Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
 
 
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode_set_atime(inode, sd_v1_atime(sd), 0);
1261		inode_set_mtime(inode, sd_v1_mtime(sd), 0);
1262		inode_set_ctime(inode, sd_v1_ctime(sd), 0);
 
 
 
1263
1264		inode->i_blocks = sd_v1_blocks(sd);
1265		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1266		blocks = (inode->i_size + 511) >> 9;
1267		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1268
1269		/*
1270		 * there was a bug in <=3.5.23 when i_blocks could take
1271		 * negative values. Starting from 3.5.17 this value could
1272		 * even be stored in stat data. For such files we set
1273		 * i_blocks based on file size. Just 2 notes: this can be
1274		 * wrong for sparse files. On-disk value will be only
1275		 * updated if file's inode will ever change
1276		 */
1277		if (inode->i_blocks > blocks) {
1278			inode->i_blocks = blocks;
1279		}
1280
1281		rdev = sd_v1_rdev(sd);
1282		REISERFS_I(inode)->i_first_direct_byte =
1283		    sd_v1_first_direct_byte(sd);
1284
1285		/*
1286		 * an early bug in the quota code can give us an odd
1287		 * number for the block count.  This is incorrect, fix it here.
1288		 */
1289		if (inode->i_blocks & 1) {
1290			inode->i_blocks++;
1291		}
1292		inode_set_bytes(inode,
1293				to_real_used_space(inode, inode->i_blocks,
1294						   SD_V1_SIZE));
1295		/*
1296		 * nopack is initially zero for v1 objects. For v2 objects,
1297		 * nopack is initialised from sd_attrs
1298		 */
1299		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1300	} else {
1301		/*
1302		 * new stat data found, but object may have old items
1303		 * (directories and symlinks)
1304		 */
1305		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1306
1307		inode->i_mode = sd_v2_mode(sd);
1308		set_nlink(inode, sd_v2_nlink(sd));
1309		i_uid_write(inode, sd_v2_uid(sd));
1310		inode->i_size = sd_v2_size(sd);
1311		i_gid_write(inode, sd_v2_gid(sd));
1312		inode_set_mtime(inode, sd_v2_mtime(sd), 0);
1313		inode_set_atime(inode, sd_v2_atime(sd), 0);
1314		inode_set_ctime(inode, sd_v2_ctime(sd), 0);
 
 
 
1315		inode->i_blocks = sd_v2_blocks(sd);
1316		rdev = sd_v2_rdev(sd);
1317		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1318			inode->i_generation =
1319			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1320		else
1321			inode->i_generation = sd_v2_generation(sd);
1322
1323		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1324			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1325		else
1326			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1327		REISERFS_I(inode)->i_first_direct_byte = 0;
1328		set_inode_sd_version(inode, STAT_DATA_V2);
1329		inode_set_bytes(inode,
1330				to_real_used_space(inode, inode->i_blocks,
1331						   SD_V2_SIZE));
1332		/*
1333		 * read persistent inode attributes from sd and initialise
1334		 * generic inode flags from them
1335		 */
1336		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1337		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1338	}
1339
1340	pathrelse(path);
1341	if (S_ISREG(inode->i_mode)) {
1342		inode->i_op = &reiserfs_file_inode_operations;
1343		inode->i_fop = &reiserfs_file_operations;
1344		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1345	} else if (S_ISDIR(inode->i_mode)) {
1346		inode->i_op = &reiserfs_dir_inode_operations;
1347		inode->i_fop = &reiserfs_dir_operations;
1348	} else if (S_ISLNK(inode->i_mode)) {
1349		inode->i_op = &reiserfs_symlink_inode_operations;
1350		inode_nohighmem(inode);
1351		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1352	} else {
1353		inode->i_blocks = 0;
1354		inode->i_op = &reiserfs_special_inode_operations;
1355		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1356	}
1357}
1358
1359/* update new stat data with inode fields */
1360static void inode2sd(void *sd, struct inode *inode, loff_t size)
1361{
1362	struct stat_data *sd_v2 = (struct stat_data *)sd;
 
1363
1364	set_sd_v2_mode(sd_v2, inode->i_mode);
1365	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1366	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1367	set_sd_v2_size(sd_v2, size);
1368	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1369	set_sd_v2_mtime(sd_v2, inode_get_mtime_sec(inode));
1370	set_sd_v2_atime(sd_v2, inode_get_atime_sec(inode));
1371	set_sd_v2_ctime(sd_v2, inode_get_ctime_sec(inode));
1372	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1373	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1374		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1375	else
1376		set_sd_v2_generation(sd_v2, inode->i_generation);
1377	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
 
 
1378}
1379
1380/* used to copy inode's fields to old stat data */
1381static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1382{
1383	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1384
1385	set_sd_v1_mode(sd_v1, inode->i_mode);
1386	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1387	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1388	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1389	set_sd_v1_size(sd_v1, size);
1390	set_sd_v1_atime(sd_v1, inode_get_atime_sec(inode));
1391	set_sd_v1_ctime(sd_v1, inode_get_ctime_sec(inode));
1392	set_sd_v1_mtime(sd_v1, inode_get_mtime_sec(inode));
1393
1394	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1395		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1396	else
1397		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1398
1399	/* Sigh. i_first_direct_byte is back */
1400	set_sd_v1_first_direct_byte(sd_v1,
1401				    REISERFS_I(inode)->i_first_direct_byte);
1402}
1403
1404/*
1405 * NOTE, you must prepare the buffer head before sending it here,
1406 * and then log it after the call
1407 */
1408static void update_stat_data(struct treepath *path, struct inode *inode,
1409			     loff_t size)
1410{
1411	struct buffer_head *bh;
1412	struct item_head *ih;
1413
1414	bh = PATH_PLAST_BUFFER(path);
1415	ih = tp_item_head(path);
1416
1417	if (!is_statdata_le_ih(ih))
1418		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1419			       INODE_PKEY(inode), ih);
1420
1421	/* path points to old stat data */
1422	if (stat_data_v1(ih)) {
1423		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1424	} else {
1425		inode2sd(ih_item_body(bh, ih), inode, size);
1426	}
1427
1428	return;
1429}
1430
1431void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1432			     struct inode *inode, loff_t size)
1433{
1434	struct cpu_key key;
1435	INITIALIZE_PATH(path);
1436	struct buffer_head *bh;
1437	int fs_gen;
1438	struct item_head *ih, tmp_ih;
1439	int retval;
1440
1441	BUG_ON(!th->t_trans_id);
1442
1443	/* key type is unimportant */
1444	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1445
1446	for (;;) {
1447		int pos;
1448		/* look for the object's stat data */
1449		retval = search_item(inode->i_sb, &key, &path);
1450		if (retval == IO_ERROR) {
1451			reiserfs_error(inode->i_sb, "vs-13050",
1452				       "i/o failure occurred trying to "
1453				       "update %K stat data", &key);
1454			return;
1455		}
1456		if (retval == ITEM_NOT_FOUND) {
1457			pos = PATH_LAST_POSITION(&path);
1458			pathrelse(&path);
1459			if (inode->i_nlink == 0) {
1460				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1461				return;
1462			}
1463			reiserfs_warning(inode->i_sb, "vs-13060",
1464					 "stat data of object %k (nlink == %d) "
1465					 "not found (pos %d)",
1466					 INODE_PKEY(inode), inode->i_nlink,
1467					 pos);
1468			reiserfs_check_path(&path);
1469			return;
1470		}
1471
1472		/*
1473		 * sigh, prepare_for_journal might schedule.  When it
1474		 * schedules the FS might change.  We have to detect that,
1475		 * and loop back to the search if the stat data item has moved
1476		 */
1477		bh = get_last_bh(&path);
1478		ih = tp_item_head(&path);
1479		copy_item_head(&tmp_ih, ih);
1480		fs_gen = get_generation(inode->i_sb);
1481		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1482
1483		/* Stat_data item has been moved after scheduling. */
1484		if (fs_changed(fs_gen, inode->i_sb)
1485		    && item_moved(&tmp_ih, &path)) {
1486			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1487			continue;
1488		}
1489		break;
1490	}
1491	update_stat_data(&path, inode, size);
1492	journal_mark_dirty(th, bh);
1493	pathrelse(&path);
1494	return;
1495}
1496
1497/*
1498 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1499 * does a make_bad_inode when things go wrong.  But, we need to make sure
1500 * and clear the key in the private portion of the inode, otherwise a
1501 * corresponding iput might try to delete whatever object the inode last
1502 * represented.
1503 */
1504static void reiserfs_make_bad_inode(struct inode *inode)
1505{
1506	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1507	make_bad_inode(inode);
1508}
1509
1510/*
1511 * initially this function was derived from minix or ext2's analog and
1512 * evolved as the prototype did
1513 */
1514int reiserfs_init_locked_inode(struct inode *inode, void *p)
1515{
1516	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1517	inode->i_ino = args->objectid;
1518	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1519	return 0;
1520}
1521
1522/*
1523 * looks for stat data in the tree, and fills up the fields of in-core
1524 * inode stat data fields
1525 */
1526void reiserfs_read_locked_inode(struct inode *inode,
1527				struct reiserfs_iget_args *args)
1528{
1529	INITIALIZE_PATH(path_to_sd);
1530	struct cpu_key key;
1531	unsigned long dirino;
1532	int retval;
1533
1534	dirino = args->dirid;
1535
1536	/*
1537	 * set version 1, version 2 could be used too, because stat data
1538	 * key is the same in both versions
1539	 */
1540	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
 
 
 
 
1541
1542	/* look for the object's stat data */
1543	retval = search_item(inode->i_sb, &key, &path_to_sd);
1544	if (retval == IO_ERROR) {
1545		reiserfs_error(inode->i_sb, "vs-13070",
1546			       "i/o failure occurred trying to find "
1547			       "stat data of %K", &key);
1548		reiserfs_make_bad_inode(inode);
1549		return;
1550	}
1551
1552	/* a stale NFS handle can trigger this without it being an error */
1553	if (retval != ITEM_FOUND) {
1554		pathrelse(&path_to_sd);
1555		reiserfs_make_bad_inode(inode);
1556		clear_nlink(inode);
1557		return;
1558	}
1559
1560	init_inode(inode, &path_to_sd);
1561
1562	/*
1563	 * It is possible that knfsd is trying to access inode of a file
1564	 * that is being removed from the disk by some other thread. As we
1565	 * update sd on unlink all that is required is to check for nlink
1566	 * here. This bug was first found by Sizif when debugging
1567	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1568	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1569
1570	 * More logical fix would require changes in fs/inode.c:iput() to
1571	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1572	 * in iget() to return NULL if I_FREEING inode is found in
1573	 * hash-table.
1574	 */
1575
1576	/*
1577	 * Currently there is one place where it's ok to meet inode with
1578	 * nlink==0: processing of open-unlinked and half-truncated files
1579	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1580	 */
1581	if ((inode->i_nlink == 0) &&
1582	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1583		reiserfs_warning(inode->i_sb, "vs-13075",
1584				 "dead inode read from disk %K. "
1585				 "This is likely to be race with knfsd. Ignore",
1586				 &key);
1587		reiserfs_make_bad_inode(inode);
1588	}
1589
1590	/* init inode should be relsing */
1591	reiserfs_check_path(&path_to_sd);
1592
1593	/*
1594	 * Stat data v1 doesn't support ACLs.
1595	 */
1596	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1597		cache_no_acl(inode);
1598}
1599
1600/*
1601 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1602 *
1603 * @inode:    inode from hash table to check
1604 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1605 *
1606 * This function is called by iget5_locked() to distinguish reiserfs inodes
1607 * having the same inode numbers. Such inodes can only exist due to some
1608 * error condition. One of them should be bad. Inodes with identical
1609 * inode numbers (objectids) are distinguished by parent directory ids.
1610 *
1611 */
1612int reiserfs_find_actor(struct inode *inode, void *opaque)
1613{
1614	struct reiserfs_iget_args *args;
1615
1616	args = opaque;
1617	/* args is already in CPU order */
1618	return (inode->i_ino == args->objectid) &&
1619	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1620}
1621
1622struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1623{
1624	struct inode *inode;
1625	struct reiserfs_iget_args args;
1626	int depth;
1627
1628	args.objectid = key->on_disk_key.k_objectid;
1629	args.dirid = key->on_disk_key.k_dir_id;
1630	depth = reiserfs_write_unlock_nested(s);
1631	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1632			     reiserfs_find_actor, reiserfs_init_locked_inode,
1633			     (void *)(&args));
1634	reiserfs_write_lock_nested(s, depth);
1635	if (!inode)
1636		return ERR_PTR(-ENOMEM);
1637
1638	if (inode->i_state & I_NEW) {
1639		reiserfs_read_locked_inode(inode, &args);
1640		unlock_new_inode(inode);
1641	}
1642
1643	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1644		/* either due to i/o error or a stale NFS handle */
1645		iput(inode);
1646		inode = NULL;
1647	}
1648	return inode;
1649}
1650
1651static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1652	u32 objectid, u32 dir_id, u32 generation)
1653
1654{
1655	struct cpu_key key;
1656	struct inode *inode;
1657
1658	key.on_disk_key.k_objectid = objectid;
1659	key.on_disk_key.k_dir_id = dir_id;
1660	reiserfs_write_lock(sb);
1661	inode = reiserfs_iget(sb, &key);
1662	if (inode && !IS_ERR(inode) && generation != 0 &&
1663	    generation != inode->i_generation) {
1664		iput(inode);
1665		inode = NULL;
1666	}
1667	reiserfs_write_unlock(sb);
1668
1669	return d_obtain_alias(inode);
1670}
1671
1672struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1673		int fh_len, int fh_type)
1674{
1675	/*
1676	 * fhtype happens to reflect the number of u32s encoded.
1677	 * due to a bug in earlier code, fhtype might indicate there
1678	 * are more u32s then actually fitted.
1679	 * so if fhtype seems to be more than len, reduce fhtype.
1680	 * Valid types are:
1681	 *   2 - objectid + dir_id - legacy support
1682	 *   3 - objectid + dir_id + generation
1683	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1684	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1685	 *   6 - as above plus generation of directory
1686	 * 6 does not fit in NFSv2 handles
1687	 */
1688	if (fh_type > fh_len) {
1689		if (fh_type != 6 || fh_len != 5)
1690			reiserfs_warning(sb, "reiserfs-13077",
1691				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1692				fh_type, fh_len);
1693		fh_type = fh_len;
1694	}
1695	if (fh_len < 2)
1696		return NULL;
1697
1698	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1699		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1700}
1701
1702struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1703		int fh_len, int fh_type)
1704{
1705	if (fh_type > fh_len)
1706		fh_type = fh_len;
1707	if (fh_type < 4)
1708		return NULL;
1709
1710	return reiserfs_get_dentry(sb,
1711		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1712		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1713		(fh_type == 6) ? fid->raw[5] : 0);
1714}
1715
1716int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1717		       struct inode *parent)
1718{
1719	int maxlen = *lenp;
1720
1721	if (parent && (maxlen < 5)) {
1722		*lenp = 5;
1723		return FILEID_INVALID;
1724	} else if (maxlen < 3) {
1725		*lenp = 3;
1726		return FILEID_INVALID;
1727	}
1728
1729	data[0] = inode->i_ino;
1730	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1731	data[2] = inode->i_generation;
1732	*lenp = 3;
1733	if (parent) {
1734		data[3] = parent->i_ino;
1735		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1736		*lenp = 5;
1737		if (maxlen >= 6) {
1738			data[5] = parent->i_generation;
1739			*lenp = 6;
1740		}
1741	}
1742	return *lenp;
1743}
1744
1745/*
1746 * looks for stat data, then copies fields to it, marks the buffer
1747 * containing stat data as dirty
1748 */
1749/*
1750 * reiserfs inodes are never really dirty, since the dirty inode call
1751 * always logs them.  This call allows the VFS inode marking routines
1752 * to properly mark inodes for datasync and such, but only actually
1753 * does something when called for a synchronous update.
1754 */
1755int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1756{
1757	struct reiserfs_transaction_handle th;
1758	int jbegin_count = 1;
1759
1760	if (sb_rdonly(inode->i_sb))
1761		return -EROFS;
1762	/*
1763	 * memory pressure can sometimes initiate write_inode calls with
1764	 * sync == 1,
1765	 * these cases are just when the system needs ram, not when the
1766	 * inode needs to reach disk for safety, and they can safely be
1767	 * ignored because the altered inode has already been logged.
1768	 */
1769	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1770		reiserfs_write_lock(inode->i_sb);
1771		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1772			reiserfs_update_sd(&th, inode);
1773			journal_end_sync(&th);
1774		}
1775		reiserfs_write_unlock(inode->i_sb);
1776	}
1777	return 0;
1778}
1779
1780/*
1781 * stat data of new object is inserted already, this inserts the item
1782 * containing "." and ".." entries
1783 */
1784static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1785				  struct inode *inode,
1786				  struct item_head *ih, struct treepath *path,
1787				  struct inode *dir)
1788{
1789	struct super_block *sb = th->t_super;
1790	char empty_dir[EMPTY_DIR_SIZE];
1791	char *body = empty_dir;
1792	struct cpu_key key;
1793	int retval;
1794
1795	BUG_ON(!th->t_trans_id);
1796
1797	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1798		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1799		      TYPE_DIRENTRY, 3 /*key length */ );
1800
1801	/*
1802	 * compose item head for new item. Directories consist of items of
1803	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1804	 * is done by reiserfs_new_inode
1805	 */
1806	if (old_format_only(sb)) {
1807		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1808				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1809
1810		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1811				       ih->ih_key.k_objectid,
1812				       INODE_PKEY(dir)->k_dir_id,
1813				       INODE_PKEY(dir)->k_objectid);
1814	} else {
1815		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1816				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1817
1818		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1819				    ih->ih_key.k_objectid,
1820				    INODE_PKEY(dir)->k_dir_id,
1821				    INODE_PKEY(dir)->k_objectid);
1822	}
1823
1824	/* look for place in the tree for new item */
1825	retval = search_item(sb, &key, path);
1826	if (retval == IO_ERROR) {
1827		reiserfs_error(sb, "vs-13080",
1828			       "i/o failure occurred creating new directory");
1829		return -EIO;
1830	}
1831	if (retval == ITEM_FOUND) {
1832		pathrelse(path);
1833		reiserfs_warning(sb, "vs-13070",
1834				 "object with this key exists (%k)",
1835				 &(ih->ih_key));
1836		return -EEXIST;
1837	}
1838
1839	/* insert item, that is empty directory item */
1840	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1841}
1842
1843/*
1844 * stat data of object has been inserted, this inserts the item
1845 * containing the body of symlink
1846 */
1847static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1848				struct inode *inode,
1849				struct item_head *ih,
1850				struct treepath *path, const char *symname,
1851				int item_len)
1852{
1853	struct super_block *sb = th->t_super;
1854	struct cpu_key key;
1855	int retval;
1856
1857	BUG_ON(!th->t_trans_id);
1858
1859	_make_cpu_key(&key, KEY_FORMAT_3_5,
1860		      le32_to_cpu(ih->ih_key.k_dir_id),
1861		      le32_to_cpu(ih->ih_key.k_objectid),
1862		      1, TYPE_DIRECT, 3 /*key length */ );
1863
1864	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1865			  0 /*free_space */ );
1866
1867	/* look for place in the tree for new item */
1868	retval = search_item(sb, &key, path);
1869	if (retval == IO_ERROR) {
1870		reiserfs_error(sb, "vs-13080",
1871			       "i/o failure occurred creating new symlink");
1872		return -EIO;
1873	}
1874	if (retval == ITEM_FOUND) {
1875		pathrelse(path);
1876		reiserfs_warning(sb, "vs-13080",
1877				 "object with this key exists (%k)",
1878				 &(ih->ih_key));
1879		return -EEXIST;
1880	}
1881
1882	/* insert item, that is body of symlink */
1883	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1884}
1885
1886/*
1887 * inserts the stat data into the tree, and then calls
1888 * reiserfs_new_directory (to insert ".", ".." item if new object is
1889 * directory) or reiserfs_new_symlink (to insert symlink body if new
1890 * object is symlink) or nothing (if new object is regular file)
1891
1892 * NOTE! uid and gid must already be set in the inode.  If we return
1893 * non-zero due to an error, we have to drop the quota previously allocated
1894 * for the fresh inode.  This can only be done outside a transaction, so
1895 * if we return non-zero, we also end the transaction.
1896 *
1897 * @th: active transaction handle
1898 * @dir: parent directory for new inode
1899 * @mode: mode of new inode
1900 * @symname: symlink contents if inode is symlink
1901 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1902 *         symlinks
1903 * @inode: inode to be filled
1904 * @security: optional security context to associate with this inode
1905 */
1906int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1907		       struct inode *dir, umode_t mode, const char *symname,
1908		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1909		          strlen (symname) for symlinks) */
1910		       loff_t i_size, struct dentry *dentry,
1911		       struct inode *inode,
1912		       struct reiserfs_security_handle *security)
1913{
1914	struct super_block *sb = dir->i_sb;
1915	struct reiserfs_iget_args args;
1916	INITIALIZE_PATH(path_to_key);
1917	struct cpu_key key;
1918	struct item_head ih;
1919	struct stat_data sd;
1920	int retval;
1921	int err;
1922	int depth;
1923
1924	BUG_ON(!th->t_trans_id);
1925
1926	depth = reiserfs_write_unlock_nested(sb);
1927	err = dquot_alloc_inode(inode);
1928	reiserfs_write_lock_nested(sb, depth);
1929	if (err)
1930		goto out_end_trans;
1931	if (!dir->i_nlink) {
1932		err = -EPERM;
1933		goto out_bad_inode;
1934	}
1935
1936	/* item head of new item */
1937	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1938	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1939	if (!ih.ih_key.k_objectid) {
1940		err = -ENOMEM;
1941		goto out_bad_inode;
1942	}
1943	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1944	if (old_format_only(sb))
1945		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1946				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1947	else
1948		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1949				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1950	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1951	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1952
1953	depth = reiserfs_write_unlock_nested(inode->i_sb);
1954	err = insert_inode_locked4(inode, args.objectid,
1955			     reiserfs_find_actor, &args);
1956	reiserfs_write_lock_nested(inode->i_sb, depth);
1957	if (err) {
1958		err = -EINVAL;
1959		goto out_bad_inode;
1960	}
1961
1962	if (old_format_only(sb))
1963		/*
1964		 * not a perfect generation count, as object ids can be reused,
1965		 * but this is as good as reiserfs can do right now.
1966		 * note that the private part of inode isn't filled in yet,
1967		 * we have to use the directory.
1968		 */
1969		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1970	else
1971#if defined( USE_INODE_GENERATION_COUNTER )
1972		inode->i_generation =
1973		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1974#else
1975		inode->i_generation = ++event;
1976#endif
1977
1978	/* fill stat data */
1979	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1980
1981	/* uid and gid must already be set by the caller for quota init */
1982
1983	simple_inode_init_ts(inode);
 
 
 
 
1984	inode->i_size = i_size;
1985	inode->i_blocks = 0;
1986	inode->i_bytes = 0;
1987	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1988	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1989
1990	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1991	REISERFS_I(inode)->i_flags = 0;
1992	REISERFS_I(inode)->i_prealloc_block = 0;
1993	REISERFS_I(inode)->i_prealloc_count = 0;
1994	REISERFS_I(inode)->i_trans_id = 0;
1995	REISERFS_I(inode)->i_jl = NULL;
1996	REISERFS_I(inode)->i_attrs =
1997	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1998	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1999	reiserfs_init_xattr_rwsem(inode);
2000
2001	/* key to search for correct place for new stat data */
2002	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2003		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2004		      TYPE_STAT_DATA, 3 /*key length */ );
2005
2006	/* find proper place for inserting of stat data */
2007	retval = search_item(sb, &key, &path_to_key);
2008	if (retval == IO_ERROR) {
2009		err = -EIO;
2010		goto out_bad_inode;
2011	}
2012	if (retval == ITEM_FOUND) {
2013		pathrelse(&path_to_key);
2014		err = -EEXIST;
2015		goto out_bad_inode;
2016	}
2017	if (old_format_only(sb)) {
2018		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2019		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2020			pathrelse(&path_to_key);
2021			err = -EINVAL;
2022			goto out_bad_inode;
2023		}
2024		inode2sd_v1(&sd, inode, inode->i_size);
2025	} else {
2026		inode2sd(&sd, inode, inode->i_size);
2027	}
2028	/*
2029	 * store in in-core inode the key of stat data and version all
2030	 * object items will have (directory items will have old offset
2031	 * format, other new objects will consist of new items)
2032	 */
2033	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2034		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2035	else
2036		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2037	if (old_format_only(sb))
2038		set_inode_sd_version(inode, STAT_DATA_V1);
2039	else
2040		set_inode_sd_version(inode, STAT_DATA_V2);
2041
2042	/* insert the stat data into the tree */
2043#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2044	if (REISERFS_I(dir)->new_packing_locality)
2045		th->displace_new_blocks = 1;
2046#endif
2047	retval =
2048	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2049				 (char *)(&sd));
2050	if (retval) {
2051		err = retval;
2052		reiserfs_check_path(&path_to_key);
2053		goto out_bad_inode;
2054	}
2055#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2056	if (!th->displace_new_blocks)
2057		REISERFS_I(dir)->new_packing_locality = 0;
2058#endif
2059	if (S_ISDIR(mode)) {
2060		/* insert item with "." and ".." */
2061		retval =
2062		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2063	}
2064
2065	if (S_ISLNK(mode)) {
2066		/* insert body of symlink */
2067		if (!old_format_only(sb))
2068			i_size = ROUND_UP(i_size);
2069		retval =
2070		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2071					 i_size);
2072	}
2073	if (retval) {
2074		err = retval;
2075		reiserfs_check_path(&path_to_key);
2076		journal_end(th);
2077		goto out_inserted_sd;
2078	}
2079
2080	/*
2081	 * Mark it private if we're creating the privroot
2082	 * or something under it.
2083	 */
2084	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2085		reiserfs_init_priv_inode(inode);
2086
2087	if (reiserfs_posixacl(inode->i_sb)) {
2088		reiserfs_write_unlock(inode->i_sb);
2089		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2090		reiserfs_write_lock(inode->i_sb);
2091		if (retval) {
2092			err = retval;
2093			reiserfs_check_path(&path_to_key);
2094			journal_end(th);
2095			goto out_inserted_sd;
2096		}
2097	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2098		reiserfs_warning(inode->i_sb, "jdm-13090",
2099				 "ACLs aren't enabled in the fs, "
2100				 "but vfs thinks they are!");
2101	}
 
2102
2103	if (security->name) {
2104		reiserfs_write_unlock(inode->i_sb);
2105		retval = reiserfs_security_write(th, inode, security);
2106		reiserfs_write_lock(inode->i_sb);
2107		if (retval) {
2108			err = retval;
2109			reiserfs_check_path(&path_to_key);
2110			retval = journal_end(th);
2111			if (retval)
2112				err = retval;
2113			goto out_inserted_sd;
2114		}
2115	}
2116
2117	reiserfs_update_sd(th, inode);
2118	reiserfs_check_path(&path_to_key);
2119
2120	return 0;
2121
2122out_bad_inode:
2123	/* Invalidate the object, nothing was inserted yet */
2124	INODE_PKEY(inode)->k_objectid = 0;
2125
2126	/* Quota change must be inside a transaction for journaling */
2127	depth = reiserfs_write_unlock_nested(inode->i_sb);
2128	dquot_free_inode(inode);
2129	reiserfs_write_lock_nested(inode->i_sb, depth);
2130
2131out_end_trans:
2132	journal_end(th);
2133	/*
2134	 * Drop can be outside and it needs more credits so it's better
2135	 * to have it outside
2136	 */
2137	depth = reiserfs_write_unlock_nested(inode->i_sb);
2138	dquot_drop(inode);
2139	reiserfs_write_lock_nested(inode->i_sb, depth);
2140	inode->i_flags |= S_NOQUOTA;
2141	make_bad_inode(inode);
2142
2143out_inserted_sd:
2144	clear_nlink(inode);
2145	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2146	if (inode->i_state & I_NEW)
2147		unlock_new_inode(inode);
2148	iput(inode);
2149	return err;
2150}
2151
2152/*
2153 * finds the tail page in the page cache,
2154 * reads the last block in.
2155 *
2156 * On success, page_result is set to a locked, pinned page, and bh_result
2157 * is set to an up to date buffer for the last block in the file.  returns 0.
2158 *
2159 * tail conversion is not done, so bh_result might not be valid for writing
2160 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2161 * trying to write the block.
2162 *
2163 * on failure, nonzero is returned, page_result and bh_result are untouched.
2164 */
2165static int grab_tail_page(struct inode *inode,
2166			  struct page **page_result,
2167			  struct buffer_head **bh_result)
2168{
2169
2170	/*
2171	 * we want the page with the last byte in the file,
2172	 * not the page that will hold the next byte for appending
2173	 */
2174	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2175	unsigned long pos = 0;
2176	unsigned long start = 0;
2177	unsigned long blocksize = inode->i_sb->s_blocksize;
2178	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2179	struct buffer_head *bh;
2180	struct buffer_head *head;
2181	struct page *page;
2182	int error;
2183
2184	/*
2185	 * we know that we are only called with inode->i_size > 0.
2186	 * we also know that a file tail can never be as big as a block
2187	 * If i_size % blocksize == 0, our file is currently block aligned
2188	 * and it won't need converting or zeroing after a truncate.
2189	 */
2190	if ((offset & (blocksize - 1)) == 0) {
2191		return -ENOENT;
2192	}
2193	page = grab_cache_page(inode->i_mapping, index);
2194	error = -ENOMEM;
2195	if (!page) {
2196		goto out;
2197	}
2198	/* start within the page of the last block in the file */
2199	start = (offset / blocksize) * blocksize;
2200
2201	error = __block_write_begin(page, start, offset - start,
2202				    reiserfs_get_block_create_0);
2203	if (error)
2204		goto unlock;
2205
2206	head = page_buffers(page);
2207	bh = head;
2208	do {
2209		if (pos >= start) {
2210			break;
2211		}
2212		bh = bh->b_this_page;
2213		pos += blocksize;
2214	} while (bh != head);
2215
2216	if (!buffer_uptodate(bh)) {
2217		/*
2218		 * note, this should never happen, prepare_write should be
2219		 * taking care of this for us.  If the buffer isn't up to
2220		 * date, I've screwed up the code to find the buffer, or the
2221		 * code to call prepare_write
2222		 */
2223		reiserfs_error(inode->i_sb, "clm-6000",
2224			       "error reading block %lu", bh->b_blocknr);
2225		error = -EIO;
2226		goto unlock;
2227	}
2228	*bh_result = bh;
2229	*page_result = page;
2230
2231out:
2232	return error;
2233
2234unlock:
2235	unlock_page(page);
2236	put_page(page);
2237	return error;
2238}
2239
2240/*
2241 * vfs version of truncate file.  Must NOT be called with
2242 * a transaction already started.
2243 *
2244 * some code taken from block_truncate_page
2245 */
2246int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2247{
2248	struct reiserfs_transaction_handle th;
2249	/* we want the offset for the first byte after the end of the file */
2250	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2251	unsigned blocksize = inode->i_sb->s_blocksize;
2252	unsigned length;
2253	struct page *page = NULL;
2254	int error;
2255	struct buffer_head *bh = NULL;
2256	int err2;
2257
2258	reiserfs_write_lock(inode->i_sb);
2259
2260	if (inode->i_size > 0) {
2261		error = grab_tail_page(inode, &page, &bh);
2262		if (error) {
2263			/*
2264			 * -ENOENT means we truncated past the end of the
2265			 * file, and get_block_create_0 could not find a
2266			 * block to read in, which is ok.
2267			 */
2268			if (error != -ENOENT)
2269				reiserfs_error(inode->i_sb, "clm-6001",
2270					       "grab_tail_page failed %d",
2271					       error);
2272			page = NULL;
2273			bh = NULL;
2274		}
2275	}
2276
2277	/*
2278	 * so, if page != NULL, we have a buffer head for the offset at
2279	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2280	 * then we have an unformatted node.  Otherwise, we have a direct item,
2281	 * and no zeroing is required on disk.  We zero after the truncate,
2282	 * because the truncate might pack the item anyway
2283	 * (it will unmap bh if it packs).
2284	 *
2285	 * it is enough to reserve space in transaction for 2 balancings:
2286	 * one for "save" link adding and another for the first
2287	 * cut_from_item. 1 is for update_sd
2288	 */
2289	error = journal_begin(&th, inode->i_sb,
2290			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2291	if (error)
2292		goto out;
2293	reiserfs_update_inode_transaction(inode);
2294	if (update_timestamps)
2295		/*
2296		 * we are doing real truncate: if the system crashes
2297		 * before the last transaction of truncating gets committed
2298		 * - on reboot the file either appears truncated properly
2299		 * or not truncated at all
2300		 */
2301		add_save_link(&th, inode, 1);
2302	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2303	error = journal_end(&th);
2304	if (error)
2305		goto out;
2306
2307	/* check reiserfs_do_truncate after ending the transaction */
2308	if (err2) {
2309		error = err2;
2310  		goto out;
2311	}
2312	
2313	if (update_timestamps) {
2314		error = remove_save_link(inode, 1 /* truncate */);
2315		if (error)
2316			goto out;
2317	}
2318
2319	if (page) {
2320		length = offset & (blocksize - 1);
2321		/* if we are not on a block boundary */
2322		if (length) {
2323			length = blocksize - length;
2324			zero_user(page, offset, length);
2325			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2326				mark_buffer_dirty(bh);
2327			}
2328		}
2329		unlock_page(page);
2330		put_page(page);
2331	}
2332
2333	reiserfs_write_unlock(inode->i_sb);
2334
2335	return 0;
2336out:
2337	if (page) {
2338		unlock_page(page);
2339		put_page(page);
2340	}
2341
2342	reiserfs_write_unlock(inode->i_sb);
2343
2344	return error;
2345}
2346
2347static int map_block_for_writepage(struct inode *inode,
2348				   struct buffer_head *bh_result,
2349				   unsigned long block)
2350{
2351	struct reiserfs_transaction_handle th;
2352	int fs_gen;
2353	struct item_head tmp_ih;
2354	struct item_head *ih;
2355	struct buffer_head *bh;
2356	__le32 *item;
2357	struct cpu_key key;
2358	INITIALIZE_PATH(path);
2359	int pos_in_item;
2360	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2361	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2362	int retval;
2363	int use_get_block = 0;
2364	int bytes_copied = 0;
2365	int copy_size;
2366	int trans_running = 0;
2367
2368	/*
2369	 * catch places below that try to log something without
2370	 * starting a trans
2371	 */
2372	th.t_trans_id = 0;
2373
2374	if (!buffer_uptodate(bh_result)) {
2375		return -EIO;
2376	}
2377
2378	kmap(bh_result->b_page);
2379start_over:
2380	reiserfs_write_lock(inode->i_sb);
2381	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2382
2383research:
2384	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2385	if (retval != POSITION_FOUND) {
2386		use_get_block = 1;
2387		goto out;
2388	}
2389
2390	bh = get_last_bh(&path);
2391	ih = tp_item_head(&path);
2392	item = tp_item_body(&path);
2393	pos_in_item = path.pos_in_item;
2394
2395	/* we've found an unformatted node */
2396	if (indirect_item_found(retval, ih)) {
2397		if (bytes_copied > 0) {
2398			reiserfs_warning(inode->i_sb, "clm-6002",
2399					 "bytes_copied %d", bytes_copied);
2400		}
2401		if (!get_block_num(item, pos_in_item)) {
2402			/* crap, we are writing to a hole */
2403			use_get_block = 1;
2404			goto out;
2405		}
2406		set_block_dev_mapped(bh_result,
2407				     get_block_num(item, pos_in_item), inode);
2408	} else if (is_direct_le_ih(ih)) {
2409		char *p;
2410		p = page_address(bh_result->b_page);
2411		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2412		copy_size = ih_item_len(ih) - pos_in_item;
2413
2414		fs_gen = get_generation(inode->i_sb);
2415		copy_item_head(&tmp_ih, ih);
2416
2417		if (!trans_running) {
2418			/* vs-3050 is gone, no need to drop the path */
2419			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2420			if (retval)
2421				goto out;
2422			reiserfs_update_inode_transaction(inode);
2423			trans_running = 1;
2424			if (fs_changed(fs_gen, inode->i_sb)
2425			    && item_moved(&tmp_ih, &path)) {
2426				reiserfs_restore_prepared_buffer(inode->i_sb,
2427								 bh);
2428				goto research;
2429			}
2430		}
2431
2432		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2433
2434		if (fs_changed(fs_gen, inode->i_sb)
2435		    && item_moved(&tmp_ih, &path)) {
2436			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2437			goto research;
2438		}
2439
2440		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2441		       copy_size);
2442
2443		journal_mark_dirty(&th, bh);
2444		bytes_copied += copy_size;
2445		set_block_dev_mapped(bh_result, 0, inode);
2446
2447		/* are there still bytes left? */
2448		if (bytes_copied < bh_result->b_size &&
2449		    (byte_offset + bytes_copied) < inode->i_size) {
2450			set_cpu_key_k_offset(&key,
2451					     cpu_key_k_offset(&key) +
2452					     copy_size);
2453			goto research;
2454		}
2455	} else {
2456		reiserfs_warning(inode->i_sb, "clm-6003",
2457				 "bad item inode %lu", inode->i_ino);
2458		retval = -EIO;
2459		goto out;
2460	}
2461	retval = 0;
2462
2463out:
2464	pathrelse(&path);
2465	if (trans_running) {
2466		int err = journal_end(&th);
2467		if (err)
2468			retval = err;
2469		trans_running = 0;
2470	}
2471	reiserfs_write_unlock(inode->i_sb);
2472
2473	/* this is where we fill in holes in the file. */
2474	if (use_get_block) {
2475		retval = reiserfs_get_block(inode, block, bh_result,
2476					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2477					    | GET_BLOCK_NO_DANGLE);
2478		if (!retval) {
2479			if (!buffer_mapped(bh_result)
2480			    || bh_result->b_blocknr == 0) {
2481				/* get_block failed to find a mapped unformatted node. */
2482				use_get_block = 0;
2483				goto start_over;
2484			}
2485		}
2486	}
2487	kunmap(bh_result->b_page);
2488
2489	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2490		/*
2491		 * we've copied data from the page into the direct item, so the
2492		 * buffer in the page is now clean, mark it to reflect that.
2493		 */
2494		lock_buffer(bh_result);
2495		clear_buffer_dirty(bh_result);
2496		unlock_buffer(bh_result);
2497	}
2498	return retval;
2499}
2500
2501/*
2502 * mason@suse.com: updated in 2.5.54 to follow the same general io
2503 * start/recovery path as __block_write_full_folio, along with special
2504 * code to handle reiserfs tails.
2505 */
2506static int reiserfs_write_full_folio(struct folio *folio,
2507				    struct writeback_control *wbc)
2508{
2509	struct inode *inode = folio->mapping->host;
2510	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2511	int error = 0;
2512	unsigned long block;
2513	sector_t last_block;
2514	struct buffer_head *head, *bh;
2515	int partial = 0;
2516	int nr = 0;
2517	int checked = folio_test_checked(folio);
2518	struct reiserfs_transaction_handle th;
2519	struct super_block *s = inode->i_sb;
2520	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2521	th.t_trans_id = 0;
2522
2523	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2524	if (checked && (current->flags & PF_MEMALLOC)) {
2525		folio_redirty_for_writepage(wbc, folio);
2526		folio_unlock(folio);
2527		return 0;
2528	}
2529
2530	/*
2531	 * The folio dirty bit is cleared before writepage is called, which
2532	 * means we have to tell create_empty_buffers to make dirty buffers
2533	 * The folio really should be up to date at this point, so tossing
2534	 * in the BH_Uptodate is just a sanity check.
2535	 */
2536	head = folio_buffers(folio);
2537	if (!head)
2538		head = create_empty_buffers(folio, s->s_blocksize,
2539				     (1 << BH_Dirty) | (1 << BH_Uptodate));
 
 
2540
2541	/*
2542	 * last folio in the file, zero out any contents past the
2543	 * last byte in the file
2544	 */
2545	if (folio->index >= end_index) {
2546		unsigned last_offset;
2547
2548		last_offset = inode->i_size & (PAGE_SIZE - 1);
2549		/* no file contents in this folio */
2550		if (folio->index >= end_index + 1 || !last_offset) {
2551			folio_unlock(folio);
2552			return 0;
2553		}
2554		folio_zero_segment(folio, last_offset, folio_size(folio));
2555	}
2556	bh = head;
2557	block = folio->index << (PAGE_SHIFT - s->s_blocksize_bits);
2558	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2559	/* first map all the buffers, logging any direct items we find */
2560	do {
2561		if (block > last_block) {
2562			/*
2563			 * This can happen when the block size is less than
2564			 * the folio size.  The corresponding bytes in the folio
2565			 * were zero filled above
2566			 */
2567			clear_buffer_dirty(bh);
2568			set_buffer_uptodate(bh);
2569		} else if ((checked || buffer_dirty(bh)) &&
2570			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
 
 
2571			/*
2572			 * not mapped yet, or it points to a direct item, search
2573			 * the btree for the mapping info, and log any direct
2574			 * items found
2575			 */
2576			if ((error = map_block_for_writepage(inode, bh, block))) {
2577				goto fail;
2578			}
2579		}
2580		bh = bh->b_this_page;
2581		block++;
2582	} while (bh != head);
2583
2584	/*
2585	 * we start the transaction after map_block_for_writepage,
2586	 * because it can create holes in the file (an unbounded operation).
2587	 * starting it here, we can make a reliable estimate for how many
2588	 * blocks we're going to log
2589	 */
2590	if (checked) {
2591		folio_clear_checked(folio);
2592		reiserfs_write_lock(s);
2593		error = journal_begin(&th, s, bh_per_page + 1);
2594		if (error) {
2595			reiserfs_write_unlock(s);
2596			goto fail;
2597		}
2598		reiserfs_update_inode_transaction(inode);
2599	}
2600	/* now go through and lock any dirty buffers on the folio */
2601	do {
2602		get_bh(bh);
2603		if (!buffer_mapped(bh))
2604			continue;
2605		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2606			continue;
2607
2608		if (checked) {
2609			reiserfs_prepare_for_journal(s, bh, 1);
2610			journal_mark_dirty(&th, bh);
2611			continue;
2612		}
2613		/*
2614		 * from this point on, we know the buffer is mapped to a
2615		 * real block and not a direct item
2616		 */
2617		if (wbc->sync_mode != WB_SYNC_NONE) {
2618			lock_buffer(bh);
2619		} else {
2620			if (!trylock_buffer(bh)) {
2621				folio_redirty_for_writepage(wbc, folio);
2622				continue;
2623			}
2624		}
2625		if (test_clear_buffer_dirty(bh)) {
2626			mark_buffer_async_write(bh);
2627		} else {
2628			unlock_buffer(bh);
2629		}
2630	} while ((bh = bh->b_this_page) != head);
2631
2632	if (checked) {
2633		error = journal_end(&th);
2634		reiserfs_write_unlock(s);
2635		if (error)
2636			goto fail;
2637	}
2638	BUG_ON(folio_test_writeback(folio));
2639	folio_start_writeback(folio);
2640	folio_unlock(folio);
2641
2642	/*
2643	 * since any buffer might be the only dirty buffer on the folio,
2644	 * the first submit_bh can bring the folio out of writeback.
2645	 * be careful with the buffers.
2646	 */
2647	do {
2648		struct buffer_head *next = bh->b_this_page;
2649		if (buffer_async_write(bh)) {
2650			submit_bh(REQ_OP_WRITE, bh);
2651			nr++;
2652		}
2653		put_bh(bh);
2654		bh = next;
2655	} while (bh != head);
2656
2657	error = 0;
2658done:
2659	if (nr == 0) {
2660		/*
2661		 * if this folio only had a direct item, it is very possible for
2662		 * no io to be required without there being an error.  Or,
2663		 * someone else could have locked them and sent them down the
2664		 * pipe without locking the folio
2665		 */
2666		bh = head;
2667		do {
2668			if (!buffer_uptodate(bh)) {
2669				partial = 1;
2670				break;
2671			}
2672			bh = bh->b_this_page;
2673		} while (bh != head);
2674		if (!partial)
2675			folio_mark_uptodate(folio);
2676		folio_end_writeback(folio);
2677	}
2678	return error;
2679
2680fail:
2681	/*
2682	 * catches various errors, we need to make sure any valid dirty blocks
2683	 * get to the media.  The folio is currently locked and not marked for
2684	 * writeback
2685	 */
2686	folio_clear_uptodate(folio);
2687	bh = head;
2688	do {
2689		get_bh(bh);
2690		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2691			lock_buffer(bh);
2692			mark_buffer_async_write(bh);
2693		} else {
2694			/*
2695			 * clear any dirty bits that might have come from
2696			 * getting attached to a dirty folio
2697			 */
2698			clear_buffer_dirty(bh);
2699		}
2700		bh = bh->b_this_page;
2701	} while (bh != head);
2702	folio_set_error(folio);
2703	BUG_ON(folio_test_writeback(folio));
2704	folio_start_writeback(folio);
2705	folio_unlock(folio);
2706	do {
2707		struct buffer_head *next = bh->b_this_page;
2708		if (buffer_async_write(bh)) {
2709			clear_buffer_dirty(bh);
2710			submit_bh(REQ_OP_WRITE, bh);
2711			nr++;
2712		}
2713		put_bh(bh);
2714		bh = next;
2715	} while (bh != head);
2716	goto done;
2717}
2718
2719static int reiserfs_read_folio(struct file *f, struct folio *folio)
2720{
2721	return block_read_full_folio(folio, reiserfs_get_block);
2722}
2723
2724static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2725{
2726	struct folio *folio = page_folio(page);
2727	struct inode *inode = folio->mapping->host;
2728	reiserfs_wait_on_write_block(inode->i_sb);
2729	return reiserfs_write_full_folio(folio, wbc);
2730}
2731
2732static void reiserfs_truncate_failed_write(struct inode *inode)
2733{
2734	truncate_inode_pages(inode->i_mapping, inode->i_size);
2735	reiserfs_truncate_file(inode, 0);
2736}
2737
2738static int reiserfs_write_begin(struct file *file,
2739				struct address_space *mapping,
2740				loff_t pos, unsigned len,
2741				struct page **pagep, void **fsdata)
2742{
2743	struct inode *inode;
2744	struct page *page;
2745	pgoff_t index;
2746	int ret;
2747	int old_ref = 0;
2748
2749 	inode = mapping->host;
 
 
 
 
 
 
 
2750	index = pos >> PAGE_SHIFT;
2751	page = grab_cache_page_write_begin(mapping, index);
2752	if (!page)
2753		return -ENOMEM;
2754	*pagep = page;
2755
2756	reiserfs_wait_on_write_block(inode->i_sb);
2757	fix_tail_page_for_writing(page);
2758	if (reiserfs_transaction_running(inode->i_sb)) {
2759		struct reiserfs_transaction_handle *th;
2760		th = (struct reiserfs_transaction_handle *)current->
2761		    journal_info;
2762		BUG_ON(!th->t_refcount);
2763		BUG_ON(!th->t_trans_id);
2764		old_ref = th->t_refcount;
2765		th->t_refcount++;
2766	}
2767	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2768	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2769		struct reiserfs_transaction_handle *th = current->journal_info;
2770		/*
2771		 * this gets a little ugly.  If reiserfs_get_block returned an
2772		 * error and left a transacstion running, we've got to close
2773		 * it, and we've got to free handle if it was a persistent
2774		 * transaction.
2775		 *
2776		 * But, if we had nested into an existing transaction, we need
2777		 * to just drop the ref count on the handle.
2778		 *
2779		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2780		 * and it was a persistent trans.  Otherwise, it was nested
2781		 * above.
2782		 */
2783		if (th->t_refcount > old_ref) {
2784			if (old_ref)
2785				th->t_refcount--;
2786			else {
2787				int err;
2788				reiserfs_write_lock(inode->i_sb);
2789				err = reiserfs_end_persistent_transaction(th);
2790				reiserfs_write_unlock(inode->i_sb);
2791				if (err)
2792					ret = err;
2793			}
2794		}
2795	}
2796	if (ret) {
2797		unlock_page(page);
2798		put_page(page);
2799		/* Truncate allocated blocks */
2800		reiserfs_truncate_failed_write(inode);
2801	}
2802	return ret;
2803}
2804
2805int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2806{
2807	struct inode *inode = page->mapping->host;
2808	int ret;
2809	int old_ref = 0;
2810	int depth;
2811
2812	depth = reiserfs_write_unlock_nested(inode->i_sb);
2813	reiserfs_wait_on_write_block(inode->i_sb);
2814	reiserfs_write_lock_nested(inode->i_sb, depth);
2815
2816	fix_tail_page_for_writing(page);
2817	if (reiserfs_transaction_running(inode->i_sb)) {
2818		struct reiserfs_transaction_handle *th;
2819		th = (struct reiserfs_transaction_handle *)current->
2820		    journal_info;
2821		BUG_ON(!th->t_refcount);
2822		BUG_ON(!th->t_trans_id);
2823		old_ref = th->t_refcount;
2824		th->t_refcount++;
2825	}
2826
2827	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2828	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2829		struct reiserfs_transaction_handle *th = current->journal_info;
2830		/*
2831		 * this gets a little ugly.  If reiserfs_get_block returned an
2832		 * error and left a transacstion running, we've got to close
2833		 * it, and we've got to free handle if it was a persistent
2834		 * transaction.
2835		 *
2836		 * But, if we had nested into an existing transaction, we need
2837		 * to just drop the ref count on the handle.
2838		 *
2839		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2840		 * and it was a persistent trans.  Otherwise, it was nested
2841		 * above.
2842		 */
2843		if (th->t_refcount > old_ref) {
2844			if (old_ref)
2845				th->t_refcount--;
2846			else {
2847				int err;
2848				reiserfs_write_lock(inode->i_sb);
2849				err = reiserfs_end_persistent_transaction(th);
2850				reiserfs_write_unlock(inode->i_sb);
2851				if (err)
2852					ret = err;
2853			}
2854		}
2855	}
2856	return ret;
2857
2858}
2859
2860static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2861{
2862	return generic_block_bmap(as, block, reiserfs_bmap);
2863}
2864
2865static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2866			      loff_t pos, unsigned len, unsigned copied,
2867			      struct page *page, void *fsdata)
2868{
2869	struct folio *folio = page_folio(page);
2870	struct inode *inode = page->mapping->host;
2871	int ret = 0;
2872	int update_sd = 0;
2873	struct reiserfs_transaction_handle *th;
2874	unsigned start;
2875	bool locked = false;
2876
 
 
 
2877	reiserfs_wait_on_write_block(inode->i_sb);
2878	if (reiserfs_transaction_running(inode->i_sb))
2879		th = current->journal_info;
2880	else
2881		th = NULL;
2882
2883	start = pos & (PAGE_SIZE - 1);
2884	if (unlikely(copied < len)) {
2885		if (!folio_test_uptodate(folio))
2886			copied = 0;
2887
2888		folio_zero_new_buffers(folio, start + copied, start + len);
2889	}
2890	flush_dcache_folio(folio);
2891
2892	reiserfs_commit_page(inode, page, start, start + copied);
2893
2894	/*
2895	 * generic_commit_write does this for us, but does not update the
2896	 * transaction tracking stuff when the size changes.  So, we have
2897	 * to do the i_size updates here.
2898	 */
2899	if (pos + copied > inode->i_size) {
2900		struct reiserfs_transaction_handle myth;
2901		reiserfs_write_lock(inode->i_sb);
2902		locked = true;
2903		/*
2904		 * If the file have grown beyond the border where it
2905		 * can have a tail, unmark it as needing a tail
2906		 * packing
2907		 */
2908		if ((have_large_tails(inode->i_sb)
2909		     && inode->i_size > i_block_size(inode) * 4)
2910		    || (have_small_tails(inode->i_sb)
2911			&& inode->i_size > i_block_size(inode)))
2912			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2913
2914		ret = journal_begin(&myth, inode->i_sb, 1);
2915		if (ret)
2916			goto journal_error;
2917
2918		reiserfs_update_inode_transaction(inode);
2919		inode->i_size = pos + copied;
2920		/*
2921		 * this will just nest into our transaction.  It's important
2922		 * to use mark_inode_dirty so the inode gets pushed around on
2923		 * the dirty lists, and so that O_SYNC works as expected
2924		 */
2925		mark_inode_dirty(inode);
2926		reiserfs_update_sd(&myth, inode);
2927		update_sd = 1;
2928		ret = journal_end(&myth);
2929		if (ret)
2930			goto journal_error;
2931	}
2932	if (th) {
2933		if (!locked) {
2934			reiserfs_write_lock(inode->i_sb);
2935			locked = true;
2936		}
2937		if (!update_sd)
2938			mark_inode_dirty(inode);
2939		ret = reiserfs_end_persistent_transaction(th);
2940		if (ret)
2941			goto out;
2942	}
2943
2944out:
2945	if (locked)
2946		reiserfs_write_unlock(inode->i_sb);
2947	unlock_page(page);
2948	put_page(page);
2949
2950	if (pos + len > inode->i_size)
2951		reiserfs_truncate_failed_write(inode);
2952
2953	return ret == 0 ? copied : ret;
2954
2955journal_error:
2956	reiserfs_write_unlock(inode->i_sb);
2957	locked = false;
2958	if (th) {
2959		if (!update_sd)
2960			reiserfs_update_sd(th, inode);
2961		ret = reiserfs_end_persistent_transaction(th);
2962	}
2963	goto out;
2964}
2965
2966int reiserfs_commit_write(struct file *f, struct page *page,
2967			  unsigned from, unsigned to)
2968{
2969	struct inode *inode = page->mapping->host;
2970	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2971	int ret = 0;
2972	int update_sd = 0;
2973	struct reiserfs_transaction_handle *th = NULL;
2974	int depth;
2975
2976	depth = reiserfs_write_unlock_nested(inode->i_sb);
2977	reiserfs_wait_on_write_block(inode->i_sb);
2978	reiserfs_write_lock_nested(inode->i_sb, depth);
2979
2980	if (reiserfs_transaction_running(inode->i_sb)) {
2981		th = current->journal_info;
2982	}
2983	reiserfs_commit_page(inode, page, from, to);
2984
2985	/*
2986	 * generic_commit_write does this for us, but does not update the
2987	 * transaction tracking stuff when the size changes.  So, we have
2988	 * to do the i_size updates here.
2989	 */
2990	if (pos > inode->i_size) {
2991		struct reiserfs_transaction_handle myth;
2992		/*
2993		 * If the file have grown beyond the border where it
2994		 * can have a tail, unmark it as needing a tail
2995		 * packing
2996		 */
2997		if ((have_large_tails(inode->i_sb)
2998		     && inode->i_size > i_block_size(inode) * 4)
2999		    || (have_small_tails(inode->i_sb)
3000			&& inode->i_size > i_block_size(inode)))
3001			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3002
3003		ret = journal_begin(&myth, inode->i_sb, 1);
3004		if (ret)
3005			goto journal_error;
3006
3007		reiserfs_update_inode_transaction(inode);
3008		inode->i_size = pos;
3009		/*
3010		 * this will just nest into our transaction.  It's important
3011		 * to use mark_inode_dirty so the inode gets pushed around
3012		 * on the dirty lists, and so that O_SYNC works as expected
3013		 */
3014		mark_inode_dirty(inode);
3015		reiserfs_update_sd(&myth, inode);
3016		update_sd = 1;
3017		ret = journal_end(&myth);
3018		if (ret)
3019			goto journal_error;
3020	}
3021	if (th) {
3022		if (!update_sd)
3023			mark_inode_dirty(inode);
3024		ret = reiserfs_end_persistent_transaction(th);
3025		if (ret)
3026			goto out;
3027	}
3028
3029out:
3030	return ret;
3031
3032journal_error:
3033	if (th) {
3034		if (!update_sd)
3035			reiserfs_update_sd(th, inode);
3036		ret = reiserfs_end_persistent_transaction(th);
3037	}
3038
3039	return ret;
3040}
3041
3042void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3043{
3044	if (reiserfs_attrs(inode->i_sb)) {
3045		if (sd_attrs & REISERFS_SYNC_FL)
3046			inode->i_flags |= S_SYNC;
3047		else
3048			inode->i_flags &= ~S_SYNC;
3049		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3050			inode->i_flags |= S_IMMUTABLE;
3051		else
3052			inode->i_flags &= ~S_IMMUTABLE;
3053		if (sd_attrs & REISERFS_APPEND_FL)
3054			inode->i_flags |= S_APPEND;
3055		else
3056			inode->i_flags &= ~S_APPEND;
3057		if (sd_attrs & REISERFS_NOATIME_FL)
3058			inode->i_flags |= S_NOATIME;
3059		else
3060			inode->i_flags &= ~S_NOATIME;
3061		if (sd_attrs & REISERFS_NOTAIL_FL)
3062			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3063		else
3064			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3065	}
3066}
3067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068/*
3069 * decide if this buffer needs to stay around for data logging or ordered
3070 * write purposes
3071 */
3072static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3073{
3074	int ret = 1;
3075	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3076
3077	lock_buffer(bh);
3078	spin_lock(&j->j_dirty_buffers_lock);
3079	if (!buffer_mapped(bh)) {
3080		goto free_jh;
3081	}
3082	/*
3083	 * the page is locked, and the only places that log a data buffer
3084	 * also lock the page.
3085	 */
3086	if (reiserfs_file_data_log(inode)) {
3087		/*
3088		 * very conservative, leave the buffer pinned if
3089		 * anyone might need it.
3090		 */
3091		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3092			ret = 0;
3093		}
3094	} else  if (buffer_dirty(bh)) {
3095		struct reiserfs_journal_list *jl;
3096		struct reiserfs_jh *jh = bh->b_private;
3097
3098		/*
3099		 * why is this safe?
3100		 * reiserfs_setattr updates i_size in the on disk
3101		 * stat data before allowing vmtruncate to be called.
3102		 *
3103		 * If buffer was put onto the ordered list for this
3104		 * transaction, we know for sure either this transaction
3105		 * or an older one already has updated i_size on disk,
3106		 * and this ordered data won't be referenced in the file
3107		 * if we crash.
3108		 *
3109		 * if the buffer was put onto the ordered list for an older
3110		 * transaction, we need to leave it around
3111		 */
3112		if (jh && (jl = jh->jl)
3113		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3114			ret = 0;
3115	}
3116free_jh:
3117	if (ret && bh->b_private) {
3118		reiserfs_free_jh(bh);
3119	}
3120	spin_unlock(&j->j_dirty_buffers_lock);
3121	unlock_buffer(bh);
3122	return ret;
3123}
3124
3125/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3126static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3127				    size_t length)
3128{
3129	struct buffer_head *head, *bh, *next;
3130	struct inode *inode = folio->mapping->host;
3131	unsigned int curr_off = 0;
3132	unsigned int stop = offset + length;
3133	int partial_page = (offset || length < folio_size(folio));
3134	int ret = 1;
3135
3136	BUG_ON(!folio_test_locked(folio));
3137
3138	if (!partial_page)
3139		folio_clear_checked(folio);
3140
3141	head = folio_buffers(folio);
3142	if (!head)
3143		goto out;
3144
 
3145	bh = head;
3146	do {
3147		unsigned int next_off = curr_off + bh->b_size;
3148		next = bh->b_this_page;
3149
3150		if (next_off > stop)
3151			goto out;
3152
3153		/*
3154		 * is this block fully invalidated?
3155		 */
3156		if (offset <= curr_off) {
3157			if (invalidate_folio_can_drop(inode, bh))
3158				reiserfs_unmap_buffer(bh);
3159			else
3160				ret = 0;
3161		}
3162		curr_off = next_off;
3163		bh = next;
3164	} while (bh != head);
3165
3166	/*
3167	 * We release buffers only if the entire page is being invalidated.
3168	 * The get_block cached value has been unconditionally invalidated,
3169	 * so real IO is not possible anymore.
3170	 */
3171	if (!partial_page && ret) {
3172		ret = filemap_release_folio(folio, 0);
3173		/* maybe should BUG_ON(!ret); - neilb */
3174	}
3175out:
3176	return;
3177}
3178
3179static bool reiserfs_dirty_folio(struct address_space *mapping,
3180		struct folio *folio)
3181{
3182	if (reiserfs_file_data_log(mapping->host)) {
3183		folio_set_checked(folio);
3184		return filemap_dirty_folio(mapping, folio);
 
3185	}
3186	return block_dirty_folio(mapping, folio);
3187}
3188
3189/*
3190 * Returns true if the folio's buffers were dropped.  The folio is locked.
3191 *
3192 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3193 * in the buffers at folio_buffers(folio).
3194 *
3195 * even in -o notail mode, we can't be sure an old mount without -o notail
3196 * didn't create files with tails.
3197 */
3198static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3199{
3200	struct inode *inode = folio->mapping->host;
3201	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3202	struct buffer_head *head;
3203	struct buffer_head *bh;
3204	bool ret = true;
3205
3206	WARN_ON(folio_test_checked(folio));
3207	spin_lock(&j->j_dirty_buffers_lock);
3208	head = folio_buffers(folio);
3209	bh = head;
3210	do {
3211		if (bh->b_private) {
3212			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3213				reiserfs_free_jh(bh);
3214			} else {
3215				ret = false;
3216				break;
3217			}
3218		}
3219		bh = bh->b_this_page;
3220	} while (bh != head);
3221	if (ret)
3222		ret = try_to_free_buffers(folio);
3223	spin_unlock(&j->j_dirty_buffers_lock);
3224	return ret;
3225}
3226
3227/*
3228 * We thank Mingming Cao for helping us understand in great detail what
3229 * to do in this section of the code.
3230 */
3231static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
3232{
3233	struct file *file = iocb->ki_filp;
3234	struct inode *inode = file->f_mapping->host;
3235	size_t count = iov_iter_count(iter);
3236	ssize_t ret;
3237
3238	ret = blockdev_direct_IO(iocb, inode, iter,
3239				 reiserfs_get_blocks_direct_io);
3240
3241	/*
3242	 * In case of error extending write may have instantiated a few
3243	 * blocks outside i_size. Trim these off again.
3244	 */
3245	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3246		loff_t isize = i_size_read(inode);
3247		loff_t end = iocb->ki_pos + count;
3248
3249		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3250			truncate_setsize(inode, isize);
3251			reiserfs_vfs_truncate_file(inode);
3252		}
3253	}
3254
3255	return ret;
3256}
3257
3258int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3259		     struct iattr *attr)
3260{
3261	struct inode *inode = d_inode(dentry);
3262	unsigned int ia_valid;
3263	int error;
3264
3265	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3266	if (error)
3267		return error;
3268
3269	/* must be turned off for recursive notify_change calls */
3270	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3271
3272	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3273		error = dquot_initialize(inode);
3274		if (error)
3275			return error;
3276	}
3277	reiserfs_write_lock(inode->i_sb);
3278	if (attr->ia_valid & ATTR_SIZE) {
3279		/*
3280		 * version 2 items will be caught by the s_maxbytes check
3281		 * done for us in vmtruncate
3282		 */
3283		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3284		    attr->ia_size > MAX_NON_LFS) {
3285			reiserfs_write_unlock(inode->i_sb);
3286			error = -EFBIG;
3287			goto out;
3288		}
3289
3290		inode_dio_wait(inode);
3291
3292		/* fill in hole pointers in the expanding truncate case. */
3293		if (attr->ia_size > inode->i_size) {
3294			loff_t pos = attr->ia_size;
3295
3296			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3297				pos++;
3298			error = generic_cont_expand_simple(inode, pos);
3299			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3300				int err;
3301				struct reiserfs_transaction_handle th;
3302				/* we're changing at most 2 bitmaps, inode + super */
3303				err = journal_begin(&th, inode->i_sb, 4);
3304				if (!err) {
3305					reiserfs_discard_prealloc(&th, inode);
3306					err = journal_end(&th);
3307				}
3308				if (err)
3309					error = err;
3310			}
3311			if (error) {
3312				reiserfs_write_unlock(inode->i_sb);
3313				goto out;
3314			}
3315			/*
3316			 * file size is changed, ctime and mtime are
3317			 * to be updated
3318			 */
3319			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3320		}
3321	}
3322	reiserfs_write_unlock(inode->i_sb);
3323
3324	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3325	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3326	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3327		/* stat data of format v3.5 has 16 bit uid and gid */
3328		error = -EINVAL;
3329		goto out;
3330	}
3331
3332	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3333	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3334		struct reiserfs_transaction_handle th;
3335		int jbegin_count =
3336		    2 *
3337		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3338		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3339		    2;
3340
3341		error = reiserfs_chown_xattrs(inode, attr);
3342
3343		if (error)
3344			return error;
3345
3346		/*
3347		 * (user+group)*(old+new) structure - we count quota
3348		 * info and , inode write (sb, inode)
3349		 */
3350		reiserfs_write_lock(inode->i_sb);
3351		error = journal_begin(&th, inode->i_sb, jbegin_count);
3352		reiserfs_write_unlock(inode->i_sb);
3353		if (error)
3354			goto out;
3355		error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3356		reiserfs_write_lock(inode->i_sb);
3357		if (error) {
3358			journal_end(&th);
3359			reiserfs_write_unlock(inode->i_sb);
3360			goto out;
3361		}
3362
3363		/*
3364		 * Update corresponding info in inode so that everything
3365		 * is in one transaction
3366		 */
3367		if (attr->ia_valid & ATTR_UID)
3368			inode->i_uid = attr->ia_uid;
3369		if (attr->ia_valid & ATTR_GID)
3370			inode->i_gid = attr->ia_gid;
3371		mark_inode_dirty(inode);
3372		error = journal_end(&th);
3373		reiserfs_write_unlock(inode->i_sb);
3374		if (error)
3375			goto out;
3376	}
3377
3378	if ((attr->ia_valid & ATTR_SIZE) &&
3379	    attr->ia_size != i_size_read(inode)) {
3380		error = inode_newsize_ok(inode, attr->ia_size);
3381		if (!error) {
3382			/*
3383			 * Could race against reiserfs_file_release
3384			 * if called from NFS, so take tailpack mutex.
3385			 */
3386			mutex_lock(&REISERFS_I(inode)->tailpack);
3387			truncate_setsize(inode, attr->ia_size);
3388			reiserfs_truncate_file(inode, 1);
3389			mutex_unlock(&REISERFS_I(inode)->tailpack);
3390		}
3391	}
3392
3393	if (!error) {
3394		setattr_copy(&nop_mnt_idmap, inode, attr);
3395		mark_inode_dirty(inode);
3396	}
3397
3398	if (!error && reiserfs_posixacl(inode->i_sb)) {
3399		if (attr->ia_valid & ATTR_MODE)
3400			error = reiserfs_acl_chmod(dentry);
3401	}
3402
3403out:
3404	return error;
3405}
3406
3407const struct address_space_operations reiserfs_address_space_operations = {
3408	.writepage = reiserfs_writepage,
3409	.read_folio = reiserfs_read_folio,
3410	.readahead = reiserfs_readahead,
3411	.release_folio = reiserfs_release_folio,
3412	.invalidate_folio = reiserfs_invalidate_folio,
3413	.write_begin = reiserfs_write_begin,
3414	.write_end = reiserfs_write_end,
3415	.bmap = reiserfs_aop_bmap,
3416	.direct_IO = reiserfs_direct_IO,
3417	.dirty_folio = reiserfs_dirty_folio,
3418};
v4.6
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
 
  22
  23int reiserfs_commit_write(struct file *f, struct page *page,
  24			  unsigned from, unsigned to);
  25
  26void reiserfs_evict_inode(struct inode *inode)
  27{
  28	/*
  29	 * We need blocks for transaction + (user+group) quota
  30	 * update (possibly delete)
  31	 */
  32	int jbegin_count =
  33	    JOURNAL_PER_BALANCE_CNT * 2 +
  34	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  35	struct reiserfs_transaction_handle th;
  36	int err;
  37
  38	if (!inode->i_nlink && !is_bad_inode(inode))
  39		dquot_initialize(inode);
  40
  41	truncate_inode_pages_final(&inode->i_data);
  42	if (inode->i_nlink)
  43		goto no_delete;
  44
  45	/*
  46	 * The = 0 happens when we abort creating a new inode
  47	 * for some reason like lack of space..
  48	 * also handles bad_inode case
  49	 */
  50	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  51
  52		reiserfs_delete_xattrs(inode);
  53
  54		reiserfs_write_lock(inode->i_sb);
  55
  56		if (journal_begin(&th, inode->i_sb, jbegin_count))
  57			goto out;
  58		reiserfs_update_inode_transaction(inode);
  59
  60		reiserfs_discard_prealloc(&th, inode);
  61
  62		err = reiserfs_delete_object(&th, inode);
  63
  64		/*
  65		 * Do quota update inside a transaction for journaled quotas.
  66		 * We must do that after delete_object so that quota updates
  67		 * go into the same transaction as stat data deletion
  68		 */
  69		if (!err) {
  70			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  71			dquot_free_inode(inode);
  72			reiserfs_write_lock_nested(inode->i_sb, depth);
  73		}
  74
  75		if (journal_end(&th))
  76			goto out;
  77
  78		/*
  79		 * check return value from reiserfs_delete_object after
  80		 * ending the transaction
  81		 */
  82		if (err)
  83		    goto out;
  84
  85		/*
  86		 * all items of file are deleted, so we can remove
  87		 * "save" link
  88		 * we can't do anything about an error here
  89		 */
  90		remove_save_link(inode, 0 /* not truncate */);
  91out:
  92		reiserfs_write_unlock(inode->i_sb);
  93	} else {
  94		/* no object items are in the tree */
  95		;
  96	}
  97
  98	/* note this must go after the journal_end to prevent deadlock */
  99	clear_inode(inode);
 100
 101	dquot_drop(inode);
 102	inode->i_blocks = 0;
 103	return;
 104
 105no_delete:
 106	clear_inode(inode);
 107	dquot_drop(inode);
 108}
 109
 110static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 111			  __u32 objectid, loff_t offset, int type, int length)
 112{
 113	key->version = version;
 114
 115	key->on_disk_key.k_dir_id = dirid;
 116	key->on_disk_key.k_objectid = objectid;
 117	set_cpu_key_k_offset(key, offset);
 118	set_cpu_key_k_type(key, type);
 119	key->key_length = length;
 120}
 121
 122/*
 123 * take base of inode_key (it comes from inode always) (dirid, objectid)
 124 * and version from an inode, set offset and type of key
 125 */
 126void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 127		  int type, int length)
 128{
 129	_make_cpu_key(key, get_inode_item_key_version(inode),
 130		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 132		      length);
 133}
 134
 135/* when key is 0, do not set version and short key */
 136inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 137			      int version,
 138			      loff_t offset, int type, int length,
 139			      int entry_count /*or ih_free_space */ )
 140{
 141	if (key) {
 142		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 143		ih->ih_key.k_objectid =
 144		    cpu_to_le32(key->on_disk_key.k_objectid);
 145	}
 146	put_ih_version(ih, version);
 147	set_le_ih_k_offset(ih, offset);
 148	set_le_ih_k_type(ih, type);
 149	put_ih_item_len(ih, length);
 150	/*    set_ih_free_space (ih, 0); */
 151	/*
 152	 * for directory items it is entry count, for directs and stat
 153	 * datas - 0xffff, for indirects - 0
 154	 */
 155	put_ih_entry_count(ih, entry_count);
 156}
 157
 158/*
 159 * FIXME: we might cache recently accessed indirect item
 160 * Ugh.  Not too eager for that....
 161 * I cut the code until such time as I see a convincing argument (benchmark).
 162 * I don't want a bloated inode struct..., and I don't like code complexity....
 163 */
 164
 165/*
 166 * cutting the code is fine, since it really isn't in use yet and is easy
 167 * to add back in.  But, Vladimir has a really good idea here.  Think
 168 * about what happens for reading a file.  For each page,
 169 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 170 * an indirect item.  This indirect item has X number of pointers, where
 171 * X is a big number if we've done the block allocation right.  But,
 172 * we only use one or two of these pointers during each call to readpage,
 173 * needlessly researching again later on.
 174 *
 175 * The size of the cache could be dynamic based on the size of the file.
 176 *
 177 * I'd also like to see us cache the location the stat data item, since
 178 * we are needlessly researching for that frequently.
 179 *
 180 * --chris
 181 */
 182
 183/*
 184 * If this page has a file tail in it, and
 185 * it was read in by get_block_create_0, the page data is valid,
 186 * but tail is still sitting in a direct item, and we can't write to
 187 * it.  So, look through this page, and check all the mapped buffers
 188 * to make sure they have valid block numbers.  Any that don't need
 189 * to be unmapped, so that __block_write_begin will correctly call
 190 * reiserfs_get_block to convert the tail into an unformatted node
 191 */
 192static inline void fix_tail_page_for_writing(struct page *page)
 193{
 194	struct buffer_head *head, *next, *bh;
 195
 196	if (page && page_has_buffers(page)) {
 197		head = page_buffers(page);
 198		bh = head;
 199		do {
 200			next = bh->b_this_page;
 201			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 202				reiserfs_unmap_buffer(bh);
 203			}
 204			bh = next;
 205		} while (bh != head);
 206	}
 207}
 208
 209/*
 210 * reiserfs_get_block does not need to allocate a block only if it has been
 211 * done already or non-hole position has been found in the indirect item
 212 */
 213static inline int allocation_needed(int retval, b_blocknr_t allocated,
 214				    struct item_head *ih,
 215				    __le32 * item, int pos_in_item)
 216{
 217	if (allocated)
 218		return 0;
 219	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 220	    get_block_num(item, pos_in_item))
 221		return 0;
 222	return 1;
 223}
 224
 225static inline int indirect_item_found(int retval, struct item_head *ih)
 226{
 227	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 228}
 229
 230static inline void set_block_dev_mapped(struct buffer_head *bh,
 231					b_blocknr_t block, struct inode *inode)
 232{
 233	map_bh(bh, inode->i_sb, block);
 234}
 235
 236/*
 237 * files which were created in the earlier version can not be longer,
 238 * than 2 gb
 239 */
 240static int file_capable(struct inode *inode, sector_t block)
 241{
 242	/* it is new file. */
 243	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 244	    /* old file, but 'block' is inside of 2gb */
 245	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 246		return 1;
 247
 248	return 0;
 249}
 250
 251static int restart_transaction(struct reiserfs_transaction_handle *th,
 252			       struct inode *inode, struct treepath *path)
 253{
 254	struct super_block *s = th->t_super;
 255	int err;
 256
 257	BUG_ON(!th->t_trans_id);
 258	BUG_ON(!th->t_refcount);
 259
 260	pathrelse(path);
 261
 262	/* we cannot restart while nested */
 263	if (th->t_refcount > 1) {
 264		return 0;
 265	}
 266	reiserfs_update_sd(th, inode);
 267	err = journal_end(th);
 268	if (!err) {
 269		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 270		if (!err)
 271			reiserfs_update_inode_transaction(inode);
 272	}
 273	return err;
 274}
 275
 276/*
 277 * it is called by get_block when create == 0. Returns block number
 278 * for 'block'-th logical block of file. When it hits direct item it
 279 * returns 0 (being called from bmap) or read direct item into piece
 280 * of page (bh_result)
 281 * Please improve the english/clarity in the comment above, as it is
 282 * hard to understand.
 283 */
 284static int _get_block_create_0(struct inode *inode, sector_t block,
 285			       struct buffer_head *bh_result, int args)
 286{
 287	INITIALIZE_PATH(path);
 288	struct cpu_key key;
 289	struct buffer_head *bh;
 290	struct item_head *ih, tmp_ih;
 291	b_blocknr_t blocknr;
 292	char *p = NULL;
 293	int chars;
 294	int ret;
 295	int result;
 296	int done = 0;
 297	unsigned long offset;
 298
 299	/* prepare the key to look for the 'block'-th block of file */
 300	make_cpu_key(&key, inode,
 301		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 302		     3);
 303
 304	result = search_for_position_by_key(inode->i_sb, &key, &path);
 305	if (result != POSITION_FOUND) {
 306		pathrelse(&path);
 307		if (p)
 308			kunmap(bh_result->b_page);
 309		if (result == IO_ERROR)
 310			return -EIO;
 311		/*
 312		 * We do not return -ENOENT if there is a hole but page is
 313		 * uptodate, because it means that there is some MMAPED data
 314		 * associated with it that is yet to be written to disk.
 315		 */
 316		if ((args & GET_BLOCK_NO_HOLE)
 317		    && !PageUptodate(bh_result->b_page)) {
 318			return -ENOENT;
 319		}
 320		return 0;
 321	}
 322
 323	bh = get_last_bh(&path);
 324	ih = tp_item_head(&path);
 325	if (is_indirect_le_ih(ih)) {
 326		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 327
 328		/*
 329		 * FIXME: here we could cache indirect item or part of it in
 330		 * the inode to avoid search_by_key in case of subsequent
 331		 * access to file
 332		 */
 333		blocknr = get_block_num(ind_item, path.pos_in_item);
 334		ret = 0;
 335		if (blocknr) {
 336			map_bh(bh_result, inode->i_sb, blocknr);
 337			if (path.pos_in_item ==
 338			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 339				set_buffer_boundary(bh_result);
 340			}
 341		} else
 342			/*
 343			 * We do not return -ENOENT if there is a hole but
 344			 * page is uptodate, because it means that there is
 345			 * some MMAPED data associated with it that is
 346			 * yet to be written to disk.
 347			 */
 348		if ((args & GET_BLOCK_NO_HOLE)
 349			    && !PageUptodate(bh_result->b_page)) {
 350			ret = -ENOENT;
 351		}
 352
 353		pathrelse(&path);
 354		if (p)
 355			kunmap(bh_result->b_page);
 356		return ret;
 357	}
 358	/* requested data are in direct item(s) */
 359	if (!(args & GET_BLOCK_READ_DIRECT)) {
 360		/*
 361		 * we are called by bmap. FIXME: we can not map block of file
 362		 * when it is stored in direct item(s)
 363		 */
 364		pathrelse(&path);
 365		if (p)
 366			kunmap(bh_result->b_page);
 367		return -ENOENT;
 368	}
 369
 370	/*
 371	 * if we've got a direct item, and the buffer or page was uptodate,
 372	 * we don't want to pull data off disk again.  skip to the
 373	 * end, where we map the buffer and return
 374	 */
 375	if (buffer_uptodate(bh_result)) {
 376		goto finished;
 377	} else
 378		/*
 379		 * grab_tail_page can trigger calls to reiserfs_get_block on
 380		 * up to date pages without any buffers.  If the page is up
 381		 * to date, we don't want read old data off disk.  Set the up
 382		 * to date bit on the buffer instead and jump to the end
 383		 */
 384	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 385		set_buffer_uptodate(bh_result);
 386		goto finished;
 387	}
 388	/* read file tail into part of page */
 389	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 390	copy_item_head(&tmp_ih, ih);
 391
 392	/*
 393	 * we only want to kmap if we are reading the tail into the page.
 394	 * this is not the common case, so we don't kmap until we are
 395	 * sure we need to.  But, this means the item might move if
 396	 * kmap schedules
 397	 */
 398	if (!p)
 399		p = (char *)kmap(bh_result->b_page);
 400
 401	p += offset;
 402	memset(p, 0, inode->i_sb->s_blocksize);
 403	do {
 404		if (!is_direct_le_ih(ih)) {
 405			BUG();
 406		}
 407		/*
 408		 * make sure we don't read more bytes than actually exist in
 409		 * the file.  This can happen in odd cases where i_size isn't
 410		 * correct, and when direct item padding results in a few
 411		 * extra bytes at the end of the direct item
 412		 */
 413		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 414			break;
 415		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 416			chars =
 417			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 418			    path.pos_in_item;
 419			done = 1;
 420		} else {
 421			chars = ih_item_len(ih) - path.pos_in_item;
 422		}
 423		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 424
 425		if (done)
 426			break;
 427
 428		p += chars;
 429
 430		/*
 431		 * we done, if read direct item is not the last item of
 432		 * node FIXME: we could try to check right delimiting key
 433		 * to see whether direct item continues in the right
 434		 * neighbor or rely on i_size
 435		 */
 436		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 437			break;
 438
 439		/* update key to look for the next piece */
 440		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 441		result = search_for_position_by_key(inode->i_sb, &key, &path);
 442		if (result != POSITION_FOUND)
 443			/* i/o error most likely */
 444			break;
 445		bh = get_last_bh(&path);
 446		ih = tp_item_head(&path);
 447	} while (1);
 448
 449	flush_dcache_page(bh_result->b_page);
 450	kunmap(bh_result->b_page);
 451
 452finished:
 453	pathrelse(&path);
 454
 455	if (result == IO_ERROR)
 456		return -EIO;
 457
 458	/*
 459	 * this buffer has valid data, but isn't valid for io.  mapping it to
 460	 * block #0 tells the rest of reiserfs it just has a tail in it
 461	 */
 462	map_bh(bh_result, inode->i_sb, 0);
 463	set_buffer_uptodate(bh_result);
 464	return 0;
 465}
 466
 467/*
 468 * this is called to create file map. So, _get_block_create_0 will not
 469 * read direct item
 470 */
 471static int reiserfs_bmap(struct inode *inode, sector_t block,
 472			 struct buffer_head *bh_result, int create)
 473{
 474	if (!file_capable(inode, block))
 475		return -EFBIG;
 476
 477	reiserfs_write_lock(inode->i_sb);
 478	/* do not read the direct item */
 479	_get_block_create_0(inode, block, bh_result, 0);
 480	reiserfs_write_unlock(inode->i_sb);
 481	return 0;
 482}
 483
 484/*
 485 * special version of get_block that is only used by grab_tail_page right
 486 * now.  It is sent to __block_write_begin, and when you try to get a
 487 * block past the end of the file (or a block from a hole) it returns
 488 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 489 * be able to do i/o on the buffers returned, unless an error value
 490 * is also returned.
 491 *
 492 * So, this allows __block_write_begin to be used for reading a single block
 493 * in a page.  Where it does not produce a valid page for holes, or past the
 494 * end of the file.  This turns out to be exactly what we need for reading
 495 * tails for conversion.
 496 *
 497 * The point of the wrapper is forcing a certain value for create, even
 498 * though the VFS layer is calling this function with create==1.  If you
 499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 500 * don't use this function.
 501*/
 502static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 503				       struct buffer_head *bh_result,
 504				       int create)
 505{
 506	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 507}
 508
 509/*
 510 * This is special helper for reiserfs_get_block in case we are executing
 511 * direct_IO request.
 512 */
 513static int reiserfs_get_blocks_direct_io(struct inode *inode,
 514					 sector_t iblock,
 515					 struct buffer_head *bh_result,
 516					 int create)
 517{
 518	int ret;
 519
 520	bh_result->b_page = NULL;
 521
 522	/*
 523	 * We set the b_size before reiserfs_get_block call since it is
 524	 * referenced in convert_tail_for_hole() that may be called from
 525	 * reiserfs_get_block()
 526	 */
 527	bh_result->b_size = (1 << inode->i_blkbits);
 528
 529	ret = reiserfs_get_block(inode, iblock, bh_result,
 530				 create | GET_BLOCK_NO_DANGLE);
 531	if (ret)
 532		goto out;
 533
 534	/* don't allow direct io onto tail pages */
 535	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 536		/*
 537		 * make sure future calls to the direct io funcs for this
 538		 * offset in the file fail by unmapping the buffer
 539		 */
 540		clear_buffer_mapped(bh_result);
 541		ret = -EINVAL;
 542	}
 543
 544	/*
 545	 * Possible unpacked tail. Flush the data before pages have
 546	 * disappeared
 547	 */
 548	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 549		int err;
 550
 551		reiserfs_write_lock(inode->i_sb);
 552
 553		err = reiserfs_commit_for_inode(inode);
 554		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 555
 556		reiserfs_write_unlock(inode->i_sb);
 557
 558		if (err < 0)
 559			ret = err;
 560	}
 561out:
 562	return ret;
 563}
 564
 565/*
 566 * helper function for when reiserfs_get_block is called for a hole
 567 * but the file tail is still in a direct item
 568 * bh_result is the buffer head for the hole
 569 * tail_offset is the offset of the start of the tail in the file
 570 *
 571 * This calls prepare_write, which will start a new transaction
 572 * you should not be in a transaction, or have any paths held when you
 573 * call this.
 574 */
 575static int convert_tail_for_hole(struct inode *inode,
 576				 struct buffer_head *bh_result,
 577				 loff_t tail_offset)
 578{
 579	unsigned long index;
 580	unsigned long tail_end;
 581	unsigned long tail_start;
 582	struct page *tail_page;
 583	struct page *hole_page = bh_result->b_page;
 584	int retval = 0;
 585
 586	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 587		return -EIO;
 588
 589	/* always try to read until the end of the block */
 590	tail_start = tail_offset & (PAGE_SIZE - 1);
 591	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 592
 593	index = tail_offset >> PAGE_SHIFT;
 594	/*
 595	 * hole_page can be zero in case of direct_io, we are sure
 596	 * that we cannot get here if we write with O_DIRECT into tail page
 597	 */
 598	if (!hole_page || index != hole_page->index) {
 599		tail_page = grab_cache_page(inode->i_mapping, index);
 600		retval = -ENOMEM;
 601		if (!tail_page) {
 602			goto out;
 603		}
 604	} else {
 605		tail_page = hole_page;
 606	}
 607
 608	/*
 609	 * we don't have to make sure the conversion did not happen while
 610	 * we were locking the page because anyone that could convert
 611	 * must first take i_mutex.
 612	 *
 613	 * We must fix the tail page for writing because it might have buffers
 614	 * that are mapped, but have a block number of 0.  This indicates tail
 615	 * data that has been read directly into the page, and
 616	 * __block_write_begin won't trigger a get_block in this case.
 617	 */
 618	fix_tail_page_for_writing(tail_page);
 619	retval = __reiserfs_write_begin(tail_page, tail_start,
 620				      tail_end - tail_start);
 621	if (retval)
 622		goto unlock;
 623
 624	/* tail conversion might change the data in the page */
 625	flush_dcache_page(tail_page);
 626
 627	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 628
 629unlock:
 630	if (tail_page != hole_page) {
 631		unlock_page(tail_page);
 632		put_page(tail_page);
 633	}
 634out:
 635	return retval;
 636}
 637
 638static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 639				  sector_t block,
 640				  struct inode *inode,
 641				  b_blocknr_t * allocated_block_nr,
 642				  struct treepath *path, int flags)
 643{
 644	BUG_ON(!th->t_trans_id);
 645
 646#ifdef REISERFS_PREALLOCATE
 647	if (!(flags & GET_BLOCK_NO_IMUX)) {
 648		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 649						  path, block);
 650	}
 651#endif
 652	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 653					 block);
 654}
 655
 656int reiserfs_get_block(struct inode *inode, sector_t block,
 657		       struct buffer_head *bh_result, int create)
 658{
 659	int repeat, retval = 0;
 660	/* b_blocknr_t is (unsigned) 32 bit int*/
 661	b_blocknr_t allocated_block_nr = 0;
 662	INITIALIZE_PATH(path);
 663	int pos_in_item;
 664	struct cpu_key key;
 665	struct buffer_head *bh, *unbh = NULL;
 666	struct item_head *ih, tmp_ih;
 667	__le32 *item;
 668	int done;
 669	int fs_gen;
 670	struct reiserfs_transaction_handle *th = NULL;
 671	/*
 672	 * space reserved in transaction batch:
 673	 * . 3 balancings in direct->indirect conversion
 674	 * . 1 block involved into reiserfs_update_sd()
 675	 * XXX in practically impossible worst case direct2indirect()
 676	 * can incur (much) more than 3 balancings.
 677	 * quota update for user, group
 678	 */
 679	int jbegin_count =
 680	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 681	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 682	int version;
 683	int dangle = 1;
 684	loff_t new_offset =
 685	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 686
 687	reiserfs_write_lock(inode->i_sb);
 688	version = get_inode_item_key_version(inode);
 689
 690	if (!file_capable(inode, block)) {
 691		reiserfs_write_unlock(inode->i_sb);
 692		return -EFBIG;
 693	}
 694
 695	/*
 696	 * if !create, we aren't changing the FS, so we don't need to
 697	 * log anything, so we don't need to start a transaction
 698	 */
 699	if (!(create & GET_BLOCK_CREATE)) {
 700		int ret;
 701		/* find number of block-th logical block of the file */
 702		ret = _get_block_create_0(inode, block, bh_result,
 703					  create | GET_BLOCK_READ_DIRECT);
 704		reiserfs_write_unlock(inode->i_sb);
 705		return ret;
 706	}
 707
 708	/*
 709	 * if we're already in a transaction, make sure to close
 710	 * any new transactions we start in this func
 711	 */
 712	if ((create & GET_BLOCK_NO_DANGLE) ||
 713	    reiserfs_transaction_running(inode->i_sb))
 714		dangle = 0;
 715
 716	/*
 717	 * If file is of such a size, that it might have a tail and
 718	 * tails are enabled  we should mark it as possibly needing
 719	 * tail packing on close
 720	 */
 721	if ((have_large_tails(inode->i_sb)
 722	     && inode->i_size < i_block_size(inode) * 4)
 723	    || (have_small_tails(inode->i_sb)
 724		&& inode->i_size < i_block_size(inode)))
 725		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 726
 727	/* set the key of the first byte in the 'block'-th block of file */
 728	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 729	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 730start_trans:
 731		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 732		if (!th) {
 733			retval = -ENOMEM;
 734			goto failure;
 735		}
 736		reiserfs_update_inode_transaction(inode);
 737	}
 738research:
 739
 740	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 741	if (retval == IO_ERROR) {
 742		retval = -EIO;
 743		goto failure;
 744	}
 745
 746	bh = get_last_bh(&path);
 747	ih = tp_item_head(&path);
 748	item = tp_item_body(&path);
 749	pos_in_item = path.pos_in_item;
 750
 751	fs_gen = get_generation(inode->i_sb);
 752	copy_item_head(&tmp_ih, ih);
 753
 754	if (allocation_needed
 755	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 756		/* we have to allocate block for the unformatted node */
 757		if (!th) {
 758			pathrelse(&path);
 759			goto start_trans;
 760		}
 761
 762		repeat =
 763		    _allocate_block(th, block, inode, &allocated_block_nr,
 764				    &path, create);
 765
 766		/*
 767		 * restart the transaction to give the journal a chance to free
 768		 * some blocks.  releases the path, so we have to go back to
 769		 * research if we succeed on the second try
 770		 */
 771		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 772			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 773			retval = restart_transaction(th, inode, &path);
 774			if (retval)
 775				goto failure;
 776			repeat =
 777			    _allocate_block(th, block, inode,
 778					    &allocated_block_nr, NULL, create);
 779
 780			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 781				goto research;
 782			}
 783			if (repeat == QUOTA_EXCEEDED)
 784				retval = -EDQUOT;
 785			else
 786				retval = -ENOSPC;
 787			goto failure;
 788		}
 789
 790		if (fs_changed(fs_gen, inode->i_sb)
 791		    && item_moved(&tmp_ih, &path)) {
 792			goto research;
 793		}
 794	}
 795
 796	if (indirect_item_found(retval, ih)) {
 797		b_blocknr_t unfm_ptr;
 798		/*
 799		 * 'block'-th block is in the file already (there is
 800		 * corresponding cell in some indirect item). But it may be
 801		 * zero unformatted node pointer (hole)
 802		 */
 803		unfm_ptr = get_block_num(item, pos_in_item);
 804		if (unfm_ptr == 0) {
 805			/* use allocated block to plug the hole */
 806			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 807			if (fs_changed(fs_gen, inode->i_sb)
 808			    && item_moved(&tmp_ih, &path)) {
 809				reiserfs_restore_prepared_buffer(inode->i_sb,
 810								 bh);
 811				goto research;
 812			}
 813			set_buffer_new(bh_result);
 814			if (buffer_dirty(bh_result)
 815			    && reiserfs_data_ordered(inode->i_sb))
 816				reiserfs_add_ordered_list(inode, bh_result);
 817			put_block_num(item, pos_in_item, allocated_block_nr);
 818			unfm_ptr = allocated_block_nr;
 819			journal_mark_dirty(th, bh);
 820			reiserfs_update_sd(th, inode);
 821		}
 822		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 823		pathrelse(&path);
 824		retval = 0;
 825		if (!dangle && th)
 826			retval = reiserfs_end_persistent_transaction(th);
 827
 828		reiserfs_write_unlock(inode->i_sb);
 829
 830		/*
 831		 * the item was found, so new blocks were not added to the file
 832		 * there is no need to make sure the inode is updated with this
 833		 * transaction
 834		 */
 835		return retval;
 836	}
 837
 838	if (!th) {
 839		pathrelse(&path);
 840		goto start_trans;
 841	}
 842
 843	/*
 844	 * desired position is not found or is in the direct item. We have
 845	 * to append file with holes up to 'block'-th block converting
 846	 * direct items to indirect one if necessary
 847	 */
 848	done = 0;
 849	do {
 850		if (is_statdata_le_ih(ih)) {
 851			__le32 unp = 0;
 852			struct cpu_key tmp_key;
 853
 854			/* indirect item has to be inserted */
 855			make_le_item_head(&tmp_ih, &key, version, 1,
 856					  TYPE_INDIRECT, UNFM_P_SIZE,
 857					  0 /* free_space */ );
 858
 859			/*
 860			 * we are going to add 'block'-th block to the file.
 861			 * Use allocated block for that
 862			 */
 863			if (cpu_key_k_offset(&key) == 1) {
 864				unp = cpu_to_le32(allocated_block_nr);
 865				set_block_dev_mapped(bh_result,
 866						     allocated_block_nr, inode);
 867				set_buffer_new(bh_result);
 868				done = 1;
 869			}
 870			tmp_key = key;	/* ;) */
 871			set_cpu_key_k_offset(&tmp_key, 1);
 872			PATH_LAST_POSITION(&path)++;
 873
 874			retval =
 875			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 876						 inode, (char *)&unp);
 877			if (retval) {
 878				reiserfs_free_block(th, inode,
 879						    allocated_block_nr, 1);
 880				/*
 881				 * retval == -ENOSPC, -EDQUOT or -EIO
 882				 * or -EEXIST
 883				 */
 884				goto failure;
 885			}
 886		} else if (is_direct_le_ih(ih)) {
 887			/* direct item has to be converted */
 888			loff_t tail_offset;
 889
 890			tail_offset =
 891			    ((le_ih_k_offset(ih) -
 892			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 893
 894			/*
 895			 * direct item we just found fits into block we have
 896			 * to map. Convert it into unformatted node: use
 897			 * bh_result for the conversion
 898			 */
 899			if (tail_offset == cpu_key_k_offset(&key)) {
 900				set_block_dev_mapped(bh_result,
 901						     allocated_block_nr, inode);
 902				unbh = bh_result;
 903				done = 1;
 904			} else {
 905				/*
 906				 * we have to pad file tail stored in direct
 907				 * item(s) up to block size and convert it
 908				 * to unformatted node. FIXME: this should
 909				 * also get into page cache
 910				 */
 911
 912				pathrelse(&path);
 913				/*
 914				 * ugly, but we can only end the transaction if
 915				 * we aren't nested
 916				 */
 917				BUG_ON(!th->t_refcount);
 918				if (th->t_refcount == 1) {
 919					retval =
 920					    reiserfs_end_persistent_transaction
 921					    (th);
 922					th = NULL;
 923					if (retval)
 924						goto failure;
 925				}
 926
 927				retval =
 928				    convert_tail_for_hole(inode, bh_result,
 929							  tail_offset);
 930				if (retval) {
 931					if (retval != -ENOSPC)
 932						reiserfs_error(inode->i_sb,
 933							"clm-6004",
 934							"convert tail failed "
 935							"inode %lu, error %d",
 936							inode->i_ino,
 937							retval);
 938					if (allocated_block_nr) {
 939						/*
 940						 * the bitmap, the super,
 941						 * and the stat data == 3
 942						 */
 943						if (!th)
 944							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 945						if (th)
 946							reiserfs_free_block(th,
 947									    inode,
 948									    allocated_block_nr,
 949									    1);
 950					}
 951					goto failure;
 952				}
 953				goto research;
 954			}
 955			retval =
 956			    direct2indirect(th, inode, &path, unbh,
 957					    tail_offset);
 958			if (retval) {
 959				reiserfs_unmap_buffer(unbh);
 960				reiserfs_free_block(th, inode,
 961						    allocated_block_nr, 1);
 962				goto failure;
 963			}
 964			/*
 965			 * it is important the set_buffer_uptodate is done
 966			 * after the direct2indirect.  The buffer might
 967			 * contain valid data newer than the data on disk
 968			 * (read by readpage, changed, and then sent here by
 969			 * writepage).  direct2indirect needs to know if unbh
 970			 * was already up to date, so it can decide if the
 971			 * data in unbh needs to be replaced with data from
 972			 * the disk
 973			 */
 974			set_buffer_uptodate(unbh);
 975
 976			/*
 977			 * unbh->b_page == NULL in case of DIRECT_IO request,
 978			 * this means buffer will disappear shortly, so it
 979			 * should not be added to
 980			 */
 981			if (unbh->b_page) {
 982				/*
 983				 * we've converted the tail, so we must
 984				 * flush unbh before the transaction commits
 985				 */
 986				reiserfs_add_tail_list(inode, unbh);
 987
 988				/*
 989				 * mark it dirty now to prevent commit_write
 990				 * from adding this buffer to the inode's
 991				 * dirty buffer list
 992				 */
 993				/*
 994				 * AKPM: changed __mark_buffer_dirty to
 995				 * mark_buffer_dirty().  It's still atomic,
 996				 * but it sets the page dirty too, which makes
 997				 * it eligible for writeback at any time by the
 998				 * VM (which was also the case with
 999				 * __mark_buffer_dirty())
1000				 */
1001				mark_buffer_dirty(unbh);
1002			}
1003		} else {
1004			/*
1005			 * append indirect item with holes if needed, when
1006			 * appending pointer to 'block'-th block use block,
1007			 * which is already allocated
1008			 */
1009			struct cpu_key tmp_key;
1010			/*
1011			 * We use this in case we need to allocate
1012			 * only one block which is a fastpath
1013			 */
1014			unp_t unf_single = 0;
1015			unp_t *un;
1016			__u64 max_to_insert =
1017			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018			    UNFM_P_SIZE;
1019			__u64 blocks_needed;
1020
1021			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022			       "vs-804: invalid position for append");
1023			/*
1024			 * indirect item has to be appended,
1025			 * set up key of that position
1026			 * (key type is unimportant)
1027			 */
1028			make_cpu_key(&tmp_key, inode,
1029				     le_key_k_offset(version,
1030						     &ih->ih_key) +
1031				     op_bytes_number(ih,
1032						     inode->i_sb->s_blocksize),
1033				     TYPE_INDIRECT, 3);
1034
1035			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036			       "green-805: invalid offset");
1037			blocks_needed =
1038			    1 +
1039			    ((cpu_key_k_offset(&key) -
1040			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041			     s_blocksize_bits);
1042
1043			if (blocks_needed == 1) {
1044				un = &unf_single;
1045			} else {
1046				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 
1047				if (!un) {
1048					un = &unf_single;
1049					blocks_needed = 1;
1050					max_to_insert = 0;
1051				}
1052			}
1053			if (blocks_needed <= max_to_insert) {
1054				/*
1055				 * we are going to add target block to
1056				 * the file. Use allocated block for that
1057				 */
1058				un[blocks_needed - 1] =
1059				    cpu_to_le32(allocated_block_nr);
1060				set_block_dev_mapped(bh_result,
1061						     allocated_block_nr, inode);
1062				set_buffer_new(bh_result);
1063				done = 1;
1064			} else {
1065				/* paste hole to the indirect item */
1066				/*
1067				 * If kmalloc failed, max_to_insert becomes
1068				 * zero and it means we only have space for
1069				 * one block
1070				 */
1071				blocks_needed =
1072				    max_to_insert ? max_to_insert : 1;
1073			}
1074			retval =
1075			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076						     (char *)un,
1077						     UNFM_P_SIZE *
1078						     blocks_needed);
1079
1080			if (blocks_needed != 1)
1081				kfree(un);
1082
1083			if (retval) {
1084				reiserfs_free_block(th, inode,
1085						    allocated_block_nr, 1);
1086				goto failure;
1087			}
1088			if (!done) {
1089				/*
1090				 * We need to mark new file size in case
1091				 * this function will be interrupted/aborted
1092				 * later on. And we may do this only for
1093				 * holes.
1094				 */
1095				inode->i_size +=
1096				    inode->i_sb->s_blocksize * blocks_needed;
1097			}
1098		}
1099
1100		if (done == 1)
1101			break;
1102
1103		/*
1104		 * this loop could log more blocks than we had originally
1105		 * asked for.  So, we have to allow the transaction to end
1106		 * if it is too big or too full.  Update the inode so things
1107		 * are consistent if we crash before the function returns
1108		 * release the path so that anybody waiting on the path before
1109		 * ending their transaction will be able to continue.
1110		 */
1111		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112			retval = restart_transaction(th, inode, &path);
1113			if (retval)
1114				goto failure;
1115		}
1116		/*
1117		 * inserting indirect pointers for a hole can take a
1118		 * long time.  reschedule if needed and also release the write
1119		 * lock for others.
1120		 */
1121		reiserfs_cond_resched(inode->i_sb);
1122
1123		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124		if (retval == IO_ERROR) {
1125			retval = -EIO;
1126			goto failure;
1127		}
1128		if (retval == POSITION_FOUND) {
1129			reiserfs_warning(inode->i_sb, "vs-825",
1130					 "%K should not be found", &key);
1131			retval = -EEXIST;
1132			if (allocated_block_nr)
1133				reiserfs_free_block(th, inode,
1134						    allocated_block_nr, 1);
1135			pathrelse(&path);
1136			goto failure;
1137		}
1138		bh = get_last_bh(&path);
1139		ih = tp_item_head(&path);
1140		item = tp_item_body(&path);
1141		pos_in_item = path.pos_in_item;
1142	} while (1);
1143
1144	retval = 0;
1145
1146failure:
1147	if (th && (!dangle || (retval && !th->t_trans_id))) {
1148		int err;
1149		if (th->t_trans_id)
1150			reiserfs_update_sd(th, inode);
1151		err = reiserfs_end_persistent_transaction(th);
1152		if (err)
1153			retval = err;
1154	}
1155
1156	reiserfs_write_unlock(inode->i_sb);
1157	reiserfs_check_path(&path);
1158	return retval;
1159}
1160
1161static int
1162reiserfs_readpages(struct file *file, struct address_space *mapping,
1163		   struct list_head *pages, unsigned nr_pages)
1164{
1165	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1166}
1167
1168/*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
1173static int real_space_diff(struct inode *inode, int sd_size)
1174{
1175	int bytes;
1176	loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179		return sd_size;
1180
1181	/*
1182	 * End of file is also in full block with indirect reference, so round
1183	 * up to the next block.
1184	 *
1185	 * there is just no way to know if the tail is actually packed
1186	 * on the file, so we have to assume it isn't.  When we pack the
1187	 * tail, we add 4 bytes to pretend there really is an unformatted
1188	 * node pointer
1189	 */
1190	bytes =
1191	    ((inode->i_size +
1192	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193	    sd_size;
1194	return bytes;
1195}
1196
1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198					int sd_size)
1199{
1200	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201		return inode->i_size +
1202		    (loff_t) (real_space_diff(inode, sd_size));
1203	}
1204	return ((loff_t) real_space_diff(inode, sd_size)) +
1205	    (((loff_t) blocks) << 9);
1206}
1207
1208/* Compute number of blocks used by file in ReiserFS counting */
1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210{
1211	loff_t bytes = inode_get_bytes(inode);
1212	loff_t real_space = real_space_diff(inode, sd_size);
1213
1214	/* keeps fsck and non-quota versions of reiserfs happy */
1215	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216		bytes += (loff_t) 511;
1217	}
1218
1219	/*
1220	 * files from before the quota patch might i_blocks such that
1221	 * bytes < real_space.  Deal with that here to prevent it from
1222	 * going negative.
1223	 */
1224	if (bytes < real_space)
1225		return 0;
1226	return (bytes - real_space) >> 9;
1227}
1228
1229/*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236/* called by read_locked_inode */
1237static void init_inode(struct inode *inode, struct treepath *path)
1238{
1239	struct buffer_head *bh;
1240	struct item_head *ih;
1241	__u32 rdev;
1242
1243	bh = PATH_PLAST_BUFFER(path);
1244	ih = tp_item_head(path);
1245
1246	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249	REISERFS_I(inode)->i_flags = 0;
1250	REISERFS_I(inode)->i_prealloc_block = 0;
1251	REISERFS_I(inode)->i_prealloc_count = 0;
1252	REISERFS_I(inode)->i_trans_id = 0;
1253	REISERFS_I(inode)->i_jl = NULL;
1254	reiserfs_init_xattr_rwsem(inode);
1255
1256	if (stat_data_v1(ih)) {
1257		struct stat_data_v1 *sd =
1258		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259		unsigned long blocks;
1260
1261		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262		set_inode_sd_version(inode, STAT_DATA_V1);
1263		inode->i_mode = sd_v1_mode(sd);
1264		set_nlink(inode, sd_v1_nlink(sd));
1265		i_uid_write(inode, sd_v1_uid(sd));
1266		i_gid_write(inode, sd_v1_gid(sd));
1267		inode->i_size = sd_v1_size(sd);
1268		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271		inode->i_atime.tv_nsec = 0;
1272		inode->i_ctime.tv_nsec = 0;
1273		inode->i_mtime.tv_nsec = 0;
1274
1275		inode->i_blocks = sd_v1_blocks(sd);
1276		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277		blocks = (inode->i_size + 511) >> 9;
1278		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280		/*
1281		 * there was a bug in <=3.5.23 when i_blocks could take
1282		 * negative values. Starting from 3.5.17 this value could
1283		 * even be stored in stat data. For such files we set
1284		 * i_blocks based on file size. Just 2 notes: this can be
1285		 * wrong for sparse files. On-disk value will be only
1286		 * updated if file's inode will ever change
1287		 */
1288		if (inode->i_blocks > blocks) {
1289			inode->i_blocks = blocks;
1290		}
1291
1292		rdev = sd_v1_rdev(sd);
1293		REISERFS_I(inode)->i_first_direct_byte =
1294		    sd_v1_first_direct_byte(sd);
1295
1296		/*
1297		 * an early bug in the quota code can give us an odd
1298		 * number for the block count.  This is incorrect, fix it here.
1299		 */
1300		if (inode->i_blocks & 1) {
1301			inode->i_blocks++;
1302		}
1303		inode_set_bytes(inode,
1304				to_real_used_space(inode, inode->i_blocks,
1305						   SD_V1_SIZE));
1306		/*
1307		 * nopack is initially zero for v1 objects. For v2 objects,
1308		 * nopack is initialised from sd_attrs
1309		 */
1310		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311	} else {
1312		/*
1313		 * new stat data found, but object may have old items
1314		 * (directories and symlinks)
1315		 */
1316		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318		inode->i_mode = sd_v2_mode(sd);
1319		set_nlink(inode, sd_v2_nlink(sd));
1320		i_uid_write(inode, sd_v2_uid(sd));
1321		inode->i_size = sd_v2_size(sd);
1322		i_gid_write(inode, sd_v2_gid(sd));
1323		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326		inode->i_ctime.tv_nsec = 0;
1327		inode->i_mtime.tv_nsec = 0;
1328		inode->i_atime.tv_nsec = 0;
1329		inode->i_blocks = sd_v2_blocks(sd);
1330		rdev = sd_v2_rdev(sd);
1331		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332			inode->i_generation =
1333			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334		else
1335			inode->i_generation = sd_v2_generation(sd);
1336
1337		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339		else
1340			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341		REISERFS_I(inode)->i_first_direct_byte = 0;
1342		set_inode_sd_version(inode, STAT_DATA_V2);
1343		inode_set_bytes(inode,
1344				to_real_used_space(inode, inode->i_blocks,
1345						   SD_V2_SIZE));
1346		/*
1347		 * read persistent inode attributes from sd and initialise
1348		 * generic inode flags from them
1349		 */
1350		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352	}
1353
1354	pathrelse(path);
1355	if (S_ISREG(inode->i_mode)) {
1356		inode->i_op = &reiserfs_file_inode_operations;
1357		inode->i_fop = &reiserfs_file_operations;
1358		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359	} else if (S_ISDIR(inode->i_mode)) {
1360		inode->i_op = &reiserfs_dir_inode_operations;
1361		inode->i_fop = &reiserfs_dir_operations;
1362	} else if (S_ISLNK(inode->i_mode)) {
1363		inode->i_op = &reiserfs_symlink_inode_operations;
1364		inode_nohighmem(inode);
1365		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366	} else {
1367		inode->i_blocks = 0;
1368		inode->i_op = &reiserfs_special_inode_operations;
1369		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370	}
1371}
1372
1373/* update new stat data with inode fields */
1374static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375{
1376	struct stat_data *sd_v2 = (struct stat_data *)sd;
1377	__u16 flags;
1378
1379	set_sd_v2_mode(sd_v2, inode->i_mode);
1380	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382	set_sd_v2_size(sd_v2, size);
1383	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390	else
1391		set_sd_v2_generation(sd_v2, inode->i_generation);
1392	flags = REISERFS_I(inode)->i_attrs;
1393	i_attrs_to_sd_attrs(inode, &flags);
1394	set_sd_v2_attrs(sd_v2, flags);
1395}
1396
1397/* used to copy inode's fields to old stat data */
1398static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1399{
1400	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1401
1402	set_sd_v1_mode(sd_v1, inode->i_mode);
1403	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1404	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1405	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1406	set_sd_v1_size(sd_v1, size);
1407	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1408	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1409	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1410
1411	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1412		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1413	else
1414		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1415
1416	/* Sigh. i_first_direct_byte is back */
1417	set_sd_v1_first_direct_byte(sd_v1,
1418				    REISERFS_I(inode)->i_first_direct_byte);
1419}
1420
1421/*
1422 * NOTE, you must prepare the buffer head before sending it here,
1423 * and then log it after the call
1424 */
1425static void update_stat_data(struct treepath *path, struct inode *inode,
1426			     loff_t size)
1427{
1428	struct buffer_head *bh;
1429	struct item_head *ih;
1430
1431	bh = PATH_PLAST_BUFFER(path);
1432	ih = tp_item_head(path);
1433
1434	if (!is_statdata_le_ih(ih))
1435		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1436			       INODE_PKEY(inode), ih);
1437
1438	/* path points to old stat data */
1439	if (stat_data_v1(ih)) {
1440		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1441	} else {
1442		inode2sd(ih_item_body(bh, ih), inode, size);
1443	}
1444
1445	return;
1446}
1447
1448void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1449			     struct inode *inode, loff_t size)
1450{
1451	struct cpu_key key;
1452	INITIALIZE_PATH(path);
1453	struct buffer_head *bh;
1454	int fs_gen;
1455	struct item_head *ih, tmp_ih;
1456	int retval;
1457
1458	BUG_ON(!th->t_trans_id);
1459
1460	/* key type is unimportant */
1461	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1462
1463	for (;;) {
1464		int pos;
1465		/* look for the object's stat data */
1466		retval = search_item(inode->i_sb, &key, &path);
1467		if (retval == IO_ERROR) {
1468			reiserfs_error(inode->i_sb, "vs-13050",
1469				       "i/o failure occurred trying to "
1470				       "update %K stat data", &key);
1471			return;
1472		}
1473		if (retval == ITEM_NOT_FOUND) {
1474			pos = PATH_LAST_POSITION(&path);
1475			pathrelse(&path);
1476			if (inode->i_nlink == 0) {
1477				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1478				return;
1479			}
1480			reiserfs_warning(inode->i_sb, "vs-13060",
1481					 "stat data of object %k (nlink == %d) "
1482					 "not found (pos %d)",
1483					 INODE_PKEY(inode), inode->i_nlink,
1484					 pos);
1485			reiserfs_check_path(&path);
1486			return;
1487		}
1488
1489		/*
1490		 * sigh, prepare_for_journal might schedule.  When it
1491		 * schedules the FS might change.  We have to detect that,
1492		 * and loop back to the search if the stat data item has moved
1493		 */
1494		bh = get_last_bh(&path);
1495		ih = tp_item_head(&path);
1496		copy_item_head(&tmp_ih, ih);
1497		fs_gen = get_generation(inode->i_sb);
1498		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1499
1500		/* Stat_data item has been moved after scheduling. */
1501		if (fs_changed(fs_gen, inode->i_sb)
1502		    && item_moved(&tmp_ih, &path)) {
1503			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1504			continue;
1505		}
1506		break;
1507	}
1508	update_stat_data(&path, inode, size);
1509	journal_mark_dirty(th, bh);
1510	pathrelse(&path);
1511	return;
1512}
1513
1514/*
1515 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1516 * does a make_bad_inode when things go wrong.  But, we need to make sure
1517 * and clear the key in the private portion of the inode, otherwise a
1518 * corresponding iput might try to delete whatever object the inode last
1519 * represented.
1520 */
1521static void reiserfs_make_bad_inode(struct inode *inode)
1522{
1523	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1524	make_bad_inode(inode);
1525}
1526
1527/*
1528 * initially this function was derived from minix or ext2's analog and
1529 * evolved as the prototype did
1530 */
1531int reiserfs_init_locked_inode(struct inode *inode, void *p)
1532{
1533	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1534	inode->i_ino = args->objectid;
1535	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1536	return 0;
1537}
1538
1539/*
1540 * looks for stat data in the tree, and fills up the fields of in-core
1541 * inode stat data fields
1542 */
1543void reiserfs_read_locked_inode(struct inode *inode,
1544				struct reiserfs_iget_args *args)
1545{
1546	INITIALIZE_PATH(path_to_sd);
1547	struct cpu_key key;
1548	unsigned long dirino;
1549	int retval;
1550
1551	dirino = args->dirid;
1552
1553	/*
1554	 * set version 1, version 2 could be used too, because stat data
1555	 * key is the same in both versions
1556	 */
1557	key.version = KEY_FORMAT_3_5;
1558	key.on_disk_key.k_dir_id = dirino;
1559	key.on_disk_key.k_objectid = inode->i_ino;
1560	key.on_disk_key.k_offset = 0;
1561	key.on_disk_key.k_type = 0;
1562
1563	/* look for the object's stat data */
1564	retval = search_item(inode->i_sb, &key, &path_to_sd);
1565	if (retval == IO_ERROR) {
1566		reiserfs_error(inode->i_sb, "vs-13070",
1567			       "i/o failure occurred trying to find "
1568			       "stat data of %K", &key);
1569		reiserfs_make_bad_inode(inode);
1570		return;
1571	}
1572
1573	/* a stale NFS handle can trigger this without it being an error */
1574	if (retval != ITEM_FOUND) {
1575		pathrelse(&path_to_sd);
1576		reiserfs_make_bad_inode(inode);
1577		clear_nlink(inode);
1578		return;
1579	}
1580
1581	init_inode(inode, &path_to_sd);
1582
1583	/*
1584	 * It is possible that knfsd is trying to access inode of a file
1585	 * that is being removed from the disk by some other thread. As we
1586	 * update sd on unlink all that is required is to check for nlink
1587	 * here. This bug was first found by Sizif when debugging
1588	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1589	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1590
1591	 * More logical fix would require changes in fs/inode.c:iput() to
1592	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1593	 * in iget() to return NULL if I_FREEING inode is found in
1594	 * hash-table.
1595	 */
1596
1597	/*
1598	 * Currently there is one place where it's ok to meet inode with
1599	 * nlink==0: processing of open-unlinked and half-truncated files
1600	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1601	 */
1602	if ((inode->i_nlink == 0) &&
1603	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1604		reiserfs_warning(inode->i_sb, "vs-13075",
1605				 "dead inode read from disk %K. "
1606				 "This is likely to be race with knfsd. Ignore",
1607				 &key);
1608		reiserfs_make_bad_inode(inode);
1609	}
1610
1611	/* init inode should be relsing */
1612	reiserfs_check_path(&path_to_sd);
1613
1614	/*
1615	 * Stat data v1 doesn't support ACLs.
1616	 */
1617	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1618		cache_no_acl(inode);
1619}
1620
1621/*
1622 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1623 *
1624 * @inode:    inode from hash table to check
1625 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1626 *
1627 * This function is called by iget5_locked() to distinguish reiserfs inodes
1628 * having the same inode numbers. Such inodes can only exist due to some
1629 * error condition. One of them should be bad. Inodes with identical
1630 * inode numbers (objectids) are distinguished by parent directory ids.
1631 *
1632 */
1633int reiserfs_find_actor(struct inode *inode, void *opaque)
1634{
1635	struct reiserfs_iget_args *args;
1636
1637	args = opaque;
1638	/* args is already in CPU order */
1639	return (inode->i_ino == args->objectid) &&
1640	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1641}
1642
1643struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1644{
1645	struct inode *inode;
1646	struct reiserfs_iget_args args;
1647	int depth;
1648
1649	args.objectid = key->on_disk_key.k_objectid;
1650	args.dirid = key->on_disk_key.k_dir_id;
1651	depth = reiserfs_write_unlock_nested(s);
1652	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1653			     reiserfs_find_actor, reiserfs_init_locked_inode,
1654			     (void *)(&args));
1655	reiserfs_write_lock_nested(s, depth);
1656	if (!inode)
1657		return ERR_PTR(-ENOMEM);
1658
1659	if (inode->i_state & I_NEW) {
1660		reiserfs_read_locked_inode(inode, &args);
1661		unlock_new_inode(inode);
1662	}
1663
1664	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1665		/* either due to i/o error or a stale NFS handle */
1666		iput(inode);
1667		inode = NULL;
1668	}
1669	return inode;
1670}
1671
1672static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1673	u32 objectid, u32 dir_id, u32 generation)
1674
1675{
1676	struct cpu_key key;
1677	struct inode *inode;
1678
1679	key.on_disk_key.k_objectid = objectid;
1680	key.on_disk_key.k_dir_id = dir_id;
1681	reiserfs_write_lock(sb);
1682	inode = reiserfs_iget(sb, &key);
1683	if (inode && !IS_ERR(inode) && generation != 0 &&
1684	    generation != inode->i_generation) {
1685		iput(inode);
1686		inode = NULL;
1687	}
1688	reiserfs_write_unlock(sb);
1689
1690	return d_obtain_alias(inode);
1691}
1692
1693struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1694		int fh_len, int fh_type)
1695{
1696	/*
1697	 * fhtype happens to reflect the number of u32s encoded.
1698	 * due to a bug in earlier code, fhtype might indicate there
1699	 * are more u32s then actually fitted.
1700	 * so if fhtype seems to be more than len, reduce fhtype.
1701	 * Valid types are:
1702	 *   2 - objectid + dir_id - legacy support
1703	 *   3 - objectid + dir_id + generation
1704	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1705	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1706	 *   6 - as above plus generation of directory
1707	 * 6 does not fit in NFSv2 handles
1708	 */
1709	if (fh_type > fh_len) {
1710		if (fh_type != 6 || fh_len != 5)
1711			reiserfs_warning(sb, "reiserfs-13077",
1712				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1713				fh_type, fh_len);
1714		fh_type = fh_len;
1715	}
1716	if (fh_len < 2)
1717		return NULL;
1718
1719	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1720		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1721}
1722
1723struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1724		int fh_len, int fh_type)
1725{
1726	if (fh_type > fh_len)
1727		fh_type = fh_len;
1728	if (fh_type < 4)
1729		return NULL;
1730
1731	return reiserfs_get_dentry(sb,
1732		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1733		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1734		(fh_type == 6) ? fid->raw[5] : 0);
1735}
1736
1737int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1738		       struct inode *parent)
1739{
1740	int maxlen = *lenp;
1741
1742	if (parent && (maxlen < 5)) {
1743		*lenp = 5;
1744		return FILEID_INVALID;
1745	} else if (maxlen < 3) {
1746		*lenp = 3;
1747		return FILEID_INVALID;
1748	}
1749
1750	data[0] = inode->i_ino;
1751	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1752	data[2] = inode->i_generation;
1753	*lenp = 3;
1754	if (parent) {
1755		data[3] = parent->i_ino;
1756		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1757		*lenp = 5;
1758		if (maxlen >= 6) {
1759			data[5] = parent->i_generation;
1760			*lenp = 6;
1761		}
1762	}
1763	return *lenp;
1764}
1765
1766/*
1767 * looks for stat data, then copies fields to it, marks the buffer
1768 * containing stat data as dirty
1769 */
1770/*
1771 * reiserfs inodes are never really dirty, since the dirty inode call
1772 * always logs them.  This call allows the VFS inode marking routines
1773 * to properly mark inodes for datasync and such, but only actually
1774 * does something when called for a synchronous update.
1775 */
1776int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1777{
1778	struct reiserfs_transaction_handle th;
1779	int jbegin_count = 1;
1780
1781	if (inode->i_sb->s_flags & MS_RDONLY)
1782		return -EROFS;
1783	/*
1784	 * memory pressure can sometimes initiate write_inode calls with
1785	 * sync == 1,
1786	 * these cases are just when the system needs ram, not when the
1787	 * inode needs to reach disk for safety, and they can safely be
1788	 * ignored because the altered inode has already been logged.
1789	 */
1790	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1791		reiserfs_write_lock(inode->i_sb);
1792		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1793			reiserfs_update_sd(&th, inode);
1794			journal_end_sync(&th);
1795		}
1796		reiserfs_write_unlock(inode->i_sb);
1797	}
1798	return 0;
1799}
1800
1801/*
1802 * stat data of new object is inserted already, this inserts the item
1803 * containing "." and ".." entries
1804 */
1805static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1806				  struct inode *inode,
1807				  struct item_head *ih, struct treepath *path,
1808				  struct inode *dir)
1809{
1810	struct super_block *sb = th->t_super;
1811	char empty_dir[EMPTY_DIR_SIZE];
1812	char *body = empty_dir;
1813	struct cpu_key key;
1814	int retval;
1815
1816	BUG_ON(!th->t_trans_id);
1817
1818	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1819		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1820		      TYPE_DIRENTRY, 3 /*key length */ );
1821
1822	/*
1823	 * compose item head for new item. Directories consist of items of
1824	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1825	 * is done by reiserfs_new_inode
1826	 */
1827	if (old_format_only(sb)) {
1828		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1829				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1830
1831		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1832				       ih->ih_key.k_objectid,
1833				       INODE_PKEY(dir)->k_dir_id,
1834				       INODE_PKEY(dir)->k_objectid);
1835	} else {
1836		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1837				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1838
1839		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1840				    ih->ih_key.k_objectid,
1841				    INODE_PKEY(dir)->k_dir_id,
1842				    INODE_PKEY(dir)->k_objectid);
1843	}
1844
1845	/* look for place in the tree for new item */
1846	retval = search_item(sb, &key, path);
1847	if (retval == IO_ERROR) {
1848		reiserfs_error(sb, "vs-13080",
1849			       "i/o failure occurred creating new directory");
1850		return -EIO;
1851	}
1852	if (retval == ITEM_FOUND) {
1853		pathrelse(path);
1854		reiserfs_warning(sb, "vs-13070",
1855				 "object with this key exists (%k)",
1856				 &(ih->ih_key));
1857		return -EEXIST;
1858	}
1859
1860	/* insert item, that is empty directory item */
1861	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1862}
1863
1864/*
1865 * stat data of object has been inserted, this inserts the item
1866 * containing the body of symlink
1867 */
1868static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1869				struct inode *inode,
1870				struct item_head *ih,
1871				struct treepath *path, const char *symname,
1872				int item_len)
1873{
1874	struct super_block *sb = th->t_super;
1875	struct cpu_key key;
1876	int retval;
1877
1878	BUG_ON(!th->t_trans_id);
1879
1880	_make_cpu_key(&key, KEY_FORMAT_3_5,
1881		      le32_to_cpu(ih->ih_key.k_dir_id),
1882		      le32_to_cpu(ih->ih_key.k_objectid),
1883		      1, TYPE_DIRECT, 3 /*key length */ );
1884
1885	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1886			  0 /*free_space */ );
1887
1888	/* look for place in the tree for new item */
1889	retval = search_item(sb, &key, path);
1890	if (retval == IO_ERROR) {
1891		reiserfs_error(sb, "vs-13080",
1892			       "i/o failure occurred creating new symlink");
1893		return -EIO;
1894	}
1895	if (retval == ITEM_FOUND) {
1896		pathrelse(path);
1897		reiserfs_warning(sb, "vs-13080",
1898				 "object with this key exists (%k)",
1899				 &(ih->ih_key));
1900		return -EEXIST;
1901	}
1902
1903	/* insert item, that is body of symlink */
1904	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1905}
1906
1907/*
1908 * inserts the stat data into the tree, and then calls
1909 * reiserfs_new_directory (to insert ".", ".." item if new object is
1910 * directory) or reiserfs_new_symlink (to insert symlink body if new
1911 * object is symlink) or nothing (if new object is regular file)
1912
1913 * NOTE! uid and gid must already be set in the inode.  If we return
1914 * non-zero due to an error, we have to drop the quota previously allocated
1915 * for the fresh inode.  This can only be done outside a transaction, so
1916 * if we return non-zero, we also end the transaction.
1917 *
1918 * @th: active transaction handle
1919 * @dir: parent directory for new inode
1920 * @mode: mode of new inode
1921 * @symname: symlink contents if inode is symlink
1922 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1923 *         symlinks
1924 * @inode: inode to be filled
1925 * @security: optional security context to associate with this inode
1926 */
1927int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1928		       struct inode *dir, umode_t mode, const char *symname,
1929		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1930		          strlen (symname) for symlinks) */
1931		       loff_t i_size, struct dentry *dentry,
1932		       struct inode *inode,
1933		       struct reiserfs_security_handle *security)
1934{
1935	struct super_block *sb = dir->i_sb;
1936	struct reiserfs_iget_args args;
1937	INITIALIZE_PATH(path_to_key);
1938	struct cpu_key key;
1939	struct item_head ih;
1940	struct stat_data sd;
1941	int retval;
1942	int err;
1943	int depth;
1944
1945	BUG_ON(!th->t_trans_id);
1946
1947	depth = reiserfs_write_unlock_nested(sb);
1948	err = dquot_alloc_inode(inode);
1949	reiserfs_write_lock_nested(sb, depth);
1950	if (err)
1951		goto out_end_trans;
1952	if (!dir->i_nlink) {
1953		err = -EPERM;
1954		goto out_bad_inode;
1955	}
1956
1957	/* item head of new item */
1958	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1959	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1960	if (!ih.ih_key.k_objectid) {
1961		err = -ENOMEM;
1962		goto out_bad_inode;
1963	}
1964	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1965	if (old_format_only(sb))
1966		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1967				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1968	else
1969		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1970				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1971	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1972	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1973
1974	depth = reiserfs_write_unlock_nested(inode->i_sb);
1975	err = insert_inode_locked4(inode, args.objectid,
1976			     reiserfs_find_actor, &args);
1977	reiserfs_write_lock_nested(inode->i_sb, depth);
1978	if (err) {
1979		err = -EINVAL;
1980		goto out_bad_inode;
1981	}
1982
1983	if (old_format_only(sb))
1984		/*
1985		 * not a perfect generation count, as object ids can be reused,
1986		 * but this is as good as reiserfs can do right now.
1987		 * note that the private part of inode isn't filled in yet,
1988		 * we have to use the directory.
1989		 */
1990		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1991	else
1992#if defined( USE_INODE_GENERATION_COUNTER )
1993		inode->i_generation =
1994		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1995#else
1996		inode->i_generation = ++event;
1997#endif
1998
1999	/* fill stat data */
2000	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2001
2002	/* uid and gid must already be set by the caller for quota init */
2003
2004	/* symlink cannot be immutable or append only, right? */
2005	if (S_ISLNK(inode->i_mode))
2006		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2007
2008	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
2009	inode->i_size = i_size;
2010	inode->i_blocks = 0;
2011	inode->i_bytes = 0;
2012	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2013	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2014
2015	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2016	REISERFS_I(inode)->i_flags = 0;
2017	REISERFS_I(inode)->i_prealloc_block = 0;
2018	REISERFS_I(inode)->i_prealloc_count = 0;
2019	REISERFS_I(inode)->i_trans_id = 0;
2020	REISERFS_I(inode)->i_jl = NULL;
2021	REISERFS_I(inode)->i_attrs =
2022	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2023	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2024	reiserfs_init_xattr_rwsem(inode);
2025
2026	/* key to search for correct place for new stat data */
2027	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2028		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2029		      TYPE_STAT_DATA, 3 /*key length */ );
2030
2031	/* find proper place for inserting of stat data */
2032	retval = search_item(sb, &key, &path_to_key);
2033	if (retval == IO_ERROR) {
2034		err = -EIO;
2035		goto out_bad_inode;
2036	}
2037	if (retval == ITEM_FOUND) {
2038		pathrelse(&path_to_key);
2039		err = -EEXIST;
2040		goto out_bad_inode;
2041	}
2042	if (old_format_only(sb)) {
2043		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2044		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2045			pathrelse(&path_to_key);
2046			err = -EINVAL;
2047			goto out_bad_inode;
2048		}
2049		inode2sd_v1(&sd, inode, inode->i_size);
2050	} else {
2051		inode2sd(&sd, inode, inode->i_size);
2052	}
2053	/*
2054	 * store in in-core inode the key of stat data and version all
2055	 * object items will have (directory items will have old offset
2056	 * format, other new objects will consist of new items)
2057	 */
2058	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2059		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2060	else
2061		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2062	if (old_format_only(sb))
2063		set_inode_sd_version(inode, STAT_DATA_V1);
2064	else
2065		set_inode_sd_version(inode, STAT_DATA_V2);
2066
2067	/* insert the stat data into the tree */
2068#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2069	if (REISERFS_I(dir)->new_packing_locality)
2070		th->displace_new_blocks = 1;
2071#endif
2072	retval =
2073	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2074				 (char *)(&sd));
2075	if (retval) {
2076		err = retval;
2077		reiserfs_check_path(&path_to_key);
2078		goto out_bad_inode;
2079	}
2080#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2081	if (!th->displace_new_blocks)
2082		REISERFS_I(dir)->new_packing_locality = 0;
2083#endif
2084	if (S_ISDIR(mode)) {
2085		/* insert item with "." and ".." */
2086		retval =
2087		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2088	}
2089
2090	if (S_ISLNK(mode)) {
2091		/* insert body of symlink */
2092		if (!old_format_only(sb))
2093			i_size = ROUND_UP(i_size);
2094		retval =
2095		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2096					 i_size);
2097	}
2098	if (retval) {
2099		err = retval;
2100		reiserfs_check_path(&path_to_key);
2101		journal_end(th);
2102		goto out_inserted_sd;
2103	}
2104
 
 
 
 
 
 
 
2105	if (reiserfs_posixacl(inode->i_sb)) {
2106		reiserfs_write_unlock(inode->i_sb);
2107		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2108		reiserfs_write_lock(inode->i_sb);
2109		if (retval) {
2110			err = retval;
2111			reiserfs_check_path(&path_to_key);
2112			journal_end(th);
2113			goto out_inserted_sd;
2114		}
2115	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
2116		reiserfs_warning(inode->i_sb, "jdm-13090",
2117				 "ACLs aren't enabled in the fs, "
2118				 "but vfs thinks they are!");
2119	} else if (IS_PRIVATE(dir))
2120		inode->i_flags |= S_PRIVATE;
2121
2122	if (security->name) {
2123		reiserfs_write_unlock(inode->i_sb);
2124		retval = reiserfs_security_write(th, inode, security);
2125		reiserfs_write_lock(inode->i_sb);
2126		if (retval) {
2127			err = retval;
2128			reiserfs_check_path(&path_to_key);
2129			retval = journal_end(th);
2130			if (retval)
2131				err = retval;
2132			goto out_inserted_sd;
2133		}
2134	}
2135
2136	reiserfs_update_sd(th, inode);
2137	reiserfs_check_path(&path_to_key);
2138
2139	return 0;
2140
2141out_bad_inode:
2142	/* Invalidate the object, nothing was inserted yet */
2143	INODE_PKEY(inode)->k_objectid = 0;
2144
2145	/* Quota change must be inside a transaction for journaling */
2146	depth = reiserfs_write_unlock_nested(inode->i_sb);
2147	dquot_free_inode(inode);
2148	reiserfs_write_lock_nested(inode->i_sb, depth);
2149
2150out_end_trans:
2151	journal_end(th);
2152	/*
2153	 * Drop can be outside and it needs more credits so it's better
2154	 * to have it outside
2155	 */
2156	depth = reiserfs_write_unlock_nested(inode->i_sb);
2157	dquot_drop(inode);
2158	reiserfs_write_lock_nested(inode->i_sb, depth);
2159	inode->i_flags |= S_NOQUOTA;
2160	make_bad_inode(inode);
2161
2162out_inserted_sd:
2163	clear_nlink(inode);
2164	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2165	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
 
2166	iput(inode);
2167	return err;
2168}
2169
2170/*
2171 * finds the tail page in the page cache,
2172 * reads the last block in.
2173 *
2174 * On success, page_result is set to a locked, pinned page, and bh_result
2175 * is set to an up to date buffer for the last block in the file.  returns 0.
2176 *
2177 * tail conversion is not done, so bh_result might not be valid for writing
2178 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2179 * trying to write the block.
2180 *
2181 * on failure, nonzero is returned, page_result and bh_result are untouched.
2182 */
2183static int grab_tail_page(struct inode *inode,
2184			  struct page **page_result,
2185			  struct buffer_head **bh_result)
2186{
2187
2188	/*
2189	 * we want the page with the last byte in the file,
2190	 * not the page that will hold the next byte for appending
2191	 */
2192	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2193	unsigned long pos = 0;
2194	unsigned long start = 0;
2195	unsigned long blocksize = inode->i_sb->s_blocksize;
2196	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2197	struct buffer_head *bh;
2198	struct buffer_head *head;
2199	struct page *page;
2200	int error;
2201
2202	/*
2203	 * we know that we are only called with inode->i_size > 0.
2204	 * we also know that a file tail can never be as big as a block
2205	 * If i_size % blocksize == 0, our file is currently block aligned
2206	 * and it won't need converting or zeroing after a truncate.
2207	 */
2208	if ((offset & (blocksize - 1)) == 0) {
2209		return -ENOENT;
2210	}
2211	page = grab_cache_page(inode->i_mapping, index);
2212	error = -ENOMEM;
2213	if (!page) {
2214		goto out;
2215	}
2216	/* start within the page of the last block in the file */
2217	start = (offset / blocksize) * blocksize;
2218
2219	error = __block_write_begin(page, start, offset - start,
2220				    reiserfs_get_block_create_0);
2221	if (error)
2222		goto unlock;
2223
2224	head = page_buffers(page);
2225	bh = head;
2226	do {
2227		if (pos >= start) {
2228			break;
2229		}
2230		bh = bh->b_this_page;
2231		pos += blocksize;
2232	} while (bh != head);
2233
2234	if (!buffer_uptodate(bh)) {
2235		/*
2236		 * note, this should never happen, prepare_write should be
2237		 * taking care of this for us.  If the buffer isn't up to
2238		 * date, I've screwed up the code to find the buffer, or the
2239		 * code to call prepare_write
2240		 */
2241		reiserfs_error(inode->i_sb, "clm-6000",
2242			       "error reading block %lu", bh->b_blocknr);
2243		error = -EIO;
2244		goto unlock;
2245	}
2246	*bh_result = bh;
2247	*page_result = page;
2248
2249out:
2250	return error;
2251
2252unlock:
2253	unlock_page(page);
2254	put_page(page);
2255	return error;
2256}
2257
2258/*
2259 * vfs version of truncate file.  Must NOT be called with
2260 * a transaction already started.
2261 *
2262 * some code taken from block_truncate_page
2263 */
2264int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2265{
2266	struct reiserfs_transaction_handle th;
2267	/* we want the offset for the first byte after the end of the file */
2268	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2269	unsigned blocksize = inode->i_sb->s_blocksize;
2270	unsigned length;
2271	struct page *page = NULL;
2272	int error;
2273	struct buffer_head *bh = NULL;
2274	int err2;
2275
2276	reiserfs_write_lock(inode->i_sb);
2277
2278	if (inode->i_size > 0) {
2279		error = grab_tail_page(inode, &page, &bh);
2280		if (error) {
2281			/*
2282			 * -ENOENT means we truncated past the end of the
2283			 * file, and get_block_create_0 could not find a
2284			 * block to read in, which is ok.
2285			 */
2286			if (error != -ENOENT)
2287				reiserfs_error(inode->i_sb, "clm-6001",
2288					       "grab_tail_page failed %d",
2289					       error);
2290			page = NULL;
2291			bh = NULL;
2292		}
2293	}
2294
2295	/*
2296	 * so, if page != NULL, we have a buffer head for the offset at
2297	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2298	 * then we have an unformatted node.  Otherwise, we have a direct item,
2299	 * and no zeroing is required on disk.  We zero after the truncate,
2300	 * because the truncate might pack the item anyway
2301	 * (it will unmap bh if it packs).
2302	 *
2303	 * it is enough to reserve space in transaction for 2 balancings:
2304	 * one for "save" link adding and another for the first
2305	 * cut_from_item. 1 is for update_sd
2306	 */
2307	error = journal_begin(&th, inode->i_sb,
2308			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2309	if (error)
2310		goto out;
2311	reiserfs_update_inode_transaction(inode);
2312	if (update_timestamps)
2313		/*
2314		 * we are doing real truncate: if the system crashes
2315		 * before the last transaction of truncating gets committed
2316		 * - on reboot the file either appears truncated properly
2317		 * or not truncated at all
2318		 */
2319		add_save_link(&th, inode, 1);
2320	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2321	error = journal_end(&th);
2322	if (error)
2323		goto out;
2324
2325	/* check reiserfs_do_truncate after ending the transaction */
2326	if (err2) {
2327		error = err2;
2328  		goto out;
2329	}
2330	
2331	if (update_timestamps) {
2332		error = remove_save_link(inode, 1 /* truncate */);
2333		if (error)
2334			goto out;
2335	}
2336
2337	if (page) {
2338		length = offset & (blocksize - 1);
2339		/* if we are not on a block boundary */
2340		if (length) {
2341			length = blocksize - length;
2342			zero_user(page, offset, length);
2343			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2344				mark_buffer_dirty(bh);
2345			}
2346		}
2347		unlock_page(page);
2348		put_page(page);
2349	}
2350
2351	reiserfs_write_unlock(inode->i_sb);
2352
2353	return 0;
2354out:
2355	if (page) {
2356		unlock_page(page);
2357		put_page(page);
2358	}
2359
2360	reiserfs_write_unlock(inode->i_sb);
2361
2362	return error;
2363}
2364
2365static int map_block_for_writepage(struct inode *inode,
2366				   struct buffer_head *bh_result,
2367				   unsigned long block)
2368{
2369	struct reiserfs_transaction_handle th;
2370	int fs_gen;
2371	struct item_head tmp_ih;
2372	struct item_head *ih;
2373	struct buffer_head *bh;
2374	__le32 *item;
2375	struct cpu_key key;
2376	INITIALIZE_PATH(path);
2377	int pos_in_item;
2378	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2379	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2380	int retval;
2381	int use_get_block = 0;
2382	int bytes_copied = 0;
2383	int copy_size;
2384	int trans_running = 0;
2385
2386	/*
2387	 * catch places below that try to log something without
2388	 * starting a trans
2389	 */
2390	th.t_trans_id = 0;
2391
2392	if (!buffer_uptodate(bh_result)) {
2393		return -EIO;
2394	}
2395
2396	kmap(bh_result->b_page);
2397start_over:
2398	reiserfs_write_lock(inode->i_sb);
2399	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2400
2401research:
2402	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2403	if (retval != POSITION_FOUND) {
2404		use_get_block = 1;
2405		goto out;
2406	}
2407
2408	bh = get_last_bh(&path);
2409	ih = tp_item_head(&path);
2410	item = tp_item_body(&path);
2411	pos_in_item = path.pos_in_item;
2412
2413	/* we've found an unformatted node */
2414	if (indirect_item_found(retval, ih)) {
2415		if (bytes_copied > 0) {
2416			reiserfs_warning(inode->i_sb, "clm-6002",
2417					 "bytes_copied %d", bytes_copied);
2418		}
2419		if (!get_block_num(item, pos_in_item)) {
2420			/* crap, we are writing to a hole */
2421			use_get_block = 1;
2422			goto out;
2423		}
2424		set_block_dev_mapped(bh_result,
2425				     get_block_num(item, pos_in_item), inode);
2426	} else if (is_direct_le_ih(ih)) {
2427		char *p;
2428		p = page_address(bh_result->b_page);
2429		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2430		copy_size = ih_item_len(ih) - pos_in_item;
2431
2432		fs_gen = get_generation(inode->i_sb);
2433		copy_item_head(&tmp_ih, ih);
2434
2435		if (!trans_running) {
2436			/* vs-3050 is gone, no need to drop the path */
2437			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2438			if (retval)
2439				goto out;
2440			reiserfs_update_inode_transaction(inode);
2441			trans_running = 1;
2442			if (fs_changed(fs_gen, inode->i_sb)
2443			    && item_moved(&tmp_ih, &path)) {
2444				reiserfs_restore_prepared_buffer(inode->i_sb,
2445								 bh);
2446				goto research;
2447			}
2448		}
2449
2450		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2451
2452		if (fs_changed(fs_gen, inode->i_sb)
2453		    && item_moved(&tmp_ih, &path)) {
2454			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2455			goto research;
2456		}
2457
2458		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2459		       copy_size);
2460
2461		journal_mark_dirty(&th, bh);
2462		bytes_copied += copy_size;
2463		set_block_dev_mapped(bh_result, 0, inode);
2464
2465		/* are there still bytes left? */
2466		if (bytes_copied < bh_result->b_size &&
2467		    (byte_offset + bytes_copied) < inode->i_size) {
2468			set_cpu_key_k_offset(&key,
2469					     cpu_key_k_offset(&key) +
2470					     copy_size);
2471			goto research;
2472		}
2473	} else {
2474		reiserfs_warning(inode->i_sb, "clm-6003",
2475				 "bad item inode %lu", inode->i_ino);
2476		retval = -EIO;
2477		goto out;
2478	}
2479	retval = 0;
2480
2481out:
2482	pathrelse(&path);
2483	if (trans_running) {
2484		int err = journal_end(&th);
2485		if (err)
2486			retval = err;
2487		trans_running = 0;
2488	}
2489	reiserfs_write_unlock(inode->i_sb);
2490
2491	/* this is where we fill in holes in the file. */
2492	if (use_get_block) {
2493		retval = reiserfs_get_block(inode, block, bh_result,
2494					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2495					    | GET_BLOCK_NO_DANGLE);
2496		if (!retval) {
2497			if (!buffer_mapped(bh_result)
2498			    || bh_result->b_blocknr == 0) {
2499				/* get_block failed to find a mapped unformatted node. */
2500				use_get_block = 0;
2501				goto start_over;
2502			}
2503		}
2504	}
2505	kunmap(bh_result->b_page);
2506
2507	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2508		/*
2509		 * we've copied data from the page into the direct item, so the
2510		 * buffer in the page is now clean, mark it to reflect that.
2511		 */
2512		lock_buffer(bh_result);
2513		clear_buffer_dirty(bh_result);
2514		unlock_buffer(bh_result);
2515	}
2516	return retval;
2517}
2518
2519/*
2520 * mason@suse.com: updated in 2.5.54 to follow the same general io
2521 * start/recovery path as __block_write_full_page, along with special
2522 * code to handle reiserfs tails.
2523 */
2524static int reiserfs_write_full_page(struct page *page,
2525				    struct writeback_control *wbc)
2526{
2527	struct inode *inode = page->mapping->host;
2528	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2529	int error = 0;
2530	unsigned long block;
2531	sector_t last_block;
2532	struct buffer_head *head, *bh;
2533	int partial = 0;
2534	int nr = 0;
2535	int checked = PageChecked(page);
2536	struct reiserfs_transaction_handle th;
2537	struct super_block *s = inode->i_sb;
2538	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2539	th.t_trans_id = 0;
2540
2541	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2542	if (checked && (current->flags & PF_MEMALLOC)) {
2543		redirty_page_for_writepage(wbc, page);
2544		unlock_page(page);
2545		return 0;
2546	}
2547
2548	/*
2549	 * The page dirty bit is cleared before writepage is called, which
2550	 * means we have to tell create_empty_buffers to make dirty buffers
2551	 * The page really should be up to date at this point, so tossing
2552	 * in the BH_Uptodate is just a sanity check.
2553	 */
2554	if (!page_has_buffers(page)) {
2555		create_empty_buffers(page, s->s_blocksize,
 
2556				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2557	}
2558	head = page_buffers(page);
2559
2560	/*
2561	 * last page in the file, zero out any contents past the
2562	 * last byte in the file
2563	 */
2564	if (page->index >= end_index) {
2565		unsigned last_offset;
2566
2567		last_offset = inode->i_size & (PAGE_SIZE - 1);
2568		/* no file contents in this page */
2569		if (page->index >= end_index + 1 || !last_offset) {
2570			unlock_page(page);
2571			return 0;
2572		}
2573		zero_user_segment(page, last_offset, PAGE_SIZE);
2574	}
2575	bh = head;
2576	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2577	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2578	/* first map all the buffers, logging any direct items we find */
2579	do {
2580		if (block > last_block) {
2581			/*
2582			 * This can happen when the block size is less than
2583			 * the page size.  The corresponding bytes in the page
2584			 * were zero filled above
2585			 */
2586			clear_buffer_dirty(bh);
2587			set_buffer_uptodate(bh);
2588		} else if ((checked || buffer_dirty(bh)) &&
2589		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2590						       && bh->b_blocknr ==
2591						       0))) {
2592			/*
2593			 * not mapped yet, or it points to a direct item, search
2594			 * the btree for the mapping info, and log any direct
2595			 * items found
2596			 */
2597			if ((error = map_block_for_writepage(inode, bh, block))) {
2598				goto fail;
2599			}
2600		}
2601		bh = bh->b_this_page;
2602		block++;
2603	} while (bh != head);
2604
2605	/*
2606	 * we start the transaction after map_block_for_writepage,
2607	 * because it can create holes in the file (an unbounded operation).
2608	 * starting it here, we can make a reliable estimate for how many
2609	 * blocks we're going to log
2610	 */
2611	if (checked) {
2612		ClearPageChecked(page);
2613		reiserfs_write_lock(s);
2614		error = journal_begin(&th, s, bh_per_page + 1);
2615		if (error) {
2616			reiserfs_write_unlock(s);
2617			goto fail;
2618		}
2619		reiserfs_update_inode_transaction(inode);
2620	}
2621	/* now go through and lock any dirty buffers on the page */
2622	do {
2623		get_bh(bh);
2624		if (!buffer_mapped(bh))
2625			continue;
2626		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2627			continue;
2628
2629		if (checked) {
2630			reiserfs_prepare_for_journal(s, bh, 1);
2631			journal_mark_dirty(&th, bh);
2632			continue;
2633		}
2634		/*
2635		 * from this point on, we know the buffer is mapped to a
2636		 * real block and not a direct item
2637		 */
2638		if (wbc->sync_mode != WB_SYNC_NONE) {
2639			lock_buffer(bh);
2640		} else {
2641			if (!trylock_buffer(bh)) {
2642				redirty_page_for_writepage(wbc, page);
2643				continue;
2644			}
2645		}
2646		if (test_clear_buffer_dirty(bh)) {
2647			mark_buffer_async_write(bh);
2648		} else {
2649			unlock_buffer(bh);
2650		}
2651	} while ((bh = bh->b_this_page) != head);
2652
2653	if (checked) {
2654		error = journal_end(&th);
2655		reiserfs_write_unlock(s);
2656		if (error)
2657			goto fail;
2658	}
2659	BUG_ON(PageWriteback(page));
2660	set_page_writeback(page);
2661	unlock_page(page);
2662
2663	/*
2664	 * since any buffer might be the only dirty buffer on the page,
2665	 * the first submit_bh can bring the page out of writeback.
2666	 * be careful with the buffers.
2667	 */
2668	do {
2669		struct buffer_head *next = bh->b_this_page;
2670		if (buffer_async_write(bh)) {
2671			submit_bh(WRITE, bh);
2672			nr++;
2673		}
2674		put_bh(bh);
2675		bh = next;
2676	} while (bh != head);
2677
2678	error = 0;
2679done:
2680	if (nr == 0) {
2681		/*
2682		 * if this page only had a direct item, it is very possible for
2683		 * no io to be required without there being an error.  Or,
2684		 * someone else could have locked them and sent them down the
2685		 * pipe without locking the page
2686		 */
2687		bh = head;
2688		do {
2689			if (!buffer_uptodate(bh)) {
2690				partial = 1;
2691				break;
2692			}
2693			bh = bh->b_this_page;
2694		} while (bh != head);
2695		if (!partial)
2696			SetPageUptodate(page);
2697		end_page_writeback(page);
2698	}
2699	return error;
2700
2701fail:
2702	/*
2703	 * catches various errors, we need to make sure any valid dirty blocks
2704	 * get to the media.  The page is currently locked and not marked for
2705	 * writeback
2706	 */
2707	ClearPageUptodate(page);
2708	bh = head;
2709	do {
2710		get_bh(bh);
2711		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2712			lock_buffer(bh);
2713			mark_buffer_async_write(bh);
2714		} else {
2715			/*
2716			 * clear any dirty bits that might have come from
2717			 * getting attached to a dirty page
2718			 */
2719			clear_buffer_dirty(bh);
2720		}
2721		bh = bh->b_this_page;
2722	} while (bh != head);
2723	SetPageError(page);
2724	BUG_ON(PageWriteback(page));
2725	set_page_writeback(page);
2726	unlock_page(page);
2727	do {
2728		struct buffer_head *next = bh->b_this_page;
2729		if (buffer_async_write(bh)) {
2730			clear_buffer_dirty(bh);
2731			submit_bh(WRITE, bh);
2732			nr++;
2733		}
2734		put_bh(bh);
2735		bh = next;
2736	} while (bh != head);
2737	goto done;
2738}
2739
2740static int reiserfs_readpage(struct file *f, struct page *page)
2741{
2742	return block_read_full_page(page, reiserfs_get_block);
2743}
2744
2745static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2746{
2747	struct inode *inode = page->mapping->host;
 
2748	reiserfs_wait_on_write_block(inode->i_sb);
2749	return reiserfs_write_full_page(page, wbc);
2750}
2751
2752static void reiserfs_truncate_failed_write(struct inode *inode)
2753{
2754	truncate_inode_pages(inode->i_mapping, inode->i_size);
2755	reiserfs_truncate_file(inode, 0);
2756}
2757
2758static int reiserfs_write_begin(struct file *file,
2759				struct address_space *mapping,
2760				loff_t pos, unsigned len, unsigned flags,
2761				struct page **pagep, void **fsdata)
2762{
2763	struct inode *inode;
2764	struct page *page;
2765	pgoff_t index;
2766	int ret;
2767	int old_ref = 0;
2768
2769 	inode = mapping->host;
2770	*fsdata = NULL;
2771 	if (flags & AOP_FLAG_CONT_EXPAND &&
2772 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2773 		pos ++;
2774		*fsdata = (void *)(unsigned long)flags;
2775	}
2776
2777	index = pos >> PAGE_SHIFT;
2778	page = grab_cache_page_write_begin(mapping, index, flags);
2779	if (!page)
2780		return -ENOMEM;
2781	*pagep = page;
2782
2783	reiserfs_wait_on_write_block(inode->i_sb);
2784	fix_tail_page_for_writing(page);
2785	if (reiserfs_transaction_running(inode->i_sb)) {
2786		struct reiserfs_transaction_handle *th;
2787		th = (struct reiserfs_transaction_handle *)current->
2788		    journal_info;
2789		BUG_ON(!th->t_refcount);
2790		BUG_ON(!th->t_trans_id);
2791		old_ref = th->t_refcount;
2792		th->t_refcount++;
2793	}
2794	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2795	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2796		struct reiserfs_transaction_handle *th = current->journal_info;
2797		/*
2798		 * this gets a little ugly.  If reiserfs_get_block returned an
2799		 * error and left a transacstion running, we've got to close
2800		 * it, and we've got to free handle if it was a persistent
2801		 * transaction.
2802		 *
2803		 * But, if we had nested into an existing transaction, we need
2804		 * to just drop the ref count on the handle.
2805		 *
2806		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2807		 * and it was a persistent trans.  Otherwise, it was nested
2808		 * above.
2809		 */
2810		if (th->t_refcount > old_ref) {
2811			if (old_ref)
2812				th->t_refcount--;
2813			else {
2814				int err;
2815				reiserfs_write_lock(inode->i_sb);
2816				err = reiserfs_end_persistent_transaction(th);
2817				reiserfs_write_unlock(inode->i_sb);
2818				if (err)
2819					ret = err;
2820			}
2821		}
2822	}
2823	if (ret) {
2824		unlock_page(page);
2825		put_page(page);
2826		/* Truncate allocated blocks */
2827		reiserfs_truncate_failed_write(inode);
2828	}
2829	return ret;
2830}
2831
2832int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2833{
2834	struct inode *inode = page->mapping->host;
2835	int ret;
2836	int old_ref = 0;
2837	int depth;
2838
2839	depth = reiserfs_write_unlock_nested(inode->i_sb);
2840	reiserfs_wait_on_write_block(inode->i_sb);
2841	reiserfs_write_lock_nested(inode->i_sb, depth);
2842
2843	fix_tail_page_for_writing(page);
2844	if (reiserfs_transaction_running(inode->i_sb)) {
2845		struct reiserfs_transaction_handle *th;
2846		th = (struct reiserfs_transaction_handle *)current->
2847		    journal_info;
2848		BUG_ON(!th->t_refcount);
2849		BUG_ON(!th->t_trans_id);
2850		old_ref = th->t_refcount;
2851		th->t_refcount++;
2852	}
2853
2854	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2855	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2856		struct reiserfs_transaction_handle *th = current->journal_info;
2857		/*
2858		 * this gets a little ugly.  If reiserfs_get_block returned an
2859		 * error and left a transacstion running, we've got to close
2860		 * it, and we've got to free handle if it was a persistent
2861		 * transaction.
2862		 *
2863		 * But, if we had nested into an existing transaction, we need
2864		 * to just drop the ref count on the handle.
2865		 *
2866		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2867		 * and it was a persistent trans.  Otherwise, it was nested
2868		 * above.
2869		 */
2870		if (th->t_refcount > old_ref) {
2871			if (old_ref)
2872				th->t_refcount--;
2873			else {
2874				int err;
2875				reiserfs_write_lock(inode->i_sb);
2876				err = reiserfs_end_persistent_transaction(th);
2877				reiserfs_write_unlock(inode->i_sb);
2878				if (err)
2879					ret = err;
2880			}
2881		}
2882	}
2883	return ret;
2884
2885}
2886
2887static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2888{
2889	return generic_block_bmap(as, block, reiserfs_bmap);
2890}
2891
2892static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2893			      loff_t pos, unsigned len, unsigned copied,
2894			      struct page *page, void *fsdata)
2895{
 
2896	struct inode *inode = page->mapping->host;
2897	int ret = 0;
2898	int update_sd = 0;
2899	struct reiserfs_transaction_handle *th;
2900	unsigned start;
2901	bool locked = false;
2902
2903	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2904		pos ++;
2905
2906	reiserfs_wait_on_write_block(inode->i_sb);
2907	if (reiserfs_transaction_running(inode->i_sb))
2908		th = current->journal_info;
2909	else
2910		th = NULL;
2911
2912	start = pos & (PAGE_SIZE - 1);
2913	if (unlikely(copied < len)) {
2914		if (!PageUptodate(page))
2915			copied = 0;
2916
2917		page_zero_new_buffers(page, start + copied, start + len);
2918	}
2919	flush_dcache_page(page);
2920
2921	reiserfs_commit_page(inode, page, start, start + copied);
2922
2923	/*
2924	 * generic_commit_write does this for us, but does not update the
2925	 * transaction tracking stuff when the size changes.  So, we have
2926	 * to do the i_size updates here.
2927	 */
2928	if (pos + copied > inode->i_size) {
2929		struct reiserfs_transaction_handle myth;
2930		reiserfs_write_lock(inode->i_sb);
2931		locked = true;
2932		/*
2933		 * If the file have grown beyond the border where it
2934		 * can have a tail, unmark it as needing a tail
2935		 * packing
2936		 */
2937		if ((have_large_tails(inode->i_sb)
2938		     && inode->i_size > i_block_size(inode) * 4)
2939		    || (have_small_tails(inode->i_sb)
2940			&& inode->i_size > i_block_size(inode)))
2941			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2942
2943		ret = journal_begin(&myth, inode->i_sb, 1);
2944		if (ret)
2945			goto journal_error;
2946
2947		reiserfs_update_inode_transaction(inode);
2948		inode->i_size = pos + copied;
2949		/*
2950		 * this will just nest into our transaction.  It's important
2951		 * to use mark_inode_dirty so the inode gets pushed around on
2952		 * the dirty lists, and so that O_SYNC works as expected
2953		 */
2954		mark_inode_dirty(inode);
2955		reiserfs_update_sd(&myth, inode);
2956		update_sd = 1;
2957		ret = journal_end(&myth);
2958		if (ret)
2959			goto journal_error;
2960	}
2961	if (th) {
2962		if (!locked) {
2963			reiserfs_write_lock(inode->i_sb);
2964			locked = true;
2965		}
2966		if (!update_sd)
2967			mark_inode_dirty(inode);
2968		ret = reiserfs_end_persistent_transaction(th);
2969		if (ret)
2970			goto out;
2971	}
2972
2973out:
2974	if (locked)
2975		reiserfs_write_unlock(inode->i_sb);
2976	unlock_page(page);
2977	put_page(page);
2978
2979	if (pos + len > inode->i_size)
2980		reiserfs_truncate_failed_write(inode);
2981
2982	return ret == 0 ? copied : ret;
2983
2984journal_error:
2985	reiserfs_write_unlock(inode->i_sb);
2986	locked = false;
2987	if (th) {
2988		if (!update_sd)
2989			reiserfs_update_sd(th, inode);
2990		ret = reiserfs_end_persistent_transaction(th);
2991	}
2992	goto out;
2993}
2994
2995int reiserfs_commit_write(struct file *f, struct page *page,
2996			  unsigned from, unsigned to)
2997{
2998	struct inode *inode = page->mapping->host;
2999	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
3000	int ret = 0;
3001	int update_sd = 0;
3002	struct reiserfs_transaction_handle *th = NULL;
3003	int depth;
3004
3005	depth = reiserfs_write_unlock_nested(inode->i_sb);
3006	reiserfs_wait_on_write_block(inode->i_sb);
3007	reiserfs_write_lock_nested(inode->i_sb, depth);
3008
3009	if (reiserfs_transaction_running(inode->i_sb)) {
3010		th = current->journal_info;
3011	}
3012	reiserfs_commit_page(inode, page, from, to);
3013
3014	/*
3015	 * generic_commit_write does this for us, but does not update the
3016	 * transaction tracking stuff when the size changes.  So, we have
3017	 * to do the i_size updates here.
3018	 */
3019	if (pos > inode->i_size) {
3020		struct reiserfs_transaction_handle myth;
3021		/*
3022		 * If the file have grown beyond the border where it
3023		 * can have a tail, unmark it as needing a tail
3024		 * packing
3025		 */
3026		if ((have_large_tails(inode->i_sb)
3027		     && inode->i_size > i_block_size(inode) * 4)
3028		    || (have_small_tails(inode->i_sb)
3029			&& inode->i_size > i_block_size(inode)))
3030			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3031
3032		ret = journal_begin(&myth, inode->i_sb, 1);
3033		if (ret)
3034			goto journal_error;
3035
3036		reiserfs_update_inode_transaction(inode);
3037		inode->i_size = pos;
3038		/*
3039		 * this will just nest into our transaction.  It's important
3040		 * to use mark_inode_dirty so the inode gets pushed around
3041		 * on the dirty lists, and so that O_SYNC works as expected
3042		 */
3043		mark_inode_dirty(inode);
3044		reiserfs_update_sd(&myth, inode);
3045		update_sd = 1;
3046		ret = journal_end(&myth);
3047		if (ret)
3048			goto journal_error;
3049	}
3050	if (th) {
3051		if (!update_sd)
3052			mark_inode_dirty(inode);
3053		ret = reiserfs_end_persistent_transaction(th);
3054		if (ret)
3055			goto out;
3056	}
3057
3058out:
3059	return ret;
3060
3061journal_error:
3062	if (th) {
3063		if (!update_sd)
3064			reiserfs_update_sd(th, inode);
3065		ret = reiserfs_end_persistent_transaction(th);
3066	}
3067
3068	return ret;
3069}
3070
3071void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3072{
3073	if (reiserfs_attrs(inode->i_sb)) {
3074		if (sd_attrs & REISERFS_SYNC_FL)
3075			inode->i_flags |= S_SYNC;
3076		else
3077			inode->i_flags &= ~S_SYNC;
3078		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3079			inode->i_flags |= S_IMMUTABLE;
3080		else
3081			inode->i_flags &= ~S_IMMUTABLE;
3082		if (sd_attrs & REISERFS_APPEND_FL)
3083			inode->i_flags |= S_APPEND;
3084		else
3085			inode->i_flags &= ~S_APPEND;
3086		if (sd_attrs & REISERFS_NOATIME_FL)
3087			inode->i_flags |= S_NOATIME;
3088		else
3089			inode->i_flags &= ~S_NOATIME;
3090		if (sd_attrs & REISERFS_NOTAIL_FL)
3091			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3092		else
3093			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3094	}
3095}
3096
3097void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3098{
3099	if (reiserfs_attrs(inode->i_sb)) {
3100		if (inode->i_flags & S_IMMUTABLE)
3101			*sd_attrs |= REISERFS_IMMUTABLE_FL;
3102		else
3103			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3104		if (inode->i_flags & S_SYNC)
3105			*sd_attrs |= REISERFS_SYNC_FL;
3106		else
3107			*sd_attrs &= ~REISERFS_SYNC_FL;
3108		if (inode->i_flags & S_NOATIME)
3109			*sd_attrs |= REISERFS_NOATIME_FL;
3110		else
3111			*sd_attrs &= ~REISERFS_NOATIME_FL;
3112		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3113			*sd_attrs |= REISERFS_NOTAIL_FL;
3114		else
3115			*sd_attrs &= ~REISERFS_NOTAIL_FL;
3116	}
3117}
3118
3119/*
3120 * decide if this buffer needs to stay around for data logging or ordered
3121 * write purposes
3122 */
3123static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3124{
3125	int ret = 1;
3126	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3127
3128	lock_buffer(bh);
3129	spin_lock(&j->j_dirty_buffers_lock);
3130	if (!buffer_mapped(bh)) {
3131		goto free_jh;
3132	}
3133	/*
3134	 * the page is locked, and the only places that log a data buffer
3135	 * also lock the page.
3136	 */
3137	if (reiserfs_file_data_log(inode)) {
3138		/*
3139		 * very conservative, leave the buffer pinned if
3140		 * anyone might need it.
3141		 */
3142		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3143			ret = 0;
3144		}
3145	} else  if (buffer_dirty(bh)) {
3146		struct reiserfs_journal_list *jl;
3147		struct reiserfs_jh *jh = bh->b_private;
3148
3149		/*
3150		 * why is this safe?
3151		 * reiserfs_setattr updates i_size in the on disk
3152		 * stat data before allowing vmtruncate to be called.
3153		 *
3154		 * If buffer was put onto the ordered list for this
3155		 * transaction, we know for sure either this transaction
3156		 * or an older one already has updated i_size on disk,
3157		 * and this ordered data won't be referenced in the file
3158		 * if we crash.
3159		 *
3160		 * if the buffer was put onto the ordered list for an older
3161		 * transaction, we need to leave it around
3162		 */
3163		if (jh && (jl = jh->jl)
3164		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3165			ret = 0;
3166	}
3167free_jh:
3168	if (ret && bh->b_private) {
3169		reiserfs_free_jh(bh);
3170	}
3171	spin_unlock(&j->j_dirty_buffers_lock);
3172	unlock_buffer(bh);
3173	return ret;
3174}
3175
3176/* clm -- taken from fs/buffer.c:block_invalidate_page */
3177static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3178				    unsigned int length)
3179{
3180	struct buffer_head *head, *bh, *next;
3181	struct inode *inode = page->mapping->host;
3182	unsigned int curr_off = 0;
3183	unsigned int stop = offset + length;
3184	int partial_page = (offset || length < PAGE_SIZE);
3185	int ret = 1;
3186
3187	BUG_ON(!PageLocked(page));
3188
3189	if (!partial_page)
3190		ClearPageChecked(page);
3191
3192	if (!page_has_buffers(page))
 
3193		goto out;
3194
3195	head = page_buffers(page);
3196	bh = head;
3197	do {
3198		unsigned int next_off = curr_off + bh->b_size;
3199		next = bh->b_this_page;
3200
3201		if (next_off > stop)
3202			goto out;
3203
3204		/*
3205		 * is this block fully invalidated?
3206		 */
3207		if (offset <= curr_off) {
3208			if (invalidatepage_can_drop(inode, bh))
3209				reiserfs_unmap_buffer(bh);
3210			else
3211				ret = 0;
3212		}
3213		curr_off = next_off;
3214		bh = next;
3215	} while (bh != head);
3216
3217	/*
3218	 * We release buffers only if the entire page is being invalidated.
3219	 * The get_block cached value has been unconditionally invalidated,
3220	 * so real IO is not possible anymore.
3221	 */
3222	if (!partial_page && ret) {
3223		ret = try_to_release_page(page, 0);
3224		/* maybe should BUG_ON(!ret); - neilb */
3225	}
3226out:
3227	return;
3228}
3229
3230static int reiserfs_set_page_dirty(struct page *page)
 
3231{
3232	struct inode *inode = page->mapping->host;
3233	if (reiserfs_file_data_log(inode)) {
3234		SetPageChecked(page);
3235		return __set_page_dirty_nobuffers(page);
3236	}
3237	return __set_page_dirty_buffers(page);
3238}
3239
3240/*
3241 * Returns 1 if the page's buffers were dropped.  The page is locked.
3242 *
3243 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3244 * in the buffers at page_buffers(page).
3245 *
3246 * even in -o notail mode, we can't be sure an old mount without -o notail
3247 * didn't create files with tails.
3248 */
3249static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3250{
3251	struct inode *inode = page->mapping->host;
3252	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3253	struct buffer_head *head;
3254	struct buffer_head *bh;
3255	int ret = 1;
3256
3257	WARN_ON(PageChecked(page));
3258	spin_lock(&j->j_dirty_buffers_lock);
3259	head = page_buffers(page);
3260	bh = head;
3261	do {
3262		if (bh->b_private) {
3263			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3264				reiserfs_free_jh(bh);
3265			} else {
3266				ret = 0;
3267				break;
3268			}
3269		}
3270		bh = bh->b_this_page;
3271	} while (bh != head);
3272	if (ret)
3273		ret = try_to_free_buffers(page);
3274	spin_unlock(&j->j_dirty_buffers_lock);
3275	return ret;
3276}
3277
3278/*
3279 * We thank Mingming Cao for helping us understand in great detail what
3280 * to do in this section of the code.
3281 */
3282static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3283				  loff_t offset)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	size_t count = iov_iter_count(iter);
3288	ssize_t ret;
3289
3290	ret = blockdev_direct_IO(iocb, inode, iter, offset,
3291				 reiserfs_get_blocks_direct_io);
3292
3293	/*
3294	 * In case of error extending write may have instantiated a few
3295	 * blocks outside i_size. Trim these off again.
3296	 */
3297	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3298		loff_t isize = i_size_read(inode);
3299		loff_t end = offset + count;
3300
3301		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3302			truncate_setsize(inode, isize);
3303			reiserfs_vfs_truncate_file(inode);
3304		}
3305	}
3306
3307	return ret;
3308}
3309
3310int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
 
3311{
3312	struct inode *inode = d_inode(dentry);
3313	unsigned int ia_valid;
3314	int error;
3315
3316	error = inode_change_ok(inode, attr);
3317	if (error)
3318		return error;
3319
3320	/* must be turned off for recursive notify_change calls */
3321	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3322
3323	if (is_quota_modification(inode, attr)) {
3324		error = dquot_initialize(inode);
3325		if (error)
3326			return error;
3327	}
3328	reiserfs_write_lock(inode->i_sb);
3329	if (attr->ia_valid & ATTR_SIZE) {
3330		/*
3331		 * version 2 items will be caught by the s_maxbytes check
3332		 * done for us in vmtruncate
3333		 */
3334		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3335		    attr->ia_size > MAX_NON_LFS) {
3336			reiserfs_write_unlock(inode->i_sb);
3337			error = -EFBIG;
3338			goto out;
3339		}
3340
3341		inode_dio_wait(inode);
3342
3343		/* fill in hole pointers in the expanding truncate case. */
3344		if (attr->ia_size > inode->i_size) {
3345			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3346			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3347				int err;
3348				struct reiserfs_transaction_handle th;
3349				/* we're changing at most 2 bitmaps, inode + super */
3350				err = journal_begin(&th, inode->i_sb, 4);
3351				if (!err) {
3352					reiserfs_discard_prealloc(&th, inode);
3353					err = journal_end(&th);
3354				}
3355				if (err)
3356					error = err;
3357			}
3358			if (error) {
3359				reiserfs_write_unlock(inode->i_sb);
3360				goto out;
3361			}
3362			/*
3363			 * file size is changed, ctime and mtime are
3364			 * to be updated
3365			 */
3366			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3367		}
3368	}
3369	reiserfs_write_unlock(inode->i_sb);
3370
3371	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3372	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3373	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3374		/* stat data of format v3.5 has 16 bit uid and gid */
3375		error = -EINVAL;
3376		goto out;
3377	}
3378
3379	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3380	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3381		struct reiserfs_transaction_handle th;
3382		int jbegin_count =
3383		    2 *
3384		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3385		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3386		    2;
3387
3388		error = reiserfs_chown_xattrs(inode, attr);
3389
3390		if (error)
3391			return error;
3392
3393		/*
3394		 * (user+group)*(old+new) structure - we count quota
3395		 * info and , inode write (sb, inode)
3396		 */
3397		reiserfs_write_lock(inode->i_sb);
3398		error = journal_begin(&th, inode->i_sb, jbegin_count);
3399		reiserfs_write_unlock(inode->i_sb);
3400		if (error)
3401			goto out;
3402		error = dquot_transfer(inode, attr);
3403		reiserfs_write_lock(inode->i_sb);
3404		if (error) {
3405			journal_end(&th);
3406			reiserfs_write_unlock(inode->i_sb);
3407			goto out;
3408		}
3409
3410		/*
3411		 * Update corresponding info in inode so that everything
3412		 * is in one transaction
3413		 */
3414		if (attr->ia_valid & ATTR_UID)
3415			inode->i_uid = attr->ia_uid;
3416		if (attr->ia_valid & ATTR_GID)
3417			inode->i_gid = attr->ia_gid;
3418		mark_inode_dirty(inode);
3419		error = journal_end(&th);
3420		reiserfs_write_unlock(inode->i_sb);
3421		if (error)
3422			goto out;
3423	}
3424
3425	if ((attr->ia_valid & ATTR_SIZE) &&
3426	    attr->ia_size != i_size_read(inode)) {
3427		error = inode_newsize_ok(inode, attr->ia_size);
3428		if (!error) {
3429			/*
3430			 * Could race against reiserfs_file_release
3431			 * if called from NFS, so take tailpack mutex.
3432			 */
3433			mutex_lock(&REISERFS_I(inode)->tailpack);
3434			truncate_setsize(inode, attr->ia_size);
3435			reiserfs_truncate_file(inode, 1);
3436			mutex_unlock(&REISERFS_I(inode)->tailpack);
3437		}
3438	}
3439
3440	if (!error) {
3441		setattr_copy(inode, attr);
3442		mark_inode_dirty(inode);
3443	}
3444
3445	if (!error && reiserfs_posixacl(inode->i_sb)) {
3446		if (attr->ia_valid & ATTR_MODE)
3447			error = reiserfs_acl_chmod(inode);
3448	}
3449
3450out:
3451	return error;
3452}
3453
3454const struct address_space_operations reiserfs_address_space_operations = {
3455	.writepage = reiserfs_writepage,
3456	.readpage = reiserfs_readpage,
3457	.readpages = reiserfs_readpages,
3458	.releasepage = reiserfs_releasepage,
3459	.invalidatepage = reiserfs_invalidatepage,
3460	.write_begin = reiserfs_write_begin,
3461	.write_end = reiserfs_write_end,
3462	.bmap = reiserfs_aop_bmap,
3463	.direct_IO = reiserfs_direct_IO,
3464	.set_page_dirty = reiserfs_set_page_dirty,
3465};