Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9#define pr_fmt(fmt) "OF: fdt: " fmt
10
11#include <linux/crash_dump.h>
12#include <linux/crc32.h>
13#include <linux/kernel.h>
14#include <linux/initrd.h>
15#include <linux/memblock.h>
16#include <linux/mutex.h>
17#include <linux/of.h>
18#include <linux/of_fdt.h>
19#include <linux/of_reserved_mem.h>
20#include <linux/sizes.h>
21#include <linux/string.h>
22#include <linux/errno.h>
23#include <linux/slab.h>
24#include <linux/libfdt.h>
25#include <linux/debugfs.h>
26#include <linux/serial_core.h>
27#include <linux/sysfs.h>
28#include <linux/random.h>
29
30#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
31#include <asm/page.h>
32
33#include "of_private.h"
34
35/*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
43void __init of_fdt_limit_memory(int limit)
44{
45 int memory;
46 int len;
47 const void *val;
48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 const __be32 *addr_prop;
51 const __be32 *size_prop;
52 int root_offset;
53 int cell_size;
54
55 root_offset = fdt_path_offset(initial_boot_params, "/");
56 if (root_offset < 0)
57 return;
58
59 addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 "#address-cells", NULL);
61 if (addr_prop)
62 nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64 size_prop = fdt_getprop(initial_boot_params, root_offset,
65 "#size-cells", NULL);
66 if (size_prop)
67 nr_size_cells = fdt32_to_cpu(*size_prop);
68
69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71 memory = fdt_path_offset(initial_boot_params, "/memory");
72 if (memory > 0) {
73 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 if (len > limit*cell_size) {
75 len = limit*cell_size;
76 pr_debug("Limiting number of entries to %d\n", limit);
77 fdt_setprop(initial_boot_params, memory, "reg", val,
78 len);
79 }
80 }
81}
82
83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84{
85 const char *status = fdt_getprop(blob, node, "status", NULL);
86
87 if (!status)
88 return true;
89
90 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 return true;
92
93 return false;
94}
95
96static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 unsigned long align)
98{
99 void *res;
100
101 *mem = PTR_ALIGN(*mem, align);
102 res = *mem;
103 *mem += size;
104
105 return res;
106}
107
108static void populate_properties(const void *blob,
109 int offset,
110 void **mem,
111 struct device_node *np,
112 const char *nodename,
113 bool dryrun)
114{
115 struct property *pp, **pprev = NULL;
116 int cur;
117 bool has_name = false;
118
119 pprev = &np->properties;
120 for (cur = fdt_first_property_offset(blob, offset);
121 cur >= 0;
122 cur = fdt_next_property_offset(blob, cur)) {
123 const __be32 *val;
124 const char *pname;
125 u32 sz;
126
127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 if (!val) {
129 pr_warn("Cannot locate property at 0x%x\n", cur);
130 continue;
131 }
132
133 if (!pname) {
134 pr_warn("Cannot find property name at 0x%x\n", cur);
135 continue;
136 }
137
138 if (!strcmp(pname, "name"))
139 has_name = true;
140
141 pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 __alignof__(struct property));
143 if (dryrun)
144 continue;
145
146 /* We accept flattened tree phandles either in
147 * ePAPR-style "phandle" properties, or the
148 * legacy "linux,phandle" properties. If both
149 * appear and have different values, things
150 * will get weird. Don't do that.
151 */
152 if (!strcmp(pname, "phandle") ||
153 !strcmp(pname, "linux,phandle")) {
154 if (!np->phandle)
155 np->phandle = be32_to_cpup(val);
156 }
157
158 /* And we process the "ibm,phandle" property
159 * used in pSeries dynamic device tree
160 * stuff
161 */
162 if (!strcmp(pname, "ibm,phandle"))
163 np->phandle = be32_to_cpup(val);
164
165 pp->name = (char *)pname;
166 pp->length = sz;
167 pp->value = (__be32 *)val;
168 *pprev = pp;
169 pprev = &pp->next;
170 }
171
172 /* With version 0x10 we may not have the name property,
173 * recreate it here from the unit name if absent
174 */
175 if (!has_name) {
176 const char *p = nodename, *ps = p, *pa = NULL;
177 int len;
178
179 while (*p) {
180 if ((*p) == '@')
181 pa = p;
182 else if ((*p) == '/')
183 ps = p + 1;
184 p++;
185 }
186
187 if (pa < ps)
188 pa = p;
189 len = (pa - ps) + 1;
190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 __alignof__(struct property));
192 if (!dryrun) {
193 pp->name = "name";
194 pp->length = len;
195 pp->value = pp + 1;
196 *pprev = pp;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203}
204
205static int populate_node(const void *blob,
206 int offset,
207 void **mem,
208 struct device_node *dad,
209 struct device_node **pnp,
210 bool dryrun)
211{
212 struct device_node *np;
213 const char *pathp;
214 int len;
215
216 pathp = fdt_get_name(blob, offset, &len);
217 if (!pathp) {
218 *pnp = NULL;
219 return len;
220 }
221
222 len++;
223
224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 __alignof__(struct device_node));
226 if (!dryrun) {
227 char *fn;
228 of_node_init(np);
229 np->full_name = fn = ((char *)np) + sizeof(*np);
230
231 memcpy(fn, pathp, len);
232
233 if (dad != NULL) {
234 np->parent = dad;
235 np->sibling = dad->child;
236 dad->child = np;
237 }
238 }
239
240 populate_properties(blob, offset, mem, np, pathp, dryrun);
241 if (!dryrun) {
242 np->name = of_get_property(np, "name", NULL);
243 if (!np->name)
244 np->name = "<NULL>";
245 }
246
247 *pnp = np;
248 return 0;
249}
250
251static void reverse_nodes(struct device_node *parent)
252{
253 struct device_node *child, *next;
254
255 /* In-depth first */
256 child = parent->child;
257 while (child) {
258 reverse_nodes(child);
259
260 child = child->sibling;
261 }
262
263 /* Reverse the nodes in the child list */
264 child = parent->child;
265 parent->child = NULL;
266 while (child) {
267 next = child->sibling;
268
269 child->sibling = parent->child;
270 parent->child = child;
271 child = next;
272 }
273}
274
275/**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
284static int unflatten_dt_nodes(const void *blob,
285 void *mem,
286 struct device_node *dad,
287 struct device_node **nodepp)
288{
289 struct device_node *root;
290 int offset = 0, depth = 0, initial_depth = 0;
291#define FDT_MAX_DEPTH 64
292 struct device_node *nps[FDT_MAX_DEPTH];
293 void *base = mem;
294 bool dryrun = !base;
295 int ret;
296
297 if (nodepp)
298 *nodepp = NULL;
299
300 /*
301 * We're unflattening device sub-tree if @dad is valid. There are
302 * possibly multiple nodes in the first level of depth. We need
303 * set @depth to 1 to make fdt_next_node() happy as it bails
304 * immediately when negative @depth is found. Otherwise, the device
305 * nodes except the first one won't be unflattened successfully.
306 */
307 if (dad)
308 depth = initial_depth = 1;
309
310 root = dad;
311 nps[depth] = dad;
312
313 for (offset = 0;
314 offset >= 0 && depth >= initial_depth;
315 offset = fdt_next_node(blob, offset, &depth)) {
316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317 continue;
318
319 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 !of_fdt_device_is_available(blob, offset))
321 continue;
322
323 ret = populate_node(blob, offset, &mem, nps[depth],
324 &nps[depth+1], dryrun);
325 if (ret < 0)
326 return ret;
327
328 if (!dryrun && nodepp && !*nodepp)
329 *nodepp = nps[depth+1];
330 if (!dryrun && !root)
331 root = nps[depth+1];
332 }
333
334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 pr_err("Error %d processing FDT\n", offset);
336 return -EINVAL;
337 }
338
339 /*
340 * Reverse the child list. Some drivers assumes node order matches .dts
341 * node order
342 */
343 if (!dryrun)
344 reverse_nodes(root);
345
346 return mem - base;
347}
348
349/**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
365void *__unflatten_device_tree(const void *blob,
366 struct device_node *dad,
367 struct device_node **mynodes,
368 void *(*dt_alloc)(u64 size, u64 align),
369 bool detached)
370{
371 int size;
372 void *mem;
373 int ret;
374
375 if (mynodes)
376 *mynodes = NULL;
377
378 pr_debug(" -> unflatten_device_tree()\n");
379
380 if (!blob) {
381 pr_debug("No device tree pointer\n");
382 return NULL;
383 }
384
385 pr_debug("Unflattening device tree:\n");
386 pr_debug("magic: %08x\n", fdt_magic(blob));
387 pr_debug("size: %08x\n", fdt_totalsize(blob));
388 pr_debug("version: %08x\n", fdt_version(blob));
389
390 if (fdt_check_header(blob)) {
391 pr_err("Invalid device tree blob header\n");
392 return NULL;
393 }
394
395 /* First pass, scan for size */
396 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 if (size <= 0)
398 return NULL;
399
400 size = ALIGN(size, 4);
401 pr_debug(" size is %d, allocating...\n", size);
402
403 /* Allocate memory for the expanded device tree */
404 mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 if (!mem)
406 return NULL;
407
408 memset(mem, 0, size);
409
410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412 pr_debug(" unflattening %p...\n", mem);
413
414 /* Second pass, do actual unflattening */
415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417 if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 pr_warn("End of tree marker overwritten: %08x\n",
419 be32_to_cpup(mem + size));
420
421 if (ret <= 0)
422 return NULL;
423
424 if (detached && mynodes && *mynodes) {
425 of_node_set_flag(*mynodes, OF_DETACHED);
426 pr_debug("unflattened tree is detached\n");
427 }
428
429 pr_debug(" <- unflatten_device_tree()\n");
430 return mem;
431}
432
433static void *kernel_tree_alloc(u64 size, u64 align)
434{
435 return kzalloc(size, GFP_KERNEL);
436}
437
438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440/**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
454void *of_fdt_unflatten_tree(const unsigned long *blob,
455 struct device_node *dad,
456 struct device_node **mynodes)
457{
458 void *mem;
459
460 mutex_lock(&of_fdt_unflatten_mutex);
461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 true);
463 mutex_unlock(&of_fdt_unflatten_mutex);
464
465 return mem;
466}
467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469/* Everything below here references initial_boot_params directly. */
470int __initdata dt_root_addr_cells;
471int __initdata dt_root_size_cells;
472
473void *initial_boot_params __ro_after_init;
474
475#ifdef CONFIG_OF_EARLY_FLATTREE
476
477static u32 of_fdt_crc32;
478
479static int __init early_init_dt_reserve_memory(phys_addr_t base,
480 phys_addr_t size, bool nomap)
481{
482 if (nomap) {
483 /*
484 * If the memory is already reserved (by another region), we
485 * should not allow it to be marked nomap, but don't worry
486 * if the region isn't memory as it won't be mapped.
487 */
488 if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 memblock_is_region_reserved(base, size))
490 return -EBUSY;
491
492 return memblock_mark_nomap(base, size);
493 }
494 return memblock_reserve(base, size);
495}
496
497/*
498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499 */
500static int __init __reserved_mem_reserve_reg(unsigned long node,
501 const char *uname)
502{
503 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 phys_addr_t base, size;
505 int len;
506 const __be32 *prop;
507 int first = 1;
508 bool nomap;
509
510 prop = of_get_flat_dt_prop(node, "reg", &len);
511 if (!prop)
512 return -ENOENT;
513
514 if (len && len % t_len != 0) {
515 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 uname);
517 return -EINVAL;
518 }
519
520 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521
522 while (len >= t_len) {
523 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 size = dt_mem_next_cell(dt_root_size_cells, &prop);
525
526 if (size &&
527 early_init_dt_reserve_memory(base, size, nomap) == 0)
528 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 uname, &base, (unsigned long)(size / SZ_1M));
530 else
531 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 uname, &base, (unsigned long)(size / SZ_1M));
533
534 len -= t_len;
535 if (first) {
536 fdt_reserved_mem_save_node(node, uname, base, size);
537 first = 0;
538 }
539 }
540 return 0;
541}
542
543/*
544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545 * in /reserved-memory matches the values supported by the current implementation,
546 * also check if ranges property has been provided
547 */
548static int __init __reserved_mem_check_root(unsigned long node)
549{
550 const __be32 *prop;
551
552 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 return -EINVAL;
555
556 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 return -EINVAL;
559
560 prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 if (!prop)
562 return -EINVAL;
563 return 0;
564}
565
566/*
567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568 */
569static int __init fdt_scan_reserved_mem(void)
570{
571 int node, child;
572 const void *fdt = initial_boot_params;
573
574 node = fdt_path_offset(fdt, "/reserved-memory");
575 if (node < 0)
576 return -ENODEV;
577
578 if (__reserved_mem_check_root(node) != 0) {
579 pr_err("Reserved memory: unsupported node format, ignoring\n");
580 return -EINVAL;
581 }
582
583 fdt_for_each_subnode(child, fdt, node) {
584 const char *uname;
585 int err;
586
587 if (!of_fdt_device_is_available(fdt, child))
588 continue;
589
590 uname = fdt_get_name(fdt, child, NULL);
591
592 err = __reserved_mem_reserve_reg(child, uname);
593 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594 fdt_reserved_mem_save_node(child, uname, 0, 0);
595 }
596 return 0;
597}
598
599/*
600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601 *
602 * This function reserves the memory occupied by an elf core header
603 * described in the device tree. This region contains all the
604 * information about primary kernel's core image and is used by a dump
605 * capture kernel to access the system memory on primary kernel.
606 */
607static void __init fdt_reserve_elfcorehdr(void)
608{
609 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610 return;
611
612 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613 pr_warn("elfcorehdr is overlapped\n");
614 return;
615 }
616
617 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618
619 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
620 elfcorehdr_size >> 10, elfcorehdr_addr);
621}
622
623/**
624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
625 *
626 * This function grabs memory from early allocator for device exclusive use
627 * defined in device tree structures. It should be called by arch specific code
628 * once the early allocator (i.e. memblock) has been fully activated.
629 */
630void __init early_init_fdt_scan_reserved_mem(void)
631{
632 int n;
633 u64 base, size;
634
635 if (!initial_boot_params)
636 return;
637
638 fdt_scan_reserved_mem();
639 fdt_reserve_elfcorehdr();
640
641 /* Process header /memreserve/ fields */
642 for (n = 0; ; n++) {
643 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
644 if (!size)
645 break;
646 memblock_reserve(base, size);
647 }
648
649 fdt_init_reserved_mem();
650}
651
652/**
653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
654 */
655void __init early_init_fdt_reserve_self(void)
656{
657 if (!initial_boot_params)
658 return;
659
660 /* Reserve the dtb region */
661 memblock_reserve(__pa(initial_boot_params),
662 fdt_totalsize(initial_boot_params));
663}
664
665/**
666 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
667 * @it: callback function
668 * @data: context data pointer
669 *
670 * This function is used to scan the flattened device-tree, it is
671 * used to extract the memory information at boot before we can
672 * unflatten the tree
673 */
674int __init of_scan_flat_dt(int (*it)(unsigned long node,
675 const char *uname, int depth,
676 void *data),
677 void *data)
678{
679 const void *blob = initial_boot_params;
680 const char *pathp;
681 int offset, rc = 0, depth = -1;
682
683 if (!blob)
684 return 0;
685
686 for (offset = fdt_next_node(blob, -1, &depth);
687 offset >= 0 && depth >= 0 && !rc;
688 offset = fdt_next_node(blob, offset, &depth)) {
689
690 pathp = fdt_get_name(blob, offset, NULL);
691 rc = it(offset, pathp, depth, data);
692 }
693 return rc;
694}
695
696/**
697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
698 * @parent: parent node
699 * @it: callback function
700 * @data: context data pointer
701 *
702 * This function is used to scan sub-nodes of a node.
703 */
704int __init of_scan_flat_dt_subnodes(unsigned long parent,
705 int (*it)(unsigned long node,
706 const char *uname,
707 void *data),
708 void *data)
709{
710 const void *blob = initial_boot_params;
711 int node;
712
713 fdt_for_each_subnode(node, blob, parent) {
714 const char *pathp;
715 int rc;
716
717 pathp = fdt_get_name(blob, node, NULL);
718 rc = it(node, pathp, data);
719 if (rc)
720 return rc;
721 }
722 return 0;
723}
724
725/**
726 * of_get_flat_dt_subnode_by_name - get the subnode by given name
727 *
728 * @node: the parent node
729 * @uname: the name of subnode
730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
731 */
732
733int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
734{
735 return fdt_subnode_offset(initial_boot_params, node, uname);
736}
737
738/*
739 * of_get_flat_dt_root - find the root node in the flat blob
740 */
741unsigned long __init of_get_flat_dt_root(void)
742{
743 return 0;
744}
745
746/*
747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
748 *
749 * This function can be used within scan_flattened_dt callback to get
750 * access to properties
751 */
752const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
753 int *size)
754{
755 return fdt_getprop(initial_boot_params, node, name, size);
756}
757
758/**
759 * of_fdt_is_compatible - Return true if given node from the given blob has
760 * compat in its compatible list
761 * @blob: A device tree blob
762 * @node: node to test
763 * @compat: compatible string to compare with compatible list.
764 *
765 * Return: a non-zero value on match with smaller values returned for more
766 * specific compatible values.
767 */
768static int of_fdt_is_compatible(const void *blob,
769 unsigned long node, const char *compat)
770{
771 const char *cp;
772 int cplen;
773 unsigned long l, score = 0;
774
775 cp = fdt_getprop(blob, node, "compatible", &cplen);
776 if (cp == NULL)
777 return 0;
778 while (cplen > 0) {
779 score++;
780 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
781 return score;
782 l = strlen(cp) + 1;
783 cp += l;
784 cplen -= l;
785 }
786
787 return 0;
788}
789
790/**
791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
792 * @node: node to test
793 * @compat: compatible string to compare with compatible list.
794 */
795int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
796{
797 return of_fdt_is_compatible(initial_boot_params, node, compat);
798}
799
800/*
801 * of_flat_dt_match - Return true if node matches a list of compatible values
802 */
803static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
804{
805 unsigned int tmp, score = 0;
806
807 if (!compat)
808 return 0;
809
810 while (*compat) {
811 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
812 if (tmp && (score == 0 || (tmp < score)))
813 score = tmp;
814 compat++;
815 }
816
817 return score;
818}
819
820/*
821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
822 */
823uint32_t __init of_get_flat_dt_phandle(unsigned long node)
824{
825 return fdt_get_phandle(initial_boot_params, node);
826}
827
828const char * __init of_flat_dt_get_machine_name(void)
829{
830 const char *name;
831 unsigned long dt_root = of_get_flat_dt_root();
832
833 name = of_get_flat_dt_prop(dt_root, "model", NULL);
834 if (!name)
835 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
836 return name;
837}
838
839/**
840 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
841 *
842 * @default_match: A machine specific ptr to return in case of no match.
843 * @get_next_compat: callback function to return next compatible match table.
844 *
845 * Iterate through machine match tables to find the best match for the machine
846 * compatible string in the FDT.
847 */
848const void * __init of_flat_dt_match_machine(const void *default_match,
849 const void * (*get_next_compat)(const char * const**))
850{
851 const void *data = NULL;
852 const void *best_data = default_match;
853 const char *const *compat;
854 unsigned long dt_root;
855 unsigned int best_score = ~1, score = 0;
856
857 dt_root = of_get_flat_dt_root();
858 while ((data = get_next_compat(&compat))) {
859 score = of_flat_dt_match(dt_root, compat);
860 if (score > 0 && score < best_score) {
861 best_data = data;
862 best_score = score;
863 }
864 }
865 if (!best_data) {
866 const char *prop;
867 int size;
868
869 pr_err("\n unrecognized device tree list:\n[ ");
870
871 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
872 if (prop) {
873 while (size > 0) {
874 printk("'%s' ", prop);
875 size -= strlen(prop) + 1;
876 prop += strlen(prop) + 1;
877 }
878 }
879 printk("]\n\n");
880 return NULL;
881 }
882
883 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
884
885 return best_data;
886}
887
888static void __early_init_dt_declare_initrd(unsigned long start,
889 unsigned long end)
890{
891 /*
892 * __va() is not yet available this early on some platforms. In that
893 * case, the platform uses phys_initrd_start/phys_initrd_size instead
894 * and does the VA conversion itself.
895 */
896 if (!IS_ENABLED(CONFIG_ARM64) &&
897 !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
898 initrd_start = (unsigned long)__va(start);
899 initrd_end = (unsigned long)__va(end);
900 initrd_below_start_ok = 1;
901 }
902}
903
904/**
905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
906 * @node: reference to node containing initrd location ('chosen')
907 */
908static void __init early_init_dt_check_for_initrd(unsigned long node)
909{
910 u64 start, end;
911 int len;
912 const __be32 *prop;
913
914 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
915 return;
916
917 pr_debug("Looking for initrd properties... ");
918
919 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
920 if (!prop)
921 return;
922 start = of_read_number(prop, len/4);
923
924 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
925 if (!prop)
926 return;
927 end = of_read_number(prop, len/4);
928 if (start > end)
929 return;
930
931 __early_init_dt_declare_initrd(start, end);
932 phys_initrd_start = start;
933 phys_initrd_size = end - start;
934
935 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
936}
937
938/**
939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
940 * tree
941 * @node: reference to node containing elfcorehdr location ('chosen')
942 */
943static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
944{
945 const __be32 *prop;
946 int len;
947
948 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
949 return;
950
951 pr_debug("Looking for elfcorehdr property... ");
952
953 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
954 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
955 return;
956
957 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
958 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
959
960 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
961 elfcorehdr_addr, elfcorehdr_size);
962}
963
964static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
965
966/*
967 * The main usage of linux,usable-memory-range is for crash dump kernel.
968 * Originally, the number of usable-memory regions is one. Now there may
969 * be two regions, low region and high region.
970 * To make compatibility with existing user-space and older kdump, the low
971 * region is always the last range of linux,usable-memory-range if exist.
972 */
973#define MAX_USABLE_RANGES 2
974
975/**
976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
977 * location from flat tree
978 */
979void __init early_init_dt_check_for_usable_mem_range(void)
980{
981 struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
982 const __be32 *prop, *endp;
983 int len, i;
984 unsigned long node = chosen_node_offset;
985
986 if ((long)node < 0)
987 return;
988
989 pr_debug("Looking for usable-memory-range property... ");
990
991 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
992 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
993 return;
994
995 endp = prop + (len / sizeof(__be32));
996 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
997 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
998 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
999
1000 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001 i, &rgn[i].base, &rgn[i].size);
1002 }
1003
1004 memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006 memblock_add(rgn[i].base, rgn[i].size);
1007}
1008
1009#ifdef CONFIG_SERIAL_EARLYCON
1010
1011int __init early_init_dt_scan_chosen_stdout(void)
1012{
1013 int offset;
1014 const char *p, *q, *options = NULL;
1015 int l;
1016 const struct earlycon_id *match;
1017 const void *fdt = initial_boot_params;
1018 int ret;
1019
1020 offset = fdt_path_offset(fdt, "/chosen");
1021 if (offset < 0)
1022 offset = fdt_path_offset(fdt, "/chosen@0");
1023 if (offset < 0)
1024 return -ENOENT;
1025
1026 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027 if (!p)
1028 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029 if (!p || !l)
1030 return -ENOENT;
1031
1032 q = strchrnul(p, ':');
1033 if (*q != '\0')
1034 options = q + 1;
1035 l = q - p;
1036
1037 /* Get the node specified by stdout-path */
1038 offset = fdt_path_offset_namelen(fdt, p, l);
1039 if (offset < 0) {
1040 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041 return 0;
1042 }
1043
1044 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1045 if (!match->compatible[0])
1046 continue;
1047
1048 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049 continue;
1050
1051 ret = of_setup_earlycon(match, offset, options);
1052 if (!ret || ret == -EALREADY)
1053 return 0;
1054 }
1055 return -ENODEV;
1056}
1057#endif
1058
1059/*
1060 * early_init_dt_scan_root - fetch the top level address and size cells
1061 */
1062int __init early_init_dt_scan_root(void)
1063{
1064 const __be32 *prop;
1065 const void *fdt = initial_boot_params;
1066 int node = fdt_path_offset(fdt, "/");
1067
1068 if (node < 0)
1069 return -ENODEV;
1070
1071 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073
1074 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075 if (prop)
1076 dt_root_size_cells = be32_to_cpup(prop);
1077 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078
1079 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080 if (prop)
1081 dt_root_addr_cells = be32_to_cpup(prop);
1082 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083
1084 return 0;
1085}
1086
1087u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088{
1089 const __be32 *p = *cellp;
1090
1091 *cellp = p + s;
1092 return of_read_number(p, s);
1093}
1094
1095/*
1096 * early_init_dt_scan_memory - Look for and parse memory nodes
1097 */
1098int __init early_init_dt_scan_memory(void)
1099{
1100 int node, found_memory = 0;
1101 const void *fdt = initial_boot_params;
1102
1103 fdt_for_each_subnode(node, fdt, 0) {
1104 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105 const __be32 *reg, *endp;
1106 int l;
1107 bool hotpluggable;
1108
1109 /* We are scanning "memory" nodes only */
1110 if (type == NULL || strcmp(type, "memory") != 0)
1111 continue;
1112
1113 if (!of_fdt_device_is_available(fdt, node))
1114 continue;
1115
1116 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117 if (reg == NULL)
1118 reg = of_get_flat_dt_prop(node, "reg", &l);
1119 if (reg == NULL)
1120 continue;
1121
1122 endp = reg + (l / sizeof(__be32));
1123 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1124
1125 pr_debug("memory scan node %s, reg size %d,\n",
1126 fdt_get_name(fdt, node, NULL), l);
1127
1128 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129 u64 base, size;
1130
1131 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1132 size = dt_mem_next_cell(dt_root_size_cells, ®);
1133
1134 if (size == 0)
1135 continue;
1136 pr_debug(" - %llx, %llx\n", base, size);
1137
1138 early_init_dt_add_memory_arch(base, size);
1139
1140 found_memory = 1;
1141
1142 if (!hotpluggable)
1143 continue;
1144
1145 if (memblock_mark_hotplug(base, size))
1146 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147 base, base + size);
1148 }
1149 }
1150 return found_memory;
1151}
1152
1153int __init early_init_dt_scan_chosen(char *cmdline)
1154{
1155 int l, node;
1156 const char *p;
1157 const void *rng_seed;
1158 const void *fdt = initial_boot_params;
1159
1160 node = fdt_path_offset(fdt, "/chosen");
1161 if (node < 0)
1162 node = fdt_path_offset(fdt, "/chosen@0");
1163 if (node < 0)
1164 /* Handle the cmdline config options even if no /chosen node */
1165 goto handle_cmdline;
1166
1167 chosen_node_offset = node;
1168
1169 early_init_dt_check_for_initrd(node);
1170 early_init_dt_check_for_elfcorehdr(node);
1171
1172 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173 if (rng_seed && l > 0) {
1174 add_bootloader_randomness(rng_seed, l);
1175
1176 /* try to clear seed so it won't be found. */
1177 fdt_nop_property(initial_boot_params, node, "rng-seed");
1178
1179 /* update CRC check value */
1180 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181 fdt_totalsize(initial_boot_params));
1182 }
1183
1184 /* Retrieve command line */
1185 p = of_get_flat_dt_prop(node, "bootargs", &l);
1186 if (p != NULL && l > 0)
1187 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188
1189handle_cmdline:
1190 /*
1191 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193 * is set in which case we override whatever was found earlier.
1194 */
1195#ifdef CONFIG_CMDLINE
1196#if defined(CONFIG_CMDLINE_EXTEND)
1197 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198 strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#elif defined(CONFIG_CMDLINE_FORCE)
1200 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201#else
1202 /* No arguments from boot loader, use kernel's cmdl*/
1203 if (!((char *)cmdline)[0])
1204 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205#endif
1206#endif /* CONFIG_CMDLINE */
1207
1208 pr_debug("Command line is: %s\n", (char *)cmdline);
1209
1210 return 0;
1211}
1212
1213#ifndef MIN_MEMBLOCK_ADDR
1214#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1215#endif
1216#ifndef MAX_MEMBLOCK_ADDR
1217#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1218#endif
1219
1220void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221{
1222 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223
1224 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226 base, base + size);
1227 return;
1228 }
1229
1230 if (!PAGE_ALIGNED(base)) {
1231 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232 base = PAGE_ALIGN(base);
1233 }
1234 size &= PAGE_MASK;
1235
1236 if (base > MAX_MEMBLOCK_ADDR) {
1237 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238 base, base + size);
1239 return;
1240 }
1241
1242 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245 size = MAX_MEMBLOCK_ADDR - base + 1;
1246 }
1247
1248 if (base + size < phys_offset) {
1249 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250 base, base + size);
1251 return;
1252 }
1253 if (base < phys_offset) {
1254 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255 base, phys_offset);
1256 size -= phys_offset - base;
1257 base = phys_offset;
1258 }
1259 memblock_add(base, size);
1260}
1261
1262static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263{
1264 void *ptr = memblock_alloc(size, align);
1265
1266 if (!ptr)
1267 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268 __func__, size, align);
1269
1270 return ptr;
1271}
1272
1273bool __init early_init_dt_verify(void *params)
1274{
1275 if (!params)
1276 return false;
1277
1278 /* check device tree validity */
1279 if (fdt_check_header(params))
1280 return false;
1281
1282 /* Setup flat device-tree pointer */
1283 initial_boot_params = params;
1284 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285 fdt_totalsize(initial_boot_params));
1286 return true;
1287}
1288
1289
1290void __init early_init_dt_scan_nodes(void)
1291{
1292 int rc;
1293
1294 /* Initialize {size,address}-cells info */
1295 early_init_dt_scan_root();
1296
1297 /* Retrieve various information from the /chosen node */
1298 rc = early_init_dt_scan_chosen(boot_command_line);
1299 if (rc)
1300 pr_warn("No chosen node found, continuing without\n");
1301
1302 /* Setup memory, calling early_init_dt_add_memory_arch */
1303 early_init_dt_scan_memory();
1304
1305 /* Handle linux,usable-memory-range property */
1306 early_init_dt_check_for_usable_mem_range();
1307}
1308
1309bool __init early_init_dt_scan(void *params)
1310{
1311 bool status;
1312
1313 status = early_init_dt_verify(params);
1314 if (!status)
1315 return false;
1316
1317 early_init_dt_scan_nodes();
1318 return true;
1319}
1320
1321/**
1322 * unflatten_device_tree - create tree of device_nodes from flat blob
1323 *
1324 * unflattens the device-tree passed by the firmware, creating the
1325 * tree of struct device_node. It also fills the "name" and "type"
1326 * pointers of the nodes so the normal device-tree walking functions
1327 * can be used.
1328 */
1329void __init unflatten_device_tree(void)
1330{
1331 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332 early_init_dt_alloc_memory_arch, false);
1333
1334 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335 of_alias_scan(early_init_dt_alloc_memory_arch);
1336
1337 unittest_unflatten_overlay_base();
1338}
1339
1340/**
1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342 *
1343 * Copies and unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used. This should only be used when the FDT memory has not been
1347 * reserved such is the case when the FDT is built-in to the kernel init
1348 * section. If the FDT memory is reserved already then unflatten_device_tree
1349 * should be used instead.
1350 */
1351void __init unflatten_and_copy_device_tree(void)
1352{
1353 int size;
1354 void *dt;
1355
1356 if (!initial_boot_params) {
1357 pr_warn("No valid device tree found, continuing without\n");
1358 return;
1359 }
1360
1361 size = fdt_totalsize(initial_boot_params);
1362 dt = early_init_dt_alloc_memory_arch(size,
1363 roundup_pow_of_two(FDT_V17_SIZE));
1364
1365 if (dt) {
1366 memcpy(dt, initial_boot_params, size);
1367 initial_boot_params = dt;
1368 }
1369 unflatten_device_tree();
1370}
1371
1372#ifdef CONFIG_SYSFS
1373static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374 struct bin_attribute *bin_attr,
1375 char *buf, loff_t off, size_t count)
1376{
1377 memcpy(buf, initial_boot_params + off, count);
1378 return count;
1379}
1380
1381static int __init of_fdt_raw_init(void)
1382{
1383 static struct bin_attribute of_fdt_raw_attr =
1384 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385
1386 if (!initial_boot_params)
1387 return 0;
1388
1389 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390 fdt_totalsize(initial_boot_params))) {
1391 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392 return 0;
1393 }
1394 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396}
1397late_initcall(of_fdt_raw_init);
1398#endif
1399
1400#endif /* CONFIG_OF_EARLY_FLATTREE */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9#define pr_fmt(fmt) "OF: fdt: " fmt
10
11#include <linux/crc32.h>
12#include <linux/kernel.h>
13#include <linux/initrd.h>
14#include <linux/bootmem.h>
15#include <linux/memblock.h>
16#include <linux/mutex.h>
17#include <linux/of.h>
18#include <linux/of_fdt.h>
19#include <linux/of_reserved_mem.h>
20#include <linux/sizes.h>
21#include <linux/string.h>
22#include <linux/errno.h>
23#include <linux/slab.h>
24#include <linux/libfdt.h>
25#include <linux/debugfs.h>
26#include <linux/serial_core.h>
27#include <linux/sysfs.h>
28
29#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30#include <asm/page.h>
31
32#include "of_private.h"
33
34/*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
42void of_fdt_limit_memory(int limit)
43{
44 int memory;
45 int len;
46 const void *val;
47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 const __be32 *addr_prop;
50 const __be32 *size_prop;
51 int root_offset;
52 int cell_size;
53
54 root_offset = fdt_path_offset(initial_boot_params, "/");
55 if (root_offset < 0)
56 return;
57
58 addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 "#address-cells", NULL);
60 if (addr_prop)
61 nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63 size_prop = fdt_getprop(initial_boot_params, root_offset,
64 "#size-cells", NULL);
65 if (size_prop)
66 nr_size_cells = fdt32_to_cpu(*size_prop);
67
68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70 memory = fdt_path_offset(initial_boot_params, "/memory");
71 if (memory > 0) {
72 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 if (len > limit*cell_size) {
74 len = limit*cell_size;
75 pr_debug("Limiting number of entries to %d\n", limit);
76 fdt_setprop(initial_boot_params, memory, "reg", val,
77 len);
78 }
79 }
80}
81
82/**
83 * of_fdt_is_compatible - Return true if given node from the given blob has
84 * compat in its compatible list
85 * @blob: A device tree blob
86 * @node: node to test
87 * @compat: compatible string to compare with compatible list.
88 *
89 * On match, returns a non-zero value with smaller values returned for more
90 * specific compatible values.
91 */
92static int of_fdt_is_compatible(const void *blob,
93 unsigned long node, const char *compat)
94{
95 const char *cp;
96 int cplen;
97 unsigned long l, score = 0;
98
99 cp = fdt_getprop(blob, node, "compatible", &cplen);
100 if (cp == NULL)
101 return 0;
102 while (cplen > 0) {
103 score++;
104 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
105 return score;
106 l = strlen(cp) + 1;
107 cp += l;
108 cplen -= l;
109 }
110
111 return 0;
112}
113
114/**
115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
116 * @blob: A device tree blob
117 * @node: node to test
118 *
119 * Returns true if the node has a "big-endian" property, or if the kernel
120 * was compiled for BE *and* the node has a "native-endian" property.
121 * Returns false otherwise.
122 */
123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
124{
125 if (fdt_getprop(blob, node, "big-endian", NULL))
126 return true;
127 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
128 fdt_getprop(blob, node, "native-endian", NULL))
129 return true;
130 return false;
131}
132
133static bool of_fdt_device_is_available(const void *blob, unsigned long node)
134{
135 const char *status = fdt_getprop(blob, node, "status", NULL);
136
137 if (!status)
138 return true;
139
140 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
141 return true;
142
143 return false;
144}
145
146/**
147 * of_fdt_match - Return true if node matches a list of compatible values
148 */
149int of_fdt_match(const void *blob, unsigned long node,
150 const char *const *compat)
151{
152 unsigned int tmp, score = 0;
153
154 if (!compat)
155 return 0;
156
157 while (*compat) {
158 tmp = of_fdt_is_compatible(blob, node, *compat);
159 if (tmp && (score == 0 || (tmp < score)))
160 score = tmp;
161 compat++;
162 }
163
164 return score;
165}
166
167static void *unflatten_dt_alloc(void **mem, unsigned long size,
168 unsigned long align)
169{
170 void *res;
171
172 *mem = PTR_ALIGN(*mem, align);
173 res = *mem;
174 *mem += size;
175
176 return res;
177}
178
179static void populate_properties(const void *blob,
180 int offset,
181 void **mem,
182 struct device_node *np,
183 const char *nodename,
184 bool dryrun)
185{
186 struct property *pp, **pprev = NULL;
187 int cur;
188 bool has_name = false;
189
190 pprev = &np->properties;
191 for (cur = fdt_first_property_offset(blob, offset);
192 cur >= 0;
193 cur = fdt_next_property_offset(blob, cur)) {
194 const __be32 *val;
195 const char *pname;
196 u32 sz;
197
198 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
199 if (!val) {
200 pr_warn("Cannot locate property at 0x%x\n", cur);
201 continue;
202 }
203
204 if (!pname) {
205 pr_warn("Cannot find property name at 0x%x\n", cur);
206 continue;
207 }
208
209 if (!strcmp(pname, "name"))
210 has_name = true;
211
212 pp = unflatten_dt_alloc(mem, sizeof(struct property),
213 __alignof__(struct property));
214 if (dryrun)
215 continue;
216
217 /* We accept flattened tree phandles either in
218 * ePAPR-style "phandle" properties, or the
219 * legacy "linux,phandle" properties. If both
220 * appear and have different values, things
221 * will get weird. Don't do that.
222 */
223 if (!strcmp(pname, "phandle") ||
224 !strcmp(pname, "linux,phandle")) {
225 if (!np->phandle)
226 np->phandle = be32_to_cpup(val);
227 }
228
229 /* And we process the "ibm,phandle" property
230 * used in pSeries dynamic device tree
231 * stuff
232 */
233 if (!strcmp(pname, "ibm,phandle"))
234 np->phandle = be32_to_cpup(val);
235
236 pp->name = (char *)pname;
237 pp->length = sz;
238 pp->value = (__be32 *)val;
239 *pprev = pp;
240 pprev = &pp->next;
241 }
242
243 /* With version 0x10 we may not have the name property,
244 * recreate it here from the unit name if absent
245 */
246 if (!has_name) {
247 const char *p = nodename, *ps = p, *pa = NULL;
248 int len;
249
250 while (*p) {
251 if ((*p) == '@')
252 pa = p;
253 else if ((*p) == '/')
254 ps = p + 1;
255 p++;
256 }
257
258 if (pa < ps)
259 pa = p;
260 len = (pa - ps) + 1;
261 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
262 __alignof__(struct property));
263 if (!dryrun) {
264 pp->name = "name";
265 pp->length = len;
266 pp->value = pp + 1;
267 *pprev = pp;
268 pprev = &pp->next;
269 memcpy(pp->value, ps, len - 1);
270 ((char *)pp->value)[len - 1] = 0;
271 pr_debug("fixed up name for %s -> %s\n",
272 nodename, (char *)pp->value);
273 }
274 }
275
276 if (!dryrun)
277 *pprev = NULL;
278}
279
280static bool populate_node(const void *blob,
281 int offset,
282 void **mem,
283 struct device_node *dad,
284 struct device_node **pnp,
285 bool dryrun)
286{
287 struct device_node *np;
288 const char *pathp;
289 unsigned int l, allocl;
290
291 pathp = fdt_get_name(blob, offset, &l);
292 if (!pathp) {
293 *pnp = NULL;
294 return false;
295 }
296
297 allocl = ++l;
298
299 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
300 __alignof__(struct device_node));
301 if (!dryrun) {
302 char *fn;
303 of_node_init(np);
304 np->full_name = fn = ((char *)np) + sizeof(*np);
305
306 memcpy(fn, pathp, l);
307
308 if (dad != NULL) {
309 np->parent = dad;
310 np->sibling = dad->child;
311 dad->child = np;
312 }
313 }
314
315 populate_properties(blob, offset, mem, np, pathp, dryrun);
316 if (!dryrun) {
317 np->name = of_get_property(np, "name", NULL);
318 np->type = of_get_property(np, "device_type", NULL);
319
320 if (!np->name)
321 np->name = "<NULL>";
322 if (!np->type)
323 np->type = "<NULL>";
324 }
325
326 *pnp = np;
327 return true;
328}
329
330static void reverse_nodes(struct device_node *parent)
331{
332 struct device_node *child, *next;
333
334 /* In-depth first */
335 child = parent->child;
336 while (child) {
337 reverse_nodes(child);
338
339 child = child->sibling;
340 }
341
342 /* Reverse the nodes in the child list */
343 child = parent->child;
344 parent->child = NULL;
345 while (child) {
346 next = child->sibling;
347
348 child->sibling = parent->child;
349 parent->child = child;
350 child = next;
351 }
352}
353
354/**
355 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
356 * @blob: The parent device tree blob
357 * @mem: Memory chunk to use for allocating device nodes and properties
358 * @dad: Parent struct device_node
359 * @nodepp: The device_node tree created by the call
360 *
361 * It returns the size of unflattened device tree or error code
362 */
363static int unflatten_dt_nodes(const void *blob,
364 void *mem,
365 struct device_node *dad,
366 struct device_node **nodepp)
367{
368 struct device_node *root;
369 int offset = 0, depth = 0, initial_depth = 0;
370#define FDT_MAX_DEPTH 64
371 struct device_node *nps[FDT_MAX_DEPTH];
372 void *base = mem;
373 bool dryrun = !base;
374
375 if (nodepp)
376 *nodepp = NULL;
377
378 /*
379 * We're unflattening device sub-tree if @dad is valid. There are
380 * possibly multiple nodes in the first level of depth. We need
381 * set @depth to 1 to make fdt_next_node() happy as it bails
382 * immediately when negative @depth is found. Otherwise, the device
383 * nodes except the first one won't be unflattened successfully.
384 */
385 if (dad)
386 depth = initial_depth = 1;
387
388 root = dad;
389 nps[depth] = dad;
390
391 for (offset = 0;
392 offset >= 0 && depth >= initial_depth;
393 offset = fdt_next_node(blob, offset, &depth)) {
394 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
395 continue;
396
397 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
398 !of_fdt_device_is_available(blob, offset))
399 continue;
400
401 if (!populate_node(blob, offset, &mem, nps[depth],
402 &nps[depth+1], dryrun))
403 return mem - base;
404
405 if (!dryrun && nodepp && !*nodepp)
406 *nodepp = nps[depth+1];
407 if (!dryrun && !root)
408 root = nps[depth+1];
409 }
410
411 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
412 pr_err("Error %d processing FDT\n", offset);
413 return -EINVAL;
414 }
415
416 /*
417 * Reverse the child list. Some drivers assumes node order matches .dts
418 * node order
419 */
420 if (!dryrun)
421 reverse_nodes(root);
422
423 return mem - base;
424}
425
426/**
427 * __unflatten_device_tree - create tree of device_nodes from flat blob
428 *
429 * unflattens a device-tree, creating the
430 * tree of struct device_node. It also fills the "name" and "type"
431 * pointers of the nodes so the normal device-tree walking functions
432 * can be used.
433 * @blob: The blob to expand
434 * @dad: Parent device node
435 * @mynodes: The device_node tree created by the call
436 * @dt_alloc: An allocator that provides a virtual address to memory
437 * for the resulting tree
438 * @detached: if true set OF_DETACHED on @mynodes
439 *
440 * Returns NULL on failure or the memory chunk containing the unflattened
441 * device tree on success.
442 */
443void *__unflatten_device_tree(const void *blob,
444 struct device_node *dad,
445 struct device_node **mynodes,
446 void *(*dt_alloc)(u64 size, u64 align),
447 bool detached)
448{
449 int size;
450 void *mem;
451
452 pr_debug(" -> unflatten_device_tree()\n");
453
454 if (!blob) {
455 pr_debug("No device tree pointer\n");
456 return NULL;
457 }
458
459 pr_debug("Unflattening device tree:\n");
460 pr_debug("magic: %08x\n", fdt_magic(blob));
461 pr_debug("size: %08x\n", fdt_totalsize(blob));
462 pr_debug("version: %08x\n", fdt_version(blob));
463
464 if (fdt_check_header(blob)) {
465 pr_err("Invalid device tree blob header\n");
466 return NULL;
467 }
468
469 /* First pass, scan for size */
470 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
471 if (size < 0)
472 return NULL;
473
474 size = ALIGN(size, 4);
475 pr_debug(" size is %d, allocating...\n", size);
476
477 /* Allocate memory for the expanded device tree */
478 mem = dt_alloc(size + 4, __alignof__(struct device_node));
479 if (!mem)
480 return NULL;
481
482 memset(mem, 0, size);
483
484 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
485
486 pr_debug(" unflattening %p...\n", mem);
487
488 /* Second pass, do actual unflattening */
489 unflatten_dt_nodes(blob, mem, dad, mynodes);
490 if (be32_to_cpup(mem + size) != 0xdeadbeef)
491 pr_warning("End of tree marker overwritten: %08x\n",
492 be32_to_cpup(mem + size));
493
494 if (detached && mynodes) {
495 of_node_set_flag(*mynodes, OF_DETACHED);
496 pr_debug("unflattened tree is detached\n");
497 }
498
499 pr_debug(" <- unflatten_device_tree()\n");
500 return mem;
501}
502
503static void *kernel_tree_alloc(u64 size, u64 align)
504{
505 return kzalloc(size, GFP_KERNEL);
506}
507
508static DEFINE_MUTEX(of_fdt_unflatten_mutex);
509
510/**
511 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
512 * @blob: Flat device tree blob
513 * @dad: Parent device node
514 * @mynodes: The device tree created by the call
515 *
516 * unflattens the device-tree passed by the firmware, creating the
517 * tree of struct device_node. It also fills the "name" and "type"
518 * pointers of the nodes so the normal device-tree walking functions
519 * can be used.
520 *
521 * Returns NULL on failure or the memory chunk containing the unflattened
522 * device tree on success.
523 */
524void *of_fdt_unflatten_tree(const unsigned long *blob,
525 struct device_node *dad,
526 struct device_node **mynodes)
527{
528 void *mem;
529
530 mutex_lock(&of_fdt_unflatten_mutex);
531 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
532 true);
533 mutex_unlock(&of_fdt_unflatten_mutex);
534
535 return mem;
536}
537EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
538
539/* Everything below here references initial_boot_params directly. */
540int __initdata dt_root_addr_cells;
541int __initdata dt_root_size_cells;
542
543void *initial_boot_params;
544
545#ifdef CONFIG_OF_EARLY_FLATTREE
546
547static u32 of_fdt_crc32;
548
549/**
550 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
551 */
552static int __init __reserved_mem_reserve_reg(unsigned long node,
553 const char *uname)
554{
555 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
556 phys_addr_t base, size;
557 int len;
558 const __be32 *prop;
559 int nomap, first = 1;
560
561 prop = of_get_flat_dt_prop(node, "reg", &len);
562 if (!prop)
563 return -ENOENT;
564
565 if (len && len % t_len != 0) {
566 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
567 uname);
568 return -EINVAL;
569 }
570
571 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
572
573 while (len >= t_len) {
574 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
575 size = dt_mem_next_cell(dt_root_size_cells, &prop);
576
577 if (size &&
578 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
579 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
580 uname, &base, (unsigned long)size / SZ_1M);
581 else
582 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
583 uname, &base, (unsigned long)size / SZ_1M);
584
585 len -= t_len;
586 if (first) {
587 fdt_reserved_mem_save_node(node, uname, base, size);
588 first = 0;
589 }
590 }
591 return 0;
592}
593
594/**
595 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
596 * in /reserved-memory matches the values supported by the current implementation,
597 * also check if ranges property has been provided
598 */
599static int __init __reserved_mem_check_root(unsigned long node)
600{
601 const __be32 *prop;
602
603 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
604 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
605 return -EINVAL;
606
607 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
608 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
609 return -EINVAL;
610
611 prop = of_get_flat_dt_prop(node, "ranges", NULL);
612 if (!prop)
613 return -EINVAL;
614 return 0;
615}
616
617/**
618 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
619 */
620static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
621 int depth, void *data)
622{
623 static int found;
624 int err;
625
626 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
627 if (__reserved_mem_check_root(node) != 0) {
628 pr_err("Reserved memory: unsupported node format, ignoring\n");
629 /* break scan */
630 return 1;
631 }
632 found = 1;
633 /* scan next node */
634 return 0;
635 } else if (!found) {
636 /* scan next node */
637 return 0;
638 } else if (found && depth < 2) {
639 /* scanning of /reserved-memory has been finished */
640 return 1;
641 }
642
643 if (!of_fdt_device_is_available(initial_boot_params, node))
644 return 0;
645
646 err = __reserved_mem_reserve_reg(node, uname);
647 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
648 fdt_reserved_mem_save_node(node, uname, 0, 0);
649
650 /* scan next node */
651 return 0;
652}
653
654/**
655 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
656 *
657 * This function grabs memory from early allocator for device exclusive use
658 * defined in device tree structures. It should be called by arch specific code
659 * once the early allocator (i.e. memblock) has been fully activated.
660 */
661void __init early_init_fdt_scan_reserved_mem(void)
662{
663 int n;
664 u64 base, size;
665
666 if (!initial_boot_params)
667 return;
668
669 /* Process header /memreserve/ fields */
670 for (n = 0; ; n++) {
671 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
672 if (!size)
673 break;
674 early_init_dt_reserve_memory_arch(base, size, 0);
675 }
676
677 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
678 fdt_init_reserved_mem();
679}
680
681/**
682 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
683 */
684void __init early_init_fdt_reserve_self(void)
685{
686 if (!initial_boot_params)
687 return;
688
689 /* Reserve the dtb region */
690 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
691 fdt_totalsize(initial_boot_params),
692 0);
693}
694
695/**
696 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
697 * @it: callback function
698 * @data: context data pointer
699 *
700 * This function is used to scan the flattened device-tree, it is
701 * used to extract the memory information at boot before we can
702 * unflatten the tree
703 */
704int __init of_scan_flat_dt(int (*it)(unsigned long node,
705 const char *uname, int depth,
706 void *data),
707 void *data)
708{
709 const void *blob = initial_boot_params;
710 const char *pathp;
711 int offset, rc = 0, depth = -1;
712
713 if (!blob)
714 return 0;
715
716 for (offset = fdt_next_node(blob, -1, &depth);
717 offset >= 0 && depth >= 0 && !rc;
718 offset = fdt_next_node(blob, offset, &depth)) {
719
720 pathp = fdt_get_name(blob, offset, NULL);
721 if (*pathp == '/')
722 pathp = kbasename(pathp);
723 rc = it(offset, pathp, depth, data);
724 }
725 return rc;
726}
727
728/**
729 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
730 * @it: callback function
731 * @data: context data pointer
732 *
733 * This function is used to scan sub-nodes of a node.
734 */
735int __init of_scan_flat_dt_subnodes(unsigned long parent,
736 int (*it)(unsigned long node,
737 const char *uname,
738 void *data),
739 void *data)
740{
741 const void *blob = initial_boot_params;
742 int node;
743
744 fdt_for_each_subnode(node, blob, parent) {
745 const char *pathp;
746 int rc;
747
748 pathp = fdt_get_name(blob, node, NULL);
749 if (*pathp == '/')
750 pathp = kbasename(pathp);
751 rc = it(node, pathp, data);
752 if (rc)
753 return rc;
754 }
755 return 0;
756}
757
758/**
759 * of_get_flat_dt_subnode_by_name - get the subnode by given name
760 *
761 * @node: the parent node
762 * @uname: the name of subnode
763 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
764 */
765
766int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
767{
768 return fdt_subnode_offset(initial_boot_params, node, uname);
769}
770
771/**
772 * of_get_flat_dt_root - find the root node in the flat blob
773 */
774unsigned long __init of_get_flat_dt_root(void)
775{
776 return 0;
777}
778
779/**
780 * of_get_flat_dt_size - Return the total size of the FDT
781 */
782int __init of_get_flat_dt_size(void)
783{
784 return fdt_totalsize(initial_boot_params);
785}
786
787/**
788 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
789 *
790 * This function can be used within scan_flattened_dt callback to get
791 * access to properties
792 */
793const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
794 int *size)
795{
796 return fdt_getprop(initial_boot_params, node, name, size);
797}
798
799/**
800 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
801 * @node: node to test
802 * @compat: compatible string to compare with compatible list.
803 */
804int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
805{
806 return of_fdt_is_compatible(initial_boot_params, node, compat);
807}
808
809/**
810 * of_flat_dt_match - Return true if node matches a list of compatible values
811 */
812int __init of_flat_dt_match(unsigned long node, const char *const *compat)
813{
814 return of_fdt_match(initial_boot_params, node, compat);
815}
816
817/**
818 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
819 */
820uint32_t __init of_get_flat_dt_phandle(unsigned long node)
821{
822 return fdt_get_phandle(initial_boot_params, node);
823}
824
825struct fdt_scan_status {
826 const char *name;
827 int namelen;
828 int depth;
829 int found;
830 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
831 void *data;
832};
833
834const char * __init of_flat_dt_get_machine_name(void)
835{
836 const char *name;
837 unsigned long dt_root = of_get_flat_dt_root();
838
839 name = of_get_flat_dt_prop(dt_root, "model", NULL);
840 if (!name)
841 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
842 return name;
843}
844
845/**
846 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
847 *
848 * @default_match: A machine specific ptr to return in case of no match.
849 * @get_next_compat: callback function to return next compatible match table.
850 *
851 * Iterate through machine match tables to find the best match for the machine
852 * compatible string in the FDT.
853 */
854const void * __init of_flat_dt_match_machine(const void *default_match,
855 const void * (*get_next_compat)(const char * const**))
856{
857 const void *data = NULL;
858 const void *best_data = default_match;
859 const char *const *compat;
860 unsigned long dt_root;
861 unsigned int best_score = ~1, score = 0;
862
863 dt_root = of_get_flat_dt_root();
864 while ((data = get_next_compat(&compat))) {
865 score = of_flat_dt_match(dt_root, compat);
866 if (score > 0 && score < best_score) {
867 best_data = data;
868 best_score = score;
869 }
870 }
871 if (!best_data) {
872 const char *prop;
873 int size;
874
875 pr_err("\n unrecognized device tree list:\n[ ");
876
877 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
878 if (prop) {
879 while (size > 0) {
880 printk("'%s' ", prop);
881 size -= strlen(prop) + 1;
882 prop += strlen(prop) + 1;
883 }
884 }
885 printk("]\n\n");
886 return NULL;
887 }
888
889 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
890
891 return best_data;
892}
893
894#ifdef CONFIG_BLK_DEV_INITRD
895#ifndef __early_init_dt_declare_initrd
896static void __early_init_dt_declare_initrd(unsigned long start,
897 unsigned long end)
898{
899 initrd_start = (unsigned long)__va(start);
900 initrd_end = (unsigned long)__va(end);
901 initrd_below_start_ok = 1;
902}
903#endif
904
905/**
906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
907 * @node: reference to node containing initrd location ('chosen')
908 */
909static void __init early_init_dt_check_for_initrd(unsigned long node)
910{
911 u64 start, end;
912 int len;
913 const __be32 *prop;
914
915 pr_debug("Looking for initrd properties... ");
916
917 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
918 if (!prop)
919 return;
920 start = of_read_number(prop, len/4);
921
922 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
923 if (!prop)
924 return;
925 end = of_read_number(prop, len/4);
926
927 __early_init_dt_declare_initrd(start, end);
928
929 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
930 (unsigned long long)start, (unsigned long long)end);
931}
932#else
933static inline void early_init_dt_check_for_initrd(unsigned long node)
934{
935}
936#endif /* CONFIG_BLK_DEV_INITRD */
937
938#ifdef CONFIG_SERIAL_EARLYCON
939
940int __init early_init_dt_scan_chosen_stdout(void)
941{
942 int offset;
943 const char *p, *q, *options = NULL;
944 int l;
945 const struct earlycon_id **p_match;
946 const void *fdt = initial_boot_params;
947
948 offset = fdt_path_offset(fdt, "/chosen");
949 if (offset < 0)
950 offset = fdt_path_offset(fdt, "/chosen@0");
951 if (offset < 0)
952 return -ENOENT;
953
954 p = fdt_getprop(fdt, offset, "stdout-path", &l);
955 if (!p)
956 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
957 if (!p || !l)
958 return -ENOENT;
959
960 q = strchrnul(p, ':');
961 if (*q != '\0')
962 options = q + 1;
963 l = q - p;
964
965 /* Get the node specified by stdout-path */
966 offset = fdt_path_offset_namelen(fdt, p, l);
967 if (offset < 0) {
968 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
969 return 0;
970 }
971
972 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
973 p_match++) {
974 const struct earlycon_id *match = *p_match;
975
976 if (!match->compatible[0])
977 continue;
978
979 if (fdt_node_check_compatible(fdt, offset, match->compatible))
980 continue;
981
982 of_setup_earlycon(match, offset, options);
983 return 0;
984 }
985 return -ENODEV;
986}
987#endif
988
989/**
990 * early_init_dt_scan_root - fetch the top level address and size cells
991 */
992int __init early_init_dt_scan_root(unsigned long node, const char *uname,
993 int depth, void *data)
994{
995 const __be32 *prop;
996
997 if (depth != 0)
998 return 0;
999
1000 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002
1003 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004 if (prop)
1005 dt_root_size_cells = be32_to_cpup(prop);
1006 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007
1008 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009 if (prop)
1010 dt_root_addr_cells = be32_to_cpup(prop);
1011 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012
1013 /* break now */
1014 return 1;
1015}
1016
1017u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018{
1019 const __be32 *p = *cellp;
1020
1021 *cellp = p + s;
1022 return of_read_number(p, s);
1023}
1024
1025/**
1026 * early_init_dt_scan_memory - Look for and parse memory nodes
1027 */
1028int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029 int depth, void *data)
1030{
1031 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032 const __be32 *reg, *endp;
1033 int l;
1034 bool hotpluggable;
1035
1036 /* We are scanning "memory" nodes only */
1037 if (type == NULL) {
1038 /*
1039 * The longtrail doesn't have a device_type on the
1040 * /memory node, so look for the node called /memory@0.
1041 */
1042 if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1043 return 0;
1044 } else if (strcmp(type, "memory") != 0)
1045 return 0;
1046
1047 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1048 if (reg == NULL)
1049 reg = of_get_flat_dt_prop(node, "reg", &l);
1050 if (reg == NULL)
1051 return 0;
1052
1053 endp = reg + (l / sizeof(__be32));
1054 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1055
1056 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1057
1058 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1059 u64 base, size;
1060
1061 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1062 size = dt_mem_next_cell(dt_root_size_cells, ®);
1063
1064 if (size == 0)
1065 continue;
1066 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1067 (unsigned long long)size);
1068
1069 early_init_dt_add_memory_arch(base, size);
1070
1071 if (!hotpluggable)
1072 continue;
1073
1074 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1075 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1076 base, base + size);
1077 }
1078
1079 return 0;
1080}
1081
1082int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1083 int depth, void *data)
1084{
1085 int l;
1086 const char *p;
1087
1088 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1089
1090 if (depth != 1 || !data ||
1091 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1092 return 0;
1093
1094 early_init_dt_check_for_initrd(node);
1095
1096 /* Retrieve command line */
1097 p = of_get_flat_dt_prop(node, "bootargs", &l);
1098 if (p != NULL && l > 0)
1099 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1100
1101 /*
1102 * CONFIG_CMDLINE is meant to be a default in case nothing else
1103 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1104 * is set in which case we override whatever was found earlier.
1105 */
1106#ifdef CONFIG_CMDLINE
1107#if defined(CONFIG_CMDLINE_EXTEND)
1108 strlcat(data, " ", COMMAND_LINE_SIZE);
1109 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1110#elif defined(CONFIG_CMDLINE_FORCE)
1111 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1112#else
1113 /* No arguments from boot loader, use kernel's cmdl*/
1114 if (!((char *)data)[0])
1115 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1116#endif
1117#endif /* CONFIG_CMDLINE */
1118
1119 pr_debug("Command line is: %s\n", (char*)data);
1120
1121 /* break now */
1122 return 1;
1123}
1124
1125#ifdef CONFIG_HAVE_MEMBLOCK
1126#ifndef MIN_MEMBLOCK_ADDR
1127#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1128#endif
1129#ifndef MAX_MEMBLOCK_ADDR
1130#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1131#endif
1132
1133void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1134{
1135 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1136
1137 if (!PAGE_ALIGNED(base)) {
1138 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1139 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1140 base, base + size);
1141 return;
1142 }
1143 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1144 base = PAGE_ALIGN(base);
1145 }
1146 size &= PAGE_MASK;
1147
1148 if (base > MAX_MEMBLOCK_ADDR) {
1149 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1150 base, base + size);
1151 return;
1152 }
1153
1154 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1155 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1156 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1157 size = MAX_MEMBLOCK_ADDR - base + 1;
1158 }
1159
1160 if (base + size < phys_offset) {
1161 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1162 base, base + size);
1163 return;
1164 }
1165 if (base < phys_offset) {
1166 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1167 base, phys_offset);
1168 size -= phys_offset - base;
1169 base = phys_offset;
1170 }
1171 memblock_add(base, size);
1172}
1173
1174int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1175{
1176 return memblock_mark_hotplug(base, size);
1177}
1178
1179int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1180 phys_addr_t size, bool nomap)
1181{
1182 if (nomap)
1183 return memblock_remove(base, size);
1184 return memblock_reserve(base, size);
1185}
1186
1187#else
1188void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1189{
1190 WARN_ON(1);
1191}
1192
1193int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1194{
1195 return -ENOSYS;
1196}
1197
1198int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1199 phys_addr_t size, bool nomap)
1200{
1201 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1202 &base, &size, nomap ? " (nomap)" : "");
1203 return -ENOSYS;
1204}
1205#endif
1206
1207static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1208{
1209 return memblock_virt_alloc(size, align);
1210}
1211
1212bool __init early_init_dt_verify(void *params)
1213{
1214 if (!params)
1215 return false;
1216
1217 /* check device tree validity */
1218 if (fdt_check_header(params))
1219 return false;
1220
1221 /* Setup flat device-tree pointer */
1222 initial_boot_params = params;
1223 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1224 fdt_totalsize(initial_boot_params));
1225 return true;
1226}
1227
1228
1229void __init early_init_dt_scan_nodes(void)
1230{
1231 /* Retrieve various information from the /chosen node */
1232 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1233
1234 /* Initialize {size,address}-cells info */
1235 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1236
1237 /* Setup memory, calling early_init_dt_add_memory_arch */
1238 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1239}
1240
1241bool __init early_init_dt_scan(void *params)
1242{
1243 bool status;
1244
1245 status = early_init_dt_verify(params);
1246 if (!status)
1247 return false;
1248
1249 early_init_dt_scan_nodes();
1250 return true;
1251}
1252
1253/**
1254 * unflatten_device_tree - create tree of device_nodes from flat blob
1255 *
1256 * unflattens the device-tree passed by the firmware, creating the
1257 * tree of struct device_node. It also fills the "name" and "type"
1258 * pointers of the nodes so the normal device-tree walking functions
1259 * can be used.
1260 */
1261void __init unflatten_device_tree(void)
1262{
1263 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1264 early_init_dt_alloc_memory_arch, false);
1265
1266 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1267 of_alias_scan(early_init_dt_alloc_memory_arch);
1268
1269 unittest_unflatten_overlay_base();
1270}
1271
1272/**
1273 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1274 *
1275 * Copies and unflattens the device-tree passed by the firmware, creating the
1276 * tree of struct device_node. It also fills the "name" and "type"
1277 * pointers of the nodes so the normal device-tree walking functions
1278 * can be used. This should only be used when the FDT memory has not been
1279 * reserved such is the case when the FDT is built-in to the kernel init
1280 * section. If the FDT memory is reserved already then unflatten_device_tree
1281 * should be used instead.
1282 */
1283void __init unflatten_and_copy_device_tree(void)
1284{
1285 int size;
1286 void *dt;
1287
1288 if (!initial_boot_params) {
1289 pr_warn("No valid device tree found, continuing without\n");
1290 return;
1291 }
1292
1293 size = fdt_totalsize(initial_boot_params);
1294 dt = early_init_dt_alloc_memory_arch(size,
1295 roundup_pow_of_two(FDT_V17_SIZE));
1296
1297 if (dt) {
1298 memcpy(dt, initial_boot_params, size);
1299 initial_boot_params = dt;
1300 }
1301 unflatten_device_tree();
1302}
1303
1304#ifdef CONFIG_SYSFS
1305static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1306 struct bin_attribute *bin_attr,
1307 char *buf, loff_t off, size_t count)
1308{
1309 memcpy(buf, initial_boot_params + off, count);
1310 return count;
1311}
1312
1313static int __init of_fdt_raw_init(void)
1314{
1315 static struct bin_attribute of_fdt_raw_attr =
1316 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1317
1318 if (!initial_boot_params)
1319 return 0;
1320
1321 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1322 fdt_totalsize(initial_boot_params))) {
1323 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1324 return 0;
1325 }
1326 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1327 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1328}
1329late_initcall(of_fdt_raw_init);
1330#endif
1331
1332#endif /* CONFIG_OF_EARLY_FLATTREE */