Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crash_dump.h>
  12#include <linux/crc32.h>
  13#include <linux/kernel.h>
  14#include <linux/initrd.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28#include <linux/random.h>
  29
  30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  31#include <asm/page.h>
  32
  33#include "of_private.h"
  34
  35/*
  36 * of_fdt_limit_memory - limit the number of regions in the /memory node
  37 * @limit: maximum entries
  38 *
  39 * Adjust the flattened device tree to have at most 'limit' number of
  40 * memory entries in the /memory node. This function may be called
  41 * any time after initial_boot_param is set.
  42 */
  43void __init of_fdt_limit_memory(int limit)
  44{
  45	int memory;
  46	int len;
  47	const void *val;
  48	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  49	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  50	const __be32 *addr_prop;
  51	const __be32 *size_prop;
  52	int root_offset;
  53	int cell_size;
  54
  55	root_offset = fdt_path_offset(initial_boot_params, "/");
  56	if (root_offset < 0)
  57		return;
  58
  59	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  60				"#address-cells", NULL);
  61	if (addr_prop)
  62		nr_address_cells = fdt32_to_cpu(*addr_prop);
  63
  64	size_prop = fdt_getprop(initial_boot_params, root_offset,
  65				"#size-cells", NULL);
  66	if (size_prop)
  67		nr_size_cells = fdt32_to_cpu(*size_prop);
  68
  69	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  70
  71	memory = fdt_path_offset(initial_boot_params, "/memory");
  72	if (memory > 0) {
  73		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  74		if (len > limit*cell_size) {
  75			len = limit*cell_size;
  76			pr_debug("Limiting number of entries to %d\n", limit);
  77			fdt_setprop(initial_boot_params, memory, "reg", val,
  78					len);
  79		}
  80	}
  81}
  82
  83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
 
 
 
 
 
 
 
 
 
 
 
  84{
  85	const char *status = fdt_getprop(blob, node, "status", NULL);
 
 
  86
  87	if (!status)
  88		return true;
 
 
 
 
 
 
 
 
 
  89
  90	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  91		return true;
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93	return false;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96static void *unflatten_dt_alloc(void **mem, unsigned long size,
  97				       unsigned long align)
  98{
  99	void *res;
 100
 101	*mem = PTR_ALIGN(*mem, align);
 102	res = *mem;
 103	*mem += size;
 104
 105	return res;
 106}
 107
 108static void populate_properties(const void *blob,
 109				int offset,
 110				void **mem,
 111				struct device_node *np,
 112				const char *nodename,
 113				bool dryrun)
 114{
 115	struct property *pp, **pprev = NULL;
 116	int cur;
 117	bool has_name = false;
 118
 119	pprev = &np->properties;
 120	for (cur = fdt_first_property_offset(blob, offset);
 121	     cur >= 0;
 122	     cur = fdt_next_property_offset(blob, cur)) {
 123		const __be32 *val;
 124		const char *pname;
 125		u32 sz;
 126
 127		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 128		if (!val) {
 129			pr_warn("Cannot locate property at 0x%x\n", cur);
 130			continue;
 131		}
 132
 133		if (!pname) {
 134			pr_warn("Cannot find property name at 0x%x\n", cur);
 135			continue;
 136		}
 137
 138		if (!strcmp(pname, "name"))
 139			has_name = true;
 140
 141		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 142					__alignof__(struct property));
 143		if (dryrun)
 144			continue;
 145
 146		/* We accept flattened tree phandles either in
 147		 * ePAPR-style "phandle" properties, or the
 148		 * legacy "linux,phandle" properties.  If both
 149		 * appear and have different values, things
 150		 * will get weird. Don't do that.
 151		 */
 152		if (!strcmp(pname, "phandle") ||
 153		    !strcmp(pname, "linux,phandle")) {
 154			if (!np->phandle)
 155				np->phandle = be32_to_cpup(val);
 156		}
 157
 158		/* And we process the "ibm,phandle" property
 159		 * used in pSeries dynamic device tree
 160		 * stuff
 161		 */
 162		if (!strcmp(pname, "ibm,phandle"))
 163			np->phandle = be32_to_cpup(val);
 164
 165		pp->name   = (char *)pname;
 166		pp->length = sz;
 167		pp->value  = (__be32 *)val;
 168		*pprev     = pp;
 169		pprev      = &pp->next;
 170	}
 171
 172	/* With version 0x10 we may not have the name property,
 173	 * recreate it here from the unit name if absent
 174	 */
 175	if (!has_name) {
 176		const char *p = nodename, *ps = p, *pa = NULL;
 177		int len;
 178
 179		while (*p) {
 180			if ((*p) == '@')
 181				pa = p;
 182			else if ((*p) == '/')
 183				ps = p + 1;
 184			p++;
 185		}
 186
 187		if (pa < ps)
 188			pa = p;
 189		len = (pa - ps) + 1;
 190		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 191					__alignof__(struct property));
 192		if (!dryrun) {
 193			pp->name   = "name";
 194			pp->length = len;
 195			pp->value  = pp + 1;
 196			*pprev     = pp;
 
 197			memcpy(pp->value, ps, len - 1);
 198			((char *)pp->value)[len - 1] = 0;
 199			pr_debug("fixed up name for %s -> %s\n",
 200				 nodename, (char *)pp->value);
 201		}
 202	}
 
 
 
 203}
 204
 205static int populate_node(const void *blob,
 206			  int offset,
 207			  void **mem,
 208			  struct device_node *dad,
 209			  struct device_node **pnp,
 210			  bool dryrun)
 
 211{
 212	struct device_node *np;
 213	const char *pathp;
 214	int len;
 
 215
 216	pathp = fdt_get_name(blob, offset, &len);
 217	if (!pathp) {
 218		*pnp = NULL;
 219		return len;
 220	}
 221
 222	len++;
 223
 224	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225				__alignof__(struct device_node));
 226	if (!dryrun) {
 227		char *fn;
 228		of_node_init(np);
 229		np->full_name = fn = ((char *)np) + sizeof(*np);
 230
 231		memcpy(fn, pathp, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233		if (dad != NULL) {
 234			np->parent = dad;
 235			np->sibling = dad->child;
 236			dad->child = np;
 237		}
 238	}
 239
 240	populate_properties(blob, offset, mem, np, pathp, dryrun);
 241	if (!dryrun) {
 242		np->name = of_get_property(np, "name", NULL);
 
 
 243		if (!np->name)
 244			np->name = "<NULL>";
 
 
 245	}
 246
 247	*pnp = np;
 248	return 0;
 249}
 250
 251static void reverse_nodes(struct device_node *parent)
 252{
 253	struct device_node *child, *next;
 254
 255	/* In-depth first */
 256	child = parent->child;
 257	while (child) {
 258		reverse_nodes(child);
 259
 260		child = child->sibling;
 261	}
 262
 263	/* Reverse the nodes in the child list */
 264	child = parent->child;
 265	parent->child = NULL;
 266	while (child) {
 267		next = child->sibling;
 268
 269		child->sibling = parent->child;
 270		parent->child = child;
 271		child = next;
 272	}
 273}
 274
 275/**
 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 277 * @blob: The parent device tree blob
 278 * @mem: Memory chunk to use for allocating device nodes and properties
 279 * @dad: Parent struct device_node
 280 * @nodepp: The device_node tree created by the call
 281 *
 282 * Return: The size of unflattened device tree or error code
 283 */
 284static int unflatten_dt_nodes(const void *blob,
 285			      void *mem,
 286			      struct device_node *dad,
 287			      struct device_node **nodepp)
 288{
 289	struct device_node *root;
 290	int offset = 0, depth = 0, initial_depth = 0;
 291#define FDT_MAX_DEPTH	64
 
 292	struct device_node *nps[FDT_MAX_DEPTH];
 293	void *base = mem;
 294	bool dryrun = !base;
 295	int ret;
 296
 297	if (nodepp)
 298		*nodepp = NULL;
 299
 300	/*
 301	 * We're unflattening device sub-tree if @dad is valid. There are
 302	 * possibly multiple nodes in the first level of depth. We need
 303	 * set @depth to 1 to make fdt_next_node() happy as it bails
 304	 * immediately when negative @depth is found. Otherwise, the device
 305	 * nodes except the first one won't be unflattened successfully.
 306	 */
 307	if (dad)
 308		depth = initial_depth = 1;
 309
 310	root = dad;
 
 311	nps[depth] = dad;
 312
 313	for (offset = 0;
 314	     offset >= 0 && depth >= initial_depth;
 315	     offset = fdt_next_node(blob, offset, &depth)) {
 316		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 317			continue;
 318
 319		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 320		    !of_fdt_device_is_available(blob, offset))
 321			continue;
 322
 323		ret = populate_node(blob, offset, &mem, nps[depth],
 324				   &nps[depth+1], dryrun);
 325		if (ret < 0)
 326			return ret;
 327
 328		if (!dryrun && nodepp && !*nodepp)
 329			*nodepp = nps[depth+1];
 330		if (!dryrun && !root)
 331			root = nps[depth+1];
 332	}
 333
 334	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 335		pr_err("Error %d processing FDT\n", offset);
 336		return -EINVAL;
 337	}
 338
 339	/*
 340	 * Reverse the child list. Some drivers assumes node order matches .dts
 341	 * node order
 342	 */
 343	if (!dryrun)
 344		reverse_nodes(root);
 345
 346	return mem - base;
 347}
 348
 349/**
 350 * __unflatten_device_tree - create tree of device_nodes from flat blob
 
 
 
 
 
 351 * @blob: The blob to expand
 352 * @dad: Parent device node
 353 * @mynodes: The device_node tree created by the call
 354 * @dt_alloc: An allocator that provides a virtual address to memory
 355 * for the resulting tree
 356 * @detached: if true set OF_DETACHED on @mynodes
 357 *
 358 * unflattens a device-tree, creating the tree of struct device_node. It also
 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 360 * walking functions can be used.
 361 *
 362 * Return: NULL on failure or the memory chunk containing the unflattened
 363 * device tree on success.
 364 */
 365void *__unflatten_device_tree(const void *blob,
 366			      struct device_node *dad,
 367			      struct device_node **mynodes,
 368			      void *(*dt_alloc)(u64 size, u64 align),
 369			      bool detached)
 370{
 371	int size;
 372	void *mem;
 373	int ret;
 374
 375	if (mynodes)
 376		*mynodes = NULL;
 377
 378	pr_debug(" -> unflatten_device_tree()\n");
 379
 380	if (!blob) {
 381		pr_debug("No device tree pointer\n");
 382		return NULL;
 383	}
 384
 385	pr_debug("Unflattening device tree:\n");
 386	pr_debug("magic: %08x\n", fdt_magic(blob));
 387	pr_debug("size: %08x\n", fdt_totalsize(blob));
 388	pr_debug("version: %08x\n", fdt_version(blob));
 389
 390	if (fdt_check_header(blob)) {
 391		pr_err("Invalid device tree blob header\n");
 392		return NULL;
 393	}
 394
 395	/* First pass, scan for size */
 396	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 397	if (size <= 0)
 398		return NULL;
 399
 400	size = ALIGN(size, 4);
 401	pr_debug("  size is %d, allocating...\n", size);
 402
 403	/* Allocate memory for the expanded device tree */
 404	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 405	if (!mem)
 406		return NULL;
 407
 408	memset(mem, 0, size);
 409
 410	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 411
 412	pr_debug("  unflattening %p...\n", mem);
 413
 414	/* Second pass, do actual unflattening */
 415	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 416
 417	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 418		pr_warn("End of tree marker overwritten: %08x\n",
 419			be32_to_cpup(mem + size));
 420
 421	if (ret <= 0)
 422		return NULL;
 423
 424	if (detached && mynodes && *mynodes) {
 425		of_node_set_flag(*mynodes, OF_DETACHED);
 426		pr_debug("unflattened tree is detached\n");
 427	}
 428
 429	pr_debug(" <- unflatten_device_tree()\n");
 430	return mem;
 431}
 432
 433static void *kernel_tree_alloc(u64 size, u64 align)
 434{
 435	return kzalloc(size, GFP_KERNEL);
 436}
 437
 438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 439
 440/**
 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 442 * @blob: Flat device tree blob
 443 * @dad: Parent device node
 444 * @mynodes: The device tree created by the call
 445 *
 446 * unflattens the device-tree passed by the firmware, creating the
 447 * tree of struct device_node. It also fills the "name" and "type"
 448 * pointers of the nodes so the normal device-tree walking functions
 449 * can be used.
 450 *
 451 * Return: NULL on failure or the memory chunk containing the unflattened
 452 * device tree on success.
 453 */
 454void *of_fdt_unflatten_tree(const unsigned long *blob,
 455			    struct device_node *dad,
 456			    struct device_node **mynodes)
 457{
 458	void *mem;
 459
 460	mutex_lock(&of_fdt_unflatten_mutex);
 461	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 462				      true);
 463	mutex_unlock(&of_fdt_unflatten_mutex);
 464
 465	return mem;
 466}
 467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 468
 469/* Everything below here references initial_boot_params directly. */
 470int __initdata dt_root_addr_cells;
 471int __initdata dt_root_size_cells;
 472
 473void *initial_boot_params __ro_after_init;
 474
 475#ifdef CONFIG_OF_EARLY_FLATTREE
 476
 477static u32 of_fdt_crc32;
 478
 479static int __init early_init_dt_reserve_memory(phys_addr_t base,
 480					       phys_addr_t size, bool nomap)
 481{
 482	if (nomap) {
 483		/*
 484		 * If the memory is already reserved (by another region), we
 485		 * should not allow it to be marked nomap, but don't worry
 486		 * if the region isn't memory as it won't be mapped.
 487		 */
 488		if (memblock_overlaps_region(&memblock.memory, base, size) &&
 489		    memblock_is_region_reserved(base, size))
 490			return -EBUSY;
 491
 492		return memblock_mark_nomap(base, size);
 493	}
 494	return memblock_reserve(base, size);
 495}
 496
 497/*
 498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
 499 */
 500static int __init __reserved_mem_reserve_reg(unsigned long node,
 501					     const char *uname)
 502{
 503	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 504	phys_addr_t base, size;
 505	int len;
 506	const __be32 *prop;
 507	int first = 1;
 508	bool nomap;
 509
 510	prop = of_get_flat_dt_prop(node, "reg", &len);
 511	if (!prop)
 512		return -ENOENT;
 513
 514	if (len && len % t_len != 0) {
 515		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 516		       uname);
 517		return -EINVAL;
 518	}
 519
 520	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 521
 522	while (len >= t_len) {
 523		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 524		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 525
 526		if (size &&
 527		    early_init_dt_reserve_memory(base, size, nomap) == 0)
 528			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
 529				uname, &base, (unsigned long)(size / SZ_1M));
 530		else
 531			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
 532			       uname, &base, (unsigned long)(size / SZ_1M));
 533
 534		len -= t_len;
 535		if (first) {
 536			fdt_reserved_mem_save_node(node, uname, base, size);
 537			first = 0;
 538		}
 539	}
 540	return 0;
 541}
 542
 543/*
 544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 545 * in /reserved-memory matches the values supported by the current implementation,
 546 * also check if ranges property has been provided
 547 */
 548static int __init __reserved_mem_check_root(unsigned long node)
 549{
 550	const __be32 *prop;
 551
 552	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 553	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 554		return -EINVAL;
 555
 556	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 557	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 558		return -EINVAL;
 559
 560	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 561	if (!prop)
 562		return -EINVAL;
 563	return 0;
 564}
 565
 566/*
 567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 568 */
 569static int __init fdt_scan_reserved_mem(void)
 
 570{
 571	int node, child;
 572	const void *fdt = initial_boot_params;
 573
 574	node = fdt_path_offset(fdt, "/reserved-memory");
 575	if (node < 0)
 576		return -ENODEV;
 577
 578	if (__reserved_mem_check_root(node) != 0) {
 579		pr_err("Reserved memory: unsupported node format, ignoring\n");
 580		return -EINVAL;
 
 
 
 
 
 
 
 
 
 581	}
 582
 583	fdt_for_each_subnode(child, fdt, node) {
 584		const char *uname;
 585		int err;
 586
 587		if (!of_fdt_device_is_available(fdt, child))
 588			continue;
 589
 590		uname = fdt_get_name(fdt, child, NULL);
 
 
 591
 592		err = __reserved_mem_reserve_reg(child, uname);
 593		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
 594			fdt_reserved_mem_save_node(child, uname, 0, 0);
 595	}
 596	return 0;
 597}
 598
 599/*
 600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 601 *
 602 * This function reserves the memory occupied by an elf core header
 603 * described in the device tree. This region contains all the
 604 * information about primary kernel's core image and is used by a dump
 605 * capture kernel to access the system memory on primary kernel.
 606 */
 607static void __init fdt_reserve_elfcorehdr(void)
 608{
 609	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 610		return;
 611
 612	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 613		pr_warn("elfcorehdr is overlapped\n");
 614		return;
 615	}
 616
 617	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 618
 619	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 620		elfcorehdr_size >> 10, elfcorehdr_addr);
 621}
 622
 623/**
 624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 625 *
 626 * This function grabs memory from early allocator for device exclusive use
 627 * defined in device tree structures. It should be called by arch specific code
 628 * once the early allocator (i.e. memblock) has been fully activated.
 629 */
 630void __init early_init_fdt_scan_reserved_mem(void)
 631{
 632	int n;
 633	u64 base, size;
 634
 635	if (!initial_boot_params)
 636		return;
 637
 638	fdt_scan_reserved_mem();
 639	fdt_reserve_elfcorehdr();
 640
 641	/* Process header /memreserve/ fields */
 642	for (n = 0; ; n++) {
 643		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 644		if (!size)
 645			break;
 646		memblock_reserve(base, size);
 647	}
 648
 
 649	fdt_init_reserved_mem();
 650}
 651
 652/**
 653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 654 */
 655void __init early_init_fdt_reserve_self(void)
 656{
 657	if (!initial_boot_params)
 658		return;
 659
 660	/* Reserve the dtb region */
 661	memblock_reserve(__pa(initial_boot_params),
 662			 fdt_totalsize(initial_boot_params));
 
 663}
 664
 665/**
 666 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 667 * @it: callback function
 668 * @data: context data pointer
 669 *
 670 * This function is used to scan the flattened device-tree, it is
 671 * used to extract the memory information at boot before we can
 672 * unflatten the tree
 673 */
 674int __init of_scan_flat_dt(int (*it)(unsigned long node,
 675				     const char *uname, int depth,
 676				     void *data),
 677			   void *data)
 678{
 679	const void *blob = initial_boot_params;
 680	const char *pathp;
 681	int offset, rc = 0, depth = -1;
 682
 683	if (!blob)
 684		return 0;
 685
 686	for (offset = fdt_next_node(blob, -1, &depth);
 687	     offset >= 0 && depth >= 0 && !rc;
 688	     offset = fdt_next_node(blob, offset, &depth)) {
 689
 690		pathp = fdt_get_name(blob, offset, NULL);
 
 
 691		rc = it(offset, pathp, depth, data);
 692	}
 693	return rc;
 694}
 695
 696/**
 697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 698 * @parent: parent node
 699 * @it: callback function
 700 * @data: context data pointer
 701 *
 702 * This function is used to scan sub-nodes of a node.
 703 */
 704int __init of_scan_flat_dt_subnodes(unsigned long parent,
 705				    int (*it)(unsigned long node,
 706					      const char *uname,
 707					      void *data),
 708				    void *data)
 709{
 710	const void *blob = initial_boot_params;
 711	int node;
 712
 713	fdt_for_each_subnode(node, blob, parent) {
 714		const char *pathp;
 715		int rc;
 716
 717		pathp = fdt_get_name(blob, node, NULL);
 718		rc = it(node, pathp, data);
 719		if (rc)
 720			return rc;
 721	}
 722	return 0;
 723}
 724
 725/**
 726 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 727 *
 728 * @node: the parent node
 729 * @uname: the name of subnode
 730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 731 */
 732
 733int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 734{
 735	return fdt_subnode_offset(initial_boot_params, node, uname);
 736}
 737
 738/*
 739 * of_get_flat_dt_root - find the root node in the flat blob
 740 */
 741unsigned long __init of_get_flat_dt_root(void)
 742{
 743	return 0;
 744}
 745
 746/*
 
 
 
 
 
 
 
 
 747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 748 *
 749 * This function can be used within scan_flattened_dt callback to get
 750 * access to properties
 751 */
 752const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 753				       int *size)
 754{
 755	return fdt_getprop(initial_boot_params, node, name, size);
 756}
 757
 758/**
 759 * of_fdt_is_compatible - Return true if given node from the given blob has
 760 * compat in its compatible list
 761 * @blob: A device tree blob
 762 * @node: node to test
 763 * @compat: compatible string to compare with compatible list.
 764 *
 765 * Return: a non-zero value on match with smaller values returned for more
 766 * specific compatible values.
 767 */
 768static int of_fdt_is_compatible(const void *blob,
 769		      unsigned long node, const char *compat)
 770{
 771	const char *cp;
 772	int cplen;
 773	unsigned long l, score = 0;
 774
 775	cp = fdt_getprop(blob, node, "compatible", &cplen);
 776	if (cp == NULL)
 777		return 0;
 778	while (cplen > 0) {
 779		score++;
 780		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 781			return score;
 782		l = strlen(cp) + 1;
 783		cp += l;
 784		cplen -= l;
 785	}
 786
 787	return 0;
 788}
 789
 790/**
 791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 792 * @node: node to test
 793 * @compat: compatible string to compare with compatible list.
 794 */
 795int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 796{
 797	return of_fdt_is_compatible(initial_boot_params, node, compat);
 798}
 799
 800/*
 801 * of_flat_dt_match - Return true if node matches a list of compatible values
 802 */
 803static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 804{
 805	unsigned int tmp, score = 0;
 806
 807	if (!compat)
 808		return 0;
 809
 810	while (*compat) {
 811		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 812		if (tmp && (score == 0 || (tmp < score)))
 813			score = tmp;
 814		compat++;
 815	}
 816
 817	return score;
 818}
 819
 820/*
 821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 822 */
 823uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 824{
 825	return fdt_get_phandle(initial_boot_params, node);
 826}
 
 827
 828const char * __init of_flat_dt_get_machine_name(void)
 829{
 830	const char *name;
 831	unsigned long dt_root = of_get_flat_dt_root();
 832
 833	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 834	if (!name)
 835		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 836	return name;
 837}
 838
 839/**
 840 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 841 *
 842 * @default_match: A machine specific ptr to return in case of no match.
 843 * @get_next_compat: callback function to return next compatible match table.
 844 *
 845 * Iterate through machine match tables to find the best match for the machine
 846 * compatible string in the FDT.
 847 */
 848const void * __init of_flat_dt_match_machine(const void *default_match,
 849		const void * (*get_next_compat)(const char * const**))
 850{
 851	const void *data = NULL;
 852	const void *best_data = default_match;
 853	const char *const *compat;
 854	unsigned long dt_root;
 855	unsigned int best_score = ~1, score = 0;
 856
 857	dt_root = of_get_flat_dt_root();
 858	while ((data = get_next_compat(&compat))) {
 859		score = of_flat_dt_match(dt_root, compat);
 860		if (score > 0 && score < best_score) {
 861			best_data = data;
 862			best_score = score;
 863		}
 864	}
 865	if (!best_data) {
 866		const char *prop;
 867		int size;
 868
 869		pr_err("\n unrecognized device tree list:\n[ ");
 870
 871		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 872		if (prop) {
 873			while (size > 0) {
 874				printk("'%s' ", prop);
 875				size -= strlen(prop) + 1;
 876				prop += strlen(prop) + 1;
 877			}
 878		}
 879		printk("]\n\n");
 880		return NULL;
 881	}
 882
 883	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 884
 885	return best_data;
 886}
 887
 
 
 888static void __early_init_dt_declare_initrd(unsigned long start,
 889					   unsigned long end)
 890{
 891	/*
 892	 * __va() is not yet available this early on some platforms. In that
 893	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
 894	 * and does the VA conversion itself.
 895	 */
 896	if (!IS_ENABLED(CONFIG_ARM64) &&
 897	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
 898		initrd_start = (unsigned long)__va(start);
 899		initrd_end = (unsigned long)__va(end);
 900		initrd_below_start_ok = 1;
 901	}
 902}
 
 903
 904/**
 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 906 * @node: reference to node containing initrd location ('chosen')
 907 */
 908static void __init early_init_dt_check_for_initrd(unsigned long node)
 909{
 910	u64 start, end;
 911	int len;
 912	const __be32 *prop;
 913
 914	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 915		return;
 916
 917	pr_debug("Looking for initrd properties... ");
 918
 919	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 920	if (!prop)
 921		return;
 922	start = of_read_number(prop, len/4);
 923
 924	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 925	if (!prop)
 926		return;
 927	end = of_read_number(prop, len/4);
 928	if (start > end)
 929		return;
 930
 931	__early_init_dt_declare_initrd(start, end);
 932	phys_initrd_start = start;
 933	phys_initrd_size = end - start;
 934
 935	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 
 936}
 937
 938/**
 939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 940 * tree
 941 * @node: reference to node containing elfcorehdr location ('chosen')
 942 */
 943static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 944{
 945	const __be32 *prop;
 946	int len;
 947
 948	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 949		return;
 950
 951	pr_debug("Looking for elfcorehdr property... ");
 952
 953	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 954	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 955		return;
 956
 957	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 958	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 959
 960	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 961		 elfcorehdr_addr, elfcorehdr_size);
 962}
 963
 964static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 965
 966/*
 967 * The main usage of linux,usable-memory-range is for crash dump kernel.
 968 * Originally, the number of usable-memory regions is one. Now there may
 969 * be two regions, low region and high region.
 970 * To make compatibility with existing user-space and older kdump, the low
 971 * region is always the last range of linux,usable-memory-range if exist.
 972 */
 973#define MAX_USABLE_RANGES		2
 974
 975/**
 976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 977 * location from flat tree
 978 */
 979void __init early_init_dt_check_for_usable_mem_range(void)
 980{
 981	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 982	const __be32 *prop, *endp;
 983	int len, i;
 984	unsigned long node = chosen_node_offset;
 985
 986	if ((long)node < 0)
 987		return;
 988
 989	pr_debug("Looking for usable-memory-range property... ");
 990
 991	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 992	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 993		return;
 994
 995	endp = prop + (len / sizeof(__be32));
 996	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 997		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 998		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 999
1000		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001			 i, &rgn[i].base, &rgn[i].size);
1002	}
1003
1004	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006		memblock_add(rgn[i].base, rgn[i].size);
1007}
 
1008
1009#ifdef CONFIG_SERIAL_EARLYCON
1010
1011int __init early_init_dt_scan_chosen_stdout(void)
1012{
1013	int offset;
1014	const char *p, *q, *options = NULL;
1015	int l;
1016	const struct earlycon_id *match;
1017	const void *fdt = initial_boot_params;
1018	int ret;
1019
1020	offset = fdt_path_offset(fdt, "/chosen");
1021	if (offset < 0)
1022		offset = fdt_path_offset(fdt, "/chosen@0");
1023	if (offset < 0)
1024		return -ENOENT;
1025
1026	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027	if (!p)
1028		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029	if (!p || !l)
1030		return -ENOENT;
1031
1032	q = strchrnul(p, ':');
1033	if (*q != '\0')
1034		options = q + 1;
1035	l = q - p;
1036
1037	/* Get the node specified by stdout-path */
1038	offset = fdt_path_offset_namelen(fdt, p, l);
1039	if (offset < 0) {
1040		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041		return 0;
1042	}
1043
1044	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1045		if (!match->compatible[0])
1046			continue;
1047
1048		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049			continue;
1050
1051		ret = of_setup_earlycon(match, offset, options);
1052		if (!ret || ret == -EALREADY)
1053			return 0;
1054	}
1055	return -ENODEV;
1056}
1057#endif
1058
1059/*
1060 * early_init_dt_scan_root - fetch the top level address and size cells
1061 */
1062int __init early_init_dt_scan_root(void)
 
1063{
1064	const __be32 *prop;
1065	const void *fdt = initial_boot_params;
1066	int node = fdt_path_offset(fdt, "/");
1067
1068	if (node < 0)
1069		return -ENODEV;
1070
1071	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073
1074	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075	if (prop)
1076		dt_root_size_cells = be32_to_cpup(prop);
1077	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078
1079	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080	if (prop)
1081		dt_root_addr_cells = be32_to_cpup(prop);
1082	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083
1084	return 0;
 
1085}
1086
1087u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088{
1089	const __be32 *p = *cellp;
1090
1091	*cellp = p + s;
1092	return of_read_number(p, s);
1093}
1094
1095/*
1096 * early_init_dt_scan_memory - Look for and parse memory nodes
1097 */
1098int __init early_init_dt_scan_memory(void)
 
1099{
1100	int node, found_memory = 0;
1101	const void *fdt = initial_boot_params;
1102
1103	fdt_for_each_subnode(node, fdt, 0) {
1104		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105		const __be32 *reg, *endp;
1106		int l;
1107		bool hotpluggable;
1108
1109		/* We are scanning "memory" nodes only */
1110		if (type == NULL || strcmp(type, "memory") != 0)
1111			continue;
1112
1113		if (!of_fdt_device_is_available(fdt, node))
1114			continue;
1115
1116		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117		if (reg == NULL)
1118			reg = of_get_flat_dt_prop(node, "reg", &l);
1119		if (reg == NULL)
1120			continue;
 
 
 
 
 
1121
1122		endp = reg + (l / sizeof(__be32));
1123		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
 
 
 
1124
1125		pr_debug("memory scan node %s, reg size %d,\n",
1126			 fdt_get_name(fdt, node, NULL), l);
1127
1128		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129			u64 base, size;
1130
1131			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1132			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1133
1134			if (size == 0)
1135				continue;
1136			pr_debug(" - %llx, %llx\n", base, size);
1137
1138			early_init_dt_add_memory_arch(base, size);
 
 
 
1139
1140			found_memory = 1;
1141
1142			if (!hotpluggable)
1143				continue;
1144
1145			if (memblock_mark_hotplug(base, size))
1146				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147					base, base + size);
1148		}
1149	}
1150	return found_memory;
 
1151}
1152
1153int __init early_init_dt_scan_chosen(char *cmdline)
 
1154{
1155	int l, node;
1156	const char *p;
1157	const void *rng_seed;
1158	const void *fdt = initial_boot_params;
1159
1160	node = fdt_path_offset(fdt, "/chosen");
1161	if (node < 0)
1162		node = fdt_path_offset(fdt, "/chosen@0");
1163	if (node < 0)
1164		/* Handle the cmdline config options even if no /chosen node */
1165		goto handle_cmdline;
1166
1167	chosen_node_offset = node;
 
 
1168
1169	early_init_dt_check_for_initrd(node);
1170	early_init_dt_check_for_elfcorehdr(node);
1171
1172	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173	if (rng_seed && l > 0) {
1174		add_bootloader_randomness(rng_seed, l);
1175
1176		/* try to clear seed so it won't be found. */
1177		fdt_nop_property(initial_boot_params, node, "rng-seed");
1178
1179		/* update CRC check value */
1180		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181				fdt_totalsize(initial_boot_params));
1182	}
1183
1184	/* Retrieve command line */
1185	p = of_get_flat_dt_prop(node, "bootargs", &l);
1186	if (p != NULL && l > 0)
1187		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188
1189handle_cmdline:
1190	/*
1191	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193	 * is set in which case we override whatever was found earlier.
1194	 */
1195#ifdef CONFIG_CMDLINE
1196#if defined(CONFIG_CMDLINE_EXTEND)
1197	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#elif defined(CONFIG_CMDLINE_FORCE)
1200	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201#else
1202	/* No arguments from boot loader, use kernel's  cmdl*/
1203	if (!((char *)cmdline)[0])
1204		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205#endif
1206#endif /* CONFIG_CMDLINE */
1207
1208	pr_debug("Command line is: %s\n", (char *)cmdline);
1209
1210	return 0;
 
1211}
1212
 
1213#ifndef MIN_MEMBLOCK_ADDR
1214#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1215#endif
1216#ifndef MAX_MEMBLOCK_ADDR
1217#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1218#endif
1219
1220void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221{
1222	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223
1224	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226			base, base + size);
1227		return;
1228	}
1229
1230	if (!PAGE_ALIGNED(base)) {
 
 
 
 
 
1231		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232		base = PAGE_ALIGN(base);
1233	}
1234	size &= PAGE_MASK;
1235
1236	if (base > MAX_MEMBLOCK_ADDR) {
1237		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238			base, base + size);
1239		return;
1240	}
1241
1242	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245		size = MAX_MEMBLOCK_ADDR - base + 1;
1246	}
1247
1248	if (base + size < phys_offset) {
1249		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250			base, base + size);
1251		return;
1252	}
1253	if (base < phys_offset) {
1254		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255			base, phys_offset);
1256		size -= phys_offset - base;
1257		base = phys_offset;
1258	}
1259	memblock_add(base, size);
1260}
1261
1262static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263{
1264	void *ptr = memblock_alloc(size, align);
 
1265
1266	if (!ptr)
1267		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268		      __func__, size, align);
 
 
 
 
1269
1270	return ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271}
1272
 
 
 
 
 
 
 
1273bool __init early_init_dt_verify(void *params)
1274{
1275	if (!params)
1276		return false;
1277
1278	/* check device tree validity */
1279	if (fdt_check_header(params))
1280		return false;
1281
1282	/* Setup flat device-tree pointer */
1283	initial_boot_params = params;
1284	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285				fdt_totalsize(initial_boot_params));
1286	return true;
1287}
1288
1289
1290void __init early_init_dt_scan_nodes(void)
1291{
1292	int rc;
 
1293
1294	/* Initialize {size,address}-cells info */
1295	early_init_dt_scan_root();
1296
1297	/* Retrieve various information from the /chosen node */
1298	rc = early_init_dt_scan_chosen(boot_command_line);
1299	if (rc)
1300		pr_warn("No chosen node found, continuing without\n");
1301
1302	/* Setup memory, calling early_init_dt_add_memory_arch */
1303	early_init_dt_scan_memory();
1304
1305	/* Handle linux,usable-memory-range property */
1306	early_init_dt_check_for_usable_mem_range();
1307}
1308
1309bool __init early_init_dt_scan(void *params)
1310{
1311	bool status;
1312
1313	status = early_init_dt_verify(params);
1314	if (!status)
1315		return false;
1316
1317	early_init_dt_scan_nodes();
1318	return true;
1319}
1320
1321/**
1322 * unflatten_device_tree - create tree of device_nodes from flat blob
1323 *
1324 * unflattens the device-tree passed by the firmware, creating the
1325 * tree of struct device_node. It also fills the "name" and "type"
1326 * pointers of the nodes so the normal device-tree walking functions
1327 * can be used.
1328 */
1329void __init unflatten_device_tree(void)
1330{
1331	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332				early_init_dt_alloc_memory_arch, false);
1333
1334	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335	of_alias_scan(early_init_dt_alloc_memory_arch);
1336
1337	unittest_unflatten_overlay_base();
1338}
1339
1340/**
1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342 *
1343 * Copies and unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used. This should only be used when the FDT memory has not been
1347 * reserved such is the case when the FDT is built-in to the kernel init
1348 * section. If the FDT memory is reserved already then unflatten_device_tree
1349 * should be used instead.
1350 */
1351void __init unflatten_and_copy_device_tree(void)
1352{
1353	int size;
1354	void *dt;
1355
1356	if (!initial_boot_params) {
1357		pr_warn("No valid device tree found, continuing without\n");
1358		return;
1359	}
1360
1361	size = fdt_totalsize(initial_boot_params);
1362	dt = early_init_dt_alloc_memory_arch(size,
1363					     roundup_pow_of_two(FDT_V17_SIZE));
1364
1365	if (dt) {
1366		memcpy(dt, initial_boot_params, size);
1367		initial_boot_params = dt;
1368	}
1369	unflatten_device_tree();
1370}
1371
1372#ifdef CONFIG_SYSFS
1373static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374			       struct bin_attribute *bin_attr,
1375			       char *buf, loff_t off, size_t count)
1376{
1377	memcpy(buf, initial_boot_params + off, count);
1378	return count;
1379}
1380
1381static int __init of_fdt_raw_init(void)
1382{
1383	static struct bin_attribute of_fdt_raw_attr =
1384		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385
1386	if (!initial_boot_params)
1387		return 0;
1388
1389	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390				     fdt_totalsize(initial_boot_params))) {
1391		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392		return 0;
1393	}
1394	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396}
1397late_initcall(of_fdt_raw_init);
1398#endif
1399
1400#endif /* CONFIG_OF_EARLY_FLATTREE */
v4.10.11
 
   1/*
   2 * Functions for working with the Flattened Device Tree data format
   3 *
   4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   5 * benh@kernel.crashing.org
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)	"OF: fdt:" fmt
  13
 
  14#include <linux/crc32.h>
  15#include <linux/kernel.h>
  16#include <linux/initrd.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/of.h>
  20#include <linux/of_fdt.h>
  21#include <linux/of_reserved_mem.h>
  22#include <linux/sizes.h>
  23#include <linux/string.h>
  24#include <linux/errno.h>
  25#include <linux/slab.h>
  26#include <linux/libfdt.h>
  27#include <linux/debugfs.h>
  28#include <linux/serial_core.h>
  29#include <linux/sysfs.h>
 
  30
  31#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  32#include <asm/page.h>
  33
 
 
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
  41 */
  42void of_fdt_limit_memory(int limit)
  43{
  44	int memory;
  45	int len;
  46	const void *val;
  47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49	const uint32_t *addr_prop;
  50	const uint32_t *size_prop;
  51	int root_offset;
  52	int cell_size;
  53
  54	root_offset = fdt_path_offset(initial_boot_params, "/");
  55	if (root_offset < 0)
  56		return;
  57
  58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59				"#address-cells", NULL);
  60	if (addr_prop)
  61		nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63	size_prop = fdt_getprop(initial_boot_params, root_offset,
  64				"#size-cells", NULL);
  65	if (size_prop)
  66		nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70	memory = fdt_path_offset(initial_boot_params, "/memory");
  71	if (memory > 0) {
  72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73		if (len > limit*cell_size) {
  74			len = limit*cell_size;
  75			pr_debug("Limiting number of entries to %d\n", limit);
  76			fdt_setprop(initial_boot_params, memory, "reg", val,
  77					len);
  78		}
  79	}
  80}
  81
  82/**
  83 * of_fdt_is_compatible - Return true if given node from the given blob has
  84 * compat in its compatible list
  85 * @blob: A device tree blob
  86 * @node: node to test
  87 * @compat: compatible string to compare with compatible list.
  88 *
  89 * On match, returns a non-zero value with smaller values returned for more
  90 * specific compatible values.
  91 */
  92int of_fdt_is_compatible(const void *blob,
  93		      unsigned long node, const char *compat)
  94{
  95	const char *cp;
  96	int cplen;
  97	unsigned long l, score = 0;
  98
  99	cp = fdt_getprop(blob, node, "compatible", &cplen);
 100	if (cp == NULL)
 101		return 0;
 102	while (cplen > 0) {
 103		score++;
 104		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 105			return score;
 106		l = strlen(cp) + 1;
 107		cp += l;
 108		cplen -= l;
 109	}
 110
 111	return 0;
 112}
 113
 114/**
 115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 116 * @blob: A device tree blob
 117 * @node: node to test
 118 *
 119 * Returns true if the node has a "big-endian" property, or if the kernel
 120 * was compiled for BE *and* the node has a "native-endian" property.
 121 * Returns false otherwise.
 122 */
 123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 124{
 125	if (fdt_getprop(blob, node, "big-endian", NULL))
 126		return true;
 127	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 128	    fdt_getprop(blob, node, "native-endian", NULL))
 129		return true;
 130	return false;
 131}
 132
 133/**
 134 * of_fdt_match - Return true if node matches a list of compatible values
 135 */
 136int of_fdt_match(const void *blob, unsigned long node,
 137                 const char *const *compat)
 138{
 139	unsigned int tmp, score = 0;
 140
 141	if (!compat)
 142		return 0;
 143
 144	while (*compat) {
 145		tmp = of_fdt_is_compatible(blob, node, *compat);
 146		if (tmp && (score == 0 || (tmp < score)))
 147			score = tmp;
 148		compat++;
 149	}
 150
 151	return score;
 152}
 153
 154static void *unflatten_dt_alloc(void **mem, unsigned long size,
 155				       unsigned long align)
 156{
 157	void *res;
 158
 159	*mem = PTR_ALIGN(*mem, align);
 160	res = *mem;
 161	*mem += size;
 162
 163	return res;
 164}
 165
 166static void populate_properties(const void *blob,
 167				int offset,
 168				void **mem,
 169				struct device_node *np,
 170				const char *nodename,
 171				bool dryrun)
 172{
 173	struct property *pp, **pprev = NULL;
 174	int cur;
 175	bool has_name = false;
 176
 177	pprev = &np->properties;
 178	for (cur = fdt_first_property_offset(blob, offset);
 179	     cur >= 0;
 180	     cur = fdt_next_property_offset(blob, cur)) {
 181		const __be32 *val;
 182		const char *pname;
 183		u32 sz;
 184
 185		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 186		if (!val) {
 187			pr_warn("Cannot locate property at 0x%x\n", cur);
 188			continue;
 189		}
 190
 191		if (!pname) {
 192			pr_warn("Cannot find property name at 0x%x\n", cur);
 193			continue;
 194		}
 195
 196		if (!strcmp(pname, "name"))
 197			has_name = true;
 198
 199		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 200					__alignof__(struct property));
 201		if (dryrun)
 202			continue;
 203
 204		/* We accept flattened tree phandles either in
 205		 * ePAPR-style "phandle" properties, or the
 206		 * legacy "linux,phandle" properties.  If both
 207		 * appear and have different values, things
 208		 * will get weird. Don't do that.
 209		 */
 210		if (!strcmp(pname, "phandle") ||
 211		    !strcmp(pname, "linux,phandle")) {
 212			if (!np->phandle)
 213				np->phandle = be32_to_cpup(val);
 214		}
 215
 216		/* And we process the "ibm,phandle" property
 217		 * used in pSeries dynamic device tree
 218		 * stuff
 219		 */
 220		if (!strcmp(pname, "ibm,phandle"))
 221			np->phandle = be32_to_cpup(val);
 222
 223		pp->name   = (char *)pname;
 224		pp->length = sz;
 225		pp->value  = (__be32 *)val;
 226		*pprev     = pp;
 227		pprev      = &pp->next;
 228	}
 229
 230	/* With version 0x10 we may not have the name property,
 231	 * recreate it here from the unit name if absent
 232	 */
 233	if (!has_name) {
 234		const char *p = nodename, *ps = p, *pa = NULL;
 235		int len;
 236
 237		while (*p) {
 238			if ((*p) == '@')
 239				pa = p;
 240			else if ((*p) == '/')
 241				ps = p + 1;
 242			p++;
 243		}
 244
 245		if (pa < ps)
 246			pa = p;
 247		len = (pa - ps) + 1;
 248		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 249					__alignof__(struct property));
 250		if (!dryrun) {
 251			pp->name   = "name";
 252			pp->length = len;
 253			pp->value  = pp + 1;
 254			*pprev     = pp;
 255			pprev      = &pp->next;
 256			memcpy(pp->value, ps, len - 1);
 257			((char *)pp->value)[len - 1] = 0;
 258			pr_debug("fixed up name for %s -> %s\n",
 259				 nodename, (char *)pp->value);
 260		}
 261	}
 262
 263	if (!dryrun)
 264		*pprev = NULL;
 265}
 266
 267static unsigned int populate_node(const void *blob,
 268				  int offset,
 269				  void **mem,
 270				  struct device_node *dad,
 271				  unsigned int fpsize,
 272				  struct device_node **pnp,
 273				  bool dryrun)
 274{
 275	struct device_node *np;
 276	const char *pathp;
 277	unsigned int l, allocl;
 278	int new_format = 0;
 279
 280	pathp = fdt_get_name(blob, offset, &l);
 281	if (!pathp) {
 282		*pnp = NULL;
 283		return 0;
 284	}
 285
 286	allocl = ++l;
 287
 288	/* version 0x10 has a more compact unit name here instead of the full
 289	 * path. we accumulate the full path size using "fpsize", we'll rebuild
 290	 * it later. We detect this because the first character of the name is
 291	 * not '/'.
 292	 */
 293	if ((*pathp) != '/') {
 294		new_format = 1;
 295		if (fpsize == 0) {
 296			/* root node: special case. fpsize accounts for path
 297			 * plus terminating zero. root node only has '/', so
 298			 * fpsize should be 2, but we want to avoid the first
 299			 * level nodes to have two '/' so we use fpsize 1 here
 300			 */
 301			fpsize = 1;
 302			allocl = 2;
 303			l = 1;
 304			pathp = "";
 305		} else {
 306			/* account for '/' and path size minus terminal 0
 307			 * already in 'l'
 308			 */
 309			fpsize += l;
 310			allocl = fpsize;
 311		}
 312	}
 313
 314	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 315				__alignof__(struct device_node));
 316	if (!dryrun) {
 317		char *fn;
 318		of_node_init(np);
 319		np->full_name = fn = ((char *)np) + sizeof(*np);
 320		if (new_format) {
 321			/* rebuild full path for new format */
 322			if (dad && dad->parent) {
 323				strcpy(fn, dad->full_name);
 324#ifdef DEBUG
 325				if ((strlen(fn) + l + 1) != allocl) {
 326					pr_debug("%s: p: %d, l: %d, a: %d\n",
 327						pathp, (int)strlen(fn),
 328						l, allocl);
 329				}
 330#endif
 331				fn += strlen(fn);
 332			}
 333			*(fn++) = '/';
 334		}
 335		memcpy(fn, pathp, l);
 336
 337		if (dad != NULL) {
 338			np->parent = dad;
 339			np->sibling = dad->child;
 340			dad->child = np;
 341		}
 342	}
 343
 344	populate_properties(blob, offset, mem, np, pathp, dryrun);
 345	if (!dryrun) {
 346		np->name = of_get_property(np, "name", NULL);
 347		np->type = of_get_property(np, "device_type", NULL);
 348
 349		if (!np->name)
 350			np->name = "<NULL>";
 351		if (!np->type)
 352			np->type = "<NULL>";
 353	}
 354
 355	*pnp = np;
 356	return fpsize;
 357}
 358
 359static void reverse_nodes(struct device_node *parent)
 360{
 361	struct device_node *child, *next;
 362
 363	/* In-depth first */
 364	child = parent->child;
 365	while (child) {
 366		reverse_nodes(child);
 367
 368		child = child->sibling;
 369	}
 370
 371	/* Reverse the nodes in the child list */
 372	child = parent->child;
 373	parent->child = NULL;
 374	while (child) {
 375		next = child->sibling;
 376
 377		child->sibling = parent->child;
 378		parent->child = child;
 379		child = next;
 380	}
 381}
 382
 383/**
 384 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 385 * @blob: The parent device tree blob
 386 * @mem: Memory chunk to use for allocating device nodes and properties
 387 * @dad: Parent struct device_node
 388 * @nodepp: The device_node tree created by the call
 389 *
 390 * It returns the size of unflattened device tree or error code
 391 */
 392static int unflatten_dt_nodes(const void *blob,
 393			      void *mem,
 394			      struct device_node *dad,
 395			      struct device_node **nodepp)
 396{
 397	struct device_node *root;
 398	int offset = 0, depth = 0, initial_depth = 0;
 399#define FDT_MAX_DEPTH	64
 400	unsigned int fpsizes[FDT_MAX_DEPTH];
 401	struct device_node *nps[FDT_MAX_DEPTH];
 402	void *base = mem;
 403	bool dryrun = !base;
 
 404
 405	if (nodepp)
 406		*nodepp = NULL;
 407
 408	/*
 409	 * We're unflattening device sub-tree if @dad is valid. There are
 410	 * possibly multiple nodes in the first level of depth. We need
 411	 * set @depth to 1 to make fdt_next_node() happy as it bails
 412	 * immediately when negative @depth is found. Otherwise, the device
 413	 * nodes except the first one won't be unflattened successfully.
 414	 */
 415	if (dad)
 416		depth = initial_depth = 1;
 417
 418	root = dad;
 419	fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
 420	nps[depth] = dad;
 421
 422	for (offset = 0;
 423	     offset >= 0 && depth >= initial_depth;
 424	     offset = fdt_next_node(blob, offset, &depth)) {
 425		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 426			continue;
 427
 428		fpsizes[depth+1] = populate_node(blob, offset, &mem,
 429						 nps[depth],
 430						 fpsizes[depth],
 431						 &nps[depth+1], dryrun);
 432		if (!fpsizes[depth+1])
 433			return mem - base;
 
 
 434
 435		if (!dryrun && nodepp && !*nodepp)
 436			*nodepp = nps[depth+1];
 437		if (!dryrun && !root)
 438			root = nps[depth+1];
 439	}
 440
 441	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 442		pr_err("Error %d processing FDT\n", offset);
 443		return -EINVAL;
 444	}
 445
 446	/*
 447	 * Reverse the child list. Some drivers assumes node order matches .dts
 448	 * node order
 449	 */
 450	if (!dryrun)
 451		reverse_nodes(root);
 452
 453	return mem - base;
 454}
 455
 456/**
 457 * __unflatten_device_tree - create tree of device_nodes from flat blob
 458 *
 459 * unflattens a device-tree, creating the
 460 * tree of struct device_node. It also fills the "name" and "type"
 461 * pointers of the nodes so the normal device-tree walking functions
 462 * can be used.
 463 * @blob: The blob to expand
 464 * @dad: Parent device node
 465 * @mynodes: The device_node tree created by the call
 466 * @dt_alloc: An allocator that provides a virtual address to memory
 467 * for the resulting tree
 
 
 
 
 
 468 *
 469 * Returns NULL on failure or the memory chunk containing the unflattened
 470 * device tree on success.
 471 */
 472static void *__unflatten_device_tree(const void *blob,
 473				     struct device_node *dad,
 474				     struct device_node **mynodes,
 475				     void *(*dt_alloc)(u64 size, u64 align),
 476				     bool detached)
 477{
 478	int size;
 479	void *mem;
 
 
 
 
 480
 481	pr_debug(" -> unflatten_device_tree()\n");
 482
 483	if (!blob) {
 484		pr_debug("No device tree pointer\n");
 485		return NULL;
 486	}
 487
 488	pr_debug("Unflattening device tree:\n");
 489	pr_debug("magic: %08x\n", fdt_magic(blob));
 490	pr_debug("size: %08x\n", fdt_totalsize(blob));
 491	pr_debug("version: %08x\n", fdt_version(blob));
 492
 493	if (fdt_check_header(blob)) {
 494		pr_err("Invalid device tree blob header\n");
 495		return NULL;
 496	}
 497
 498	/* First pass, scan for size */
 499	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 500	if (size < 0)
 501		return NULL;
 502
 503	size = ALIGN(size, 4);
 504	pr_debug("  size is %d, allocating...\n", size);
 505
 506	/* Allocate memory for the expanded device tree */
 507	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 
 
 
 508	memset(mem, 0, size);
 509
 510	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 511
 512	pr_debug("  unflattening %p...\n", mem);
 513
 514	/* Second pass, do actual unflattening */
 515	unflatten_dt_nodes(blob, mem, dad, mynodes);
 
 516	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 517		pr_warning("End of tree marker overwritten: %08x\n",
 518			   be32_to_cpup(mem + size));
 519
 520	if (detached && mynodes) {
 
 
 
 521		of_node_set_flag(*mynodes, OF_DETACHED);
 522		pr_debug("unflattened tree is detached\n");
 523	}
 524
 525	pr_debug(" <- unflatten_device_tree()\n");
 526	return mem;
 527}
 528
 529static void *kernel_tree_alloc(u64 size, u64 align)
 530{
 531	return kzalloc(size, GFP_KERNEL);
 532}
 533
 534static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 535
 536/**
 537 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 538 * @blob: Flat device tree blob
 539 * @dad: Parent device node
 540 * @mynodes: The device tree created by the call
 541 *
 542 * unflattens the device-tree passed by the firmware, creating the
 543 * tree of struct device_node. It also fills the "name" and "type"
 544 * pointers of the nodes so the normal device-tree walking functions
 545 * can be used.
 546 *
 547 * Returns NULL on failure or the memory chunk containing the unflattened
 548 * device tree on success.
 549 */
 550void *of_fdt_unflatten_tree(const unsigned long *blob,
 551			    struct device_node *dad,
 552			    struct device_node **mynodes)
 553{
 554	void *mem;
 555
 556	mutex_lock(&of_fdt_unflatten_mutex);
 557	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 558				      true);
 559	mutex_unlock(&of_fdt_unflatten_mutex);
 560
 561	return mem;
 562}
 563EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 564
 565/* Everything below here references initial_boot_params directly. */
 566int __initdata dt_root_addr_cells;
 567int __initdata dt_root_size_cells;
 568
 569void *initial_boot_params;
 570
 571#ifdef CONFIG_OF_EARLY_FLATTREE
 572
 573static u32 of_fdt_crc32;
 574
 575/**
 576 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577 */
 578static int __init __reserved_mem_reserve_reg(unsigned long node,
 579					     const char *uname)
 580{
 581	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 582	phys_addr_t base, size;
 583	int len;
 584	const __be32 *prop;
 585	int nomap, first = 1;
 
 586
 587	prop = of_get_flat_dt_prop(node, "reg", &len);
 588	if (!prop)
 589		return -ENOENT;
 590
 591	if (len && len % t_len != 0) {
 592		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 593		       uname);
 594		return -EINVAL;
 595	}
 596
 597	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 598
 599	while (len >= t_len) {
 600		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 601		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 602
 603		if (size &&
 604		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 605			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 606				uname, &base, (unsigned long)size / SZ_1M);
 607		else
 608			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 609				uname, &base, (unsigned long)size / SZ_1M);
 610
 611		len -= t_len;
 612		if (first) {
 613			fdt_reserved_mem_save_node(node, uname, base, size);
 614			first = 0;
 615		}
 616	}
 617	return 0;
 618}
 619
 620/**
 621 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 622 * in /reserved-memory matches the values supported by the current implementation,
 623 * also check if ranges property has been provided
 624 */
 625static int __init __reserved_mem_check_root(unsigned long node)
 626{
 627	const __be32 *prop;
 628
 629	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 630	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 631		return -EINVAL;
 632
 633	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 634	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 635		return -EINVAL;
 636
 637	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 638	if (!prop)
 639		return -EINVAL;
 640	return 0;
 641}
 642
 643/**
 644 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 645 */
 646static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 647					  int depth, void *data)
 648{
 649	static int found;
 650	const char *status;
 651	int err;
 652
 653	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 654		if (__reserved_mem_check_root(node) != 0) {
 655			pr_err("Reserved memory: unsupported node format, ignoring\n");
 656			/* break scan */
 657			return 1;
 658		}
 659		found = 1;
 660		/* scan next node */
 661		return 0;
 662	} else if (!found) {
 663		/* scan next node */
 664		return 0;
 665	} else if (found && depth < 2) {
 666		/* scanning of /reserved-memory has been finished */
 667		return 1;
 668	}
 669
 670	status = of_get_flat_dt_prop(node, "status", NULL);
 671	if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
 672		return 0;
 
 
 
 673
 674	err = __reserved_mem_reserve_reg(node, uname);
 675	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 676		fdt_reserved_mem_save_node(node, uname, 0, 0);
 677
 678	/* scan next node */
 
 
 
 679	return 0;
 680}
 681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682/**
 683 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 684 *
 685 * This function grabs memory from early allocator for device exclusive use
 686 * defined in device tree structures. It should be called by arch specific code
 687 * once the early allocator (i.e. memblock) has been fully activated.
 688 */
 689void __init early_init_fdt_scan_reserved_mem(void)
 690{
 691	int n;
 692	u64 base, size;
 693
 694	if (!initial_boot_params)
 695		return;
 696
 
 
 
 697	/* Process header /memreserve/ fields */
 698	for (n = 0; ; n++) {
 699		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 700		if (!size)
 701			break;
 702		early_init_dt_reserve_memory_arch(base, size, 0);
 703	}
 704
 705	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 706	fdt_init_reserved_mem();
 707}
 708
 709/**
 710 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 711 */
 712void __init early_init_fdt_reserve_self(void)
 713{
 714	if (!initial_boot_params)
 715		return;
 716
 717	/* Reserve the dtb region */
 718	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 719					  fdt_totalsize(initial_boot_params),
 720					  0);
 721}
 722
 723/**
 724 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 725 * @it: callback function
 726 * @data: context data pointer
 727 *
 728 * This function is used to scan the flattened device-tree, it is
 729 * used to extract the memory information at boot before we can
 730 * unflatten the tree
 731 */
 732int __init of_scan_flat_dt(int (*it)(unsigned long node,
 733				     const char *uname, int depth,
 734				     void *data),
 735			   void *data)
 736{
 737	const void *blob = initial_boot_params;
 738	const char *pathp;
 739	int offset, rc = 0, depth = -1;
 740
 741        for (offset = fdt_next_node(blob, -1, &depth);
 742             offset >= 0 && depth >= 0 && !rc;
 743             offset = fdt_next_node(blob, offset, &depth)) {
 
 
 
 744
 745		pathp = fdt_get_name(blob, offset, NULL);
 746		if (*pathp == '/')
 747			pathp = kbasename(pathp);
 748		rc = it(offset, pathp, depth, data);
 749	}
 750	return rc;
 751}
 752
 753/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 755 *
 756 * @node: the parent node
 757 * @uname: the name of subnode
 758 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 759 */
 760
 761int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 762{
 763	return fdt_subnode_offset(initial_boot_params, node, uname);
 764}
 765
 766/**
 767 * of_get_flat_dt_root - find the root node in the flat blob
 768 */
 769unsigned long __init of_get_flat_dt_root(void)
 770{
 771	return 0;
 772}
 773
 774/**
 775 * of_get_flat_dt_size - Return the total size of the FDT
 776 */
 777int __init of_get_flat_dt_size(void)
 778{
 779	return fdt_totalsize(initial_boot_params);
 780}
 781
 782/**
 783 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 784 *
 785 * This function can be used within scan_flattened_dt callback to get
 786 * access to properties
 787 */
 788const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 789				       int *size)
 790{
 791	return fdt_getprop(initial_boot_params, node, name, size);
 792}
 793
 794/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 796 * @node: node to test
 797 * @compat: compatible string to compare with compatible list.
 798 */
 799int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 800{
 801	return of_fdt_is_compatible(initial_boot_params, node, compat);
 802}
 803
 804/**
 805 * of_flat_dt_match - Return true if node matches a list of compatible values
 806 */
 807int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 808{
 809	return of_fdt_match(initial_boot_params, node, compat);
 
 
 
 
 
 
 
 
 
 
 
 
 810}
 811
 812struct fdt_scan_status {
 813	const char *name;
 814	int namelen;
 815	int depth;
 816	int found;
 817	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 818	void *data;
 819};
 820
 821const char * __init of_flat_dt_get_machine_name(void)
 822{
 823	const char *name;
 824	unsigned long dt_root = of_get_flat_dt_root();
 825
 826	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 827	if (!name)
 828		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 829	return name;
 830}
 831
 832/**
 833 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 834 *
 835 * @default_match: A machine specific ptr to return in case of no match.
 836 * @get_next_compat: callback function to return next compatible match table.
 837 *
 838 * Iterate through machine match tables to find the best match for the machine
 839 * compatible string in the FDT.
 840 */
 841const void * __init of_flat_dt_match_machine(const void *default_match,
 842		const void * (*get_next_compat)(const char * const**))
 843{
 844	const void *data = NULL;
 845	const void *best_data = default_match;
 846	const char *const *compat;
 847	unsigned long dt_root;
 848	unsigned int best_score = ~1, score = 0;
 849
 850	dt_root = of_get_flat_dt_root();
 851	while ((data = get_next_compat(&compat))) {
 852		score = of_flat_dt_match(dt_root, compat);
 853		if (score > 0 && score < best_score) {
 854			best_data = data;
 855			best_score = score;
 856		}
 857	}
 858	if (!best_data) {
 859		const char *prop;
 860		int size;
 861
 862		pr_err("\n unrecognized device tree list:\n[ ");
 863
 864		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 865		if (prop) {
 866			while (size > 0) {
 867				printk("'%s' ", prop);
 868				size -= strlen(prop) + 1;
 869				prop += strlen(prop) + 1;
 870			}
 871		}
 872		printk("]\n\n");
 873		return NULL;
 874	}
 875
 876	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 877
 878	return best_data;
 879}
 880
 881#ifdef CONFIG_BLK_DEV_INITRD
 882#ifndef __early_init_dt_declare_initrd
 883static void __early_init_dt_declare_initrd(unsigned long start,
 884					   unsigned long end)
 885{
 886	initrd_start = (unsigned long)__va(start);
 887	initrd_end = (unsigned long)__va(end);
 888	initrd_below_start_ok = 1;
 
 
 
 
 
 
 
 
 889}
 890#endif
 891
 892/**
 893 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 894 * @node: reference to node containing initrd location ('chosen')
 895 */
 896static void __init early_init_dt_check_for_initrd(unsigned long node)
 897{
 898	u64 start, end;
 899	int len;
 900	const __be32 *prop;
 901
 
 
 
 902	pr_debug("Looking for initrd properties... ");
 903
 904	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 905	if (!prop)
 906		return;
 907	start = of_read_number(prop, len/4);
 908
 909	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 910	if (!prop)
 911		return;
 912	end = of_read_number(prop, len/4);
 
 
 913
 914	__early_init_dt_declare_initrd(start, end);
 
 
 915
 916	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 917		 (unsigned long long)start, (unsigned long long)end);
 918}
 919#else
 920static inline void early_init_dt_check_for_initrd(unsigned long node)
 
 
 
 
 
 921{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922}
 923#endif /* CONFIG_BLK_DEV_INITRD */
 924
 925#ifdef CONFIG_SERIAL_EARLYCON
 926
 927int __init early_init_dt_scan_chosen_stdout(void)
 928{
 929	int offset;
 930	const char *p, *q, *options = NULL;
 931	int l;
 932	const struct earlycon_id *match;
 933	const void *fdt = initial_boot_params;
 
 934
 935	offset = fdt_path_offset(fdt, "/chosen");
 936	if (offset < 0)
 937		offset = fdt_path_offset(fdt, "/chosen@0");
 938	if (offset < 0)
 939		return -ENOENT;
 940
 941	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 942	if (!p)
 943		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 944	if (!p || !l)
 945		return -ENOENT;
 946
 947	q = strchrnul(p, ':');
 948	if (*q != '\0')
 949		options = q + 1;
 950	l = q - p;
 951
 952	/* Get the node specified by stdout-path */
 953	offset = fdt_path_offset_namelen(fdt, p, l);
 954	if (offset < 0) {
 955		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 956		return 0;
 957	}
 958
 959	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 960		if (!match->compatible[0])
 961			continue;
 962
 963		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 964			continue;
 965
 966		of_setup_earlycon(match, offset, options);
 967		return 0;
 
 968	}
 969	return -ENODEV;
 970}
 971#endif
 972
 973/**
 974 * early_init_dt_scan_root - fetch the top level address and size cells
 975 */
 976int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 977				   int depth, void *data)
 978{
 979	const __be32 *prop;
 
 
 980
 981	if (depth != 0)
 982		return 0;
 983
 984	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 985	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 986
 987	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 988	if (prop)
 989		dt_root_size_cells = be32_to_cpup(prop);
 990	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
 991
 992	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 993	if (prop)
 994		dt_root_addr_cells = be32_to_cpup(prop);
 995	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 996
 997	/* break now */
 998	return 1;
 999}
1000
1001u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1002{
1003	const __be32 *p = *cellp;
1004
1005	*cellp = p + s;
1006	return of_read_number(p, s);
1007}
1008
1009/**
1010 * early_init_dt_scan_memory - Look for an parse memory nodes
1011 */
1012int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1013				     int depth, void *data)
1014{
1015	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1016	const __be32 *reg, *endp;
1017	int l;
1018	bool hotpluggable;
 
 
 
 
 
 
 
 
 
 
 
1019
1020	/* We are scanning "memory" nodes only */
1021	if (type == NULL) {
1022		/*
1023		 * The longtrail doesn't have a device_type on the
1024		 * /memory node, so look for the node called /memory@0.
1025		 */
1026		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1027			return 0;
1028	} else if (strcmp(type, "memory") != 0)
1029		return 0;
1030
1031	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1032	if (reg == NULL)
1033		reg = of_get_flat_dt_prop(node, "reg", &l);
1034	if (reg == NULL)
1035		return 0;
1036
1037	endp = reg + (l / sizeof(__be32));
1038	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1039
1040	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 
1041
1042	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1043		u64 base, size;
1044
1045		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1046		size = dt_mem_next_cell(dt_root_size_cells, &reg);
 
1047
1048		if (size == 0)
1049			continue;
1050		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1051		    (unsigned long long)size);
1052
1053		early_init_dt_add_memory_arch(base, size);
1054
1055		if (!hotpluggable)
1056			continue;
1057
1058		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1059			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1060				base, base + size);
 
1061	}
1062
1063	return 0;
1064}
1065
1066int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1067				     int depth, void *data)
1068{
1069	int l;
1070	const char *p;
 
 
1071
1072	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
 
 
 
 
 
1073
1074	if (depth != 1 || !data ||
1075	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1076		return 0;
1077
1078	early_init_dt_check_for_initrd(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
1079
1080	/* Retrieve command line */
1081	p = of_get_flat_dt_prop(node, "bootargs", &l);
1082	if (p != NULL && l > 0)
1083		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1084
 
1085	/*
1086	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1087	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1088	 * is set in which case we override whatever was found earlier.
1089	 */
1090#ifdef CONFIG_CMDLINE
1091#if defined(CONFIG_CMDLINE_EXTEND)
1092	strlcat(data, " ", COMMAND_LINE_SIZE);
1093	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1094#elif defined(CONFIG_CMDLINE_FORCE)
1095	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1096#else
1097	/* No arguments from boot loader, use kernel's  cmdl*/
1098	if (!((char *)data)[0])
1099		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1100#endif
1101#endif /* CONFIG_CMDLINE */
1102
1103	pr_debug("Command line is: %s\n", (char*)data);
1104
1105	/* break now */
1106	return 1;
1107}
1108
1109#ifdef CONFIG_HAVE_MEMBLOCK
1110#ifndef MIN_MEMBLOCK_ADDR
1111#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1112#endif
1113#ifndef MAX_MEMBLOCK_ADDR
1114#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1115#endif
1116
1117void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1118{
1119	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1120
 
 
 
 
 
 
1121	if (!PAGE_ALIGNED(base)) {
1122		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1123			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1124				base, base + size);
1125			return;
1126		}
1127		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1128		base = PAGE_ALIGN(base);
1129	}
1130	size &= PAGE_MASK;
1131
1132	if (base > MAX_MEMBLOCK_ADDR) {
1133		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1134				base, base + size);
1135		return;
1136	}
1137
1138	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1139		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1140				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1141		size = MAX_MEMBLOCK_ADDR - base + 1;
1142	}
1143
1144	if (base + size < phys_offset) {
1145		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1146			   base, base + size);
1147		return;
1148	}
1149	if (base < phys_offset) {
1150		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1151			   base, phys_offset);
1152		size -= phys_offset - base;
1153		base = phys_offset;
1154	}
1155	memblock_add(base, size);
1156}
1157
1158int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1159{
1160	return memblock_mark_hotplug(base, size);
1161}
1162
1163int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1164					phys_addr_t size, bool nomap)
1165{
1166	if (nomap)
1167		return memblock_remove(base, size);
1168	return memblock_reserve(base, size);
1169}
1170
1171/*
1172 * called from unflatten_device_tree() to bootstrap devicetree itself
1173 * Architectures can override this definition if memblock isn't used
1174 */
1175void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1176{
1177	return __va(memblock_alloc(size, align));
1178}
1179#else
1180void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1181{
1182	WARN_ON(1);
1183}
1184
1185int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1186{
1187	return -ENOSYS;
1188}
1189
1190int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1191					phys_addr_t size, bool nomap)
1192{
1193	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1194		  &base, &size, nomap ? " (nomap)" : "");
1195	return -ENOSYS;
1196}
1197
1198void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1199{
1200	WARN_ON(1);
1201	return NULL;
1202}
1203#endif
1204
1205bool __init early_init_dt_verify(void *params)
1206{
1207	if (!params)
1208		return false;
1209
1210	/* check device tree validity */
1211	if (fdt_check_header(params))
1212		return false;
1213
1214	/* Setup flat device-tree pointer */
1215	initial_boot_params = params;
1216	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1217				fdt_totalsize(initial_boot_params));
1218	return true;
1219}
1220
1221
1222void __init early_init_dt_scan_nodes(void)
1223{
1224	/* Retrieve various information from the /chosen node */
1225	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1226
1227	/* Initialize {size,address}-cells info */
1228	of_scan_flat_dt(early_init_dt_scan_root, NULL);
 
 
 
 
 
1229
1230	/* Setup memory, calling early_init_dt_add_memory_arch */
1231	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
 
 
 
1232}
1233
1234bool __init early_init_dt_scan(void *params)
1235{
1236	bool status;
1237
1238	status = early_init_dt_verify(params);
1239	if (!status)
1240		return false;
1241
1242	early_init_dt_scan_nodes();
1243	return true;
1244}
1245
1246/**
1247 * unflatten_device_tree - create tree of device_nodes from flat blob
1248 *
1249 * unflattens the device-tree passed by the firmware, creating the
1250 * tree of struct device_node. It also fills the "name" and "type"
1251 * pointers of the nodes so the normal device-tree walking functions
1252 * can be used.
1253 */
1254void __init unflatten_device_tree(void)
1255{
1256	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1257				early_init_dt_alloc_memory_arch, false);
1258
1259	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1260	of_alias_scan(early_init_dt_alloc_memory_arch);
 
 
1261}
1262
1263/**
1264 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1265 *
1266 * Copies and unflattens the device-tree passed by the firmware, creating the
1267 * tree of struct device_node. It also fills the "name" and "type"
1268 * pointers of the nodes so the normal device-tree walking functions
1269 * can be used. This should only be used when the FDT memory has not been
1270 * reserved such is the case when the FDT is built-in to the kernel init
1271 * section. If the FDT memory is reserved already then unflatten_device_tree
1272 * should be used instead.
1273 */
1274void __init unflatten_and_copy_device_tree(void)
1275{
1276	int size;
1277	void *dt;
1278
1279	if (!initial_boot_params) {
1280		pr_warn("No valid device tree found, continuing without\n");
1281		return;
1282	}
1283
1284	size = fdt_totalsize(initial_boot_params);
1285	dt = early_init_dt_alloc_memory_arch(size,
1286					     roundup_pow_of_two(FDT_V17_SIZE));
1287
1288	if (dt) {
1289		memcpy(dt, initial_boot_params, size);
1290		initial_boot_params = dt;
1291	}
1292	unflatten_device_tree();
1293}
1294
1295#ifdef CONFIG_SYSFS
1296static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1297			       struct bin_attribute *bin_attr,
1298			       char *buf, loff_t off, size_t count)
1299{
1300	memcpy(buf, initial_boot_params + off, count);
1301	return count;
1302}
1303
1304static int __init of_fdt_raw_init(void)
1305{
1306	static struct bin_attribute of_fdt_raw_attr =
1307		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1308
1309	if (!initial_boot_params)
1310		return 0;
1311
1312	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1313				     fdt_totalsize(initial_boot_params))) {
1314		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1315		return 0;
1316	}
1317	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1318	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1319}
1320late_initcall(of_fdt_raw_init);
1321#endif
1322
1323#endif /* CONFIG_OF_EARLY_FLATTREE */