Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76 tristate
77 select CRYPTO_SIG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85 tristate
86 select CRYPTO_SKCIPHER2
87 select CRYPTO_ALGAPI
88 select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91 tristate
92 select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95 tristate
96 select CRYPTO_HASH2
97 select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100 tristate
101 select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104 tristate
105 select CRYPTO_RNG2
106 select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109 tristate
110 select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113 tristate
114 select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117 tristate
118 select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121 tristate
122 select CRYPTO_AKCIPHER2
123 select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126 tristate
127 select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130 tristate
131 select CRYPTO_ALGAPI
132 select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135 tristate
136 select CRYPTO_ALGAPI2
137 select SGL_ALLOC
138
139config CRYPTO_ACOMP
140 tristate
141 select CRYPTO_ALGAPI
142 select CRYPTO_ACOMP2
143
144config CRYPTO_MANAGER
145 tristate "Cryptographic algorithm manager"
146 select CRYPTO_MANAGER2
147 help
148 Create default cryptographic template instantiations such as
149 cbc(aes).
150
151config CRYPTO_MANAGER2
152 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
153 select CRYPTO_ACOMP2
154 select CRYPTO_AEAD2
155 select CRYPTO_AKCIPHER2
156 select CRYPTO_SIG2
157 select CRYPTO_HASH2
158 select CRYPTO_KPP2
159 select CRYPTO_RNG2
160 select CRYPTO_SKCIPHER2
161
162config CRYPTO_USER
163 tristate "Userspace cryptographic algorithm configuration"
164 depends on NET
165 select CRYPTO_MANAGER
166 help
167 Userspace configuration for cryptographic instantiations such as
168 cbc(aes).
169
170config CRYPTO_MANAGER_DISABLE_TESTS
171 bool "Disable run-time self tests"
172 default y
173 help
174 Disable run-time self tests that normally take place at
175 algorithm registration.
176
177config CRYPTO_MANAGER_EXTRA_TESTS
178 bool "Enable extra run-time crypto self tests"
179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
180 help
181 Enable extra run-time self tests of registered crypto algorithms,
182 including randomized fuzz tests.
183
184 This is intended for developer use only, as these tests take much
185 longer to run than the normal self tests.
186
187config CRYPTO_NULL
188 tristate "Null algorithms"
189 select CRYPTO_NULL2
190 help
191 These are 'Null' algorithms, used by IPsec, which do nothing.
192
193config CRYPTO_NULL2
194 tristate
195 select CRYPTO_ALGAPI2
196 select CRYPTO_SKCIPHER2
197 select CRYPTO_HASH2
198
199config CRYPTO_PCRYPT
200 tristate "Parallel crypto engine"
201 depends on SMP
202 select PADATA
203 select CRYPTO_MANAGER
204 select CRYPTO_AEAD
205 help
206 This converts an arbitrary crypto algorithm into a parallel
207 algorithm that executes in kernel threads.
208
209config CRYPTO_CRYPTD
210 tristate "Software async crypto daemon"
211 select CRYPTO_SKCIPHER
212 select CRYPTO_HASH
213 select CRYPTO_MANAGER
214 help
215 This is a generic software asynchronous crypto daemon that
216 converts an arbitrary synchronous software crypto algorithm
217 into an asynchronous algorithm that executes in a kernel thread.
218
219config CRYPTO_AUTHENC
220 tristate "Authenc support"
221 select CRYPTO_AEAD
222 select CRYPTO_SKCIPHER
223 select CRYPTO_MANAGER
224 select CRYPTO_HASH
225 select CRYPTO_NULL
226 help
227 Authenc: Combined mode wrapper for IPsec.
228
229 This is required for IPSec ESP (XFRM_ESP).
230
231config CRYPTO_TEST
232 tristate "Testing module"
233 depends on m || EXPERT
234 select CRYPTO_MANAGER
235 help
236 Quick & dirty crypto test module.
237
238config CRYPTO_SIMD
239 tristate
240 select CRYPTO_CRYPTD
241
242config CRYPTO_ENGINE
243 tristate
244
245endmenu
246
247menu "Public-key cryptography"
248
249config CRYPTO_RSA
250 tristate "RSA (Rivest-Shamir-Adleman)"
251 select CRYPTO_AKCIPHER
252 select CRYPTO_MANAGER
253 select MPILIB
254 select ASN1
255 help
256 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
257
258config CRYPTO_DH
259 tristate "DH (Diffie-Hellman)"
260 select CRYPTO_KPP
261 select MPILIB
262 help
263 DH (Diffie-Hellman) key exchange algorithm
264
265config CRYPTO_DH_RFC7919_GROUPS
266 bool "RFC 7919 FFDHE groups"
267 depends on CRYPTO_DH
268 select CRYPTO_RNG_DEFAULT
269 help
270 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
271 defined in RFC7919.
272
273 Support these finite-field groups in DH key exchanges:
274 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
275
276 If unsure, say N.
277
278config CRYPTO_ECC
279 tristate
280 select CRYPTO_RNG_DEFAULT
281
282config CRYPTO_ECDH
283 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
284 select CRYPTO_ECC
285 select CRYPTO_KPP
286 help
287 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
288 using curves P-192, P-256, and P-384 (FIPS 186)
289
290config CRYPTO_ECDSA
291 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
292 select CRYPTO_ECC
293 select CRYPTO_AKCIPHER
294 select ASN1
295 help
296 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
297 ISO/IEC 14888-3)
298 using curves P-192, P-256, and P-384
299
300 Only signature verification is implemented.
301
302config CRYPTO_ECRDSA
303 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
304 select CRYPTO_ECC
305 select CRYPTO_AKCIPHER
306 select CRYPTO_STREEBOG
307 select OID_REGISTRY
308 select ASN1
309 help
310 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
311 RFC 7091, ISO/IEC 14888-3)
312
313 One of the Russian cryptographic standard algorithms (called GOST
314 algorithms). Only signature verification is implemented.
315
316config CRYPTO_SM2
317 tristate "SM2 (ShangMi 2)"
318 select CRYPTO_SM3
319 select CRYPTO_AKCIPHER
320 select CRYPTO_MANAGER
321 select MPILIB
322 select ASN1
323 help
324 SM2 (ShangMi 2) public key algorithm
325
326 Published by State Encryption Management Bureau, China,
327 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
328
329 References:
330 https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
331 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
332 http://www.gmbz.org.cn/main/bzlb.html
333
334config CRYPTO_CURVE25519
335 tristate "Curve25519"
336 select CRYPTO_KPP
337 select CRYPTO_LIB_CURVE25519_GENERIC
338 help
339 Curve25519 elliptic curve (RFC7748)
340
341endmenu
342
343menu "Block ciphers"
344
345config CRYPTO_AES
346 tristate "AES (Advanced Encryption Standard)"
347 select CRYPTO_ALGAPI
348 select CRYPTO_LIB_AES
349 help
350 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
351
352 Rijndael appears to be consistently a very good performer in
353 both hardware and software across a wide range of computing
354 environments regardless of its use in feedback or non-feedback
355 modes. Its key setup time is excellent, and its key agility is
356 good. Rijndael's very low memory requirements make it very well
357 suited for restricted-space environments, in which it also
358 demonstrates excellent performance. Rijndael's operations are
359 among the easiest to defend against power and timing attacks.
360
361 The AES specifies three key sizes: 128, 192 and 256 bits
362
363config CRYPTO_AES_TI
364 tristate "AES (Advanced Encryption Standard) (fixed time)"
365 select CRYPTO_ALGAPI
366 select CRYPTO_LIB_AES
367 help
368 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
369
370 This is a generic implementation of AES that attempts to eliminate
371 data dependent latencies as much as possible without affecting
372 performance too much. It is intended for use by the generic CCM
373 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
374 solely on encryption (although decryption is supported as well, but
375 with a more dramatic performance hit)
376
377 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
378 8 for decryption), this implementation only uses just two S-boxes of
379 256 bytes each, and attempts to eliminate data dependent latencies by
380 prefetching the entire table into the cache at the start of each
381 block. Interrupts are also disabled to avoid races where cachelines
382 are evicted when the CPU is interrupted to do something else.
383
384config CRYPTO_ANUBIS
385 tristate "Anubis"
386 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
387 select CRYPTO_ALGAPI
388 help
389 Anubis cipher algorithm
390
391 Anubis is a variable key length cipher which can use keys from
392 128 bits to 320 bits in length. It was evaluated as a entrant
393 in the NESSIE competition.
394
395 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
396 for further information.
397
398config CRYPTO_ARIA
399 tristate "ARIA"
400 select CRYPTO_ALGAPI
401 help
402 ARIA cipher algorithm (RFC5794)
403
404 ARIA is a standard encryption algorithm of the Republic of Korea.
405 The ARIA specifies three key sizes and rounds.
406 128-bit: 12 rounds.
407 192-bit: 14 rounds.
408 256-bit: 16 rounds.
409
410 See:
411 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
412
413config CRYPTO_BLOWFISH
414 tristate "Blowfish"
415 select CRYPTO_ALGAPI
416 select CRYPTO_BLOWFISH_COMMON
417 help
418 Blowfish cipher algorithm, by Bruce Schneier
419
420 This is a variable key length cipher which can use keys from 32
421 bits to 448 bits in length. It's fast, simple and specifically
422 designed for use on "large microprocessors".
423
424 See https://www.schneier.com/blowfish.html for further information.
425
426config CRYPTO_BLOWFISH_COMMON
427 tristate
428 help
429 Common parts of the Blowfish cipher algorithm shared by the
430 generic c and the assembler implementations.
431
432config CRYPTO_CAMELLIA
433 tristate "Camellia"
434 select CRYPTO_ALGAPI
435 help
436 Camellia cipher algorithms (ISO/IEC 18033-3)
437
438 Camellia is a symmetric key block cipher developed jointly
439 at NTT and Mitsubishi Electric Corporation.
440
441 The Camellia specifies three key sizes: 128, 192 and 256 bits.
442
443 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
444
445config CRYPTO_CAST_COMMON
446 tristate
447 help
448 Common parts of the CAST cipher algorithms shared by the
449 generic c and the assembler implementations.
450
451config CRYPTO_CAST5
452 tristate "CAST5 (CAST-128)"
453 select CRYPTO_ALGAPI
454 select CRYPTO_CAST_COMMON
455 help
456 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
457
458config CRYPTO_CAST6
459 tristate "CAST6 (CAST-256)"
460 select CRYPTO_ALGAPI
461 select CRYPTO_CAST_COMMON
462 help
463 CAST6 (CAST-256) encryption algorithm (RFC2612)
464
465config CRYPTO_DES
466 tristate "DES and Triple DES EDE"
467 select CRYPTO_ALGAPI
468 select CRYPTO_LIB_DES
469 help
470 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
471 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
472 cipher algorithms
473
474config CRYPTO_FCRYPT
475 tristate "FCrypt"
476 select CRYPTO_ALGAPI
477 select CRYPTO_SKCIPHER
478 help
479 FCrypt algorithm used by RxRPC
480
481 See https://ota.polyonymo.us/fcrypt-paper.txt
482
483config CRYPTO_KHAZAD
484 tristate "Khazad"
485 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
486 select CRYPTO_ALGAPI
487 help
488 Khazad cipher algorithm
489
490 Khazad was a finalist in the initial NESSIE competition. It is
491 an algorithm optimized for 64-bit processors with good performance
492 on 32-bit processors. Khazad uses an 128 bit key size.
493
494 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
495 for further information.
496
497config CRYPTO_SEED
498 tristate "SEED"
499 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
500 select CRYPTO_ALGAPI
501 help
502 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
503
504 SEED is a 128-bit symmetric key block cipher that has been
505 developed by KISA (Korea Information Security Agency) as a
506 national standard encryption algorithm of the Republic of Korea.
507 It is a 16 round block cipher with the key size of 128 bit.
508
509 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
510 for further information.
511
512config CRYPTO_SERPENT
513 tristate "Serpent"
514 select CRYPTO_ALGAPI
515 help
516 Serpent cipher algorithm, by Anderson, Biham & Knudsen
517
518 Keys are allowed to be from 0 to 256 bits in length, in steps
519 of 8 bits.
520
521 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
522
523config CRYPTO_SM4
524 tristate
525
526config CRYPTO_SM4_GENERIC
527 tristate "SM4 (ShangMi 4)"
528 select CRYPTO_ALGAPI
529 select CRYPTO_SM4
530 help
531 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
532 ISO/IEC 18033-3:2010/Amd 1:2021)
533
534 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
535 Organization of State Commercial Administration of China (OSCCA)
536 as an authorized cryptographic algorithms for the use within China.
537
538 SMS4 was originally created for use in protecting wireless
539 networks, and is mandated in the Chinese National Standard for
540 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
541 (GB.15629.11-2003).
542
543 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
544 standardized through TC 260 of the Standardization Administration
545 of the People's Republic of China (SAC).
546
547 The input, output, and key of SMS4 are each 128 bits.
548
549 See https://eprint.iacr.org/2008/329.pdf for further information.
550
551 If unsure, say N.
552
553config CRYPTO_TEA
554 tristate "TEA, XTEA and XETA"
555 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
556 select CRYPTO_ALGAPI
557 help
558 TEA (Tiny Encryption Algorithm) cipher algorithms
559
560 Tiny Encryption Algorithm is a simple cipher that uses
561 many rounds for security. It is very fast and uses
562 little memory.
563
564 Xtendend Tiny Encryption Algorithm is a modification to
565 the TEA algorithm to address a potential key weakness
566 in the TEA algorithm.
567
568 Xtendend Encryption Tiny Algorithm is a mis-implementation
569 of the XTEA algorithm for compatibility purposes.
570
571config CRYPTO_TWOFISH
572 tristate "Twofish"
573 select CRYPTO_ALGAPI
574 select CRYPTO_TWOFISH_COMMON
575 help
576 Twofish cipher algorithm
577
578 Twofish was submitted as an AES (Advanced Encryption Standard)
579 candidate cipher by researchers at CounterPane Systems. It is a
580 16 round block cipher supporting key sizes of 128, 192, and 256
581 bits.
582
583 See https://www.schneier.com/twofish.html for further information.
584
585config CRYPTO_TWOFISH_COMMON
586 tristate
587 help
588 Common parts of the Twofish cipher algorithm shared by the
589 generic c and the assembler implementations.
590
591endmenu
592
593menu "Length-preserving ciphers and modes"
594
595config CRYPTO_ADIANTUM
596 tristate "Adiantum"
597 select CRYPTO_CHACHA20
598 select CRYPTO_LIB_POLY1305_GENERIC
599 select CRYPTO_NHPOLY1305
600 select CRYPTO_MANAGER
601 help
602 Adiantum tweakable, length-preserving encryption mode
603
604 Designed for fast and secure disk encryption, especially on
605 CPUs without dedicated crypto instructions. It encrypts
606 each sector using the XChaCha12 stream cipher, two passes of
607 an ε-almost-∆-universal hash function, and an invocation of
608 the AES-256 block cipher on a single 16-byte block. On CPUs
609 without AES instructions, Adiantum is much faster than
610 AES-XTS.
611
612 Adiantum's security is provably reducible to that of its
613 underlying stream and block ciphers, subject to a security
614 bound. Unlike XTS, Adiantum is a true wide-block encryption
615 mode, so it actually provides an even stronger notion of
616 security than XTS, subject to the security bound.
617
618 If unsure, say N.
619
620config CRYPTO_ARC4
621 tristate "ARC4 (Alleged Rivest Cipher 4)"
622 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
623 select CRYPTO_SKCIPHER
624 select CRYPTO_LIB_ARC4
625 help
626 ARC4 cipher algorithm
627
628 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
629 bits in length. This algorithm is required for driver-based
630 WEP, but it should not be for other purposes because of the
631 weakness of the algorithm.
632
633config CRYPTO_CHACHA20
634 tristate "ChaCha"
635 select CRYPTO_LIB_CHACHA_GENERIC
636 select CRYPTO_SKCIPHER
637 help
638 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
639
640 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
641 Bernstein and further specified in RFC7539 for use in IETF protocols.
642 This is the portable C implementation of ChaCha20. See
643 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
644
645 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
646 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
647 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
648 while provably retaining ChaCha20's security. See
649 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
650
651 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
652 reduced security margin but increased performance. It can be needed
653 in some performance-sensitive scenarios.
654
655config CRYPTO_CBC
656 tristate "CBC (Cipher Block Chaining)"
657 select CRYPTO_SKCIPHER
658 select CRYPTO_MANAGER
659 help
660 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
661
662 This block cipher mode is required for IPSec ESP (XFRM_ESP).
663
664config CRYPTO_CTR
665 tristate "CTR (Counter)"
666 select CRYPTO_SKCIPHER
667 select CRYPTO_MANAGER
668 help
669 CTR (Counter) mode (NIST SP800-38A)
670
671config CRYPTO_CTS
672 tristate "CTS (Cipher Text Stealing)"
673 select CRYPTO_SKCIPHER
674 select CRYPTO_MANAGER
675 help
676 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
677 Addendum to SP800-38A (October 2010))
678
679 This mode is required for Kerberos gss mechanism support
680 for AES encryption.
681
682config CRYPTO_ECB
683 tristate "ECB (Electronic Codebook)"
684 select CRYPTO_SKCIPHER2
685 select CRYPTO_MANAGER
686 help
687 ECB (Electronic Codebook) mode (NIST SP800-38A)
688
689config CRYPTO_HCTR2
690 tristate "HCTR2"
691 select CRYPTO_XCTR
692 select CRYPTO_POLYVAL
693 select CRYPTO_MANAGER
694 help
695 HCTR2 length-preserving encryption mode
696
697 A mode for storage encryption that is efficient on processors with
698 instructions to accelerate AES and carryless multiplication, e.g.
699 x86 processors with AES-NI and CLMUL, and ARM processors with the
700 ARMv8 crypto extensions.
701
702 See https://eprint.iacr.org/2021/1441
703
704config CRYPTO_KEYWRAP
705 tristate "KW (AES Key Wrap)"
706 select CRYPTO_SKCIPHER
707 select CRYPTO_MANAGER
708 help
709 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
710 and RFC3394) without padding.
711
712config CRYPTO_LRW
713 tristate "LRW (Liskov Rivest Wagner)"
714 select CRYPTO_LIB_GF128MUL
715 select CRYPTO_SKCIPHER
716 select CRYPTO_MANAGER
717 select CRYPTO_ECB
718 help
719 LRW (Liskov Rivest Wagner) mode
720
721 A tweakable, non malleable, non movable
722 narrow block cipher mode for dm-crypt. Use it with cipher
723 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
724 The first 128, 192 or 256 bits in the key are used for AES and the
725 rest is used to tie each cipher block to its logical position.
726
727 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
728
729config CRYPTO_PCBC
730 tristate "PCBC (Propagating Cipher Block Chaining)"
731 select CRYPTO_SKCIPHER
732 select CRYPTO_MANAGER
733 help
734 PCBC (Propagating Cipher Block Chaining) mode
735
736 This block cipher mode is required for RxRPC.
737
738config CRYPTO_XCTR
739 tristate
740 select CRYPTO_SKCIPHER
741 select CRYPTO_MANAGER
742 help
743 XCTR (XOR Counter) mode for HCTR2
744
745 This blockcipher mode is a variant of CTR mode using XORs and little-endian
746 addition rather than big-endian arithmetic.
747
748 XCTR mode is used to implement HCTR2.
749
750config CRYPTO_XTS
751 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
752 select CRYPTO_SKCIPHER
753 select CRYPTO_MANAGER
754 select CRYPTO_ECB
755 help
756 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
757 and IEEE 1619)
758
759 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
760 implementation currently can't handle a sectorsize which is not a
761 multiple of 16 bytes.
762
763config CRYPTO_NHPOLY1305
764 tristate
765 select CRYPTO_HASH
766 select CRYPTO_LIB_POLY1305_GENERIC
767
768endmenu
769
770menu "AEAD (authenticated encryption with associated data) ciphers"
771
772config CRYPTO_AEGIS128
773 tristate "AEGIS-128"
774 select CRYPTO_AEAD
775 select CRYPTO_AES # for AES S-box tables
776 help
777 AEGIS-128 AEAD algorithm
778
779config CRYPTO_AEGIS128_SIMD
780 bool "AEGIS-128 (arm NEON, arm64 NEON)"
781 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
782 default y
783 help
784 AEGIS-128 AEAD algorithm
785
786 Architecture: arm or arm64 using:
787 - NEON (Advanced SIMD) extension
788
789config CRYPTO_CHACHA20POLY1305
790 tristate "ChaCha20-Poly1305"
791 select CRYPTO_CHACHA20
792 select CRYPTO_POLY1305
793 select CRYPTO_AEAD
794 select CRYPTO_MANAGER
795 help
796 ChaCha20 stream cipher and Poly1305 authenticator combined
797 mode (RFC8439)
798
799config CRYPTO_CCM
800 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
801 select CRYPTO_CTR
802 select CRYPTO_HASH
803 select CRYPTO_AEAD
804 select CRYPTO_MANAGER
805 help
806 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
807 authenticated encryption mode (NIST SP800-38C)
808
809config CRYPTO_GCM
810 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
811 select CRYPTO_CTR
812 select CRYPTO_AEAD
813 select CRYPTO_GHASH
814 select CRYPTO_NULL
815 select CRYPTO_MANAGER
816 help
817 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
818 (GCM Message Authentication Code) (NIST SP800-38D)
819
820 This is required for IPSec ESP (XFRM_ESP).
821
822config CRYPTO_GENIV
823 tristate
824 select CRYPTO_AEAD
825 select CRYPTO_NULL
826 select CRYPTO_MANAGER
827 select CRYPTO_RNG_DEFAULT
828
829config CRYPTO_SEQIV
830 tristate "Sequence Number IV Generator"
831 select CRYPTO_GENIV
832 help
833 Sequence Number IV generator
834
835 This IV generator generates an IV based on a sequence number by
836 xoring it with a salt. This algorithm is mainly useful for CTR.
837
838 This is required for IPsec ESP (XFRM_ESP).
839
840config CRYPTO_ECHAINIV
841 tristate "Encrypted Chain IV Generator"
842 select CRYPTO_GENIV
843 help
844 Encrypted Chain IV generator
845
846 This IV generator generates an IV based on the encryption of
847 a sequence number xored with a salt. This is the default
848 algorithm for CBC.
849
850config CRYPTO_ESSIV
851 tristate "Encrypted Salt-Sector IV Generator"
852 select CRYPTO_AUTHENC
853 help
854 Encrypted Salt-Sector IV generator
855
856 This IV generator is used in some cases by fscrypt and/or
857 dm-crypt. It uses the hash of the block encryption key as the
858 symmetric key for a block encryption pass applied to the input
859 IV, making low entropy IV sources more suitable for block
860 encryption.
861
862 This driver implements a crypto API template that can be
863 instantiated either as an skcipher or as an AEAD (depending on the
864 type of the first template argument), and which defers encryption
865 and decryption requests to the encapsulated cipher after applying
866 ESSIV to the input IV. Note that in the AEAD case, it is assumed
867 that the keys are presented in the same format used by the authenc
868 template, and that the IV appears at the end of the authenticated
869 associated data (AAD) region (which is how dm-crypt uses it.)
870
871 Note that the use of ESSIV is not recommended for new deployments,
872 and so this only needs to be enabled when interoperability with
873 existing encrypted volumes of filesystems is required, or when
874 building for a particular system that requires it (e.g., when
875 the SoC in question has accelerated CBC but not XTS, making CBC
876 combined with ESSIV the only feasible mode for h/w accelerated
877 block encryption)
878
879endmenu
880
881menu "Hashes, digests, and MACs"
882
883config CRYPTO_BLAKE2B
884 tristate "BLAKE2b"
885 select CRYPTO_HASH
886 help
887 BLAKE2b cryptographic hash function (RFC 7693)
888
889 BLAKE2b is optimized for 64-bit platforms and can produce digests
890 of any size between 1 and 64 bytes. The keyed hash is also implemented.
891
892 This module provides the following algorithms:
893 - blake2b-160
894 - blake2b-256
895 - blake2b-384
896 - blake2b-512
897
898 Used by the btrfs filesystem.
899
900 See https://blake2.net for further information.
901
902config CRYPTO_CMAC
903 tristate "CMAC (Cipher-based MAC)"
904 select CRYPTO_HASH
905 select CRYPTO_MANAGER
906 help
907 CMAC (Cipher-based Message Authentication Code) authentication
908 mode (NIST SP800-38B and IETF RFC4493)
909
910config CRYPTO_GHASH
911 tristate "GHASH"
912 select CRYPTO_HASH
913 select CRYPTO_LIB_GF128MUL
914 help
915 GCM GHASH function (NIST SP800-38D)
916
917config CRYPTO_HMAC
918 tristate "HMAC (Keyed-Hash MAC)"
919 select CRYPTO_HASH
920 select CRYPTO_MANAGER
921 help
922 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
923 RFC2104)
924
925 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
926
927config CRYPTO_MD4
928 tristate "MD4"
929 select CRYPTO_HASH
930 help
931 MD4 message digest algorithm (RFC1320)
932
933config CRYPTO_MD5
934 tristate "MD5"
935 select CRYPTO_HASH
936 help
937 MD5 message digest algorithm (RFC1321)
938
939config CRYPTO_MICHAEL_MIC
940 tristate "Michael MIC"
941 select CRYPTO_HASH
942 help
943 Michael MIC (Message Integrity Code) (IEEE 802.11i)
944
945 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
946 known as WPA (Wif-Fi Protected Access).
947
948 This algorithm is required for TKIP, but it should not be used for
949 other purposes because of the weakness of the algorithm.
950
951config CRYPTO_POLYVAL
952 tristate
953 select CRYPTO_HASH
954 select CRYPTO_LIB_GF128MUL
955 help
956 POLYVAL hash function for HCTR2
957
958 This is used in HCTR2. It is not a general-purpose
959 cryptographic hash function.
960
961config CRYPTO_POLY1305
962 tristate "Poly1305"
963 select CRYPTO_HASH
964 select CRYPTO_LIB_POLY1305_GENERIC
965 help
966 Poly1305 authenticator algorithm (RFC7539)
967
968 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
969 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
970 in IETF protocols. This is the portable C implementation of Poly1305.
971
972config CRYPTO_RMD160
973 tristate "RIPEMD-160"
974 select CRYPTO_HASH
975 help
976 RIPEMD-160 hash function (ISO/IEC 10118-3)
977
978 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
979 to be used as a secure replacement for the 128-bit hash functions
980 MD4, MD5 and its predecessor RIPEMD
981 (not to be confused with RIPEMD-128).
982
983 Its speed is comparable to SHA-1 and there are no known attacks
984 against RIPEMD-160.
985
986 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
987 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
988 for further information.
989
990config CRYPTO_SHA1
991 tristate "SHA-1"
992 select CRYPTO_HASH
993 select CRYPTO_LIB_SHA1
994 help
995 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
996
997config CRYPTO_SHA256
998 tristate "SHA-224 and SHA-256"
999 select CRYPTO_HASH
1000 select CRYPTO_LIB_SHA256
1001 help
1002 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1003
1004 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005 Used by the btrfs filesystem, Ceph, NFS, and SMB.
1006
1007config CRYPTO_SHA512
1008 tristate "SHA-384 and SHA-512"
1009 select CRYPTO_HASH
1010 help
1011 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014 tristate "SHA-3"
1015 select CRYPTO_HASH
1016 help
1017 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1018
1019config CRYPTO_SM3
1020 tristate
1021
1022config CRYPTO_SM3_GENERIC
1023 tristate "SM3 (ShangMi 3)"
1024 select CRYPTO_HASH
1025 select CRYPTO_SM3
1026 help
1027 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1028
1029 This is part of the Chinese Commercial Cryptography suite.
1030
1031 References:
1032 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036 tristate "Streebog"
1037 select CRYPTO_HASH
1038 help
1039 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041 This is one of the Russian cryptographic standard algorithms (called
1042 GOST algorithms). This setting enables two hash algorithms with
1043 256 and 512 bits output.
1044
1045 References:
1046 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047 https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050 tristate "VMAC"
1051 select CRYPTO_HASH
1052 select CRYPTO_MANAGER
1053 help
1054 VMAC is a message authentication algorithm designed for
1055 very high speed on 64-bit architectures.
1056
1057 See https://fastcrypto.org/vmac for further information.
1058
1059config CRYPTO_WP512
1060 tristate "Whirlpool"
1061 select CRYPTO_HASH
1062 help
1063 Whirlpool hash function (ISO/IEC 10118-3)
1064
1065 512, 384 and 256-bit hashes.
1066
1067 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1068
1069 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070 for further information.
1071
1072config CRYPTO_XCBC
1073 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074 select CRYPTO_HASH
1075 select CRYPTO_MANAGER
1076 help
1077 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078 Code) (RFC3566)
1079
1080config CRYPTO_XXHASH
1081 tristate "xxHash"
1082 select CRYPTO_HASH
1083 select XXHASH
1084 help
1085 xxHash non-cryptographic hash algorithm
1086
1087 Extremely fast, working at speeds close to RAM limits.
1088
1089 Used by the btrfs filesystem.
1090
1091endmenu
1092
1093menu "CRCs (cyclic redundancy checks)"
1094
1095config CRYPTO_CRC32C
1096 tristate "CRC32c"
1097 select CRYPTO_HASH
1098 select CRC32
1099 help
1100 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106 iSCSI.
1107
1108 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1109
1110config CRYPTO_CRC32
1111 tristate "CRC32"
1112 select CRYPTO_HASH
1113 select CRC32
1114 help
1115 CRC32 CRC algorithm (IEEE 802.3)
1116
1117 Used by RoCEv2 and f2fs.
1118
1119config CRYPTO_CRCT10DIF
1120 tristate "CRCT10DIF"
1121 select CRYPTO_HASH
1122 help
1123 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1124
1125 CRC algorithm used by the SCSI Block Commands standard.
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128 tristate "CRC64 based on Rocksoft Model algorithm"
1129 depends on CRC64
1130 select CRYPTO_HASH
1131 help
1132 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1135
1136 See https://zlib.net/crc_v3.txt
1137
1138endmenu
1139
1140menu "Compression"
1141
1142config CRYPTO_DEFLATE
1143 tristate "Deflate"
1144 select CRYPTO_ALGAPI
1145 select CRYPTO_ACOMP2
1146 select ZLIB_INFLATE
1147 select ZLIB_DEFLATE
1148 help
1149 Deflate compression algorithm (RFC1951)
1150
1151 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1152
1153config CRYPTO_LZO
1154 tristate "LZO"
1155 select CRYPTO_ALGAPI
1156 select CRYPTO_ACOMP2
1157 select LZO_COMPRESS
1158 select LZO_DECOMPRESS
1159 help
1160 LZO compression algorithm
1161
1162 See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165 tristate "842"
1166 select CRYPTO_ALGAPI
1167 select CRYPTO_ACOMP2
1168 select 842_COMPRESS
1169 select 842_DECOMPRESS
1170 help
1171 842 compression algorithm by IBM
1172
1173 See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176 tristate "LZ4"
1177 select CRYPTO_ALGAPI
1178 select CRYPTO_ACOMP2
1179 select LZ4_COMPRESS
1180 select LZ4_DECOMPRESS
1181 help
1182 LZ4 compression algorithm
1183
1184 See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187 tristate "LZ4HC"
1188 select CRYPTO_ALGAPI
1189 select CRYPTO_ACOMP2
1190 select LZ4HC_COMPRESS
1191 select LZ4_DECOMPRESS
1192 help
1193 LZ4 high compression mode algorithm
1194
1195 See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198 tristate "Zstd"
1199 select CRYPTO_ALGAPI
1200 select CRYPTO_ACOMP2
1201 select ZSTD_COMPRESS
1202 select ZSTD_DECOMPRESS
1203 help
1204 zstd compression algorithm
1205
1206 See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1214 select CRYPTO_AES
1215 select CRYPTO_RNG
1216 help
1217 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219 This uses the AES cipher algorithm.
1220
1221 Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225 help
1226 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228 In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233 bool
1234 default y
1235 select CRYPTO_HMAC
1236 select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239 bool "Hash_DRBG"
1240 select CRYPTO_SHA256
1241 help
1242 Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247 bool "CTR_DRBG"
1248 select CRYPTO_AES
1249 select CRYPTO_CTR
1250 help
1251 CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253 This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256 tristate
1257 default CRYPTO_DRBG_MENU
1258 select CRYPTO_RNG
1259 select CRYPTO_JITTERENTROPY
1260
1261endif # if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265 select CRYPTO_RNG
1266 select CRYPTO_SHA3
1267 help
1268 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271 compliant with NIST SP800-90B) intended to provide a seed to a
1272 deterministic RNG (e.g. per NIST SP800-90C).
1273 This RNG does not perform any cryptographic whitening of the generated
1274
1275 See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281 prompt "CPU Jitter RNG Memory Size"
1282 default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283 help
1284 The Jitter RNG measures the execution time of memory accesses.
1285 Multiple consecutive memory accesses are performed. If the memory
1286 size fits into a cache (e.g. L1), only the memory access timing
1287 to that cache is measured. The closer the cache is to the CPU
1288 the less variations are measured and thus the less entropy is
1289 obtained. Thus, if the memory size fits into the L1 cache, the
1290 obtained entropy is less than if the memory size fits within
1291 L1 + L2, which in turn is less if the memory fits into
1292 L1 + L2 + L3. Thus, by selecting a different memory size,
1293 the entropy rate produced by the Jitter RNG can be modified.
1294
1295 config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296 bool "2048 Bytes (default)"
1297
1298 config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299 bool "128 kBytes"
1300
1301 config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302 bool "1024 kBytes"
1303
1304 config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305 bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309 int
1310 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316 int
1317 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323 int "CPU Jitter RNG Oversampling Rate"
1324 range 1 15
1325 default 1
1326 help
1327 The Jitter RNG allows the specification of an oversampling rate (OSR).
1328 The Jitter RNG operation requires a fixed amount of timing
1329 measurements to produce one output block of random numbers. The
1330 OSR value is multiplied with the amount of timing measurements to
1331 generate one output block. Thus, the timing measurement is oversampled
1332 by the OSR factor. The oversampling allows the Jitter RNG to operate
1333 on hardware whose timers deliver limited amount of entropy (e.g.
1334 the timer is coarse) by setting the OSR to a higher value. The
1335 trade-off, however, is that the Jitter RNG now requires more time
1336 to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339 bool "CPU Jitter RNG Test Interface"
1340 help
1341 The test interface allows a privileged process to capture
1342 the raw unconditioned high resolution time stamp noise that
1343 is collected by the Jitter RNG for statistical analysis. As
1344 this data is used at the same time to generate random bits,
1345 the Jitter RNG operates in an insecure mode as long as the
1346 recording is enabled. This interface therefore is only
1347 intended for testing purposes and is not suitable for
1348 production systems.
1349
1350 The raw noise data can be obtained using the jent_raw_hires
1351 debugfs file. Using the option
1352 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353 the first 1000 entropy events since boot can be sampled.
1354
1355 If unsure, select N.
1356
1357endif # if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362 int
1363 default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366 int
1367 default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370 int
1371 default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374 bool
1375
1376endif # if !(CRYPTO_FIPS && EXPERT)
1377endif # if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380 tristate
1381 select CRYPTO_HMAC
1382 select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388 tristate
1389
1390config CRYPTO_USER_API_HASH
1391 tristate "Hash algorithms"
1392 depends on NET
1393 select CRYPTO_HASH
1394 select CRYPTO_USER_API
1395 help
1396 Enable the userspace interface for hash algorithms.
1397
1398 See Documentation/crypto/userspace-if.rst and
1399 https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402 tristate "Symmetric key cipher algorithms"
1403 depends on NET
1404 select CRYPTO_SKCIPHER
1405 select CRYPTO_USER_API
1406 help
1407 Enable the userspace interface for symmetric key cipher algorithms.
1408
1409 See Documentation/crypto/userspace-if.rst and
1410 https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413 tristate "RNG (random number generator) algorithms"
1414 depends on NET
1415 select CRYPTO_RNG
1416 select CRYPTO_USER_API
1417 help
1418 Enable the userspace interface for RNG (random number generator)
1419 algorithms.
1420
1421 See Documentation/crypto/userspace-if.rst and
1422 https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425 bool "Enable CAVP testing of DRBG"
1426 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427 help
1428 Enable extra APIs in the userspace interface for NIST CAVP
1429 (Cryptographic Algorithm Validation Program) testing:
1430 - resetting DRBG entropy
1431 - providing Additional Data
1432
1433 This should only be enabled for CAVP testing. You should say
1434 no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437 tristate "AEAD cipher algorithms"
1438 depends on NET
1439 select CRYPTO_AEAD
1440 select CRYPTO_SKCIPHER
1441 select CRYPTO_NULL
1442 select CRYPTO_USER_API
1443 help
1444 Enable the userspace interface for AEAD cipher algorithms.
1445
1446 See Documentation/crypto/userspace-if.rst and
1447 https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450 bool "Obsolete cryptographic algorithms"
1451 depends on CRYPTO_USER_API
1452 default y
1453 help
1454 Allow obsolete cryptographic algorithms to be selected that have
1455 already been phased out from internal use by the kernel, and are
1456 only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459 bool "Crypto usage statistics"
1460 depends on CRYPTO_USER
1461 help
1462 Enable the gathering of crypto stats.
1463
1464 Enabling this option reduces the performance of the crypto API. It
1465 should only be enabled when there is actually a use case for it.
1466
1467 This collects data sizes, numbers of requests, and numbers
1468 of errors processed by:
1469 - AEAD ciphers (encrypt, decrypt)
1470 - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471 - symmetric key ciphers (encrypt, decrypt)
1472 - compression algorithms (compress, decompress)
1473 - hash algorithms (hash)
1474 - key-agreement protocol primitives (setsecret, generate
1475 public key, compute shared secret)
1476 - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481 bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56 tristate
57 select CRYPTO_SKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_SKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140 bool "Disable run-time self tests"
141 default y
142 help
143 Disable run-time self tests that normally take place at
144 algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147 bool "Enable extra run-time crypto self tests"
148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
149 help
150 Enable extra run-time self tests of registered crypto algorithms,
151 including randomized fuzz tests.
152
153 This is intended for developer use only, as these tests take much
154 longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157 tristate
158
159config CRYPTO_NULL
160 tristate "Null algorithms"
161 select CRYPTO_NULL2
162 help
163 These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166 tristate
167 select CRYPTO_ALGAPI2
168 select CRYPTO_SKCIPHER2
169 select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172 tristate "Parallel crypto engine"
173 depends on SMP
174 select PADATA
175 select CRYPTO_MANAGER
176 select CRYPTO_AEAD
177 help
178 This converts an arbitrary crypto algorithm into a parallel
179 algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182 tristate "Software async crypto daemon"
183 select CRYPTO_SKCIPHER
184 select CRYPTO_HASH
185 select CRYPTO_MANAGER
186 help
187 This is a generic software asynchronous crypto daemon that
188 converts an arbitrary synchronous software crypto algorithm
189 into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192 tristate "Authenc support"
193 select CRYPTO_AEAD
194 select CRYPTO_SKCIPHER
195 select CRYPTO_MANAGER
196 select CRYPTO_HASH
197 select CRYPTO_NULL
198 help
199 Authenc: Combined mode wrapper for IPsec.
200 This is required for IPSec.
201
202config CRYPTO_TEST
203 tristate "Testing module"
204 depends on m || EXPERT
205 select CRYPTO_MANAGER
206 help
207 Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210 tristate
211 select CRYPTO_CRYPTD
212
213config CRYPTO_ENGINE
214 tristate
215
216comment "Public-key cryptography"
217
218config CRYPTO_RSA
219 tristate "RSA algorithm"
220 select CRYPTO_AKCIPHER
221 select CRYPTO_MANAGER
222 select MPILIB
223 select ASN1
224 help
225 Generic implementation of the RSA public key algorithm.
226
227config CRYPTO_DH
228 tristate "Diffie-Hellman algorithm"
229 select CRYPTO_KPP
230 select MPILIB
231 help
232 Generic implementation of the Diffie-Hellman algorithm.
233
234config CRYPTO_ECC
235 tristate
236
237config CRYPTO_ECDH
238 tristate "ECDH algorithm"
239 select CRYPTO_ECC
240 select CRYPTO_KPP
241 select CRYPTO_RNG_DEFAULT
242 help
243 Generic implementation of the ECDH algorithm
244
245config CRYPTO_ECDSA
246 tristate "ECDSA (NIST P192, P256 etc.) algorithm"
247 select CRYPTO_ECC
248 select CRYPTO_AKCIPHER
249 select ASN1
250 help
251 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
252 is A NIST cryptographic standard algorithm. Only signature verification
253 is implemented.
254
255config CRYPTO_ECRDSA
256 tristate "EC-RDSA (GOST 34.10) algorithm"
257 select CRYPTO_ECC
258 select CRYPTO_AKCIPHER
259 select CRYPTO_STREEBOG
260 select OID_REGISTRY
261 select ASN1
262 help
263 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
264 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
265 standard algorithms (called GOST algorithms). Only signature verification
266 is implemented.
267
268config CRYPTO_SM2
269 tristate "SM2 algorithm"
270 select CRYPTO_SM3
271 select CRYPTO_AKCIPHER
272 select CRYPTO_MANAGER
273 select MPILIB
274 select ASN1
275 help
276 Generic implementation of the SM2 public key algorithm. It was
277 published by State Encryption Management Bureau, China.
278 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
279
280 References:
281 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
282 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
283 http://www.gmbz.org.cn/main/bzlb.html
284
285config CRYPTO_CURVE25519
286 tristate "Curve25519 algorithm"
287 select CRYPTO_KPP
288 select CRYPTO_LIB_CURVE25519_GENERIC
289
290config CRYPTO_CURVE25519_X86
291 tristate "x86_64 accelerated Curve25519 scalar multiplication library"
292 depends on X86 && 64BIT
293 select CRYPTO_LIB_CURVE25519_GENERIC
294 select CRYPTO_ARCH_HAVE_LIB_CURVE25519
295
296comment "Authenticated Encryption with Associated Data"
297
298config CRYPTO_CCM
299 tristate "CCM support"
300 select CRYPTO_CTR
301 select CRYPTO_HASH
302 select CRYPTO_AEAD
303 select CRYPTO_MANAGER
304 help
305 Support for Counter with CBC MAC. Required for IPsec.
306
307config CRYPTO_GCM
308 tristate "GCM/GMAC support"
309 select CRYPTO_CTR
310 select CRYPTO_AEAD
311 select CRYPTO_GHASH
312 select CRYPTO_NULL
313 select CRYPTO_MANAGER
314 help
315 Support for Galois/Counter Mode (GCM) and Galois Message
316 Authentication Code (GMAC). Required for IPSec.
317
318config CRYPTO_CHACHA20POLY1305
319 tristate "ChaCha20-Poly1305 AEAD support"
320 select CRYPTO_CHACHA20
321 select CRYPTO_POLY1305
322 select CRYPTO_AEAD
323 select CRYPTO_MANAGER
324 help
325 ChaCha20-Poly1305 AEAD support, RFC7539.
326
327 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
328 with the Poly1305 authenticator. It is defined in RFC7539 for use in
329 IETF protocols.
330
331config CRYPTO_AEGIS128
332 tristate "AEGIS-128 AEAD algorithm"
333 select CRYPTO_AEAD
334 select CRYPTO_AES # for AES S-box tables
335 help
336 Support for the AEGIS-128 dedicated AEAD algorithm.
337
338config CRYPTO_AEGIS128_SIMD
339 bool "Support SIMD acceleration for AEGIS-128"
340 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
341 default y
342
343config CRYPTO_AEGIS128_AESNI_SSE2
344 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
345 depends on X86 && 64BIT
346 select CRYPTO_AEAD
347 select CRYPTO_SIMD
348 help
349 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
350
351config CRYPTO_SEQIV
352 tristate "Sequence Number IV Generator"
353 select CRYPTO_AEAD
354 select CRYPTO_SKCIPHER
355 select CRYPTO_NULL
356 select CRYPTO_RNG_DEFAULT
357 select CRYPTO_MANAGER
358 help
359 This IV generator generates an IV based on a sequence number by
360 xoring it with a salt. This algorithm is mainly useful for CTR
361
362config CRYPTO_ECHAINIV
363 tristate "Encrypted Chain IV Generator"
364 select CRYPTO_AEAD
365 select CRYPTO_NULL
366 select CRYPTO_RNG_DEFAULT
367 select CRYPTO_MANAGER
368 help
369 This IV generator generates an IV based on the encryption of
370 a sequence number xored with a salt. This is the default
371 algorithm for CBC.
372
373comment "Block modes"
374
375config CRYPTO_CBC
376 tristate "CBC support"
377 select CRYPTO_SKCIPHER
378 select CRYPTO_MANAGER
379 help
380 CBC: Cipher Block Chaining mode
381 This block cipher algorithm is required for IPSec.
382
383config CRYPTO_CFB
384 tristate "CFB support"
385 select CRYPTO_SKCIPHER
386 select CRYPTO_MANAGER
387 help
388 CFB: Cipher FeedBack mode
389 This block cipher algorithm is required for TPM2 Cryptography.
390
391config CRYPTO_CTR
392 tristate "CTR support"
393 select CRYPTO_SKCIPHER
394 select CRYPTO_MANAGER
395 help
396 CTR: Counter mode
397 This block cipher algorithm is required for IPSec.
398
399config CRYPTO_CTS
400 tristate "CTS support"
401 select CRYPTO_SKCIPHER
402 select CRYPTO_MANAGER
403 help
404 CTS: Cipher Text Stealing
405 This is the Cipher Text Stealing mode as described by
406 Section 8 of rfc2040 and referenced by rfc3962
407 (rfc3962 includes errata information in its Appendix A) or
408 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
409 This mode is required for Kerberos gss mechanism support
410 for AES encryption.
411
412 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
413
414config CRYPTO_ECB
415 tristate "ECB support"
416 select CRYPTO_SKCIPHER
417 select CRYPTO_MANAGER
418 help
419 ECB: Electronic CodeBook mode
420 This is the simplest block cipher algorithm. It simply encrypts
421 the input block by block.
422
423config CRYPTO_LRW
424 tristate "LRW support"
425 select CRYPTO_SKCIPHER
426 select CRYPTO_MANAGER
427 select CRYPTO_GF128MUL
428 help
429 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
430 narrow block cipher mode for dm-crypt. Use it with cipher
431 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
432 The first 128, 192 or 256 bits in the key are used for AES and the
433 rest is used to tie each cipher block to its logical position.
434
435config CRYPTO_OFB
436 tristate "OFB support"
437 select CRYPTO_SKCIPHER
438 select CRYPTO_MANAGER
439 help
440 OFB: the Output Feedback mode makes a block cipher into a synchronous
441 stream cipher. It generates keystream blocks, which are then XORed
442 with the plaintext blocks to get the ciphertext. Flipping a bit in the
443 ciphertext produces a flipped bit in the plaintext at the same
444 location. This property allows many error correcting codes to function
445 normally even when applied before encryption.
446
447config CRYPTO_PCBC
448 tristate "PCBC support"
449 select CRYPTO_SKCIPHER
450 select CRYPTO_MANAGER
451 help
452 PCBC: Propagating Cipher Block Chaining mode
453 This block cipher algorithm is required for RxRPC.
454
455config CRYPTO_XTS
456 tristate "XTS support"
457 select CRYPTO_SKCIPHER
458 select CRYPTO_MANAGER
459 select CRYPTO_ECB
460 help
461 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
462 key size 256, 384 or 512 bits. This implementation currently
463 can't handle a sectorsize which is not a multiple of 16 bytes.
464
465config CRYPTO_KEYWRAP
466 tristate "Key wrapping support"
467 select CRYPTO_SKCIPHER
468 select CRYPTO_MANAGER
469 help
470 Support for key wrapping (NIST SP800-38F / RFC3394) without
471 padding.
472
473config CRYPTO_NHPOLY1305
474 tristate
475 select CRYPTO_HASH
476 select CRYPTO_LIB_POLY1305_GENERIC
477
478config CRYPTO_NHPOLY1305_SSE2
479 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
480 depends on X86 && 64BIT
481 select CRYPTO_NHPOLY1305
482 help
483 SSE2 optimized implementation of the hash function used by the
484 Adiantum encryption mode.
485
486config CRYPTO_NHPOLY1305_AVX2
487 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
488 depends on X86 && 64BIT
489 select CRYPTO_NHPOLY1305
490 help
491 AVX2 optimized implementation of the hash function used by the
492 Adiantum encryption mode.
493
494config CRYPTO_ADIANTUM
495 tristate "Adiantum support"
496 select CRYPTO_CHACHA20
497 select CRYPTO_LIB_POLY1305_GENERIC
498 select CRYPTO_NHPOLY1305
499 select CRYPTO_MANAGER
500 help
501 Adiantum is a tweakable, length-preserving encryption mode
502 designed for fast and secure disk encryption, especially on
503 CPUs without dedicated crypto instructions. It encrypts
504 each sector using the XChaCha12 stream cipher, two passes of
505 an ε-almost-∆-universal hash function, and an invocation of
506 the AES-256 block cipher on a single 16-byte block. On CPUs
507 without AES instructions, Adiantum is much faster than
508 AES-XTS.
509
510 Adiantum's security is provably reducible to that of its
511 underlying stream and block ciphers, subject to a security
512 bound. Unlike XTS, Adiantum is a true wide-block encryption
513 mode, so it actually provides an even stronger notion of
514 security than XTS, subject to the security bound.
515
516 If unsure, say N.
517
518config CRYPTO_ESSIV
519 tristate "ESSIV support for block encryption"
520 select CRYPTO_AUTHENC
521 help
522 Encrypted salt-sector initialization vector (ESSIV) is an IV
523 generation method that is used in some cases by fscrypt and/or
524 dm-crypt. It uses the hash of the block encryption key as the
525 symmetric key for a block encryption pass applied to the input
526 IV, making low entropy IV sources more suitable for block
527 encryption.
528
529 This driver implements a crypto API template that can be
530 instantiated either as an skcipher or as an AEAD (depending on the
531 type of the first template argument), and which defers encryption
532 and decryption requests to the encapsulated cipher after applying
533 ESSIV to the input IV. Note that in the AEAD case, it is assumed
534 that the keys are presented in the same format used by the authenc
535 template, and that the IV appears at the end of the authenticated
536 associated data (AAD) region (which is how dm-crypt uses it.)
537
538 Note that the use of ESSIV is not recommended for new deployments,
539 and so this only needs to be enabled when interoperability with
540 existing encrypted volumes of filesystems is required, or when
541 building for a particular system that requires it (e.g., when
542 the SoC in question has accelerated CBC but not XTS, making CBC
543 combined with ESSIV the only feasible mode for h/w accelerated
544 block encryption)
545
546comment "Hash modes"
547
548config CRYPTO_CMAC
549 tristate "CMAC support"
550 select CRYPTO_HASH
551 select CRYPTO_MANAGER
552 help
553 Cipher-based Message Authentication Code (CMAC) specified by
554 The National Institute of Standards and Technology (NIST).
555
556 https://tools.ietf.org/html/rfc4493
557 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
558
559config CRYPTO_HMAC
560 tristate "HMAC support"
561 select CRYPTO_HASH
562 select CRYPTO_MANAGER
563 help
564 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
565 This is required for IPSec.
566
567config CRYPTO_XCBC
568 tristate "XCBC support"
569 select CRYPTO_HASH
570 select CRYPTO_MANAGER
571 help
572 XCBC: Keyed-Hashing with encryption algorithm
573 https://www.ietf.org/rfc/rfc3566.txt
574 http://csrc.nist.gov/encryption/modes/proposedmodes/
575 xcbc-mac/xcbc-mac-spec.pdf
576
577config CRYPTO_VMAC
578 tristate "VMAC support"
579 select CRYPTO_HASH
580 select CRYPTO_MANAGER
581 help
582 VMAC is a message authentication algorithm designed for
583 very high speed on 64-bit architectures.
584
585 See also:
586 <https://fastcrypto.org/vmac>
587
588comment "Digest"
589
590config CRYPTO_CRC32C
591 tristate "CRC32c CRC algorithm"
592 select CRYPTO_HASH
593 select CRC32
594 help
595 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
596 by iSCSI for header and data digests and by others.
597 See Castagnoli93. Module will be crc32c.
598
599config CRYPTO_CRC32C_INTEL
600 tristate "CRC32c INTEL hardware acceleration"
601 depends on X86
602 select CRYPTO_HASH
603 help
604 In Intel processor with SSE4.2 supported, the processor will
605 support CRC32C implementation using hardware accelerated CRC32
606 instruction. This option will create 'crc32c-intel' module,
607 which will enable any routine to use the CRC32 instruction to
608 gain performance compared with software implementation.
609 Module will be crc32c-intel.
610
611config CRYPTO_CRC32C_VPMSUM
612 tristate "CRC32c CRC algorithm (powerpc64)"
613 depends on PPC64 && ALTIVEC
614 select CRYPTO_HASH
615 select CRC32
616 help
617 CRC32c algorithm implemented using vector polynomial multiply-sum
618 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
619 and newer processors for improved performance.
620
621
622config CRYPTO_CRC32C_SPARC64
623 tristate "CRC32c CRC algorithm (SPARC64)"
624 depends on SPARC64
625 select CRYPTO_HASH
626 select CRC32
627 help
628 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
629 when available.
630
631config CRYPTO_CRC32
632 tristate "CRC32 CRC algorithm"
633 select CRYPTO_HASH
634 select CRC32
635 help
636 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
637 Shash crypto api wrappers to crc32_le function.
638
639config CRYPTO_CRC32_PCLMUL
640 tristate "CRC32 PCLMULQDQ hardware acceleration"
641 depends on X86
642 select CRYPTO_HASH
643 select CRC32
644 help
645 From Intel Westmere and AMD Bulldozer processor with SSE4.2
646 and PCLMULQDQ supported, the processor will support
647 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
648 instruction. This option will create 'crc32-pclmul' module,
649 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
650 and gain better performance as compared with the table implementation.
651
652config CRYPTO_CRC32_MIPS
653 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
654 depends on MIPS_CRC_SUPPORT
655 select CRYPTO_HASH
656 help
657 CRC32c and CRC32 CRC algorithms implemented using mips crypto
658 instructions, when available.
659
660
661config CRYPTO_XXHASH
662 tristate "xxHash hash algorithm"
663 select CRYPTO_HASH
664 select XXHASH
665 help
666 xxHash non-cryptographic hash algorithm. Extremely fast, working at
667 speeds close to RAM limits.
668
669config CRYPTO_BLAKE2B
670 tristate "BLAKE2b digest algorithm"
671 select CRYPTO_HASH
672 help
673 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
674 optimized for 64bit platforms and can produce digests of any size
675 between 1 to 64. The keyed hash is also implemented.
676
677 This module provides the following algorithms:
678
679 - blake2b-160
680 - blake2b-256
681 - blake2b-384
682 - blake2b-512
683
684 See https://blake2.net for further information.
685
686config CRYPTO_BLAKE2S
687 tristate "BLAKE2s digest algorithm"
688 select CRYPTO_LIB_BLAKE2S_GENERIC
689 select CRYPTO_HASH
690 help
691 Implementation of cryptographic hash function BLAKE2s
692 optimized for 8-32bit platforms and can produce digests of any size
693 between 1 to 32. The keyed hash is also implemented.
694
695 This module provides the following algorithms:
696
697 - blake2s-128
698 - blake2s-160
699 - blake2s-224
700 - blake2s-256
701
702 See https://blake2.net for further information.
703
704config CRYPTO_BLAKE2S_X86
705 tristate "BLAKE2s digest algorithm (x86 accelerated version)"
706 depends on X86 && 64BIT
707 select CRYPTO_LIB_BLAKE2S_GENERIC
708 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
709
710config CRYPTO_CRCT10DIF
711 tristate "CRCT10DIF algorithm"
712 select CRYPTO_HASH
713 help
714 CRC T10 Data Integrity Field computation is being cast as
715 a crypto transform. This allows for faster crc t10 diff
716 transforms to be used if they are available.
717
718config CRYPTO_CRCT10DIF_PCLMUL
719 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
720 depends on X86 && 64BIT && CRC_T10DIF
721 select CRYPTO_HASH
722 help
723 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
724 CRC T10 DIF PCLMULQDQ computation can be hardware
725 accelerated PCLMULQDQ instruction. This option will create
726 'crct10dif-pclmul' module, which is faster when computing the
727 crct10dif checksum as compared with the generic table implementation.
728
729config CRYPTO_CRCT10DIF_VPMSUM
730 tristate "CRC32T10DIF powerpc64 hardware acceleration"
731 depends on PPC64 && ALTIVEC && CRC_T10DIF
732 select CRYPTO_HASH
733 help
734 CRC10T10DIF algorithm implemented using vector polynomial
735 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
736 POWER8 and newer processors for improved performance.
737
738config CRYPTO_VPMSUM_TESTER
739 tristate "Powerpc64 vpmsum hardware acceleration tester"
740 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
741 help
742 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
743 POWER8 vpmsum instructions.
744 Unless you are testing these algorithms, you don't need this.
745
746config CRYPTO_GHASH
747 tristate "GHASH hash function"
748 select CRYPTO_GF128MUL
749 select CRYPTO_HASH
750 help
751 GHASH is the hash function used in GCM (Galois/Counter Mode).
752 It is not a general-purpose cryptographic hash function.
753
754config CRYPTO_POLY1305
755 tristate "Poly1305 authenticator algorithm"
756 select CRYPTO_HASH
757 select CRYPTO_LIB_POLY1305_GENERIC
758 help
759 Poly1305 authenticator algorithm, RFC7539.
760
761 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
762 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
763 in IETF protocols. This is the portable C implementation of Poly1305.
764
765config CRYPTO_POLY1305_X86_64
766 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
767 depends on X86 && 64BIT
768 select CRYPTO_LIB_POLY1305_GENERIC
769 select CRYPTO_ARCH_HAVE_LIB_POLY1305
770 help
771 Poly1305 authenticator algorithm, RFC7539.
772
773 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
774 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
775 in IETF protocols. This is the x86_64 assembler implementation using SIMD
776 instructions.
777
778config CRYPTO_POLY1305_MIPS
779 tristate "Poly1305 authenticator algorithm (MIPS optimized)"
780 depends on MIPS
781 select CRYPTO_ARCH_HAVE_LIB_POLY1305
782
783config CRYPTO_MD4
784 tristate "MD4 digest algorithm"
785 select CRYPTO_HASH
786 help
787 MD4 message digest algorithm (RFC1320).
788
789config CRYPTO_MD5
790 tristate "MD5 digest algorithm"
791 select CRYPTO_HASH
792 help
793 MD5 message digest algorithm (RFC1321).
794
795config CRYPTO_MD5_OCTEON
796 tristate "MD5 digest algorithm (OCTEON)"
797 depends on CPU_CAVIUM_OCTEON
798 select CRYPTO_MD5
799 select CRYPTO_HASH
800 help
801 MD5 message digest algorithm (RFC1321) implemented
802 using OCTEON crypto instructions, when available.
803
804config CRYPTO_MD5_PPC
805 tristate "MD5 digest algorithm (PPC)"
806 depends on PPC
807 select CRYPTO_HASH
808 help
809 MD5 message digest algorithm (RFC1321) implemented
810 in PPC assembler.
811
812config CRYPTO_MD5_SPARC64
813 tristate "MD5 digest algorithm (SPARC64)"
814 depends on SPARC64
815 select CRYPTO_MD5
816 select CRYPTO_HASH
817 help
818 MD5 message digest algorithm (RFC1321) implemented
819 using sparc64 crypto instructions, when available.
820
821config CRYPTO_MICHAEL_MIC
822 tristate "Michael MIC keyed digest algorithm"
823 select CRYPTO_HASH
824 help
825 Michael MIC is used for message integrity protection in TKIP
826 (IEEE 802.11i). This algorithm is required for TKIP, but it
827 should not be used for other purposes because of the weakness
828 of the algorithm.
829
830config CRYPTO_RMD160
831 tristate "RIPEMD-160 digest algorithm"
832 select CRYPTO_HASH
833 help
834 RIPEMD-160 (ISO/IEC 10118-3:2004).
835
836 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
837 to be used as a secure replacement for the 128-bit hash functions
838 MD4, MD5 and it's predecessor RIPEMD
839 (not to be confused with RIPEMD-128).
840
841 It's speed is comparable to SHA1 and there are no known attacks
842 against RIPEMD-160.
843
844 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
845 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
846
847config CRYPTO_SHA1
848 tristate "SHA1 digest algorithm"
849 select CRYPTO_HASH
850 help
851 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
852
853config CRYPTO_SHA1_SSSE3
854 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
855 depends on X86 && 64BIT
856 select CRYPTO_SHA1
857 select CRYPTO_HASH
858 help
859 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
860 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
861 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
862 when available.
863
864config CRYPTO_SHA256_SSSE3
865 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
866 depends on X86 && 64BIT
867 select CRYPTO_SHA256
868 select CRYPTO_HASH
869 help
870 SHA-256 secure hash standard (DFIPS 180-2) implemented
871 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
872 Extensions version 1 (AVX1), or Advanced Vector Extensions
873 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
874 Instructions) when available.
875
876config CRYPTO_SHA512_SSSE3
877 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
878 depends on X86 && 64BIT
879 select CRYPTO_SHA512
880 select CRYPTO_HASH
881 help
882 SHA-512 secure hash standard (DFIPS 180-2) implemented
883 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
884 Extensions version 1 (AVX1), or Advanced Vector Extensions
885 version 2 (AVX2) instructions, when available.
886
887config CRYPTO_SHA1_OCTEON
888 tristate "SHA1 digest algorithm (OCTEON)"
889 depends on CPU_CAVIUM_OCTEON
890 select CRYPTO_SHA1
891 select CRYPTO_HASH
892 help
893 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
894 using OCTEON crypto instructions, when available.
895
896config CRYPTO_SHA1_SPARC64
897 tristate "SHA1 digest algorithm (SPARC64)"
898 depends on SPARC64
899 select CRYPTO_SHA1
900 select CRYPTO_HASH
901 help
902 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
903 using sparc64 crypto instructions, when available.
904
905config CRYPTO_SHA1_PPC
906 tristate "SHA1 digest algorithm (powerpc)"
907 depends on PPC
908 help
909 This is the powerpc hardware accelerated implementation of the
910 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
911
912config CRYPTO_SHA1_PPC_SPE
913 tristate "SHA1 digest algorithm (PPC SPE)"
914 depends on PPC && SPE
915 help
916 SHA-1 secure hash standard (DFIPS 180-4) implemented
917 using powerpc SPE SIMD instruction set.
918
919config CRYPTO_SHA256
920 tristate "SHA224 and SHA256 digest algorithm"
921 select CRYPTO_HASH
922 select CRYPTO_LIB_SHA256
923 help
924 SHA256 secure hash standard (DFIPS 180-2).
925
926 This version of SHA implements a 256 bit hash with 128 bits of
927 security against collision attacks.
928
929 This code also includes SHA-224, a 224 bit hash with 112 bits
930 of security against collision attacks.
931
932config CRYPTO_SHA256_PPC_SPE
933 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
934 depends on PPC && SPE
935 select CRYPTO_SHA256
936 select CRYPTO_HASH
937 help
938 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
939 implemented using powerpc SPE SIMD instruction set.
940
941config CRYPTO_SHA256_OCTEON
942 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
943 depends on CPU_CAVIUM_OCTEON
944 select CRYPTO_SHA256
945 select CRYPTO_HASH
946 help
947 SHA-256 secure hash standard (DFIPS 180-2) implemented
948 using OCTEON crypto instructions, when available.
949
950config CRYPTO_SHA256_SPARC64
951 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
952 depends on SPARC64
953 select CRYPTO_SHA256
954 select CRYPTO_HASH
955 help
956 SHA-256 secure hash standard (DFIPS 180-2) implemented
957 using sparc64 crypto instructions, when available.
958
959config CRYPTO_SHA512
960 tristate "SHA384 and SHA512 digest algorithms"
961 select CRYPTO_HASH
962 help
963 SHA512 secure hash standard (DFIPS 180-2).
964
965 This version of SHA implements a 512 bit hash with 256 bits of
966 security against collision attacks.
967
968 This code also includes SHA-384, a 384 bit hash with 192 bits
969 of security against collision attacks.
970
971config CRYPTO_SHA512_OCTEON
972 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
973 depends on CPU_CAVIUM_OCTEON
974 select CRYPTO_SHA512
975 select CRYPTO_HASH
976 help
977 SHA-512 secure hash standard (DFIPS 180-2) implemented
978 using OCTEON crypto instructions, when available.
979
980config CRYPTO_SHA512_SPARC64
981 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
982 depends on SPARC64
983 select CRYPTO_SHA512
984 select CRYPTO_HASH
985 help
986 SHA-512 secure hash standard (DFIPS 180-2) implemented
987 using sparc64 crypto instructions, when available.
988
989config CRYPTO_SHA3
990 tristate "SHA3 digest algorithm"
991 select CRYPTO_HASH
992 help
993 SHA-3 secure hash standard (DFIPS 202). It's based on
994 cryptographic sponge function family called Keccak.
995
996 References:
997 http://keccak.noekeon.org/
998
999config CRYPTO_SM3
1000 tristate "SM3 digest algorithm"
1001 select CRYPTO_HASH
1002 help
1003 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004 It is part of the Chinese Commercial Cryptography suite.
1005
1006 References:
1007 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011 tristate "Streebog Hash Function"
1012 select CRYPTO_HASH
1013 help
1014 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015 cryptographic standard algorithms (called GOST algorithms).
1016 This setting enables two hash algorithms with 256 and 512 bits output.
1017
1018 References:
1019 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020 https://tools.ietf.org/html/rfc6986
1021
1022config CRYPTO_WP512
1023 tristate "Whirlpool digest algorithms"
1024 select CRYPTO_HASH
1025 help
1026 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1027
1028 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031 See also:
1032 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035 tristate "GHASH hash function (CLMUL-NI accelerated)"
1036 depends on X86 && 64BIT
1037 select CRYPTO_CRYPTD
1038 help
1039 This is the x86_64 CLMUL-NI accelerated implementation of
1040 GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045 tristate "AES cipher algorithms"
1046 select CRYPTO_ALGAPI
1047 select CRYPTO_LIB_AES
1048 help
1049 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050 algorithm.
1051
1052 Rijndael appears to be consistently a very good performer in
1053 both hardware and software across a wide range of computing
1054 environments regardless of its use in feedback or non-feedback
1055 modes. Its key setup time is excellent, and its key agility is
1056 good. Rijndael's very low memory requirements make it very well
1057 suited for restricted-space environments, in which it also
1058 demonstrates excellent performance. Rijndael's operations are
1059 among the easiest to defend against power and timing attacks.
1060
1061 The AES specifies three key sizes: 128, 192 and 256 bits
1062
1063 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066 tristate "Fixed time AES cipher"
1067 select CRYPTO_ALGAPI
1068 select CRYPTO_LIB_AES
1069 help
1070 This is a generic implementation of AES that attempts to eliminate
1071 data dependent latencies as much as possible without affecting
1072 performance too much. It is intended for use by the generic CCM
1073 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074 solely on encryption (although decryption is supported as well, but
1075 with a more dramatic performance hit)
1076
1077 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078 8 for decryption), this implementation only uses just two S-boxes of
1079 256 bytes each, and attempts to eliminate data dependent latencies by
1080 prefetching the entire table into the cache at the start of each
1081 block. Interrupts are also disabled to avoid races where cachelines
1082 are evicted when the CPU is interrupted to do something else.
1083
1084config CRYPTO_AES_NI_INTEL
1085 tristate "AES cipher algorithms (AES-NI)"
1086 depends on X86
1087 select CRYPTO_AEAD
1088 select CRYPTO_LIB_AES
1089 select CRYPTO_ALGAPI
1090 select CRYPTO_SKCIPHER
1091 select CRYPTO_SIMD
1092 help
1093 Use Intel AES-NI instructions for AES algorithm.
1094
1095 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096 algorithm.
1097
1098 Rijndael appears to be consistently a very good performer in
1099 both hardware and software across a wide range of computing
1100 environments regardless of its use in feedback or non-feedback
1101 modes. Its key setup time is excellent, and its key agility is
1102 good. Rijndael's very low memory requirements make it very well
1103 suited for restricted-space environments, in which it also
1104 demonstrates excellent performance. Rijndael's operations are
1105 among the easiest to defend against power and timing attacks.
1106
1107 The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109 See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111 In addition to AES cipher algorithm support, the acceleration
1112 for some popular block cipher mode is supported too, including
1113 ECB, CBC, LRW, XTS. The 64 bit version has additional
1114 acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117 tristate "AES cipher algorithms (SPARC64)"
1118 depends on SPARC64
1119 select CRYPTO_SKCIPHER
1120 help
1121 Use SPARC64 crypto opcodes for AES algorithm.
1122
1123 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124 algorithm.
1125
1126 Rijndael appears to be consistently a very good performer in
1127 both hardware and software across a wide range of computing
1128 environments regardless of its use in feedback or non-feedback
1129 modes. Its key setup time is excellent, and its key agility is
1130 good. Rijndael's very low memory requirements make it very well
1131 suited for restricted-space environments, in which it also
1132 demonstrates excellent performance. Rijndael's operations are
1133 among the easiest to defend against power and timing attacks.
1134
1135 The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137 See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139 In addition to AES cipher algorithm support, the acceleration
1140 for some popular block cipher mode is supported too, including
1141 ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144 tristate "AES cipher algorithms (PPC SPE)"
1145 depends on PPC && SPE
1146 select CRYPTO_SKCIPHER
1147 help
1148 AES cipher algorithms (FIPS-197). Additionally the acceleration
1149 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150 This module should only be used for low power (router) devices
1151 without hardware AES acceleration (e.g. caam crypto). It reduces the
1152 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153 timining attacks. Nevertheless it might be not as secure as other
1154 architecture specific assembler implementations that work on 1KB
1155 tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158 tristate "Anubis cipher algorithm"
1159 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160 select CRYPTO_ALGAPI
1161 help
1162 Anubis cipher algorithm.
1163
1164 Anubis is a variable key length cipher which can use keys from
1165 128 bits to 320 bits in length. It was evaluated as a entrant
1166 in the NESSIE competition.
1167
1168 See also:
1169 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173 tristate "ARC4 cipher algorithm"
1174 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175 select CRYPTO_SKCIPHER
1176 select CRYPTO_LIB_ARC4
1177 help
1178 ARC4 cipher algorithm.
1179
1180 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181 bits in length. This algorithm is required for driver-based
1182 WEP, but it should not be for other purposes because of the
1183 weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186 tristate "Blowfish cipher algorithm"
1187 select CRYPTO_ALGAPI
1188 select CRYPTO_BLOWFISH_COMMON
1189 help
1190 Blowfish cipher algorithm, by Bruce Schneier.
1191
1192 This is a variable key length cipher which can use keys from 32
1193 bits to 448 bits in length. It's fast, simple and specifically
1194 designed for use on "large microprocessors".
1195
1196 See also:
1197 <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200 tristate
1201 help
1202 Common parts of the Blowfish cipher algorithm shared by the
1203 generic c and the assembler implementations.
1204
1205 See also:
1206 <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209 tristate "Blowfish cipher algorithm (x86_64)"
1210 depends on X86 && 64BIT
1211 select CRYPTO_SKCIPHER
1212 select CRYPTO_BLOWFISH_COMMON
1213 imply CRYPTO_CTR
1214 help
1215 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217 This is a variable key length cipher which can use keys from 32
1218 bits to 448 bits in length. It's fast, simple and specifically
1219 designed for use on "large microprocessors".
1220
1221 See also:
1222 <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225 tristate "Camellia cipher algorithms"
1226 select CRYPTO_ALGAPI
1227 help
1228 Camellia cipher algorithms module.
1229
1230 Camellia is a symmetric key block cipher developed jointly
1231 at NTT and Mitsubishi Electric Corporation.
1232
1233 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235 See also:
1236 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239 tristate "Camellia cipher algorithm (x86_64)"
1240 depends on X86 && 64BIT
1241 select CRYPTO_SKCIPHER
1242 imply CRYPTO_CTR
1243 help
1244 Camellia cipher algorithm module (x86_64).
1245
1246 Camellia is a symmetric key block cipher developed jointly
1247 at NTT and Mitsubishi Electric Corporation.
1248
1249 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251 See also:
1252 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256 depends on X86 && 64BIT
1257 select CRYPTO_SKCIPHER
1258 select CRYPTO_CAMELLIA_X86_64
1259 select CRYPTO_SIMD
1260 imply CRYPTO_XTS
1261 help
1262 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264 Camellia is a symmetric key block cipher developed jointly
1265 at NTT and Mitsubishi Electric Corporation.
1266
1267 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269 See also:
1270 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274 depends on X86 && 64BIT
1275 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276 help
1277 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279 Camellia is a symmetric key block cipher developed jointly
1280 at NTT and Mitsubishi Electric Corporation.
1281
1282 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284 See also:
1285 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288 tristate "Camellia cipher algorithm (SPARC64)"
1289 depends on SPARC64
1290 select CRYPTO_ALGAPI
1291 select CRYPTO_SKCIPHER
1292 help
1293 Camellia cipher algorithm module (SPARC64).
1294
1295 Camellia is a symmetric key block cipher developed jointly
1296 at NTT and Mitsubishi Electric Corporation.
1297
1298 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300 See also:
1301 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304 tristate
1305 help
1306 Common parts of the CAST cipher algorithms shared by the
1307 generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310 tristate "CAST5 (CAST-128) cipher algorithm"
1311 select CRYPTO_ALGAPI
1312 select CRYPTO_CAST_COMMON
1313 help
1314 The CAST5 encryption algorithm (synonymous with CAST-128) is
1315 described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319 depends on X86 && 64BIT
1320 select CRYPTO_SKCIPHER
1321 select CRYPTO_CAST5
1322 select CRYPTO_CAST_COMMON
1323 select CRYPTO_SIMD
1324 imply CRYPTO_CTR
1325 help
1326 The CAST5 encryption algorithm (synonymous with CAST-128) is
1327 described in RFC2144.
1328
1329 This module provides the Cast5 cipher algorithm that processes
1330 sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333 tristate "CAST6 (CAST-256) cipher algorithm"
1334 select CRYPTO_ALGAPI
1335 select CRYPTO_CAST_COMMON
1336 help
1337 The CAST6 encryption algorithm (synonymous with CAST-256) is
1338 described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342 depends on X86 && 64BIT
1343 select CRYPTO_SKCIPHER
1344 select CRYPTO_CAST6
1345 select CRYPTO_CAST_COMMON
1346 select CRYPTO_SIMD
1347 imply CRYPTO_XTS
1348 imply CRYPTO_CTR
1349 help
1350 The CAST6 encryption algorithm (synonymous with CAST-256) is
1351 described in RFC2612.
1352
1353 This module provides the Cast6 cipher algorithm that processes
1354 eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357 tristate "DES and Triple DES EDE cipher algorithms"
1358 select CRYPTO_ALGAPI
1359 select CRYPTO_LIB_DES
1360 help
1361 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365 depends on SPARC64
1366 select CRYPTO_ALGAPI
1367 select CRYPTO_LIB_DES
1368 select CRYPTO_SKCIPHER
1369 help
1370 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371 optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374 tristate "Triple DES EDE cipher algorithm (x86-64)"
1375 depends on X86 && 64BIT
1376 select CRYPTO_SKCIPHER
1377 select CRYPTO_LIB_DES
1378 imply CRYPTO_CTR
1379 help
1380 Triple DES EDE (FIPS 46-3) algorithm.
1381
1382 This module provides implementation of the Triple DES EDE cipher
1383 algorithm that is optimized for x86-64 processors. Two versions of
1384 algorithm are provided; regular processing one input block and
1385 one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388 tristate "FCrypt cipher algorithm"
1389 select CRYPTO_ALGAPI
1390 select CRYPTO_SKCIPHER
1391 help
1392 FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395 tristate "Khazad cipher algorithm"
1396 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397 select CRYPTO_ALGAPI
1398 help
1399 Khazad cipher algorithm.
1400
1401 Khazad was a finalist in the initial NESSIE competition. It is
1402 an algorithm optimized for 64-bit processors with good performance
1403 on 32-bit processors. Khazad uses an 128 bit key size.
1404
1405 See also:
1406 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
1408config CRYPTO_CHACHA20
1409 tristate "ChaCha stream cipher algorithms"
1410 select CRYPTO_LIB_CHACHA_GENERIC
1411 select CRYPTO_SKCIPHER
1412 help
1413 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416 Bernstein and further specified in RFC7539 for use in IETF protocols.
1417 This is the portable C implementation of ChaCha20. See also:
1418 <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1422 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423 while provably retaining ChaCha20's security. See also:
1424 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427 reduced security margin but increased performance. It can be needed
1428 in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432 depends on X86 && 64BIT
1433 select CRYPTO_SKCIPHER
1434 select CRYPTO_LIB_CHACHA_GENERIC
1435 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436 help
1437 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438 XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442 depends on CPU_MIPS32_R2
1443 select CRYPTO_SKCIPHER
1444 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447 tristate "SEED cipher algorithm"
1448 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449 select CRYPTO_ALGAPI
1450 help
1451 SEED cipher algorithm (RFC4269).
1452
1453 SEED is a 128-bit symmetric key block cipher that has been
1454 developed by KISA (Korea Information Security Agency) as a
1455 national standard encryption algorithm of the Republic of Korea.
1456 It is a 16 round block cipher with the key size of 128 bit.
1457
1458 See also:
1459 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462 tristate "Serpent cipher algorithm"
1463 select CRYPTO_ALGAPI
1464 help
1465 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467 Keys are allowed to be from 0 to 256 bits in length, in steps
1468 of 8 bits.
1469
1470 See also:
1471 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475 depends on X86 && 64BIT
1476 select CRYPTO_SKCIPHER
1477 select CRYPTO_SERPENT
1478 select CRYPTO_SIMD
1479 imply CRYPTO_CTR
1480 help
1481 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483 Keys are allowed to be from 0 to 256 bits in length, in steps
1484 of 8 bits.
1485
1486 This module provides Serpent cipher algorithm that processes eight
1487 blocks parallel using SSE2 instruction set.
1488
1489 See also:
1490 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493 tristate "Serpent cipher algorithm (i586/SSE2)"
1494 depends on X86 && !64BIT
1495 select CRYPTO_SKCIPHER
1496 select CRYPTO_SERPENT
1497 select CRYPTO_SIMD
1498 imply CRYPTO_CTR
1499 help
1500 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502 Keys are allowed to be from 0 to 256 bits in length, in steps
1503 of 8 bits.
1504
1505 This module provides Serpent cipher algorithm that processes four
1506 blocks parallel using SSE2 instruction set.
1507
1508 See also:
1509 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512 tristate "Serpent cipher algorithm (x86_64/AVX)"
1513 depends on X86 && 64BIT
1514 select CRYPTO_SKCIPHER
1515 select CRYPTO_SERPENT
1516 select CRYPTO_SIMD
1517 imply CRYPTO_XTS
1518 imply CRYPTO_CTR
1519 help
1520 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522 Keys are allowed to be from 0 to 256 bits in length, in steps
1523 of 8 bits.
1524
1525 This module provides the Serpent cipher algorithm that processes
1526 eight blocks parallel using the AVX instruction set.
1527
1528 See also:
1529 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533 depends on X86 && 64BIT
1534 select CRYPTO_SERPENT_AVX_X86_64
1535 help
1536 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538 Keys are allowed to be from 0 to 256 bits in length, in steps
1539 of 8 bits.
1540
1541 This module provides Serpent cipher algorithm that processes 16
1542 blocks parallel using AVX2 instruction set.
1543
1544 See also:
1545 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548 tristate "SM4 cipher algorithm"
1549 select CRYPTO_ALGAPI
1550 help
1551 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554 Organization of State Commercial Administration of China (OSCCA)
1555 as an authorized cryptographic algorithms for the use within China.
1556
1557 SMS4 was originally created for use in protecting wireless
1558 networks, and is mandated in the Chinese National Standard for
1559 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560 (GB.15629.11-2003).
1561
1562 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563 standardized through TC 260 of the Standardization Administration
1564 of the People's Republic of China (SAC).
1565
1566 The input, output, and key of SMS4 are each 128 bits.
1567
1568 See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570 If unsure, say N.
1571
1572config CRYPTO_TEA
1573 tristate "TEA, XTEA and XETA cipher algorithms"
1574 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575 select CRYPTO_ALGAPI
1576 help
1577 TEA cipher algorithm.
1578
1579 Tiny Encryption Algorithm is a simple cipher that uses
1580 many rounds for security. It is very fast and uses
1581 little memory.
1582
1583 Xtendend Tiny Encryption Algorithm is a modification to
1584 the TEA algorithm to address a potential key weakness
1585 in the TEA algorithm.
1586
1587 Xtendend Encryption Tiny Algorithm is a mis-implementation
1588 of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591 tristate "Twofish cipher algorithm"
1592 select CRYPTO_ALGAPI
1593 select CRYPTO_TWOFISH_COMMON
1594 help
1595 Twofish cipher algorithm.
1596
1597 Twofish was submitted as an AES (Advanced Encryption Standard)
1598 candidate cipher by researchers at CounterPane Systems. It is a
1599 16 round block cipher supporting key sizes of 128, 192, and 256
1600 bits.
1601
1602 See also:
1603 <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606 tristate
1607 help
1608 Common parts of the Twofish cipher algorithm shared by the
1609 generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612 tristate "Twofish cipher algorithms (i586)"
1613 depends on (X86 || UML_X86) && !64BIT
1614 select CRYPTO_ALGAPI
1615 select CRYPTO_TWOFISH_COMMON
1616 imply CRYPTO_CTR
1617 help
1618 Twofish cipher algorithm.
1619
1620 Twofish was submitted as an AES (Advanced Encryption Standard)
1621 candidate cipher by researchers at CounterPane Systems. It is a
1622 16 round block cipher supporting key sizes of 128, 192, and 256
1623 bits.
1624
1625 See also:
1626 <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629 tristate "Twofish cipher algorithm (x86_64)"
1630 depends on (X86 || UML_X86) && 64BIT
1631 select CRYPTO_ALGAPI
1632 select CRYPTO_TWOFISH_COMMON
1633 imply CRYPTO_CTR
1634 help
1635 Twofish cipher algorithm (x86_64).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 See also:
1643 <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647 depends on X86 && 64BIT
1648 select CRYPTO_SKCIPHER
1649 select CRYPTO_TWOFISH_COMMON
1650 select CRYPTO_TWOFISH_X86_64
1651 help
1652 Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654 Twofish was submitted as an AES (Advanced Encryption Standard)
1655 candidate cipher by researchers at CounterPane Systems. It is a
1656 16 round block cipher supporting key sizes of 128, 192, and 256
1657 bits.
1658
1659 This module provides Twofish cipher algorithm that processes three
1660 blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662 See also:
1663 <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666 tristate "Twofish cipher algorithm (x86_64/AVX)"
1667 depends on X86 && 64BIT
1668 select CRYPTO_SKCIPHER
1669 select CRYPTO_SIMD
1670 select CRYPTO_TWOFISH_COMMON
1671 select CRYPTO_TWOFISH_X86_64
1672 select CRYPTO_TWOFISH_X86_64_3WAY
1673 imply CRYPTO_XTS
1674 help
1675 Twofish cipher algorithm (x86_64/AVX).
1676
1677 Twofish was submitted as an AES (Advanced Encryption Standard)
1678 candidate cipher by researchers at CounterPane Systems. It is a
1679 16 round block cipher supporting key sizes of 128, 192, and 256
1680 bits.
1681
1682 This module provides the Twofish cipher algorithm that processes
1683 eight blocks parallel using the AVX Instruction Set.
1684
1685 See also:
1686 <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691 tristate "Deflate compression algorithm"
1692 select CRYPTO_ALGAPI
1693 select CRYPTO_ACOMP2
1694 select ZLIB_INFLATE
1695 select ZLIB_DEFLATE
1696 help
1697 This is the Deflate algorithm (RFC1951), specified for use in
1698 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700 You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703 tristate "LZO compression algorithm"
1704 select CRYPTO_ALGAPI
1705 select CRYPTO_ACOMP2
1706 select LZO_COMPRESS
1707 select LZO_DECOMPRESS
1708 help
1709 This is the LZO algorithm.
1710
1711config CRYPTO_842
1712 tristate "842 compression algorithm"
1713 select CRYPTO_ALGAPI
1714 select CRYPTO_ACOMP2
1715 select 842_COMPRESS
1716 select 842_DECOMPRESS
1717 help
1718 This is the 842 algorithm.
1719
1720config CRYPTO_LZ4
1721 tristate "LZ4 compression algorithm"
1722 select CRYPTO_ALGAPI
1723 select CRYPTO_ACOMP2
1724 select LZ4_COMPRESS
1725 select LZ4_DECOMPRESS
1726 help
1727 This is the LZ4 algorithm.
1728
1729config CRYPTO_LZ4HC
1730 tristate "LZ4HC compression algorithm"
1731 select CRYPTO_ALGAPI
1732 select CRYPTO_ACOMP2
1733 select LZ4HC_COMPRESS
1734 select LZ4_DECOMPRESS
1735 help
1736 This is the LZ4 high compression mode algorithm.
1737
1738config CRYPTO_ZSTD
1739 tristate "Zstd compression algorithm"
1740 select CRYPTO_ALGAPI
1741 select CRYPTO_ACOMP2
1742 select ZSTD_COMPRESS
1743 select ZSTD_DECOMPRESS
1744 help
1745 This is the zstd algorithm.
1746
1747comment "Random Number Generation"
1748
1749config CRYPTO_ANSI_CPRNG
1750 tristate "Pseudo Random Number Generation for Cryptographic modules"
1751 select CRYPTO_AES
1752 select CRYPTO_RNG
1753 help
1754 This option enables the generic pseudo random number generator
1755 for cryptographic modules. Uses the Algorithm specified in
1756 ANSI X9.31 A.2.4. Note that this option must be enabled if
1757 CRYPTO_FIPS is selected
1758
1759menuconfig CRYPTO_DRBG_MENU
1760 tristate "NIST SP800-90A DRBG"
1761 help
1762 NIST SP800-90A compliant DRBG. In the following submenu, one or
1763 more of the DRBG types must be selected.
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768 bool
1769 default y
1770 select CRYPTO_HMAC
1771 select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774 bool "Enable Hash DRBG"
1775 select CRYPTO_SHA256
1776 help
1777 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1778
1779config CRYPTO_DRBG_CTR
1780 bool "Enable CTR DRBG"
1781 select CRYPTO_AES
1782 select CRYPTO_CTR
1783 help
1784 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1785
1786config CRYPTO_DRBG
1787 tristate
1788 default CRYPTO_DRBG_MENU
1789 select CRYPTO_RNG
1790 select CRYPTO_JITTERENTROPY
1791
1792endif # if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796 select CRYPTO_RNG
1797 help
1798 The Jitterentropy RNG is a noise that is intended
1799 to provide seed to another RNG. The RNG does not
1800 perform any cryptographic whitening of the generated
1801 random numbers. This Jitterentropy RNG registers with
1802 the kernel crypto API and can be used by any caller.
1803
1804config CRYPTO_USER_API
1805 tristate
1806
1807config CRYPTO_USER_API_HASH
1808 tristate "User-space interface for hash algorithms"
1809 depends on NET
1810 select CRYPTO_HASH
1811 select CRYPTO_USER_API
1812 help
1813 This option enables the user-spaces interface for hash
1814 algorithms.
1815
1816config CRYPTO_USER_API_SKCIPHER
1817 tristate "User-space interface for symmetric key cipher algorithms"
1818 depends on NET
1819 select CRYPTO_SKCIPHER
1820 select CRYPTO_USER_API
1821 help
1822 This option enables the user-spaces interface for symmetric
1823 key cipher algorithms.
1824
1825config CRYPTO_USER_API_RNG
1826 tristate "User-space interface for random number generator algorithms"
1827 depends on NET
1828 select CRYPTO_RNG
1829 select CRYPTO_USER_API
1830 help
1831 This option enables the user-spaces interface for random
1832 number generator algorithms.
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835 bool "Enable CAVP testing of DRBG"
1836 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837 help
1838 This option enables extra API for CAVP testing via the user-space
1839 interface: resetting of DRBG entropy, and providing Additional Data.
1840 This should only be enabled for CAVP testing. You should say
1841 no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844 tristate "User-space interface for AEAD cipher algorithms"
1845 depends on NET
1846 select CRYPTO_AEAD
1847 select CRYPTO_SKCIPHER
1848 select CRYPTO_NULL
1849 select CRYPTO_USER_API
1850 help
1851 This option enables the user-spaces interface for AEAD
1852 cipher algorithms.
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855 bool "Enable obsolete cryptographic algorithms for userspace"
1856 depends on CRYPTO_USER_API
1857 default y
1858 help
1859 Allow obsolete cryptographic algorithms to be selected that have
1860 already been phased out from internal use by the kernel, and are
1861 only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864 bool "Crypto usage statistics for User-space"
1865 depends on CRYPTO_USER
1866 help
1867 This option enables the gathering of crypto stats.
1868 This will collect:
1869 - encrypt/decrypt size and numbers of symmeric operations
1870 - compress/decompress size and numbers of compress operations
1871 - size and numbers of hash operations
1872 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873 - generate/seed numbers for rng operations
1874
1875config CRYPTO_HASH_INFO
1876 bool
1877
1878source "lib/crypto/Kconfig"
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif # if CRYPTO