Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76 tristate
77 select CRYPTO_SIG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85 tristate
86 select CRYPTO_SKCIPHER2
87 select CRYPTO_ALGAPI
88 select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91 tristate
92 select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95 tristate
96 select CRYPTO_HASH2
97 select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100 tristate
101 select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104 tristate
105 select CRYPTO_RNG2
106 select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109 tristate
110 select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113 tristate
114 select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117 tristate
118 select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121 tristate
122 select CRYPTO_AKCIPHER2
123 select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126 tristate
127 select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130 tristate
131 select CRYPTO_ALGAPI
132 select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135 tristate
136 select CRYPTO_ALGAPI2
137 select SGL_ALLOC
138
139config CRYPTO_ACOMP
140 tristate
141 select CRYPTO_ALGAPI
142 select CRYPTO_ACOMP2
143
144config CRYPTO_MANAGER
145 tristate "Cryptographic algorithm manager"
146 select CRYPTO_MANAGER2
147 help
148 Create default cryptographic template instantiations such as
149 cbc(aes).
150
151config CRYPTO_MANAGER2
152 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
153 select CRYPTO_ACOMP2
154 select CRYPTO_AEAD2
155 select CRYPTO_AKCIPHER2
156 select CRYPTO_SIG2
157 select CRYPTO_HASH2
158 select CRYPTO_KPP2
159 select CRYPTO_RNG2
160 select CRYPTO_SKCIPHER2
161
162config CRYPTO_USER
163 tristate "Userspace cryptographic algorithm configuration"
164 depends on NET
165 select CRYPTO_MANAGER
166 help
167 Userspace configuration for cryptographic instantiations such as
168 cbc(aes).
169
170config CRYPTO_MANAGER_DISABLE_TESTS
171 bool "Disable run-time self tests"
172 default y
173 help
174 Disable run-time self tests that normally take place at
175 algorithm registration.
176
177config CRYPTO_MANAGER_EXTRA_TESTS
178 bool "Enable extra run-time crypto self tests"
179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
180 help
181 Enable extra run-time self tests of registered crypto algorithms,
182 including randomized fuzz tests.
183
184 This is intended for developer use only, as these tests take much
185 longer to run than the normal self tests.
186
187config CRYPTO_NULL
188 tristate "Null algorithms"
189 select CRYPTO_NULL2
190 help
191 These are 'Null' algorithms, used by IPsec, which do nothing.
192
193config CRYPTO_NULL2
194 tristate
195 select CRYPTO_ALGAPI2
196 select CRYPTO_SKCIPHER2
197 select CRYPTO_HASH2
198
199config CRYPTO_PCRYPT
200 tristate "Parallel crypto engine"
201 depends on SMP
202 select PADATA
203 select CRYPTO_MANAGER
204 select CRYPTO_AEAD
205 help
206 This converts an arbitrary crypto algorithm into a parallel
207 algorithm that executes in kernel threads.
208
209config CRYPTO_CRYPTD
210 tristate "Software async crypto daemon"
211 select CRYPTO_SKCIPHER
212 select CRYPTO_HASH
213 select CRYPTO_MANAGER
214 help
215 This is a generic software asynchronous crypto daemon that
216 converts an arbitrary synchronous software crypto algorithm
217 into an asynchronous algorithm that executes in a kernel thread.
218
219config CRYPTO_AUTHENC
220 tristate "Authenc support"
221 select CRYPTO_AEAD
222 select CRYPTO_SKCIPHER
223 select CRYPTO_MANAGER
224 select CRYPTO_HASH
225 select CRYPTO_NULL
226 help
227 Authenc: Combined mode wrapper for IPsec.
228
229 This is required for IPSec ESP (XFRM_ESP).
230
231config CRYPTO_TEST
232 tristate "Testing module"
233 depends on m || EXPERT
234 select CRYPTO_MANAGER
235 help
236 Quick & dirty crypto test module.
237
238config CRYPTO_SIMD
239 tristate
240 select CRYPTO_CRYPTD
241
242config CRYPTO_ENGINE
243 tristate
244
245endmenu
246
247menu "Public-key cryptography"
248
249config CRYPTO_RSA
250 tristate "RSA (Rivest-Shamir-Adleman)"
251 select CRYPTO_AKCIPHER
252 select CRYPTO_MANAGER
253 select MPILIB
254 select ASN1
255 help
256 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
257
258config CRYPTO_DH
259 tristate "DH (Diffie-Hellman)"
260 select CRYPTO_KPP
261 select MPILIB
262 help
263 DH (Diffie-Hellman) key exchange algorithm
264
265config CRYPTO_DH_RFC7919_GROUPS
266 bool "RFC 7919 FFDHE groups"
267 depends on CRYPTO_DH
268 select CRYPTO_RNG_DEFAULT
269 help
270 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
271 defined in RFC7919.
272
273 Support these finite-field groups in DH key exchanges:
274 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
275
276 If unsure, say N.
277
278config CRYPTO_ECC
279 tristate
280 select CRYPTO_RNG_DEFAULT
281
282config CRYPTO_ECDH
283 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
284 select CRYPTO_ECC
285 select CRYPTO_KPP
286 help
287 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
288 using curves P-192, P-256, and P-384 (FIPS 186)
289
290config CRYPTO_ECDSA
291 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
292 select CRYPTO_ECC
293 select CRYPTO_AKCIPHER
294 select ASN1
295 help
296 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
297 ISO/IEC 14888-3)
298 using curves P-192, P-256, and P-384
299
300 Only signature verification is implemented.
301
302config CRYPTO_ECRDSA
303 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
304 select CRYPTO_ECC
305 select CRYPTO_AKCIPHER
306 select CRYPTO_STREEBOG
307 select OID_REGISTRY
308 select ASN1
309 help
310 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
311 RFC 7091, ISO/IEC 14888-3)
312
313 One of the Russian cryptographic standard algorithms (called GOST
314 algorithms). Only signature verification is implemented.
315
316config CRYPTO_SM2
317 tristate "SM2 (ShangMi 2)"
318 select CRYPTO_SM3
319 select CRYPTO_AKCIPHER
320 select CRYPTO_MANAGER
321 select MPILIB
322 select ASN1
323 help
324 SM2 (ShangMi 2) public key algorithm
325
326 Published by State Encryption Management Bureau, China,
327 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
328
329 References:
330 https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
331 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
332 http://www.gmbz.org.cn/main/bzlb.html
333
334config CRYPTO_CURVE25519
335 tristate "Curve25519"
336 select CRYPTO_KPP
337 select CRYPTO_LIB_CURVE25519_GENERIC
338 help
339 Curve25519 elliptic curve (RFC7748)
340
341endmenu
342
343menu "Block ciphers"
344
345config CRYPTO_AES
346 tristate "AES (Advanced Encryption Standard)"
347 select CRYPTO_ALGAPI
348 select CRYPTO_LIB_AES
349 help
350 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
351
352 Rijndael appears to be consistently a very good performer in
353 both hardware and software across a wide range of computing
354 environments regardless of its use in feedback or non-feedback
355 modes. Its key setup time is excellent, and its key agility is
356 good. Rijndael's very low memory requirements make it very well
357 suited for restricted-space environments, in which it also
358 demonstrates excellent performance. Rijndael's operations are
359 among the easiest to defend against power and timing attacks.
360
361 The AES specifies three key sizes: 128, 192 and 256 bits
362
363config CRYPTO_AES_TI
364 tristate "AES (Advanced Encryption Standard) (fixed time)"
365 select CRYPTO_ALGAPI
366 select CRYPTO_LIB_AES
367 help
368 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
369
370 This is a generic implementation of AES that attempts to eliminate
371 data dependent latencies as much as possible without affecting
372 performance too much. It is intended for use by the generic CCM
373 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
374 solely on encryption (although decryption is supported as well, but
375 with a more dramatic performance hit)
376
377 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
378 8 for decryption), this implementation only uses just two S-boxes of
379 256 bytes each, and attempts to eliminate data dependent latencies by
380 prefetching the entire table into the cache at the start of each
381 block. Interrupts are also disabled to avoid races where cachelines
382 are evicted when the CPU is interrupted to do something else.
383
384config CRYPTO_ANUBIS
385 tristate "Anubis"
386 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
387 select CRYPTO_ALGAPI
388 help
389 Anubis cipher algorithm
390
391 Anubis is a variable key length cipher which can use keys from
392 128 bits to 320 bits in length. It was evaluated as a entrant
393 in the NESSIE competition.
394
395 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
396 for further information.
397
398config CRYPTO_ARIA
399 tristate "ARIA"
400 select CRYPTO_ALGAPI
401 help
402 ARIA cipher algorithm (RFC5794)
403
404 ARIA is a standard encryption algorithm of the Republic of Korea.
405 The ARIA specifies three key sizes and rounds.
406 128-bit: 12 rounds.
407 192-bit: 14 rounds.
408 256-bit: 16 rounds.
409
410 See:
411 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
412
413config CRYPTO_BLOWFISH
414 tristate "Blowfish"
415 select CRYPTO_ALGAPI
416 select CRYPTO_BLOWFISH_COMMON
417 help
418 Blowfish cipher algorithm, by Bruce Schneier
419
420 This is a variable key length cipher which can use keys from 32
421 bits to 448 bits in length. It's fast, simple and specifically
422 designed for use on "large microprocessors".
423
424 See https://www.schneier.com/blowfish.html for further information.
425
426config CRYPTO_BLOWFISH_COMMON
427 tristate
428 help
429 Common parts of the Blowfish cipher algorithm shared by the
430 generic c and the assembler implementations.
431
432config CRYPTO_CAMELLIA
433 tristate "Camellia"
434 select CRYPTO_ALGAPI
435 help
436 Camellia cipher algorithms (ISO/IEC 18033-3)
437
438 Camellia is a symmetric key block cipher developed jointly
439 at NTT and Mitsubishi Electric Corporation.
440
441 The Camellia specifies three key sizes: 128, 192 and 256 bits.
442
443 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
444
445config CRYPTO_CAST_COMMON
446 tristate
447 help
448 Common parts of the CAST cipher algorithms shared by the
449 generic c and the assembler implementations.
450
451config CRYPTO_CAST5
452 tristate "CAST5 (CAST-128)"
453 select CRYPTO_ALGAPI
454 select CRYPTO_CAST_COMMON
455 help
456 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
457
458config CRYPTO_CAST6
459 tristate "CAST6 (CAST-256)"
460 select CRYPTO_ALGAPI
461 select CRYPTO_CAST_COMMON
462 help
463 CAST6 (CAST-256) encryption algorithm (RFC2612)
464
465config CRYPTO_DES
466 tristate "DES and Triple DES EDE"
467 select CRYPTO_ALGAPI
468 select CRYPTO_LIB_DES
469 help
470 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
471 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
472 cipher algorithms
473
474config CRYPTO_FCRYPT
475 tristate "FCrypt"
476 select CRYPTO_ALGAPI
477 select CRYPTO_SKCIPHER
478 help
479 FCrypt algorithm used by RxRPC
480
481 See https://ota.polyonymo.us/fcrypt-paper.txt
482
483config CRYPTO_KHAZAD
484 tristate "Khazad"
485 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
486 select CRYPTO_ALGAPI
487 help
488 Khazad cipher algorithm
489
490 Khazad was a finalist in the initial NESSIE competition. It is
491 an algorithm optimized for 64-bit processors with good performance
492 on 32-bit processors. Khazad uses an 128 bit key size.
493
494 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
495 for further information.
496
497config CRYPTO_SEED
498 tristate "SEED"
499 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
500 select CRYPTO_ALGAPI
501 help
502 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
503
504 SEED is a 128-bit symmetric key block cipher that has been
505 developed by KISA (Korea Information Security Agency) as a
506 national standard encryption algorithm of the Republic of Korea.
507 It is a 16 round block cipher with the key size of 128 bit.
508
509 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
510 for further information.
511
512config CRYPTO_SERPENT
513 tristate "Serpent"
514 select CRYPTO_ALGAPI
515 help
516 Serpent cipher algorithm, by Anderson, Biham & Knudsen
517
518 Keys are allowed to be from 0 to 256 bits in length, in steps
519 of 8 bits.
520
521 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
522
523config CRYPTO_SM4
524 tristate
525
526config CRYPTO_SM4_GENERIC
527 tristate "SM4 (ShangMi 4)"
528 select CRYPTO_ALGAPI
529 select CRYPTO_SM4
530 help
531 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
532 ISO/IEC 18033-3:2010/Amd 1:2021)
533
534 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
535 Organization of State Commercial Administration of China (OSCCA)
536 as an authorized cryptographic algorithms for the use within China.
537
538 SMS4 was originally created for use in protecting wireless
539 networks, and is mandated in the Chinese National Standard for
540 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
541 (GB.15629.11-2003).
542
543 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
544 standardized through TC 260 of the Standardization Administration
545 of the People's Republic of China (SAC).
546
547 The input, output, and key of SMS4 are each 128 bits.
548
549 See https://eprint.iacr.org/2008/329.pdf for further information.
550
551 If unsure, say N.
552
553config CRYPTO_TEA
554 tristate "TEA, XTEA and XETA"
555 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
556 select CRYPTO_ALGAPI
557 help
558 TEA (Tiny Encryption Algorithm) cipher algorithms
559
560 Tiny Encryption Algorithm is a simple cipher that uses
561 many rounds for security. It is very fast and uses
562 little memory.
563
564 Xtendend Tiny Encryption Algorithm is a modification to
565 the TEA algorithm to address a potential key weakness
566 in the TEA algorithm.
567
568 Xtendend Encryption Tiny Algorithm is a mis-implementation
569 of the XTEA algorithm for compatibility purposes.
570
571config CRYPTO_TWOFISH
572 tristate "Twofish"
573 select CRYPTO_ALGAPI
574 select CRYPTO_TWOFISH_COMMON
575 help
576 Twofish cipher algorithm
577
578 Twofish was submitted as an AES (Advanced Encryption Standard)
579 candidate cipher by researchers at CounterPane Systems. It is a
580 16 round block cipher supporting key sizes of 128, 192, and 256
581 bits.
582
583 See https://www.schneier.com/twofish.html for further information.
584
585config CRYPTO_TWOFISH_COMMON
586 tristate
587 help
588 Common parts of the Twofish cipher algorithm shared by the
589 generic c and the assembler implementations.
590
591endmenu
592
593menu "Length-preserving ciphers and modes"
594
595config CRYPTO_ADIANTUM
596 tristate "Adiantum"
597 select CRYPTO_CHACHA20
598 select CRYPTO_LIB_POLY1305_GENERIC
599 select CRYPTO_NHPOLY1305
600 select CRYPTO_MANAGER
601 help
602 Adiantum tweakable, length-preserving encryption mode
603
604 Designed for fast and secure disk encryption, especially on
605 CPUs without dedicated crypto instructions. It encrypts
606 each sector using the XChaCha12 stream cipher, two passes of
607 an ε-almost-∆-universal hash function, and an invocation of
608 the AES-256 block cipher on a single 16-byte block. On CPUs
609 without AES instructions, Adiantum is much faster than
610 AES-XTS.
611
612 Adiantum's security is provably reducible to that of its
613 underlying stream and block ciphers, subject to a security
614 bound. Unlike XTS, Adiantum is a true wide-block encryption
615 mode, so it actually provides an even stronger notion of
616 security than XTS, subject to the security bound.
617
618 If unsure, say N.
619
620config CRYPTO_ARC4
621 tristate "ARC4 (Alleged Rivest Cipher 4)"
622 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
623 select CRYPTO_SKCIPHER
624 select CRYPTO_LIB_ARC4
625 help
626 ARC4 cipher algorithm
627
628 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
629 bits in length. This algorithm is required for driver-based
630 WEP, but it should not be for other purposes because of the
631 weakness of the algorithm.
632
633config CRYPTO_CHACHA20
634 tristate "ChaCha"
635 select CRYPTO_LIB_CHACHA_GENERIC
636 select CRYPTO_SKCIPHER
637 help
638 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
639
640 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
641 Bernstein and further specified in RFC7539 for use in IETF protocols.
642 This is the portable C implementation of ChaCha20. See
643 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
644
645 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
646 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
647 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
648 while provably retaining ChaCha20's security. See
649 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
650
651 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
652 reduced security margin but increased performance. It can be needed
653 in some performance-sensitive scenarios.
654
655config CRYPTO_CBC
656 tristate "CBC (Cipher Block Chaining)"
657 select CRYPTO_SKCIPHER
658 select CRYPTO_MANAGER
659 help
660 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
661
662 This block cipher mode is required for IPSec ESP (XFRM_ESP).
663
664config CRYPTO_CTR
665 tristate "CTR (Counter)"
666 select CRYPTO_SKCIPHER
667 select CRYPTO_MANAGER
668 help
669 CTR (Counter) mode (NIST SP800-38A)
670
671config CRYPTO_CTS
672 tristate "CTS (Cipher Text Stealing)"
673 select CRYPTO_SKCIPHER
674 select CRYPTO_MANAGER
675 help
676 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
677 Addendum to SP800-38A (October 2010))
678
679 This mode is required for Kerberos gss mechanism support
680 for AES encryption.
681
682config CRYPTO_ECB
683 tristate "ECB (Electronic Codebook)"
684 select CRYPTO_SKCIPHER2
685 select CRYPTO_MANAGER
686 help
687 ECB (Electronic Codebook) mode (NIST SP800-38A)
688
689config CRYPTO_HCTR2
690 tristate "HCTR2"
691 select CRYPTO_XCTR
692 select CRYPTO_POLYVAL
693 select CRYPTO_MANAGER
694 help
695 HCTR2 length-preserving encryption mode
696
697 A mode for storage encryption that is efficient on processors with
698 instructions to accelerate AES and carryless multiplication, e.g.
699 x86 processors with AES-NI and CLMUL, and ARM processors with the
700 ARMv8 crypto extensions.
701
702 See https://eprint.iacr.org/2021/1441
703
704config CRYPTO_KEYWRAP
705 tristate "KW (AES Key Wrap)"
706 select CRYPTO_SKCIPHER
707 select CRYPTO_MANAGER
708 help
709 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
710 and RFC3394) without padding.
711
712config CRYPTO_LRW
713 tristate "LRW (Liskov Rivest Wagner)"
714 select CRYPTO_LIB_GF128MUL
715 select CRYPTO_SKCIPHER
716 select CRYPTO_MANAGER
717 select CRYPTO_ECB
718 help
719 LRW (Liskov Rivest Wagner) mode
720
721 A tweakable, non malleable, non movable
722 narrow block cipher mode for dm-crypt. Use it with cipher
723 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
724 The first 128, 192 or 256 bits in the key are used for AES and the
725 rest is used to tie each cipher block to its logical position.
726
727 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
728
729config CRYPTO_PCBC
730 tristate "PCBC (Propagating Cipher Block Chaining)"
731 select CRYPTO_SKCIPHER
732 select CRYPTO_MANAGER
733 help
734 PCBC (Propagating Cipher Block Chaining) mode
735
736 This block cipher mode is required for RxRPC.
737
738config CRYPTO_XCTR
739 tristate
740 select CRYPTO_SKCIPHER
741 select CRYPTO_MANAGER
742 help
743 XCTR (XOR Counter) mode for HCTR2
744
745 This blockcipher mode is a variant of CTR mode using XORs and little-endian
746 addition rather than big-endian arithmetic.
747
748 XCTR mode is used to implement HCTR2.
749
750config CRYPTO_XTS
751 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
752 select CRYPTO_SKCIPHER
753 select CRYPTO_MANAGER
754 select CRYPTO_ECB
755 help
756 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
757 and IEEE 1619)
758
759 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
760 implementation currently can't handle a sectorsize which is not a
761 multiple of 16 bytes.
762
763config CRYPTO_NHPOLY1305
764 tristate
765 select CRYPTO_HASH
766 select CRYPTO_LIB_POLY1305_GENERIC
767
768endmenu
769
770menu "AEAD (authenticated encryption with associated data) ciphers"
771
772config CRYPTO_AEGIS128
773 tristate "AEGIS-128"
774 select CRYPTO_AEAD
775 select CRYPTO_AES # for AES S-box tables
776 help
777 AEGIS-128 AEAD algorithm
778
779config CRYPTO_AEGIS128_SIMD
780 bool "AEGIS-128 (arm NEON, arm64 NEON)"
781 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
782 default y
783 help
784 AEGIS-128 AEAD algorithm
785
786 Architecture: arm or arm64 using:
787 - NEON (Advanced SIMD) extension
788
789config CRYPTO_CHACHA20POLY1305
790 tristate "ChaCha20-Poly1305"
791 select CRYPTO_CHACHA20
792 select CRYPTO_POLY1305
793 select CRYPTO_AEAD
794 select CRYPTO_MANAGER
795 help
796 ChaCha20 stream cipher and Poly1305 authenticator combined
797 mode (RFC8439)
798
799config CRYPTO_CCM
800 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
801 select CRYPTO_CTR
802 select CRYPTO_HASH
803 select CRYPTO_AEAD
804 select CRYPTO_MANAGER
805 help
806 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
807 authenticated encryption mode (NIST SP800-38C)
808
809config CRYPTO_GCM
810 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
811 select CRYPTO_CTR
812 select CRYPTO_AEAD
813 select CRYPTO_GHASH
814 select CRYPTO_NULL
815 select CRYPTO_MANAGER
816 help
817 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
818 (GCM Message Authentication Code) (NIST SP800-38D)
819
820 This is required for IPSec ESP (XFRM_ESP).
821
822config CRYPTO_GENIV
823 tristate
824 select CRYPTO_AEAD
825 select CRYPTO_NULL
826 select CRYPTO_MANAGER
827 select CRYPTO_RNG_DEFAULT
828
829config CRYPTO_SEQIV
830 tristate "Sequence Number IV Generator"
831 select CRYPTO_GENIV
832 help
833 Sequence Number IV generator
834
835 This IV generator generates an IV based on a sequence number by
836 xoring it with a salt. This algorithm is mainly useful for CTR.
837
838 This is required for IPsec ESP (XFRM_ESP).
839
840config CRYPTO_ECHAINIV
841 tristate "Encrypted Chain IV Generator"
842 select CRYPTO_GENIV
843 help
844 Encrypted Chain IV generator
845
846 This IV generator generates an IV based on the encryption of
847 a sequence number xored with a salt. This is the default
848 algorithm for CBC.
849
850config CRYPTO_ESSIV
851 tristate "Encrypted Salt-Sector IV Generator"
852 select CRYPTO_AUTHENC
853 help
854 Encrypted Salt-Sector IV generator
855
856 This IV generator is used in some cases by fscrypt and/or
857 dm-crypt. It uses the hash of the block encryption key as the
858 symmetric key for a block encryption pass applied to the input
859 IV, making low entropy IV sources more suitable for block
860 encryption.
861
862 This driver implements a crypto API template that can be
863 instantiated either as an skcipher or as an AEAD (depending on the
864 type of the first template argument), and which defers encryption
865 and decryption requests to the encapsulated cipher after applying
866 ESSIV to the input IV. Note that in the AEAD case, it is assumed
867 that the keys are presented in the same format used by the authenc
868 template, and that the IV appears at the end of the authenticated
869 associated data (AAD) region (which is how dm-crypt uses it.)
870
871 Note that the use of ESSIV is not recommended for new deployments,
872 and so this only needs to be enabled when interoperability with
873 existing encrypted volumes of filesystems is required, or when
874 building for a particular system that requires it (e.g., when
875 the SoC in question has accelerated CBC but not XTS, making CBC
876 combined with ESSIV the only feasible mode for h/w accelerated
877 block encryption)
878
879endmenu
880
881menu "Hashes, digests, and MACs"
882
883config CRYPTO_BLAKE2B
884 tristate "BLAKE2b"
885 select CRYPTO_HASH
886 help
887 BLAKE2b cryptographic hash function (RFC 7693)
888
889 BLAKE2b is optimized for 64-bit platforms and can produce digests
890 of any size between 1 and 64 bytes. The keyed hash is also implemented.
891
892 This module provides the following algorithms:
893 - blake2b-160
894 - blake2b-256
895 - blake2b-384
896 - blake2b-512
897
898 Used by the btrfs filesystem.
899
900 See https://blake2.net for further information.
901
902config CRYPTO_CMAC
903 tristate "CMAC (Cipher-based MAC)"
904 select CRYPTO_HASH
905 select CRYPTO_MANAGER
906 help
907 CMAC (Cipher-based Message Authentication Code) authentication
908 mode (NIST SP800-38B and IETF RFC4493)
909
910config CRYPTO_GHASH
911 tristate "GHASH"
912 select CRYPTO_HASH
913 select CRYPTO_LIB_GF128MUL
914 help
915 GCM GHASH function (NIST SP800-38D)
916
917config CRYPTO_HMAC
918 tristate "HMAC (Keyed-Hash MAC)"
919 select CRYPTO_HASH
920 select CRYPTO_MANAGER
921 help
922 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
923 RFC2104)
924
925 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
926
927config CRYPTO_MD4
928 tristate "MD4"
929 select CRYPTO_HASH
930 help
931 MD4 message digest algorithm (RFC1320)
932
933config CRYPTO_MD5
934 tristate "MD5"
935 select CRYPTO_HASH
936 help
937 MD5 message digest algorithm (RFC1321)
938
939config CRYPTO_MICHAEL_MIC
940 tristate "Michael MIC"
941 select CRYPTO_HASH
942 help
943 Michael MIC (Message Integrity Code) (IEEE 802.11i)
944
945 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
946 known as WPA (Wif-Fi Protected Access).
947
948 This algorithm is required for TKIP, but it should not be used for
949 other purposes because of the weakness of the algorithm.
950
951config CRYPTO_POLYVAL
952 tristate
953 select CRYPTO_HASH
954 select CRYPTO_LIB_GF128MUL
955 help
956 POLYVAL hash function for HCTR2
957
958 This is used in HCTR2. It is not a general-purpose
959 cryptographic hash function.
960
961config CRYPTO_POLY1305
962 tristate "Poly1305"
963 select CRYPTO_HASH
964 select CRYPTO_LIB_POLY1305_GENERIC
965 help
966 Poly1305 authenticator algorithm (RFC7539)
967
968 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
969 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
970 in IETF protocols. This is the portable C implementation of Poly1305.
971
972config CRYPTO_RMD160
973 tristate "RIPEMD-160"
974 select CRYPTO_HASH
975 help
976 RIPEMD-160 hash function (ISO/IEC 10118-3)
977
978 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
979 to be used as a secure replacement for the 128-bit hash functions
980 MD4, MD5 and its predecessor RIPEMD
981 (not to be confused with RIPEMD-128).
982
983 Its speed is comparable to SHA-1 and there are no known attacks
984 against RIPEMD-160.
985
986 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
987 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
988 for further information.
989
990config CRYPTO_SHA1
991 tristate "SHA-1"
992 select CRYPTO_HASH
993 select CRYPTO_LIB_SHA1
994 help
995 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
996
997config CRYPTO_SHA256
998 tristate "SHA-224 and SHA-256"
999 select CRYPTO_HASH
1000 select CRYPTO_LIB_SHA256
1001 help
1002 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1003
1004 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005 Used by the btrfs filesystem, Ceph, NFS, and SMB.
1006
1007config CRYPTO_SHA512
1008 tristate "SHA-384 and SHA-512"
1009 select CRYPTO_HASH
1010 help
1011 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014 tristate "SHA-3"
1015 select CRYPTO_HASH
1016 help
1017 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1018
1019config CRYPTO_SM3
1020 tristate
1021
1022config CRYPTO_SM3_GENERIC
1023 tristate "SM3 (ShangMi 3)"
1024 select CRYPTO_HASH
1025 select CRYPTO_SM3
1026 help
1027 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1028
1029 This is part of the Chinese Commercial Cryptography suite.
1030
1031 References:
1032 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036 tristate "Streebog"
1037 select CRYPTO_HASH
1038 help
1039 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041 This is one of the Russian cryptographic standard algorithms (called
1042 GOST algorithms). This setting enables two hash algorithms with
1043 256 and 512 bits output.
1044
1045 References:
1046 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047 https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050 tristate "VMAC"
1051 select CRYPTO_HASH
1052 select CRYPTO_MANAGER
1053 help
1054 VMAC is a message authentication algorithm designed for
1055 very high speed on 64-bit architectures.
1056
1057 See https://fastcrypto.org/vmac for further information.
1058
1059config CRYPTO_WP512
1060 tristate "Whirlpool"
1061 select CRYPTO_HASH
1062 help
1063 Whirlpool hash function (ISO/IEC 10118-3)
1064
1065 512, 384 and 256-bit hashes.
1066
1067 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1068
1069 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070 for further information.
1071
1072config CRYPTO_XCBC
1073 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074 select CRYPTO_HASH
1075 select CRYPTO_MANAGER
1076 help
1077 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078 Code) (RFC3566)
1079
1080config CRYPTO_XXHASH
1081 tristate "xxHash"
1082 select CRYPTO_HASH
1083 select XXHASH
1084 help
1085 xxHash non-cryptographic hash algorithm
1086
1087 Extremely fast, working at speeds close to RAM limits.
1088
1089 Used by the btrfs filesystem.
1090
1091endmenu
1092
1093menu "CRCs (cyclic redundancy checks)"
1094
1095config CRYPTO_CRC32C
1096 tristate "CRC32c"
1097 select CRYPTO_HASH
1098 select CRC32
1099 help
1100 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106 iSCSI.
1107
1108 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1109
1110config CRYPTO_CRC32
1111 tristate "CRC32"
1112 select CRYPTO_HASH
1113 select CRC32
1114 help
1115 CRC32 CRC algorithm (IEEE 802.3)
1116
1117 Used by RoCEv2 and f2fs.
1118
1119config CRYPTO_CRCT10DIF
1120 tristate "CRCT10DIF"
1121 select CRYPTO_HASH
1122 help
1123 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1124
1125 CRC algorithm used by the SCSI Block Commands standard.
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128 tristate "CRC64 based on Rocksoft Model algorithm"
1129 depends on CRC64
1130 select CRYPTO_HASH
1131 help
1132 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1135
1136 See https://zlib.net/crc_v3.txt
1137
1138endmenu
1139
1140menu "Compression"
1141
1142config CRYPTO_DEFLATE
1143 tristate "Deflate"
1144 select CRYPTO_ALGAPI
1145 select CRYPTO_ACOMP2
1146 select ZLIB_INFLATE
1147 select ZLIB_DEFLATE
1148 help
1149 Deflate compression algorithm (RFC1951)
1150
1151 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1152
1153config CRYPTO_LZO
1154 tristate "LZO"
1155 select CRYPTO_ALGAPI
1156 select CRYPTO_ACOMP2
1157 select LZO_COMPRESS
1158 select LZO_DECOMPRESS
1159 help
1160 LZO compression algorithm
1161
1162 See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165 tristate "842"
1166 select CRYPTO_ALGAPI
1167 select CRYPTO_ACOMP2
1168 select 842_COMPRESS
1169 select 842_DECOMPRESS
1170 help
1171 842 compression algorithm by IBM
1172
1173 See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176 tristate "LZ4"
1177 select CRYPTO_ALGAPI
1178 select CRYPTO_ACOMP2
1179 select LZ4_COMPRESS
1180 select LZ4_DECOMPRESS
1181 help
1182 LZ4 compression algorithm
1183
1184 See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187 tristate "LZ4HC"
1188 select CRYPTO_ALGAPI
1189 select CRYPTO_ACOMP2
1190 select LZ4HC_COMPRESS
1191 select LZ4_DECOMPRESS
1192 help
1193 LZ4 high compression mode algorithm
1194
1195 See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198 tristate "Zstd"
1199 select CRYPTO_ALGAPI
1200 select CRYPTO_ACOMP2
1201 select ZSTD_COMPRESS
1202 select ZSTD_DECOMPRESS
1203 help
1204 zstd compression algorithm
1205
1206 See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1214 select CRYPTO_AES
1215 select CRYPTO_RNG
1216 help
1217 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219 This uses the AES cipher algorithm.
1220
1221 Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225 help
1226 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228 In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233 bool
1234 default y
1235 select CRYPTO_HMAC
1236 select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239 bool "Hash_DRBG"
1240 select CRYPTO_SHA256
1241 help
1242 Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247 bool "CTR_DRBG"
1248 select CRYPTO_AES
1249 select CRYPTO_CTR
1250 help
1251 CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253 This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256 tristate
1257 default CRYPTO_DRBG_MENU
1258 select CRYPTO_RNG
1259 select CRYPTO_JITTERENTROPY
1260
1261endif # if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265 select CRYPTO_RNG
1266 select CRYPTO_SHA3
1267 help
1268 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271 compliant with NIST SP800-90B) intended to provide a seed to a
1272 deterministic RNG (e.g. per NIST SP800-90C).
1273 This RNG does not perform any cryptographic whitening of the generated
1274
1275 See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281 prompt "CPU Jitter RNG Memory Size"
1282 default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283 help
1284 The Jitter RNG measures the execution time of memory accesses.
1285 Multiple consecutive memory accesses are performed. If the memory
1286 size fits into a cache (e.g. L1), only the memory access timing
1287 to that cache is measured. The closer the cache is to the CPU
1288 the less variations are measured and thus the less entropy is
1289 obtained. Thus, if the memory size fits into the L1 cache, the
1290 obtained entropy is less than if the memory size fits within
1291 L1 + L2, which in turn is less if the memory fits into
1292 L1 + L2 + L3. Thus, by selecting a different memory size,
1293 the entropy rate produced by the Jitter RNG can be modified.
1294
1295 config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296 bool "2048 Bytes (default)"
1297
1298 config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299 bool "128 kBytes"
1300
1301 config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302 bool "1024 kBytes"
1303
1304 config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305 bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309 int
1310 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316 int
1317 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323 int "CPU Jitter RNG Oversampling Rate"
1324 range 1 15
1325 default 1
1326 help
1327 The Jitter RNG allows the specification of an oversampling rate (OSR).
1328 The Jitter RNG operation requires a fixed amount of timing
1329 measurements to produce one output block of random numbers. The
1330 OSR value is multiplied with the amount of timing measurements to
1331 generate one output block. Thus, the timing measurement is oversampled
1332 by the OSR factor. The oversampling allows the Jitter RNG to operate
1333 on hardware whose timers deliver limited amount of entropy (e.g.
1334 the timer is coarse) by setting the OSR to a higher value. The
1335 trade-off, however, is that the Jitter RNG now requires more time
1336 to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339 bool "CPU Jitter RNG Test Interface"
1340 help
1341 The test interface allows a privileged process to capture
1342 the raw unconditioned high resolution time stamp noise that
1343 is collected by the Jitter RNG for statistical analysis. As
1344 this data is used at the same time to generate random bits,
1345 the Jitter RNG operates in an insecure mode as long as the
1346 recording is enabled. This interface therefore is only
1347 intended for testing purposes and is not suitable for
1348 production systems.
1349
1350 The raw noise data can be obtained using the jent_raw_hires
1351 debugfs file. Using the option
1352 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353 the first 1000 entropy events since boot can be sampled.
1354
1355 If unsure, select N.
1356
1357endif # if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362 int
1363 default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366 int
1367 default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370 int
1371 default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374 bool
1375
1376endif # if !(CRYPTO_FIPS && EXPERT)
1377endif # if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380 tristate
1381 select CRYPTO_HMAC
1382 select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388 tristate
1389
1390config CRYPTO_USER_API_HASH
1391 tristate "Hash algorithms"
1392 depends on NET
1393 select CRYPTO_HASH
1394 select CRYPTO_USER_API
1395 help
1396 Enable the userspace interface for hash algorithms.
1397
1398 See Documentation/crypto/userspace-if.rst and
1399 https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402 tristate "Symmetric key cipher algorithms"
1403 depends on NET
1404 select CRYPTO_SKCIPHER
1405 select CRYPTO_USER_API
1406 help
1407 Enable the userspace interface for symmetric key cipher algorithms.
1408
1409 See Documentation/crypto/userspace-if.rst and
1410 https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413 tristate "RNG (random number generator) algorithms"
1414 depends on NET
1415 select CRYPTO_RNG
1416 select CRYPTO_USER_API
1417 help
1418 Enable the userspace interface for RNG (random number generator)
1419 algorithms.
1420
1421 See Documentation/crypto/userspace-if.rst and
1422 https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425 bool "Enable CAVP testing of DRBG"
1426 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427 help
1428 Enable extra APIs in the userspace interface for NIST CAVP
1429 (Cryptographic Algorithm Validation Program) testing:
1430 - resetting DRBG entropy
1431 - providing Additional Data
1432
1433 This should only be enabled for CAVP testing. You should say
1434 no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437 tristate "AEAD cipher algorithms"
1438 depends on NET
1439 select CRYPTO_AEAD
1440 select CRYPTO_SKCIPHER
1441 select CRYPTO_NULL
1442 select CRYPTO_USER_API
1443 help
1444 Enable the userspace interface for AEAD cipher algorithms.
1445
1446 See Documentation/crypto/userspace-if.rst and
1447 https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450 bool "Obsolete cryptographic algorithms"
1451 depends on CRYPTO_USER_API
1452 default y
1453 help
1454 Allow obsolete cryptographic algorithms to be selected that have
1455 already been phased out from internal use by the kernel, and are
1456 only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459 bool "Crypto usage statistics"
1460 depends on CRYPTO_USER
1461 help
1462 Enable the gathering of crypto stats.
1463
1464 Enabling this option reduces the performance of the crypto API. It
1465 should only be enabled when there is actually a use case for it.
1466
1467 This collects data sizes, numbers of requests, and numbers
1468 of errors processed by:
1469 - AEAD ciphers (encrypt, decrypt)
1470 - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471 - symmetric key ciphers (encrypt, decrypt)
1472 - compression algorithms (compress, decompress)
1473 - hash algorithms (hash)
1474 - key-agreement protocol primitives (setsecret, generate
1475 public key, compute shared secret)
1476 - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481 bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56 tristate
57 select CRYPTO_SKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_SKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140 bool "Disable run-time self tests"
141 default y
142 help
143 Disable run-time self tests that normally take place at
144 algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147 bool "Enable extra run-time crypto self tests"
148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
149 help
150 Enable extra run-time self tests of registered crypto algorithms,
151 including randomized fuzz tests.
152
153 This is intended for developer use only, as these tests take much
154 longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157 tristate
158
159config CRYPTO_NULL
160 tristate "Null algorithms"
161 select CRYPTO_NULL2
162 help
163 These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166 tristate
167 select CRYPTO_ALGAPI2
168 select CRYPTO_SKCIPHER2
169 select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172 tristate "Parallel crypto engine"
173 depends on SMP
174 select PADATA
175 select CRYPTO_MANAGER
176 select CRYPTO_AEAD
177 help
178 This converts an arbitrary crypto algorithm into a parallel
179 algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182 tristate "Software async crypto daemon"
183 select CRYPTO_SKCIPHER
184 select CRYPTO_HASH
185 select CRYPTO_MANAGER
186 help
187 This is a generic software asynchronous crypto daemon that
188 converts an arbitrary synchronous software crypto algorithm
189 into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192 tristate "Authenc support"
193 select CRYPTO_AEAD
194 select CRYPTO_SKCIPHER
195 select CRYPTO_MANAGER
196 select CRYPTO_HASH
197 select CRYPTO_NULL
198 help
199 Authenc: Combined mode wrapper for IPsec.
200 This is required for IPSec.
201
202config CRYPTO_TEST
203 tristate "Testing module"
204 depends on m
205 select CRYPTO_MANAGER
206 help
207 Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210 tristate
211 select CRYPTO_CRYPTD
212
213config CRYPTO_GLUE_HELPER_X86
214 tristate
215 depends on X86
216 select CRYPTO_SKCIPHER
217
218config CRYPTO_ENGINE
219 tristate
220
221comment "Public-key cryptography"
222
223config CRYPTO_RSA
224 tristate "RSA algorithm"
225 select CRYPTO_AKCIPHER
226 select CRYPTO_MANAGER
227 select MPILIB
228 select ASN1
229 help
230 Generic implementation of the RSA public key algorithm.
231
232config CRYPTO_DH
233 tristate "Diffie-Hellman algorithm"
234 select CRYPTO_KPP
235 select MPILIB
236 help
237 Generic implementation of the Diffie-Hellman algorithm.
238
239config CRYPTO_ECC
240 tristate
241
242config CRYPTO_ECDH
243 tristate "ECDH algorithm"
244 select CRYPTO_ECC
245 select CRYPTO_KPP
246 select CRYPTO_RNG_DEFAULT
247 help
248 Generic implementation of the ECDH algorithm
249
250config CRYPTO_ECRDSA
251 tristate "EC-RDSA (GOST 34.10) algorithm"
252 select CRYPTO_ECC
253 select CRYPTO_AKCIPHER
254 select CRYPTO_STREEBOG
255 select OID_REGISTRY
256 select ASN1
257 help
258 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
259 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
260 standard algorithms (called GOST algorithms). Only signature verification
261 is implemented.
262
263config CRYPTO_CURVE25519
264 tristate "Curve25519 algorithm"
265 select CRYPTO_KPP
266 select CRYPTO_LIB_CURVE25519_GENERIC
267
268config CRYPTO_CURVE25519_X86
269 tristate "x86_64 accelerated Curve25519 scalar multiplication library"
270 depends on X86 && 64BIT
271 select CRYPTO_LIB_CURVE25519_GENERIC
272 select CRYPTO_ARCH_HAVE_LIB_CURVE25519
273
274comment "Authenticated Encryption with Associated Data"
275
276config CRYPTO_CCM
277 tristate "CCM support"
278 select CRYPTO_CTR
279 select CRYPTO_HASH
280 select CRYPTO_AEAD
281 select CRYPTO_MANAGER
282 help
283 Support for Counter with CBC MAC. Required for IPsec.
284
285config CRYPTO_GCM
286 tristate "GCM/GMAC support"
287 select CRYPTO_CTR
288 select CRYPTO_AEAD
289 select CRYPTO_GHASH
290 select CRYPTO_NULL
291 select CRYPTO_MANAGER
292 help
293 Support for Galois/Counter Mode (GCM) and Galois Message
294 Authentication Code (GMAC). Required for IPSec.
295
296config CRYPTO_CHACHA20POLY1305
297 tristate "ChaCha20-Poly1305 AEAD support"
298 select CRYPTO_CHACHA20
299 select CRYPTO_POLY1305
300 select CRYPTO_AEAD
301 select CRYPTO_MANAGER
302 help
303 ChaCha20-Poly1305 AEAD support, RFC7539.
304
305 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
306 with the Poly1305 authenticator. It is defined in RFC7539 for use in
307 IETF protocols.
308
309config CRYPTO_AEGIS128
310 tristate "AEGIS-128 AEAD algorithm"
311 select CRYPTO_AEAD
312 select CRYPTO_AES # for AES S-box tables
313 help
314 Support for the AEGIS-128 dedicated AEAD algorithm.
315
316config CRYPTO_AEGIS128_SIMD
317 bool "Support SIMD acceleration for AEGIS-128"
318 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
319 default y
320
321config CRYPTO_AEGIS128_AESNI_SSE2
322 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
323 depends on X86 && 64BIT
324 select CRYPTO_AEAD
325 select CRYPTO_SIMD
326 help
327 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
328
329config CRYPTO_SEQIV
330 tristate "Sequence Number IV Generator"
331 select CRYPTO_AEAD
332 select CRYPTO_SKCIPHER
333 select CRYPTO_NULL
334 select CRYPTO_RNG_DEFAULT
335 select CRYPTO_MANAGER
336 help
337 This IV generator generates an IV based on a sequence number by
338 xoring it with a salt. This algorithm is mainly useful for CTR
339
340config CRYPTO_ECHAINIV
341 tristate "Encrypted Chain IV Generator"
342 select CRYPTO_AEAD
343 select CRYPTO_NULL
344 select CRYPTO_RNG_DEFAULT
345 select CRYPTO_MANAGER
346 help
347 This IV generator generates an IV based on the encryption of
348 a sequence number xored with a salt. This is the default
349 algorithm for CBC.
350
351comment "Block modes"
352
353config CRYPTO_CBC
354 tristate "CBC support"
355 select CRYPTO_SKCIPHER
356 select CRYPTO_MANAGER
357 help
358 CBC: Cipher Block Chaining mode
359 This block cipher algorithm is required for IPSec.
360
361config CRYPTO_CFB
362 tristate "CFB support"
363 select CRYPTO_SKCIPHER
364 select CRYPTO_MANAGER
365 help
366 CFB: Cipher FeedBack mode
367 This block cipher algorithm is required for TPM2 Cryptography.
368
369config CRYPTO_CTR
370 tristate "CTR support"
371 select CRYPTO_SKCIPHER
372 select CRYPTO_MANAGER
373 help
374 CTR: Counter mode
375 This block cipher algorithm is required for IPSec.
376
377config CRYPTO_CTS
378 tristate "CTS support"
379 select CRYPTO_SKCIPHER
380 select CRYPTO_MANAGER
381 help
382 CTS: Cipher Text Stealing
383 This is the Cipher Text Stealing mode as described by
384 Section 8 of rfc2040 and referenced by rfc3962
385 (rfc3962 includes errata information in its Appendix A) or
386 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
387 This mode is required for Kerberos gss mechanism support
388 for AES encryption.
389
390 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
391
392config CRYPTO_ECB
393 tristate "ECB support"
394 select CRYPTO_SKCIPHER
395 select CRYPTO_MANAGER
396 help
397 ECB: Electronic CodeBook mode
398 This is the simplest block cipher algorithm. It simply encrypts
399 the input block by block.
400
401config CRYPTO_LRW
402 tristate "LRW support"
403 select CRYPTO_SKCIPHER
404 select CRYPTO_MANAGER
405 select CRYPTO_GF128MUL
406 help
407 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
408 narrow block cipher mode for dm-crypt. Use it with cipher
409 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
410 The first 128, 192 or 256 bits in the key are used for AES and the
411 rest is used to tie each cipher block to its logical position.
412
413config CRYPTO_OFB
414 tristate "OFB support"
415 select CRYPTO_SKCIPHER
416 select CRYPTO_MANAGER
417 help
418 OFB: the Output Feedback mode makes a block cipher into a synchronous
419 stream cipher. It generates keystream blocks, which are then XORed
420 with the plaintext blocks to get the ciphertext. Flipping a bit in the
421 ciphertext produces a flipped bit in the plaintext at the same
422 location. This property allows many error correcting codes to function
423 normally even when applied before encryption.
424
425config CRYPTO_PCBC
426 tristate "PCBC support"
427 select CRYPTO_SKCIPHER
428 select CRYPTO_MANAGER
429 help
430 PCBC: Propagating Cipher Block Chaining mode
431 This block cipher algorithm is required for RxRPC.
432
433config CRYPTO_XTS
434 tristate "XTS support"
435 select CRYPTO_SKCIPHER
436 select CRYPTO_MANAGER
437 select CRYPTO_ECB
438 help
439 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
440 key size 256, 384 or 512 bits. This implementation currently
441 can't handle a sectorsize which is not a multiple of 16 bytes.
442
443config CRYPTO_KEYWRAP
444 tristate "Key wrapping support"
445 select CRYPTO_SKCIPHER
446 select CRYPTO_MANAGER
447 help
448 Support for key wrapping (NIST SP800-38F / RFC3394) without
449 padding.
450
451config CRYPTO_NHPOLY1305
452 tristate
453 select CRYPTO_HASH
454 select CRYPTO_LIB_POLY1305_GENERIC
455
456config CRYPTO_NHPOLY1305_SSE2
457 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
458 depends on X86 && 64BIT
459 select CRYPTO_NHPOLY1305
460 help
461 SSE2 optimized implementation of the hash function used by the
462 Adiantum encryption mode.
463
464config CRYPTO_NHPOLY1305_AVX2
465 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
466 depends on X86 && 64BIT
467 select CRYPTO_NHPOLY1305
468 help
469 AVX2 optimized implementation of the hash function used by the
470 Adiantum encryption mode.
471
472config CRYPTO_ADIANTUM
473 tristate "Adiantum support"
474 select CRYPTO_CHACHA20
475 select CRYPTO_LIB_POLY1305_GENERIC
476 select CRYPTO_NHPOLY1305
477 select CRYPTO_MANAGER
478 help
479 Adiantum is a tweakable, length-preserving encryption mode
480 designed for fast and secure disk encryption, especially on
481 CPUs without dedicated crypto instructions. It encrypts
482 each sector using the XChaCha12 stream cipher, two passes of
483 an ε-almost-∆-universal hash function, and an invocation of
484 the AES-256 block cipher on a single 16-byte block. On CPUs
485 without AES instructions, Adiantum is much faster than
486 AES-XTS.
487
488 Adiantum's security is provably reducible to that of its
489 underlying stream and block ciphers, subject to a security
490 bound. Unlike XTS, Adiantum is a true wide-block encryption
491 mode, so it actually provides an even stronger notion of
492 security than XTS, subject to the security bound.
493
494 If unsure, say N.
495
496config CRYPTO_ESSIV
497 tristate "ESSIV support for block encryption"
498 select CRYPTO_AUTHENC
499 help
500 Encrypted salt-sector initialization vector (ESSIV) is an IV
501 generation method that is used in some cases by fscrypt and/or
502 dm-crypt. It uses the hash of the block encryption key as the
503 symmetric key for a block encryption pass applied to the input
504 IV, making low entropy IV sources more suitable for block
505 encryption.
506
507 This driver implements a crypto API template that can be
508 instantiated either as an skcipher or as an AEAD (depending on the
509 type of the first template argument), and which defers encryption
510 and decryption requests to the encapsulated cipher after applying
511 ESSIV to the input IV. Note that in the AEAD case, it is assumed
512 that the keys are presented in the same format used by the authenc
513 template, and that the IV appears at the end of the authenticated
514 associated data (AAD) region (which is how dm-crypt uses it.)
515
516 Note that the use of ESSIV is not recommended for new deployments,
517 and so this only needs to be enabled when interoperability with
518 existing encrypted volumes of filesystems is required, or when
519 building for a particular system that requires it (e.g., when
520 the SoC in question has accelerated CBC but not XTS, making CBC
521 combined with ESSIV the only feasible mode for h/w accelerated
522 block encryption)
523
524comment "Hash modes"
525
526config CRYPTO_CMAC
527 tristate "CMAC support"
528 select CRYPTO_HASH
529 select CRYPTO_MANAGER
530 help
531 Cipher-based Message Authentication Code (CMAC) specified by
532 The National Institute of Standards and Technology (NIST).
533
534 https://tools.ietf.org/html/rfc4493
535 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
536
537config CRYPTO_HMAC
538 tristate "HMAC support"
539 select CRYPTO_HASH
540 select CRYPTO_MANAGER
541 help
542 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
543 This is required for IPSec.
544
545config CRYPTO_XCBC
546 tristate "XCBC support"
547 select CRYPTO_HASH
548 select CRYPTO_MANAGER
549 help
550 XCBC: Keyed-Hashing with encryption algorithm
551 https://www.ietf.org/rfc/rfc3566.txt
552 http://csrc.nist.gov/encryption/modes/proposedmodes/
553 xcbc-mac/xcbc-mac-spec.pdf
554
555config CRYPTO_VMAC
556 tristate "VMAC support"
557 select CRYPTO_HASH
558 select CRYPTO_MANAGER
559 help
560 VMAC is a message authentication algorithm designed for
561 very high speed on 64-bit architectures.
562
563 See also:
564 <https://fastcrypto.org/vmac>
565
566comment "Digest"
567
568config CRYPTO_CRC32C
569 tristate "CRC32c CRC algorithm"
570 select CRYPTO_HASH
571 select CRC32
572 help
573 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
574 by iSCSI for header and data digests and by others.
575 See Castagnoli93. Module will be crc32c.
576
577config CRYPTO_CRC32C_INTEL
578 tristate "CRC32c INTEL hardware acceleration"
579 depends on X86
580 select CRYPTO_HASH
581 help
582 In Intel processor with SSE4.2 supported, the processor will
583 support CRC32C implementation using hardware accelerated CRC32
584 instruction. This option will create 'crc32c-intel' module,
585 which will enable any routine to use the CRC32 instruction to
586 gain performance compared with software implementation.
587 Module will be crc32c-intel.
588
589config CRYPTO_CRC32C_VPMSUM
590 tristate "CRC32c CRC algorithm (powerpc64)"
591 depends on PPC64 && ALTIVEC
592 select CRYPTO_HASH
593 select CRC32
594 help
595 CRC32c algorithm implemented using vector polynomial multiply-sum
596 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
597 and newer processors for improved performance.
598
599
600config CRYPTO_CRC32C_SPARC64
601 tristate "CRC32c CRC algorithm (SPARC64)"
602 depends on SPARC64
603 select CRYPTO_HASH
604 select CRC32
605 help
606 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
607 when available.
608
609config CRYPTO_CRC32
610 tristate "CRC32 CRC algorithm"
611 select CRYPTO_HASH
612 select CRC32
613 help
614 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
615 Shash crypto api wrappers to crc32_le function.
616
617config CRYPTO_CRC32_PCLMUL
618 tristate "CRC32 PCLMULQDQ hardware acceleration"
619 depends on X86
620 select CRYPTO_HASH
621 select CRC32
622 help
623 From Intel Westmere and AMD Bulldozer processor with SSE4.2
624 and PCLMULQDQ supported, the processor will support
625 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
626 instruction. This option will create 'crc32-pclmul' module,
627 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
628 and gain better performance as compared with the table implementation.
629
630config CRYPTO_CRC32_MIPS
631 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
632 depends on MIPS_CRC_SUPPORT
633 select CRYPTO_HASH
634 help
635 CRC32c and CRC32 CRC algorithms implemented using mips crypto
636 instructions, when available.
637
638
639config CRYPTO_XXHASH
640 tristate "xxHash hash algorithm"
641 select CRYPTO_HASH
642 select XXHASH
643 help
644 xxHash non-cryptographic hash algorithm. Extremely fast, working at
645 speeds close to RAM limits.
646
647config CRYPTO_BLAKE2B
648 tristate "BLAKE2b digest algorithm"
649 select CRYPTO_HASH
650 help
651 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
652 optimized for 64bit platforms and can produce digests of any size
653 between 1 to 64. The keyed hash is also implemented.
654
655 This module provides the following algorithms:
656
657 - blake2b-160
658 - blake2b-256
659 - blake2b-384
660 - blake2b-512
661
662 See https://blake2.net for further information.
663
664config CRYPTO_BLAKE2S
665 tristate "BLAKE2s digest algorithm"
666 select CRYPTO_LIB_BLAKE2S_GENERIC
667 select CRYPTO_HASH
668 help
669 Implementation of cryptographic hash function BLAKE2s
670 optimized for 8-32bit platforms and can produce digests of any size
671 between 1 to 32. The keyed hash is also implemented.
672
673 This module provides the following algorithms:
674
675 - blake2s-128
676 - blake2s-160
677 - blake2s-224
678 - blake2s-256
679
680 See https://blake2.net for further information.
681
682config CRYPTO_BLAKE2S_X86
683 tristate "BLAKE2s digest algorithm (x86 accelerated version)"
684 depends on X86 && 64BIT
685 select CRYPTO_LIB_BLAKE2S_GENERIC
686 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
687
688config CRYPTO_CRCT10DIF
689 tristate "CRCT10DIF algorithm"
690 select CRYPTO_HASH
691 help
692 CRC T10 Data Integrity Field computation is being cast as
693 a crypto transform. This allows for faster crc t10 diff
694 transforms to be used if they are available.
695
696config CRYPTO_CRCT10DIF_PCLMUL
697 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
698 depends on X86 && 64BIT && CRC_T10DIF
699 select CRYPTO_HASH
700 help
701 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
702 CRC T10 DIF PCLMULQDQ computation can be hardware
703 accelerated PCLMULQDQ instruction. This option will create
704 'crct10dif-pclmul' module, which is faster when computing the
705 crct10dif checksum as compared with the generic table implementation.
706
707config CRYPTO_CRCT10DIF_VPMSUM
708 tristate "CRC32T10DIF powerpc64 hardware acceleration"
709 depends on PPC64 && ALTIVEC && CRC_T10DIF
710 select CRYPTO_HASH
711 help
712 CRC10T10DIF algorithm implemented using vector polynomial
713 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
714 POWER8 and newer processors for improved performance.
715
716config CRYPTO_VPMSUM_TESTER
717 tristate "Powerpc64 vpmsum hardware acceleration tester"
718 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
719 help
720 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
721 POWER8 vpmsum instructions.
722 Unless you are testing these algorithms, you don't need this.
723
724config CRYPTO_GHASH
725 tristate "GHASH hash function"
726 select CRYPTO_GF128MUL
727 select CRYPTO_HASH
728 help
729 GHASH is the hash function used in GCM (Galois/Counter Mode).
730 It is not a general-purpose cryptographic hash function.
731
732config CRYPTO_POLY1305
733 tristate "Poly1305 authenticator algorithm"
734 select CRYPTO_HASH
735 select CRYPTO_LIB_POLY1305_GENERIC
736 help
737 Poly1305 authenticator algorithm, RFC7539.
738
739 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
740 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
741 in IETF protocols. This is the portable C implementation of Poly1305.
742
743config CRYPTO_POLY1305_X86_64
744 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
745 depends on X86 && 64BIT
746 select CRYPTO_LIB_POLY1305_GENERIC
747 select CRYPTO_ARCH_HAVE_LIB_POLY1305
748 help
749 Poly1305 authenticator algorithm, RFC7539.
750
751 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
752 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
753 in IETF protocols. This is the x86_64 assembler implementation using SIMD
754 instructions.
755
756config CRYPTO_POLY1305_MIPS
757 tristate "Poly1305 authenticator algorithm (MIPS optimized)"
758 depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
759 select CRYPTO_ARCH_HAVE_LIB_POLY1305
760
761config CRYPTO_MD4
762 tristate "MD4 digest algorithm"
763 select CRYPTO_HASH
764 help
765 MD4 message digest algorithm (RFC1320).
766
767config CRYPTO_MD5
768 tristate "MD5 digest algorithm"
769 select CRYPTO_HASH
770 help
771 MD5 message digest algorithm (RFC1321).
772
773config CRYPTO_MD5_OCTEON
774 tristate "MD5 digest algorithm (OCTEON)"
775 depends on CPU_CAVIUM_OCTEON
776 select CRYPTO_MD5
777 select CRYPTO_HASH
778 help
779 MD5 message digest algorithm (RFC1321) implemented
780 using OCTEON crypto instructions, when available.
781
782config CRYPTO_MD5_PPC
783 tristate "MD5 digest algorithm (PPC)"
784 depends on PPC
785 select CRYPTO_HASH
786 help
787 MD5 message digest algorithm (RFC1321) implemented
788 in PPC assembler.
789
790config CRYPTO_MD5_SPARC64
791 tristate "MD5 digest algorithm (SPARC64)"
792 depends on SPARC64
793 select CRYPTO_MD5
794 select CRYPTO_HASH
795 help
796 MD5 message digest algorithm (RFC1321) implemented
797 using sparc64 crypto instructions, when available.
798
799config CRYPTO_MICHAEL_MIC
800 tristate "Michael MIC keyed digest algorithm"
801 select CRYPTO_HASH
802 help
803 Michael MIC is used for message integrity protection in TKIP
804 (IEEE 802.11i). This algorithm is required for TKIP, but it
805 should not be used for other purposes because of the weakness
806 of the algorithm.
807
808config CRYPTO_RMD128
809 tristate "RIPEMD-128 digest algorithm"
810 select CRYPTO_HASH
811 help
812 RIPEMD-128 (ISO/IEC 10118-3:2004).
813
814 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
815 be used as a secure replacement for RIPEMD. For other use cases,
816 RIPEMD-160 should be used.
817
818 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
819 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
820
821config CRYPTO_RMD160
822 tristate "RIPEMD-160 digest algorithm"
823 select CRYPTO_HASH
824 help
825 RIPEMD-160 (ISO/IEC 10118-3:2004).
826
827 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
828 to be used as a secure replacement for the 128-bit hash functions
829 MD4, MD5 and it's predecessor RIPEMD
830 (not to be confused with RIPEMD-128).
831
832 It's speed is comparable to SHA1 and there are no known attacks
833 against RIPEMD-160.
834
835 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
836 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
837
838config CRYPTO_RMD256
839 tristate "RIPEMD-256 digest algorithm"
840 select CRYPTO_HASH
841 help
842 RIPEMD-256 is an optional extension of RIPEMD-128 with a
843 256 bit hash. It is intended for applications that require
844 longer hash-results, without needing a larger security level
845 (than RIPEMD-128).
846
847 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
848 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
849
850config CRYPTO_RMD320
851 tristate "RIPEMD-320 digest algorithm"
852 select CRYPTO_HASH
853 help
854 RIPEMD-320 is an optional extension of RIPEMD-160 with a
855 320 bit hash. It is intended for applications that require
856 longer hash-results, without needing a larger security level
857 (than RIPEMD-160).
858
859 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
860 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
861
862config CRYPTO_SHA1
863 tristate "SHA1 digest algorithm"
864 select CRYPTO_HASH
865 help
866 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
867
868config CRYPTO_SHA1_SSSE3
869 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
870 depends on X86 && 64BIT
871 select CRYPTO_SHA1
872 select CRYPTO_HASH
873 help
874 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
875 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
876 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
877 when available.
878
879config CRYPTO_SHA256_SSSE3
880 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
881 depends on X86 && 64BIT
882 select CRYPTO_SHA256
883 select CRYPTO_HASH
884 help
885 SHA-256 secure hash standard (DFIPS 180-2) implemented
886 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
887 Extensions version 1 (AVX1), or Advanced Vector Extensions
888 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
889 Instructions) when available.
890
891config CRYPTO_SHA512_SSSE3
892 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
893 depends on X86 && 64BIT
894 select CRYPTO_SHA512
895 select CRYPTO_HASH
896 help
897 SHA-512 secure hash standard (DFIPS 180-2) implemented
898 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
899 Extensions version 1 (AVX1), or Advanced Vector Extensions
900 version 2 (AVX2) instructions, when available.
901
902config CRYPTO_SHA1_OCTEON
903 tristate "SHA1 digest algorithm (OCTEON)"
904 depends on CPU_CAVIUM_OCTEON
905 select CRYPTO_SHA1
906 select CRYPTO_HASH
907 help
908 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
909 using OCTEON crypto instructions, when available.
910
911config CRYPTO_SHA1_SPARC64
912 tristate "SHA1 digest algorithm (SPARC64)"
913 depends on SPARC64
914 select CRYPTO_SHA1
915 select CRYPTO_HASH
916 help
917 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
918 using sparc64 crypto instructions, when available.
919
920config CRYPTO_SHA1_PPC
921 tristate "SHA1 digest algorithm (powerpc)"
922 depends on PPC
923 help
924 This is the powerpc hardware accelerated implementation of the
925 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
926
927config CRYPTO_SHA1_PPC_SPE
928 tristate "SHA1 digest algorithm (PPC SPE)"
929 depends on PPC && SPE
930 help
931 SHA-1 secure hash standard (DFIPS 180-4) implemented
932 using powerpc SPE SIMD instruction set.
933
934config CRYPTO_SHA256
935 tristate "SHA224 and SHA256 digest algorithm"
936 select CRYPTO_HASH
937 select CRYPTO_LIB_SHA256
938 help
939 SHA256 secure hash standard (DFIPS 180-2).
940
941 This version of SHA implements a 256 bit hash with 128 bits of
942 security against collision attacks.
943
944 This code also includes SHA-224, a 224 bit hash with 112 bits
945 of security against collision attacks.
946
947config CRYPTO_SHA256_PPC_SPE
948 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
949 depends on PPC && SPE
950 select CRYPTO_SHA256
951 select CRYPTO_HASH
952 help
953 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
954 implemented using powerpc SPE SIMD instruction set.
955
956config CRYPTO_SHA256_OCTEON
957 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
958 depends on CPU_CAVIUM_OCTEON
959 select CRYPTO_SHA256
960 select CRYPTO_HASH
961 help
962 SHA-256 secure hash standard (DFIPS 180-2) implemented
963 using OCTEON crypto instructions, when available.
964
965config CRYPTO_SHA256_SPARC64
966 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
967 depends on SPARC64
968 select CRYPTO_SHA256
969 select CRYPTO_HASH
970 help
971 SHA-256 secure hash standard (DFIPS 180-2) implemented
972 using sparc64 crypto instructions, when available.
973
974config CRYPTO_SHA512
975 tristate "SHA384 and SHA512 digest algorithms"
976 select CRYPTO_HASH
977 help
978 SHA512 secure hash standard (DFIPS 180-2).
979
980 This version of SHA implements a 512 bit hash with 256 bits of
981 security against collision attacks.
982
983 This code also includes SHA-384, a 384 bit hash with 192 bits
984 of security against collision attacks.
985
986config CRYPTO_SHA512_OCTEON
987 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
988 depends on CPU_CAVIUM_OCTEON
989 select CRYPTO_SHA512
990 select CRYPTO_HASH
991 help
992 SHA-512 secure hash standard (DFIPS 180-2) implemented
993 using OCTEON crypto instructions, when available.
994
995config CRYPTO_SHA512_SPARC64
996 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
997 depends on SPARC64
998 select CRYPTO_SHA512
999 select CRYPTO_HASH
1000 help
1001 SHA-512 secure hash standard (DFIPS 180-2) implemented
1002 using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005 tristate "SHA3 digest algorithm"
1006 select CRYPTO_HASH
1007 help
1008 SHA-3 secure hash standard (DFIPS 202). It's based on
1009 cryptographic sponge function family called Keccak.
1010
1011 References:
1012 http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015 tristate "SM3 digest algorithm"
1016 select CRYPTO_HASH
1017 help
1018 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019 It is part of the Chinese Commercial Cryptography suite.
1020
1021 References:
1022 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026 tristate "Streebog Hash Function"
1027 select CRYPTO_HASH
1028 help
1029 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030 cryptographic standard algorithms (called GOST algorithms).
1031 This setting enables two hash algorithms with 256 and 512 bits output.
1032
1033 References:
1034 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035 https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038 tristate "Tiger digest algorithms"
1039 select CRYPTO_HASH
1040 help
1041 Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043 Tiger is a hash function optimized for 64-bit processors while
1044 still having decent performance on 32-bit processors.
1045 Tiger was developed by Ross Anderson and Eli Biham.
1046
1047 See also:
1048 <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051 tristate "Whirlpool digest algorithms"
1052 select CRYPTO_HASH
1053 help
1054 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1055
1056 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059 See also:
1060 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063 tristate "GHASH hash function (CLMUL-NI accelerated)"
1064 depends on X86 && 64BIT
1065 select CRYPTO_CRYPTD
1066 help
1067 This is the x86_64 CLMUL-NI accelerated implementation of
1068 GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073 tristate "AES cipher algorithms"
1074 select CRYPTO_ALGAPI
1075 select CRYPTO_LIB_AES
1076 help
1077 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078 algorithm.
1079
1080 Rijndael appears to be consistently a very good performer in
1081 both hardware and software across a wide range of computing
1082 environments regardless of its use in feedback or non-feedback
1083 modes. Its key setup time is excellent, and its key agility is
1084 good. Rijndael's very low memory requirements make it very well
1085 suited for restricted-space environments, in which it also
1086 demonstrates excellent performance. Rijndael's operations are
1087 among the easiest to defend against power and timing attacks.
1088
1089 The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094 tristate "Fixed time AES cipher"
1095 select CRYPTO_ALGAPI
1096 select CRYPTO_LIB_AES
1097 help
1098 This is a generic implementation of AES that attempts to eliminate
1099 data dependent latencies as much as possible without affecting
1100 performance too much. It is intended for use by the generic CCM
1101 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102 solely on encryption (although decryption is supported as well, but
1103 with a more dramatic performance hit)
1104
1105 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106 8 for decryption), this implementation only uses just two S-boxes of
1107 256 bytes each, and attempts to eliminate data dependent latencies by
1108 prefetching the entire table into the cache at the start of each
1109 block. Interrupts are also disabled to avoid races where cachelines
1110 are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113 tristate "AES cipher algorithms (AES-NI)"
1114 depends on X86
1115 select CRYPTO_AEAD
1116 select CRYPTO_LIB_AES
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_SKCIPHER
1119 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120 select CRYPTO_SIMD
1121 help
1122 Use Intel AES-NI instructions for AES algorithm.
1123
1124 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125 algorithm.
1126
1127 Rijndael appears to be consistently a very good performer in
1128 both hardware and software across a wide range of computing
1129 environments regardless of its use in feedback or non-feedback
1130 modes. Its key setup time is excellent, and its key agility is
1131 good. Rijndael's very low memory requirements make it very well
1132 suited for restricted-space environments, in which it also
1133 demonstrates excellent performance. Rijndael's operations are
1134 among the easiest to defend against power and timing attacks.
1135
1136 The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138 See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140 In addition to AES cipher algorithm support, the acceleration
1141 for some popular block cipher mode is supported too, including
1142 ECB, CBC, LRW, XTS. The 64 bit version has additional
1143 acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146 tristate "AES cipher algorithms (SPARC64)"
1147 depends on SPARC64
1148 select CRYPTO_SKCIPHER
1149 help
1150 Use SPARC64 crypto opcodes for AES algorithm.
1151
1152 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153 algorithm.
1154
1155 Rijndael appears to be consistently a very good performer in
1156 both hardware and software across a wide range of computing
1157 environments regardless of its use in feedback or non-feedback
1158 modes. Its key setup time is excellent, and its key agility is
1159 good. Rijndael's very low memory requirements make it very well
1160 suited for restricted-space environments, in which it also
1161 demonstrates excellent performance. Rijndael's operations are
1162 among the easiest to defend against power and timing attacks.
1163
1164 The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166 See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168 In addition to AES cipher algorithm support, the acceleration
1169 for some popular block cipher mode is supported too, including
1170 ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173 tristate "AES cipher algorithms (PPC SPE)"
1174 depends on PPC && SPE
1175 select CRYPTO_SKCIPHER
1176 help
1177 AES cipher algorithms (FIPS-197). Additionally the acceleration
1178 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179 This module should only be used for low power (router) devices
1180 without hardware AES acceleration (e.g. caam crypto). It reduces the
1181 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182 timining attacks. Nevertheless it might be not as secure as other
1183 architecture specific assembler implementations that work on 1KB
1184 tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187 tristate "Anubis cipher algorithm"
1188 select CRYPTO_ALGAPI
1189 help
1190 Anubis cipher algorithm.
1191
1192 Anubis is a variable key length cipher which can use keys from
1193 128 bits to 320 bits in length. It was evaluated as a entrant
1194 in the NESSIE competition.
1195
1196 See also:
1197 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201 tristate "ARC4 cipher algorithm"
1202 select CRYPTO_SKCIPHER
1203 select CRYPTO_LIB_ARC4
1204 help
1205 ARC4 cipher algorithm.
1206
1207 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208 bits in length. This algorithm is required for driver-based
1209 WEP, but it should not be for other purposes because of the
1210 weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213 tristate "Blowfish cipher algorithm"
1214 select CRYPTO_ALGAPI
1215 select CRYPTO_BLOWFISH_COMMON
1216 help
1217 Blowfish cipher algorithm, by Bruce Schneier.
1218
1219 This is a variable key length cipher which can use keys from 32
1220 bits to 448 bits in length. It's fast, simple and specifically
1221 designed for use on "large microprocessors".
1222
1223 See also:
1224 <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227 tristate
1228 help
1229 Common parts of the Blowfish cipher algorithm shared by the
1230 generic c and the assembler implementations.
1231
1232 See also:
1233 <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236 tristate "Blowfish cipher algorithm (x86_64)"
1237 depends on X86 && 64BIT
1238 select CRYPTO_SKCIPHER
1239 select CRYPTO_BLOWFISH_COMMON
1240 help
1241 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243 This is a variable key length cipher which can use keys from 32
1244 bits to 448 bits in length. It's fast, simple and specifically
1245 designed for use on "large microprocessors".
1246
1247 See also:
1248 <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251 tristate "Camellia cipher algorithms"
1252 depends on CRYPTO
1253 select CRYPTO_ALGAPI
1254 help
1255 Camellia cipher algorithms module.
1256
1257 Camellia is a symmetric key block cipher developed jointly
1258 at NTT and Mitsubishi Electric Corporation.
1259
1260 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262 See also:
1263 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266 tristate "Camellia cipher algorithm (x86_64)"
1267 depends on X86 && 64BIT
1268 depends on CRYPTO
1269 select CRYPTO_SKCIPHER
1270 select CRYPTO_GLUE_HELPER_X86
1271 help
1272 Camellia cipher algorithm module (x86_64).
1273
1274 Camellia is a symmetric key block cipher developed jointly
1275 at NTT and Mitsubishi Electric Corporation.
1276
1277 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279 See also:
1280 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284 depends on X86 && 64BIT
1285 depends on CRYPTO
1286 select CRYPTO_SKCIPHER
1287 select CRYPTO_CAMELLIA_X86_64
1288 select CRYPTO_GLUE_HELPER_X86
1289 select CRYPTO_SIMD
1290 select CRYPTO_XTS
1291 help
1292 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294 Camellia is a symmetric key block cipher developed jointly
1295 at NTT and Mitsubishi Electric Corporation.
1296
1297 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299 See also:
1300 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304 depends on X86 && 64BIT
1305 depends on CRYPTO
1306 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307 help
1308 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310 Camellia is a symmetric key block cipher developed jointly
1311 at NTT and Mitsubishi Electric Corporation.
1312
1313 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315 See also:
1316 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319 tristate "Camellia cipher algorithm (SPARC64)"
1320 depends on SPARC64
1321 depends on CRYPTO
1322 select CRYPTO_ALGAPI
1323 select CRYPTO_SKCIPHER
1324 help
1325 Camellia cipher algorithm module (SPARC64).
1326
1327 Camellia is a symmetric key block cipher developed jointly
1328 at NTT and Mitsubishi Electric Corporation.
1329
1330 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332 See also:
1333 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336 tristate
1337 help
1338 Common parts of the CAST cipher algorithms shared by the
1339 generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342 tristate "CAST5 (CAST-128) cipher algorithm"
1343 select CRYPTO_ALGAPI
1344 select CRYPTO_CAST_COMMON
1345 help
1346 The CAST5 encryption algorithm (synonymous with CAST-128) is
1347 described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351 depends on X86 && 64BIT
1352 select CRYPTO_SKCIPHER
1353 select CRYPTO_CAST5
1354 select CRYPTO_CAST_COMMON
1355 select CRYPTO_SIMD
1356 help
1357 The CAST5 encryption algorithm (synonymous with CAST-128) is
1358 described in RFC2144.
1359
1360 This module provides the Cast5 cipher algorithm that processes
1361 sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364 tristate "CAST6 (CAST-256) cipher algorithm"
1365 select CRYPTO_ALGAPI
1366 select CRYPTO_CAST_COMMON
1367 help
1368 The CAST6 encryption algorithm (synonymous with CAST-256) is
1369 described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373 depends on X86 && 64BIT
1374 select CRYPTO_SKCIPHER
1375 select CRYPTO_CAST6
1376 select CRYPTO_CAST_COMMON
1377 select CRYPTO_GLUE_HELPER_X86
1378 select CRYPTO_SIMD
1379 select CRYPTO_XTS
1380 help
1381 The CAST6 encryption algorithm (synonymous with CAST-256) is
1382 described in RFC2612.
1383
1384 This module provides the Cast6 cipher algorithm that processes
1385 eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388 tristate "DES and Triple DES EDE cipher algorithms"
1389 select CRYPTO_ALGAPI
1390 select CRYPTO_LIB_DES
1391 help
1392 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396 depends on SPARC64
1397 select CRYPTO_ALGAPI
1398 select CRYPTO_LIB_DES
1399 select CRYPTO_SKCIPHER
1400 help
1401 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402 optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405 tristate "Triple DES EDE cipher algorithm (x86-64)"
1406 depends on X86 && 64BIT
1407 select CRYPTO_SKCIPHER
1408 select CRYPTO_LIB_DES
1409 help
1410 Triple DES EDE (FIPS 46-3) algorithm.
1411
1412 This module provides implementation of the Triple DES EDE cipher
1413 algorithm that is optimized for x86-64 processors. Two versions of
1414 algorithm are provided; regular processing one input block and
1415 one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418 tristate "FCrypt cipher algorithm"
1419 select CRYPTO_ALGAPI
1420 select CRYPTO_SKCIPHER
1421 help
1422 FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425 tristate "Khazad cipher algorithm"
1426 select CRYPTO_ALGAPI
1427 help
1428 Khazad cipher algorithm.
1429
1430 Khazad was a finalist in the initial NESSIE competition. It is
1431 an algorithm optimized for 64-bit processors with good performance
1432 on 32-bit processors. Khazad uses an 128 bit key size.
1433
1434 See also:
1435 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438 tristate "Salsa20 stream cipher algorithm"
1439 select CRYPTO_SKCIPHER
1440 help
1441 Salsa20 stream cipher algorithm.
1442
1443 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444 Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446 The Salsa20 stream cipher algorithm is designed by Daniel J.
1447 Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450 tristate "ChaCha stream cipher algorithms"
1451 select CRYPTO_LIB_CHACHA_GENERIC
1452 select CRYPTO_SKCIPHER
1453 help
1454 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457 Bernstein and further specified in RFC7539 for use in IETF protocols.
1458 This is the portable C implementation of ChaCha20. See also:
1459 <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1463 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464 while provably retaining ChaCha20's security. See also:
1465 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468 reduced security margin but increased performance. It can be needed
1469 in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473 depends on X86 && 64BIT
1474 select CRYPTO_SKCIPHER
1475 select CRYPTO_LIB_CHACHA_GENERIC
1476 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477 help
1478 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479 XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483 depends on CPU_MIPS32_R2
1484 select CRYPTO_SKCIPHER
1485 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488 tristate "SEED cipher algorithm"
1489 select CRYPTO_ALGAPI
1490 help
1491 SEED cipher algorithm (RFC4269).
1492
1493 SEED is a 128-bit symmetric key block cipher that has been
1494 developed by KISA (Korea Information Security Agency) as a
1495 national standard encryption algorithm of the Republic of Korea.
1496 It is a 16 round block cipher with the key size of 128 bit.
1497
1498 See also:
1499 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502 tristate "Serpent cipher algorithm"
1503 select CRYPTO_ALGAPI
1504 help
1505 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507 Keys are allowed to be from 0 to 256 bits in length, in steps
1508 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1509 variant of Serpent for compatibility with old kerneli.org code.
1510
1511 See also:
1512 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516 depends on X86 && 64BIT
1517 select CRYPTO_SKCIPHER
1518 select CRYPTO_GLUE_HELPER_X86
1519 select CRYPTO_SERPENT
1520 select CRYPTO_SIMD
1521 help
1522 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524 Keys are allowed to be from 0 to 256 bits in length, in steps
1525 of 8 bits.
1526
1527 This module provides Serpent cipher algorithm that processes eight
1528 blocks parallel using SSE2 instruction set.
1529
1530 See also:
1531 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534 tristate "Serpent cipher algorithm (i586/SSE2)"
1535 depends on X86 && !64BIT
1536 select CRYPTO_SKCIPHER
1537 select CRYPTO_GLUE_HELPER_X86
1538 select CRYPTO_SERPENT
1539 select CRYPTO_SIMD
1540 help
1541 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543 Keys are allowed to be from 0 to 256 bits in length, in steps
1544 of 8 bits.
1545
1546 This module provides Serpent cipher algorithm that processes four
1547 blocks parallel using SSE2 instruction set.
1548
1549 See also:
1550 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553 tristate "Serpent cipher algorithm (x86_64/AVX)"
1554 depends on X86 && 64BIT
1555 select CRYPTO_SKCIPHER
1556 select CRYPTO_GLUE_HELPER_X86
1557 select CRYPTO_SERPENT
1558 select CRYPTO_SIMD
1559 select CRYPTO_XTS
1560 help
1561 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563 Keys are allowed to be from 0 to 256 bits in length, in steps
1564 of 8 bits.
1565
1566 This module provides the Serpent cipher algorithm that processes
1567 eight blocks parallel using the AVX instruction set.
1568
1569 See also:
1570 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574 depends on X86 && 64BIT
1575 select CRYPTO_SERPENT_AVX_X86_64
1576 help
1577 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579 Keys are allowed to be from 0 to 256 bits in length, in steps
1580 of 8 bits.
1581
1582 This module provides Serpent cipher algorithm that processes 16
1583 blocks parallel using AVX2 instruction set.
1584
1585 See also:
1586 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589 tristate "SM4 cipher algorithm"
1590 select CRYPTO_ALGAPI
1591 help
1592 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595 Organization of State Commercial Administration of China (OSCCA)
1596 as an authorized cryptographic algorithms for the use within China.
1597
1598 SMS4 was originally created for use in protecting wireless
1599 networks, and is mandated in the Chinese National Standard for
1600 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601 (GB.15629.11-2003).
1602
1603 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604 standardized through TC 260 of the Standardization Administration
1605 of the People's Republic of China (SAC).
1606
1607 The input, output, and key of SMS4 are each 128 bits.
1608
1609 See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611 If unsure, say N.
1612
1613config CRYPTO_TEA
1614 tristate "TEA, XTEA and XETA cipher algorithms"
1615 select CRYPTO_ALGAPI
1616 help
1617 TEA cipher algorithm.
1618
1619 Tiny Encryption Algorithm is a simple cipher that uses
1620 many rounds for security. It is very fast and uses
1621 little memory.
1622
1623 Xtendend Tiny Encryption Algorithm is a modification to
1624 the TEA algorithm to address a potential key weakness
1625 in the TEA algorithm.
1626
1627 Xtendend Encryption Tiny Algorithm is a mis-implementation
1628 of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631 tristate "Twofish cipher algorithm"
1632 select CRYPTO_ALGAPI
1633 select CRYPTO_TWOFISH_COMMON
1634 help
1635 Twofish cipher algorithm.
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 See also:
1643 <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646 tristate
1647 help
1648 Common parts of the Twofish cipher algorithm shared by the
1649 generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652 tristate "Twofish cipher algorithms (i586)"
1653 depends on (X86 || UML_X86) && !64BIT
1654 select CRYPTO_ALGAPI
1655 select CRYPTO_TWOFISH_COMMON
1656 help
1657 Twofish cipher algorithm.
1658
1659 Twofish was submitted as an AES (Advanced Encryption Standard)
1660 candidate cipher by researchers at CounterPane Systems. It is a
1661 16 round block cipher supporting key sizes of 128, 192, and 256
1662 bits.
1663
1664 See also:
1665 <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668 tristate "Twofish cipher algorithm (x86_64)"
1669 depends on (X86 || UML_X86) && 64BIT
1670 select CRYPTO_ALGAPI
1671 select CRYPTO_TWOFISH_COMMON
1672 help
1673 Twofish cipher algorithm (x86_64).
1674
1675 Twofish was submitted as an AES (Advanced Encryption Standard)
1676 candidate cipher by researchers at CounterPane Systems. It is a
1677 16 round block cipher supporting key sizes of 128, 192, and 256
1678 bits.
1679
1680 See also:
1681 <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685 depends on X86 && 64BIT
1686 select CRYPTO_SKCIPHER
1687 select CRYPTO_TWOFISH_COMMON
1688 select CRYPTO_TWOFISH_X86_64
1689 select CRYPTO_GLUE_HELPER_X86
1690 help
1691 Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693 Twofish was submitted as an AES (Advanced Encryption Standard)
1694 candidate cipher by researchers at CounterPane Systems. It is a
1695 16 round block cipher supporting key sizes of 128, 192, and 256
1696 bits.
1697
1698 This module provides Twofish cipher algorithm that processes three
1699 blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701 See also:
1702 <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705 tristate "Twofish cipher algorithm (x86_64/AVX)"
1706 depends on X86 && 64BIT
1707 select CRYPTO_SKCIPHER
1708 select CRYPTO_GLUE_HELPER_X86
1709 select CRYPTO_SIMD
1710 select CRYPTO_TWOFISH_COMMON
1711 select CRYPTO_TWOFISH_X86_64
1712 select CRYPTO_TWOFISH_X86_64_3WAY
1713 help
1714 Twofish cipher algorithm (x86_64/AVX).
1715
1716 Twofish was submitted as an AES (Advanced Encryption Standard)
1717 candidate cipher by researchers at CounterPane Systems. It is a
1718 16 round block cipher supporting key sizes of 128, 192, and 256
1719 bits.
1720
1721 This module provides the Twofish cipher algorithm that processes
1722 eight blocks parallel using the AVX Instruction Set.
1723
1724 See also:
1725 <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730 tristate "Deflate compression algorithm"
1731 select CRYPTO_ALGAPI
1732 select CRYPTO_ACOMP2
1733 select ZLIB_INFLATE
1734 select ZLIB_DEFLATE
1735 help
1736 This is the Deflate algorithm (RFC1951), specified for use in
1737 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739 You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742 tristate "LZO compression algorithm"
1743 select CRYPTO_ALGAPI
1744 select CRYPTO_ACOMP2
1745 select LZO_COMPRESS
1746 select LZO_DECOMPRESS
1747 help
1748 This is the LZO algorithm.
1749
1750config CRYPTO_842
1751 tristate "842 compression algorithm"
1752 select CRYPTO_ALGAPI
1753 select CRYPTO_ACOMP2
1754 select 842_COMPRESS
1755 select 842_DECOMPRESS
1756 help
1757 This is the 842 algorithm.
1758
1759config CRYPTO_LZ4
1760 tristate "LZ4 compression algorithm"
1761 select CRYPTO_ALGAPI
1762 select CRYPTO_ACOMP2
1763 select LZ4_COMPRESS
1764 select LZ4_DECOMPRESS
1765 help
1766 This is the LZ4 algorithm.
1767
1768config CRYPTO_LZ4HC
1769 tristate "LZ4HC compression algorithm"
1770 select CRYPTO_ALGAPI
1771 select CRYPTO_ACOMP2
1772 select LZ4HC_COMPRESS
1773 select LZ4_DECOMPRESS
1774 help
1775 This is the LZ4 high compression mode algorithm.
1776
1777config CRYPTO_ZSTD
1778 tristate "Zstd compression algorithm"
1779 select CRYPTO_ALGAPI
1780 select CRYPTO_ACOMP2
1781 select ZSTD_COMPRESS
1782 select ZSTD_DECOMPRESS
1783 help
1784 This is the zstd algorithm.
1785
1786comment "Random Number Generation"
1787
1788config CRYPTO_ANSI_CPRNG
1789 tristate "Pseudo Random Number Generation for Cryptographic modules"
1790 select CRYPTO_AES
1791 select CRYPTO_RNG
1792 help
1793 This option enables the generic pseudo random number generator
1794 for cryptographic modules. Uses the Algorithm specified in
1795 ANSI X9.31 A.2.4. Note that this option must be enabled if
1796 CRYPTO_FIPS is selected
1797
1798menuconfig CRYPTO_DRBG_MENU
1799 tristate "NIST SP800-90A DRBG"
1800 help
1801 NIST SP800-90A compliant DRBG. In the following submenu, one or
1802 more of the DRBG types must be selected.
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807 bool
1808 default y
1809 select CRYPTO_HMAC
1810 select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813 bool "Enable Hash DRBG"
1814 select CRYPTO_SHA256
1815 help
1816 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1817
1818config CRYPTO_DRBG_CTR
1819 bool "Enable CTR DRBG"
1820 select CRYPTO_AES
1821 select CRYPTO_CTR
1822 help
1823 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1824
1825config CRYPTO_DRBG
1826 tristate
1827 default CRYPTO_DRBG_MENU
1828 select CRYPTO_RNG
1829 select CRYPTO_JITTERENTROPY
1830
1831endif # if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835 select CRYPTO_RNG
1836 help
1837 The Jitterentropy RNG is a noise that is intended
1838 to provide seed to another RNG. The RNG does not
1839 perform any cryptographic whitening of the generated
1840 random numbers. This Jitterentropy RNG registers with
1841 the kernel crypto API and can be used by any caller.
1842
1843config CRYPTO_USER_API
1844 tristate
1845
1846config CRYPTO_USER_API_HASH
1847 tristate "User-space interface for hash algorithms"
1848 depends on NET
1849 select CRYPTO_HASH
1850 select CRYPTO_USER_API
1851 help
1852 This option enables the user-spaces interface for hash
1853 algorithms.
1854
1855config CRYPTO_USER_API_SKCIPHER
1856 tristate "User-space interface for symmetric key cipher algorithms"
1857 depends on NET
1858 select CRYPTO_SKCIPHER
1859 select CRYPTO_USER_API
1860 help
1861 This option enables the user-spaces interface for symmetric
1862 key cipher algorithms.
1863
1864config CRYPTO_USER_API_RNG
1865 tristate "User-space interface for random number generator algorithms"
1866 depends on NET
1867 select CRYPTO_RNG
1868 select CRYPTO_USER_API
1869 help
1870 This option enables the user-spaces interface for random
1871 number generator algorithms.
1872
1873config CRYPTO_USER_API_AEAD
1874 tristate "User-space interface for AEAD cipher algorithms"
1875 depends on NET
1876 select CRYPTO_AEAD
1877 select CRYPTO_SKCIPHER
1878 select CRYPTO_NULL
1879 select CRYPTO_USER_API
1880 help
1881 This option enables the user-spaces interface for AEAD
1882 cipher algorithms.
1883
1884config CRYPTO_STATS
1885 bool "Crypto usage statistics for User-space"
1886 depends on CRYPTO_USER
1887 help
1888 This option enables the gathering of crypto stats.
1889 This will collect:
1890 - encrypt/decrypt size and numbers of symmeric operations
1891 - compress/decompress size and numbers of compress operations
1892 - size and numbers of hash operations
1893 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894 - generate/seed numbers for rng operations
1895
1896config CRYPTO_HASH_INFO
1897 bool
1898
1899source "lib/crypto/Kconfig"
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif # if CRYPTO