Linux Audio

Check our new training course

Loading...
v6.8
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 
 
 
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 
 
 
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 242config CRYPTO_ENGINE
 243	tristate
 
 
 244
 245endmenu
 
 246
 247menu "Public-key cryptography"
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select MPILIB
 254	select ASN1
 255	help
 256	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 257
 258config CRYPTO_DH
 259	tristate "DH (Diffie-Hellman)"
 260	select CRYPTO_KPP
 261	select MPILIB
 262	help
 263	  DH (Diffie-Hellman) key exchange algorithm
 264
 265config CRYPTO_DH_RFC7919_GROUPS
 266	bool "RFC 7919 FFDHE groups"
 267	depends on CRYPTO_DH
 268	select CRYPTO_RNG_DEFAULT
 269	help
 270	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 271	  defined in RFC7919.
 272
 273	  Support these finite-field groups in DH key exchanges:
 274	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 275
 276	  If unsure, say N.
 277
 278config CRYPTO_ECC
 279	tristate
 280	select CRYPTO_RNG_DEFAULT
 281
 282config CRYPTO_ECDH
 283	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 284	select CRYPTO_ECC
 285	select CRYPTO_KPP
 
 286	help
 287	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 288	  using curves P-192, P-256, and P-384 (FIPS 186)
 289
 290config CRYPTO_ECDSA
 291	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 292	select CRYPTO_ECC
 293	select CRYPTO_AKCIPHER
 294	select ASN1
 295	help
 296	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 297	  ISO/IEC 14888-3)
 298	  using curves P-192, P-256, and P-384
 299
 300	  Only signature verification is implemented.
 301
 302config CRYPTO_ECRDSA
 303	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 304	select CRYPTO_ECC
 305	select CRYPTO_AKCIPHER
 306	select CRYPTO_STREEBOG
 307	select OID_REGISTRY
 308	select ASN1
 309	help
 310	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 311	  RFC 7091, ISO/IEC 14888-3)
 312
 313	  One of the Russian cryptographic standard algorithms (called GOST
 314	  algorithms). Only signature verification is implemented.
 315
 316config CRYPTO_SM2
 317	tristate "SM2 (ShangMi 2)"
 318	select CRYPTO_SM3
 319	select CRYPTO_AKCIPHER
 320	select CRYPTO_MANAGER
 321	select MPILIB
 322	select ASN1
 323	help
 324	  SM2 (ShangMi 2) public key algorithm
 325
 326	  Published by State Encryption Management Bureau, China,
 327	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 328
 329	  References:
 330	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 331	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 332	  http://www.gmbz.org.cn/main/bzlb.html
 333
 334config CRYPTO_CURVE25519
 335	tristate "Curve25519"
 336	select CRYPTO_KPP
 337	select CRYPTO_LIB_CURVE25519_GENERIC
 338	help
 339	  Curve25519 elliptic curve (RFC7748)
 340
 341endmenu
 342
 343menu "Block ciphers"
 344
 345config CRYPTO_AES
 346	tristate "AES (Advanced Encryption Standard)"
 347	select CRYPTO_ALGAPI
 348	select CRYPTO_LIB_AES
 349	help
 350	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 351
 352	  Rijndael appears to be consistently a very good performer in
 353	  both hardware and software across a wide range of computing
 354	  environments regardless of its use in feedback or non-feedback
 355	  modes. Its key setup time is excellent, and its key agility is
 356	  good. Rijndael's very low memory requirements make it very well
 357	  suited for restricted-space environments, in which it also
 358	  demonstrates excellent performance. Rijndael's operations are
 359	  among the easiest to defend against power and timing attacks.
 360
 361	  The AES specifies three key sizes: 128, 192 and 256 bits
 362
 363config CRYPTO_AES_TI
 364	tristate "AES (Advanced Encryption Standard) (fixed time)"
 365	select CRYPTO_ALGAPI
 366	select CRYPTO_LIB_AES
 367	help
 368	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 369
 370	  This is a generic implementation of AES that attempts to eliminate
 371	  data dependent latencies as much as possible without affecting
 372	  performance too much. It is intended for use by the generic CCM
 373	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 374	  solely on encryption (although decryption is supported as well, but
 375	  with a more dramatic performance hit)
 376
 377	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 378	  8 for decryption), this implementation only uses just two S-boxes of
 379	  256 bytes each, and attempts to eliminate data dependent latencies by
 380	  prefetching the entire table into the cache at the start of each
 381	  block. Interrupts are also disabled to avoid races where cachelines
 382	  are evicted when the CPU is interrupted to do something else.
 383
 384config CRYPTO_ANUBIS
 385	tristate "Anubis"
 386	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 387	select CRYPTO_ALGAPI
 388	help
 389	  Anubis cipher algorithm
 390
 391	  Anubis is a variable key length cipher which can use keys from
 392	  128 bits to 320 bits in length.  It was evaluated as a entrant
 393	  in the NESSIE competition.
 394
 395	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 396	  for further information.
 397
 398config CRYPTO_ARIA
 399	tristate "ARIA"
 400	select CRYPTO_ALGAPI
 401	help
 402	  ARIA cipher algorithm (RFC5794)
 403
 404	  ARIA is a standard encryption algorithm of the Republic of Korea.
 405	  The ARIA specifies three key sizes and rounds.
 406	  128-bit: 12 rounds.
 407	  192-bit: 14 rounds.
 408	  256-bit: 16 rounds.
 409
 410	  See:
 411	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 412
 413config CRYPTO_BLOWFISH
 414	tristate "Blowfish"
 415	select CRYPTO_ALGAPI
 416	select CRYPTO_BLOWFISH_COMMON
 
 
 417	help
 418	  Blowfish cipher algorithm, by Bruce Schneier
 419
 420	  This is a variable key length cipher which can use keys from 32
 421	  bits to 448 bits in length.  It's fast, simple and specifically
 422	  designed for use on "large microprocessors".
 423
 424	  See https://www.schneier.com/blowfish.html for further information.
 425
 426config CRYPTO_BLOWFISH_COMMON
 427	tristate
 428	help
 429	  Common parts of the Blowfish cipher algorithm shared by the
 430	  generic c and the assembler implementations.
 431
 432config CRYPTO_CAMELLIA
 433	tristate "Camellia"
 434	select CRYPTO_ALGAPI
 
 
 
 435	help
 436	  Camellia cipher algorithms (ISO/IEC 18033-3)
 437
 438	  Camellia is a symmetric key block cipher developed jointly
 439	  at NTT and Mitsubishi Electric Corporation.
 440
 441	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 442
 443	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 444
 445config CRYPTO_CAST_COMMON
 446	tristate
 447	help
 448	  Common parts of the CAST cipher algorithms shared by the
 449	  generic c and the assembler implementations.
 450
 451config CRYPTO_CAST5
 452	tristate "CAST5 (CAST-128)"
 453	select CRYPTO_ALGAPI
 454	select CRYPTO_CAST_COMMON
 455	help
 456	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 457
 458config CRYPTO_CAST6
 459	tristate "CAST6 (CAST-256)"
 460	select CRYPTO_ALGAPI
 461	select CRYPTO_CAST_COMMON
 462	help
 463	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 464
 465config CRYPTO_DES
 466	tristate "DES and Triple DES EDE"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_LIB_DES
 
 469	help
 470	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 471	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 472	  cipher algorithms
 473
 474config CRYPTO_FCRYPT
 475	tristate "FCrypt"
 476	select CRYPTO_ALGAPI
 477	select CRYPTO_SKCIPHER
 478	help
 479	  FCrypt algorithm used by RxRPC
 480
 481	  See https://ota.polyonymo.us/fcrypt-paper.txt
 482
 483config CRYPTO_KHAZAD
 484	tristate "Khazad"
 485	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 486	select CRYPTO_ALGAPI
 487	help
 488	  Khazad cipher algorithm
 489
 490	  Khazad was a finalist in the initial NESSIE competition.  It is
 491	  an algorithm optimized for 64-bit processors with good performance
 492	  on 32-bit processors.  Khazad uses an 128 bit key size.
 493
 494	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 495	  for further information.
 496
 497config CRYPTO_SEED
 498	tristate "SEED"
 499	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 500	select CRYPTO_ALGAPI
 501	help
 502	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 503
 504	  SEED is a 128-bit symmetric key block cipher that has been
 505	  developed by KISA (Korea Information Security Agency) as a
 506	  national standard encryption algorithm of the Republic of Korea.
 507	  It is a 16 round block cipher with the key size of 128 bit.
 508
 509	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 510	  for further information.
 511
 512config CRYPTO_SERPENT
 513	tristate "Serpent"
 514	select CRYPTO_ALGAPI
 515	help
 516	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 517
 518	  Keys are allowed to be from 0 to 256 bits in length, in steps
 519	  of 8 bits.
 520
 521	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 522
 523config CRYPTO_SM4
 524	tristate
 525
 526config CRYPTO_SM4_GENERIC
 527	tristate "SM4 (ShangMi 4)"
 528	select CRYPTO_ALGAPI
 529	select CRYPTO_SM4
 530	help
 531	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 532	  ISO/IEC 18033-3:2010/Amd 1:2021)
 533
 534	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 535	  Organization of State Commercial Administration of China (OSCCA)
 536	  as an authorized cryptographic algorithms for the use within China.
 537
 538	  SMS4 was originally created for use in protecting wireless
 539	  networks, and is mandated in the Chinese National Standard for
 540	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 541	  (GB.15629.11-2003).
 542
 543	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 544	  standardized through TC 260 of the Standardization Administration
 545	  of the People's Republic of China (SAC).
 546
 547	  The input, output, and key of SMS4 are each 128 bits.
 548
 549	  See https://eprint.iacr.org/2008/329.pdf for further information.
 550
 551	  If unsure, say N.
 552
 553config CRYPTO_TEA
 554	tristate "TEA, XTEA and XETA"
 555	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 556	select CRYPTO_ALGAPI
 557	help
 558	  TEA (Tiny Encryption Algorithm) cipher algorithms
 559
 560	  Tiny Encryption Algorithm is a simple cipher that uses
 561	  many rounds for security.  It is very fast and uses
 562	  little memory.
 563
 564	  Xtendend Tiny Encryption Algorithm is a modification to
 565	  the TEA algorithm to address a potential key weakness
 566	  in the TEA algorithm.
 567
 568	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 569	  of the XTEA algorithm for compatibility purposes.
 570
 571config CRYPTO_TWOFISH
 572	tristate "Twofish"
 573	select CRYPTO_ALGAPI
 574	select CRYPTO_TWOFISH_COMMON
 575	help
 576	  Twofish cipher algorithm
 577
 578	  Twofish was submitted as an AES (Advanced Encryption Standard)
 579	  candidate cipher by researchers at CounterPane Systems.  It is a
 580	  16 round block cipher supporting key sizes of 128, 192, and 256
 581	  bits.
 582
 583	  See https://www.schneier.com/twofish.html for further information.
 584
 585config CRYPTO_TWOFISH_COMMON
 586	tristate
 587	help
 588	  Common parts of the Twofish cipher algorithm shared by the
 589	  generic c and the assembler implementations.
 590
 591endmenu
 592
 593menu "Length-preserving ciphers and modes"
 594
 595config CRYPTO_ADIANTUM
 596	tristate "Adiantum"
 597	select CRYPTO_CHACHA20
 598	select CRYPTO_LIB_POLY1305_GENERIC
 599	select CRYPTO_NHPOLY1305
 600	select CRYPTO_MANAGER
 601	help
 602	  Adiantum tweakable, length-preserving encryption mode
 603
 604	  Designed for fast and secure disk encryption, especially on
 605	  CPUs without dedicated crypto instructions.  It encrypts
 606	  each sector using the XChaCha12 stream cipher, two passes of
 607	  an ε-almost-∆-universal hash function, and an invocation of
 608	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 609	  without AES instructions, Adiantum is much faster than
 610	  AES-XTS.
 611
 612	  Adiantum's security is provably reducible to that of its
 613	  underlying stream and block ciphers, subject to a security
 614	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 615	  mode, so it actually provides an even stronger notion of
 616	  security than XTS, subject to the security bound.
 617
 618	  If unsure, say N.
 619
 620config CRYPTO_ARC4
 621	tristate "ARC4 (Alleged Rivest Cipher 4)"
 622	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 623	select CRYPTO_SKCIPHER
 624	select CRYPTO_LIB_ARC4
 
 625	help
 626	  ARC4 cipher algorithm
 
 
 627
 628	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 629	  bits in length.  This algorithm is required for driver-based
 630	  WEP, but it should not be for other purposes because of the
 631	  weakness of the algorithm.
 632
 633config CRYPTO_CHACHA20
 634	tristate "ChaCha"
 635	select CRYPTO_LIB_CHACHA_GENERIC
 636	select CRYPTO_SKCIPHER
 
 637	help
 638	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 
 639
 640	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 641	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 642	  This is the portable C implementation of ChaCha20.  See
 643	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 644
 645	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 646	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 647	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 648	  while provably retaining ChaCha20's security.  See
 649	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 650
 651	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 652	  reduced security margin but increased performance.  It can be needed
 653	  in some performance-sensitive scenarios.
 654
 655config CRYPTO_CBC
 656	tristate "CBC (Cipher Block Chaining)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 659	help
 660	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 661
 662	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 
 
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER2
 685	select CRYPTO_MANAGER
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 728
 729config CRYPTO_PCBC
 730	tristate "PCBC (Propagating Cipher Block Chaining)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 733	help
 734	  PCBC (Propagating Cipher Block Chaining) mode
 735
 736	  This block cipher mode is required for RxRPC.
 
 
 
 737
 738config CRYPTO_XCTR
 739	tristate
 740	select CRYPTO_SKCIPHER
 741	select CRYPTO_MANAGER
 742	help
 743	  XCTR (XOR Counter) mode for HCTR2
 744
 745	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 746	  addition rather than big-endian arithmetic.
 747
 748	  XCTR mode is used to implement HCTR2.
 749
 750config CRYPTO_XTS
 751	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 752	select CRYPTO_SKCIPHER
 753	select CRYPTO_MANAGER
 754	select CRYPTO_ECB
 755	help
 756	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 757	  and IEEE 1619)
 
 758
 759	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 760	  implementation currently can't handle a sectorsize which is not a
 761	  multiple of 16 bytes.
 
 
 
 
 762
 763config CRYPTO_NHPOLY1305
 764	tristate
 765	select CRYPTO_HASH
 766	select CRYPTO_LIB_POLY1305_GENERIC
 767
 768endmenu
 769
 770menu "AEAD (authenticated encryption with associated data) ciphers"
 771
 772config CRYPTO_AEGIS128
 773	tristate "AEGIS-128"
 774	select CRYPTO_AEAD
 775	select CRYPTO_AES  # for AES S-box tables
 776	help
 777	  AEGIS-128 AEAD algorithm
 
 778
 779config CRYPTO_AEGIS128_SIMD
 780	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 781	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 782	default y
 783	help
 784	  AEGIS-128 AEAD algorithm
 785
 786	  Architecture: arm or arm64 using:
 787	  - NEON (Advanced SIMD) extension
 788
 789config CRYPTO_CHACHA20POLY1305
 790	tristate "ChaCha20-Poly1305"
 791	select CRYPTO_CHACHA20
 792	select CRYPTO_POLY1305
 793	select CRYPTO_AEAD
 794	select CRYPTO_MANAGER
 795	help
 796	  ChaCha20 stream cipher and Poly1305 authenticator combined
 797	  mode (RFC8439)
 798
 799config CRYPTO_CCM
 800	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 801	select CRYPTO_CTR
 802	select CRYPTO_HASH
 803	select CRYPTO_AEAD
 804	select CRYPTO_MANAGER
 805	help
 806	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 807	  authenticated encryption mode (NIST SP800-38C)
 808
 809config CRYPTO_GCM
 810	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 811	select CRYPTO_CTR
 812	select CRYPTO_AEAD
 813	select CRYPTO_GHASH
 814	select CRYPTO_NULL
 815	select CRYPTO_MANAGER
 816	help
 817	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 818	  (GCM Message Authentication Code) (NIST SP800-38D)
 819
 820	  This is required for IPSec ESP (XFRM_ESP).
 821
 822config CRYPTO_GENIV
 823	tristate
 824	select CRYPTO_AEAD
 825	select CRYPTO_NULL
 826	select CRYPTO_MANAGER
 827	select CRYPTO_RNG_DEFAULT
 828
 829config CRYPTO_SEQIV
 830	tristate "Sequence Number IV Generator"
 831	select CRYPTO_GENIV
 832	help
 833	  Sequence Number IV generator
 834
 835	  This IV generator generates an IV based on a sequence number by
 836	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 837
 838	  This is required for IPsec ESP (XFRM_ESP).
 839
 840config CRYPTO_ECHAINIV
 841	tristate "Encrypted Chain IV Generator"
 842	select CRYPTO_GENIV
 843	help
 844	  Encrypted Chain IV generator
 845
 846	  This IV generator generates an IV based on the encryption of
 847	  a sequence number xored with a salt.  This is the default
 848	  algorithm for CBC.
 849
 850config CRYPTO_ESSIV
 851	tristate "Encrypted Salt-Sector IV Generator"
 852	select CRYPTO_AUTHENC
 853	help
 854	  Encrypted Salt-Sector IV generator
 855
 856	  This IV generator is used in some cases by fscrypt and/or
 857	  dm-crypt. It uses the hash of the block encryption key as the
 858	  symmetric key for a block encryption pass applied to the input
 859	  IV, making low entropy IV sources more suitable for block
 860	  encryption.
 861
 862	  This driver implements a crypto API template that can be
 863	  instantiated either as an skcipher or as an AEAD (depending on the
 864	  type of the first template argument), and which defers encryption
 865	  and decryption requests to the encapsulated cipher after applying
 866	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 867	  that the keys are presented in the same format used by the authenc
 868	  template, and that the IV appears at the end of the authenticated
 869	  associated data (AAD) region (which is how dm-crypt uses it.)
 870
 871	  Note that the use of ESSIV is not recommended for new deployments,
 872	  and so this only needs to be enabled when interoperability with
 873	  existing encrypted volumes of filesystems is required, or when
 874	  building for a particular system that requires it (e.g., when
 875	  the SoC in question has accelerated CBC but not XTS, making CBC
 876	  combined with ESSIV the only feasible mode for h/w accelerated
 877	  block encryption)
 878
 879endmenu
 880
 881menu "Hashes, digests, and MACs"
 
 
 
 
 
 
 882
 883config CRYPTO_BLAKE2B
 884	tristate "BLAKE2b"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	select CRYPTO_HASH
 
 886	help
 887	  BLAKE2b cryptographic hash function (RFC 7693)
 
 888
 889	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 890	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891
 892	  This module provides the following algorithms:
 
 893	  - blake2b-160
 894	  - blake2b-256
 895	  - blake2b-384
 896	  - blake2b-512
 897
 898	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	  See https://blake2.net for further information.
 901
 902config CRYPTO_CMAC
 903	tristate "CMAC (Cipher-based MAC)"
 
 
 
 
 
 
 904	select CRYPTO_HASH
 905	select CRYPTO_MANAGER
 906	help
 907	  CMAC (Cipher-based Message Authentication Code) authentication
 908	  mode (NIST SP800-38B and IETF RFC4493)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910config CRYPTO_GHASH
 911	tristate "GHASH"
 
 912	select CRYPTO_HASH
 913	select CRYPTO_LIB_GF128MUL
 914	help
 915	  GCM GHASH function (NIST SP800-38D)
 
 916
 917config CRYPTO_HMAC
 918	tristate "HMAC (Keyed-Hash MAC)"
 919	select CRYPTO_HASH
 920	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 921	help
 922	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 923	  RFC2104)
 
 
 
 
 924
 925	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 
 
 926
 927config CRYPTO_MD4
 928	tristate "MD4"
 929	select CRYPTO_HASH
 930	help
 931	  MD4 message digest algorithm (RFC1320)
 932
 933config CRYPTO_MD5
 934	tristate "MD5"
 935	select CRYPTO_HASH
 936	help
 937	  MD5 message digest algorithm (RFC1321)
 938
 939config CRYPTO_MICHAEL_MIC
 940	tristate "Michael MIC"
 
 
 941	select CRYPTO_HASH
 942	help
 943	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 944
 945	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 946	  known as WPA (Wif-Fi Protected Access).
 947
 948	  This algorithm is required for TKIP, but it should not be used for
 949	  other purposes because of the weakness of the algorithm.
 
 
 
 
 
 950
 951config CRYPTO_POLYVAL
 952	tristate
 
 
 953	select CRYPTO_HASH
 954	select CRYPTO_LIB_GF128MUL
 955	help
 956	  POLYVAL hash function for HCTR2
 
 957
 958	  This is used in HCTR2.  It is not a general-purpose
 959	  cryptographic hash function.
 
 
 
 
 
 
 960
 961config CRYPTO_POLY1305
 962	tristate "Poly1305"
 963	select CRYPTO_HASH
 964	select CRYPTO_LIB_POLY1305_GENERIC
 965	help
 966	  Poly1305 authenticator algorithm (RFC7539)
 967
 968	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 969	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 970	  in IETF protocols. This is the portable C implementation of Poly1305.
 
 
 
 971
 972config CRYPTO_RMD160
 973	tristate "RIPEMD-160"
 974	select CRYPTO_HASH
 975	help
 976	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 977
 978	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 979	  to be used as a secure replacement for the 128-bit hash functions
 980	  MD4, MD5 and its predecessor RIPEMD
 981	  (not to be confused with RIPEMD-128).
 982
 983	  Its speed is comparable to SHA-1 and there are no known attacks
 984	  against RIPEMD-160.
 985
 986	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 987	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 988	  for further information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989
 990config CRYPTO_SHA1
 991	tristate "SHA-1"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992	select CRYPTO_HASH
 993	select CRYPTO_LIB_SHA1
 994	help
 995	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997config CRYPTO_SHA256
 998	tristate "SHA-224 and SHA-256"
 999	select CRYPTO_HASH
1000	select CRYPTO_LIB_SHA256
1001	help
1002	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007config CRYPTO_SHA512
1008	tristate "SHA-384 and SHA-512"
1009	select CRYPTO_HASH
1010	help
1011	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014	tristate "SHA-3"
 
 
 
 
 
 
 
 
1015	select CRYPTO_HASH
1016	help
1017	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
 
1018
1019config CRYPTO_SM3
1020	tristate
 
 
 
 
 
 
1021
1022config CRYPTO_SM3_GENERIC
1023	tristate "SM3 (ShangMi 3)"
1024	select CRYPTO_HASH
1025	select CRYPTO_SM3
1026	help
1027	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
 
1028
1029	  This is part of the Chinese Commercial Cryptography suite.
 
 
 
 
 
 
 
 
1030
1031	  References:
1032	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036	tristate "Streebog"
1037	select CRYPTO_HASH
1038	help
1039	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041	  This is one of the Russian cryptographic standard algorithms (called
1042	  GOST algorithms). This setting enables two hash algorithms with
1043	  256 and 512 bits output.
1044
1045	  References:
1046	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047	  https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050	tristate "VMAC"
1051	select CRYPTO_HASH
1052	select CRYPTO_MANAGER
1053	help
1054	  VMAC is a message authentication algorithm designed for
1055	  very high speed on 64-bit architectures.
 
 
 
1056
1057	  See https://fastcrypto.org/vmac for further information.
 
1058
1059config CRYPTO_WP512
1060	tristate "Whirlpool"
1061	select CRYPTO_HASH
1062	help
1063	  Whirlpool hash function (ISO/IEC 10118-3)
1064
1065	  512, 384 and 256-bit hashes.
1066
1067	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1068
1069	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070	  for further information.
1071
1072config CRYPTO_XCBC
1073	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074	select CRYPTO_HASH
1075	select CRYPTO_MANAGER
1076	help
1077	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078	  Code) (RFC3566)
1079
1080config CRYPTO_XXHASH
1081	tristate "xxHash"
1082	select CRYPTO_HASH
1083	select XXHASH
 
 
1084	help
1085	  xxHash non-cryptographic hash algorithm
 
1086
1087	  Extremely fast, working at speeds close to RAM limits.
 
 
 
 
 
 
 
1088
1089	  Used by the btrfs filesystem.
 
 
1090
1091endmenu
 
 
 
 
 
 
 
 
 
 
1092
1093menu "CRCs (cyclic redundancy checks)"
 
 
 
 
 
1094
1095config CRYPTO_CRC32C
1096	tristate "CRC32c"
1097	select CRYPTO_HASH
1098	select CRC32
 
 
 
 
 
1099	help
1100	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106	  iSCSI.
1107
1108	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
 
 
 
 
 
 
1109
1110config CRYPTO_CRC32
1111	tristate "CRC32"
1112	select CRYPTO_HASH
1113	select CRC32
 
 
 
 
 
 
 
 
 
1114	help
1115	  CRC32 CRC algorithm (IEEE 802.3)
1116
1117	  Used by RoCEv2 and f2fs.
 
1118
1119config CRYPTO_CRCT10DIF
1120	tristate "CRCT10DIF"
1121	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	help
1123	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
 
 
 
 
 
 
 
1124
1125	  CRC algorithm used by the SCSI Block Commands standard.
 
 
 
 
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128	tristate "CRC64 based on Rocksoft Model algorithm"
1129	depends on CRC64
1130	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131	help
1132	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
1135
1136	  See https://zlib.net/crc_v3.txt
 
1137
1138endmenu
 
1139
1140menu "Compression"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142config CRYPTO_DEFLATE
1143	tristate "Deflate"
1144	select CRYPTO_ALGAPI
1145	select CRYPTO_ACOMP2
1146	select ZLIB_INFLATE
1147	select ZLIB_DEFLATE
1148	help
1149	  Deflate compression algorithm (RFC1951)
 
1150
1151	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1152
1153config CRYPTO_LZO
1154	tristate "LZO"
1155	select CRYPTO_ALGAPI
1156	select CRYPTO_ACOMP2
1157	select LZO_COMPRESS
1158	select LZO_DECOMPRESS
1159	help
1160	  LZO compression algorithm
1161
1162	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165	tristate "842"
1166	select CRYPTO_ALGAPI
1167	select CRYPTO_ACOMP2
1168	select 842_COMPRESS
1169	select 842_DECOMPRESS
1170	help
1171	  842 compression algorithm by IBM
1172
1173	  See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176	tristate "LZ4"
1177	select CRYPTO_ALGAPI
1178	select CRYPTO_ACOMP2
1179	select LZ4_COMPRESS
1180	select LZ4_DECOMPRESS
1181	help
1182	  LZ4 compression algorithm
1183
1184	  See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187	tristate "LZ4HC"
1188	select CRYPTO_ALGAPI
1189	select CRYPTO_ACOMP2
1190	select LZ4HC_COMPRESS
1191	select LZ4_DECOMPRESS
1192	help
1193	  LZ4 high compression mode algorithm
1194
1195	  See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198	tristate "Zstd"
1199	select CRYPTO_ALGAPI
1200	select CRYPTO_ACOMP2
1201	select ZSTD_COMPRESS
1202	select ZSTD_DECOMPRESS
1203	help
1204	  zstd compression algorithm
1205
1206	  See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1214	select CRYPTO_AES
1215	select CRYPTO_RNG
1216	help
1217	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219	  This uses the AES cipher algorithm.
1220
1221	  Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225	help
1226	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228	  In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233	bool
1234	default y
1235	select CRYPTO_HMAC
1236	select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239	bool "Hash_DRBG"
1240	select CRYPTO_SHA256
1241	help
1242	  Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247	bool "CTR_DRBG"
1248	select CRYPTO_AES
1249	select CRYPTO_CTR
1250	help
1251	  CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253	  This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256	tristate
1257	default CRYPTO_DRBG_MENU
1258	select CRYPTO_RNG
1259	select CRYPTO_JITTERENTROPY
1260
1261endif	# if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265	select CRYPTO_RNG
1266	select CRYPTO_SHA3
1267	help
1268	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271	  compliant with NIST SP800-90B) intended to provide a seed to a
1272	  deterministic RNG (e.g.  per NIST SP800-90C).
1273	  This RNG does not perform any cryptographic whitening of the generated
1274
1275	  See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281	prompt "CPU Jitter RNG Memory Size"
1282	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283	help
1284	  The Jitter RNG measures the execution time of memory accesses.
1285	  Multiple consecutive memory accesses are performed. If the memory
1286	  size fits into a cache (e.g. L1), only the memory access timing
1287	  to that cache is measured. The closer the cache is to the CPU
1288	  the less variations are measured and thus the less entropy is
1289	  obtained. Thus, if the memory size fits into the L1 cache, the
1290	  obtained entropy is less than if the memory size fits within
1291	  L1 + L2, which in turn is less if the memory fits into
1292	  L1 + L2 + L3. Thus, by selecting a different memory size,
1293	  the entropy rate produced by the Jitter RNG can be modified.
1294
1295	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296		bool "2048 Bytes (default)"
1297
1298	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299		bool "128 kBytes"
1300
1301	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302		bool "1024 kBytes"
1303
1304	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305		bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309	int
1310	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316	int
1317	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323	int "CPU Jitter RNG Oversampling Rate"
1324	range 1 15
1325	default 1
1326	help
1327	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1328	  The Jitter RNG operation requires a fixed amount of timing
1329	  measurements to produce one output block of random numbers. The
1330	  OSR value is multiplied with the amount of timing measurements to
1331	  generate one output block. Thus, the timing measurement is oversampled
1332	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1333	  on hardware whose timers deliver limited amount of entropy (e.g.
1334	  the timer is coarse) by setting the OSR to a higher value. The
1335	  trade-off, however, is that the Jitter RNG now requires more time
1336	  to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339	bool "CPU Jitter RNG Test Interface"
1340	help
1341	  The test interface allows a privileged process to capture
1342	  the raw unconditioned high resolution time stamp noise that
1343	  is collected by the Jitter RNG for statistical analysis. As
1344	  this data is used at the same time to generate random bits,
1345	  the Jitter RNG operates in an insecure mode as long as the
1346	  recording is enabled. This interface therefore is only
1347	  intended for testing purposes and is not suitable for
1348	  production systems.
1349
1350	  The raw noise data can be obtained using the jent_raw_hires
1351	  debugfs file. Using the option
1352	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353	  the first 1000 entropy events since boot can be sampled.
1354
1355	  If unsure, select N.
1356
1357endif	# if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362	int
1363	default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366	int
1367	default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370	int
1371	default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374	bool
1375
1376endif	# if !(CRYPTO_FIPS && EXPERT)
1377endif	# if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380	tristate
1381	select CRYPTO_HMAC
1382	select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388	tristate
1389
1390config CRYPTO_USER_API_HASH
1391	tristate "Hash algorithms"
1392	depends on NET
1393	select CRYPTO_HASH
1394	select CRYPTO_USER_API
1395	help
1396	  Enable the userspace interface for hash algorithms.
1397
1398	  See Documentation/crypto/userspace-if.rst and
1399	  https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402	tristate "Symmetric key cipher algorithms"
1403	depends on NET
1404	select CRYPTO_SKCIPHER
1405	select CRYPTO_USER_API
1406	help
1407	  Enable the userspace interface for symmetric key cipher algorithms.
1408
1409	  See Documentation/crypto/userspace-if.rst and
1410	  https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413	tristate "RNG (random number generator) algorithms"
1414	depends on NET
1415	select CRYPTO_RNG
1416	select CRYPTO_USER_API
1417	help
1418	  Enable the userspace interface for RNG (random number generator)
1419	  algorithms.
1420
1421	  See Documentation/crypto/userspace-if.rst and
1422	  https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425	bool "Enable CAVP testing of DRBG"
1426	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427	help
1428	  Enable extra APIs in the userspace interface for NIST CAVP
1429	  (Cryptographic Algorithm Validation Program) testing:
1430	  - resetting DRBG entropy
1431	  - providing Additional Data
1432
1433	  This should only be enabled for CAVP testing. You should say
1434	  no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437	tristate "AEAD cipher algorithms"
1438	depends on NET
1439	select CRYPTO_AEAD
1440	select CRYPTO_SKCIPHER
1441	select CRYPTO_NULL
1442	select CRYPTO_USER_API
1443	help
1444	  Enable the userspace interface for AEAD cipher algorithms.
1445
1446	  See Documentation/crypto/userspace-if.rst and
1447	  https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450	bool "Obsolete cryptographic algorithms"
1451	depends on CRYPTO_USER_API
1452	default y
1453	help
1454	  Allow obsolete cryptographic algorithms to be selected that have
1455	  already been phased out from internal use by the kernel, and are
1456	  only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459	bool "Crypto usage statistics"
1460	depends on CRYPTO_USER
1461	help
1462	  Enable the gathering of crypto stats.
1463
1464	  Enabling this option reduces the performance of the crypto API.  It
1465	  should only be enabled when there is actually a use case for it.
1466
1467	  This collects data sizes, numbers of requests, and numbers
1468	  of errors processed by:
1469	  - AEAD ciphers (encrypt, decrypt)
1470	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471	  - symmetric key ciphers (encrypt, decrypt)
1472	  - compression algorithms (compress, decompress)
1473	  - hash algorithms (hash)
1474	  - key-agreement protocol primitives (setsecret, generate
1475	    public key, compute shared secret)
1476	  - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481	bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif	# if CRYPTO
v5.9
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
 
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
 
 
 
 
 
 
 
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
 
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 124	select CRYPTO_AEAD2
 
 
 125	select CRYPTO_HASH2
 
 
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_GLUE_HELPER_X86
 214	tristate
 215	depends on X86
 216	select CRYPTO_SKCIPHER
 217
 218config CRYPTO_ENGINE
 219	tristate
 220
 221comment "Public-key cryptography"
 222
 223config CRYPTO_RSA
 224	tristate "RSA algorithm"
 225	select CRYPTO_AKCIPHER
 226	select CRYPTO_MANAGER
 227	select MPILIB
 228	select ASN1
 229	help
 230	  Generic implementation of the RSA public key algorithm.
 231
 232config CRYPTO_DH
 233	tristate "Diffie-Hellman algorithm"
 234	select CRYPTO_KPP
 235	select MPILIB
 236	help
 237	  Generic implementation of the Diffie-Hellman algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239config CRYPTO_ECC
 240	tristate
 
 241
 242config CRYPTO_ECDH
 243	tristate "ECDH algorithm"
 244	select CRYPTO_ECC
 245	select CRYPTO_KPP
 246	select CRYPTO_RNG_DEFAULT
 247	help
 248	  Generic implementation of the ECDH algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250config CRYPTO_ECRDSA
 251	tristate "EC-RDSA (GOST 34.10) algorithm"
 252	select CRYPTO_ECC
 253	select CRYPTO_AKCIPHER
 254	select CRYPTO_STREEBOG
 255	select OID_REGISTRY
 256	select ASN1
 257	help
 258	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 259	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 260	  standard algorithms (called GOST algorithms). Only signature verification
 261	  is implemented.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263config CRYPTO_CURVE25519
 264	tristate "Curve25519 algorithm"
 265	select CRYPTO_KPP
 266	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268config CRYPTO_CURVE25519_X86
 269	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 270	depends on X86 && 64BIT
 271	select CRYPTO_LIB_CURVE25519_GENERIC
 272	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 
 
 
 
 
 
 273
 274comment "Authenticated Encryption with Associated Data"
 
 275
 276config CRYPTO_CCM
 277	tristate "CCM support"
 278	select CRYPTO_CTR
 279	select CRYPTO_HASH
 280	select CRYPTO_AEAD
 281	select CRYPTO_MANAGER
 282	help
 283	  Support for Counter with CBC MAC. Required for IPsec.
 284
 285config CRYPTO_GCM
 286	tristate "GCM/GMAC support"
 287	select CRYPTO_CTR
 288	select CRYPTO_AEAD
 289	select CRYPTO_GHASH
 290	select CRYPTO_NULL
 291	select CRYPTO_MANAGER
 
 292	help
 293	  Support for Galois/Counter Mode (GCM) and Galois Message
 294	  Authentication Code (GMAC). Required for IPSec.
 295
 296config CRYPTO_CHACHA20POLY1305
 297	tristate "ChaCha20-Poly1305 AEAD support"
 298	select CRYPTO_CHACHA20
 299	select CRYPTO_POLY1305
 300	select CRYPTO_AEAD
 301	select CRYPTO_MANAGER
 302	help
 303	  ChaCha20-Poly1305 AEAD support, RFC7539.
 
 
 
 
 
 304
 305	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 306	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 307	  IETF protocols.
 308
 309config CRYPTO_AEGIS128
 310	tristate "AEGIS-128 AEAD algorithm"
 311	select CRYPTO_AEAD
 312	select CRYPTO_AES  # for AES S-box tables
 
 
 
 
 
 
 313	help
 314	 Support for the AEGIS-128 dedicated AEAD algorithm.
 315
 316config CRYPTO_AEGIS128_SIMD
 317	bool "Support SIMD acceleration for AEGIS-128"
 318	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 319	default y
 
 
 320
 321config CRYPTO_AEGIS128_AESNI_SSE2
 322	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 323	depends on X86 && 64BIT
 324	select CRYPTO_AEAD
 325	select CRYPTO_SIMD
 326	help
 327	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 
 
 328
 329config CRYPTO_SEQIV
 330	tristate "Sequence Number IV Generator"
 331	select CRYPTO_AEAD
 332	select CRYPTO_SKCIPHER
 333	select CRYPTO_NULL
 334	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335	select CRYPTO_MANAGER
 336	help
 337	  This IV generator generates an IV based on a sequence number by
 338	  xoring it with a salt.  This algorithm is mainly useful for CTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339
 340config CRYPTO_ECHAINIV
 341	tristate "Encrypted Chain IV Generator"
 342	select CRYPTO_AEAD
 343	select CRYPTO_NULL
 344	select CRYPTO_RNG_DEFAULT
 345	select CRYPTO_MANAGER
 346	help
 347	  This IV generator generates an IV based on the encryption of
 348	  a sequence number xored with a salt.  This is the default
 349	  algorithm for CBC.
 350
 351comment "Block modes"
 
 
 
 352
 353config CRYPTO_CBC
 354	tristate "CBC support"
 
 355	select CRYPTO_SKCIPHER
 356	select CRYPTO_MANAGER
 357	help
 358	  CBC: Cipher Block Chaining mode
 359	  This block cipher algorithm is required for IPSec.
 360
 361config CRYPTO_CFB
 362	tristate "CFB support"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363	select CRYPTO_SKCIPHER
 364	select CRYPTO_MANAGER
 365	help
 366	  CFB: Cipher FeedBack mode
 367	  This block cipher algorithm is required for TPM2 Cryptography.
 
 368
 369config CRYPTO_CTR
 370	tristate "CTR support"
 371	select CRYPTO_SKCIPHER
 372	select CRYPTO_MANAGER
 373	help
 374	  CTR: Counter mode
 375	  This block cipher algorithm is required for IPSec.
 376
 377config CRYPTO_CTS
 378	tristate "CTS support"
 379	select CRYPTO_SKCIPHER
 380	select CRYPTO_MANAGER
 381	help
 382	  CTS: Cipher Text Stealing
 383	  This is the Cipher Text Stealing mode as described by
 384	  Section 8 of rfc2040 and referenced by rfc3962
 385	  (rfc3962 includes errata information in its Appendix A) or
 386	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 387	  This mode is required for Kerberos gss mechanism support
 388	  for AES encryption.
 389
 390	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392config CRYPTO_ECB
 393	tristate "ECB support"
 
 
 394	select CRYPTO_SKCIPHER
 395	select CRYPTO_MANAGER
 396	help
 397	  ECB: Electronic CodeBook mode
 398	  This is the simplest block cipher algorithm.  It simply encrypts
 399	  the input block by block.
 400
 401config CRYPTO_LRW
 402	tristate "LRW support"
 
 403	select CRYPTO_SKCIPHER
 404	select CRYPTO_MANAGER
 405	select CRYPTO_GF128MUL
 406	help
 407	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 
 
 408	  narrow block cipher mode for dm-crypt.  Use it with cipher
 409	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 410	  The first 128, 192 or 256 bits in the key are used for AES and the
 411	  rest is used to tie each cipher block to its logical position.
 412
 413config CRYPTO_OFB
 414	tristate "OFB support"
 
 
 415	select CRYPTO_SKCIPHER
 416	select CRYPTO_MANAGER
 417	help
 418	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 419	  stream cipher. It generates keystream blocks, which are then XORed
 420	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 421	  ciphertext produces a flipped bit in the plaintext at the same
 422	  location. This property allows many error correcting codes to function
 423	  normally even when applied before encryption.
 424
 425config CRYPTO_PCBC
 426	tristate "PCBC support"
 427	select CRYPTO_SKCIPHER
 428	select CRYPTO_MANAGER
 429	help
 430	  PCBC: Propagating Cipher Block Chaining mode
 431	  This block cipher algorithm is required for RxRPC.
 
 
 
 
 432
 433config CRYPTO_XTS
 434	tristate "XTS support"
 435	select CRYPTO_SKCIPHER
 436	select CRYPTO_MANAGER
 437	select CRYPTO_ECB
 438	help
 439	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 440	  key size 256, 384 or 512 bits. This implementation currently
 441	  can't handle a sectorsize which is not a multiple of 16 bytes.
 442
 443config CRYPTO_KEYWRAP
 444	tristate "Key wrapping support"
 445	select CRYPTO_SKCIPHER
 446	select CRYPTO_MANAGER
 447	help
 448	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 449	  padding.
 450
 451config CRYPTO_NHPOLY1305
 452	tristate
 453	select CRYPTO_HASH
 454	select CRYPTO_LIB_POLY1305_GENERIC
 455
 456config CRYPTO_NHPOLY1305_SSE2
 457	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 458	depends on X86 && 64BIT
 459	select CRYPTO_NHPOLY1305
 
 
 
 
 460	help
 461	  SSE2 optimized implementation of the hash function used by the
 462	  Adiantum encryption mode.
 463
 464config CRYPTO_NHPOLY1305_AVX2
 465	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 466	depends on X86 && 64BIT
 467	select CRYPTO_NHPOLY1305
 468	help
 469	  AVX2 optimized implementation of the hash function used by the
 470	  Adiantum encryption mode.
 
 
 471
 472config CRYPTO_ADIANTUM
 473	tristate "Adiantum support"
 474	select CRYPTO_CHACHA20
 475	select CRYPTO_LIB_POLY1305_GENERIC
 476	select CRYPTO_NHPOLY1305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	select CRYPTO_MANAGER
 478	help
 479	  Adiantum is a tweakable, length-preserving encryption mode
 480	  designed for fast and secure disk encryption, especially on
 481	  CPUs without dedicated crypto instructions.  It encrypts
 482	  each sector using the XChaCha12 stream cipher, two passes of
 483	  an ε-almost-∆-universal hash function, and an invocation of
 484	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 485	  without AES instructions, Adiantum is much faster than
 486	  AES-XTS.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	  Adiantum's security is provably reducible to that of its
 489	  underlying stream and block ciphers, subject to a security
 490	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 491	  mode, so it actually provides an even stronger notion of
 492	  security than XTS, subject to the security bound.
 493
 494	  If unsure, say N.
 
 
 495
 496config CRYPTO_ESSIV
 497	tristate "ESSIV support for block encryption"
 498	select CRYPTO_AUTHENC
 499	help
 500	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 501	  generation method that is used in some cases by fscrypt and/or
 
 502	  dm-crypt. It uses the hash of the block encryption key as the
 503	  symmetric key for a block encryption pass applied to the input
 504	  IV, making low entropy IV sources more suitable for block
 505	  encryption.
 506
 507	  This driver implements a crypto API template that can be
 508	  instantiated either as an skcipher or as an AEAD (depending on the
 509	  type of the first template argument), and which defers encryption
 510	  and decryption requests to the encapsulated cipher after applying
 511	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 512	  that the keys are presented in the same format used by the authenc
 513	  template, and that the IV appears at the end of the authenticated
 514	  associated data (AAD) region (which is how dm-crypt uses it.)
 515
 516	  Note that the use of ESSIV is not recommended for new deployments,
 517	  and so this only needs to be enabled when interoperability with
 518	  existing encrypted volumes of filesystems is required, or when
 519	  building for a particular system that requires it (e.g., when
 520	  the SoC in question has accelerated CBC but not XTS, making CBC
 521	  combined with ESSIV the only feasible mode for h/w accelerated
 522	  block encryption)
 523
 524comment "Hash modes"
 525
 526config CRYPTO_CMAC
 527	tristate "CMAC support"
 528	select CRYPTO_HASH
 529	select CRYPTO_MANAGER
 530	help
 531	  Cipher-based Message Authentication Code (CMAC) specified by
 532	  The National Institute of Standards and Technology (NIST).
 533
 534	  https://tools.ietf.org/html/rfc4493
 535	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 536
 537config CRYPTO_HMAC
 538	tristate "HMAC support"
 539	select CRYPTO_HASH
 540	select CRYPTO_MANAGER
 541	help
 542	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 543	  This is required for IPSec.
 544
 545config CRYPTO_XCBC
 546	tristate "XCBC support"
 547	select CRYPTO_HASH
 548	select CRYPTO_MANAGER
 549	help
 550	  XCBC: Keyed-Hashing with encryption algorithm
 551		https://www.ietf.org/rfc/rfc3566.txt
 552		http://csrc.nist.gov/encryption/modes/proposedmodes/
 553		 xcbc-mac/xcbc-mac-spec.pdf
 554
 555config CRYPTO_VMAC
 556	tristate "VMAC support"
 557	select CRYPTO_HASH
 558	select CRYPTO_MANAGER
 559	help
 560	  VMAC is a message authentication algorithm designed for
 561	  very high speed on 64-bit architectures.
 562
 563	  See also:
 564	  <https://fastcrypto.org/vmac>
 565
 566comment "Digest"
 567
 568config CRYPTO_CRC32C
 569	tristate "CRC32c CRC algorithm"
 570	select CRYPTO_HASH
 571	select CRC32
 572	help
 573	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 574	  by iSCSI for header and data digests and by others.
 575	  See Castagnoli93.  Module will be crc32c.
 576
 577config CRYPTO_CRC32C_INTEL
 578	tristate "CRC32c INTEL hardware acceleration"
 579	depends on X86
 580	select CRYPTO_HASH
 581	help
 582	  In Intel processor with SSE4.2 supported, the processor will
 583	  support CRC32C implementation using hardware accelerated CRC32
 584	  instruction. This option will create 'crc32c-intel' module,
 585	  which will enable any routine to use the CRC32 instruction to
 586	  gain performance compared with software implementation.
 587	  Module will be crc32c-intel.
 588
 589config CRYPTO_CRC32C_VPMSUM
 590	tristate "CRC32c CRC algorithm (powerpc64)"
 591	depends on PPC64 && ALTIVEC
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  CRC32c algorithm implemented using vector polynomial multiply-sum
 596	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 597	  and newer processors for improved performance.
 598
 599
 600config CRYPTO_CRC32C_SPARC64
 601	tristate "CRC32c CRC algorithm (SPARC64)"
 602	depends on SPARC64
 603	select CRYPTO_HASH
 604	select CRC32
 605	help
 606	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 607	  when available.
 608
 609config CRYPTO_CRC32
 610	tristate "CRC32 CRC algorithm"
 611	select CRYPTO_HASH
 612	select CRC32
 613	help
 614	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 615	  Shash crypto api wrappers to crc32_le function.
 616
 617config CRYPTO_CRC32_PCLMUL
 618	tristate "CRC32 PCLMULQDQ hardware acceleration"
 619	depends on X86
 620	select CRYPTO_HASH
 621	select CRC32
 622	help
 623	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 624	  and PCLMULQDQ supported, the processor will support
 625	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 626	  instruction. This option will create 'crc32-pclmul' module,
 627	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 628	  and gain better performance as compared with the table implementation.
 629
 630config CRYPTO_CRC32_MIPS
 631	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 632	depends on MIPS_CRC_SUPPORT
 633	select CRYPTO_HASH
 634	help
 635	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 636	  instructions, when available.
 637
 638
 639config CRYPTO_XXHASH
 640	tristate "xxHash hash algorithm"
 641	select CRYPTO_HASH
 642	select XXHASH
 643	help
 644	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 645	  speeds close to RAM limits.
 646
 647config CRYPTO_BLAKE2B
 648	tristate "BLAKE2b digest algorithm"
 649	select CRYPTO_HASH
 650	help
 651	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 652	  optimized for 64bit platforms and can produce digests of any size
 653	  between 1 to 64.  The keyed hash is also implemented.
 654
 655	  This module provides the following algorithms:
 656
 657	  - blake2b-160
 658	  - blake2b-256
 659	  - blake2b-384
 660	  - blake2b-512
 661
 662	  See https://blake2.net for further information.
 663
 664config CRYPTO_BLAKE2S
 665	tristate "BLAKE2s digest algorithm"
 666	select CRYPTO_LIB_BLAKE2S_GENERIC
 667	select CRYPTO_HASH
 668	help
 669	  Implementation of cryptographic hash function BLAKE2s
 670	  optimized for 8-32bit platforms and can produce digests of any size
 671	  between 1 to 32.  The keyed hash is also implemented.
 672
 673	  This module provides the following algorithms:
 674
 675	  - blake2s-128
 676	  - blake2s-160
 677	  - blake2s-224
 678	  - blake2s-256
 679
 680	  See https://blake2.net for further information.
 681
 682config CRYPTO_BLAKE2S_X86
 683	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 684	depends on X86 && 64BIT
 685	select CRYPTO_LIB_BLAKE2S_GENERIC
 686	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 687
 688config CRYPTO_CRCT10DIF
 689	tristate "CRCT10DIF algorithm"
 690	select CRYPTO_HASH
 
 691	help
 692	  CRC T10 Data Integrity Field computation is being cast as
 693	  a crypto transform.  This allows for faster crc t10 diff
 694	  transforms to be used if they are available.
 695
 696config CRYPTO_CRCT10DIF_PCLMUL
 697	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 698	depends on X86 && 64BIT && CRC_T10DIF
 699	select CRYPTO_HASH
 700	help
 701	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 702	  CRC T10 DIF PCLMULQDQ computation can be hardware
 703	  accelerated PCLMULQDQ instruction. This option will create
 704	  'crct10dif-pclmul' module, which is faster when computing the
 705	  crct10dif checksum as compared with the generic table implementation.
 706
 707config CRYPTO_CRCT10DIF_VPMSUM
 708	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 709	depends on PPC64 && ALTIVEC && CRC_T10DIF
 710	select CRYPTO_HASH
 711	help
 712	  CRC10T10DIF algorithm implemented using vector polynomial
 713	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 714	  POWER8 and newer processors for improved performance.
 715
 716config CRYPTO_VPMSUM_TESTER
 717	tristate "Powerpc64 vpmsum hardware acceleration tester"
 718	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 719	help
 720	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 721	  POWER8 vpmsum instructions.
 722	  Unless you are testing these algorithms, you don't need this.
 723
 724config CRYPTO_GHASH
 725	tristate "GHASH hash function"
 726	select CRYPTO_GF128MUL
 727	select CRYPTO_HASH
 
 728	help
 729	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 730	  It is not a general-purpose cryptographic hash function.
 731
 732config CRYPTO_POLY1305
 733	tristate "Poly1305 authenticator algorithm"
 734	select CRYPTO_HASH
 735	select CRYPTO_LIB_POLY1305_GENERIC
 736	help
 737	  Poly1305 authenticator algorithm, RFC7539.
 738
 739	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 740	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 741	  in IETF protocols. This is the portable C implementation of Poly1305.
 742
 743config CRYPTO_POLY1305_X86_64
 744	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 745	depends on X86 && 64BIT
 746	select CRYPTO_LIB_POLY1305_GENERIC
 747	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 748	help
 749	  Poly1305 authenticator algorithm, RFC7539.
 750
 751	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 752	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 753	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 754	  instructions.
 755
 756config CRYPTO_POLY1305_MIPS
 757	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 758	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
 759	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 760
 761config CRYPTO_MD4
 762	tristate "MD4 digest algorithm"
 763	select CRYPTO_HASH
 764	help
 765	  MD4 message digest algorithm (RFC1320).
 766
 767config CRYPTO_MD5
 768	tristate "MD5 digest algorithm"
 769	select CRYPTO_HASH
 770	help
 771	  MD5 message digest algorithm (RFC1321).
 772
 773config CRYPTO_MD5_OCTEON
 774	tristate "MD5 digest algorithm (OCTEON)"
 775	depends on CPU_CAVIUM_OCTEON
 776	select CRYPTO_MD5
 777	select CRYPTO_HASH
 778	help
 779	  MD5 message digest algorithm (RFC1321) implemented
 780	  using OCTEON crypto instructions, when available.
 
 
 781
 782config CRYPTO_MD5_PPC
 783	tristate "MD5 digest algorithm (PPC)"
 784	depends on PPC
 785	select CRYPTO_HASH
 786	help
 787	  MD5 message digest algorithm (RFC1321) implemented
 788	  in PPC assembler.
 789
 790config CRYPTO_MD5_SPARC64
 791	tristate "MD5 digest algorithm (SPARC64)"
 792	depends on SPARC64
 793	select CRYPTO_MD5
 794	select CRYPTO_HASH
 
 795	help
 796	  MD5 message digest algorithm (RFC1321) implemented
 797	  using sparc64 crypto instructions, when available.
 798
 799config CRYPTO_MICHAEL_MIC
 800	tristate "Michael MIC keyed digest algorithm"
 801	select CRYPTO_HASH
 802	help
 803	  Michael MIC is used for message integrity protection in TKIP
 804	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 805	  should not be used for other purposes because of the weakness
 806	  of the algorithm.
 807
 808config CRYPTO_RMD128
 809	tristate "RIPEMD-128 digest algorithm"
 810	select CRYPTO_HASH
 
 811	help
 812	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 813
 814	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 815	  be used as a secure replacement for RIPEMD. For other use cases,
 816	  RIPEMD-160 should be used.
 817
 818	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 819	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 820
 821config CRYPTO_RMD160
 822	tristate "RIPEMD-160 digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 826
 827	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 828	  to be used as a secure replacement for the 128-bit hash functions
 829	  MD4, MD5 and it's predecessor RIPEMD
 830	  (not to be confused with RIPEMD-128).
 831
 832	  It's speed is comparable to SHA1 and there are no known attacks
 833	  against RIPEMD-160.
 834
 835	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 836	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 837
 838config CRYPTO_RMD256
 839	tristate "RIPEMD-256 digest algorithm"
 840	select CRYPTO_HASH
 841	help
 842	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 843	  256 bit hash. It is intended for applications that require
 844	  longer hash-results, without needing a larger security level
 845	  (than RIPEMD-128).
 846
 847	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 848	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 849
 850config CRYPTO_RMD320
 851	tristate "RIPEMD-320 digest algorithm"
 852	select CRYPTO_HASH
 853	help
 854	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 855	  320 bit hash. It is intended for applications that require
 856	  longer hash-results, without needing a larger security level
 857	  (than RIPEMD-160).
 858
 859	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 860	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 861
 862config CRYPTO_SHA1
 863	tristate "SHA1 digest algorithm"
 864	select CRYPTO_HASH
 865	help
 866	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 867
 868config CRYPTO_SHA1_SSSE3
 869	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 870	depends on X86 && 64BIT
 871	select CRYPTO_SHA1
 872	select CRYPTO_HASH
 873	help
 874	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 875	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 876	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 877	  when available.
 878
 879config CRYPTO_SHA256_SSSE3
 880	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 881	depends on X86 && 64BIT
 882	select CRYPTO_SHA256
 883	select CRYPTO_HASH
 884	help
 885	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 886	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 887	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 888	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 889	  Instructions) when available.
 890
 891config CRYPTO_SHA512_SSSE3
 892	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 893	depends on X86 && 64BIT
 894	select CRYPTO_SHA512
 895	select CRYPTO_HASH
 896	help
 897	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 898	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 899	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 900	  version 2 (AVX2) instructions, when available.
 901
 902config CRYPTO_SHA1_OCTEON
 903	tristate "SHA1 digest algorithm (OCTEON)"
 904	depends on CPU_CAVIUM_OCTEON
 905	select CRYPTO_SHA1
 906	select CRYPTO_HASH
 907	help
 908	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 909	  using OCTEON crypto instructions, when available.
 910
 911config CRYPTO_SHA1_SPARC64
 912	tristate "SHA1 digest algorithm (SPARC64)"
 913	depends on SPARC64
 914	select CRYPTO_SHA1
 915	select CRYPTO_HASH
 
 916	help
 917	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 918	  using sparc64 crypto instructions, when available.
 919
 920config CRYPTO_SHA1_PPC
 921	tristate "SHA1 digest algorithm (powerpc)"
 922	depends on PPC
 923	help
 924	  This is the powerpc hardware accelerated implementation of the
 925	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 926
 927config CRYPTO_SHA1_PPC_SPE
 928	tristate "SHA1 digest algorithm (PPC SPE)"
 929	depends on PPC && SPE
 930	help
 931	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 932	  using powerpc SPE SIMD instruction set.
 933
 934config CRYPTO_SHA256
 935	tristate "SHA224 and SHA256 digest algorithm"
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_SHA256
 938	help
 939	  SHA256 secure hash standard (DFIPS 180-2).
 940
 941	  This version of SHA implements a 256 bit hash with 128 bits of
 942	  security against collision attacks.
 943
 944	  This code also includes SHA-224, a 224 bit hash with 112 bits
 945	  of security against collision attacks.
 946
 947config CRYPTO_SHA256_PPC_SPE
 948	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 949	depends on PPC && SPE
 950	select CRYPTO_SHA256
 951	select CRYPTO_HASH
 952	help
 953	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 954	  implemented using powerpc SPE SIMD instruction set.
 955
 956config CRYPTO_SHA256_OCTEON
 957	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 958	depends on CPU_CAVIUM_OCTEON
 959	select CRYPTO_SHA256
 960	select CRYPTO_HASH
 961	help
 962	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 963	  using OCTEON crypto instructions, when available.
 964
 965config CRYPTO_SHA256_SPARC64
 966	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 967	depends on SPARC64
 968	select CRYPTO_SHA256
 969	select CRYPTO_HASH
 970	help
 971	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 972	  using sparc64 crypto instructions, when available.
 973
 974config CRYPTO_SHA512
 975	tristate "SHA384 and SHA512 digest algorithms"
 976	select CRYPTO_HASH
 977	help
 978	  SHA512 secure hash standard (DFIPS 180-2).
 979
 980	  This version of SHA implements a 512 bit hash with 256 bits of
 981	  security against collision attacks.
 982
 983	  This code also includes SHA-384, a 384 bit hash with 192 bits
 984	  of security against collision attacks.
 985
 986config CRYPTO_SHA512_OCTEON
 987	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 988	depends on CPU_CAVIUM_OCTEON
 989	select CRYPTO_SHA512
 990	select CRYPTO_HASH
 991	help
 992	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 993	  using OCTEON crypto instructions, when available.
 994
 995config CRYPTO_SHA512_SPARC64
 996	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 997	depends on SPARC64
 998	select CRYPTO_SHA512
 999	select CRYPTO_HASH
1000	help
1001	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1002	  using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005	tristate "SHA3 digest algorithm"
1006	select CRYPTO_HASH
 
1007	help
1008	  SHA-3 secure hash standard (DFIPS 202). It's based on
1009	  cryptographic sponge function family called Keccak.
1010
1011	  References:
1012	  http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015	tristate "SM3 digest algorithm"
1016	select CRYPTO_HASH
1017	help
1018	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019	  It is part of the Chinese Commercial Cryptography suite.
1020
1021	  References:
1022	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026	tristate "Streebog Hash Function"
1027	select CRYPTO_HASH
1028	help
1029	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030	  cryptographic standard algorithms (called GOST algorithms).
1031	  This setting enables two hash algorithms with 256 and 512 bits output.
 
 
1032
1033	  References:
1034	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035	  https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038	tristate "Tiger digest algorithms"
1039	select CRYPTO_HASH
 
1040	help
1041	  Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043	  Tiger is a hash function optimized for 64-bit processors while
1044	  still having decent performance on 32-bit processors.
1045	  Tiger was developed by Ross Anderson and Eli Biham.
1046
1047	  See also:
1048	  <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051	tristate "Whirlpool digest algorithms"
1052	select CRYPTO_HASH
1053	help
1054	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 
 
1055
1056	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059	  See also:
1060	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063	tristate "GHASH hash function (CLMUL-NI accelerated)"
1064	depends on X86 && 64BIT
1065	select CRYPTO_CRYPTD
1066	help
1067	  This is the x86_64 CLMUL-NI accelerated implementation of
1068	  GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073	tristate "AES cipher algorithms"
1074	select CRYPTO_ALGAPI
1075	select CRYPTO_LIB_AES
1076	help
1077	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078	  algorithm.
1079
1080	  Rijndael appears to be consistently a very good performer in
1081	  both hardware and software across a wide range of computing
1082	  environments regardless of its use in feedback or non-feedback
1083	  modes. Its key setup time is excellent, and its key agility is
1084	  good. Rijndael's very low memory requirements make it very well
1085	  suited for restricted-space environments, in which it also
1086	  demonstrates excellent performance. Rijndael's operations are
1087	  among the easiest to defend against power and timing attacks.
1088
1089	  The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094	tristate "Fixed time AES cipher"
1095	select CRYPTO_ALGAPI
1096	select CRYPTO_LIB_AES
1097	help
1098	  This is a generic implementation of AES that attempts to eliminate
1099	  data dependent latencies as much as possible without affecting
1100	  performance too much. It is intended for use by the generic CCM
1101	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102	  solely on encryption (although decryption is supported as well, but
1103	  with a more dramatic performance hit)
1104
1105	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106	  8 for decryption), this implementation only uses just two S-boxes of
1107	  256 bytes each, and attempts to eliminate data dependent latencies by
1108	  prefetching the entire table into the cache at the start of each
1109	  block. Interrupts are also disabled to avoid races where cachelines
1110	  are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113	tristate "AES cipher algorithms (AES-NI)"
1114	depends on X86
1115	select CRYPTO_AEAD
1116	select CRYPTO_LIB_AES
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_SKCIPHER
1119	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120	select CRYPTO_SIMD
1121	help
1122	  Use Intel AES-NI instructions for AES algorithm.
1123
1124	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125	  algorithm.
 
 
 
1126
1127	  Rijndael appears to be consistently a very good performer in
1128	  both hardware and software across a wide range of computing
1129	  environments regardless of its use in feedback or non-feedback
1130	  modes. Its key setup time is excellent, and its key agility is
1131	  good. Rijndael's very low memory requirements make it very well
1132	  suited for restricted-space environments, in which it also
1133	  demonstrates excellent performance. Rijndael's operations are
1134	  among the easiest to defend against power and timing attacks.
1135
1136	  The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140	  In addition to AES cipher algorithm support, the acceleration
1141	  for some popular block cipher mode is supported too, including
1142	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1143	  acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146	tristate "AES cipher algorithms (SPARC64)"
1147	depends on SPARC64
1148	select CRYPTO_SKCIPHER
1149	help
1150	  Use SPARC64 crypto opcodes for AES algorithm.
1151
1152	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153	  algorithm.
1154
1155	  Rijndael appears to be consistently a very good performer in
1156	  both hardware and software across a wide range of computing
1157	  environments regardless of its use in feedback or non-feedback
1158	  modes. Its key setup time is excellent, and its key agility is
1159	  good. Rijndael's very low memory requirements make it very well
1160	  suited for restricted-space environments, in which it also
1161	  demonstrates excellent performance. Rijndael's operations are
1162	  among the easiest to defend against power and timing attacks.
1163
1164	  The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168	  In addition to AES cipher algorithm support, the acceleration
1169	  for some popular block cipher mode is supported too, including
1170	  ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173	tristate "AES cipher algorithms (PPC SPE)"
1174	depends on PPC && SPE
1175	select CRYPTO_SKCIPHER
1176	help
1177	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1178	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179	  This module should only be used for low power (router) devices
1180	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1181	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182	  timining attacks. Nevertheless it might be not as secure as other
1183	  architecture specific assembler implementations that work on 1KB
1184	  tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187	tristate "Anubis cipher algorithm"
1188	select CRYPTO_ALGAPI
1189	help
1190	  Anubis cipher algorithm.
1191
1192	  Anubis is a variable key length cipher which can use keys from
1193	  128 bits to 320 bits in length.  It was evaluated as a entrant
1194	  in the NESSIE competition.
1195
1196	  See also:
1197	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201	tristate "ARC4 cipher algorithm"
1202	select CRYPTO_SKCIPHER
1203	select CRYPTO_LIB_ARC4
1204	help
1205	  ARC4 cipher algorithm.
1206
1207	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208	  bits in length.  This algorithm is required for driver-based
1209	  WEP, but it should not be for other purposes because of the
1210	  weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213	tristate "Blowfish cipher algorithm"
1214	select CRYPTO_ALGAPI
1215	select CRYPTO_BLOWFISH_COMMON
1216	help
1217	  Blowfish cipher algorithm, by Bruce Schneier.
1218
1219	  This is a variable key length cipher which can use keys from 32
1220	  bits to 448 bits in length.  It's fast, simple and specifically
1221	  designed for use on "large microprocessors".
1222
1223	  See also:
1224	  <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227	tristate
1228	help
1229	  Common parts of the Blowfish cipher algorithm shared by the
1230	  generic c and the assembler implementations.
1231
1232	  See also:
1233	  <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236	tristate "Blowfish cipher algorithm (x86_64)"
1237	depends on X86 && 64BIT
1238	select CRYPTO_SKCIPHER
1239	select CRYPTO_BLOWFISH_COMMON
1240	help
1241	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243	  This is a variable key length cipher which can use keys from 32
1244	  bits to 448 bits in length.  It's fast, simple and specifically
1245	  designed for use on "large microprocessors".
1246
1247	  See also:
1248	  <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251	tristate "Camellia cipher algorithms"
1252	depends on CRYPTO
1253	select CRYPTO_ALGAPI
1254	help
1255	  Camellia cipher algorithms module.
1256
1257	  Camellia is a symmetric key block cipher developed jointly
1258	  at NTT and Mitsubishi Electric Corporation.
1259
1260	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262	  See also:
1263	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266	tristate "Camellia cipher algorithm (x86_64)"
1267	depends on X86 && 64BIT
1268	depends on CRYPTO
1269	select CRYPTO_SKCIPHER
1270	select CRYPTO_GLUE_HELPER_X86
1271	help
1272	  Camellia cipher algorithm module (x86_64).
1273
1274	  Camellia is a symmetric key block cipher developed jointly
1275	  at NTT and Mitsubishi Electric Corporation.
1276
1277	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279	  See also:
1280	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284	depends on X86 && 64BIT
1285	depends on CRYPTO
1286	select CRYPTO_SKCIPHER
1287	select CRYPTO_CAMELLIA_X86_64
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SIMD
1290	select CRYPTO_XTS
1291	help
1292	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294	  Camellia is a symmetric key block cipher developed jointly
1295	  at NTT and Mitsubishi Electric Corporation.
1296
1297	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299	  See also:
1300	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304	depends on X86 && 64BIT
1305	depends on CRYPTO
1306	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307	help
1308	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310	  Camellia is a symmetric key block cipher developed jointly
1311	  at NTT and Mitsubishi Electric Corporation.
1312
1313	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315	  See also:
1316	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319	tristate "Camellia cipher algorithm (SPARC64)"
1320	depends on SPARC64
1321	depends on CRYPTO
1322	select CRYPTO_ALGAPI
1323	select CRYPTO_SKCIPHER
1324	help
1325	  Camellia cipher algorithm module (SPARC64).
1326
1327	  Camellia is a symmetric key block cipher developed jointly
1328	  at NTT and Mitsubishi Electric Corporation.
1329
1330	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332	  See also:
1333	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336	tristate
1337	help
1338	  Common parts of the CAST cipher algorithms shared by the
1339	  generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342	tristate "CAST5 (CAST-128) cipher algorithm"
1343	select CRYPTO_ALGAPI
1344	select CRYPTO_CAST_COMMON
1345	help
1346	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1347	  described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351	depends on X86 && 64BIT
1352	select CRYPTO_SKCIPHER
1353	select CRYPTO_CAST5
1354	select CRYPTO_CAST_COMMON
1355	select CRYPTO_SIMD
1356	help
1357	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1358	  described in RFC2144.
1359
1360	  This module provides the Cast5 cipher algorithm that processes
1361	  sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364	tristate "CAST6 (CAST-256) cipher algorithm"
1365	select CRYPTO_ALGAPI
1366	select CRYPTO_CAST_COMMON
1367	help
1368	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1369	  described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373	depends on X86 && 64BIT
1374	select CRYPTO_SKCIPHER
1375	select CRYPTO_CAST6
1376	select CRYPTO_CAST_COMMON
1377	select CRYPTO_GLUE_HELPER_X86
1378	select CRYPTO_SIMD
1379	select CRYPTO_XTS
1380	help
1381	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1382	  described in RFC2612.
1383
1384	  This module provides the Cast6 cipher algorithm that processes
1385	  eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388	tristate "DES and Triple DES EDE cipher algorithms"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_LIB_DES
1391	help
1392	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396	depends on SPARC64
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_LIB_DES
1399	select CRYPTO_SKCIPHER
1400	help
1401	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402	  optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405	tristate "Triple DES EDE cipher algorithm (x86-64)"
1406	depends on X86 && 64BIT
1407	select CRYPTO_SKCIPHER
1408	select CRYPTO_LIB_DES
1409	help
1410	  Triple DES EDE (FIPS 46-3) algorithm.
1411
1412	  This module provides implementation of the Triple DES EDE cipher
1413	  algorithm that is optimized for x86-64 processors. Two versions of
1414	  algorithm are provided; regular processing one input block and
1415	  one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418	tristate "FCrypt cipher algorithm"
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_SKCIPHER
1421	help
1422	  FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425	tristate "Khazad cipher algorithm"
1426	select CRYPTO_ALGAPI
1427	help
1428	  Khazad cipher algorithm.
1429
1430	  Khazad was a finalist in the initial NESSIE competition.  It is
1431	  an algorithm optimized for 64-bit processors with good performance
1432	  on 32-bit processors.  Khazad uses an 128 bit key size.
1433
1434	  See also:
1435	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438	tristate "Salsa20 stream cipher algorithm"
1439	select CRYPTO_SKCIPHER
1440	help
1441	  Salsa20 stream cipher algorithm.
1442
1443	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444	  Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1447	  Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450	tristate "ChaCha stream cipher algorithms"
1451	select CRYPTO_LIB_CHACHA_GENERIC
1452	select CRYPTO_SKCIPHER
1453	help
1454	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1458	  This is the portable C implementation of ChaCha20.  See also:
1459	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1463	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464	  while provably retaining ChaCha20's security.  See also:
1465	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468	  reduced security margin but increased performance.  It can be needed
1469	  in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473	depends on X86 && 64BIT
1474	select CRYPTO_SKCIPHER
1475	select CRYPTO_LIB_CHACHA_GENERIC
1476	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477	help
1478	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479	  XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483	depends on CPU_MIPS32_R2
1484	select CRYPTO_SKCIPHER
1485	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488	tristate "SEED cipher algorithm"
1489	select CRYPTO_ALGAPI
1490	help
1491	  SEED cipher algorithm (RFC4269).
1492
1493	  SEED is a 128-bit symmetric key block cipher that has been
1494	  developed by KISA (Korea Information Security Agency) as a
1495	  national standard encryption algorithm of the Republic of Korea.
1496	  It is a 16 round block cipher with the key size of 128 bit.
1497
1498	  See also:
1499	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502	tristate "Serpent cipher algorithm"
1503	select CRYPTO_ALGAPI
1504	help
1505	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507	  Keys are allowed to be from 0 to 256 bits in length, in steps
1508	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1509	  variant of Serpent for compatibility with old kerneli.org code.
1510
1511	  See also:
1512	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516	depends on X86 && 64BIT
1517	select CRYPTO_SKCIPHER
1518	select CRYPTO_GLUE_HELPER_X86
1519	select CRYPTO_SERPENT
1520	select CRYPTO_SIMD
1521	help
1522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525	  of 8 bits.
1526
1527	  This module provides Serpent cipher algorithm that processes eight
1528	  blocks parallel using SSE2 instruction set.
1529
1530	  See also:
1531	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534	tristate "Serpent cipher algorithm (i586/SSE2)"
1535	depends on X86 && !64BIT
1536	select CRYPTO_SKCIPHER
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_SERPENT
1539	select CRYPTO_SIMD
1540	help
1541	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543	  Keys are allowed to be from 0 to 256 bits in length, in steps
1544	  of 8 bits.
1545
1546	  This module provides Serpent cipher algorithm that processes four
1547	  blocks parallel using SSE2 instruction set.
1548
1549	  See also:
1550	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553	tristate "Serpent cipher algorithm (x86_64/AVX)"
1554	depends on X86 && 64BIT
1555	select CRYPTO_SKCIPHER
1556	select CRYPTO_GLUE_HELPER_X86
1557	select CRYPTO_SERPENT
1558	select CRYPTO_SIMD
1559	select CRYPTO_XTS
1560	help
1561	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563	  Keys are allowed to be from 0 to 256 bits in length, in steps
1564	  of 8 bits.
1565
1566	  This module provides the Serpent cipher algorithm that processes
1567	  eight blocks parallel using the AVX instruction set.
1568
1569	  See also:
1570	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574	depends on X86 && 64BIT
1575	select CRYPTO_SERPENT_AVX_X86_64
1576	help
1577	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579	  Keys are allowed to be from 0 to 256 bits in length, in steps
1580	  of 8 bits.
1581
1582	  This module provides Serpent cipher algorithm that processes 16
1583	  blocks parallel using AVX2 instruction set.
1584
1585	  See also:
1586	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589	tristate "SM4 cipher algorithm"
1590	select CRYPTO_ALGAPI
1591	help
1592	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595	  Organization of State Commercial Administration of China (OSCCA)
1596	  as an authorized cryptographic algorithms for the use within China.
1597
1598	  SMS4 was originally created for use in protecting wireless
1599	  networks, and is mandated in the Chinese National Standard for
1600	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601	  (GB.15629.11-2003).
1602
1603	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604	  standardized through TC 260 of the Standardization Administration
1605	  of the People's Republic of China (SAC).
1606
1607	  The input, output, and key of SMS4 are each 128 bits.
1608
1609	  See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611	  If unsure, say N.
1612
1613config CRYPTO_TEA
1614	tristate "TEA, XTEA and XETA cipher algorithms"
1615	select CRYPTO_ALGAPI
1616	help
1617	  TEA cipher algorithm.
1618
1619	  Tiny Encryption Algorithm is a simple cipher that uses
1620	  many rounds for security.  It is very fast and uses
1621	  little memory.
1622
1623	  Xtendend Tiny Encryption Algorithm is a modification to
1624	  the TEA algorithm to address a potential key weakness
1625	  in the TEA algorithm.
1626
1627	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1628	  of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631	tristate "Twofish cipher algorithm"
1632	select CRYPTO_ALGAPI
1633	select CRYPTO_TWOFISH_COMMON
1634	help
1635	  Twofish cipher algorithm.
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646	tristate
1647	help
1648	  Common parts of the Twofish cipher algorithm shared by the
1649	  generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652	tristate "Twofish cipher algorithms (i586)"
1653	depends on (X86 || UML_X86) && !64BIT
1654	select CRYPTO_ALGAPI
1655	select CRYPTO_TWOFISH_COMMON
1656	help
1657	  Twofish cipher algorithm.
1658
1659	  Twofish was submitted as an AES (Advanced Encryption Standard)
1660	  candidate cipher by researchers at CounterPane Systems.  It is a
1661	  16 round block cipher supporting key sizes of 128, 192, and 256
1662	  bits.
1663
1664	  See also:
1665	  <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668	tristate "Twofish cipher algorithm (x86_64)"
1669	depends on (X86 || UML_X86) && 64BIT
1670	select CRYPTO_ALGAPI
1671	select CRYPTO_TWOFISH_COMMON
1672	help
1673	  Twofish cipher algorithm (x86_64).
1674
1675	  Twofish was submitted as an AES (Advanced Encryption Standard)
1676	  candidate cipher by researchers at CounterPane Systems.  It is a
1677	  16 round block cipher supporting key sizes of 128, 192, and 256
1678	  bits.
1679
1680	  See also:
1681	  <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685	depends on X86 && 64BIT
1686	select CRYPTO_SKCIPHER
1687	select CRYPTO_TWOFISH_COMMON
1688	select CRYPTO_TWOFISH_X86_64
1689	select CRYPTO_GLUE_HELPER_X86
1690	help
1691	  Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693	  Twofish was submitted as an AES (Advanced Encryption Standard)
1694	  candidate cipher by researchers at CounterPane Systems.  It is a
1695	  16 round block cipher supporting key sizes of 128, 192, and 256
1696	  bits.
1697
1698	  This module provides Twofish cipher algorithm that processes three
1699	  blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701	  See also:
1702	  <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705	tristate "Twofish cipher algorithm (x86_64/AVX)"
1706	depends on X86 && 64BIT
1707	select CRYPTO_SKCIPHER
1708	select CRYPTO_GLUE_HELPER_X86
1709	select CRYPTO_SIMD
1710	select CRYPTO_TWOFISH_COMMON
1711	select CRYPTO_TWOFISH_X86_64
1712	select CRYPTO_TWOFISH_X86_64_3WAY
1713	help
1714	  Twofish cipher algorithm (x86_64/AVX).
1715
1716	  Twofish was submitted as an AES (Advanced Encryption Standard)
1717	  candidate cipher by researchers at CounterPane Systems.  It is a
1718	  16 round block cipher supporting key sizes of 128, 192, and 256
1719	  bits.
1720
1721	  This module provides the Twofish cipher algorithm that processes
1722	  eight blocks parallel using the AVX Instruction Set.
1723
1724	  See also:
1725	  <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730	tristate "Deflate compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select ZLIB_INFLATE
1734	select ZLIB_DEFLATE
1735	help
1736	  This is the Deflate algorithm (RFC1951), specified for use in
1737	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739	  You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742	tristate "LZO compression algorithm"
1743	select CRYPTO_ALGAPI
1744	select CRYPTO_ACOMP2
1745	select LZO_COMPRESS
1746	select LZO_DECOMPRESS
1747	help
1748	  This is the LZO algorithm.
 
 
1749
1750config CRYPTO_842
1751	tristate "842 compression algorithm"
1752	select CRYPTO_ALGAPI
1753	select CRYPTO_ACOMP2
1754	select 842_COMPRESS
1755	select 842_DECOMPRESS
1756	help
1757	  This is the 842 algorithm.
 
 
1758
1759config CRYPTO_LZ4
1760	tristate "LZ4 compression algorithm"
1761	select CRYPTO_ALGAPI
1762	select CRYPTO_ACOMP2
1763	select LZ4_COMPRESS
1764	select LZ4_DECOMPRESS
1765	help
1766	  This is the LZ4 algorithm.
 
 
1767
1768config CRYPTO_LZ4HC
1769	tristate "LZ4HC compression algorithm"
1770	select CRYPTO_ALGAPI
1771	select CRYPTO_ACOMP2
1772	select LZ4HC_COMPRESS
1773	select LZ4_DECOMPRESS
1774	help
1775	  This is the LZ4 high compression mode algorithm.
 
 
1776
1777config CRYPTO_ZSTD
1778	tristate "Zstd compression algorithm"
1779	select CRYPTO_ALGAPI
1780	select CRYPTO_ACOMP2
1781	select ZSTD_COMPRESS
1782	select ZSTD_DECOMPRESS
1783	help
1784	  This is the zstd algorithm.
1785
1786comment "Random Number Generation"
 
 
 
 
1787
1788config CRYPTO_ANSI_CPRNG
1789	tristate "Pseudo Random Number Generation for Cryptographic modules"
1790	select CRYPTO_AES
1791	select CRYPTO_RNG
1792	help
1793	  This option enables the generic pseudo random number generator
1794	  for cryptographic modules.  Uses the Algorithm specified in
1795	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1796	  CRYPTO_FIPS is selected
 
1797
1798menuconfig CRYPTO_DRBG_MENU
1799	tristate "NIST SP800-90A DRBG"
1800	help
1801	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1802	  more of the DRBG types must be selected.
 
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807	bool
1808	default y
1809	select CRYPTO_HMAC
1810	select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813	bool "Enable Hash DRBG"
1814	select CRYPTO_SHA256
1815	help
1816	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1817
1818config CRYPTO_DRBG_CTR
1819	bool "Enable CTR DRBG"
1820	select CRYPTO_AES
1821	select CRYPTO_CTR
1822	help
1823	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1824
1825config CRYPTO_DRBG
1826	tristate
1827	default CRYPTO_DRBG_MENU
1828	select CRYPTO_RNG
1829	select CRYPTO_JITTERENTROPY
1830
1831endif	# if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835	select CRYPTO_RNG
 
1836	help
1837	  The Jitterentropy RNG is a noise that is intended
1838	  to provide seed to another RNG. The RNG does not
1839	  perform any cryptographic whitening of the generated
1840	  random numbers. This Jitterentropy RNG registers with
1841	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843config CRYPTO_USER_API
1844	tristate
1845
1846config CRYPTO_USER_API_HASH
1847	tristate "User-space interface for hash algorithms"
1848	depends on NET
1849	select CRYPTO_HASH
1850	select CRYPTO_USER_API
1851	help
1852	  This option enables the user-spaces interface for hash
1853	  algorithms.
 
 
1854
1855config CRYPTO_USER_API_SKCIPHER
1856	tristate "User-space interface for symmetric key cipher algorithms"
1857	depends on NET
1858	select CRYPTO_SKCIPHER
1859	select CRYPTO_USER_API
1860	help
1861	  This option enables the user-spaces interface for symmetric
1862	  key cipher algorithms.
 
 
1863
1864config CRYPTO_USER_API_RNG
1865	tristate "User-space interface for random number generator algorithms"
1866	depends on NET
1867	select CRYPTO_RNG
1868	select CRYPTO_USER_API
1869	help
1870	  This option enables the user-spaces interface for random
1871	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872
1873config CRYPTO_USER_API_AEAD
1874	tristate "User-space interface for AEAD cipher algorithms"
1875	depends on NET
1876	select CRYPTO_AEAD
1877	select CRYPTO_SKCIPHER
1878	select CRYPTO_NULL
1879	select CRYPTO_USER_API
1880	help
1881	  This option enables the user-spaces interface for AEAD
1882	  cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
1883
1884config CRYPTO_STATS
1885	bool "Crypto usage statistics for User-space"
1886	depends on CRYPTO_USER
1887	help
1888	  This option enables the gathering of crypto stats.
1889	  This will collect:
1890	  - encrypt/decrypt size and numbers of symmeric operations
1891	  - compress/decompress size and numbers of compress operations
1892	  - size and numbers of hash operations
1893	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894	  - generate/seed numbers for rng operations
 
 
 
 
 
 
 
 
 
 
1895
1896config CRYPTO_HASH_INFO
1897	bool
1898
1899source "lib/crypto/Kconfig"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif	# if CRYPTO