Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crash_dump.h>
  12#include <linux/crc32.h>
  13#include <linux/kernel.h>
  14#include <linux/initrd.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28#include <linux/random.h>
  29
  30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  31#include <asm/page.h>
  32
  33#include "of_private.h"
  34
  35/*
  36 * of_fdt_limit_memory - limit the number of regions in the /memory node
  37 * @limit: maximum entries
  38 *
  39 * Adjust the flattened device tree to have at most 'limit' number of
  40 * memory entries in the /memory node. This function may be called
  41 * any time after initial_boot_param is set.
  42 */
  43void __init of_fdt_limit_memory(int limit)
  44{
  45	int memory;
  46	int len;
  47	const void *val;
  48	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  49	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  50	const __be32 *addr_prop;
  51	const __be32 *size_prop;
  52	int root_offset;
  53	int cell_size;
  54
  55	root_offset = fdt_path_offset(initial_boot_params, "/");
  56	if (root_offset < 0)
  57		return;
  58
  59	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  60				"#address-cells", NULL);
  61	if (addr_prop)
  62		nr_address_cells = fdt32_to_cpu(*addr_prop);
  63
  64	size_prop = fdt_getprop(initial_boot_params, root_offset,
  65				"#size-cells", NULL);
  66	if (size_prop)
  67		nr_size_cells = fdt32_to_cpu(*size_prop);
  68
  69	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  70
  71	memory = fdt_path_offset(initial_boot_params, "/memory");
  72	if (memory > 0) {
  73		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  74		if (len > limit*cell_size) {
  75			len = limit*cell_size;
  76			pr_debug("Limiting number of entries to %d\n", limit);
  77			fdt_setprop(initial_boot_params, memory, "reg", val,
  78					len);
  79		}
  80	}
  81}
  82
  83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
  84{
  85	const char *status = fdt_getprop(blob, node, "status", NULL);
  86
  87	if (!status)
  88		return true;
  89
  90	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  91		return true;
  92
  93	return false;
  94}
  95
  96static void *unflatten_dt_alloc(void **mem, unsigned long size,
  97				       unsigned long align)
  98{
  99	void *res;
 100
 101	*mem = PTR_ALIGN(*mem, align);
 102	res = *mem;
 103	*mem += size;
 104
 105	return res;
 106}
 107
 108static void populate_properties(const void *blob,
 109				int offset,
 110				void **mem,
 111				struct device_node *np,
 112				const char *nodename,
 113				bool dryrun)
 114{
 115	struct property *pp, **pprev = NULL;
 116	int cur;
 117	bool has_name = false;
 118
 119	pprev = &np->properties;
 120	for (cur = fdt_first_property_offset(blob, offset);
 121	     cur >= 0;
 122	     cur = fdt_next_property_offset(blob, cur)) {
 123		const __be32 *val;
 124		const char *pname;
 125		u32 sz;
 126
 127		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 128		if (!val) {
 129			pr_warn("Cannot locate property at 0x%x\n", cur);
 130			continue;
 131		}
 132
 133		if (!pname) {
 134			pr_warn("Cannot find property name at 0x%x\n", cur);
 135			continue;
 136		}
 137
 138		if (!strcmp(pname, "name"))
 139			has_name = true;
 140
 141		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 142					__alignof__(struct property));
 143		if (dryrun)
 144			continue;
 145
 146		/* We accept flattened tree phandles either in
 147		 * ePAPR-style "phandle" properties, or the
 148		 * legacy "linux,phandle" properties.  If both
 149		 * appear and have different values, things
 150		 * will get weird. Don't do that.
 151		 */
 152		if (!strcmp(pname, "phandle") ||
 153		    !strcmp(pname, "linux,phandle")) {
 154			if (!np->phandle)
 155				np->phandle = be32_to_cpup(val);
 156		}
 157
 158		/* And we process the "ibm,phandle" property
 159		 * used in pSeries dynamic device tree
 160		 * stuff
 161		 */
 162		if (!strcmp(pname, "ibm,phandle"))
 163			np->phandle = be32_to_cpup(val);
 164
 165		pp->name   = (char *)pname;
 166		pp->length = sz;
 167		pp->value  = (__be32 *)val;
 168		*pprev     = pp;
 169		pprev      = &pp->next;
 170	}
 171
 172	/* With version 0x10 we may not have the name property,
 173	 * recreate it here from the unit name if absent
 174	 */
 175	if (!has_name) {
 176		const char *p = nodename, *ps = p, *pa = NULL;
 177		int len;
 178
 179		while (*p) {
 180			if ((*p) == '@')
 181				pa = p;
 182			else if ((*p) == '/')
 183				ps = p + 1;
 184			p++;
 185		}
 186
 187		if (pa < ps)
 188			pa = p;
 189		len = (pa - ps) + 1;
 190		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 191					__alignof__(struct property));
 192		if (!dryrun) {
 193			pp->name   = "name";
 194			pp->length = len;
 195			pp->value  = pp + 1;
 196			*pprev     = pp;
 
 197			memcpy(pp->value, ps, len - 1);
 198			((char *)pp->value)[len - 1] = 0;
 199			pr_debug("fixed up name for %s -> %s\n",
 200				 nodename, (char *)pp->value);
 201		}
 202	}
 
 
 
 203}
 204
 205static int populate_node(const void *blob,
 206			  int offset,
 207			  void **mem,
 208			  struct device_node *dad,
 209			  struct device_node **pnp,
 210			  bool dryrun)
 211{
 212	struct device_node *np;
 213	const char *pathp;
 214	int len;
 215
 216	pathp = fdt_get_name(blob, offset, &len);
 217	if (!pathp) {
 218		*pnp = NULL;
 219		return len;
 220	}
 221
 222	len++;
 223
 224	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 225				__alignof__(struct device_node));
 226	if (!dryrun) {
 227		char *fn;
 228		of_node_init(np);
 229		np->full_name = fn = ((char *)np) + sizeof(*np);
 230
 231		memcpy(fn, pathp, len);
 232
 233		if (dad != NULL) {
 234			np->parent = dad;
 235			np->sibling = dad->child;
 236			dad->child = np;
 237		}
 238	}
 239
 240	populate_properties(blob, offset, mem, np, pathp, dryrun);
 241	if (!dryrun) {
 242		np->name = of_get_property(np, "name", NULL);
 243		if (!np->name)
 244			np->name = "<NULL>";
 245	}
 246
 247	*pnp = np;
 248	return 0;
 249}
 250
 251static void reverse_nodes(struct device_node *parent)
 252{
 253	struct device_node *child, *next;
 254
 255	/* In-depth first */
 256	child = parent->child;
 257	while (child) {
 258		reverse_nodes(child);
 259
 260		child = child->sibling;
 261	}
 262
 263	/* Reverse the nodes in the child list */
 264	child = parent->child;
 265	parent->child = NULL;
 266	while (child) {
 267		next = child->sibling;
 268
 269		child->sibling = parent->child;
 270		parent->child = child;
 271		child = next;
 272	}
 273}
 274
 275/**
 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 277 * @blob: The parent device tree blob
 278 * @mem: Memory chunk to use for allocating device nodes and properties
 279 * @dad: Parent struct device_node
 280 * @nodepp: The device_node tree created by the call
 281 *
 282 * Return: The size of unflattened device tree or error code
 283 */
 284static int unflatten_dt_nodes(const void *blob,
 285			      void *mem,
 286			      struct device_node *dad,
 287			      struct device_node **nodepp)
 288{
 289	struct device_node *root;
 290	int offset = 0, depth = 0, initial_depth = 0;
 291#define FDT_MAX_DEPTH	64
 292	struct device_node *nps[FDT_MAX_DEPTH];
 293	void *base = mem;
 294	bool dryrun = !base;
 295	int ret;
 296
 297	if (nodepp)
 298		*nodepp = NULL;
 299
 300	/*
 301	 * We're unflattening device sub-tree if @dad is valid. There are
 302	 * possibly multiple nodes in the first level of depth. We need
 303	 * set @depth to 1 to make fdt_next_node() happy as it bails
 304	 * immediately when negative @depth is found. Otherwise, the device
 305	 * nodes except the first one won't be unflattened successfully.
 306	 */
 307	if (dad)
 308		depth = initial_depth = 1;
 309
 310	root = dad;
 311	nps[depth] = dad;
 312
 313	for (offset = 0;
 314	     offset >= 0 && depth >= initial_depth;
 315	     offset = fdt_next_node(blob, offset, &depth)) {
 316		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 317			continue;
 318
 319		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 320		    !of_fdt_device_is_available(blob, offset))
 321			continue;
 322
 323		ret = populate_node(blob, offset, &mem, nps[depth],
 324				   &nps[depth+1], dryrun);
 325		if (ret < 0)
 326			return ret;
 327
 328		if (!dryrun && nodepp && !*nodepp)
 329			*nodepp = nps[depth+1];
 330		if (!dryrun && !root)
 331			root = nps[depth+1];
 332	}
 333
 334	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 335		pr_err("Error %d processing FDT\n", offset);
 336		return -EINVAL;
 337	}
 338
 339	/*
 340	 * Reverse the child list. Some drivers assumes node order matches .dts
 341	 * node order
 342	 */
 343	if (!dryrun)
 344		reverse_nodes(root);
 345
 346	return mem - base;
 347}
 348
 349/**
 350 * __unflatten_device_tree - create tree of device_nodes from flat blob
 
 
 
 
 
 351 * @blob: The blob to expand
 352 * @dad: Parent device node
 353 * @mynodes: The device_node tree created by the call
 354 * @dt_alloc: An allocator that provides a virtual address to memory
 355 * for the resulting tree
 356 * @detached: if true set OF_DETACHED on @mynodes
 357 *
 358 * unflattens a device-tree, creating the tree of struct device_node. It also
 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 360 * walking functions can be used.
 361 *
 362 * Return: NULL on failure or the memory chunk containing the unflattened
 363 * device tree on success.
 364 */
 365void *__unflatten_device_tree(const void *blob,
 366			      struct device_node *dad,
 367			      struct device_node **mynodes,
 368			      void *(*dt_alloc)(u64 size, u64 align),
 369			      bool detached)
 370{
 371	int size;
 372	void *mem;
 373	int ret;
 374
 375	if (mynodes)
 376		*mynodes = NULL;
 377
 378	pr_debug(" -> unflatten_device_tree()\n");
 379
 380	if (!blob) {
 381		pr_debug("No device tree pointer\n");
 382		return NULL;
 383	}
 384
 385	pr_debug("Unflattening device tree:\n");
 386	pr_debug("magic: %08x\n", fdt_magic(blob));
 387	pr_debug("size: %08x\n", fdt_totalsize(blob));
 388	pr_debug("version: %08x\n", fdt_version(blob));
 389
 390	if (fdt_check_header(blob)) {
 391		pr_err("Invalid device tree blob header\n");
 392		return NULL;
 393	}
 394
 395	/* First pass, scan for size */
 396	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 397	if (size <= 0)
 398		return NULL;
 399
 400	size = ALIGN(size, 4);
 401	pr_debug("  size is %d, allocating...\n", size);
 402
 403	/* Allocate memory for the expanded device tree */
 404	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 405	if (!mem)
 406		return NULL;
 407
 408	memset(mem, 0, size);
 409
 410	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 411
 412	pr_debug("  unflattening %p...\n", mem);
 413
 414	/* Second pass, do actual unflattening */
 415	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 416
 417	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 418		pr_warn("End of tree marker overwritten: %08x\n",
 419			be32_to_cpup(mem + size));
 420
 421	if (ret <= 0)
 422		return NULL;
 423
 424	if (detached && mynodes && *mynodes) {
 425		of_node_set_flag(*mynodes, OF_DETACHED);
 426		pr_debug("unflattened tree is detached\n");
 427	}
 428
 429	pr_debug(" <- unflatten_device_tree()\n");
 430	return mem;
 431}
 432
 433static void *kernel_tree_alloc(u64 size, u64 align)
 434{
 435	return kzalloc(size, GFP_KERNEL);
 436}
 437
 438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 439
 440/**
 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 442 * @blob: Flat device tree blob
 443 * @dad: Parent device node
 444 * @mynodes: The device tree created by the call
 445 *
 446 * unflattens the device-tree passed by the firmware, creating the
 447 * tree of struct device_node. It also fills the "name" and "type"
 448 * pointers of the nodes so the normal device-tree walking functions
 449 * can be used.
 450 *
 451 * Return: NULL on failure or the memory chunk containing the unflattened
 452 * device tree on success.
 453 */
 454void *of_fdt_unflatten_tree(const unsigned long *blob,
 455			    struct device_node *dad,
 456			    struct device_node **mynodes)
 457{
 458	void *mem;
 459
 460	mutex_lock(&of_fdt_unflatten_mutex);
 461	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 462				      true);
 463	mutex_unlock(&of_fdt_unflatten_mutex);
 464
 465	return mem;
 466}
 467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 468
 469/* Everything below here references initial_boot_params directly. */
 470int __initdata dt_root_addr_cells;
 471int __initdata dt_root_size_cells;
 472
 473void *initial_boot_params __ro_after_init;
 474
 475#ifdef CONFIG_OF_EARLY_FLATTREE
 476
 477static u32 of_fdt_crc32;
 478
 479static int __init early_init_dt_reserve_memory(phys_addr_t base,
 480					       phys_addr_t size, bool nomap)
 481{
 482	if (nomap) {
 483		/*
 484		 * If the memory is already reserved (by another region), we
 485		 * should not allow it to be marked nomap, but don't worry
 486		 * if the region isn't memory as it won't be mapped.
 487		 */
 488		if (memblock_overlaps_region(&memblock.memory, base, size) &&
 489		    memblock_is_region_reserved(base, size))
 490			return -EBUSY;
 491
 492		return memblock_mark_nomap(base, size);
 493	}
 494	return memblock_reserve(base, size);
 495}
 496
 497/*
 498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
 499 */
 500static int __init __reserved_mem_reserve_reg(unsigned long node,
 501					     const char *uname)
 502{
 503	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 504	phys_addr_t base, size;
 505	int len;
 506	const __be32 *prop;
 507	int first = 1;
 508	bool nomap;
 509
 510	prop = of_get_flat_dt_prop(node, "reg", &len);
 511	if (!prop)
 512		return -ENOENT;
 513
 514	if (len && len % t_len != 0) {
 515		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 516		       uname);
 517		return -EINVAL;
 518	}
 519
 520	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 521
 522	while (len >= t_len) {
 523		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 524		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 525
 526		if (size &&
 527		    early_init_dt_reserve_memory(base, size, nomap) == 0)
 528			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
 529				uname, &base, (unsigned long)(size / SZ_1M));
 530		else
 531			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
 532			       uname, &base, (unsigned long)(size / SZ_1M));
 533
 534		len -= t_len;
 535		if (first) {
 536			fdt_reserved_mem_save_node(node, uname, base, size);
 537			first = 0;
 538		}
 539	}
 540	return 0;
 541}
 542
 543/*
 544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 545 * in /reserved-memory matches the values supported by the current implementation,
 546 * also check if ranges property has been provided
 547 */
 548static int __init __reserved_mem_check_root(unsigned long node)
 549{
 550	const __be32 *prop;
 551
 552	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 553	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 554		return -EINVAL;
 555
 556	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 557	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 558		return -EINVAL;
 559
 560	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 561	if (!prop)
 562		return -EINVAL;
 563	return 0;
 564}
 565
 566/*
 567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 568 */
 569static int __init fdt_scan_reserved_mem(void)
 
 570{
 571	int node, child;
 572	const void *fdt = initial_boot_params;
 573
 574	node = fdt_path_offset(fdt, "/reserved-memory");
 575	if (node < 0)
 576		return -ENODEV;
 577
 578	if (__reserved_mem_check_root(node) != 0) {
 579		pr_err("Reserved memory: unsupported node format, ignoring\n");
 580		return -EINVAL;
 
 
 
 
 
 
 
 
 581	}
 582
 583	fdt_for_each_subnode(child, fdt, node) {
 584		const char *uname;
 585		int err;
 586
 587		if (!of_fdt_device_is_available(fdt, child))
 588			continue;
 589
 590		uname = fdt_get_name(fdt, child, NULL);
 
 
 591
 592		err = __reserved_mem_reserve_reg(child, uname);
 593		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
 594			fdt_reserved_mem_save_node(child, uname, 0, 0);
 595	}
 596	return 0;
 597}
 598
 599/*
 600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 601 *
 602 * This function reserves the memory occupied by an elf core header
 603 * described in the device tree. This region contains all the
 604 * information about primary kernel's core image and is used by a dump
 605 * capture kernel to access the system memory on primary kernel.
 606 */
 607static void __init fdt_reserve_elfcorehdr(void)
 608{
 609	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 610		return;
 611
 612	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 613		pr_warn("elfcorehdr is overlapped\n");
 614		return;
 615	}
 616
 617	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 618
 619	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 620		elfcorehdr_size >> 10, elfcorehdr_addr);
 621}
 622
 623/**
 624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 625 *
 626 * This function grabs memory from early allocator for device exclusive use
 627 * defined in device tree structures. It should be called by arch specific code
 628 * once the early allocator (i.e. memblock) has been fully activated.
 629 */
 630void __init early_init_fdt_scan_reserved_mem(void)
 631{
 632	int n;
 633	u64 base, size;
 634
 635	if (!initial_boot_params)
 636		return;
 637
 638	fdt_scan_reserved_mem();
 639	fdt_reserve_elfcorehdr();
 640
 641	/* Process header /memreserve/ fields */
 642	for (n = 0; ; n++) {
 643		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 644		if (!size)
 645			break;
 646		memblock_reserve(base, size);
 647	}
 648
 
 649	fdt_init_reserved_mem();
 650}
 651
 652/**
 653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 654 */
 655void __init early_init_fdt_reserve_self(void)
 656{
 657	if (!initial_boot_params)
 658		return;
 659
 660	/* Reserve the dtb region */
 661	memblock_reserve(__pa(initial_boot_params),
 662			 fdt_totalsize(initial_boot_params));
 
 663}
 664
 665/**
 666 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 667 * @it: callback function
 668 * @data: context data pointer
 669 *
 670 * This function is used to scan the flattened device-tree, it is
 671 * used to extract the memory information at boot before we can
 672 * unflatten the tree
 673 */
 674int __init of_scan_flat_dt(int (*it)(unsigned long node,
 675				     const char *uname, int depth,
 676				     void *data),
 677			   void *data)
 678{
 679	const void *blob = initial_boot_params;
 680	const char *pathp;
 681	int offset, rc = 0, depth = -1;
 682
 683	if (!blob)
 684		return 0;
 685
 686	for (offset = fdt_next_node(blob, -1, &depth);
 687	     offset >= 0 && depth >= 0 && !rc;
 688	     offset = fdt_next_node(blob, offset, &depth)) {
 689
 690		pathp = fdt_get_name(blob, offset, NULL);
 
 
 691		rc = it(offset, pathp, depth, data);
 692	}
 693	return rc;
 694}
 695
 696/**
 697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 698 * @parent: parent node
 699 * @it: callback function
 700 * @data: context data pointer
 701 *
 702 * This function is used to scan sub-nodes of a node.
 703 */
 704int __init of_scan_flat_dt_subnodes(unsigned long parent,
 705				    int (*it)(unsigned long node,
 706					      const char *uname,
 707					      void *data),
 708				    void *data)
 709{
 710	const void *blob = initial_boot_params;
 711	int node;
 712
 713	fdt_for_each_subnode(node, blob, parent) {
 714		const char *pathp;
 715		int rc;
 716
 717		pathp = fdt_get_name(blob, node, NULL);
 
 
 718		rc = it(node, pathp, data);
 719		if (rc)
 720			return rc;
 721	}
 722	return 0;
 723}
 724
 725/**
 726 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 727 *
 728 * @node: the parent node
 729 * @uname: the name of subnode
 730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 731 */
 732
 733int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 734{
 735	return fdt_subnode_offset(initial_boot_params, node, uname);
 736}
 737
 738/*
 739 * of_get_flat_dt_root - find the root node in the flat blob
 740 */
 741unsigned long __init of_get_flat_dt_root(void)
 742{
 743	return 0;
 744}
 745
 746/*
 747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 748 *
 749 * This function can be used within scan_flattened_dt callback to get
 750 * access to properties
 751 */
 752const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 753				       int *size)
 754{
 755	return fdt_getprop(initial_boot_params, node, name, size);
 756}
 757
 758/**
 759 * of_fdt_is_compatible - Return true if given node from the given blob has
 760 * compat in its compatible list
 761 * @blob: A device tree blob
 762 * @node: node to test
 763 * @compat: compatible string to compare with compatible list.
 764 *
 765 * Return: a non-zero value on match with smaller values returned for more
 766 * specific compatible values.
 767 */
 768static int of_fdt_is_compatible(const void *blob,
 769		      unsigned long node, const char *compat)
 770{
 771	const char *cp;
 772	int cplen;
 773	unsigned long l, score = 0;
 774
 775	cp = fdt_getprop(blob, node, "compatible", &cplen);
 776	if (cp == NULL)
 777		return 0;
 778	while (cplen > 0) {
 779		score++;
 780		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 781			return score;
 782		l = strlen(cp) + 1;
 783		cp += l;
 784		cplen -= l;
 785	}
 786
 787	return 0;
 788}
 789
 790/**
 791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 792 * @node: node to test
 793 * @compat: compatible string to compare with compatible list.
 794 */
 795int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 796{
 797	return of_fdt_is_compatible(initial_boot_params, node, compat);
 798}
 799
 800/*
 801 * of_flat_dt_match - Return true if node matches a list of compatible values
 802 */
 803static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 804{
 805	unsigned int tmp, score = 0;
 806
 807	if (!compat)
 808		return 0;
 809
 810	while (*compat) {
 811		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 812		if (tmp && (score == 0 || (tmp < score)))
 813			score = tmp;
 814		compat++;
 815	}
 816
 817	return score;
 818}
 819
 820/*
 821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 822 */
 823uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 824{
 825	return fdt_get_phandle(initial_boot_params, node);
 826}
 827
 
 
 
 
 
 
 
 
 
 828const char * __init of_flat_dt_get_machine_name(void)
 829{
 830	const char *name;
 831	unsigned long dt_root = of_get_flat_dt_root();
 832
 833	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 834	if (!name)
 835		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 836	return name;
 837}
 838
 839/**
 840 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 841 *
 842 * @default_match: A machine specific ptr to return in case of no match.
 843 * @get_next_compat: callback function to return next compatible match table.
 844 *
 845 * Iterate through machine match tables to find the best match for the machine
 846 * compatible string in the FDT.
 847 */
 848const void * __init of_flat_dt_match_machine(const void *default_match,
 849		const void * (*get_next_compat)(const char * const**))
 850{
 851	const void *data = NULL;
 852	const void *best_data = default_match;
 853	const char *const *compat;
 854	unsigned long dt_root;
 855	unsigned int best_score = ~1, score = 0;
 856
 857	dt_root = of_get_flat_dt_root();
 858	while ((data = get_next_compat(&compat))) {
 859		score = of_flat_dt_match(dt_root, compat);
 860		if (score > 0 && score < best_score) {
 861			best_data = data;
 862			best_score = score;
 863		}
 864	}
 865	if (!best_data) {
 866		const char *prop;
 867		int size;
 868
 869		pr_err("\n unrecognized device tree list:\n[ ");
 870
 871		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 872		if (prop) {
 873			while (size > 0) {
 874				printk("'%s' ", prop);
 875				size -= strlen(prop) + 1;
 876				prop += strlen(prop) + 1;
 877			}
 878		}
 879		printk("]\n\n");
 880		return NULL;
 881	}
 882
 883	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 884
 885	return best_data;
 886}
 887
 
 888static void __early_init_dt_declare_initrd(unsigned long start,
 889					   unsigned long end)
 890{
 891	/*
 892	 * __va() is not yet available this early on some platforms. In that
 893	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
 894	 * and does the VA conversion itself.
 895	 */
 896	if (!IS_ENABLED(CONFIG_ARM64) &&
 897	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
 898		initrd_start = (unsigned long)__va(start);
 899		initrd_end = (unsigned long)__va(end);
 900		initrd_below_start_ok = 1;
 901	}
 902}
 903
 904/**
 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 906 * @node: reference to node containing initrd location ('chosen')
 907 */
 908static void __init early_init_dt_check_for_initrd(unsigned long node)
 909{
 910	u64 start, end;
 911	int len;
 912	const __be32 *prop;
 913
 914	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 915		return;
 916
 917	pr_debug("Looking for initrd properties... ");
 918
 919	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 920	if (!prop)
 921		return;
 922	start = of_read_number(prop, len/4);
 923
 924	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 925	if (!prop)
 926		return;
 927	end = of_read_number(prop, len/4);
 928	if (start > end)
 929		return;
 930
 931	__early_init_dt_declare_initrd(start, end);
 932	phys_initrd_start = start;
 933	phys_initrd_size = end - start;
 934
 935	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 936}
 937
 938/**
 939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 940 * tree
 941 * @node: reference to node containing elfcorehdr location ('chosen')
 942 */
 943static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 944{
 945	const __be32 *prop;
 946	int len;
 947
 948	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 949		return;
 950
 951	pr_debug("Looking for elfcorehdr property... ");
 952
 953	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 954	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 955		return;
 956
 957	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 958	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 959
 960	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 961		 elfcorehdr_addr, elfcorehdr_size);
 962}
 963
 964static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 965
 966/*
 967 * The main usage of linux,usable-memory-range is for crash dump kernel.
 968 * Originally, the number of usable-memory regions is one. Now there may
 969 * be two regions, low region and high region.
 970 * To make compatibility with existing user-space and older kdump, the low
 971 * region is always the last range of linux,usable-memory-range if exist.
 972 */
 973#define MAX_USABLE_RANGES		2
 974
 975/**
 976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 977 * location from flat tree
 978 */
 979void __init early_init_dt_check_for_usable_mem_range(void)
 980{
 981	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 982	const __be32 *prop, *endp;
 983	int len, i;
 984	unsigned long node = chosen_node_offset;
 985
 986	if ((long)node < 0)
 987		return;
 988
 989	pr_debug("Looking for usable-memory-range property... ");
 990
 991	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 992	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 993		return;
 994
 995	endp = prop + (len / sizeof(__be32));
 996	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 997		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 998		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 999
1000		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001			 i, &rgn[i].base, &rgn[i].size);
1002	}
1003
1004	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006		memblock_add(rgn[i].base, rgn[i].size);
1007}
 
1008
1009#ifdef CONFIG_SERIAL_EARLYCON
1010
1011int __init early_init_dt_scan_chosen_stdout(void)
1012{
1013	int offset;
1014	const char *p, *q, *options = NULL;
1015	int l;
1016	const struct earlycon_id *match;
1017	const void *fdt = initial_boot_params;
1018	int ret;
1019
1020	offset = fdt_path_offset(fdt, "/chosen");
1021	if (offset < 0)
1022		offset = fdt_path_offset(fdt, "/chosen@0");
1023	if (offset < 0)
1024		return -ENOENT;
1025
1026	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027	if (!p)
1028		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029	if (!p || !l)
1030		return -ENOENT;
1031
1032	q = strchrnul(p, ':');
1033	if (*q != '\0')
1034		options = q + 1;
1035	l = q - p;
1036
1037	/* Get the node specified by stdout-path */
1038	offset = fdt_path_offset_namelen(fdt, p, l);
1039	if (offset < 0) {
1040		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041		return 0;
1042	}
1043
1044	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 
 
 
1045		if (!match->compatible[0])
1046			continue;
1047
1048		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049			continue;
1050
1051		ret = of_setup_earlycon(match, offset, options);
1052		if (!ret || ret == -EALREADY)
1053			return 0;
1054	}
1055	return -ENODEV;
1056}
1057#endif
1058
1059/*
1060 * early_init_dt_scan_root - fetch the top level address and size cells
1061 */
1062int __init early_init_dt_scan_root(void)
 
1063{
1064	const __be32 *prop;
1065	const void *fdt = initial_boot_params;
1066	int node = fdt_path_offset(fdt, "/");
1067
1068	if (node < 0)
1069		return -ENODEV;
1070
1071	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073
1074	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075	if (prop)
1076		dt_root_size_cells = be32_to_cpup(prop);
1077	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078
1079	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080	if (prop)
1081		dt_root_addr_cells = be32_to_cpup(prop);
1082	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083
1084	return 0;
 
1085}
1086
1087u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088{
1089	const __be32 *p = *cellp;
1090
1091	*cellp = p + s;
1092	return of_read_number(p, s);
1093}
1094
1095/*
1096 * early_init_dt_scan_memory - Look for and parse memory nodes
1097 */
1098int __init early_init_dt_scan_memory(void)
 
1099{
1100	int node, found_memory = 0;
1101	const void *fdt = initial_boot_params;
1102
1103	fdt_for_each_subnode(node, fdt, 0) {
1104		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105		const __be32 *reg, *endp;
1106		int l;
1107		bool hotpluggable;
1108
1109		/* We are scanning "memory" nodes only */
1110		if (type == NULL || strcmp(type, "memory") != 0)
1111			continue;
1112
1113		if (!of_fdt_device_is_available(fdt, node))
1114			continue;
1115
1116		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117		if (reg == NULL)
1118			reg = of_get_flat_dt_prop(node, "reg", &l);
1119		if (reg == NULL)
1120			continue;
1121
1122		endp = reg + (l / sizeof(__be32));
1123		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
 
 
 
1124
1125		pr_debug("memory scan node %s, reg size %d,\n",
1126			 fdt_get_name(fdt, node, NULL), l);
1127
1128		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129			u64 base, size;
1130
1131			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1132			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1133
1134			if (size == 0)
1135				continue;
1136			pr_debug(" - %llx, %llx\n", base, size);
1137
1138			early_init_dt_add_memory_arch(base, size);
 
 
 
1139
1140			found_memory = 1;
1141
1142			if (!hotpluggable)
1143				continue;
1144
1145			if (memblock_mark_hotplug(base, size))
1146				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147					base, base + size);
1148		}
1149	}
1150	return found_memory;
 
1151}
1152
1153int __init early_init_dt_scan_chosen(char *cmdline)
 
1154{
1155	int l, node;
1156	const char *p;
1157	const void *rng_seed;
1158	const void *fdt = initial_boot_params;
1159
1160	node = fdt_path_offset(fdt, "/chosen");
1161	if (node < 0)
1162		node = fdt_path_offset(fdt, "/chosen@0");
1163	if (node < 0)
1164		/* Handle the cmdline config options even if no /chosen node */
1165		goto handle_cmdline;
1166
1167	chosen_node_offset = node;
 
 
1168
1169	early_init_dt_check_for_initrd(node);
1170	early_init_dt_check_for_elfcorehdr(node);
1171
1172	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173	if (rng_seed && l > 0) {
1174		add_bootloader_randomness(rng_seed, l);
1175
1176		/* try to clear seed so it won't be found. */
1177		fdt_nop_property(initial_boot_params, node, "rng-seed");
1178
1179		/* update CRC check value */
1180		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181				fdt_totalsize(initial_boot_params));
1182	}
1183
1184	/* Retrieve command line */
1185	p = of_get_flat_dt_prop(node, "bootargs", &l);
1186	if (p != NULL && l > 0)
1187		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188
1189handle_cmdline:
1190	/*
1191	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193	 * is set in which case we override whatever was found earlier.
1194	 */
1195#ifdef CONFIG_CMDLINE
1196#if defined(CONFIG_CMDLINE_EXTEND)
1197	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#elif defined(CONFIG_CMDLINE_FORCE)
1200	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201#else
1202	/* No arguments from boot loader, use kernel's  cmdl*/
1203	if (!((char *)cmdline)[0])
1204		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205#endif
1206#endif /* CONFIG_CMDLINE */
1207
1208	pr_debug("Command line is: %s\n", (char *)cmdline);
1209
1210	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1211}
1212
1213#ifndef MIN_MEMBLOCK_ADDR
1214#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1215#endif
1216#ifndef MAX_MEMBLOCK_ADDR
1217#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1218#endif
1219
1220void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221{
1222	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223
1224	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226			base, base + size);
1227		return;
1228	}
1229
1230	if (!PAGE_ALIGNED(base)) {
1231		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232		base = PAGE_ALIGN(base);
1233	}
1234	size &= PAGE_MASK;
1235
1236	if (base > MAX_MEMBLOCK_ADDR) {
1237		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238			base, base + size);
1239		return;
1240	}
1241
1242	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245		size = MAX_MEMBLOCK_ADDR - base + 1;
1246	}
1247
1248	if (base + size < phys_offset) {
1249		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250			base, base + size);
1251		return;
1252	}
1253	if (base < phys_offset) {
1254		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255			base, phys_offset);
1256		size -= phys_offset - base;
1257		base = phys_offset;
1258	}
1259	memblock_add(base, size);
1260}
1261
 
 
 
 
 
 
 
 
 
 
 
 
 
1262static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263{
1264	void *ptr = memblock_alloc(size, align);
1265
1266	if (!ptr)
1267		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268		      __func__, size, align);
1269
1270	return ptr;
1271}
1272
1273bool __init early_init_dt_verify(void *params)
1274{
1275	if (!params)
1276		return false;
1277
1278	/* check device tree validity */
1279	if (fdt_check_header(params))
1280		return false;
1281
1282	/* Setup flat device-tree pointer */
1283	initial_boot_params = params;
1284	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285				fdt_totalsize(initial_boot_params));
1286	return true;
1287}
1288
1289
1290void __init early_init_dt_scan_nodes(void)
1291{
1292	int rc;
1293
1294	/* Initialize {size,address}-cells info */
1295	early_init_dt_scan_root();
1296
1297	/* Retrieve various information from the /chosen node */
1298	rc = early_init_dt_scan_chosen(boot_command_line);
1299	if (rc)
1300		pr_warn("No chosen node found, continuing without\n");
1301
1302	/* Setup memory, calling early_init_dt_add_memory_arch */
1303	early_init_dt_scan_memory();
1304
1305	/* Handle linux,usable-memory-range property */
1306	early_init_dt_check_for_usable_mem_range();
1307}
1308
1309bool __init early_init_dt_scan(void *params)
1310{
1311	bool status;
1312
1313	status = early_init_dt_verify(params);
1314	if (!status)
1315		return false;
1316
1317	early_init_dt_scan_nodes();
1318	return true;
1319}
1320
1321/**
1322 * unflatten_device_tree - create tree of device_nodes from flat blob
1323 *
1324 * unflattens the device-tree passed by the firmware, creating the
1325 * tree of struct device_node. It also fills the "name" and "type"
1326 * pointers of the nodes so the normal device-tree walking functions
1327 * can be used.
1328 */
1329void __init unflatten_device_tree(void)
1330{
1331	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332				early_init_dt_alloc_memory_arch, false);
1333
1334	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335	of_alias_scan(early_init_dt_alloc_memory_arch);
1336
1337	unittest_unflatten_overlay_base();
1338}
1339
1340/**
1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342 *
1343 * Copies and unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used. This should only be used when the FDT memory has not been
1347 * reserved such is the case when the FDT is built-in to the kernel init
1348 * section. If the FDT memory is reserved already then unflatten_device_tree
1349 * should be used instead.
1350 */
1351void __init unflatten_and_copy_device_tree(void)
1352{
1353	int size;
1354	void *dt;
1355
1356	if (!initial_boot_params) {
1357		pr_warn("No valid device tree found, continuing without\n");
1358		return;
1359	}
1360
1361	size = fdt_totalsize(initial_boot_params);
1362	dt = early_init_dt_alloc_memory_arch(size,
1363					     roundup_pow_of_two(FDT_V17_SIZE));
1364
1365	if (dt) {
1366		memcpy(dt, initial_boot_params, size);
1367		initial_boot_params = dt;
1368	}
1369	unflatten_device_tree();
1370}
1371
1372#ifdef CONFIG_SYSFS
1373static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374			       struct bin_attribute *bin_attr,
1375			       char *buf, loff_t off, size_t count)
1376{
1377	memcpy(buf, initial_boot_params + off, count);
1378	return count;
1379}
1380
1381static int __init of_fdt_raw_init(void)
1382{
1383	static struct bin_attribute of_fdt_raw_attr =
1384		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385
1386	if (!initial_boot_params)
1387		return 0;
1388
1389	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390				     fdt_totalsize(initial_boot_params))) {
1391		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392		return 0;
1393	}
1394	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396}
1397late_initcall(of_fdt_raw_init);
1398#endif
1399
1400#endif /* CONFIG_OF_EARLY_FLATTREE */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
 
  11#include <linux/crc32.h>
  12#include <linux/kernel.h>
  13#include <linux/initrd.h>
  14#include <linux/memblock.h>
  15#include <linux/mutex.h>
  16#include <linux/of.h>
  17#include <linux/of_fdt.h>
  18#include <linux/of_reserved_mem.h>
  19#include <linux/sizes.h>
  20#include <linux/string.h>
  21#include <linux/errno.h>
  22#include <linux/slab.h>
  23#include <linux/libfdt.h>
  24#include <linux/debugfs.h>
  25#include <linux/serial_core.h>
  26#include <linux/sysfs.h>
  27#include <linux/random.h>
  28
  29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  30#include <asm/page.h>
  31
  32#include "of_private.h"
  33
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
  41 */
  42void __init of_fdt_limit_memory(int limit)
  43{
  44	int memory;
  45	int len;
  46	const void *val;
  47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49	const __be32 *addr_prop;
  50	const __be32 *size_prop;
  51	int root_offset;
  52	int cell_size;
  53
  54	root_offset = fdt_path_offset(initial_boot_params, "/");
  55	if (root_offset < 0)
  56		return;
  57
  58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59				"#address-cells", NULL);
  60	if (addr_prop)
  61		nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63	size_prop = fdt_getprop(initial_boot_params, root_offset,
  64				"#size-cells", NULL);
  65	if (size_prop)
  66		nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70	memory = fdt_path_offset(initial_boot_params, "/memory");
  71	if (memory > 0) {
  72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73		if (len > limit*cell_size) {
  74			len = limit*cell_size;
  75			pr_debug("Limiting number of entries to %d\n", limit);
  76			fdt_setprop(initial_boot_params, memory, "reg", val,
  77					len);
  78		}
  79	}
  80}
  81
  82static bool of_fdt_device_is_available(const void *blob, unsigned long node)
  83{
  84	const char *status = fdt_getprop(blob, node, "status", NULL);
  85
  86	if (!status)
  87		return true;
  88
  89	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  90		return true;
  91
  92	return false;
  93}
  94
  95static void *unflatten_dt_alloc(void **mem, unsigned long size,
  96				       unsigned long align)
  97{
  98	void *res;
  99
 100	*mem = PTR_ALIGN(*mem, align);
 101	res = *mem;
 102	*mem += size;
 103
 104	return res;
 105}
 106
 107static void populate_properties(const void *blob,
 108				int offset,
 109				void **mem,
 110				struct device_node *np,
 111				const char *nodename,
 112				bool dryrun)
 113{
 114	struct property *pp, **pprev = NULL;
 115	int cur;
 116	bool has_name = false;
 117
 118	pprev = &np->properties;
 119	for (cur = fdt_first_property_offset(blob, offset);
 120	     cur >= 0;
 121	     cur = fdt_next_property_offset(blob, cur)) {
 122		const __be32 *val;
 123		const char *pname;
 124		u32 sz;
 125
 126		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 127		if (!val) {
 128			pr_warn("Cannot locate property at 0x%x\n", cur);
 129			continue;
 130		}
 131
 132		if (!pname) {
 133			pr_warn("Cannot find property name at 0x%x\n", cur);
 134			continue;
 135		}
 136
 137		if (!strcmp(pname, "name"))
 138			has_name = true;
 139
 140		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 141					__alignof__(struct property));
 142		if (dryrun)
 143			continue;
 144
 145		/* We accept flattened tree phandles either in
 146		 * ePAPR-style "phandle" properties, or the
 147		 * legacy "linux,phandle" properties.  If both
 148		 * appear and have different values, things
 149		 * will get weird. Don't do that.
 150		 */
 151		if (!strcmp(pname, "phandle") ||
 152		    !strcmp(pname, "linux,phandle")) {
 153			if (!np->phandle)
 154				np->phandle = be32_to_cpup(val);
 155		}
 156
 157		/* And we process the "ibm,phandle" property
 158		 * used in pSeries dynamic device tree
 159		 * stuff
 160		 */
 161		if (!strcmp(pname, "ibm,phandle"))
 162			np->phandle = be32_to_cpup(val);
 163
 164		pp->name   = (char *)pname;
 165		pp->length = sz;
 166		pp->value  = (__be32 *)val;
 167		*pprev     = pp;
 168		pprev      = &pp->next;
 169	}
 170
 171	/* With version 0x10 we may not have the name property,
 172	 * recreate it here from the unit name if absent
 173	 */
 174	if (!has_name) {
 175		const char *p = nodename, *ps = p, *pa = NULL;
 176		int len;
 177
 178		while (*p) {
 179			if ((*p) == '@')
 180				pa = p;
 181			else if ((*p) == '/')
 182				ps = p + 1;
 183			p++;
 184		}
 185
 186		if (pa < ps)
 187			pa = p;
 188		len = (pa - ps) + 1;
 189		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 190					__alignof__(struct property));
 191		if (!dryrun) {
 192			pp->name   = "name";
 193			pp->length = len;
 194			pp->value  = pp + 1;
 195			*pprev     = pp;
 196			pprev      = &pp->next;
 197			memcpy(pp->value, ps, len - 1);
 198			((char *)pp->value)[len - 1] = 0;
 199			pr_debug("fixed up name for %s -> %s\n",
 200				 nodename, (char *)pp->value);
 201		}
 202	}
 203
 204	if (!dryrun)
 205		*pprev = NULL;
 206}
 207
 208static bool populate_node(const void *blob,
 209			  int offset,
 210			  void **mem,
 211			  struct device_node *dad,
 212			  struct device_node **pnp,
 213			  bool dryrun)
 214{
 215	struct device_node *np;
 216	const char *pathp;
 217	unsigned int l, allocl;
 218
 219	pathp = fdt_get_name(blob, offset, &l);
 220	if (!pathp) {
 221		*pnp = NULL;
 222		return false;
 223	}
 224
 225	allocl = ++l;
 226
 227	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 228				__alignof__(struct device_node));
 229	if (!dryrun) {
 230		char *fn;
 231		of_node_init(np);
 232		np->full_name = fn = ((char *)np) + sizeof(*np);
 233
 234		memcpy(fn, pathp, l);
 235
 236		if (dad != NULL) {
 237			np->parent = dad;
 238			np->sibling = dad->child;
 239			dad->child = np;
 240		}
 241	}
 242
 243	populate_properties(blob, offset, mem, np, pathp, dryrun);
 244	if (!dryrun) {
 245		np->name = of_get_property(np, "name", NULL);
 246		if (!np->name)
 247			np->name = "<NULL>";
 248	}
 249
 250	*pnp = np;
 251	return true;
 252}
 253
 254static void reverse_nodes(struct device_node *parent)
 255{
 256	struct device_node *child, *next;
 257
 258	/* In-depth first */
 259	child = parent->child;
 260	while (child) {
 261		reverse_nodes(child);
 262
 263		child = child->sibling;
 264	}
 265
 266	/* Reverse the nodes in the child list */
 267	child = parent->child;
 268	parent->child = NULL;
 269	while (child) {
 270		next = child->sibling;
 271
 272		child->sibling = parent->child;
 273		parent->child = child;
 274		child = next;
 275	}
 276}
 277
 278/**
 279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 280 * @blob: The parent device tree blob
 281 * @mem: Memory chunk to use for allocating device nodes and properties
 282 * @dad: Parent struct device_node
 283 * @nodepp: The device_node tree created by the call
 284 *
 285 * It returns the size of unflattened device tree or error code
 286 */
 287static int unflatten_dt_nodes(const void *blob,
 288			      void *mem,
 289			      struct device_node *dad,
 290			      struct device_node **nodepp)
 291{
 292	struct device_node *root;
 293	int offset = 0, depth = 0, initial_depth = 0;
 294#define FDT_MAX_DEPTH	64
 295	struct device_node *nps[FDT_MAX_DEPTH];
 296	void *base = mem;
 297	bool dryrun = !base;
 
 298
 299	if (nodepp)
 300		*nodepp = NULL;
 301
 302	/*
 303	 * We're unflattening device sub-tree if @dad is valid. There are
 304	 * possibly multiple nodes in the first level of depth. We need
 305	 * set @depth to 1 to make fdt_next_node() happy as it bails
 306	 * immediately when negative @depth is found. Otherwise, the device
 307	 * nodes except the first one won't be unflattened successfully.
 308	 */
 309	if (dad)
 310		depth = initial_depth = 1;
 311
 312	root = dad;
 313	nps[depth] = dad;
 314
 315	for (offset = 0;
 316	     offset >= 0 && depth >= initial_depth;
 317	     offset = fdt_next_node(blob, offset, &depth)) {
 318		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 319			continue;
 320
 321		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 322		    !of_fdt_device_is_available(blob, offset))
 323			continue;
 324
 325		if (!populate_node(blob, offset, &mem, nps[depth],
 326				   &nps[depth+1], dryrun))
 327			return mem - base;
 
 328
 329		if (!dryrun && nodepp && !*nodepp)
 330			*nodepp = nps[depth+1];
 331		if (!dryrun && !root)
 332			root = nps[depth+1];
 333	}
 334
 335	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 336		pr_err("Error %d processing FDT\n", offset);
 337		return -EINVAL;
 338	}
 339
 340	/*
 341	 * Reverse the child list. Some drivers assumes node order matches .dts
 342	 * node order
 343	 */
 344	if (!dryrun)
 345		reverse_nodes(root);
 346
 347	return mem - base;
 348}
 349
 350/**
 351 * __unflatten_device_tree - create tree of device_nodes from flat blob
 352 *
 353 * unflattens a device-tree, creating the
 354 * tree of struct device_node. It also fills the "name" and "type"
 355 * pointers of the nodes so the normal device-tree walking functions
 356 * can be used.
 357 * @blob: The blob to expand
 358 * @dad: Parent device node
 359 * @mynodes: The device_node tree created by the call
 360 * @dt_alloc: An allocator that provides a virtual address to memory
 361 * for the resulting tree
 362 * @detached: if true set OF_DETACHED on @mynodes
 363 *
 364 * Returns NULL on failure or the memory chunk containing the unflattened
 
 
 
 
 365 * device tree on success.
 366 */
 367void *__unflatten_device_tree(const void *blob,
 368			      struct device_node *dad,
 369			      struct device_node **mynodes,
 370			      void *(*dt_alloc)(u64 size, u64 align),
 371			      bool detached)
 372{
 373	int size;
 374	void *mem;
 
 
 
 
 375
 376	pr_debug(" -> unflatten_device_tree()\n");
 377
 378	if (!blob) {
 379		pr_debug("No device tree pointer\n");
 380		return NULL;
 381	}
 382
 383	pr_debug("Unflattening device tree:\n");
 384	pr_debug("magic: %08x\n", fdt_magic(blob));
 385	pr_debug("size: %08x\n", fdt_totalsize(blob));
 386	pr_debug("version: %08x\n", fdt_version(blob));
 387
 388	if (fdt_check_header(blob)) {
 389		pr_err("Invalid device tree blob header\n");
 390		return NULL;
 391	}
 392
 393	/* First pass, scan for size */
 394	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 395	if (size < 0)
 396		return NULL;
 397
 398	size = ALIGN(size, 4);
 399	pr_debug("  size is %d, allocating...\n", size);
 400
 401	/* Allocate memory for the expanded device tree */
 402	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 403	if (!mem)
 404		return NULL;
 405
 406	memset(mem, 0, size);
 407
 408	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 409
 410	pr_debug("  unflattening %p...\n", mem);
 411
 412	/* Second pass, do actual unflattening */
 413	unflatten_dt_nodes(blob, mem, dad, mynodes);
 
 414	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 415		pr_warning("End of tree marker overwritten: %08x\n",
 416			   be32_to_cpup(mem + size));
 417
 418	if (detached && mynodes) {
 
 
 
 419		of_node_set_flag(*mynodes, OF_DETACHED);
 420		pr_debug("unflattened tree is detached\n");
 421	}
 422
 423	pr_debug(" <- unflatten_device_tree()\n");
 424	return mem;
 425}
 426
 427static void *kernel_tree_alloc(u64 size, u64 align)
 428{
 429	return kzalloc(size, GFP_KERNEL);
 430}
 431
 432static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 433
 434/**
 435 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 436 * @blob: Flat device tree blob
 437 * @dad: Parent device node
 438 * @mynodes: The device tree created by the call
 439 *
 440 * unflattens the device-tree passed by the firmware, creating the
 441 * tree of struct device_node. It also fills the "name" and "type"
 442 * pointers of the nodes so the normal device-tree walking functions
 443 * can be used.
 444 *
 445 * Returns NULL on failure or the memory chunk containing the unflattened
 446 * device tree on success.
 447 */
 448void *of_fdt_unflatten_tree(const unsigned long *blob,
 449			    struct device_node *dad,
 450			    struct device_node **mynodes)
 451{
 452	void *mem;
 453
 454	mutex_lock(&of_fdt_unflatten_mutex);
 455	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 456				      true);
 457	mutex_unlock(&of_fdt_unflatten_mutex);
 458
 459	return mem;
 460}
 461EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 462
 463/* Everything below here references initial_boot_params directly. */
 464int __initdata dt_root_addr_cells;
 465int __initdata dt_root_size_cells;
 466
 467void *initial_boot_params __ro_after_init;
 468
 469#ifdef CONFIG_OF_EARLY_FLATTREE
 470
 471static u32 of_fdt_crc32;
 472
 473/**
 474 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475 */
 476static int __init __reserved_mem_reserve_reg(unsigned long node,
 477					     const char *uname)
 478{
 479	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 480	phys_addr_t base, size;
 481	int len;
 482	const __be32 *prop;
 483	int first = 1;
 484	bool nomap;
 485
 486	prop = of_get_flat_dt_prop(node, "reg", &len);
 487	if (!prop)
 488		return -ENOENT;
 489
 490	if (len && len % t_len != 0) {
 491		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 492		       uname);
 493		return -EINVAL;
 494	}
 495
 496	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 497
 498	while (len >= t_len) {
 499		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 500		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 501
 502		if (size &&
 503		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 504			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 505				uname, &base, (unsigned long)size / SZ_1M);
 506		else
 507			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 508				uname, &base, (unsigned long)size / SZ_1M);
 509
 510		len -= t_len;
 511		if (first) {
 512			fdt_reserved_mem_save_node(node, uname, base, size);
 513			first = 0;
 514		}
 515	}
 516	return 0;
 517}
 518
 519/**
 520 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 521 * in /reserved-memory matches the values supported by the current implementation,
 522 * also check if ranges property has been provided
 523 */
 524static int __init __reserved_mem_check_root(unsigned long node)
 525{
 526	const __be32 *prop;
 527
 528	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 529	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 530		return -EINVAL;
 531
 532	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 533	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 534		return -EINVAL;
 535
 536	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 537	if (!prop)
 538		return -EINVAL;
 539	return 0;
 540}
 541
 542/**
 543 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 544 */
 545static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 546					  int depth, void *data)
 547{
 548	static int found;
 549	int err;
 550
 551	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 552		if (__reserved_mem_check_root(node) != 0) {
 553			pr_err("Reserved memory: unsupported node format, ignoring\n");
 554			/* break scan */
 555			return 1;
 556		}
 557		found = 1;
 558		/* scan next node */
 559		return 0;
 560	} else if (!found) {
 561		/* scan next node */
 562		return 0;
 563	} else if (found && depth < 2) {
 564		/* scanning of /reserved-memory has been finished */
 565		return 1;
 566	}
 567
 568	if (!of_fdt_device_is_available(initial_boot_params, node))
 569		return 0;
 
 
 
 
 570
 571	err = __reserved_mem_reserve_reg(node, uname);
 572	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 573		fdt_reserved_mem_save_node(node, uname, 0, 0);
 574
 575	/* scan next node */
 
 
 
 576	return 0;
 577}
 578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579/**
 580 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 581 *
 582 * This function grabs memory from early allocator for device exclusive use
 583 * defined in device tree structures. It should be called by arch specific code
 584 * once the early allocator (i.e. memblock) has been fully activated.
 585 */
 586void __init early_init_fdt_scan_reserved_mem(void)
 587{
 588	int n;
 589	u64 base, size;
 590
 591	if (!initial_boot_params)
 592		return;
 593
 
 
 
 594	/* Process header /memreserve/ fields */
 595	for (n = 0; ; n++) {
 596		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 597		if (!size)
 598			break;
 599		early_init_dt_reserve_memory_arch(base, size, false);
 600	}
 601
 602	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 603	fdt_init_reserved_mem();
 604}
 605
 606/**
 607 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 608 */
 609void __init early_init_fdt_reserve_self(void)
 610{
 611	if (!initial_boot_params)
 612		return;
 613
 614	/* Reserve the dtb region */
 615	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 616					  fdt_totalsize(initial_boot_params),
 617					  false);
 618}
 619
 620/**
 621 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 622 * @it: callback function
 623 * @data: context data pointer
 624 *
 625 * This function is used to scan the flattened device-tree, it is
 626 * used to extract the memory information at boot before we can
 627 * unflatten the tree
 628 */
 629int __init of_scan_flat_dt(int (*it)(unsigned long node,
 630				     const char *uname, int depth,
 631				     void *data),
 632			   void *data)
 633{
 634	const void *blob = initial_boot_params;
 635	const char *pathp;
 636	int offset, rc = 0, depth = -1;
 637
 638	if (!blob)
 639		return 0;
 640
 641	for (offset = fdt_next_node(blob, -1, &depth);
 642	     offset >= 0 && depth >= 0 && !rc;
 643	     offset = fdt_next_node(blob, offset, &depth)) {
 644
 645		pathp = fdt_get_name(blob, offset, NULL);
 646		if (*pathp == '/')
 647			pathp = kbasename(pathp);
 648		rc = it(offset, pathp, depth, data);
 649	}
 650	return rc;
 651}
 652
 653/**
 654 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 
 655 * @it: callback function
 656 * @data: context data pointer
 657 *
 658 * This function is used to scan sub-nodes of a node.
 659 */
 660int __init of_scan_flat_dt_subnodes(unsigned long parent,
 661				    int (*it)(unsigned long node,
 662					      const char *uname,
 663					      void *data),
 664				    void *data)
 665{
 666	const void *blob = initial_boot_params;
 667	int node;
 668
 669	fdt_for_each_subnode(node, blob, parent) {
 670		const char *pathp;
 671		int rc;
 672
 673		pathp = fdt_get_name(blob, node, NULL);
 674		if (*pathp == '/')
 675			pathp = kbasename(pathp);
 676		rc = it(node, pathp, data);
 677		if (rc)
 678			return rc;
 679	}
 680	return 0;
 681}
 682
 683/**
 684 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 685 *
 686 * @node: the parent node
 687 * @uname: the name of subnode
 688 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 689 */
 690
 691int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 692{
 693	return fdt_subnode_offset(initial_boot_params, node, uname);
 694}
 695
 696/**
 697 * of_get_flat_dt_root - find the root node in the flat blob
 698 */
 699unsigned long __init of_get_flat_dt_root(void)
 700{
 701	return 0;
 702}
 703
 704/**
 705 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 706 *
 707 * This function can be used within scan_flattened_dt callback to get
 708 * access to properties
 709 */
 710const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 711				       int *size)
 712{
 713	return fdt_getprop(initial_boot_params, node, name, size);
 714}
 715
 716/**
 717 * of_fdt_is_compatible - Return true if given node from the given blob has
 718 * compat in its compatible list
 719 * @blob: A device tree blob
 720 * @node: node to test
 721 * @compat: compatible string to compare with compatible list.
 722 *
 723 * On match, returns a non-zero value with smaller values returned for more
 724 * specific compatible values.
 725 */
 726static int of_fdt_is_compatible(const void *blob,
 727		      unsigned long node, const char *compat)
 728{
 729	const char *cp;
 730	int cplen;
 731	unsigned long l, score = 0;
 732
 733	cp = fdt_getprop(blob, node, "compatible", &cplen);
 734	if (cp == NULL)
 735		return 0;
 736	while (cplen > 0) {
 737		score++;
 738		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 739			return score;
 740		l = strlen(cp) + 1;
 741		cp += l;
 742		cplen -= l;
 743	}
 744
 745	return 0;
 746}
 747
 748/**
 749 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 750 * @node: node to test
 751 * @compat: compatible string to compare with compatible list.
 752 */
 753int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 754{
 755	return of_fdt_is_compatible(initial_boot_params, node, compat);
 756}
 757
 758/**
 759 * of_flat_dt_match - Return true if node matches a list of compatible values
 760 */
 761static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 762{
 763	unsigned int tmp, score = 0;
 764
 765	if (!compat)
 766		return 0;
 767
 768	while (*compat) {
 769		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 770		if (tmp && (score == 0 || (tmp < score)))
 771			score = tmp;
 772		compat++;
 773	}
 774
 775	return score;
 776}
 777
 778/**
 779 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
 780 */
 781uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 782{
 783	return fdt_get_phandle(initial_boot_params, node);
 784}
 785
 786struct fdt_scan_status {
 787	const char *name;
 788	int namelen;
 789	int depth;
 790	int found;
 791	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 792	void *data;
 793};
 794
 795const char * __init of_flat_dt_get_machine_name(void)
 796{
 797	const char *name;
 798	unsigned long dt_root = of_get_flat_dt_root();
 799
 800	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 801	if (!name)
 802		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 803	return name;
 804}
 805
 806/**
 807 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 808 *
 809 * @default_match: A machine specific ptr to return in case of no match.
 810 * @get_next_compat: callback function to return next compatible match table.
 811 *
 812 * Iterate through machine match tables to find the best match for the machine
 813 * compatible string in the FDT.
 814 */
 815const void * __init of_flat_dt_match_machine(const void *default_match,
 816		const void * (*get_next_compat)(const char * const**))
 817{
 818	const void *data = NULL;
 819	const void *best_data = default_match;
 820	const char *const *compat;
 821	unsigned long dt_root;
 822	unsigned int best_score = ~1, score = 0;
 823
 824	dt_root = of_get_flat_dt_root();
 825	while ((data = get_next_compat(&compat))) {
 826		score = of_flat_dt_match(dt_root, compat);
 827		if (score > 0 && score < best_score) {
 828			best_data = data;
 829			best_score = score;
 830		}
 831	}
 832	if (!best_data) {
 833		const char *prop;
 834		int size;
 835
 836		pr_err("\n unrecognized device tree list:\n[ ");
 837
 838		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 839		if (prop) {
 840			while (size > 0) {
 841				printk("'%s' ", prop);
 842				size -= strlen(prop) + 1;
 843				prop += strlen(prop) + 1;
 844			}
 845		}
 846		printk("]\n\n");
 847		return NULL;
 848	}
 849
 850	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 851
 852	return best_data;
 853}
 854
 855#ifdef CONFIG_BLK_DEV_INITRD
 856static void __early_init_dt_declare_initrd(unsigned long start,
 857					   unsigned long end)
 858{
 859	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
 860	 * enabled since __va() is called too early. ARM64 does make use
 861	 * of phys_initrd_start/phys_initrd_size so we can skip this
 862	 * conversion.
 863	 */
 864	if (!IS_ENABLED(CONFIG_ARM64)) {
 
 865		initrd_start = (unsigned long)__va(start);
 866		initrd_end = (unsigned long)__va(end);
 867		initrd_below_start_ok = 1;
 868	}
 869}
 870
 871/**
 872 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 873 * @node: reference to node containing initrd location ('chosen')
 874 */
 875static void __init early_init_dt_check_for_initrd(unsigned long node)
 876{
 877	u64 start, end;
 878	int len;
 879	const __be32 *prop;
 880
 
 
 
 881	pr_debug("Looking for initrd properties... ");
 882
 883	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 884	if (!prop)
 885		return;
 886	start = of_read_number(prop, len/4);
 887
 888	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 889	if (!prop)
 890		return;
 891	end = of_read_number(prop, len/4);
 
 
 892
 893	__early_init_dt_declare_initrd(start, end);
 894	phys_initrd_start = start;
 895	phys_initrd_size = end - start;
 896
 897	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 898		 (unsigned long long)start, (unsigned long long)end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900#else
 901static inline void early_init_dt_check_for_initrd(unsigned long node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903}
 904#endif /* CONFIG_BLK_DEV_INITRD */
 905
 906#ifdef CONFIG_SERIAL_EARLYCON
 907
 908int __init early_init_dt_scan_chosen_stdout(void)
 909{
 910	int offset;
 911	const char *p, *q, *options = NULL;
 912	int l;
 913	const struct earlycon_id **p_match;
 914	const void *fdt = initial_boot_params;
 
 915
 916	offset = fdt_path_offset(fdt, "/chosen");
 917	if (offset < 0)
 918		offset = fdt_path_offset(fdt, "/chosen@0");
 919	if (offset < 0)
 920		return -ENOENT;
 921
 922	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 923	if (!p)
 924		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 925	if (!p || !l)
 926		return -ENOENT;
 927
 928	q = strchrnul(p, ':');
 929	if (*q != '\0')
 930		options = q + 1;
 931	l = q - p;
 932
 933	/* Get the node specified by stdout-path */
 934	offset = fdt_path_offset_namelen(fdt, p, l);
 935	if (offset < 0) {
 936		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 937		return 0;
 938	}
 939
 940	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
 941	     p_match++) {
 942		const struct earlycon_id *match = *p_match;
 943
 944		if (!match->compatible[0])
 945			continue;
 946
 947		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 948			continue;
 949
 950		of_setup_earlycon(match, offset, options);
 951		return 0;
 
 952	}
 953	return -ENODEV;
 954}
 955#endif
 956
 957/**
 958 * early_init_dt_scan_root - fetch the top level address and size cells
 959 */
 960int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 961				   int depth, void *data)
 962{
 963	const __be32 *prop;
 
 
 964
 965	if (depth != 0)
 966		return 0;
 967
 968	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 969	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 970
 971	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 972	if (prop)
 973		dt_root_size_cells = be32_to_cpup(prop);
 974	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
 975
 976	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 977	if (prop)
 978		dt_root_addr_cells = be32_to_cpup(prop);
 979	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 980
 981	/* break now */
 982	return 1;
 983}
 984
 985u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
 986{
 987	const __be32 *p = *cellp;
 988
 989	*cellp = p + s;
 990	return of_read_number(p, s);
 991}
 992
 993/**
 994 * early_init_dt_scan_memory - Look for and parse memory nodes
 995 */
 996int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
 997				     int depth, void *data)
 998{
 999	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1000	const __be32 *reg, *endp;
1001	int l;
1002	bool hotpluggable;
 
 
 
 
 
 
 
 
 
 
 
1003
1004	/* We are scanning "memory" nodes only */
1005	if (type == NULL || strcmp(type, "memory") != 0)
1006		return 0;
 
 
1007
1008	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1009	if (reg == NULL)
1010		reg = of_get_flat_dt_prop(node, "reg", &l);
1011	if (reg == NULL)
1012		return 0;
1013
1014	endp = reg + (l / sizeof(__be32));
1015	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1016
1017	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 
1018
1019	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1020		u64 base, size;
1021
1022		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1023		size = dt_mem_next_cell(dt_root_size_cells, &reg);
 
1024
1025		if (size == 0)
1026			continue;
1027		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1028		    (unsigned long long)size);
1029
1030		early_init_dt_add_memory_arch(base, size);
1031
1032		if (!hotpluggable)
1033			continue;
1034
1035		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1036			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1037				base, base + size);
 
1038	}
1039
1040	return 0;
1041}
1042
1043int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1044				     int depth, void *data)
1045{
1046	int l;
1047	const char *p;
1048	const void *rng_seed;
 
1049
1050	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
 
 
 
 
 
1051
1052	if (depth != 1 || !data ||
1053	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1054		return 0;
1055
1056	early_init_dt_check_for_initrd(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	/* Retrieve command line */
1059	p = of_get_flat_dt_prop(node, "bootargs", &l);
1060	if (p != NULL && l > 0)
1061		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1062
 
1063	/*
1064	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1065	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1066	 * is set in which case we override whatever was found earlier.
1067	 */
1068#ifdef CONFIG_CMDLINE
1069#if defined(CONFIG_CMDLINE_EXTEND)
1070	strlcat(data, " ", COMMAND_LINE_SIZE);
1071	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1072#elif defined(CONFIG_CMDLINE_FORCE)
1073	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074#else
1075	/* No arguments from boot loader, use kernel's  cmdl*/
1076	if (!((char *)data)[0])
1077		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1078#endif
1079#endif /* CONFIG_CMDLINE */
1080
1081	pr_debug("Command line is: %s\n", (char*)data);
1082
1083	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1084	if (rng_seed && l > 0) {
1085		add_bootloader_randomness(rng_seed, l);
1086
1087		/* try to clear seed so it won't be found. */
1088		fdt_nop_property(initial_boot_params, node, "rng-seed");
1089
1090		/* update CRC check value */
1091		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1092				fdt_totalsize(initial_boot_params));
1093	}
1094
1095	/* break now */
1096	return 1;
1097}
1098
1099#ifndef MIN_MEMBLOCK_ADDR
1100#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1101#endif
1102#ifndef MAX_MEMBLOCK_ADDR
1103#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1104#endif
1105
1106void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1107{
1108	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1109
1110	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1111		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1112			base, base + size);
1113		return;
1114	}
1115
1116	if (!PAGE_ALIGNED(base)) {
1117		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1118		base = PAGE_ALIGN(base);
1119	}
1120	size &= PAGE_MASK;
1121
1122	if (base > MAX_MEMBLOCK_ADDR) {
1123		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1124				base, base + size);
1125		return;
1126	}
1127
1128	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1129		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1130				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1131		size = MAX_MEMBLOCK_ADDR - base + 1;
1132	}
1133
1134	if (base + size < phys_offset) {
1135		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1136			   base, base + size);
1137		return;
1138	}
1139	if (base < phys_offset) {
1140		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1141			   base, phys_offset);
1142		size -= phys_offset - base;
1143		base = phys_offset;
1144	}
1145	memblock_add(base, size);
1146}
1147
1148int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1149{
1150	return memblock_mark_hotplug(base, size);
1151}
1152
1153int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1154					phys_addr_t size, bool nomap)
1155{
1156	if (nomap)
1157		return memblock_remove(base, size);
1158	return memblock_reserve(base, size);
1159}
1160
1161static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1162{
1163	void *ptr = memblock_alloc(size, align);
1164
1165	if (!ptr)
1166		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1167		      __func__, size, align);
1168
1169	return ptr;
1170}
1171
1172bool __init early_init_dt_verify(void *params)
1173{
1174	if (!params)
1175		return false;
1176
1177	/* check device tree validity */
1178	if (fdt_check_header(params))
1179		return false;
1180
1181	/* Setup flat device-tree pointer */
1182	initial_boot_params = params;
1183	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1184				fdt_totalsize(initial_boot_params));
1185	return true;
1186}
1187
1188
1189void __init early_init_dt_scan_nodes(void)
1190{
1191	int rc = 0;
 
 
 
1192
1193	/* Retrieve various information from the /chosen node */
1194	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1195	if (!rc)
1196		pr_warn("No chosen node found, continuing without\n");
1197
1198	/* Initialize {size,address}-cells info */
1199	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1200
1201	/* Setup memory, calling early_init_dt_add_memory_arch */
1202	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1203}
1204
1205bool __init early_init_dt_scan(void *params)
1206{
1207	bool status;
1208
1209	status = early_init_dt_verify(params);
1210	if (!status)
1211		return false;
1212
1213	early_init_dt_scan_nodes();
1214	return true;
1215}
1216
1217/**
1218 * unflatten_device_tree - create tree of device_nodes from flat blob
1219 *
1220 * unflattens the device-tree passed by the firmware, creating the
1221 * tree of struct device_node. It also fills the "name" and "type"
1222 * pointers of the nodes so the normal device-tree walking functions
1223 * can be used.
1224 */
1225void __init unflatten_device_tree(void)
1226{
1227	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1228				early_init_dt_alloc_memory_arch, false);
1229
1230	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1231	of_alias_scan(early_init_dt_alloc_memory_arch);
1232
1233	unittest_unflatten_overlay_base();
1234}
1235
1236/**
1237 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1238 *
1239 * Copies and unflattens the device-tree passed by the firmware, creating the
1240 * tree of struct device_node. It also fills the "name" and "type"
1241 * pointers of the nodes so the normal device-tree walking functions
1242 * can be used. This should only be used when the FDT memory has not been
1243 * reserved such is the case when the FDT is built-in to the kernel init
1244 * section. If the FDT memory is reserved already then unflatten_device_tree
1245 * should be used instead.
1246 */
1247void __init unflatten_and_copy_device_tree(void)
1248{
1249	int size;
1250	void *dt;
1251
1252	if (!initial_boot_params) {
1253		pr_warn("No valid device tree found, continuing without\n");
1254		return;
1255	}
1256
1257	size = fdt_totalsize(initial_boot_params);
1258	dt = early_init_dt_alloc_memory_arch(size,
1259					     roundup_pow_of_two(FDT_V17_SIZE));
1260
1261	if (dt) {
1262		memcpy(dt, initial_boot_params, size);
1263		initial_boot_params = dt;
1264	}
1265	unflatten_device_tree();
1266}
1267
1268#ifdef CONFIG_SYSFS
1269static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1270			       struct bin_attribute *bin_attr,
1271			       char *buf, loff_t off, size_t count)
1272{
1273	memcpy(buf, initial_boot_params + off, count);
1274	return count;
1275}
1276
1277static int __init of_fdt_raw_init(void)
1278{
1279	static struct bin_attribute of_fdt_raw_attr =
1280		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1281
1282	if (!initial_boot_params)
1283		return 0;
1284
1285	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1286				     fdt_totalsize(initial_boot_params))) {
1287		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1288		return 0;
1289	}
1290	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1291	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1292}
1293late_initcall(of_fdt_raw_init);
1294#endif
1295
1296#endif /* CONFIG_OF_EARLY_FLATTREE */