Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/sch_generic.h>
  38#include <net/netns/generic.h>
  39#include <net/netfilter/nf_conntrack.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.1"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
  46#define HT_MAP_BITS	4
  47#define HASH_INITVAL	((u32)0xcafef00d)
  48
  49struct  vrf_map {
  50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  51	spinlock_t vmap_lock;
  52
  53	/* shared_tables:
  54	 * count how many distinct tables do not comply with the strict mode
  55	 * requirement.
  56	 * shared_tables value must be 0 in order to enable the strict mode.
  57	 *
  58	 * example of the evolution of shared_tables:
  59	 *                                                        | time
  60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  65	 *
  66	 * shared_tables is a "step function" (or "staircase function")
  67	 * and it is increased by one when the second vrf is associated to a
  68	 * table.
  69	 *
  70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  71	 *
  72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  73	 * value of shared_tables is still 1.
  74	 * This means that no matter how many new vrfs will register on the
  75	 * table 100, the shared_tables will not increase (considering only
  76	 * table 100).
  77	 *
  78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  79	 *
  80	 * Looking at the value of shared_tables we can immediately know if
  81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  82	 * can be enforced iff shared_tables = 0.
  83	 *
  84	 * Conversely, shared_tables is decreased when a vrf is de-associated
  85	 * from a table with exactly two associated vrfs.
  86	 */
  87	u32 shared_tables;
  88
  89	bool strict_mode;
  90};
  91
  92struct vrf_map_elem {
  93	struct hlist_node hnode;
  94	struct list_head vrf_list;  /* VRFs registered to this table */
  95
  96	u32 table_id;
  97	int users;
  98	int ifindex;
  99};
 100
 101static unsigned int vrf_net_id;
 102
 103/* per netns vrf data */
 104struct netns_vrf {
 105	/* protected by rtnl lock */
 106	bool add_fib_rules;
 107
 108	struct vrf_map vmap;
 109	struct ctl_table_header	*ctl_hdr;
 110};
 111
 112struct net_vrf {
 113	struct rtable __rcu	*rth;
 114	struct rt6_info	__rcu	*rt6;
 115#if IS_ENABLED(CONFIG_IPV6)
 116	struct fib6_table	*fib6_table;
 117#endif
 118	u32                     tb_id;
 119
 120	struct list_head	me_list;   /* entry in vrf_map_elem */
 121	int			ifindex;
 122};
 123
 
 
 
 
 
 
 
 
 
 
 124static void vrf_rx_stats(struct net_device *dev, int len)
 125{
 126	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 127
 128	u64_stats_update_begin(&dstats->syncp);
 129	dstats->rx_packets++;
 130	dstats->rx_bytes += len;
 131	u64_stats_update_end(&dstats->syncp);
 132}
 133
 134static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 135{
 136	vrf_dev->stats.tx_errors++;
 137	kfree_skb(skb);
 138}
 139
 140static void vrf_get_stats64(struct net_device *dev,
 141			    struct rtnl_link_stats64 *stats)
 142{
 143	int i;
 144
 145	for_each_possible_cpu(i) {
 146		const struct pcpu_dstats *dstats;
 147		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 148		unsigned int start;
 149
 150		dstats = per_cpu_ptr(dev->dstats, i);
 151		do {
 152			start = u64_stats_fetch_begin(&dstats->syncp);
 153			tbytes = dstats->tx_bytes;
 154			tpkts = dstats->tx_packets;
 155			tdrops = dstats->tx_drops;
 156			rbytes = dstats->rx_bytes;
 157			rpkts = dstats->rx_packets;
 158		} while (u64_stats_fetch_retry(&dstats->syncp, start));
 159		stats->tx_bytes += tbytes;
 160		stats->tx_packets += tpkts;
 161		stats->tx_dropped += tdrops;
 162		stats->rx_bytes += rbytes;
 163		stats->rx_packets += rpkts;
 164	}
 165}
 166
 167static struct vrf_map *netns_vrf_map(struct net *net)
 168{
 169	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 170
 171	return &nn_vrf->vmap;
 172}
 173
 174static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 175{
 176	return netns_vrf_map(dev_net(dev));
 177}
 178
 179static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 180{
 181	struct list_head *me_head = &me->vrf_list;
 182	struct net_vrf *vrf;
 183
 184	if (list_empty(me_head))
 185		return -ENODEV;
 186
 187	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 188
 189	return vrf->ifindex;
 190}
 191
 192static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 193{
 194	struct vrf_map_elem *me;
 195
 196	me = kmalloc(sizeof(*me), flags);
 197	if (!me)
 198		return NULL;
 199
 200	return me;
 201}
 202
 203static void vrf_map_elem_free(struct vrf_map_elem *me)
 204{
 205	kfree(me);
 206}
 207
 208static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 209			      int ifindex, int users)
 210{
 211	me->table_id = table_id;
 212	me->ifindex = ifindex;
 213	me->users = users;
 214	INIT_LIST_HEAD(&me->vrf_list);
 215}
 216
 217static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 218						u32 table_id)
 219{
 220	struct vrf_map_elem *me;
 221	u32 key;
 222
 223	key = jhash_1word(table_id, HASH_INITVAL);
 224	hash_for_each_possible(vmap->ht, me, hnode, key) {
 225		if (me->table_id == table_id)
 226			return me;
 227	}
 228
 229	return NULL;
 230}
 231
 232static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 233{
 234	u32 table_id = me->table_id;
 235	u32 key;
 236
 237	key = jhash_1word(table_id, HASH_INITVAL);
 238	hash_add(vmap->ht, &me->hnode, key);
 239}
 240
 241static void vrf_map_del_elem(struct vrf_map_elem *me)
 242{
 243	hash_del(&me->hnode);
 244}
 245
 246static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 247{
 248	spin_lock(&vmap->vmap_lock);
 249}
 250
 251static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 252{
 253	spin_unlock(&vmap->vmap_lock);
 254}
 255
 256/* called with rtnl lock held */
 257static int
 258vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 259{
 260	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 261	struct net_vrf *vrf = netdev_priv(dev);
 262	struct vrf_map_elem *new_me, *me;
 263	u32 table_id = vrf->tb_id;
 264	bool free_new_me = false;
 265	int users;
 266	int res;
 267
 268	/* we pre-allocate elements used in the spin-locked section (so that we
 269	 * keep the spinlock as short as possible).
 270	 */
 271	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 272	if (!new_me)
 273		return -ENOMEM;
 274
 275	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 276
 277	vrf_map_lock(vmap);
 278
 279	me = vrf_map_lookup_elem(vmap, table_id);
 280	if (!me) {
 281		me = new_me;
 282		vrf_map_add_elem(vmap, me);
 283		goto link_vrf;
 284	}
 285
 286	/* we already have an entry in the vrf_map, so it means there is (at
 287	 * least) a vrf registered on the specific table.
 288	 */
 289	free_new_me = true;
 290	if (vmap->strict_mode) {
 291		/* vrfs cannot share the same table */
 292		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 293		res = -EBUSY;
 294		goto unlock;
 295	}
 296
 297link_vrf:
 298	users = ++me->users;
 299	if (users == 2)
 300		++vmap->shared_tables;
 301
 302	list_add(&vrf->me_list, &me->vrf_list);
 303
 304	res = 0;
 305
 306unlock:
 307	vrf_map_unlock(vmap);
 308
 309	/* clean-up, if needed */
 310	if (free_new_me)
 311		vrf_map_elem_free(new_me);
 312
 313	return res;
 314}
 315
 316/* called with rtnl lock held */
 317static void vrf_map_unregister_dev(struct net_device *dev)
 318{
 319	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 320	struct net_vrf *vrf = netdev_priv(dev);
 321	u32 table_id = vrf->tb_id;
 322	struct vrf_map_elem *me;
 323	int users;
 324
 325	vrf_map_lock(vmap);
 326
 327	me = vrf_map_lookup_elem(vmap, table_id);
 328	if (!me)
 329		goto unlock;
 330
 331	list_del(&vrf->me_list);
 332
 333	users = --me->users;
 334	if (users == 1) {
 335		--vmap->shared_tables;
 336	} else if (users == 0) {
 337		vrf_map_del_elem(me);
 338
 339		/* no one will refer to this element anymore */
 340		vrf_map_elem_free(me);
 341	}
 342
 343unlock:
 344	vrf_map_unlock(vmap);
 345}
 346
 347/* return the vrf device index associated with the table_id */
 348static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 349{
 350	struct vrf_map *vmap = netns_vrf_map(net);
 351	struct vrf_map_elem *me;
 352	int ifindex;
 353
 354	vrf_map_lock(vmap);
 355
 356	if (!vmap->strict_mode) {
 357		ifindex = -EPERM;
 358		goto unlock;
 359	}
 360
 361	me = vrf_map_lookup_elem(vmap, table_id);
 362	if (!me) {
 363		ifindex = -ENODEV;
 364		goto unlock;
 365	}
 366
 367	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 368
 369unlock:
 370	vrf_map_unlock(vmap);
 371
 372	return ifindex;
 373}
 374
 375/* by default VRF devices do not have a qdisc and are expected
 376 * to be created with only a single queue.
 377 */
 378static bool qdisc_tx_is_default(const struct net_device *dev)
 379{
 380	struct netdev_queue *txq;
 381	struct Qdisc *qdisc;
 382
 383	if (dev->num_tx_queues > 1)
 384		return false;
 385
 386	txq = netdev_get_tx_queue(dev, 0);
 387	qdisc = rcu_access_pointer(txq->qdisc);
 388
 389	return !qdisc->enqueue;
 390}
 391
 392/* Local traffic destined to local address. Reinsert the packet to rx
 393 * path, similar to loopback handling.
 394 */
 395static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 396			  struct dst_entry *dst)
 397{
 398	int len = skb->len;
 399
 400	skb_orphan(skb);
 401
 402	skb_dst_set(skb, dst);
 403
 404	/* set pkt_type to avoid skb hitting packet taps twice -
 405	 * once on Tx and again in Rx processing
 406	 */
 407	skb->pkt_type = PACKET_LOOPBACK;
 408
 409	skb->protocol = eth_type_trans(skb, dev);
 410
 411	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
 412		vrf_rx_stats(dev, len);
 413	else
 414		this_cpu_inc(dev->dstats->rx_drops);
 415
 416	return NETDEV_TX_OK;
 417}
 418
 419static void vrf_nf_set_untracked(struct sk_buff *skb)
 420{
 421	if (skb_get_nfct(skb) == 0)
 422		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
 423}
 424
 425static void vrf_nf_reset_ct(struct sk_buff *skb)
 426{
 427	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
 428		nf_reset_ct(skb);
 429}
 430
 431#if IS_ENABLED(CONFIG_IPV6)
 432static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 433			     struct sk_buff *skb)
 434{
 435	int err;
 436
 437	vrf_nf_reset_ct(skb);
 438
 439	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 440		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 441
 442	if (likely(err == 1))
 443		err = dst_output(net, sk, skb);
 444
 445	return err;
 446}
 447
 448static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 449					   struct net_device *dev)
 450{
 451	const struct ipv6hdr *iph;
 452	struct net *net = dev_net(skb->dev);
 453	struct flowi6 fl6;
 454	int ret = NET_XMIT_DROP;
 455	struct dst_entry *dst;
 456	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 457
 458	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 459		goto err;
 460
 461	iph = ipv6_hdr(skb);
 462
 463	memset(&fl6, 0, sizeof(fl6));
 464	/* needed to match OIF rule */
 465	fl6.flowi6_l3mdev = dev->ifindex;
 466	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 467	fl6.daddr = iph->daddr;
 468	fl6.saddr = iph->saddr;
 469	fl6.flowlabel = ip6_flowinfo(iph);
 470	fl6.flowi6_mark = skb->mark;
 471	fl6.flowi6_proto = iph->nexthdr;
 
 472
 473	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 474	if (IS_ERR(dst) || dst == dst_null)
 475		goto err;
 476
 477	skb_dst_drop(skb);
 478
 479	/* if dst.dev is the VRF device again this is locally originated traffic
 480	 * destined to a local address. Short circuit to Rx path.
 481	 */
 482	if (dst->dev == dev)
 483		return vrf_local_xmit(skb, dev, dst);
 484
 485	skb_dst_set(skb, dst);
 486
 487	/* strip the ethernet header added for pass through VRF device */
 488	__skb_pull(skb, skb_network_offset(skb));
 489
 490	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
 491	ret = vrf_ip6_local_out(net, skb->sk, skb);
 492	if (unlikely(net_xmit_eval(ret)))
 493		dev->stats.tx_errors++;
 494	else
 495		ret = NET_XMIT_SUCCESS;
 496
 497	return ret;
 498err:
 499	vrf_tx_error(dev, skb);
 500	return NET_XMIT_DROP;
 501}
 502#else
 503static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 504					   struct net_device *dev)
 505{
 506	vrf_tx_error(dev, skb);
 507	return NET_XMIT_DROP;
 508}
 509#endif
 510
 511/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 512static int vrf_ip_local_out(struct net *net, struct sock *sk,
 513			    struct sk_buff *skb)
 514{
 515	int err;
 516
 517	vrf_nf_reset_ct(skb);
 518
 519	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 520		      skb, NULL, skb_dst(skb)->dev, dst_output);
 521	if (likely(err == 1))
 522		err = dst_output(net, sk, skb);
 523
 524	return err;
 525}
 526
 527static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 528					   struct net_device *vrf_dev)
 529{
 530	struct iphdr *ip4h;
 531	int ret = NET_XMIT_DROP;
 532	struct flowi4 fl4;
 533	struct net *net = dev_net(vrf_dev);
 534	struct rtable *rt;
 535
 536	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 537		goto err;
 538
 539	ip4h = ip_hdr(skb);
 540
 541	memset(&fl4, 0, sizeof(fl4));
 542	/* needed to match OIF rule */
 543	fl4.flowi4_l3mdev = vrf_dev->ifindex;
 544	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 545	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 546	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
 547	fl4.flowi4_proto = ip4h->protocol;
 548	fl4.daddr = ip4h->daddr;
 549	fl4.saddr = ip4h->saddr;
 550
 551	rt = ip_route_output_flow(net, &fl4, NULL);
 552	if (IS_ERR(rt))
 553		goto err;
 554
 555	skb_dst_drop(skb);
 556
 557	/* if dst.dev is the VRF device again this is locally originated traffic
 558	 * destined to a local address. Short circuit to Rx path.
 559	 */
 560	if (rt->dst.dev == vrf_dev)
 561		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 562
 563	skb_dst_set(skb, &rt->dst);
 564
 565	/* strip the ethernet header added for pass through VRF device */
 566	__skb_pull(skb, skb_network_offset(skb));
 567
 568	if (!ip4h->saddr) {
 569		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 570					       RT_SCOPE_LINK);
 571	}
 572
 573	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
 574	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 575	if (unlikely(net_xmit_eval(ret)))
 576		vrf_dev->stats.tx_errors++;
 577	else
 578		ret = NET_XMIT_SUCCESS;
 579
 580out:
 581	return ret;
 582err:
 583	vrf_tx_error(vrf_dev, skb);
 584	goto out;
 585}
 586
 587static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 588{
 589	switch (skb->protocol) {
 590	case htons(ETH_P_IP):
 591		return vrf_process_v4_outbound(skb, dev);
 592	case htons(ETH_P_IPV6):
 593		return vrf_process_v6_outbound(skb, dev);
 594	default:
 595		vrf_tx_error(dev, skb);
 596		return NET_XMIT_DROP;
 597	}
 598}
 599
 600static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 601{
 602	int len = skb->len;
 603	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 604
 605	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 606		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 607
 608		u64_stats_update_begin(&dstats->syncp);
 609		dstats->tx_packets++;
 610		dstats->tx_bytes += len;
 611		u64_stats_update_end(&dstats->syncp);
 612	} else {
 613		this_cpu_inc(dev->dstats->tx_drops);
 614	}
 615
 616	return ret;
 617}
 618
 619static void vrf_finish_direct(struct sk_buff *skb)
 620{
 621	struct net_device *vrf_dev = skb->dev;
 622
 623	if (!list_empty(&vrf_dev->ptype_all) &&
 624	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 625		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 626
 627		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 628		eth_zero_addr(eth->h_dest);
 629		eth->h_proto = skb->protocol;
 630
 
 631		dev_queue_xmit_nit(skb, vrf_dev);
 
 632
 633		skb_pull(skb, ETH_HLEN);
 634	}
 635
 636	vrf_nf_reset_ct(skb);
 
 637}
 638
 639#if IS_ENABLED(CONFIG_IPV6)
 640/* modelled after ip6_finish_output2 */
 641static int vrf_finish_output6(struct net *net, struct sock *sk,
 642			      struct sk_buff *skb)
 643{
 644	struct dst_entry *dst = skb_dst(skb);
 645	struct net_device *dev = dst->dev;
 646	const struct in6_addr *nexthop;
 647	struct neighbour *neigh;
 648	int ret;
 649
 650	vrf_nf_reset_ct(skb);
 651
 652	skb->protocol = htons(ETH_P_IPV6);
 653	skb->dev = dev;
 654
 655	rcu_read_lock();
 656	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 657	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 658	if (unlikely(!neigh))
 659		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 660	if (!IS_ERR(neigh)) {
 661		sock_confirm_neigh(skb, neigh);
 662		ret = neigh_output(neigh, skb, false);
 663		rcu_read_unlock();
 664		return ret;
 665	}
 666	rcu_read_unlock();
 667
 668	IP6_INC_STATS(dev_net(dst->dev),
 669		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 670	kfree_skb(skb);
 671	return -EINVAL;
 672}
 673
 674/* modelled after ip6_output */
 675static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 678			    net, sk, skb, NULL, skb_dst(skb)->dev,
 679			    vrf_finish_output6,
 680			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 681}
 682
 683/* set dst on skb to send packet to us via dev_xmit path. Allows
 684 * packet to go through device based features such as qdisc, netfilter
 685 * hooks and packet sockets with skb->dev set to vrf device.
 686 */
 687static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 688					    struct sk_buff *skb)
 689{
 690	struct net_vrf *vrf = netdev_priv(vrf_dev);
 691	struct dst_entry *dst = NULL;
 692	struct rt6_info *rt6;
 693
 694	rcu_read_lock();
 695
 696	rt6 = rcu_dereference(vrf->rt6);
 697	if (likely(rt6)) {
 698		dst = &rt6->dst;
 699		dst_hold(dst);
 700	}
 701
 702	rcu_read_unlock();
 703
 704	if (unlikely(!dst)) {
 705		vrf_tx_error(vrf_dev, skb);
 706		return NULL;
 707	}
 708
 709	skb_dst_drop(skb);
 710	skb_dst_set(skb, dst);
 711
 712	return skb;
 713}
 714
 715static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 716				     struct sk_buff *skb)
 717{
 718	vrf_finish_direct(skb);
 719
 720	return vrf_ip6_local_out(net, sk, skb);
 721}
 722
 723static int vrf_output6_direct(struct net *net, struct sock *sk,
 724			      struct sk_buff *skb)
 725{
 726	int err = 1;
 727
 728	skb->protocol = htons(ETH_P_IPV6);
 729
 730	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 731		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 732			      NULL, skb->dev, vrf_output6_direct_finish);
 733
 734	if (likely(err == 1))
 735		vrf_finish_direct(skb);
 736
 737	return err;
 738}
 739
 740static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 741				     struct sk_buff *skb)
 742{
 743	int err;
 744
 745	err = vrf_output6_direct(net, sk, skb);
 746	if (likely(err == 1))
 747		err = vrf_ip6_local_out(net, sk, skb);
 748
 749	return err;
 750}
 751
 752static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 753					  struct sock *sk,
 754					  struct sk_buff *skb)
 755{
 756	struct net *net = dev_net(vrf_dev);
 757	int err;
 758
 759	skb->dev = vrf_dev;
 760
 761	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 762		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 763
 764	if (likely(err == 1))
 765		err = vrf_output6_direct(net, sk, skb);
 766
 767	if (likely(err == 1))
 768		return skb;
 769
 770	return NULL;
 771}
 772
 773static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 774				   struct sock *sk,
 775				   struct sk_buff *skb)
 776{
 777	/* don't divert link scope packets */
 778	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 779		return skb;
 780
 781	vrf_nf_set_untracked(skb);
 782
 783	if (qdisc_tx_is_default(vrf_dev) ||
 784	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 785		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 786
 787	return vrf_ip6_out_redirect(vrf_dev, skb);
 788}
 789
 790/* holding rtnl */
 791static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 792{
 793	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 794	struct net *net = dev_net(dev);
 795	struct dst_entry *dst;
 796
 797	RCU_INIT_POINTER(vrf->rt6, NULL);
 798	synchronize_rcu();
 799
 800	/* move dev in dst's to loopback so this VRF device can be deleted
 801	 * - based on dst_ifdown
 802	 */
 803	if (rt6) {
 804		dst = &rt6->dst;
 805		netdev_ref_replace(dst->dev, net->loopback_dev,
 806				   &dst->dev_tracker, GFP_KERNEL);
 807		dst->dev = net->loopback_dev;
 
 808		dst_release(dst);
 809	}
 810}
 811
 812static int vrf_rt6_create(struct net_device *dev)
 813{
 814	int flags = DST_NOPOLICY | DST_NOXFRM;
 815	struct net_vrf *vrf = netdev_priv(dev);
 816	struct net *net = dev_net(dev);
 817	struct rt6_info *rt6;
 818	int rc = -ENOMEM;
 819
 820	/* IPv6 can be CONFIG enabled and then disabled runtime */
 821	if (!ipv6_mod_enabled())
 822		return 0;
 823
 824	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 825	if (!vrf->fib6_table)
 826		goto out;
 827
 828	/* create a dst for routing packets out a VRF device */
 829	rt6 = ip6_dst_alloc(net, dev, flags);
 830	if (!rt6)
 831		goto out;
 832
 833	rt6->dst.output	= vrf_output6;
 834
 835	rcu_assign_pointer(vrf->rt6, rt6);
 836
 837	rc = 0;
 838out:
 839	return rc;
 840}
 841#else
 842static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 843				   struct sock *sk,
 844				   struct sk_buff *skb)
 845{
 846	return skb;
 847}
 848
 849static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 850{
 851}
 852
 853static int vrf_rt6_create(struct net_device *dev)
 854{
 855	return 0;
 856}
 857#endif
 858
 859/* modelled after ip_finish_output2 */
 860static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 861{
 862	struct dst_entry *dst = skb_dst(skb);
 863	struct rtable *rt = (struct rtable *)dst;
 864	struct net_device *dev = dst->dev;
 865	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 866	struct neighbour *neigh;
 867	bool is_v6gw = false;
 
 868
 869	vrf_nf_reset_ct(skb);
 870
 871	/* Be paranoid, rather than too clever. */
 872	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 873		skb = skb_expand_head(skb, hh_len);
 874		if (!skb) {
 875			dev->stats.tx_errors++;
 876			return -ENOMEM;
 
 
 877		}
 
 
 
 
 
 878	}
 879
 880	rcu_read_lock();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883	if (!IS_ERR(neigh)) {
 884		int ret;
 885
 886		sock_confirm_neigh(skb, neigh);
 887		/* if crossing protocols, can not use the cached header */
 888		ret = neigh_output(neigh, skb, is_v6gw);
 889		rcu_read_unlock();
 890		return ret;
 891	}
 892
 893	rcu_read_unlock();
 
 894	vrf_tx_error(skb->dev, skb);
 895	return -EINVAL;
 896}
 897
 898static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 899{
 900	struct net_device *dev = skb_dst(skb)->dev;
 901
 902	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 903
 904	skb->dev = dev;
 905	skb->protocol = htons(ETH_P_IP);
 906
 907	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 908			    net, sk, skb, NULL, dev,
 909			    vrf_finish_output,
 910			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 911}
 912
 913/* set dst on skb to send packet to us via dev_xmit path. Allows
 914 * packet to go through device based features such as qdisc, netfilter
 915 * hooks and packet sockets with skb->dev set to vrf device.
 916 */
 917static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 918					   struct sk_buff *skb)
 919{
 920	struct net_vrf *vrf = netdev_priv(vrf_dev);
 921	struct dst_entry *dst = NULL;
 922	struct rtable *rth;
 923
 924	rcu_read_lock();
 925
 926	rth = rcu_dereference(vrf->rth);
 927	if (likely(rth)) {
 928		dst = &rth->dst;
 929		dst_hold(dst);
 930	}
 931
 932	rcu_read_unlock();
 933
 934	if (unlikely(!dst)) {
 935		vrf_tx_error(vrf_dev, skb);
 936		return NULL;
 937	}
 938
 939	skb_dst_drop(skb);
 940	skb_dst_set(skb, dst);
 941
 942	return skb;
 943}
 944
 945static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 946				    struct sk_buff *skb)
 947{
 948	vrf_finish_direct(skb);
 949
 950	return vrf_ip_local_out(net, sk, skb);
 951}
 952
 953static int vrf_output_direct(struct net *net, struct sock *sk,
 954			     struct sk_buff *skb)
 955{
 956	int err = 1;
 957
 958	skb->protocol = htons(ETH_P_IP);
 959
 960	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 961		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 962			      NULL, skb->dev, vrf_output_direct_finish);
 963
 964	if (likely(err == 1))
 965		vrf_finish_direct(skb);
 966
 967	return err;
 968}
 969
 970static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 971				    struct sk_buff *skb)
 972{
 973	int err;
 974
 975	err = vrf_output_direct(net, sk, skb);
 976	if (likely(err == 1))
 977		err = vrf_ip_local_out(net, sk, skb);
 978
 979	return err;
 980}
 981
 982static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 983					 struct sock *sk,
 984					 struct sk_buff *skb)
 985{
 986	struct net *net = dev_net(vrf_dev);
 987	int err;
 988
 989	skb->dev = vrf_dev;
 990
 991	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 992		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 993
 994	if (likely(err == 1))
 995		err = vrf_output_direct(net, sk, skb);
 996
 997	if (likely(err == 1))
 998		return skb;
 999
1000	return NULL;
1001}
1002
1003static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004				  struct sock *sk,
1005				  struct sk_buff *skb)
1006{
1007	/* don't divert multicast or local broadcast */
1008	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010		return skb;
1011
1012	vrf_nf_set_untracked(skb);
1013
1014	if (qdisc_tx_is_default(vrf_dev) ||
1015	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016		return vrf_ip_out_direct(vrf_dev, sk, skb);
1017
1018	return vrf_ip_out_redirect(vrf_dev, skb);
1019}
1020
1021/* called with rcu lock held */
1022static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023				  struct sock *sk,
1024				  struct sk_buff *skb,
1025				  u16 proto)
1026{
1027	switch (proto) {
1028	case AF_INET:
1029		return vrf_ip_out(vrf_dev, sk, skb);
1030	case AF_INET6:
1031		return vrf_ip6_out(vrf_dev, sk, skb);
1032	}
1033
1034	return skb;
1035}
1036
1037/* holding rtnl */
1038static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039{
1040	struct rtable *rth = rtnl_dereference(vrf->rth);
1041	struct net *net = dev_net(dev);
1042	struct dst_entry *dst;
1043
1044	RCU_INIT_POINTER(vrf->rth, NULL);
1045	synchronize_rcu();
1046
1047	/* move dev in dst's to loopback so this VRF device can be deleted
1048	 * - based on dst_ifdown
1049	 */
1050	if (rth) {
1051		dst = &rth->dst;
1052		netdev_ref_replace(dst->dev, net->loopback_dev,
1053				   &dst->dev_tracker, GFP_KERNEL);
1054		dst->dev = net->loopback_dev;
 
1055		dst_release(dst);
1056	}
1057}
1058
1059static int vrf_rtable_create(struct net_device *dev)
1060{
1061	struct net_vrf *vrf = netdev_priv(dev);
1062	struct rtable *rth;
1063
1064	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065		return -ENOMEM;
1066
1067	/* create a dst for routing packets out through a VRF device */
1068	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1069	if (!rth)
1070		return -ENOMEM;
1071
1072	rth->dst.output	= vrf_output;
1073
1074	rcu_assign_pointer(vrf->rth, rth);
1075
1076	return 0;
1077}
1078
1079/**************************** device handling ********************/
1080
1081/* cycle interface to flush neighbor cache and move routes across tables */
1082static void cycle_netdev(struct net_device *dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	unsigned int flags = dev->flags;
1086	int ret;
1087
1088	if (!netif_running(dev))
1089		return;
1090
1091	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092	if (ret >= 0)
1093		ret = dev_change_flags(dev, flags, extack);
1094
1095	if (ret < 0) {
1096		netdev_err(dev,
1097			   "Failed to cycle device %s; route tables might be wrong!\n",
1098			   dev->name);
1099	}
1100}
1101
1102static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103			    struct netlink_ext_ack *extack)
1104{
1105	int ret;
1106
1107	/* do not allow loopback device to be enslaved to a VRF.
1108	 * The vrf device acts as the loopback for the vrf.
1109	 */
1110	if (port_dev == dev_net(dev)->loopback_dev) {
1111		NL_SET_ERR_MSG(extack,
1112			       "Can not enslave loopback device to a VRF");
1113		return -EOPNOTSUPP;
1114	}
1115
1116	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118	if (ret < 0)
1119		goto err;
1120
1121	cycle_netdev(port_dev, extack);
1122
1123	return 0;
1124
1125err:
1126	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127	return ret;
1128}
1129
1130static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131			 struct netlink_ext_ack *extack)
1132{
1133	if (netif_is_l3_master(port_dev)) {
1134		NL_SET_ERR_MSG(extack,
1135			       "Can not enslave an L3 master device to a VRF");
1136		return -EINVAL;
1137	}
1138
1139	if (netif_is_l3_slave(port_dev))
1140		return -EINVAL;
1141
1142	return do_vrf_add_slave(dev, port_dev, extack);
1143}
1144
1145/* inverse of do_vrf_add_slave */
1146static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147{
1148	netdev_upper_dev_unlink(port_dev, dev);
1149	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150
1151	cycle_netdev(port_dev, NULL);
1152
1153	return 0;
1154}
1155
1156static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157{
1158	return do_vrf_del_slave(dev, port_dev);
1159}
1160
1161static void vrf_dev_uninit(struct net_device *dev)
1162{
1163	struct net_vrf *vrf = netdev_priv(dev);
1164
1165	vrf_rtable_release(dev, vrf);
1166	vrf_rt6_release(dev, vrf);
 
 
 
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
 
 
 
 
1173	/* create the default dst which points back to us */
1174	if (vrf_rtable_create(dev) != 0)
1175		goto out_nomem;
1176
1177	if (vrf_rt6_create(dev) != 0)
1178		goto out_rth;
1179
1180	dev->flags = IFF_MASTER | IFF_NOARP;
1181
1182	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1183	dev->operstate = IF_OPER_UP;
1184	netdev_lockdep_set_classes(dev);
1185	return 0;
1186
1187out_rth:
1188	vrf_rtable_release(dev, vrf);
 
 
 
1189out_nomem:
1190	return -ENOMEM;
1191}
1192
1193static const struct net_device_ops vrf_netdev_ops = {
1194	.ndo_init		= vrf_dev_init,
1195	.ndo_uninit		= vrf_dev_uninit,
1196	.ndo_start_xmit		= vrf_xmit,
1197	.ndo_set_mac_address	= eth_mac_addr,
1198	.ndo_get_stats64	= vrf_get_stats64,
1199	.ndo_add_slave		= vrf_add_slave,
1200	.ndo_del_slave		= vrf_del_slave,
1201};
1202
1203static u32 vrf_fib_table(const struct net_device *dev)
1204{
1205	struct net_vrf *vrf = netdev_priv(dev);
1206
1207	return vrf->tb_id;
1208}
1209
1210static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211{
1212	kfree_skb(skb);
1213	return 0;
1214}
1215
1216static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217				      struct sk_buff *skb,
1218				      struct net_device *dev)
1219{
1220	struct net *net = dev_net(dev);
1221
1222	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1224
1225	return skb;
1226}
1227
1228static int vrf_prepare_mac_header(struct sk_buff *skb,
1229				  struct net_device *vrf_dev, u16 proto)
1230{
1231	struct ethhdr *eth;
1232	int err;
1233
1234	/* in general, we do not know if there is enough space in the head of
1235	 * the packet for hosting the mac header.
1236	 */
1237	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238	if (unlikely(err))
1239		/* no space in the skb head */
1240		return -ENOBUFS;
1241
1242	__skb_push(skb, ETH_HLEN);
1243	eth = (struct ethhdr *)skb->data;
1244
1245	skb_reset_mac_header(skb);
1246	skb_reset_mac_len(skb);
1247
1248	/* we set the ethernet destination and the source addresses to the
1249	 * address of the VRF device.
1250	 */
1251	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1252	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1253	eth->h_proto = htons(proto);
1254
1255	/* the destination address of the Ethernet frame corresponds to the
1256	 * address set on the VRF interface; therefore, the packet is intended
1257	 * to be processed locally.
1258	 */
1259	skb->protocol = eth->h_proto;
1260	skb->pkt_type = PACKET_HOST;
1261
1262	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1263
1264	skb_pull_inline(skb, ETH_HLEN);
1265
1266	return 0;
1267}
1268
1269/* prepare and add the mac header to the packet if it was not set previously.
1270 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1271 * If the mac header was already set, the original mac header is left
1272 * untouched and the function returns immediately.
1273 */
1274static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1275				       struct net_device *vrf_dev,
1276				       u16 proto, struct net_device *orig_dev)
1277{
1278	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1279		return 0;
1280
1281	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1282}
1283
1284#if IS_ENABLED(CONFIG_IPV6)
1285/* neighbor handling is done with actual device; do not want
1286 * to flip skb->dev for those ndisc packets. This really fails
1287 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1288 * a start.
1289 */
1290static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1291{
1292	const struct ipv6hdr *iph = ipv6_hdr(skb);
1293	bool rc = false;
1294
1295	if (iph->nexthdr == NEXTHDR_ICMP) {
1296		const struct icmp6hdr *icmph;
1297		struct icmp6hdr _icmph;
1298
1299		icmph = skb_header_pointer(skb, sizeof(*iph),
1300					   sizeof(_icmph), &_icmph);
1301		if (!icmph)
1302			goto out;
1303
1304		switch (icmph->icmp6_type) {
1305		case NDISC_ROUTER_SOLICITATION:
1306		case NDISC_ROUTER_ADVERTISEMENT:
1307		case NDISC_NEIGHBOUR_SOLICITATION:
1308		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1309		case NDISC_REDIRECT:
1310			rc = true;
1311			break;
1312		}
1313	}
1314
1315out:
1316	return rc;
1317}
1318
1319static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1320					     const struct net_device *dev,
1321					     struct flowi6 *fl6,
1322					     int ifindex,
1323					     const struct sk_buff *skb,
1324					     int flags)
1325{
1326	struct net_vrf *vrf = netdev_priv(dev);
1327
1328	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1329}
1330
1331static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1332			      int ifindex)
1333{
1334	const struct ipv6hdr *iph = ipv6_hdr(skb);
1335	struct flowi6 fl6 = {
1336		.flowi6_iif     = ifindex,
1337		.flowi6_mark    = skb->mark,
1338		.flowi6_proto   = iph->nexthdr,
1339		.daddr          = iph->daddr,
1340		.saddr          = iph->saddr,
1341		.flowlabel      = ip6_flowinfo(iph),
1342	};
1343	struct net *net = dev_net(vrf_dev);
1344	struct rt6_info *rt6;
1345
1346	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1347				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1348	if (unlikely(!rt6))
1349		return;
1350
1351	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1352		return;
1353
1354	skb_dst_set(skb, &rt6->dst);
1355}
1356
1357static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1358				   struct sk_buff *skb)
1359{
1360	int orig_iif = skb->skb_iif;
1361	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1362	bool is_ndisc = ipv6_ndisc_frame(skb);
1363
 
 
1364	/* loopback, multicast & non-ND link-local traffic; do not push through
1365	 * packet taps again. Reset pkt_type for upper layers to process skb.
1366	 * For non-loopback strict packets, determine the dst using the original
1367	 * ifindex.
1368	 */
1369	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1370		skb->dev = vrf_dev;
1371		skb->skb_iif = vrf_dev->ifindex;
1372		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1373
1374		if (skb->pkt_type == PACKET_LOOPBACK)
1375			skb->pkt_type = PACKET_HOST;
1376		else
1377			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1378
1379		goto out;
1380	}
1381
1382	/* if packet is NDISC then keep the ingress interface */
1383	if (!is_ndisc) {
1384		struct net_device *orig_dev = skb->dev;
1385
1386		vrf_rx_stats(vrf_dev, skb->len);
1387		skb->dev = vrf_dev;
1388		skb->skb_iif = vrf_dev->ifindex;
1389
1390		if (!list_empty(&vrf_dev->ptype_all)) {
1391			int err;
1392
1393			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1394							  ETH_P_IPV6,
1395							  orig_dev);
1396			if (likely(!err)) {
1397				skb_push(skb, skb->mac_len);
1398				dev_queue_xmit_nit(skb, vrf_dev);
1399				skb_pull(skb, skb->mac_len);
1400			}
1401		}
1402
1403		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1404	}
1405
1406	if (need_strict)
1407		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1408
1409	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1410out:
1411	return skb;
1412}
1413
1414#else
1415static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1416				   struct sk_buff *skb)
1417{
1418	return skb;
1419}
1420#endif
1421
1422static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1423				  struct sk_buff *skb)
1424{
1425	struct net_device *orig_dev = skb->dev;
1426
1427	skb->dev = vrf_dev;
1428	skb->skb_iif = vrf_dev->ifindex;
1429	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1430
 
 
1431	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1432		goto out;
1433
1434	/* loopback traffic; do not push through packet taps again.
1435	 * Reset pkt_type for upper layers to process skb
1436	 */
1437	if (skb->pkt_type == PACKET_LOOPBACK) {
1438		skb->pkt_type = PACKET_HOST;
1439		goto out;
1440	}
1441
1442	vrf_rx_stats(vrf_dev, skb->len);
1443
1444	if (!list_empty(&vrf_dev->ptype_all)) {
1445		int err;
1446
1447		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1448						  orig_dev);
1449		if (likely(!err)) {
1450			skb_push(skb, skb->mac_len);
1451			dev_queue_xmit_nit(skb, vrf_dev);
1452			skb_pull(skb, skb->mac_len);
1453		}
1454	}
1455
1456	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1457out:
1458	return skb;
1459}
1460
1461/* called with rcu lock held */
1462static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463				  struct sk_buff *skb,
1464				  u16 proto)
1465{
1466	switch (proto) {
1467	case AF_INET:
1468		return vrf_ip_rcv(vrf_dev, skb);
1469	case AF_INET6:
1470		return vrf_ip6_rcv(vrf_dev, skb);
1471	}
1472
1473	return skb;
1474}
1475
1476#if IS_ENABLED(CONFIG_IPV6)
1477/* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1481 */
1482static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1483					      struct flowi6 *fl6)
1484{
1485	struct net *net = dev_net(dev);
1486	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487	struct dst_entry *dst = NULL;
1488	struct rt6_info *rt;
1489
1490	/* VRF device does not have a link-local address and
1491	 * sending packets to link-local or mcast addresses over
1492	 * a VRF device does not make sense
1493	 */
1494	if (fl6->flowi6_oif == dev->ifindex) {
1495		dst = &net->ipv6.ip6_null_entry->dst;
1496		return dst;
1497	}
1498
1499	if (!ipv6_addr_any(&fl6->saddr))
1500		flags |= RT6_LOOKUP_F_HAS_SADDR;
1501
1502	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1503	if (rt)
1504		dst = &rt->dst;
1505
1506	return dst;
1507}
1508#endif
1509
1510static const struct l3mdev_ops vrf_l3mdev_ops = {
1511	.l3mdev_fib_table	= vrf_fib_table,
1512	.l3mdev_l3_rcv		= vrf_l3_rcv,
1513	.l3mdev_l3_out		= vrf_l3_out,
1514#if IS_ENABLED(CONFIG_IPV6)
1515	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1516#endif
1517};
1518
1519static void vrf_get_drvinfo(struct net_device *dev,
1520			    struct ethtool_drvinfo *info)
1521{
1522	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1523	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1524}
1525
1526static const struct ethtool_ops vrf_ethtool_ops = {
1527	.get_drvinfo	= vrf_get_drvinfo,
1528};
1529
1530static inline size_t vrf_fib_rule_nl_size(void)
1531{
1532	size_t sz;
1533
1534	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1536	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1537	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1538
1539	return sz;
1540}
1541
1542static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1543{
1544	struct fib_rule_hdr *frh;
1545	struct nlmsghdr *nlh;
1546	struct sk_buff *skb;
1547	int err;
1548
1549	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550	    !ipv6_mod_enabled())
1551		return 0;
1552
1553	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1554	if (!skb)
1555		return -ENOMEM;
1556
1557	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1558	if (!nlh)
1559		goto nla_put_failure;
1560
1561	/* rule only needs to appear once */
1562	nlh->nlmsg_flags |= NLM_F_EXCL;
1563
1564	frh = nlmsg_data(nlh);
1565	memset(frh, 0, sizeof(*frh));
1566	frh->family = family;
1567	frh->action = FR_ACT_TO_TBL;
1568
1569	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570		goto nla_put_failure;
1571
1572	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573		goto nla_put_failure;
1574
1575	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576		goto nla_put_failure;
1577
1578	nlmsg_end(skb, nlh);
1579
1580	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581	skb->sk = dev_net(dev)->rtnl;
1582	if (add_it) {
1583		err = fib_nl_newrule(skb, nlh, NULL);
1584		if (err == -EEXIST)
1585			err = 0;
1586	} else {
1587		err = fib_nl_delrule(skb, nlh, NULL);
1588		if (err == -ENOENT)
1589			err = 0;
1590	}
1591	nlmsg_free(skb);
1592
1593	return err;
1594
1595nla_put_failure:
1596	nlmsg_free(skb);
1597
1598	return -EMSGSIZE;
1599}
1600
1601static int vrf_add_fib_rules(const struct net_device *dev)
1602{
1603	int err;
1604
1605	err = vrf_fib_rule(dev, AF_INET,  true);
1606	if (err < 0)
1607		goto out_err;
1608
1609	err = vrf_fib_rule(dev, AF_INET6, true);
1610	if (err < 0)
1611		goto ipv6_err;
1612
1613#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1615	if (err < 0)
1616		goto ipmr_err;
1617#endif
1618
1619#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1621	if (err < 0)
1622		goto ip6mr_err;
1623#endif
1624
1625	return 0;
1626
1627#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1628ip6mr_err:
1629	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1630#endif
1631
1632#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1633ipmr_err:
1634	vrf_fib_rule(dev, AF_INET6,  false);
1635#endif
1636
1637ipv6_err:
1638	vrf_fib_rule(dev, AF_INET,  false);
1639
1640out_err:
1641	netdev_err(dev, "Failed to add FIB rules.\n");
1642	return err;
1643}
1644
1645static void vrf_setup(struct net_device *dev)
1646{
1647	ether_setup(dev);
1648
1649	/* Initialize the device structure. */
1650	dev->netdev_ops = &vrf_netdev_ops;
1651	dev->l3mdev_ops = &vrf_l3mdev_ops;
1652	dev->ethtool_ops = &vrf_ethtool_ops;
1653	dev->needs_free_netdev = true;
1654
1655	/* Fill in device structure with ethernet-generic values. */
1656	eth_hw_addr_random(dev);
1657
1658	/* don't acquire vrf device's netif_tx_lock when transmitting */
1659	dev->features |= NETIF_F_LLTX;
1660
1661	/* don't allow vrf devices to change network namespaces. */
1662	dev->features |= NETIF_F_NETNS_LOCAL;
1663
1664	/* does not make sense for a VLAN to be added to a vrf device */
1665	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1666
1667	/* enable offload features */
1668	dev->features   |= NETIF_F_GSO_SOFTWARE;
1669	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1671
1672	dev->hw_features = dev->features;
1673	dev->hw_enc_features = dev->features;
1674
1675	/* default to no qdisc; user can add if desired */
1676	dev->priv_flags |= IFF_NO_QUEUE;
1677	dev->priv_flags |= IFF_NO_RX_HANDLER;
1678	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1679
1680	/* VRF devices do not care about MTU, but if the MTU is set
1681	 * too low then the ipv4 and ipv6 protocols are disabled
1682	 * which breaks networking.
1683	 */
1684	dev->min_mtu = IPV6_MIN_MTU;
1685	dev->max_mtu = IP6_MAX_MTU;
1686	dev->mtu = dev->max_mtu;
1687
1688	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1689}
1690
1691static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1692			struct netlink_ext_ack *extack)
1693{
1694	if (tb[IFLA_ADDRESS]) {
1695		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1696			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697			return -EINVAL;
1698		}
1699		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1700			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701			return -EADDRNOTAVAIL;
1702		}
1703	}
1704	return 0;
1705}
1706
1707static void vrf_dellink(struct net_device *dev, struct list_head *head)
1708{
1709	struct net_device *port_dev;
1710	struct list_head *iter;
1711
1712	netdev_for_each_lower_dev(dev, port_dev, iter)
1713		vrf_del_slave(dev, port_dev);
1714
1715	vrf_map_unregister_dev(dev);
1716
1717	unregister_netdevice_queue(dev, head);
1718}
1719
1720static int vrf_newlink(struct net *src_net, struct net_device *dev,
1721		       struct nlattr *tb[], struct nlattr *data[],
1722		       struct netlink_ext_ack *extack)
1723{
1724	struct net_vrf *vrf = netdev_priv(dev);
1725	struct netns_vrf *nn_vrf;
1726	bool *add_fib_rules;
1727	struct net *net;
1728	int err;
1729
1730	if (!data || !data[IFLA_VRF_TABLE]) {
1731		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1732		return -EINVAL;
1733	}
1734
1735	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1736	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1737		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1738				    "Invalid VRF table id");
1739		return -EINVAL;
1740	}
1741
1742	dev->priv_flags |= IFF_L3MDEV_MASTER;
1743
1744	err = register_netdevice(dev);
1745	if (err)
1746		goto out;
1747
1748	/* mapping between table_id and vrf;
1749	 * note: such binding could not be done in the dev init function
1750	 * because dev->ifindex id is not available yet.
1751	 */
1752	vrf->ifindex = dev->ifindex;
1753
1754	err = vrf_map_register_dev(dev, extack);
1755	if (err) {
1756		unregister_netdevice(dev);
1757		goto out;
1758	}
1759
1760	net = dev_net(dev);
1761	nn_vrf = net_generic(net, vrf_net_id);
1762
1763	add_fib_rules = &nn_vrf->add_fib_rules;
1764	if (*add_fib_rules) {
1765		err = vrf_add_fib_rules(dev);
1766		if (err) {
1767			vrf_map_unregister_dev(dev);
1768			unregister_netdevice(dev);
1769			goto out;
1770		}
1771		*add_fib_rules = false;
1772	}
1773
1774out:
1775	return err;
1776}
1777
1778static size_t vrf_nl_getsize(const struct net_device *dev)
1779{
1780	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1781}
1782
1783static int vrf_fillinfo(struct sk_buff *skb,
1784			const struct net_device *dev)
1785{
1786	struct net_vrf *vrf = netdev_priv(dev);
1787
1788	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1789}
1790
1791static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1792				 const struct net_device *slave_dev)
1793{
1794	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1795}
1796
1797static int vrf_fill_slave_info(struct sk_buff *skb,
1798			       const struct net_device *vrf_dev,
1799			       const struct net_device *slave_dev)
1800{
1801	struct net_vrf *vrf = netdev_priv(vrf_dev);
1802
1803	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1804		return -EMSGSIZE;
1805
1806	return 0;
1807}
1808
1809static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1810	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1811};
1812
1813static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1814	.kind		= DRV_NAME,
1815	.priv_size	= sizeof(struct net_vrf),
1816
1817	.get_size	= vrf_nl_getsize,
1818	.policy		= vrf_nl_policy,
1819	.validate	= vrf_validate,
1820	.fill_info	= vrf_fillinfo,
1821
1822	.get_slave_size  = vrf_get_slave_size,
1823	.fill_slave_info = vrf_fill_slave_info,
1824
1825	.newlink	= vrf_newlink,
1826	.dellink	= vrf_dellink,
1827	.setup		= vrf_setup,
1828	.maxtype	= IFLA_VRF_MAX,
1829};
1830
1831static int vrf_device_event(struct notifier_block *unused,
1832			    unsigned long event, void *ptr)
1833{
1834	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1835
1836	/* only care about unregister events to drop slave references */
1837	if (event == NETDEV_UNREGISTER) {
1838		struct net_device *vrf_dev;
1839
1840		if (!netif_is_l3_slave(dev))
1841			goto out;
1842
1843		vrf_dev = netdev_master_upper_dev_get(dev);
1844		vrf_del_slave(vrf_dev, dev);
1845	}
1846out:
1847	return NOTIFY_DONE;
1848}
1849
1850static struct notifier_block vrf_notifier_block __read_mostly = {
1851	.notifier_call = vrf_device_event,
1852};
1853
1854static int vrf_map_init(struct vrf_map *vmap)
1855{
1856	spin_lock_init(&vmap->vmap_lock);
1857	hash_init(vmap->ht);
1858
1859	vmap->strict_mode = false;
1860
1861	return 0;
1862}
1863
1864#ifdef CONFIG_SYSCTL
1865static bool vrf_strict_mode(struct vrf_map *vmap)
1866{
1867	bool strict_mode;
1868
1869	vrf_map_lock(vmap);
1870	strict_mode = vmap->strict_mode;
1871	vrf_map_unlock(vmap);
1872
1873	return strict_mode;
1874}
1875
1876static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1877{
1878	bool *cur_mode;
1879	int res = 0;
1880
1881	vrf_map_lock(vmap);
1882
1883	cur_mode = &vmap->strict_mode;
1884	if (*cur_mode == new_mode)
1885		goto unlock;
1886
1887	if (*cur_mode) {
1888		/* disable strict mode */
1889		*cur_mode = false;
1890	} else {
1891		if (vmap->shared_tables) {
1892			/* we cannot allow strict_mode because there are some
1893			 * vrfs that share one or more tables.
1894			 */
1895			res = -EBUSY;
1896			goto unlock;
1897		}
1898
1899		/* no tables are shared among vrfs, so we can go back
1900		 * to 1:1 association between a vrf with its table.
1901		 */
1902		*cur_mode = true;
1903	}
1904
1905unlock:
1906	vrf_map_unlock(vmap);
1907
1908	return res;
1909}
1910
1911static int vrf_shared_table_handler(struct ctl_table *table, int write,
1912				    void *buffer, size_t *lenp, loff_t *ppos)
1913{
1914	struct net *net = (struct net *)table->extra1;
1915	struct vrf_map *vmap = netns_vrf_map(net);
1916	int proc_strict_mode = 0;
1917	struct ctl_table tmp = {
1918		.procname	= table->procname,
1919		.data		= &proc_strict_mode,
1920		.maxlen		= sizeof(int),
1921		.mode		= table->mode,
1922		.extra1		= SYSCTL_ZERO,
1923		.extra2		= SYSCTL_ONE,
1924	};
1925	int ret;
1926
1927	if (!write)
1928		proc_strict_mode = vrf_strict_mode(vmap);
1929
1930	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1931
1932	if (write && ret == 0)
1933		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1934
1935	return ret;
1936}
1937
1938static const struct ctl_table vrf_table[] = {
1939	{
1940		.procname	= "strict_mode",
1941		.data		= NULL,
1942		.maxlen		= sizeof(int),
1943		.mode		= 0644,
1944		.proc_handler	= vrf_shared_table_handler,
1945		/* set by the vrf_netns_init */
1946		.extra1		= NULL,
1947	},
 
1948};
1949
1950static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1951{
1952	struct ctl_table *table;
1953
1954	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1955	if (!table)
1956		return -ENOMEM;
1957
1958	/* init the extra1 parameter with the reference to current netns */
1959	table[0].extra1 = net;
1960
1961	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1962						 ARRAY_SIZE(vrf_table));
1963	if (!nn_vrf->ctl_hdr) {
1964		kfree(table);
1965		return -ENOMEM;
1966	}
1967
1968	return 0;
1969}
1970
1971static void vrf_netns_exit_sysctl(struct net *net)
1972{
1973	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974	struct ctl_table *table;
1975
1976	table = nn_vrf->ctl_hdr->ctl_table_arg;
1977	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1978	kfree(table);
1979}
1980#else
1981static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1982{
1983	return 0;
1984}
1985
1986static void vrf_netns_exit_sysctl(struct net *net)
1987{
1988}
1989#endif
1990
1991/* Initialize per network namespace state */
1992static int __net_init vrf_netns_init(struct net *net)
1993{
1994	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1995
1996	nn_vrf->add_fib_rules = true;
1997	vrf_map_init(&nn_vrf->vmap);
1998
1999	return vrf_netns_init_sysctl(net, nn_vrf);
2000}
2001
2002static void __net_exit vrf_netns_exit(struct net *net)
2003{
2004	vrf_netns_exit_sysctl(net);
2005}
2006
2007static struct pernet_operations vrf_net_ops __net_initdata = {
2008	.init = vrf_netns_init,
2009	.exit = vrf_netns_exit,
2010	.id   = &vrf_net_id,
2011	.size = sizeof(struct netns_vrf),
2012};
2013
2014static int __init vrf_init_module(void)
2015{
2016	int rc;
2017
2018	register_netdevice_notifier(&vrf_notifier_block);
2019
2020	rc = register_pernet_subsys(&vrf_net_ops);
2021	if (rc < 0)
2022		goto error;
2023
2024	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2025					  vrf_ifindex_lookup_by_table_id);
2026	if (rc < 0)
2027		goto unreg_pernet;
2028
2029	rc = rtnl_link_register(&vrf_link_ops);
2030	if (rc < 0)
2031		goto table_lookup_unreg;
2032
2033	return 0;
2034
2035table_lookup_unreg:
2036	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2037				       vrf_ifindex_lookup_by_table_id);
2038
2039unreg_pernet:
2040	unregister_pernet_subsys(&vrf_net_ops);
2041
2042error:
2043	unregister_netdevice_notifier(&vrf_notifier_block);
2044	return rc;
2045}
2046
2047module_init(vrf_init_module);
2048MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2049MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2050MODULE_LICENSE("GPL");
2051MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2052MODULE_VERSION(DRV_VERSION);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
 
  37#include <net/netns/generic.h>
 
  38
  39#define DRV_NAME	"vrf"
  40#define DRV_VERSION	"1.1"
  41
  42#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  43
  44#define HT_MAP_BITS	4
  45#define HASH_INITVAL	((u32)0xcafef00d)
  46
  47struct  vrf_map {
  48	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  49	spinlock_t vmap_lock;
  50
  51	/* shared_tables:
  52	 * count how many distinct tables do not comply with the strict mode
  53	 * requirement.
  54	 * shared_tables value must be 0 in order to enable the strict mode.
  55	 *
  56	 * example of the evolution of shared_tables:
  57	 *                                                        | time
  58	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  59	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  60	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  61	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  62	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  63	 *
  64	 * shared_tables is a "step function" (or "staircase function")
  65	 * and it is increased by one when the second vrf is associated to a
  66	 * table.
  67	 *
  68	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  69	 *
  70	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  71	 * value of shared_tables is still 1.
  72	 * This means that no matter how many new vrfs will register on the
  73	 * table 100, the shared_tables will not increase (considering only
  74	 * table 100).
  75	 *
  76	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  77	 *
  78	 * Looking at the value of shared_tables we can immediately know if
  79	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  80	 * can be enforced iff shared_tables = 0.
  81	 *
  82	 * Conversely, shared_tables is decreased when a vrf is de-associated
  83	 * from a table with exactly two associated vrfs.
  84	 */
  85	u32 shared_tables;
  86
  87	bool strict_mode;
  88};
  89
  90struct vrf_map_elem {
  91	struct hlist_node hnode;
  92	struct list_head vrf_list;  /* VRFs registered to this table */
  93
  94	u32 table_id;
  95	int users;
  96	int ifindex;
  97};
  98
  99static unsigned int vrf_net_id;
 100
 101/* per netns vrf data */
 102struct netns_vrf {
 103	/* protected by rtnl lock */
 104	bool add_fib_rules;
 105
 106	struct vrf_map vmap;
 107	struct ctl_table_header	*ctl_hdr;
 108};
 109
 110struct net_vrf {
 111	struct rtable __rcu	*rth;
 112	struct rt6_info	__rcu	*rt6;
 113#if IS_ENABLED(CONFIG_IPV6)
 114	struct fib6_table	*fib6_table;
 115#endif
 116	u32                     tb_id;
 117
 118	struct list_head	me_list;   /* entry in vrf_map_elem */
 119	int			ifindex;
 120};
 121
 122struct pcpu_dstats {
 123	u64			tx_pkts;
 124	u64			tx_bytes;
 125	u64			tx_drps;
 126	u64			rx_pkts;
 127	u64			rx_bytes;
 128	u64			rx_drps;
 129	struct u64_stats_sync	syncp;
 130};
 131
 132static void vrf_rx_stats(struct net_device *dev, int len)
 133{
 134	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 135
 136	u64_stats_update_begin(&dstats->syncp);
 137	dstats->rx_pkts++;
 138	dstats->rx_bytes += len;
 139	u64_stats_update_end(&dstats->syncp);
 140}
 141
 142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 143{
 144	vrf_dev->stats.tx_errors++;
 145	kfree_skb(skb);
 146}
 147
 148static void vrf_get_stats64(struct net_device *dev,
 149			    struct rtnl_link_stats64 *stats)
 150{
 151	int i;
 152
 153	for_each_possible_cpu(i) {
 154		const struct pcpu_dstats *dstats;
 155		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 156		unsigned int start;
 157
 158		dstats = per_cpu_ptr(dev->dstats, i);
 159		do {
 160			start = u64_stats_fetch_begin_irq(&dstats->syncp);
 161			tbytes = dstats->tx_bytes;
 162			tpkts = dstats->tx_pkts;
 163			tdrops = dstats->tx_drps;
 164			rbytes = dstats->rx_bytes;
 165			rpkts = dstats->rx_pkts;
 166		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 167		stats->tx_bytes += tbytes;
 168		stats->tx_packets += tpkts;
 169		stats->tx_dropped += tdrops;
 170		stats->rx_bytes += rbytes;
 171		stats->rx_packets += rpkts;
 172	}
 173}
 174
 175static struct vrf_map *netns_vrf_map(struct net *net)
 176{
 177	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 178
 179	return &nn_vrf->vmap;
 180}
 181
 182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 183{
 184	return netns_vrf_map(dev_net(dev));
 185}
 186
 187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 188{
 189	struct list_head *me_head = &me->vrf_list;
 190	struct net_vrf *vrf;
 191
 192	if (list_empty(me_head))
 193		return -ENODEV;
 194
 195	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 196
 197	return vrf->ifindex;
 198}
 199
 200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 201{
 202	struct vrf_map_elem *me;
 203
 204	me = kmalloc(sizeof(*me), flags);
 205	if (!me)
 206		return NULL;
 207
 208	return me;
 209}
 210
 211static void vrf_map_elem_free(struct vrf_map_elem *me)
 212{
 213	kfree(me);
 214}
 215
 216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 217			      int ifindex, int users)
 218{
 219	me->table_id = table_id;
 220	me->ifindex = ifindex;
 221	me->users = users;
 222	INIT_LIST_HEAD(&me->vrf_list);
 223}
 224
 225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 226						u32 table_id)
 227{
 228	struct vrf_map_elem *me;
 229	u32 key;
 230
 231	key = jhash_1word(table_id, HASH_INITVAL);
 232	hash_for_each_possible(vmap->ht, me, hnode, key) {
 233		if (me->table_id == table_id)
 234			return me;
 235	}
 236
 237	return NULL;
 238}
 239
 240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 241{
 242	u32 table_id = me->table_id;
 243	u32 key;
 244
 245	key = jhash_1word(table_id, HASH_INITVAL);
 246	hash_add(vmap->ht, &me->hnode, key);
 247}
 248
 249static void vrf_map_del_elem(struct vrf_map_elem *me)
 250{
 251	hash_del(&me->hnode);
 252}
 253
 254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 255{
 256	spin_lock(&vmap->vmap_lock);
 257}
 258
 259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 260{
 261	spin_unlock(&vmap->vmap_lock);
 262}
 263
 264/* called with rtnl lock held */
 265static int
 266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 267{
 268	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 269	struct net_vrf *vrf = netdev_priv(dev);
 270	struct vrf_map_elem *new_me, *me;
 271	u32 table_id = vrf->tb_id;
 272	bool free_new_me = false;
 273	int users;
 274	int res;
 275
 276	/* we pre-allocate elements used in the spin-locked section (so that we
 277	 * keep the spinlock as short as possible).
 278	 */
 279	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 280	if (!new_me)
 281		return -ENOMEM;
 282
 283	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 284
 285	vrf_map_lock(vmap);
 286
 287	me = vrf_map_lookup_elem(vmap, table_id);
 288	if (!me) {
 289		me = new_me;
 290		vrf_map_add_elem(vmap, me);
 291		goto link_vrf;
 292	}
 293
 294	/* we already have an entry in the vrf_map, so it means there is (at
 295	 * least) a vrf registered on the specific table.
 296	 */
 297	free_new_me = true;
 298	if (vmap->strict_mode) {
 299		/* vrfs cannot share the same table */
 300		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 301		res = -EBUSY;
 302		goto unlock;
 303	}
 304
 305link_vrf:
 306	users = ++me->users;
 307	if (users == 2)
 308		++vmap->shared_tables;
 309
 310	list_add(&vrf->me_list, &me->vrf_list);
 311
 312	res = 0;
 313
 314unlock:
 315	vrf_map_unlock(vmap);
 316
 317	/* clean-up, if needed */
 318	if (free_new_me)
 319		vrf_map_elem_free(new_me);
 320
 321	return res;
 322}
 323
 324/* called with rtnl lock held */
 325static void vrf_map_unregister_dev(struct net_device *dev)
 326{
 327	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 328	struct net_vrf *vrf = netdev_priv(dev);
 329	u32 table_id = vrf->tb_id;
 330	struct vrf_map_elem *me;
 331	int users;
 332
 333	vrf_map_lock(vmap);
 334
 335	me = vrf_map_lookup_elem(vmap, table_id);
 336	if (!me)
 337		goto unlock;
 338
 339	list_del(&vrf->me_list);
 340
 341	users = --me->users;
 342	if (users == 1) {
 343		--vmap->shared_tables;
 344	} else if (users == 0) {
 345		vrf_map_del_elem(me);
 346
 347		/* no one will refer to this element anymore */
 348		vrf_map_elem_free(me);
 349	}
 350
 351unlock:
 352	vrf_map_unlock(vmap);
 353}
 354
 355/* return the vrf device index associated with the table_id */
 356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 357{
 358	struct vrf_map *vmap = netns_vrf_map(net);
 359	struct vrf_map_elem *me;
 360	int ifindex;
 361
 362	vrf_map_lock(vmap);
 363
 364	if (!vmap->strict_mode) {
 365		ifindex = -EPERM;
 366		goto unlock;
 367	}
 368
 369	me = vrf_map_lookup_elem(vmap, table_id);
 370	if (!me) {
 371		ifindex = -ENODEV;
 372		goto unlock;
 373	}
 374
 375	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 376
 377unlock:
 378	vrf_map_unlock(vmap);
 379
 380	return ifindex;
 381}
 382
 383/* by default VRF devices do not have a qdisc and are expected
 384 * to be created with only a single queue.
 385 */
 386static bool qdisc_tx_is_default(const struct net_device *dev)
 387{
 388	struct netdev_queue *txq;
 389	struct Qdisc *qdisc;
 390
 391	if (dev->num_tx_queues > 1)
 392		return false;
 393
 394	txq = netdev_get_tx_queue(dev, 0);
 395	qdisc = rcu_access_pointer(txq->qdisc);
 396
 397	return !qdisc->enqueue;
 398}
 399
 400/* Local traffic destined to local address. Reinsert the packet to rx
 401 * path, similar to loopback handling.
 402 */
 403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 404			  struct dst_entry *dst)
 405{
 406	int len = skb->len;
 407
 408	skb_orphan(skb);
 409
 410	skb_dst_set(skb, dst);
 411
 412	/* set pkt_type to avoid skb hitting packet taps twice -
 413	 * once on Tx and again in Rx processing
 414	 */
 415	skb->pkt_type = PACKET_LOOPBACK;
 416
 417	skb->protocol = eth_type_trans(skb, dev);
 418
 419	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 420		vrf_rx_stats(dev, len);
 421	else
 422		this_cpu_inc(dev->dstats->rx_drps);
 423
 424	return NETDEV_TX_OK;
 425}
 426
 
 
 
 
 
 
 
 
 
 
 
 
 427#if IS_ENABLED(CONFIG_IPV6)
 428static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 429			     struct sk_buff *skb)
 430{
 431	int err;
 432
 
 
 433	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 434		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 435
 436	if (likely(err == 1))
 437		err = dst_output(net, sk, skb);
 438
 439	return err;
 440}
 441
 442static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 443					   struct net_device *dev)
 444{
 445	const struct ipv6hdr *iph;
 446	struct net *net = dev_net(skb->dev);
 447	struct flowi6 fl6;
 448	int ret = NET_XMIT_DROP;
 449	struct dst_entry *dst;
 450	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 451
 452	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 453		goto err;
 454
 455	iph = ipv6_hdr(skb);
 456
 457	memset(&fl6, 0, sizeof(fl6));
 458	/* needed to match OIF rule */
 459	fl6.flowi6_oif = dev->ifindex;
 460	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 461	fl6.daddr = iph->daddr;
 462	fl6.saddr = iph->saddr;
 463	fl6.flowlabel = ip6_flowinfo(iph);
 464	fl6.flowi6_mark = skb->mark;
 465	fl6.flowi6_proto = iph->nexthdr;
 466	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 467
 468	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 469	if (IS_ERR(dst) || dst == dst_null)
 470		goto err;
 471
 472	skb_dst_drop(skb);
 473
 474	/* if dst.dev is the VRF device again this is locally originated traffic
 475	 * destined to a local address. Short circuit to Rx path.
 476	 */
 477	if (dst->dev == dev)
 478		return vrf_local_xmit(skb, dev, dst);
 479
 480	skb_dst_set(skb, dst);
 481
 482	/* strip the ethernet header added for pass through VRF device */
 483	__skb_pull(skb, skb_network_offset(skb));
 484
 
 485	ret = vrf_ip6_local_out(net, skb->sk, skb);
 486	if (unlikely(net_xmit_eval(ret)))
 487		dev->stats.tx_errors++;
 488	else
 489		ret = NET_XMIT_SUCCESS;
 490
 491	return ret;
 492err:
 493	vrf_tx_error(dev, skb);
 494	return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498					   struct net_device *dev)
 499{
 500	vrf_tx_error(dev, skb);
 501	return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507			    struct sk_buff *skb)
 508{
 509	int err;
 510
 
 
 511	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512		      skb, NULL, skb_dst(skb)->dev, dst_output);
 513	if (likely(err == 1))
 514		err = dst_output(net, sk, skb);
 515
 516	return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520					   struct net_device *vrf_dev)
 521{
 522	struct iphdr *ip4h;
 523	int ret = NET_XMIT_DROP;
 524	struct flowi4 fl4;
 525	struct net *net = dev_net(vrf_dev);
 526	struct rtable *rt;
 527
 528	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529		goto err;
 530
 531	ip4h = ip_hdr(skb);
 532
 533	memset(&fl4, 0, sizeof(fl4));
 534	/* needed to match OIF rule */
 535	fl4.flowi4_oif = vrf_dev->ifindex;
 536	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539	fl4.flowi4_proto = ip4h->protocol;
 540	fl4.daddr = ip4h->daddr;
 541	fl4.saddr = ip4h->saddr;
 542
 543	rt = ip_route_output_flow(net, &fl4, NULL);
 544	if (IS_ERR(rt))
 545		goto err;
 546
 547	skb_dst_drop(skb);
 548
 549	/* if dst.dev is the VRF device again this is locally originated traffic
 550	 * destined to a local address. Short circuit to Rx path.
 551	 */
 552	if (rt->dst.dev == vrf_dev)
 553		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 554
 555	skb_dst_set(skb, &rt->dst);
 556
 557	/* strip the ethernet header added for pass through VRF device */
 558	__skb_pull(skb, skb_network_offset(skb));
 559
 560	if (!ip4h->saddr) {
 561		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 562					       RT_SCOPE_LINK);
 563	}
 564
 
 565	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 566	if (unlikely(net_xmit_eval(ret)))
 567		vrf_dev->stats.tx_errors++;
 568	else
 569		ret = NET_XMIT_SUCCESS;
 570
 571out:
 572	return ret;
 573err:
 574	vrf_tx_error(vrf_dev, skb);
 575	goto out;
 576}
 577
 578static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 579{
 580	switch (skb->protocol) {
 581	case htons(ETH_P_IP):
 582		return vrf_process_v4_outbound(skb, dev);
 583	case htons(ETH_P_IPV6):
 584		return vrf_process_v6_outbound(skb, dev);
 585	default:
 586		vrf_tx_error(dev, skb);
 587		return NET_XMIT_DROP;
 588	}
 589}
 590
 591static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 592{
 593	int len = skb->len;
 594	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 595
 596	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 597		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 598
 599		u64_stats_update_begin(&dstats->syncp);
 600		dstats->tx_pkts++;
 601		dstats->tx_bytes += len;
 602		u64_stats_update_end(&dstats->syncp);
 603	} else {
 604		this_cpu_inc(dev->dstats->tx_drps);
 605	}
 606
 607	return ret;
 608}
 609
 610static void vrf_finish_direct(struct sk_buff *skb)
 611{
 612	struct net_device *vrf_dev = skb->dev;
 613
 614	if (!list_empty(&vrf_dev->ptype_all) &&
 615	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 616		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 617
 618		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 619		eth_zero_addr(eth->h_dest);
 620		eth->h_proto = skb->protocol;
 621
 622		rcu_read_lock_bh();
 623		dev_queue_xmit_nit(skb, vrf_dev);
 624		rcu_read_unlock_bh();
 625
 626		skb_pull(skb, ETH_HLEN);
 627	}
 628
 629	/* reset skb device */
 630	nf_reset_ct(skb);
 631}
 632
 633#if IS_ENABLED(CONFIG_IPV6)
 634/* modelled after ip6_finish_output2 */
 635static int vrf_finish_output6(struct net *net, struct sock *sk,
 636			      struct sk_buff *skb)
 637{
 638	struct dst_entry *dst = skb_dst(skb);
 639	struct net_device *dev = dst->dev;
 640	const struct in6_addr *nexthop;
 641	struct neighbour *neigh;
 642	int ret;
 643
 644	nf_reset_ct(skb);
 645
 646	skb->protocol = htons(ETH_P_IPV6);
 647	skb->dev = dev;
 648
 649	rcu_read_lock_bh();
 650	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 651	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 652	if (unlikely(!neigh))
 653		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 654	if (!IS_ERR(neigh)) {
 655		sock_confirm_neigh(skb, neigh);
 656		ret = neigh_output(neigh, skb, false);
 657		rcu_read_unlock_bh();
 658		return ret;
 659	}
 660	rcu_read_unlock_bh();
 661
 662	IP6_INC_STATS(dev_net(dst->dev),
 663		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 664	kfree_skb(skb);
 665	return -EINVAL;
 666}
 667
 668/* modelled after ip6_output */
 669static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 670{
 671	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 672			    net, sk, skb, NULL, skb_dst(skb)->dev,
 673			    vrf_finish_output6,
 674			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 675}
 676
 677/* set dst on skb to send packet to us via dev_xmit path. Allows
 678 * packet to go through device based features such as qdisc, netfilter
 679 * hooks and packet sockets with skb->dev set to vrf device.
 680 */
 681static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 682					    struct sk_buff *skb)
 683{
 684	struct net_vrf *vrf = netdev_priv(vrf_dev);
 685	struct dst_entry *dst = NULL;
 686	struct rt6_info *rt6;
 687
 688	rcu_read_lock();
 689
 690	rt6 = rcu_dereference(vrf->rt6);
 691	if (likely(rt6)) {
 692		dst = &rt6->dst;
 693		dst_hold(dst);
 694	}
 695
 696	rcu_read_unlock();
 697
 698	if (unlikely(!dst)) {
 699		vrf_tx_error(vrf_dev, skb);
 700		return NULL;
 701	}
 702
 703	skb_dst_drop(skb);
 704	skb_dst_set(skb, dst);
 705
 706	return skb;
 707}
 708
 709static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 710				     struct sk_buff *skb)
 711{
 712	vrf_finish_direct(skb);
 713
 714	return vrf_ip6_local_out(net, sk, skb);
 715}
 716
 717static int vrf_output6_direct(struct net *net, struct sock *sk,
 718			      struct sk_buff *skb)
 719{
 720	int err = 1;
 721
 722	skb->protocol = htons(ETH_P_IPV6);
 723
 724	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 725		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 726			      NULL, skb->dev, vrf_output6_direct_finish);
 727
 728	if (likely(err == 1))
 729		vrf_finish_direct(skb);
 730
 731	return err;
 732}
 733
 734static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 735				     struct sk_buff *skb)
 736{
 737	int err;
 738
 739	err = vrf_output6_direct(net, sk, skb);
 740	if (likely(err == 1))
 741		err = vrf_ip6_local_out(net, sk, skb);
 742
 743	return err;
 744}
 745
 746static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 747					  struct sock *sk,
 748					  struct sk_buff *skb)
 749{
 750	struct net *net = dev_net(vrf_dev);
 751	int err;
 752
 753	skb->dev = vrf_dev;
 754
 755	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 756		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 757
 758	if (likely(err == 1))
 759		err = vrf_output6_direct(net, sk, skb);
 760
 761	if (likely(err == 1))
 762		return skb;
 763
 764	return NULL;
 765}
 766
 767static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 768				   struct sock *sk,
 769				   struct sk_buff *skb)
 770{
 771	/* don't divert link scope packets */
 772	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 773		return skb;
 774
 
 
 775	if (qdisc_tx_is_default(vrf_dev) ||
 776	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 777		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 778
 779	return vrf_ip6_out_redirect(vrf_dev, skb);
 780}
 781
 782/* holding rtnl */
 783static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 784{
 785	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 786	struct net *net = dev_net(dev);
 787	struct dst_entry *dst;
 788
 789	RCU_INIT_POINTER(vrf->rt6, NULL);
 790	synchronize_rcu();
 791
 792	/* move dev in dst's to loopback so this VRF device can be deleted
 793	 * - based on dst_ifdown
 794	 */
 795	if (rt6) {
 796		dst = &rt6->dst;
 797		dev_put(dst->dev);
 
 798		dst->dev = net->loopback_dev;
 799		dev_hold(dst->dev);
 800		dst_release(dst);
 801	}
 802}
 803
 804static int vrf_rt6_create(struct net_device *dev)
 805{
 806	int flags = DST_NOPOLICY | DST_NOXFRM;
 807	struct net_vrf *vrf = netdev_priv(dev);
 808	struct net *net = dev_net(dev);
 809	struct rt6_info *rt6;
 810	int rc = -ENOMEM;
 811
 812	/* IPv6 can be CONFIG enabled and then disabled runtime */
 813	if (!ipv6_mod_enabled())
 814		return 0;
 815
 816	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 817	if (!vrf->fib6_table)
 818		goto out;
 819
 820	/* create a dst for routing packets out a VRF device */
 821	rt6 = ip6_dst_alloc(net, dev, flags);
 822	if (!rt6)
 823		goto out;
 824
 825	rt6->dst.output	= vrf_output6;
 826
 827	rcu_assign_pointer(vrf->rt6, rt6);
 828
 829	rc = 0;
 830out:
 831	return rc;
 832}
 833#else
 834static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 835				   struct sock *sk,
 836				   struct sk_buff *skb)
 837{
 838	return skb;
 839}
 840
 841static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 842{
 843}
 844
 845static int vrf_rt6_create(struct net_device *dev)
 846{
 847	return 0;
 848}
 849#endif
 850
 851/* modelled after ip_finish_output2 */
 852static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 853{
 854	struct dst_entry *dst = skb_dst(skb);
 855	struct rtable *rt = (struct rtable *)dst;
 856	struct net_device *dev = dst->dev;
 857	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 858	struct neighbour *neigh;
 859	bool is_v6gw = false;
 860	int ret = -EINVAL;
 861
 862	nf_reset_ct(skb);
 863
 864	/* Be paranoid, rather than too clever. */
 865	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 866		struct sk_buff *skb2;
 867
 868		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 869		if (!skb2) {
 870			ret = -ENOMEM;
 871			goto err;
 872		}
 873		if (skb->sk)
 874			skb_set_owner_w(skb2, skb->sk);
 875
 876		consume_skb(skb);
 877		skb = skb2;
 878	}
 879
 880	rcu_read_lock_bh();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883	if (!IS_ERR(neigh)) {
 
 
 884		sock_confirm_neigh(skb, neigh);
 885		/* if crossing protocols, can not use the cached header */
 886		ret = neigh_output(neigh, skb, is_v6gw);
 887		rcu_read_unlock_bh();
 888		return ret;
 889	}
 890
 891	rcu_read_unlock_bh();
 892err:
 893	vrf_tx_error(skb->dev, skb);
 894	return ret;
 895}
 896
 897static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 898{
 899	struct net_device *dev = skb_dst(skb)->dev;
 900
 901	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 902
 903	skb->dev = dev;
 904	skb->protocol = htons(ETH_P_IP);
 905
 906	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 907			    net, sk, skb, NULL, dev,
 908			    vrf_finish_output,
 909			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 910}
 911
 912/* set dst on skb to send packet to us via dev_xmit path. Allows
 913 * packet to go through device based features such as qdisc, netfilter
 914 * hooks and packet sockets with skb->dev set to vrf device.
 915 */
 916static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 917					   struct sk_buff *skb)
 918{
 919	struct net_vrf *vrf = netdev_priv(vrf_dev);
 920	struct dst_entry *dst = NULL;
 921	struct rtable *rth;
 922
 923	rcu_read_lock();
 924
 925	rth = rcu_dereference(vrf->rth);
 926	if (likely(rth)) {
 927		dst = &rth->dst;
 928		dst_hold(dst);
 929	}
 930
 931	rcu_read_unlock();
 932
 933	if (unlikely(!dst)) {
 934		vrf_tx_error(vrf_dev, skb);
 935		return NULL;
 936	}
 937
 938	skb_dst_drop(skb);
 939	skb_dst_set(skb, dst);
 940
 941	return skb;
 942}
 943
 944static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 945				    struct sk_buff *skb)
 946{
 947	vrf_finish_direct(skb);
 948
 949	return vrf_ip_local_out(net, sk, skb);
 950}
 951
 952static int vrf_output_direct(struct net *net, struct sock *sk,
 953			     struct sk_buff *skb)
 954{
 955	int err = 1;
 956
 957	skb->protocol = htons(ETH_P_IP);
 958
 959	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 960		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 961			      NULL, skb->dev, vrf_output_direct_finish);
 962
 963	if (likely(err == 1))
 964		vrf_finish_direct(skb);
 965
 966	return err;
 967}
 968
 969static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 970				    struct sk_buff *skb)
 971{
 972	int err;
 973
 974	err = vrf_output_direct(net, sk, skb);
 975	if (likely(err == 1))
 976		err = vrf_ip_local_out(net, sk, skb);
 977
 978	return err;
 979}
 980
 981static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 982					 struct sock *sk,
 983					 struct sk_buff *skb)
 984{
 985	struct net *net = dev_net(vrf_dev);
 986	int err;
 987
 988	skb->dev = vrf_dev;
 989
 990	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 991		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 992
 993	if (likely(err == 1))
 994		err = vrf_output_direct(net, sk, skb);
 995
 996	if (likely(err == 1))
 997		return skb;
 998
 999	return NULL;
1000}
1001
1002static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1003				  struct sock *sk,
1004				  struct sk_buff *skb)
1005{
1006	/* don't divert multicast or local broadcast */
1007	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1008	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1009		return skb;
1010
 
 
1011	if (qdisc_tx_is_default(vrf_dev) ||
1012	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1013		return vrf_ip_out_direct(vrf_dev, sk, skb);
1014
1015	return vrf_ip_out_redirect(vrf_dev, skb);
1016}
1017
1018/* called with rcu lock held */
1019static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1020				  struct sock *sk,
1021				  struct sk_buff *skb,
1022				  u16 proto)
1023{
1024	switch (proto) {
1025	case AF_INET:
1026		return vrf_ip_out(vrf_dev, sk, skb);
1027	case AF_INET6:
1028		return vrf_ip6_out(vrf_dev, sk, skb);
1029	}
1030
1031	return skb;
1032}
1033
1034/* holding rtnl */
1035static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1036{
1037	struct rtable *rth = rtnl_dereference(vrf->rth);
1038	struct net *net = dev_net(dev);
1039	struct dst_entry *dst;
1040
1041	RCU_INIT_POINTER(vrf->rth, NULL);
1042	synchronize_rcu();
1043
1044	/* move dev in dst's to loopback so this VRF device can be deleted
1045	 * - based on dst_ifdown
1046	 */
1047	if (rth) {
1048		dst = &rth->dst;
1049		dev_put(dst->dev);
 
1050		dst->dev = net->loopback_dev;
1051		dev_hold(dst->dev);
1052		dst_release(dst);
1053	}
1054}
1055
1056static int vrf_rtable_create(struct net_device *dev)
1057{
1058	struct net_vrf *vrf = netdev_priv(dev);
1059	struct rtable *rth;
1060
1061	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1062		return -ENOMEM;
1063
1064	/* create a dst for routing packets out through a VRF device */
1065	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1066	if (!rth)
1067		return -ENOMEM;
1068
1069	rth->dst.output	= vrf_output;
1070
1071	rcu_assign_pointer(vrf->rth, rth);
1072
1073	return 0;
1074}
1075
1076/**************************** device handling ********************/
1077
1078/* cycle interface to flush neighbor cache and move routes across tables */
1079static void cycle_netdev(struct net_device *dev,
1080			 struct netlink_ext_ack *extack)
1081{
1082	unsigned int flags = dev->flags;
1083	int ret;
1084
1085	if (!netif_running(dev))
1086		return;
1087
1088	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1089	if (ret >= 0)
1090		ret = dev_change_flags(dev, flags, extack);
1091
1092	if (ret < 0) {
1093		netdev_err(dev,
1094			   "Failed to cycle device %s; route tables might be wrong!\n",
1095			   dev->name);
1096	}
1097}
1098
1099static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1100			    struct netlink_ext_ack *extack)
1101{
1102	int ret;
1103
1104	/* do not allow loopback device to be enslaved to a VRF.
1105	 * The vrf device acts as the loopback for the vrf.
1106	 */
1107	if (port_dev == dev_net(dev)->loopback_dev) {
1108		NL_SET_ERR_MSG(extack,
1109			       "Can not enslave loopback device to a VRF");
1110		return -EOPNOTSUPP;
1111	}
1112
1113	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1114	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1115	if (ret < 0)
1116		goto err;
1117
1118	cycle_netdev(port_dev, extack);
1119
1120	return 0;
1121
1122err:
1123	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1124	return ret;
1125}
1126
1127static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1128			 struct netlink_ext_ack *extack)
1129{
1130	if (netif_is_l3_master(port_dev)) {
1131		NL_SET_ERR_MSG(extack,
1132			       "Can not enslave an L3 master device to a VRF");
1133		return -EINVAL;
1134	}
1135
1136	if (netif_is_l3_slave(port_dev))
1137		return -EINVAL;
1138
1139	return do_vrf_add_slave(dev, port_dev, extack);
1140}
1141
1142/* inverse of do_vrf_add_slave */
1143static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1144{
1145	netdev_upper_dev_unlink(port_dev, dev);
1146	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1147
1148	cycle_netdev(port_dev, NULL);
1149
1150	return 0;
1151}
1152
1153static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1154{
1155	return do_vrf_del_slave(dev, port_dev);
1156}
1157
1158static void vrf_dev_uninit(struct net_device *dev)
1159{
1160	struct net_vrf *vrf = netdev_priv(dev);
1161
1162	vrf_rtable_release(dev, vrf);
1163	vrf_rt6_release(dev, vrf);
1164
1165	free_percpu(dev->dstats);
1166	dev->dstats = NULL;
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
1173	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1174	if (!dev->dstats)
1175		goto out_nomem;
1176
1177	/* create the default dst which points back to us */
1178	if (vrf_rtable_create(dev) != 0)
1179		goto out_stats;
1180
1181	if (vrf_rt6_create(dev) != 0)
1182		goto out_rth;
1183
1184	dev->flags = IFF_MASTER | IFF_NOARP;
1185
1186	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1187	dev->operstate = IF_OPER_UP;
1188	netdev_lockdep_set_classes(dev);
1189	return 0;
1190
1191out_rth:
1192	vrf_rtable_release(dev, vrf);
1193out_stats:
1194	free_percpu(dev->dstats);
1195	dev->dstats = NULL;
1196out_nomem:
1197	return -ENOMEM;
1198}
1199
1200static const struct net_device_ops vrf_netdev_ops = {
1201	.ndo_init		= vrf_dev_init,
1202	.ndo_uninit		= vrf_dev_uninit,
1203	.ndo_start_xmit		= vrf_xmit,
1204	.ndo_set_mac_address	= eth_mac_addr,
1205	.ndo_get_stats64	= vrf_get_stats64,
1206	.ndo_add_slave		= vrf_add_slave,
1207	.ndo_del_slave		= vrf_del_slave,
1208};
1209
1210static u32 vrf_fib_table(const struct net_device *dev)
1211{
1212	struct net_vrf *vrf = netdev_priv(dev);
1213
1214	return vrf->tb_id;
1215}
1216
1217static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1218{
1219	kfree_skb(skb);
1220	return 0;
1221}
1222
1223static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1224				      struct sk_buff *skb,
1225				      struct net_device *dev)
1226{
1227	struct net *net = dev_net(dev);
1228
1229	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1230		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1231
1232	return skb;
1233}
1234
1235static int vrf_prepare_mac_header(struct sk_buff *skb,
1236				  struct net_device *vrf_dev, u16 proto)
1237{
1238	struct ethhdr *eth;
1239	int err;
1240
1241	/* in general, we do not know if there is enough space in the head of
1242	 * the packet for hosting the mac header.
1243	 */
1244	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1245	if (unlikely(err))
1246		/* no space in the skb head */
1247		return -ENOBUFS;
1248
1249	__skb_push(skb, ETH_HLEN);
1250	eth = (struct ethhdr *)skb->data;
1251
1252	skb_reset_mac_header(skb);
 
1253
1254	/* we set the ethernet destination and the source addresses to the
1255	 * address of the VRF device.
1256	 */
1257	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1258	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1259	eth->h_proto = htons(proto);
1260
1261	/* the destination address of the Ethernet frame corresponds to the
1262	 * address set on the VRF interface; therefore, the packet is intended
1263	 * to be processed locally.
1264	 */
1265	skb->protocol = eth->h_proto;
1266	skb->pkt_type = PACKET_HOST;
1267
1268	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1269
1270	skb_pull_inline(skb, ETH_HLEN);
1271
1272	return 0;
1273}
1274
1275/* prepare and add the mac header to the packet if it was not set previously.
1276 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1277 * If the mac header was already set, the original mac header is left
1278 * untouched and the function returns immediately.
1279 */
1280static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1281				       struct net_device *vrf_dev,
1282				       u16 proto)
1283{
1284	if (skb_mac_header_was_set(skb))
1285		return 0;
1286
1287	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1288}
1289
1290#if IS_ENABLED(CONFIG_IPV6)
1291/* neighbor handling is done with actual device; do not want
1292 * to flip skb->dev for those ndisc packets. This really fails
1293 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1294 * a start.
1295 */
1296static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1297{
1298	const struct ipv6hdr *iph = ipv6_hdr(skb);
1299	bool rc = false;
1300
1301	if (iph->nexthdr == NEXTHDR_ICMP) {
1302		const struct icmp6hdr *icmph;
1303		struct icmp6hdr _icmph;
1304
1305		icmph = skb_header_pointer(skb, sizeof(*iph),
1306					   sizeof(_icmph), &_icmph);
1307		if (!icmph)
1308			goto out;
1309
1310		switch (icmph->icmp6_type) {
1311		case NDISC_ROUTER_SOLICITATION:
1312		case NDISC_ROUTER_ADVERTISEMENT:
1313		case NDISC_NEIGHBOUR_SOLICITATION:
1314		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1315		case NDISC_REDIRECT:
1316			rc = true;
1317			break;
1318		}
1319	}
1320
1321out:
1322	return rc;
1323}
1324
1325static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1326					     const struct net_device *dev,
1327					     struct flowi6 *fl6,
1328					     int ifindex,
1329					     const struct sk_buff *skb,
1330					     int flags)
1331{
1332	struct net_vrf *vrf = netdev_priv(dev);
1333
1334	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1335}
1336
1337static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1338			      int ifindex)
1339{
1340	const struct ipv6hdr *iph = ipv6_hdr(skb);
1341	struct flowi6 fl6 = {
1342		.flowi6_iif     = ifindex,
1343		.flowi6_mark    = skb->mark,
1344		.flowi6_proto   = iph->nexthdr,
1345		.daddr          = iph->daddr,
1346		.saddr          = iph->saddr,
1347		.flowlabel      = ip6_flowinfo(iph),
1348	};
1349	struct net *net = dev_net(vrf_dev);
1350	struct rt6_info *rt6;
1351
1352	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1353				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1354	if (unlikely(!rt6))
1355		return;
1356
1357	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1358		return;
1359
1360	skb_dst_set(skb, &rt6->dst);
1361}
1362
1363static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1364				   struct sk_buff *skb)
1365{
1366	int orig_iif = skb->skb_iif;
1367	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1368	bool is_ndisc = ipv6_ndisc_frame(skb);
1369
1370	nf_reset_ct(skb);
1371
1372	/* loopback, multicast & non-ND link-local traffic; do not push through
1373	 * packet taps again. Reset pkt_type for upper layers to process skb.
1374	 * For strict packets with a source LLA, determine the dst using the
1375	 * original ifindex.
1376	 */
1377	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1378		skb->dev = vrf_dev;
1379		skb->skb_iif = vrf_dev->ifindex;
1380		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1381
1382		if (skb->pkt_type == PACKET_LOOPBACK)
1383			skb->pkt_type = PACKET_HOST;
1384		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1385			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1386
1387		goto out;
1388	}
1389
1390	/* if packet is NDISC then keep the ingress interface */
1391	if (!is_ndisc) {
 
 
1392		vrf_rx_stats(vrf_dev, skb->len);
1393		skb->dev = vrf_dev;
1394		skb->skb_iif = vrf_dev->ifindex;
1395
1396		if (!list_empty(&vrf_dev->ptype_all)) {
1397			int err;
1398
1399			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1400							  ETH_P_IPV6);
 
1401			if (likely(!err)) {
1402				skb_push(skb, skb->mac_len);
1403				dev_queue_xmit_nit(skb, vrf_dev);
1404				skb_pull(skb, skb->mac_len);
1405			}
1406		}
1407
1408		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1409	}
1410
1411	if (need_strict)
1412		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1413
1414	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1415out:
1416	return skb;
1417}
1418
1419#else
1420static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1421				   struct sk_buff *skb)
1422{
1423	return skb;
1424}
1425#endif
1426
1427static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1428				  struct sk_buff *skb)
1429{
 
 
1430	skb->dev = vrf_dev;
1431	skb->skb_iif = vrf_dev->ifindex;
1432	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1433
1434	nf_reset_ct(skb);
1435
1436	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1437		goto out;
1438
1439	/* loopback traffic; do not push through packet taps again.
1440	 * Reset pkt_type for upper layers to process skb
1441	 */
1442	if (skb->pkt_type == PACKET_LOOPBACK) {
1443		skb->pkt_type = PACKET_HOST;
1444		goto out;
1445	}
1446
1447	vrf_rx_stats(vrf_dev, skb->len);
1448
1449	if (!list_empty(&vrf_dev->ptype_all)) {
1450		int err;
1451
1452		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
 
1453		if (likely(!err)) {
1454			skb_push(skb, skb->mac_len);
1455			dev_queue_xmit_nit(skb, vrf_dev);
1456			skb_pull(skb, skb->mac_len);
1457		}
1458	}
1459
1460	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1461out:
1462	return skb;
1463}
1464
1465/* called with rcu lock held */
1466static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1467				  struct sk_buff *skb,
1468				  u16 proto)
1469{
1470	switch (proto) {
1471	case AF_INET:
1472		return vrf_ip_rcv(vrf_dev, skb);
1473	case AF_INET6:
1474		return vrf_ip6_rcv(vrf_dev, skb);
1475	}
1476
1477	return skb;
1478}
1479
1480#if IS_ENABLED(CONFIG_IPV6)
1481/* send to link-local or multicast address via interface enslaved to
1482 * VRF device. Force lookup to VRF table without changing flow struct
1483 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1484 * is taken on the dst by this function.
1485 */
1486static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1487					      struct flowi6 *fl6)
1488{
1489	struct net *net = dev_net(dev);
1490	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1491	struct dst_entry *dst = NULL;
1492	struct rt6_info *rt;
1493
1494	/* VRF device does not have a link-local address and
1495	 * sending packets to link-local or mcast addresses over
1496	 * a VRF device does not make sense
1497	 */
1498	if (fl6->flowi6_oif == dev->ifindex) {
1499		dst = &net->ipv6.ip6_null_entry->dst;
1500		return dst;
1501	}
1502
1503	if (!ipv6_addr_any(&fl6->saddr))
1504		flags |= RT6_LOOKUP_F_HAS_SADDR;
1505
1506	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1507	if (rt)
1508		dst = &rt->dst;
1509
1510	return dst;
1511}
1512#endif
1513
1514static const struct l3mdev_ops vrf_l3mdev_ops = {
1515	.l3mdev_fib_table	= vrf_fib_table,
1516	.l3mdev_l3_rcv		= vrf_l3_rcv,
1517	.l3mdev_l3_out		= vrf_l3_out,
1518#if IS_ENABLED(CONFIG_IPV6)
1519	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1520#endif
1521};
1522
1523static void vrf_get_drvinfo(struct net_device *dev,
1524			    struct ethtool_drvinfo *info)
1525{
1526	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1527	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1528}
1529
1530static const struct ethtool_ops vrf_ethtool_ops = {
1531	.get_drvinfo	= vrf_get_drvinfo,
1532};
1533
1534static inline size_t vrf_fib_rule_nl_size(void)
1535{
1536	size_t sz;
1537
1538	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1539	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1540	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1541	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1542
1543	return sz;
1544}
1545
1546static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1547{
1548	struct fib_rule_hdr *frh;
1549	struct nlmsghdr *nlh;
1550	struct sk_buff *skb;
1551	int err;
1552
1553	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1554	    !ipv6_mod_enabled())
1555		return 0;
1556
1557	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1558	if (!skb)
1559		return -ENOMEM;
1560
1561	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1562	if (!nlh)
1563		goto nla_put_failure;
1564
1565	/* rule only needs to appear once */
1566	nlh->nlmsg_flags |= NLM_F_EXCL;
1567
1568	frh = nlmsg_data(nlh);
1569	memset(frh, 0, sizeof(*frh));
1570	frh->family = family;
1571	frh->action = FR_ACT_TO_TBL;
1572
1573	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1574		goto nla_put_failure;
1575
1576	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1577		goto nla_put_failure;
1578
1579	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1580		goto nla_put_failure;
1581
1582	nlmsg_end(skb, nlh);
1583
1584	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1585	skb->sk = dev_net(dev)->rtnl;
1586	if (add_it) {
1587		err = fib_nl_newrule(skb, nlh, NULL);
1588		if (err == -EEXIST)
1589			err = 0;
1590	} else {
1591		err = fib_nl_delrule(skb, nlh, NULL);
1592		if (err == -ENOENT)
1593			err = 0;
1594	}
1595	nlmsg_free(skb);
1596
1597	return err;
1598
1599nla_put_failure:
1600	nlmsg_free(skb);
1601
1602	return -EMSGSIZE;
1603}
1604
1605static int vrf_add_fib_rules(const struct net_device *dev)
1606{
1607	int err;
1608
1609	err = vrf_fib_rule(dev, AF_INET,  true);
1610	if (err < 0)
1611		goto out_err;
1612
1613	err = vrf_fib_rule(dev, AF_INET6, true);
1614	if (err < 0)
1615		goto ipv6_err;
1616
1617#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1618	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1619	if (err < 0)
1620		goto ipmr_err;
1621#endif
1622
1623#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1624	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1625	if (err < 0)
1626		goto ip6mr_err;
1627#endif
1628
1629	return 0;
1630
1631#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1632ip6mr_err:
1633	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1634#endif
1635
1636#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1637ipmr_err:
1638	vrf_fib_rule(dev, AF_INET6,  false);
1639#endif
1640
1641ipv6_err:
1642	vrf_fib_rule(dev, AF_INET,  false);
1643
1644out_err:
1645	netdev_err(dev, "Failed to add FIB rules.\n");
1646	return err;
1647}
1648
1649static void vrf_setup(struct net_device *dev)
1650{
1651	ether_setup(dev);
1652
1653	/* Initialize the device structure. */
1654	dev->netdev_ops = &vrf_netdev_ops;
1655	dev->l3mdev_ops = &vrf_l3mdev_ops;
1656	dev->ethtool_ops = &vrf_ethtool_ops;
1657	dev->needs_free_netdev = true;
1658
1659	/* Fill in device structure with ethernet-generic values. */
1660	eth_hw_addr_random(dev);
1661
1662	/* don't acquire vrf device's netif_tx_lock when transmitting */
1663	dev->features |= NETIF_F_LLTX;
1664
1665	/* don't allow vrf devices to change network namespaces. */
1666	dev->features |= NETIF_F_NETNS_LOCAL;
1667
1668	/* does not make sense for a VLAN to be added to a vrf device */
1669	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1670
1671	/* enable offload features */
1672	dev->features   |= NETIF_F_GSO_SOFTWARE;
1673	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1674	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1675
1676	dev->hw_features = dev->features;
1677	dev->hw_enc_features = dev->features;
1678
1679	/* default to no qdisc; user can add if desired */
1680	dev->priv_flags |= IFF_NO_QUEUE;
1681	dev->priv_flags |= IFF_NO_RX_HANDLER;
1682	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1683
1684	/* VRF devices do not care about MTU, but if the MTU is set
1685	 * too low then the ipv4 and ipv6 protocols are disabled
1686	 * which breaks networking.
1687	 */
1688	dev->min_mtu = IPV6_MIN_MTU;
1689	dev->max_mtu = IP6_MAX_MTU;
1690	dev->mtu = dev->max_mtu;
 
 
1691}
1692
1693static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694			struct netlink_ext_ack *extack)
1695{
1696	if (tb[IFLA_ADDRESS]) {
1697		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699			return -EINVAL;
1700		}
1701		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703			return -EADDRNOTAVAIL;
1704		}
1705	}
1706	return 0;
1707}
1708
1709static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710{
1711	struct net_device *port_dev;
1712	struct list_head *iter;
1713
1714	netdev_for_each_lower_dev(dev, port_dev, iter)
1715		vrf_del_slave(dev, port_dev);
1716
1717	vrf_map_unregister_dev(dev);
1718
1719	unregister_netdevice_queue(dev, head);
1720}
1721
1722static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723		       struct nlattr *tb[], struct nlattr *data[],
1724		       struct netlink_ext_ack *extack)
1725{
1726	struct net_vrf *vrf = netdev_priv(dev);
1727	struct netns_vrf *nn_vrf;
1728	bool *add_fib_rules;
1729	struct net *net;
1730	int err;
1731
1732	if (!data || !data[IFLA_VRF_TABLE]) {
1733		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734		return -EINVAL;
1735	}
1736
1737	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740				    "Invalid VRF table id");
1741		return -EINVAL;
1742	}
1743
1744	dev->priv_flags |= IFF_L3MDEV_MASTER;
1745
1746	err = register_netdevice(dev);
1747	if (err)
1748		goto out;
1749
1750	/* mapping between table_id and vrf;
1751	 * note: such binding could not be done in the dev init function
1752	 * because dev->ifindex id is not available yet.
1753	 */
1754	vrf->ifindex = dev->ifindex;
1755
1756	err = vrf_map_register_dev(dev, extack);
1757	if (err) {
1758		unregister_netdevice(dev);
1759		goto out;
1760	}
1761
1762	net = dev_net(dev);
1763	nn_vrf = net_generic(net, vrf_net_id);
1764
1765	add_fib_rules = &nn_vrf->add_fib_rules;
1766	if (*add_fib_rules) {
1767		err = vrf_add_fib_rules(dev);
1768		if (err) {
1769			vrf_map_unregister_dev(dev);
1770			unregister_netdevice(dev);
1771			goto out;
1772		}
1773		*add_fib_rules = false;
1774	}
1775
1776out:
1777	return err;
1778}
1779
1780static size_t vrf_nl_getsize(const struct net_device *dev)
1781{
1782	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1783}
1784
1785static int vrf_fillinfo(struct sk_buff *skb,
1786			const struct net_device *dev)
1787{
1788	struct net_vrf *vrf = netdev_priv(dev);
1789
1790	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791}
1792
1793static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794				 const struct net_device *slave_dev)
1795{
1796	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1797}
1798
1799static int vrf_fill_slave_info(struct sk_buff *skb,
1800			       const struct net_device *vrf_dev,
1801			       const struct net_device *slave_dev)
1802{
1803	struct net_vrf *vrf = netdev_priv(vrf_dev);
1804
1805	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806		return -EMSGSIZE;
1807
1808	return 0;
1809}
1810
1811static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813};
1814
1815static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816	.kind		= DRV_NAME,
1817	.priv_size	= sizeof(struct net_vrf),
1818
1819	.get_size	= vrf_nl_getsize,
1820	.policy		= vrf_nl_policy,
1821	.validate	= vrf_validate,
1822	.fill_info	= vrf_fillinfo,
1823
1824	.get_slave_size  = vrf_get_slave_size,
1825	.fill_slave_info = vrf_fill_slave_info,
1826
1827	.newlink	= vrf_newlink,
1828	.dellink	= vrf_dellink,
1829	.setup		= vrf_setup,
1830	.maxtype	= IFLA_VRF_MAX,
1831};
1832
1833static int vrf_device_event(struct notifier_block *unused,
1834			    unsigned long event, void *ptr)
1835{
1836	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837
1838	/* only care about unregister events to drop slave references */
1839	if (event == NETDEV_UNREGISTER) {
1840		struct net_device *vrf_dev;
1841
1842		if (!netif_is_l3_slave(dev))
1843			goto out;
1844
1845		vrf_dev = netdev_master_upper_dev_get(dev);
1846		vrf_del_slave(vrf_dev, dev);
1847	}
1848out:
1849	return NOTIFY_DONE;
1850}
1851
1852static struct notifier_block vrf_notifier_block __read_mostly = {
1853	.notifier_call = vrf_device_event,
1854};
1855
1856static int vrf_map_init(struct vrf_map *vmap)
1857{
1858	spin_lock_init(&vmap->vmap_lock);
1859	hash_init(vmap->ht);
1860
1861	vmap->strict_mode = false;
1862
1863	return 0;
1864}
1865
1866#ifdef CONFIG_SYSCTL
1867static bool vrf_strict_mode(struct vrf_map *vmap)
1868{
1869	bool strict_mode;
1870
1871	vrf_map_lock(vmap);
1872	strict_mode = vmap->strict_mode;
1873	vrf_map_unlock(vmap);
1874
1875	return strict_mode;
1876}
1877
1878static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879{
1880	bool *cur_mode;
1881	int res = 0;
1882
1883	vrf_map_lock(vmap);
1884
1885	cur_mode = &vmap->strict_mode;
1886	if (*cur_mode == new_mode)
1887		goto unlock;
1888
1889	if (*cur_mode) {
1890		/* disable strict mode */
1891		*cur_mode = false;
1892	} else {
1893		if (vmap->shared_tables) {
1894			/* we cannot allow strict_mode because there are some
1895			 * vrfs that share one or more tables.
1896			 */
1897			res = -EBUSY;
1898			goto unlock;
1899		}
1900
1901		/* no tables are shared among vrfs, so we can go back
1902		 * to 1:1 association between a vrf with its table.
1903		 */
1904		*cur_mode = true;
1905	}
1906
1907unlock:
1908	vrf_map_unlock(vmap);
1909
1910	return res;
1911}
1912
1913static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914				    void *buffer, size_t *lenp, loff_t *ppos)
1915{
1916	struct net *net = (struct net *)table->extra1;
1917	struct vrf_map *vmap = netns_vrf_map(net);
1918	int proc_strict_mode = 0;
1919	struct ctl_table tmp = {
1920		.procname	= table->procname,
1921		.data		= &proc_strict_mode,
1922		.maxlen		= sizeof(int),
1923		.mode		= table->mode,
1924		.extra1		= SYSCTL_ZERO,
1925		.extra2		= SYSCTL_ONE,
1926	};
1927	int ret;
1928
1929	if (!write)
1930		proc_strict_mode = vrf_strict_mode(vmap);
1931
1932	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933
1934	if (write && ret == 0)
1935		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936
1937	return ret;
1938}
1939
1940static const struct ctl_table vrf_table[] = {
1941	{
1942		.procname	= "strict_mode",
1943		.data		= NULL,
1944		.maxlen		= sizeof(int),
1945		.mode		= 0644,
1946		.proc_handler	= vrf_shared_table_handler,
1947		/* set by the vrf_netns_init */
1948		.extra1		= NULL,
1949	},
1950	{ },
1951};
1952
1953static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954{
1955	struct ctl_table *table;
1956
1957	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958	if (!table)
1959		return -ENOMEM;
1960
1961	/* init the extra1 parameter with the reference to current netns */
1962	table[0].extra1 = net;
1963
1964	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
 
1965	if (!nn_vrf->ctl_hdr) {
1966		kfree(table);
1967		return -ENOMEM;
1968	}
1969
1970	return 0;
1971}
1972
1973static void vrf_netns_exit_sysctl(struct net *net)
1974{
1975	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976	struct ctl_table *table;
1977
1978	table = nn_vrf->ctl_hdr->ctl_table_arg;
1979	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1980	kfree(table);
1981}
1982#else
1983static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984{
1985	return 0;
1986}
1987
1988static void vrf_netns_exit_sysctl(struct net *net)
1989{
1990}
1991#endif
1992
1993/* Initialize per network namespace state */
1994static int __net_init vrf_netns_init(struct net *net)
1995{
1996	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997
1998	nn_vrf->add_fib_rules = true;
1999	vrf_map_init(&nn_vrf->vmap);
2000
2001	return vrf_netns_init_sysctl(net, nn_vrf);
2002}
2003
2004static void __net_exit vrf_netns_exit(struct net *net)
2005{
2006	vrf_netns_exit_sysctl(net);
2007}
2008
2009static struct pernet_operations vrf_net_ops __net_initdata = {
2010	.init = vrf_netns_init,
2011	.exit = vrf_netns_exit,
2012	.id   = &vrf_net_id,
2013	.size = sizeof(struct netns_vrf),
2014};
2015
2016static int __init vrf_init_module(void)
2017{
2018	int rc;
2019
2020	register_netdevice_notifier(&vrf_notifier_block);
2021
2022	rc = register_pernet_subsys(&vrf_net_ops);
2023	if (rc < 0)
2024		goto error;
2025
2026	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027					  vrf_ifindex_lookup_by_table_id);
2028	if (rc < 0)
2029		goto unreg_pernet;
2030
2031	rc = rtnl_link_register(&vrf_link_ops);
2032	if (rc < 0)
2033		goto table_lookup_unreg;
2034
2035	return 0;
2036
2037table_lookup_unreg:
2038	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039				       vrf_ifindex_lookup_by_table_id);
2040
2041unreg_pernet:
2042	unregister_pernet_subsys(&vrf_net_ops);
2043
2044error:
2045	unregister_netdevice_notifier(&vrf_notifier_block);
2046	return rc;
2047}
2048
2049module_init(vrf_init_module);
2050MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052MODULE_LICENSE("GPL");
2053MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054MODULE_VERSION(DRV_VERSION);