Linux Audio

Check our new training course

Loading...
   1/*
   2 * Remote Processor Framework
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 * Mark Grosen <mgrosen@ti.com>
  10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11 * Suman Anna <s-anna@ti.com>
  12 * Robert Tivy <rtivy@ti.com>
  13 * Armando Uribe De Leon <x0095078@ti.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * version 2 as published by the Free Software Foundation.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#define pr_fmt(fmt)    "%s: " fmt, __func__
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/device.h>
  30#include <linux/slab.h>
  31#include <linux/mutex.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/firmware.h>
  34#include <linux/string.h>
  35#include <linux/debugfs.h>
  36#include <linux/remoteproc.h>
  37#include <linux/iommu.h>
  38#include <linux/klist.h>
  39#include <linux/elf.h>
  40#include <linux/virtio_ids.h>
  41#include <linux/virtio_ring.h>
  42#include <asm/byteorder.h>
  43
  44#include "remoteproc_internal.h"
  45
  46static void klist_rproc_get(struct klist_node *n);
  47static void klist_rproc_put(struct klist_node *n);
  48
  49/*
  50 * klist of the available remote processors.
  51 *
  52 * We need this in order to support name-based lookups (needed by the
  53 * rproc_get_by_name()).
  54 *
  55 * That said, we don't use rproc_get_by_name() at this point.
  56 * The use cases that do require its existence should be
  57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
  58 * binding.
  59 *
  60 * If/when this materializes, we could drop the klist (and the by_name
  61 * API).
  62 */
  63static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
  64
  65typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  66				struct resource_table *table, int len);
  67typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
  68
  69/*
  70 * This is the IOMMU fault handler we register with the IOMMU API
  71 * (when relevant; not all remote processors access memory through
  72 * an IOMMU).
  73 *
  74 * IOMMU core will invoke this handler whenever the remote processor
  75 * will try to access an unmapped device address.
  76 *
  77 * Currently this is mostly a stub, but it will be later used to trigger
  78 * the recovery of the remote processor.
  79 */
  80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  81		unsigned long iova, int flags, void *token)
  82{
  83	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  84
  85	/*
  86	 * Let the iommu core know we're not really handling this fault;
  87	 * we just plan to use this as a recovery trigger.
  88	 */
  89	return -ENOSYS;
  90}
  91
  92static int rproc_enable_iommu(struct rproc *rproc)
  93{
  94	struct iommu_domain *domain;
  95	struct device *dev = rproc->dev;
  96	int ret;
  97
  98	/*
  99	 * We currently use iommu_present() to decide if an IOMMU
 100	 * setup is needed.
 101	 *
 102	 * This works for simple cases, but will easily fail with
 103	 * platforms that do have an IOMMU, but not for this specific
 104	 * rproc.
 105	 *
 106	 * This will be easily solved by introducing hw capabilities
 107	 * that will be set by the remoteproc driver.
 108	 */
 109	if (!iommu_present(dev->bus)) {
 110		dev_dbg(dev, "iommu not found\n");
 111		return 0;
 112	}
 113
 114	domain = iommu_domain_alloc(dev->bus);
 115	if (!domain) {
 116		dev_err(dev, "can't alloc iommu domain\n");
 117		return -ENOMEM;
 118	}
 119
 120	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 121
 122	ret = iommu_attach_device(domain, dev);
 123	if (ret) {
 124		dev_err(dev, "can't attach iommu device: %d\n", ret);
 125		goto free_domain;
 126	}
 127
 128	rproc->domain = domain;
 129
 130	return 0;
 131
 132free_domain:
 133	iommu_domain_free(domain);
 134	return ret;
 135}
 136
 137static void rproc_disable_iommu(struct rproc *rproc)
 138{
 139	struct iommu_domain *domain = rproc->domain;
 140	struct device *dev = rproc->dev;
 141
 142	if (!domain)
 143		return;
 144
 145	iommu_detach_device(domain, dev);
 146	iommu_domain_free(domain);
 147
 148	return;
 149}
 150
 151/*
 152 * Some remote processors will ask us to allocate them physically contiguous
 153 * memory regions (which we call "carveouts"), and map them to specific
 154 * device addresses (which are hardcoded in the firmware).
 155 *
 156 * They may then ask us to copy objects into specific device addresses (e.g.
 157 * code/data sections) or expose us certain symbols in other device address
 158 * (e.g. their trace buffer).
 159 *
 160 * This function is an internal helper with which we can go over the allocated
 161 * carveouts and translate specific device address to kernel virtual addresses
 162 * so we can access the referenced memory.
 163 *
 164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 165 * but only on kernel direct mapped RAM memory. Instead, we're just using
 166 * here the output of the DMA API, which should be more correct.
 167 */
 168static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 169{
 170	struct rproc_mem_entry *carveout;
 171	void *ptr = NULL;
 172
 173	list_for_each_entry(carveout, &rproc->carveouts, node) {
 174		int offset = da - carveout->da;
 175
 176		/* try next carveout if da is too small */
 177		if (offset < 0)
 178			continue;
 179
 180		/* try next carveout if da is too large */
 181		if (offset + len > carveout->len)
 182			continue;
 183
 184		ptr = carveout->va + offset;
 185
 186		break;
 187	}
 188
 189	return ptr;
 190}
 191
 192/**
 193 * rproc_load_segments() - load firmware segments to memory
 194 * @rproc: remote processor which will be booted using these fw segments
 195 * @elf_data: the content of the ELF firmware image
 196 * @len: firmware size (in bytes)
 197 *
 198 * This function loads the firmware segments to memory, where the remote
 199 * processor expects them.
 200 *
 201 * Some remote processors will expect their code and data to be placed
 202 * in specific device addresses, and can't have them dynamically assigned.
 203 *
 204 * We currently support only those kind of remote processors, and expect
 205 * the program header's paddr member to contain those addresses. We then go
 206 * through the physically contiguous "carveout" memory regions which we
 207 * allocated (and mapped) earlier on behalf of the remote processor,
 208 * and "translate" device address to kernel addresses, so we can copy the
 209 * segments where they are expected.
 210 *
 211 * Currently we only support remote processors that required carveout
 212 * allocations and got them mapped onto their iommus. Some processors
 213 * might be different: they might not have iommus, and would prefer to
 214 * directly allocate memory for every segment/resource. This is not yet
 215 * supported, though.
 216 */
 217static int
 218rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
 219{
 220	struct device *dev = rproc->dev;
 221	struct elf32_hdr *ehdr;
 222	struct elf32_phdr *phdr;
 223	int i, ret = 0;
 224
 225	ehdr = (struct elf32_hdr *)elf_data;
 226	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
 227
 228	/* go through the available ELF segments */
 229	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
 230		u32 da = phdr->p_paddr;
 231		u32 memsz = phdr->p_memsz;
 232		u32 filesz = phdr->p_filesz;
 233		u32 offset = phdr->p_offset;
 234		void *ptr;
 235
 236		if (phdr->p_type != PT_LOAD)
 237			continue;
 238
 239		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
 240					phdr->p_type, da, memsz, filesz);
 241
 242		if (filesz > memsz) {
 243			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
 244							filesz, memsz);
 245			ret = -EINVAL;
 246			break;
 247		}
 248
 249		if (offset + filesz > len) {
 250			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
 251					offset + filesz, len);
 252			ret = -EINVAL;
 253			break;
 254		}
 255
 256		/* grab the kernel address for this device address */
 257		ptr = rproc_da_to_va(rproc, da, memsz);
 258		if (!ptr) {
 259			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
 260			ret = -EINVAL;
 261			break;
 262		}
 263
 264		/* put the segment where the remote processor expects it */
 265		if (phdr->p_filesz)
 266			memcpy(ptr, elf_data + phdr->p_offset, filesz);
 267
 268		/*
 269		 * Zero out remaining memory for this segment.
 270		 *
 271		 * This isn't strictly required since dma_alloc_coherent already
 272		 * did this for us. albeit harmless, we may consider removing
 273		 * this.
 274		 */
 275		if (memsz > filesz)
 276			memset(ptr + filesz, 0, memsz - filesz);
 277	}
 278
 279	return ret;
 280}
 281
 282static int
 283__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 284{
 285	struct rproc *rproc = rvdev->rproc;
 286	struct device *dev = rproc->dev;
 287	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 288	dma_addr_t dma;
 289	void *va;
 290	int ret, size, notifyid;
 291
 292	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
 293				i, vring->da, vring->num, vring->align);
 294
 295	/* make sure reserved bytes are zeroes */
 296	if (vring->reserved) {
 297		dev_err(dev, "vring rsc has non zero reserved bytes\n");
 298		return -EINVAL;
 299	}
 300
 301	/* verify queue size and vring alignment are sane */
 302	if (!vring->num || !vring->align) {
 303		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 304						vring->num, vring->align);
 305		return -EINVAL;
 306	}
 307
 308	/* actual size of vring (in bytes) */
 309	size = PAGE_ALIGN(vring_size(vring->num, vring->align));
 310
 311	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
 312		dev_err(dev, "idr_pre_get failed\n");
 313		return -ENOMEM;
 314	}
 315
 316	/*
 317	 * Allocate non-cacheable memory for the vring. In the future
 318	 * this call will also configure the IOMMU for us
 319	 */
 320	va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
 321	if (!va) {
 322		dev_err(dev, "dma_alloc_coherent failed\n");
 323		return -EINVAL;
 324	}
 325
 326	/* assign an rproc-wide unique index for this vring */
 327	/* TODO: assign a notifyid for rvdev updates as well */
 328	ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
 329	if (ret) {
 330		dev_err(dev, "idr_get_new failed: %d\n", ret);
 331		dma_free_coherent(dev, size, va, dma);
 332		return ret;
 333	}
 334
 335	/* let the rproc know the da and notifyid of this vring */
 336	/* TODO: expose this to remote processor */
 337	vring->da = dma;
 338	vring->notifyid = notifyid;
 339
 340	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
 341					dma, size, notifyid);
 342
 343	rvdev->vring[i].len = vring->num;
 344	rvdev->vring[i].align = vring->align;
 345	rvdev->vring[i].va = va;
 346	rvdev->vring[i].dma = dma;
 347	rvdev->vring[i].notifyid = notifyid;
 348	rvdev->vring[i].rvdev = rvdev;
 349
 350	return 0;
 351}
 352
 353static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
 354{
 355	struct rproc *rproc = rvdev->rproc;
 356
 357	for (i--; i >= 0; i--) {
 358		struct rproc_vring *rvring = &rvdev->vring[i];
 359		int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 360
 361		dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
 362		idr_remove(&rproc->notifyids, rvring->notifyid);
 363	}
 364}
 365
 366/**
 367 * rproc_handle_vdev() - handle a vdev fw resource
 368 * @rproc: the remote processor
 369 * @rsc: the vring resource descriptor
 370 * @avail: size of available data (for sanity checking the image)
 371 *
 372 * This resource entry requests the host to statically register a virtio
 373 * device (vdev), and setup everything needed to support it. It contains
 374 * everything needed to make it possible: the virtio device id, virtio
 375 * device features, vrings information, virtio config space, etc...
 376 *
 377 * Before registering the vdev, the vrings are allocated from non-cacheable
 378 * physically contiguous memory. Currently we only support two vrings per
 379 * remote processor (temporary limitation). We might also want to consider
 380 * doing the vring allocation only later when ->find_vqs() is invoked, and
 381 * then release them upon ->del_vqs().
 382 *
 383 * Note: @da is currently not really handled correctly: we dynamically
 384 * allocate it using the DMA API, ignoring requested hard coded addresses,
 385 * and we don't take care of any required IOMMU programming. This is all
 386 * going to be taken care of when the generic iommu-based DMA API will be
 387 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 388 * use RSC_DEVMEM resource entries to map their required @da to the physical
 389 * address of their base CMA region (ouch, hacky!).
 390 *
 391 * Returns 0 on success, or an appropriate error code otherwise
 392 */
 393static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 394								int avail)
 395{
 396	struct device *dev = rproc->dev;
 397	struct rproc_vdev *rvdev;
 398	int i, ret;
 399
 400	/* make sure resource isn't truncated */
 401	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 402			+ rsc->config_len > avail) {
 403		dev_err(rproc->dev, "vdev rsc is truncated\n");
 404		return -EINVAL;
 405	}
 406
 407	/* make sure reserved bytes are zeroes */
 408	if (rsc->reserved[0] || rsc->reserved[1]) {
 409		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 410		return -EINVAL;
 411	}
 412
 413	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
 414		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 415
 416	/* we currently support only two vrings per rvdev */
 417	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 418		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 419		return -EINVAL;
 420	}
 421
 422	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
 423	if (!rvdev)
 424		return -ENOMEM;
 425
 426	rvdev->rproc = rproc;
 427
 428	/* allocate the vrings */
 429	for (i = 0; i < rsc->num_of_vrings; i++) {
 430		ret = __rproc_handle_vring(rvdev, rsc, i);
 431		if (ret)
 432			goto free_vrings;
 433	}
 434
 435	/* remember the device features */
 436	rvdev->dfeatures = rsc->dfeatures;
 437
 438	list_add_tail(&rvdev->node, &rproc->rvdevs);
 439
 440	/* it is now safe to add the virtio device */
 441	ret = rproc_add_virtio_dev(rvdev, rsc->id);
 442	if (ret)
 443		goto free_vrings;
 444
 445	return 0;
 446
 447free_vrings:
 448	__rproc_free_vrings(rvdev, i);
 449	kfree(rvdev);
 450	return ret;
 451}
 452
 453/**
 454 * rproc_handle_trace() - handle a shared trace buffer resource
 455 * @rproc: the remote processor
 456 * @rsc: the trace resource descriptor
 457 * @avail: size of available data (for sanity checking the image)
 458 *
 459 * In case the remote processor dumps trace logs into memory,
 460 * export it via debugfs.
 461 *
 462 * Currently, the 'da' member of @rsc should contain the device address
 463 * where the remote processor is dumping the traces. Later we could also
 464 * support dynamically allocating this address using the generic
 465 * DMA API (but currently there isn't a use case for that).
 466 *
 467 * Returns 0 on success, or an appropriate error code otherwise
 468 */
 469static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 470								int avail)
 471{
 472	struct rproc_mem_entry *trace;
 473	struct device *dev = rproc->dev;
 474	void *ptr;
 475	char name[15];
 476
 477	if (sizeof(*rsc) > avail) {
 478		dev_err(rproc->dev, "trace rsc is truncated\n");
 479		return -EINVAL;
 480	}
 481
 482	/* make sure reserved bytes are zeroes */
 483	if (rsc->reserved) {
 484		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 485		return -EINVAL;
 486	}
 487
 488	/* what's the kernel address of this resource ? */
 489	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 490	if (!ptr) {
 491		dev_err(dev, "erroneous trace resource entry\n");
 492		return -EINVAL;
 493	}
 494
 495	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 496	if (!trace) {
 497		dev_err(dev, "kzalloc trace failed\n");
 498		return -ENOMEM;
 499	}
 500
 501	/* set the trace buffer dma properties */
 502	trace->len = rsc->len;
 503	trace->va = ptr;
 504
 505	/* make sure snprintf always null terminates, even if truncating */
 506	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 507
 508	/* create the debugfs entry */
 509	trace->priv = rproc_create_trace_file(name, rproc, trace);
 510	if (!trace->priv) {
 511		trace->va = NULL;
 512		kfree(trace);
 513		return -EINVAL;
 514	}
 515
 516	list_add_tail(&trace->node, &rproc->traces);
 517
 518	rproc->num_traces++;
 519
 520	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
 521						rsc->da, rsc->len);
 522
 523	return 0;
 524}
 525
 526/**
 527 * rproc_handle_devmem() - handle devmem resource entry
 528 * @rproc: remote processor handle
 529 * @rsc: the devmem resource entry
 530 * @avail: size of available data (for sanity checking the image)
 531 *
 532 * Remote processors commonly need to access certain on-chip peripherals.
 533 *
 534 * Some of these remote processors access memory via an iommu device,
 535 * and might require us to configure their iommu before they can access
 536 * the on-chip peripherals they need.
 537 *
 538 * This resource entry is a request to map such a peripheral device.
 539 *
 540 * These devmem entries will contain the physical address of the device in
 541 * the 'pa' member. If a specific device address is expected, then 'da' will
 542 * contain it (currently this is the only use case supported). 'len' will
 543 * contain the size of the physical region we need to map.
 544 *
 545 * Currently we just "trust" those devmem entries to contain valid physical
 546 * addresses, but this is going to change: we want the implementations to
 547 * tell us ranges of physical addresses the firmware is allowed to request,
 548 * and not allow firmwares to request access to physical addresses that
 549 * are outside those ranges.
 550 */
 551static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 552								int avail)
 553{
 554	struct rproc_mem_entry *mapping;
 555	int ret;
 556
 557	/* no point in handling this resource without a valid iommu domain */
 558	if (!rproc->domain)
 559		return -EINVAL;
 560
 561	if (sizeof(*rsc) > avail) {
 562		dev_err(rproc->dev, "devmem rsc is truncated\n");
 563		return -EINVAL;
 564	}
 565
 566	/* make sure reserved bytes are zeroes */
 567	if (rsc->reserved) {
 568		dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
 569		return -EINVAL;
 570	}
 571
 572	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 573	if (!mapping) {
 574		dev_err(rproc->dev, "kzalloc mapping failed\n");
 575		return -ENOMEM;
 576	}
 577
 578	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 579	if (ret) {
 580		dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
 581		goto out;
 582	}
 583
 584	/*
 585	 * We'll need this info later when we'll want to unmap everything
 586	 * (e.g. on shutdown).
 587	 *
 588	 * We can't trust the remote processor not to change the resource
 589	 * table, so we must maintain this info independently.
 590	 */
 591	mapping->da = rsc->da;
 592	mapping->len = rsc->len;
 593	list_add_tail(&mapping->node, &rproc->mappings);
 594
 595	dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 596					rsc->pa, rsc->da, rsc->len);
 597
 598	return 0;
 599
 600out:
 601	kfree(mapping);
 602	return ret;
 603}
 604
 605/**
 606 * rproc_handle_carveout() - handle phys contig memory allocation requests
 607 * @rproc: rproc handle
 608 * @rsc: the resource entry
 609 * @avail: size of available data (for image validation)
 610 *
 611 * This function will handle firmware requests for allocation of physically
 612 * contiguous memory regions.
 613 *
 614 * These request entries should come first in the firmware's resource table,
 615 * as other firmware entries might request placing other data objects inside
 616 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 617 *
 618 * Allocating memory this way helps utilizing the reserved physical memory
 619 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 620 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 621 * pressure is important; it may have a substantial impact on performance.
 622 */
 623static int rproc_handle_carveout(struct rproc *rproc,
 624				struct fw_rsc_carveout *rsc, int avail)
 625{
 626	struct rproc_mem_entry *carveout, *mapping;
 627	struct device *dev = rproc->dev;
 628	dma_addr_t dma;
 629	void *va;
 630	int ret;
 631
 632	if (sizeof(*rsc) > avail) {
 633		dev_err(rproc->dev, "carveout rsc is truncated\n");
 634		return -EINVAL;
 635	}
 636
 637	/* make sure reserved bytes are zeroes */
 638	if (rsc->reserved) {
 639		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 640		return -EINVAL;
 641	}
 642
 643	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
 644			rsc->da, rsc->pa, rsc->len, rsc->flags);
 645
 646	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 647	if (!carveout) {
 648		dev_err(dev, "kzalloc carveout failed\n");
 649		return -ENOMEM;
 650	}
 651
 652	va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
 653	if (!va) {
 654		dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
 655		ret = -ENOMEM;
 656		goto free_carv;
 657	}
 658
 659	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
 660
 661	/*
 662	 * Ok, this is non-standard.
 663	 *
 664	 * Sometimes we can't rely on the generic iommu-based DMA API
 665	 * to dynamically allocate the device address and then set the IOMMU
 666	 * tables accordingly, because some remote processors might
 667	 * _require_ us to use hard coded device addresses that their
 668	 * firmware was compiled with.
 669	 *
 670	 * In this case, we must use the IOMMU API directly and map
 671	 * the memory to the device address as expected by the remote
 672	 * processor.
 673	 *
 674	 * Obviously such remote processor devices should not be configured
 675	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 676	 * physical address in this case.
 677	 */
 678	if (rproc->domain) {
 679		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 680		if (!mapping) {
 681			dev_err(dev, "kzalloc mapping failed\n");
 682			ret = -ENOMEM;
 683			goto dma_free;
 684		}
 685
 686		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 687								rsc->flags);
 688		if (ret) {
 689			dev_err(dev, "iommu_map failed: %d\n", ret);
 690			goto free_mapping;
 691		}
 692
 693		/*
 694		 * We'll need this info later when we'll want to unmap
 695		 * everything (e.g. on shutdown).
 696		 *
 697		 * We can't trust the remote processor not to change the
 698		 * resource table, so we must maintain this info independently.
 699		 */
 700		mapping->da = rsc->da;
 701		mapping->len = rsc->len;
 702		list_add_tail(&mapping->node, &rproc->mappings);
 703
 704		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
 705
 706		/*
 707		 * Some remote processors might need to know the pa
 708		 * even though they are behind an IOMMU. E.g., OMAP4's
 709		 * remote M3 processor needs this so it can control
 710		 * on-chip hardware accelerators that are not behind
 711		 * the IOMMU, and therefor must know the pa.
 712		 *
 713		 * Generally we don't want to expose physical addresses
 714		 * if we don't have to (remote processors are generally
 715		 * _not_ trusted), so we might want to do this only for
 716		 * remote processor that _must_ have this (e.g. OMAP4's
 717		 * dual M3 subsystem).
 718		 */
 719		rsc->pa = dma;
 720	}
 721
 722	carveout->va = va;
 723	carveout->len = rsc->len;
 724	carveout->dma = dma;
 725	carveout->da = rsc->da;
 726
 727	list_add_tail(&carveout->node, &rproc->carveouts);
 728
 729	return 0;
 730
 731free_mapping:
 732	kfree(mapping);
 733dma_free:
 734	dma_free_coherent(dev, rsc->len, va, dma);
 735free_carv:
 736	kfree(carveout);
 737	return ret;
 738}
 739
 740/*
 741 * A lookup table for resource handlers. The indices are defined in
 742 * enum fw_resource_type.
 743 */
 744static rproc_handle_resource_t rproc_handle_rsc[] = {
 745	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 746	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 747	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 748	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
 749};
 750
 751/* handle firmware resource entries before booting the remote processor */
 752static int
 753rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
 754{
 755	struct device *dev = rproc->dev;
 756	rproc_handle_resource_t handler;
 757	int ret = 0, i;
 758
 759	for (i = 0; i < table->num; i++) {
 760		int offset = table->offset[i];
 761		struct fw_rsc_hdr *hdr = (void *)table + offset;
 762		int avail = len - offset - sizeof(*hdr);
 763		void *rsc = (void *)hdr + sizeof(*hdr);
 764
 765		/* make sure table isn't truncated */
 766		if (avail < 0) {
 767			dev_err(dev, "rsc table is truncated\n");
 768			return -EINVAL;
 769		}
 770
 771		dev_dbg(dev, "rsc: type %d\n", hdr->type);
 772
 773		if (hdr->type >= RSC_LAST) {
 774			dev_warn(dev, "unsupported resource %d\n", hdr->type);
 775			continue;
 776		}
 777
 778		handler = rproc_handle_rsc[hdr->type];
 779		if (!handler)
 780			continue;
 781
 782		ret = handler(rproc, rsc, avail);
 783		if (ret)
 784			break;
 785	}
 786
 787	return ret;
 788}
 789
 790/* handle firmware resource entries while registering the remote processor */
 791static int
 792rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
 793{
 794	struct device *dev = rproc->dev;
 795	int ret = 0, i;
 796
 797	for (i = 0; i < table->num; i++) {
 798		int offset = table->offset[i];
 799		struct fw_rsc_hdr *hdr = (void *)table + offset;
 800		int avail = len - offset - sizeof(*hdr);
 801		struct fw_rsc_vdev *vrsc;
 802
 803		/* make sure table isn't truncated */
 804		if (avail < 0) {
 805			dev_err(dev, "rsc table is truncated\n");
 806			return -EINVAL;
 807		}
 808
 809		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
 810
 811		if (hdr->type != RSC_VDEV)
 812			continue;
 813
 814		vrsc = (struct fw_rsc_vdev *)hdr->data;
 815
 816		ret = rproc_handle_vdev(rproc, vrsc, avail);
 817		if (ret)
 818			break;
 819	}
 820
 821	return ret;
 822}
 823
 824/**
 825 * rproc_find_rsc_table() - find the resource table
 826 * @rproc: the rproc handle
 827 * @elf_data: the content of the ELF firmware image
 828 * @len: firmware size (in bytes)
 829 * @tablesz: place holder for providing back the table size
 830 *
 831 * This function finds the resource table inside the remote processor's
 832 * firmware. It is used both upon the registration of @rproc (in order
 833 * to look for and register the supported virito devices), and when the
 834 * @rproc is booted.
 835 *
 836 * Returns the pointer to the resource table if it is found, and write its
 837 * size into @tablesz. If a valid table isn't found, NULL is returned
 838 * (and @tablesz isn't set).
 839 */
 840static struct resource_table *
 841rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
 842							int *tablesz)
 843{
 844	struct elf32_hdr *ehdr;
 845	struct elf32_shdr *shdr;
 846	const char *name_table;
 847	struct device *dev = rproc->dev;
 848	struct resource_table *table = NULL;
 849	int i;
 850
 851	ehdr = (struct elf32_hdr *)elf_data;
 852	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
 853	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
 854
 855	/* look for the resource table and handle it */
 856	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
 857		int size = shdr->sh_size;
 858		int offset = shdr->sh_offset;
 859
 860		if (strcmp(name_table + shdr->sh_name, ".resource_table"))
 861			continue;
 862
 863		table = (struct resource_table *)(elf_data + offset);
 864
 865		/* make sure we have the entire table */
 866		if (offset + size > len) {
 867			dev_err(dev, "resource table truncated\n");
 868			return NULL;
 869		}
 870
 871		/* make sure table has at least the header */
 872		if (sizeof(struct resource_table) > size) {
 873			dev_err(dev, "header-less resource table\n");
 874			return NULL;
 875		}
 876
 877		/* we don't support any version beyond the first */
 878		if (table->ver != 1) {
 879			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
 880			return NULL;
 881		}
 882
 883		/* make sure reserved bytes are zeroes */
 884		if (table->reserved[0] || table->reserved[1]) {
 885			dev_err(dev, "non zero reserved bytes\n");
 886			return NULL;
 887		}
 888
 889		/* make sure the offsets array isn't truncated */
 890		if (table->num * sizeof(table->offset[0]) +
 891				sizeof(struct resource_table) > size) {
 892			dev_err(dev, "resource table incomplete\n");
 893			return NULL;
 894		}
 895
 896		*tablesz = shdr->sh_size;
 897		break;
 898	}
 899
 900	return table;
 901}
 902
 903/**
 904 * rproc_resource_cleanup() - clean up and free all acquired resources
 905 * @rproc: rproc handle
 906 *
 907 * This function will free all resources acquired for @rproc, and it
 908 * is called whenever @rproc either shuts down or fails to boot.
 909 */
 910static void rproc_resource_cleanup(struct rproc *rproc)
 911{
 912	struct rproc_mem_entry *entry, *tmp;
 913	struct device *dev = rproc->dev;
 914
 915	/* clean up debugfs trace entries */
 916	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 917		rproc_remove_trace_file(entry->priv);
 918		rproc->num_traces--;
 919		list_del(&entry->node);
 920		kfree(entry);
 921	}
 922
 923	/* clean up carveout allocations */
 924	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 925		dma_free_coherent(dev, entry->len, entry->va, entry->dma);
 926		list_del(&entry->node);
 927		kfree(entry);
 928	}
 929
 930	/* clean up iommu mapping entries */
 931	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 932		size_t unmapped;
 933
 934		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 935		if (unmapped != entry->len) {
 936			/* nothing much to do besides complaining */
 937			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
 938								unmapped);
 939		}
 940
 941		list_del(&entry->node);
 942		kfree(entry);
 943	}
 944}
 945
 946/* make sure this fw image is sane */
 947static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
 948{
 949	const char *name = rproc->firmware;
 950	struct device *dev = rproc->dev;
 951	struct elf32_hdr *ehdr;
 952	char class;
 953
 954	if (!fw) {
 955		dev_err(dev, "failed to load %s\n", name);
 956		return -EINVAL;
 957	}
 958
 959	if (fw->size < sizeof(struct elf32_hdr)) {
 960		dev_err(dev, "Image is too small\n");
 961		return -EINVAL;
 962	}
 963
 964	ehdr = (struct elf32_hdr *)fw->data;
 965
 966	/* We only support ELF32 at this point */
 967	class = ehdr->e_ident[EI_CLASS];
 968	if (class != ELFCLASS32) {
 969		dev_err(dev, "Unsupported class: %d\n", class);
 970		return -EINVAL;
 971	}
 972
 973	/* We assume the firmware has the same endianess as the host */
 974# ifdef __LITTLE_ENDIAN
 975	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
 976# else /* BIG ENDIAN */
 977	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
 978# endif
 979		dev_err(dev, "Unsupported firmware endianess\n");
 980		return -EINVAL;
 981	}
 982
 983	if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
 984		dev_err(dev, "Image is too small\n");
 985		return -EINVAL;
 986	}
 987
 988	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
 989		dev_err(dev, "Image is corrupted (bad magic)\n");
 990		return -EINVAL;
 991	}
 992
 993	if (ehdr->e_phnum == 0) {
 994		dev_err(dev, "No loadable segments\n");
 995		return -EINVAL;
 996	}
 997
 998	if (ehdr->e_phoff > fw->size) {
 999		dev_err(dev, "Firmware size is too small\n");
1000		return -EINVAL;
1001	}
1002
1003	return 0;
1004}
1005
1006/*
1007 * take a firmware and boot a remote processor with it.
1008 */
1009static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1010{
1011	struct device *dev = rproc->dev;
1012	const char *name = rproc->firmware;
1013	struct elf32_hdr *ehdr;
1014	struct resource_table *table;
1015	int ret, tablesz;
1016
1017	ret = rproc_fw_sanity_check(rproc, fw);
1018	if (ret)
1019		return ret;
1020
1021	ehdr = (struct elf32_hdr *)fw->data;
1022
1023	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1024
1025	/*
1026	 * if enabling an IOMMU isn't relevant for this rproc, this is
1027	 * just a nop
1028	 */
1029	ret = rproc_enable_iommu(rproc);
1030	if (ret) {
1031		dev_err(dev, "can't enable iommu: %d\n", ret);
1032		return ret;
1033	}
1034
1035	/*
1036	 * The ELF entry point is the rproc's boot addr (though this is not
1037	 * a configurable property of all remote processors: some will always
1038	 * boot at a specific hardcoded address).
1039	 */
1040	rproc->bootaddr = ehdr->e_entry;
1041
1042	/* look for the resource table */
1043	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1044	if (!table) {
1045		ret = -EINVAL;
1046		goto clean_up;
1047	}
1048
1049	/* handle fw resources which are required to boot rproc */
1050	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
1051	if (ret) {
1052		dev_err(dev, "Failed to process resources: %d\n", ret);
1053		goto clean_up;
1054	}
1055
1056	/* load the ELF segments to memory */
1057	ret = rproc_load_segments(rproc, fw->data, fw->size);
1058	if (ret) {
1059		dev_err(dev, "Failed to load program segments: %d\n", ret);
1060		goto clean_up;
1061	}
1062
1063	/* power up the remote processor */
1064	ret = rproc->ops->start(rproc);
1065	if (ret) {
1066		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1067		goto clean_up;
1068	}
1069
1070	rproc->state = RPROC_RUNNING;
1071
1072	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1073
1074	return 0;
1075
1076clean_up:
1077	rproc_resource_cleanup(rproc);
1078	rproc_disable_iommu(rproc);
1079	return ret;
1080}
1081
1082/*
1083 * take a firmware and look for virtio devices to register.
1084 *
1085 * Note: this function is called asynchronously upon registration of the
1086 * remote processor (so we must wait until it completes before we try
1087 * to unregister the device. one other option is just to use kref here,
1088 * that might be cleaner).
1089 */
1090static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1091{
1092	struct rproc *rproc = context;
1093	struct resource_table *table;
1094	int ret, tablesz;
1095
1096	if (rproc_fw_sanity_check(rproc, fw) < 0)
1097		goto out;
1098
1099	/* look for the resource table */
1100	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1101	if (!table)
1102		goto out;
1103
1104	/* look for virtio devices and register them */
1105	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
1106	if (ret)
1107		goto out;
1108
1109out:
1110	release_firmware(fw);
1111	/* allow rproc_unregister() contexts, if any, to proceed */
1112	complete_all(&rproc->firmware_loading_complete);
1113}
1114
1115/**
1116 * rproc_boot() - boot a remote processor
1117 * @rproc: handle of a remote processor
1118 *
1119 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1120 *
1121 * If the remote processor is already powered on, this function immediately
1122 * returns (successfully).
1123 *
1124 * Returns 0 on success, and an appropriate error value otherwise.
1125 */
1126int rproc_boot(struct rproc *rproc)
1127{
1128	const struct firmware *firmware_p;
1129	struct device *dev;
1130	int ret;
1131
1132	if (!rproc) {
1133		pr_err("invalid rproc handle\n");
1134		return -EINVAL;
1135	}
1136
1137	dev = rproc->dev;
1138
1139	ret = mutex_lock_interruptible(&rproc->lock);
1140	if (ret) {
1141		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1142		return ret;
1143	}
1144
1145	/* loading a firmware is required */
1146	if (!rproc->firmware) {
1147		dev_err(dev, "%s: no firmware to load\n", __func__);
1148		ret = -EINVAL;
1149		goto unlock_mutex;
1150	}
1151
1152	/* prevent underlying implementation from being removed */
1153	if (!try_module_get(dev->driver->owner)) {
1154		dev_err(dev, "%s: can't get owner\n", __func__);
1155		ret = -EINVAL;
1156		goto unlock_mutex;
1157	}
1158
1159	/* skip the boot process if rproc is already powered up */
1160	if (atomic_inc_return(&rproc->power) > 1) {
1161		ret = 0;
1162		goto unlock_mutex;
1163	}
1164
1165	dev_info(dev, "powering up %s\n", rproc->name);
1166
1167	/* load firmware */
1168	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1169	if (ret < 0) {
1170		dev_err(dev, "request_firmware failed: %d\n", ret);
1171		goto downref_rproc;
1172	}
1173
1174	ret = rproc_fw_boot(rproc, firmware_p);
1175
1176	release_firmware(firmware_p);
1177
1178downref_rproc:
1179	if (ret) {
1180		module_put(dev->driver->owner);
1181		atomic_dec(&rproc->power);
1182	}
1183unlock_mutex:
1184	mutex_unlock(&rproc->lock);
1185	return ret;
1186}
1187EXPORT_SYMBOL(rproc_boot);
1188
1189/**
1190 * rproc_shutdown() - power off the remote processor
1191 * @rproc: the remote processor
1192 *
1193 * Power off a remote processor (previously booted with rproc_boot()).
1194 *
1195 * In case @rproc is still being used by an additional user(s), then
1196 * this function will just decrement the power refcount and exit,
1197 * without really powering off the device.
1198 *
1199 * Every call to rproc_boot() must (eventually) be accompanied by a call
1200 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1201 *
1202 * Notes:
1203 * - we're not decrementing the rproc's refcount, only the power refcount.
1204 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1205 *   returns, and users can still use it with a subsequent rproc_boot(), if
1206 *   needed.
1207 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1208 *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1209 *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1210 *   you acquired @rproc using rproc_get_by_name()).
1211 */
1212void rproc_shutdown(struct rproc *rproc)
1213{
1214	struct device *dev = rproc->dev;
1215	int ret;
1216
1217	ret = mutex_lock_interruptible(&rproc->lock);
1218	if (ret) {
1219		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1220		return;
1221	}
1222
1223	/* if the remote proc is still needed, bail out */
1224	if (!atomic_dec_and_test(&rproc->power))
1225		goto out;
1226
1227	/* power off the remote processor */
1228	ret = rproc->ops->stop(rproc);
1229	if (ret) {
1230		atomic_inc(&rproc->power);
1231		dev_err(dev, "can't stop rproc: %d\n", ret);
1232		goto out;
1233	}
1234
1235	/* clean up all acquired resources */
1236	rproc_resource_cleanup(rproc);
1237
1238	rproc_disable_iommu(rproc);
1239
1240	rproc->state = RPROC_OFFLINE;
1241
1242	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1243
1244out:
1245	mutex_unlock(&rproc->lock);
1246	if (!ret)
1247		module_put(dev->driver->owner);
1248}
1249EXPORT_SYMBOL(rproc_shutdown);
1250
1251/**
1252 * rproc_release() - completely deletes the existence of a remote processor
1253 * @kref: the rproc's kref
1254 *
1255 * This function should _never_ be called directly.
1256 *
1257 * The only reasonable location to use it is as an argument when kref_put'ing
1258 * @rproc's refcount.
1259 *
1260 * This way it will be called when no one holds a valid pointer to this @rproc
1261 * anymore (and obviously after it is removed from the rprocs klist).
1262 *
1263 * Note: this function is not static because rproc_vdev_release() needs it when
1264 * it decrements @rproc's refcount.
1265 */
1266void rproc_release(struct kref *kref)
1267{
1268	struct rproc *rproc = container_of(kref, struct rproc, refcount);
1269	struct rproc_vdev *rvdev, *rvtmp;
1270
1271	dev_info(rproc->dev, "removing %s\n", rproc->name);
1272
1273	rproc_delete_debug_dir(rproc);
1274
1275	/* clean up remote vdev entries */
1276	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
1277		__rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
1278		list_del(&rvdev->node);
1279	}
1280
1281	/*
1282	 * At this point no one holds a reference to rproc anymore,
1283	 * so we can directly unroll rproc_alloc()
1284	 */
1285	rproc_free(rproc);
1286}
1287
1288/* will be called when an rproc is added to the rprocs klist */
1289static void klist_rproc_get(struct klist_node *n)
1290{
1291	struct rproc *rproc = container_of(n, struct rproc, node);
1292
1293	kref_get(&rproc->refcount);
1294}
1295
1296/* will be called when an rproc is removed from the rprocs klist */
1297static void klist_rproc_put(struct klist_node *n)
1298{
1299	struct rproc *rproc = container_of(n, struct rproc, node);
1300
1301	kref_put(&rproc->refcount, rproc_release);
1302}
1303
1304static struct rproc *next_rproc(struct klist_iter *i)
1305{
1306	struct klist_node *n;
1307
1308	n = klist_next(i);
1309	if (!n)
1310		return NULL;
1311
1312	return container_of(n, struct rproc, node);
1313}
1314
1315/**
1316 * rproc_get_by_name() - find a remote processor by name and boot it
1317 * @name: name of the remote processor
1318 *
1319 * Finds an rproc handle using the remote processor's name, and then
1320 * boot it. If it's already powered on, then just immediately return
1321 * (successfully).
1322 *
1323 * Returns the rproc handle on success, and NULL on failure.
1324 *
1325 * This function increments the remote processor's refcount, so always
1326 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1327 *
1328 * Note: currently this function (and its counterpart rproc_put()) are not
1329 * being used. We need to scrutinize the use cases
1330 * that still need them, and see if we can migrate them to use the non
1331 * name-based boot/shutdown interface.
1332 */
1333struct rproc *rproc_get_by_name(const char *name)
1334{
1335	struct rproc *rproc;
1336	struct klist_iter i;
1337	int ret;
1338
1339	/* find the remote processor, and upref its refcount */
1340	klist_iter_init(&rprocs, &i);
1341	while ((rproc = next_rproc(&i)) != NULL)
1342		if (!strcmp(rproc->name, name)) {
1343			kref_get(&rproc->refcount);
1344			break;
1345		}
1346	klist_iter_exit(&i);
1347
1348	/* can't find this rproc ? */
1349	if (!rproc) {
1350		pr_err("can't find remote processor %s\n", name);
1351		return NULL;
1352	}
1353
1354	ret = rproc_boot(rproc);
1355	if (ret < 0) {
1356		kref_put(&rproc->refcount, rproc_release);
1357		return NULL;
1358	}
1359
1360	return rproc;
1361}
1362EXPORT_SYMBOL(rproc_get_by_name);
1363
1364/**
1365 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1366 * @rproc: the remote processor
1367 *
1368 * This function tries to shutdown @rproc, and it then decrements its
1369 * refcount.
1370 *
1371 * After this function returns, @rproc may _not_ be used anymore, and its
1372 * handle should be considered invalid.
1373 *
1374 * This function should be called _iff_ the @rproc handle was grabbed by
1375 * calling rproc_get_by_name().
1376 */
1377void rproc_put(struct rproc *rproc)
1378{
1379	/* try to power off the remote processor */
1380	rproc_shutdown(rproc);
1381
1382	/* downref rproc's refcount */
1383	kref_put(&rproc->refcount, rproc_release);
1384}
1385EXPORT_SYMBOL(rproc_put);
1386
1387/**
1388 * rproc_register() - register a remote processor
1389 * @rproc: the remote processor handle to register
1390 *
1391 * Registers @rproc with the remoteproc framework, after it has been
1392 * allocated with rproc_alloc().
1393 *
1394 * This is called by the platform-specific rproc implementation, whenever
1395 * a new remote processor device is probed.
1396 *
1397 * Returns 0 on success and an appropriate error code otherwise.
1398 *
1399 * Note: this function initiates an asynchronous firmware loading
1400 * context, which will look for virtio devices supported by the rproc's
1401 * firmware.
1402 *
1403 * If found, those virtio devices will be created and added, so as a result
1404 * of registering this remote processor, additional virtio drivers might be
1405 * probed.
1406 */
1407int rproc_register(struct rproc *rproc)
1408{
1409	struct device *dev = rproc->dev;
1410	int ret = 0;
1411
1412	/* expose to rproc_get_by_name users */
1413	klist_add_tail(&rproc->node, &rprocs);
1414
1415	dev_info(rproc->dev, "%s is available\n", rproc->name);
1416
1417	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1418	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1419
1420	/* create debugfs entries */
1421	rproc_create_debug_dir(rproc);
1422
1423	/* rproc_unregister() calls must wait until async loader completes */
1424	init_completion(&rproc->firmware_loading_complete);
1425
1426	/*
1427	 * We must retrieve early virtio configuration info from
1428	 * the firmware (e.g. whether to register a virtio device,
1429	 * what virtio features does it support, ...).
1430	 *
1431	 * We're initiating an asynchronous firmware loading, so we can
1432	 * be built-in kernel code, without hanging the boot process.
1433	 */
1434	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1435					rproc->firmware, dev, GFP_KERNEL,
1436					rproc, rproc_fw_config_virtio);
1437	if (ret < 0) {
1438		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1439		complete_all(&rproc->firmware_loading_complete);
1440		klist_remove(&rproc->node);
1441	}
1442
1443	return ret;
1444}
1445EXPORT_SYMBOL(rproc_register);
1446
1447/**
1448 * rproc_alloc() - allocate a remote processor handle
1449 * @dev: the underlying device
1450 * @name: name of this remote processor
1451 * @ops: platform-specific handlers (mainly start/stop)
1452 * @firmware: name of firmware file to load
1453 * @len: length of private data needed by the rproc driver (in bytes)
1454 *
1455 * Allocates a new remote processor handle, but does not register
1456 * it yet.
1457 *
1458 * This function should be used by rproc implementations during initialization
1459 * of the remote processor.
1460 *
1461 * After creating an rproc handle using this function, and when ready,
1462 * implementations should then call rproc_register() to complete
1463 * the registration of the remote processor.
1464 *
1465 * On success the new rproc is returned, and on failure, NULL.
1466 *
1467 * Note: _never_ directly deallocate @rproc, even if it was not registered
1468 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1469 */
1470struct rproc *rproc_alloc(struct device *dev, const char *name,
1471				const struct rproc_ops *ops,
1472				const char *firmware, int len)
1473{
1474	struct rproc *rproc;
1475
1476	if (!dev || !name || !ops)
1477		return NULL;
1478
1479	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1480	if (!rproc) {
1481		dev_err(dev, "%s: kzalloc failed\n", __func__);
1482		return NULL;
1483	}
1484
1485	rproc->dev = dev;
1486	rproc->name = name;
1487	rproc->ops = ops;
1488	rproc->firmware = firmware;
1489	rproc->priv = &rproc[1];
1490
1491	atomic_set(&rproc->power, 0);
1492
1493	kref_init(&rproc->refcount);
1494
1495	mutex_init(&rproc->lock);
1496
1497	idr_init(&rproc->notifyids);
1498
1499	INIT_LIST_HEAD(&rproc->carveouts);
1500	INIT_LIST_HEAD(&rproc->mappings);
1501	INIT_LIST_HEAD(&rproc->traces);
1502	INIT_LIST_HEAD(&rproc->rvdevs);
1503
1504	rproc->state = RPROC_OFFLINE;
1505
1506	return rproc;
1507}
1508EXPORT_SYMBOL(rproc_alloc);
1509
1510/**
1511 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1512 * @rproc: the remote processor handle
1513 *
1514 * This function should _only_ be used if @rproc was only allocated,
1515 * but not registered yet.
1516 *
1517 * If @rproc was already successfully registered (by calling rproc_register()),
1518 * then use rproc_unregister() instead.
1519 */
1520void rproc_free(struct rproc *rproc)
1521{
1522	idr_remove_all(&rproc->notifyids);
1523	idr_destroy(&rproc->notifyids);
1524
1525	kfree(rproc);
1526}
1527EXPORT_SYMBOL(rproc_free);
1528
1529/**
1530 * rproc_unregister() - unregister a remote processor
1531 * @rproc: rproc handle to unregister
1532 *
1533 * Unregisters a remote processor, and decrements its refcount.
1534 * If its refcount drops to zero, then @rproc will be freed. If not,
1535 * it will be freed later once the last reference is dropped.
1536 *
1537 * This function should be called when the platform specific rproc
1538 * implementation decides to remove the rproc device. it should
1539 * _only_ be called if a previous invocation of rproc_register()
1540 * has completed successfully.
1541 *
1542 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1543 * it shouldn't be used. More specifically, don't call rproc_free()
1544 * or try to directly free @rproc after rproc_unregister() returns;
1545 * none of these are needed, and calling them is a bug.
1546 *
1547 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1548 */
1549int rproc_unregister(struct rproc *rproc)
1550{
1551	struct rproc_vdev *rvdev;
1552
1553	if (!rproc)
1554		return -EINVAL;
1555
1556	/* if rproc is just being registered, wait */
1557	wait_for_completion(&rproc->firmware_loading_complete);
1558
1559	/* clean up remote vdev entries */
1560	list_for_each_entry(rvdev, &rproc->rvdevs, node)
1561		rproc_remove_virtio_dev(rvdev);
1562
1563	/* the rproc is downref'ed as soon as it's removed from the klist */
1564	klist_del(&rproc->node);
1565
1566	/* the rproc will only be released after its refcount drops to zero */
1567	kref_put(&rproc->refcount, rproc_release);
1568
1569	return 0;
1570}
1571EXPORT_SYMBOL(rproc_unregister);
1572
1573static int __init remoteproc_init(void)
1574{
1575	rproc_init_debugfs();
1576	return 0;
1577}
1578module_init(remoteproc_init);
1579
1580static void __exit remoteproc_exit(void)
1581{
1582	rproc_exit_debugfs();
1583}
1584module_exit(remoteproc_exit);
1585
1586MODULE_LICENSE("GPL v2");
1587MODULE_DESCRIPTION("Generic Remote Processor Framework");