Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21#include <linux/uio.h>
22#include <linux/bio.h>
23
24int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27void reiserfs_evict_inode(struct inode *inode)
28{
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109}
110
111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113{
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121}
122
123/*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129{
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134}
135
136/* when key is 0, do not set version and short key */
137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141{
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157}
158
159/*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166/*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to read_folio,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184/*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
193static inline void fix_tail_page_for_writing(struct page *page)
194{
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208}
209
210/*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
214static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217{
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224}
225
226static inline int indirect_item_found(int retval, struct item_head *ih)
227{
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229}
230
231static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233{
234 map_bh(bh, inode->i_sb, block);
235}
236
237/*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
241static int file_capable(struct inode *inode, sector_t block)
242{
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250}
251
252static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254{
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275}
276
277/*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
285static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287{
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (result == IO_ERROR)
309 return -EIO;
310 /*
311 * We do not return -ENOENT if there is a hole but page is
312 * uptodate, because it means that there is some MMAPED data
313 * associated with it that is yet to be written to disk.
314 */
315 if ((args & GET_BLOCK_NO_HOLE)
316 && !PageUptodate(bh_result->b_page)) {
317 return -ENOENT;
318 }
319 return 0;
320 }
321
322 bh = get_last_bh(&path);
323 ih = tp_item_head(&path);
324 if (is_indirect_le_ih(ih)) {
325 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326
327 /*
328 * FIXME: here we could cache indirect item or part of it in
329 * the inode to avoid search_by_key in case of subsequent
330 * access to file
331 */
332 blocknr = get_block_num(ind_item, path.pos_in_item);
333 ret = 0;
334 if (blocknr) {
335 map_bh(bh_result, inode->i_sb, blocknr);
336 if (path.pos_in_item ==
337 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338 set_buffer_boundary(bh_result);
339 }
340 } else
341 /*
342 * We do not return -ENOENT if there is a hole but
343 * page is uptodate, because it means that there is
344 * some MMAPED data associated with it that is
345 * yet to be written to disk.
346 */
347 if ((args & GET_BLOCK_NO_HOLE)
348 && !PageUptodate(bh_result->b_page)) {
349 ret = -ENOENT;
350 }
351
352 pathrelse(&path);
353 return ret;
354 }
355 /* requested data are in direct item(s) */
356 if (!(args & GET_BLOCK_READ_DIRECT)) {
357 /*
358 * we are called by bmap. FIXME: we can not map block of file
359 * when it is stored in direct item(s)
360 */
361 pathrelse(&path);
362 return -ENOENT;
363 }
364
365 /*
366 * if we've got a direct item, and the buffer or page was uptodate,
367 * we don't want to pull data off disk again. skip to the
368 * end, where we map the buffer and return
369 */
370 if (buffer_uptodate(bh_result)) {
371 goto finished;
372 } else
373 /*
374 * grab_tail_page can trigger calls to reiserfs_get_block on
375 * up to date pages without any buffers. If the page is up
376 * to date, we don't want read old data off disk. Set the up
377 * to date bit on the buffer instead and jump to the end
378 */
379 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380 set_buffer_uptodate(bh_result);
381 goto finished;
382 }
383 /* read file tail into part of page */
384 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385 copy_item_head(&tmp_ih, ih);
386
387 /*
388 * we only want to kmap if we are reading the tail into the page.
389 * this is not the common case, so we don't kmap until we are
390 * sure we need to. But, this means the item might move if
391 * kmap schedules
392 */
393 p = (char *)kmap(bh_result->b_page);
394 p += offset;
395 memset(p, 0, inode->i_sb->s_blocksize);
396 do {
397 if (!is_direct_le_ih(ih)) {
398 BUG();
399 }
400 /*
401 * make sure we don't read more bytes than actually exist in
402 * the file. This can happen in odd cases where i_size isn't
403 * correct, and when direct item padding results in a few
404 * extra bytes at the end of the direct item
405 */
406 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407 break;
408 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409 chars =
410 inode->i_size - (le_ih_k_offset(ih) - 1) -
411 path.pos_in_item;
412 done = 1;
413 } else {
414 chars = ih_item_len(ih) - path.pos_in_item;
415 }
416 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417
418 if (done)
419 break;
420
421 p += chars;
422
423 /*
424 * we done, if read direct item is not the last item of
425 * node FIXME: we could try to check right delimiting key
426 * to see whether direct item continues in the right
427 * neighbor or rely on i_size
428 */
429 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430 break;
431
432 /* update key to look for the next piece */
433 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434 result = search_for_position_by_key(inode->i_sb, &key, &path);
435 if (result != POSITION_FOUND)
436 /* i/o error most likely */
437 break;
438 bh = get_last_bh(&path);
439 ih = tp_item_head(&path);
440 } while (1);
441
442 flush_dcache_page(bh_result->b_page);
443 kunmap(bh_result->b_page);
444
445finished:
446 pathrelse(&path);
447
448 if (result == IO_ERROR)
449 return -EIO;
450
451 /*
452 * this buffer has valid data, but isn't valid for io. mapping it to
453 * block #0 tells the rest of reiserfs it just has a tail in it
454 */
455 map_bh(bh_result, inode->i_sb, 0);
456 set_buffer_uptodate(bh_result);
457 return 0;
458}
459
460/*
461 * this is called to create file map. So, _get_block_create_0 will not
462 * read direct item
463 */
464static int reiserfs_bmap(struct inode *inode, sector_t block,
465 struct buffer_head *bh_result, int create)
466{
467 if (!file_capable(inode, block))
468 return -EFBIG;
469
470 reiserfs_write_lock(inode->i_sb);
471 /* do not read the direct item */
472 _get_block_create_0(inode, block, bh_result, 0);
473 reiserfs_write_unlock(inode->i_sb);
474 return 0;
475}
476
477/*
478 * special version of get_block that is only used by grab_tail_page right
479 * now. It is sent to __block_write_begin, and when you try to get a
480 * block past the end of the file (or a block from a hole) it returns
481 * -ENOENT instead of a valid buffer. __block_write_begin expects to
482 * be able to do i/o on the buffers returned, unless an error value
483 * is also returned.
484 *
485 * So, this allows __block_write_begin to be used for reading a single block
486 * in a page. Where it does not produce a valid page for holes, or past the
487 * end of the file. This turns out to be exactly what we need for reading
488 * tails for conversion.
489 *
490 * The point of the wrapper is forcing a certain value for create, even
491 * though the VFS layer is calling this function with create==1. If you
492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493 * don't use this function.
494*/
495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496 struct buffer_head *bh_result,
497 int create)
498{
499 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500}
501
502/*
503 * This is special helper for reiserfs_get_block in case we are executing
504 * direct_IO request.
505 */
506static int reiserfs_get_blocks_direct_io(struct inode *inode,
507 sector_t iblock,
508 struct buffer_head *bh_result,
509 int create)
510{
511 int ret;
512
513 bh_result->b_page = NULL;
514
515 /*
516 * We set the b_size before reiserfs_get_block call since it is
517 * referenced in convert_tail_for_hole() that may be called from
518 * reiserfs_get_block()
519 */
520 bh_result->b_size = i_blocksize(inode);
521
522 ret = reiserfs_get_block(inode, iblock, bh_result,
523 create | GET_BLOCK_NO_DANGLE);
524 if (ret)
525 goto out;
526
527 /* don't allow direct io onto tail pages */
528 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529 /*
530 * make sure future calls to the direct io funcs for this
531 * offset in the file fail by unmapping the buffer
532 */
533 clear_buffer_mapped(bh_result);
534 ret = -EINVAL;
535 }
536
537 /*
538 * Possible unpacked tail. Flush the data before pages have
539 * disappeared
540 */
541 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542 int err;
543
544 reiserfs_write_lock(inode->i_sb);
545
546 err = reiserfs_commit_for_inode(inode);
547 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548
549 reiserfs_write_unlock(inode->i_sb);
550
551 if (err < 0)
552 ret = err;
553 }
554out:
555 return ret;
556}
557
558/*
559 * helper function for when reiserfs_get_block is called for a hole
560 * but the file tail is still in a direct item
561 * bh_result is the buffer head for the hole
562 * tail_offset is the offset of the start of the tail in the file
563 *
564 * This calls prepare_write, which will start a new transaction
565 * you should not be in a transaction, or have any paths held when you
566 * call this.
567 */
568static int convert_tail_for_hole(struct inode *inode,
569 struct buffer_head *bh_result,
570 loff_t tail_offset)
571{
572 unsigned long index;
573 unsigned long tail_end;
574 unsigned long tail_start;
575 struct page *tail_page;
576 struct page *hole_page = bh_result->b_page;
577 int retval = 0;
578
579 if ((tail_offset & (bh_result->b_size - 1)) != 1)
580 return -EIO;
581
582 /* always try to read until the end of the block */
583 tail_start = tail_offset & (PAGE_SIZE - 1);
584 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585
586 index = tail_offset >> PAGE_SHIFT;
587 /*
588 * hole_page can be zero in case of direct_io, we are sure
589 * that we cannot get here if we write with O_DIRECT into tail page
590 */
591 if (!hole_page || index != hole_page->index) {
592 tail_page = grab_cache_page(inode->i_mapping, index);
593 retval = -ENOMEM;
594 if (!tail_page) {
595 goto out;
596 }
597 } else {
598 tail_page = hole_page;
599 }
600
601 /*
602 * we don't have to make sure the conversion did not happen while
603 * we were locking the page because anyone that could convert
604 * must first take i_mutex.
605 *
606 * We must fix the tail page for writing because it might have buffers
607 * that are mapped, but have a block number of 0. This indicates tail
608 * data that has been read directly into the page, and
609 * __block_write_begin won't trigger a get_block in this case.
610 */
611 fix_tail_page_for_writing(tail_page);
612 retval = __reiserfs_write_begin(tail_page, tail_start,
613 tail_end - tail_start);
614 if (retval)
615 goto unlock;
616
617 /* tail conversion might change the data in the page */
618 flush_dcache_page(tail_page);
619
620 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621
622unlock:
623 if (tail_page != hole_page) {
624 unlock_page(tail_page);
625 put_page(tail_page);
626 }
627out:
628 return retval;
629}
630
631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632 sector_t block,
633 struct inode *inode,
634 b_blocknr_t * allocated_block_nr,
635 struct treepath *path, int flags)
636{
637 BUG_ON(!th->t_trans_id);
638
639#ifdef REISERFS_PREALLOCATE
640 if (!(flags & GET_BLOCK_NO_IMUX)) {
641 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642 path, block);
643 }
644#endif
645 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646 block);
647}
648
649int reiserfs_get_block(struct inode *inode, sector_t block,
650 struct buffer_head *bh_result, int create)
651{
652 int repeat, retval = 0;
653 /* b_blocknr_t is (unsigned) 32 bit int*/
654 b_blocknr_t allocated_block_nr = 0;
655 INITIALIZE_PATH(path);
656 int pos_in_item;
657 struct cpu_key key;
658 struct buffer_head *bh, *unbh = NULL;
659 struct item_head *ih, tmp_ih;
660 __le32 *item;
661 int done;
662 int fs_gen;
663 struct reiserfs_transaction_handle *th = NULL;
664 /*
665 * space reserved in transaction batch:
666 * . 3 balancings in direct->indirect conversion
667 * . 1 block involved into reiserfs_update_sd()
668 * XXX in practically impossible worst case direct2indirect()
669 * can incur (much) more than 3 balancings.
670 * quota update for user, group
671 */
672 int jbegin_count =
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675 int version;
676 int dangle = 1;
677 loff_t new_offset =
678 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679
680 reiserfs_write_lock(inode->i_sb);
681 version = get_inode_item_key_version(inode);
682
683 if (!file_capable(inode, block)) {
684 reiserfs_write_unlock(inode->i_sb);
685 return -EFBIG;
686 }
687
688 /*
689 * if !create, we aren't changing the FS, so we don't need to
690 * log anything, so we don't need to start a transaction
691 */
692 if (!(create & GET_BLOCK_CREATE)) {
693 int ret;
694 /* find number of block-th logical block of the file */
695 ret = _get_block_create_0(inode, block, bh_result,
696 create | GET_BLOCK_READ_DIRECT);
697 reiserfs_write_unlock(inode->i_sb);
698 return ret;
699 }
700
701 /*
702 * if we're already in a transaction, make sure to close
703 * any new transactions we start in this func
704 */
705 if ((create & GET_BLOCK_NO_DANGLE) ||
706 reiserfs_transaction_running(inode->i_sb))
707 dangle = 0;
708
709 /*
710 * If file is of such a size, that it might have a tail and
711 * tails are enabled we should mark it as possibly needing
712 * tail packing on close
713 */
714 if ((have_large_tails(inode->i_sb)
715 && inode->i_size < i_block_size(inode) * 4)
716 || (have_small_tails(inode->i_sb)
717 && inode->i_size < i_block_size(inode)))
718 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719
720 /* set the key of the first byte in the 'block'-th block of file */
721 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723start_trans:
724 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725 if (!th) {
726 retval = -ENOMEM;
727 goto failure;
728 }
729 reiserfs_update_inode_transaction(inode);
730 }
731research:
732
733 retval = search_for_position_by_key(inode->i_sb, &key, &path);
734 if (retval == IO_ERROR) {
735 retval = -EIO;
736 goto failure;
737 }
738
739 bh = get_last_bh(&path);
740 ih = tp_item_head(&path);
741 item = tp_item_body(&path);
742 pos_in_item = path.pos_in_item;
743
744 fs_gen = get_generation(inode->i_sb);
745 copy_item_head(&tmp_ih, ih);
746
747 if (allocation_needed
748 (retval, allocated_block_nr, ih, item, pos_in_item)) {
749 /* we have to allocate block for the unformatted node */
750 if (!th) {
751 pathrelse(&path);
752 goto start_trans;
753 }
754
755 repeat =
756 _allocate_block(th, block, inode, &allocated_block_nr,
757 &path, create);
758
759 /*
760 * restart the transaction to give the journal a chance to free
761 * some blocks. releases the path, so we have to go back to
762 * research if we succeed on the second try
763 */
764 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766 retval = restart_transaction(th, inode, &path);
767 if (retval)
768 goto failure;
769 repeat =
770 _allocate_block(th, block, inode,
771 &allocated_block_nr, NULL, create);
772
773 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774 goto research;
775 }
776 if (repeat == QUOTA_EXCEEDED)
777 retval = -EDQUOT;
778 else
779 retval = -ENOSPC;
780 goto failure;
781 }
782
783 if (fs_changed(fs_gen, inode->i_sb)
784 && item_moved(&tmp_ih, &path)) {
785 goto research;
786 }
787 }
788
789 if (indirect_item_found(retval, ih)) {
790 b_blocknr_t unfm_ptr;
791 /*
792 * 'block'-th block is in the file already (there is
793 * corresponding cell in some indirect item). But it may be
794 * zero unformatted node pointer (hole)
795 */
796 unfm_ptr = get_block_num(item, pos_in_item);
797 if (unfm_ptr == 0) {
798 /* use allocated block to plug the hole */
799 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800 if (fs_changed(fs_gen, inode->i_sb)
801 && item_moved(&tmp_ih, &path)) {
802 reiserfs_restore_prepared_buffer(inode->i_sb,
803 bh);
804 goto research;
805 }
806 set_buffer_new(bh_result);
807 if (buffer_dirty(bh_result)
808 && reiserfs_data_ordered(inode->i_sb))
809 reiserfs_add_ordered_list(inode, bh_result);
810 put_block_num(item, pos_in_item, allocated_block_nr);
811 unfm_ptr = allocated_block_nr;
812 journal_mark_dirty(th, bh);
813 reiserfs_update_sd(th, inode);
814 }
815 set_block_dev_mapped(bh_result, unfm_ptr, inode);
816 pathrelse(&path);
817 retval = 0;
818 if (!dangle && th)
819 retval = reiserfs_end_persistent_transaction(th);
820
821 reiserfs_write_unlock(inode->i_sb);
822
823 /*
824 * the item was found, so new blocks were not added to the file
825 * there is no need to make sure the inode is updated with this
826 * transaction
827 */
828 return retval;
829 }
830
831 if (!th) {
832 pathrelse(&path);
833 goto start_trans;
834 }
835
836 /*
837 * desired position is not found or is in the direct item. We have
838 * to append file with holes up to 'block'-th block converting
839 * direct items to indirect one if necessary
840 */
841 done = 0;
842 do {
843 if (is_statdata_le_ih(ih)) {
844 __le32 unp = 0;
845 struct cpu_key tmp_key;
846
847 /* indirect item has to be inserted */
848 make_le_item_head(&tmp_ih, &key, version, 1,
849 TYPE_INDIRECT, UNFM_P_SIZE,
850 0 /* free_space */ );
851
852 /*
853 * we are going to add 'block'-th block to the file.
854 * Use allocated block for that
855 */
856 if (cpu_key_k_offset(&key) == 1) {
857 unp = cpu_to_le32(allocated_block_nr);
858 set_block_dev_mapped(bh_result,
859 allocated_block_nr, inode);
860 set_buffer_new(bh_result);
861 done = 1;
862 }
863 tmp_key = key; /* ;) */
864 set_cpu_key_k_offset(&tmp_key, 1);
865 PATH_LAST_POSITION(&path)++;
866
867 retval =
868 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869 inode, (char *)&unp);
870 if (retval) {
871 reiserfs_free_block(th, inode,
872 allocated_block_nr, 1);
873 /*
874 * retval == -ENOSPC, -EDQUOT or -EIO
875 * or -EEXIST
876 */
877 goto failure;
878 }
879 } else if (is_direct_le_ih(ih)) {
880 /* direct item has to be converted */
881 loff_t tail_offset;
882
883 tail_offset =
884 ((le_ih_k_offset(ih) -
885 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886
887 /*
888 * direct item we just found fits into block we have
889 * to map. Convert it into unformatted node: use
890 * bh_result for the conversion
891 */
892 if (tail_offset == cpu_key_k_offset(&key)) {
893 set_block_dev_mapped(bh_result,
894 allocated_block_nr, inode);
895 unbh = bh_result;
896 done = 1;
897 } else {
898 /*
899 * we have to pad file tail stored in direct
900 * item(s) up to block size and convert it
901 * to unformatted node. FIXME: this should
902 * also get into page cache
903 */
904
905 pathrelse(&path);
906 /*
907 * ugly, but we can only end the transaction if
908 * we aren't nested
909 */
910 BUG_ON(!th->t_refcount);
911 if (th->t_refcount == 1) {
912 retval =
913 reiserfs_end_persistent_transaction
914 (th);
915 th = NULL;
916 if (retval)
917 goto failure;
918 }
919
920 retval =
921 convert_tail_for_hole(inode, bh_result,
922 tail_offset);
923 if (retval) {
924 if (retval != -ENOSPC)
925 reiserfs_error(inode->i_sb,
926 "clm-6004",
927 "convert tail failed "
928 "inode %lu, error %d",
929 inode->i_ino,
930 retval);
931 if (allocated_block_nr) {
932 /*
933 * the bitmap, the super,
934 * and the stat data == 3
935 */
936 if (!th)
937 th = reiserfs_persistent_transaction(inode->i_sb, 3);
938 if (th)
939 reiserfs_free_block(th,
940 inode,
941 allocated_block_nr,
942 1);
943 }
944 goto failure;
945 }
946 goto research;
947 }
948 retval =
949 direct2indirect(th, inode, &path, unbh,
950 tail_offset);
951 if (retval) {
952 reiserfs_unmap_buffer(unbh);
953 reiserfs_free_block(th, inode,
954 allocated_block_nr, 1);
955 goto failure;
956 }
957 /*
958 * it is important the set_buffer_uptodate is done
959 * after the direct2indirect. The buffer might
960 * contain valid data newer than the data on disk
961 * (read by read_folio, changed, and then sent here by
962 * writepage). direct2indirect needs to know if unbh
963 * was already up to date, so it can decide if the
964 * data in unbh needs to be replaced with data from
965 * the disk
966 */
967 set_buffer_uptodate(unbh);
968
969 /*
970 * unbh->b_page == NULL in case of DIRECT_IO request,
971 * this means buffer will disappear shortly, so it
972 * should not be added to
973 */
974 if (unbh->b_page) {
975 /*
976 * we've converted the tail, so we must
977 * flush unbh before the transaction commits
978 */
979 reiserfs_add_tail_list(inode, unbh);
980
981 /*
982 * mark it dirty now to prevent commit_write
983 * from adding this buffer to the inode's
984 * dirty buffer list
985 */
986 /*
987 * AKPM: changed __mark_buffer_dirty to
988 * mark_buffer_dirty(). It's still atomic,
989 * but it sets the page dirty too, which makes
990 * it eligible for writeback at any time by the
991 * VM (which was also the case with
992 * __mark_buffer_dirty())
993 */
994 mark_buffer_dirty(unbh);
995 }
996 } else {
997 /*
998 * append indirect item with holes if needed, when
999 * appending pointer to 'block'-th block use block,
1000 * which is already allocated
1001 */
1002 struct cpu_key tmp_key;
1003 /*
1004 * We use this in case we need to allocate
1005 * only one block which is a fastpath
1006 */
1007 unp_t unf_single = 0;
1008 unp_t *un;
1009 __u64 max_to_insert =
1010 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011 UNFM_P_SIZE;
1012 __u64 blocks_needed;
1013
1014 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015 "vs-804: invalid position for append");
1016 /*
1017 * indirect item has to be appended,
1018 * set up key of that position
1019 * (key type is unimportant)
1020 */
1021 make_cpu_key(&tmp_key, inode,
1022 le_key_k_offset(version,
1023 &ih->ih_key) +
1024 op_bytes_number(ih,
1025 inode->i_sb->s_blocksize),
1026 TYPE_INDIRECT, 3);
1027
1028 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029 "green-805: invalid offset");
1030 blocks_needed =
1031 1 +
1032 ((cpu_key_k_offset(&key) -
1033 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034 s_blocksize_bits);
1035
1036 if (blocks_needed == 1) {
1037 un = &unf_single;
1038 } else {
1039 un = kcalloc(min(blocks_needed, max_to_insert),
1040 UNFM_P_SIZE, GFP_NOFS);
1041 if (!un) {
1042 un = &unf_single;
1043 blocks_needed = 1;
1044 max_to_insert = 0;
1045 }
1046 }
1047 if (blocks_needed <= max_to_insert) {
1048 /*
1049 * we are going to add target block to
1050 * the file. Use allocated block for that
1051 */
1052 un[blocks_needed - 1] =
1053 cpu_to_le32(allocated_block_nr);
1054 set_block_dev_mapped(bh_result,
1055 allocated_block_nr, inode);
1056 set_buffer_new(bh_result);
1057 done = 1;
1058 } else {
1059 /* paste hole to the indirect item */
1060 /*
1061 * If kcalloc failed, max_to_insert becomes
1062 * zero and it means we only have space for
1063 * one block
1064 */
1065 blocks_needed =
1066 max_to_insert ? max_to_insert : 1;
1067 }
1068 retval =
1069 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070 (char *)un,
1071 UNFM_P_SIZE *
1072 blocks_needed);
1073
1074 if (blocks_needed != 1)
1075 kfree(un);
1076
1077 if (retval) {
1078 reiserfs_free_block(th, inode,
1079 allocated_block_nr, 1);
1080 goto failure;
1081 }
1082 if (!done) {
1083 /*
1084 * We need to mark new file size in case
1085 * this function will be interrupted/aborted
1086 * later on. And we may do this only for
1087 * holes.
1088 */
1089 inode->i_size +=
1090 inode->i_sb->s_blocksize * blocks_needed;
1091 }
1092 }
1093
1094 if (done == 1)
1095 break;
1096
1097 /*
1098 * this loop could log more blocks than we had originally
1099 * asked for. So, we have to allow the transaction to end
1100 * if it is too big or too full. Update the inode so things
1101 * are consistent if we crash before the function returns
1102 * release the path so that anybody waiting on the path before
1103 * ending their transaction will be able to continue.
1104 */
1105 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106 retval = restart_transaction(th, inode, &path);
1107 if (retval)
1108 goto failure;
1109 }
1110 /*
1111 * inserting indirect pointers for a hole can take a
1112 * long time. reschedule if needed and also release the write
1113 * lock for others.
1114 */
1115 reiserfs_cond_resched(inode->i_sb);
1116
1117 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118 if (retval == IO_ERROR) {
1119 retval = -EIO;
1120 goto failure;
1121 }
1122 if (retval == POSITION_FOUND) {
1123 reiserfs_warning(inode->i_sb, "vs-825",
1124 "%K should not be found", &key);
1125 retval = -EEXIST;
1126 if (allocated_block_nr)
1127 reiserfs_free_block(th, inode,
1128 allocated_block_nr, 1);
1129 pathrelse(&path);
1130 goto failure;
1131 }
1132 bh = get_last_bh(&path);
1133 ih = tp_item_head(&path);
1134 item = tp_item_body(&path);
1135 pos_in_item = path.pos_in_item;
1136 } while (1);
1137
1138 retval = 0;
1139
1140failure:
1141 if (th && (!dangle || (retval && !th->t_trans_id))) {
1142 int err;
1143 if (th->t_trans_id)
1144 reiserfs_update_sd(th, inode);
1145 err = reiserfs_end_persistent_transaction(th);
1146 if (err)
1147 retval = err;
1148 }
1149
1150 reiserfs_write_unlock(inode->i_sb);
1151 reiserfs_check_path(&path);
1152 return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
1156{
1157 mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167 int bytes;
1168 loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171 return sd_size;
1172
1173 /*
1174 * End of file is also in full block with indirect reference, so round
1175 * up to the next block.
1176 *
1177 * there is just no way to know if the tail is actually packed
1178 * on the file, so we have to assume it isn't. When we pack the
1179 * tail, we add 4 bytes to pretend there really is an unformatted
1180 * node pointer
1181 */
1182 bytes =
1183 ((inode->i_size +
1184 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185 sd_size;
1186 return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190 int sd_size)
1191{
1192 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193 return inode->i_size +
1194 (loff_t) (real_space_diff(inode, sd_size));
1195 }
1196 return ((loff_t) real_space_diff(inode, sd_size)) +
1197 (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203 loff_t bytes = inode_get_bytes(inode);
1204 loff_t real_space = real_space_diff(inode, sd_size);
1205
1206 /* keeps fsck and non-quota versions of reiserfs happy */
1207 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208 bytes += (loff_t) 511;
1209 }
1210
1211 /*
1212 * files from before the quota patch might i_blocks such that
1213 * bytes < real_space. Deal with that here to prevent it from
1214 * going negative.
1215 */
1216 if (bytes < real_space)
1217 return 0;
1218 return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231 struct buffer_head *bh;
1232 struct item_head *ih;
1233 __u32 rdev;
1234
1235 bh = PATH_PLAST_BUFFER(path);
1236 ih = tp_item_head(path);
1237
1238 copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241 REISERFS_I(inode)->i_flags = 0;
1242 REISERFS_I(inode)->i_prealloc_block = 0;
1243 REISERFS_I(inode)->i_prealloc_count = 0;
1244 REISERFS_I(inode)->i_trans_id = 0;
1245 REISERFS_I(inode)->i_jl = NULL;
1246 reiserfs_init_xattr_rwsem(inode);
1247
1248 if (stat_data_v1(ih)) {
1249 struct stat_data_v1 *sd =
1250 (struct stat_data_v1 *)ih_item_body(bh, ih);
1251 unsigned long blocks;
1252
1253 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254 set_inode_sd_version(inode, STAT_DATA_V1);
1255 inode->i_mode = sd_v1_mode(sd);
1256 set_nlink(inode, sd_v1_nlink(sd));
1257 i_uid_write(inode, sd_v1_uid(sd));
1258 i_gid_write(inode, sd_v1_gid(sd));
1259 inode->i_size = sd_v1_size(sd);
1260 inode_set_atime(inode, sd_v1_atime(sd), 0);
1261 inode_set_mtime(inode, sd_v1_mtime(sd), 0);
1262 inode_set_ctime(inode, sd_v1_ctime(sd), 0);
1263
1264 inode->i_blocks = sd_v1_blocks(sd);
1265 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1266 blocks = (inode->i_size + 511) >> 9;
1267 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1268
1269 /*
1270 * there was a bug in <=3.5.23 when i_blocks could take
1271 * negative values. Starting from 3.5.17 this value could
1272 * even be stored in stat data. For such files we set
1273 * i_blocks based on file size. Just 2 notes: this can be
1274 * wrong for sparse files. On-disk value will be only
1275 * updated if file's inode will ever change
1276 */
1277 if (inode->i_blocks > blocks) {
1278 inode->i_blocks = blocks;
1279 }
1280
1281 rdev = sd_v1_rdev(sd);
1282 REISERFS_I(inode)->i_first_direct_byte =
1283 sd_v1_first_direct_byte(sd);
1284
1285 /*
1286 * an early bug in the quota code can give us an odd
1287 * number for the block count. This is incorrect, fix it here.
1288 */
1289 if (inode->i_blocks & 1) {
1290 inode->i_blocks++;
1291 }
1292 inode_set_bytes(inode,
1293 to_real_used_space(inode, inode->i_blocks,
1294 SD_V1_SIZE));
1295 /*
1296 * nopack is initially zero for v1 objects. For v2 objects,
1297 * nopack is initialised from sd_attrs
1298 */
1299 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1300 } else {
1301 /*
1302 * new stat data found, but object may have old items
1303 * (directories and symlinks)
1304 */
1305 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1306
1307 inode->i_mode = sd_v2_mode(sd);
1308 set_nlink(inode, sd_v2_nlink(sd));
1309 i_uid_write(inode, sd_v2_uid(sd));
1310 inode->i_size = sd_v2_size(sd);
1311 i_gid_write(inode, sd_v2_gid(sd));
1312 inode_set_mtime(inode, sd_v2_mtime(sd), 0);
1313 inode_set_atime(inode, sd_v2_atime(sd), 0);
1314 inode_set_ctime(inode, sd_v2_ctime(sd), 0);
1315 inode->i_blocks = sd_v2_blocks(sd);
1316 rdev = sd_v2_rdev(sd);
1317 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1318 inode->i_generation =
1319 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1320 else
1321 inode->i_generation = sd_v2_generation(sd);
1322
1323 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1324 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1325 else
1326 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1327 REISERFS_I(inode)->i_first_direct_byte = 0;
1328 set_inode_sd_version(inode, STAT_DATA_V2);
1329 inode_set_bytes(inode,
1330 to_real_used_space(inode, inode->i_blocks,
1331 SD_V2_SIZE));
1332 /*
1333 * read persistent inode attributes from sd and initialise
1334 * generic inode flags from them
1335 */
1336 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1337 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1338 }
1339
1340 pathrelse(path);
1341 if (S_ISREG(inode->i_mode)) {
1342 inode->i_op = &reiserfs_file_inode_operations;
1343 inode->i_fop = &reiserfs_file_operations;
1344 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1345 } else if (S_ISDIR(inode->i_mode)) {
1346 inode->i_op = &reiserfs_dir_inode_operations;
1347 inode->i_fop = &reiserfs_dir_operations;
1348 } else if (S_ISLNK(inode->i_mode)) {
1349 inode->i_op = &reiserfs_symlink_inode_operations;
1350 inode_nohighmem(inode);
1351 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1352 } else {
1353 inode->i_blocks = 0;
1354 inode->i_op = &reiserfs_special_inode_operations;
1355 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1356 }
1357}
1358
1359/* update new stat data with inode fields */
1360static void inode2sd(void *sd, struct inode *inode, loff_t size)
1361{
1362 struct stat_data *sd_v2 = (struct stat_data *)sd;
1363
1364 set_sd_v2_mode(sd_v2, inode->i_mode);
1365 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1366 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1367 set_sd_v2_size(sd_v2, size);
1368 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1369 set_sd_v2_mtime(sd_v2, inode_get_mtime_sec(inode));
1370 set_sd_v2_atime(sd_v2, inode_get_atime_sec(inode));
1371 set_sd_v2_ctime(sd_v2, inode_get_ctime_sec(inode));
1372 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1373 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1374 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1375 else
1376 set_sd_v2_generation(sd_v2, inode->i_generation);
1377 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1378}
1379
1380/* used to copy inode's fields to old stat data */
1381static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1382{
1383 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1384
1385 set_sd_v1_mode(sd_v1, inode->i_mode);
1386 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1387 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1388 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1389 set_sd_v1_size(sd_v1, size);
1390 set_sd_v1_atime(sd_v1, inode_get_atime_sec(inode));
1391 set_sd_v1_ctime(sd_v1, inode_get_ctime_sec(inode));
1392 set_sd_v1_mtime(sd_v1, inode_get_mtime_sec(inode));
1393
1394 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1395 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1396 else
1397 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1398
1399 /* Sigh. i_first_direct_byte is back */
1400 set_sd_v1_first_direct_byte(sd_v1,
1401 REISERFS_I(inode)->i_first_direct_byte);
1402}
1403
1404/*
1405 * NOTE, you must prepare the buffer head before sending it here,
1406 * and then log it after the call
1407 */
1408static void update_stat_data(struct treepath *path, struct inode *inode,
1409 loff_t size)
1410{
1411 struct buffer_head *bh;
1412 struct item_head *ih;
1413
1414 bh = PATH_PLAST_BUFFER(path);
1415 ih = tp_item_head(path);
1416
1417 if (!is_statdata_le_ih(ih))
1418 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1419 INODE_PKEY(inode), ih);
1420
1421 /* path points to old stat data */
1422 if (stat_data_v1(ih)) {
1423 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1424 } else {
1425 inode2sd(ih_item_body(bh, ih), inode, size);
1426 }
1427
1428 return;
1429}
1430
1431void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1432 struct inode *inode, loff_t size)
1433{
1434 struct cpu_key key;
1435 INITIALIZE_PATH(path);
1436 struct buffer_head *bh;
1437 int fs_gen;
1438 struct item_head *ih, tmp_ih;
1439 int retval;
1440
1441 BUG_ON(!th->t_trans_id);
1442
1443 /* key type is unimportant */
1444 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1445
1446 for (;;) {
1447 int pos;
1448 /* look for the object's stat data */
1449 retval = search_item(inode->i_sb, &key, &path);
1450 if (retval == IO_ERROR) {
1451 reiserfs_error(inode->i_sb, "vs-13050",
1452 "i/o failure occurred trying to "
1453 "update %K stat data", &key);
1454 return;
1455 }
1456 if (retval == ITEM_NOT_FOUND) {
1457 pos = PATH_LAST_POSITION(&path);
1458 pathrelse(&path);
1459 if (inode->i_nlink == 0) {
1460 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1461 return;
1462 }
1463 reiserfs_warning(inode->i_sb, "vs-13060",
1464 "stat data of object %k (nlink == %d) "
1465 "not found (pos %d)",
1466 INODE_PKEY(inode), inode->i_nlink,
1467 pos);
1468 reiserfs_check_path(&path);
1469 return;
1470 }
1471
1472 /*
1473 * sigh, prepare_for_journal might schedule. When it
1474 * schedules the FS might change. We have to detect that,
1475 * and loop back to the search if the stat data item has moved
1476 */
1477 bh = get_last_bh(&path);
1478 ih = tp_item_head(&path);
1479 copy_item_head(&tmp_ih, ih);
1480 fs_gen = get_generation(inode->i_sb);
1481 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1482
1483 /* Stat_data item has been moved after scheduling. */
1484 if (fs_changed(fs_gen, inode->i_sb)
1485 && item_moved(&tmp_ih, &path)) {
1486 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1487 continue;
1488 }
1489 break;
1490 }
1491 update_stat_data(&path, inode, size);
1492 journal_mark_dirty(th, bh);
1493 pathrelse(&path);
1494 return;
1495}
1496
1497/*
1498 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1499 * does a make_bad_inode when things go wrong. But, we need to make sure
1500 * and clear the key in the private portion of the inode, otherwise a
1501 * corresponding iput might try to delete whatever object the inode last
1502 * represented.
1503 */
1504static void reiserfs_make_bad_inode(struct inode *inode)
1505{
1506 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1507 make_bad_inode(inode);
1508}
1509
1510/*
1511 * initially this function was derived from minix or ext2's analog and
1512 * evolved as the prototype did
1513 */
1514int reiserfs_init_locked_inode(struct inode *inode, void *p)
1515{
1516 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1517 inode->i_ino = args->objectid;
1518 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1519 return 0;
1520}
1521
1522/*
1523 * looks for stat data in the tree, and fills up the fields of in-core
1524 * inode stat data fields
1525 */
1526void reiserfs_read_locked_inode(struct inode *inode,
1527 struct reiserfs_iget_args *args)
1528{
1529 INITIALIZE_PATH(path_to_sd);
1530 struct cpu_key key;
1531 unsigned long dirino;
1532 int retval;
1533
1534 dirino = args->dirid;
1535
1536 /*
1537 * set version 1, version 2 could be used too, because stat data
1538 * key is the same in both versions
1539 */
1540 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1541
1542 /* look for the object's stat data */
1543 retval = search_item(inode->i_sb, &key, &path_to_sd);
1544 if (retval == IO_ERROR) {
1545 reiserfs_error(inode->i_sb, "vs-13070",
1546 "i/o failure occurred trying to find "
1547 "stat data of %K", &key);
1548 reiserfs_make_bad_inode(inode);
1549 return;
1550 }
1551
1552 /* a stale NFS handle can trigger this without it being an error */
1553 if (retval != ITEM_FOUND) {
1554 pathrelse(&path_to_sd);
1555 reiserfs_make_bad_inode(inode);
1556 clear_nlink(inode);
1557 return;
1558 }
1559
1560 init_inode(inode, &path_to_sd);
1561
1562 /*
1563 * It is possible that knfsd is trying to access inode of a file
1564 * that is being removed from the disk by some other thread. As we
1565 * update sd on unlink all that is required is to check for nlink
1566 * here. This bug was first found by Sizif when debugging
1567 * SquidNG/Butterfly, forgotten, and found again after Philippe
1568 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1569
1570 * More logical fix would require changes in fs/inode.c:iput() to
1571 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1572 * in iget() to return NULL if I_FREEING inode is found in
1573 * hash-table.
1574 */
1575
1576 /*
1577 * Currently there is one place where it's ok to meet inode with
1578 * nlink==0: processing of open-unlinked and half-truncated files
1579 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1580 */
1581 if ((inode->i_nlink == 0) &&
1582 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1583 reiserfs_warning(inode->i_sb, "vs-13075",
1584 "dead inode read from disk %K. "
1585 "This is likely to be race with knfsd. Ignore",
1586 &key);
1587 reiserfs_make_bad_inode(inode);
1588 }
1589
1590 /* init inode should be relsing */
1591 reiserfs_check_path(&path_to_sd);
1592
1593 /*
1594 * Stat data v1 doesn't support ACLs.
1595 */
1596 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1597 cache_no_acl(inode);
1598}
1599
1600/*
1601 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1602 *
1603 * @inode: inode from hash table to check
1604 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1605 *
1606 * This function is called by iget5_locked() to distinguish reiserfs inodes
1607 * having the same inode numbers. Such inodes can only exist due to some
1608 * error condition. One of them should be bad. Inodes with identical
1609 * inode numbers (objectids) are distinguished by parent directory ids.
1610 *
1611 */
1612int reiserfs_find_actor(struct inode *inode, void *opaque)
1613{
1614 struct reiserfs_iget_args *args;
1615
1616 args = opaque;
1617 /* args is already in CPU order */
1618 return (inode->i_ino == args->objectid) &&
1619 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1620}
1621
1622struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1623{
1624 struct inode *inode;
1625 struct reiserfs_iget_args args;
1626 int depth;
1627
1628 args.objectid = key->on_disk_key.k_objectid;
1629 args.dirid = key->on_disk_key.k_dir_id;
1630 depth = reiserfs_write_unlock_nested(s);
1631 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1632 reiserfs_find_actor, reiserfs_init_locked_inode,
1633 (void *)(&args));
1634 reiserfs_write_lock_nested(s, depth);
1635 if (!inode)
1636 return ERR_PTR(-ENOMEM);
1637
1638 if (inode->i_state & I_NEW) {
1639 reiserfs_read_locked_inode(inode, &args);
1640 unlock_new_inode(inode);
1641 }
1642
1643 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1644 /* either due to i/o error or a stale NFS handle */
1645 iput(inode);
1646 inode = NULL;
1647 }
1648 return inode;
1649}
1650
1651static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1652 u32 objectid, u32 dir_id, u32 generation)
1653
1654{
1655 struct cpu_key key;
1656 struct inode *inode;
1657
1658 key.on_disk_key.k_objectid = objectid;
1659 key.on_disk_key.k_dir_id = dir_id;
1660 reiserfs_write_lock(sb);
1661 inode = reiserfs_iget(sb, &key);
1662 if (inode && !IS_ERR(inode) && generation != 0 &&
1663 generation != inode->i_generation) {
1664 iput(inode);
1665 inode = NULL;
1666 }
1667 reiserfs_write_unlock(sb);
1668
1669 return d_obtain_alias(inode);
1670}
1671
1672struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1673 int fh_len, int fh_type)
1674{
1675 /*
1676 * fhtype happens to reflect the number of u32s encoded.
1677 * due to a bug in earlier code, fhtype might indicate there
1678 * are more u32s then actually fitted.
1679 * so if fhtype seems to be more than len, reduce fhtype.
1680 * Valid types are:
1681 * 2 - objectid + dir_id - legacy support
1682 * 3 - objectid + dir_id + generation
1683 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1684 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1685 * 6 - as above plus generation of directory
1686 * 6 does not fit in NFSv2 handles
1687 */
1688 if (fh_type > fh_len) {
1689 if (fh_type != 6 || fh_len != 5)
1690 reiserfs_warning(sb, "reiserfs-13077",
1691 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1692 fh_type, fh_len);
1693 fh_type = fh_len;
1694 }
1695 if (fh_len < 2)
1696 return NULL;
1697
1698 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1699 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1700}
1701
1702struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1703 int fh_len, int fh_type)
1704{
1705 if (fh_type > fh_len)
1706 fh_type = fh_len;
1707 if (fh_type < 4)
1708 return NULL;
1709
1710 return reiserfs_get_dentry(sb,
1711 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1712 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1713 (fh_type == 6) ? fid->raw[5] : 0);
1714}
1715
1716int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1717 struct inode *parent)
1718{
1719 int maxlen = *lenp;
1720
1721 if (parent && (maxlen < 5)) {
1722 *lenp = 5;
1723 return FILEID_INVALID;
1724 } else if (maxlen < 3) {
1725 *lenp = 3;
1726 return FILEID_INVALID;
1727 }
1728
1729 data[0] = inode->i_ino;
1730 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1731 data[2] = inode->i_generation;
1732 *lenp = 3;
1733 if (parent) {
1734 data[3] = parent->i_ino;
1735 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1736 *lenp = 5;
1737 if (maxlen >= 6) {
1738 data[5] = parent->i_generation;
1739 *lenp = 6;
1740 }
1741 }
1742 return *lenp;
1743}
1744
1745/*
1746 * looks for stat data, then copies fields to it, marks the buffer
1747 * containing stat data as dirty
1748 */
1749/*
1750 * reiserfs inodes are never really dirty, since the dirty inode call
1751 * always logs them. This call allows the VFS inode marking routines
1752 * to properly mark inodes for datasync and such, but only actually
1753 * does something when called for a synchronous update.
1754 */
1755int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1756{
1757 struct reiserfs_transaction_handle th;
1758 int jbegin_count = 1;
1759
1760 if (sb_rdonly(inode->i_sb))
1761 return -EROFS;
1762 /*
1763 * memory pressure can sometimes initiate write_inode calls with
1764 * sync == 1,
1765 * these cases are just when the system needs ram, not when the
1766 * inode needs to reach disk for safety, and they can safely be
1767 * ignored because the altered inode has already been logged.
1768 */
1769 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1770 reiserfs_write_lock(inode->i_sb);
1771 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1772 reiserfs_update_sd(&th, inode);
1773 journal_end_sync(&th);
1774 }
1775 reiserfs_write_unlock(inode->i_sb);
1776 }
1777 return 0;
1778}
1779
1780/*
1781 * stat data of new object is inserted already, this inserts the item
1782 * containing "." and ".." entries
1783 */
1784static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1785 struct inode *inode,
1786 struct item_head *ih, struct treepath *path,
1787 struct inode *dir)
1788{
1789 struct super_block *sb = th->t_super;
1790 char empty_dir[EMPTY_DIR_SIZE];
1791 char *body = empty_dir;
1792 struct cpu_key key;
1793 int retval;
1794
1795 BUG_ON(!th->t_trans_id);
1796
1797 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1798 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1799 TYPE_DIRENTRY, 3 /*key length */ );
1800
1801 /*
1802 * compose item head for new item. Directories consist of items of
1803 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1804 * is done by reiserfs_new_inode
1805 */
1806 if (old_format_only(sb)) {
1807 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1808 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1809
1810 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1811 ih->ih_key.k_objectid,
1812 INODE_PKEY(dir)->k_dir_id,
1813 INODE_PKEY(dir)->k_objectid);
1814 } else {
1815 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1816 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1817
1818 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1819 ih->ih_key.k_objectid,
1820 INODE_PKEY(dir)->k_dir_id,
1821 INODE_PKEY(dir)->k_objectid);
1822 }
1823
1824 /* look for place in the tree for new item */
1825 retval = search_item(sb, &key, path);
1826 if (retval == IO_ERROR) {
1827 reiserfs_error(sb, "vs-13080",
1828 "i/o failure occurred creating new directory");
1829 return -EIO;
1830 }
1831 if (retval == ITEM_FOUND) {
1832 pathrelse(path);
1833 reiserfs_warning(sb, "vs-13070",
1834 "object with this key exists (%k)",
1835 &(ih->ih_key));
1836 return -EEXIST;
1837 }
1838
1839 /* insert item, that is empty directory item */
1840 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1841}
1842
1843/*
1844 * stat data of object has been inserted, this inserts the item
1845 * containing the body of symlink
1846 */
1847static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1848 struct inode *inode,
1849 struct item_head *ih,
1850 struct treepath *path, const char *symname,
1851 int item_len)
1852{
1853 struct super_block *sb = th->t_super;
1854 struct cpu_key key;
1855 int retval;
1856
1857 BUG_ON(!th->t_trans_id);
1858
1859 _make_cpu_key(&key, KEY_FORMAT_3_5,
1860 le32_to_cpu(ih->ih_key.k_dir_id),
1861 le32_to_cpu(ih->ih_key.k_objectid),
1862 1, TYPE_DIRECT, 3 /*key length */ );
1863
1864 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1865 0 /*free_space */ );
1866
1867 /* look for place in the tree for new item */
1868 retval = search_item(sb, &key, path);
1869 if (retval == IO_ERROR) {
1870 reiserfs_error(sb, "vs-13080",
1871 "i/o failure occurred creating new symlink");
1872 return -EIO;
1873 }
1874 if (retval == ITEM_FOUND) {
1875 pathrelse(path);
1876 reiserfs_warning(sb, "vs-13080",
1877 "object with this key exists (%k)",
1878 &(ih->ih_key));
1879 return -EEXIST;
1880 }
1881
1882 /* insert item, that is body of symlink */
1883 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1884}
1885
1886/*
1887 * inserts the stat data into the tree, and then calls
1888 * reiserfs_new_directory (to insert ".", ".." item if new object is
1889 * directory) or reiserfs_new_symlink (to insert symlink body if new
1890 * object is symlink) or nothing (if new object is regular file)
1891
1892 * NOTE! uid and gid must already be set in the inode. If we return
1893 * non-zero due to an error, we have to drop the quota previously allocated
1894 * for the fresh inode. This can only be done outside a transaction, so
1895 * if we return non-zero, we also end the transaction.
1896 *
1897 * @th: active transaction handle
1898 * @dir: parent directory for new inode
1899 * @mode: mode of new inode
1900 * @symname: symlink contents if inode is symlink
1901 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1902 * symlinks
1903 * @inode: inode to be filled
1904 * @security: optional security context to associate with this inode
1905 */
1906int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1907 struct inode *dir, umode_t mode, const char *symname,
1908 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1909 strlen (symname) for symlinks) */
1910 loff_t i_size, struct dentry *dentry,
1911 struct inode *inode,
1912 struct reiserfs_security_handle *security)
1913{
1914 struct super_block *sb = dir->i_sb;
1915 struct reiserfs_iget_args args;
1916 INITIALIZE_PATH(path_to_key);
1917 struct cpu_key key;
1918 struct item_head ih;
1919 struct stat_data sd;
1920 int retval;
1921 int err;
1922 int depth;
1923
1924 BUG_ON(!th->t_trans_id);
1925
1926 depth = reiserfs_write_unlock_nested(sb);
1927 err = dquot_alloc_inode(inode);
1928 reiserfs_write_lock_nested(sb, depth);
1929 if (err)
1930 goto out_end_trans;
1931 if (!dir->i_nlink) {
1932 err = -EPERM;
1933 goto out_bad_inode;
1934 }
1935
1936 /* item head of new item */
1937 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1938 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1939 if (!ih.ih_key.k_objectid) {
1940 err = -ENOMEM;
1941 goto out_bad_inode;
1942 }
1943 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1944 if (old_format_only(sb))
1945 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1946 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1947 else
1948 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1949 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1950 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1951 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1952
1953 depth = reiserfs_write_unlock_nested(inode->i_sb);
1954 err = insert_inode_locked4(inode, args.objectid,
1955 reiserfs_find_actor, &args);
1956 reiserfs_write_lock_nested(inode->i_sb, depth);
1957 if (err) {
1958 err = -EINVAL;
1959 goto out_bad_inode;
1960 }
1961
1962 if (old_format_only(sb))
1963 /*
1964 * not a perfect generation count, as object ids can be reused,
1965 * but this is as good as reiserfs can do right now.
1966 * note that the private part of inode isn't filled in yet,
1967 * we have to use the directory.
1968 */
1969 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1970 else
1971#if defined( USE_INODE_GENERATION_COUNTER )
1972 inode->i_generation =
1973 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1974#else
1975 inode->i_generation = ++event;
1976#endif
1977
1978 /* fill stat data */
1979 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1980
1981 /* uid and gid must already be set by the caller for quota init */
1982
1983 simple_inode_init_ts(inode);
1984 inode->i_size = i_size;
1985 inode->i_blocks = 0;
1986 inode->i_bytes = 0;
1987 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1988 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1989
1990 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1991 REISERFS_I(inode)->i_flags = 0;
1992 REISERFS_I(inode)->i_prealloc_block = 0;
1993 REISERFS_I(inode)->i_prealloc_count = 0;
1994 REISERFS_I(inode)->i_trans_id = 0;
1995 REISERFS_I(inode)->i_jl = NULL;
1996 REISERFS_I(inode)->i_attrs =
1997 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1998 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1999 reiserfs_init_xattr_rwsem(inode);
2000
2001 /* key to search for correct place for new stat data */
2002 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2003 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2004 TYPE_STAT_DATA, 3 /*key length */ );
2005
2006 /* find proper place for inserting of stat data */
2007 retval = search_item(sb, &key, &path_to_key);
2008 if (retval == IO_ERROR) {
2009 err = -EIO;
2010 goto out_bad_inode;
2011 }
2012 if (retval == ITEM_FOUND) {
2013 pathrelse(&path_to_key);
2014 err = -EEXIST;
2015 goto out_bad_inode;
2016 }
2017 if (old_format_only(sb)) {
2018 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2019 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2020 pathrelse(&path_to_key);
2021 err = -EINVAL;
2022 goto out_bad_inode;
2023 }
2024 inode2sd_v1(&sd, inode, inode->i_size);
2025 } else {
2026 inode2sd(&sd, inode, inode->i_size);
2027 }
2028 /*
2029 * store in in-core inode the key of stat data and version all
2030 * object items will have (directory items will have old offset
2031 * format, other new objects will consist of new items)
2032 */
2033 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2034 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2035 else
2036 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2037 if (old_format_only(sb))
2038 set_inode_sd_version(inode, STAT_DATA_V1);
2039 else
2040 set_inode_sd_version(inode, STAT_DATA_V2);
2041
2042 /* insert the stat data into the tree */
2043#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2044 if (REISERFS_I(dir)->new_packing_locality)
2045 th->displace_new_blocks = 1;
2046#endif
2047 retval =
2048 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2049 (char *)(&sd));
2050 if (retval) {
2051 err = retval;
2052 reiserfs_check_path(&path_to_key);
2053 goto out_bad_inode;
2054 }
2055#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2056 if (!th->displace_new_blocks)
2057 REISERFS_I(dir)->new_packing_locality = 0;
2058#endif
2059 if (S_ISDIR(mode)) {
2060 /* insert item with "." and ".." */
2061 retval =
2062 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2063 }
2064
2065 if (S_ISLNK(mode)) {
2066 /* insert body of symlink */
2067 if (!old_format_only(sb))
2068 i_size = ROUND_UP(i_size);
2069 retval =
2070 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2071 i_size);
2072 }
2073 if (retval) {
2074 err = retval;
2075 reiserfs_check_path(&path_to_key);
2076 journal_end(th);
2077 goto out_inserted_sd;
2078 }
2079
2080 /*
2081 * Mark it private if we're creating the privroot
2082 * or something under it.
2083 */
2084 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2085 reiserfs_init_priv_inode(inode);
2086
2087 if (reiserfs_posixacl(inode->i_sb)) {
2088 reiserfs_write_unlock(inode->i_sb);
2089 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2090 reiserfs_write_lock(inode->i_sb);
2091 if (retval) {
2092 err = retval;
2093 reiserfs_check_path(&path_to_key);
2094 journal_end(th);
2095 goto out_inserted_sd;
2096 }
2097 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2098 reiserfs_warning(inode->i_sb, "jdm-13090",
2099 "ACLs aren't enabled in the fs, "
2100 "but vfs thinks they are!");
2101 }
2102
2103 if (security->name) {
2104 reiserfs_write_unlock(inode->i_sb);
2105 retval = reiserfs_security_write(th, inode, security);
2106 reiserfs_write_lock(inode->i_sb);
2107 if (retval) {
2108 err = retval;
2109 reiserfs_check_path(&path_to_key);
2110 retval = journal_end(th);
2111 if (retval)
2112 err = retval;
2113 goto out_inserted_sd;
2114 }
2115 }
2116
2117 reiserfs_update_sd(th, inode);
2118 reiserfs_check_path(&path_to_key);
2119
2120 return 0;
2121
2122out_bad_inode:
2123 /* Invalidate the object, nothing was inserted yet */
2124 INODE_PKEY(inode)->k_objectid = 0;
2125
2126 /* Quota change must be inside a transaction for journaling */
2127 depth = reiserfs_write_unlock_nested(inode->i_sb);
2128 dquot_free_inode(inode);
2129 reiserfs_write_lock_nested(inode->i_sb, depth);
2130
2131out_end_trans:
2132 journal_end(th);
2133 /*
2134 * Drop can be outside and it needs more credits so it's better
2135 * to have it outside
2136 */
2137 depth = reiserfs_write_unlock_nested(inode->i_sb);
2138 dquot_drop(inode);
2139 reiserfs_write_lock_nested(inode->i_sb, depth);
2140 inode->i_flags |= S_NOQUOTA;
2141 make_bad_inode(inode);
2142
2143out_inserted_sd:
2144 clear_nlink(inode);
2145 th->t_trans_id = 0; /* so the caller can't use this handle later */
2146 if (inode->i_state & I_NEW)
2147 unlock_new_inode(inode);
2148 iput(inode);
2149 return err;
2150}
2151
2152/*
2153 * finds the tail page in the page cache,
2154 * reads the last block in.
2155 *
2156 * On success, page_result is set to a locked, pinned page, and bh_result
2157 * is set to an up to date buffer for the last block in the file. returns 0.
2158 *
2159 * tail conversion is not done, so bh_result might not be valid for writing
2160 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2161 * trying to write the block.
2162 *
2163 * on failure, nonzero is returned, page_result and bh_result are untouched.
2164 */
2165static int grab_tail_page(struct inode *inode,
2166 struct page **page_result,
2167 struct buffer_head **bh_result)
2168{
2169
2170 /*
2171 * we want the page with the last byte in the file,
2172 * not the page that will hold the next byte for appending
2173 */
2174 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2175 unsigned long pos = 0;
2176 unsigned long start = 0;
2177 unsigned long blocksize = inode->i_sb->s_blocksize;
2178 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2179 struct buffer_head *bh;
2180 struct buffer_head *head;
2181 struct page *page;
2182 int error;
2183
2184 /*
2185 * we know that we are only called with inode->i_size > 0.
2186 * we also know that a file tail can never be as big as a block
2187 * If i_size % blocksize == 0, our file is currently block aligned
2188 * and it won't need converting or zeroing after a truncate.
2189 */
2190 if ((offset & (blocksize - 1)) == 0) {
2191 return -ENOENT;
2192 }
2193 page = grab_cache_page(inode->i_mapping, index);
2194 error = -ENOMEM;
2195 if (!page) {
2196 goto out;
2197 }
2198 /* start within the page of the last block in the file */
2199 start = (offset / blocksize) * blocksize;
2200
2201 error = __block_write_begin(page, start, offset - start,
2202 reiserfs_get_block_create_0);
2203 if (error)
2204 goto unlock;
2205
2206 head = page_buffers(page);
2207 bh = head;
2208 do {
2209 if (pos >= start) {
2210 break;
2211 }
2212 bh = bh->b_this_page;
2213 pos += blocksize;
2214 } while (bh != head);
2215
2216 if (!buffer_uptodate(bh)) {
2217 /*
2218 * note, this should never happen, prepare_write should be
2219 * taking care of this for us. If the buffer isn't up to
2220 * date, I've screwed up the code to find the buffer, or the
2221 * code to call prepare_write
2222 */
2223 reiserfs_error(inode->i_sb, "clm-6000",
2224 "error reading block %lu", bh->b_blocknr);
2225 error = -EIO;
2226 goto unlock;
2227 }
2228 *bh_result = bh;
2229 *page_result = page;
2230
2231out:
2232 return error;
2233
2234unlock:
2235 unlock_page(page);
2236 put_page(page);
2237 return error;
2238}
2239
2240/*
2241 * vfs version of truncate file. Must NOT be called with
2242 * a transaction already started.
2243 *
2244 * some code taken from block_truncate_page
2245 */
2246int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2247{
2248 struct reiserfs_transaction_handle th;
2249 /* we want the offset for the first byte after the end of the file */
2250 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2251 unsigned blocksize = inode->i_sb->s_blocksize;
2252 unsigned length;
2253 struct page *page = NULL;
2254 int error;
2255 struct buffer_head *bh = NULL;
2256 int err2;
2257
2258 reiserfs_write_lock(inode->i_sb);
2259
2260 if (inode->i_size > 0) {
2261 error = grab_tail_page(inode, &page, &bh);
2262 if (error) {
2263 /*
2264 * -ENOENT means we truncated past the end of the
2265 * file, and get_block_create_0 could not find a
2266 * block to read in, which is ok.
2267 */
2268 if (error != -ENOENT)
2269 reiserfs_error(inode->i_sb, "clm-6001",
2270 "grab_tail_page failed %d",
2271 error);
2272 page = NULL;
2273 bh = NULL;
2274 }
2275 }
2276
2277 /*
2278 * so, if page != NULL, we have a buffer head for the offset at
2279 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2280 * then we have an unformatted node. Otherwise, we have a direct item,
2281 * and no zeroing is required on disk. We zero after the truncate,
2282 * because the truncate might pack the item anyway
2283 * (it will unmap bh if it packs).
2284 *
2285 * it is enough to reserve space in transaction for 2 balancings:
2286 * one for "save" link adding and another for the first
2287 * cut_from_item. 1 is for update_sd
2288 */
2289 error = journal_begin(&th, inode->i_sb,
2290 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2291 if (error)
2292 goto out;
2293 reiserfs_update_inode_transaction(inode);
2294 if (update_timestamps)
2295 /*
2296 * we are doing real truncate: if the system crashes
2297 * before the last transaction of truncating gets committed
2298 * - on reboot the file either appears truncated properly
2299 * or not truncated at all
2300 */
2301 add_save_link(&th, inode, 1);
2302 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2303 error = journal_end(&th);
2304 if (error)
2305 goto out;
2306
2307 /* check reiserfs_do_truncate after ending the transaction */
2308 if (err2) {
2309 error = err2;
2310 goto out;
2311 }
2312
2313 if (update_timestamps) {
2314 error = remove_save_link(inode, 1 /* truncate */);
2315 if (error)
2316 goto out;
2317 }
2318
2319 if (page) {
2320 length = offset & (blocksize - 1);
2321 /* if we are not on a block boundary */
2322 if (length) {
2323 length = blocksize - length;
2324 zero_user(page, offset, length);
2325 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2326 mark_buffer_dirty(bh);
2327 }
2328 }
2329 unlock_page(page);
2330 put_page(page);
2331 }
2332
2333 reiserfs_write_unlock(inode->i_sb);
2334
2335 return 0;
2336out:
2337 if (page) {
2338 unlock_page(page);
2339 put_page(page);
2340 }
2341
2342 reiserfs_write_unlock(inode->i_sb);
2343
2344 return error;
2345}
2346
2347static int map_block_for_writepage(struct inode *inode,
2348 struct buffer_head *bh_result,
2349 unsigned long block)
2350{
2351 struct reiserfs_transaction_handle th;
2352 int fs_gen;
2353 struct item_head tmp_ih;
2354 struct item_head *ih;
2355 struct buffer_head *bh;
2356 __le32 *item;
2357 struct cpu_key key;
2358 INITIALIZE_PATH(path);
2359 int pos_in_item;
2360 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2361 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2362 int retval;
2363 int use_get_block = 0;
2364 int bytes_copied = 0;
2365 int copy_size;
2366 int trans_running = 0;
2367
2368 /*
2369 * catch places below that try to log something without
2370 * starting a trans
2371 */
2372 th.t_trans_id = 0;
2373
2374 if (!buffer_uptodate(bh_result)) {
2375 return -EIO;
2376 }
2377
2378 kmap(bh_result->b_page);
2379start_over:
2380 reiserfs_write_lock(inode->i_sb);
2381 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2382
2383research:
2384 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2385 if (retval != POSITION_FOUND) {
2386 use_get_block = 1;
2387 goto out;
2388 }
2389
2390 bh = get_last_bh(&path);
2391 ih = tp_item_head(&path);
2392 item = tp_item_body(&path);
2393 pos_in_item = path.pos_in_item;
2394
2395 /* we've found an unformatted node */
2396 if (indirect_item_found(retval, ih)) {
2397 if (bytes_copied > 0) {
2398 reiserfs_warning(inode->i_sb, "clm-6002",
2399 "bytes_copied %d", bytes_copied);
2400 }
2401 if (!get_block_num(item, pos_in_item)) {
2402 /* crap, we are writing to a hole */
2403 use_get_block = 1;
2404 goto out;
2405 }
2406 set_block_dev_mapped(bh_result,
2407 get_block_num(item, pos_in_item), inode);
2408 } else if (is_direct_le_ih(ih)) {
2409 char *p;
2410 p = page_address(bh_result->b_page);
2411 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2412 copy_size = ih_item_len(ih) - pos_in_item;
2413
2414 fs_gen = get_generation(inode->i_sb);
2415 copy_item_head(&tmp_ih, ih);
2416
2417 if (!trans_running) {
2418 /* vs-3050 is gone, no need to drop the path */
2419 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2420 if (retval)
2421 goto out;
2422 reiserfs_update_inode_transaction(inode);
2423 trans_running = 1;
2424 if (fs_changed(fs_gen, inode->i_sb)
2425 && item_moved(&tmp_ih, &path)) {
2426 reiserfs_restore_prepared_buffer(inode->i_sb,
2427 bh);
2428 goto research;
2429 }
2430 }
2431
2432 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2433
2434 if (fs_changed(fs_gen, inode->i_sb)
2435 && item_moved(&tmp_ih, &path)) {
2436 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2437 goto research;
2438 }
2439
2440 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2441 copy_size);
2442
2443 journal_mark_dirty(&th, bh);
2444 bytes_copied += copy_size;
2445 set_block_dev_mapped(bh_result, 0, inode);
2446
2447 /* are there still bytes left? */
2448 if (bytes_copied < bh_result->b_size &&
2449 (byte_offset + bytes_copied) < inode->i_size) {
2450 set_cpu_key_k_offset(&key,
2451 cpu_key_k_offset(&key) +
2452 copy_size);
2453 goto research;
2454 }
2455 } else {
2456 reiserfs_warning(inode->i_sb, "clm-6003",
2457 "bad item inode %lu", inode->i_ino);
2458 retval = -EIO;
2459 goto out;
2460 }
2461 retval = 0;
2462
2463out:
2464 pathrelse(&path);
2465 if (trans_running) {
2466 int err = journal_end(&th);
2467 if (err)
2468 retval = err;
2469 trans_running = 0;
2470 }
2471 reiserfs_write_unlock(inode->i_sb);
2472
2473 /* this is where we fill in holes in the file. */
2474 if (use_get_block) {
2475 retval = reiserfs_get_block(inode, block, bh_result,
2476 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2477 | GET_BLOCK_NO_DANGLE);
2478 if (!retval) {
2479 if (!buffer_mapped(bh_result)
2480 || bh_result->b_blocknr == 0) {
2481 /* get_block failed to find a mapped unformatted node. */
2482 use_get_block = 0;
2483 goto start_over;
2484 }
2485 }
2486 }
2487 kunmap(bh_result->b_page);
2488
2489 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2490 /*
2491 * we've copied data from the page into the direct item, so the
2492 * buffer in the page is now clean, mark it to reflect that.
2493 */
2494 lock_buffer(bh_result);
2495 clear_buffer_dirty(bh_result);
2496 unlock_buffer(bh_result);
2497 }
2498 return retval;
2499}
2500
2501/*
2502 * mason@suse.com: updated in 2.5.54 to follow the same general io
2503 * start/recovery path as __block_write_full_folio, along with special
2504 * code to handle reiserfs tails.
2505 */
2506static int reiserfs_write_full_folio(struct folio *folio,
2507 struct writeback_control *wbc)
2508{
2509 struct inode *inode = folio->mapping->host;
2510 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2511 int error = 0;
2512 unsigned long block;
2513 sector_t last_block;
2514 struct buffer_head *head, *bh;
2515 int partial = 0;
2516 int nr = 0;
2517 int checked = folio_test_checked(folio);
2518 struct reiserfs_transaction_handle th;
2519 struct super_block *s = inode->i_sb;
2520 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2521 th.t_trans_id = 0;
2522
2523 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2524 if (checked && (current->flags & PF_MEMALLOC)) {
2525 folio_redirty_for_writepage(wbc, folio);
2526 folio_unlock(folio);
2527 return 0;
2528 }
2529
2530 /*
2531 * The folio dirty bit is cleared before writepage is called, which
2532 * means we have to tell create_empty_buffers to make dirty buffers
2533 * The folio really should be up to date at this point, so tossing
2534 * in the BH_Uptodate is just a sanity check.
2535 */
2536 head = folio_buffers(folio);
2537 if (!head)
2538 head = create_empty_buffers(folio, s->s_blocksize,
2539 (1 << BH_Dirty) | (1 << BH_Uptodate));
2540
2541 /*
2542 * last folio in the file, zero out any contents past the
2543 * last byte in the file
2544 */
2545 if (folio->index >= end_index) {
2546 unsigned last_offset;
2547
2548 last_offset = inode->i_size & (PAGE_SIZE - 1);
2549 /* no file contents in this folio */
2550 if (folio->index >= end_index + 1 || !last_offset) {
2551 folio_unlock(folio);
2552 return 0;
2553 }
2554 folio_zero_segment(folio, last_offset, folio_size(folio));
2555 }
2556 bh = head;
2557 block = folio->index << (PAGE_SHIFT - s->s_blocksize_bits);
2558 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2559 /* first map all the buffers, logging any direct items we find */
2560 do {
2561 if (block > last_block) {
2562 /*
2563 * This can happen when the block size is less than
2564 * the folio size. The corresponding bytes in the folio
2565 * were zero filled above
2566 */
2567 clear_buffer_dirty(bh);
2568 set_buffer_uptodate(bh);
2569 } else if ((checked || buffer_dirty(bh)) &&
2570 (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2571 /*
2572 * not mapped yet, or it points to a direct item, search
2573 * the btree for the mapping info, and log any direct
2574 * items found
2575 */
2576 if ((error = map_block_for_writepage(inode, bh, block))) {
2577 goto fail;
2578 }
2579 }
2580 bh = bh->b_this_page;
2581 block++;
2582 } while (bh != head);
2583
2584 /*
2585 * we start the transaction after map_block_for_writepage,
2586 * because it can create holes in the file (an unbounded operation).
2587 * starting it here, we can make a reliable estimate for how many
2588 * blocks we're going to log
2589 */
2590 if (checked) {
2591 folio_clear_checked(folio);
2592 reiserfs_write_lock(s);
2593 error = journal_begin(&th, s, bh_per_page + 1);
2594 if (error) {
2595 reiserfs_write_unlock(s);
2596 goto fail;
2597 }
2598 reiserfs_update_inode_transaction(inode);
2599 }
2600 /* now go through and lock any dirty buffers on the folio */
2601 do {
2602 get_bh(bh);
2603 if (!buffer_mapped(bh))
2604 continue;
2605 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2606 continue;
2607
2608 if (checked) {
2609 reiserfs_prepare_for_journal(s, bh, 1);
2610 journal_mark_dirty(&th, bh);
2611 continue;
2612 }
2613 /*
2614 * from this point on, we know the buffer is mapped to a
2615 * real block and not a direct item
2616 */
2617 if (wbc->sync_mode != WB_SYNC_NONE) {
2618 lock_buffer(bh);
2619 } else {
2620 if (!trylock_buffer(bh)) {
2621 folio_redirty_for_writepage(wbc, folio);
2622 continue;
2623 }
2624 }
2625 if (test_clear_buffer_dirty(bh)) {
2626 mark_buffer_async_write(bh);
2627 } else {
2628 unlock_buffer(bh);
2629 }
2630 } while ((bh = bh->b_this_page) != head);
2631
2632 if (checked) {
2633 error = journal_end(&th);
2634 reiserfs_write_unlock(s);
2635 if (error)
2636 goto fail;
2637 }
2638 BUG_ON(folio_test_writeback(folio));
2639 folio_start_writeback(folio);
2640 folio_unlock(folio);
2641
2642 /*
2643 * since any buffer might be the only dirty buffer on the folio,
2644 * the first submit_bh can bring the folio out of writeback.
2645 * be careful with the buffers.
2646 */
2647 do {
2648 struct buffer_head *next = bh->b_this_page;
2649 if (buffer_async_write(bh)) {
2650 submit_bh(REQ_OP_WRITE, bh);
2651 nr++;
2652 }
2653 put_bh(bh);
2654 bh = next;
2655 } while (bh != head);
2656
2657 error = 0;
2658done:
2659 if (nr == 0) {
2660 /*
2661 * if this folio only had a direct item, it is very possible for
2662 * no io to be required without there being an error. Or,
2663 * someone else could have locked them and sent them down the
2664 * pipe without locking the folio
2665 */
2666 bh = head;
2667 do {
2668 if (!buffer_uptodate(bh)) {
2669 partial = 1;
2670 break;
2671 }
2672 bh = bh->b_this_page;
2673 } while (bh != head);
2674 if (!partial)
2675 folio_mark_uptodate(folio);
2676 folio_end_writeback(folio);
2677 }
2678 return error;
2679
2680fail:
2681 /*
2682 * catches various errors, we need to make sure any valid dirty blocks
2683 * get to the media. The folio is currently locked and not marked for
2684 * writeback
2685 */
2686 folio_clear_uptodate(folio);
2687 bh = head;
2688 do {
2689 get_bh(bh);
2690 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2691 lock_buffer(bh);
2692 mark_buffer_async_write(bh);
2693 } else {
2694 /*
2695 * clear any dirty bits that might have come from
2696 * getting attached to a dirty folio
2697 */
2698 clear_buffer_dirty(bh);
2699 }
2700 bh = bh->b_this_page;
2701 } while (bh != head);
2702 folio_set_error(folio);
2703 BUG_ON(folio_test_writeback(folio));
2704 folio_start_writeback(folio);
2705 folio_unlock(folio);
2706 do {
2707 struct buffer_head *next = bh->b_this_page;
2708 if (buffer_async_write(bh)) {
2709 clear_buffer_dirty(bh);
2710 submit_bh(REQ_OP_WRITE, bh);
2711 nr++;
2712 }
2713 put_bh(bh);
2714 bh = next;
2715 } while (bh != head);
2716 goto done;
2717}
2718
2719static int reiserfs_read_folio(struct file *f, struct folio *folio)
2720{
2721 return block_read_full_folio(folio, reiserfs_get_block);
2722}
2723
2724static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2725{
2726 struct folio *folio = page_folio(page);
2727 struct inode *inode = folio->mapping->host;
2728 reiserfs_wait_on_write_block(inode->i_sb);
2729 return reiserfs_write_full_folio(folio, wbc);
2730}
2731
2732static void reiserfs_truncate_failed_write(struct inode *inode)
2733{
2734 truncate_inode_pages(inode->i_mapping, inode->i_size);
2735 reiserfs_truncate_file(inode, 0);
2736}
2737
2738static int reiserfs_write_begin(struct file *file,
2739 struct address_space *mapping,
2740 loff_t pos, unsigned len,
2741 struct page **pagep, void **fsdata)
2742{
2743 struct inode *inode;
2744 struct page *page;
2745 pgoff_t index;
2746 int ret;
2747 int old_ref = 0;
2748
2749 inode = mapping->host;
2750 index = pos >> PAGE_SHIFT;
2751 page = grab_cache_page_write_begin(mapping, index);
2752 if (!page)
2753 return -ENOMEM;
2754 *pagep = page;
2755
2756 reiserfs_wait_on_write_block(inode->i_sb);
2757 fix_tail_page_for_writing(page);
2758 if (reiserfs_transaction_running(inode->i_sb)) {
2759 struct reiserfs_transaction_handle *th;
2760 th = (struct reiserfs_transaction_handle *)current->
2761 journal_info;
2762 BUG_ON(!th->t_refcount);
2763 BUG_ON(!th->t_trans_id);
2764 old_ref = th->t_refcount;
2765 th->t_refcount++;
2766 }
2767 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2768 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2769 struct reiserfs_transaction_handle *th = current->journal_info;
2770 /*
2771 * this gets a little ugly. If reiserfs_get_block returned an
2772 * error and left a transacstion running, we've got to close
2773 * it, and we've got to free handle if it was a persistent
2774 * transaction.
2775 *
2776 * But, if we had nested into an existing transaction, we need
2777 * to just drop the ref count on the handle.
2778 *
2779 * If old_ref == 0, the transaction is from reiserfs_get_block,
2780 * and it was a persistent trans. Otherwise, it was nested
2781 * above.
2782 */
2783 if (th->t_refcount > old_ref) {
2784 if (old_ref)
2785 th->t_refcount--;
2786 else {
2787 int err;
2788 reiserfs_write_lock(inode->i_sb);
2789 err = reiserfs_end_persistent_transaction(th);
2790 reiserfs_write_unlock(inode->i_sb);
2791 if (err)
2792 ret = err;
2793 }
2794 }
2795 }
2796 if (ret) {
2797 unlock_page(page);
2798 put_page(page);
2799 /* Truncate allocated blocks */
2800 reiserfs_truncate_failed_write(inode);
2801 }
2802 return ret;
2803}
2804
2805int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2806{
2807 struct inode *inode = page->mapping->host;
2808 int ret;
2809 int old_ref = 0;
2810 int depth;
2811
2812 depth = reiserfs_write_unlock_nested(inode->i_sb);
2813 reiserfs_wait_on_write_block(inode->i_sb);
2814 reiserfs_write_lock_nested(inode->i_sb, depth);
2815
2816 fix_tail_page_for_writing(page);
2817 if (reiserfs_transaction_running(inode->i_sb)) {
2818 struct reiserfs_transaction_handle *th;
2819 th = (struct reiserfs_transaction_handle *)current->
2820 journal_info;
2821 BUG_ON(!th->t_refcount);
2822 BUG_ON(!th->t_trans_id);
2823 old_ref = th->t_refcount;
2824 th->t_refcount++;
2825 }
2826
2827 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2828 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2829 struct reiserfs_transaction_handle *th = current->journal_info;
2830 /*
2831 * this gets a little ugly. If reiserfs_get_block returned an
2832 * error and left a transacstion running, we've got to close
2833 * it, and we've got to free handle if it was a persistent
2834 * transaction.
2835 *
2836 * But, if we had nested into an existing transaction, we need
2837 * to just drop the ref count on the handle.
2838 *
2839 * If old_ref == 0, the transaction is from reiserfs_get_block,
2840 * and it was a persistent trans. Otherwise, it was nested
2841 * above.
2842 */
2843 if (th->t_refcount > old_ref) {
2844 if (old_ref)
2845 th->t_refcount--;
2846 else {
2847 int err;
2848 reiserfs_write_lock(inode->i_sb);
2849 err = reiserfs_end_persistent_transaction(th);
2850 reiserfs_write_unlock(inode->i_sb);
2851 if (err)
2852 ret = err;
2853 }
2854 }
2855 }
2856 return ret;
2857
2858}
2859
2860static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2861{
2862 return generic_block_bmap(as, block, reiserfs_bmap);
2863}
2864
2865static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2866 loff_t pos, unsigned len, unsigned copied,
2867 struct page *page, void *fsdata)
2868{
2869 struct folio *folio = page_folio(page);
2870 struct inode *inode = page->mapping->host;
2871 int ret = 0;
2872 int update_sd = 0;
2873 struct reiserfs_transaction_handle *th;
2874 unsigned start;
2875 bool locked = false;
2876
2877 reiserfs_wait_on_write_block(inode->i_sb);
2878 if (reiserfs_transaction_running(inode->i_sb))
2879 th = current->journal_info;
2880 else
2881 th = NULL;
2882
2883 start = pos & (PAGE_SIZE - 1);
2884 if (unlikely(copied < len)) {
2885 if (!folio_test_uptodate(folio))
2886 copied = 0;
2887
2888 folio_zero_new_buffers(folio, start + copied, start + len);
2889 }
2890 flush_dcache_folio(folio);
2891
2892 reiserfs_commit_page(inode, page, start, start + copied);
2893
2894 /*
2895 * generic_commit_write does this for us, but does not update the
2896 * transaction tracking stuff when the size changes. So, we have
2897 * to do the i_size updates here.
2898 */
2899 if (pos + copied > inode->i_size) {
2900 struct reiserfs_transaction_handle myth;
2901 reiserfs_write_lock(inode->i_sb);
2902 locked = true;
2903 /*
2904 * If the file have grown beyond the border where it
2905 * can have a tail, unmark it as needing a tail
2906 * packing
2907 */
2908 if ((have_large_tails(inode->i_sb)
2909 && inode->i_size > i_block_size(inode) * 4)
2910 || (have_small_tails(inode->i_sb)
2911 && inode->i_size > i_block_size(inode)))
2912 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2913
2914 ret = journal_begin(&myth, inode->i_sb, 1);
2915 if (ret)
2916 goto journal_error;
2917
2918 reiserfs_update_inode_transaction(inode);
2919 inode->i_size = pos + copied;
2920 /*
2921 * this will just nest into our transaction. It's important
2922 * to use mark_inode_dirty so the inode gets pushed around on
2923 * the dirty lists, and so that O_SYNC works as expected
2924 */
2925 mark_inode_dirty(inode);
2926 reiserfs_update_sd(&myth, inode);
2927 update_sd = 1;
2928 ret = journal_end(&myth);
2929 if (ret)
2930 goto journal_error;
2931 }
2932 if (th) {
2933 if (!locked) {
2934 reiserfs_write_lock(inode->i_sb);
2935 locked = true;
2936 }
2937 if (!update_sd)
2938 mark_inode_dirty(inode);
2939 ret = reiserfs_end_persistent_transaction(th);
2940 if (ret)
2941 goto out;
2942 }
2943
2944out:
2945 if (locked)
2946 reiserfs_write_unlock(inode->i_sb);
2947 unlock_page(page);
2948 put_page(page);
2949
2950 if (pos + len > inode->i_size)
2951 reiserfs_truncate_failed_write(inode);
2952
2953 return ret == 0 ? copied : ret;
2954
2955journal_error:
2956 reiserfs_write_unlock(inode->i_sb);
2957 locked = false;
2958 if (th) {
2959 if (!update_sd)
2960 reiserfs_update_sd(th, inode);
2961 ret = reiserfs_end_persistent_transaction(th);
2962 }
2963 goto out;
2964}
2965
2966int reiserfs_commit_write(struct file *f, struct page *page,
2967 unsigned from, unsigned to)
2968{
2969 struct inode *inode = page->mapping->host;
2970 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2971 int ret = 0;
2972 int update_sd = 0;
2973 struct reiserfs_transaction_handle *th = NULL;
2974 int depth;
2975
2976 depth = reiserfs_write_unlock_nested(inode->i_sb);
2977 reiserfs_wait_on_write_block(inode->i_sb);
2978 reiserfs_write_lock_nested(inode->i_sb, depth);
2979
2980 if (reiserfs_transaction_running(inode->i_sb)) {
2981 th = current->journal_info;
2982 }
2983 reiserfs_commit_page(inode, page, from, to);
2984
2985 /*
2986 * generic_commit_write does this for us, but does not update the
2987 * transaction tracking stuff when the size changes. So, we have
2988 * to do the i_size updates here.
2989 */
2990 if (pos > inode->i_size) {
2991 struct reiserfs_transaction_handle myth;
2992 /*
2993 * If the file have grown beyond the border where it
2994 * can have a tail, unmark it as needing a tail
2995 * packing
2996 */
2997 if ((have_large_tails(inode->i_sb)
2998 && inode->i_size > i_block_size(inode) * 4)
2999 || (have_small_tails(inode->i_sb)
3000 && inode->i_size > i_block_size(inode)))
3001 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3002
3003 ret = journal_begin(&myth, inode->i_sb, 1);
3004 if (ret)
3005 goto journal_error;
3006
3007 reiserfs_update_inode_transaction(inode);
3008 inode->i_size = pos;
3009 /*
3010 * this will just nest into our transaction. It's important
3011 * to use mark_inode_dirty so the inode gets pushed around
3012 * on the dirty lists, and so that O_SYNC works as expected
3013 */
3014 mark_inode_dirty(inode);
3015 reiserfs_update_sd(&myth, inode);
3016 update_sd = 1;
3017 ret = journal_end(&myth);
3018 if (ret)
3019 goto journal_error;
3020 }
3021 if (th) {
3022 if (!update_sd)
3023 mark_inode_dirty(inode);
3024 ret = reiserfs_end_persistent_transaction(th);
3025 if (ret)
3026 goto out;
3027 }
3028
3029out:
3030 return ret;
3031
3032journal_error:
3033 if (th) {
3034 if (!update_sd)
3035 reiserfs_update_sd(th, inode);
3036 ret = reiserfs_end_persistent_transaction(th);
3037 }
3038
3039 return ret;
3040}
3041
3042void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3043{
3044 if (reiserfs_attrs(inode->i_sb)) {
3045 if (sd_attrs & REISERFS_SYNC_FL)
3046 inode->i_flags |= S_SYNC;
3047 else
3048 inode->i_flags &= ~S_SYNC;
3049 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3050 inode->i_flags |= S_IMMUTABLE;
3051 else
3052 inode->i_flags &= ~S_IMMUTABLE;
3053 if (sd_attrs & REISERFS_APPEND_FL)
3054 inode->i_flags |= S_APPEND;
3055 else
3056 inode->i_flags &= ~S_APPEND;
3057 if (sd_attrs & REISERFS_NOATIME_FL)
3058 inode->i_flags |= S_NOATIME;
3059 else
3060 inode->i_flags &= ~S_NOATIME;
3061 if (sd_attrs & REISERFS_NOTAIL_FL)
3062 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3063 else
3064 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3065 }
3066}
3067
3068/*
3069 * decide if this buffer needs to stay around for data logging or ordered
3070 * write purposes
3071 */
3072static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3073{
3074 int ret = 1;
3075 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3076
3077 lock_buffer(bh);
3078 spin_lock(&j->j_dirty_buffers_lock);
3079 if (!buffer_mapped(bh)) {
3080 goto free_jh;
3081 }
3082 /*
3083 * the page is locked, and the only places that log a data buffer
3084 * also lock the page.
3085 */
3086 if (reiserfs_file_data_log(inode)) {
3087 /*
3088 * very conservative, leave the buffer pinned if
3089 * anyone might need it.
3090 */
3091 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3092 ret = 0;
3093 }
3094 } else if (buffer_dirty(bh)) {
3095 struct reiserfs_journal_list *jl;
3096 struct reiserfs_jh *jh = bh->b_private;
3097
3098 /*
3099 * why is this safe?
3100 * reiserfs_setattr updates i_size in the on disk
3101 * stat data before allowing vmtruncate to be called.
3102 *
3103 * If buffer was put onto the ordered list for this
3104 * transaction, we know for sure either this transaction
3105 * or an older one already has updated i_size on disk,
3106 * and this ordered data won't be referenced in the file
3107 * if we crash.
3108 *
3109 * if the buffer was put onto the ordered list for an older
3110 * transaction, we need to leave it around
3111 */
3112 if (jh && (jl = jh->jl)
3113 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3114 ret = 0;
3115 }
3116free_jh:
3117 if (ret && bh->b_private) {
3118 reiserfs_free_jh(bh);
3119 }
3120 spin_unlock(&j->j_dirty_buffers_lock);
3121 unlock_buffer(bh);
3122 return ret;
3123}
3124
3125/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3126static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3127 size_t length)
3128{
3129 struct buffer_head *head, *bh, *next;
3130 struct inode *inode = folio->mapping->host;
3131 unsigned int curr_off = 0;
3132 unsigned int stop = offset + length;
3133 int partial_page = (offset || length < folio_size(folio));
3134 int ret = 1;
3135
3136 BUG_ON(!folio_test_locked(folio));
3137
3138 if (!partial_page)
3139 folio_clear_checked(folio);
3140
3141 head = folio_buffers(folio);
3142 if (!head)
3143 goto out;
3144
3145 bh = head;
3146 do {
3147 unsigned int next_off = curr_off + bh->b_size;
3148 next = bh->b_this_page;
3149
3150 if (next_off > stop)
3151 goto out;
3152
3153 /*
3154 * is this block fully invalidated?
3155 */
3156 if (offset <= curr_off) {
3157 if (invalidate_folio_can_drop(inode, bh))
3158 reiserfs_unmap_buffer(bh);
3159 else
3160 ret = 0;
3161 }
3162 curr_off = next_off;
3163 bh = next;
3164 } while (bh != head);
3165
3166 /*
3167 * We release buffers only if the entire page is being invalidated.
3168 * The get_block cached value has been unconditionally invalidated,
3169 * so real IO is not possible anymore.
3170 */
3171 if (!partial_page && ret) {
3172 ret = filemap_release_folio(folio, 0);
3173 /* maybe should BUG_ON(!ret); - neilb */
3174 }
3175out:
3176 return;
3177}
3178
3179static bool reiserfs_dirty_folio(struct address_space *mapping,
3180 struct folio *folio)
3181{
3182 if (reiserfs_file_data_log(mapping->host)) {
3183 folio_set_checked(folio);
3184 return filemap_dirty_folio(mapping, folio);
3185 }
3186 return block_dirty_folio(mapping, folio);
3187}
3188
3189/*
3190 * Returns true if the folio's buffers were dropped. The folio is locked.
3191 *
3192 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3193 * in the buffers at folio_buffers(folio).
3194 *
3195 * even in -o notail mode, we can't be sure an old mount without -o notail
3196 * didn't create files with tails.
3197 */
3198static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3199{
3200 struct inode *inode = folio->mapping->host;
3201 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3202 struct buffer_head *head;
3203 struct buffer_head *bh;
3204 bool ret = true;
3205
3206 WARN_ON(folio_test_checked(folio));
3207 spin_lock(&j->j_dirty_buffers_lock);
3208 head = folio_buffers(folio);
3209 bh = head;
3210 do {
3211 if (bh->b_private) {
3212 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3213 reiserfs_free_jh(bh);
3214 } else {
3215 ret = false;
3216 break;
3217 }
3218 }
3219 bh = bh->b_this_page;
3220 } while (bh != head);
3221 if (ret)
3222 ret = try_to_free_buffers(folio);
3223 spin_unlock(&j->j_dirty_buffers_lock);
3224 return ret;
3225}
3226
3227/*
3228 * We thank Mingming Cao for helping us understand in great detail what
3229 * to do in this section of the code.
3230 */
3231static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3232{
3233 struct file *file = iocb->ki_filp;
3234 struct inode *inode = file->f_mapping->host;
3235 size_t count = iov_iter_count(iter);
3236 ssize_t ret;
3237
3238 ret = blockdev_direct_IO(iocb, inode, iter,
3239 reiserfs_get_blocks_direct_io);
3240
3241 /*
3242 * In case of error extending write may have instantiated a few
3243 * blocks outside i_size. Trim these off again.
3244 */
3245 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3246 loff_t isize = i_size_read(inode);
3247 loff_t end = iocb->ki_pos + count;
3248
3249 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3250 truncate_setsize(inode, isize);
3251 reiserfs_vfs_truncate_file(inode);
3252 }
3253 }
3254
3255 return ret;
3256}
3257
3258int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3259 struct iattr *attr)
3260{
3261 struct inode *inode = d_inode(dentry);
3262 unsigned int ia_valid;
3263 int error;
3264
3265 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3266 if (error)
3267 return error;
3268
3269 /* must be turned off for recursive notify_change calls */
3270 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3271
3272 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3273 error = dquot_initialize(inode);
3274 if (error)
3275 return error;
3276 }
3277 reiserfs_write_lock(inode->i_sb);
3278 if (attr->ia_valid & ATTR_SIZE) {
3279 /*
3280 * version 2 items will be caught by the s_maxbytes check
3281 * done for us in vmtruncate
3282 */
3283 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3284 attr->ia_size > MAX_NON_LFS) {
3285 reiserfs_write_unlock(inode->i_sb);
3286 error = -EFBIG;
3287 goto out;
3288 }
3289
3290 inode_dio_wait(inode);
3291
3292 /* fill in hole pointers in the expanding truncate case. */
3293 if (attr->ia_size > inode->i_size) {
3294 loff_t pos = attr->ia_size;
3295
3296 if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3297 pos++;
3298 error = generic_cont_expand_simple(inode, pos);
3299 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3300 int err;
3301 struct reiserfs_transaction_handle th;
3302 /* we're changing at most 2 bitmaps, inode + super */
3303 err = journal_begin(&th, inode->i_sb, 4);
3304 if (!err) {
3305 reiserfs_discard_prealloc(&th, inode);
3306 err = journal_end(&th);
3307 }
3308 if (err)
3309 error = err;
3310 }
3311 if (error) {
3312 reiserfs_write_unlock(inode->i_sb);
3313 goto out;
3314 }
3315 /*
3316 * file size is changed, ctime and mtime are
3317 * to be updated
3318 */
3319 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3320 }
3321 }
3322 reiserfs_write_unlock(inode->i_sb);
3323
3324 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3325 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3326 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3327 /* stat data of format v3.5 has 16 bit uid and gid */
3328 error = -EINVAL;
3329 goto out;
3330 }
3331
3332 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3333 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3334 struct reiserfs_transaction_handle th;
3335 int jbegin_count =
3336 2 *
3337 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3338 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3339 2;
3340
3341 error = reiserfs_chown_xattrs(inode, attr);
3342
3343 if (error)
3344 return error;
3345
3346 /*
3347 * (user+group)*(old+new) structure - we count quota
3348 * info and , inode write (sb, inode)
3349 */
3350 reiserfs_write_lock(inode->i_sb);
3351 error = journal_begin(&th, inode->i_sb, jbegin_count);
3352 reiserfs_write_unlock(inode->i_sb);
3353 if (error)
3354 goto out;
3355 error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3356 reiserfs_write_lock(inode->i_sb);
3357 if (error) {
3358 journal_end(&th);
3359 reiserfs_write_unlock(inode->i_sb);
3360 goto out;
3361 }
3362
3363 /*
3364 * Update corresponding info in inode so that everything
3365 * is in one transaction
3366 */
3367 if (attr->ia_valid & ATTR_UID)
3368 inode->i_uid = attr->ia_uid;
3369 if (attr->ia_valid & ATTR_GID)
3370 inode->i_gid = attr->ia_gid;
3371 mark_inode_dirty(inode);
3372 error = journal_end(&th);
3373 reiserfs_write_unlock(inode->i_sb);
3374 if (error)
3375 goto out;
3376 }
3377
3378 if ((attr->ia_valid & ATTR_SIZE) &&
3379 attr->ia_size != i_size_read(inode)) {
3380 error = inode_newsize_ok(inode, attr->ia_size);
3381 if (!error) {
3382 /*
3383 * Could race against reiserfs_file_release
3384 * if called from NFS, so take tailpack mutex.
3385 */
3386 mutex_lock(&REISERFS_I(inode)->tailpack);
3387 truncate_setsize(inode, attr->ia_size);
3388 reiserfs_truncate_file(inode, 1);
3389 mutex_unlock(&REISERFS_I(inode)->tailpack);
3390 }
3391 }
3392
3393 if (!error) {
3394 setattr_copy(&nop_mnt_idmap, inode, attr);
3395 mark_inode_dirty(inode);
3396 }
3397
3398 if (!error && reiserfs_posixacl(inode->i_sb)) {
3399 if (attr->ia_valid & ATTR_MODE)
3400 error = reiserfs_acl_chmod(dentry);
3401 }
3402
3403out:
3404 return error;
3405}
3406
3407const struct address_space_operations reiserfs_address_space_operations = {
3408 .writepage = reiserfs_writepage,
3409 .read_folio = reiserfs_read_folio,
3410 .readahead = reiserfs_readahead,
3411 .release_folio = reiserfs_release_folio,
3412 .invalidate_folio = reiserfs_invalidate_folio,
3413 .write_begin = reiserfs_write_begin,
3414 .write_end = reiserfs_write_end,
3415 .bmap = reiserfs_aop_bmap,
3416 .direct_IO = reiserfs_direct_IO,
3417 .dirty_folio = reiserfs_dirty_folio,
3418};
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21#include <linux/uio.h>
22
23int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25
26void reiserfs_evict_inode(struct inode *inode)
27{
28 /*
29 * We need blocks for transaction + (user+group) quota
30 * update (possibly delete)
31 */
32 int jbegin_count =
33 JOURNAL_PER_BALANCE_CNT * 2 +
34 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
35 struct reiserfs_transaction_handle th;
36 int err;
37
38 if (!inode->i_nlink && !is_bad_inode(inode))
39 dquot_initialize(inode);
40
41 truncate_inode_pages_final(&inode->i_data);
42 if (inode->i_nlink)
43 goto no_delete;
44
45 /*
46 * The = 0 happens when we abort creating a new inode
47 * for some reason like lack of space..
48 * also handles bad_inode case
49 */
50 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
51
52 reiserfs_delete_xattrs(inode);
53
54 reiserfs_write_lock(inode->i_sb);
55
56 if (journal_begin(&th, inode->i_sb, jbegin_count))
57 goto out;
58 reiserfs_update_inode_transaction(inode);
59
60 reiserfs_discard_prealloc(&th, inode);
61
62 err = reiserfs_delete_object(&th, inode);
63
64 /*
65 * Do quota update inside a transaction for journaled quotas.
66 * We must do that after delete_object so that quota updates
67 * go into the same transaction as stat data deletion
68 */
69 if (!err) {
70 int depth = reiserfs_write_unlock_nested(inode->i_sb);
71 dquot_free_inode(inode);
72 reiserfs_write_lock_nested(inode->i_sb, depth);
73 }
74
75 if (journal_end(&th))
76 goto out;
77
78 /*
79 * check return value from reiserfs_delete_object after
80 * ending the transaction
81 */
82 if (err)
83 goto out;
84
85 /*
86 * all items of file are deleted, so we can remove
87 * "save" link
88 * we can't do anything about an error here
89 */
90 remove_save_link(inode, 0 /* not truncate */);
91out:
92 reiserfs_write_unlock(inode->i_sb);
93 } else {
94 /* no object items are in the tree */
95 ;
96 }
97
98 /* note this must go after the journal_end to prevent deadlock */
99 clear_inode(inode);
100
101 dquot_drop(inode);
102 inode->i_blocks = 0;
103 return;
104
105no_delete:
106 clear_inode(inode);
107 dquot_drop(inode);
108}
109
110static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
111 __u32 objectid, loff_t offset, int type, int length)
112{
113 key->version = version;
114
115 key->on_disk_key.k_dir_id = dirid;
116 key->on_disk_key.k_objectid = objectid;
117 set_cpu_key_k_offset(key, offset);
118 set_cpu_key_k_type(key, type);
119 key->key_length = length;
120}
121
122/*
123 * take base of inode_key (it comes from inode always) (dirid, objectid)
124 * and version from an inode, set offset and type of key
125 */
126void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
127 int type, int length)
128{
129 _make_cpu_key(key, get_inode_item_key_version(inode),
130 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
131 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
132 length);
133}
134
135/* when key is 0, do not set version and short key */
136inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
137 int version,
138 loff_t offset, int type, int length,
139 int entry_count /*or ih_free_space */ )
140{
141 if (key) {
142 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
143 ih->ih_key.k_objectid =
144 cpu_to_le32(key->on_disk_key.k_objectid);
145 }
146 put_ih_version(ih, version);
147 set_le_ih_k_offset(ih, offset);
148 set_le_ih_k_type(ih, type);
149 put_ih_item_len(ih, length);
150 /* set_ih_free_space (ih, 0); */
151 /*
152 * for directory items it is entry count, for directs and stat
153 * datas - 0xffff, for indirects - 0
154 */
155 put_ih_entry_count(ih, entry_count);
156}
157
158/*
159 * FIXME: we might cache recently accessed indirect item
160 * Ugh. Not too eager for that....
161 * I cut the code until such time as I see a convincing argument (benchmark).
162 * I don't want a bloated inode struct..., and I don't like code complexity....
163 */
164
165/*
166 * cutting the code is fine, since it really isn't in use yet and is easy
167 * to add back in. But, Vladimir has a really good idea here. Think
168 * about what happens for reading a file. For each page,
169 * The VFS layer calls reiserfs_readpage, who searches the tree to find
170 * an indirect item. This indirect item has X number of pointers, where
171 * X is a big number if we've done the block allocation right. But,
172 * we only use one or two of these pointers during each call to readpage,
173 * needlessly researching again later on.
174 *
175 * The size of the cache could be dynamic based on the size of the file.
176 *
177 * I'd also like to see us cache the location the stat data item, since
178 * we are needlessly researching for that frequently.
179 *
180 * --chris
181 */
182
183/*
184 * If this page has a file tail in it, and
185 * it was read in by get_block_create_0, the page data is valid,
186 * but tail is still sitting in a direct item, and we can't write to
187 * it. So, look through this page, and check all the mapped buffers
188 * to make sure they have valid block numbers. Any that don't need
189 * to be unmapped, so that __block_write_begin will correctly call
190 * reiserfs_get_block to convert the tail into an unformatted node
191 */
192static inline void fix_tail_page_for_writing(struct page *page)
193{
194 struct buffer_head *head, *next, *bh;
195
196 if (page && page_has_buffers(page)) {
197 head = page_buffers(page);
198 bh = head;
199 do {
200 next = bh->b_this_page;
201 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
202 reiserfs_unmap_buffer(bh);
203 }
204 bh = next;
205 } while (bh != head);
206 }
207}
208
209/*
210 * reiserfs_get_block does not need to allocate a block only if it has been
211 * done already or non-hole position has been found in the indirect item
212 */
213static inline int allocation_needed(int retval, b_blocknr_t allocated,
214 struct item_head *ih,
215 __le32 * item, int pos_in_item)
216{
217 if (allocated)
218 return 0;
219 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
220 get_block_num(item, pos_in_item))
221 return 0;
222 return 1;
223}
224
225static inline int indirect_item_found(int retval, struct item_head *ih)
226{
227 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
228}
229
230static inline void set_block_dev_mapped(struct buffer_head *bh,
231 b_blocknr_t block, struct inode *inode)
232{
233 map_bh(bh, inode->i_sb, block);
234}
235
236/*
237 * files which were created in the earlier version can not be longer,
238 * than 2 gb
239 */
240static int file_capable(struct inode *inode, sector_t block)
241{
242 /* it is new file. */
243 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
244 /* old file, but 'block' is inside of 2gb */
245 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
246 return 1;
247
248 return 0;
249}
250
251static int restart_transaction(struct reiserfs_transaction_handle *th,
252 struct inode *inode, struct treepath *path)
253{
254 struct super_block *s = th->t_super;
255 int err;
256
257 BUG_ON(!th->t_trans_id);
258 BUG_ON(!th->t_refcount);
259
260 pathrelse(path);
261
262 /* we cannot restart while nested */
263 if (th->t_refcount > 1) {
264 return 0;
265 }
266 reiserfs_update_sd(th, inode);
267 err = journal_end(th);
268 if (!err) {
269 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
270 if (!err)
271 reiserfs_update_inode_transaction(inode);
272 }
273 return err;
274}
275
276/*
277 * it is called by get_block when create == 0. Returns block number
278 * for 'block'-th logical block of file. When it hits direct item it
279 * returns 0 (being called from bmap) or read direct item into piece
280 * of page (bh_result)
281 * Please improve the english/clarity in the comment above, as it is
282 * hard to understand.
283 */
284static int _get_block_create_0(struct inode *inode, sector_t block,
285 struct buffer_head *bh_result, int args)
286{
287 INITIALIZE_PATH(path);
288 struct cpu_key key;
289 struct buffer_head *bh;
290 struct item_head *ih, tmp_ih;
291 b_blocknr_t blocknr;
292 char *p = NULL;
293 int chars;
294 int ret;
295 int result;
296 int done = 0;
297 unsigned long offset;
298
299 /* prepare the key to look for the 'block'-th block of file */
300 make_cpu_key(&key, inode,
301 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
302 3);
303
304 result = search_for_position_by_key(inode->i_sb, &key, &path);
305 if (result != POSITION_FOUND) {
306 pathrelse(&path);
307 if (p)
308 kunmap(bh_result->b_page);
309 if (result == IO_ERROR)
310 return -EIO;
311 /*
312 * We do not return -ENOENT if there is a hole but page is
313 * uptodate, because it means that there is some MMAPED data
314 * associated with it that is yet to be written to disk.
315 */
316 if ((args & GET_BLOCK_NO_HOLE)
317 && !PageUptodate(bh_result->b_page)) {
318 return -ENOENT;
319 }
320 return 0;
321 }
322
323 bh = get_last_bh(&path);
324 ih = tp_item_head(&path);
325 if (is_indirect_le_ih(ih)) {
326 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
327
328 /*
329 * FIXME: here we could cache indirect item or part of it in
330 * the inode to avoid search_by_key in case of subsequent
331 * access to file
332 */
333 blocknr = get_block_num(ind_item, path.pos_in_item);
334 ret = 0;
335 if (blocknr) {
336 map_bh(bh_result, inode->i_sb, blocknr);
337 if (path.pos_in_item ==
338 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
339 set_buffer_boundary(bh_result);
340 }
341 } else
342 /*
343 * We do not return -ENOENT if there is a hole but
344 * page is uptodate, because it means that there is
345 * some MMAPED data associated with it that is
346 * yet to be written to disk.
347 */
348 if ((args & GET_BLOCK_NO_HOLE)
349 && !PageUptodate(bh_result->b_page)) {
350 ret = -ENOENT;
351 }
352
353 pathrelse(&path);
354 if (p)
355 kunmap(bh_result->b_page);
356 return ret;
357 }
358 /* requested data are in direct item(s) */
359 if (!(args & GET_BLOCK_READ_DIRECT)) {
360 /*
361 * we are called by bmap. FIXME: we can not map block of file
362 * when it is stored in direct item(s)
363 */
364 pathrelse(&path);
365 if (p)
366 kunmap(bh_result->b_page);
367 return -ENOENT;
368 }
369
370 /*
371 * if we've got a direct item, and the buffer or page was uptodate,
372 * we don't want to pull data off disk again. skip to the
373 * end, where we map the buffer and return
374 */
375 if (buffer_uptodate(bh_result)) {
376 goto finished;
377 } else
378 /*
379 * grab_tail_page can trigger calls to reiserfs_get_block on
380 * up to date pages without any buffers. If the page is up
381 * to date, we don't want read old data off disk. Set the up
382 * to date bit on the buffer instead and jump to the end
383 */
384 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
385 set_buffer_uptodate(bh_result);
386 goto finished;
387 }
388 /* read file tail into part of page */
389 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
390 copy_item_head(&tmp_ih, ih);
391
392 /*
393 * we only want to kmap if we are reading the tail into the page.
394 * this is not the common case, so we don't kmap until we are
395 * sure we need to. But, this means the item might move if
396 * kmap schedules
397 */
398 if (!p)
399 p = (char *)kmap(bh_result->b_page);
400
401 p += offset;
402 memset(p, 0, inode->i_sb->s_blocksize);
403 do {
404 if (!is_direct_le_ih(ih)) {
405 BUG();
406 }
407 /*
408 * make sure we don't read more bytes than actually exist in
409 * the file. This can happen in odd cases where i_size isn't
410 * correct, and when direct item padding results in a few
411 * extra bytes at the end of the direct item
412 */
413 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
414 break;
415 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
416 chars =
417 inode->i_size - (le_ih_k_offset(ih) - 1) -
418 path.pos_in_item;
419 done = 1;
420 } else {
421 chars = ih_item_len(ih) - path.pos_in_item;
422 }
423 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
424
425 if (done)
426 break;
427
428 p += chars;
429
430 /*
431 * we done, if read direct item is not the last item of
432 * node FIXME: we could try to check right delimiting key
433 * to see whether direct item continues in the right
434 * neighbor or rely on i_size
435 */
436 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
437 break;
438
439 /* update key to look for the next piece */
440 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
441 result = search_for_position_by_key(inode->i_sb, &key, &path);
442 if (result != POSITION_FOUND)
443 /* i/o error most likely */
444 break;
445 bh = get_last_bh(&path);
446 ih = tp_item_head(&path);
447 } while (1);
448
449 flush_dcache_page(bh_result->b_page);
450 kunmap(bh_result->b_page);
451
452finished:
453 pathrelse(&path);
454
455 if (result == IO_ERROR)
456 return -EIO;
457
458 /*
459 * this buffer has valid data, but isn't valid for io. mapping it to
460 * block #0 tells the rest of reiserfs it just has a tail in it
461 */
462 map_bh(bh_result, inode->i_sb, 0);
463 set_buffer_uptodate(bh_result);
464 return 0;
465}
466
467/*
468 * this is called to create file map. So, _get_block_create_0 will not
469 * read direct item
470 */
471static int reiserfs_bmap(struct inode *inode, sector_t block,
472 struct buffer_head *bh_result, int create)
473{
474 if (!file_capable(inode, block))
475 return -EFBIG;
476
477 reiserfs_write_lock(inode->i_sb);
478 /* do not read the direct item */
479 _get_block_create_0(inode, block, bh_result, 0);
480 reiserfs_write_unlock(inode->i_sb);
481 return 0;
482}
483
484/*
485 * special version of get_block that is only used by grab_tail_page right
486 * now. It is sent to __block_write_begin, and when you try to get a
487 * block past the end of the file (or a block from a hole) it returns
488 * -ENOENT instead of a valid buffer. __block_write_begin expects to
489 * be able to do i/o on the buffers returned, unless an error value
490 * is also returned.
491 *
492 * So, this allows __block_write_begin to be used for reading a single block
493 * in a page. Where it does not produce a valid page for holes, or past the
494 * end of the file. This turns out to be exactly what we need for reading
495 * tails for conversion.
496 *
497 * The point of the wrapper is forcing a certain value for create, even
498 * though the VFS layer is calling this function with create==1. If you
499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
500 * don't use this function.
501*/
502static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
503 struct buffer_head *bh_result,
504 int create)
505{
506 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
507}
508
509/*
510 * This is special helper for reiserfs_get_block in case we are executing
511 * direct_IO request.
512 */
513static int reiserfs_get_blocks_direct_io(struct inode *inode,
514 sector_t iblock,
515 struct buffer_head *bh_result,
516 int create)
517{
518 int ret;
519
520 bh_result->b_page = NULL;
521
522 /*
523 * We set the b_size before reiserfs_get_block call since it is
524 * referenced in convert_tail_for_hole() that may be called from
525 * reiserfs_get_block()
526 */
527 bh_result->b_size = (1 << inode->i_blkbits);
528
529 ret = reiserfs_get_block(inode, iblock, bh_result,
530 create | GET_BLOCK_NO_DANGLE);
531 if (ret)
532 goto out;
533
534 /* don't allow direct io onto tail pages */
535 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
536 /*
537 * make sure future calls to the direct io funcs for this
538 * offset in the file fail by unmapping the buffer
539 */
540 clear_buffer_mapped(bh_result);
541 ret = -EINVAL;
542 }
543
544 /*
545 * Possible unpacked tail. Flush the data before pages have
546 * disappeared
547 */
548 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
549 int err;
550
551 reiserfs_write_lock(inode->i_sb);
552
553 err = reiserfs_commit_for_inode(inode);
554 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
555
556 reiserfs_write_unlock(inode->i_sb);
557
558 if (err < 0)
559 ret = err;
560 }
561out:
562 return ret;
563}
564
565/*
566 * helper function for when reiserfs_get_block is called for a hole
567 * but the file tail is still in a direct item
568 * bh_result is the buffer head for the hole
569 * tail_offset is the offset of the start of the tail in the file
570 *
571 * This calls prepare_write, which will start a new transaction
572 * you should not be in a transaction, or have any paths held when you
573 * call this.
574 */
575static int convert_tail_for_hole(struct inode *inode,
576 struct buffer_head *bh_result,
577 loff_t tail_offset)
578{
579 unsigned long index;
580 unsigned long tail_end;
581 unsigned long tail_start;
582 struct page *tail_page;
583 struct page *hole_page = bh_result->b_page;
584 int retval = 0;
585
586 if ((tail_offset & (bh_result->b_size - 1)) != 1)
587 return -EIO;
588
589 /* always try to read until the end of the block */
590 tail_start = tail_offset & (PAGE_SIZE - 1);
591 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
592
593 index = tail_offset >> PAGE_SHIFT;
594 /*
595 * hole_page can be zero in case of direct_io, we are sure
596 * that we cannot get here if we write with O_DIRECT into tail page
597 */
598 if (!hole_page || index != hole_page->index) {
599 tail_page = grab_cache_page(inode->i_mapping, index);
600 retval = -ENOMEM;
601 if (!tail_page) {
602 goto out;
603 }
604 } else {
605 tail_page = hole_page;
606 }
607
608 /*
609 * we don't have to make sure the conversion did not happen while
610 * we were locking the page because anyone that could convert
611 * must first take i_mutex.
612 *
613 * We must fix the tail page for writing because it might have buffers
614 * that are mapped, but have a block number of 0. This indicates tail
615 * data that has been read directly into the page, and
616 * __block_write_begin won't trigger a get_block in this case.
617 */
618 fix_tail_page_for_writing(tail_page);
619 retval = __reiserfs_write_begin(tail_page, tail_start,
620 tail_end - tail_start);
621 if (retval)
622 goto unlock;
623
624 /* tail conversion might change the data in the page */
625 flush_dcache_page(tail_page);
626
627 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
628
629unlock:
630 if (tail_page != hole_page) {
631 unlock_page(tail_page);
632 put_page(tail_page);
633 }
634out:
635 return retval;
636}
637
638static inline int _allocate_block(struct reiserfs_transaction_handle *th,
639 sector_t block,
640 struct inode *inode,
641 b_blocknr_t * allocated_block_nr,
642 struct treepath *path, int flags)
643{
644 BUG_ON(!th->t_trans_id);
645
646#ifdef REISERFS_PREALLOCATE
647 if (!(flags & GET_BLOCK_NO_IMUX)) {
648 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
649 path, block);
650 }
651#endif
652 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
653 block);
654}
655
656int reiserfs_get_block(struct inode *inode, sector_t block,
657 struct buffer_head *bh_result, int create)
658{
659 int repeat, retval = 0;
660 /* b_blocknr_t is (unsigned) 32 bit int*/
661 b_blocknr_t allocated_block_nr = 0;
662 INITIALIZE_PATH(path);
663 int pos_in_item;
664 struct cpu_key key;
665 struct buffer_head *bh, *unbh = NULL;
666 struct item_head *ih, tmp_ih;
667 __le32 *item;
668 int done;
669 int fs_gen;
670 struct reiserfs_transaction_handle *th = NULL;
671 /*
672 * space reserved in transaction batch:
673 * . 3 balancings in direct->indirect conversion
674 * . 1 block involved into reiserfs_update_sd()
675 * XXX in practically impossible worst case direct2indirect()
676 * can incur (much) more than 3 balancings.
677 * quota update for user, group
678 */
679 int jbegin_count =
680 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
681 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
682 int version;
683 int dangle = 1;
684 loff_t new_offset =
685 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
686
687 reiserfs_write_lock(inode->i_sb);
688 version = get_inode_item_key_version(inode);
689
690 if (!file_capable(inode, block)) {
691 reiserfs_write_unlock(inode->i_sb);
692 return -EFBIG;
693 }
694
695 /*
696 * if !create, we aren't changing the FS, so we don't need to
697 * log anything, so we don't need to start a transaction
698 */
699 if (!(create & GET_BLOCK_CREATE)) {
700 int ret;
701 /* find number of block-th logical block of the file */
702 ret = _get_block_create_0(inode, block, bh_result,
703 create | GET_BLOCK_READ_DIRECT);
704 reiserfs_write_unlock(inode->i_sb);
705 return ret;
706 }
707
708 /*
709 * if we're already in a transaction, make sure to close
710 * any new transactions we start in this func
711 */
712 if ((create & GET_BLOCK_NO_DANGLE) ||
713 reiserfs_transaction_running(inode->i_sb))
714 dangle = 0;
715
716 /*
717 * If file is of such a size, that it might have a tail and
718 * tails are enabled we should mark it as possibly needing
719 * tail packing on close
720 */
721 if ((have_large_tails(inode->i_sb)
722 && inode->i_size < i_block_size(inode) * 4)
723 || (have_small_tails(inode->i_sb)
724 && inode->i_size < i_block_size(inode)))
725 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
726
727 /* set the key of the first byte in the 'block'-th block of file */
728 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
729 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
730start_trans:
731 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
732 if (!th) {
733 retval = -ENOMEM;
734 goto failure;
735 }
736 reiserfs_update_inode_transaction(inode);
737 }
738research:
739
740 retval = search_for_position_by_key(inode->i_sb, &key, &path);
741 if (retval == IO_ERROR) {
742 retval = -EIO;
743 goto failure;
744 }
745
746 bh = get_last_bh(&path);
747 ih = tp_item_head(&path);
748 item = tp_item_body(&path);
749 pos_in_item = path.pos_in_item;
750
751 fs_gen = get_generation(inode->i_sb);
752 copy_item_head(&tmp_ih, ih);
753
754 if (allocation_needed
755 (retval, allocated_block_nr, ih, item, pos_in_item)) {
756 /* we have to allocate block for the unformatted node */
757 if (!th) {
758 pathrelse(&path);
759 goto start_trans;
760 }
761
762 repeat =
763 _allocate_block(th, block, inode, &allocated_block_nr,
764 &path, create);
765
766 /*
767 * restart the transaction to give the journal a chance to free
768 * some blocks. releases the path, so we have to go back to
769 * research if we succeed on the second try
770 */
771 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
772 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
773 retval = restart_transaction(th, inode, &path);
774 if (retval)
775 goto failure;
776 repeat =
777 _allocate_block(th, block, inode,
778 &allocated_block_nr, NULL, create);
779
780 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
781 goto research;
782 }
783 if (repeat == QUOTA_EXCEEDED)
784 retval = -EDQUOT;
785 else
786 retval = -ENOSPC;
787 goto failure;
788 }
789
790 if (fs_changed(fs_gen, inode->i_sb)
791 && item_moved(&tmp_ih, &path)) {
792 goto research;
793 }
794 }
795
796 if (indirect_item_found(retval, ih)) {
797 b_blocknr_t unfm_ptr;
798 /*
799 * 'block'-th block is in the file already (there is
800 * corresponding cell in some indirect item). But it may be
801 * zero unformatted node pointer (hole)
802 */
803 unfm_ptr = get_block_num(item, pos_in_item);
804 if (unfm_ptr == 0) {
805 /* use allocated block to plug the hole */
806 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
807 if (fs_changed(fs_gen, inode->i_sb)
808 && item_moved(&tmp_ih, &path)) {
809 reiserfs_restore_prepared_buffer(inode->i_sb,
810 bh);
811 goto research;
812 }
813 set_buffer_new(bh_result);
814 if (buffer_dirty(bh_result)
815 && reiserfs_data_ordered(inode->i_sb))
816 reiserfs_add_ordered_list(inode, bh_result);
817 put_block_num(item, pos_in_item, allocated_block_nr);
818 unfm_ptr = allocated_block_nr;
819 journal_mark_dirty(th, bh);
820 reiserfs_update_sd(th, inode);
821 }
822 set_block_dev_mapped(bh_result, unfm_ptr, inode);
823 pathrelse(&path);
824 retval = 0;
825 if (!dangle && th)
826 retval = reiserfs_end_persistent_transaction(th);
827
828 reiserfs_write_unlock(inode->i_sb);
829
830 /*
831 * the item was found, so new blocks were not added to the file
832 * there is no need to make sure the inode is updated with this
833 * transaction
834 */
835 return retval;
836 }
837
838 if (!th) {
839 pathrelse(&path);
840 goto start_trans;
841 }
842
843 /*
844 * desired position is not found or is in the direct item. We have
845 * to append file with holes up to 'block'-th block converting
846 * direct items to indirect one if necessary
847 */
848 done = 0;
849 do {
850 if (is_statdata_le_ih(ih)) {
851 __le32 unp = 0;
852 struct cpu_key tmp_key;
853
854 /* indirect item has to be inserted */
855 make_le_item_head(&tmp_ih, &key, version, 1,
856 TYPE_INDIRECT, UNFM_P_SIZE,
857 0 /* free_space */ );
858
859 /*
860 * we are going to add 'block'-th block to the file.
861 * Use allocated block for that
862 */
863 if (cpu_key_k_offset(&key) == 1) {
864 unp = cpu_to_le32(allocated_block_nr);
865 set_block_dev_mapped(bh_result,
866 allocated_block_nr, inode);
867 set_buffer_new(bh_result);
868 done = 1;
869 }
870 tmp_key = key; /* ;) */
871 set_cpu_key_k_offset(&tmp_key, 1);
872 PATH_LAST_POSITION(&path)++;
873
874 retval =
875 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
876 inode, (char *)&unp);
877 if (retval) {
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
880 /*
881 * retval == -ENOSPC, -EDQUOT or -EIO
882 * or -EEXIST
883 */
884 goto failure;
885 }
886 } else if (is_direct_le_ih(ih)) {
887 /* direct item has to be converted */
888 loff_t tail_offset;
889
890 tail_offset =
891 ((le_ih_k_offset(ih) -
892 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
893
894 /*
895 * direct item we just found fits into block we have
896 * to map. Convert it into unformatted node: use
897 * bh_result for the conversion
898 */
899 if (tail_offset == cpu_key_k_offset(&key)) {
900 set_block_dev_mapped(bh_result,
901 allocated_block_nr, inode);
902 unbh = bh_result;
903 done = 1;
904 } else {
905 /*
906 * we have to pad file tail stored in direct
907 * item(s) up to block size and convert it
908 * to unformatted node. FIXME: this should
909 * also get into page cache
910 */
911
912 pathrelse(&path);
913 /*
914 * ugly, but we can only end the transaction if
915 * we aren't nested
916 */
917 BUG_ON(!th->t_refcount);
918 if (th->t_refcount == 1) {
919 retval =
920 reiserfs_end_persistent_transaction
921 (th);
922 th = NULL;
923 if (retval)
924 goto failure;
925 }
926
927 retval =
928 convert_tail_for_hole(inode, bh_result,
929 tail_offset);
930 if (retval) {
931 if (retval != -ENOSPC)
932 reiserfs_error(inode->i_sb,
933 "clm-6004",
934 "convert tail failed "
935 "inode %lu, error %d",
936 inode->i_ino,
937 retval);
938 if (allocated_block_nr) {
939 /*
940 * the bitmap, the super,
941 * and the stat data == 3
942 */
943 if (!th)
944 th = reiserfs_persistent_transaction(inode->i_sb, 3);
945 if (th)
946 reiserfs_free_block(th,
947 inode,
948 allocated_block_nr,
949 1);
950 }
951 goto failure;
952 }
953 goto research;
954 }
955 retval =
956 direct2indirect(th, inode, &path, unbh,
957 tail_offset);
958 if (retval) {
959 reiserfs_unmap_buffer(unbh);
960 reiserfs_free_block(th, inode,
961 allocated_block_nr, 1);
962 goto failure;
963 }
964 /*
965 * it is important the set_buffer_uptodate is done
966 * after the direct2indirect. The buffer might
967 * contain valid data newer than the data on disk
968 * (read by readpage, changed, and then sent here by
969 * writepage). direct2indirect needs to know if unbh
970 * was already up to date, so it can decide if the
971 * data in unbh needs to be replaced with data from
972 * the disk
973 */
974 set_buffer_uptodate(unbh);
975
976 /*
977 * unbh->b_page == NULL in case of DIRECT_IO request,
978 * this means buffer will disappear shortly, so it
979 * should not be added to
980 */
981 if (unbh->b_page) {
982 /*
983 * we've converted the tail, so we must
984 * flush unbh before the transaction commits
985 */
986 reiserfs_add_tail_list(inode, unbh);
987
988 /*
989 * mark it dirty now to prevent commit_write
990 * from adding this buffer to the inode's
991 * dirty buffer list
992 */
993 /*
994 * AKPM: changed __mark_buffer_dirty to
995 * mark_buffer_dirty(). It's still atomic,
996 * but it sets the page dirty too, which makes
997 * it eligible for writeback at any time by the
998 * VM (which was also the case with
999 * __mark_buffer_dirty())
1000 */
1001 mark_buffer_dirty(unbh);
1002 }
1003 } else {
1004 /*
1005 * append indirect item with holes if needed, when
1006 * appending pointer to 'block'-th block use block,
1007 * which is already allocated
1008 */
1009 struct cpu_key tmp_key;
1010 /*
1011 * We use this in case we need to allocate
1012 * only one block which is a fastpath
1013 */
1014 unp_t unf_single = 0;
1015 unp_t *un;
1016 __u64 max_to_insert =
1017 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018 UNFM_P_SIZE;
1019 __u64 blocks_needed;
1020
1021 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022 "vs-804: invalid position for append");
1023 /*
1024 * indirect item has to be appended,
1025 * set up key of that position
1026 * (key type is unimportant)
1027 */
1028 make_cpu_key(&tmp_key, inode,
1029 le_key_k_offset(version,
1030 &ih->ih_key) +
1031 op_bytes_number(ih,
1032 inode->i_sb->s_blocksize),
1033 TYPE_INDIRECT, 3);
1034
1035 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036 "green-805: invalid offset");
1037 blocks_needed =
1038 1 +
1039 ((cpu_key_k_offset(&key) -
1040 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041 s_blocksize_bits);
1042
1043 if (blocks_needed == 1) {
1044 un = &unf_single;
1045 } else {
1046 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1047 if (!un) {
1048 un = &unf_single;
1049 blocks_needed = 1;
1050 max_to_insert = 0;
1051 }
1052 }
1053 if (blocks_needed <= max_to_insert) {
1054 /*
1055 * we are going to add target block to
1056 * the file. Use allocated block for that
1057 */
1058 un[blocks_needed - 1] =
1059 cpu_to_le32(allocated_block_nr);
1060 set_block_dev_mapped(bh_result,
1061 allocated_block_nr, inode);
1062 set_buffer_new(bh_result);
1063 done = 1;
1064 } else {
1065 /* paste hole to the indirect item */
1066 /*
1067 * If kmalloc failed, max_to_insert becomes
1068 * zero and it means we only have space for
1069 * one block
1070 */
1071 blocks_needed =
1072 max_to_insert ? max_to_insert : 1;
1073 }
1074 retval =
1075 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076 (char *)un,
1077 UNFM_P_SIZE *
1078 blocks_needed);
1079
1080 if (blocks_needed != 1)
1081 kfree(un);
1082
1083 if (retval) {
1084 reiserfs_free_block(th, inode,
1085 allocated_block_nr, 1);
1086 goto failure;
1087 }
1088 if (!done) {
1089 /*
1090 * We need to mark new file size in case
1091 * this function will be interrupted/aborted
1092 * later on. And we may do this only for
1093 * holes.
1094 */
1095 inode->i_size +=
1096 inode->i_sb->s_blocksize * blocks_needed;
1097 }
1098 }
1099
1100 if (done == 1)
1101 break;
1102
1103 /*
1104 * this loop could log more blocks than we had originally
1105 * asked for. So, we have to allow the transaction to end
1106 * if it is too big or too full. Update the inode so things
1107 * are consistent if we crash before the function returns
1108 * release the path so that anybody waiting on the path before
1109 * ending their transaction will be able to continue.
1110 */
1111 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112 retval = restart_transaction(th, inode, &path);
1113 if (retval)
1114 goto failure;
1115 }
1116 /*
1117 * inserting indirect pointers for a hole can take a
1118 * long time. reschedule if needed and also release the write
1119 * lock for others.
1120 */
1121 reiserfs_cond_resched(inode->i_sb);
1122
1123 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124 if (retval == IO_ERROR) {
1125 retval = -EIO;
1126 goto failure;
1127 }
1128 if (retval == POSITION_FOUND) {
1129 reiserfs_warning(inode->i_sb, "vs-825",
1130 "%K should not be found", &key);
1131 retval = -EEXIST;
1132 if (allocated_block_nr)
1133 reiserfs_free_block(th, inode,
1134 allocated_block_nr, 1);
1135 pathrelse(&path);
1136 goto failure;
1137 }
1138 bh = get_last_bh(&path);
1139 ih = tp_item_head(&path);
1140 item = tp_item_body(&path);
1141 pos_in_item = path.pos_in_item;
1142 } while (1);
1143
1144 retval = 0;
1145
1146failure:
1147 if (th && (!dangle || (retval && !th->t_trans_id))) {
1148 int err;
1149 if (th->t_trans_id)
1150 reiserfs_update_sd(th, inode);
1151 err = reiserfs_end_persistent_transaction(th);
1152 if (err)
1153 retval = err;
1154 }
1155
1156 reiserfs_write_unlock(inode->i_sb);
1157 reiserfs_check_path(&path);
1158 return retval;
1159}
1160
1161static int
1162reiserfs_readpages(struct file *file, struct address_space *mapping,
1163 struct list_head *pages, unsigned nr_pages)
1164{
1165 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1166}
1167
1168/*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
1173static int real_space_diff(struct inode *inode, int sd_size)
1174{
1175 int bytes;
1176 loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179 return sd_size;
1180
1181 /*
1182 * End of file is also in full block with indirect reference, so round
1183 * up to the next block.
1184 *
1185 * there is just no way to know if the tail is actually packed
1186 * on the file, so we have to assume it isn't. When we pack the
1187 * tail, we add 4 bytes to pretend there really is an unformatted
1188 * node pointer
1189 */
1190 bytes =
1191 ((inode->i_size +
1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193 sd_size;
1194 return bytes;
1195}
1196
1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198 int sd_size)
1199{
1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201 return inode->i_size +
1202 (loff_t) (real_space_diff(inode, sd_size));
1203 }
1204 return ((loff_t) real_space_diff(inode, sd_size)) +
1205 (((loff_t) blocks) << 9);
1206}
1207
1208/* Compute number of blocks used by file in ReiserFS counting */
1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210{
1211 loff_t bytes = inode_get_bytes(inode);
1212 loff_t real_space = real_space_diff(inode, sd_size);
1213
1214 /* keeps fsck and non-quota versions of reiserfs happy */
1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216 bytes += (loff_t) 511;
1217 }
1218
1219 /*
1220 * files from before the quota patch might i_blocks such that
1221 * bytes < real_space. Deal with that here to prevent it from
1222 * going negative.
1223 */
1224 if (bytes < real_space)
1225 return 0;
1226 return (bytes - real_space) >> 9;
1227}
1228
1229/*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236/* called by read_locked_inode */
1237static void init_inode(struct inode *inode, struct treepath *path)
1238{
1239 struct buffer_head *bh;
1240 struct item_head *ih;
1241 __u32 rdev;
1242
1243 bh = PATH_PLAST_BUFFER(path);
1244 ih = tp_item_head(path);
1245
1246 copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249 REISERFS_I(inode)->i_flags = 0;
1250 REISERFS_I(inode)->i_prealloc_block = 0;
1251 REISERFS_I(inode)->i_prealloc_count = 0;
1252 REISERFS_I(inode)->i_trans_id = 0;
1253 REISERFS_I(inode)->i_jl = NULL;
1254 reiserfs_init_xattr_rwsem(inode);
1255
1256 if (stat_data_v1(ih)) {
1257 struct stat_data_v1 *sd =
1258 (struct stat_data_v1 *)ih_item_body(bh, ih);
1259 unsigned long blocks;
1260
1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262 set_inode_sd_version(inode, STAT_DATA_V1);
1263 inode->i_mode = sd_v1_mode(sd);
1264 set_nlink(inode, sd_v1_nlink(sd));
1265 i_uid_write(inode, sd_v1_uid(sd));
1266 i_gid_write(inode, sd_v1_gid(sd));
1267 inode->i_size = sd_v1_size(sd);
1268 inode->i_atime.tv_sec = sd_v1_atime(sd);
1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271 inode->i_atime.tv_nsec = 0;
1272 inode->i_ctime.tv_nsec = 0;
1273 inode->i_mtime.tv_nsec = 0;
1274
1275 inode->i_blocks = sd_v1_blocks(sd);
1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277 blocks = (inode->i_size + 511) >> 9;
1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280 /*
1281 * there was a bug in <=3.5.23 when i_blocks could take
1282 * negative values. Starting from 3.5.17 this value could
1283 * even be stored in stat data. For such files we set
1284 * i_blocks based on file size. Just 2 notes: this can be
1285 * wrong for sparse files. On-disk value will be only
1286 * updated if file's inode will ever change
1287 */
1288 if (inode->i_blocks > blocks) {
1289 inode->i_blocks = blocks;
1290 }
1291
1292 rdev = sd_v1_rdev(sd);
1293 REISERFS_I(inode)->i_first_direct_byte =
1294 sd_v1_first_direct_byte(sd);
1295
1296 /*
1297 * an early bug in the quota code can give us an odd
1298 * number for the block count. This is incorrect, fix it here.
1299 */
1300 if (inode->i_blocks & 1) {
1301 inode->i_blocks++;
1302 }
1303 inode_set_bytes(inode,
1304 to_real_used_space(inode, inode->i_blocks,
1305 SD_V1_SIZE));
1306 /*
1307 * nopack is initially zero for v1 objects. For v2 objects,
1308 * nopack is initialised from sd_attrs
1309 */
1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311 } else {
1312 /*
1313 * new stat data found, but object may have old items
1314 * (directories and symlinks)
1315 */
1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318 inode->i_mode = sd_v2_mode(sd);
1319 set_nlink(inode, sd_v2_nlink(sd));
1320 i_uid_write(inode, sd_v2_uid(sd));
1321 inode->i_size = sd_v2_size(sd);
1322 i_gid_write(inode, sd_v2_gid(sd));
1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324 inode->i_atime.tv_sec = sd_v2_atime(sd);
1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326 inode->i_ctime.tv_nsec = 0;
1327 inode->i_mtime.tv_nsec = 0;
1328 inode->i_atime.tv_nsec = 0;
1329 inode->i_blocks = sd_v2_blocks(sd);
1330 rdev = sd_v2_rdev(sd);
1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332 inode->i_generation =
1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334 else
1335 inode->i_generation = sd_v2_generation(sd);
1336
1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339 else
1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341 REISERFS_I(inode)->i_first_direct_byte = 0;
1342 set_inode_sd_version(inode, STAT_DATA_V2);
1343 inode_set_bytes(inode,
1344 to_real_used_space(inode, inode->i_blocks,
1345 SD_V2_SIZE));
1346 /*
1347 * read persistent inode attributes from sd and initialise
1348 * generic inode flags from them
1349 */
1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352 }
1353
1354 pathrelse(path);
1355 if (S_ISREG(inode->i_mode)) {
1356 inode->i_op = &reiserfs_file_inode_operations;
1357 inode->i_fop = &reiserfs_file_operations;
1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359 } else if (S_ISDIR(inode->i_mode)) {
1360 inode->i_op = &reiserfs_dir_inode_operations;
1361 inode->i_fop = &reiserfs_dir_operations;
1362 } else if (S_ISLNK(inode->i_mode)) {
1363 inode->i_op = &reiserfs_symlink_inode_operations;
1364 inode_nohighmem(inode);
1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366 } else {
1367 inode->i_blocks = 0;
1368 inode->i_op = &reiserfs_special_inode_operations;
1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370 }
1371}
1372
1373/* update new stat data with inode fields */
1374static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375{
1376 struct stat_data *sd_v2 = (struct stat_data *)sd;
1377 __u16 flags;
1378
1379 set_sd_v2_mode(sd_v2, inode->i_mode);
1380 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382 set_sd_v2_size(sd_v2, size);
1383 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390 else
1391 set_sd_v2_generation(sd_v2, inode->i_generation);
1392 flags = REISERFS_I(inode)->i_attrs;
1393 i_attrs_to_sd_attrs(inode, &flags);
1394 set_sd_v2_attrs(sd_v2, flags);
1395}
1396
1397/* used to copy inode's fields to old stat data */
1398static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1399{
1400 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1401
1402 set_sd_v1_mode(sd_v1, inode->i_mode);
1403 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1404 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1405 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1406 set_sd_v1_size(sd_v1, size);
1407 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1408 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1409 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1410
1411 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1412 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1413 else
1414 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1415
1416 /* Sigh. i_first_direct_byte is back */
1417 set_sd_v1_first_direct_byte(sd_v1,
1418 REISERFS_I(inode)->i_first_direct_byte);
1419}
1420
1421/*
1422 * NOTE, you must prepare the buffer head before sending it here,
1423 * and then log it after the call
1424 */
1425static void update_stat_data(struct treepath *path, struct inode *inode,
1426 loff_t size)
1427{
1428 struct buffer_head *bh;
1429 struct item_head *ih;
1430
1431 bh = PATH_PLAST_BUFFER(path);
1432 ih = tp_item_head(path);
1433
1434 if (!is_statdata_le_ih(ih))
1435 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1436 INODE_PKEY(inode), ih);
1437
1438 /* path points to old stat data */
1439 if (stat_data_v1(ih)) {
1440 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1441 } else {
1442 inode2sd(ih_item_body(bh, ih), inode, size);
1443 }
1444
1445 return;
1446}
1447
1448void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1449 struct inode *inode, loff_t size)
1450{
1451 struct cpu_key key;
1452 INITIALIZE_PATH(path);
1453 struct buffer_head *bh;
1454 int fs_gen;
1455 struct item_head *ih, tmp_ih;
1456 int retval;
1457
1458 BUG_ON(!th->t_trans_id);
1459
1460 /* key type is unimportant */
1461 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1462
1463 for (;;) {
1464 int pos;
1465 /* look for the object's stat data */
1466 retval = search_item(inode->i_sb, &key, &path);
1467 if (retval == IO_ERROR) {
1468 reiserfs_error(inode->i_sb, "vs-13050",
1469 "i/o failure occurred trying to "
1470 "update %K stat data", &key);
1471 return;
1472 }
1473 if (retval == ITEM_NOT_FOUND) {
1474 pos = PATH_LAST_POSITION(&path);
1475 pathrelse(&path);
1476 if (inode->i_nlink == 0) {
1477 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1478 return;
1479 }
1480 reiserfs_warning(inode->i_sb, "vs-13060",
1481 "stat data of object %k (nlink == %d) "
1482 "not found (pos %d)",
1483 INODE_PKEY(inode), inode->i_nlink,
1484 pos);
1485 reiserfs_check_path(&path);
1486 return;
1487 }
1488
1489 /*
1490 * sigh, prepare_for_journal might schedule. When it
1491 * schedules the FS might change. We have to detect that,
1492 * and loop back to the search if the stat data item has moved
1493 */
1494 bh = get_last_bh(&path);
1495 ih = tp_item_head(&path);
1496 copy_item_head(&tmp_ih, ih);
1497 fs_gen = get_generation(inode->i_sb);
1498 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1499
1500 /* Stat_data item has been moved after scheduling. */
1501 if (fs_changed(fs_gen, inode->i_sb)
1502 && item_moved(&tmp_ih, &path)) {
1503 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1504 continue;
1505 }
1506 break;
1507 }
1508 update_stat_data(&path, inode, size);
1509 journal_mark_dirty(th, bh);
1510 pathrelse(&path);
1511 return;
1512}
1513
1514/*
1515 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1516 * does a make_bad_inode when things go wrong. But, we need to make sure
1517 * and clear the key in the private portion of the inode, otherwise a
1518 * corresponding iput might try to delete whatever object the inode last
1519 * represented.
1520 */
1521static void reiserfs_make_bad_inode(struct inode *inode)
1522{
1523 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1524 make_bad_inode(inode);
1525}
1526
1527/*
1528 * initially this function was derived from minix or ext2's analog and
1529 * evolved as the prototype did
1530 */
1531int reiserfs_init_locked_inode(struct inode *inode, void *p)
1532{
1533 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1534 inode->i_ino = args->objectid;
1535 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1536 return 0;
1537}
1538
1539/*
1540 * looks for stat data in the tree, and fills up the fields of in-core
1541 * inode stat data fields
1542 */
1543void reiserfs_read_locked_inode(struct inode *inode,
1544 struct reiserfs_iget_args *args)
1545{
1546 INITIALIZE_PATH(path_to_sd);
1547 struct cpu_key key;
1548 unsigned long dirino;
1549 int retval;
1550
1551 dirino = args->dirid;
1552
1553 /*
1554 * set version 1, version 2 could be used too, because stat data
1555 * key is the same in both versions
1556 */
1557 key.version = KEY_FORMAT_3_5;
1558 key.on_disk_key.k_dir_id = dirino;
1559 key.on_disk_key.k_objectid = inode->i_ino;
1560 key.on_disk_key.k_offset = 0;
1561 key.on_disk_key.k_type = 0;
1562
1563 /* look for the object's stat data */
1564 retval = search_item(inode->i_sb, &key, &path_to_sd);
1565 if (retval == IO_ERROR) {
1566 reiserfs_error(inode->i_sb, "vs-13070",
1567 "i/o failure occurred trying to find "
1568 "stat data of %K", &key);
1569 reiserfs_make_bad_inode(inode);
1570 return;
1571 }
1572
1573 /* a stale NFS handle can trigger this without it being an error */
1574 if (retval != ITEM_FOUND) {
1575 pathrelse(&path_to_sd);
1576 reiserfs_make_bad_inode(inode);
1577 clear_nlink(inode);
1578 return;
1579 }
1580
1581 init_inode(inode, &path_to_sd);
1582
1583 /*
1584 * It is possible that knfsd is trying to access inode of a file
1585 * that is being removed from the disk by some other thread. As we
1586 * update sd on unlink all that is required is to check for nlink
1587 * here. This bug was first found by Sizif when debugging
1588 * SquidNG/Butterfly, forgotten, and found again after Philippe
1589 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1590
1591 * More logical fix would require changes in fs/inode.c:iput() to
1592 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1593 * in iget() to return NULL if I_FREEING inode is found in
1594 * hash-table.
1595 */
1596
1597 /*
1598 * Currently there is one place where it's ok to meet inode with
1599 * nlink==0: processing of open-unlinked and half-truncated files
1600 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1601 */
1602 if ((inode->i_nlink == 0) &&
1603 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1604 reiserfs_warning(inode->i_sb, "vs-13075",
1605 "dead inode read from disk %K. "
1606 "This is likely to be race with knfsd. Ignore",
1607 &key);
1608 reiserfs_make_bad_inode(inode);
1609 }
1610
1611 /* init inode should be relsing */
1612 reiserfs_check_path(&path_to_sd);
1613
1614 /*
1615 * Stat data v1 doesn't support ACLs.
1616 */
1617 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1618 cache_no_acl(inode);
1619}
1620
1621/*
1622 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1623 *
1624 * @inode: inode from hash table to check
1625 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1626 *
1627 * This function is called by iget5_locked() to distinguish reiserfs inodes
1628 * having the same inode numbers. Such inodes can only exist due to some
1629 * error condition. One of them should be bad. Inodes with identical
1630 * inode numbers (objectids) are distinguished by parent directory ids.
1631 *
1632 */
1633int reiserfs_find_actor(struct inode *inode, void *opaque)
1634{
1635 struct reiserfs_iget_args *args;
1636
1637 args = opaque;
1638 /* args is already in CPU order */
1639 return (inode->i_ino == args->objectid) &&
1640 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1641}
1642
1643struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1644{
1645 struct inode *inode;
1646 struct reiserfs_iget_args args;
1647 int depth;
1648
1649 args.objectid = key->on_disk_key.k_objectid;
1650 args.dirid = key->on_disk_key.k_dir_id;
1651 depth = reiserfs_write_unlock_nested(s);
1652 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1653 reiserfs_find_actor, reiserfs_init_locked_inode,
1654 (void *)(&args));
1655 reiserfs_write_lock_nested(s, depth);
1656 if (!inode)
1657 return ERR_PTR(-ENOMEM);
1658
1659 if (inode->i_state & I_NEW) {
1660 reiserfs_read_locked_inode(inode, &args);
1661 unlock_new_inode(inode);
1662 }
1663
1664 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1665 /* either due to i/o error or a stale NFS handle */
1666 iput(inode);
1667 inode = NULL;
1668 }
1669 return inode;
1670}
1671
1672static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1673 u32 objectid, u32 dir_id, u32 generation)
1674
1675{
1676 struct cpu_key key;
1677 struct inode *inode;
1678
1679 key.on_disk_key.k_objectid = objectid;
1680 key.on_disk_key.k_dir_id = dir_id;
1681 reiserfs_write_lock(sb);
1682 inode = reiserfs_iget(sb, &key);
1683 if (inode && !IS_ERR(inode) && generation != 0 &&
1684 generation != inode->i_generation) {
1685 iput(inode);
1686 inode = NULL;
1687 }
1688 reiserfs_write_unlock(sb);
1689
1690 return d_obtain_alias(inode);
1691}
1692
1693struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1694 int fh_len, int fh_type)
1695{
1696 /*
1697 * fhtype happens to reflect the number of u32s encoded.
1698 * due to a bug in earlier code, fhtype might indicate there
1699 * are more u32s then actually fitted.
1700 * so if fhtype seems to be more than len, reduce fhtype.
1701 * Valid types are:
1702 * 2 - objectid + dir_id - legacy support
1703 * 3 - objectid + dir_id + generation
1704 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1705 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1706 * 6 - as above plus generation of directory
1707 * 6 does not fit in NFSv2 handles
1708 */
1709 if (fh_type > fh_len) {
1710 if (fh_type != 6 || fh_len != 5)
1711 reiserfs_warning(sb, "reiserfs-13077",
1712 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1713 fh_type, fh_len);
1714 fh_type = fh_len;
1715 }
1716 if (fh_len < 2)
1717 return NULL;
1718
1719 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1720 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1721}
1722
1723struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1724 int fh_len, int fh_type)
1725{
1726 if (fh_type > fh_len)
1727 fh_type = fh_len;
1728 if (fh_type < 4)
1729 return NULL;
1730
1731 return reiserfs_get_dentry(sb,
1732 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1733 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1734 (fh_type == 6) ? fid->raw[5] : 0);
1735}
1736
1737int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1738 struct inode *parent)
1739{
1740 int maxlen = *lenp;
1741
1742 if (parent && (maxlen < 5)) {
1743 *lenp = 5;
1744 return FILEID_INVALID;
1745 } else if (maxlen < 3) {
1746 *lenp = 3;
1747 return FILEID_INVALID;
1748 }
1749
1750 data[0] = inode->i_ino;
1751 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1752 data[2] = inode->i_generation;
1753 *lenp = 3;
1754 if (parent) {
1755 data[3] = parent->i_ino;
1756 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1757 *lenp = 5;
1758 if (maxlen >= 6) {
1759 data[5] = parent->i_generation;
1760 *lenp = 6;
1761 }
1762 }
1763 return *lenp;
1764}
1765
1766/*
1767 * looks for stat data, then copies fields to it, marks the buffer
1768 * containing stat data as dirty
1769 */
1770/*
1771 * reiserfs inodes are never really dirty, since the dirty inode call
1772 * always logs them. This call allows the VFS inode marking routines
1773 * to properly mark inodes for datasync and such, but only actually
1774 * does something when called for a synchronous update.
1775 */
1776int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1777{
1778 struct reiserfs_transaction_handle th;
1779 int jbegin_count = 1;
1780
1781 if (inode->i_sb->s_flags & MS_RDONLY)
1782 return -EROFS;
1783 /*
1784 * memory pressure can sometimes initiate write_inode calls with
1785 * sync == 1,
1786 * these cases are just when the system needs ram, not when the
1787 * inode needs to reach disk for safety, and they can safely be
1788 * ignored because the altered inode has already been logged.
1789 */
1790 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1791 reiserfs_write_lock(inode->i_sb);
1792 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1793 reiserfs_update_sd(&th, inode);
1794 journal_end_sync(&th);
1795 }
1796 reiserfs_write_unlock(inode->i_sb);
1797 }
1798 return 0;
1799}
1800
1801/*
1802 * stat data of new object is inserted already, this inserts the item
1803 * containing "." and ".." entries
1804 */
1805static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1806 struct inode *inode,
1807 struct item_head *ih, struct treepath *path,
1808 struct inode *dir)
1809{
1810 struct super_block *sb = th->t_super;
1811 char empty_dir[EMPTY_DIR_SIZE];
1812 char *body = empty_dir;
1813 struct cpu_key key;
1814 int retval;
1815
1816 BUG_ON(!th->t_trans_id);
1817
1818 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1819 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1820 TYPE_DIRENTRY, 3 /*key length */ );
1821
1822 /*
1823 * compose item head for new item. Directories consist of items of
1824 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1825 * is done by reiserfs_new_inode
1826 */
1827 if (old_format_only(sb)) {
1828 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1829 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1830
1831 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1832 ih->ih_key.k_objectid,
1833 INODE_PKEY(dir)->k_dir_id,
1834 INODE_PKEY(dir)->k_objectid);
1835 } else {
1836 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1837 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1838
1839 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1840 ih->ih_key.k_objectid,
1841 INODE_PKEY(dir)->k_dir_id,
1842 INODE_PKEY(dir)->k_objectid);
1843 }
1844
1845 /* look for place in the tree for new item */
1846 retval = search_item(sb, &key, path);
1847 if (retval == IO_ERROR) {
1848 reiserfs_error(sb, "vs-13080",
1849 "i/o failure occurred creating new directory");
1850 return -EIO;
1851 }
1852 if (retval == ITEM_FOUND) {
1853 pathrelse(path);
1854 reiserfs_warning(sb, "vs-13070",
1855 "object with this key exists (%k)",
1856 &(ih->ih_key));
1857 return -EEXIST;
1858 }
1859
1860 /* insert item, that is empty directory item */
1861 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1862}
1863
1864/*
1865 * stat data of object has been inserted, this inserts the item
1866 * containing the body of symlink
1867 */
1868static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1869 struct inode *inode,
1870 struct item_head *ih,
1871 struct treepath *path, const char *symname,
1872 int item_len)
1873{
1874 struct super_block *sb = th->t_super;
1875 struct cpu_key key;
1876 int retval;
1877
1878 BUG_ON(!th->t_trans_id);
1879
1880 _make_cpu_key(&key, KEY_FORMAT_3_5,
1881 le32_to_cpu(ih->ih_key.k_dir_id),
1882 le32_to_cpu(ih->ih_key.k_objectid),
1883 1, TYPE_DIRECT, 3 /*key length */ );
1884
1885 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1886 0 /*free_space */ );
1887
1888 /* look for place in the tree for new item */
1889 retval = search_item(sb, &key, path);
1890 if (retval == IO_ERROR) {
1891 reiserfs_error(sb, "vs-13080",
1892 "i/o failure occurred creating new symlink");
1893 return -EIO;
1894 }
1895 if (retval == ITEM_FOUND) {
1896 pathrelse(path);
1897 reiserfs_warning(sb, "vs-13080",
1898 "object with this key exists (%k)",
1899 &(ih->ih_key));
1900 return -EEXIST;
1901 }
1902
1903 /* insert item, that is body of symlink */
1904 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1905}
1906
1907/*
1908 * inserts the stat data into the tree, and then calls
1909 * reiserfs_new_directory (to insert ".", ".." item if new object is
1910 * directory) or reiserfs_new_symlink (to insert symlink body if new
1911 * object is symlink) or nothing (if new object is regular file)
1912
1913 * NOTE! uid and gid must already be set in the inode. If we return
1914 * non-zero due to an error, we have to drop the quota previously allocated
1915 * for the fresh inode. This can only be done outside a transaction, so
1916 * if we return non-zero, we also end the transaction.
1917 *
1918 * @th: active transaction handle
1919 * @dir: parent directory for new inode
1920 * @mode: mode of new inode
1921 * @symname: symlink contents if inode is symlink
1922 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1923 * symlinks
1924 * @inode: inode to be filled
1925 * @security: optional security context to associate with this inode
1926 */
1927int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1928 struct inode *dir, umode_t mode, const char *symname,
1929 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1930 strlen (symname) for symlinks) */
1931 loff_t i_size, struct dentry *dentry,
1932 struct inode *inode,
1933 struct reiserfs_security_handle *security)
1934{
1935 struct super_block *sb = dir->i_sb;
1936 struct reiserfs_iget_args args;
1937 INITIALIZE_PATH(path_to_key);
1938 struct cpu_key key;
1939 struct item_head ih;
1940 struct stat_data sd;
1941 int retval;
1942 int err;
1943 int depth;
1944
1945 BUG_ON(!th->t_trans_id);
1946
1947 depth = reiserfs_write_unlock_nested(sb);
1948 err = dquot_alloc_inode(inode);
1949 reiserfs_write_lock_nested(sb, depth);
1950 if (err)
1951 goto out_end_trans;
1952 if (!dir->i_nlink) {
1953 err = -EPERM;
1954 goto out_bad_inode;
1955 }
1956
1957 /* item head of new item */
1958 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1959 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1960 if (!ih.ih_key.k_objectid) {
1961 err = -ENOMEM;
1962 goto out_bad_inode;
1963 }
1964 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1965 if (old_format_only(sb))
1966 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1967 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1968 else
1969 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1970 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1971 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1972 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1973
1974 depth = reiserfs_write_unlock_nested(inode->i_sb);
1975 err = insert_inode_locked4(inode, args.objectid,
1976 reiserfs_find_actor, &args);
1977 reiserfs_write_lock_nested(inode->i_sb, depth);
1978 if (err) {
1979 err = -EINVAL;
1980 goto out_bad_inode;
1981 }
1982
1983 if (old_format_only(sb))
1984 /*
1985 * not a perfect generation count, as object ids can be reused,
1986 * but this is as good as reiserfs can do right now.
1987 * note that the private part of inode isn't filled in yet,
1988 * we have to use the directory.
1989 */
1990 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1991 else
1992#if defined( USE_INODE_GENERATION_COUNTER )
1993 inode->i_generation =
1994 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1995#else
1996 inode->i_generation = ++event;
1997#endif
1998
1999 /* fill stat data */
2000 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2001
2002 /* uid and gid must already be set by the caller for quota init */
2003
2004 /* symlink cannot be immutable or append only, right? */
2005 if (S_ISLNK(inode->i_mode))
2006 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2007
2008 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
2009 inode->i_size = i_size;
2010 inode->i_blocks = 0;
2011 inode->i_bytes = 0;
2012 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2013 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2014
2015 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2016 REISERFS_I(inode)->i_flags = 0;
2017 REISERFS_I(inode)->i_prealloc_block = 0;
2018 REISERFS_I(inode)->i_prealloc_count = 0;
2019 REISERFS_I(inode)->i_trans_id = 0;
2020 REISERFS_I(inode)->i_jl = NULL;
2021 REISERFS_I(inode)->i_attrs =
2022 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2023 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2024 reiserfs_init_xattr_rwsem(inode);
2025
2026 /* key to search for correct place for new stat data */
2027 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2028 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2029 TYPE_STAT_DATA, 3 /*key length */ );
2030
2031 /* find proper place for inserting of stat data */
2032 retval = search_item(sb, &key, &path_to_key);
2033 if (retval == IO_ERROR) {
2034 err = -EIO;
2035 goto out_bad_inode;
2036 }
2037 if (retval == ITEM_FOUND) {
2038 pathrelse(&path_to_key);
2039 err = -EEXIST;
2040 goto out_bad_inode;
2041 }
2042 if (old_format_only(sb)) {
2043 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2044 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2045 pathrelse(&path_to_key);
2046 err = -EINVAL;
2047 goto out_bad_inode;
2048 }
2049 inode2sd_v1(&sd, inode, inode->i_size);
2050 } else {
2051 inode2sd(&sd, inode, inode->i_size);
2052 }
2053 /*
2054 * store in in-core inode the key of stat data and version all
2055 * object items will have (directory items will have old offset
2056 * format, other new objects will consist of new items)
2057 */
2058 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2059 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2060 else
2061 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2062 if (old_format_only(sb))
2063 set_inode_sd_version(inode, STAT_DATA_V1);
2064 else
2065 set_inode_sd_version(inode, STAT_DATA_V2);
2066
2067 /* insert the stat data into the tree */
2068#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2069 if (REISERFS_I(dir)->new_packing_locality)
2070 th->displace_new_blocks = 1;
2071#endif
2072 retval =
2073 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2074 (char *)(&sd));
2075 if (retval) {
2076 err = retval;
2077 reiserfs_check_path(&path_to_key);
2078 goto out_bad_inode;
2079 }
2080#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2081 if (!th->displace_new_blocks)
2082 REISERFS_I(dir)->new_packing_locality = 0;
2083#endif
2084 if (S_ISDIR(mode)) {
2085 /* insert item with "." and ".." */
2086 retval =
2087 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2088 }
2089
2090 if (S_ISLNK(mode)) {
2091 /* insert body of symlink */
2092 if (!old_format_only(sb))
2093 i_size = ROUND_UP(i_size);
2094 retval =
2095 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2096 i_size);
2097 }
2098 if (retval) {
2099 err = retval;
2100 reiserfs_check_path(&path_to_key);
2101 journal_end(th);
2102 goto out_inserted_sd;
2103 }
2104
2105 if (reiserfs_posixacl(inode->i_sb)) {
2106 reiserfs_write_unlock(inode->i_sb);
2107 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2108 reiserfs_write_lock(inode->i_sb);
2109 if (retval) {
2110 err = retval;
2111 reiserfs_check_path(&path_to_key);
2112 journal_end(th);
2113 goto out_inserted_sd;
2114 }
2115 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
2116 reiserfs_warning(inode->i_sb, "jdm-13090",
2117 "ACLs aren't enabled in the fs, "
2118 "but vfs thinks they are!");
2119 } else if (IS_PRIVATE(dir))
2120 inode->i_flags |= S_PRIVATE;
2121
2122 if (security->name) {
2123 reiserfs_write_unlock(inode->i_sb);
2124 retval = reiserfs_security_write(th, inode, security);
2125 reiserfs_write_lock(inode->i_sb);
2126 if (retval) {
2127 err = retval;
2128 reiserfs_check_path(&path_to_key);
2129 retval = journal_end(th);
2130 if (retval)
2131 err = retval;
2132 goto out_inserted_sd;
2133 }
2134 }
2135
2136 reiserfs_update_sd(th, inode);
2137 reiserfs_check_path(&path_to_key);
2138
2139 return 0;
2140
2141out_bad_inode:
2142 /* Invalidate the object, nothing was inserted yet */
2143 INODE_PKEY(inode)->k_objectid = 0;
2144
2145 /* Quota change must be inside a transaction for journaling */
2146 depth = reiserfs_write_unlock_nested(inode->i_sb);
2147 dquot_free_inode(inode);
2148 reiserfs_write_lock_nested(inode->i_sb, depth);
2149
2150out_end_trans:
2151 journal_end(th);
2152 /*
2153 * Drop can be outside and it needs more credits so it's better
2154 * to have it outside
2155 */
2156 depth = reiserfs_write_unlock_nested(inode->i_sb);
2157 dquot_drop(inode);
2158 reiserfs_write_lock_nested(inode->i_sb, depth);
2159 inode->i_flags |= S_NOQUOTA;
2160 make_bad_inode(inode);
2161
2162out_inserted_sd:
2163 clear_nlink(inode);
2164 th->t_trans_id = 0; /* so the caller can't use this handle later */
2165 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2166 iput(inode);
2167 return err;
2168}
2169
2170/*
2171 * finds the tail page in the page cache,
2172 * reads the last block in.
2173 *
2174 * On success, page_result is set to a locked, pinned page, and bh_result
2175 * is set to an up to date buffer for the last block in the file. returns 0.
2176 *
2177 * tail conversion is not done, so bh_result might not be valid for writing
2178 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2179 * trying to write the block.
2180 *
2181 * on failure, nonzero is returned, page_result and bh_result are untouched.
2182 */
2183static int grab_tail_page(struct inode *inode,
2184 struct page **page_result,
2185 struct buffer_head **bh_result)
2186{
2187
2188 /*
2189 * we want the page with the last byte in the file,
2190 * not the page that will hold the next byte for appending
2191 */
2192 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2193 unsigned long pos = 0;
2194 unsigned long start = 0;
2195 unsigned long blocksize = inode->i_sb->s_blocksize;
2196 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2197 struct buffer_head *bh;
2198 struct buffer_head *head;
2199 struct page *page;
2200 int error;
2201
2202 /*
2203 * we know that we are only called with inode->i_size > 0.
2204 * we also know that a file tail can never be as big as a block
2205 * If i_size % blocksize == 0, our file is currently block aligned
2206 * and it won't need converting or zeroing after a truncate.
2207 */
2208 if ((offset & (blocksize - 1)) == 0) {
2209 return -ENOENT;
2210 }
2211 page = grab_cache_page(inode->i_mapping, index);
2212 error = -ENOMEM;
2213 if (!page) {
2214 goto out;
2215 }
2216 /* start within the page of the last block in the file */
2217 start = (offset / blocksize) * blocksize;
2218
2219 error = __block_write_begin(page, start, offset - start,
2220 reiserfs_get_block_create_0);
2221 if (error)
2222 goto unlock;
2223
2224 head = page_buffers(page);
2225 bh = head;
2226 do {
2227 if (pos >= start) {
2228 break;
2229 }
2230 bh = bh->b_this_page;
2231 pos += blocksize;
2232 } while (bh != head);
2233
2234 if (!buffer_uptodate(bh)) {
2235 /*
2236 * note, this should never happen, prepare_write should be
2237 * taking care of this for us. If the buffer isn't up to
2238 * date, I've screwed up the code to find the buffer, or the
2239 * code to call prepare_write
2240 */
2241 reiserfs_error(inode->i_sb, "clm-6000",
2242 "error reading block %lu", bh->b_blocknr);
2243 error = -EIO;
2244 goto unlock;
2245 }
2246 *bh_result = bh;
2247 *page_result = page;
2248
2249out:
2250 return error;
2251
2252unlock:
2253 unlock_page(page);
2254 put_page(page);
2255 return error;
2256}
2257
2258/*
2259 * vfs version of truncate file. Must NOT be called with
2260 * a transaction already started.
2261 *
2262 * some code taken from block_truncate_page
2263 */
2264int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2265{
2266 struct reiserfs_transaction_handle th;
2267 /* we want the offset for the first byte after the end of the file */
2268 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2269 unsigned blocksize = inode->i_sb->s_blocksize;
2270 unsigned length;
2271 struct page *page = NULL;
2272 int error;
2273 struct buffer_head *bh = NULL;
2274 int err2;
2275
2276 reiserfs_write_lock(inode->i_sb);
2277
2278 if (inode->i_size > 0) {
2279 error = grab_tail_page(inode, &page, &bh);
2280 if (error) {
2281 /*
2282 * -ENOENT means we truncated past the end of the
2283 * file, and get_block_create_0 could not find a
2284 * block to read in, which is ok.
2285 */
2286 if (error != -ENOENT)
2287 reiserfs_error(inode->i_sb, "clm-6001",
2288 "grab_tail_page failed %d",
2289 error);
2290 page = NULL;
2291 bh = NULL;
2292 }
2293 }
2294
2295 /*
2296 * so, if page != NULL, we have a buffer head for the offset at
2297 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2298 * then we have an unformatted node. Otherwise, we have a direct item,
2299 * and no zeroing is required on disk. We zero after the truncate,
2300 * because the truncate might pack the item anyway
2301 * (it will unmap bh if it packs).
2302 *
2303 * it is enough to reserve space in transaction for 2 balancings:
2304 * one for "save" link adding and another for the first
2305 * cut_from_item. 1 is for update_sd
2306 */
2307 error = journal_begin(&th, inode->i_sb,
2308 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2309 if (error)
2310 goto out;
2311 reiserfs_update_inode_transaction(inode);
2312 if (update_timestamps)
2313 /*
2314 * we are doing real truncate: if the system crashes
2315 * before the last transaction of truncating gets committed
2316 * - on reboot the file either appears truncated properly
2317 * or not truncated at all
2318 */
2319 add_save_link(&th, inode, 1);
2320 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2321 error = journal_end(&th);
2322 if (error)
2323 goto out;
2324
2325 /* check reiserfs_do_truncate after ending the transaction */
2326 if (err2) {
2327 error = err2;
2328 goto out;
2329 }
2330
2331 if (update_timestamps) {
2332 error = remove_save_link(inode, 1 /* truncate */);
2333 if (error)
2334 goto out;
2335 }
2336
2337 if (page) {
2338 length = offset & (blocksize - 1);
2339 /* if we are not on a block boundary */
2340 if (length) {
2341 length = blocksize - length;
2342 zero_user(page, offset, length);
2343 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2344 mark_buffer_dirty(bh);
2345 }
2346 }
2347 unlock_page(page);
2348 put_page(page);
2349 }
2350
2351 reiserfs_write_unlock(inode->i_sb);
2352
2353 return 0;
2354out:
2355 if (page) {
2356 unlock_page(page);
2357 put_page(page);
2358 }
2359
2360 reiserfs_write_unlock(inode->i_sb);
2361
2362 return error;
2363}
2364
2365static int map_block_for_writepage(struct inode *inode,
2366 struct buffer_head *bh_result,
2367 unsigned long block)
2368{
2369 struct reiserfs_transaction_handle th;
2370 int fs_gen;
2371 struct item_head tmp_ih;
2372 struct item_head *ih;
2373 struct buffer_head *bh;
2374 __le32 *item;
2375 struct cpu_key key;
2376 INITIALIZE_PATH(path);
2377 int pos_in_item;
2378 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2379 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2380 int retval;
2381 int use_get_block = 0;
2382 int bytes_copied = 0;
2383 int copy_size;
2384 int trans_running = 0;
2385
2386 /*
2387 * catch places below that try to log something without
2388 * starting a trans
2389 */
2390 th.t_trans_id = 0;
2391
2392 if (!buffer_uptodate(bh_result)) {
2393 return -EIO;
2394 }
2395
2396 kmap(bh_result->b_page);
2397start_over:
2398 reiserfs_write_lock(inode->i_sb);
2399 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2400
2401research:
2402 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2403 if (retval != POSITION_FOUND) {
2404 use_get_block = 1;
2405 goto out;
2406 }
2407
2408 bh = get_last_bh(&path);
2409 ih = tp_item_head(&path);
2410 item = tp_item_body(&path);
2411 pos_in_item = path.pos_in_item;
2412
2413 /* we've found an unformatted node */
2414 if (indirect_item_found(retval, ih)) {
2415 if (bytes_copied > 0) {
2416 reiserfs_warning(inode->i_sb, "clm-6002",
2417 "bytes_copied %d", bytes_copied);
2418 }
2419 if (!get_block_num(item, pos_in_item)) {
2420 /* crap, we are writing to a hole */
2421 use_get_block = 1;
2422 goto out;
2423 }
2424 set_block_dev_mapped(bh_result,
2425 get_block_num(item, pos_in_item), inode);
2426 } else if (is_direct_le_ih(ih)) {
2427 char *p;
2428 p = page_address(bh_result->b_page);
2429 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2430 copy_size = ih_item_len(ih) - pos_in_item;
2431
2432 fs_gen = get_generation(inode->i_sb);
2433 copy_item_head(&tmp_ih, ih);
2434
2435 if (!trans_running) {
2436 /* vs-3050 is gone, no need to drop the path */
2437 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2438 if (retval)
2439 goto out;
2440 reiserfs_update_inode_transaction(inode);
2441 trans_running = 1;
2442 if (fs_changed(fs_gen, inode->i_sb)
2443 && item_moved(&tmp_ih, &path)) {
2444 reiserfs_restore_prepared_buffer(inode->i_sb,
2445 bh);
2446 goto research;
2447 }
2448 }
2449
2450 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2451
2452 if (fs_changed(fs_gen, inode->i_sb)
2453 && item_moved(&tmp_ih, &path)) {
2454 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2455 goto research;
2456 }
2457
2458 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2459 copy_size);
2460
2461 journal_mark_dirty(&th, bh);
2462 bytes_copied += copy_size;
2463 set_block_dev_mapped(bh_result, 0, inode);
2464
2465 /* are there still bytes left? */
2466 if (bytes_copied < bh_result->b_size &&
2467 (byte_offset + bytes_copied) < inode->i_size) {
2468 set_cpu_key_k_offset(&key,
2469 cpu_key_k_offset(&key) +
2470 copy_size);
2471 goto research;
2472 }
2473 } else {
2474 reiserfs_warning(inode->i_sb, "clm-6003",
2475 "bad item inode %lu", inode->i_ino);
2476 retval = -EIO;
2477 goto out;
2478 }
2479 retval = 0;
2480
2481out:
2482 pathrelse(&path);
2483 if (trans_running) {
2484 int err = journal_end(&th);
2485 if (err)
2486 retval = err;
2487 trans_running = 0;
2488 }
2489 reiserfs_write_unlock(inode->i_sb);
2490
2491 /* this is where we fill in holes in the file. */
2492 if (use_get_block) {
2493 retval = reiserfs_get_block(inode, block, bh_result,
2494 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2495 | GET_BLOCK_NO_DANGLE);
2496 if (!retval) {
2497 if (!buffer_mapped(bh_result)
2498 || bh_result->b_blocknr == 0) {
2499 /* get_block failed to find a mapped unformatted node. */
2500 use_get_block = 0;
2501 goto start_over;
2502 }
2503 }
2504 }
2505 kunmap(bh_result->b_page);
2506
2507 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2508 /*
2509 * we've copied data from the page into the direct item, so the
2510 * buffer in the page is now clean, mark it to reflect that.
2511 */
2512 lock_buffer(bh_result);
2513 clear_buffer_dirty(bh_result);
2514 unlock_buffer(bh_result);
2515 }
2516 return retval;
2517}
2518
2519/*
2520 * mason@suse.com: updated in 2.5.54 to follow the same general io
2521 * start/recovery path as __block_write_full_page, along with special
2522 * code to handle reiserfs tails.
2523 */
2524static int reiserfs_write_full_page(struct page *page,
2525 struct writeback_control *wbc)
2526{
2527 struct inode *inode = page->mapping->host;
2528 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2529 int error = 0;
2530 unsigned long block;
2531 sector_t last_block;
2532 struct buffer_head *head, *bh;
2533 int partial = 0;
2534 int nr = 0;
2535 int checked = PageChecked(page);
2536 struct reiserfs_transaction_handle th;
2537 struct super_block *s = inode->i_sb;
2538 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2539 th.t_trans_id = 0;
2540
2541 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2542 if (checked && (current->flags & PF_MEMALLOC)) {
2543 redirty_page_for_writepage(wbc, page);
2544 unlock_page(page);
2545 return 0;
2546 }
2547
2548 /*
2549 * The page dirty bit is cleared before writepage is called, which
2550 * means we have to tell create_empty_buffers to make dirty buffers
2551 * The page really should be up to date at this point, so tossing
2552 * in the BH_Uptodate is just a sanity check.
2553 */
2554 if (!page_has_buffers(page)) {
2555 create_empty_buffers(page, s->s_blocksize,
2556 (1 << BH_Dirty) | (1 << BH_Uptodate));
2557 }
2558 head = page_buffers(page);
2559
2560 /*
2561 * last page in the file, zero out any contents past the
2562 * last byte in the file
2563 */
2564 if (page->index >= end_index) {
2565 unsigned last_offset;
2566
2567 last_offset = inode->i_size & (PAGE_SIZE - 1);
2568 /* no file contents in this page */
2569 if (page->index >= end_index + 1 || !last_offset) {
2570 unlock_page(page);
2571 return 0;
2572 }
2573 zero_user_segment(page, last_offset, PAGE_SIZE);
2574 }
2575 bh = head;
2576 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2577 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2578 /* first map all the buffers, logging any direct items we find */
2579 do {
2580 if (block > last_block) {
2581 /*
2582 * This can happen when the block size is less than
2583 * the page size. The corresponding bytes in the page
2584 * were zero filled above
2585 */
2586 clear_buffer_dirty(bh);
2587 set_buffer_uptodate(bh);
2588 } else if ((checked || buffer_dirty(bh)) &&
2589 (!buffer_mapped(bh) || (buffer_mapped(bh)
2590 && bh->b_blocknr ==
2591 0))) {
2592 /*
2593 * not mapped yet, or it points to a direct item, search
2594 * the btree for the mapping info, and log any direct
2595 * items found
2596 */
2597 if ((error = map_block_for_writepage(inode, bh, block))) {
2598 goto fail;
2599 }
2600 }
2601 bh = bh->b_this_page;
2602 block++;
2603 } while (bh != head);
2604
2605 /*
2606 * we start the transaction after map_block_for_writepage,
2607 * because it can create holes in the file (an unbounded operation).
2608 * starting it here, we can make a reliable estimate for how many
2609 * blocks we're going to log
2610 */
2611 if (checked) {
2612 ClearPageChecked(page);
2613 reiserfs_write_lock(s);
2614 error = journal_begin(&th, s, bh_per_page + 1);
2615 if (error) {
2616 reiserfs_write_unlock(s);
2617 goto fail;
2618 }
2619 reiserfs_update_inode_transaction(inode);
2620 }
2621 /* now go through and lock any dirty buffers on the page */
2622 do {
2623 get_bh(bh);
2624 if (!buffer_mapped(bh))
2625 continue;
2626 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2627 continue;
2628
2629 if (checked) {
2630 reiserfs_prepare_for_journal(s, bh, 1);
2631 journal_mark_dirty(&th, bh);
2632 continue;
2633 }
2634 /*
2635 * from this point on, we know the buffer is mapped to a
2636 * real block and not a direct item
2637 */
2638 if (wbc->sync_mode != WB_SYNC_NONE) {
2639 lock_buffer(bh);
2640 } else {
2641 if (!trylock_buffer(bh)) {
2642 redirty_page_for_writepage(wbc, page);
2643 continue;
2644 }
2645 }
2646 if (test_clear_buffer_dirty(bh)) {
2647 mark_buffer_async_write(bh);
2648 } else {
2649 unlock_buffer(bh);
2650 }
2651 } while ((bh = bh->b_this_page) != head);
2652
2653 if (checked) {
2654 error = journal_end(&th);
2655 reiserfs_write_unlock(s);
2656 if (error)
2657 goto fail;
2658 }
2659 BUG_ON(PageWriteback(page));
2660 set_page_writeback(page);
2661 unlock_page(page);
2662
2663 /*
2664 * since any buffer might be the only dirty buffer on the page,
2665 * the first submit_bh can bring the page out of writeback.
2666 * be careful with the buffers.
2667 */
2668 do {
2669 struct buffer_head *next = bh->b_this_page;
2670 if (buffer_async_write(bh)) {
2671 submit_bh(WRITE, bh);
2672 nr++;
2673 }
2674 put_bh(bh);
2675 bh = next;
2676 } while (bh != head);
2677
2678 error = 0;
2679done:
2680 if (nr == 0) {
2681 /*
2682 * if this page only had a direct item, it is very possible for
2683 * no io to be required without there being an error. Or,
2684 * someone else could have locked them and sent them down the
2685 * pipe without locking the page
2686 */
2687 bh = head;
2688 do {
2689 if (!buffer_uptodate(bh)) {
2690 partial = 1;
2691 break;
2692 }
2693 bh = bh->b_this_page;
2694 } while (bh != head);
2695 if (!partial)
2696 SetPageUptodate(page);
2697 end_page_writeback(page);
2698 }
2699 return error;
2700
2701fail:
2702 /*
2703 * catches various errors, we need to make sure any valid dirty blocks
2704 * get to the media. The page is currently locked and not marked for
2705 * writeback
2706 */
2707 ClearPageUptodate(page);
2708 bh = head;
2709 do {
2710 get_bh(bh);
2711 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2712 lock_buffer(bh);
2713 mark_buffer_async_write(bh);
2714 } else {
2715 /*
2716 * clear any dirty bits that might have come from
2717 * getting attached to a dirty page
2718 */
2719 clear_buffer_dirty(bh);
2720 }
2721 bh = bh->b_this_page;
2722 } while (bh != head);
2723 SetPageError(page);
2724 BUG_ON(PageWriteback(page));
2725 set_page_writeback(page);
2726 unlock_page(page);
2727 do {
2728 struct buffer_head *next = bh->b_this_page;
2729 if (buffer_async_write(bh)) {
2730 clear_buffer_dirty(bh);
2731 submit_bh(WRITE, bh);
2732 nr++;
2733 }
2734 put_bh(bh);
2735 bh = next;
2736 } while (bh != head);
2737 goto done;
2738}
2739
2740static int reiserfs_readpage(struct file *f, struct page *page)
2741{
2742 return block_read_full_page(page, reiserfs_get_block);
2743}
2744
2745static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2746{
2747 struct inode *inode = page->mapping->host;
2748 reiserfs_wait_on_write_block(inode->i_sb);
2749 return reiserfs_write_full_page(page, wbc);
2750}
2751
2752static void reiserfs_truncate_failed_write(struct inode *inode)
2753{
2754 truncate_inode_pages(inode->i_mapping, inode->i_size);
2755 reiserfs_truncate_file(inode, 0);
2756}
2757
2758static int reiserfs_write_begin(struct file *file,
2759 struct address_space *mapping,
2760 loff_t pos, unsigned len, unsigned flags,
2761 struct page **pagep, void **fsdata)
2762{
2763 struct inode *inode;
2764 struct page *page;
2765 pgoff_t index;
2766 int ret;
2767 int old_ref = 0;
2768
2769 inode = mapping->host;
2770 *fsdata = NULL;
2771 if (flags & AOP_FLAG_CONT_EXPAND &&
2772 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2773 pos ++;
2774 *fsdata = (void *)(unsigned long)flags;
2775 }
2776
2777 index = pos >> PAGE_SHIFT;
2778 page = grab_cache_page_write_begin(mapping, index, flags);
2779 if (!page)
2780 return -ENOMEM;
2781 *pagep = page;
2782
2783 reiserfs_wait_on_write_block(inode->i_sb);
2784 fix_tail_page_for_writing(page);
2785 if (reiserfs_transaction_running(inode->i_sb)) {
2786 struct reiserfs_transaction_handle *th;
2787 th = (struct reiserfs_transaction_handle *)current->
2788 journal_info;
2789 BUG_ON(!th->t_refcount);
2790 BUG_ON(!th->t_trans_id);
2791 old_ref = th->t_refcount;
2792 th->t_refcount++;
2793 }
2794 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2795 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2796 struct reiserfs_transaction_handle *th = current->journal_info;
2797 /*
2798 * this gets a little ugly. If reiserfs_get_block returned an
2799 * error and left a transacstion running, we've got to close
2800 * it, and we've got to free handle if it was a persistent
2801 * transaction.
2802 *
2803 * But, if we had nested into an existing transaction, we need
2804 * to just drop the ref count on the handle.
2805 *
2806 * If old_ref == 0, the transaction is from reiserfs_get_block,
2807 * and it was a persistent trans. Otherwise, it was nested
2808 * above.
2809 */
2810 if (th->t_refcount > old_ref) {
2811 if (old_ref)
2812 th->t_refcount--;
2813 else {
2814 int err;
2815 reiserfs_write_lock(inode->i_sb);
2816 err = reiserfs_end_persistent_transaction(th);
2817 reiserfs_write_unlock(inode->i_sb);
2818 if (err)
2819 ret = err;
2820 }
2821 }
2822 }
2823 if (ret) {
2824 unlock_page(page);
2825 put_page(page);
2826 /* Truncate allocated blocks */
2827 reiserfs_truncate_failed_write(inode);
2828 }
2829 return ret;
2830}
2831
2832int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2833{
2834 struct inode *inode = page->mapping->host;
2835 int ret;
2836 int old_ref = 0;
2837 int depth;
2838
2839 depth = reiserfs_write_unlock_nested(inode->i_sb);
2840 reiserfs_wait_on_write_block(inode->i_sb);
2841 reiserfs_write_lock_nested(inode->i_sb, depth);
2842
2843 fix_tail_page_for_writing(page);
2844 if (reiserfs_transaction_running(inode->i_sb)) {
2845 struct reiserfs_transaction_handle *th;
2846 th = (struct reiserfs_transaction_handle *)current->
2847 journal_info;
2848 BUG_ON(!th->t_refcount);
2849 BUG_ON(!th->t_trans_id);
2850 old_ref = th->t_refcount;
2851 th->t_refcount++;
2852 }
2853
2854 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2855 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2856 struct reiserfs_transaction_handle *th = current->journal_info;
2857 /*
2858 * this gets a little ugly. If reiserfs_get_block returned an
2859 * error and left a transacstion running, we've got to close
2860 * it, and we've got to free handle if it was a persistent
2861 * transaction.
2862 *
2863 * But, if we had nested into an existing transaction, we need
2864 * to just drop the ref count on the handle.
2865 *
2866 * If old_ref == 0, the transaction is from reiserfs_get_block,
2867 * and it was a persistent trans. Otherwise, it was nested
2868 * above.
2869 */
2870 if (th->t_refcount > old_ref) {
2871 if (old_ref)
2872 th->t_refcount--;
2873 else {
2874 int err;
2875 reiserfs_write_lock(inode->i_sb);
2876 err = reiserfs_end_persistent_transaction(th);
2877 reiserfs_write_unlock(inode->i_sb);
2878 if (err)
2879 ret = err;
2880 }
2881 }
2882 }
2883 return ret;
2884
2885}
2886
2887static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2888{
2889 return generic_block_bmap(as, block, reiserfs_bmap);
2890}
2891
2892static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2893 loff_t pos, unsigned len, unsigned copied,
2894 struct page *page, void *fsdata)
2895{
2896 struct inode *inode = page->mapping->host;
2897 int ret = 0;
2898 int update_sd = 0;
2899 struct reiserfs_transaction_handle *th;
2900 unsigned start;
2901 bool locked = false;
2902
2903 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2904 pos ++;
2905
2906 reiserfs_wait_on_write_block(inode->i_sb);
2907 if (reiserfs_transaction_running(inode->i_sb))
2908 th = current->journal_info;
2909 else
2910 th = NULL;
2911
2912 start = pos & (PAGE_SIZE - 1);
2913 if (unlikely(copied < len)) {
2914 if (!PageUptodate(page))
2915 copied = 0;
2916
2917 page_zero_new_buffers(page, start + copied, start + len);
2918 }
2919 flush_dcache_page(page);
2920
2921 reiserfs_commit_page(inode, page, start, start + copied);
2922
2923 /*
2924 * generic_commit_write does this for us, but does not update the
2925 * transaction tracking stuff when the size changes. So, we have
2926 * to do the i_size updates here.
2927 */
2928 if (pos + copied > inode->i_size) {
2929 struct reiserfs_transaction_handle myth;
2930 reiserfs_write_lock(inode->i_sb);
2931 locked = true;
2932 /*
2933 * If the file have grown beyond the border where it
2934 * can have a tail, unmark it as needing a tail
2935 * packing
2936 */
2937 if ((have_large_tails(inode->i_sb)
2938 && inode->i_size > i_block_size(inode) * 4)
2939 || (have_small_tails(inode->i_sb)
2940 && inode->i_size > i_block_size(inode)))
2941 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2942
2943 ret = journal_begin(&myth, inode->i_sb, 1);
2944 if (ret)
2945 goto journal_error;
2946
2947 reiserfs_update_inode_transaction(inode);
2948 inode->i_size = pos + copied;
2949 /*
2950 * this will just nest into our transaction. It's important
2951 * to use mark_inode_dirty so the inode gets pushed around on
2952 * the dirty lists, and so that O_SYNC works as expected
2953 */
2954 mark_inode_dirty(inode);
2955 reiserfs_update_sd(&myth, inode);
2956 update_sd = 1;
2957 ret = journal_end(&myth);
2958 if (ret)
2959 goto journal_error;
2960 }
2961 if (th) {
2962 if (!locked) {
2963 reiserfs_write_lock(inode->i_sb);
2964 locked = true;
2965 }
2966 if (!update_sd)
2967 mark_inode_dirty(inode);
2968 ret = reiserfs_end_persistent_transaction(th);
2969 if (ret)
2970 goto out;
2971 }
2972
2973out:
2974 if (locked)
2975 reiserfs_write_unlock(inode->i_sb);
2976 unlock_page(page);
2977 put_page(page);
2978
2979 if (pos + len > inode->i_size)
2980 reiserfs_truncate_failed_write(inode);
2981
2982 return ret == 0 ? copied : ret;
2983
2984journal_error:
2985 reiserfs_write_unlock(inode->i_sb);
2986 locked = false;
2987 if (th) {
2988 if (!update_sd)
2989 reiserfs_update_sd(th, inode);
2990 ret = reiserfs_end_persistent_transaction(th);
2991 }
2992 goto out;
2993}
2994
2995int reiserfs_commit_write(struct file *f, struct page *page,
2996 unsigned from, unsigned to)
2997{
2998 struct inode *inode = page->mapping->host;
2999 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
3000 int ret = 0;
3001 int update_sd = 0;
3002 struct reiserfs_transaction_handle *th = NULL;
3003 int depth;
3004
3005 depth = reiserfs_write_unlock_nested(inode->i_sb);
3006 reiserfs_wait_on_write_block(inode->i_sb);
3007 reiserfs_write_lock_nested(inode->i_sb, depth);
3008
3009 if (reiserfs_transaction_running(inode->i_sb)) {
3010 th = current->journal_info;
3011 }
3012 reiserfs_commit_page(inode, page, from, to);
3013
3014 /*
3015 * generic_commit_write does this for us, but does not update the
3016 * transaction tracking stuff when the size changes. So, we have
3017 * to do the i_size updates here.
3018 */
3019 if (pos > inode->i_size) {
3020 struct reiserfs_transaction_handle myth;
3021 /*
3022 * If the file have grown beyond the border where it
3023 * can have a tail, unmark it as needing a tail
3024 * packing
3025 */
3026 if ((have_large_tails(inode->i_sb)
3027 && inode->i_size > i_block_size(inode) * 4)
3028 || (have_small_tails(inode->i_sb)
3029 && inode->i_size > i_block_size(inode)))
3030 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3031
3032 ret = journal_begin(&myth, inode->i_sb, 1);
3033 if (ret)
3034 goto journal_error;
3035
3036 reiserfs_update_inode_transaction(inode);
3037 inode->i_size = pos;
3038 /*
3039 * this will just nest into our transaction. It's important
3040 * to use mark_inode_dirty so the inode gets pushed around
3041 * on the dirty lists, and so that O_SYNC works as expected
3042 */
3043 mark_inode_dirty(inode);
3044 reiserfs_update_sd(&myth, inode);
3045 update_sd = 1;
3046 ret = journal_end(&myth);
3047 if (ret)
3048 goto journal_error;
3049 }
3050 if (th) {
3051 if (!update_sd)
3052 mark_inode_dirty(inode);
3053 ret = reiserfs_end_persistent_transaction(th);
3054 if (ret)
3055 goto out;
3056 }
3057
3058out:
3059 return ret;
3060
3061journal_error:
3062 if (th) {
3063 if (!update_sd)
3064 reiserfs_update_sd(th, inode);
3065 ret = reiserfs_end_persistent_transaction(th);
3066 }
3067
3068 return ret;
3069}
3070
3071void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3072{
3073 if (reiserfs_attrs(inode->i_sb)) {
3074 if (sd_attrs & REISERFS_SYNC_FL)
3075 inode->i_flags |= S_SYNC;
3076 else
3077 inode->i_flags &= ~S_SYNC;
3078 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3079 inode->i_flags |= S_IMMUTABLE;
3080 else
3081 inode->i_flags &= ~S_IMMUTABLE;
3082 if (sd_attrs & REISERFS_APPEND_FL)
3083 inode->i_flags |= S_APPEND;
3084 else
3085 inode->i_flags &= ~S_APPEND;
3086 if (sd_attrs & REISERFS_NOATIME_FL)
3087 inode->i_flags |= S_NOATIME;
3088 else
3089 inode->i_flags &= ~S_NOATIME;
3090 if (sd_attrs & REISERFS_NOTAIL_FL)
3091 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3092 else
3093 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3094 }
3095}
3096
3097void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3098{
3099 if (reiserfs_attrs(inode->i_sb)) {
3100 if (inode->i_flags & S_IMMUTABLE)
3101 *sd_attrs |= REISERFS_IMMUTABLE_FL;
3102 else
3103 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3104 if (inode->i_flags & S_SYNC)
3105 *sd_attrs |= REISERFS_SYNC_FL;
3106 else
3107 *sd_attrs &= ~REISERFS_SYNC_FL;
3108 if (inode->i_flags & S_NOATIME)
3109 *sd_attrs |= REISERFS_NOATIME_FL;
3110 else
3111 *sd_attrs &= ~REISERFS_NOATIME_FL;
3112 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3113 *sd_attrs |= REISERFS_NOTAIL_FL;
3114 else
3115 *sd_attrs &= ~REISERFS_NOTAIL_FL;
3116 }
3117}
3118
3119/*
3120 * decide if this buffer needs to stay around for data logging or ordered
3121 * write purposes
3122 */
3123static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3124{
3125 int ret = 1;
3126 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3127
3128 lock_buffer(bh);
3129 spin_lock(&j->j_dirty_buffers_lock);
3130 if (!buffer_mapped(bh)) {
3131 goto free_jh;
3132 }
3133 /*
3134 * the page is locked, and the only places that log a data buffer
3135 * also lock the page.
3136 */
3137 if (reiserfs_file_data_log(inode)) {
3138 /*
3139 * very conservative, leave the buffer pinned if
3140 * anyone might need it.
3141 */
3142 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3143 ret = 0;
3144 }
3145 } else if (buffer_dirty(bh)) {
3146 struct reiserfs_journal_list *jl;
3147 struct reiserfs_jh *jh = bh->b_private;
3148
3149 /*
3150 * why is this safe?
3151 * reiserfs_setattr updates i_size in the on disk
3152 * stat data before allowing vmtruncate to be called.
3153 *
3154 * If buffer was put onto the ordered list for this
3155 * transaction, we know for sure either this transaction
3156 * or an older one already has updated i_size on disk,
3157 * and this ordered data won't be referenced in the file
3158 * if we crash.
3159 *
3160 * if the buffer was put onto the ordered list for an older
3161 * transaction, we need to leave it around
3162 */
3163 if (jh && (jl = jh->jl)
3164 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3165 ret = 0;
3166 }
3167free_jh:
3168 if (ret && bh->b_private) {
3169 reiserfs_free_jh(bh);
3170 }
3171 spin_unlock(&j->j_dirty_buffers_lock);
3172 unlock_buffer(bh);
3173 return ret;
3174}
3175
3176/* clm -- taken from fs/buffer.c:block_invalidate_page */
3177static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3178 unsigned int length)
3179{
3180 struct buffer_head *head, *bh, *next;
3181 struct inode *inode = page->mapping->host;
3182 unsigned int curr_off = 0;
3183 unsigned int stop = offset + length;
3184 int partial_page = (offset || length < PAGE_SIZE);
3185 int ret = 1;
3186
3187 BUG_ON(!PageLocked(page));
3188
3189 if (!partial_page)
3190 ClearPageChecked(page);
3191
3192 if (!page_has_buffers(page))
3193 goto out;
3194
3195 head = page_buffers(page);
3196 bh = head;
3197 do {
3198 unsigned int next_off = curr_off + bh->b_size;
3199 next = bh->b_this_page;
3200
3201 if (next_off > stop)
3202 goto out;
3203
3204 /*
3205 * is this block fully invalidated?
3206 */
3207 if (offset <= curr_off) {
3208 if (invalidatepage_can_drop(inode, bh))
3209 reiserfs_unmap_buffer(bh);
3210 else
3211 ret = 0;
3212 }
3213 curr_off = next_off;
3214 bh = next;
3215 } while (bh != head);
3216
3217 /*
3218 * We release buffers only if the entire page is being invalidated.
3219 * The get_block cached value has been unconditionally invalidated,
3220 * so real IO is not possible anymore.
3221 */
3222 if (!partial_page && ret) {
3223 ret = try_to_release_page(page, 0);
3224 /* maybe should BUG_ON(!ret); - neilb */
3225 }
3226out:
3227 return;
3228}
3229
3230static int reiserfs_set_page_dirty(struct page *page)
3231{
3232 struct inode *inode = page->mapping->host;
3233 if (reiserfs_file_data_log(inode)) {
3234 SetPageChecked(page);
3235 return __set_page_dirty_nobuffers(page);
3236 }
3237 return __set_page_dirty_buffers(page);
3238}
3239
3240/*
3241 * Returns 1 if the page's buffers were dropped. The page is locked.
3242 *
3243 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3244 * in the buffers at page_buffers(page).
3245 *
3246 * even in -o notail mode, we can't be sure an old mount without -o notail
3247 * didn't create files with tails.
3248 */
3249static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3250{
3251 struct inode *inode = page->mapping->host;
3252 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3253 struct buffer_head *head;
3254 struct buffer_head *bh;
3255 int ret = 1;
3256
3257 WARN_ON(PageChecked(page));
3258 spin_lock(&j->j_dirty_buffers_lock);
3259 head = page_buffers(page);
3260 bh = head;
3261 do {
3262 if (bh->b_private) {
3263 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3264 reiserfs_free_jh(bh);
3265 } else {
3266 ret = 0;
3267 break;
3268 }
3269 }
3270 bh = bh->b_this_page;
3271 } while (bh != head);
3272 if (ret)
3273 ret = try_to_free_buffers(page);
3274 spin_unlock(&j->j_dirty_buffers_lock);
3275 return ret;
3276}
3277
3278/*
3279 * We thank Mingming Cao for helping us understand in great detail what
3280 * to do in this section of the code.
3281 */
3282static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3283 loff_t offset)
3284{
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
3287 size_t count = iov_iter_count(iter);
3288 ssize_t ret;
3289
3290 ret = blockdev_direct_IO(iocb, inode, iter, offset,
3291 reiserfs_get_blocks_direct_io);
3292
3293 /*
3294 * In case of error extending write may have instantiated a few
3295 * blocks outside i_size. Trim these off again.
3296 */
3297 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3298 loff_t isize = i_size_read(inode);
3299 loff_t end = offset + count;
3300
3301 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3302 truncate_setsize(inode, isize);
3303 reiserfs_vfs_truncate_file(inode);
3304 }
3305 }
3306
3307 return ret;
3308}
3309
3310int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3311{
3312 struct inode *inode = d_inode(dentry);
3313 unsigned int ia_valid;
3314 int error;
3315
3316 error = inode_change_ok(inode, attr);
3317 if (error)
3318 return error;
3319
3320 /* must be turned off for recursive notify_change calls */
3321 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3322
3323 if (is_quota_modification(inode, attr)) {
3324 error = dquot_initialize(inode);
3325 if (error)
3326 return error;
3327 }
3328 reiserfs_write_lock(inode->i_sb);
3329 if (attr->ia_valid & ATTR_SIZE) {
3330 /*
3331 * version 2 items will be caught by the s_maxbytes check
3332 * done for us in vmtruncate
3333 */
3334 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3335 attr->ia_size > MAX_NON_LFS) {
3336 reiserfs_write_unlock(inode->i_sb);
3337 error = -EFBIG;
3338 goto out;
3339 }
3340
3341 inode_dio_wait(inode);
3342
3343 /* fill in hole pointers in the expanding truncate case. */
3344 if (attr->ia_size > inode->i_size) {
3345 error = generic_cont_expand_simple(inode, attr->ia_size);
3346 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3347 int err;
3348 struct reiserfs_transaction_handle th;
3349 /* we're changing at most 2 bitmaps, inode + super */
3350 err = journal_begin(&th, inode->i_sb, 4);
3351 if (!err) {
3352 reiserfs_discard_prealloc(&th, inode);
3353 err = journal_end(&th);
3354 }
3355 if (err)
3356 error = err;
3357 }
3358 if (error) {
3359 reiserfs_write_unlock(inode->i_sb);
3360 goto out;
3361 }
3362 /*
3363 * file size is changed, ctime and mtime are
3364 * to be updated
3365 */
3366 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3367 }
3368 }
3369 reiserfs_write_unlock(inode->i_sb);
3370
3371 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3372 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3373 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3374 /* stat data of format v3.5 has 16 bit uid and gid */
3375 error = -EINVAL;
3376 goto out;
3377 }
3378
3379 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3380 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3381 struct reiserfs_transaction_handle th;
3382 int jbegin_count =
3383 2 *
3384 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3385 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3386 2;
3387
3388 error = reiserfs_chown_xattrs(inode, attr);
3389
3390 if (error)
3391 return error;
3392
3393 /*
3394 * (user+group)*(old+new) structure - we count quota
3395 * info and , inode write (sb, inode)
3396 */
3397 reiserfs_write_lock(inode->i_sb);
3398 error = journal_begin(&th, inode->i_sb, jbegin_count);
3399 reiserfs_write_unlock(inode->i_sb);
3400 if (error)
3401 goto out;
3402 error = dquot_transfer(inode, attr);
3403 reiserfs_write_lock(inode->i_sb);
3404 if (error) {
3405 journal_end(&th);
3406 reiserfs_write_unlock(inode->i_sb);
3407 goto out;
3408 }
3409
3410 /*
3411 * Update corresponding info in inode so that everything
3412 * is in one transaction
3413 */
3414 if (attr->ia_valid & ATTR_UID)
3415 inode->i_uid = attr->ia_uid;
3416 if (attr->ia_valid & ATTR_GID)
3417 inode->i_gid = attr->ia_gid;
3418 mark_inode_dirty(inode);
3419 error = journal_end(&th);
3420 reiserfs_write_unlock(inode->i_sb);
3421 if (error)
3422 goto out;
3423 }
3424
3425 if ((attr->ia_valid & ATTR_SIZE) &&
3426 attr->ia_size != i_size_read(inode)) {
3427 error = inode_newsize_ok(inode, attr->ia_size);
3428 if (!error) {
3429 /*
3430 * Could race against reiserfs_file_release
3431 * if called from NFS, so take tailpack mutex.
3432 */
3433 mutex_lock(&REISERFS_I(inode)->tailpack);
3434 truncate_setsize(inode, attr->ia_size);
3435 reiserfs_truncate_file(inode, 1);
3436 mutex_unlock(&REISERFS_I(inode)->tailpack);
3437 }
3438 }
3439
3440 if (!error) {
3441 setattr_copy(inode, attr);
3442 mark_inode_dirty(inode);
3443 }
3444
3445 if (!error && reiserfs_posixacl(inode->i_sb)) {
3446 if (attr->ia_valid & ATTR_MODE)
3447 error = reiserfs_acl_chmod(inode);
3448 }
3449
3450out:
3451 return error;
3452}
3453
3454const struct address_space_operations reiserfs_address_space_operations = {
3455 .writepage = reiserfs_writepage,
3456 .readpage = reiserfs_readpage,
3457 .readpages = reiserfs_readpages,
3458 .releasepage = reiserfs_releasepage,
3459 .invalidatepage = reiserfs_invalidatepage,
3460 .write_begin = reiserfs_write_begin,
3461 .write_end = reiserfs_write_end,
3462 .bmap = reiserfs_aop_bmap,
3463 .direct_IO = reiserfs_direct_IO,
3464 .set_page_dirty = reiserfs_set_page_dirty,
3465};