Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crash_dump.h>
  12#include <linux/crc32.h>
  13#include <linux/kernel.h>
  14#include <linux/initrd.h>
 
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28#include <linux/random.h>
  29
  30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  31#include <asm/page.h>
  32
  33#include "of_private.h"
  34
  35/*
  36 * of_fdt_limit_memory - limit the number of regions in the /memory node
  37 * @limit: maximum entries
  38 *
  39 * Adjust the flattened device tree to have at most 'limit' number of
  40 * memory entries in the /memory node. This function may be called
  41 * any time after initial_boot_param is set.
  42 */
  43void __init of_fdt_limit_memory(int limit)
  44{
  45	int memory;
  46	int len;
  47	const void *val;
  48	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  49	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  50	const __be32 *addr_prop;
  51	const __be32 *size_prop;
  52	int root_offset;
  53	int cell_size;
  54
  55	root_offset = fdt_path_offset(initial_boot_params, "/");
  56	if (root_offset < 0)
  57		return;
  58
  59	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  60				"#address-cells", NULL);
  61	if (addr_prop)
  62		nr_address_cells = fdt32_to_cpu(*addr_prop);
  63
  64	size_prop = fdt_getprop(initial_boot_params, root_offset,
  65				"#size-cells", NULL);
  66	if (size_prop)
  67		nr_size_cells = fdt32_to_cpu(*size_prop);
  68
  69	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  70
  71	memory = fdt_path_offset(initial_boot_params, "/memory");
  72	if (memory > 0) {
  73		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  74		if (len > limit*cell_size) {
  75			len = limit*cell_size;
  76			pr_debug("Limiting number of entries to %d\n", limit);
  77			fdt_setprop(initial_boot_params, memory, "reg", val,
  78					len);
  79		}
  80	}
  81}
  82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
  84{
  85	const char *status = fdt_getprop(blob, node, "status", NULL);
  86
  87	if (!status)
  88		return true;
  89
  90	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  91		return true;
  92
  93	return false;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96static void *unflatten_dt_alloc(void **mem, unsigned long size,
  97				       unsigned long align)
  98{
  99	void *res;
 100
 101	*mem = PTR_ALIGN(*mem, align);
 102	res = *mem;
 103	*mem += size;
 104
 105	return res;
 106}
 107
 108static void populate_properties(const void *blob,
 109				int offset,
 110				void **mem,
 111				struct device_node *np,
 112				const char *nodename,
 113				bool dryrun)
 114{
 115	struct property *pp, **pprev = NULL;
 116	int cur;
 117	bool has_name = false;
 118
 119	pprev = &np->properties;
 120	for (cur = fdt_first_property_offset(blob, offset);
 121	     cur >= 0;
 122	     cur = fdt_next_property_offset(blob, cur)) {
 123		const __be32 *val;
 124		const char *pname;
 125		u32 sz;
 126
 127		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 128		if (!val) {
 129			pr_warn("Cannot locate property at 0x%x\n", cur);
 130			continue;
 131		}
 132
 133		if (!pname) {
 134			pr_warn("Cannot find property name at 0x%x\n", cur);
 135			continue;
 136		}
 137
 138		if (!strcmp(pname, "name"))
 139			has_name = true;
 140
 141		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 142					__alignof__(struct property));
 143		if (dryrun)
 144			continue;
 145
 146		/* We accept flattened tree phandles either in
 147		 * ePAPR-style "phandle" properties, or the
 148		 * legacy "linux,phandle" properties.  If both
 149		 * appear and have different values, things
 150		 * will get weird. Don't do that.
 151		 */
 152		if (!strcmp(pname, "phandle") ||
 153		    !strcmp(pname, "linux,phandle")) {
 154			if (!np->phandle)
 155				np->phandle = be32_to_cpup(val);
 156		}
 157
 158		/* And we process the "ibm,phandle" property
 159		 * used in pSeries dynamic device tree
 160		 * stuff
 161		 */
 162		if (!strcmp(pname, "ibm,phandle"))
 163			np->phandle = be32_to_cpup(val);
 164
 165		pp->name   = (char *)pname;
 166		pp->length = sz;
 167		pp->value  = (__be32 *)val;
 168		*pprev     = pp;
 169		pprev      = &pp->next;
 170	}
 171
 172	/* With version 0x10 we may not have the name property,
 173	 * recreate it here from the unit name if absent
 174	 */
 175	if (!has_name) {
 176		const char *p = nodename, *ps = p, *pa = NULL;
 177		int len;
 178
 179		while (*p) {
 180			if ((*p) == '@')
 181				pa = p;
 182			else if ((*p) == '/')
 183				ps = p + 1;
 184			p++;
 185		}
 186
 187		if (pa < ps)
 188			pa = p;
 189		len = (pa - ps) + 1;
 190		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 191					__alignof__(struct property));
 192		if (!dryrun) {
 193			pp->name   = "name";
 194			pp->length = len;
 195			pp->value  = pp + 1;
 196			*pprev     = pp;
 
 197			memcpy(pp->value, ps, len - 1);
 198			((char *)pp->value)[len - 1] = 0;
 199			pr_debug("fixed up name for %s -> %s\n",
 200				 nodename, (char *)pp->value);
 201		}
 202	}
 
 
 
 203}
 204
 205static int populate_node(const void *blob,
 206			  int offset,
 207			  void **mem,
 208			  struct device_node *dad,
 209			  struct device_node **pnp,
 210			  bool dryrun)
 211{
 212	struct device_node *np;
 213	const char *pathp;
 214	int len;
 215
 216	pathp = fdt_get_name(blob, offset, &len);
 217	if (!pathp) {
 218		*pnp = NULL;
 219		return len;
 220	}
 221
 222	len++;
 223
 224	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 225				__alignof__(struct device_node));
 226	if (!dryrun) {
 227		char *fn;
 228		of_node_init(np);
 229		np->full_name = fn = ((char *)np) + sizeof(*np);
 230
 231		memcpy(fn, pathp, len);
 232
 233		if (dad != NULL) {
 234			np->parent = dad;
 235			np->sibling = dad->child;
 236			dad->child = np;
 237		}
 238	}
 239
 240	populate_properties(blob, offset, mem, np, pathp, dryrun);
 241	if (!dryrun) {
 242		np->name = of_get_property(np, "name", NULL);
 
 
 243		if (!np->name)
 244			np->name = "<NULL>";
 
 
 245	}
 246
 247	*pnp = np;
 248	return 0;
 249}
 250
 251static void reverse_nodes(struct device_node *parent)
 252{
 253	struct device_node *child, *next;
 254
 255	/* In-depth first */
 256	child = parent->child;
 257	while (child) {
 258		reverse_nodes(child);
 259
 260		child = child->sibling;
 261	}
 262
 263	/* Reverse the nodes in the child list */
 264	child = parent->child;
 265	parent->child = NULL;
 266	while (child) {
 267		next = child->sibling;
 268
 269		child->sibling = parent->child;
 270		parent->child = child;
 271		child = next;
 272	}
 273}
 274
 275/**
 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 277 * @blob: The parent device tree blob
 278 * @mem: Memory chunk to use for allocating device nodes and properties
 279 * @dad: Parent struct device_node
 280 * @nodepp: The device_node tree created by the call
 281 *
 282 * Return: The size of unflattened device tree or error code
 283 */
 284static int unflatten_dt_nodes(const void *blob,
 285			      void *mem,
 286			      struct device_node *dad,
 287			      struct device_node **nodepp)
 288{
 289	struct device_node *root;
 290	int offset = 0, depth = 0, initial_depth = 0;
 291#define FDT_MAX_DEPTH	64
 292	struct device_node *nps[FDT_MAX_DEPTH];
 293	void *base = mem;
 294	bool dryrun = !base;
 295	int ret;
 296
 297	if (nodepp)
 298		*nodepp = NULL;
 299
 300	/*
 301	 * We're unflattening device sub-tree if @dad is valid. There are
 302	 * possibly multiple nodes in the first level of depth. We need
 303	 * set @depth to 1 to make fdt_next_node() happy as it bails
 304	 * immediately when negative @depth is found. Otherwise, the device
 305	 * nodes except the first one won't be unflattened successfully.
 306	 */
 307	if (dad)
 308		depth = initial_depth = 1;
 309
 310	root = dad;
 311	nps[depth] = dad;
 312
 313	for (offset = 0;
 314	     offset >= 0 && depth >= initial_depth;
 315	     offset = fdt_next_node(blob, offset, &depth)) {
 316		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 317			continue;
 318
 319		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 320		    !of_fdt_device_is_available(blob, offset))
 321			continue;
 322
 323		ret = populate_node(blob, offset, &mem, nps[depth],
 324				   &nps[depth+1], dryrun);
 325		if (ret < 0)
 326			return ret;
 327
 328		if (!dryrun && nodepp && !*nodepp)
 329			*nodepp = nps[depth+1];
 330		if (!dryrun && !root)
 331			root = nps[depth+1];
 332	}
 333
 334	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 335		pr_err("Error %d processing FDT\n", offset);
 336		return -EINVAL;
 337	}
 338
 339	/*
 340	 * Reverse the child list. Some drivers assumes node order matches .dts
 341	 * node order
 342	 */
 343	if (!dryrun)
 344		reverse_nodes(root);
 345
 346	return mem - base;
 347}
 348
 349/**
 350 * __unflatten_device_tree - create tree of device_nodes from flat blob
 
 
 
 
 
 351 * @blob: The blob to expand
 352 * @dad: Parent device node
 353 * @mynodes: The device_node tree created by the call
 354 * @dt_alloc: An allocator that provides a virtual address to memory
 355 * for the resulting tree
 356 * @detached: if true set OF_DETACHED on @mynodes
 357 *
 358 * unflattens a device-tree, creating the tree of struct device_node. It also
 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 360 * walking functions can be used.
 361 *
 362 * Return: NULL on failure or the memory chunk containing the unflattened
 363 * device tree on success.
 364 */
 365void *__unflatten_device_tree(const void *blob,
 366			      struct device_node *dad,
 367			      struct device_node **mynodes,
 368			      void *(*dt_alloc)(u64 size, u64 align),
 369			      bool detached)
 370{
 371	int size;
 372	void *mem;
 373	int ret;
 374
 375	if (mynodes)
 376		*mynodes = NULL;
 377
 378	pr_debug(" -> unflatten_device_tree()\n");
 379
 380	if (!blob) {
 381		pr_debug("No device tree pointer\n");
 382		return NULL;
 383	}
 384
 385	pr_debug("Unflattening device tree:\n");
 386	pr_debug("magic: %08x\n", fdt_magic(blob));
 387	pr_debug("size: %08x\n", fdt_totalsize(blob));
 388	pr_debug("version: %08x\n", fdt_version(blob));
 389
 390	if (fdt_check_header(blob)) {
 391		pr_err("Invalid device tree blob header\n");
 392		return NULL;
 393	}
 394
 395	/* First pass, scan for size */
 396	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 397	if (size <= 0)
 398		return NULL;
 399
 400	size = ALIGN(size, 4);
 401	pr_debug("  size is %d, allocating...\n", size);
 402
 403	/* Allocate memory for the expanded device tree */
 404	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 405	if (!mem)
 406		return NULL;
 407
 408	memset(mem, 0, size);
 409
 410	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 411
 412	pr_debug("  unflattening %p...\n", mem);
 413
 414	/* Second pass, do actual unflattening */
 415	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 416
 417	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 418		pr_warn("End of tree marker overwritten: %08x\n",
 419			be32_to_cpup(mem + size));
 420
 421	if (ret <= 0)
 422		return NULL;
 423
 424	if (detached && mynodes && *mynodes) {
 425		of_node_set_flag(*mynodes, OF_DETACHED);
 426		pr_debug("unflattened tree is detached\n");
 427	}
 428
 429	pr_debug(" <- unflatten_device_tree()\n");
 430	return mem;
 431}
 432
 433static void *kernel_tree_alloc(u64 size, u64 align)
 434{
 435	return kzalloc(size, GFP_KERNEL);
 436}
 437
 438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 439
 440/**
 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 442 * @blob: Flat device tree blob
 443 * @dad: Parent device node
 444 * @mynodes: The device tree created by the call
 445 *
 446 * unflattens the device-tree passed by the firmware, creating the
 447 * tree of struct device_node. It also fills the "name" and "type"
 448 * pointers of the nodes so the normal device-tree walking functions
 449 * can be used.
 450 *
 451 * Return: NULL on failure or the memory chunk containing the unflattened
 452 * device tree on success.
 453 */
 454void *of_fdt_unflatten_tree(const unsigned long *blob,
 455			    struct device_node *dad,
 456			    struct device_node **mynodes)
 457{
 458	void *mem;
 459
 460	mutex_lock(&of_fdt_unflatten_mutex);
 461	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 462				      true);
 463	mutex_unlock(&of_fdt_unflatten_mutex);
 464
 465	return mem;
 466}
 467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 468
 469/* Everything below here references initial_boot_params directly. */
 470int __initdata dt_root_addr_cells;
 471int __initdata dt_root_size_cells;
 472
 473void *initial_boot_params __ro_after_init;
 474
 475#ifdef CONFIG_OF_EARLY_FLATTREE
 476
 477static u32 of_fdt_crc32;
 478
 479static int __init early_init_dt_reserve_memory(phys_addr_t base,
 480					       phys_addr_t size, bool nomap)
 481{
 482	if (nomap) {
 483		/*
 484		 * If the memory is already reserved (by another region), we
 485		 * should not allow it to be marked nomap, but don't worry
 486		 * if the region isn't memory as it won't be mapped.
 487		 */
 488		if (memblock_overlaps_region(&memblock.memory, base, size) &&
 489		    memblock_is_region_reserved(base, size))
 490			return -EBUSY;
 491
 492		return memblock_mark_nomap(base, size);
 493	}
 494	return memblock_reserve(base, size);
 495}
 496
 497/*
 498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
 499 */
 500static int __init __reserved_mem_reserve_reg(unsigned long node,
 501					     const char *uname)
 502{
 503	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 504	phys_addr_t base, size;
 505	int len;
 506	const __be32 *prop;
 507	int first = 1;
 508	bool nomap;
 509
 510	prop = of_get_flat_dt_prop(node, "reg", &len);
 511	if (!prop)
 512		return -ENOENT;
 513
 514	if (len && len % t_len != 0) {
 515		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 516		       uname);
 517		return -EINVAL;
 518	}
 519
 520	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 521
 522	while (len >= t_len) {
 523		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 524		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 525
 526		if (size &&
 527		    early_init_dt_reserve_memory(base, size, nomap) == 0)
 528			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
 529				uname, &base, (unsigned long)(size / SZ_1M));
 530		else
 531			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
 532			       uname, &base, (unsigned long)(size / SZ_1M));
 533
 534		len -= t_len;
 535		if (first) {
 536			fdt_reserved_mem_save_node(node, uname, base, size);
 537			first = 0;
 538		}
 539	}
 540	return 0;
 541}
 542
 543/*
 544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 545 * in /reserved-memory matches the values supported by the current implementation,
 546 * also check if ranges property has been provided
 547 */
 548static int __init __reserved_mem_check_root(unsigned long node)
 549{
 550	const __be32 *prop;
 551
 552	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 553	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 554		return -EINVAL;
 555
 556	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 557	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 558		return -EINVAL;
 559
 560	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 561	if (!prop)
 562		return -EINVAL;
 563	return 0;
 564}
 565
 566/*
 567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 568 */
 569static int __init fdt_scan_reserved_mem(void)
 
 570{
 571	int node, child;
 572	const void *fdt = initial_boot_params;
 573
 574	node = fdt_path_offset(fdt, "/reserved-memory");
 575	if (node < 0)
 576		return -ENODEV;
 577
 578	if (__reserved_mem_check_root(node) != 0) {
 579		pr_err("Reserved memory: unsupported node format, ignoring\n");
 580		return -EINVAL;
 
 
 
 
 
 
 
 
 581	}
 582
 583	fdt_for_each_subnode(child, fdt, node) {
 584		const char *uname;
 585		int err;
 586
 587		if (!of_fdt_device_is_available(fdt, child))
 588			continue;
 589
 590		uname = fdt_get_name(fdt, child, NULL);
 
 
 591
 592		err = __reserved_mem_reserve_reg(child, uname);
 593		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
 594			fdt_reserved_mem_save_node(child, uname, 0, 0);
 595	}
 596	return 0;
 597}
 598
 599/*
 600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 601 *
 602 * This function reserves the memory occupied by an elf core header
 603 * described in the device tree. This region contains all the
 604 * information about primary kernel's core image and is used by a dump
 605 * capture kernel to access the system memory on primary kernel.
 606 */
 607static void __init fdt_reserve_elfcorehdr(void)
 608{
 609	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 610		return;
 611
 612	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 613		pr_warn("elfcorehdr is overlapped\n");
 614		return;
 615	}
 616
 617	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 618
 619	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 620		elfcorehdr_size >> 10, elfcorehdr_addr);
 621}
 622
 623/**
 624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 625 *
 626 * This function grabs memory from early allocator for device exclusive use
 627 * defined in device tree structures. It should be called by arch specific code
 628 * once the early allocator (i.e. memblock) has been fully activated.
 629 */
 630void __init early_init_fdt_scan_reserved_mem(void)
 631{
 632	int n;
 633	u64 base, size;
 634
 635	if (!initial_boot_params)
 636		return;
 637
 638	fdt_scan_reserved_mem();
 639	fdt_reserve_elfcorehdr();
 640
 641	/* Process header /memreserve/ fields */
 642	for (n = 0; ; n++) {
 643		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 644		if (!size)
 645			break;
 646		memblock_reserve(base, size);
 647	}
 648
 
 649	fdt_init_reserved_mem();
 650}
 651
 652/**
 653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 654 */
 655void __init early_init_fdt_reserve_self(void)
 656{
 657	if (!initial_boot_params)
 658		return;
 659
 660	/* Reserve the dtb region */
 661	memblock_reserve(__pa(initial_boot_params),
 662			 fdt_totalsize(initial_boot_params));
 
 663}
 664
 665/**
 666 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 667 * @it: callback function
 668 * @data: context data pointer
 669 *
 670 * This function is used to scan the flattened device-tree, it is
 671 * used to extract the memory information at boot before we can
 672 * unflatten the tree
 673 */
 674int __init of_scan_flat_dt(int (*it)(unsigned long node,
 675				     const char *uname, int depth,
 676				     void *data),
 677			   void *data)
 678{
 679	const void *blob = initial_boot_params;
 680	const char *pathp;
 681	int offset, rc = 0, depth = -1;
 682
 683	if (!blob)
 684		return 0;
 685
 686	for (offset = fdt_next_node(blob, -1, &depth);
 687	     offset >= 0 && depth >= 0 && !rc;
 688	     offset = fdt_next_node(blob, offset, &depth)) {
 689
 690		pathp = fdt_get_name(blob, offset, NULL);
 
 
 691		rc = it(offset, pathp, depth, data);
 692	}
 693	return rc;
 694}
 695
 696/**
 697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 698 * @parent: parent node
 699 * @it: callback function
 700 * @data: context data pointer
 701 *
 702 * This function is used to scan sub-nodes of a node.
 703 */
 704int __init of_scan_flat_dt_subnodes(unsigned long parent,
 705				    int (*it)(unsigned long node,
 706					      const char *uname,
 707					      void *data),
 708				    void *data)
 709{
 710	const void *blob = initial_boot_params;
 711	int node;
 712
 713	fdt_for_each_subnode(node, blob, parent) {
 714		const char *pathp;
 715		int rc;
 716
 717		pathp = fdt_get_name(blob, node, NULL);
 
 
 718		rc = it(node, pathp, data);
 719		if (rc)
 720			return rc;
 721	}
 722	return 0;
 723}
 724
 725/**
 726 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 727 *
 728 * @node: the parent node
 729 * @uname: the name of subnode
 730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 731 */
 732
 733int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 734{
 735	return fdt_subnode_offset(initial_boot_params, node, uname);
 736}
 737
 738/*
 739 * of_get_flat_dt_root - find the root node in the flat blob
 740 */
 741unsigned long __init of_get_flat_dt_root(void)
 742{
 743	return 0;
 744}
 745
 746/*
 
 
 
 
 
 
 
 
 747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 748 *
 749 * This function can be used within scan_flattened_dt callback to get
 750 * access to properties
 751 */
 752const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 753				       int *size)
 754{
 755	return fdt_getprop(initial_boot_params, node, name, size);
 756}
 757
 758/**
 759 * of_fdt_is_compatible - Return true if given node from the given blob has
 760 * compat in its compatible list
 761 * @blob: A device tree blob
 762 * @node: node to test
 763 * @compat: compatible string to compare with compatible list.
 764 *
 765 * Return: a non-zero value on match with smaller values returned for more
 766 * specific compatible values.
 767 */
 768static int of_fdt_is_compatible(const void *blob,
 769		      unsigned long node, const char *compat)
 770{
 771	const char *cp;
 772	int cplen;
 773	unsigned long l, score = 0;
 774
 775	cp = fdt_getprop(blob, node, "compatible", &cplen);
 776	if (cp == NULL)
 777		return 0;
 778	while (cplen > 0) {
 779		score++;
 780		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 781			return score;
 782		l = strlen(cp) + 1;
 783		cp += l;
 784		cplen -= l;
 785	}
 786
 787	return 0;
 788}
 789
 790/**
 791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 792 * @node: node to test
 793 * @compat: compatible string to compare with compatible list.
 794 */
 795int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 796{
 797	return of_fdt_is_compatible(initial_boot_params, node, compat);
 798}
 799
 800/*
 801 * of_flat_dt_match - Return true if node matches a list of compatible values
 802 */
 803static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 804{
 805	unsigned int tmp, score = 0;
 806
 807	if (!compat)
 808		return 0;
 809
 810	while (*compat) {
 811		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 812		if (tmp && (score == 0 || (tmp < score)))
 813			score = tmp;
 814		compat++;
 815	}
 816
 817	return score;
 818}
 819
 820/*
 821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 822 */
 823uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 824{
 825	return fdt_get_phandle(initial_boot_params, node);
 826}
 827
 
 
 
 
 
 
 
 
 
 828const char * __init of_flat_dt_get_machine_name(void)
 829{
 830	const char *name;
 831	unsigned long dt_root = of_get_flat_dt_root();
 832
 833	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 834	if (!name)
 835		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 836	return name;
 837}
 838
 839/**
 840 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 841 *
 842 * @default_match: A machine specific ptr to return in case of no match.
 843 * @get_next_compat: callback function to return next compatible match table.
 844 *
 845 * Iterate through machine match tables to find the best match for the machine
 846 * compatible string in the FDT.
 847 */
 848const void * __init of_flat_dt_match_machine(const void *default_match,
 849		const void * (*get_next_compat)(const char * const**))
 850{
 851	const void *data = NULL;
 852	const void *best_data = default_match;
 853	const char *const *compat;
 854	unsigned long dt_root;
 855	unsigned int best_score = ~1, score = 0;
 856
 857	dt_root = of_get_flat_dt_root();
 858	while ((data = get_next_compat(&compat))) {
 859		score = of_flat_dt_match(dt_root, compat);
 860		if (score > 0 && score < best_score) {
 861			best_data = data;
 862			best_score = score;
 863		}
 864	}
 865	if (!best_data) {
 866		const char *prop;
 867		int size;
 868
 869		pr_err("\n unrecognized device tree list:\n[ ");
 870
 871		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 872		if (prop) {
 873			while (size > 0) {
 874				printk("'%s' ", prop);
 875				size -= strlen(prop) + 1;
 876				prop += strlen(prop) + 1;
 877			}
 878		}
 879		printk("]\n\n");
 880		return NULL;
 881	}
 882
 883	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 884
 885	return best_data;
 886}
 887
 
 
 888static void __early_init_dt_declare_initrd(unsigned long start,
 889					   unsigned long end)
 890{
 891	/*
 892	 * __va() is not yet available this early on some platforms. In that
 893	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
 894	 * and does the VA conversion itself.
 895	 */
 896	if (!IS_ENABLED(CONFIG_ARM64) &&
 897	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
 898		initrd_start = (unsigned long)__va(start);
 899		initrd_end = (unsigned long)__va(end);
 900		initrd_below_start_ok = 1;
 901	}
 902}
 
 903
 904/**
 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 906 * @node: reference to node containing initrd location ('chosen')
 907 */
 908static void __init early_init_dt_check_for_initrd(unsigned long node)
 909{
 910	u64 start, end;
 911	int len;
 912	const __be32 *prop;
 913
 914	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 915		return;
 916
 917	pr_debug("Looking for initrd properties... ");
 918
 919	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 920	if (!prop)
 921		return;
 922	start = of_read_number(prop, len/4);
 923
 924	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 925	if (!prop)
 926		return;
 927	end = of_read_number(prop, len/4);
 928	if (start > end)
 929		return;
 930
 931	__early_init_dt_declare_initrd(start, end);
 932	phys_initrd_start = start;
 933	phys_initrd_size = end - start;
 934
 935	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 
 936}
 937
 938/**
 939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 940 * tree
 941 * @node: reference to node containing elfcorehdr location ('chosen')
 942 */
 943static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 944{
 945	const __be32 *prop;
 946	int len;
 947
 948	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 949		return;
 950
 951	pr_debug("Looking for elfcorehdr property... ");
 952
 953	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 954	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 955		return;
 956
 957	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 958	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 959
 960	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 961		 elfcorehdr_addr, elfcorehdr_size);
 962}
 963
 964static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 965
 966/*
 967 * The main usage of linux,usable-memory-range is for crash dump kernel.
 968 * Originally, the number of usable-memory regions is one. Now there may
 969 * be two regions, low region and high region.
 970 * To make compatibility with existing user-space and older kdump, the low
 971 * region is always the last range of linux,usable-memory-range if exist.
 972 */
 973#define MAX_USABLE_RANGES		2
 974
 975/**
 976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 977 * location from flat tree
 978 */
 979void __init early_init_dt_check_for_usable_mem_range(void)
 980{
 981	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 982	const __be32 *prop, *endp;
 983	int len, i;
 984	unsigned long node = chosen_node_offset;
 985
 986	if ((long)node < 0)
 987		return;
 988
 989	pr_debug("Looking for usable-memory-range property... ");
 990
 991	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 992	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 993		return;
 994
 995	endp = prop + (len / sizeof(__be32));
 996	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 997		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 998		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 999
1000		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001			 i, &rgn[i].base, &rgn[i].size);
1002	}
1003
1004	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006		memblock_add(rgn[i].base, rgn[i].size);
1007}
 
1008
1009#ifdef CONFIG_SERIAL_EARLYCON
1010
1011int __init early_init_dt_scan_chosen_stdout(void)
1012{
1013	int offset;
1014	const char *p, *q, *options = NULL;
1015	int l;
1016	const struct earlycon_id *match;
1017	const void *fdt = initial_boot_params;
1018	int ret;
1019
1020	offset = fdt_path_offset(fdt, "/chosen");
1021	if (offset < 0)
1022		offset = fdt_path_offset(fdt, "/chosen@0");
1023	if (offset < 0)
1024		return -ENOENT;
1025
1026	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027	if (!p)
1028		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029	if (!p || !l)
1030		return -ENOENT;
1031
1032	q = strchrnul(p, ':');
1033	if (*q != '\0')
1034		options = q + 1;
1035	l = q - p;
1036
1037	/* Get the node specified by stdout-path */
1038	offset = fdt_path_offset_namelen(fdt, p, l);
1039	if (offset < 0) {
1040		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041		return 0;
1042	}
1043
1044	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 
 
 
1045		if (!match->compatible[0])
1046			continue;
1047
1048		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049			continue;
1050
1051		ret = of_setup_earlycon(match, offset, options);
1052		if (!ret || ret == -EALREADY)
1053			return 0;
1054	}
1055	return -ENODEV;
1056}
1057#endif
1058
1059/*
1060 * early_init_dt_scan_root - fetch the top level address and size cells
1061 */
1062int __init early_init_dt_scan_root(void)
 
1063{
1064	const __be32 *prop;
1065	const void *fdt = initial_boot_params;
1066	int node = fdt_path_offset(fdt, "/");
1067
1068	if (node < 0)
1069		return -ENODEV;
1070
1071	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073
1074	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075	if (prop)
1076		dt_root_size_cells = be32_to_cpup(prop);
1077	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078
1079	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080	if (prop)
1081		dt_root_addr_cells = be32_to_cpup(prop);
1082	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083
1084	return 0;
 
1085}
1086
1087u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088{
1089	const __be32 *p = *cellp;
1090
1091	*cellp = p + s;
1092	return of_read_number(p, s);
1093}
1094
1095/*
1096 * early_init_dt_scan_memory - Look for and parse memory nodes
1097 */
1098int __init early_init_dt_scan_memory(void)
 
1099{
1100	int node, found_memory = 0;
1101	const void *fdt = initial_boot_params;
1102
1103	fdt_for_each_subnode(node, fdt, 0) {
1104		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105		const __be32 *reg, *endp;
1106		int l;
1107		bool hotpluggable;
1108
1109		/* We are scanning "memory" nodes only */
1110		if (type == NULL || strcmp(type, "memory") != 0)
1111			continue;
1112
1113		if (!of_fdt_device_is_available(fdt, node))
1114			continue;
1115
1116		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117		if (reg == NULL)
1118			reg = of_get_flat_dt_prop(node, "reg", &l);
1119		if (reg == NULL)
1120			continue;
 
 
 
 
 
1121
1122		endp = reg + (l / sizeof(__be32));
1123		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
 
 
 
1124
1125		pr_debug("memory scan node %s, reg size %d,\n",
1126			 fdt_get_name(fdt, node, NULL), l);
1127
1128		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129			u64 base, size;
1130
1131			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1132			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1133
1134			if (size == 0)
1135				continue;
1136			pr_debug(" - %llx, %llx\n", base, size);
1137
1138			early_init_dt_add_memory_arch(base, size);
 
 
 
1139
1140			found_memory = 1;
1141
1142			if (!hotpluggable)
1143				continue;
1144
1145			if (memblock_mark_hotplug(base, size))
1146				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147					base, base + size);
1148		}
1149	}
1150	return found_memory;
 
1151}
1152
1153int __init early_init_dt_scan_chosen(char *cmdline)
 
1154{
1155	int l, node;
1156	const char *p;
1157	const void *rng_seed;
1158	const void *fdt = initial_boot_params;
1159
1160	node = fdt_path_offset(fdt, "/chosen");
1161	if (node < 0)
1162		node = fdt_path_offset(fdt, "/chosen@0");
1163	if (node < 0)
1164		/* Handle the cmdline config options even if no /chosen node */
1165		goto handle_cmdline;
1166
1167	chosen_node_offset = node;
 
 
1168
1169	early_init_dt_check_for_initrd(node);
1170	early_init_dt_check_for_elfcorehdr(node);
1171
1172	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173	if (rng_seed && l > 0) {
1174		add_bootloader_randomness(rng_seed, l);
1175
1176		/* try to clear seed so it won't be found. */
1177		fdt_nop_property(initial_boot_params, node, "rng-seed");
1178
1179		/* update CRC check value */
1180		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181				fdt_totalsize(initial_boot_params));
1182	}
1183
1184	/* Retrieve command line */
1185	p = of_get_flat_dt_prop(node, "bootargs", &l);
1186	if (p != NULL && l > 0)
1187		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188
1189handle_cmdline:
1190	/*
1191	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193	 * is set in which case we override whatever was found earlier.
1194	 */
1195#ifdef CONFIG_CMDLINE
1196#if defined(CONFIG_CMDLINE_EXTEND)
1197	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#elif defined(CONFIG_CMDLINE_FORCE)
1200	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201#else
1202	/* No arguments from boot loader, use kernel's  cmdl*/
1203	if (!((char *)cmdline)[0])
1204		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205#endif
1206#endif /* CONFIG_CMDLINE */
1207
1208	pr_debug("Command line is: %s\n", (char *)cmdline);
1209
1210	return 0;
 
1211}
1212
 
1213#ifndef MIN_MEMBLOCK_ADDR
1214#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1215#endif
1216#ifndef MAX_MEMBLOCK_ADDR
1217#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1218#endif
1219
1220void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221{
1222	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223
1224	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226			base, base + size);
1227		return;
1228	}
1229
1230	if (!PAGE_ALIGNED(base)) {
 
 
 
 
 
1231		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232		base = PAGE_ALIGN(base);
1233	}
1234	size &= PAGE_MASK;
1235
1236	if (base > MAX_MEMBLOCK_ADDR) {
1237		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238			base, base + size);
1239		return;
1240	}
1241
1242	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245		size = MAX_MEMBLOCK_ADDR - base + 1;
1246	}
1247
1248	if (base + size < phys_offset) {
1249		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250			base, base + size);
1251		return;
1252	}
1253	if (base < phys_offset) {
1254		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255			base, phys_offset);
1256		size -= phys_offset - base;
1257		base = phys_offset;
1258	}
1259	memblock_add(base, size);
1260}
1261
1262static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263{
1264	void *ptr = memblock_alloc(size, align);
 
1265
1266	if (!ptr)
1267		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268		      __func__, size, align);
 
 
 
 
1269
1270	return ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271}
1272
1273bool __init early_init_dt_verify(void *params)
1274{
1275	if (!params)
1276		return false;
1277
1278	/* check device tree validity */
1279	if (fdt_check_header(params))
1280		return false;
1281
1282	/* Setup flat device-tree pointer */
1283	initial_boot_params = params;
1284	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285				fdt_totalsize(initial_boot_params));
1286	return true;
1287}
1288
1289
1290void __init early_init_dt_scan_nodes(void)
1291{
1292	int rc;
 
1293
1294	/* Initialize {size,address}-cells info */
1295	early_init_dt_scan_root();
1296
1297	/* Retrieve various information from the /chosen node */
1298	rc = early_init_dt_scan_chosen(boot_command_line);
1299	if (rc)
1300		pr_warn("No chosen node found, continuing without\n");
1301
1302	/* Setup memory, calling early_init_dt_add_memory_arch */
1303	early_init_dt_scan_memory();
1304
1305	/* Handle linux,usable-memory-range property */
1306	early_init_dt_check_for_usable_mem_range();
1307}
1308
1309bool __init early_init_dt_scan(void *params)
1310{
1311	bool status;
1312
1313	status = early_init_dt_verify(params);
1314	if (!status)
1315		return false;
1316
1317	early_init_dt_scan_nodes();
1318	return true;
1319}
1320
1321/**
1322 * unflatten_device_tree - create tree of device_nodes from flat blob
1323 *
1324 * unflattens the device-tree passed by the firmware, creating the
1325 * tree of struct device_node. It also fills the "name" and "type"
1326 * pointers of the nodes so the normal device-tree walking functions
1327 * can be used.
1328 */
1329void __init unflatten_device_tree(void)
1330{
1331	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332				early_init_dt_alloc_memory_arch, false);
1333
1334	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335	of_alias_scan(early_init_dt_alloc_memory_arch);
1336
1337	unittest_unflatten_overlay_base();
1338}
1339
1340/**
1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342 *
1343 * Copies and unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used. This should only be used when the FDT memory has not been
1347 * reserved such is the case when the FDT is built-in to the kernel init
1348 * section. If the FDT memory is reserved already then unflatten_device_tree
1349 * should be used instead.
1350 */
1351void __init unflatten_and_copy_device_tree(void)
1352{
1353	int size;
1354	void *dt;
1355
1356	if (!initial_boot_params) {
1357		pr_warn("No valid device tree found, continuing without\n");
1358		return;
1359	}
1360
1361	size = fdt_totalsize(initial_boot_params);
1362	dt = early_init_dt_alloc_memory_arch(size,
1363					     roundup_pow_of_two(FDT_V17_SIZE));
1364
1365	if (dt) {
1366		memcpy(dt, initial_boot_params, size);
1367		initial_boot_params = dt;
1368	}
1369	unflatten_device_tree();
1370}
1371
1372#ifdef CONFIG_SYSFS
1373static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374			       struct bin_attribute *bin_attr,
1375			       char *buf, loff_t off, size_t count)
1376{
1377	memcpy(buf, initial_boot_params + off, count);
1378	return count;
1379}
1380
1381static int __init of_fdt_raw_init(void)
1382{
1383	static struct bin_attribute of_fdt_raw_attr =
1384		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385
1386	if (!initial_boot_params)
1387		return 0;
1388
1389	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390				     fdt_totalsize(initial_boot_params))) {
1391		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392		return 0;
1393	}
1394	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396}
1397late_initcall(of_fdt_raw_init);
1398#endif
1399
1400#endif /* CONFIG_OF_EARLY_FLATTREE */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
 
  11#include <linux/crc32.h>
  12#include <linux/kernel.h>
  13#include <linux/initrd.h>
  14#include <linux/bootmem.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
 
  28
  29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  30#include <asm/page.h>
  31
  32#include "of_private.h"
  33
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
  41 */
  42void of_fdt_limit_memory(int limit)
  43{
  44	int memory;
  45	int len;
  46	const void *val;
  47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49	const __be32 *addr_prop;
  50	const __be32 *size_prop;
  51	int root_offset;
  52	int cell_size;
  53
  54	root_offset = fdt_path_offset(initial_boot_params, "/");
  55	if (root_offset < 0)
  56		return;
  57
  58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59				"#address-cells", NULL);
  60	if (addr_prop)
  61		nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63	size_prop = fdt_getprop(initial_boot_params, root_offset,
  64				"#size-cells", NULL);
  65	if (size_prop)
  66		nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70	memory = fdt_path_offset(initial_boot_params, "/memory");
  71	if (memory > 0) {
  72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73		if (len > limit*cell_size) {
  74			len = limit*cell_size;
  75			pr_debug("Limiting number of entries to %d\n", limit);
  76			fdt_setprop(initial_boot_params, memory, "reg", val,
  77					len);
  78		}
  79	}
  80}
  81
  82/**
  83 * of_fdt_is_compatible - Return true if given node from the given blob has
  84 * compat in its compatible list
  85 * @blob: A device tree blob
  86 * @node: node to test
  87 * @compat: compatible string to compare with compatible list.
  88 *
  89 * On match, returns a non-zero value with smaller values returned for more
  90 * specific compatible values.
  91 */
  92static int of_fdt_is_compatible(const void *blob,
  93		      unsigned long node, const char *compat)
  94{
  95	const char *cp;
  96	int cplen;
  97	unsigned long l, score = 0;
  98
  99	cp = fdt_getprop(blob, node, "compatible", &cplen);
 100	if (cp == NULL)
 101		return 0;
 102	while (cplen > 0) {
 103		score++;
 104		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 105			return score;
 106		l = strlen(cp) + 1;
 107		cp += l;
 108		cplen -= l;
 109	}
 110
 111	return 0;
 112}
 113
 114/**
 115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 116 * @blob: A device tree blob
 117 * @node: node to test
 118 *
 119 * Returns true if the node has a "big-endian" property, or if the kernel
 120 * was compiled for BE *and* the node has a "native-endian" property.
 121 * Returns false otherwise.
 122 */
 123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 124{
 125	if (fdt_getprop(blob, node, "big-endian", NULL))
 126		return true;
 127	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 128	    fdt_getprop(blob, node, "native-endian", NULL))
 129		return true;
 130	return false;
 131}
 132
 133static bool of_fdt_device_is_available(const void *blob, unsigned long node)
 134{
 135	const char *status = fdt_getprop(blob, node, "status", NULL);
 136
 137	if (!status)
 138		return true;
 139
 140	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
 141		return true;
 142
 143	return false;
 144}
 145
 146/**
 147 * of_fdt_match - Return true if node matches a list of compatible values
 148 */
 149int of_fdt_match(const void *blob, unsigned long node,
 150                 const char *const *compat)
 151{
 152	unsigned int tmp, score = 0;
 153
 154	if (!compat)
 155		return 0;
 156
 157	while (*compat) {
 158		tmp = of_fdt_is_compatible(blob, node, *compat);
 159		if (tmp && (score == 0 || (tmp < score)))
 160			score = tmp;
 161		compat++;
 162	}
 163
 164	return score;
 165}
 166
 167static void *unflatten_dt_alloc(void **mem, unsigned long size,
 168				       unsigned long align)
 169{
 170	void *res;
 171
 172	*mem = PTR_ALIGN(*mem, align);
 173	res = *mem;
 174	*mem += size;
 175
 176	return res;
 177}
 178
 179static void populate_properties(const void *blob,
 180				int offset,
 181				void **mem,
 182				struct device_node *np,
 183				const char *nodename,
 184				bool dryrun)
 185{
 186	struct property *pp, **pprev = NULL;
 187	int cur;
 188	bool has_name = false;
 189
 190	pprev = &np->properties;
 191	for (cur = fdt_first_property_offset(blob, offset);
 192	     cur >= 0;
 193	     cur = fdt_next_property_offset(blob, cur)) {
 194		const __be32 *val;
 195		const char *pname;
 196		u32 sz;
 197
 198		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 199		if (!val) {
 200			pr_warn("Cannot locate property at 0x%x\n", cur);
 201			continue;
 202		}
 203
 204		if (!pname) {
 205			pr_warn("Cannot find property name at 0x%x\n", cur);
 206			continue;
 207		}
 208
 209		if (!strcmp(pname, "name"))
 210			has_name = true;
 211
 212		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 213					__alignof__(struct property));
 214		if (dryrun)
 215			continue;
 216
 217		/* We accept flattened tree phandles either in
 218		 * ePAPR-style "phandle" properties, or the
 219		 * legacy "linux,phandle" properties.  If both
 220		 * appear and have different values, things
 221		 * will get weird. Don't do that.
 222		 */
 223		if (!strcmp(pname, "phandle") ||
 224		    !strcmp(pname, "linux,phandle")) {
 225			if (!np->phandle)
 226				np->phandle = be32_to_cpup(val);
 227		}
 228
 229		/* And we process the "ibm,phandle" property
 230		 * used in pSeries dynamic device tree
 231		 * stuff
 232		 */
 233		if (!strcmp(pname, "ibm,phandle"))
 234			np->phandle = be32_to_cpup(val);
 235
 236		pp->name   = (char *)pname;
 237		pp->length = sz;
 238		pp->value  = (__be32 *)val;
 239		*pprev     = pp;
 240		pprev      = &pp->next;
 241	}
 242
 243	/* With version 0x10 we may not have the name property,
 244	 * recreate it here from the unit name if absent
 245	 */
 246	if (!has_name) {
 247		const char *p = nodename, *ps = p, *pa = NULL;
 248		int len;
 249
 250		while (*p) {
 251			if ((*p) == '@')
 252				pa = p;
 253			else if ((*p) == '/')
 254				ps = p + 1;
 255			p++;
 256		}
 257
 258		if (pa < ps)
 259			pa = p;
 260		len = (pa - ps) + 1;
 261		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 262					__alignof__(struct property));
 263		if (!dryrun) {
 264			pp->name   = "name";
 265			pp->length = len;
 266			pp->value  = pp + 1;
 267			*pprev     = pp;
 268			pprev      = &pp->next;
 269			memcpy(pp->value, ps, len - 1);
 270			((char *)pp->value)[len - 1] = 0;
 271			pr_debug("fixed up name for %s -> %s\n",
 272				 nodename, (char *)pp->value);
 273		}
 274	}
 275
 276	if (!dryrun)
 277		*pprev = NULL;
 278}
 279
 280static bool populate_node(const void *blob,
 281			  int offset,
 282			  void **mem,
 283			  struct device_node *dad,
 284			  struct device_node **pnp,
 285			  bool dryrun)
 286{
 287	struct device_node *np;
 288	const char *pathp;
 289	unsigned int l, allocl;
 290
 291	pathp = fdt_get_name(blob, offset, &l);
 292	if (!pathp) {
 293		*pnp = NULL;
 294		return false;
 295	}
 296
 297	allocl = ++l;
 298
 299	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 300				__alignof__(struct device_node));
 301	if (!dryrun) {
 302		char *fn;
 303		of_node_init(np);
 304		np->full_name = fn = ((char *)np) + sizeof(*np);
 305
 306		memcpy(fn, pathp, l);
 307
 308		if (dad != NULL) {
 309			np->parent = dad;
 310			np->sibling = dad->child;
 311			dad->child = np;
 312		}
 313	}
 314
 315	populate_properties(blob, offset, mem, np, pathp, dryrun);
 316	if (!dryrun) {
 317		np->name = of_get_property(np, "name", NULL);
 318		np->type = of_get_property(np, "device_type", NULL);
 319
 320		if (!np->name)
 321			np->name = "<NULL>";
 322		if (!np->type)
 323			np->type = "<NULL>";
 324	}
 325
 326	*pnp = np;
 327	return true;
 328}
 329
 330static void reverse_nodes(struct device_node *parent)
 331{
 332	struct device_node *child, *next;
 333
 334	/* In-depth first */
 335	child = parent->child;
 336	while (child) {
 337		reverse_nodes(child);
 338
 339		child = child->sibling;
 340	}
 341
 342	/* Reverse the nodes in the child list */
 343	child = parent->child;
 344	parent->child = NULL;
 345	while (child) {
 346		next = child->sibling;
 347
 348		child->sibling = parent->child;
 349		parent->child = child;
 350		child = next;
 351	}
 352}
 353
 354/**
 355 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 356 * @blob: The parent device tree blob
 357 * @mem: Memory chunk to use for allocating device nodes and properties
 358 * @dad: Parent struct device_node
 359 * @nodepp: The device_node tree created by the call
 360 *
 361 * It returns the size of unflattened device tree or error code
 362 */
 363static int unflatten_dt_nodes(const void *blob,
 364			      void *mem,
 365			      struct device_node *dad,
 366			      struct device_node **nodepp)
 367{
 368	struct device_node *root;
 369	int offset = 0, depth = 0, initial_depth = 0;
 370#define FDT_MAX_DEPTH	64
 371	struct device_node *nps[FDT_MAX_DEPTH];
 372	void *base = mem;
 373	bool dryrun = !base;
 
 374
 375	if (nodepp)
 376		*nodepp = NULL;
 377
 378	/*
 379	 * We're unflattening device sub-tree if @dad is valid. There are
 380	 * possibly multiple nodes in the first level of depth. We need
 381	 * set @depth to 1 to make fdt_next_node() happy as it bails
 382	 * immediately when negative @depth is found. Otherwise, the device
 383	 * nodes except the first one won't be unflattened successfully.
 384	 */
 385	if (dad)
 386		depth = initial_depth = 1;
 387
 388	root = dad;
 389	nps[depth] = dad;
 390
 391	for (offset = 0;
 392	     offset >= 0 && depth >= initial_depth;
 393	     offset = fdt_next_node(blob, offset, &depth)) {
 394		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 395			continue;
 396
 397		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 398		    !of_fdt_device_is_available(blob, offset))
 399			continue;
 400
 401		if (!populate_node(blob, offset, &mem, nps[depth],
 402				   &nps[depth+1], dryrun))
 403			return mem - base;
 
 404
 405		if (!dryrun && nodepp && !*nodepp)
 406			*nodepp = nps[depth+1];
 407		if (!dryrun && !root)
 408			root = nps[depth+1];
 409	}
 410
 411	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 412		pr_err("Error %d processing FDT\n", offset);
 413		return -EINVAL;
 414	}
 415
 416	/*
 417	 * Reverse the child list. Some drivers assumes node order matches .dts
 418	 * node order
 419	 */
 420	if (!dryrun)
 421		reverse_nodes(root);
 422
 423	return mem - base;
 424}
 425
 426/**
 427 * __unflatten_device_tree - create tree of device_nodes from flat blob
 428 *
 429 * unflattens a device-tree, creating the
 430 * tree of struct device_node. It also fills the "name" and "type"
 431 * pointers of the nodes so the normal device-tree walking functions
 432 * can be used.
 433 * @blob: The blob to expand
 434 * @dad: Parent device node
 435 * @mynodes: The device_node tree created by the call
 436 * @dt_alloc: An allocator that provides a virtual address to memory
 437 * for the resulting tree
 438 * @detached: if true set OF_DETACHED on @mynodes
 439 *
 440 * Returns NULL on failure or the memory chunk containing the unflattened
 
 
 
 
 441 * device tree on success.
 442 */
 443void *__unflatten_device_tree(const void *blob,
 444			      struct device_node *dad,
 445			      struct device_node **mynodes,
 446			      void *(*dt_alloc)(u64 size, u64 align),
 447			      bool detached)
 448{
 449	int size;
 450	void *mem;
 
 
 
 
 451
 452	pr_debug(" -> unflatten_device_tree()\n");
 453
 454	if (!blob) {
 455		pr_debug("No device tree pointer\n");
 456		return NULL;
 457	}
 458
 459	pr_debug("Unflattening device tree:\n");
 460	pr_debug("magic: %08x\n", fdt_magic(blob));
 461	pr_debug("size: %08x\n", fdt_totalsize(blob));
 462	pr_debug("version: %08x\n", fdt_version(blob));
 463
 464	if (fdt_check_header(blob)) {
 465		pr_err("Invalid device tree blob header\n");
 466		return NULL;
 467	}
 468
 469	/* First pass, scan for size */
 470	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 471	if (size < 0)
 472		return NULL;
 473
 474	size = ALIGN(size, 4);
 475	pr_debug("  size is %d, allocating...\n", size);
 476
 477	/* Allocate memory for the expanded device tree */
 478	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 479	if (!mem)
 480		return NULL;
 481
 482	memset(mem, 0, size);
 483
 484	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 485
 486	pr_debug("  unflattening %p...\n", mem);
 487
 488	/* Second pass, do actual unflattening */
 489	unflatten_dt_nodes(blob, mem, dad, mynodes);
 
 490	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 491		pr_warning("End of tree marker overwritten: %08x\n",
 492			   be32_to_cpup(mem + size));
 493
 494	if (detached && mynodes) {
 
 
 
 495		of_node_set_flag(*mynodes, OF_DETACHED);
 496		pr_debug("unflattened tree is detached\n");
 497	}
 498
 499	pr_debug(" <- unflatten_device_tree()\n");
 500	return mem;
 501}
 502
 503static void *kernel_tree_alloc(u64 size, u64 align)
 504{
 505	return kzalloc(size, GFP_KERNEL);
 506}
 507
 508static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 509
 510/**
 511 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 512 * @blob: Flat device tree blob
 513 * @dad: Parent device node
 514 * @mynodes: The device tree created by the call
 515 *
 516 * unflattens the device-tree passed by the firmware, creating the
 517 * tree of struct device_node. It also fills the "name" and "type"
 518 * pointers of the nodes so the normal device-tree walking functions
 519 * can be used.
 520 *
 521 * Returns NULL on failure or the memory chunk containing the unflattened
 522 * device tree on success.
 523 */
 524void *of_fdt_unflatten_tree(const unsigned long *blob,
 525			    struct device_node *dad,
 526			    struct device_node **mynodes)
 527{
 528	void *mem;
 529
 530	mutex_lock(&of_fdt_unflatten_mutex);
 531	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 532				      true);
 533	mutex_unlock(&of_fdt_unflatten_mutex);
 534
 535	return mem;
 536}
 537EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 538
 539/* Everything below here references initial_boot_params directly. */
 540int __initdata dt_root_addr_cells;
 541int __initdata dt_root_size_cells;
 542
 543void *initial_boot_params;
 544
 545#ifdef CONFIG_OF_EARLY_FLATTREE
 546
 547static u32 of_fdt_crc32;
 548
 549/**
 550 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551 */
 552static int __init __reserved_mem_reserve_reg(unsigned long node,
 553					     const char *uname)
 554{
 555	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 556	phys_addr_t base, size;
 557	int len;
 558	const __be32 *prop;
 559	int nomap, first = 1;
 
 560
 561	prop = of_get_flat_dt_prop(node, "reg", &len);
 562	if (!prop)
 563		return -ENOENT;
 564
 565	if (len && len % t_len != 0) {
 566		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 567		       uname);
 568		return -EINVAL;
 569	}
 570
 571	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 572
 573	while (len >= t_len) {
 574		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 575		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 576
 577		if (size &&
 578		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 579			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 580				uname, &base, (unsigned long)size / SZ_1M);
 581		else
 582			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 583				uname, &base, (unsigned long)size / SZ_1M);
 584
 585		len -= t_len;
 586		if (first) {
 587			fdt_reserved_mem_save_node(node, uname, base, size);
 588			first = 0;
 589		}
 590	}
 591	return 0;
 592}
 593
 594/**
 595 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 596 * in /reserved-memory matches the values supported by the current implementation,
 597 * also check if ranges property has been provided
 598 */
 599static int __init __reserved_mem_check_root(unsigned long node)
 600{
 601	const __be32 *prop;
 602
 603	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 604	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 605		return -EINVAL;
 606
 607	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 608	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 609		return -EINVAL;
 610
 611	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 612	if (!prop)
 613		return -EINVAL;
 614	return 0;
 615}
 616
 617/**
 618 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 619 */
 620static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 621					  int depth, void *data)
 622{
 623	static int found;
 624	int err;
 625
 626	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 627		if (__reserved_mem_check_root(node) != 0) {
 628			pr_err("Reserved memory: unsupported node format, ignoring\n");
 629			/* break scan */
 630			return 1;
 631		}
 632		found = 1;
 633		/* scan next node */
 634		return 0;
 635	} else if (!found) {
 636		/* scan next node */
 637		return 0;
 638	} else if (found && depth < 2) {
 639		/* scanning of /reserved-memory has been finished */
 640		return 1;
 641	}
 642
 643	if (!of_fdt_device_is_available(initial_boot_params, node))
 644		return 0;
 
 
 
 
 645
 646	err = __reserved_mem_reserve_reg(node, uname);
 647	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 648		fdt_reserved_mem_save_node(node, uname, 0, 0);
 649
 650	/* scan next node */
 
 
 
 651	return 0;
 652}
 653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654/**
 655 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 656 *
 657 * This function grabs memory from early allocator for device exclusive use
 658 * defined in device tree structures. It should be called by arch specific code
 659 * once the early allocator (i.e. memblock) has been fully activated.
 660 */
 661void __init early_init_fdt_scan_reserved_mem(void)
 662{
 663	int n;
 664	u64 base, size;
 665
 666	if (!initial_boot_params)
 667		return;
 668
 
 
 
 669	/* Process header /memreserve/ fields */
 670	for (n = 0; ; n++) {
 671		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 672		if (!size)
 673			break;
 674		early_init_dt_reserve_memory_arch(base, size, 0);
 675	}
 676
 677	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 678	fdt_init_reserved_mem();
 679}
 680
 681/**
 682 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 683 */
 684void __init early_init_fdt_reserve_self(void)
 685{
 686	if (!initial_boot_params)
 687		return;
 688
 689	/* Reserve the dtb region */
 690	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 691					  fdt_totalsize(initial_boot_params),
 692					  0);
 693}
 694
 695/**
 696 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 697 * @it: callback function
 698 * @data: context data pointer
 699 *
 700 * This function is used to scan the flattened device-tree, it is
 701 * used to extract the memory information at boot before we can
 702 * unflatten the tree
 703 */
 704int __init of_scan_flat_dt(int (*it)(unsigned long node,
 705				     const char *uname, int depth,
 706				     void *data),
 707			   void *data)
 708{
 709	const void *blob = initial_boot_params;
 710	const char *pathp;
 711	int offset, rc = 0, depth = -1;
 712
 713	if (!blob)
 714		return 0;
 715
 716	for (offset = fdt_next_node(blob, -1, &depth);
 717	     offset >= 0 && depth >= 0 && !rc;
 718	     offset = fdt_next_node(blob, offset, &depth)) {
 719
 720		pathp = fdt_get_name(blob, offset, NULL);
 721		if (*pathp == '/')
 722			pathp = kbasename(pathp);
 723		rc = it(offset, pathp, depth, data);
 724	}
 725	return rc;
 726}
 727
 728/**
 729 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 
 730 * @it: callback function
 731 * @data: context data pointer
 732 *
 733 * This function is used to scan sub-nodes of a node.
 734 */
 735int __init of_scan_flat_dt_subnodes(unsigned long parent,
 736				    int (*it)(unsigned long node,
 737					      const char *uname,
 738					      void *data),
 739				    void *data)
 740{
 741	const void *blob = initial_boot_params;
 742	int node;
 743
 744	fdt_for_each_subnode(node, blob, parent) {
 745		const char *pathp;
 746		int rc;
 747
 748		pathp = fdt_get_name(blob, node, NULL);
 749		if (*pathp == '/')
 750			pathp = kbasename(pathp);
 751		rc = it(node, pathp, data);
 752		if (rc)
 753			return rc;
 754	}
 755	return 0;
 756}
 757
 758/**
 759 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 760 *
 761 * @node: the parent node
 762 * @uname: the name of subnode
 763 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 764 */
 765
 766int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 767{
 768	return fdt_subnode_offset(initial_boot_params, node, uname);
 769}
 770
 771/**
 772 * of_get_flat_dt_root - find the root node in the flat blob
 773 */
 774unsigned long __init of_get_flat_dt_root(void)
 775{
 776	return 0;
 777}
 778
 779/**
 780 * of_get_flat_dt_size - Return the total size of the FDT
 781 */
 782int __init of_get_flat_dt_size(void)
 783{
 784	return fdt_totalsize(initial_boot_params);
 785}
 786
 787/**
 788 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 789 *
 790 * This function can be used within scan_flattened_dt callback to get
 791 * access to properties
 792 */
 793const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 794				       int *size)
 795{
 796	return fdt_getprop(initial_boot_params, node, name, size);
 797}
 798
 799/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 801 * @node: node to test
 802 * @compat: compatible string to compare with compatible list.
 803 */
 804int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 805{
 806	return of_fdt_is_compatible(initial_boot_params, node, compat);
 807}
 808
 809/**
 810 * of_flat_dt_match - Return true if node matches a list of compatible values
 811 */
 812int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 813{
 814	return of_fdt_match(initial_boot_params, node, compat);
 
 
 
 
 
 
 
 
 
 
 
 
 815}
 816
 817/**
 818 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
 819 */
 820uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 821{
 822	return fdt_get_phandle(initial_boot_params, node);
 823}
 824
 825struct fdt_scan_status {
 826	const char *name;
 827	int namelen;
 828	int depth;
 829	int found;
 830	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 831	void *data;
 832};
 833
 834const char * __init of_flat_dt_get_machine_name(void)
 835{
 836	const char *name;
 837	unsigned long dt_root = of_get_flat_dt_root();
 838
 839	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 840	if (!name)
 841		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 842	return name;
 843}
 844
 845/**
 846 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 847 *
 848 * @default_match: A machine specific ptr to return in case of no match.
 849 * @get_next_compat: callback function to return next compatible match table.
 850 *
 851 * Iterate through machine match tables to find the best match for the machine
 852 * compatible string in the FDT.
 853 */
 854const void * __init of_flat_dt_match_machine(const void *default_match,
 855		const void * (*get_next_compat)(const char * const**))
 856{
 857	const void *data = NULL;
 858	const void *best_data = default_match;
 859	const char *const *compat;
 860	unsigned long dt_root;
 861	unsigned int best_score = ~1, score = 0;
 862
 863	dt_root = of_get_flat_dt_root();
 864	while ((data = get_next_compat(&compat))) {
 865		score = of_flat_dt_match(dt_root, compat);
 866		if (score > 0 && score < best_score) {
 867			best_data = data;
 868			best_score = score;
 869		}
 870	}
 871	if (!best_data) {
 872		const char *prop;
 873		int size;
 874
 875		pr_err("\n unrecognized device tree list:\n[ ");
 876
 877		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 878		if (prop) {
 879			while (size > 0) {
 880				printk("'%s' ", prop);
 881				size -= strlen(prop) + 1;
 882				prop += strlen(prop) + 1;
 883			}
 884		}
 885		printk("]\n\n");
 886		return NULL;
 887	}
 888
 889	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 890
 891	return best_data;
 892}
 893
 894#ifdef CONFIG_BLK_DEV_INITRD
 895#ifndef __early_init_dt_declare_initrd
 896static void __early_init_dt_declare_initrd(unsigned long start,
 897					   unsigned long end)
 898{
 899	initrd_start = (unsigned long)__va(start);
 900	initrd_end = (unsigned long)__va(end);
 901	initrd_below_start_ok = 1;
 
 
 
 
 
 
 
 
 902}
 903#endif
 904
 905/**
 906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 907 * @node: reference to node containing initrd location ('chosen')
 908 */
 909static void __init early_init_dt_check_for_initrd(unsigned long node)
 910{
 911	u64 start, end;
 912	int len;
 913	const __be32 *prop;
 914
 
 
 
 915	pr_debug("Looking for initrd properties... ");
 916
 917	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 918	if (!prop)
 919		return;
 920	start = of_read_number(prop, len/4);
 921
 922	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 923	if (!prop)
 924		return;
 925	end = of_read_number(prop, len/4);
 
 
 926
 927	__early_init_dt_declare_initrd(start, end);
 
 
 928
 929	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 930		 (unsigned long long)start, (unsigned long long)end);
 931}
 932#else
 933static inline void early_init_dt_check_for_initrd(unsigned long node)
 
 
 
 
 
 934{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936#endif /* CONFIG_BLK_DEV_INITRD */
 937
 938#ifdef CONFIG_SERIAL_EARLYCON
 939
 940int __init early_init_dt_scan_chosen_stdout(void)
 941{
 942	int offset;
 943	const char *p, *q, *options = NULL;
 944	int l;
 945	const struct earlycon_id **p_match;
 946	const void *fdt = initial_boot_params;
 
 947
 948	offset = fdt_path_offset(fdt, "/chosen");
 949	if (offset < 0)
 950		offset = fdt_path_offset(fdt, "/chosen@0");
 951	if (offset < 0)
 952		return -ENOENT;
 953
 954	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 955	if (!p)
 956		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 957	if (!p || !l)
 958		return -ENOENT;
 959
 960	q = strchrnul(p, ':');
 961	if (*q != '\0')
 962		options = q + 1;
 963	l = q - p;
 964
 965	/* Get the node specified by stdout-path */
 966	offset = fdt_path_offset_namelen(fdt, p, l);
 967	if (offset < 0) {
 968		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 969		return 0;
 970	}
 971
 972	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
 973	     p_match++) {
 974		const struct earlycon_id *match = *p_match;
 975
 976		if (!match->compatible[0])
 977			continue;
 978
 979		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 980			continue;
 981
 982		of_setup_earlycon(match, offset, options);
 983		return 0;
 
 984	}
 985	return -ENODEV;
 986}
 987#endif
 988
 989/**
 990 * early_init_dt_scan_root - fetch the top level address and size cells
 991 */
 992int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 993				   int depth, void *data)
 994{
 995	const __be32 *prop;
 
 
 996
 997	if (depth != 0)
 998		return 0;
 999
1000	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002
1003	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004	if (prop)
1005		dt_root_size_cells = be32_to_cpup(prop);
1006	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007
1008	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009	if (prop)
1010		dt_root_addr_cells = be32_to_cpup(prop);
1011	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012
1013	/* break now */
1014	return 1;
1015}
1016
1017u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018{
1019	const __be32 *p = *cellp;
1020
1021	*cellp = p + s;
1022	return of_read_number(p, s);
1023}
1024
1025/**
1026 * early_init_dt_scan_memory - Look for and parse memory nodes
1027 */
1028int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029				     int depth, void *data)
1030{
1031	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032	const __be32 *reg, *endp;
1033	int l;
1034	bool hotpluggable;
 
 
 
 
 
 
 
 
 
 
 
1035
1036	/* We are scanning "memory" nodes only */
1037	if (type == NULL) {
1038		/*
1039		 * The longtrail doesn't have a device_type on the
1040		 * /memory node, so look for the node called /memory@0.
1041		 */
1042		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1043			return 0;
1044	} else if (strcmp(type, "memory") != 0)
1045		return 0;
1046
1047	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1048	if (reg == NULL)
1049		reg = of_get_flat_dt_prop(node, "reg", &l);
1050	if (reg == NULL)
1051		return 0;
1052
1053	endp = reg + (l / sizeof(__be32));
1054	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1055
1056	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 
1057
1058	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1059		u64 base, size;
1060
1061		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1062		size = dt_mem_next_cell(dt_root_size_cells, &reg);
 
1063
1064		if (size == 0)
1065			continue;
1066		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1067		    (unsigned long long)size);
1068
1069		early_init_dt_add_memory_arch(base, size);
1070
1071		if (!hotpluggable)
1072			continue;
1073
1074		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1075			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1076				base, base + size);
 
1077	}
1078
1079	return 0;
1080}
1081
1082int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1083				     int depth, void *data)
1084{
1085	int l;
1086	const char *p;
 
 
1087
1088	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
 
 
 
 
 
1089
1090	if (depth != 1 || !data ||
1091	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1092		return 0;
1093
1094	early_init_dt_check_for_initrd(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
1095
1096	/* Retrieve command line */
1097	p = of_get_flat_dt_prop(node, "bootargs", &l);
1098	if (p != NULL && l > 0)
1099		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1100
 
1101	/*
1102	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1103	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1104	 * is set in which case we override whatever was found earlier.
1105	 */
1106#ifdef CONFIG_CMDLINE
1107#if defined(CONFIG_CMDLINE_EXTEND)
1108	strlcat(data, " ", COMMAND_LINE_SIZE);
1109	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1110#elif defined(CONFIG_CMDLINE_FORCE)
1111	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1112#else
1113	/* No arguments from boot loader, use kernel's  cmdl*/
1114	if (!((char *)data)[0])
1115		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1116#endif
1117#endif /* CONFIG_CMDLINE */
1118
1119	pr_debug("Command line is: %s\n", (char*)data);
1120
1121	/* break now */
1122	return 1;
1123}
1124
1125#ifdef CONFIG_HAVE_MEMBLOCK
1126#ifndef MIN_MEMBLOCK_ADDR
1127#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1128#endif
1129#ifndef MAX_MEMBLOCK_ADDR
1130#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1131#endif
1132
1133void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1134{
1135	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1136
 
 
 
 
 
 
1137	if (!PAGE_ALIGNED(base)) {
1138		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1139			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1140				base, base + size);
1141			return;
1142		}
1143		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1144		base = PAGE_ALIGN(base);
1145	}
1146	size &= PAGE_MASK;
1147
1148	if (base > MAX_MEMBLOCK_ADDR) {
1149		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1150				base, base + size);
1151		return;
1152	}
1153
1154	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1155		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1156				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1157		size = MAX_MEMBLOCK_ADDR - base + 1;
1158	}
1159
1160	if (base + size < phys_offset) {
1161		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1162			   base, base + size);
1163		return;
1164	}
1165	if (base < phys_offset) {
1166		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1167			   base, phys_offset);
1168		size -= phys_offset - base;
1169		base = phys_offset;
1170	}
1171	memblock_add(base, size);
1172}
1173
1174int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1175{
1176	return memblock_mark_hotplug(base, size);
1177}
1178
1179int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1180					phys_addr_t size, bool nomap)
1181{
1182	if (nomap)
1183		return memblock_remove(base, size);
1184	return memblock_reserve(base, size);
1185}
1186
1187#else
1188void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1189{
1190	WARN_ON(1);
1191}
1192
1193int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1194{
1195	return -ENOSYS;
1196}
1197
1198int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1199					phys_addr_t size, bool nomap)
1200{
1201	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1202		  &base, &size, nomap ? " (nomap)" : "");
1203	return -ENOSYS;
1204}
1205#endif
1206
1207static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1208{
1209	return memblock_virt_alloc(size, align);
1210}
1211
1212bool __init early_init_dt_verify(void *params)
1213{
1214	if (!params)
1215		return false;
1216
1217	/* check device tree validity */
1218	if (fdt_check_header(params))
1219		return false;
1220
1221	/* Setup flat device-tree pointer */
1222	initial_boot_params = params;
1223	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1224				fdt_totalsize(initial_boot_params));
1225	return true;
1226}
1227
1228
1229void __init early_init_dt_scan_nodes(void)
1230{
1231	/* Retrieve various information from the /chosen node */
1232	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1233
1234	/* Initialize {size,address}-cells info */
1235	of_scan_flat_dt(early_init_dt_scan_root, NULL);
 
 
 
 
 
1236
1237	/* Setup memory, calling early_init_dt_add_memory_arch */
1238	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
 
 
 
1239}
1240
1241bool __init early_init_dt_scan(void *params)
1242{
1243	bool status;
1244
1245	status = early_init_dt_verify(params);
1246	if (!status)
1247		return false;
1248
1249	early_init_dt_scan_nodes();
1250	return true;
1251}
1252
1253/**
1254 * unflatten_device_tree - create tree of device_nodes from flat blob
1255 *
1256 * unflattens the device-tree passed by the firmware, creating the
1257 * tree of struct device_node. It also fills the "name" and "type"
1258 * pointers of the nodes so the normal device-tree walking functions
1259 * can be used.
1260 */
1261void __init unflatten_device_tree(void)
1262{
1263	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1264				early_init_dt_alloc_memory_arch, false);
1265
1266	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1267	of_alias_scan(early_init_dt_alloc_memory_arch);
1268
1269	unittest_unflatten_overlay_base();
1270}
1271
1272/**
1273 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1274 *
1275 * Copies and unflattens the device-tree passed by the firmware, creating the
1276 * tree of struct device_node. It also fills the "name" and "type"
1277 * pointers of the nodes so the normal device-tree walking functions
1278 * can be used. This should only be used when the FDT memory has not been
1279 * reserved such is the case when the FDT is built-in to the kernel init
1280 * section. If the FDT memory is reserved already then unflatten_device_tree
1281 * should be used instead.
1282 */
1283void __init unflatten_and_copy_device_tree(void)
1284{
1285	int size;
1286	void *dt;
1287
1288	if (!initial_boot_params) {
1289		pr_warn("No valid device tree found, continuing without\n");
1290		return;
1291	}
1292
1293	size = fdt_totalsize(initial_boot_params);
1294	dt = early_init_dt_alloc_memory_arch(size,
1295					     roundup_pow_of_two(FDT_V17_SIZE));
1296
1297	if (dt) {
1298		memcpy(dt, initial_boot_params, size);
1299		initial_boot_params = dt;
1300	}
1301	unflatten_device_tree();
1302}
1303
1304#ifdef CONFIG_SYSFS
1305static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1306			       struct bin_attribute *bin_attr,
1307			       char *buf, loff_t off, size_t count)
1308{
1309	memcpy(buf, initial_boot_params + off, count);
1310	return count;
1311}
1312
1313static int __init of_fdt_raw_init(void)
1314{
1315	static struct bin_attribute of_fdt_raw_attr =
1316		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1317
1318	if (!initial_boot_params)
1319		return 0;
1320
1321	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1322				     fdt_totalsize(initial_boot_params))) {
1323		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1324		return 0;
1325	}
1326	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1327	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1328}
1329late_initcall(of_fdt_raw_init);
1330#endif
1331
1332#endif /* CONFIG_OF_EARLY_FLATTREE */