Linux Audio

Check our new training course

Loading...
v6.8
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 
 
 
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 
 
 
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 242config CRYPTO_ENGINE
 243	tristate
 244
 245endmenu
 246
 247menu "Public-key cryptography"
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select MPILIB
 254	select ASN1
 255	help
 256	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 257
 258config CRYPTO_DH
 259	tristate "DH (Diffie-Hellman)"
 260	select CRYPTO_KPP
 261	select MPILIB
 262	help
 263	  DH (Diffie-Hellman) key exchange algorithm
 264
 265config CRYPTO_DH_RFC7919_GROUPS
 266	bool "RFC 7919 FFDHE groups"
 267	depends on CRYPTO_DH
 268	select CRYPTO_RNG_DEFAULT
 269	help
 270	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 271	  defined in RFC7919.
 272
 273	  Support these finite-field groups in DH key exchanges:
 274	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 275
 276	  If unsure, say N.
 277
 278config CRYPTO_ECC
 279	tristate
 280	select CRYPTO_RNG_DEFAULT
 281
 282config CRYPTO_ECDH
 283	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 284	select CRYPTO_ECC
 285	select CRYPTO_KPP
 
 286	help
 287	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 288	  using curves P-192, P-256, and P-384 (FIPS 186)
 289
 290config CRYPTO_ECDSA
 291	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 292	select CRYPTO_ECC
 293	select CRYPTO_AKCIPHER
 294	select ASN1
 295	help
 296	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 297	  ISO/IEC 14888-3)
 298	  using curves P-192, P-256, and P-384
 299
 300	  Only signature verification is implemented.
 301
 302config CRYPTO_ECRDSA
 303	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 304	select CRYPTO_ECC
 305	select CRYPTO_AKCIPHER
 306	select CRYPTO_STREEBOG
 307	select OID_REGISTRY
 308	select ASN1
 309	help
 310	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 311	  RFC 7091, ISO/IEC 14888-3)
 312
 313	  One of the Russian cryptographic standard algorithms (called GOST
 314	  algorithms). Only signature verification is implemented.
 315
 316config CRYPTO_SM2
 317	tristate "SM2 (ShangMi 2)"
 318	select CRYPTO_SM3
 319	select CRYPTO_AKCIPHER
 320	select CRYPTO_MANAGER
 321	select MPILIB
 322	select ASN1
 323	help
 324	  SM2 (ShangMi 2) public key algorithm
 325
 326	  Published by State Encryption Management Bureau, China,
 327	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 328
 329	  References:
 330	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 331	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 332	  http://www.gmbz.org.cn/main/bzlb.html
 333
 334config CRYPTO_CURVE25519
 335	tristate "Curve25519"
 336	select CRYPTO_KPP
 337	select CRYPTO_LIB_CURVE25519_GENERIC
 338	help
 339	  Curve25519 elliptic curve (RFC7748)
 340
 341endmenu
 342
 343menu "Block ciphers"
 344
 345config CRYPTO_AES
 346	tristate "AES (Advanced Encryption Standard)"
 347	select CRYPTO_ALGAPI
 348	select CRYPTO_LIB_AES
 349	help
 350	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 351
 352	  Rijndael appears to be consistently a very good performer in
 353	  both hardware and software across a wide range of computing
 354	  environments regardless of its use in feedback or non-feedback
 355	  modes. Its key setup time is excellent, and its key agility is
 356	  good. Rijndael's very low memory requirements make it very well
 357	  suited for restricted-space environments, in which it also
 358	  demonstrates excellent performance. Rijndael's operations are
 359	  among the easiest to defend against power and timing attacks.
 360
 361	  The AES specifies three key sizes: 128, 192 and 256 bits
 362
 363config CRYPTO_AES_TI
 364	tristate "AES (Advanced Encryption Standard) (fixed time)"
 365	select CRYPTO_ALGAPI
 366	select CRYPTO_LIB_AES
 367	help
 368	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 369
 370	  This is a generic implementation of AES that attempts to eliminate
 371	  data dependent latencies as much as possible without affecting
 372	  performance too much. It is intended for use by the generic CCM
 373	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 374	  solely on encryption (although decryption is supported as well, but
 375	  with a more dramatic performance hit)
 376
 377	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 378	  8 for decryption), this implementation only uses just two S-boxes of
 379	  256 bytes each, and attempts to eliminate data dependent latencies by
 380	  prefetching the entire table into the cache at the start of each
 381	  block. Interrupts are also disabled to avoid races where cachelines
 382	  are evicted when the CPU is interrupted to do something else.
 383
 384config CRYPTO_ANUBIS
 385	tristate "Anubis"
 386	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 387	select CRYPTO_ALGAPI
 388	help
 389	  Anubis cipher algorithm
 390
 391	  Anubis is a variable key length cipher which can use keys from
 392	  128 bits to 320 bits in length.  It was evaluated as a entrant
 393	  in the NESSIE competition.
 394
 395	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 396	  for further information.
 397
 398config CRYPTO_ARIA
 399	tristate "ARIA"
 400	select CRYPTO_ALGAPI
 401	help
 402	  ARIA cipher algorithm (RFC5794)
 403
 404	  ARIA is a standard encryption algorithm of the Republic of Korea.
 405	  The ARIA specifies three key sizes and rounds.
 406	  128-bit: 12 rounds.
 407	  192-bit: 14 rounds.
 408	  256-bit: 16 rounds.
 409
 410	  See:
 411	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 412
 413config CRYPTO_BLOWFISH
 414	tristate "Blowfish"
 415	select CRYPTO_ALGAPI
 416	select CRYPTO_BLOWFISH_COMMON
 
 
 417	help
 418	  Blowfish cipher algorithm, by Bruce Schneier
 419
 420	  This is a variable key length cipher which can use keys from 32
 421	  bits to 448 bits in length.  It's fast, simple and specifically
 422	  designed for use on "large microprocessors".
 423
 424	  See https://www.schneier.com/blowfish.html for further information.
 425
 426config CRYPTO_BLOWFISH_COMMON
 427	tristate
 
 
 
 
 
 428	help
 429	  Common parts of the Blowfish cipher algorithm shared by the
 430	  generic c and the assembler implementations.
 431
 432config CRYPTO_CAMELLIA
 433	tristate "Camellia"
 434	select CRYPTO_ALGAPI
 
 
 
 435	help
 436	  Camellia cipher algorithms (ISO/IEC 18033-3)
 437
 438	  Camellia is a symmetric key block cipher developed jointly
 439	  at NTT and Mitsubishi Electric Corporation.
 440
 441	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 442
 443	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 444
 445config CRYPTO_CAST_COMMON
 446	tristate
 447	help
 448	  Common parts of the CAST cipher algorithms shared by the
 449	  generic c and the assembler implementations.
 450
 451config CRYPTO_CAST5
 452	tristate "CAST5 (CAST-128)"
 453	select CRYPTO_ALGAPI
 454	select CRYPTO_CAST_COMMON
 455	help
 456	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 457
 458config CRYPTO_CAST6
 459	tristate "CAST6 (CAST-256)"
 460	select CRYPTO_ALGAPI
 461	select CRYPTO_CAST_COMMON
 462	help
 463	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 464
 465config CRYPTO_DES
 466	tristate "DES and Triple DES EDE"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_LIB_DES
 
 469	help
 470	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 471	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 472	  cipher algorithms
 473
 474config CRYPTO_FCRYPT
 475	tristate "FCrypt"
 476	select CRYPTO_ALGAPI
 477	select CRYPTO_SKCIPHER
 478	help
 479	  FCrypt algorithm used by RxRPC
 480
 481	  See https://ota.polyonymo.us/fcrypt-paper.txt
 482
 483config CRYPTO_KHAZAD
 484	tristate "Khazad"
 485	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 486	select CRYPTO_ALGAPI
 487	help
 488	  Khazad cipher algorithm
 489
 490	  Khazad was a finalist in the initial NESSIE competition.  It is
 491	  an algorithm optimized for 64-bit processors with good performance
 492	  on 32-bit processors.  Khazad uses an 128 bit key size.
 493
 494	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 495	  for further information.
 496
 497config CRYPTO_SEED
 498	tristate "SEED"
 499	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 500	select CRYPTO_ALGAPI
 501	help
 502	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 503
 504	  SEED is a 128-bit symmetric key block cipher that has been
 505	  developed by KISA (Korea Information Security Agency) as a
 506	  national standard encryption algorithm of the Republic of Korea.
 507	  It is a 16 round block cipher with the key size of 128 bit.
 508
 509	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 510	  for further information.
 511
 512config CRYPTO_SERPENT
 513	tristate "Serpent"
 514	select CRYPTO_ALGAPI
 515	help
 516	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 517
 518	  Keys are allowed to be from 0 to 256 bits in length, in steps
 519	  of 8 bits.
 520
 521	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 522
 523config CRYPTO_SM4
 524	tristate
 525
 526config CRYPTO_SM4_GENERIC
 527	tristate "SM4 (ShangMi 4)"
 528	select CRYPTO_ALGAPI
 529	select CRYPTO_SM4
 530	help
 531	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 532	  ISO/IEC 18033-3:2010/Amd 1:2021)
 533
 534	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 535	  Organization of State Commercial Administration of China (OSCCA)
 536	  as an authorized cryptographic algorithms for the use within China.
 537
 538	  SMS4 was originally created for use in protecting wireless
 539	  networks, and is mandated in the Chinese National Standard for
 540	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 541	  (GB.15629.11-2003).
 542
 543	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 544	  standardized through TC 260 of the Standardization Administration
 545	  of the People's Republic of China (SAC).
 546
 547	  The input, output, and key of SMS4 are each 128 bits.
 548
 549	  See https://eprint.iacr.org/2008/329.pdf for further information.
 550
 551	  If unsure, say N.
 552
 553config CRYPTO_TEA
 554	tristate "TEA, XTEA and XETA"
 555	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 556	select CRYPTO_ALGAPI
 557	help
 558	  TEA (Tiny Encryption Algorithm) cipher algorithms
 559
 560	  Tiny Encryption Algorithm is a simple cipher that uses
 561	  many rounds for security.  It is very fast and uses
 562	  little memory.
 563
 564	  Xtendend Tiny Encryption Algorithm is a modification to
 565	  the TEA algorithm to address a potential key weakness
 566	  in the TEA algorithm.
 567
 568	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 569	  of the XTEA algorithm for compatibility purposes.
 570
 571config CRYPTO_TWOFISH
 572	tristate "Twofish"
 573	select CRYPTO_ALGAPI
 574	select CRYPTO_TWOFISH_COMMON
 575	help
 576	  Twofish cipher algorithm
 577
 578	  Twofish was submitted as an AES (Advanced Encryption Standard)
 579	  candidate cipher by researchers at CounterPane Systems.  It is a
 580	  16 round block cipher supporting key sizes of 128, 192, and 256
 581	  bits.
 582
 583	  See https://www.schneier.com/twofish.html for further information.
 584
 585config CRYPTO_TWOFISH_COMMON
 586	tristate
 587	help
 588	  Common parts of the Twofish cipher algorithm shared by the
 589	  generic c and the assembler implementations.
 590
 591endmenu
 592
 593menu "Length-preserving ciphers and modes"
 594
 595config CRYPTO_ADIANTUM
 596	tristate "Adiantum"
 597	select CRYPTO_CHACHA20
 598	select CRYPTO_LIB_POLY1305_GENERIC
 599	select CRYPTO_NHPOLY1305
 600	select CRYPTO_MANAGER
 601	help
 602	  Adiantum tweakable, length-preserving encryption mode
 603
 604	  Designed for fast and secure disk encryption, especially on
 605	  CPUs without dedicated crypto instructions.  It encrypts
 606	  each sector using the XChaCha12 stream cipher, two passes of
 607	  an ε-almost-∆-universal hash function, and an invocation of
 608	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 609	  without AES instructions, Adiantum is much faster than
 610	  AES-XTS.
 611
 612	  Adiantum's security is provably reducible to that of its
 613	  underlying stream and block ciphers, subject to a security
 614	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 615	  mode, so it actually provides an even stronger notion of
 616	  security than XTS, subject to the security bound.
 617
 618	  If unsure, say N.
 619
 620config CRYPTO_ARC4
 621	tristate "ARC4 (Alleged Rivest Cipher 4)"
 622	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 623	select CRYPTO_SKCIPHER
 624	select CRYPTO_LIB_ARC4
 
 625	help
 626	  ARC4 cipher algorithm
 
 
 627
 628	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 629	  bits in length.  This algorithm is required for driver-based
 630	  WEP, but it should not be for other purposes because of the
 631	  weakness of the algorithm.
 632
 633config CRYPTO_CHACHA20
 634	tristate "ChaCha"
 635	select CRYPTO_LIB_CHACHA_GENERIC
 636	select CRYPTO_SKCIPHER
 
 637	help
 638	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 639
 640	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 641	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 642	  This is the portable C implementation of ChaCha20.  See
 643	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 644
 645	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 646	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 647	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 648	  while provably retaining ChaCha20's security.  See
 649	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 650
 651	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 652	  reduced security margin but increased performance.  It can be needed
 653	  in some performance-sensitive scenarios.
 654
 655config CRYPTO_CBC
 656	tristate "CBC (Cipher Block Chaining)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 659	help
 660	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 661
 662	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 
 
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER2
 685	select CRYPTO_MANAGER
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 728
 729config CRYPTO_PCBC
 730	tristate "PCBC (Propagating Cipher Block Chaining)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 733	help
 734	  PCBC (Propagating Cipher Block Chaining) mode
 735
 736	  This block cipher mode is required for RxRPC.
 
 
 
 737
 738config CRYPTO_XCTR
 739	tristate
 740	select CRYPTO_SKCIPHER
 741	select CRYPTO_MANAGER
 742	help
 743	  XCTR (XOR Counter) mode for HCTR2
 744
 745	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 746	  addition rather than big-endian arithmetic.
 747
 748	  XCTR mode is used to implement HCTR2.
 749
 750config CRYPTO_XTS
 751	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 752	select CRYPTO_SKCIPHER
 753	select CRYPTO_MANAGER
 754	select CRYPTO_ECB
 755	help
 756	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 757	  and IEEE 1619)
 
 758
 759	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 760	  implementation currently can't handle a sectorsize which is not a
 761	  multiple of 16 bytes.
 
 
 
 
 762
 763config CRYPTO_NHPOLY1305
 764	tristate
 765	select CRYPTO_HASH
 766	select CRYPTO_LIB_POLY1305_GENERIC
 767
 768endmenu
 769
 770menu "AEAD (authenticated encryption with associated data) ciphers"
 771
 772config CRYPTO_AEGIS128
 773	tristate "AEGIS-128"
 774	select CRYPTO_AEAD
 775	select CRYPTO_AES  # for AES S-box tables
 776	help
 777	  AEGIS-128 AEAD algorithm
 
 778
 779config CRYPTO_AEGIS128_SIMD
 780	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 781	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 782	default y
 783	help
 784	  AEGIS-128 AEAD algorithm
 
 785
 786	  Architecture: arm or arm64 using:
 787	  - NEON (Advanced SIMD) extension
 788
 789config CRYPTO_CHACHA20POLY1305
 790	tristate "ChaCha20-Poly1305"
 791	select CRYPTO_CHACHA20
 792	select CRYPTO_POLY1305
 793	select CRYPTO_AEAD
 794	select CRYPTO_MANAGER
 795	help
 796	  ChaCha20 stream cipher and Poly1305 authenticator combined
 797	  mode (RFC8439)
 798
 799config CRYPTO_CCM
 800	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 801	select CRYPTO_CTR
 802	select CRYPTO_HASH
 803	select CRYPTO_AEAD
 804	select CRYPTO_MANAGER
 805	help
 806	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 807	  authenticated encryption mode (NIST SP800-38C)
 808
 809config CRYPTO_GCM
 810	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 811	select CRYPTO_CTR
 812	select CRYPTO_AEAD
 813	select CRYPTO_GHASH
 814	select CRYPTO_NULL
 815	select CRYPTO_MANAGER
 816	help
 817	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 818	  (GCM Message Authentication Code) (NIST SP800-38D)
 819
 820	  This is required for IPSec ESP (XFRM_ESP).
 821
 822config CRYPTO_GENIV
 823	tristate
 824	select CRYPTO_AEAD
 825	select CRYPTO_NULL
 826	select CRYPTO_MANAGER
 827	select CRYPTO_RNG_DEFAULT
 828
 829config CRYPTO_SEQIV
 830	tristate "Sequence Number IV Generator"
 831	select CRYPTO_GENIV
 832	help
 833	  Sequence Number IV generator
 834
 835	  This IV generator generates an IV based on a sequence number by
 836	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 837
 838	  This is required for IPsec ESP (XFRM_ESP).
 
 
 839
 840config CRYPTO_ECHAINIV
 841	tristate "Encrypted Chain IV Generator"
 842	select CRYPTO_GENIV
 843	help
 844	  Encrypted Chain IV generator
 845
 846	  This IV generator generates an IV based on the encryption of
 847	  a sequence number xored with a salt.  This is the default
 848	  algorithm for CBC.
 849
 850config CRYPTO_ESSIV
 851	tristate "Encrypted Salt-Sector IV Generator"
 852	select CRYPTO_AUTHENC
 853	help
 854	  Encrypted Salt-Sector IV generator
 855
 856	  This IV generator is used in some cases by fscrypt and/or
 857	  dm-crypt. It uses the hash of the block encryption key as the
 858	  symmetric key for a block encryption pass applied to the input
 859	  IV, making low entropy IV sources more suitable for block
 860	  encryption.
 861
 862	  This driver implements a crypto API template that can be
 863	  instantiated either as an skcipher or as an AEAD (depending on the
 864	  type of the first template argument), and which defers encryption
 865	  and decryption requests to the encapsulated cipher after applying
 866	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 867	  that the keys are presented in the same format used by the authenc
 868	  template, and that the IV appears at the end of the authenticated
 869	  associated data (AAD) region (which is how dm-crypt uses it.)
 870
 871	  Note that the use of ESSIV is not recommended for new deployments,
 872	  and so this only needs to be enabled when interoperability with
 873	  existing encrypted volumes of filesystems is required, or when
 874	  building for a particular system that requires it (e.g., when
 875	  the SoC in question has accelerated CBC but not XTS, making CBC
 876	  combined with ESSIV the only feasible mode for h/w accelerated
 877	  block encryption)
 878
 879endmenu
 880
 881menu "Hashes, digests, and MACs"
 
 
 
 
 
 
 882
 883config CRYPTO_BLAKE2B
 884	tristate "BLAKE2b"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	select CRYPTO_HASH
 
 886	help
 887	  BLAKE2b cryptographic hash function (RFC 7693)
 
 888
 889	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 890	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 
 
 
 
 
 891
 892	  This module provides the following algorithms:
 
 893	  - blake2b-160
 894	  - blake2b-256
 895	  - blake2b-384
 896	  - blake2b-512
 897
 898	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	  See https://blake2.net for further information.
 901
 902config CRYPTO_CMAC
 903	tristate "CMAC (Cipher-based MAC)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904	select CRYPTO_HASH
 905	select CRYPTO_MANAGER
 906	help
 907	  CMAC (Cipher-based Message Authentication Code) authentication
 908	  mode (NIST SP800-38B and IETF RFC4493)
 
 
 
 
 
 
 
 
 
 909
 910config CRYPTO_GHASH
 911	tristate "GHASH"
 
 912	select CRYPTO_HASH
 913	select CRYPTO_LIB_GF128MUL
 914	help
 915	  GCM GHASH function (NIST SP800-38D)
 
 916
 917config CRYPTO_HMAC
 918	tristate "HMAC (Keyed-Hash MAC)"
 919	select CRYPTO_HASH
 920	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 921	help
 922	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 923	  RFC2104)
 924
 925	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 
 
 
 
 
 
 
 926
 927config CRYPTO_MD4
 928	tristate "MD4"
 929	select CRYPTO_HASH
 930	help
 931	  MD4 message digest algorithm (RFC1320)
 932
 933config CRYPTO_MD5
 934	tristate "MD5"
 935	select CRYPTO_HASH
 936	help
 937	  MD5 message digest algorithm (RFC1321)
 938
 939config CRYPTO_MICHAEL_MIC
 940	tristate "Michael MIC"
 
 
 941	select CRYPTO_HASH
 942	help
 943	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 944
 945	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 946	  known as WPA (Wif-Fi Protected Access).
 947
 948	  This algorithm is required for TKIP, but it should not be used for
 949	  other purposes because of the weakness of the algorithm.
 950
 951config CRYPTO_POLYVAL
 952	tristate
 
 953	select CRYPTO_HASH
 954	select CRYPTO_LIB_GF128MUL
 955	help
 956	  POLYVAL hash function for HCTR2
 957
 958	  This is used in HCTR2.  It is not a general-purpose
 959	  cryptographic hash function.
 960
 961config CRYPTO_POLY1305
 962	tristate "Poly1305"
 
 
 963	select CRYPTO_HASH
 964	select CRYPTO_LIB_POLY1305_GENERIC
 965	help
 966	  Poly1305 authenticator algorithm (RFC7539)
 
 967
 968	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 969	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 970	  in IETF protocols. This is the portable C implementation of Poly1305.
 
 
 
 
 
 971
 972config CRYPTO_RMD160
 973	tristate "RIPEMD-160"
 974	select CRYPTO_HASH
 975	help
 976	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 977
 978	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 979	  to be used as a secure replacement for the 128-bit hash functions
 980	  MD4, MD5 and its predecessor RIPEMD
 981	  (not to be confused with RIPEMD-128).
 982
 983	  Its speed is comparable to SHA-1 and there are no known attacks
 984	  against RIPEMD-160.
 985
 986	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 987	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 988	  for further information.
 989
 990config CRYPTO_SHA1
 991	tristate "SHA-1"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992	select CRYPTO_HASH
 993	select CRYPTO_LIB_SHA1
 994	help
 995	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997config CRYPTO_SHA256
 998	tristate "SHA-224 and SHA-256"
 999	select CRYPTO_HASH
1000	select CRYPTO_LIB_SHA256
1001	help
1002	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007config CRYPTO_SHA512
1008	tristate "SHA-384 and SHA-512"
1009	select CRYPTO_HASH
1010	help
1011	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014	tristate "SHA-3"
 
 
 
 
 
 
 
 
1015	select CRYPTO_HASH
1016	help
1017	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
 
1018
1019config CRYPTO_SM3
1020	tristate
 
 
 
 
 
 
1021
1022config CRYPTO_SM3_GENERIC
1023	tristate "SM3 (ShangMi 3)"
1024	select CRYPTO_HASH
1025	select CRYPTO_SM3
1026	help
1027	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
 
1028
1029	  This is part of the Chinese Commercial Cryptography suite.
 
 
 
 
 
 
 
 
1030
1031	  References:
1032	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036	tristate "Streebog"
1037	select CRYPTO_HASH
1038	help
1039	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041	  This is one of the Russian cryptographic standard algorithms (called
1042	  GOST algorithms). This setting enables two hash algorithms with
1043	  256 and 512 bits output.
1044
1045	  References:
1046	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047	  https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050	tristate "VMAC"
1051	select CRYPTO_HASH
1052	select CRYPTO_MANAGER
1053	help
1054	  VMAC is a message authentication algorithm designed for
1055	  very high speed on 64-bit architectures.
1056
1057	  See https://fastcrypto.org/vmac for further information.
 
1058
1059config CRYPTO_WP512
1060	tristate "Whirlpool"
1061	select CRYPTO_HASH
 
 
 
 
1062	help
1063	  Whirlpool hash function (ISO/IEC 10118-3)
 
1064
1065	  512, 384 and 256-bit hashes.
1066
1067	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070	  for further information.
1071
1072config CRYPTO_XCBC
1073	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074	select CRYPTO_HASH
1075	select CRYPTO_MANAGER
 
 
1076	help
1077	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078	  Code) (RFC3566)
 
 
 
 
1079
1080config CRYPTO_XXHASH
1081	tristate "xxHash"
1082	select CRYPTO_HASH
1083	select XXHASH
 
 
 
 
 
 
 
 
 
 
 
1084	help
1085	  xxHash non-cryptographic hash algorithm
1086
1087	  Extremely fast, working at speeds close to RAM limits.
 
1088
1089	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
1090
1091endmenu
1092
1093menu "CRCs (cyclic redundancy checks)"
1094
1095config CRYPTO_CRC32C
1096	tristate "CRC32c"
1097	select CRYPTO_HASH
1098	select CRC32
 
 
 
 
 
1099	help
1100	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106	  iSCSI.
1107
1108	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
 
 
 
 
 
 
1109
1110config CRYPTO_CRC32
1111	tristate "CRC32"
1112	select CRYPTO_HASH
1113	select CRC32
 
 
 
 
 
 
 
 
1114	help
1115	  CRC32 CRC algorithm (IEEE 802.3)
 
 
 
 
 
 
 
1116
1117	  Used by RoCEv2 and f2fs.
 
 
 
 
 
1118
1119config CRYPTO_CRCT10DIF
1120	tristate "CRCT10DIF"
1121	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
1122	help
1123	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1124
1125	  CRC algorithm used by the SCSI Block Commands standard.
 
 
 
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128	tristate "CRC64 based on Rocksoft Model algorithm"
1129	depends on CRC64
1130	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131	help
1132	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1135
1136	  See https://zlib.net/crc_v3.txt
 
1137
1138endmenu
 
1139
1140menu "Compression"
1141
1142config CRYPTO_DEFLATE
1143	tristate "Deflate"
1144	select CRYPTO_ALGAPI
1145	select CRYPTO_ACOMP2
1146	select ZLIB_INFLATE
1147	select ZLIB_DEFLATE
1148	help
1149	  Deflate compression algorithm (RFC1951)
 
1150
1151	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1152
1153config CRYPTO_LZO
1154	tristate "LZO"
1155	select CRYPTO_ALGAPI
1156	select CRYPTO_ACOMP2
1157	select LZO_COMPRESS
1158	select LZO_DECOMPRESS
1159	help
1160	  LZO compression algorithm
1161
1162	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165	tristate "842"
1166	select CRYPTO_ALGAPI
1167	select CRYPTO_ACOMP2
1168	select 842_COMPRESS
1169	select 842_DECOMPRESS
1170	help
1171	  842 compression algorithm by IBM
1172
1173	  See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176	tristate "LZ4"
1177	select CRYPTO_ALGAPI
1178	select CRYPTO_ACOMP2
1179	select LZ4_COMPRESS
1180	select LZ4_DECOMPRESS
1181	help
1182	  LZ4 compression algorithm
1183
1184	  See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187	tristate "LZ4HC"
1188	select CRYPTO_ALGAPI
1189	select CRYPTO_ACOMP2
1190	select LZ4HC_COMPRESS
1191	select LZ4_DECOMPRESS
1192	help
1193	  LZ4 high compression mode algorithm
1194
1195	  See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198	tristate "Zstd"
1199	select CRYPTO_ALGAPI
1200	select CRYPTO_ACOMP2
1201	select ZSTD_COMPRESS
1202	select ZSTD_DECOMPRESS
1203	help
1204	  zstd compression algorithm
1205
1206	  See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1214	select CRYPTO_AES
1215	select CRYPTO_RNG
1216	help
1217	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219	  This uses the AES cipher algorithm.
1220
1221	  Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225	help
1226	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228	  In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233	bool
1234	default y
1235	select CRYPTO_HMAC
1236	select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239	bool "Hash_DRBG"
1240	select CRYPTO_SHA256
1241	help
1242	  Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247	bool "CTR_DRBG"
1248	select CRYPTO_AES
1249	select CRYPTO_CTR
1250	help
1251	  CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253	  This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256	tristate
1257	default CRYPTO_DRBG_MENU
1258	select CRYPTO_RNG
1259	select CRYPTO_JITTERENTROPY
1260
1261endif	# if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265	select CRYPTO_RNG
1266	select CRYPTO_SHA3
1267	help
1268	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271	  compliant with NIST SP800-90B) intended to provide a seed to a
1272	  deterministic RNG (e.g.  per NIST SP800-90C).
1273	  This RNG does not perform any cryptographic whitening of the generated
1274
1275	  See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281	prompt "CPU Jitter RNG Memory Size"
1282	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283	help
1284	  The Jitter RNG measures the execution time of memory accesses.
1285	  Multiple consecutive memory accesses are performed. If the memory
1286	  size fits into a cache (e.g. L1), only the memory access timing
1287	  to that cache is measured. The closer the cache is to the CPU
1288	  the less variations are measured and thus the less entropy is
1289	  obtained. Thus, if the memory size fits into the L1 cache, the
1290	  obtained entropy is less than if the memory size fits within
1291	  L1 + L2, which in turn is less if the memory fits into
1292	  L1 + L2 + L3. Thus, by selecting a different memory size,
1293	  the entropy rate produced by the Jitter RNG can be modified.
1294
1295	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296		bool "2048 Bytes (default)"
1297
1298	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299		bool "128 kBytes"
1300
1301	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302		bool "1024 kBytes"
1303
1304	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305		bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309	int
1310	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316	int
1317	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323	int "CPU Jitter RNG Oversampling Rate"
1324	range 1 15
1325	default 1
1326	help
1327	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1328	  The Jitter RNG operation requires a fixed amount of timing
1329	  measurements to produce one output block of random numbers. The
1330	  OSR value is multiplied with the amount of timing measurements to
1331	  generate one output block. Thus, the timing measurement is oversampled
1332	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1333	  on hardware whose timers deliver limited amount of entropy (e.g.
1334	  the timer is coarse) by setting the OSR to a higher value. The
1335	  trade-off, however, is that the Jitter RNG now requires more time
1336	  to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339	bool "CPU Jitter RNG Test Interface"
1340	help
1341	  The test interface allows a privileged process to capture
1342	  the raw unconditioned high resolution time stamp noise that
1343	  is collected by the Jitter RNG for statistical analysis. As
1344	  this data is used at the same time to generate random bits,
1345	  the Jitter RNG operates in an insecure mode as long as the
1346	  recording is enabled. This interface therefore is only
1347	  intended for testing purposes and is not suitable for
1348	  production systems.
1349
1350	  The raw noise data can be obtained using the jent_raw_hires
1351	  debugfs file. Using the option
1352	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353	  the first 1000 entropy events since boot can be sampled.
1354
1355	  If unsure, select N.
1356
1357endif	# if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362	int
1363	default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366	int
1367	default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370	int
1371	default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374	bool
1375
1376endif	# if !(CRYPTO_FIPS && EXPERT)
1377endif	# if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380	tristate
1381	select CRYPTO_HMAC
1382	select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388	tristate
1389
1390config CRYPTO_USER_API_HASH
1391	tristate "Hash algorithms"
1392	depends on NET
1393	select CRYPTO_HASH
1394	select CRYPTO_USER_API
1395	help
1396	  Enable the userspace interface for hash algorithms.
1397
1398	  See Documentation/crypto/userspace-if.rst and
1399	  https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402	tristate "Symmetric key cipher algorithms"
1403	depends on NET
1404	select CRYPTO_SKCIPHER
1405	select CRYPTO_USER_API
1406	help
1407	  Enable the userspace interface for symmetric key cipher algorithms.
1408
1409	  See Documentation/crypto/userspace-if.rst and
1410	  https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413	tristate "RNG (random number generator) algorithms"
1414	depends on NET
1415	select CRYPTO_RNG
1416	select CRYPTO_USER_API
1417	help
1418	  Enable the userspace interface for RNG (random number generator)
1419	  algorithms.
1420
1421	  See Documentation/crypto/userspace-if.rst and
1422	  https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425	bool "Enable CAVP testing of DRBG"
1426	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427	help
1428	  Enable extra APIs in the userspace interface for NIST CAVP
1429	  (Cryptographic Algorithm Validation Program) testing:
1430	  - resetting DRBG entropy
1431	  - providing Additional Data
1432
1433	  This should only be enabled for CAVP testing. You should say
1434	  no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437	tristate "AEAD cipher algorithms"
1438	depends on NET
1439	select CRYPTO_AEAD
1440	select CRYPTO_SKCIPHER
1441	select CRYPTO_NULL
1442	select CRYPTO_USER_API
1443	help
1444	  Enable the userspace interface for AEAD cipher algorithms.
1445
1446	  See Documentation/crypto/userspace-if.rst and
1447	  https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450	bool "Obsolete cryptographic algorithms"
1451	depends on CRYPTO_USER_API
1452	default y
1453	help
1454	  Allow obsolete cryptographic algorithms to be selected that have
1455	  already been phased out from internal use by the kernel, and are
1456	  only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459	bool "Crypto usage statistics"
1460	depends on CRYPTO_USER
1461	help
1462	  Enable the gathering of crypto stats.
1463
1464	  Enabling this option reduces the performance of the crypto API.  It
1465	  should only be enabled when there is actually a use case for it.
1466
1467	  This collects data sizes, numbers of requests, and numbers
1468	  of errors processed by:
1469	  - AEAD ciphers (encrypt, decrypt)
1470	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471	  - symmetric key ciphers (encrypt, decrypt)
1472	  - compression algorithms (compress, decompress)
1473	  - hash algorithms (hash)
1474	  - key-agreement protocol primitives (setsecret, generate
1475	    public key, compute shared secret)
1476	  - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481	bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif	# if CRYPTO
v5.14.15
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
 
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
 
 
 
 
 
 
 
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
 
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 124	select CRYPTO_AEAD2
 
 
 125	select CRYPTO_HASH2
 
 
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m || EXPERT
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_ENGINE
 214	tristate
 215
 216comment "Public-key cryptography"
 
 
 217
 218config CRYPTO_RSA
 219	tristate "RSA algorithm"
 220	select CRYPTO_AKCIPHER
 221	select CRYPTO_MANAGER
 222	select MPILIB
 223	select ASN1
 224	help
 225	  Generic implementation of the RSA public key algorithm.
 226
 227config CRYPTO_DH
 228	tristate "Diffie-Hellman algorithm"
 229	select CRYPTO_KPP
 230	select MPILIB
 231	help
 232	  Generic implementation of the Diffie-Hellman algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
 233
 234config CRYPTO_ECC
 235	tristate
 
 236
 237config CRYPTO_ECDH
 238	tristate "ECDH algorithm"
 239	select CRYPTO_ECC
 240	select CRYPTO_KPP
 241	select CRYPTO_RNG_DEFAULT
 242	help
 243	  Generic implementation of the ECDH algorithm
 
 244
 245config CRYPTO_ECDSA
 246	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
 247	select CRYPTO_ECC
 248	select CRYPTO_AKCIPHER
 249	select ASN1
 250	help
 251	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
 252	  is A NIST cryptographic standard algorithm. Only signature verification
 253	  is implemented.
 
 
 254
 255config CRYPTO_ECRDSA
 256	tristate "EC-RDSA (GOST 34.10) algorithm"
 257	select CRYPTO_ECC
 258	select CRYPTO_AKCIPHER
 259	select CRYPTO_STREEBOG
 260	select OID_REGISTRY
 261	select ASN1
 262	help
 263	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 264	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 265	  standard algorithms (called GOST algorithms). Only signature verification
 266	  is implemented.
 
 267
 268config CRYPTO_SM2
 269	tristate "SM2 algorithm"
 270	select CRYPTO_SM3
 271	select CRYPTO_AKCIPHER
 272	select CRYPTO_MANAGER
 273	select MPILIB
 274	select ASN1
 275	help
 276	  Generic implementation of the SM2 public key algorithm. It was
 277	  published by State Encryption Management Bureau, China.
 
 278	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 279
 280	  References:
 281	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
 282	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 283	  http://www.gmbz.org.cn/main/bzlb.html
 284
 285config CRYPTO_CURVE25519
 286	tristate "Curve25519 algorithm"
 287	select CRYPTO_KPP
 288	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290config CRYPTO_CURVE25519_X86
 291	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 292	depends on X86 && 64BIT
 293	select CRYPTO_LIB_CURVE25519_GENERIC
 294	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295
 296comment "Authenticated Encryption with Associated Data"
 
 297
 298config CRYPTO_CCM
 299	tristate "CCM support"
 300	select CRYPTO_CTR
 301	select CRYPTO_HASH
 302	select CRYPTO_AEAD
 303	select CRYPTO_MANAGER
 304	help
 305	  Support for Counter with CBC MAC. Required for IPsec.
 
 
 
 
 
 
 306
 307config CRYPTO_GCM
 308	tristate "GCM/GMAC support"
 309	select CRYPTO_CTR
 310	select CRYPTO_AEAD
 311	select CRYPTO_GHASH
 312	select CRYPTO_NULL
 313	select CRYPTO_MANAGER
 314	help
 315	  Support for Galois/Counter Mode (GCM) and Galois Message
 316	  Authentication Code (GMAC). Required for IPSec.
 317
 318config CRYPTO_CHACHA20POLY1305
 319	tristate "ChaCha20-Poly1305 AEAD support"
 320	select CRYPTO_CHACHA20
 321	select CRYPTO_POLY1305
 322	select CRYPTO_AEAD
 323	select CRYPTO_MANAGER
 324	help
 325	  ChaCha20-Poly1305 AEAD support, RFC7539.
 
 
 
 
 
 326
 327	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 328	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 329	  IETF protocols.
 330
 331config CRYPTO_AEGIS128
 332	tristate "AEGIS-128 AEAD algorithm"
 333	select CRYPTO_AEAD
 334	select CRYPTO_AES  # for AES S-box tables
 
 
 
 
 
 
 335	help
 336	 Support for the AEGIS-128 dedicated AEAD algorithm.
 337
 338config CRYPTO_AEGIS128_SIMD
 339	bool "Support SIMD acceleration for AEGIS-128"
 340	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 341	default y
 
 
 342
 343config CRYPTO_AEGIS128_AESNI_SSE2
 344	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 345	depends on X86 && 64BIT
 346	select CRYPTO_AEAD
 347	select CRYPTO_SIMD
 348	help
 349	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 
 
 350
 351config CRYPTO_SEQIV
 352	tristate "Sequence Number IV Generator"
 353	select CRYPTO_AEAD
 354	select CRYPTO_SKCIPHER
 355	select CRYPTO_NULL
 356	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	select CRYPTO_MANAGER
 358	help
 359	  This IV generator generates an IV based on a sequence number by
 360	  xoring it with a salt.  This algorithm is mainly useful for CTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361
 362config CRYPTO_ECHAINIV
 363	tristate "Encrypted Chain IV Generator"
 364	select CRYPTO_AEAD
 365	select CRYPTO_NULL
 366	select CRYPTO_RNG_DEFAULT
 367	select CRYPTO_MANAGER
 368	help
 369	  This IV generator generates an IV based on the encryption of
 370	  a sequence number xored with a salt.  This is the default
 371	  algorithm for CBC.
 372
 373comment "Block modes"
 
 
 
 374
 375config CRYPTO_CBC
 376	tristate "CBC support"
 
 377	select CRYPTO_SKCIPHER
 378	select CRYPTO_MANAGER
 379	help
 380	  CBC: Cipher Block Chaining mode
 381	  This block cipher algorithm is required for IPSec.
 
 
 
 
 382
 383config CRYPTO_CFB
 384	tristate "CFB support"
 
 
 
 
 
 
 
 
 
 
 385	select CRYPTO_SKCIPHER
 386	select CRYPTO_MANAGER
 387	help
 388	  CFB: Cipher FeedBack mode
 389	  This block cipher algorithm is required for TPM2 Cryptography.
 
 390
 391config CRYPTO_CTR
 392	tristate "CTR support"
 393	select CRYPTO_SKCIPHER
 394	select CRYPTO_MANAGER
 395	help
 396	  CTR: Counter mode
 397	  This block cipher algorithm is required for IPSec.
 398
 399config CRYPTO_CTS
 400	tristate "CTS support"
 401	select CRYPTO_SKCIPHER
 402	select CRYPTO_MANAGER
 403	help
 404	  CTS: Cipher Text Stealing
 405	  This is the Cipher Text Stealing mode as described by
 406	  Section 8 of rfc2040 and referenced by rfc3962
 407	  (rfc3962 includes errata information in its Appendix A) or
 408	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 409	  This mode is required for Kerberos gss mechanism support
 410	  for AES encryption.
 411
 412	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413
 414config CRYPTO_ECB
 415	tristate "ECB support"
 
 
 416	select CRYPTO_SKCIPHER
 417	select CRYPTO_MANAGER
 418	help
 419	  ECB: Electronic CodeBook mode
 420	  This is the simplest block cipher algorithm.  It simply encrypts
 421	  the input block by block.
 422
 423config CRYPTO_LRW
 424	tristate "LRW support"
 
 425	select CRYPTO_SKCIPHER
 426	select CRYPTO_MANAGER
 427	select CRYPTO_GF128MUL
 428	help
 429	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 
 
 430	  narrow block cipher mode for dm-crypt.  Use it with cipher
 431	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 432	  The first 128, 192 or 256 bits in the key are used for AES and the
 433	  rest is used to tie each cipher block to its logical position.
 434
 435config CRYPTO_OFB
 436	tristate "OFB support"
 
 
 437	select CRYPTO_SKCIPHER
 438	select CRYPTO_MANAGER
 439	help
 440	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 441	  stream cipher. It generates keystream blocks, which are then XORed
 442	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 443	  ciphertext produces a flipped bit in the plaintext at the same
 444	  location. This property allows many error correcting codes to function
 445	  normally even when applied before encryption.
 446
 447config CRYPTO_PCBC
 448	tristate "PCBC support"
 449	select CRYPTO_SKCIPHER
 450	select CRYPTO_MANAGER
 451	help
 452	  PCBC: Propagating Cipher Block Chaining mode
 453	  This block cipher algorithm is required for RxRPC.
 
 
 
 
 454
 455config CRYPTO_XTS
 456	tristate "XTS support"
 457	select CRYPTO_SKCIPHER
 458	select CRYPTO_MANAGER
 459	select CRYPTO_ECB
 460	help
 461	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 462	  key size 256, 384 or 512 bits. This implementation currently
 463	  can't handle a sectorsize which is not a multiple of 16 bytes.
 464
 465config CRYPTO_KEYWRAP
 466	tristate "Key wrapping support"
 467	select CRYPTO_SKCIPHER
 468	select CRYPTO_MANAGER
 469	help
 470	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 471	  padding.
 472
 473config CRYPTO_NHPOLY1305
 474	tristate
 475	select CRYPTO_HASH
 476	select CRYPTO_LIB_POLY1305_GENERIC
 477
 478config CRYPTO_NHPOLY1305_SSE2
 479	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 480	depends on X86 && 64BIT
 481	select CRYPTO_NHPOLY1305
 
 
 
 
 482	help
 483	  SSE2 optimized implementation of the hash function used by the
 484	  Adiantum encryption mode.
 485
 486config CRYPTO_NHPOLY1305_AVX2
 487	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 488	depends on X86 && 64BIT
 489	select CRYPTO_NHPOLY1305
 490	help
 491	  AVX2 optimized implementation of the hash function used by the
 492	  Adiantum encryption mode.
 493
 494config CRYPTO_ADIANTUM
 495	tristate "Adiantum support"
 
 
 
 496	select CRYPTO_CHACHA20
 497	select CRYPTO_LIB_POLY1305_GENERIC
 498	select CRYPTO_NHPOLY1305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499	select CRYPTO_MANAGER
 
 
 
 
 
 500	help
 501	  Adiantum is a tweakable, length-preserving encryption mode
 502	  designed for fast and secure disk encryption, especially on
 503	  CPUs without dedicated crypto instructions.  It encrypts
 504	  each sector using the XChaCha12 stream cipher, two passes of
 505	  an ε-almost-∆-universal hash function, and an invocation of
 506	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 507	  without AES instructions, Adiantum is much faster than
 508	  AES-XTS.
 509
 510	  Adiantum's security is provably reducible to that of its
 511	  underlying stream and block ciphers, subject to a security
 512	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 513	  mode, so it actually provides an even stronger notion of
 514	  security than XTS, subject to the security bound.
 515
 516	  If unsure, say N.
 
 
 517
 518config CRYPTO_ESSIV
 519	tristate "ESSIV support for block encryption"
 520	select CRYPTO_AUTHENC
 521	help
 522	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 523	  generation method that is used in some cases by fscrypt and/or
 
 524	  dm-crypt. It uses the hash of the block encryption key as the
 525	  symmetric key for a block encryption pass applied to the input
 526	  IV, making low entropy IV sources more suitable for block
 527	  encryption.
 528
 529	  This driver implements a crypto API template that can be
 530	  instantiated either as an skcipher or as an AEAD (depending on the
 531	  type of the first template argument), and which defers encryption
 532	  and decryption requests to the encapsulated cipher after applying
 533	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 534	  that the keys are presented in the same format used by the authenc
 535	  template, and that the IV appears at the end of the authenticated
 536	  associated data (AAD) region (which is how dm-crypt uses it.)
 537
 538	  Note that the use of ESSIV is not recommended for new deployments,
 539	  and so this only needs to be enabled when interoperability with
 540	  existing encrypted volumes of filesystems is required, or when
 541	  building for a particular system that requires it (e.g., when
 542	  the SoC in question has accelerated CBC but not XTS, making CBC
 543	  combined with ESSIV the only feasible mode for h/w accelerated
 544	  block encryption)
 545
 546comment "Hash modes"
 547
 548config CRYPTO_CMAC
 549	tristate "CMAC support"
 550	select CRYPTO_HASH
 551	select CRYPTO_MANAGER
 552	help
 553	  Cipher-based Message Authentication Code (CMAC) specified by
 554	  The National Institute of Standards and Technology (NIST).
 555
 556	  https://tools.ietf.org/html/rfc4493
 557	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 558
 559config CRYPTO_HMAC
 560	tristate "HMAC support"
 561	select CRYPTO_HASH
 562	select CRYPTO_MANAGER
 563	help
 564	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 565	  This is required for IPSec.
 566
 567config CRYPTO_XCBC
 568	tristate "XCBC support"
 569	select CRYPTO_HASH
 570	select CRYPTO_MANAGER
 571	help
 572	  XCBC: Keyed-Hashing with encryption algorithm
 573		https://www.ietf.org/rfc/rfc3566.txt
 574		http://csrc.nist.gov/encryption/modes/proposedmodes/
 575		 xcbc-mac/xcbc-mac-spec.pdf
 576
 577config CRYPTO_VMAC
 578	tristate "VMAC support"
 579	select CRYPTO_HASH
 580	select CRYPTO_MANAGER
 581	help
 582	  VMAC is a message authentication algorithm designed for
 583	  very high speed on 64-bit architectures.
 584
 585	  See also:
 586	  <https://fastcrypto.org/vmac>
 587
 588comment "Digest"
 589
 590config CRYPTO_CRC32C
 591	tristate "CRC32c CRC algorithm"
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 596	  by iSCSI for header and data digests and by others.
 597	  See Castagnoli93.  Module will be crc32c.
 598
 599config CRYPTO_CRC32C_INTEL
 600	tristate "CRC32c INTEL hardware acceleration"
 601	depends on X86
 602	select CRYPTO_HASH
 603	help
 604	  In Intel processor with SSE4.2 supported, the processor will
 605	  support CRC32C implementation using hardware accelerated CRC32
 606	  instruction. This option will create 'crc32c-intel' module,
 607	  which will enable any routine to use the CRC32 instruction to
 608	  gain performance compared with software implementation.
 609	  Module will be crc32c-intel.
 610
 611config CRYPTO_CRC32C_VPMSUM
 612	tristate "CRC32c CRC algorithm (powerpc64)"
 613	depends on PPC64 && ALTIVEC
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  CRC32c algorithm implemented using vector polynomial multiply-sum
 618	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 619	  and newer processors for improved performance.
 620
 621
 622config CRYPTO_CRC32C_SPARC64
 623	tristate "CRC32c CRC algorithm (SPARC64)"
 624	depends on SPARC64
 625	select CRYPTO_HASH
 626	select CRC32
 627	help
 628	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 629	  when available.
 630
 631config CRYPTO_CRC32
 632	tristate "CRC32 CRC algorithm"
 633	select CRYPTO_HASH
 634	select CRC32
 635	help
 636	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 637	  Shash crypto api wrappers to crc32_le function.
 638
 639config CRYPTO_CRC32_PCLMUL
 640	tristate "CRC32 PCLMULQDQ hardware acceleration"
 641	depends on X86
 642	select CRYPTO_HASH
 643	select CRC32
 644	help
 645	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 646	  and PCLMULQDQ supported, the processor will support
 647	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 648	  instruction. This option will create 'crc32-pclmul' module,
 649	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 650	  and gain better performance as compared with the table implementation.
 651
 652config CRYPTO_CRC32_MIPS
 653	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 654	depends on MIPS_CRC_SUPPORT
 655	select CRYPTO_HASH
 656	help
 657	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 658	  instructions, when available.
 659
 660
 661config CRYPTO_XXHASH
 662	tristate "xxHash hash algorithm"
 663	select CRYPTO_HASH
 664	select XXHASH
 665	help
 666	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 667	  speeds close to RAM limits.
 668
 669config CRYPTO_BLAKE2B
 670	tristate "BLAKE2b digest algorithm"
 671	select CRYPTO_HASH
 672	help
 673	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 674	  optimized for 64bit platforms and can produce digests of any size
 675	  between 1 to 64.  The keyed hash is also implemented.
 676
 677	  This module provides the following algorithms:
 678
 679	  - blake2b-160
 680	  - blake2b-256
 681	  - blake2b-384
 682	  - blake2b-512
 683
 684	  See https://blake2.net for further information.
 685
 686config CRYPTO_BLAKE2S
 687	tristate "BLAKE2s digest algorithm"
 688	select CRYPTO_LIB_BLAKE2S_GENERIC
 689	select CRYPTO_HASH
 690	help
 691	  Implementation of cryptographic hash function BLAKE2s
 692	  optimized for 8-32bit platforms and can produce digests of any size
 693	  between 1 to 32.  The keyed hash is also implemented.
 694
 695	  This module provides the following algorithms:
 696
 697	  - blake2s-128
 698	  - blake2s-160
 699	  - blake2s-224
 700	  - blake2s-256
 701
 702	  See https://blake2.net for further information.
 703
 704config CRYPTO_BLAKE2S_X86
 705	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 706	depends on X86 && 64BIT
 707	select CRYPTO_LIB_BLAKE2S_GENERIC
 708	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 709
 710config CRYPTO_CRCT10DIF
 711	tristate "CRCT10DIF algorithm"
 712	select CRYPTO_HASH
 713	help
 714	  CRC T10 Data Integrity Field computation is being cast as
 715	  a crypto transform.  This allows for faster crc t10 diff
 716	  transforms to be used if they are available.
 717
 718config CRYPTO_CRCT10DIF_PCLMUL
 719	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 720	depends on X86 && 64BIT && CRC_T10DIF
 721	select CRYPTO_HASH
 722	help
 723	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 724	  CRC T10 DIF PCLMULQDQ computation can be hardware
 725	  accelerated PCLMULQDQ instruction. This option will create
 726	  'crct10dif-pclmul' module, which is faster when computing the
 727	  crct10dif checksum as compared with the generic table implementation.
 728
 729config CRYPTO_CRCT10DIF_VPMSUM
 730	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 731	depends on PPC64 && ALTIVEC && CRC_T10DIF
 732	select CRYPTO_HASH
 
 733	help
 734	  CRC10T10DIF algorithm implemented using vector polynomial
 735	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 736	  POWER8 and newer processors for improved performance.
 737
 738config CRYPTO_VPMSUM_TESTER
 739	tristate "Powerpc64 vpmsum hardware acceleration tester"
 740	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 741	help
 742	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 743	  POWER8 vpmsum instructions.
 744	  Unless you are testing these algorithms, you don't need this.
 745
 746config CRYPTO_GHASH
 747	tristate "GHASH hash function"
 748	select CRYPTO_GF128MUL
 749	select CRYPTO_HASH
 
 750	help
 751	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 752	  It is not a general-purpose cryptographic hash function.
 753
 754config CRYPTO_POLY1305
 755	tristate "Poly1305 authenticator algorithm"
 756	select CRYPTO_HASH
 757	select CRYPTO_LIB_POLY1305_GENERIC
 758	help
 759	  Poly1305 authenticator algorithm, RFC7539.
 760
 761	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 762	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 763	  in IETF protocols. This is the portable C implementation of Poly1305.
 764
 765config CRYPTO_POLY1305_X86_64
 766	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 767	depends on X86 && 64BIT
 768	select CRYPTO_LIB_POLY1305_GENERIC
 769	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 770	help
 771	  Poly1305 authenticator algorithm, RFC7539.
 
 772
 773	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 774	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 775	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 776	  instructions.
 777
 778config CRYPTO_POLY1305_MIPS
 779	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 780	depends on MIPS
 781	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 782
 783config CRYPTO_MD4
 784	tristate "MD4 digest algorithm"
 785	select CRYPTO_HASH
 786	help
 787	  MD4 message digest algorithm (RFC1320).
 788
 789config CRYPTO_MD5
 790	tristate "MD5 digest algorithm"
 791	select CRYPTO_HASH
 792	help
 793	  MD5 message digest algorithm (RFC1321).
 794
 795config CRYPTO_MD5_OCTEON
 796	tristate "MD5 digest algorithm (OCTEON)"
 797	depends on CPU_CAVIUM_OCTEON
 798	select CRYPTO_MD5
 799	select CRYPTO_HASH
 800	help
 801	  MD5 message digest algorithm (RFC1321) implemented
 802	  using OCTEON crypto instructions, when available.
 
 
 
 
 
 803
 804config CRYPTO_MD5_PPC
 805	tristate "MD5 digest algorithm (PPC)"
 806	depends on PPC
 807	select CRYPTO_HASH
 
 808	help
 809	  MD5 message digest algorithm (RFC1321) implemented
 810	  in PPC assembler.
 
 
 811
 812config CRYPTO_MD5_SPARC64
 813	tristate "MD5 digest algorithm (SPARC64)"
 814	depends on SPARC64
 815	select CRYPTO_MD5
 816	select CRYPTO_HASH
 
 817	help
 818	  MD5 message digest algorithm (RFC1321) implemented
 819	  using sparc64 crypto instructions, when available.
 820
 821config CRYPTO_MICHAEL_MIC
 822	tristate "Michael MIC keyed digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  Michael MIC is used for message integrity protection in TKIP
 826	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 827	  should not be used for other purposes because of the weakness
 828	  of the algorithm.
 829
 830config CRYPTO_RMD160
 831	tristate "RIPEMD-160 digest algorithm"
 832	select CRYPTO_HASH
 833	help
 834	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 835
 836	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 837	  to be used as a secure replacement for the 128-bit hash functions
 838	  MD4, MD5 and it's predecessor RIPEMD
 839	  (not to be confused with RIPEMD-128).
 840
 841	  It's speed is comparable to SHA1 and there are no known attacks
 842	  against RIPEMD-160.
 843
 844	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 845	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 846
 847config CRYPTO_SHA1
 848	tristate "SHA1 digest algorithm"
 849	select CRYPTO_HASH
 850	help
 851	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 852
 853config CRYPTO_SHA1_SSSE3
 854	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 855	depends on X86 && 64BIT
 856	select CRYPTO_SHA1
 857	select CRYPTO_HASH
 858	help
 859	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 860	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 861	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 862	  when available.
 863
 864config CRYPTO_SHA256_SSSE3
 865	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 866	depends on X86 && 64BIT
 867	select CRYPTO_SHA256
 868	select CRYPTO_HASH
 869	help
 870	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 871	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 872	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 873	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 874	  Instructions) when available.
 875
 876config CRYPTO_SHA512_SSSE3
 877	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 878	depends on X86 && 64BIT
 879	select CRYPTO_SHA512
 880	select CRYPTO_HASH
 881	help
 882	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 883	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 884	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 885	  version 2 (AVX2) instructions, when available.
 886
 887config CRYPTO_SHA1_OCTEON
 888	tristate "SHA1 digest algorithm (OCTEON)"
 889	depends on CPU_CAVIUM_OCTEON
 890	select CRYPTO_SHA1
 891	select CRYPTO_HASH
 892	help
 893	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 894	  using OCTEON crypto instructions, when available.
 895
 896config CRYPTO_SHA1_SPARC64
 897	tristate "SHA1 digest algorithm (SPARC64)"
 898	depends on SPARC64
 899	select CRYPTO_SHA1
 900	select CRYPTO_HASH
 
 901	help
 902	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 903	  using sparc64 crypto instructions, when available.
 904
 905config CRYPTO_SHA1_PPC
 906	tristate "SHA1 digest algorithm (powerpc)"
 907	depends on PPC
 908	help
 909	  This is the powerpc hardware accelerated implementation of the
 910	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 911
 912config CRYPTO_SHA1_PPC_SPE
 913	tristate "SHA1 digest algorithm (PPC SPE)"
 914	depends on PPC && SPE
 915	help
 916	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 917	  using powerpc SPE SIMD instruction set.
 918
 919config CRYPTO_SHA256
 920	tristate "SHA224 and SHA256 digest algorithm"
 921	select CRYPTO_HASH
 922	select CRYPTO_LIB_SHA256
 923	help
 924	  SHA256 secure hash standard (DFIPS 180-2).
 925
 926	  This version of SHA implements a 256 bit hash with 128 bits of
 927	  security against collision attacks.
 928
 929	  This code also includes SHA-224, a 224 bit hash with 112 bits
 930	  of security against collision attacks.
 931
 932config CRYPTO_SHA256_PPC_SPE
 933	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 934	depends on PPC && SPE
 935	select CRYPTO_SHA256
 936	select CRYPTO_HASH
 937	help
 938	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 939	  implemented using powerpc SPE SIMD instruction set.
 940
 941config CRYPTO_SHA256_OCTEON
 942	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 943	depends on CPU_CAVIUM_OCTEON
 944	select CRYPTO_SHA256
 945	select CRYPTO_HASH
 946	help
 947	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 948	  using OCTEON crypto instructions, when available.
 949
 950config CRYPTO_SHA256_SPARC64
 951	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 952	depends on SPARC64
 953	select CRYPTO_SHA256
 954	select CRYPTO_HASH
 955	help
 956	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 957	  using sparc64 crypto instructions, when available.
 958
 959config CRYPTO_SHA512
 960	tristate "SHA384 and SHA512 digest algorithms"
 961	select CRYPTO_HASH
 962	help
 963	  SHA512 secure hash standard (DFIPS 180-2).
 964
 965	  This version of SHA implements a 512 bit hash with 256 bits of
 966	  security against collision attacks.
 967
 968	  This code also includes SHA-384, a 384 bit hash with 192 bits
 969	  of security against collision attacks.
 970
 971config CRYPTO_SHA512_OCTEON
 972	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 973	depends on CPU_CAVIUM_OCTEON
 974	select CRYPTO_SHA512
 975	select CRYPTO_HASH
 976	help
 977	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 978	  using OCTEON crypto instructions, when available.
 979
 980config CRYPTO_SHA512_SPARC64
 981	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 982	depends on SPARC64
 983	select CRYPTO_SHA512
 984	select CRYPTO_HASH
 985	help
 986	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 987	  using sparc64 crypto instructions, when available.
 988
 989config CRYPTO_SHA3
 990	tristate "SHA3 digest algorithm"
 991	select CRYPTO_HASH
 
 992	help
 993	  SHA-3 secure hash standard (DFIPS 202). It's based on
 994	  cryptographic sponge function family called Keccak.
 995
 996	  References:
 997	  http://keccak.noekeon.org/
 998
 999config CRYPTO_SM3
1000	tristate "SM3 digest algorithm"
1001	select CRYPTO_HASH
1002	help
1003	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004	  It is part of the Chinese Commercial Cryptography suite.
1005
1006	  References:
1007	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011	tristate "Streebog Hash Function"
1012	select CRYPTO_HASH
1013	help
1014	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015	  cryptographic standard algorithms (called GOST algorithms).
1016	  This setting enables two hash algorithms with 256 and 512 bits output.
 
 
1017
1018	  References:
1019	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020	  https://tools.ietf.org/html/rfc6986
1021
1022config CRYPTO_WP512
1023	tristate "Whirlpool digest algorithms"
1024	select CRYPTO_HASH
 
1025	help
1026	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 
1027
1028	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031	  See also:
1032	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035	tristate "GHASH hash function (CLMUL-NI accelerated)"
1036	depends on X86 && 64BIT
1037	select CRYPTO_CRYPTD
1038	help
1039	  This is the x86_64 CLMUL-NI accelerated implementation of
1040	  GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045	tristate "AES cipher algorithms"
1046	select CRYPTO_ALGAPI
1047	select CRYPTO_LIB_AES
1048	help
1049	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050	  algorithm.
1051
1052	  Rijndael appears to be consistently a very good performer in
1053	  both hardware and software across a wide range of computing
1054	  environments regardless of its use in feedback or non-feedback
1055	  modes. Its key setup time is excellent, and its key agility is
1056	  good. Rijndael's very low memory requirements make it very well
1057	  suited for restricted-space environments, in which it also
1058	  demonstrates excellent performance. Rijndael's operations are
1059	  among the easiest to defend against power and timing attacks.
1060
1061	  The AES specifies three key sizes: 128, 192 and 256 bits
 
1062
1063	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066	tristate "Fixed time AES cipher"
1067	select CRYPTO_ALGAPI
1068	select CRYPTO_LIB_AES
1069	help
1070	  This is a generic implementation of AES that attempts to eliminate
1071	  data dependent latencies as much as possible without affecting
1072	  performance too much. It is intended for use by the generic CCM
1073	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074	  solely on encryption (although decryption is supported as well, but
1075	  with a more dramatic performance hit)
1076
1077	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078	  8 for decryption), this implementation only uses just two S-boxes of
1079	  256 bytes each, and attempts to eliminate data dependent latencies by
1080	  prefetching the entire table into the cache at the start of each
1081	  block. Interrupts are also disabled to avoid races where cachelines
1082	  are evicted when the CPU is interrupted to do something else.
1083
1084config CRYPTO_AES_NI_INTEL
1085	tristate "AES cipher algorithms (AES-NI)"
1086	depends on X86
1087	select CRYPTO_AEAD
1088	select CRYPTO_LIB_AES
1089	select CRYPTO_ALGAPI
1090	select CRYPTO_SKCIPHER
1091	select CRYPTO_SIMD
1092	help
1093	  Use Intel AES-NI instructions for AES algorithm.
1094
1095	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096	  algorithm.
1097
1098	  Rijndael appears to be consistently a very good performer in
1099	  both hardware and software across a wide range of computing
1100	  environments regardless of its use in feedback or non-feedback
1101	  modes. Its key setup time is excellent, and its key agility is
1102	  good. Rijndael's very low memory requirements make it very well
1103	  suited for restricted-space environments, in which it also
1104	  demonstrates excellent performance. Rijndael's operations are
1105	  among the easiest to defend against power and timing attacks.
1106
1107	  The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111	  In addition to AES cipher algorithm support, the acceleration
1112	  for some popular block cipher mode is supported too, including
1113	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1114	  acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117	tristate "AES cipher algorithms (SPARC64)"
1118	depends on SPARC64
1119	select CRYPTO_SKCIPHER
1120	help
1121	  Use SPARC64 crypto opcodes for AES algorithm.
1122
1123	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124	  algorithm.
 
 
 
1125
1126	  Rijndael appears to be consistently a very good performer in
1127	  both hardware and software across a wide range of computing
1128	  environments regardless of its use in feedback or non-feedback
1129	  modes. Its key setup time is excellent, and its key agility is
1130	  good. Rijndael's very low memory requirements make it very well
1131	  suited for restricted-space environments, in which it also
1132	  demonstrates excellent performance. Rijndael's operations are
1133	  among the easiest to defend against power and timing attacks.
1134
1135	  The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139	  In addition to AES cipher algorithm support, the acceleration
1140	  for some popular block cipher mode is supported too, including
1141	  ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144	tristate "AES cipher algorithms (PPC SPE)"
1145	depends on PPC && SPE
1146	select CRYPTO_SKCIPHER
1147	help
1148	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1149	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150	  This module should only be used for low power (router) devices
1151	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1152	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153	  timining attacks. Nevertheless it might be not as secure as other
1154	  architecture specific assembler implementations that work on 1KB
1155	  tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158	tristate "Anubis cipher algorithm"
1159	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160	select CRYPTO_ALGAPI
1161	help
1162	  Anubis cipher algorithm.
1163
1164	  Anubis is a variable key length cipher which can use keys from
1165	  128 bits to 320 bits in length.  It was evaluated as a entrant
1166	  in the NESSIE competition.
1167
1168	  See also:
1169	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173	tristate "ARC4 cipher algorithm"
1174	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175	select CRYPTO_SKCIPHER
1176	select CRYPTO_LIB_ARC4
1177	help
1178	  ARC4 cipher algorithm.
1179
1180	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181	  bits in length.  This algorithm is required for driver-based
1182	  WEP, but it should not be for other purposes because of the
1183	  weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186	tristate "Blowfish cipher algorithm"
1187	select CRYPTO_ALGAPI
1188	select CRYPTO_BLOWFISH_COMMON
1189	help
1190	  Blowfish cipher algorithm, by Bruce Schneier.
1191
1192	  This is a variable key length cipher which can use keys from 32
1193	  bits to 448 bits in length.  It's fast, simple and specifically
1194	  designed for use on "large microprocessors".
1195
1196	  See also:
1197	  <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200	tristate
1201	help
1202	  Common parts of the Blowfish cipher algorithm shared by the
1203	  generic c and the assembler implementations.
1204
1205	  See also:
1206	  <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209	tristate "Blowfish cipher algorithm (x86_64)"
1210	depends on X86 && 64BIT
1211	select CRYPTO_SKCIPHER
1212	select CRYPTO_BLOWFISH_COMMON
1213	imply CRYPTO_CTR
1214	help
1215	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217	  This is a variable key length cipher which can use keys from 32
1218	  bits to 448 bits in length.  It's fast, simple and specifically
1219	  designed for use on "large microprocessors".
1220
1221	  See also:
1222	  <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225	tristate "Camellia cipher algorithms"
1226	select CRYPTO_ALGAPI
1227	help
1228	  Camellia cipher algorithms module.
1229
1230	  Camellia is a symmetric key block cipher developed jointly
1231	  at NTT and Mitsubishi Electric Corporation.
1232
1233	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235	  See also:
1236	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239	tristate "Camellia cipher algorithm (x86_64)"
1240	depends on X86 && 64BIT
1241	select CRYPTO_SKCIPHER
1242	imply CRYPTO_CTR
1243	help
1244	  Camellia cipher algorithm module (x86_64).
1245
1246	  Camellia is a symmetric key block cipher developed jointly
1247	  at NTT and Mitsubishi Electric Corporation.
1248
1249	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251	  See also:
1252	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256	depends on X86 && 64BIT
1257	select CRYPTO_SKCIPHER
1258	select CRYPTO_CAMELLIA_X86_64
1259	select CRYPTO_SIMD
1260	imply CRYPTO_XTS
1261	help
1262	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264	  Camellia is a symmetric key block cipher developed jointly
1265	  at NTT and Mitsubishi Electric Corporation.
1266
1267	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269	  See also:
1270	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274	depends on X86 && 64BIT
1275	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276	help
1277	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279	  Camellia is a symmetric key block cipher developed jointly
1280	  at NTT and Mitsubishi Electric Corporation.
1281
1282	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284	  See also:
1285	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288	tristate "Camellia cipher algorithm (SPARC64)"
1289	depends on SPARC64
1290	select CRYPTO_ALGAPI
1291	select CRYPTO_SKCIPHER
1292	help
1293	  Camellia cipher algorithm module (SPARC64).
1294
1295	  Camellia is a symmetric key block cipher developed jointly
1296	  at NTT and Mitsubishi Electric Corporation.
1297
1298	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300	  See also:
1301	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304	tristate
1305	help
1306	  Common parts of the CAST cipher algorithms shared by the
1307	  generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310	tristate "CAST5 (CAST-128) cipher algorithm"
1311	select CRYPTO_ALGAPI
1312	select CRYPTO_CAST_COMMON
1313	help
1314	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1315	  described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319	depends on X86 && 64BIT
1320	select CRYPTO_SKCIPHER
1321	select CRYPTO_CAST5
1322	select CRYPTO_CAST_COMMON
1323	select CRYPTO_SIMD
1324	imply CRYPTO_CTR
1325	help
1326	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1327	  described in RFC2144.
1328
1329	  This module provides the Cast5 cipher algorithm that processes
1330	  sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333	tristate "CAST6 (CAST-256) cipher algorithm"
1334	select CRYPTO_ALGAPI
1335	select CRYPTO_CAST_COMMON
1336	help
1337	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1338	  described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342	depends on X86 && 64BIT
1343	select CRYPTO_SKCIPHER
1344	select CRYPTO_CAST6
1345	select CRYPTO_CAST_COMMON
1346	select CRYPTO_SIMD
1347	imply CRYPTO_XTS
1348	imply CRYPTO_CTR
1349	help
1350	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1351	  described in RFC2612.
1352
1353	  This module provides the Cast6 cipher algorithm that processes
1354	  eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357	tristate "DES and Triple DES EDE cipher algorithms"
1358	select CRYPTO_ALGAPI
1359	select CRYPTO_LIB_DES
1360	help
1361	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365	depends on SPARC64
1366	select CRYPTO_ALGAPI
1367	select CRYPTO_LIB_DES
1368	select CRYPTO_SKCIPHER
1369	help
1370	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371	  optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374	tristate "Triple DES EDE cipher algorithm (x86-64)"
1375	depends on X86 && 64BIT
1376	select CRYPTO_SKCIPHER
1377	select CRYPTO_LIB_DES
1378	imply CRYPTO_CTR
1379	help
1380	  Triple DES EDE (FIPS 46-3) algorithm.
1381
1382	  This module provides implementation of the Triple DES EDE cipher
1383	  algorithm that is optimized for x86-64 processors. Two versions of
1384	  algorithm are provided; regular processing one input block and
1385	  one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388	tristate "FCrypt cipher algorithm"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_SKCIPHER
1391	help
1392	  FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395	tristate "Khazad cipher algorithm"
1396	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397	select CRYPTO_ALGAPI
1398	help
1399	  Khazad cipher algorithm.
1400
1401	  Khazad was a finalist in the initial NESSIE competition.  It is
1402	  an algorithm optimized for 64-bit processors with good performance
1403	  on 32-bit processors.  Khazad uses an 128 bit key size.
1404
1405	  See also:
1406	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
1408config CRYPTO_CHACHA20
1409	tristate "ChaCha stream cipher algorithms"
1410	select CRYPTO_LIB_CHACHA_GENERIC
1411	select CRYPTO_SKCIPHER
1412	help
1413	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1417	  This is the portable C implementation of ChaCha20.  See also:
1418	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1422	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423	  while provably retaining ChaCha20's security.  See also:
1424	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427	  reduced security margin but increased performance.  It can be needed
1428	  in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432	depends on X86 && 64BIT
1433	select CRYPTO_SKCIPHER
1434	select CRYPTO_LIB_CHACHA_GENERIC
1435	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436	help
1437	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438	  XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442	depends on CPU_MIPS32_R2
1443	select CRYPTO_SKCIPHER
1444	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447	tristate "SEED cipher algorithm"
1448	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449	select CRYPTO_ALGAPI
1450	help
1451	  SEED cipher algorithm (RFC4269).
1452
1453	  SEED is a 128-bit symmetric key block cipher that has been
1454	  developed by KISA (Korea Information Security Agency) as a
1455	  national standard encryption algorithm of the Republic of Korea.
1456	  It is a 16 round block cipher with the key size of 128 bit.
1457
1458	  See also:
1459	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462	tristate "Serpent cipher algorithm"
1463	select CRYPTO_ALGAPI
1464	help
1465	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467	  Keys are allowed to be from 0 to 256 bits in length, in steps
1468	  of 8 bits.
1469
1470	  See also:
1471	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475	depends on X86 && 64BIT
1476	select CRYPTO_SKCIPHER
1477	select CRYPTO_SERPENT
1478	select CRYPTO_SIMD
1479	imply CRYPTO_CTR
1480	help
1481	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484	  of 8 bits.
1485
1486	  This module provides Serpent cipher algorithm that processes eight
1487	  blocks parallel using SSE2 instruction set.
1488
1489	  See also:
1490	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493	tristate "Serpent cipher algorithm (i586/SSE2)"
1494	depends on X86 && !64BIT
1495	select CRYPTO_SKCIPHER
1496	select CRYPTO_SERPENT
1497	select CRYPTO_SIMD
1498	imply CRYPTO_CTR
1499	help
1500	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502	  Keys are allowed to be from 0 to 256 bits in length, in steps
1503	  of 8 bits.
1504
1505	  This module provides Serpent cipher algorithm that processes four
1506	  blocks parallel using SSE2 instruction set.
1507
1508	  See also:
1509	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512	tristate "Serpent cipher algorithm (x86_64/AVX)"
1513	depends on X86 && 64BIT
1514	select CRYPTO_SKCIPHER
1515	select CRYPTO_SERPENT
1516	select CRYPTO_SIMD
1517	imply CRYPTO_XTS
1518	imply CRYPTO_CTR
1519	help
1520	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522	  Keys are allowed to be from 0 to 256 bits in length, in steps
1523	  of 8 bits.
1524
1525	  This module provides the Serpent cipher algorithm that processes
1526	  eight blocks parallel using the AVX instruction set.
1527
1528	  See also:
1529	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_SERPENT_AVX_X86_64
1535	help
1536	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538	  Keys are allowed to be from 0 to 256 bits in length, in steps
1539	  of 8 bits.
1540
1541	  This module provides Serpent cipher algorithm that processes 16
1542	  blocks parallel using AVX2 instruction set.
1543
1544	  See also:
1545	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548	tristate "SM4 cipher algorithm"
1549	select CRYPTO_ALGAPI
1550	help
1551	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554	  Organization of State Commercial Administration of China (OSCCA)
1555	  as an authorized cryptographic algorithms for the use within China.
1556
1557	  SMS4 was originally created for use in protecting wireless
1558	  networks, and is mandated in the Chinese National Standard for
1559	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560	  (GB.15629.11-2003).
1561
1562	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563	  standardized through TC 260 of the Standardization Administration
1564	  of the People's Republic of China (SAC).
1565
1566	  The input, output, and key of SMS4 are each 128 bits.
1567
1568	  See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570	  If unsure, say N.
1571
1572config CRYPTO_TEA
1573	tristate "TEA, XTEA and XETA cipher algorithms"
1574	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575	select CRYPTO_ALGAPI
1576	help
1577	  TEA cipher algorithm.
1578
1579	  Tiny Encryption Algorithm is a simple cipher that uses
1580	  many rounds for security.  It is very fast and uses
1581	  little memory.
1582
1583	  Xtendend Tiny Encryption Algorithm is a modification to
1584	  the TEA algorithm to address a potential key weakness
1585	  in the TEA algorithm.
1586
1587	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1588	  of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591	tristate "Twofish cipher algorithm"
1592	select CRYPTO_ALGAPI
1593	select CRYPTO_TWOFISH_COMMON
1594	help
1595	  Twofish cipher algorithm.
1596
1597	  Twofish was submitted as an AES (Advanced Encryption Standard)
1598	  candidate cipher by researchers at CounterPane Systems.  It is a
1599	  16 round block cipher supporting key sizes of 128, 192, and 256
1600	  bits.
1601
1602	  See also:
1603	  <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606	tristate
1607	help
1608	  Common parts of the Twofish cipher algorithm shared by the
1609	  generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612	tristate "Twofish cipher algorithms (i586)"
1613	depends on (X86 || UML_X86) && !64BIT
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_TWOFISH_COMMON
1616	imply CRYPTO_CTR
1617	help
1618	  Twofish cipher algorithm.
1619
1620	  Twofish was submitted as an AES (Advanced Encryption Standard)
1621	  candidate cipher by researchers at CounterPane Systems.  It is a
1622	  16 round block cipher supporting key sizes of 128, 192, and 256
1623	  bits.
1624
1625	  See also:
1626	  <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629	tristate "Twofish cipher algorithm (x86_64)"
1630	depends on (X86 || UML_X86) && 64BIT
1631	select CRYPTO_ALGAPI
1632	select CRYPTO_TWOFISH_COMMON
1633	imply CRYPTO_CTR
1634	help
1635	  Twofish cipher algorithm (x86_64).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647	depends on X86 && 64BIT
1648	select CRYPTO_SKCIPHER
1649	select CRYPTO_TWOFISH_COMMON
1650	select CRYPTO_TWOFISH_X86_64
1651	help
1652	  Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654	  Twofish was submitted as an AES (Advanced Encryption Standard)
1655	  candidate cipher by researchers at CounterPane Systems.  It is a
1656	  16 round block cipher supporting key sizes of 128, 192, and 256
1657	  bits.
1658
1659	  This module provides Twofish cipher algorithm that processes three
1660	  blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662	  See also:
1663	  <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666	tristate "Twofish cipher algorithm (x86_64/AVX)"
1667	depends on X86 && 64BIT
1668	select CRYPTO_SKCIPHER
1669	select CRYPTO_SIMD
1670	select CRYPTO_TWOFISH_COMMON
1671	select CRYPTO_TWOFISH_X86_64
1672	select CRYPTO_TWOFISH_X86_64_3WAY
1673	imply CRYPTO_XTS
1674	help
1675	  Twofish cipher algorithm (x86_64/AVX).
1676
1677	  Twofish was submitted as an AES (Advanced Encryption Standard)
1678	  candidate cipher by researchers at CounterPane Systems.  It is a
1679	  16 round block cipher supporting key sizes of 128, 192, and 256
1680	  bits.
1681
1682	  This module provides the Twofish cipher algorithm that processes
1683	  eight blocks parallel using the AVX Instruction Set.
1684
1685	  See also:
1686	  <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691	tristate "Deflate compression algorithm"
1692	select CRYPTO_ALGAPI
1693	select CRYPTO_ACOMP2
1694	select ZLIB_INFLATE
1695	select ZLIB_DEFLATE
1696	help
1697	  This is the Deflate algorithm (RFC1951), specified for use in
1698	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700	  You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703	tristate "LZO compression algorithm"
1704	select CRYPTO_ALGAPI
1705	select CRYPTO_ACOMP2
1706	select LZO_COMPRESS
1707	select LZO_DECOMPRESS
1708	help
1709	  This is the LZO algorithm.
 
 
1710
1711config CRYPTO_842
1712	tristate "842 compression algorithm"
1713	select CRYPTO_ALGAPI
1714	select CRYPTO_ACOMP2
1715	select 842_COMPRESS
1716	select 842_DECOMPRESS
1717	help
1718	  This is the 842 algorithm.
 
 
1719
1720config CRYPTO_LZ4
1721	tristate "LZ4 compression algorithm"
1722	select CRYPTO_ALGAPI
1723	select CRYPTO_ACOMP2
1724	select LZ4_COMPRESS
1725	select LZ4_DECOMPRESS
1726	help
1727	  This is the LZ4 algorithm.
 
 
1728
1729config CRYPTO_LZ4HC
1730	tristate "LZ4HC compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select LZ4HC_COMPRESS
1734	select LZ4_DECOMPRESS
1735	help
1736	  This is the LZ4 high compression mode algorithm.
 
 
1737
1738config CRYPTO_ZSTD
1739	tristate "Zstd compression algorithm"
1740	select CRYPTO_ALGAPI
1741	select CRYPTO_ACOMP2
1742	select ZSTD_COMPRESS
1743	select ZSTD_DECOMPRESS
1744	help
1745	  This is the zstd algorithm.
 
 
1746
1747comment "Random Number Generation"
 
 
1748
1749config CRYPTO_ANSI_CPRNG
1750	tristate "Pseudo Random Number Generation for Cryptographic modules"
1751	select CRYPTO_AES
1752	select CRYPTO_RNG
1753	help
1754	  This option enables the generic pseudo random number generator
1755	  for cryptographic modules.  Uses the Algorithm specified in
1756	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1757	  CRYPTO_FIPS is selected
 
1758
1759menuconfig CRYPTO_DRBG_MENU
1760	tristate "NIST SP800-90A DRBG"
1761	help
1762	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1763	  more of the DRBG types must be selected.
 
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768	bool
1769	default y
1770	select CRYPTO_HMAC
1771	select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774	bool "Enable Hash DRBG"
1775	select CRYPTO_SHA256
1776	help
1777	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1778
1779config CRYPTO_DRBG_CTR
1780	bool "Enable CTR DRBG"
1781	select CRYPTO_AES
1782	select CRYPTO_CTR
1783	help
1784	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1785
1786config CRYPTO_DRBG
1787	tristate
1788	default CRYPTO_DRBG_MENU
1789	select CRYPTO_RNG
1790	select CRYPTO_JITTERENTROPY
1791
1792endif	# if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796	select CRYPTO_RNG
 
1797	help
1798	  The Jitterentropy RNG is a noise that is intended
1799	  to provide seed to another RNG. The RNG does not
1800	  perform any cryptographic whitening of the generated
1801	  random numbers. This Jitterentropy RNG registers with
1802	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804config CRYPTO_USER_API
1805	tristate
1806
1807config CRYPTO_USER_API_HASH
1808	tristate "User-space interface for hash algorithms"
1809	depends on NET
1810	select CRYPTO_HASH
1811	select CRYPTO_USER_API
1812	help
1813	  This option enables the user-spaces interface for hash
1814	  algorithms.
 
 
1815
1816config CRYPTO_USER_API_SKCIPHER
1817	tristate "User-space interface for symmetric key cipher algorithms"
1818	depends on NET
1819	select CRYPTO_SKCIPHER
1820	select CRYPTO_USER_API
1821	help
1822	  This option enables the user-spaces interface for symmetric
1823	  key cipher algorithms.
 
 
1824
1825config CRYPTO_USER_API_RNG
1826	tristate "User-space interface for random number generator algorithms"
1827	depends on NET
1828	select CRYPTO_RNG
1829	select CRYPTO_USER_API
1830	help
1831	  This option enables the user-spaces interface for random
1832	  number generator algorithms.
 
 
 
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835	bool "Enable CAVP testing of DRBG"
1836	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837	help
1838	  This option enables extra API for CAVP testing via the user-space
1839	  interface: resetting of DRBG entropy, and providing Additional Data.
 
 
 
1840	  This should only be enabled for CAVP testing. You should say
1841	  no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844	tristate "User-space interface for AEAD cipher algorithms"
1845	depends on NET
1846	select CRYPTO_AEAD
1847	select CRYPTO_SKCIPHER
1848	select CRYPTO_NULL
1849	select CRYPTO_USER_API
1850	help
1851	  This option enables the user-spaces interface for AEAD
1852	  cipher algorithms.
 
 
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855	bool "Enable obsolete cryptographic algorithms for userspace"
1856	depends on CRYPTO_USER_API
1857	default y
1858	help
1859	  Allow obsolete cryptographic algorithms to be selected that have
1860	  already been phased out from internal use by the kernel, and are
1861	  only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864	bool "Crypto usage statistics for User-space"
1865	depends on CRYPTO_USER
1866	help
1867	  This option enables the gathering of crypto stats.
1868	  This will collect:
1869	  - encrypt/decrypt size and numbers of symmeric operations
1870	  - compress/decompress size and numbers of compress operations
1871	  - size and numbers of hash operations
1872	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873	  - generate/seed numbers for rng operations
 
 
 
 
 
 
 
 
 
 
1874
1875config CRYPTO_HASH_INFO
1876	bool
1877
1878source "lib/crypto/Kconfig"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif	# if CRYPTO