Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
 
  26#include <linux/dma-mapping.h>
 
  27#include <linux/firmware.h>
  28#include <linux/string.h>
  29#include <linux/debugfs.h>
  30#include <linux/rculist.h>
  31#include <linux/remoteproc.h>
  32#include <linux/iommu.h>
  33#include <linux/idr.h>
  34#include <linux/elf.h>
  35#include <linux/crc32.h>
  36#include <linux/of_reserved_mem.h>
  37#include <linux/virtio_ids.h>
  38#include <linux/virtio_ring.h>
  39#include <asm/byteorder.h>
  40#include <linux/platform_device.h>
  41
  42#include "remoteproc_internal.h"
  43
  44#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  45
  46static DEFINE_MUTEX(rproc_list_mutex);
  47static LIST_HEAD(rproc_list);
  48static struct notifier_block rproc_panic_nb;
  49
  50typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  51				 void *, int offset, int avail);
  52
  53static int rproc_alloc_carveout(struct rproc *rproc,
  54				struct rproc_mem_entry *mem);
  55static int rproc_release_carveout(struct rproc *rproc,
  56				  struct rproc_mem_entry *mem);
  57
  58/* Unique indices for remoteproc devices */
  59static DEFINE_IDA(rproc_dev_index);
  60static struct workqueue_struct *rproc_recovery_wq;
  61
  62static const char * const rproc_crash_names[] = {
  63	[RPROC_MMUFAULT]	= "mmufault",
  64	[RPROC_WATCHDOG]	= "watchdog",
  65	[RPROC_FATAL_ERROR]	= "fatal error",
  66};
  67
  68/* translate rproc_crash_type to string */
  69static const char *rproc_crash_to_string(enum rproc_crash_type type)
  70{
  71	if (type < ARRAY_SIZE(rproc_crash_names))
  72		return rproc_crash_names[type];
  73	return "unknown";
  74}
  75
  76/*
  77 * This is the IOMMU fault handler we register with the IOMMU API
  78 * (when relevant; not all remote processors access memory through
  79 * an IOMMU).
  80 *
  81 * IOMMU core will invoke this handler whenever the remote processor
  82 * will try to access an unmapped device address.
  83 */
  84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  85			     unsigned long iova, int flags, void *token)
  86{
  87	struct rproc *rproc = token;
  88
  89	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  90
  91	rproc_report_crash(rproc, RPROC_MMUFAULT);
  92
  93	/*
  94	 * Let the iommu core know we're not really handling this fault;
  95	 * we just used it as a recovery trigger.
  96	 */
  97	return -ENOSYS;
  98}
  99
 100static int rproc_enable_iommu(struct rproc *rproc)
 101{
 102	struct iommu_domain *domain;
 103	struct device *dev = rproc->dev.parent;
 104	int ret;
 105
 106	if (!rproc->has_iommu) {
 107		dev_dbg(dev, "iommu not present\n");
 108		return 0;
 109	}
 110
 111	domain = iommu_domain_alloc(dev->bus);
 112	if (!domain) {
 113		dev_err(dev, "can't alloc iommu domain\n");
 114		return -ENOMEM;
 115	}
 116
 117	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 118
 119	ret = iommu_attach_device(domain, dev);
 120	if (ret) {
 121		dev_err(dev, "can't attach iommu device: %d\n", ret);
 122		goto free_domain;
 123	}
 124
 125	rproc->domain = domain;
 126
 127	return 0;
 128
 129free_domain:
 130	iommu_domain_free(domain);
 131	return ret;
 132}
 133
 134static void rproc_disable_iommu(struct rproc *rproc)
 135{
 136	struct iommu_domain *domain = rproc->domain;
 137	struct device *dev = rproc->dev.parent;
 138
 139	if (!domain)
 140		return;
 141
 142	iommu_detach_device(domain, dev);
 143	iommu_domain_free(domain);
 144}
 145
 146phys_addr_t rproc_va_to_pa(void *cpu_addr)
 147{
 148	/*
 149	 * Return physical address according to virtual address location
 150	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 151	 * - in kernel: if region allocated in generic dma memory pool
 152	 */
 153	if (is_vmalloc_addr(cpu_addr)) {
 154		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 155				    offset_in_page(cpu_addr);
 156	}
 157
 158	WARN_ON(!virt_addr_valid(cpu_addr));
 159	return virt_to_phys(cpu_addr);
 160}
 161EXPORT_SYMBOL(rproc_va_to_pa);
 162
 163/**
 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 165 * @rproc: handle of a remote processor
 166 * @da: remoteproc device address to translate
 167 * @len: length of the memory region @da is pointing to
 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 169 *
 170 * Some remote processors will ask us to allocate them physically contiguous
 171 * memory regions (which we call "carveouts"), and map them to specific
 172 * device addresses (which are hardcoded in the firmware). They may also have
 173 * dedicated memory regions internal to the processors, and use them either
 174 * exclusively or alongside carveouts.
 175 *
 176 * They may then ask us to copy objects into specific device addresses (e.g.
 177 * code/data sections) or expose us certain symbols in other device address
 178 * (e.g. their trace buffer).
 179 *
 180 * This function is a helper function with which we can go over the allocated
 181 * carveouts and translate specific device addresses to kernel virtual addresses
 182 * so we can access the referenced memory. This function also allows to perform
 183 * translations on the internal remoteproc memory regions through a platform
 184 * implementation specific da_to_va ops, if present.
 185 *
 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 187 * but only on kernel direct mapped RAM memory. Instead, we're just using
 188 * here the output of the DMA API for the carveouts, which should be more
 189 * correct.
 190 *
 191 * Return: a valid kernel address on success or NULL on failure
 192 */
 193void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 194{
 195	struct rproc_mem_entry *carveout;
 196	void *ptr = NULL;
 197
 198	if (rproc->ops->da_to_va) {
 199		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 200		if (ptr)
 201			goto out;
 202	}
 203
 204	list_for_each_entry(carveout, &rproc->carveouts, node) {
 205		int offset = da - carveout->da;
 206
 207		/*  Verify that carveout is allocated */
 208		if (!carveout->va)
 209			continue;
 210
 211		/* try next carveout if da is too small */
 212		if (offset < 0)
 213			continue;
 214
 215		/* try next carveout if da is too large */
 216		if (offset + len > carveout->len)
 217			continue;
 218
 219		ptr = carveout->va + offset;
 220
 221		if (is_iomem)
 222			*is_iomem = carveout->is_iomem;
 223
 224		break;
 225	}
 226
 227out:
 228	return ptr;
 229}
 230EXPORT_SYMBOL(rproc_da_to_va);
 231
 232/**
 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 234 * @rproc: handle of a remote processor
 235 * @name: carveout name to find (format string)
 236 * @...: optional parameters matching @name string
 237 *
 238 * Platform driver has the capability to register some pre-allacoted carveout
 239 * (physically contiguous memory regions) before rproc firmware loading and
 240 * associated resource table analysis. These regions may be dedicated memory
 241 * regions internal to the coprocessor or specified DDR region with specific
 242 * attributes
 243 *
 244 * This function is a helper function with which we can go over the
 245 * allocated carveouts and return associated region characteristics like
 246 * coprocessor address, length or processor virtual address.
 247 *
 248 * Return: a valid pointer on carveout entry on success or NULL on failure.
 249 */
 250__printf(2, 3)
 251struct rproc_mem_entry *
 252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 253{
 254	va_list args;
 255	char _name[32];
 256	struct rproc_mem_entry *carveout, *mem = NULL;
 257
 258	if (!name)
 259		return NULL;
 260
 261	va_start(args, name);
 262	vsnprintf(_name, sizeof(_name), name, args);
 263	va_end(args);
 264
 265	list_for_each_entry(carveout, &rproc->carveouts, node) {
 266		/* Compare carveout and requested names */
 267		if (!strcmp(carveout->name, _name)) {
 268			mem = carveout;
 269			break;
 270		}
 271	}
 272
 273	return mem;
 274}
 275
 276/**
 277 * rproc_check_carveout_da() - Check specified carveout da configuration
 278 * @rproc: handle of a remote processor
 279 * @mem: pointer on carveout to check
 280 * @da: area device address
 281 * @len: associated area size
 282 *
 283 * This function is a helper function to verify requested device area (couple
 284 * da, len) is part of specified carveout.
 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 286 * checked.
 287 *
 288 * Return: 0 if carveout matches request else error
 289 */
 290static int rproc_check_carveout_da(struct rproc *rproc,
 291				   struct rproc_mem_entry *mem, u32 da, u32 len)
 292{
 293	struct device *dev = &rproc->dev;
 294	int delta;
 295
 296	/* Check requested resource length */
 297	if (len > mem->len) {
 298		dev_err(dev, "Registered carveout doesn't fit len request\n");
 299		return -EINVAL;
 300	}
 301
 302	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 303		/* Address doesn't match registered carveout configuration */
 304		return -EINVAL;
 305	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 306		delta = da - mem->da;
 307
 308		/* Check requested resource belongs to registered carveout */
 309		if (delta < 0) {
 310			dev_err(dev,
 311				"Registered carveout doesn't fit da request\n");
 312			return -EINVAL;
 313		}
 314
 315		if (delta + len > mem->len) {
 316			dev_err(dev,
 317				"Registered carveout doesn't fit len request\n");
 318			return -EINVAL;
 319		}
 320	}
 321
 322	return 0;
 323}
 324
 325int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 326{
 327	struct rproc *rproc = rvdev->rproc;
 328	struct device *dev = &rproc->dev;
 329	struct rproc_vring *rvring = &rvdev->vring[i];
 330	struct fw_rsc_vdev *rsc;
 331	int ret, notifyid;
 332	struct rproc_mem_entry *mem;
 333	size_t size;
 334
 335	/* actual size of vring (in bytes) */
 336	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
 337
 338	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 339
 340	/* Search for pre-registered carveout */
 341	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 342					  i);
 343	if (mem) {
 344		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 345			return -ENOMEM;
 346	} else {
 347		/* Register carveout in list */
 348		mem = rproc_mem_entry_init(dev, NULL, 0,
 349					   size, rsc->vring[i].da,
 350					   rproc_alloc_carveout,
 351					   rproc_release_carveout,
 352					   "vdev%dvring%d",
 353					   rvdev->index, i);
 354		if (!mem) {
 355			dev_err(dev, "Can't allocate memory entry structure\n");
 356			return -ENOMEM;
 357		}
 358
 359		rproc_add_carveout(rproc, mem);
 360	}
 361
 362	/*
 363	 * Assign an rproc-wide unique index for this vring
 364	 * TODO: assign a notifyid for rvdev updates as well
 365	 * TODO: support predefined notifyids (via resource table)
 366	 */
 367	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 368	if (ret < 0) {
 369		dev_err(dev, "idr_alloc failed: %d\n", ret);
 370		return ret;
 371	}
 372	notifyid = ret;
 373
 374	/* Potentially bump max_notifyid */
 375	if (notifyid > rproc->max_notifyid)
 376		rproc->max_notifyid = notifyid;
 377
 378	rvring->notifyid = notifyid;
 379
 380	/* Let the rproc know the notifyid of this vring.*/
 381	rsc->vring[i].notifyid = notifyid;
 382	return 0;
 383}
 384
 385int
 386rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 387{
 388	struct rproc *rproc = rvdev->rproc;
 389	struct device *dev = &rproc->dev;
 390	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 391	struct rproc_vring *rvring = &rvdev->vring[i];
 392
 393	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 394		i, vring->da, vring->num, vring->align);
 395
 396	/* verify queue size and vring alignment are sane */
 397	if (!vring->num || !vring->align) {
 398		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 399			vring->num, vring->align);
 400		return -EINVAL;
 401	}
 402
 403	rvring->num = vring->num;
 404	rvring->align = vring->align;
 405	rvring->rvdev = rvdev;
 406
 407	return 0;
 408}
 409
 410void rproc_free_vring(struct rproc_vring *rvring)
 411{
 412	struct rproc *rproc = rvring->rvdev->rproc;
 413	int idx = rvring - rvring->rvdev->vring;
 414	struct fw_rsc_vdev *rsc;
 415
 416	idr_remove(&rproc->notifyids, rvring->notifyid);
 417
 418	/*
 419	 * At this point rproc_stop() has been called and the installed resource
 420	 * table in the remote processor memory may no longer be accessible. As
 421	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
 422	 * resource table (rproc->cached_table).  The cached resource table is
 423	 * only available when a remote processor has been booted by the
 424	 * remoteproc core, otherwise it is NULL.
 425	 *
 426	 * Based on the above, reset the virtio device section in the cached
 427	 * resource table only if there is one to work with.
 428	 */
 429	if (rproc->table_ptr) {
 430		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 431		rsc->vring[idx].da = 0;
 432		rsc->vring[idx].notifyid = -1;
 433	}
 434}
 435
 436void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
 437{
 438	if (rvdev && rproc)
 439		list_add_tail(&rvdev->node, &rproc->rvdevs);
 
 440}
 441
 442void rproc_remove_rvdev(struct rproc_vdev *rvdev)
 443{
 444	if (rvdev)
 445		list_del(&rvdev->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446}
 
 447/**
 448 * rproc_handle_vdev() - handle a vdev fw resource
 449 * @rproc: the remote processor
 450 * @ptr: the vring resource descriptor
 451 * @offset: offset of the resource entry
 452 * @avail: size of available data (for sanity checking the image)
 453 *
 454 * This resource entry requests the host to statically register a virtio
 455 * device (vdev), and setup everything needed to support it. It contains
 456 * everything needed to make it possible: the virtio device id, virtio
 457 * device features, vrings information, virtio config space, etc...
 458 *
 459 * Before registering the vdev, the vrings are allocated from non-cacheable
 460 * physically contiguous memory. Currently we only support two vrings per
 461 * remote processor (temporary limitation). We might also want to consider
 462 * doing the vring allocation only later when ->find_vqs() is invoked, and
 463 * then release them upon ->del_vqs().
 464 *
 465 * Note: @da is currently not really handled correctly: we dynamically
 466 * allocate it using the DMA API, ignoring requested hard coded addresses,
 467 * and we don't take care of any required IOMMU programming. This is all
 468 * going to be taken care of when the generic iommu-based DMA API will be
 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 470 * use RSC_DEVMEM resource entries to map their required @da to the physical
 471 * address of their base CMA region (ouch, hacky!).
 472 *
 473 * Return: 0 on success, or an appropriate error code otherwise
 474 */
 475static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 476			     int offset, int avail)
 477{
 478	struct fw_rsc_vdev *rsc = ptr;
 479	struct device *dev = &rproc->dev;
 480	struct rproc_vdev *rvdev;
 481	size_t rsc_size;
 482	struct rproc_vdev_data rvdev_data;
 483	struct platform_device *pdev;
 484
 485	/* make sure resource isn't truncated */
 486	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
 487	if (size_add(rsc_size, rsc->config_len) > avail) {
 488		dev_err(dev, "vdev rsc is truncated\n");
 489		return -EINVAL;
 490	}
 491
 492	/* make sure reserved bytes are zeroes */
 493	if (rsc->reserved[0] || rsc->reserved[1]) {
 494		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 495		return -EINVAL;
 496	}
 497
 498	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 499		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 500
 501	/* we currently support only two vrings per rvdev */
 502	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 503		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 504		return -EINVAL;
 505	}
 506
 507	rvdev_data.id = rsc->id;
 508	rvdev_data.index = rproc->nb_vdev++;
 509	rvdev_data.rsc_offset = offset;
 510	rvdev_data.rsc = rsc;
 511
 512	/*
 513	 * When there is more than one remote processor, rproc->nb_vdev number is
 514	 * same for each separate instances of "rproc". If rvdev_data.index is used
 515	 * as device id, then we get duplication in sysfs, so need to use
 516	 * PLATFORM_DEVID_AUTO to auto select device id.
 517	 */
 518	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
 519					     sizeof(rvdev_data));
 520	if (IS_ERR(pdev)) {
 521		dev_err(dev, "failed to create rproc-virtio device\n");
 522		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	}
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527
 528/**
 529 * rproc_handle_trace() - handle a shared trace buffer resource
 530 * @rproc: the remote processor
 531 * @ptr: the trace resource descriptor
 532 * @offset: offset of the resource entry
 533 * @avail: size of available data (for sanity checking the image)
 534 *
 535 * In case the remote processor dumps trace logs into memory,
 536 * export it via debugfs.
 537 *
 538 * Currently, the 'da' member of @rsc should contain the device address
 539 * where the remote processor is dumping the traces. Later we could also
 540 * support dynamically allocating this address using the generic
 541 * DMA API (but currently there isn't a use case for that).
 542 *
 543 * Return: 0 on success, or an appropriate error code otherwise
 544 */
 545static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 546			      int offset, int avail)
 547{
 548	struct fw_rsc_trace *rsc = ptr;
 549	struct rproc_debug_trace *trace;
 550	struct device *dev = &rproc->dev;
 551	char name[15];
 552
 553	if (sizeof(*rsc) > avail) {
 554		dev_err(dev, "trace rsc is truncated\n");
 555		return -EINVAL;
 556	}
 557
 558	/* make sure reserved bytes are zeroes */
 559	if (rsc->reserved) {
 560		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 561		return -EINVAL;
 562	}
 563
 564	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 565	if (!trace)
 566		return -ENOMEM;
 567
 568	/* set the trace buffer dma properties */
 569	trace->trace_mem.len = rsc->len;
 570	trace->trace_mem.da = rsc->da;
 571
 572	/* set pointer on rproc device */
 573	trace->rproc = rproc;
 574
 575	/* make sure snprintf always null terminates, even if truncating */
 576	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 577
 578	/* create the debugfs entry */
 579	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 
 
 
 
 580
 581	list_add_tail(&trace->node, &rproc->traces);
 582
 583	rproc->num_traces++;
 584
 585	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 586		name, rsc->da, rsc->len);
 587
 588	return 0;
 589}
 590
 591/**
 592 * rproc_handle_devmem() - handle devmem resource entry
 593 * @rproc: remote processor handle
 594 * @ptr: the devmem resource entry
 595 * @offset: offset of the resource entry
 596 * @avail: size of available data (for sanity checking the image)
 597 *
 598 * Remote processors commonly need to access certain on-chip peripherals.
 599 *
 600 * Some of these remote processors access memory via an iommu device,
 601 * and might require us to configure their iommu before they can access
 602 * the on-chip peripherals they need.
 603 *
 604 * This resource entry is a request to map such a peripheral device.
 605 *
 606 * These devmem entries will contain the physical address of the device in
 607 * the 'pa' member. If a specific device address is expected, then 'da' will
 608 * contain it (currently this is the only use case supported). 'len' will
 609 * contain the size of the physical region we need to map.
 610 *
 611 * Currently we just "trust" those devmem entries to contain valid physical
 612 * addresses, but this is going to change: we want the implementations to
 613 * tell us ranges of physical addresses the firmware is allowed to request,
 614 * and not allow firmwares to request access to physical addresses that
 615 * are outside those ranges.
 616 *
 617 * Return: 0 on success, or an appropriate error code otherwise
 618 */
 619static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 620			       int offset, int avail)
 621{
 622	struct fw_rsc_devmem *rsc = ptr;
 623	struct rproc_mem_entry *mapping;
 624	struct device *dev = &rproc->dev;
 625	int ret;
 626
 627	/* no point in handling this resource without a valid iommu domain */
 628	if (!rproc->domain)
 629		return -EINVAL;
 630
 631	if (sizeof(*rsc) > avail) {
 632		dev_err(dev, "devmem rsc is truncated\n");
 633		return -EINVAL;
 634	}
 635
 636	/* make sure reserved bytes are zeroes */
 637	if (rsc->reserved) {
 638		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 639		return -EINVAL;
 640	}
 641
 642	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 643	if (!mapping)
 644		return -ENOMEM;
 645
 646	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
 647			GFP_KERNEL);
 648	if (ret) {
 649		dev_err(dev, "failed to map devmem: %d\n", ret);
 650		goto out;
 651	}
 652
 653	/*
 654	 * We'll need this info later when we'll want to unmap everything
 655	 * (e.g. on shutdown).
 656	 *
 657	 * We can't trust the remote processor not to change the resource
 658	 * table, so we must maintain this info independently.
 659	 */
 660	mapping->da = rsc->da;
 661	mapping->len = rsc->len;
 662	list_add_tail(&mapping->node, &rproc->mappings);
 663
 664	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 665		rsc->pa, rsc->da, rsc->len);
 666
 667	return 0;
 668
 669out:
 670	kfree(mapping);
 671	return ret;
 672}
 673
 674/**
 675 * rproc_alloc_carveout() - allocated specified carveout
 676 * @rproc: rproc handle
 677 * @mem: the memory entry to allocate
 678 *
 679 * This function allocate specified memory entry @mem using
 680 * dma_alloc_coherent() as default allocator
 681 *
 682 * Return: 0 on success, or an appropriate error code otherwise
 683 */
 684static int rproc_alloc_carveout(struct rproc *rproc,
 685				struct rproc_mem_entry *mem)
 686{
 687	struct rproc_mem_entry *mapping = NULL;
 688	struct device *dev = &rproc->dev;
 689	dma_addr_t dma;
 690	void *va;
 691	int ret;
 692
 693	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 694	if (!va) {
 695		dev_err(dev->parent,
 696			"failed to allocate dma memory: len 0x%zx\n",
 697			mem->len);
 698		return -ENOMEM;
 699	}
 700
 701	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 702		va, &dma, mem->len);
 703
 704	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 705		/*
 706		 * Check requested da is equal to dma address
 707		 * and print a warn message in case of missalignment.
 708		 * Don't stop rproc_start sequence as coprocessor may
 709		 * build pa to da translation on its side.
 710		 */
 711		if (mem->da != (u32)dma)
 712			dev_warn(dev->parent,
 713				 "Allocated carveout doesn't fit device address request\n");
 714	}
 715
 716	/*
 717	 * Ok, this is non-standard.
 718	 *
 719	 * Sometimes we can't rely on the generic iommu-based DMA API
 720	 * to dynamically allocate the device address and then set the IOMMU
 721	 * tables accordingly, because some remote processors might
 722	 * _require_ us to use hard coded device addresses that their
 723	 * firmware was compiled with.
 724	 *
 725	 * In this case, we must use the IOMMU API directly and map
 726	 * the memory to the device address as expected by the remote
 727	 * processor.
 728	 *
 729	 * Obviously such remote processor devices should not be configured
 730	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 731	 * physical address in this case.
 732	 */
 733	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 734		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 735		if (!mapping) {
 736			ret = -ENOMEM;
 737			goto dma_free;
 738		}
 739
 740		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 741				mem->flags, GFP_KERNEL);
 742		if (ret) {
 743			dev_err(dev, "iommu_map failed: %d\n", ret);
 744			goto free_mapping;
 745		}
 746
 747		/*
 748		 * We'll need this info later when we'll want to unmap
 749		 * everything (e.g. on shutdown).
 750		 *
 751		 * We can't trust the remote processor not to change the
 752		 * resource table, so we must maintain this info independently.
 753		 */
 754		mapping->da = mem->da;
 755		mapping->len = mem->len;
 756		list_add_tail(&mapping->node, &rproc->mappings);
 757
 758		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 759			mem->da, &dma);
 760	}
 761
 762	if (mem->da == FW_RSC_ADDR_ANY) {
 763		/* Update device address as undefined by requester */
 764		if ((u64)dma & HIGH_BITS_MASK)
 765			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 766
 767		mem->da = (u32)dma;
 768	}
 769
 770	mem->dma = dma;
 771	mem->va = va;
 772
 773	return 0;
 774
 775free_mapping:
 776	kfree(mapping);
 777dma_free:
 778	dma_free_coherent(dev->parent, mem->len, va, dma);
 779	return ret;
 780}
 781
 782/**
 783 * rproc_release_carveout() - release acquired carveout
 784 * @rproc: rproc handle
 785 * @mem: the memory entry to release
 786 *
 787 * This function releases specified memory entry @mem allocated via
 788 * rproc_alloc_carveout() function by @rproc.
 789 *
 790 * Return: 0 on success, or an appropriate error code otherwise
 791 */
 792static int rproc_release_carveout(struct rproc *rproc,
 793				  struct rproc_mem_entry *mem)
 794{
 795	struct device *dev = &rproc->dev;
 796
 797	/* clean up carveout allocations */
 798	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 799	return 0;
 800}
 801
 802/**
 803 * rproc_handle_carveout() - handle phys contig memory allocation requests
 804 * @rproc: rproc handle
 805 * @ptr: the resource entry
 806 * @offset: offset of the resource entry
 807 * @avail: size of available data (for image validation)
 808 *
 809 * This function will handle firmware requests for allocation of physically
 810 * contiguous memory regions.
 811 *
 812 * These request entries should come first in the firmware's resource table,
 813 * as other firmware entries might request placing other data objects inside
 814 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 815 *
 816 * Allocating memory this way helps utilizing the reserved physical memory
 817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 819 * pressure is important; it may have a substantial impact on performance.
 820 *
 821 * Return: 0 on success, or an appropriate error code otherwise
 822 */
 823static int rproc_handle_carveout(struct rproc *rproc,
 824				 void *ptr, int offset, int avail)
 825{
 826	struct fw_rsc_carveout *rsc = ptr;
 827	struct rproc_mem_entry *carveout;
 828	struct device *dev = &rproc->dev;
 829
 830	if (sizeof(*rsc) > avail) {
 831		dev_err(dev, "carveout rsc is truncated\n");
 832		return -EINVAL;
 833	}
 834
 835	/* make sure reserved bytes are zeroes */
 836	if (rsc->reserved) {
 837		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 838		return -EINVAL;
 839	}
 840
 841	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 842		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 843
 844	/*
 845	 * Check carveout rsc already part of a registered carveout,
 846	 * Search by name, then check the da and length
 847	 */
 848	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 849
 850	if (carveout) {
 851		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 852			dev_err(dev,
 853				"Carveout already associated to resource table\n");
 854			return -ENOMEM;
 855		}
 856
 857		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 858			return -ENOMEM;
 859
 860		/* Update memory carveout with resource table info */
 861		carveout->rsc_offset = offset;
 862		carveout->flags = rsc->flags;
 863
 864		return 0;
 865	}
 866
 867	/* Register carveout in list */
 868	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 869					rproc_alloc_carveout,
 870					rproc_release_carveout, rsc->name);
 871	if (!carveout) {
 872		dev_err(dev, "Can't allocate memory entry structure\n");
 873		return -ENOMEM;
 874	}
 875
 876	carveout->flags = rsc->flags;
 877	carveout->rsc_offset = offset;
 878	rproc_add_carveout(rproc, carveout);
 879
 880	return 0;
 881}
 882
 883/**
 884 * rproc_add_carveout() - register an allocated carveout region
 885 * @rproc: rproc handle
 886 * @mem: memory entry to register
 887 *
 888 * This function registers specified memory entry in @rproc carveouts list.
 889 * Specified carveout should have been allocated before registering.
 890 */
 891void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 892{
 893	list_add_tail(&mem->node, &rproc->carveouts);
 894}
 895EXPORT_SYMBOL(rproc_add_carveout);
 896
 897/**
 898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 899 * @dev: pointer on device struct
 900 * @va: virtual address
 901 * @dma: dma address
 902 * @len: memory carveout length
 903 * @da: device address
 904 * @alloc: memory carveout allocation function
 905 * @release: memory carveout release function
 906 * @name: carveout name
 907 *
 908 * This function allocates a rproc_mem_entry struct and fill it with parameters
 909 * provided by client.
 910 *
 911 * Return: a valid pointer on success, or NULL on failure
 912 */
 913__printf(8, 9)
 914struct rproc_mem_entry *
 915rproc_mem_entry_init(struct device *dev,
 916		     void *va, dma_addr_t dma, size_t len, u32 da,
 917		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 918		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 919		     const char *name, ...)
 920{
 921	struct rproc_mem_entry *mem;
 922	va_list args;
 923
 924	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 925	if (!mem)
 926		return mem;
 927
 928	mem->va = va;
 929	mem->dma = dma;
 930	mem->da = da;
 931	mem->len = len;
 932	mem->alloc = alloc;
 933	mem->release = release;
 934	mem->rsc_offset = FW_RSC_ADDR_ANY;
 935	mem->of_resm_idx = -1;
 936
 937	va_start(args, name);
 938	vsnprintf(mem->name, sizeof(mem->name), name, args);
 939	va_end(args);
 940
 941	return mem;
 942}
 943EXPORT_SYMBOL(rproc_mem_entry_init);
 944
 945/**
 946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 947 * from a reserved memory phandle
 948 * @dev: pointer on device struct
 949 * @of_resm_idx: reserved memory phandle index in "memory-region"
 950 * @len: memory carveout length
 951 * @da: device address
 952 * @name: carveout name
 953 *
 954 * This function allocates a rproc_mem_entry struct and fill it with parameters
 955 * provided by client.
 956 *
 957 * Return: a valid pointer on success, or NULL on failure
 958 */
 959__printf(5, 6)
 960struct rproc_mem_entry *
 961rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
 962			     u32 da, const char *name, ...)
 963{
 964	struct rproc_mem_entry *mem;
 965	va_list args;
 966
 967	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 968	if (!mem)
 969		return mem;
 970
 971	mem->da = da;
 972	mem->len = len;
 973	mem->rsc_offset = FW_RSC_ADDR_ANY;
 974	mem->of_resm_idx = of_resm_idx;
 975
 976	va_start(args, name);
 977	vsnprintf(mem->name, sizeof(mem->name), name, args);
 978	va_end(args);
 979
 980	return mem;
 981}
 982EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
 983
 984/**
 985 * rproc_of_parse_firmware() - parse and return the firmware-name
 986 * @dev: pointer on device struct representing a rproc
 987 * @index: index to use for the firmware-name retrieval
 988 * @fw_name: pointer to a character string, in which the firmware
 989 *           name is returned on success and unmodified otherwise.
 990 *
 991 * This is an OF helper function that parses a device's DT node for
 992 * the "firmware-name" property and returns the firmware name pointer
 993 * in @fw_name on success.
 994 *
 995 * Return: 0 on success, or an appropriate failure.
 996 */
 997int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
 998{
 999	int ret;
1000
1001	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1002					    index, fw_name);
1003	return ret ? ret : 0;
1004}
1005EXPORT_SYMBOL(rproc_of_parse_firmware);
1006
1007/*
1008 * A lookup table for resource handlers. The indices are defined in
1009 * enum fw_resource_type.
1010 */
1011static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012	[RSC_CARVEOUT] = rproc_handle_carveout,
1013	[RSC_DEVMEM] = rproc_handle_devmem,
1014	[RSC_TRACE] = rproc_handle_trace,
1015	[RSC_VDEV] = rproc_handle_vdev,
1016};
1017
1018/* handle firmware resource entries before booting the remote processor */
1019static int rproc_handle_resources(struct rproc *rproc,
1020				  rproc_handle_resource_t handlers[RSC_LAST])
1021{
1022	struct device *dev = &rproc->dev;
1023	rproc_handle_resource_t handler;
1024	int ret = 0, i;
1025
1026	if (!rproc->table_ptr)
1027		return 0;
1028
1029	for (i = 0; i < rproc->table_ptr->num; i++) {
1030		int offset = rproc->table_ptr->offset[i];
1031		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032		int avail = rproc->table_sz - offset - sizeof(*hdr);
1033		void *rsc = (void *)hdr + sizeof(*hdr);
1034
1035		/* make sure table isn't truncated */
1036		if (avail < 0) {
1037			dev_err(dev, "rsc table is truncated\n");
1038			return -EINVAL;
1039		}
1040
1041		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1042
1043		if (hdr->type >= RSC_VENDOR_START &&
1044		    hdr->type <= RSC_VENDOR_END) {
1045			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1046					       offset + sizeof(*hdr), avail);
1047			if (ret == RSC_HANDLED)
1048				continue;
1049			else if (ret < 0)
1050				break;
1051
1052			dev_warn(dev, "unsupported vendor resource %d\n",
1053				 hdr->type);
1054			continue;
1055		}
1056
1057		if (hdr->type >= RSC_LAST) {
1058			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1059			continue;
1060		}
1061
1062		handler = handlers[hdr->type];
1063		if (!handler)
1064			continue;
1065
1066		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1067		if (ret)
1068			break;
1069	}
1070
1071	return ret;
1072}
1073
1074static int rproc_prepare_subdevices(struct rproc *rproc)
1075{
1076	struct rproc_subdev *subdev;
1077	int ret;
1078
1079	list_for_each_entry(subdev, &rproc->subdevs, node) {
1080		if (subdev->prepare) {
1081			ret = subdev->prepare(subdev);
1082			if (ret)
1083				goto unroll_preparation;
1084		}
1085	}
1086
1087	return 0;
1088
1089unroll_preparation:
1090	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091		if (subdev->unprepare)
1092			subdev->unprepare(subdev);
1093	}
1094
1095	return ret;
1096}
1097
1098static int rproc_start_subdevices(struct rproc *rproc)
1099{
1100	struct rproc_subdev *subdev;
1101	int ret;
1102
1103	list_for_each_entry(subdev, &rproc->subdevs, node) {
1104		if (subdev->start) {
1105			ret = subdev->start(subdev);
1106			if (ret)
1107				goto unroll_registration;
1108		}
1109	}
1110
1111	return 0;
1112
1113unroll_registration:
1114	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1115		if (subdev->stop)
1116			subdev->stop(subdev, true);
1117	}
1118
1119	return ret;
1120}
1121
1122static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1123{
1124	struct rproc_subdev *subdev;
1125
1126	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1127		if (subdev->stop)
1128			subdev->stop(subdev, crashed);
1129	}
1130}
1131
1132static void rproc_unprepare_subdevices(struct rproc *rproc)
1133{
1134	struct rproc_subdev *subdev;
1135
1136	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137		if (subdev->unprepare)
1138			subdev->unprepare(subdev);
1139	}
1140}
1141
1142/**
1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1144 * in the list
1145 * @rproc: the remote processor handle
1146 *
1147 * This function parses registered carveout list, performs allocation
1148 * if alloc() ops registered and updates resource table information
1149 * if rsc_offset set.
1150 *
1151 * Return: 0 on success
1152 */
1153static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1154{
1155	struct rproc_mem_entry *entry, *tmp;
1156	struct fw_rsc_carveout *rsc;
1157	struct device *dev = &rproc->dev;
1158	u64 pa;
1159	int ret;
1160
1161	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1162		if (entry->alloc) {
1163			ret = entry->alloc(rproc, entry);
1164			if (ret) {
1165				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1166					entry->name, ret);
1167				return -ENOMEM;
1168			}
1169		}
1170
1171		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172			/* update resource table */
1173			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1174
1175			/*
1176			 * Some remote processors might need to know the pa
1177			 * even though they are behind an IOMMU. E.g., OMAP4's
1178			 * remote M3 processor needs this so it can control
1179			 * on-chip hardware accelerators that are not behind
1180			 * the IOMMU, and therefor must know the pa.
1181			 *
1182			 * Generally we don't want to expose physical addresses
1183			 * if we don't have to (remote processors are generally
1184			 * _not_ trusted), so we might want to do this only for
1185			 * remote processor that _must_ have this (e.g. OMAP4's
1186			 * dual M3 subsystem).
1187			 *
1188			 * Non-IOMMU processors might also want to have this info.
1189			 * In this case, the device address and the physical address
1190			 * are the same.
1191			 */
1192
1193			/* Use va if defined else dma to generate pa */
1194			if (entry->va)
1195				pa = (u64)rproc_va_to_pa(entry->va);
1196			else
1197				pa = (u64)entry->dma;
1198
1199			if (((u64)pa) & HIGH_BITS_MASK)
1200				dev_warn(dev,
1201					 "Physical address cast in 32bit to fit resource table format\n");
1202
1203			rsc->pa = (u32)pa;
1204			rsc->da = entry->da;
1205			rsc->len = entry->len;
1206		}
1207	}
1208
1209	return 0;
1210}
1211
1212
1213/**
1214 * rproc_resource_cleanup() - clean up and free all acquired resources
1215 * @rproc: rproc handle
1216 *
1217 * This function will free all resources acquired for @rproc, and it
1218 * is called whenever @rproc either shuts down or fails to boot.
1219 */
1220void rproc_resource_cleanup(struct rproc *rproc)
1221{
1222	struct rproc_mem_entry *entry, *tmp;
1223	struct rproc_debug_trace *trace, *ttmp;
1224	struct rproc_vdev *rvdev, *rvtmp;
1225	struct device *dev = &rproc->dev;
1226
1227	/* clean up debugfs trace entries */
1228	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229		rproc_remove_trace_file(trace->tfile);
1230		rproc->num_traces--;
1231		list_del(&trace->node);
1232		kfree(trace);
1233	}
1234
1235	/* clean up iommu mapping entries */
1236	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1237		size_t unmapped;
1238
1239		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1240		if (unmapped != entry->len) {
1241			/* nothing much to do besides complaining */
1242			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1243				unmapped);
1244		}
1245
1246		list_del(&entry->node);
1247		kfree(entry);
1248	}
1249
1250	/* clean up carveout allocations */
1251	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252		if (entry->release)
1253			entry->release(rproc, entry);
1254		list_del(&entry->node);
1255		kfree(entry);
1256	}
1257
1258	/* clean up remote vdev entries */
1259	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260		platform_device_unregister(rvdev->pdev);
1261
1262	rproc_coredump_cleanup(rproc);
1263}
1264EXPORT_SYMBOL(rproc_resource_cleanup);
1265
1266static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1267{
1268	struct resource_table *loaded_table;
1269	struct device *dev = &rproc->dev;
1270	int ret;
1271
1272	/* load the ELF segments to memory */
1273	ret = rproc_load_segments(rproc, fw);
1274	if (ret) {
1275		dev_err(dev, "Failed to load program segments: %d\n", ret);
1276		return ret;
1277	}
1278
1279	/*
1280	 * The starting device has been given the rproc->cached_table as the
1281	 * resource table. The address of the vring along with the other
1282	 * allocated resources (carveouts etc) is stored in cached_table.
1283	 * In order to pass this information to the remote device we must copy
1284	 * this information to device memory. We also update the table_ptr so
1285	 * that any subsequent changes will be applied to the loaded version.
1286	 */
1287	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1288	if (loaded_table) {
1289		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290		rproc->table_ptr = loaded_table;
1291	}
1292
1293	ret = rproc_prepare_subdevices(rproc);
1294	if (ret) {
1295		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1296			rproc->name, ret);
1297		goto reset_table_ptr;
1298	}
1299
1300	/* power up the remote processor */
1301	ret = rproc->ops->start(rproc);
1302	if (ret) {
1303		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304		goto unprepare_subdevices;
1305	}
1306
1307	/* Start any subdevices for the remote processor */
1308	ret = rproc_start_subdevices(rproc);
1309	if (ret) {
1310		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1311			rproc->name, ret);
1312		goto stop_rproc;
1313	}
1314
1315	rproc->state = RPROC_RUNNING;
1316
1317	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1318
1319	return 0;
1320
1321stop_rproc:
1322	rproc->ops->stop(rproc);
1323unprepare_subdevices:
1324	rproc_unprepare_subdevices(rproc);
1325reset_table_ptr:
1326	rproc->table_ptr = rproc->cached_table;
1327
1328	return ret;
1329}
1330
1331static int __rproc_attach(struct rproc *rproc)
1332{
1333	struct device *dev = &rproc->dev;
1334	int ret;
1335
1336	ret = rproc_prepare_subdevices(rproc);
1337	if (ret) {
1338		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1339			rproc->name, ret);
1340		goto out;
1341	}
1342
1343	/* Attach to the remote processor */
1344	ret = rproc_attach_device(rproc);
1345	if (ret) {
1346		dev_err(dev, "can't attach to rproc %s: %d\n",
1347			rproc->name, ret);
1348		goto unprepare_subdevices;
1349	}
1350
1351	/* Start any subdevices for the remote processor */
1352	ret = rproc_start_subdevices(rproc);
1353	if (ret) {
1354		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355			rproc->name, ret);
1356		goto stop_rproc;
1357	}
1358
1359	rproc->state = RPROC_ATTACHED;
1360
1361	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1362
1363	return 0;
1364
1365stop_rproc:
1366	rproc->ops->stop(rproc);
1367unprepare_subdevices:
1368	rproc_unprepare_subdevices(rproc);
1369out:
1370	return ret;
1371}
1372
1373/*
1374 * take a firmware and boot a remote processor with it.
1375 */
1376static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377{
1378	struct device *dev = &rproc->dev;
1379	const char *name = rproc->firmware;
1380	int ret;
1381
1382	ret = rproc_fw_sanity_check(rproc, fw);
1383	if (ret)
1384		return ret;
1385
1386	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1387
1388	/*
1389	 * if enabling an IOMMU isn't relevant for this rproc, this is
1390	 * just a nop
1391	 */
1392	ret = rproc_enable_iommu(rproc);
1393	if (ret) {
1394		dev_err(dev, "can't enable iommu: %d\n", ret);
1395		return ret;
1396	}
1397
1398	/* Prepare rproc for firmware loading if needed */
1399	ret = rproc_prepare_device(rproc);
1400	if (ret) {
1401		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1402		goto disable_iommu;
1403	}
1404
1405	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1406
1407	/* Load resource table, core dump segment list etc from the firmware */
1408	ret = rproc_parse_fw(rproc, fw);
1409	if (ret)
1410		goto unprepare_rproc;
1411
1412	/* reset max_notifyid */
1413	rproc->max_notifyid = -1;
1414
1415	/* reset handled vdev */
1416	rproc->nb_vdev = 0;
1417
1418	/* handle fw resources which are required to boot rproc */
1419	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1420	if (ret) {
1421		dev_err(dev, "Failed to process resources: %d\n", ret);
1422		goto clean_up_resources;
1423	}
1424
1425	/* Allocate carveout resources associated to rproc */
1426	ret = rproc_alloc_registered_carveouts(rproc);
1427	if (ret) {
1428		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1429			ret);
1430		goto clean_up_resources;
1431	}
1432
1433	ret = rproc_start(rproc, fw);
1434	if (ret)
1435		goto clean_up_resources;
1436
1437	return 0;
1438
1439clean_up_resources:
1440	rproc_resource_cleanup(rproc);
1441	kfree(rproc->cached_table);
1442	rproc->cached_table = NULL;
1443	rproc->table_ptr = NULL;
1444unprepare_rproc:
1445	/* release HW resources if needed */
1446	rproc_unprepare_device(rproc);
1447disable_iommu:
1448	rproc_disable_iommu(rproc);
1449	return ret;
1450}
1451
1452static int rproc_set_rsc_table(struct rproc *rproc)
1453{
1454	struct resource_table *table_ptr;
1455	struct device *dev = &rproc->dev;
1456	size_t table_sz;
1457	int ret;
1458
1459	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1460	if (!table_ptr) {
1461		/* Not having a resource table is acceptable */
1462		return 0;
1463	}
1464
1465	if (IS_ERR(table_ptr)) {
1466		ret = PTR_ERR(table_ptr);
1467		dev_err(dev, "can't load resource table: %d\n", ret);
1468		return ret;
1469	}
1470
1471	/*
1472	 * If it is possible to detach the remote processor, keep an untouched
1473	 * copy of the resource table.  That way we can start fresh again when
1474	 * the remote processor is re-attached, that is:
1475	 *
1476	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1477	 *
1478	 * Free'd in rproc_reset_rsc_table_on_detach() and
1479	 * rproc_reset_rsc_table_on_stop().
1480	 */
1481	if (rproc->ops->detach) {
1482		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1483		if (!rproc->clean_table)
1484			return -ENOMEM;
1485	} else {
1486		rproc->clean_table = NULL;
1487	}
1488
1489	rproc->cached_table = NULL;
1490	rproc->table_ptr = table_ptr;
1491	rproc->table_sz = table_sz;
1492
1493	return 0;
1494}
1495
1496static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1497{
1498	struct resource_table *table_ptr;
1499
1500	/* A resource table was never retrieved, nothing to do here */
1501	if (!rproc->table_ptr)
1502		return 0;
1503
1504	/*
1505	 * If we made it to this point a clean_table _must_ have been
1506	 * allocated in rproc_set_rsc_table().  If one isn't present
1507	 * something went really wrong and we must complain.
1508	 */
1509	if (WARN_ON(!rproc->clean_table))
1510		return -EINVAL;
1511
1512	/* Remember where the external entity installed the resource table */
1513	table_ptr = rproc->table_ptr;
1514
1515	/*
1516	 * If we made it here the remote processor was started by another
1517	 * entity and a cache table doesn't exist.  As such make a copy of
1518	 * the resource table currently used by the remote processor and
1519	 * use that for the rest of the shutdown process.  The memory
1520	 * allocated here is free'd in rproc_detach().
1521	 */
1522	rproc->cached_table = kmemdup(rproc->table_ptr,
1523				      rproc->table_sz, GFP_KERNEL);
1524	if (!rproc->cached_table)
1525		return -ENOMEM;
1526
1527	/*
1528	 * Use a copy of the resource table for the remainder of the
1529	 * shutdown process.
1530	 */
1531	rproc->table_ptr = rproc->cached_table;
1532
1533	/*
1534	 * Reset the memory area where the firmware loaded the resource table
1535	 * to its original value.  That way when we re-attach the remote
1536	 * processor the resource table is clean and ready to be used again.
1537	 */
1538	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1539
1540	/*
1541	 * The clean resource table is no longer needed.  Allocated in
1542	 * rproc_set_rsc_table().
1543	 */
1544	kfree(rproc->clean_table);
1545
1546	return 0;
1547}
1548
1549static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1550{
1551	/* A resource table was never retrieved, nothing to do here */
1552	if (!rproc->table_ptr)
1553		return 0;
1554
1555	/*
1556	 * If a cache table exists the remote processor was started by
1557	 * the remoteproc core.  That cache table should be used for
1558	 * the rest of the shutdown process.
1559	 */
1560	if (rproc->cached_table)
1561		goto out;
1562
1563	/*
1564	 * If we made it here the remote processor was started by another
1565	 * entity and a cache table doesn't exist.  As such make a copy of
1566	 * the resource table currently used by the remote processor and
1567	 * use that for the rest of the shutdown process.  The memory
1568	 * allocated here is free'd in rproc_shutdown().
1569	 */
1570	rproc->cached_table = kmemdup(rproc->table_ptr,
1571				      rproc->table_sz, GFP_KERNEL);
1572	if (!rproc->cached_table)
1573		return -ENOMEM;
1574
1575	/*
1576	 * Since the remote processor is being switched off the clean table
1577	 * won't be needed.  Allocated in rproc_set_rsc_table().
1578	 */
1579	kfree(rproc->clean_table);
1580
1581out:
1582	/*
1583	 * Use a copy of the resource table for the remainder of the
1584	 * shutdown process.
1585	 */
1586	rproc->table_ptr = rproc->cached_table;
1587	return 0;
1588}
1589
1590/*
1591 * Attach to remote processor - similar to rproc_fw_boot() but without
1592 * the steps that deal with the firmware image.
1593 */
1594static int rproc_attach(struct rproc *rproc)
1595{
1596	struct device *dev = &rproc->dev;
1597	int ret;
1598
1599	/*
1600	 * if enabling an IOMMU isn't relevant for this rproc, this is
1601	 * just a nop
1602	 */
1603	ret = rproc_enable_iommu(rproc);
1604	if (ret) {
1605		dev_err(dev, "can't enable iommu: %d\n", ret);
1606		return ret;
1607	}
1608
1609	/* Do anything that is needed to boot the remote processor */
1610	ret = rproc_prepare_device(rproc);
1611	if (ret) {
1612		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1613		goto disable_iommu;
1614	}
1615
1616	ret = rproc_set_rsc_table(rproc);
1617	if (ret) {
1618		dev_err(dev, "can't load resource table: %d\n", ret);
1619		goto unprepare_device;
1620	}
1621
1622	/* reset max_notifyid */
1623	rproc->max_notifyid = -1;
1624
1625	/* reset handled vdev */
1626	rproc->nb_vdev = 0;
1627
1628	/*
1629	 * Handle firmware resources required to attach to a remote processor.
1630	 * Because we are attaching rather than booting the remote processor,
1631	 * we expect the platform driver to properly set rproc->table_ptr.
1632	 */
1633	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1634	if (ret) {
1635		dev_err(dev, "Failed to process resources: %d\n", ret);
1636		goto unprepare_device;
1637	}
1638
1639	/* Allocate carveout resources associated to rproc */
1640	ret = rproc_alloc_registered_carveouts(rproc);
1641	if (ret) {
1642		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1643			ret);
1644		goto clean_up_resources;
1645	}
1646
1647	ret = __rproc_attach(rproc);
1648	if (ret)
1649		goto clean_up_resources;
1650
1651	return 0;
1652
1653clean_up_resources:
1654	rproc_resource_cleanup(rproc);
1655unprepare_device:
1656	/* release HW resources if needed */
1657	rproc_unprepare_device(rproc);
1658disable_iommu:
1659	rproc_disable_iommu(rproc);
1660	return ret;
1661}
1662
1663/*
1664 * take a firmware and boot it up.
1665 *
1666 * Note: this function is called asynchronously upon registration of the
1667 * remote processor (so we must wait until it completes before we try
1668 * to unregister the device. one other option is just to use kref here,
1669 * that might be cleaner).
1670 */
1671static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1672{
1673	struct rproc *rproc = context;
1674
1675	rproc_boot(rproc);
1676
1677	release_firmware(fw);
1678}
1679
1680static int rproc_trigger_auto_boot(struct rproc *rproc)
1681{
1682	int ret;
1683
1684	/*
1685	 * Since the remote processor is in a detached state, it has already
1686	 * been booted by another entity.  As such there is no point in waiting
1687	 * for a firmware image to be loaded, we can simply initiate the process
1688	 * of attaching to it immediately.
1689	 */
1690	if (rproc->state == RPROC_DETACHED)
1691		return rproc_boot(rproc);
1692
1693	/*
1694	 * We're initiating an asynchronous firmware loading, so we can
1695	 * be built-in kernel code, without hanging the boot process.
1696	 */
1697	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1699				      rproc, rproc_auto_boot_callback);
1700	if (ret < 0)
1701		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1702
1703	return ret;
1704}
1705
1706static int rproc_stop(struct rproc *rproc, bool crashed)
1707{
1708	struct device *dev = &rproc->dev;
1709	int ret;
1710
1711	/* No need to continue if a stop() operation has not been provided */
1712	if (!rproc->ops->stop)
1713		return -EINVAL;
1714
1715	/* Stop any subdevices for the remote processor */
1716	rproc_stop_subdevices(rproc, crashed);
1717
1718	/* the installed resource table is no longer accessible */
1719	ret = rproc_reset_rsc_table_on_stop(rproc);
1720	if (ret) {
1721		dev_err(dev, "can't reset resource table: %d\n", ret);
1722		return ret;
1723	}
1724
1725
1726	/* power off the remote processor */
1727	ret = rproc->ops->stop(rproc);
1728	if (ret) {
1729		dev_err(dev, "can't stop rproc: %d\n", ret);
1730		return ret;
1731	}
1732
1733	rproc_unprepare_subdevices(rproc);
1734
1735	rproc->state = RPROC_OFFLINE;
1736
1737	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1738
1739	return 0;
1740}
1741
1742/*
1743 * __rproc_detach(): Does the opposite of __rproc_attach()
1744 */
1745static int __rproc_detach(struct rproc *rproc)
1746{
1747	struct device *dev = &rproc->dev;
1748	int ret;
1749
1750	/* No need to continue if a detach() operation has not been provided */
1751	if (!rproc->ops->detach)
1752		return -EINVAL;
1753
1754	/* Stop any subdevices for the remote processor */
1755	rproc_stop_subdevices(rproc, false);
1756
1757	/* the installed resource table is no longer accessible */
1758	ret = rproc_reset_rsc_table_on_detach(rproc);
1759	if (ret) {
1760		dev_err(dev, "can't reset resource table: %d\n", ret);
1761		return ret;
1762	}
1763
1764	/* Tell the remote processor the core isn't available anymore */
1765	ret = rproc->ops->detach(rproc);
1766	if (ret) {
1767		dev_err(dev, "can't detach from rproc: %d\n", ret);
1768		return ret;
1769	}
1770
1771	rproc_unprepare_subdevices(rproc);
1772
1773	rproc->state = RPROC_DETACHED;
1774
1775	dev_info(dev, "detached remote processor %s\n", rproc->name);
1776
1777	return 0;
1778}
1779
1780static int rproc_attach_recovery(struct rproc *rproc)
1781{
1782	int ret;
1783
1784	ret = __rproc_detach(rproc);
1785	if (ret)
1786		return ret;
1787
1788	return __rproc_attach(rproc);
1789}
1790
1791static int rproc_boot_recovery(struct rproc *rproc)
1792{
1793	const struct firmware *firmware_p;
1794	struct device *dev = &rproc->dev;
1795	int ret;
1796
1797	ret = rproc_stop(rproc, true);
1798	if (ret)
1799		return ret;
1800
1801	/* generate coredump */
1802	rproc->ops->coredump(rproc);
1803
1804	/* load firmware */
1805	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1806	if (ret < 0) {
1807		dev_err(dev, "request_firmware failed: %d\n", ret);
1808		return ret;
1809	}
1810
1811	/* boot the remote processor up again */
1812	ret = rproc_start(rproc, firmware_p);
1813
1814	release_firmware(firmware_p);
1815
1816	return ret;
1817}
1818
1819/**
1820 * rproc_trigger_recovery() - recover a remoteproc
1821 * @rproc: the remote processor
1822 *
1823 * The recovery is done by resetting all the virtio devices, that way all the
1824 * rpmsg drivers will be reseted along with the remote processor making the
1825 * remoteproc functional again.
1826 *
1827 * This function can sleep, so it cannot be called from atomic context.
1828 *
1829 * Return: 0 on success or a negative value upon failure
1830 */
1831int rproc_trigger_recovery(struct rproc *rproc)
1832{
 
1833	struct device *dev = &rproc->dev;
1834	int ret;
1835
1836	ret = mutex_lock_interruptible(&rproc->lock);
1837	if (ret)
1838		return ret;
1839
1840	/* State could have changed before we got the mutex */
1841	if (rproc->state != RPROC_CRASHED)
1842		goto unlock_mutex;
1843
1844	dev_err(dev, "recovering %s\n", rproc->name);
1845
1846	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1847		ret = rproc_attach_recovery(rproc);
1848	else
1849		ret = rproc_boot_recovery(rproc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851unlock_mutex:
1852	mutex_unlock(&rproc->lock);
1853	return ret;
1854}
1855
1856/**
1857 * rproc_crash_handler_work() - handle a crash
1858 * @work: work treating the crash
1859 *
1860 * This function needs to handle everything related to a crash, like cpu
1861 * registers and stack dump, information to help to debug the fatal error, etc.
1862 */
1863static void rproc_crash_handler_work(struct work_struct *work)
1864{
1865	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866	struct device *dev = &rproc->dev;
1867
1868	dev_dbg(dev, "enter %s\n", __func__);
1869
1870	mutex_lock(&rproc->lock);
1871
1872	if (rproc->state == RPROC_CRASHED) {
1873		/* handle only the first crash detected */
1874		mutex_unlock(&rproc->lock);
1875		return;
1876	}
1877
1878	if (rproc->state == RPROC_OFFLINE) {
1879		/* Don't recover if the remote processor was stopped */
1880		mutex_unlock(&rproc->lock);
1881		goto out;
1882	}
1883
1884	rproc->state = RPROC_CRASHED;
1885	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1886		rproc->name);
1887
1888	mutex_unlock(&rproc->lock);
1889
1890	if (!rproc->recovery_disabled)
1891		rproc_trigger_recovery(rproc);
1892
1893out:
1894	pm_relax(rproc->dev.parent);
1895}
1896
1897/**
1898 * rproc_boot() - boot a remote processor
1899 * @rproc: handle of a remote processor
1900 *
1901 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1902 *
1903 * If the remote processor is already powered on, this function immediately
1904 * returns (successfully).
1905 *
1906 * Return: 0 on success, and an appropriate error value otherwise
1907 */
1908int rproc_boot(struct rproc *rproc)
1909{
1910	const struct firmware *firmware_p;
1911	struct device *dev;
1912	int ret;
1913
1914	if (!rproc) {
1915		pr_err("invalid rproc handle\n");
1916		return -EINVAL;
1917	}
1918
1919	dev = &rproc->dev;
1920
1921	ret = mutex_lock_interruptible(&rproc->lock);
1922	if (ret) {
1923		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1924		return ret;
1925	}
1926
1927	if (rproc->state == RPROC_DELETED) {
1928		ret = -ENODEV;
1929		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1930		goto unlock_mutex;
1931	}
1932
1933	/* skip the boot or attach process if rproc is already powered up */
1934	if (atomic_inc_return(&rproc->power) > 1) {
1935		ret = 0;
1936		goto unlock_mutex;
1937	}
1938
1939	if (rproc->state == RPROC_DETACHED) {
1940		dev_info(dev, "attaching to %s\n", rproc->name);
1941
1942		ret = rproc_attach(rproc);
1943	} else {
1944		dev_info(dev, "powering up %s\n", rproc->name);
1945
1946		/* load firmware */
1947		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1948		if (ret < 0) {
1949			dev_err(dev, "request_firmware failed: %d\n", ret);
1950			goto downref_rproc;
1951		}
1952
1953		ret = rproc_fw_boot(rproc, firmware_p);
1954
1955		release_firmware(firmware_p);
1956	}
1957
1958downref_rproc:
1959	if (ret)
1960		atomic_dec(&rproc->power);
1961unlock_mutex:
1962	mutex_unlock(&rproc->lock);
1963	return ret;
1964}
1965EXPORT_SYMBOL(rproc_boot);
1966
1967/**
1968 * rproc_shutdown() - power off the remote processor
1969 * @rproc: the remote processor
1970 *
1971 * Power off a remote processor (previously booted with rproc_boot()).
1972 *
1973 * In case @rproc is still being used by an additional user(s), then
1974 * this function will just decrement the power refcount and exit,
1975 * without really powering off the device.
1976 *
1977 * Every call to rproc_boot() must (eventually) be accompanied by a call
1978 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1979 *
1980 * Notes:
1981 * - we're not decrementing the rproc's refcount, only the power refcount.
1982 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1983 *   returns, and users can still use it with a subsequent rproc_boot(), if
1984 *   needed.
1985 *
1986 * Return: 0 on success, and an appropriate error value otherwise
1987 */
1988int rproc_shutdown(struct rproc *rproc)
1989{
1990	struct device *dev = &rproc->dev;
1991	int ret = 0;
1992
1993	ret = mutex_lock_interruptible(&rproc->lock);
1994	if (ret) {
1995		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1996		return ret;
1997	}
1998
1999	if (rproc->state != RPROC_RUNNING &&
2000	    rproc->state != RPROC_ATTACHED) {
2001		ret = -EINVAL;
2002		goto out;
2003	}
2004
2005	/* if the remote proc is still needed, bail out */
2006	if (!atomic_dec_and_test(&rproc->power))
2007		goto out;
2008
2009	ret = rproc_stop(rproc, false);
2010	if (ret) {
2011		atomic_inc(&rproc->power);
2012		goto out;
2013	}
2014
2015	/* clean up all acquired resources */
2016	rproc_resource_cleanup(rproc);
2017
2018	/* release HW resources if needed */
2019	rproc_unprepare_device(rproc);
2020
2021	rproc_disable_iommu(rproc);
2022
2023	/* Free the copy of the resource table */
2024	kfree(rproc->cached_table);
2025	rproc->cached_table = NULL;
2026	rproc->table_ptr = NULL;
2027out:
2028	mutex_unlock(&rproc->lock);
2029	return ret;
2030}
2031EXPORT_SYMBOL(rproc_shutdown);
2032
2033/**
2034 * rproc_detach() - Detach the remote processor from the
2035 * remoteproc core
2036 *
2037 * @rproc: the remote processor
2038 *
2039 * Detach a remote processor (previously attached to with rproc_attach()).
2040 *
2041 * In case @rproc is still being used by an additional user(s), then
2042 * this function will just decrement the power refcount and exit,
2043 * without disconnecting the device.
2044 *
2045 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2046 * processor know that services provided by the application processor are
2047 * no longer available.  From there it should be possible to remove the
2048 * platform driver and even power cycle the application processor (if the HW
2049 * supports it) without needing to switch off the remote processor.
2050 *
2051 * Return: 0 on success, and an appropriate error value otherwise
2052 */
2053int rproc_detach(struct rproc *rproc)
2054{
2055	struct device *dev = &rproc->dev;
2056	int ret;
2057
2058	ret = mutex_lock_interruptible(&rproc->lock);
2059	if (ret) {
2060		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2061		return ret;
2062	}
2063
2064	if (rproc->state != RPROC_ATTACHED) {
2065		ret = -EINVAL;
2066		goto out;
2067	}
2068
2069	/* if the remote proc is still needed, bail out */
2070	if (!atomic_dec_and_test(&rproc->power)) {
2071		ret = 0;
2072		goto out;
2073	}
2074
2075	ret = __rproc_detach(rproc);
2076	if (ret) {
2077		atomic_inc(&rproc->power);
2078		goto out;
2079	}
2080
2081	/* clean up all acquired resources */
2082	rproc_resource_cleanup(rproc);
2083
2084	/* release HW resources if needed */
2085	rproc_unprepare_device(rproc);
2086
2087	rproc_disable_iommu(rproc);
2088
2089	/* Free the copy of the resource table */
2090	kfree(rproc->cached_table);
2091	rproc->cached_table = NULL;
2092	rproc->table_ptr = NULL;
2093out:
2094	mutex_unlock(&rproc->lock);
2095	return ret;
2096}
2097EXPORT_SYMBOL(rproc_detach);
2098
2099/**
2100 * rproc_get_by_phandle() - find a remote processor by phandle
2101 * @phandle: phandle to the rproc
2102 *
2103 * Finds an rproc handle using the remote processor's phandle, and then
2104 * return a handle to the rproc.
2105 *
2106 * This function increments the remote processor's refcount, so always
2107 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2108 *
2109 * Return: rproc handle on success, and NULL on failure
2110 */
2111#ifdef CONFIG_OF
2112struct rproc *rproc_get_by_phandle(phandle phandle)
2113{
2114	struct rproc *rproc = NULL, *r;
2115	struct device_node *np;
2116
2117	np = of_find_node_by_phandle(phandle);
2118	if (!np)
2119		return NULL;
2120
2121	rcu_read_lock();
2122	list_for_each_entry_rcu(r, &rproc_list, node) {
2123		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2124			/* prevent underlying implementation from being removed */
2125			if (!try_module_get(r->dev.parent->driver->owner)) {
2126				dev_err(&r->dev, "can't get owner\n");
2127				break;
2128			}
2129
2130			rproc = r;
2131			get_device(&rproc->dev);
2132			break;
2133		}
2134	}
2135	rcu_read_unlock();
2136
2137	of_node_put(np);
2138
2139	return rproc;
2140}
2141#else
2142struct rproc *rproc_get_by_phandle(phandle phandle)
2143{
2144	return NULL;
2145}
2146#endif
2147EXPORT_SYMBOL(rproc_get_by_phandle);
2148
2149/**
2150 * rproc_set_firmware() - assign a new firmware
2151 * @rproc: rproc handle to which the new firmware is being assigned
2152 * @fw_name: new firmware name to be assigned
2153 *
2154 * This function allows remoteproc drivers or clients to configure a custom
2155 * firmware name that is different from the default name used during remoteproc
2156 * registration. The function does not trigger a remote processor boot,
2157 * only sets the firmware name used for a subsequent boot. This function
2158 * should also be called only when the remote processor is offline.
2159 *
2160 * This allows either the userspace to configure a different name through
2161 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2162 * a specific firmware when it is controlling the boot and shutdown of the
2163 * remote processor.
2164 *
2165 * Return: 0 on success or a negative value upon failure
2166 */
2167int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2168{
2169	struct device *dev;
2170	int ret, len;
2171	char *p;
2172
2173	if (!rproc || !fw_name)
2174		return -EINVAL;
2175
2176	dev = rproc->dev.parent;
2177
2178	ret = mutex_lock_interruptible(&rproc->lock);
2179	if (ret) {
2180		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2181		return -EINVAL;
2182	}
2183
2184	if (rproc->state != RPROC_OFFLINE) {
2185		dev_err(dev, "can't change firmware while running\n");
2186		ret = -EBUSY;
2187		goto out;
2188	}
2189
2190	len = strcspn(fw_name, "\n");
2191	if (!len) {
2192		dev_err(dev, "can't provide empty string for firmware name\n");
2193		ret = -EINVAL;
2194		goto out;
2195	}
2196
2197	p = kstrndup(fw_name, len, GFP_KERNEL);
2198	if (!p) {
2199		ret = -ENOMEM;
2200		goto out;
2201	}
2202
2203	kfree_const(rproc->firmware);
2204	rproc->firmware = p;
2205
2206out:
2207	mutex_unlock(&rproc->lock);
2208	return ret;
2209}
2210EXPORT_SYMBOL(rproc_set_firmware);
2211
2212static int rproc_validate(struct rproc *rproc)
2213{
2214	switch (rproc->state) {
2215	case RPROC_OFFLINE:
2216		/*
2217		 * An offline processor without a start()
2218		 * function makes no sense.
2219		 */
2220		if (!rproc->ops->start)
2221			return -EINVAL;
2222		break;
2223	case RPROC_DETACHED:
2224		/*
2225		 * A remote processor in a detached state without an
2226		 * attach() function makes not sense.
2227		 */
2228		if (!rproc->ops->attach)
2229			return -EINVAL;
2230		/*
2231		 * When attaching to a remote processor the device memory
2232		 * is already available and as such there is no need to have a
2233		 * cached table.
2234		 */
2235		if (rproc->cached_table)
2236			return -EINVAL;
2237		break;
2238	default:
2239		/*
2240		 * When adding a remote processor, the state of the device
2241		 * can be offline or detached, nothing else.
2242		 */
2243		return -EINVAL;
2244	}
2245
2246	return 0;
2247}
2248
2249/**
2250 * rproc_add() - register a remote processor
2251 * @rproc: the remote processor handle to register
2252 *
2253 * Registers @rproc with the remoteproc framework, after it has been
2254 * allocated with rproc_alloc().
2255 *
2256 * This is called by the platform-specific rproc implementation, whenever
2257 * a new remote processor device is probed.
2258 *
2259 * Note: this function initiates an asynchronous firmware loading
2260 * context, which will look for virtio devices supported by the rproc's
2261 * firmware.
2262 *
2263 * If found, those virtio devices will be created and added, so as a result
2264 * of registering this remote processor, additional virtio drivers might be
2265 * probed.
2266 *
2267 * Return: 0 on success and an appropriate error code otherwise
2268 */
2269int rproc_add(struct rproc *rproc)
2270{
2271	struct device *dev = &rproc->dev;
2272	int ret;
2273
2274	ret = rproc_validate(rproc);
2275	if (ret < 0)
2276		return ret;
2277
2278	/* add char device for this remoteproc */
2279	ret = rproc_char_device_add(rproc);
2280	if (ret < 0)
2281		return ret;
2282
2283	ret = device_add(dev);
2284	if (ret < 0) {
2285		put_device(dev);
2286		goto rproc_remove_cdev;
2287	}
2288
2289	dev_info(dev, "%s is available\n", rproc->name);
2290
2291	/* create debugfs entries */
2292	rproc_create_debug_dir(rproc);
2293
2294	/* if rproc is marked always-on, request it to boot */
2295	if (rproc->auto_boot) {
2296		ret = rproc_trigger_auto_boot(rproc);
2297		if (ret < 0)
2298			goto rproc_remove_dev;
2299	}
2300
2301	/* expose to rproc_get_by_phandle users */
2302	mutex_lock(&rproc_list_mutex);
2303	list_add_rcu(&rproc->node, &rproc_list);
2304	mutex_unlock(&rproc_list_mutex);
2305
2306	return 0;
2307
2308rproc_remove_dev:
2309	rproc_delete_debug_dir(rproc);
2310	device_del(dev);
2311rproc_remove_cdev:
2312	rproc_char_device_remove(rproc);
2313	return ret;
2314}
2315EXPORT_SYMBOL(rproc_add);
2316
2317static void devm_rproc_remove(void *rproc)
2318{
2319	rproc_del(rproc);
2320}
2321
2322/**
2323 * devm_rproc_add() - resource managed rproc_add()
2324 * @dev: the underlying device
2325 * @rproc: the remote processor handle to register
2326 *
2327 * This function performs like rproc_add() but the registered rproc device will
2328 * automatically be removed on driver detach.
2329 *
2330 * Return: 0 on success, negative errno on failure
2331 */
2332int devm_rproc_add(struct device *dev, struct rproc *rproc)
2333{
2334	int err;
2335
2336	err = rproc_add(rproc);
2337	if (err)
2338		return err;
2339
2340	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2341}
2342EXPORT_SYMBOL(devm_rproc_add);
2343
2344/**
2345 * rproc_type_release() - release a remote processor instance
2346 * @dev: the rproc's device
2347 *
2348 * This function should _never_ be called directly.
2349 *
2350 * It will be called by the driver core when no one holds a valid pointer
2351 * to @dev anymore.
2352 */
2353static void rproc_type_release(struct device *dev)
2354{
2355	struct rproc *rproc = container_of(dev, struct rproc, dev);
2356
2357	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2358
2359	idr_destroy(&rproc->notifyids);
2360
2361	if (rproc->index >= 0)
2362		ida_free(&rproc_dev_index, rproc->index);
2363
2364	kfree_const(rproc->firmware);
2365	kfree_const(rproc->name);
2366	kfree(rproc->ops);
2367	kfree(rproc);
2368}
2369
2370static const struct device_type rproc_type = {
2371	.name		= "remoteproc",
2372	.release	= rproc_type_release,
2373};
2374
2375static int rproc_alloc_firmware(struct rproc *rproc,
2376				const char *name, const char *firmware)
2377{
2378	const char *p;
2379
2380	/*
2381	 * Allocate a firmware name if the caller gave us one to work
2382	 * with.  Otherwise construct a new one using a default pattern.
2383	 */
2384	if (firmware)
2385		p = kstrdup_const(firmware, GFP_KERNEL);
2386	else
2387		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2388
2389	if (!p)
2390		return -ENOMEM;
2391
2392	rproc->firmware = p;
2393
2394	return 0;
2395}
2396
2397static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2398{
2399	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2400	if (!rproc->ops)
2401		return -ENOMEM;
2402
2403	/* Default to rproc_coredump if no coredump function is specified */
2404	if (!rproc->ops->coredump)
2405		rproc->ops->coredump = rproc_coredump;
2406
2407	if (rproc->ops->load)
2408		return 0;
2409
2410	/* Default to ELF loader if no load function is specified */
2411	rproc->ops->load = rproc_elf_load_segments;
2412	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2413	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2414	rproc->ops->sanity_check = rproc_elf_sanity_check;
2415	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2416
2417	return 0;
2418}
2419
2420/**
2421 * rproc_alloc() - allocate a remote processor handle
2422 * @dev: the underlying device
2423 * @name: name of this remote processor
2424 * @ops: platform-specific handlers (mainly start/stop)
2425 * @firmware: name of firmware file to load, can be NULL
2426 * @len: length of private data needed by the rproc driver (in bytes)
2427 *
2428 * Allocates a new remote processor handle, but does not register
2429 * it yet. if @firmware is NULL, a default name is used.
2430 *
2431 * This function should be used by rproc implementations during initialization
2432 * of the remote processor.
2433 *
2434 * After creating an rproc handle using this function, and when ready,
2435 * implementations should then call rproc_add() to complete
2436 * the registration of the remote processor.
2437 *
2438 * Note: _never_ directly deallocate @rproc, even if it was not registered
2439 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2440 *
2441 * Return: new rproc pointer on success, and NULL on failure
2442 */
2443struct rproc *rproc_alloc(struct device *dev, const char *name,
2444			  const struct rproc_ops *ops,
2445			  const char *firmware, int len)
2446{
2447	struct rproc *rproc;
2448
2449	if (!dev || !name || !ops)
2450		return NULL;
2451
2452	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2453	if (!rproc)
2454		return NULL;
2455
2456	rproc->priv = &rproc[1];
2457	rproc->auto_boot = true;
2458	rproc->elf_class = ELFCLASSNONE;
2459	rproc->elf_machine = EM_NONE;
2460
2461	device_initialize(&rproc->dev);
2462	rproc->dev.parent = dev;
2463	rproc->dev.type = &rproc_type;
2464	rproc->dev.class = &rproc_class;
2465	rproc->dev.driver_data = rproc;
2466	idr_init(&rproc->notifyids);
2467
2468	rproc->name = kstrdup_const(name, GFP_KERNEL);
2469	if (!rproc->name)
2470		goto put_device;
2471
2472	if (rproc_alloc_firmware(rproc, name, firmware))
2473		goto put_device;
2474
2475	if (rproc_alloc_ops(rproc, ops))
2476		goto put_device;
2477
2478	/* Assign a unique device index and name */
2479	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2480	if (rproc->index < 0) {
2481		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2482		goto put_device;
2483	}
2484
2485	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2486
2487	atomic_set(&rproc->power, 0);
2488
2489	mutex_init(&rproc->lock);
2490
2491	INIT_LIST_HEAD(&rproc->carveouts);
2492	INIT_LIST_HEAD(&rproc->mappings);
2493	INIT_LIST_HEAD(&rproc->traces);
2494	INIT_LIST_HEAD(&rproc->rvdevs);
2495	INIT_LIST_HEAD(&rproc->subdevs);
2496	INIT_LIST_HEAD(&rproc->dump_segments);
2497
2498	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2499
2500	rproc->state = RPROC_OFFLINE;
2501
2502	return rproc;
2503
2504put_device:
2505	put_device(&rproc->dev);
2506	return NULL;
2507}
2508EXPORT_SYMBOL(rproc_alloc);
2509
2510/**
2511 * rproc_free() - unroll rproc_alloc()
2512 * @rproc: the remote processor handle
2513 *
2514 * This function decrements the rproc dev refcount.
2515 *
2516 * If no one holds any reference to rproc anymore, then its refcount would
2517 * now drop to zero, and it would be freed.
2518 */
2519void rproc_free(struct rproc *rproc)
2520{
2521	put_device(&rproc->dev);
2522}
2523EXPORT_SYMBOL(rproc_free);
2524
2525/**
2526 * rproc_put() - release rproc reference
2527 * @rproc: the remote processor handle
2528 *
2529 * This function decrements the rproc dev refcount.
2530 *
2531 * If no one holds any reference to rproc anymore, then its refcount would
2532 * now drop to zero, and it would be freed.
2533 */
2534void rproc_put(struct rproc *rproc)
2535{
2536	module_put(rproc->dev.parent->driver->owner);
2537	put_device(&rproc->dev);
2538}
2539EXPORT_SYMBOL(rproc_put);
2540
2541/**
2542 * rproc_del() - unregister a remote processor
2543 * @rproc: rproc handle to unregister
2544 *
2545 * This function should be called when the platform specific rproc
2546 * implementation decides to remove the rproc device. it should
2547 * _only_ be called if a previous invocation of rproc_add()
2548 * has completed successfully.
2549 *
2550 * After rproc_del() returns, @rproc isn't freed yet, because
2551 * of the outstanding reference created by rproc_alloc. To decrement that
2552 * one last refcount, one still needs to call rproc_free().
2553 *
2554 * Return: 0 on success and -EINVAL if @rproc isn't valid
2555 */
2556int rproc_del(struct rproc *rproc)
2557{
2558	if (!rproc)
2559		return -EINVAL;
2560
2561	/* TODO: make sure this works with rproc->power > 1 */
2562	rproc_shutdown(rproc);
2563
2564	mutex_lock(&rproc->lock);
2565	rproc->state = RPROC_DELETED;
2566	mutex_unlock(&rproc->lock);
2567
2568	rproc_delete_debug_dir(rproc);
2569
2570	/* the rproc is downref'ed as soon as it's removed from the klist */
2571	mutex_lock(&rproc_list_mutex);
2572	list_del_rcu(&rproc->node);
2573	mutex_unlock(&rproc_list_mutex);
2574
2575	/* Ensure that no readers of rproc_list are still active */
2576	synchronize_rcu();
2577
2578	device_del(&rproc->dev);
2579	rproc_char_device_remove(rproc);
2580
2581	return 0;
2582}
2583EXPORT_SYMBOL(rproc_del);
2584
2585static void devm_rproc_free(struct device *dev, void *res)
2586{
2587	rproc_free(*(struct rproc **)res);
2588}
2589
2590/**
2591 * devm_rproc_alloc() - resource managed rproc_alloc()
2592 * @dev: the underlying device
2593 * @name: name of this remote processor
2594 * @ops: platform-specific handlers (mainly start/stop)
2595 * @firmware: name of firmware file to load, can be NULL
2596 * @len: length of private data needed by the rproc driver (in bytes)
2597 *
2598 * This function performs like rproc_alloc() but the acquired rproc device will
2599 * automatically be released on driver detach.
2600 *
2601 * Return: new rproc instance, or NULL on failure
2602 */
2603struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2604			       const struct rproc_ops *ops,
2605			       const char *firmware, int len)
2606{
2607	struct rproc **ptr, *rproc;
2608
2609	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2610	if (!ptr)
2611		return NULL;
2612
2613	rproc = rproc_alloc(dev, name, ops, firmware, len);
2614	if (rproc) {
2615		*ptr = rproc;
2616		devres_add(dev, ptr);
2617	} else {
2618		devres_free(ptr);
2619	}
2620
2621	return rproc;
2622}
2623EXPORT_SYMBOL(devm_rproc_alloc);
2624
2625/**
2626 * rproc_add_subdev() - add a subdevice to a remoteproc
2627 * @rproc: rproc handle to add the subdevice to
2628 * @subdev: subdev handle to register
2629 *
2630 * Caller is responsible for populating optional subdevice function pointers.
2631 */
2632void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2633{
2634	list_add_tail(&subdev->node, &rproc->subdevs);
2635}
2636EXPORT_SYMBOL(rproc_add_subdev);
2637
2638/**
2639 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2640 * @rproc: rproc handle to remove the subdevice from
2641 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2642 */
2643void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2644{
2645	list_del(&subdev->node);
2646}
2647EXPORT_SYMBOL(rproc_remove_subdev);
2648
2649/**
2650 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2651 * @dev:	child device to find ancestor of
2652 *
2653 * Return: the ancestor rproc instance, or NULL if not found
2654 */
2655struct rproc *rproc_get_by_child(struct device *dev)
2656{
2657	for (dev = dev->parent; dev; dev = dev->parent) {
2658		if (dev->type == &rproc_type)
2659			return dev->driver_data;
2660	}
2661
2662	return NULL;
2663}
2664EXPORT_SYMBOL(rproc_get_by_child);
2665
2666/**
2667 * rproc_report_crash() - rproc crash reporter function
2668 * @rproc: remote processor
2669 * @type: crash type
2670 *
2671 * This function must be called every time a crash is detected by the low-level
2672 * drivers implementing a specific remoteproc. This should not be called from a
2673 * non-remoteproc driver.
2674 *
2675 * This function can be called from atomic/interrupt context.
2676 */
2677void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2678{
2679	if (!rproc) {
2680		pr_err("NULL rproc pointer\n");
2681		return;
2682	}
2683
2684	/* Prevent suspend while the remoteproc is being recovered */
2685	pm_stay_awake(rproc->dev.parent);
2686
2687	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2688		rproc->name, rproc_crash_to_string(type));
2689
2690	queue_work(rproc_recovery_wq, &rproc->crash_handler);
 
2691}
2692EXPORT_SYMBOL(rproc_report_crash);
2693
2694static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2695			       void *ptr)
2696{
2697	unsigned int longest = 0;
2698	struct rproc *rproc;
2699	unsigned int d;
2700
2701	rcu_read_lock();
2702	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2703		if (!rproc->ops->panic)
2704			continue;
2705
2706		if (rproc->state != RPROC_RUNNING &&
2707		    rproc->state != RPROC_ATTACHED)
2708			continue;
2709
2710		d = rproc->ops->panic(rproc);
2711		longest = max(longest, d);
2712	}
2713	rcu_read_unlock();
2714
2715	/*
2716	 * Delay for the longest requested duration before returning. This can
2717	 * be used by the remoteproc drivers to give the remote processor time
2718	 * to perform any requested operations (such as flush caches), when
2719	 * it's not possible to signal the Linux side due to the panic.
2720	 */
2721	mdelay(longest);
2722
2723	return NOTIFY_DONE;
2724}
2725
2726static void __init rproc_init_panic(void)
2727{
2728	rproc_panic_nb.notifier_call = rproc_panic_handler;
2729	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2730}
2731
2732static void __exit rproc_exit_panic(void)
2733{
2734	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2735}
2736
2737static int __init remoteproc_init(void)
2738{
2739	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2740						WQ_UNBOUND | WQ_FREEZABLE, 0);
2741	if (!rproc_recovery_wq) {
2742		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2743		return -ENOMEM;
2744	}
2745
2746	rproc_init_sysfs();
2747	rproc_init_debugfs();
2748	rproc_init_cdev();
2749	rproc_init_panic();
2750
2751	return 0;
2752}
2753subsys_initcall(remoteproc_init);
2754
2755static void __exit remoteproc_exit(void)
2756{
2757	ida_destroy(&rproc_dev_index);
2758
2759	if (!rproc_recovery_wq)
2760		return;
2761
2762	rproc_exit_panic();
2763	rproc_exit_debugfs();
2764	rproc_exit_sysfs();
2765	destroy_workqueue(rproc_recovery_wq);
2766}
2767module_exit(remoteproc_exit);
2768
 
2769MODULE_DESCRIPTION("Generic Remote Processor Framework");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26#include <linux/dma-map-ops.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
  29#include <linux/firmware.h>
  30#include <linux/string.h>
  31#include <linux/debugfs.h>
  32#include <linux/rculist.h>
  33#include <linux/remoteproc.h>
  34#include <linux/iommu.h>
  35#include <linux/idr.h>
  36#include <linux/elf.h>
  37#include <linux/crc32.h>
  38#include <linux/of_reserved_mem.h>
  39#include <linux/virtio_ids.h>
  40#include <linux/virtio_ring.h>
  41#include <asm/byteorder.h>
  42#include <linux/platform_device.h>
  43
  44#include "remoteproc_internal.h"
  45
  46#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  47
  48static DEFINE_MUTEX(rproc_list_mutex);
  49static LIST_HEAD(rproc_list);
  50static struct notifier_block rproc_panic_nb;
  51
  52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  53				 void *, int offset, int avail);
  54
  55static int rproc_alloc_carveout(struct rproc *rproc,
  56				struct rproc_mem_entry *mem);
  57static int rproc_release_carveout(struct rproc *rproc,
  58				  struct rproc_mem_entry *mem);
  59
  60/* Unique indices for remoteproc devices */
  61static DEFINE_IDA(rproc_dev_index);
 
  62
  63static const char * const rproc_crash_names[] = {
  64	[RPROC_MMUFAULT]	= "mmufault",
  65	[RPROC_WATCHDOG]	= "watchdog",
  66	[RPROC_FATAL_ERROR]	= "fatal error",
  67};
  68
  69/* translate rproc_crash_type to string */
  70static const char *rproc_crash_to_string(enum rproc_crash_type type)
  71{
  72	if (type < ARRAY_SIZE(rproc_crash_names))
  73		return rproc_crash_names[type];
  74	return "unknown";
  75}
  76
  77/*
  78 * This is the IOMMU fault handler we register with the IOMMU API
  79 * (when relevant; not all remote processors access memory through
  80 * an IOMMU).
  81 *
  82 * IOMMU core will invoke this handler whenever the remote processor
  83 * will try to access an unmapped device address.
  84 */
  85static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  86			     unsigned long iova, int flags, void *token)
  87{
  88	struct rproc *rproc = token;
  89
  90	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  91
  92	rproc_report_crash(rproc, RPROC_MMUFAULT);
  93
  94	/*
  95	 * Let the iommu core know we're not really handling this fault;
  96	 * we just used it as a recovery trigger.
  97	 */
  98	return -ENOSYS;
  99}
 100
 101static int rproc_enable_iommu(struct rproc *rproc)
 102{
 103	struct iommu_domain *domain;
 104	struct device *dev = rproc->dev.parent;
 105	int ret;
 106
 107	if (!rproc->has_iommu) {
 108		dev_dbg(dev, "iommu not present\n");
 109		return 0;
 110	}
 111
 112	domain = iommu_domain_alloc(dev->bus);
 113	if (!domain) {
 114		dev_err(dev, "can't alloc iommu domain\n");
 115		return -ENOMEM;
 116	}
 117
 118	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 119
 120	ret = iommu_attach_device(domain, dev);
 121	if (ret) {
 122		dev_err(dev, "can't attach iommu device: %d\n", ret);
 123		goto free_domain;
 124	}
 125
 126	rproc->domain = domain;
 127
 128	return 0;
 129
 130free_domain:
 131	iommu_domain_free(domain);
 132	return ret;
 133}
 134
 135static void rproc_disable_iommu(struct rproc *rproc)
 136{
 137	struct iommu_domain *domain = rproc->domain;
 138	struct device *dev = rproc->dev.parent;
 139
 140	if (!domain)
 141		return;
 142
 143	iommu_detach_device(domain, dev);
 144	iommu_domain_free(domain);
 145}
 146
 147phys_addr_t rproc_va_to_pa(void *cpu_addr)
 148{
 149	/*
 150	 * Return physical address according to virtual address location
 151	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 152	 * - in kernel: if region allocated in generic dma memory pool
 153	 */
 154	if (is_vmalloc_addr(cpu_addr)) {
 155		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 156				    offset_in_page(cpu_addr);
 157	}
 158
 159	WARN_ON(!virt_addr_valid(cpu_addr));
 160	return virt_to_phys(cpu_addr);
 161}
 162EXPORT_SYMBOL(rproc_va_to_pa);
 163
 164/**
 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 166 * @rproc: handle of a remote processor
 167 * @da: remoteproc device address to translate
 168 * @len: length of the memory region @da is pointing to
 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 170 *
 171 * Some remote processors will ask us to allocate them physically contiguous
 172 * memory regions (which we call "carveouts"), and map them to specific
 173 * device addresses (which are hardcoded in the firmware). They may also have
 174 * dedicated memory regions internal to the processors, and use them either
 175 * exclusively or alongside carveouts.
 176 *
 177 * They may then ask us to copy objects into specific device addresses (e.g.
 178 * code/data sections) or expose us certain symbols in other device address
 179 * (e.g. their trace buffer).
 180 *
 181 * This function is a helper function with which we can go over the allocated
 182 * carveouts and translate specific device addresses to kernel virtual addresses
 183 * so we can access the referenced memory. This function also allows to perform
 184 * translations on the internal remoteproc memory regions through a platform
 185 * implementation specific da_to_va ops, if present.
 186 *
 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 188 * but only on kernel direct mapped RAM memory. Instead, we're just using
 189 * here the output of the DMA API for the carveouts, which should be more
 190 * correct.
 191 *
 192 * Return: a valid kernel address on success or NULL on failure
 193 */
 194void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 195{
 196	struct rproc_mem_entry *carveout;
 197	void *ptr = NULL;
 198
 199	if (rproc->ops->da_to_va) {
 200		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 201		if (ptr)
 202			goto out;
 203	}
 204
 205	list_for_each_entry(carveout, &rproc->carveouts, node) {
 206		int offset = da - carveout->da;
 207
 208		/*  Verify that carveout is allocated */
 209		if (!carveout->va)
 210			continue;
 211
 212		/* try next carveout if da is too small */
 213		if (offset < 0)
 214			continue;
 215
 216		/* try next carveout if da is too large */
 217		if (offset + len > carveout->len)
 218			continue;
 219
 220		ptr = carveout->va + offset;
 221
 222		if (is_iomem)
 223			*is_iomem = carveout->is_iomem;
 224
 225		break;
 226	}
 227
 228out:
 229	return ptr;
 230}
 231EXPORT_SYMBOL(rproc_da_to_va);
 232
 233/**
 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 235 * @rproc: handle of a remote processor
 236 * @name: carveout name to find (format string)
 237 * @...: optional parameters matching @name string
 238 *
 239 * Platform driver has the capability to register some pre-allacoted carveout
 240 * (physically contiguous memory regions) before rproc firmware loading and
 241 * associated resource table analysis. These regions may be dedicated memory
 242 * regions internal to the coprocessor or specified DDR region with specific
 243 * attributes
 244 *
 245 * This function is a helper function with which we can go over the
 246 * allocated carveouts and return associated region characteristics like
 247 * coprocessor address, length or processor virtual address.
 248 *
 249 * Return: a valid pointer on carveout entry on success or NULL on failure.
 250 */
 251__printf(2, 3)
 252struct rproc_mem_entry *
 253rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 254{
 255	va_list args;
 256	char _name[32];
 257	struct rproc_mem_entry *carveout, *mem = NULL;
 258
 259	if (!name)
 260		return NULL;
 261
 262	va_start(args, name);
 263	vsnprintf(_name, sizeof(_name), name, args);
 264	va_end(args);
 265
 266	list_for_each_entry(carveout, &rproc->carveouts, node) {
 267		/* Compare carveout and requested names */
 268		if (!strcmp(carveout->name, _name)) {
 269			mem = carveout;
 270			break;
 271		}
 272	}
 273
 274	return mem;
 275}
 276
 277/**
 278 * rproc_check_carveout_da() - Check specified carveout da configuration
 279 * @rproc: handle of a remote processor
 280 * @mem: pointer on carveout to check
 281 * @da: area device address
 282 * @len: associated area size
 283 *
 284 * This function is a helper function to verify requested device area (couple
 285 * da, len) is part of specified carveout.
 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 287 * checked.
 288 *
 289 * Return: 0 if carveout matches request else error
 290 */
 291static int rproc_check_carveout_da(struct rproc *rproc,
 292				   struct rproc_mem_entry *mem, u32 da, u32 len)
 293{
 294	struct device *dev = &rproc->dev;
 295	int delta;
 296
 297	/* Check requested resource length */
 298	if (len > mem->len) {
 299		dev_err(dev, "Registered carveout doesn't fit len request\n");
 300		return -EINVAL;
 301	}
 302
 303	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 304		/* Address doesn't match registered carveout configuration */
 305		return -EINVAL;
 306	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 307		delta = da - mem->da;
 308
 309		/* Check requested resource belongs to registered carveout */
 310		if (delta < 0) {
 311			dev_err(dev,
 312				"Registered carveout doesn't fit da request\n");
 313			return -EINVAL;
 314		}
 315
 316		if (delta + len > mem->len) {
 317			dev_err(dev,
 318				"Registered carveout doesn't fit len request\n");
 319			return -EINVAL;
 320		}
 321	}
 322
 323	return 0;
 324}
 325
 326int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 327{
 328	struct rproc *rproc = rvdev->rproc;
 329	struct device *dev = &rproc->dev;
 330	struct rproc_vring *rvring = &rvdev->vring[i];
 331	struct fw_rsc_vdev *rsc;
 332	int ret, notifyid;
 333	struct rproc_mem_entry *mem;
 334	size_t size;
 335
 336	/* actual size of vring (in bytes) */
 337	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 338
 339	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 340
 341	/* Search for pre-registered carveout */
 342	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 343					  i);
 344	if (mem) {
 345		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 346			return -ENOMEM;
 347	} else {
 348		/* Register carveout in in list */
 349		mem = rproc_mem_entry_init(dev, NULL, 0,
 350					   size, rsc->vring[i].da,
 351					   rproc_alloc_carveout,
 352					   rproc_release_carveout,
 353					   "vdev%dvring%d",
 354					   rvdev->index, i);
 355		if (!mem) {
 356			dev_err(dev, "Can't allocate memory entry structure\n");
 357			return -ENOMEM;
 358		}
 359
 360		rproc_add_carveout(rproc, mem);
 361	}
 362
 363	/*
 364	 * Assign an rproc-wide unique index for this vring
 365	 * TODO: assign a notifyid for rvdev updates as well
 366	 * TODO: support predefined notifyids (via resource table)
 367	 */
 368	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 369	if (ret < 0) {
 370		dev_err(dev, "idr_alloc failed: %d\n", ret);
 371		return ret;
 372	}
 373	notifyid = ret;
 374
 375	/* Potentially bump max_notifyid */
 376	if (notifyid > rproc->max_notifyid)
 377		rproc->max_notifyid = notifyid;
 378
 379	rvring->notifyid = notifyid;
 380
 381	/* Let the rproc know the notifyid of this vring.*/
 382	rsc->vring[i].notifyid = notifyid;
 383	return 0;
 384}
 385
 386static int
 387rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 388{
 389	struct rproc *rproc = rvdev->rproc;
 390	struct device *dev = &rproc->dev;
 391	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 392	struct rproc_vring *rvring = &rvdev->vring[i];
 393
 394	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 395		i, vring->da, vring->num, vring->align);
 396
 397	/* verify queue size and vring alignment are sane */
 398	if (!vring->num || !vring->align) {
 399		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 400			vring->num, vring->align);
 401		return -EINVAL;
 402	}
 403
 404	rvring->len = vring->num;
 405	rvring->align = vring->align;
 406	rvring->rvdev = rvdev;
 407
 408	return 0;
 409}
 410
 411void rproc_free_vring(struct rproc_vring *rvring)
 412{
 413	struct rproc *rproc = rvring->rvdev->rproc;
 414	int idx = rvring - rvring->rvdev->vring;
 415	struct fw_rsc_vdev *rsc;
 416
 417	idr_remove(&rproc->notifyids, rvring->notifyid);
 418
 419	/*
 420	 * At this point rproc_stop() has been called and the installed resource
 421	 * table in the remote processor memory may no longer be accessible. As
 422	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
 423	 * resource table (rproc->cached_table).  The cached resource table is
 424	 * only available when a remote processor has been booted by the
 425	 * remoteproc core, otherwise it is NULL.
 426	 *
 427	 * Based on the above, reset the virtio device section in the cached
 428	 * resource table only if there is one to work with.
 429	 */
 430	if (rproc->table_ptr) {
 431		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 432		rsc->vring[idx].da = 0;
 433		rsc->vring[idx].notifyid = -1;
 434	}
 435}
 436
 437static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 438{
 439	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 440
 441	return rproc_add_virtio_dev(rvdev, rvdev->id);
 442}
 443
 444static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 445{
 446	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 447	int ret;
 448
 449	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
 450	if (ret)
 451		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
 452}
 453
 454/**
 455 * rproc_rvdev_release() - release the existence of a rvdev
 456 *
 457 * @dev: the subdevice's dev
 458 */
 459static void rproc_rvdev_release(struct device *dev)
 460{
 461	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
 462
 463	of_reserved_mem_device_release(dev);
 464
 465	kfree(rvdev);
 466}
 467
 468static int copy_dma_range_map(struct device *to, struct device *from)
 469{
 470	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
 471	int num_ranges = 0;
 472
 473	if (!map)
 474		return 0;
 475
 476	for (r = map; r->size; r++)
 477		num_ranges++;
 478
 479	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
 480			  GFP_KERNEL);
 481	if (!new_map)
 482		return -ENOMEM;
 483	to->dma_range_map = new_map;
 484	return 0;
 485}
 486
 487/**
 488 * rproc_handle_vdev() - handle a vdev fw resource
 489 * @rproc: the remote processor
 490 * @ptr: the vring resource descriptor
 491 * @offset: offset of the resource entry
 492 * @avail: size of available data (for sanity checking the image)
 493 *
 494 * This resource entry requests the host to statically register a virtio
 495 * device (vdev), and setup everything needed to support it. It contains
 496 * everything needed to make it possible: the virtio device id, virtio
 497 * device features, vrings information, virtio config space, etc...
 498 *
 499 * Before registering the vdev, the vrings are allocated from non-cacheable
 500 * physically contiguous memory. Currently we only support two vrings per
 501 * remote processor (temporary limitation). We might also want to consider
 502 * doing the vring allocation only later when ->find_vqs() is invoked, and
 503 * then release them upon ->del_vqs().
 504 *
 505 * Note: @da is currently not really handled correctly: we dynamically
 506 * allocate it using the DMA API, ignoring requested hard coded addresses,
 507 * and we don't take care of any required IOMMU programming. This is all
 508 * going to be taken care of when the generic iommu-based DMA API will be
 509 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 510 * use RSC_DEVMEM resource entries to map their required @da to the physical
 511 * address of their base CMA region (ouch, hacky!).
 512 *
 513 * Return: 0 on success, or an appropriate error code otherwise
 514 */
 515static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 516			     int offset, int avail)
 517{
 518	struct fw_rsc_vdev *rsc = ptr;
 519	struct device *dev = &rproc->dev;
 520	struct rproc_vdev *rvdev;
 521	int i, ret;
 522	char name[16];
 
 523
 524	/* make sure resource isn't truncated */
 525	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
 526			avail) {
 527		dev_err(dev, "vdev rsc is truncated\n");
 528		return -EINVAL;
 529	}
 530
 531	/* make sure reserved bytes are zeroes */
 532	if (rsc->reserved[0] || rsc->reserved[1]) {
 533		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 534		return -EINVAL;
 535	}
 536
 537	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 538		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 539
 540	/* we currently support only two vrings per rvdev */
 541	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 542		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 543		return -EINVAL;
 544	}
 545
 546	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 547	if (!rvdev)
 548		return -ENOMEM;
 549
 550	kref_init(&rvdev->refcount);
 551
 552	rvdev->id = rsc->id;
 553	rvdev->rproc = rproc;
 554	rvdev->index = rproc->nb_vdev++;
 555
 556	/* Initialise vdev subdevice */
 557	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
 558	rvdev->dev.parent = &rproc->dev;
 559	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
 560	if (ret)
 561		return ret;
 562	rvdev->dev.release = rproc_rvdev_release;
 563	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
 564	dev_set_drvdata(&rvdev->dev, rvdev);
 565
 566	ret = device_register(&rvdev->dev);
 567	if (ret) {
 568		put_device(&rvdev->dev);
 569		return ret;
 570	}
 571	/* Make device dma capable by inheriting from parent's capabilities */
 572	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
 573
 574	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
 575					   dma_get_mask(rproc->dev.parent));
 576	if (ret) {
 577		dev_warn(dev,
 578			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
 579			 dma_get_mask(rproc->dev.parent), ret);
 580	}
 581
 582	/* parse the vrings */
 583	for (i = 0; i < rsc->num_of_vrings; i++) {
 584		ret = rproc_parse_vring(rvdev, rsc, i);
 585		if (ret)
 586			goto free_rvdev;
 587	}
 588
 589	/* remember the resource offset*/
 590	rvdev->rsc_offset = offset;
 591
 592	/* allocate the vring resources */
 593	for (i = 0; i < rsc->num_of_vrings; i++) {
 594		ret = rproc_alloc_vring(rvdev, i);
 595		if (ret)
 596			goto unwind_vring_allocations;
 597	}
 598
 599	list_add_tail(&rvdev->node, &rproc->rvdevs);
 600
 601	rvdev->subdev.start = rproc_vdev_do_start;
 602	rvdev->subdev.stop = rproc_vdev_do_stop;
 603
 604	rproc_add_subdev(rproc, &rvdev->subdev);
 605
 606	return 0;
 607
 608unwind_vring_allocations:
 609	for (i--; i >= 0; i--)
 610		rproc_free_vring(&rvdev->vring[i]);
 611free_rvdev:
 612	device_unregister(&rvdev->dev);
 613	return ret;
 614}
 615
 616void rproc_vdev_release(struct kref *ref)
 617{
 618	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 619	struct rproc_vring *rvring;
 620	struct rproc *rproc = rvdev->rproc;
 621	int id;
 622
 623	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 624		rvring = &rvdev->vring[id];
 625		rproc_free_vring(rvring);
 626	}
 627
 628	rproc_remove_subdev(rproc, &rvdev->subdev);
 629	list_del(&rvdev->node);
 630	device_unregister(&rvdev->dev);
 631}
 632
 633/**
 634 * rproc_handle_trace() - handle a shared trace buffer resource
 635 * @rproc: the remote processor
 636 * @ptr: the trace resource descriptor
 637 * @offset: offset of the resource entry
 638 * @avail: size of available data (for sanity checking the image)
 639 *
 640 * In case the remote processor dumps trace logs into memory,
 641 * export it via debugfs.
 642 *
 643 * Currently, the 'da' member of @rsc should contain the device address
 644 * where the remote processor is dumping the traces. Later we could also
 645 * support dynamically allocating this address using the generic
 646 * DMA API (but currently there isn't a use case for that).
 647 *
 648 * Return: 0 on success, or an appropriate error code otherwise
 649 */
 650static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 651			      int offset, int avail)
 652{
 653	struct fw_rsc_trace *rsc = ptr;
 654	struct rproc_debug_trace *trace;
 655	struct device *dev = &rproc->dev;
 656	char name[15];
 657
 658	if (sizeof(*rsc) > avail) {
 659		dev_err(dev, "trace rsc is truncated\n");
 660		return -EINVAL;
 661	}
 662
 663	/* make sure reserved bytes are zeroes */
 664	if (rsc->reserved) {
 665		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 666		return -EINVAL;
 667	}
 668
 669	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 670	if (!trace)
 671		return -ENOMEM;
 672
 673	/* set the trace buffer dma properties */
 674	trace->trace_mem.len = rsc->len;
 675	trace->trace_mem.da = rsc->da;
 676
 677	/* set pointer on rproc device */
 678	trace->rproc = rproc;
 679
 680	/* make sure snprintf always null terminates, even if truncating */
 681	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 682
 683	/* create the debugfs entry */
 684	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 685	if (!trace->tfile) {
 686		kfree(trace);
 687		return -EINVAL;
 688	}
 689
 690	list_add_tail(&trace->node, &rproc->traces);
 691
 692	rproc->num_traces++;
 693
 694	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 695		name, rsc->da, rsc->len);
 696
 697	return 0;
 698}
 699
 700/**
 701 * rproc_handle_devmem() - handle devmem resource entry
 702 * @rproc: remote processor handle
 703 * @ptr: the devmem resource entry
 704 * @offset: offset of the resource entry
 705 * @avail: size of available data (for sanity checking the image)
 706 *
 707 * Remote processors commonly need to access certain on-chip peripherals.
 708 *
 709 * Some of these remote processors access memory via an iommu device,
 710 * and might require us to configure their iommu before they can access
 711 * the on-chip peripherals they need.
 712 *
 713 * This resource entry is a request to map such a peripheral device.
 714 *
 715 * These devmem entries will contain the physical address of the device in
 716 * the 'pa' member. If a specific device address is expected, then 'da' will
 717 * contain it (currently this is the only use case supported). 'len' will
 718 * contain the size of the physical region we need to map.
 719 *
 720 * Currently we just "trust" those devmem entries to contain valid physical
 721 * addresses, but this is going to change: we want the implementations to
 722 * tell us ranges of physical addresses the firmware is allowed to request,
 723 * and not allow firmwares to request access to physical addresses that
 724 * are outside those ranges.
 725 *
 726 * Return: 0 on success, or an appropriate error code otherwise
 727 */
 728static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 729			       int offset, int avail)
 730{
 731	struct fw_rsc_devmem *rsc = ptr;
 732	struct rproc_mem_entry *mapping;
 733	struct device *dev = &rproc->dev;
 734	int ret;
 735
 736	/* no point in handling this resource without a valid iommu domain */
 737	if (!rproc->domain)
 738		return -EINVAL;
 739
 740	if (sizeof(*rsc) > avail) {
 741		dev_err(dev, "devmem rsc is truncated\n");
 742		return -EINVAL;
 743	}
 744
 745	/* make sure reserved bytes are zeroes */
 746	if (rsc->reserved) {
 747		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 748		return -EINVAL;
 749	}
 750
 751	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 752	if (!mapping)
 753		return -ENOMEM;
 754
 755	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 
 756	if (ret) {
 757		dev_err(dev, "failed to map devmem: %d\n", ret);
 758		goto out;
 759	}
 760
 761	/*
 762	 * We'll need this info later when we'll want to unmap everything
 763	 * (e.g. on shutdown).
 764	 *
 765	 * We can't trust the remote processor not to change the resource
 766	 * table, so we must maintain this info independently.
 767	 */
 768	mapping->da = rsc->da;
 769	mapping->len = rsc->len;
 770	list_add_tail(&mapping->node, &rproc->mappings);
 771
 772	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 773		rsc->pa, rsc->da, rsc->len);
 774
 775	return 0;
 776
 777out:
 778	kfree(mapping);
 779	return ret;
 780}
 781
 782/**
 783 * rproc_alloc_carveout() - allocated specified carveout
 784 * @rproc: rproc handle
 785 * @mem: the memory entry to allocate
 786 *
 787 * This function allocate specified memory entry @mem using
 788 * dma_alloc_coherent() as default allocator
 789 *
 790 * Return: 0 on success, or an appropriate error code otherwise
 791 */
 792static int rproc_alloc_carveout(struct rproc *rproc,
 793				struct rproc_mem_entry *mem)
 794{
 795	struct rproc_mem_entry *mapping = NULL;
 796	struct device *dev = &rproc->dev;
 797	dma_addr_t dma;
 798	void *va;
 799	int ret;
 800
 801	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 802	if (!va) {
 803		dev_err(dev->parent,
 804			"failed to allocate dma memory: len 0x%zx\n",
 805			mem->len);
 806		return -ENOMEM;
 807	}
 808
 809	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 810		va, &dma, mem->len);
 811
 812	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 813		/*
 814		 * Check requested da is equal to dma address
 815		 * and print a warn message in case of missalignment.
 816		 * Don't stop rproc_start sequence as coprocessor may
 817		 * build pa to da translation on its side.
 818		 */
 819		if (mem->da != (u32)dma)
 820			dev_warn(dev->parent,
 821				 "Allocated carveout doesn't fit device address request\n");
 822	}
 823
 824	/*
 825	 * Ok, this is non-standard.
 826	 *
 827	 * Sometimes we can't rely on the generic iommu-based DMA API
 828	 * to dynamically allocate the device address and then set the IOMMU
 829	 * tables accordingly, because some remote processors might
 830	 * _require_ us to use hard coded device addresses that their
 831	 * firmware was compiled with.
 832	 *
 833	 * In this case, we must use the IOMMU API directly and map
 834	 * the memory to the device address as expected by the remote
 835	 * processor.
 836	 *
 837	 * Obviously such remote processor devices should not be configured
 838	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 839	 * physical address in this case.
 840	 */
 841	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 842		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 843		if (!mapping) {
 844			ret = -ENOMEM;
 845			goto dma_free;
 846		}
 847
 848		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 849				mem->flags);
 850		if (ret) {
 851			dev_err(dev, "iommu_map failed: %d\n", ret);
 852			goto free_mapping;
 853		}
 854
 855		/*
 856		 * We'll need this info later when we'll want to unmap
 857		 * everything (e.g. on shutdown).
 858		 *
 859		 * We can't trust the remote processor not to change the
 860		 * resource table, so we must maintain this info independently.
 861		 */
 862		mapping->da = mem->da;
 863		mapping->len = mem->len;
 864		list_add_tail(&mapping->node, &rproc->mappings);
 865
 866		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 867			mem->da, &dma);
 868	}
 869
 870	if (mem->da == FW_RSC_ADDR_ANY) {
 871		/* Update device address as undefined by requester */
 872		if ((u64)dma & HIGH_BITS_MASK)
 873			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 874
 875		mem->da = (u32)dma;
 876	}
 877
 878	mem->dma = dma;
 879	mem->va = va;
 880
 881	return 0;
 882
 883free_mapping:
 884	kfree(mapping);
 885dma_free:
 886	dma_free_coherent(dev->parent, mem->len, va, dma);
 887	return ret;
 888}
 889
 890/**
 891 * rproc_release_carveout() - release acquired carveout
 892 * @rproc: rproc handle
 893 * @mem: the memory entry to release
 894 *
 895 * This function releases specified memory entry @mem allocated via
 896 * rproc_alloc_carveout() function by @rproc.
 897 *
 898 * Return: 0 on success, or an appropriate error code otherwise
 899 */
 900static int rproc_release_carveout(struct rproc *rproc,
 901				  struct rproc_mem_entry *mem)
 902{
 903	struct device *dev = &rproc->dev;
 904
 905	/* clean up carveout allocations */
 906	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 907	return 0;
 908}
 909
 910/**
 911 * rproc_handle_carveout() - handle phys contig memory allocation requests
 912 * @rproc: rproc handle
 913 * @ptr: the resource entry
 914 * @offset: offset of the resource entry
 915 * @avail: size of available data (for image validation)
 916 *
 917 * This function will handle firmware requests for allocation of physically
 918 * contiguous memory regions.
 919 *
 920 * These request entries should come first in the firmware's resource table,
 921 * as other firmware entries might request placing other data objects inside
 922 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 923 *
 924 * Allocating memory this way helps utilizing the reserved physical memory
 925 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 926 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 927 * pressure is important; it may have a substantial impact on performance.
 928 *
 929 * Return: 0 on success, or an appropriate error code otherwise
 930 */
 931static int rproc_handle_carveout(struct rproc *rproc,
 932				 void *ptr, int offset, int avail)
 933{
 934	struct fw_rsc_carveout *rsc = ptr;
 935	struct rproc_mem_entry *carveout;
 936	struct device *dev = &rproc->dev;
 937
 938	if (sizeof(*rsc) > avail) {
 939		dev_err(dev, "carveout rsc is truncated\n");
 940		return -EINVAL;
 941	}
 942
 943	/* make sure reserved bytes are zeroes */
 944	if (rsc->reserved) {
 945		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 946		return -EINVAL;
 947	}
 948
 949	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 950		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 951
 952	/*
 953	 * Check carveout rsc already part of a registered carveout,
 954	 * Search by name, then check the da and length
 955	 */
 956	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 957
 958	if (carveout) {
 959		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 960			dev_err(dev,
 961				"Carveout already associated to resource table\n");
 962			return -ENOMEM;
 963		}
 964
 965		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 966			return -ENOMEM;
 967
 968		/* Update memory carveout with resource table info */
 969		carveout->rsc_offset = offset;
 970		carveout->flags = rsc->flags;
 971
 972		return 0;
 973	}
 974
 975	/* Register carveout in in list */
 976	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 977					rproc_alloc_carveout,
 978					rproc_release_carveout, rsc->name);
 979	if (!carveout) {
 980		dev_err(dev, "Can't allocate memory entry structure\n");
 981		return -ENOMEM;
 982	}
 983
 984	carveout->flags = rsc->flags;
 985	carveout->rsc_offset = offset;
 986	rproc_add_carveout(rproc, carveout);
 987
 988	return 0;
 989}
 990
 991/**
 992 * rproc_add_carveout() - register an allocated carveout region
 993 * @rproc: rproc handle
 994 * @mem: memory entry to register
 995 *
 996 * This function registers specified memory entry in @rproc carveouts list.
 997 * Specified carveout should have been allocated before registering.
 998 */
 999void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1000{
1001	list_add_tail(&mem->node, &rproc->carveouts);
1002}
1003EXPORT_SYMBOL(rproc_add_carveout);
1004
1005/**
1006 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1007 * @dev: pointer on device struct
1008 * @va: virtual address
1009 * @dma: dma address
1010 * @len: memory carveout length
1011 * @da: device address
1012 * @alloc: memory carveout allocation function
1013 * @release: memory carveout release function
1014 * @name: carveout name
1015 *
1016 * This function allocates a rproc_mem_entry struct and fill it with parameters
1017 * provided by client.
1018 *
1019 * Return: a valid pointer on success, or NULL on failure
1020 */
1021__printf(8, 9)
1022struct rproc_mem_entry *
1023rproc_mem_entry_init(struct device *dev,
1024		     void *va, dma_addr_t dma, size_t len, u32 da,
1025		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1026		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1027		     const char *name, ...)
1028{
1029	struct rproc_mem_entry *mem;
1030	va_list args;
1031
1032	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033	if (!mem)
1034		return mem;
1035
1036	mem->va = va;
1037	mem->dma = dma;
1038	mem->da = da;
1039	mem->len = len;
1040	mem->alloc = alloc;
1041	mem->release = release;
1042	mem->rsc_offset = FW_RSC_ADDR_ANY;
1043	mem->of_resm_idx = -1;
1044
1045	va_start(args, name);
1046	vsnprintf(mem->name, sizeof(mem->name), name, args);
1047	va_end(args);
1048
1049	return mem;
1050}
1051EXPORT_SYMBOL(rproc_mem_entry_init);
1052
1053/**
1054 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1055 * from a reserved memory phandle
1056 * @dev: pointer on device struct
1057 * @of_resm_idx: reserved memory phandle index in "memory-region"
1058 * @len: memory carveout length
1059 * @da: device address
1060 * @name: carveout name
1061 *
1062 * This function allocates a rproc_mem_entry struct and fill it with parameters
1063 * provided by client.
1064 *
1065 * Return: a valid pointer on success, or NULL on failure
1066 */
1067__printf(5, 6)
1068struct rproc_mem_entry *
1069rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1070			     u32 da, const char *name, ...)
1071{
1072	struct rproc_mem_entry *mem;
1073	va_list args;
1074
1075	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1076	if (!mem)
1077		return mem;
1078
1079	mem->da = da;
1080	mem->len = len;
1081	mem->rsc_offset = FW_RSC_ADDR_ANY;
1082	mem->of_resm_idx = of_resm_idx;
1083
1084	va_start(args, name);
1085	vsnprintf(mem->name, sizeof(mem->name), name, args);
1086	va_end(args);
1087
1088	return mem;
1089}
1090EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1091
1092/**
1093 * rproc_of_parse_firmware() - parse and return the firmware-name
1094 * @dev: pointer on device struct representing a rproc
1095 * @index: index to use for the firmware-name retrieval
1096 * @fw_name: pointer to a character string, in which the firmware
1097 *           name is returned on success and unmodified otherwise.
1098 *
1099 * This is an OF helper function that parses a device's DT node for
1100 * the "firmware-name" property and returns the firmware name pointer
1101 * in @fw_name on success.
1102 *
1103 * Return: 0 on success, or an appropriate failure.
1104 */
1105int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1106{
1107	int ret;
1108
1109	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1110					    index, fw_name);
1111	return ret ? ret : 0;
1112}
1113EXPORT_SYMBOL(rproc_of_parse_firmware);
1114
1115/*
1116 * A lookup table for resource handlers. The indices are defined in
1117 * enum fw_resource_type.
1118 */
1119static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1120	[RSC_CARVEOUT] = rproc_handle_carveout,
1121	[RSC_DEVMEM] = rproc_handle_devmem,
1122	[RSC_TRACE] = rproc_handle_trace,
1123	[RSC_VDEV] = rproc_handle_vdev,
1124};
1125
1126/* handle firmware resource entries before booting the remote processor */
1127static int rproc_handle_resources(struct rproc *rproc,
1128				  rproc_handle_resource_t handlers[RSC_LAST])
1129{
1130	struct device *dev = &rproc->dev;
1131	rproc_handle_resource_t handler;
1132	int ret = 0, i;
1133
1134	if (!rproc->table_ptr)
1135		return 0;
1136
1137	for (i = 0; i < rproc->table_ptr->num; i++) {
1138		int offset = rproc->table_ptr->offset[i];
1139		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1140		int avail = rproc->table_sz - offset - sizeof(*hdr);
1141		void *rsc = (void *)hdr + sizeof(*hdr);
1142
1143		/* make sure table isn't truncated */
1144		if (avail < 0) {
1145			dev_err(dev, "rsc table is truncated\n");
1146			return -EINVAL;
1147		}
1148
1149		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1150
1151		if (hdr->type >= RSC_VENDOR_START &&
1152		    hdr->type <= RSC_VENDOR_END) {
1153			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1154					       offset + sizeof(*hdr), avail);
1155			if (ret == RSC_HANDLED)
1156				continue;
1157			else if (ret < 0)
1158				break;
1159
1160			dev_warn(dev, "unsupported vendor resource %d\n",
1161				 hdr->type);
1162			continue;
1163		}
1164
1165		if (hdr->type >= RSC_LAST) {
1166			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1167			continue;
1168		}
1169
1170		handler = handlers[hdr->type];
1171		if (!handler)
1172			continue;
1173
1174		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1175		if (ret)
1176			break;
1177	}
1178
1179	return ret;
1180}
1181
1182static int rproc_prepare_subdevices(struct rproc *rproc)
1183{
1184	struct rproc_subdev *subdev;
1185	int ret;
1186
1187	list_for_each_entry(subdev, &rproc->subdevs, node) {
1188		if (subdev->prepare) {
1189			ret = subdev->prepare(subdev);
1190			if (ret)
1191				goto unroll_preparation;
1192		}
1193	}
1194
1195	return 0;
1196
1197unroll_preparation:
1198	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1199		if (subdev->unprepare)
1200			subdev->unprepare(subdev);
1201	}
1202
1203	return ret;
1204}
1205
1206static int rproc_start_subdevices(struct rproc *rproc)
1207{
1208	struct rproc_subdev *subdev;
1209	int ret;
1210
1211	list_for_each_entry(subdev, &rproc->subdevs, node) {
1212		if (subdev->start) {
1213			ret = subdev->start(subdev);
1214			if (ret)
1215				goto unroll_registration;
1216		}
1217	}
1218
1219	return 0;
1220
1221unroll_registration:
1222	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1223		if (subdev->stop)
1224			subdev->stop(subdev, true);
1225	}
1226
1227	return ret;
1228}
1229
1230static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1231{
1232	struct rproc_subdev *subdev;
1233
1234	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1235		if (subdev->stop)
1236			subdev->stop(subdev, crashed);
1237	}
1238}
1239
1240static void rproc_unprepare_subdevices(struct rproc *rproc)
1241{
1242	struct rproc_subdev *subdev;
1243
1244	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1245		if (subdev->unprepare)
1246			subdev->unprepare(subdev);
1247	}
1248}
1249
1250/**
1251 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1252 * in the list
1253 * @rproc: the remote processor handle
1254 *
1255 * This function parses registered carveout list, performs allocation
1256 * if alloc() ops registered and updates resource table information
1257 * if rsc_offset set.
1258 *
1259 * Return: 0 on success
1260 */
1261static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1262{
1263	struct rproc_mem_entry *entry, *tmp;
1264	struct fw_rsc_carveout *rsc;
1265	struct device *dev = &rproc->dev;
1266	u64 pa;
1267	int ret;
1268
1269	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1270		if (entry->alloc) {
1271			ret = entry->alloc(rproc, entry);
1272			if (ret) {
1273				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1274					entry->name, ret);
1275				return -ENOMEM;
1276			}
1277		}
1278
1279		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1280			/* update resource table */
1281			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1282
1283			/*
1284			 * Some remote processors might need to know the pa
1285			 * even though they are behind an IOMMU. E.g., OMAP4's
1286			 * remote M3 processor needs this so it can control
1287			 * on-chip hardware accelerators that are not behind
1288			 * the IOMMU, and therefor must know the pa.
1289			 *
1290			 * Generally we don't want to expose physical addresses
1291			 * if we don't have to (remote processors are generally
1292			 * _not_ trusted), so we might want to do this only for
1293			 * remote processor that _must_ have this (e.g. OMAP4's
1294			 * dual M3 subsystem).
1295			 *
1296			 * Non-IOMMU processors might also want to have this info.
1297			 * In this case, the device address and the physical address
1298			 * are the same.
1299			 */
1300
1301			/* Use va if defined else dma to generate pa */
1302			if (entry->va)
1303				pa = (u64)rproc_va_to_pa(entry->va);
1304			else
1305				pa = (u64)entry->dma;
1306
1307			if (((u64)pa) & HIGH_BITS_MASK)
1308				dev_warn(dev,
1309					 "Physical address cast in 32bit to fit resource table format\n");
1310
1311			rsc->pa = (u32)pa;
1312			rsc->da = entry->da;
1313			rsc->len = entry->len;
1314		}
1315	}
1316
1317	return 0;
1318}
1319
1320
1321/**
1322 * rproc_resource_cleanup() - clean up and free all acquired resources
1323 * @rproc: rproc handle
1324 *
1325 * This function will free all resources acquired for @rproc, and it
1326 * is called whenever @rproc either shuts down or fails to boot.
1327 */
1328void rproc_resource_cleanup(struct rproc *rproc)
1329{
1330	struct rproc_mem_entry *entry, *tmp;
1331	struct rproc_debug_trace *trace, *ttmp;
1332	struct rproc_vdev *rvdev, *rvtmp;
1333	struct device *dev = &rproc->dev;
1334
1335	/* clean up debugfs trace entries */
1336	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1337		rproc_remove_trace_file(trace->tfile);
1338		rproc->num_traces--;
1339		list_del(&trace->node);
1340		kfree(trace);
1341	}
1342
1343	/* clean up iommu mapping entries */
1344	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1345		size_t unmapped;
1346
1347		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1348		if (unmapped != entry->len) {
1349			/* nothing much to do besides complaining */
1350			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1351				unmapped);
1352		}
1353
1354		list_del(&entry->node);
1355		kfree(entry);
1356	}
1357
1358	/* clean up carveout allocations */
1359	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1360		if (entry->release)
1361			entry->release(rproc, entry);
1362		list_del(&entry->node);
1363		kfree(entry);
1364	}
1365
1366	/* clean up remote vdev entries */
1367	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1368		kref_put(&rvdev->refcount, rproc_vdev_release);
1369
1370	rproc_coredump_cleanup(rproc);
1371}
1372EXPORT_SYMBOL(rproc_resource_cleanup);
1373
1374static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1375{
1376	struct resource_table *loaded_table;
1377	struct device *dev = &rproc->dev;
1378	int ret;
1379
1380	/* load the ELF segments to memory */
1381	ret = rproc_load_segments(rproc, fw);
1382	if (ret) {
1383		dev_err(dev, "Failed to load program segments: %d\n", ret);
1384		return ret;
1385	}
1386
1387	/*
1388	 * The starting device has been given the rproc->cached_table as the
1389	 * resource table. The address of the vring along with the other
1390	 * allocated resources (carveouts etc) is stored in cached_table.
1391	 * In order to pass this information to the remote device we must copy
1392	 * this information to device memory. We also update the table_ptr so
1393	 * that any subsequent changes will be applied to the loaded version.
1394	 */
1395	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1396	if (loaded_table) {
1397		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1398		rproc->table_ptr = loaded_table;
1399	}
1400
1401	ret = rproc_prepare_subdevices(rproc);
1402	if (ret) {
1403		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404			rproc->name, ret);
1405		goto reset_table_ptr;
1406	}
1407
1408	/* power up the remote processor */
1409	ret = rproc->ops->start(rproc);
1410	if (ret) {
1411		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1412		goto unprepare_subdevices;
1413	}
1414
1415	/* Start any subdevices for the remote processor */
1416	ret = rproc_start_subdevices(rproc);
1417	if (ret) {
1418		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1419			rproc->name, ret);
1420		goto stop_rproc;
1421	}
1422
1423	rproc->state = RPROC_RUNNING;
1424
1425	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1426
1427	return 0;
1428
1429stop_rproc:
1430	rproc->ops->stop(rproc);
1431unprepare_subdevices:
1432	rproc_unprepare_subdevices(rproc);
1433reset_table_ptr:
1434	rproc->table_ptr = rproc->cached_table;
1435
1436	return ret;
1437}
1438
1439static int __rproc_attach(struct rproc *rproc)
1440{
1441	struct device *dev = &rproc->dev;
1442	int ret;
1443
1444	ret = rproc_prepare_subdevices(rproc);
1445	if (ret) {
1446		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1447			rproc->name, ret);
1448		goto out;
1449	}
1450
1451	/* Attach to the remote processor */
1452	ret = rproc_attach_device(rproc);
1453	if (ret) {
1454		dev_err(dev, "can't attach to rproc %s: %d\n",
1455			rproc->name, ret);
1456		goto unprepare_subdevices;
1457	}
1458
1459	/* Start any subdevices for the remote processor */
1460	ret = rproc_start_subdevices(rproc);
1461	if (ret) {
1462		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1463			rproc->name, ret);
1464		goto stop_rproc;
1465	}
1466
1467	rproc->state = RPROC_ATTACHED;
1468
1469	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1470
1471	return 0;
1472
1473stop_rproc:
1474	rproc->ops->stop(rproc);
1475unprepare_subdevices:
1476	rproc_unprepare_subdevices(rproc);
1477out:
1478	return ret;
1479}
1480
1481/*
1482 * take a firmware and boot a remote processor with it.
1483 */
1484static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1485{
1486	struct device *dev = &rproc->dev;
1487	const char *name = rproc->firmware;
1488	int ret;
1489
1490	ret = rproc_fw_sanity_check(rproc, fw);
1491	if (ret)
1492		return ret;
1493
1494	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1495
1496	/*
1497	 * if enabling an IOMMU isn't relevant for this rproc, this is
1498	 * just a nop
1499	 */
1500	ret = rproc_enable_iommu(rproc);
1501	if (ret) {
1502		dev_err(dev, "can't enable iommu: %d\n", ret);
1503		return ret;
1504	}
1505
1506	/* Prepare rproc for firmware loading if needed */
1507	ret = rproc_prepare_device(rproc);
1508	if (ret) {
1509		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1510		goto disable_iommu;
1511	}
1512
1513	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1514
1515	/* Load resource table, core dump segment list etc from the firmware */
1516	ret = rproc_parse_fw(rproc, fw);
1517	if (ret)
1518		goto unprepare_rproc;
1519
1520	/* reset max_notifyid */
1521	rproc->max_notifyid = -1;
1522
1523	/* reset handled vdev */
1524	rproc->nb_vdev = 0;
1525
1526	/* handle fw resources which are required to boot rproc */
1527	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1528	if (ret) {
1529		dev_err(dev, "Failed to process resources: %d\n", ret);
1530		goto clean_up_resources;
1531	}
1532
1533	/* Allocate carveout resources associated to rproc */
1534	ret = rproc_alloc_registered_carveouts(rproc);
1535	if (ret) {
1536		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1537			ret);
1538		goto clean_up_resources;
1539	}
1540
1541	ret = rproc_start(rproc, fw);
1542	if (ret)
1543		goto clean_up_resources;
1544
1545	return 0;
1546
1547clean_up_resources:
1548	rproc_resource_cleanup(rproc);
1549	kfree(rproc->cached_table);
1550	rproc->cached_table = NULL;
1551	rproc->table_ptr = NULL;
1552unprepare_rproc:
1553	/* release HW resources if needed */
1554	rproc_unprepare_device(rproc);
1555disable_iommu:
1556	rproc_disable_iommu(rproc);
1557	return ret;
1558}
1559
1560static int rproc_set_rsc_table(struct rproc *rproc)
1561{
1562	struct resource_table *table_ptr;
1563	struct device *dev = &rproc->dev;
1564	size_t table_sz;
1565	int ret;
1566
1567	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1568	if (!table_ptr) {
1569		/* Not having a resource table is acceptable */
1570		return 0;
1571	}
1572
1573	if (IS_ERR(table_ptr)) {
1574		ret = PTR_ERR(table_ptr);
1575		dev_err(dev, "can't load resource table: %d\n", ret);
1576		return ret;
1577	}
1578
1579	/*
1580	 * If it is possible to detach the remote processor, keep an untouched
1581	 * copy of the resource table.  That way we can start fresh again when
1582	 * the remote processor is re-attached, that is:
1583	 *
1584	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1585	 *
1586	 * Free'd in rproc_reset_rsc_table_on_detach() and
1587	 * rproc_reset_rsc_table_on_stop().
1588	 */
1589	if (rproc->ops->detach) {
1590		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1591		if (!rproc->clean_table)
1592			return -ENOMEM;
1593	} else {
1594		rproc->clean_table = NULL;
1595	}
1596
1597	rproc->cached_table = NULL;
1598	rproc->table_ptr = table_ptr;
1599	rproc->table_sz = table_sz;
1600
1601	return 0;
1602}
1603
1604static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1605{
1606	struct resource_table *table_ptr;
1607
1608	/* A resource table was never retrieved, nothing to do here */
1609	if (!rproc->table_ptr)
1610		return 0;
1611
1612	/*
1613	 * If we made it to this point a clean_table _must_ have been
1614	 * allocated in rproc_set_rsc_table().  If one isn't present
1615	 * something went really wrong and we must complain.
1616	 */
1617	if (WARN_ON(!rproc->clean_table))
1618		return -EINVAL;
1619
1620	/* Remember where the external entity installed the resource table */
1621	table_ptr = rproc->table_ptr;
1622
1623	/*
1624	 * If we made it here the remote processor was started by another
1625	 * entity and a cache table doesn't exist.  As such make a copy of
1626	 * the resource table currently used by the remote processor and
1627	 * use that for the rest of the shutdown process.  The memory
1628	 * allocated here is free'd in rproc_detach().
1629	 */
1630	rproc->cached_table = kmemdup(rproc->table_ptr,
1631				      rproc->table_sz, GFP_KERNEL);
1632	if (!rproc->cached_table)
1633		return -ENOMEM;
1634
1635	/*
1636	 * Use a copy of the resource table for the remainder of the
1637	 * shutdown process.
1638	 */
1639	rproc->table_ptr = rproc->cached_table;
1640
1641	/*
1642	 * Reset the memory area where the firmware loaded the resource table
1643	 * to its original value.  That way when we re-attach the remote
1644	 * processor the resource table is clean and ready to be used again.
1645	 */
1646	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1647
1648	/*
1649	 * The clean resource table is no longer needed.  Allocated in
1650	 * rproc_set_rsc_table().
1651	 */
1652	kfree(rproc->clean_table);
1653
1654	return 0;
1655}
1656
1657static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1658{
1659	/* A resource table was never retrieved, nothing to do here */
1660	if (!rproc->table_ptr)
1661		return 0;
1662
1663	/*
1664	 * If a cache table exists the remote processor was started by
1665	 * the remoteproc core.  That cache table should be used for
1666	 * the rest of the shutdown process.
1667	 */
1668	if (rproc->cached_table)
1669		goto out;
1670
1671	/*
1672	 * If we made it here the remote processor was started by another
1673	 * entity and a cache table doesn't exist.  As such make a copy of
1674	 * the resource table currently used by the remote processor and
1675	 * use that for the rest of the shutdown process.  The memory
1676	 * allocated here is free'd in rproc_shutdown().
1677	 */
1678	rproc->cached_table = kmemdup(rproc->table_ptr,
1679				      rproc->table_sz, GFP_KERNEL);
1680	if (!rproc->cached_table)
1681		return -ENOMEM;
1682
1683	/*
1684	 * Since the remote processor is being switched off the clean table
1685	 * won't be needed.  Allocated in rproc_set_rsc_table().
1686	 */
1687	kfree(rproc->clean_table);
1688
1689out:
1690	/*
1691	 * Use a copy of the resource table for the remainder of the
1692	 * shutdown process.
1693	 */
1694	rproc->table_ptr = rproc->cached_table;
1695	return 0;
1696}
1697
1698/*
1699 * Attach to remote processor - similar to rproc_fw_boot() but without
1700 * the steps that deal with the firmware image.
1701 */
1702static int rproc_attach(struct rproc *rproc)
1703{
1704	struct device *dev = &rproc->dev;
1705	int ret;
1706
1707	/*
1708	 * if enabling an IOMMU isn't relevant for this rproc, this is
1709	 * just a nop
1710	 */
1711	ret = rproc_enable_iommu(rproc);
1712	if (ret) {
1713		dev_err(dev, "can't enable iommu: %d\n", ret);
1714		return ret;
1715	}
1716
1717	/* Do anything that is needed to boot the remote processor */
1718	ret = rproc_prepare_device(rproc);
1719	if (ret) {
1720		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1721		goto disable_iommu;
1722	}
1723
1724	ret = rproc_set_rsc_table(rproc);
1725	if (ret) {
1726		dev_err(dev, "can't load resource table: %d\n", ret);
1727		goto unprepare_device;
1728	}
1729
1730	/* reset max_notifyid */
1731	rproc->max_notifyid = -1;
1732
1733	/* reset handled vdev */
1734	rproc->nb_vdev = 0;
1735
1736	/*
1737	 * Handle firmware resources required to attach to a remote processor.
1738	 * Because we are attaching rather than booting the remote processor,
1739	 * we expect the platform driver to properly set rproc->table_ptr.
1740	 */
1741	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1742	if (ret) {
1743		dev_err(dev, "Failed to process resources: %d\n", ret);
1744		goto unprepare_device;
1745	}
1746
1747	/* Allocate carveout resources associated to rproc */
1748	ret = rproc_alloc_registered_carveouts(rproc);
1749	if (ret) {
1750		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1751			ret);
1752		goto clean_up_resources;
1753	}
1754
1755	ret = __rproc_attach(rproc);
1756	if (ret)
1757		goto clean_up_resources;
1758
1759	return 0;
1760
1761clean_up_resources:
1762	rproc_resource_cleanup(rproc);
1763unprepare_device:
1764	/* release HW resources if needed */
1765	rproc_unprepare_device(rproc);
1766disable_iommu:
1767	rproc_disable_iommu(rproc);
1768	return ret;
1769}
1770
1771/*
1772 * take a firmware and boot it up.
1773 *
1774 * Note: this function is called asynchronously upon registration of the
1775 * remote processor (so we must wait until it completes before we try
1776 * to unregister the device. one other option is just to use kref here,
1777 * that might be cleaner).
1778 */
1779static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1780{
1781	struct rproc *rproc = context;
1782
1783	rproc_boot(rproc);
1784
1785	release_firmware(fw);
1786}
1787
1788static int rproc_trigger_auto_boot(struct rproc *rproc)
1789{
1790	int ret;
1791
1792	/*
1793	 * Since the remote processor is in a detached state, it has already
1794	 * been booted by another entity.  As such there is no point in waiting
1795	 * for a firmware image to be loaded, we can simply initiate the process
1796	 * of attaching to it immediately.
1797	 */
1798	if (rproc->state == RPROC_DETACHED)
1799		return rproc_boot(rproc);
1800
1801	/*
1802	 * We're initiating an asynchronous firmware loading, so we can
1803	 * be built-in kernel code, without hanging the boot process.
1804	 */
1805	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1806				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1807				      rproc, rproc_auto_boot_callback);
1808	if (ret < 0)
1809		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1810
1811	return ret;
1812}
1813
1814static int rproc_stop(struct rproc *rproc, bool crashed)
1815{
1816	struct device *dev = &rproc->dev;
1817	int ret;
1818
1819	/* No need to continue if a stop() operation has not been provided */
1820	if (!rproc->ops->stop)
1821		return -EINVAL;
1822
1823	/* Stop any subdevices for the remote processor */
1824	rproc_stop_subdevices(rproc, crashed);
1825
1826	/* the installed resource table is no longer accessible */
1827	ret = rproc_reset_rsc_table_on_stop(rproc);
1828	if (ret) {
1829		dev_err(dev, "can't reset resource table: %d\n", ret);
1830		return ret;
1831	}
1832
1833
1834	/* power off the remote processor */
1835	ret = rproc->ops->stop(rproc);
1836	if (ret) {
1837		dev_err(dev, "can't stop rproc: %d\n", ret);
1838		return ret;
1839	}
1840
1841	rproc_unprepare_subdevices(rproc);
1842
1843	rproc->state = RPROC_OFFLINE;
1844
1845	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1846
1847	return 0;
1848}
1849
1850/*
1851 * __rproc_detach(): Does the opposite of __rproc_attach()
1852 */
1853static int __rproc_detach(struct rproc *rproc)
1854{
1855	struct device *dev = &rproc->dev;
1856	int ret;
1857
1858	/* No need to continue if a detach() operation has not been provided */
1859	if (!rproc->ops->detach)
1860		return -EINVAL;
1861
1862	/* Stop any subdevices for the remote processor */
1863	rproc_stop_subdevices(rproc, false);
1864
1865	/* the installed resource table is no longer accessible */
1866	ret = rproc_reset_rsc_table_on_detach(rproc);
1867	if (ret) {
1868		dev_err(dev, "can't reset resource table: %d\n", ret);
1869		return ret;
1870	}
1871
1872	/* Tell the remote processor the core isn't available anymore */
1873	ret = rproc->ops->detach(rproc);
1874	if (ret) {
1875		dev_err(dev, "can't detach from rproc: %d\n", ret);
1876		return ret;
1877	}
1878
1879	rproc_unprepare_subdevices(rproc);
1880
1881	rproc->state = RPROC_DETACHED;
1882
1883	dev_info(dev, "detached remote processor %s\n", rproc->name);
1884
1885	return 0;
1886}
1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888/**
1889 * rproc_trigger_recovery() - recover a remoteproc
1890 * @rproc: the remote processor
1891 *
1892 * The recovery is done by resetting all the virtio devices, that way all the
1893 * rpmsg drivers will be reseted along with the remote processor making the
1894 * remoteproc functional again.
1895 *
1896 * This function can sleep, so it cannot be called from atomic context.
1897 *
1898 * Return: 0 on success or a negative value upon failure
1899 */
1900int rproc_trigger_recovery(struct rproc *rproc)
1901{
1902	const struct firmware *firmware_p;
1903	struct device *dev = &rproc->dev;
1904	int ret;
1905
1906	ret = mutex_lock_interruptible(&rproc->lock);
1907	if (ret)
1908		return ret;
1909
1910	/* State could have changed before we got the mutex */
1911	if (rproc->state != RPROC_CRASHED)
1912		goto unlock_mutex;
1913
1914	dev_err(dev, "recovering %s\n", rproc->name);
1915
1916	ret = rproc_stop(rproc, true);
1917	if (ret)
1918		goto unlock_mutex;
1919
1920	/* generate coredump */
1921	rproc->ops->coredump(rproc);
1922
1923	/* load firmware */
1924	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1925	if (ret < 0) {
1926		dev_err(dev, "request_firmware failed: %d\n", ret);
1927		goto unlock_mutex;
1928	}
1929
1930	/* boot the remote processor up again */
1931	ret = rproc_start(rproc, firmware_p);
1932
1933	release_firmware(firmware_p);
1934
1935unlock_mutex:
1936	mutex_unlock(&rproc->lock);
1937	return ret;
1938}
1939
1940/**
1941 * rproc_crash_handler_work() - handle a crash
1942 * @work: work treating the crash
1943 *
1944 * This function needs to handle everything related to a crash, like cpu
1945 * registers and stack dump, information to help to debug the fatal error, etc.
1946 */
1947static void rproc_crash_handler_work(struct work_struct *work)
1948{
1949	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1950	struct device *dev = &rproc->dev;
1951
1952	dev_dbg(dev, "enter %s\n", __func__);
1953
1954	mutex_lock(&rproc->lock);
1955
1956	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1957		/* handle only the first crash detected */
1958		mutex_unlock(&rproc->lock);
1959		return;
1960	}
1961
 
 
 
 
 
 
1962	rproc->state = RPROC_CRASHED;
1963	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1964		rproc->name);
1965
1966	mutex_unlock(&rproc->lock);
1967
1968	if (!rproc->recovery_disabled)
1969		rproc_trigger_recovery(rproc);
1970
 
1971	pm_relax(rproc->dev.parent);
1972}
1973
1974/**
1975 * rproc_boot() - boot a remote processor
1976 * @rproc: handle of a remote processor
1977 *
1978 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1979 *
1980 * If the remote processor is already powered on, this function immediately
1981 * returns (successfully).
1982 *
1983 * Return: 0 on success, and an appropriate error value otherwise
1984 */
1985int rproc_boot(struct rproc *rproc)
1986{
1987	const struct firmware *firmware_p;
1988	struct device *dev;
1989	int ret;
1990
1991	if (!rproc) {
1992		pr_err("invalid rproc handle\n");
1993		return -EINVAL;
1994	}
1995
1996	dev = &rproc->dev;
1997
1998	ret = mutex_lock_interruptible(&rproc->lock);
1999	if (ret) {
2000		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2001		return ret;
2002	}
2003
2004	if (rproc->state == RPROC_DELETED) {
2005		ret = -ENODEV;
2006		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2007		goto unlock_mutex;
2008	}
2009
2010	/* skip the boot or attach process if rproc is already powered up */
2011	if (atomic_inc_return(&rproc->power) > 1) {
2012		ret = 0;
2013		goto unlock_mutex;
2014	}
2015
2016	if (rproc->state == RPROC_DETACHED) {
2017		dev_info(dev, "attaching to %s\n", rproc->name);
2018
2019		ret = rproc_attach(rproc);
2020	} else {
2021		dev_info(dev, "powering up %s\n", rproc->name);
2022
2023		/* load firmware */
2024		ret = request_firmware(&firmware_p, rproc->firmware, dev);
2025		if (ret < 0) {
2026			dev_err(dev, "request_firmware failed: %d\n", ret);
2027			goto downref_rproc;
2028		}
2029
2030		ret = rproc_fw_boot(rproc, firmware_p);
2031
2032		release_firmware(firmware_p);
2033	}
2034
2035downref_rproc:
2036	if (ret)
2037		atomic_dec(&rproc->power);
2038unlock_mutex:
2039	mutex_unlock(&rproc->lock);
2040	return ret;
2041}
2042EXPORT_SYMBOL(rproc_boot);
2043
2044/**
2045 * rproc_shutdown() - power off the remote processor
2046 * @rproc: the remote processor
2047 *
2048 * Power off a remote processor (previously booted with rproc_boot()).
2049 *
2050 * In case @rproc is still being used by an additional user(s), then
2051 * this function will just decrement the power refcount and exit,
2052 * without really powering off the device.
2053 *
2054 * Every call to rproc_boot() must (eventually) be accompanied by a call
2055 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2056 *
2057 * Notes:
2058 * - we're not decrementing the rproc's refcount, only the power refcount.
2059 *   which means that the @rproc handle stays valid even after rproc_shutdown()
2060 *   returns, and users can still use it with a subsequent rproc_boot(), if
2061 *   needed.
 
 
2062 */
2063void rproc_shutdown(struct rproc *rproc)
2064{
2065	struct device *dev = &rproc->dev;
2066	int ret;
2067
2068	ret = mutex_lock_interruptible(&rproc->lock);
2069	if (ret) {
2070		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2071		return;
 
 
 
 
 
 
2072	}
2073
2074	/* if the remote proc is still needed, bail out */
2075	if (!atomic_dec_and_test(&rproc->power))
2076		goto out;
2077
2078	ret = rproc_stop(rproc, false);
2079	if (ret) {
2080		atomic_inc(&rproc->power);
2081		goto out;
2082	}
2083
2084	/* clean up all acquired resources */
2085	rproc_resource_cleanup(rproc);
2086
2087	/* release HW resources if needed */
2088	rproc_unprepare_device(rproc);
2089
2090	rproc_disable_iommu(rproc);
2091
2092	/* Free the copy of the resource table */
2093	kfree(rproc->cached_table);
2094	rproc->cached_table = NULL;
2095	rproc->table_ptr = NULL;
2096out:
2097	mutex_unlock(&rproc->lock);
 
2098}
2099EXPORT_SYMBOL(rproc_shutdown);
2100
2101/**
2102 * rproc_detach() - Detach the remote processor from the
2103 * remoteproc core
2104 *
2105 * @rproc: the remote processor
2106 *
2107 * Detach a remote processor (previously attached to with rproc_attach()).
2108 *
2109 * In case @rproc is still being used by an additional user(s), then
2110 * this function will just decrement the power refcount and exit,
2111 * without disconnecting the device.
2112 *
2113 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2114 * processor know that services provided by the application processor are
2115 * no longer available.  From there it should be possible to remove the
2116 * platform driver and even power cycle the application processor (if the HW
2117 * supports it) without needing to switch off the remote processor.
2118 *
2119 * Return: 0 on success, and an appropriate error value otherwise
2120 */
2121int rproc_detach(struct rproc *rproc)
2122{
2123	struct device *dev = &rproc->dev;
2124	int ret;
2125
2126	ret = mutex_lock_interruptible(&rproc->lock);
2127	if (ret) {
2128		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2129		return ret;
2130	}
2131
 
 
 
 
 
2132	/* if the remote proc is still needed, bail out */
2133	if (!atomic_dec_and_test(&rproc->power)) {
2134		ret = 0;
2135		goto out;
2136	}
2137
2138	ret = __rproc_detach(rproc);
2139	if (ret) {
2140		atomic_inc(&rproc->power);
2141		goto out;
2142	}
2143
2144	/* clean up all acquired resources */
2145	rproc_resource_cleanup(rproc);
2146
2147	/* release HW resources if needed */
2148	rproc_unprepare_device(rproc);
2149
2150	rproc_disable_iommu(rproc);
2151
2152	/* Free the copy of the resource table */
2153	kfree(rproc->cached_table);
2154	rproc->cached_table = NULL;
2155	rproc->table_ptr = NULL;
2156out:
2157	mutex_unlock(&rproc->lock);
2158	return ret;
2159}
2160EXPORT_SYMBOL(rproc_detach);
2161
2162/**
2163 * rproc_get_by_phandle() - find a remote processor by phandle
2164 * @phandle: phandle to the rproc
2165 *
2166 * Finds an rproc handle using the remote processor's phandle, and then
2167 * return a handle to the rproc.
2168 *
2169 * This function increments the remote processor's refcount, so always
2170 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2171 *
2172 * Return: rproc handle on success, and NULL on failure
2173 */
2174#ifdef CONFIG_OF
2175struct rproc *rproc_get_by_phandle(phandle phandle)
2176{
2177	struct rproc *rproc = NULL, *r;
2178	struct device_node *np;
2179
2180	np = of_find_node_by_phandle(phandle);
2181	if (!np)
2182		return NULL;
2183
2184	rcu_read_lock();
2185	list_for_each_entry_rcu(r, &rproc_list, node) {
2186		if (r->dev.parent && r->dev.parent->of_node == np) {
2187			/* prevent underlying implementation from being removed */
2188			if (!try_module_get(r->dev.parent->driver->owner)) {
2189				dev_err(&r->dev, "can't get owner\n");
2190				break;
2191			}
2192
2193			rproc = r;
2194			get_device(&rproc->dev);
2195			break;
2196		}
2197	}
2198	rcu_read_unlock();
2199
2200	of_node_put(np);
2201
2202	return rproc;
2203}
2204#else
2205struct rproc *rproc_get_by_phandle(phandle phandle)
2206{
2207	return NULL;
2208}
2209#endif
2210EXPORT_SYMBOL(rproc_get_by_phandle);
2211
2212/**
2213 * rproc_set_firmware() - assign a new firmware
2214 * @rproc: rproc handle to which the new firmware is being assigned
2215 * @fw_name: new firmware name to be assigned
2216 *
2217 * This function allows remoteproc drivers or clients to configure a custom
2218 * firmware name that is different from the default name used during remoteproc
2219 * registration. The function does not trigger a remote processor boot,
2220 * only sets the firmware name used for a subsequent boot. This function
2221 * should also be called only when the remote processor is offline.
2222 *
2223 * This allows either the userspace to configure a different name through
2224 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2225 * a specific firmware when it is controlling the boot and shutdown of the
2226 * remote processor.
2227 *
2228 * Return: 0 on success or a negative value upon failure
2229 */
2230int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2231{
2232	struct device *dev;
2233	int ret, len;
2234	char *p;
2235
2236	if (!rproc || !fw_name)
2237		return -EINVAL;
2238
2239	dev = rproc->dev.parent;
2240
2241	ret = mutex_lock_interruptible(&rproc->lock);
2242	if (ret) {
2243		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2244		return -EINVAL;
2245	}
2246
2247	if (rproc->state != RPROC_OFFLINE) {
2248		dev_err(dev, "can't change firmware while running\n");
2249		ret = -EBUSY;
2250		goto out;
2251	}
2252
2253	len = strcspn(fw_name, "\n");
2254	if (!len) {
2255		dev_err(dev, "can't provide empty string for firmware name\n");
2256		ret = -EINVAL;
2257		goto out;
2258	}
2259
2260	p = kstrndup(fw_name, len, GFP_KERNEL);
2261	if (!p) {
2262		ret = -ENOMEM;
2263		goto out;
2264	}
2265
2266	kfree_const(rproc->firmware);
2267	rproc->firmware = p;
2268
2269out:
2270	mutex_unlock(&rproc->lock);
2271	return ret;
2272}
2273EXPORT_SYMBOL(rproc_set_firmware);
2274
2275static int rproc_validate(struct rproc *rproc)
2276{
2277	switch (rproc->state) {
2278	case RPROC_OFFLINE:
2279		/*
2280		 * An offline processor without a start()
2281		 * function makes no sense.
2282		 */
2283		if (!rproc->ops->start)
2284			return -EINVAL;
2285		break;
2286	case RPROC_DETACHED:
2287		/*
2288		 * A remote processor in a detached state without an
2289		 * attach() function makes not sense.
2290		 */
2291		if (!rproc->ops->attach)
2292			return -EINVAL;
2293		/*
2294		 * When attaching to a remote processor the device memory
2295		 * is already available and as such there is no need to have a
2296		 * cached table.
2297		 */
2298		if (rproc->cached_table)
2299			return -EINVAL;
2300		break;
2301	default:
2302		/*
2303		 * When adding a remote processor, the state of the device
2304		 * can be offline or detached, nothing else.
2305		 */
2306		return -EINVAL;
2307	}
2308
2309	return 0;
2310}
2311
2312/**
2313 * rproc_add() - register a remote processor
2314 * @rproc: the remote processor handle to register
2315 *
2316 * Registers @rproc with the remoteproc framework, after it has been
2317 * allocated with rproc_alloc().
2318 *
2319 * This is called by the platform-specific rproc implementation, whenever
2320 * a new remote processor device is probed.
2321 *
2322 * Note: this function initiates an asynchronous firmware loading
2323 * context, which will look for virtio devices supported by the rproc's
2324 * firmware.
2325 *
2326 * If found, those virtio devices will be created and added, so as a result
2327 * of registering this remote processor, additional virtio drivers might be
2328 * probed.
2329 *
2330 * Return: 0 on success and an appropriate error code otherwise
2331 */
2332int rproc_add(struct rproc *rproc)
2333{
2334	struct device *dev = &rproc->dev;
2335	int ret;
2336
2337	ret = rproc_validate(rproc);
2338	if (ret < 0)
2339		return ret;
2340
2341	/* add char device for this remoteproc */
2342	ret = rproc_char_device_add(rproc);
2343	if (ret < 0)
2344		return ret;
2345
2346	ret = device_add(dev);
2347	if (ret < 0) {
2348		put_device(dev);
2349		goto rproc_remove_cdev;
2350	}
2351
2352	dev_info(dev, "%s is available\n", rproc->name);
2353
2354	/* create debugfs entries */
2355	rproc_create_debug_dir(rproc);
2356
2357	/* if rproc is marked always-on, request it to boot */
2358	if (rproc->auto_boot) {
2359		ret = rproc_trigger_auto_boot(rproc);
2360		if (ret < 0)
2361			goto rproc_remove_dev;
2362	}
2363
2364	/* expose to rproc_get_by_phandle users */
2365	mutex_lock(&rproc_list_mutex);
2366	list_add_rcu(&rproc->node, &rproc_list);
2367	mutex_unlock(&rproc_list_mutex);
2368
2369	return 0;
2370
2371rproc_remove_dev:
2372	rproc_delete_debug_dir(rproc);
2373	device_del(dev);
2374rproc_remove_cdev:
2375	rproc_char_device_remove(rproc);
2376	return ret;
2377}
2378EXPORT_SYMBOL(rproc_add);
2379
2380static void devm_rproc_remove(void *rproc)
2381{
2382	rproc_del(rproc);
2383}
2384
2385/**
2386 * devm_rproc_add() - resource managed rproc_add()
2387 * @dev: the underlying device
2388 * @rproc: the remote processor handle to register
2389 *
2390 * This function performs like rproc_add() but the registered rproc device will
2391 * automatically be removed on driver detach.
2392 *
2393 * Return: 0 on success, negative errno on failure
2394 */
2395int devm_rproc_add(struct device *dev, struct rproc *rproc)
2396{
2397	int err;
2398
2399	err = rproc_add(rproc);
2400	if (err)
2401		return err;
2402
2403	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2404}
2405EXPORT_SYMBOL(devm_rproc_add);
2406
2407/**
2408 * rproc_type_release() - release a remote processor instance
2409 * @dev: the rproc's device
2410 *
2411 * This function should _never_ be called directly.
2412 *
2413 * It will be called by the driver core when no one holds a valid pointer
2414 * to @dev anymore.
2415 */
2416static void rproc_type_release(struct device *dev)
2417{
2418	struct rproc *rproc = container_of(dev, struct rproc, dev);
2419
2420	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2421
2422	idr_destroy(&rproc->notifyids);
2423
2424	if (rproc->index >= 0)
2425		ida_simple_remove(&rproc_dev_index, rproc->index);
2426
2427	kfree_const(rproc->firmware);
2428	kfree_const(rproc->name);
2429	kfree(rproc->ops);
2430	kfree(rproc);
2431}
2432
2433static const struct device_type rproc_type = {
2434	.name		= "remoteproc",
2435	.release	= rproc_type_release,
2436};
2437
2438static int rproc_alloc_firmware(struct rproc *rproc,
2439				const char *name, const char *firmware)
2440{
2441	const char *p;
2442
2443	/*
2444	 * Allocate a firmware name if the caller gave us one to work
2445	 * with.  Otherwise construct a new one using a default pattern.
2446	 */
2447	if (firmware)
2448		p = kstrdup_const(firmware, GFP_KERNEL);
2449	else
2450		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2451
2452	if (!p)
2453		return -ENOMEM;
2454
2455	rproc->firmware = p;
2456
2457	return 0;
2458}
2459
2460static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2461{
2462	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2463	if (!rproc->ops)
2464		return -ENOMEM;
2465
2466	/* Default to rproc_coredump if no coredump function is specified */
2467	if (!rproc->ops->coredump)
2468		rproc->ops->coredump = rproc_coredump;
2469
2470	if (rproc->ops->load)
2471		return 0;
2472
2473	/* Default to ELF loader if no load function is specified */
2474	rproc->ops->load = rproc_elf_load_segments;
2475	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2476	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2477	rproc->ops->sanity_check = rproc_elf_sanity_check;
2478	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2479
2480	return 0;
2481}
2482
2483/**
2484 * rproc_alloc() - allocate a remote processor handle
2485 * @dev: the underlying device
2486 * @name: name of this remote processor
2487 * @ops: platform-specific handlers (mainly start/stop)
2488 * @firmware: name of firmware file to load, can be NULL
2489 * @len: length of private data needed by the rproc driver (in bytes)
2490 *
2491 * Allocates a new remote processor handle, but does not register
2492 * it yet. if @firmware is NULL, a default name is used.
2493 *
2494 * This function should be used by rproc implementations during initialization
2495 * of the remote processor.
2496 *
2497 * After creating an rproc handle using this function, and when ready,
2498 * implementations should then call rproc_add() to complete
2499 * the registration of the remote processor.
2500 *
2501 * Note: _never_ directly deallocate @rproc, even if it was not registered
2502 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2503 *
2504 * Return: new rproc pointer on success, and NULL on failure
2505 */
2506struct rproc *rproc_alloc(struct device *dev, const char *name,
2507			  const struct rproc_ops *ops,
2508			  const char *firmware, int len)
2509{
2510	struct rproc *rproc;
2511
2512	if (!dev || !name || !ops)
2513		return NULL;
2514
2515	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2516	if (!rproc)
2517		return NULL;
2518
2519	rproc->priv = &rproc[1];
2520	rproc->auto_boot = true;
2521	rproc->elf_class = ELFCLASSNONE;
2522	rproc->elf_machine = EM_NONE;
2523
2524	device_initialize(&rproc->dev);
2525	rproc->dev.parent = dev;
2526	rproc->dev.type = &rproc_type;
2527	rproc->dev.class = &rproc_class;
2528	rproc->dev.driver_data = rproc;
2529	idr_init(&rproc->notifyids);
2530
2531	rproc->name = kstrdup_const(name, GFP_KERNEL);
2532	if (!rproc->name)
2533		goto put_device;
2534
2535	if (rproc_alloc_firmware(rproc, name, firmware))
2536		goto put_device;
2537
2538	if (rproc_alloc_ops(rproc, ops))
2539		goto put_device;
2540
2541	/* Assign a unique device index and name */
2542	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2543	if (rproc->index < 0) {
2544		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2545		goto put_device;
2546	}
2547
2548	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2549
2550	atomic_set(&rproc->power, 0);
2551
2552	mutex_init(&rproc->lock);
2553
2554	INIT_LIST_HEAD(&rproc->carveouts);
2555	INIT_LIST_HEAD(&rproc->mappings);
2556	INIT_LIST_HEAD(&rproc->traces);
2557	INIT_LIST_HEAD(&rproc->rvdevs);
2558	INIT_LIST_HEAD(&rproc->subdevs);
2559	INIT_LIST_HEAD(&rproc->dump_segments);
2560
2561	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2562
2563	rproc->state = RPROC_OFFLINE;
2564
2565	return rproc;
2566
2567put_device:
2568	put_device(&rproc->dev);
2569	return NULL;
2570}
2571EXPORT_SYMBOL(rproc_alloc);
2572
2573/**
2574 * rproc_free() - unroll rproc_alloc()
2575 * @rproc: the remote processor handle
2576 *
2577 * This function decrements the rproc dev refcount.
2578 *
2579 * If no one holds any reference to rproc anymore, then its refcount would
2580 * now drop to zero, and it would be freed.
2581 */
2582void rproc_free(struct rproc *rproc)
2583{
2584	put_device(&rproc->dev);
2585}
2586EXPORT_SYMBOL(rproc_free);
2587
2588/**
2589 * rproc_put() - release rproc reference
2590 * @rproc: the remote processor handle
2591 *
2592 * This function decrements the rproc dev refcount.
2593 *
2594 * If no one holds any reference to rproc anymore, then its refcount would
2595 * now drop to zero, and it would be freed.
2596 */
2597void rproc_put(struct rproc *rproc)
2598{
2599	module_put(rproc->dev.parent->driver->owner);
2600	put_device(&rproc->dev);
2601}
2602EXPORT_SYMBOL(rproc_put);
2603
2604/**
2605 * rproc_del() - unregister a remote processor
2606 * @rproc: rproc handle to unregister
2607 *
2608 * This function should be called when the platform specific rproc
2609 * implementation decides to remove the rproc device. it should
2610 * _only_ be called if a previous invocation of rproc_add()
2611 * has completed successfully.
2612 *
2613 * After rproc_del() returns, @rproc isn't freed yet, because
2614 * of the outstanding reference created by rproc_alloc. To decrement that
2615 * one last refcount, one still needs to call rproc_free().
2616 *
2617 * Return: 0 on success and -EINVAL if @rproc isn't valid
2618 */
2619int rproc_del(struct rproc *rproc)
2620{
2621	if (!rproc)
2622		return -EINVAL;
2623
2624	/* TODO: make sure this works with rproc->power > 1 */
2625	rproc_shutdown(rproc);
2626
2627	mutex_lock(&rproc->lock);
2628	rproc->state = RPROC_DELETED;
2629	mutex_unlock(&rproc->lock);
2630
2631	rproc_delete_debug_dir(rproc);
2632
2633	/* the rproc is downref'ed as soon as it's removed from the klist */
2634	mutex_lock(&rproc_list_mutex);
2635	list_del_rcu(&rproc->node);
2636	mutex_unlock(&rproc_list_mutex);
2637
2638	/* Ensure that no readers of rproc_list are still active */
2639	synchronize_rcu();
2640
2641	device_del(&rproc->dev);
2642	rproc_char_device_remove(rproc);
2643
2644	return 0;
2645}
2646EXPORT_SYMBOL(rproc_del);
2647
2648static void devm_rproc_free(struct device *dev, void *res)
2649{
2650	rproc_free(*(struct rproc **)res);
2651}
2652
2653/**
2654 * devm_rproc_alloc() - resource managed rproc_alloc()
2655 * @dev: the underlying device
2656 * @name: name of this remote processor
2657 * @ops: platform-specific handlers (mainly start/stop)
2658 * @firmware: name of firmware file to load, can be NULL
2659 * @len: length of private data needed by the rproc driver (in bytes)
2660 *
2661 * This function performs like rproc_alloc() but the acquired rproc device will
2662 * automatically be released on driver detach.
2663 *
2664 * Return: new rproc instance, or NULL on failure
2665 */
2666struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2667			       const struct rproc_ops *ops,
2668			       const char *firmware, int len)
2669{
2670	struct rproc **ptr, *rproc;
2671
2672	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2673	if (!ptr)
2674		return NULL;
2675
2676	rproc = rproc_alloc(dev, name, ops, firmware, len);
2677	if (rproc) {
2678		*ptr = rproc;
2679		devres_add(dev, ptr);
2680	} else {
2681		devres_free(ptr);
2682	}
2683
2684	return rproc;
2685}
2686EXPORT_SYMBOL(devm_rproc_alloc);
2687
2688/**
2689 * rproc_add_subdev() - add a subdevice to a remoteproc
2690 * @rproc: rproc handle to add the subdevice to
2691 * @subdev: subdev handle to register
2692 *
2693 * Caller is responsible for populating optional subdevice function pointers.
2694 */
2695void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2696{
2697	list_add_tail(&subdev->node, &rproc->subdevs);
2698}
2699EXPORT_SYMBOL(rproc_add_subdev);
2700
2701/**
2702 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2703 * @rproc: rproc handle to remove the subdevice from
2704 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2705 */
2706void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2707{
2708	list_del(&subdev->node);
2709}
2710EXPORT_SYMBOL(rproc_remove_subdev);
2711
2712/**
2713 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2714 * @dev:	child device to find ancestor of
2715 *
2716 * Return: the ancestor rproc instance, or NULL if not found
2717 */
2718struct rproc *rproc_get_by_child(struct device *dev)
2719{
2720	for (dev = dev->parent; dev; dev = dev->parent) {
2721		if (dev->type == &rproc_type)
2722			return dev->driver_data;
2723	}
2724
2725	return NULL;
2726}
2727EXPORT_SYMBOL(rproc_get_by_child);
2728
2729/**
2730 * rproc_report_crash() - rproc crash reporter function
2731 * @rproc: remote processor
2732 * @type: crash type
2733 *
2734 * This function must be called every time a crash is detected by the low-level
2735 * drivers implementing a specific remoteproc. This should not be called from a
2736 * non-remoteproc driver.
2737 *
2738 * This function can be called from atomic/interrupt context.
2739 */
2740void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2741{
2742	if (!rproc) {
2743		pr_err("NULL rproc pointer\n");
2744		return;
2745	}
2746
2747	/* Prevent suspend while the remoteproc is being recovered */
2748	pm_stay_awake(rproc->dev.parent);
2749
2750	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2751		rproc->name, rproc_crash_to_string(type));
2752
2753	/* create a new task to handle the error */
2754	schedule_work(&rproc->crash_handler);
2755}
2756EXPORT_SYMBOL(rproc_report_crash);
2757
2758static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2759			       void *ptr)
2760{
2761	unsigned int longest = 0;
2762	struct rproc *rproc;
2763	unsigned int d;
2764
2765	rcu_read_lock();
2766	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2767		if (!rproc->ops->panic)
2768			continue;
2769
2770		if (rproc->state != RPROC_RUNNING &&
2771		    rproc->state != RPROC_ATTACHED)
2772			continue;
2773
2774		d = rproc->ops->panic(rproc);
2775		longest = max(longest, d);
2776	}
2777	rcu_read_unlock();
2778
2779	/*
2780	 * Delay for the longest requested duration before returning. This can
2781	 * be used by the remoteproc drivers to give the remote processor time
2782	 * to perform any requested operations (such as flush caches), when
2783	 * it's not possible to signal the Linux side due to the panic.
2784	 */
2785	mdelay(longest);
2786
2787	return NOTIFY_DONE;
2788}
2789
2790static void __init rproc_init_panic(void)
2791{
2792	rproc_panic_nb.notifier_call = rproc_panic_handler;
2793	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2794}
2795
2796static void __exit rproc_exit_panic(void)
2797{
2798	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2799}
2800
2801static int __init remoteproc_init(void)
2802{
 
 
 
 
 
 
 
2803	rproc_init_sysfs();
2804	rproc_init_debugfs();
2805	rproc_init_cdev();
2806	rproc_init_panic();
2807
2808	return 0;
2809}
2810subsys_initcall(remoteproc_init);
2811
2812static void __exit remoteproc_exit(void)
2813{
2814	ida_destroy(&rproc_dev_index);
2815
 
 
 
2816	rproc_exit_panic();
2817	rproc_exit_debugfs();
2818	rproc_exit_sysfs();
 
2819}
2820module_exit(remoteproc_exit);
2821
2822MODULE_LICENSE("GPL v2");
2823MODULE_DESCRIPTION("Generic Remote Processor Framework");