ret;
1160
1161	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1162		if (entry->alloc) {
1163			ret = entry->alloc(rproc, entry);
1164			if (ret) {
1165				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1166					entry->name, ret);
1167				return -ENOMEM;
1168			}
1169		}
1170
1171		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172			/* update resource table */
1173			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1174
1175			/*
1176			 * Some remote processors might need to know the pa
1177			 * even though they are behind an IOMMU. E.g., OMAP4's
1178			 * remote M3 processor needs this so it can control
1179			 * on-chip hardware accelerators that are not behind
1180			 * the IOMMU, and therefor must know the pa.
1181			 *
1182			 * Generally we don't want to expose physical addresses
1183			 * if we don't have to (remote processors are generally
1184			 * _not_ trusted), so we might want to do this only for
1185			 * remote processor that _must_ have this (e.g. OMAP4's
1186			 * dual M3 subsystem).
1187			 *
1188			 * Non-IOMMU processors might also want to have this info.
1189			 * In this case, the device address and the physical address
1190			 * are the same.
1191			 */
1192
1193			/* Use va if defined else dma to generate pa */
1194			if (entry->va)
1195				pa = (u64)rproc_va_to_pa(entry->va);
1196			else
1197				pa = (u64)entry->dma;
1198
1199			if (((u64)pa) & HIGH_BITS_MASK)
1200				dev_warn(dev,
1201					 "Physical address cast in 32bit to fit resource table format\n");
1202
1203			rsc->pa = (u32)pa;
1204			rsc->da = entry->da;
1205			rsc->len = entry->len;
1206		}
1207	}
1208
1209	return 0;
1210}
1211
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213/**
1214 * rproc_resource_cleanup() - clean up and free all acquired resources
1215 * @rproc: rproc handle
1216 *
1217 * This function will free all resources acquired for @rproc, and it
1218 * is called whenever @rproc either shuts down or fails to boot.
1219 */
1220void rproc_resource_cleanup(struct rproc *rproc)
1221{
1222	struct rproc_mem_entry *entry, *tmp;
1223	struct rproc_debug_trace *trace, *ttmp;
1224	struct rproc_vdev *rvdev, *rvtmp;
1225	struct device *dev = &rproc->dev;
1226
1227	/* clean up debugfs trace entries */
1228	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229		rproc_remove_trace_file(trace->tfile);
1230		rproc->num_traces--;
1231		list_del(&trace->node);
1232		kfree(trace);
1233	}
1234
1235	/* clean up iommu mapping entries */
1236	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1237		size_t unmapped;
1238
1239		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1240		if (unmapped != entry->len) {
1241			/* nothing much to do besides complaining */
1242			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1243				unmapped);
1244		}
1245
1246		list_del(&entry->node);
1247		kfree(entry);
1248	}
1249
1250	/* clean up carveout allocations */
1251	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252		if (entry->release)
1253			entry->release(rproc, entry);
1254		list_del(&entry->node);
1255		kfree(entry);
1256	}
1257
1258	/* clean up remote vdev entries */
1259	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260		platform_device_unregister(rvdev->pdev);
1261
1262	rproc_coredump_cleanup(rproc);
1263}
1264EXPORT_SYMBOL(rproc_resource_cleanup);
1265
1266static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1267{
1268	struct resource_table *loaded_table;
1269	struct device *dev = &rproc->dev;
1270	int ret;
1271
1272	/* load the ELF segments to memory */
1273	ret = rproc_load_segments(rproc, fw);
1274	if (ret) {
1275		dev_err(dev, "Failed to load program segments: %d\n", ret);
1276		return ret;
1277	}
1278
1279	/*
1280	 * The starting device has been given the rproc->cached_table as the
1281	 * resource table. The address of the vring along with the other
1282	 * allocated resources (carveouts etc) is stored in cached_table.
1283	 * In order to pass this information to the remote device we must copy
1284	 * this information to device memory. We also update the table_ptr so
1285	 * that any subsequent changes will be applied to the loaded version.
1286	 */
1287	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1288	if (loaded_table) {
1289		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290		rproc->table_ptr = loaded_table;
1291	}
1292
1293	ret = rproc_prepare_subdevices(rproc);
1294	if (ret) {
1295		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1296			rproc->name, ret);
1297		goto reset_table_ptr;
1298	}
1299
1300	/* power up the remote processor */
1301	ret = rproc->ops->start(rproc);
1302	if (ret) {
1303		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304		goto unprepare_subdevices;
1305	}
1306
1307	/* Start any subdevices for the remote processor */
1308	ret = rproc_start_subdevices(rproc);
1309	if (ret) {
1310		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1311			rproc->name, ret);
1312		goto stop_rproc;
1313	}
1314
1315	rproc->state = RPROC_RUNNING;
1316
1317	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1318
1319	return 0;
1320
1321stop_rproc:
1322	rproc->ops->stop(rproc);
1323unprepare_subdevices:
1324	rproc_unprepare_subdevices(rproc);
1325reset_table_ptr:
1326	rproc->table_ptr = rproc->cached_table;
1327
1328	return ret;
1329}
1330
1331static int __rproc_attach(struct rproc *rproc)
1332{
1333	struct device *dev = &rproc->dev;
1334	int ret;
1335
1336	ret = rproc_prepare_subdevices(rproc);
1337	if (ret) {
1338		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1339			rproc->name, ret);
1340		goto out;
1341	}
1342
1343	/* Attach to the remote processor */
1344	ret = rproc_attach_device(rproc);
1345	if (ret) {
1346		dev_err(dev, "can't attach to rproc %s: %d\n",
1347			rproc->name, ret);
1348		goto unprepare_subdevices;
1349	}
1350
1351	/* Start any subdevices for the remote processor */
1352	ret = rproc_start_subdevices(rproc);
1353	if (ret) {
1354		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355			rproc->name, ret);
1356		goto stop_rproc;
1357	}
1358
1359	rproc->state = RPROC_ATTACHED;
1360
1361	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1362
1363	return 0;
1364
1365stop_rproc:
1366	rproc->ops->stop(rproc);
1367unprepare_subdevices:
1368	rproc_unprepare_subdevices(rproc);
1369out:
1370	return ret;
1371}
1372
1373/*
1374 * take a firmware and boot a remote processor with it.
1375 */
1376static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377{
1378	struct device *dev = &rproc->dev;
1379	const char *name = rproc->firmware;
1380	int ret;
1381
1382	ret = rproc_fw_sanity_check(rproc, fw);
1383	if (ret)
1384		return ret;
1385
1386	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1387
1388	/*
1389	 * if enabling an IOMMU isn't relevant for this rproc, this is
1390	 * just a nop
1391	 */
1392	ret = rproc_enable_iommu(rproc);
1393	if (ret) {
1394		dev_err(dev, "can't enable iommu: %d\n", ret);
1395		return ret;
1396	}
1397
1398	/* Prepare rproc for firmware loading if needed */
1399	ret = rproc_prepare_device(rproc);
1400	if (ret) {
1401		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1402		goto disable_iommu;
1403	}
1404
1405	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1406
1407	/* Load resource table, core dump segment list etc from the firmware */
1408	ret = rproc_parse_fw(rproc, fw);
1409	if (ret)
1410		goto unprepare_rproc;
1411
1412	/* reset max_notifyid */
1413	rproc->max_notifyid = -1;
1414
1415	/* reset handled vdev */
1416	rproc->nb_vdev = 0;
1417
1418	/* handle fw resources which are required to boot rproc */
1419	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1420	if (ret) {
1421		dev_err(dev, "Failed to process resources: %d\n", ret);
1422		goto clean_up_resources;
1423	}
1424
1425	/* Allocate carveout resources associated to rproc */
1426	ret = rproc_alloc_registered_carveouts(rproc);
1427	if (ret) {
1428		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1429			ret);
1430		goto clean_up_resources;
1431	}
1432
1433	ret = rproc_start(rproc, fw);
1434	if (ret)
1435		goto clean_up_resources;
1436
1437	return 0;
1438
1439clean_up_resources:
1440	rproc_resource_cleanup(rproc);
1441	kfree(rproc->cached_table);
1442	rproc->cached_table = NULL;
1443	rproc->table_ptr = NULL;
1444unprepare_rproc:
1445	/* release HW resources if needed */
1446	rproc_unprepare_device(rproc);
1447disable_iommu:
1448	rproc_disable_iommu(rproc);
1449	return ret;
1450}
1451
1452static int rproc_set_rsc_table(struct rproc *rproc)
1453{
1454	struct resource_table *table_ptr;
1455	struct device *dev = &rproc->dev;
1456	size_t table_sz;
1457	int ret;
1458
1459	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1460	if (!table_ptr) {
1461		/* Not having a resource table is acceptable */
1462		return 0;
1463	}
1464
1465	if (IS_ERR(table_ptr)) {
1466		ret = PTR_ERR(table_ptr);
1467		dev_err(dev, "can't load resource table: %d\n", ret);
1468		return ret;
1469	}
1470
1471	/*
1472	 * If it is possible to detach the remote processor, keep an untouched
1473	 * copy of the resource table.  That way we can start fresh again when
1474	 * the remote processor is re-attached, that is:
1475	 *
1476	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1477	 *
1478	 * Free'd in rproc_reset_rsc_table_on_detach() and
1479	 * rproc_reset_rsc_table_on_stop().
1480	 */
1481	if (rproc->ops->detach) {
1482		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1483		if (!rproc->clean_table)
1484			return -ENOMEM;
1485	} else {
1486		rproc->clean_table = NULL;
1487	}
1488
1489	rproc->cached_table = NULL;
1490	rproc->table_ptr = table_ptr;
1491	rproc->table_sz = table_sz;
1492
1493	return 0;
1494}
1495
1496static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1497{
1498	struct resource_table *table_ptr;
1499
1500	/* A resource table was never retrieved, nothing to do here */
1501	if (!rproc->table_ptr)
1502		return 0;
1503
1504	/*
1505	 * If we made it to this point a clean_table _must_ have been
1506	 * allocated in rproc_set_rsc_table().  If one isn't present
1507	 * something went really wrong and we must complain.
1508	 */
1509	if (WARN_ON(!rproc->clean_table))
1510		return -EINVAL;
1511
1512	/* Remember where the external entity installed the resource table */
1513	table_ptr = rproc->table_ptr;
1514
1515	/*
1516	 * If we made it here the remote processor was started by another
1517	 * entity and a cache table doesn't exist.  As such make a copy of
1518	 * the resource table currently used by the remote processor and
1519	 * use that for the rest of the shutdown process.  The memory
1520	 * allocated here is free'd in rproc_detach().
1521	 */
1522	rproc->cached_table = kmemdup(rproc->table_ptr,
1523				      rproc->table_sz, GFP_KERNEL);
1524	if (!rproc->cached_table)
1525		return -ENOMEM;
1526
1527	/*
1528	 * Use a copy of the resource table for the remainder of the
1529	 * shutdown process.
1530	 */
1531	rproc->table_ptr = rproc->cached_table;
1532
1533	/*
1534	 * Reset the memory area where the firmware loaded the resource table
1535	 * to its original value.  That way when we re-attach the remote
1536	 * processor the resource table is clean and ready to be used again.
1537	 */
1538	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1539
1540	/*
1541	 * The clean resource table is no longer needed.  Allocated in
1542	 * rproc_set_rsc_table().
1543	 */
1544	kfree(rproc->clean_table);
1545
1546	return 0;
1547}
1548
1549static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1550{
1551	/* A resource table was never retrieved, nothing to do here */
1552	if (!rproc->table_ptr)
1553		return 0;
1554
1555	/*
1556	 * If a cache table exists the remote processor was started by
1557	 * the remoteproc core.  That cache table should be used for
1558	 * the rest of the shutdown process.
1559	 */
1560	if (rproc->cached_table)
1561		goto out;
1562
1563	/*
1564	 * If we made it here the remote processor was started by another
1565	 * entity and a cache table doesn't exist.  As such make a copy of
1566	 * the resource table currently used by the remote processor and
1567	 * use that for the rest of the shutdown process.  The memory
1568	 * allocated here is free'd in rproc_shutdown().
1569	 */
1570	rproc->cached_table = kmemdup(rproc->table_ptr,
1571				      rproc->table_sz, GFP_KERNEL);
1572	if (!rproc->cached_table)
1573		return -ENOMEM;
1574
1575	/*
1576	 * Since the remote processor is being switched off the clean table
1577	 * won't be needed.  Allocated in rproc_set_rsc_table().
1578	 */
1579	kfree(rproc->clean_table);
1580
1581out:
1582	/*
1583	 * Use a copy of the resource table for the remainder of the
1584	 * shutdown process.
1585	 */
1586	rproc->table_ptr = rproc->cached_table;
1587	return 0;
1588}
1589
1590/*
1591 * Attach to remote processor - similar to rproc_fw_boot() but without
1592 * the steps that deal with the firmware image.
1593 */
1594static int rproc_attach(struct rproc *rproc)
1595{
1596	struct device *dev = &rproc->dev;
1597	int ret;
1598
1599	/*
1600	 * if enabling an IOMMU isn't relevant for this rproc, this is
1601	 * just a nop
1602	 */
1603	ret = rproc_enable_iommu(rproc);
1604	if (ret) {
1605		dev_err(dev, "can't enable iommu: %d\n", ret);
1606		return ret;
1607	}
1608
1609	/* Do anything that is needed to boot the remote processor */
1610	ret = rproc_prepare_device(rproc);
1611	if (ret) {
1612		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1613		goto disable_iommu;
1614	}
1615
1616	ret = rproc_set_rsc_table(rproc);
1617	if (ret) {
1618		dev_err(dev, "can't load resource table: %d\n", ret);
1619		goto unprepare_device;
1620	}
1621
1622	/* reset max_notifyid */
1623	rproc->max_notifyid = -1;
1624
1625	/* reset handled vdev */
1626	rproc->nb_vdev = 0;
1627
1628	/*
1629	 * Handle firmware resources required to attach to a remote processor.
1630	 * Because we are attaching rather than booting the remote processor,
1631	 * we expect the platform driver to properly set rproc->table_ptr.
1632	 */
1633	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1634	if (ret) {
1635		dev_err(dev, "Failed to process resources: %d\n", ret);
1636		goto unprepare_device;
1637	}
1638
1639	/* Allocate carveout resources associated to rproc */
1640	ret = rproc_alloc_registered_carveouts(rproc);
1641	if (ret) {
1642		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1643			ret);
1644		goto clean_up_resources;
1645	}
1646
1647	ret = __rproc_attach(rproc);
1648	if (ret)
1649		goto clean_up_resources;
1650
1651	return 0;
1652
1653clean_up_resources:
1654	rproc_resource_cleanup(rproc);
1655unprepare_device:
1656	/* release HW resources if needed */
1657	rproc_unprepare_device(rproc);
1658disable_iommu:
1659	rproc_disable_iommu(rproc);
1660	return ret;
1661}
1662
1663/*
1664 * take a firmware and boot it up.
1665 *
1666 * Note: this function is called asynchronously upon registration of the
1667 * remote processor (so we must wait until it completes before we try
1668 * to unregister the device. one other option is just to use kref here,
1669 * that might be cleaner).
1670 */
1671static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1672{
1673	struct rproc *rproc = context;
1674
1675	rproc_boot(rproc);
1676
1677	release_firmware(fw);
1678}
1679
1680static int rproc_trigger_auto_boot(struct rproc *rproc)
1681{
1682	int ret;
1683
1684	/*
1685	 * Since the remote processor is in a detached state, it has already
1686	 * been booted by another entity.  As such there is no point in waiting
1687	 * for a firmware image to be loaded, we can simply initiate the process
1688	 * of attaching to it immediately.
1689	 */
1690	if (rproc->state == RPROC_DETACHED)
1691		return rproc_boot(rproc);
1692
1693	/*
1694	 * We're initiating an asynchronous firmware loading, so we can
1695	 * be built-in kernel code, without hanging the boot process.
1696	 */
1697	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1699				      rproc, rproc_auto_boot_callback);
1700	if (ret < 0)
1701		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1702
1703	return ret;
1704}
1705
1706static int rproc_stop(struct rproc *rproc, bool crashed)
1707{
1708	struct device *dev = &rproc->dev;
1709	int ret;
1710
1711	/* No need to continue if a stop() operation has not been provided */
1712	if (!rproc->ops->stop)
1713		return -EINVAL;
1714
1715	/* Stop any subdevices for the remote processor */
1716	rproc_stop_subdevices(rproc, crashed);
1717
1718	/* the installed resource table is no longer accessible */
1719	ret = rproc_reset_rsc_table_on_stop(rproc);
1720	if (ret) {
1721		dev_err(dev, "can't reset resource table: %d\n", ret);
1722		return ret;
1723	}
1724
1725
1726	/* power off the remote processor */
1727	ret = rproc->ops->stop(rproc);
1728	if (ret) {
1729		dev_err(dev, "can't stop rproc: %d\n", ret);
1730		return ret;
1731	}
1732
1733	rproc_unprepare_subdevices(rproc);
1734
1735	rproc->state = RPROC_OFFLINE;
1736
1737	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1738
1739	return 0;
1740}
1741
1742/*
1743 * __rproc_detach(): Does the opposite of __rproc_attach()
 
 
 
 
 
 
 
 
1744 */
1745static int __rproc_detach(struct rproc *rproc)
1746{
1747	struct device *dev = &rproc->dev;
1748	int ret;
1749
1750	/* No need to continue if a detach() operation has not been provided */
1751	if (!rproc->ops->detach)
1752		return -EINVAL;
1753
1754	/* Stop any subdevices for the remote processor */
1755	rproc_stop_subdevices(rproc, false);
1756
1757	/* the installed resource table is no longer accessible */
1758	ret = rproc_reset_rsc_table_on_detach(rproc);
1759	if (ret) {
1760		dev_err(dev, "can't reset resource table: %d\n", ret);
1761		return ret;
1762	}
1763
1764	/* Tell the remote processor the core isn't available anymore */
1765	ret = rproc->ops->detach(rproc);
1766	if (ret) {
1767		dev_err(dev, "can't detach from rproc: %d\n", ret);
1768		return ret;
1769	}
1770
1771	rproc_unprepare_subdevices(rproc);
1772
1773	rproc->state = RPROC_DETACHED;
 
1774
1775	dev_info(dev, "detached remote processor %s\n", rproc->name);
1776
1777	return 0;
1778}
 
1779
1780static int rproc_attach_recovery(struct rproc *rproc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781{
1782	int ret;
1783
1784	ret = __rproc_detach(rproc);
1785	if (ret)
1786		return ret;
 
 
 
 
 
1787
1788	return __rproc_attach(rproc);
 
 
1789}
 
1790
1791static int rproc_boot_recovery(struct rproc *rproc)
 
 
 
 
 
 
 
1792{
1793	const struct firmware *firmware_p;
1794	struct device *dev = &rproc->dev;
1795	int ret;
 
 
 
 
 
1796
1797	ret = rproc_stop(rproc, true);
1798	if (ret)
1799		return ret;
1800
1801	/* generate coredump */
1802	rproc->ops->coredump(rproc);
 
1803
1804	/* load firmware */
1805	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1806	if (ret < 0) {
1807		dev_err(dev, "request_firmware failed: %d\n", ret);
1808		return ret;
1809	}
1810
1811	/* boot the remote processor up again */
1812	ret = rproc_start(rproc, firmware_p);
 
1813
1814	release_firmware(firmware_p);
1815
1816	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817}
1818
1819/**
1820 * rproc_trigger_recovery() - recover a remoteproc
1821 * @rproc: the remote processor
1822 *
1823 * The recovery is done by resetting all the virtio devices, that way all the
1824 * rpmsg drivers will be reseted along with the remote processor making the
1825 * remoteproc functional again.
1826 *
1827 * This function can sleep, so it cannot be called from atomic context.
1828 *
1829 * Return: 0 on success or a negative value upon failure
1830 */
1831int rproc_trigger_recovery(struct rproc *rproc)
1832{
 
1833	struct device *dev = &rproc->dev;
1834	int ret;
1835
 
 
1836	ret = mutex_lock_interruptible(&rproc->lock);
1837	if (ret)
1838		return ret;
1839
1840	/* State could have changed before we got the mutex */
1841	if (rproc->state != RPROC_CRASHED)
1842		goto unlock_mutex;
1843
1844	dev_err(dev, "recovering %s\n", rproc->name);
 
 
 
 
 
 
 
 
1845
1846	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1847		ret = rproc_attach_recovery(rproc);
1848	else
1849		ret = rproc_boot_recovery(rproc);
1850
1851unlock_mutex:
1852	mutex_unlock(&rproc->lock);
1853	return ret;
1854}
1855
1856/**
1857 * rproc_crash_handler_work() - handle a crash
1858 * @work: work treating the crash
1859 *
1860 * This function needs to handle everything related to a crash, like cpu
1861 * registers and stack dump, information to help to debug the fatal error, etc.
1862 */
1863static void rproc_crash_handler_work(struct work_struct *work)
1864{
1865	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866	struct device *dev = &rproc->dev;
1867
1868	dev_dbg(dev, "enter %s\n", __func__);
1869
1870	mutex_lock(&rproc->lock);
1871
1872	if (rproc->state == RPROC_CRASHED) {
1873		/* handle only the first crash detected */
1874		mutex_unlock(&rproc->lock);
1875		return;
1876	}
1877
1878	if (rproc->state == RPROC_OFFLINE) {
1879		/* Don't recover if the remote processor was stopped */
1880		mutex_unlock(&rproc->lock);
1881		goto out;
1882	}
1883
1884	rproc->state = RPROC_CRASHED;
1885	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1886		rproc->name);
1887
1888	mutex_unlock(&rproc->lock);
1889
1890	if (!rproc->recovery_disabled)
1891		rproc_trigger_recovery(rproc);
1892
1893out:
1894	pm_relax(rproc->dev.parent);
1895}
1896
1897/**
1898 * rproc_boot() - boot a remote processor
1899 * @rproc: handle of a remote processor
1900 *
1901 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1902 *
1903 * If the remote processor is already powered on, this function immediately
1904 * returns (successfully).
1905 *
1906 * Return: 0 on success, and an appropriate error value otherwise
1907 */
1908int rproc_boot(struct rproc *rproc)
1909{
1910	const struct firmware *firmware_p;
1911	struct device *dev;
1912	int ret;
1913
1914	if (!rproc) {
1915		pr_err("invalid rproc handle\n");
1916		return -EINVAL;
1917	}
1918
1919	dev = &rproc->dev;
1920
1921	ret = mutex_lock_interruptible(&rproc->lock);
1922	if (ret) {
1923		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1924		return ret;
1925	}
1926
1927	if (rproc->state == RPROC_DELETED) {
1928		ret = -ENODEV;
1929		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1930		goto unlock_mutex;
1931	}
1932
1933	/* skip the boot or attach process if rproc is already powered up */
1934	if (atomic_inc_return(&rproc->power) > 1) {
1935		ret = 0;
1936		goto unlock_mutex;
1937	}
1938
1939	if (rproc->state == RPROC_DETACHED) {
1940		dev_info(dev, "attaching to %s\n", rproc->name);
1941
1942		ret = rproc_attach(rproc);
1943	} else {
1944		dev_info(dev, "powering up %s\n", rproc->name);
1945
1946		/* load firmware */
1947		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1948		if (ret < 0) {
1949			dev_err(dev, "request_firmware failed: %d\n", ret);
1950			goto downref_rproc;
1951		}
1952
1953		ret = rproc_fw_boot(rproc, firmware_p);
1954
1955		release_firmware(firmware_p);
1956	}
1957
1958downref_rproc:
1959	if (ret)
1960		atomic_dec(&rproc->power);
1961unlock_mutex:
1962	mutex_unlock(&rproc->lock);
1963	return ret;
1964}
1965EXPORT_SYMBOL(rproc_boot);
1966
1967/**
1968 * rproc_shutdown() - power off the remote processor
1969 * @rproc: the remote processor
1970 *
1971 * Power off a remote processor (previously booted with rproc_boot()).
1972 *
1973 * In case @rproc is still being used by an additional user(s), then
1974 * this function will just decrement the power refcount and exit,
1975 * without really powering off the device.
1976 *
1977 * Every call to rproc_boot() must (eventually) be accompanied by a call
1978 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1979 *
1980 * Notes:
1981 * - we're not decrementing the rproc's refcount, only the power refcount.
1982 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1983 *   returns, and users can still use it with a subsequent rproc_boot(), if
1984 *   needed.
1985 *
1986 * Return: 0 on success, and an appropriate error value otherwise
1987 */
1988int rproc_shutdown(struct rproc *rproc)
1989{
1990	struct device *dev = &rproc->dev;
1991	int ret = 0;
1992
1993	ret = mutex_lock_interruptible(&rproc->lock);
1994	if (ret) {
1995		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1996		return ret;
1997	}
1998
1999	if (rproc->state != RPROC_RUNNING &&
2000	    rproc->state != RPROC_ATTACHED) {
2001		ret = -EINVAL;
2002		goto out;
2003	}
2004
2005	/* if the remote proc is still needed, bail out */
2006	if (!atomic_dec_and_test(&rproc->power))
2007		goto out;
2008
2009	ret = rproc_stop(rproc, false);
2010	if (ret) {
2011		atomic_inc(&rproc->power);
2012		goto out;
2013	}
2014
2015	/* clean up all acquired resources */
2016	rproc_resource_cleanup(rproc);
2017
2018	/* release HW resources if needed */
2019	rproc_unprepare_device(rproc);
2020
2021	rproc_disable_iommu(rproc);
2022
2023	/* Free the copy of the resource table */
2024	kfree(rproc->cached_table);
2025	rproc->cached_table = NULL;
2026	rproc->table_ptr = NULL;
2027out:
2028	mutex_unlock(&rproc->lock);
2029	return ret;
2030}
2031EXPORT_SYMBOL(rproc_shutdown);
2032
2033/**
2034 * rproc_detach() - Detach the remote processor from the
2035 * remoteproc core
2036 *
2037 * @rproc: the remote processor
2038 *
2039 * Detach a remote processor (previously attached to with rproc_attach()).
2040 *
2041 * In case @rproc is still being used by an additional user(s), then
2042 * this function will just decrement the power refcount and exit,
2043 * without disconnecting the device.
2044 *
2045 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2046 * processor know that services provided by the application processor are
2047 * no longer available.  From there it should be possible to remove the
2048 * platform driver and even power cycle the application processor (if the HW
2049 * supports it) without needing to switch off the remote processor.
2050 *
2051 * Return: 0 on success, and an appropriate error value otherwise
2052 */
2053int rproc_detach(struct rproc *rproc)
2054{
2055	struct device *dev = &rproc->dev;
2056	int ret;
2057
2058	ret = mutex_lock_interruptible(&rproc->lock);
2059	if (ret) {
2060		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2061		return ret;
2062	}
2063
2064	if (rproc->state != RPROC_ATTACHED) {
2065		ret = -EINVAL;
2066		goto out;
2067	}
2068
2069	/* if the remote proc is still needed, bail out */
2070	if (!atomic_dec_and_test(&rproc->power)) {
2071		ret = 0;
2072		goto out;
2073	}
2074
2075	ret = __rproc_detach(rproc);
2076	if (ret) {
2077		atomic_inc(&rproc->power);
2078		goto out;
2079	}
2080
2081	/* clean up all acquired resources */
2082	rproc_resource_cleanup(rproc);
2083
2084	/* release HW resources if needed */
2085	rproc_unprepare_device(rproc);
2086
2087	rproc_disable_iommu(rproc);
2088
2089	/* Free the copy of the resource table */
2090	kfree(rproc->cached_table);
2091	rproc->cached_table = NULL;
2092	rproc->table_ptr = NULL;
2093out:
2094	mutex_unlock(&rproc->lock);
2095	return ret;
2096}
2097EXPORT_SYMBOL(rproc_detach);
2098
2099/**
2100 * rproc_get_by_phandle() - find a remote processor by phandle
2101 * @phandle: phandle to the rproc
2102 *
2103 * Finds an rproc handle using the remote processor's phandle, and then
2104 * return a handle to the rproc.
2105 *
2106 * This function increments the remote processor's refcount, so always
2107 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2108 *
2109 * Return: rproc handle on success, and NULL on failure
2110 */
2111#ifdef CONFIG_OF
2112struct rproc *rproc_get_by_phandle(phandle phandle)
2113{
2114	struct rproc *rproc = NULL, *r;
2115	struct device_node *np;
2116
2117	np = of_find_node_by_phandle(phandle);
2118	if (!np)
2119		return NULL;
2120
2121	rcu_read_lock();
2122	list_for_each_entry_rcu(r, &rproc_list, node) {
2123		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2124			/* prevent underlying implementation from being removed */
2125			if (!try_module_get(r->dev.parent->driver->owner)) {
2126				dev_err(&r->dev, "can't get owner\n");
2127				break;
2128			}
2129
2130			rproc = r;
2131			get_device(&rproc->dev);
2132			break;
2133		}
2134	}
2135	rcu_read_unlock();
2136
2137	of_node_put(np);
2138
2139	return rproc;
2140}
2141#else
2142struct rproc *rproc_get_by_phandle(phandle phandle)
2143{
2144	return NULL;
2145}
2146#endif
2147EXPORT_SYMBOL(rproc_get_by_phandle);
2148
2149/**
2150 * rproc_set_firmware() - assign a new firmware
2151 * @rproc: rproc handle to which the new firmware is being assigned
2152 * @fw_name: new firmware name to be assigned
2153 *
2154 * This function allows remoteproc drivers or clients to configure a custom
2155 * firmware name that is different from the default name used during remoteproc
2156 * registration. The function does not trigger a remote processor boot,
2157 * only sets the firmware name used for a subsequent boot. This function
2158 * should also be called only when the remote processor is offline.
2159 *
2160 * This allows either the userspace to configure a different name through
2161 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2162 * a specific firmware when it is controlling the boot and shutdown of the
2163 * remote processor.
2164 *
2165 * Return: 0 on success or a negative value upon failure
2166 */
2167int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2168{
2169	struct device *dev;
2170	int ret, len;
2171	char *p;
2172
2173	if (!rproc || !fw_name)
2174		return -EINVAL;
2175
2176	dev = rproc->dev.parent;
2177
2178	ret = mutex_lock_interruptible(&rproc->lock);
2179	if (ret) {
2180		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2181		return -EINVAL;
2182	}
2183
2184	if (rproc->state != RPROC_OFFLINE) {
2185		dev_err(dev, "can't change firmware while running\n");
2186		ret = -EBUSY;
2187		goto out;
2188	}
2189
2190	len = strcspn(fw_name, "\n");
2191	if (!len) {
2192		dev_err(dev, "can't provide empty string for firmware name\n");
2193		ret = -EINVAL;
2194		goto out;
2195	}
2196
2197	p = kstrndup(fw_name, len, GFP_KERNEL);
2198	if (!p) {
2199		ret = -ENOMEM;
2200		goto out;
2201	}
2202
2203	kfree_const(rproc->firmware);
2204	rproc->firmware = p;
2205
2206out:
2207	mutex_unlock(&rproc->lock);
2208	return ret;
2209}
2210EXPORT_SYMBOL(rproc_set_firmware);
2211
2212static int rproc_validate(struct rproc *rproc)
2213{
2214	switch (rproc->state) {
2215	case RPROC_OFFLINE:
2216		/*
2217		 * An offline processor without a start()
2218		 * function makes no sense.
2219		 */
2220		if (!rproc->ops->start)
2221			return -EINVAL;
2222		break;
2223	case RPROC_DETACHED:
2224		/*
2225		 * A remote processor in a detached state without an
2226		 * attach() function makes not sense.
2227		 */
2228		if (!rproc->ops->attach)
2229			return -EINVAL;
2230		/*
2231		 * When attaching to a remote processor the device memory
2232		 * is already available and as such there is no need to have a
2233		 * cached table.
2234		 */
2235		if (rproc->cached_table)
2236			return -EINVAL;
2237		break;
2238	default:
2239		/*
2240		 * When adding a remote processor, the state of the device
2241		 * can be offline or detached, nothing else.
2242		 */
2243		return -EINVAL;
2244	}
2245
2246	return 0;
2247}
2248
2249/**
2250 * rproc_add() - register a remote processor
2251 * @rproc: the remote processor handle to register
2252 *
2253 * Registers @rproc with the remoteproc framework, after it has been
2254 * allocated with rproc_alloc().
2255 *
2256 * This is called by the platform-specific rproc implementation, whenever
2257 * a new remote processor device is probed.
2258 *
 
 
2259 * Note: this function initiates an asynchronous firmware loading
2260 * context, which will look for virtio devices supported by the rproc's
2261 * firmware.
2262 *
2263 * If found, those virtio devices will be created and added, so as a result
2264 * of registering this remote processor, additional virtio drivers might be
2265 * probed.
2266 *
2267 * Return: 0 on success and an appropriate error code otherwise
2268 */
2269int rproc_add(struct rproc *rproc)
2270{
2271	struct device *dev = &rproc->dev;
2272	int ret;
2273
2274	ret = rproc_validate(rproc);
2275	if (ret < 0)
2276		return ret;
2277
2278	/* add char device for this remoteproc */
2279	ret = rproc_char_device_add(rproc);
2280	if (ret < 0)
2281		return ret;
2282
2283	ret = device_add(dev);
2284	if (ret < 0) {
2285		put_device(dev);
2286		goto rproc_remove_cdev;
2287	}
2288
2289	dev_info(dev, "%s is available\n", rproc->name);
2290
2291	/* create debugfs entries */
2292	rproc_create_debug_dir(rproc);
2293
2294	/* if rproc is marked always-on, request it to boot */
2295	if (rproc->auto_boot) {
2296		ret = rproc_trigger_auto_boot(rproc);
2297		if (ret < 0)
2298			goto rproc_remove_dev;
2299	}
2300
2301	/* expose to rproc_get_by_phandle users */
2302	mutex_lock(&rproc_list_mutex);
2303	list_add_rcu(&rproc->node, &rproc_list);
2304	mutex_unlock(&rproc_list_mutex);
2305
2306	return 0;
2307
2308rproc_remove_dev:
2309	rproc_delete_debug_dir(rproc);
2310	device_del(dev);
2311rproc_remove_cdev:
2312	rproc_char_device_remove(rproc);
2313	return ret;
2314}
2315EXPORT_SYMBOL(rproc_add);
2316
2317static void devm_rproc_remove(void *rproc)
2318{
2319	rproc_del(rproc);
2320}
2321
2322/**
2323 * devm_rproc_add() - resource managed rproc_add()
2324 * @dev: the underlying device
2325 * @rproc: the remote processor handle to register
2326 *
2327 * This function performs like rproc_add() but the registered rproc device will
2328 * automatically be removed on driver detach.
2329 *
2330 * Return: 0 on success, negative errno on failure
2331 */
2332int devm_rproc_add(struct device *dev, struct rproc *rproc)
2333{
2334	int err;
2335
2336	err = rproc_add(rproc);
2337	if (err)
2338		return err;
2339
2340	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2341}
2342EXPORT_SYMBOL(devm_rproc_add);
2343
2344/**
2345 * rproc_type_release() - release a remote processor instance
2346 * @dev: the rproc's device
2347 *
2348 * This function should _never_ be called directly.
2349 *
2350 * It will be called by the driver core when no one holds a valid pointer
2351 * to @dev anymore.
2352 */
2353static void rproc_type_release(struct device *dev)
2354{
2355	struct rproc *rproc = container_of(dev, struct rproc, dev);
2356
2357	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2358
2359	idr_destroy(&rproc->notifyids);
2360
2361	if (rproc->index >= 0)
2362		ida_free(&rproc_dev_index, rproc->index);
2363
2364	kfree_const(rproc->firmware);
2365	kfree_const(rproc->name);
2366	kfree(rproc->ops);
2367	kfree(rproc);
2368}
2369
2370static const struct device_type rproc_type = {
2371	.name		= "remoteproc",
2372	.release	= rproc_type_release,
2373};
2374
2375static int rproc_alloc_firmware(struct rproc *rproc,
2376				const char *name, const char *firmware)
2377{
2378	const char *p;
2379
2380	/*
2381	 * Allocate a firmware name if the caller gave us one to work
2382	 * with.  Otherwise construct a new one using a default pattern.
2383	 */
2384	if (firmware)
2385		p = kstrdup_const(firmware, GFP_KERNEL);
2386	else
2387		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2388
2389	if (!p)
2390		return -ENOMEM;
2391
2392	rproc->firmware = p;
2393
2394	return 0;
2395}
2396
2397static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2398{
2399	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2400	if (!rproc->ops)
2401		return -ENOMEM;
2402
2403	/* Default to rproc_coredump if no coredump function is specified */
2404	if (!rproc->ops->coredump)
2405		rproc->ops->coredump = rproc_coredump;
2406
2407	if (rproc->ops->load)
2408		return 0;
2409
2410	/* Default to ELF loader if no load function is specified */
2411	rproc->ops->load = rproc_elf_load_segments;
2412	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2413	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2414	rproc->ops->sanity_check = rproc_elf_sanity_check;
2415	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2416
2417	return 0;
2418}
2419
2420/**
2421 * rproc_alloc() - allocate a remote processor handle
2422 * @dev: the underlying device
2423 * @name: name of this remote processor
2424 * @ops: platform-specific handlers (mainly start/stop)
2425 * @firmware: name of firmware file to load, can be NULL
2426 * @len: length of private data needed by the rproc driver (in bytes)
2427 *
2428 * Allocates a new remote processor handle, but does not register
2429 * it yet. if @firmware is NULL, a default name is used.
2430 *
2431 * This function should be used by rproc implementations during initialization
2432 * of the remote processor.
2433 *
2434 * After creating an rproc handle using this function, and when ready,
2435 * implementations should then call rproc_add() to complete
2436 * the registration of the remote processor.
2437 *
 
 
2438 * Note: _never_ directly deallocate @rproc, even if it was not registered
2439 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2440 *
2441 * Return: new rproc pointer on success, and NULL on failure
2442 */
2443struct rproc *rproc_alloc(struct device *dev, const char *name,
2444			  const struct rproc_ops *ops,
2445			  const char *firmware, int len)
2446{
2447	struct rproc *rproc;
 
 
2448
2449	if (!dev || !name || !ops)
2450		return NULL;
2451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2453	if (!rproc)
 
2454		return NULL;
 
 
 
 
 
 
 
 
2455
 
 
2456	rproc->priv = &rproc[1];
2457	rproc->auto_boot = true;
2458	rproc->elf_class = ELFCLASSNONE;
2459	rproc->elf_machine = EM_NONE;
2460
2461	device_initialize(&rproc->dev);
2462	rproc->dev.parent = dev;
2463	rproc->dev.type = &rproc_type;
2464	rproc->dev.class = &rproc_class;
2465	rproc->dev.driver_data = rproc;
2466	idr_init(&rproc->notifyids);
2467
2468	rproc->name = kstrdup_const(name, GFP_KERNEL);
2469	if (!rproc->name)
2470		goto put_device;
2471
2472	if (rproc_alloc_firmware(rproc, name, firmware))
2473		goto put_device;
2474
2475	if (rproc_alloc_ops(rproc, ops))
2476		goto put_device;
2477
2478	/* Assign a unique device index and name */
2479	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2480	if (rproc->index < 0) {
2481		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2482		goto put_device;
 
2483	}
2484
2485	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2486
2487	atomic_set(&rproc->power, 0);
2488
 
 
 
 
 
 
 
 
 
2489	mutex_init(&rproc->lock);
2490
 
 
2491	INIT_LIST_HEAD(&rproc->carveouts);
2492	INIT_LIST_HEAD(&rproc->mappings);
2493	INIT_LIST_HEAD(&rproc->traces);
2494	INIT_LIST_HEAD(&rproc->rvdevs);
2495	INIT_LIST_HEAD(&rproc->subdevs);
2496	INIT_LIST_HEAD(&rproc->dump_segments);
2497
2498	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2499
2500	rproc->state = RPROC_OFFLINE;
2501
2502	return rproc;
2503
2504put_device:
2505	put_device(&rproc->dev);
2506	return NULL;
2507}
2508EXPORT_SYMBOL(rproc_alloc);
2509
2510/**
2511 * rproc_free() - unroll rproc_alloc()
2512 * @rproc: the remote processor handle
2513 *
2514 * This function decrements the rproc dev refcount.
2515 *
2516 * If no one holds any reference to rproc anymore, then its refcount would
2517 * now drop to zero, and it would be freed.
2518 */
2519void rproc_free(struct rproc *rproc)
2520{
2521	put_device(&rproc->dev);
2522}
2523EXPORT_SYMBOL(rproc_free);
2524
2525/**
2526 * rproc_put() - release rproc reference
2527 * @rproc: the remote processor handle
2528 *
2529 * This function decrements the rproc dev refcount.
2530 *
2531 * If no one holds any reference to rproc anymore, then its refcount would
2532 * now drop to zero, and it would be freed.
2533 */
2534void rproc_put(struct rproc *rproc)
2535{
2536	module_put(rproc->dev.parent->driver->owner);
2537	put_device(&rproc->dev);
2538}
2539EXPORT_SYMBOL(rproc_put);
2540
2541/**
2542 * rproc_del() - unregister a remote processor
2543 * @rproc: rproc handle to unregister
2544 *
2545 * This function should be called when the platform specific rproc
2546 * implementation decides to remove the rproc device. it should
2547 * _only_ be called if a previous invocation of rproc_add()
2548 * has completed successfully.
2549 *
2550 * After rproc_del() returns, @rproc isn't freed yet, because
2551 * of the outstanding reference created by rproc_alloc. To decrement that
2552 * one last refcount, one still needs to call rproc_free().
2553 *
2554 * Return: 0 on success and -EINVAL if @rproc isn't valid
2555 */
2556int rproc_del(struct rproc *rproc)
2557{
2558	if (!rproc)
2559		return -EINVAL;
2560
 
2561	/* TODO: make sure this works with rproc->power > 1 */
2562	rproc_shutdown(rproc);
 
2563
2564	mutex_lock(&rproc->lock);
2565	rproc->state = RPROC_DELETED;
2566	mutex_unlock(&rproc->lock);
2567
2568	rproc_delete_debug_dir(rproc);
2569
2570	/* the rproc is downref'ed as soon as it's removed from the klist */
2571	mutex_lock(&rproc_list_mutex);
2572	list_del_rcu(&rproc->node);
2573	mutex_unlock(&rproc_list_mutex);
2574
2575	/* Ensure that no readers of rproc_list are still active */
2576	synchronize_rcu();
2577
2578	device_del(&rproc->dev);
2579	rproc_char_device_remove(rproc);
2580
2581	return 0;
2582}
2583EXPORT_SYMBOL(rproc_del);
2584
2585static void devm_rproc_free(struct device *dev, void *res)
2586{
2587	rproc_free(*(struct rproc **)res);
2588}
2589
2590/**
2591 * devm_rproc_alloc() - resource managed rproc_alloc()
2592 * @dev: the underlying device
2593 * @name: name of this remote processor
2594 * @ops: platform-specific handlers (mainly start/stop)
2595 * @firmware: name of firmware file to load, can be NULL
2596 * @len: length of private data needed by the rproc driver (in bytes)
2597 *
2598 * This function performs like rproc_alloc() but the acquired rproc device will
2599 * automatically be released on driver detach.
2600 *
2601 * Return: new rproc instance, or NULL on failure
2602 */
2603struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2604			       const struct rproc_ops *ops,
2605			       const char *firmware, int len)
2606{
2607	struct rproc **ptr, *rproc;
2608
2609	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2610	if (!ptr)
2611		return NULL;
2612
2613	rproc = rproc_alloc(dev, name, ops, firmware, len);
2614	if (rproc) {
2615		*ptr = rproc;
2616		devres_add(dev, ptr);
2617	} else {
2618		devres_free(ptr);
2619	}
2620
2621	return rproc;
2622}
2623EXPORT_SYMBOL(devm_rproc_alloc);
2624
2625/**
2626 * rproc_add_subdev() - add a subdevice to a remoteproc
2627 * @rproc: rproc handle to add the subdevice to
2628 * @subdev: subdev handle to register
2629 *
2630 * Caller is responsible for populating optional subdevice function pointers.
2631 */
2632void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2633{
2634	list_add_tail(&subdev->node, &rproc->subdevs);
2635}
2636EXPORT_SYMBOL(rproc_add_subdev);
2637
2638/**
2639 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2640 * @rproc: rproc handle to remove the subdevice from
2641 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2642 */
2643void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2644{
2645	list_del(&subdev->node);
2646}
2647EXPORT_SYMBOL(rproc_remove_subdev);
2648
2649/**
2650 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2651 * @dev:	child device to find ancestor of
2652 *
2653 * Return: the ancestor rproc instance, or NULL if not found
2654 */
2655struct rproc *rproc_get_by_child(struct device *dev)
2656{
2657	for (dev = dev->parent; dev; dev = dev->parent) {
2658		if (dev->type == &rproc_type)
2659			return dev->driver_data;
2660	}
2661
2662	return NULL;
2663}
2664EXPORT_SYMBOL(rproc_get_by_child);
2665
2666/**
2667 * rproc_report_crash() - rproc crash reporter function
2668 * @rproc: remote processor
2669 * @type: crash type
2670 *
2671 * This function must be called every time a crash is detected by the low-level
2672 * drivers implementing a specific remoteproc. This should not be called from a
2673 * non-remoteproc driver.
2674 *
2675 * This function can be called from atomic/interrupt context.
2676 */
2677void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2678{
2679	if (!rproc) {
2680		pr_err("NULL rproc pointer\n");
2681		return;
2682	}
2683
2684	/* Prevent suspend while the remoteproc is being recovered */
2685	pm_stay_awake(rproc->dev.parent);
2686
2687	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2688		rproc->name, rproc_crash_to_string(type));
2689
2690	queue_work(rproc_recovery_wq, &rproc->crash_handler);
 
2691}
2692EXPORT_SYMBOL(rproc_report_crash);
2693
2694static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2695			       void *ptr)
2696{
2697	unsigned int longest = 0;
2698	struct rproc *rproc;
2699	unsigned int d;
2700
2701	rcu_read_lock();
2702	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2703		if (!rproc->ops->panic)
2704			continue;
2705
2706		if (rproc->state != RPROC_RUNNING &&
2707		    rproc->state != RPROC_ATTACHED)
2708			continue;
2709
2710		d = rproc->ops->panic(rproc);
2711		longest = max(longest, d);
2712	}
2713	rcu_read_unlock();
2714
2715	/*
2716	 * Delay for the longest requested duration before returning. This can
2717	 * be used by the remoteproc drivers to give the remote processor time
2718	 * to perform any requested operations (such as flush caches), when
2719	 * it's not possible to signal the Linux side due to the panic.
2720	 */
2721	mdelay(longest);
2722
2723	return NOTIFY_DONE;
2724}
2725
2726static void __init rproc_init_panic(void)
2727{
2728	rproc_panic_nb.notifier_call = rproc_panic_handler;
2729	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2730}
2731
2732static void __exit rproc_exit_panic(void)
2733{
2734	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2735}
2736
2737static int __init remoteproc_init(void)
2738{
2739	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2740						WQ_UNBOUND | WQ_FREEZABLE, 0);
2741	if (!rproc_recovery_wq) {
2742		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2743		return -ENOMEM;
2744	}
2745
2746	rproc_init_sysfs();
2747	rproc_init_debugfs();
2748	rproc_init_cdev();
2749	rproc_init_panic();
2750
2751	return 0;
2752}
2753subsys_initcall(remoteproc_init);
2754
2755static void __exit remoteproc_exit(void)
2756{
2757	ida_destroy(&rproc_dev_index);
2758
2759	if (!rproc_recovery_wq)
2760		return;
2761
2762	rproc_exit_panic();
2763	rproc_exit_debugfs();
2764	rproc_exit_sysfs();
2765	destroy_workqueue(rproc_recovery_wq);
2766}
2767module_exit(remoteproc_exit);
2768
 
2769MODULE_DESCRIPTION("Generic Remote Processor Framework");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
 
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
 
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/firmware.h>
  26#include <linux/string.h>
  27#include <linux/debugfs.h>
  28#include <linux/devcoredump.h>
  29#include <linux/remoteproc.h>
  30#include <linux/iommu.h>
  31#include <linux/idr.h>
  32#include <linux/elf.h>
  33#include <linux/crc32.h>
  34#include <linux/of_reserved_mem.h>
  35#include <linux/virtio_ids.h>
  36#include <linux/virtio_ring.h>
  37#include <asm/byteorder.h>
  38#include <linux/platform_device.h>
  39
  40#include "remoteproc_internal.h"
  41
  42#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  43
  44static DEFINE_MUTEX(rproc_list_mutex);
  45static LIST_HEAD(rproc_list);
 
  46
  47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  48				struct resource_table *table, int len);
  49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  50				 void *, int offset, int avail);
  51
  52static int rproc_alloc_carveout(struct rproc *rproc,
  53				struct rproc_mem_entry *mem);
  54static int rproc_release_carveout(struct rproc *rproc,
  55				  struct rproc_mem_entry *mem);
  56
  57/* Unique indices for remoteproc devices */
  58static DEFINE_IDA(rproc_dev_index);
 
  59
  60static const char * const rproc_crash_names[] = {
  61	[RPROC_MMUFAULT]	= "mmufault",
  62	[RPROC_WATCHDOG]	= "watchdog",
  63	[RPROC_FATAL_ERROR]	= "fatal error",
  64};
  65
  66/* translate rproc_crash_type to string */
  67static const char *rproc_crash_to_string(enum rproc_crash_type type)
  68{
  69	if (type < ARRAY_SIZE(rproc_crash_names))
  70		return rproc_crash_names[type];
  71	return "unknown";
  72}
  73
  74/*
  75 * This is the IOMMU fault handler we register with the IOMMU API
  76 * (when relevant; not all remote processors access memory through
  77 * an IOMMU).
  78 *
  79 * IOMMU core will invoke this handler whenever the remote processor
  80 * will try to access an unmapped device address.
  81 */
  82static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  83			     unsigned long iova, int flags, void *token)
  84{
  85	struct rproc *rproc = token;
  86
  87	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  88
  89	rproc_report_crash(rproc, RPROC_MMUFAULT);
  90
  91	/*
  92	 * Let the iommu core know we're not really handling this fault;
  93	 * we just used it as a recovery trigger.
  94	 */
  95	return -ENOSYS;
  96}
  97
  98static int rproc_enable_iommu(struct rproc *rproc)
  99{
 100	struct iommu_domain *domain;
 101	struct device *dev = rproc->dev.parent;
 102	int ret;
 103
 104	if (!rproc->has_iommu) {
 105		dev_dbg(dev, "iommu not present\n");
 106		return 0;
 107	}
 108
 109	domain = iommu_domain_alloc(dev->bus);
 110	if (!domain) {
 111		dev_err(dev, "can't alloc iommu domain\n");
 112		return -ENOMEM;
 113	}
 114
 115	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 116
 117	ret = iommu_attach_device(domain, dev);
 118	if (ret) {
 119		dev_err(dev, "can't attach iommu device: %d\n", ret);
 120		goto free_domain;
 121	}
 122
 123	rproc->domain = domain;
 124
 125	return 0;
 126
 127free_domain:
 128	iommu_domain_free(domain);
 129	return ret;
 130}
 131
 132static void rproc_disable_iommu(struct rproc *rproc)
 133{
 134	struct iommu_domain *domain = rproc->domain;
 135	struct device *dev = rproc->dev.parent;
 136
 137	if (!domain)
 138		return;
 139
 140	iommu_detach_device(domain, dev);
 141	iommu_domain_free(domain);
 142}
 143
 144phys_addr_t rproc_va_to_pa(void *cpu_addr)
 145{
 146	/*
 147	 * Return physical address according to virtual address location
 148	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 149	 * - in kernel: if region allocated in generic dma memory pool
 150	 */
 151	if (is_vmalloc_addr(cpu_addr)) {
 152		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 153				    offset_in_page(cpu_addr);
 154	}
 155
 156	WARN_ON(!virt_addr_valid(cpu_addr));
 157	return virt_to_phys(cpu_addr);
 158}
 159EXPORT_SYMBOL(rproc_va_to_pa);
 160
 161/**
 162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 163 * @rproc: handle of a remote processor
 164 * @da: remoteproc device address to translate
 165 * @len: length of the memory region @da is pointing to
 
 166 *
 167 * Some remote processors will ask us to allocate them physically contiguous
 168 * memory regions (which we call "carveouts"), and map them to specific
 169 * device addresses (which are hardcoded in the firmware). They may also have
 170 * dedicated memory regions internal to the processors, and use them either
 171 * exclusively or alongside carveouts.
 172 *
 173 * They may then ask us to copy objects into specific device addresses (e.g.
 174 * code/data sections) or expose us certain symbols in other device address
 175 * (e.g. their trace buffer).
 176 *
 177 * This function is a helper function with which we can go over the allocated
 178 * carveouts and translate specific device addresses to kernel virtual addresses
 179 * so we can access the referenced memory. This function also allows to perform
 180 * translations on the internal remoteproc memory regions through a platform
 181 * implementation specific da_to_va ops, if present.
 182 *
 183 * The function returns a valid kernel address on success or NULL on failure.
 184 *
 185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 186 * but only on kernel direct mapped RAM memory. Instead, we're just using
 187 * here the output of the DMA API for the carveouts, which should be more
 188 * correct.
 
 
 189 */
 190void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 191{
 192	struct rproc_mem_entry *carveout;
 193	void *ptr = NULL;
 194
 195	if (rproc->ops->da_to_va) {
 196		ptr = rproc->ops->da_to_va(rproc, da, len);
 197		if (ptr)
 198			goto out;
 199	}
 200
 201	list_for_each_entry(carveout, &rproc->carveouts, node) {
 202		int offset = da - carveout->da;
 203
 204		/*  Verify that carveout is allocated */
 205		if (!carveout->va)
 206			continue;
 207
 208		/* try next carveout if da is too small */
 209		if (offset < 0)
 210			continue;
 211
 212		/* try next carveout if da is too large */
 213		if (offset + len > carveout->len)
 214			continue;
 215
 216		ptr = carveout->va + offset;
 217
 
 
 
 218		break;
 219	}
 220
 221out:
 222	return ptr;
 223}
 224EXPORT_SYMBOL(rproc_da_to_va);
 225
 226/**
 227 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 228 * @rproc: handle of a remote processor
 229 * @name,..: carveout name to find (standard printf format)
 
 230 *
 231 * Platform driver has the capability to register some pre-allacoted carveout
 232 * (physically contiguous memory regions) before rproc firmware loading and
 233 * associated resource table analysis. These regions may be dedicated memory
 234 * regions internal to the coprocessor or specified DDR region with specific
 235 * attributes
 236 *
 237 * This function is a helper function with which we can go over the
 238 * allocated carveouts and return associated region characteristics like
 239 * coprocessor address, length or processor virtual address.
 240 *
 241 * Return: a valid pointer on carveout entry on success or NULL on failure.
 242 */
 
 243struct rproc_mem_entry *
 244rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 245{
 246	va_list args;
 247	char _name[32];
 248	struct rproc_mem_entry *carveout, *mem = NULL;
 249
 250	if (!name)
 251		return NULL;
 252
 253	va_start(args, name);
 254	vsnprintf(_name, sizeof(_name), name, args);
 255	va_end(args);
 256
 257	list_for_each_entry(carveout, &rproc->carveouts, node) {
 258		/* Compare carveout and requested names */
 259		if (!strcmp(carveout->name, _name)) {
 260			mem = carveout;
 261			break;
 262		}
 263	}
 264
 265	return mem;
 266}
 267
 268/**
 269 * rproc_check_carveout_da() - Check specified carveout da configuration
 270 * @rproc: handle of a remote processor
 271 * @mem: pointer on carveout to check
 272 * @da: area device address
 273 * @len: associated area size
 274 *
 275 * This function is a helper function to verify requested device area (couple
 276 * da, len) is part of specified carveout.
 277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 278 * checked.
 279 *
 280 * Return: 0 if carveout matches request else error
 281 */
 282static int rproc_check_carveout_da(struct rproc *rproc,
 283				   struct rproc_mem_entry *mem, u32 da, u32 len)
 284{
 285	struct device *dev = &rproc->dev;
 286	int delta;
 287
 288	/* Check requested resource length */
 289	if (len > mem->len) {
 290		dev_err(dev, "Registered carveout doesn't fit len request\n");
 291		return -EINVAL;
 292	}
 293
 294	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 295		/* Address doesn't match registered carveout configuration */
 296		return -EINVAL;
 297	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 298		delta = da - mem->da;
 299
 300		/* Check requested resource belongs to registered carveout */
 301		if (delta < 0) {
 302			dev_err(dev,
 303				"Registered carveout doesn't fit da request\n");
 304			return -EINVAL;
 305		}
 306
 307		if (delta + len > mem->len) {
 308			dev_err(dev,
 309				"Registered carveout doesn't fit len request\n");
 310			return -EINVAL;
 311		}
 312	}
 313
 314	return 0;
 315}
 316
 317int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 318{
 319	struct rproc *rproc = rvdev->rproc;
 320	struct device *dev = &rproc->dev;
 321	struct rproc_vring *rvring = &rvdev->vring[i];
 322	struct fw_rsc_vdev *rsc;
 323	int ret, size, notifyid;
 324	struct rproc_mem_entry *mem;
 
 325
 326	/* actual size of vring (in bytes) */
 327	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 328
 329	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 330
 331	/* Search for pre-registered carveout */
 332	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 333					  i);
 334	if (mem) {
 335		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 336			return -ENOMEM;
 337	} else {
 338		/* Register carveout in in list */
 339		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
 
 340					   rproc_alloc_carveout,
 341					   rproc_release_carveout,
 342					   "vdev%dvring%d",
 343					   rvdev->index, i);
 344		if (!mem) {
 345			dev_err(dev, "Can't allocate memory entry structure\n");
 346			return -ENOMEM;
 347		}
 348
 349		rproc_add_carveout(rproc, mem);
 350	}
 351
 352	/*
 353	 * Assign an rproc-wide unique index for this vring
 354	 * TODO: assign a notifyid for rvdev updates as well
 355	 * TODO: support predefined notifyids (via resource table)
 356	 */
 357	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 358	if (ret < 0) {
 359		dev_err(dev, "idr_alloc failed: %d\n", ret);
 360		return ret;
 361	}
 362	notifyid = ret;
 363
 364	/* Potentially bump max_notifyid */
 365	if (notifyid > rproc->max_notifyid)
 366		rproc->max_notifyid = notifyid;
 367
 368	rvring->notifyid = notifyid;
 369
 370	/* Let the rproc know the notifyid of this vring.*/
 371	rsc->vring[i].notifyid = notifyid;
 372	return 0;
 373}
 374
 375static int
 376rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 377{
 378	struct rproc *rproc = rvdev->rproc;
 379	struct device *dev = &rproc->dev;
 380	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 381	struct rproc_vring *rvring = &rvdev->vring[i];
 382
 383	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 384		i, vring->da, vring->num, vring->align);
 385
 386	/* verify queue size and vring alignment are sane */
 387	if (!vring->num || !vring->align) {
 388		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 389			vring->num, vring->align);
 390		return -EINVAL;
 391	}
 392
 393	rvring->len = vring->num;
 394	rvring->align = vring->align;
 395	rvring->rvdev = rvdev;
 396
 397	return 0;
 398}
 399
 400void rproc_free_vring(struct rproc_vring *rvring)
 401{
 402	struct rproc *rproc = rvring->rvdev->rproc;
 403	int idx = rvring->rvdev->vring - rvring;
 404	struct fw_rsc_vdev *rsc;
 405
 406	idr_remove(&rproc->notifyids, rvring->notifyid);
 407
 408	/* reset resource entry info */
 409	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 410	rsc->vring[idx].da = 0;
 411	rsc->vring[idx].notifyid = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 412}
 413
 414static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 415{
 416	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 417
 418	return rproc_add_virtio_dev(rvdev, rvdev->id);
 419}
 420
 421static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 422{
 423	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 424	int ret;
 425
 426	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
 427	if (ret)
 428		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
 429}
 430
 431/**
 432 * rproc_rvdev_release() - release the existence of a rvdev
 433 *
 434 * @dev: the subdevice's dev
 435 */
 436static void rproc_rvdev_release(struct device *dev)
 437{
 438	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
 439
 440	of_reserved_mem_device_release(dev);
 441
 442	kfree(rvdev);
 443}
 444
 445/**
 446 * rproc_handle_vdev() - handle a vdev fw resource
 447 * @rproc: the remote processor
 448 * @rsc: the vring resource descriptor
 
 449 * @avail: size of available data (for sanity checking the image)
 450 *
 451 * This resource entry requests the host to statically register a virtio
 452 * device (vdev), and setup everything needed to support it. It contains
 453 * everything needed to make it possible: the virtio device id, virtio
 454 * device features, vrings information, virtio config space, etc...
 455 *
 456 * Before registering the vdev, the vrings are allocated from non-cacheable
 457 * physically contiguous memory. Currently we only support two vrings per
 458 * remote processor (temporary limitation). We might also want to consider
 459 * doing the vring allocation only later when ->find_vqs() is invoked, and
 460 * then release them upon ->del_vqs().
 461 *
 462 * Note: @da is currently not really handled correctly: we dynamically
 463 * allocate it using the DMA API, ignoring requested hard coded addresses,
 464 * and we don't take care of any required IOMMU programming. This is all
 465 * going to be taken care of when the generic iommu-based DMA API will be
 466 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 467 * use RSC_DEVMEM resource entries to map their required @da to the physical
 468 * address of their base CMA region (ouch, hacky!).
 469 *
 470 * Returns 0 on success, or an appropriate error code otherwise
 471 */
 472static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 473			     int offset, int avail)
 474{
 
 475	struct device *dev = &rproc->dev;
 476	struct rproc_vdev *rvdev;
 477	int i, ret;
 478	char name[16];
 
 479
 480	/* make sure resource isn't truncated */
 481	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 482			+ rsc->config_len > avail) {
 483		dev_err(dev, "vdev rsc is truncated\n");
 484		return -EINVAL;
 485	}
 486
 487	/* make sure reserved bytes are zeroes */
 488	if (rsc->reserved[0] || rsc->reserved[1]) {
 489		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 490		return -EINVAL;
 491	}
 492
 493	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 494		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 495
 496	/* we currently support only two vrings per rvdev */
 497	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 498		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 499		return -EINVAL;
 500	}
 501
 502	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 503	if (!rvdev)
 504		return -ENOMEM;
 
 505
 506	kref_init(&rvdev->refcount);
 507
 508	rvdev->id = rsc->id;
 509	rvdev->rproc = rproc;
 510	rvdev->index = rproc->nb_vdev++;
 511
 512	/* Initialise vdev subdevice */
 513	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
 514	rvdev->dev.parent = rproc->dev.parent;
 515	rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
 516	rvdev->dev.release = rproc_rvdev_release;
 517	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
 518	dev_set_drvdata(&rvdev->dev, rvdev);
 519
 520	ret = device_register(&rvdev->dev);
 521	if (ret) {
 522		put_device(&rvdev->dev);
 523		return ret;
 524	}
 525	/* Make device dma capable by inheriting from parent's capabilities */
 526	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
 527
 528	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
 529					   dma_get_mask(rproc->dev.parent));
 530	if (ret) {
 531		dev_warn(dev,
 532			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
 533			 dma_get_mask(rproc->dev.parent), ret);
 534	}
 535
 536	/* parse the vrings */
 537	for (i = 0; i < rsc->num_of_vrings; i++) {
 538		ret = rproc_parse_vring(rvdev, rsc, i);
 539		if (ret)
 540			goto free_rvdev;
 541	}
 542
 543	/* remember the resource offset*/
 544	rvdev->rsc_offset = offset;
 545
 546	/* allocate the vring resources */
 547	for (i = 0; i < rsc->num_of_vrings; i++) {
 548		ret = rproc_alloc_vring(rvdev, i);
 549		if (ret)
 550			goto unwind_vring_allocations;
 551	}
 552
 553	list_add_tail(&rvdev->node, &rproc->rvdevs);
 554
 555	rvdev->subdev.start = rproc_vdev_do_start;
 556	rvdev->subdev.stop = rproc_vdev_do_stop;
 557
 558	rproc_add_subdev(rproc, &rvdev->subdev);
 559
 560	return 0;
 561
 562unwind_vring_allocations:
 563	for (i--; i >= 0; i--)
 564		rproc_free_vring(&rvdev->vring[i]);
 565free_rvdev:
 566	device_unregister(&rvdev->dev);
 567	return ret;
 568}
 569
 570void rproc_vdev_release(struct kref *ref)
 571{
 572	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 573	struct rproc_vring *rvring;
 574	struct rproc *rproc = rvdev->rproc;
 575	int id;
 576
 577	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 578		rvring = &rvdev->vring[id];
 579		rproc_free_vring(rvring);
 580	}
 581
 582	rproc_remove_subdev(rproc, &rvdev->subdev);
 583	list_del(&rvdev->node);
 584	device_unregister(&rvdev->dev);
 585}
 586
 587/**
 588 * rproc_handle_trace() - handle a shared trace buffer resource
 589 * @rproc: the remote processor
 590 * @rsc: the trace resource descriptor
 
 591 * @avail: size of available data (for sanity checking the image)
 592 *
 593 * In case the remote processor dumps trace logs into memory,
 594 * export it via debugfs.
 595 *
 596 * Currently, the 'da' member of @rsc should contain the device address
 597 * where the remote processor is dumping the traces. Later we could also
 598 * support dynamically allocating this address using the generic
 599 * DMA API (but currently there isn't a use case for that).
 600 *
 601 * Returns 0 on success, or an appropriate error code otherwise
 602 */
 603static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 604			      int offset, int avail)
 605{
 
 606	struct rproc_debug_trace *trace;
 607	struct device *dev = &rproc->dev;
 608	char name[15];
 609
 610	if (sizeof(*rsc) > avail) {
 611		dev_err(dev, "trace rsc is truncated\n");
 612		return -EINVAL;
 613	}
 614
 615	/* make sure reserved bytes are zeroes */
 616	if (rsc->reserved) {
 617		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 618		return -EINVAL;
 619	}
 620
 621	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 622	if (!trace)
 623		return -ENOMEM;
 624
 625	/* set the trace buffer dma properties */
 626	trace->trace_mem.len = rsc->len;
 627	trace->trace_mem.da = rsc->da;
 628
 629	/* set pointer on rproc device */
 630	trace->rproc = rproc;
 631
 632	/* make sure snprintf always null terminates, even if truncating */
 633	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 634
 635	/* create the debugfs entry */
 636	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 637	if (!trace->tfile) {
 638		kfree(trace);
 639		return -EINVAL;
 640	}
 641
 642	list_add_tail(&trace->node, &rproc->traces);
 643
 644	rproc->num_traces++;
 645
 646	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 647		name, rsc->da, rsc->len);
 648
 649	return 0;
 650}
 651
 652/**
 653 * rproc_handle_devmem() - handle devmem resource entry
 654 * @rproc: remote processor handle
 655 * @rsc: the devmem resource entry
 
 656 * @avail: size of available data (for sanity checking the image)
 657 *
 658 * Remote processors commonly need to access certain on-chip peripherals.
 659 *
 660 * Some of these remote processors access memory via an iommu device,
 661 * and might require us to configure their iommu before they can access
 662 * the on-chip peripherals they need.
 663 *
 664 * This resource entry is a request to map such a peripheral device.
 665 *
 666 * These devmem entries will contain the physical address of the device in
 667 * the 'pa' member. If a specific device address is expected, then 'da' will
 668 * contain it (currently this is the only use case supported). 'len' will
 669 * contain the size of the physical region we need to map.
 670 *
 671 * Currently we just "trust" those devmem entries to contain valid physical
 672 * addresses, but this is going to change: we want the implementations to
 673 * tell us ranges of physical addresses the firmware is allowed to request,
 674 * and not allow firmwares to request access to physical addresses that
 675 * are outside those ranges.
 
 
 676 */
 677static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 678			       int offset, int avail)
 679{
 
 680	struct rproc_mem_entry *mapping;
 681	struct device *dev = &rproc->dev;
 682	int ret;
 683
 684	/* no point in handling this resource without a valid iommu domain */
 685	if (!rproc->domain)
 686		return -EINVAL;
 687
 688	if (sizeof(*rsc) > avail) {
 689		dev_err(dev, "devmem rsc is truncated\n");
 690		return -EINVAL;
 691	}
 692
 693	/* make sure reserved bytes are zeroes */
 694	if (rsc->reserved) {
 695		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 696		return -EINVAL;
 697	}
 698
 699	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 700	if (!mapping)
 701		return -ENOMEM;
 702
 703	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 
 704	if (ret) {
 705		dev_err(dev, "failed to map devmem: %d\n", ret);
 706		goto out;
 707	}
 708
 709	/*
 710	 * We'll need this info later when we'll want to unmap everything
 711	 * (e.g. on shutdown).
 712	 *
 713	 * We can't trust the remote processor not to change the resource
 714	 * table, so we must maintain this info independently.
 715	 */
 716	mapping->da = rsc->da;
 717	mapping->len = rsc->len;
 718	list_add_tail(&mapping->node, &rproc->mappings);
 719
 720	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 721		rsc->pa, rsc->da, rsc->len);
 722
 723	return 0;
 724
 725out:
 726	kfree(mapping);
 727	return ret;
 728}
 729
 730/**
 731 * rproc_alloc_carveout() - allocated specified carveout
 732 * @rproc: rproc handle
 733 * @mem: the memory entry to allocate
 734 *
 735 * This function allocate specified memory entry @mem using
 736 * dma_alloc_coherent() as default allocator
 
 
 737 */
 738static int rproc_alloc_carveout(struct rproc *rproc,
 739				struct rproc_mem_entry *mem)
 740{
 741	struct rproc_mem_entry *mapping = NULL;
 742	struct device *dev = &rproc->dev;
 743	dma_addr_t dma;
 744	void *va;
 745	int ret;
 746
 747	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 748	if (!va) {
 749		dev_err(dev->parent,
 750			"failed to allocate dma memory: len 0x%x\n", mem->len);
 
 751		return -ENOMEM;
 752	}
 753
 754	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
 755		va, &dma, mem->len);
 756
 757	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 758		/*
 759		 * Check requested da is equal to dma address
 760		 * and print a warn message in case of missalignment.
 761		 * Don't stop rproc_start sequence as coprocessor may
 762		 * build pa to da translation on its side.
 763		 */
 764		if (mem->da != (u32)dma)
 765			dev_warn(dev->parent,
 766				 "Allocated carveout doesn't fit device address request\n");
 767	}
 768
 769	/*
 770	 * Ok, this is non-standard.
 771	 *
 772	 * Sometimes we can't rely on the generic iommu-based DMA API
 773	 * to dynamically allocate the device address and then set the IOMMU
 774	 * tables accordingly, because some remote processors might
 775	 * _require_ us to use hard coded device addresses that their
 776	 * firmware was compiled with.
 777	 *
 778	 * In this case, we must use the IOMMU API directly and map
 779	 * the memory to the device address as expected by the remote
 780	 * processor.
 781	 *
 782	 * Obviously such remote processor devices should not be configured
 783	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 784	 * physical address in this case.
 785	 */
 786	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 787		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 788		if (!mapping) {
 789			ret = -ENOMEM;
 790			goto dma_free;
 791		}
 792
 793		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 794				mem->flags);
 795		if (ret) {
 796			dev_err(dev, "iommu_map failed: %d\n", ret);
 797			goto free_mapping;
 798		}
 799
 800		/*
 801		 * We'll need this info later when we'll want to unmap
 802		 * everything (e.g. on shutdown).
 803		 *
 804		 * We can't trust the remote processor not to change the
 805		 * resource table, so we must maintain this info independently.
 806		 */
 807		mapping->da = mem->da;
 808		mapping->len = mem->len;
 809		list_add_tail(&mapping->node, &rproc->mappings);
 810
 811		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 812			mem->da, &dma);
 813	}
 814
 815	if (mem->da == FW_RSC_ADDR_ANY) {
 816		/* Update device address as undefined by requester */
 817		if ((u64)dma & HIGH_BITS_MASK)
 818			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 819
 820		mem->da = (u32)dma;
 821	}
 822
 823	mem->dma = dma;
 824	mem->va = va;
 825
 826	return 0;
 827
 828free_mapping:
 829	kfree(mapping);
 830dma_free:
 831	dma_free_coherent(dev->parent, mem->len, va, dma);
 832	return ret;
 833}
 834
 835/**
 836 * rproc_release_carveout() - release acquired carveout
 837 * @rproc: rproc handle
 838 * @mem: the memory entry to release
 839 *
 840 * This function releases specified memory entry @mem allocated via
 841 * rproc_alloc_carveout() function by @rproc.
 
 
 842 */
 843static int rproc_release_carveout(struct rproc *rproc,
 844				  struct rproc_mem_entry *mem)
 845{
 846	struct device *dev = &rproc->dev;
 847
 848	/* clean up carveout allocations */
 849	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 850	return 0;
 851}
 852
 853/**
 854 * rproc_handle_carveout() - handle phys contig memory allocation requests
 855 * @rproc: rproc handle
 856 * @rsc: the resource entry
 
 857 * @avail: size of available data (for image validation)
 858 *
 859 * This function will handle firmware requests for allocation of physically
 860 * contiguous memory regions.
 861 *
 862 * These request entries should come first in the firmware's resource table,
 863 * as other firmware entries might request placing other data objects inside
 864 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 865 *
 866 * Allocating memory this way helps utilizing the reserved physical memory
 867 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 868 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 869 * pressure is important; it may have a substantial impact on performance.
 
 
 870 */
 871static int rproc_handle_carveout(struct rproc *rproc,
 872				 struct fw_rsc_carveout *rsc,
 873				 int offset, int avail)
 874{
 
 875	struct rproc_mem_entry *carveout;
 876	struct device *dev = &rproc->dev;
 877
 878	if (sizeof(*rsc) > avail) {
 879		dev_err(dev, "carveout rsc is truncated\n");
 880		return -EINVAL;
 881	}
 882
 883	/* make sure reserved bytes are zeroes */
 884	if (rsc->reserved) {
 885		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 886		return -EINVAL;
 887	}
 888
 889	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 890		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 891
 892	/*
 893	 * Check carveout rsc already part of a registered carveout,
 894	 * Search by name, then check the da and length
 895	 */
 896	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 897
 898	if (carveout) {
 899		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 900			dev_err(dev,
 901				"Carveout already associated to resource table\n");
 902			return -ENOMEM;
 903		}
 904
 905		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 906			return -ENOMEM;
 907
 908		/* Update memory carveout with resource table info */
 909		carveout->rsc_offset = offset;
 910		carveout->flags = rsc->flags;
 911
 912		return 0;
 913	}
 914
 915	/* Register carveout in in list */
 916	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
 917					rproc_alloc_carveout,
 918					rproc_release_carveout, rsc->name);
 919	if (!carveout) {
 920		dev_err(dev, "Can't allocate memory entry structure\n");
 921		return -ENOMEM;
 922	}
 923
 924	carveout->flags = rsc->flags;
 925	carveout->rsc_offset = offset;
 926	rproc_add_carveout(rproc, carveout);
 927
 928	return 0;
 929}
 930
 931/**
 932 * rproc_add_carveout() - register an allocated carveout region
 933 * @rproc: rproc handle
 934 * @mem: memory entry to register
 935 *
 936 * This function registers specified memory entry in @rproc carveouts list.
 937 * Specified carveout should have been allocated before registering.
 938 */
 939void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 940{
 941	list_add_tail(&mem->node, &rproc->carveouts);
 942}
 943EXPORT_SYMBOL(rproc_add_carveout);
 944
 945/**
 946 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 947 * @dev: pointer on device struct
 948 * @va: virtual address
 949 * @dma: dma address
 950 * @len: memory carveout length
 951 * @da: device address
 952 * @alloc: memory carveout allocation function
 953 * @release: memory carveout release function
 954 * @name: carveout name
 955 *
 956 * This function allocates a rproc_mem_entry struct and fill it with parameters
 957 * provided by client.
 
 
 958 */
 
 959struct rproc_mem_entry *
 960rproc_mem_entry_init(struct device *dev,
 961		     void *va, dma_addr_t dma, int len, u32 da,
 962		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 963		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 964		     const char *name, ...)
 965{
 966	struct rproc_mem_entry *mem;
 967	va_list args;
 968
 969	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 970	if (!mem)
 971		return mem;
 972
 973	mem->va = va;
 974	mem->dma = dma;
 975	mem->da = da;
 976	mem->len = len;
 977	mem->alloc = alloc;
 978	mem->release = release;
 979	mem->rsc_offset = FW_RSC_ADDR_ANY;
 980	mem->of_resm_idx = -1;
 981
 982	va_start(args, name);
 983	vsnprintf(mem->name, sizeof(mem->name), name, args);
 984	va_end(args);
 985
 986	return mem;
 987}
 988EXPORT_SYMBOL(rproc_mem_entry_init);
 989
 990/**
 991 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 992 * from a reserved memory phandle
 993 * @dev: pointer on device struct
 994 * @of_resm_idx: reserved memory phandle index in "memory-region"
 995 * @len: memory carveout length
 996 * @da: device address
 997 * @name: carveout name
 998 *
 999 * This function allocates a rproc_mem_entry struct and fill it with parameters
1000 * provided by client.
 
 
1001 */
 
1002struct rproc_mem_entry *
1003rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1004			     u32 da, const char *name, ...)
1005{
1006	struct rproc_mem_entry *mem;
1007	va_list args;
1008
1009	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1010	if (!mem)
1011		return mem;
1012
1013	mem->da = da;
1014	mem->len = len;
1015	mem->rsc_offset = FW_RSC_ADDR_ANY;
1016	mem->of_resm_idx = of_resm_idx;
1017
1018	va_start(args, name);
1019	vsnprintf(mem->name, sizeof(mem->name), name, args);
1020	va_end(args);
1021
1022	return mem;
1023}
1024EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1025
1026/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027 * A lookup table for resource handlers. The indices are defined in
1028 * enum fw_resource_type.
1029 */
1030static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1031	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1032	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1033	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1034	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1035};
1036
1037/* handle firmware resource entries before booting the remote processor */
1038static int rproc_handle_resources(struct rproc *rproc,
1039				  rproc_handle_resource_t handlers[RSC_LAST])
1040{
1041	struct device *dev = &rproc->dev;
1042	rproc_handle_resource_t handler;
1043	int ret = 0, i;
1044
1045	if (!rproc->table_ptr)
1046		return 0;
1047
1048	for (i = 0; i < rproc->table_ptr->num; i++) {
1049		int offset = rproc->table_ptr->offset[i];
1050		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1051		int avail = rproc->table_sz - offset - sizeof(*hdr);
1052		void *rsc = (void *)hdr + sizeof(*hdr);
1053
1054		/* make sure table isn't truncated */
1055		if (avail < 0) {
1056			dev_err(dev, "rsc table is truncated\n");
1057			return -EINVAL;
1058		}
1059
1060		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061
1062		if (hdr->type >= RSC_VENDOR_START &&
1063		    hdr->type <= RSC_VENDOR_END) {
1064			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1065					       offset + sizeof(*hdr), avail);
1066			if (ret == RSC_HANDLED)
1067				continue;
1068			else if (ret < 0)
1069				break;
1070
1071			dev_warn(dev, "unsupported vendor resource %d\n",
1072				 hdr->type);
1073			continue;
1074		}
1075
1076		if (hdr->type >= RSC_LAST) {
1077			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1078			continue;
1079		}
1080
1081		handler = handlers[hdr->type];
1082		if (!handler)
1083			continue;
1084
1085		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1086		if (ret)
1087			break;
1088	}
1089
1090	return ret;
1091}
1092
1093static int rproc_prepare_subdevices(struct rproc *rproc)
1094{
1095	struct rproc_subdev *subdev;
1096	int ret;
1097
1098	list_for_each_entry(subdev, &rproc->subdevs, node) {
1099		if (subdev->prepare) {
1100			ret = subdev->prepare(subdev);
1101			if (ret)
1102				goto unroll_preparation;
1103		}
1104	}
1105
1106	return 0;
1107
1108unroll_preparation:
1109	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1110		if (subdev->unprepare)
1111			subdev->unprepare(subdev);
1112	}
1113
1114	return ret;
1115}
1116
1117static int rproc_start_subdevices(struct rproc *rproc)
1118{
1119	struct rproc_subdev *subdev;
1120	int ret;
1121
1122	list_for_each_entry(subdev, &rproc->subdevs, node) {
1123		if (subdev->start) {
1124			ret = subdev->start(subdev);
1125			if (ret)
1126				goto unroll_registration;
1127		}
1128	}
1129
1130	return 0;
1131
1132unroll_registration:
1133	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1134		if (subdev->stop)
1135			subdev->stop(subdev, true);
1136	}
1137
1138	return ret;
1139}
1140
1141static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142{
1143	struct rproc_subdev *subdev;
1144
1145	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1146		if (subdev->stop)
1147			subdev->stop(subdev, crashed);
1148	}
1149}
1150
1151static void rproc_unprepare_subdevices(struct rproc *rproc)
1152{
1153	struct rproc_subdev *subdev;
1154
1155	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156		if (subdev->unprepare)
1157			subdev->unprepare(subdev);
1158	}
1159}
1160
1161/**
1162 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163 * in the list
1164 * @rproc: the remote processor handle
1165 *
1166 * This function parses registered carveout list, performs allocation
1167 * if alloc() ops registered and updates resource table information
1168 * if rsc_offset set.
1169 *
1170 * Return: 0 on success
1171 */
1172static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173{
1174	struct rproc_mem_entry *entry, *tmp;
1175	struct fw_rsc_carveout *rsc;
1176	struct device *dev = &rproc->dev;
1177	u64 pa;
1178	int ret;
1179
1180	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1181		if (entry->alloc) {
1182			ret = entry->alloc(rproc, entry);
1183			if (ret) {
1184				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1185					entry->name, ret);
1186				return -ENOMEM;
1187			}
1188		}
1189
1190		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1191			/* update resource table */
1192			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1193
1194			/*
1195			 * Some remote processors might need to know the pa
1196			 * even though they are behind an IOMMU. E.g., OMAP4's
1197			 * remote M3 processor needs this so it can control
1198			 * on-chip hardware accelerators that are not behind
1199			 * the IOMMU, and therefor must know the pa.
1200			 *
1201			 * Generally we don't want to expose physical addresses
1202			 * if we don't have to (remote processors are generally
1203			 * _not_ trusted), so we might want to do this only for
1204			 * remote processor that _must_ have this (e.g. OMAP4's
1205			 * dual M3 subsystem).
1206			 *
1207			 * Non-IOMMU processors might also want to have this info.
1208			 * In this case, the device address and the physical address
1209			 * are the same.
1210			 */
1211
1212			/* Use va if defined else dma to generate pa */
1213			if (entry->va)
1214				pa = (u64)rproc_va_to_pa(entry->va);
1215			else
1216				pa = (u64)entry->dma;
1217
1218			if (((u64)pa) & HIGH_BITS_MASK)
1219				dev_warn(dev,
1220					 "Physical address cast in 32bit to fit resource table format\n");
1221
1222			rsc->pa = (u32)pa;
1223			rsc->da = entry->da;
1224			rsc->len = entry->len;
1225		}
1226	}
1227
1228	return 0;
1229}
1230
1231/**
1232 * rproc_coredump_cleanup() - clean up dump_segments list
1233 * @rproc: the remote processor handle
1234 */
1235static void rproc_coredump_cleanup(struct rproc *rproc)
1236{
1237	struct rproc_dump_segment *entry, *tmp;
1238
1239	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1240		list_del(&entry->node);
1241		kfree(entry);
1242	}
1243}
1244
1245/**
1246 * rproc_resource_cleanup() - clean up and free all acquired resources
1247 * @rproc: rproc handle
1248 *
1249 * This function will free all resources acquired for @rproc, and it
1250 * is called whenever @rproc either shuts down or fails to boot.
1251 */
1252static void rproc_resource_cleanup(struct rproc *rproc)
1253{
1254	struct rproc_mem_entry *entry, *tmp;
1255	struct rproc_debug_trace *trace, *ttmp;
1256	struct rproc_vdev *rvdev, *rvtmp;
1257	struct device *dev = &rproc->dev;
1258
1259	/* clean up debugfs trace entries */
1260	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1261		rproc_remove_trace_file(trace->tfile);
1262		rproc->num_traces--;
1263		list_del(&trace->node);
1264		kfree(trace);
1265	}
1266
1267	/* clean up iommu mapping entries */
1268	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1269		size_t unmapped;
1270
1271		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1272		if (unmapped != entry->len) {
1273			/* nothing much to do besides complaining */
1274			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1275				unmapped);
1276		}
1277
1278		list_del(&entry->node);
1279		kfree(entry);
1280	}
1281
1282	/* clean up carveout allocations */
1283	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1284		if (entry->release)
1285			entry->release(rproc, entry);
1286		list_del(&entry->node);
1287		kfree(entry);
1288	}
1289
1290	/* clean up remote vdev entries */
1291	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1292		kref_put(&rvdev->refcount, rproc_vdev_release);
1293
1294	rproc_coredump_cleanup(rproc);
1295}
 
1296
1297static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298{
1299	struct resource_table *loaded_table;
1300	struct device *dev = &rproc->dev;
1301	int ret;
1302
1303	/* load the ELF segments to memory */
1304	ret = rproc_load_segments(rproc, fw);
1305	if (ret) {
1306		dev_err(dev, "Failed to load program segments: %d\n", ret);
1307		return ret;
1308	}
1309
1310	/*
1311	 * The starting device has been given the rproc->cached_table as the
1312	 * resource table. The address of the vring along with the other
1313	 * allocated resources (carveouts etc) is stored in cached_table.
1314	 * In order to pass this information to the remote device we must copy
1315	 * this information to device memory. We also update the table_ptr so
1316	 * that any subsequent changes will be applied to the loaded version.
1317	 */
1318	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1319	if (loaded_table) {
1320		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1321		rproc->table_ptr = loaded_table;
1322	}
1323
1324	ret = rproc_prepare_subdevices(rproc);
1325	if (ret) {
1326		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1327			rproc->name, ret);
1328		goto reset_table_ptr;
1329	}
1330
1331	/* power up the remote processor */
1332	ret = rproc->ops->start(rproc);
1333	if (ret) {
1334		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1335		goto unprepare_subdevices;
1336	}
1337
1338	/* Start any subdevices for the remote processor */
1339	ret = rproc_start_subdevices(rproc);
1340	if (ret) {
1341		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1342			rproc->name, ret);
1343		goto stop_rproc;
1344	}
1345
1346	rproc->state = RPROC_RUNNING;
1347
1348	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349
1350	return 0;
1351
1352stop_rproc:
1353	rproc->ops->stop(rproc);
1354unprepare_subdevices:
1355	rproc_unprepare_subdevices(rproc);
1356reset_table_ptr:
1357	rproc->table_ptr = rproc->cached_table;
1358
1359	return ret;
1360}
1361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362/*
1363 * take a firmware and boot a remote processor with it.
1364 */
1365static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366{
1367	struct device *dev = &rproc->dev;
1368	const char *name = rproc->firmware;
1369	int ret;
1370
1371	ret = rproc_fw_sanity_check(rproc, fw);
1372	if (ret)
1373		return ret;
1374
1375	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1376
1377	/*
1378	 * if enabling an IOMMU isn't relevant for this rproc, this is
1379	 * just a nop
1380	 */
1381	ret = rproc_enable_iommu(rproc);
1382	if (ret) {
1383		dev_err(dev, "can't enable iommu: %d\n", ret);
1384		return ret;
1385	}
1386
 
 
 
 
 
 
 
1387	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388
1389	/* Load resource table, core dump segment list etc from the firmware */
1390	ret = rproc_parse_fw(rproc, fw);
1391	if (ret)
1392		goto disable_iommu;
1393
1394	/* reset max_notifyid */
1395	rproc->max_notifyid = -1;
1396
1397	/* reset handled vdev */
1398	rproc->nb_vdev = 0;
1399
1400	/* handle fw resources which are required to boot rproc */
1401	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1402	if (ret) {
1403		dev_err(dev, "Failed to process resources: %d\n", ret);
1404		goto clean_up_resources;
1405	}
1406
1407	/* Allocate carveout resources associated to rproc */
1408	ret = rproc_alloc_registered_carveouts(rproc);
1409	if (ret) {
1410		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1411			ret);
1412		goto clean_up_resources;
1413	}
1414
1415	ret = rproc_start(rproc, fw);
1416	if (ret)
1417		goto clean_up_resources;
1418
1419	return 0;
1420
1421clean_up_resources:
1422	rproc_resource_cleanup(rproc);
1423	kfree(rproc->cached_table);
1424	rproc->cached_table = NULL;
1425	rproc->table_ptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426disable_iommu:
1427	rproc_disable_iommu(rproc);
1428	return ret;
1429}
1430
1431/*
1432 * take a firmware and boot it up.
1433 *
1434 * Note: this function is called asynchronously upon registration of the
1435 * remote processor (so we must wait until it completes before we try
1436 * to unregister the device. one other option is just to use kref here,
1437 * that might be cleaner).
1438 */
1439static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440{
1441	struct rproc *rproc = context;
1442
1443	rproc_boot(rproc);
1444
1445	release_firmware(fw);
1446}
1447
1448static int rproc_trigger_auto_boot(struct rproc *rproc)
1449{
1450	int ret;
1451
1452	/*
 
 
 
 
 
 
 
 
 
1453	 * We're initiating an asynchronous firmware loading, so we can
1454	 * be built-in kernel code, without hanging the boot process.
1455	 */
1456	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1457				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1458				      rproc, rproc_auto_boot_callback);
1459	if (ret < 0)
1460		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461
1462	return ret;
1463}
1464
1465static int rproc_stop(struct rproc *rproc, bool crashed)
1466{
1467	struct device *dev = &rproc->dev;
1468	int ret;
1469
 
 
 
 
1470	/* Stop any subdevices for the remote processor */
1471	rproc_stop_subdevices(rproc, crashed);
1472
1473	/* the installed resource table is no longer accessible */
1474	rproc->table_ptr = rproc->cached_table;
 
 
 
 
 
1475
1476	/* power off the remote processor */
1477	ret = rproc->ops->stop(rproc);
1478	if (ret) {
1479		dev_err(dev, "can't stop rproc: %d\n", ret);
1480		return ret;
1481	}
1482
1483	rproc_unprepare_subdevices(rproc);
1484
1485	rproc->state = RPROC_OFFLINE;
1486
1487	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488
1489	return 0;
1490}
1491
1492/**
1493 * rproc_coredump_add_segment() - add segment of device memory to coredump
1494 * @rproc:	handle of a remote processor
1495 * @da:		device address
1496 * @size:	size of segment
1497 *
1498 * Add device memory to the list of segments to be included in a coredump for
1499 * the remoteproc.
1500 *
1501 * Return: 0 on success, negative errno on error.
1502 */
1503int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504{
1505	struct rproc_dump_segment *segment;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506
1507	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1508	if (!segment)
1509		return -ENOMEM;
 
 
 
 
 
1510
1511	segment->da = da;
1512	segment->size = size;
1513
1514	list_add_tail(&segment->node, &rproc->dump_segments);
1515
1516	return 0;
1517}
1518EXPORT_SYMBOL(rproc_coredump_add_segment);
1519
1520/**
1521 * rproc_coredump_add_custom_segment() - add custom coredump segment
1522 * @rproc:	handle of a remote processor
1523 * @da:		device address
1524 * @size:	size of segment
1525 * @dumpfn:	custom dump function called for each segment during coredump
1526 * @priv:	private data
1527 *
1528 * Add device memory to the list of segments to be included in the coredump
1529 * and associate the segment with the given custom dump function and private
1530 * data.
1531 *
1532 * Return: 0 on success, negative errno on error.
1533 */
1534int rproc_coredump_add_custom_segment(struct rproc *rproc,
1535				      dma_addr_t da, size_t size,
1536				      void (*dumpfn)(struct rproc *rproc,
1537						     struct rproc_dump_segment *segment,
1538						     void *dest),
1539				      void *priv)
1540{
1541	struct rproc_dump_segment *segment;
1542
1543	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1544	if (!segment)
1545		return -ENOMEM;
1546
1547	segment->da = da;
1548	segment->size = size;
1549	segment->priv = priv;
1550	segment->dump = dumpfn;
1551
1552	list_add_tail(&segment->node, &rproc->dump_segments);
1553
1554	return 0;
1555}
1556EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1557
1558/**
1559 * rproc_coredump() - perform coredump
1560 * @rproc:	rproc handle
1561 *
1562 * This function will generate an ELF header for the registered segments
1563 * and create a devcoredump device associated with rproc.
1564 */
1565static void rproc_coredump(struct rproc *rproc)
1566{
1567	struct rproc_dump_segment *segment;
1568	struct elf32_phdr *phdr;
1569	struct elf32_hdr *ehdr;
1570	size_t data_size;
1571	size_t offset;
1572	void *data;
1573	void *ptr;
1574	int phnum = 0;
1575
1576	if (list_empty(&rproc->dump_segments))
1577		return;
 
1578
1579	data_size = sizeof(*ehdr);
1580	list_for_each_entry(segment, &rproc->dump_segments, node) {
1581		data_size += sizeof(*phdr) + segment->size;
1582
1583		phnum++;
 
 
 
 
1584	}
1585
1586	data = vmalloc(data_size);
1587	if (!data)
1588		return;
1589
1590	ehdr = data;
1591
1592	memset(ehdr, 0, sizeof(*ehdr));
1593	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1594	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1595	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1596	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1597	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1598	ehdr->e_type = ET_CORE;
1599	ehdr->e_machine = EM_NONE;
1600	ehdr->e_version = EV_CURRENT;
1601	ehdr->e_entry = rproc->bootaddr;
1602	ehdr->e_phoff = sizeof(*ehdr);
1603	ehdr->e_ehsize = sizeof(*ehdr);
1604	ehdr->e_phentsize = sizeof(*phdr);
1605	ehdr->e_phnum = phnum;
1606
1607	phdr = data + ehdr->e_phoff;
1608	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1609	list_for_each_entry(segment, &rproc->dump_segments, node) {
1610		memset(phdr, 0, sizeof(*phdr));
1611		phdr->p_type = PT_LOAD;
1612		phdr->p_offset = offset;
1613		phdr->p_vaddr = segment->da;
1614		phdr->p_paddr = segment->da;
1615		phdr->p_filesz = segment->size;
1616		phdr->p_memsz = segment->size;
1617		phdr->p_flags = PF_R | PF_W | PF_X;
1618		phdr->p_align = 0;
1619
1620		if (segment->dump) {
1621			segment->dump(rproc, segment, data + offset);
1622		} else {
1623			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1624			if (!ptr) {
1625				dev_err(&rproc->dev,
1626					"invalid coredump segment (%pad, %zu)\n",
1627					&segment->da, segment->size);
1628				memset(data + offset, 0xff, segment->size);
1629			} else {
1630				memcpy(data + offset, ptr, segment->size);
1631			}
1632		}
1633
1634		offset += phdr->p_filesz;
1635		phdr++;
1636	}
1637
1638	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1639}
1640
1641/**
1642 * rproc_trigger_recovery() - recover a remoteproc
1643 * @rproc: the remote processor
1644 *
1645 * The recovery is done by resetting all the virtio devices, that way all the
1646 * rpmsg drivers will be reseted along with the remote processor making the
1647 * remoteproc functional again.
1648 *
1649 * This function can sleep, so it cannot be called from atomic context.
 
 
1650 */
1651int rproc_trigger_recovery(struct rproc *rproc)
1652{
1653	const struct firmware *firmware_p;
1654	struct device *dev = &rproc->dev;
1655	int ret;
1656
1657	dev_err(dev, "recovering %s\n", rproc->name);
1658
1659	ret = mutex_lock_interruptible(&rproc->lock);
1660	if (ret)
1661		return ret;
1662
1663	ret = rproc_stop(rproc, true);
1664	if (ret)
1665		goto unlock_mutex;
1666
1667	/* generate coredump */
1668	rproc_coredump(rproc);
1669
1670	/* load firmware */
1671	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1672	if (ret < 0) {
1673		dev_err(dev, "request_firmware failed: %d\n", ret);
1674		goto unlock_mutex;
1675	}
1676
1677	/* boot the remote processor up again */
1678	ret = rproc_start(rproc, firmware_p);
1679
1680	release_firmware(firmware_p);
1681
1682unlock_mutex:
1683	mutex_unlock(&rproc->lock);
1684	return ret;
1685}
1686
1687/**
1688 * rproc_crash_handler_work() - handle a crash
 
1689 *
1690 * This function needs to handle everything related to a crash, like cpu
1691 * registers and stack dump, information to help to debug the fatal error, etc.
1692 */
1693static void rproc_crash_handler_work(struct work_struct *work)
1694{
1695	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1696	struct device *dev = &rproc->dev;
1697
1698	dev_dbg(dev, "enter %s\n", __func__);
1699
1700	mutex_lock(&rproc->lock);
1701
1702	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1703		/* handle only the first crash detected */
1704		mutex_unlock(&rproc->lock);
1705		return;
1706	}
1707
 
 
 
 
 
 
1708	rproc->state = RPROC_CRASHED;
1709	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1710		rproc->name);
1711
1712	mutex_unlock(&rproc->lock);
1713
1714	if (!rproc->recovery_disabled)
1715		rproc_trigger_recovery(rproc);
 
 
 
1716}
1717
1718/**
1719 * rproc_boot() - boot a remote processor
1720 * @rproc: handle of a remote processor
1721 *
1722 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723 *
1724 * If the remote processor is already powered on, this function immediately
1725 * returns (successfully).
1726 *
1727 * Returns 0 on success, and an appropriate error value otherwise.
1728 */
1729int rproc_boot(struct rproc *rproc)
1730{
1731	const struct firmware *firmware_p;
1732	struct device *dev;
1733	int ret;
1734
1735	if (!rproc) {
1736		pr_err("invalid rproc handle\n");
1737		return -EINVAL;
1738	}
1739
1740	dev = &rproc->dev;
1741
1742	ret = mutex_lock_interruptible(&rproc->lock);
1743	if (ret) {
1744		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1745		return ret;
1746	}
1747
1748	if (rproc->state == RPROC_DELETED) {
1749		ret = -ENODEV;
1750		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1751		goto unlock_mutex;
1752	}
1753
1754	/* skip the boot process if rproc is already powered up */
1755	if (atomic_inc_return(&rproc->power) > 1) {
1756		ret = 0;
1757		goto unlock_mutex;
1758	}
1759
1760	dev_info(dev, "powering up %s\n", rproc->name);
 
 
 
 
 
1761
1762	/* load firmware */
1763	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1764	if (ret < 0) {
1765		dev_err(dev, "request_firmware failed: %d\n", ret);
1766		goto downref_rproc;
1767	}
1768
1769	ret = rproc_fw_boot(rproc, firmware_p);
1770
1771	release_firmware(firmware_p);
 
1772
1773downref_rproc:
1774	if (ret)
1775		atomic_dec(&rproc->power);
1776unlock_mutex:
1777	mutex_unlock(&rproc->lock);
1778	return ret;
1779}
1780EXPORT_SYMBOL(rproc_boot);
1781
1782/**
1783 * rproc_shutdown() - power off the remote processor
1784 * @rproc: the remote processor
1785 *
1786 * Power off a remote processor (previously booted with rproc_boot()).
1787 *
1788 * In case @rproc is still being used by an additional user(s), then
1789 * this function will just decrement the power refcount and exit,
1790 * without really powering off the device.
1791 *
1792 * Every call to rproc_boot() must (eventually) be accompanied by a call
1793 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794 *
1795 * Notes:
1796 * - we're not decrementing the rproc's refcount, only the power refcount.
1797 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1798 *   returns, and users can still use it with a subsequent rproc_boot(), if
1799 *   needed.
 
 
1800 */
1801void rproc_shutdown(struct rproc *rproc)
1802{
1803	struct device *dev = &rproc->dev;
1804	int ret;
1805
1806	ret = mutex_lock_interruptible(&rproc->lock);
1807	if (ret) {
1808		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1809		return;
 
 
 
 
 
 
1810	}
1811
1812	/* if the remote proc is still needed, bail out */
1813	if (!atomic_dec_and_test(&rproc->power))
1814		goto out;
1815
1816	ret = rproc_stop(rproc, false);
1817	if (ret) {
1818		atomic_inc(&rproc->power);
1819		goto out;
1820	}
1821
1822	/* clean up all acquired resources */
1823	rproc_resource_cleanup(rproc);
1824
 
 
 
1825	rproc_disable_iommu(rproc);
1826
1827	/* Free the copy of the resource table */
1828	kfree(rproc->cached_table);
1829	rproc->cached_table = NULL;
1830	rproc->table_ptr = NULL;
1831out:
1832	mutex_unlock(&rproc->lock);
 
1833}
1834EXPORT_SYMBOL(rproc_shutdown);
1835
1836/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837 * rproc_get_by_phandle() - find a remote processor by phandle
1838 * @phandle: phandle to the rproc
1839 *
1840 * Finds an rproc handle using the remote processor's phandle, and then
1841 * return a handle to the rproc.
1842 *
1843 * This function increments the remote processor's refcount, so always
1844 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845 *
1846 * Returns the rproc handle on success, and NULL on failure.
1847 */
1848#ifdef CONFIG_OF
1849struct rproc *rproc_get_by_phandle(phandle phandle)
1850{
1851	struct rproc *rproc = NULL, *r;
1852	struct device_node *np;
1853
1854	np = of_find_node_by_phandle(phandle);
1855	if (!np)
1856		return NULL;
1857
1858	mutex_lock(&rproc_list_mutex);
1859	list_for_each_entry(r, &rproc_list, node) {
1860		if (r->dev.parent && r->dev.parent->of_node == np) {
1861			/* prevent underlying implementation from being removed */
1862			if (!try_module_get(r->dev.parent->driver->owner)) {
1863				dev_err(&r->dev, "can't get owner\n");
1864				break;
1865			}
1866
1867			rproc = r;
1868			get_device(&rproc->dev);
1869			break;
1870		}
1871	}
1872	mutex_unlock(&rproc_list_mutex);
1873
1874	of_node_put(np);
1875
1876	return rproc;
1877}
1878#else
1879struct rproc *rproc_get_by_phandle(phandle phandle)
1880{
1881	return NULL;
1882}
1883#endif
1884EXPORT_SYMBOL(rproc_get_by_phandle);
1885
1886/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887 * rproc_add() - register a remote processor
1888 * @rproc: the remote processor handle to register
1889 *
1890 * Registers @rproc with the remoteproc framework, after it has been
1891 * allocated with rproc_alloc().
1892 *
1893 * This is called by the platform-specific rproc implementation, whenever
1894 * a new remote processor device is probed.
1895 *
1896 * Returns 0 on success and an appropriate error code otherwise.
1897 *
1898 * Note: this function initiates an asynchronous firmware loading
1899 * context, which will look for virtio devices supported by the rproc's
1900 * firmware.
1901 *
1902 * If found, those virtio devices will be created and added, so as a result
1903 * of registering this remote processor, additional virtio drivers might be
1904 * probed.
 
 
1905 */
1906int rproc_add(struct rproc *rproc)
1907{
1908	struct device *dev = &rproc->dev;
1909	int ret;
1910
1911	ret = device_add(dev);
 
 
 
 
 
1912	if (ret < 0)
1913		return ret;
1914
 
 
 
 
 
 
1915	dev_info(dev, "%s is available\n", rproc->name);
1916
1917	/* create debugfs entries */
1918	rproc_create_debug_dir(rproc);
1919
1920	/* if rproc is marked always-on, request it to boot */
1921	if (rproc->auto_boot) {
1922		ret = rproc_trigger_auto_boot(rproc);
1923		if (ret < 0)
1924			return ret;
1925	}
1926
1927	/* expose to rproc_get_by_phandle users */
1928	mutex_lock(&rproc_list_mutex);
1929	list_add(&rproc->node, &rproc_list);
1930	mutex_unlock(&rproc_list_mutex);
1931
1932	return 0;
 
 
 
 
 
 
 
1933}
1934EXPORT_SYMBOL(rproc_add);
1935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936/**
1937 * rproc_type_release() - release a remote processor instance
1938 * @dev: the rproc's device
1939 *
1940 * This function should _never_ be called directly.
1941 *
1942 * It will be called by the driver core when no one holds a valid pointer
1943 * to @dev anymore.
1944 */
1945static void rproc_type_release(struct device *dev)
1946{
1947	struct rproc *rproc = container_of(dev, struct rproc, dev);
1948
1949	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950
1951	idr_destroy(&rproc->notifyids);
1952
1953	if (rproc->index >= 0)
1954		ida_simple_remove(&rproc_dev_index, rproc->index);
1955
1956	kfree(rproc->firmware);
 
1957	kfree(rproc->ops);
1958	kfree(rproc);
1959}
1960
1961static const struct device_type rproc_type = {
1962	.name		= "remoteproc",
1963	.release	= rproc_type_release,
1964};
1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966/**
1967 * rproc_alloc() - allocate a remote processor handle
1968 * @dev: the underlying device
1969 * @name: name of this remote processor
1970 * @ops: platform-specific handlers (mainly start/stop)
1971 * @firmware: name of firmware file to load, can be NULL
1972 * @len: length of private data needed by the rproc driver (in bytes)
1973 *
1974 * Allocates a new remote processor handle, but does not register
1975 * it yet. if @firmware is NULL, a default name is used.
1976 *
1977 * This function should be used by rproc implementations during initialization
1978 * of the remote processor.
1979 *
1980 * After creating an rproc handle using this function, and when ready,
1981 * implementations should then call rproc_add() to complete
1982 * the registration of the remote processor.
1983 *
1984 * On success the new rproc is returned, and on failure, NULL.
1985 *
1986 * Note: _never_ directly deallocate @rproc, even if it was not registered
1987 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
 
 
1988 */
1989struct rproc *rproc_alloc(struct device *dev, const char *name,
1990			  const struct rproc_ops *ops,
1991			  const char *firmware, int len)
1992{
1993	struct rproc *rproc;
1994	char *p, *template = "rproc-%s-fw";
1995	int name_len;
1996
1997	if (!dev || !name || !ops)
1998		return NULL;
1999
2000	if (!firmware) {
2001		/*
2002		 * If the caller didn't pass in a firmware name then
2003		 * construct a default name.
2004		 */
2005		name_len = strlen(name) + strlen(template) - 2 + 1;
2006		p = kmalloc(name_len, GFP_KERNEL);
2007		if (!p)
2008			return NULL;
2009		snprintf(p, name_len, template, name);
2010	} else {
2011		p = kstrdup(firmware, GFP_KERNEL);
2012		if (!p)
2013			return NULL;
2014	}
2015
2016	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2017	if (!rproc) {
2018		kfree(p);
2019		return NULL;
2020	}
2021
2022	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2023	if (!rproc->ops) {
2024		kfree(p);
2025		kfree(rproc);
2026		return NULL;
2027	}
2028
2029	rproc->firmware = p;
2030	rproc->name = name;
2031	rproc->priv = &rproc[1];
2032	rproc->auto_boot = true;
 
 
2033
2034	device_initialize(&rproc->dev);
2035	rproc->dev.parent = dev;
2036	rproc->dev.type = &rproc_type;
2037	rproc->dev.class = &rproc_class;
2038	rproc->dev.driver_data = rproc;
 
 
 
 
 
 
 
 
 
 
 
2039
2040	/* Assign a unique device index and name */
2041	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2042	if (rproc->index < 0) {
2043		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2044		put_device(&rproc->dev);
2045		return NULL;
2046	}
2047
2048	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049
2050	atomic_set(&rproc->power, 0);
2051
2052	/* Default to ELF loader if no load function is specified */
2053	if (!rproc->ops->load) {
2054		rproc->ops->load = rproc_elf_load_segments;
2055		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2056		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2057		rproc->ops->sanity_check = rproc_elf_sanity_check;
2058		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2059	}
2060
2061	mutex_init(&rproc->lock);
2062
2063	idr_init(&rproc->notifyids);
2064
2065	INIT_LIST_HEAD(&rproc->carveouts);
2066	INIT_LIST_HEAD(&rproc->mappings);
2067	INIT_LIST_HEAD(&rproc->traces);
2068	INIT_LIST_HEAD(&rproc->rvdevs);
2069	INIT_LIST_HEAD(&rproc->subdevs);
2070	INIT_LIST_HEAD(&rproc->dump_segments);
2071
2072	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073
2074	rproc->state = RPROC_OFFLINE;
2075
2076	return rproc;
 
 
 
 
2077}
2078EXPORT_SYMBOL(rproc_alloc);
2079
2080/**
2081 * rproc_free() - unroll rproc_alloc()
2082 * @rproc: the remote processor handle
2083 *
2084 * This function decrements the rproc dev refcount.
2085 *
2086 * If no one holds any reference to rproc anymore, then its refcount would
2087 * now drop to zero, and it would be freed.
2088 */
2089void rproc_free(struct rproc *rproc)
2090{
2091	put_device(&rproc->dev);
2092}
2093EXPORT_SYMBOL(rproc_free);
2094
2095/**
2096 * rproc_put() - release rproc reference
2097 * @rproc: the remote processor handle
2098 *
2099 * This function decrements the rproc dev refcount.
2100 *
2101 * If no one holds any reference to rproc anymore, then its refcount would
2102 * now drop to zero, and it would be freed.
2103 */
2104void rproc_put(struct rproc *rproc)
2105{
2106	module_put(rproc->dev.parent->driver->owner);
2107	put_device(&rproc->dev);
2108}
2109EXPORT_SYMBOL(rproc_put);
2110
2111/**
2112 * rproc_del() - unregister a remote processor
2113 * @rproc: rproc handle to unregister
2114 *
2115 * This function should be called when the platform specific rproc
2116 * implementation decides to remove the rproc device. it should
2117 * _only_ be called if a previous invocation of rproc_add()
2118 * has completed successfully.
2119 *
2120 * After rproc_del() returns, @rproc isn't freed yet, because
2121 * of the outstanding reference created by rproc_alloc. To decrement that
2122 * one last refcount, one still needs to call rproc_free().
2123 *
2124 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125 */
2126int rproc_del(struct rproc *rproc)
2127{
2128	if (!rproc)
2129		return -EINVAL;
2130
2131	/* if rproc is marked always-on, rproc_add() booted it */
2132	/* TODO: make sure this works with rproc->power > 1 */
2133	if (rproc->auto_boot)
2134		rproc_shutdown(rproc);
2135
2136	mutex_lock(&rproc->lock);
2137	rproc->state = RPROC_DELETED;
2138	mutex_unlock(&rproc->lock);
2139
2140	rproc_delete_debug_dir(rproc);
2141
2142	/* the rproc is downref'ed as soon as it's removed from the klist */
2143	mutex_lock(&rproc_list_mutex);
2144	list_del(&rproc->node);
2145	mutex_unlock(&rproc_list_mutex);
2146
 
 
 
2147	device_del(&rproc->dev);
 
2148
2149	return 0;
2150}
2151EXPORT_SYMBOL(rproc_del);
2152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153/**
2154 * rproc_add_subdev() - add a subdevice to a remoteproc
2155 * @rproc: rproc handle to add the subdevice to
2156 * @subdev: subdev handle to register
2157 *
2158 * Caller is responsible for populating optional subdevice function pointers.
2159 */
2160void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161{
2162	list_add_tail(&subdev->node, &rproc->subdevs);
2163}
2164EXPORT_SYMBOL(rproc_add_subdev);
2165
2166/**
2167 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2168 * @rproc: rproc handle to remove the subdevice from
2169 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170 */
2171void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172{
2173	list_del(&subdev->node);
2174}
2175EXPORT_SYMBOL(rproc_remove_subdev);
2176
2177/**
2178 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2179 * @dev:	child device to find ancestor of
2180 *
2181 * Returns the ancestor rproc instance, or NULL if not found.
2182 */
2183struct rproc *rproc_get_by_child(struct device *dev)
2184{
2185	for (dev = dev->parent; dev; dev = dev->parent) {
2186		if (dev->type == &rproc_type)
2187			return dev->driver_data;
2188	}
2189
2190	return NULL;
2191}
2192EXPORT_SYMBOL(rproc_get_by_child);
2193
2194/**
2195 * rproc_report_crash() - rproc crash reporter function
2196 * @rproc: remote processor
2197 * @type: crash type
2198 *
2199 * This function must be called every time a crash is detected by the low-level
2200 * drivers implementing a specific remoteproc. This should not be called from a
2201 * non-remoteproc driver.
2202 *
2203 * This function can be called from atomic/interrupt context.
2204 */
2205void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206{
2207	if (!rproc) {
2208		pr_err("NULL rproc pointer\n");
2209		return;
2210	}
2211
 
 
 
2212	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2213		rproc->name, rproc_crash_to_string(type));
2214
2215	/* create a new task to handle the error */
2216	schedule_work(&rproc->crash_handler);
2217}
2218EXPORT_SYMBOL(rproc_report_crash);
2219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220static int __init remoteproc_init(void)
2221{
 
 
 
 
 
 
 
2222	rproc_init_sysfs();
2223	rproc_init_debugfs();
 
 
2224
2225	return 0;
2226}
2227module_init(remoteproc_init);
2228
2229static void __exit remoteproc_exit(void)
2230{
2231	ida_destroy(&rproc_dev_index);
2232
 
 
 
 
2233	rproc_exit_debugfs();
2234	rproc_exit_sysfs();
 
2235}
2236module_exit(remoteproc_exit);
2237
2238MODULE_LICENSE("GPL v2");
2239MODULE_DESCRIPTION("Generic Remote Processor Framework");