Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
 
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
 
 
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 
 
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 
 
 
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 
 
 
 
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 
 
 
 
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 
 
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 
 
 
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
 
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
 
 
 
 
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
 
 
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
 
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode_set_atime(inode, sd_v1_atime(sd), 0);
1261		inode_set_mtime(inode, sd_v1_mtime(sd), 0);
1262		inode_set_ctime(inode, sd_v1_ctime(sd), 0);
 
 
 
1263
1264		inode->i_blocks = sd_v1_blocks(sd);
1265		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1266		blocks = (inode->i_size + 511) >> 9;
1267		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1268
1269		/*
1270		 * there was a bug in <=3.5.23 when i_blocks could take
1271		 * negative values. Starting from 3.5.17 this value could
1272		 * even be stored in stat data. For such files we set
1273		 * i_blocks based on file size. Just 2 notes: this can be
1274		 * wrong for sparse files. On-disk value will be only
1275		 * updated if file's inode will ever change
1276		 */
1277		if (inode->i_blocks > blocks) {
 
 
 
 
 
1278			inode->i_blocks = blocks;
1279		}
1280
1281		rdev = sd_v1_rdev(sd);
1282		REISERFS_I(inode)->i_first_direct_byte =
1283		    sd_v1_first_direct_byte(sd);
1284
1285		/*
1286		 * an early bug in the quota code can give us an odd
1287		 * number for the block count.  This is incorrect, fix it here.
1288		 */
1289		if (inode->i_blocks & 1) {
1290			inode->i_blocks++;
1291		}
1292		inode_set_bytes(inode,
1293				to_real_used_space(inode, inode->i_blocks,
1294						   SD_V1_SIZE));
1295		/*
1296		 * nopack is initially zero for v1 objects. For v2 objects,
1297		 * nopack is initialised from sd_attrs
1298		 */
1299		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1300	} else {
1301		/*
1302		 * new stat data found, but object may have old items
1303		 * (directories and symlinks)
1304		 */
1305		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1306
1307		inode->i_mode = sd_v2_mode(sd);
1308		set_nlink(inode, sd_v2_nlink(sd));
1309		i_uid_write(inode, sd_v2_uid(sd));
1310		inode->i_size = sd_v2_size(sd);
1311		i_gid_write(inode, sd_v2_gid(sd));
1312		inode_set_mtime(inode, sd_v2_mtime(sd), 0);
1313		inode_set_atime(inode, sd_v2_atime(sd), 0);
1314		inode_set_ctime(inode, sd_v2_ctime(sd), 0);
 
 
 
1315		inode->i_blocks = sd_v2_blocks(sd);
1316		rdev = sd_v2_rdev(sd);
1317		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1318			inode->i_generation =
1319			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1320		else
1321			inode->i_generation = sd_v2_generation(sd);
1322
1323		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1324			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1325		else
1326			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1327		REISERFS_I(inode)->i_first_direct_byte = 0;
1328		set_inode_sd_version(inode, STAT_DATA_V2);
1329		inode_set_bytes(inode,
1330				to_real_used_space(inode, inode->i_blocks,
1331						   SD_V2_SIZE));
1332		/*
1333		 * read persistent inode attributes from sd and initialise
1334		 * generic inode flags from them
1335		 */
1336		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1337		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1338	}
1339
1340	pathrelse(path);
1341	if (S_ISREG(inode->i_mode)) {
1342		inode->i_op = &reiserfs_file_inode_operations;
1343		inode->i_fop = &reiserfs_file_operations;
1344		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1345	} else if (S_ISDIR(inode->i_mode)) {
1346		inode->i_op = &reiserfs_dir_inode_operations;
1347		inode->i_fop = &reiserfs_dir_operations;
1348	} else if (S_ISLNK(inode->i_mode)) {
1349		inode->i_op = &reiserfs_symlink_inode_operations;
1350		inode_nohighmem(inode);
1351		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1352	} else {
1353		inode->i_blocks = 0;
1354		inode->i_op = &reiserfs_special_inode_operations;
1355		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1356	}
1357}
1358
1359/* update new stat data with inode fields */
1360static void inode2sd(void *sd, struct inode *inode, loff_t size)
1361{
1362	struct stat_data *sd_v2 = (struct stat_data *)sd;
 
1363
1364	set_sd_v2_mode(sd_v2, inode->i_mode);
1365	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1366	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1367	set_sd_v2_size(sd_v2, size);
1368	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1369	set_sd_v2_mtime(sd_v2, inode_get_mtime_sec(inode));
1370	set_sd_v2_atime(sd_v2, inode_get_atime_sec(inode));
1371	set_sd_v2_ctime(sd_v2, inode_get_ctime_sec(inode));
1372	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1373	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1374		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1375	else
1376		set_sd_v2_generation(sd_v2, inode->i_generation);
1377	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
 
 
1378}
1379
1380/* used to copy inode's fields to old stat data */
1381static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1382{
1383	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1384
1385	set_sd_v1_mode(sd_v1, inode->i_mode);
1386	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1387	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1388	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1389	set_sd_v1_size(sd_v1, size);
1390	set_sd_v1_atime(sd_v1, inode_get_atime_sec(inode));
1391	set_sd_v1_ctime(sd_v1, inode_get_ctime_sec(inode));
1392	set_sd_v1_mtime(sd_v1, inode_get_mtime_sec(inode));
1393
1394	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1395		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1396	else
1397		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1398
1399	/* Sigh. i_first_direct_byte is back */
1400	set_sd_v1_first_direct_byte(sd_v1,
1401				    REISERFS_I(inode)->i_first_direct_byte);
1402}
1403
1404/*
1405 * NOTE, you must prepare the buffer head before sending it here,
1406 * and then log it after the call
1407 */
1408static void update_stat_data(struct treepath *path, struct inode *inode,
1409			     loff_t size)
1410{
1411	struct buffer_head *bh;
1412	struct item_head *ih;
1413
1414	bh = PATH_PLAST_BUFFER(path);
1415	ih = tp_item_head(path);
1416
1417	if (!is_statdata_le_ih(ih))
1418		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1419			       INODE_PKEY(inode), ih);
1420
1421	/* path points to old stat data */
1422	if (stat_data_v1(ih)) {
1423		inode2sd_v1(ih_item_body(bh, ih), inode, size);
 
1424	} else {
1425		inode2sd(ih_item_body(bh, ih), inode, size);
1426	}
1427
1428	return;
1429}
1430
1431void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1432			     struct inode *inode, loff_t size)
1433{
1434	struct cpu_key key;
1435	INITIALIZE_PATH(path);
1436	struct buffer_head *bh;
1437	int fs_gen;
1438	struct item_head *ih, tmp_ih;
1439	int retval;
1440
1441	BUG_ON(!th->t_trans_id);
1442
1443	/* key type is unimportant */
1444	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1445
1446	for (;;) {
1447		int pos;
1448		/* look for the object's stat data */
1449		retval = search_item(inode->i_sb, &key, &path);
1450		if (retval == IO_ERROR) {
1451			reiserfs_error(inode->i_sb, "vs-13050",
1452				       "i/o failure occurred trying to "
1453				       "update %K stat data", &key);
1454			return;
1455		}
1456		if (retval == ITEM_NOT_FOUND) {
1457			pos = PATH_LAST_POSITION(&path);
1458			pathrelse(&path);
1459			if (inode->i_nlink == 0) {
1460				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1461				return;
1462			}
1463			reiserfs_warning(inode->i_sb, "vs-13060",
1464					 "stat data of object %k (nlink == %d) "
1465					 "not found (pos %d)",
1466					 INODE_PKEY(inode), inode->i_nlink,
1467					 pos);
1468			reiserfs_check_path(&path);
1469			return;
1470		}
1471
1472		/*
1473		 * sigh, prepare_for_journal might schedule.  When it
1474		 * schedules the FS might change.  We have to detect that,
1475		 * and loop back to the search if the stat data item has moved
1476		 */
1477		bh = get_last_bh(&path);
1478		ih = tp_item_head(&path);
1479		copy_item_head(&tmp_ih, ih);
1480		fs_gen = get_generation(inode->i_sb);
1481		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1482
1483		/* Stat_data item has been moved after scheduling. */
1484		if (fs_changed(fs_gen, inode->i_sb)
1485		    && item_moved(&tmp_ih, &path)) {
1486			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1487			continue;
1488		}
1489		break;
1490	}
1491	update_stat_data(&path, inode, size);
1492	journal_mark_dirty(th, bh);
1493	pathrelse(&path);
1494	return;
1495}
1496
1497/*
1498 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1499 * does a make_bad_inode when things go wrong.  But, we need to make sure
1500 * and clear the key in the private portion of the inode, otherwise a
1501 * corresponding iput might try to delete whatever object the inode last
1502 * represented.
1503 */
1504static void reiserfs_make_bad_inode(struct inode *inode)
1505{
1506	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1507	make_bad_inode(inode);
1508}
1509
1510/*
1511 * initially this function was derived from minix or ext2's analog and
1512 * evolved as the prototype did
1513 */
 
1514int reiserfs_init_locked_inode(struct inode *inode, void *p)
1515{
1516	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1517	inode->i_ino = args->objectid;
1518	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1519	return 0;
1520}
1521
1522/*
1523 * looks for stat data in the tree, and fills up the fields of in-core
1524 * inode stat data fields
1525 */
1526void reiserfs_read_locked_inode(struct inode *inode,
1527				struct reiserfs_iget_args *args)
1528{
1529	INITIALIZE_PATH(path_to_sd);
1530	struct cpu_key key;
1531	unsigned long dirino;
1532	int retval;
1533
1534	dirino = args->dirid;
1535
1536	/*
1537	 * set version 1, version 2 could be used too, because stat data
1538	 * key is the same in both versions
1539	 */
1540	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
 
 
1541
1542	/* look for the object's stat data */
1543	retval = search_item(inode->i_sb, &key, &path_to_sd);
1544	if (retval == IO_ERROR) {
1545		reiserfs_error(inode->i_sb, "vs-13070",
1546			       "i/o failure occurred trying to find "
1547			       "stat data of %K", &key);
1548		reiserfs_make_bad_inode(inode);
1549		return;
1550	}
1551
1552	/* a stale NFS handle can trigger this without it being an error */
1553	if (retval != ITEM_FOUND) {
 
1554		pathrelse(&path_to_sd);
1555		reiserfs_make_bad_inode(inode);
1556		clear_nlink(inode);
1557		return;
1558	}
1559
1560	init_inode(inode, &path_to_sd);
1561
1562	/*
1563	 * It is possible that knfsd is trying to access inode of a file
1564	 * that is being removed from the disk by some other thread. As we
1565	 * update sd on unlink all that is required is to check for nlink
1566	 * here. This bug was first found by Sizif when debugging
1567	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1568	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1569
1570	 * More logical fix would require changes in fs/inode.c:iput() to
1571	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1572	 * in iget() to return NULL if I_FREEING inode is found in
1573	 * hash-table.
1574	 */
1575
1576	/*
1577	 * Currently there is one place where it's ok to meet inode with
1578	 * nlink==0: processing of open-unlinked and half-truncated files
1579	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1580	 */
1581	if ((inode->i_nlink == 0) &&
1582	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1583		reiserfs_warning(inode->i_sb, "vs-13075",
1584				 "dead inode read from disk %K. "
1585				 "This is likely to be race with knfsd. Ignore",
1586				 &key);
1587		reiserfs_make_bad_inode(inode);
1588	}
1589
1590	/* init inode should be relsing */
1591	reiserfs_check_path(&path_to_sd);
1592
1593	/*
1594	 * Stat data v1 doesn't support ACLs.
1595	 */
1596	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1597		cache_no_acl(inode);
1598}
1599
1600/*
1601 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1602 *
1603 * @inode:    inode from hash table to check
1604 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1605 *
1606 * This function is called by iget5_locked() to distinguish reiserfs inodes
1607 * having the same inode numbers. Such inodes can only exist due to some
1608 * error condition. One of them should be bad. Inodes with identical
1609 * inode numbers (objectids) are distinguished by parent directory ids.
1610 *
1611 */
1612int reiserfs_find_actor(struct inode *inode, void *opaque)
1613{
1614	struct reiserfs_iget_args *args;
1615
1616	args = opaque;
1617	/* args is already in CPU order */
1618	return (inode->i_ino == args->objectid) &&
1619	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1620}
1621
1622struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1623{
1624	struct inode *inode;
1625	struct reiserfs_iget_args args;
1626	int depth;
1627
1628	args.objectid = key->on_disk_key.k_objectid;
1629	args.dirid = key->on_disk_key.k_dir_id;
1630	depth = reiserfs_write_unlock_nested(s);
1631	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1632			     reiserfs_find_actor, reiserfs_init_locked_inode,
1633			     (void *)(&args));
1634	reiserfs_write_lock_nested(s, depth);
1635	if (!inode)
1636		return ERR_PTR(-ENOMEM);
1637
1638	if (inode->i_state & I_NEW) {
1639		reiserfs_read_locked_inode(inode, &args);
1640		unlock_new_inode(inode);
1641	}
1642
1643	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1644		/* either due to i/o error or a stale NFS handle */
1645		iput(inode);
1646		inode = NULL;
1647	}
1648	return inode;
1649}
1650
1651static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1652	u32 objectid, u32 dir_id, u32 generation)
1653
1654{
1655	struct cpu_key key;
1656	struct inode *inode;
1657
1658	key.on_disk_key.k_objectid = objectid;
1659	key.on_disk_key.k_dir_id = dir_id;
1660	reiserfs_write_lock(sb);
1661	inode = reiserfs_iget(sb, &key);
1662	if (inode && !IS_ERR(inode) && generation != 0 &&
1663	    generation != inode->i_generation) {
1664		iput(inode);
1665		inode = NULL;
1666	}
1667	reiserfs_write_unlock(sb);
1668
1669	return d_obtain_alias(inode);
1670}
1671
1672struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1673		int fh_len, int fh_type)
1674{
1675	/*
1676	 * fhtype happens to reflect the number of u32s encoded.
1677	 * due to a bug in earlier code, fhtype might indicate there
1678	 * are more u32s then actually fitted.
1679	 * so if fhtype seems to be more than len, reduce fhtype.
1680	 * Valid types are:
1681	 *   2 - objectid + dir_id - legacy support
1682	 *   3 - objectid + dir_id + generation
1683	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1684	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1685	 *   6 - as above plus generation of directory
1686	 * 6 does not fit in NFSv2 handles
1687	 */
1688	if (fh_type > fh_len) {
1689		if (fh_type != 6 || fh_len != 5)
1690			reiserfs_warning(sb, "reiserfs-13077",
1691				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1692				fh_type, fh_len);
1693		fh_type = fh_len;
1694	}
1695	if (fh_len < 2)
1696		return NULL;
1697
1698	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1699		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1700}
1701
1702struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1703		int fh_len, int fh_type)
1704{
1705	if (fh_type > fh_len)
1706		fh_type = fh_len;
1707	if (fh_type < 4)
1708		return NULL;
1709
1710	return reiserfs_get_dentry(sb,
1711		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1712		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1713		(fh_type == 6) ? fid->raw[5] : 0);
1714}
1715
1716int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1717		       struct inode *parent)
1718{
1719	int maxlen = *lenp;
1720
1721	if (parent && (maxlen < 5)) {
1722		*lenp = 5;
1723		return FILEID_INVALID;
1724	} else if (maxlen < 3) {
1725		*lenp = 3;
1726		return FILEID_INVALID;
1727	}
1728
1729	data[0] = inode->i_ino;
1730	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1731	data[2] = inode->i_generation;
1732	*lenp = 3;
1733	if (parent) {
1734		data[3] = parent->i_ino;
1735		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1736		*lenp = 5;
1737		if (maxlen >= 6) {
1738			data[5] = parent->i_generation;
1739			*lenp = 6;
1740		}
1741	}
1742	return *lenp;
1743}
1744
1745/*
1746 * looks for stat data, then copies fields to it, marks the buffer
1747 * containing stat data as dirty
1748 */
1749/*
1750 * reiserfs inodes are never really dirty, since the dirty inode call
1751 * always logs them.  This call allows the VFS inode marking routines
1752 * to properly mark inodes for datasync and such, but only actually
1753 * does something when called for a synchronous update.
1754 */
1755int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1756{
1757	struct reiserfs_transaction_handle th;
1758	int jbegin_count = 1;
1759
1760	if (sb_rdonly(inode->i_sb))
1761		return -EROFS;
1762	/*
1763	 * memory pressure can sometimes initiate write_inode calls with
1764	 * sync == 1,
1765	 * these cases are just when the system needs ram, not when the
1766	 * inode needs to reach disk for safety, and they can safely be
1767	 * ignored because the altered inode has already been logged.
1768	 */
1769	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1770		reiserfs_write_lock(inode->i_sb);
1771		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1772			reiserfs_update_sd(&th, inode);
1773			journal_end_sync(&th);
1774		}
1775		reiserfs_write_unlock(inode->i_sb);
1776	}
1777	return 0;
1778}
1779
1780/*
1781 * stat data of new object is inserted already, this inserts the item
1782 * containing "." and ".." entries
1783 */
1784static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1785				  struct inode *inode,
1786				  struct item_head *ih, struct treepath *path,
1787				  struct inode *dir)
1788{
1789	struct super_block *sb = th->t_super;
1790	char empty_dir[EMPTY_DIR_SIZE];
1791	char *body = empty_dir;
1792	struct cpu_key key;
1793	int retval;
1794
1795	BUG_ON(!th->t_trans_id);
1796
1797	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1798		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1799		      TYPE_DIRENTRY, 3 /*key length */ );
1800
1801	/*
1802	 * compose item head for new item. Directories consist of items of
1803	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1804	 * is done by reiserfs_new_inode
1805	 */
1806	if (old_format_only(sb)) {
1807		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1808				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1809
1810		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1811				       ih->ih_key.k_objectid,
1812				       INODE_PKEY(dir)->k_dir_id,
1813				       INODE_PKEY(dir)->k_objectid);
1814	} else {
1815		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1816				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1817
1818		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1819				    ih->ih_key.k_objectid,
1820				    INODE_PKEY(dir)->k_dir_id,
1821				    INODE_PKEY(dir)->k_objectid);
1822	}
1823
1824	/* look for place in the tree for new item */
1825	retval = search_item(sb, &key, path);
1826	if (retval == IO_ERROR) {
1827		reiserfs_error(sb, "vs-13080",
1828			       "i/o failure occurred creating new directory");
1829		return -EIO;
1830	}
1831	if (retval == ITEM_FOUND) {
1832		pathrelse(path);
1833		reiserfs_warning(sb, "vs-13070",
1834				 "object with this key exists (%k)",
1835				 &(ih->ih_key));
1836		return -EEXIST;
1837	}
1838
1839	/* insert item, that is empty directory item */
1840	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1841}
1842
1843/*
1844 * stat data of object has been inserted, this inserts the item
1845 * containing the body of symlink
1846 */
1847static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1848				struct inode *inode,
1849				struct item_head *ih,
1850				struct treepath *path, const char *symname,
1851				int item_len)
1852{
1853	struct super_block *sb = th->t_super;
1854	struct cpu_key key;
1855	int retval;
1856
1857	BUG_ON(!th->t_trans_id);
1858
1859	_make_cpu_key(&key, KEY_FORMAT_3_5,
1860		      le32_to_cpu(ih->ih_key.k_dir_id),
1861		      le32_to_cpu(ih->ih_key.k_objectid),
1862		      1, TYPE_DIRECT, 3 /*key length */ );
1863
1864	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1865			  0 /*free_space */ );
1866
1867	/* look for place in the tree for new item */
1868	retval = search_item(sb, &key, path);
1869	if (retval == IO_ERROR) {
1870		reiserfs_error(sb, "vs-13080",
1871			       "i/o failure occurred creating new symlink");
1872		return -EIO;
1873	}
1874	if (retval == ITEM_FOUND) {
1875		pathrelse(path);
1876		reiserfs_warning(sb, "vs-13080",
1877				 "object with this key exists (%k)",
1878				 &(ih->ih_key));
1879		return -EEXIST;
1880	}
1881
1882	/* insert item, that is body of symlink */
1883	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1884}
1885
1886/*
1887 * inserts the stat data into the tree, and then calls
1888 * reiserfs_new_directory (to insert ".", ".." item if new object is
1889 * directory) or reiserfs_new_symlink (to insert symlink body if new
1890 * object is symlink) or nothing (if new object is regular file)
1891
1892 * NOTE! uid and gid must already be set in the inode.  If we return
1893 * non-zero due to an error, we have to drop the quota previously allocated
1894 * for the fresh inode.  This can only be done outside a transaction, so
1895 * if we return non-zero, we also end the transaction.
1896 *
1897 * @th: active transaction handle
1898 * @dir: parent directory for new inode
1899 * @mode: mode of new inode
1900 * @symname: symlink contents if inode is symlink
1901 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1902 *         symlinks
1903 * @inode: inode to be filled
1904 * @security: optional security context to associate with this inode
1905 */
1906int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1907		       struct inode *dir, umode_t mode, const char *symname,
1908		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1909		          strlen (symname) for symlinks) */
1910		       loff_t i_size, struct dentry *dentry,
1911		       struct inode *inode,
1912		       struct reiserfs_security_handle *security)
1913{
1914	struct super_block *sb = dir->i_sb;
1915	struct reiserfs_iget_args args;
1916	INITIALIZE_PATH(path_to_key);
1917	struct cpu_key key;
1918	struct item_head ih;
1919	struct stat_data sd;
1920	int retval;
1921	int err;
1922	int depth;
1923
1924	BUG_ON(!th->t_trans_id);
1925
1926	depth = reiserfs_write_unlock_nested(sb);
1927	err = dquot_alloc_inode(inode);
1928	reiserfs_write_lock_nested(sb, depth);
1929	if (err)
1930		goto out_end_trans;
1931	if (!dir->i_nlink) {
1932		err = -EPERM;
1933		goto out_bad_inode;
1934	}
1935
 
 
1936	/* item head of new item */
1937	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1938	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1939	if (!ih.ih_key.k_objectid) {
1940		err = -ENOMEM;
1941		goto out_bad_inode;
1942	}
1943	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1944	if (old_format_only(sb))
1945		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1946				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1947	else
1948		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1949				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1950	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1951	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1952
1953	depth = reiserfs_write_unlock_nested(inode->i_sb);
1954	err = insert_inode_locked4(inode, args.objectid,
1955			     reiserfs_find_actor, &args);
1956	reiserfs_write_lock_nested(inode->i_sb, depth);
1957	if (err) {
1958		err = -EINVAL;
1959		goto out_bad_inode;
1960	}
1961
1962	if (old_format_only(sb))
1963		/*
1964		 * not a perfect generation count, as object ids can be reused,
1965		 * but this is as good as reiserfs can do right now.
1966		 * note that the private part of inode isn't filled in yet,
1967		 * we have to use the directory.
1968		 */
1969		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1970	else
1971#if defined( USE_INODE_GENERATION_COUNTER )
1972		inode->i_generation =
1973		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1974#else
1975		inode->i_generation = ++event;
1976#endif
1977
1978	/* fill stat data */
1979	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1980
1981	/* uid and gid must already be set by the caller for quota init */
1982
1983	simple_inode_init_ts(inode);
 
 
 
 
1984	inode->i_size = i_size;
1985	inode->i_blocks = 0;
1986	inode->i_bytes = 0;
1987	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1988	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1989
1990	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1991	REISERFS_I(inode)->i_flags = 0;
1992	REISERFS_I(inode)->i_prealloc_block = 0;
1993	REISERFS_I(inode)->i_prealloc_count = 0;
1994	REISERFS_I(inode)->i_trans_id = 0;
1995	REISERFS_I(inode)->i_jl = NULL;
1996	REISERFS_I(inode)->i_attrs =
1997	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1998	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1999	reiserfs_init_xattr_rwsem(inode);
2000
2001	/* key to search for correct place for new stat data */
2002	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2003		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2004		      TYPE_STAT_DATA, 3 /*key length */ );
2005
2006	/* find proper place for inserting of stat data */
2007	retval = search_item(sb, &key, &path_to_key);
2008	if (retval == IO_ERROR) {
2009		err = -EIO;
2010		goto out_bad_inode;
2011	}
2012	if (retval == ITEM_FOUND) {
2013		pathrelse(&path_to_key);
2014		err = -EEXIST;
2015		goto out_bad_inode;
2016	}
2017	if (old_format_only(sb)) {
2018		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2019		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2020			pathrelse(&path_to_key);
 
2021			err = -EINVAL;
2022			goto out_bad_inode;
2023		}
2024		inode2sd_v1(&sd, inode, inode->i_size);
2025	} else {
2026		inode2sd(&sd, inode, inode->i_size);
2027	}
2028	/*
2029	 * store in in-core inode the key of stat data and version all
2030	 * object items will have (directory items will have old offset
2031	 * format, other new objects will consist of new items)
2032	 */
2033	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2034		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2035	else
2036		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2037	if (old_format_only(sb))
2038		set_inode_sd_version(inode, STAT_DATA_V1);
2039	else
2040		set_inode_sd_version(inode, STAT_DATA_V2);
2041
2042	/* insert the stat data into the tree */
2043#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2044	if (REISERFS_I(dir)->new_packing_locality)
2045		th->displace_new_blocks = 1;
2046#endif
2047	retval =
2048	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2049				 (char *)(&sd));
2050	if (retval) {
2051		err = retval;
2052		reiserfs_check_path(&path_to_key);
2053		goto out_bad_inode;
2054	}
2055#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2056	if (!th->displace_new_blocks)
2057		REISERFS_I(dir)->new_packing_locality = 0;
2058#endif
2059	if (S_ISDIR(mode)) {
2060		/* insert item with "." and ".." */
2061		retval =
2062		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2063	}
2064
2065	if (S_ISLNK(mode)) {
2066		/* insert body of symlink */
2067		if (!old_format_only(sb))
2068			i_size = ROUND_UP(i_size);
2069		retval =
2070		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2071					 i_size);
2072	}
2073	if (retval) {
2074		err = retval;
2075		reiserfs_check_path(&path_to_key);
2076		journal_end(th);
2077		goto out_inserted_sd;
2078	}
2079
2080	/*
2081	 * Mark it private if we're creating the privroot
2082	 * or something under it.
2083	 */
2084	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2085		reiserfs_init_priv_inode(inode);
2086
2087	if (reiserfs_posixacl(inode->i_sb)) {
2088		reiserfs_write_unlock(inode->i_sb);
2089		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2090		reiserfs_write_lock(inode->i_sb);
2091		if (retval) {
2092			err = retval;
2093			reiserfs_check_path(&path_to_key);
2094			journal_end(th);
2095			goto out_inserted_sd;
2096		}
2097	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2098		reiserfs_warning(inode->i_sb, "jdm-13090",
2099				 "ACLs aren't enabled in the fs, "
2100				 "but vfs thinks they are!");
2101	}
 
2102
2103	if (security->name) {
2104		reiserfs_write_unlock(inode->i_sb);
2105		retval = reiserfs_security_write(th, inode, security);
2106		reiserfs_write_lock(inode->i_sb);
2107		if (retval) {
2108			err = retval;
2109			reiserfs_check_path(&path_to_key);
2110			retval = journal_end(th);
 
2111			if (retval)
2112				err = retval;
2113			goto out_inserted_sd;
2114		}
2115	}
2116
2117	reiserfs_update_sd(th, inode);
2118	reiserfs_check_path(&path_to_key);
2119
2120	return 0;
2121
2122out_bad_inode:
 
 
 
 
2123	/* Invalidate the object, nothing was inserted yet */
2124	INODE_PKEY(inode)->k_objectid = 0;
2125
2126	/* Quota change must be inside a transaction for journaling */
2127	depth = reiserfs_write_unlock_nested(inode->i_sb);
2128	dquot_free_inode(inode);
2129	reiserfs_write_lock_nested(inode->i_sb, depth);
2130
2131out_end_trans:
2132	journal_end(th);
2133	/*
2134	 * Drop can be outside and it needs more credits so it's better
2135	 * to have it outside
2136	 */
2137	depth = reiserfs_write_unlock_nested(inode->i_sb);
2138	dquot_drop(inode);
2139	reiserfs_write_lock_nested(inode->i_sb, depth);
2140	inode->i_flags |= S_NOQUOTA;
2141	make_bad_inode(inode);
2142
2143out_inserted_sd:
2144	clear_nlink(inode);
2145	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2146	if (inode->i_state & I_NEW)
2147		unlock_new_inode(inode);
2148	iput(inode);
2149	return err;
2150}
2151
2152/*
2153 * finds the tail page in the page cache,
2154 * reads the last block in.
2155 *
2156 * On success, page_result is set to a locked, pinned page, and bh_result
2157 * is set to an up to date buffer for the last block in the file.  returns 0.
2158 *
2159 * tail conversion is not done, so bh_result might not be valid for writing
2160 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2161 * trying to write the block.
2162 *
2163 * on failure, nonzero is returned, page_result and bh_result are untouched.
2164 */
2165static int grab_tail_page(struct inode *inode,
2166			  struct page **page_result,
2167			  struct buffer_head **bh_result)
2168{
2169
2170	/*
2171	 * we want the page with the last byte in the file,
2172	 * not the page that will hold the next byte for appending
2173	 */
2174	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2175	unsigned long pos = 0;
2176	unsigned long start = 0;
2177	unsigned long blocksize = inode->i_sb->s_blocksize;
2178	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2179	struct buffer_head *bh;
2180	struct buffer_head *head;
2181	struct page *page;
2182	int error;
2183
2184	/*
2185	 * we know that we are only called with inode->i_size > 0.
2186	 * we also know that a file tail can never be as big as a block
2187	 * If i_size % blocksize == 0, our file is currently block aligned
2188	 * and it won't need converting or zeroing after a truncate.
2189	 */
2190	if ((offset & (blocksize - 1)) == 0) {
2191		return -ENOENT;
2192	}
2193	page = grab_cache_page(inode->i_mapping, index);
2194	error = -ENOMEM;
2195	if (!page) {
2196		goto out;
2197	}
2198	/* start within the page of the last block in the file */
2199	start = (offset / blocksize) * blocksize;
2200
2201	error = __block_write_begin(page, start, offset - start,
2202				    reiserfs_get_block_create_0);
2203	if (error)
2204		goto unlock;
2205
2206	head = page_buffers(page);
2207	bh = head;
2208	do {
2209		if (pos >= start) {
2210			break;
2211		}
2212		bh = bh->b_this_page;
2213		pos += blocksize;
2214	} while (bh != head);
2215
2216	if (!buffer_uptodate(bh)) {
2217		/*
2218		 * note, this should never happen, prepare_write should be
2219		 * taking care of this for us.  If the buffer isn't up to
2220		 * date, I've screwed up the code to find the buffer, or the
2221		 * code to call prepare_write
2222		 */
2223		reiserfs_error(inode->i_sb, "clm-6000",
2224			       "error reading block %lu", bh->b_blocknr);
2225		error = -EIO;
2226		goto unlock;
2227	}
2228	*bh_result = bh;
2229	*page_result = page;
2230
2231out:
2232	return error;
2233
2234unlock:
2235	unlock_page(page);
2236	put_page(page);
2237	return error;
2238}
2239
2240/*
2241 * vfs version of truncate file.  Must NOT be called with
2242 * a transaction already started.
2243 *
2244 * some code taken from block_truncate_page
2245 */
2246int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2247{
2248	struct reiserfs_transaction_handle th;
2249	/* we want the offset for the first byte after the end of the file */
2250	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2251	unsigned blocksize = inode->i_sb->s_blocksize;
2252	unsigned length;
2253	struct page *page = NULL;
2254	int error;
2255	struct buffer_head *bh = NULL;
2256	int err2;
 
2257
2258	reiserfs_write_lock(inode->i_sb);
2259
2260	if (inode->i_size > 0) {
2261		error = grab_tail_page(inode, &page, &bh);
2262		if (error) {
2263			/*
2264			 * -ENOENT means we truncated past the end of the
2265			 * file, and get_block_create_0 could not find a
2266			 * block to read in, which is ok.
2267			 */
2268			if (error != -ENOENT)
2269				reiserfs_error(inode->i_sb, "clm-6001",
2270					       "grab_tail_page failed %d",
2271					       error);
2272			page = NULL;
2273			bh = NULL;
2274		}
2275	}
2276
2277	/*
2278	 * so, if page != NULL, we have a buffer head for the offset at
2279	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2280	 * then we have an unformatted node.  Otherwise, we have a direct item,
2281	 * and no zeroing is required on disk.  We zero after the truncate,
2282	 * because the truncate might pack the item anyway
2283	 * (it will unmap bh if it packs).
2284	 *
2285	 * it is enough to reserve space in transaction for 2 balancings:
2286	 * one for "save" link adding and another for the first
2287	 * cut_from_item. 1 is for update_sd
2288	 */
2289	error = journal_begin(&th, inode->i_sb,
2290			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2291	if (error)
2292		goto out;
2293	reiserfs_update_inode_transaction(inode);
2294	if (update_timestamps)
2295		/*
2296		 * we are doing real truncate: if the system crashes
2297		 * before the last transaction of truncating gets committed
2298		 * - on reboot the file either appears truncated properly
2299		 * or not truncated at all
2300		 */
2301		add_save_link(&th, inode, 1);
2302	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2303	error = journal_end(&th);
 
2304	if (error)
2305		goto out;
2306
2307	/* check reiserfs_do_truncate after ending the transaction */
2308	if (err2) {
2309		error = err2;
2310  		goto out;
2311	}
2312	
2313	if (update_timestamps) {
2314		error = remove_save_link(inode, 1 /* truncate */);
2315		if (error)
2316			goto out;
2317	}
2318
2319	if (page) {
2320		length = offset & (blocksize - 1);
2321		/* if we are not on a block boundary */
2322		if (length) {
2323			length = blocksize - length;
2324			zero_user(page, offset, length);
2325			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2326				mark_buffer_dirty(bh);
2327			}
2328		}
2329		unlock_page(page);
2330		put_page(page);
2331	}
2332
2333	reiserfs_write_unlock(inode->i_sb);
2334
2335	return 0;
2336out:
2337	if (page) {
2338		unlock_page(page);
2339		put_page(page);
2340	}
2341
2342	reiserfs_write_unlock(inode->i_sb);
2343
2344	return error;
2345}
2346
2347static int map_block_for_writepage(struct inode *inode,
2348				   struct buffer_head *bh_result,
2349				   unsigned long block)
2350{
2351	struct reiserfs_transaction_handle th;
2352	int fs_gen;
2353	struct item_head tmp_ih;
2354	struct item_head *ih;
2355	struct buffer_head *bh;
2356	__le32 *item;
2357	struct cpu_key key;
2358	INITIALIZE_PATH(path);
2359	int pos_in_item;
2360	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2361	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2362	int retval;
2363	int use_get_block = 0;
2364	int bytes_copied = 0;
2365	int copy_size;
2366	int trans_running = 0;
2367
2368	/*
2369	 * catch places below that try to log something without
2370	 * starting a trans
2371	 */
2372	th.t_trans_id = 0;
2373
2374	if (!buffer_uptodate(bh_result)) {
2375		return -EIO;
2376	}
2377
2378	kmap(bh_result->b_page);
2379start_over:
2380	reiserfs_write_lock(inode->i_sb);
2381	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2382
2383research:
2384	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2385	if (retval != POSITION_FOUND) {
2386		use_get_block = 1;
2387		goto out;
2388	}
2389
2390	bh = get_last_bh(&path);
2391	ih = tp_item_head(&path);
2392	item = tp_item_body(&path);
2393	pos_in_item = path.pos_in_item;
2394
2395	/* we've found an unformatted node */
2396	if (indirect_item_found(retval, ih)) {
2397		if (bytes_copied > 0) {
2398			reiserfs_warning(inode->i_sb, "clm-6002",
2399					 "bytes_copied %d", bytes_copied);
2400		}
2401		if (!get_block_num(item, pos_in_item)) {
2402			/* crap, we are writing to a hole */
2403			use_get_block = 1;
2404			goto out;
2405		}
2406		set_block_dev_mapped(bh_result,
2407				     get_block_num(item, pos_in_item), inode);
2408	} else if (is_direct_le_ih(ih)) {
2409		char *p;
2410		p = page_address(bh_result->b_page);
2411		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2412		copy_size = ih_item_len(ih) - pos_in_item;
2413
2414		fs_gen = get_generation(inode->i_sb);
2415		copy_item_head(&tmp_ih, ih);
2416
2417		if (!trans_running) {
2418			/* vs-3050 is gone, no need to drop the path */
2419			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2420			if (retval)
2421				goto out;
2422			reiserfs_update_inode_transaction(inode);
2423			trans_running = 1;
2424			if (fs_changed(fs_gen, inode->i_sb)
2425			    && item_moved(&tmp_ih, &path)) {
2426				reiserfs_restore_prepared_buffer(inode->i_sb,
2427								 bh);
2428				goto research;
2429			}
2430		}
2431
2432		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2433
2434		if (fs_changed(fs_gen, inode->i_sb)
2435		    && item_moved(&tmp_ih, &path)) {
2436			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2437			goto research;
2438		}
2439
2440		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2441		       copy_size);
2442
2443		journal_mark_dirty(&th, bh);
2444		bytes_copied += copy_size;
2445		set_block_dev_mapped(bh_result, 0, inode);
2446
2447		/* are there still bytes left? */
2448		if (bytes_copied < bh_result->b_size &&
2449		    (byte_offset + bytes_copied) < inode->i_size) {
2450			set_cpu_key_k_offset(&key,
2451					     cpu_key_k_offset(&key) +
2452					     copy_size);
2453			goto research;
2454		}
2455	} else {
2456		reiserfs_warning(inode->i_sb, "clm-6003",
2457				 "bad item inode %lu", inode->i_ino);
2458		retval = -EIO;
2459		goto out;
2460	}
2461	retval = 0;
2462
2463out:
2464	pathrelse(&path);
2465	if (trans_running) {
2466		int err = journal_end(&th);
2467		if (err)
2468			retval = err;
2469		trans_running = 0;
2470	}
2471	reiserfs_write_unlock(inode->i_sb);
2472
2473	/* this is where we fill in holes in the file. */
2474	if (use_get_block) {
2475		retval = reiserfs_get_block(inode, block, bh_result,
2476					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2477					    | GET_BLOCK_NO_DANGLE);
2478		if (!retval) {
2479			if (!buffer_mapped(bh_result)
2480			    || bh_result->b_blocknr == 0) {
2481				/* get_block failed to find a mapped unformatted node. */
2482				use_get_block = 0;
2483				goto start_over;
2484			}
2485		}
2486	}
2487	kunmap(bh_result->b_page);
2488
2489	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2490		/*
2491		 * we've copied data from the page into the direct item, so the
2492		 * buffer in the page is now clean, mark it to reflect that.
2493		 */
2494		lock_buffer(bh_result);
2495		clear_buffer_dirty(bh_result);
2496		unlock_buffer(bh_result);
2497	}
2498	return retval;
2499}
2500
2501/*
2502 * mason@suse.com: updated in 2.5.54 to follow the same general io
2503 * start/recovery path as __block_write_full_folio, along with special
2504 * code to handle reiserfs tails.
2505 */
2506static int reiserfs_write_full_folio(struct folio *folio,
2507				    struct writeback_control *wbc)
2508{
2509	struct inode *inode = folio->mapping->host;
2510	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2511	int error = 0;
2512	unsigned long block;
2513	sector_t last_block;
2514	struct buffer_head *head, *bh;
2515	int partial = 0;
2516	int nr = 0;
2517	int checked = folio_test_checked(folio);
2518	struct reiserfs_transaction_handle th;
2519	struct super_block *s = inode->i_sb;
2520	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2521	th.t_trans_id = 0;
2522
2523	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2524	if (checked && (current->flags & PF_MEMALLOC)) {
2525		folio_redirty_for_writepage(wbc, folio);
2526		folio_unlock(folio);
2527		return 0;
2528	}
2529
2530	/*
2531	 * The folio dirty bit is cleared before writepage is called, which
2532	 * means we have to tell create_empty_buffers to make dirty buffers
2533	 * The folio really should be up to date at this point, so tossing
2534	 * in the BH_Uptodate is just a sanity check.
2535	 */
2536	head = folio_buffers(folio);
2537	if (!head)
2538		head = create_empty_buffers(folio, s->s_blocksize,
2539				     (1 << BH_Dirty) | (1 << BH_Uptodate));
 
 
2540
2541	/*
2542	 * last folio in the file, zero out any contents past the
2543	 * last byte in the file
2544	 */
2545	if (folio->index >= end_index) {
2546		unsigned last_offset;
2547
2548		last_offset = inode->i_size & (PAGE_SIZE - 1);
2549		/* no file contents in this folio */
2550		if (folio->index >= end_index + 1 || !last_offset) {
2551			folio_unlock(folio);
2552			return 0;
2553		}
2554		folio_zero_segment(folio, last_offset, folio_size(folio));
2555	}
2556	bh = head;
2557	block = folio->index << (PAGE_SHIFT - s->s_blocksize_bits);
2558	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2559	/* first map all the buffers, logging any direct items we find */
2560	do {
2561		if (block > last_block) {
2562			/*
2563			 * This can happen when the block size is less than
2564			 * the folio size.  The corresponding bytes in the folio
2565			 * were zero filled above
2566			 */
2567			clear_buffer_dirty(bh);
2568			set_buffer_uptodate(bh);
2569		} else if ((checked || buffer_dirty(bh)) &&
2570			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2571			/*
2572			 * not mapped yet, or it points to a direct item, search
 
2573			 * the btree for the mapping info, and log any direct
2574			 * items found
2575			 */
2576			if ((error = map_block_for_writepage(inode, bh, block))) {
2577				goto fail;
2578			}
2579		}
2580		bh = bh->b_this_page;
2581		block++;
2582	} while (bh != head);
2583
2584	/*
2585	 * we start the transaction after map_block_for_writepage,
2586	 * because it can create holes in the file (an unbounded operation).
2587	 * starting it here, we can make a reliable estimate for how many
2588	 * blocks we're going to log
2589	 */
2590	if (checked) {
2591		folio_clear_checked(folio);
2592		reiserfs_write_lock(s);
2593		error = journal_begin(&th, s, bh_per_page + 1);
2594		if (error) {
2595			reiserfs_write_unlock(s);
2596			goto fail;
2597		}
2598		reiserfs_update_inode_transaction(inode);
2599	}
2600	/* now go through and lock any dirty buffers on the folio */
2601	do {
2602		get_bh(bh);
2603		if (!buffer_mapped(bh))
2604			continue;
2605		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2606			continue;
2607
2608		if (checked) {
2609			reiserfs_prepare_for_journal(s, bh, 1);
2610			journal_mark_dirty(&th, bh);
2611			continue;
2612		}
2613		/*
2614		 * from this point on, we know the buffer is mapped to a
2615		 * real block and not a direct item
2616		 */
2617		if (wbc->sync_mode != WB_SYNC_NONE) {
2618			lock_buffer(bh);
2619		} else {
2620			if (!trylock_buffer(bh)) {
2621				folio_redirty_for_writepage(wbc, folio);
2622				continue;
2623			}
2624		}
2625		if (test_clear_buffer_dirty(bh)) {
2626			mark_buffer_async_write(bh);
2627		} else {
2628			unlock_buffer(bh);
2629		}
2630	} while ((bh = bh->b_this_page) != head);
2631
2632	if (checked) {
2633		error = journal_end(&th);
2634		reiserfs_write_unlock(s);
2635		if (error)
2636			goto fail;
2637	}
2638	BUG_ON(folio_test_writeback(folio));
2639	folio_start_writeback(folio);
2640	folio_unlock(folio);
2641
2642	/*
2643	 * since any buffer might be the only dirty buffer on the folio,
2644	 * the first submit_bh can bring the folio out of writeback.
2645	 * be careful with the buffers.
2646	 */
2647	do {
2648		struct buffer_head *next = bh->b_this_page;
2649		if (buffer_async_write(bh)) {
2650			submit_bh(REQ_OP_WRITE, bh);
2651			nr++;
2652		}
2653		put_bh(bh);
2654		bh = next;
2655	} while (bh != head);
2656
2657	error = 0;
2658done:
2659	if (nr == 0) {
2660		/*
2661		 * if this folio only had a direct item, it is very possible for
2662		 * no io to be required without there being an error.  Or,
2663		 * someone else could have locked them and sent them down the
2664		 * pipe without locking the folio
2665		 */
2666		bh = head;
2667		do {
2668			if (!buffer_uptodate(bh)) {
2669				partial = 1;
2670				break;
2671			}
2672			bh = bh->b_this_page;
2673		} while (bh != head);
2674		if (!partial)
2675			folio_mark_uptodate(folio);
2676		folio_end_writeback(folio);
2677	}
2678	return error;
2679
2680fail:
2681	/*
2682	 * catches various errors, we need to make sure any valid dirty blocks
2683	 * get to the media.  The folio is currently locked and not marked for
2684	 * writeback
2685	 */
2686	folio_clear_uptodate(folio);
2687	bh = head;
2688	do {
2689		get_bh(bh);
2690		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2691			lock_buffer(bh);
2692			mark_buffer_async_write(bh);
2693		} else {
2694			/*
2695			 * clear any dirty bits that might have come from
2696			 * getting attached to a dirty folio
2697			 */
2698			clear_buffer_dirty(bh);
2699		}
2700		bh = bh->b_this_page;
2701	} while (bh != head);
2702	folio_set_error(folio);
2703	BUG_ON(folio_test_writeback(folio));
2704	folio_start_writeback(folio);
2705	folio_unlock(folio);
2706	do {
2707		struct buffer_head *next = bh->b_this_page;
2708		if (buffer_async_write(bh)) {
2709			clear_buffer_dirty(bh);
2710			submit_bh(REQ_OP_WRITE, bh);
2711			nr++;
2712		}
2713		put_bh(bh);
2714		bh = next;
2715	} while (bh != head);
2716	goto done;
2717}
2718
2719static int reiserfs_read_folio(struct file *f, struct folio *folio)
2720{
2721	return block_read_full_folio(folio, reiserfs_get_block);
2722}
2723
2724static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2725{
2726	struct folio *folio = page_folio(page);
2727	struct inode *inode = folio->mapping->host;
2728	reiserfs_wait_on_write_block(inode->i_sb);
2729	return reiserfs_write_full_folio(folio, wbc);
2730}
2731
2732static void reiserfs_truncate_failed_write(struct inode *inode)
2733{
2734	truncate_inode_pages(inode->i_mapping, inode->i_size);
2735	reiserfs_truncate_file(inode, 0);
2736}
2737
2738static int reiserfs_write_begin(struct file *file,
2739				struct address_space *mapping,
2740				loff_t pos, unsigned len,
2741				struct page **pagep, void **fsdata)
2742{
2743	struct inode *inode;
2744	struct page *page;
2745	pgoff_t index;
2746	int ret;
2747	int old_ref = 0;
2748
2749 	inode = mapping->host;
2750	index = pos >> PAGE_SHIFT;
2751	page = grab_cache_page_write_begin(mapping, index);
 
 
 
 
 
 
 
2752	if (!page)
2753		return -ENOMEM;
2754	*pagep = page;
2755
2756	reiserfs_wait_on_write_block(inode->i_sb);
2757	fix_tail_page_for_writing(page);
2758	if (reiserfs_transaction_running(inode->i_sb)) {
2759		struct reiserfs_transaction_handle *th;
2760		th = (struct reiserfs_transaction_handle *)current->
2761		    journal_info;
2762		BUG_ON(!th->t_refcount);
2763		BUG_ON(!th->t_trans_id);
2764		old_ref = th->t_refcount;
2765		th->t_refcount++;
2766	}
2767	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2768	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2769		struct reiserfs_transaction_handle *th = current->journal_info;
2770		/*
2771		 * this gets a little ugly.  If reiserfs_get_block returned an
2772		 * error and left a transacstion running, we've got to close
2773		 * it, and we've got to free handle if it was a persistent
2774		 * transaction.
2775		 *
2776		 * But, if we had nested into an existing transaction, we need
2777		 * to just drop the ref count on the handle.
2778		 *
2779		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2780		 * and it was a persistent trans.  Otherwise, it was nested
2781		 * above.
2782		 */
2783		if (th->t_refcount > old_ref) {
2784			if (old_ref)
2785				th->t_refcount--;
2786			else {
2787				int err;
2788				reiserfs_write_lock(inode->i_sb);
2789				err = reiserfs_end_persistent_transaction(th);
2790				reiserfs_write_unlock(inode->i_sb);
2791				if (err)
2792					ret = err;
2793			}
2794		}
2795	}
2796	if (ret) {
2797		unlock_page(page);
2798		put_page(page);
2799		/* Truncate allocated blocks */
2800		reiserfs_truncate_failed_write(inode);
2801	}
2802	return ret;
2803}
2804
2805int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2806{
2807	struct inode *inode = page->mapping->host;
2808	int ret;
2809	int old_ref = 0;
2810	int depth;
2811
2812	depth = reiserfs_write_unlock_nested(inode->i_sb);
2813	reiserfs_wait_on_write_block(inode->i_sb);
2814	reiserfs_write_lock_nested(inode->i_sb, depth);
2815
2816	fix_tail_page_for_writing(page);
2817	if (reiserfs_transaction_running(inode->i_sb)) {
2818		struct reiserfs_transaction_handle *th;
2819		th = (struct reiserfs_transaction_handle *)current->
2820		    journal_info;
2821		BUG_ON(!th->t_refcount);
2822		BUG_ON(!th->t_trans_id);
2823		old_ref = th->t_refcount;
2824		th->t_refcount++;
2825	}
2826
2827	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2828	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2829		struct reiserfs_transaction_handle *th = current->journal_info;
2830		/*
2831		 * this gets a little ugly.  If reiserfs_get_block returned an
2832		 * error and left a transacstion running, we've got to close
2833		 * it, and we've got to free handle if it was a persistent
2834		 * transaction.
2835		 *
2836		 * But, if we had nested into an existing transaction, we need
2837		 * to just drop the ref count on the handle.
2838		 *
2839		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2840		 * and it was a persistent trans.  Otherwise, it was nested
2841		 * above.
2842		 */
2843		if (th->t_refcount > old_ref) {
2844			if (old_ref)
2845				th->t_refcount--;
2846			else {
2847				int err;
2848				reiserfs_write_lock(inode->i_sb);
2849				err = reiserfs_end_persistent_transaction(th);
2850				reiserfs_write_unlock(inode->i_sb);
2851				if (err)
2852					ret = err;
2853			}
2854		}
2855	}
2856	return ret;
2857
2858}
2859
2860static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2861{
2862	return generic_block_bmap(as, block, reiserfs_bmap);
2863}
2864
2865static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2866			      loff_t pos, unsigned len, unsigned copied,
2867			      struct page *page, void *fsdata)
2868{
2869	struct folio *folio = page_folio(page);
2870	struct inode *inode = page->mapping->host;
2871	int ret = 0;
2872	int update_sd = 0;
2873	struct reiserfs_transaction_handle *th;
2874	unsigned start;
 
2875	bool locked = false;
2876
 
 
 
2877	reiserfs_wait_on_write_block(inode->i_sb);
2878	if (reiserfs_transaction_running(inode->i_sb))
2879		th = current->journal_info;
2880	else
2881		th = NULL;
2882
2883	start = pos & (PAGE_SIZE - 1);
2884	if (unlikely(copied < len)) {
2885		if (!folio_test_uptodate(folio))
2886			copied = 0;
2887
2888		folio_zero_new_buffers(folio, start + copied, start + len);
2889	}
2890	flush_dcache_folio(folio);
2891
2892	reiserfs_commit_page(inode, page, start, start + copied);
2893
2894	/*
2895	 * generic_commit_write does this for us, but does not update the
2896	 * transaction tracking stuff when the size changes.  So, we have
2897	 * to do the i_size updates here.
2898	 */
2899	if (pos + copied > inode->i_size) {
2900		struct reiserfs_transaction_handle myth;
2901		reiserfs_write_lock(inode->i_sb);
2902		locked = true;
2903		/*
2904		 * If the file have grown beyond the border where it
2905		 * can have a tail, unmark it as needing a tail
2906		 * packing
2907		 */
2908		if ((have_large_tails(inode->i_sb)
2909		     && inode->i_size > i_block_size(inode) * 4)
2910		    || (have_small_tails(inode->i_sb)
2911			&& inode->i_size > i_block_size(inode)))
2912			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2913
2914		ret = journal_begin(&myth, inode->i_sb, 1);
2915		if (ret)
2916			goto journal_error;
2917
2918		reiserfs_update_inode_transaction(inode);
2919		inode->i_size = pos + copied;
2920		/*
2921		 * this will just nest into our transaction.  It's important
2922		 * to use mark_inode_dirty so the inode gets pushed around on
2923		 * the dirty lists, and so that O_SYNC works as expected
2924		 */
2925		mark_inode_dirty(inode);
2926		reiserfs_update_sd(&myth, inode);
2927		update_sd = 1;
2928		ret = journal_end(&myth);
2929		if (ret)
2930			goto journal_error;
2931	}
2932	if (th) {
2933		if (!locked) {
2934			reiserfs_write_lock(inode->i_sb);
2935			locked = true;
2936		}
2937		if (!update_sd)
2938			mark_inode_dirty(inode);
2939		ret = reiserfs_end_persistent_transaction(th);
2940		if (ret)
2941			goto out;
2942	}
2943
2944out:
2945	if (locked)
2946		reiserfs_write_unlock(inode->i_sb);
2947	unlock_page(page);
2948	put_page(page);
2949
2950	if (pos + len > inode->i_size)
2951		reiserfs_truncate_failed_write(inode);
2952
2953	return ret == 0 ? copied : ret;
2954
2955journal_error:
2956	reiserfs_write_unlock(inode->i_sb);
2957	locked = false;
2958	if (th) {
2959		if (!update_sd)
2960			reiserfs_update_sd(th, inode);
2961		ret = reiserfs_end_persistent_transaction(th);
2962	}
2963	goto out;
2964}
2965
2966int reiserfs_commit_write(struct file *f, struct page *page,
2967			  unsigned from, unsigned to)
2968{
2969	struct inode *inode = page->mapping->host;
2970	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2971	int ret = 0;
2972	int update_sd = 0;
2973	struct reiserfs_transaction_handle *th = NULL;
2974	int depth;
2975
2976	depth = reiserfs_write_unlock_nested(inode->i_sb);
2977	reiserfs_wait_on_write_block(inode->i_sb);
2978	reiserfs_write_lock_nested(inode->i_sb, depth);
2979
2980	if (reiserfs_transaction_running(inode->i_sb)) {
2981		th = current->journal_info;
2982	}
2983	reiserfs_commit_page(inode, page, from, to);
2984
2985	/*
2986	 * generic_commit_write does this for us, but does not update the
2987	 * transaction tracking stuff when the size changes.  So, we have
2988	 * to do the i_size updates here.
2989	 */
2990	if (pos > inode->i_size) {
2991		struct reiserfs_transaction_handle myth;
2992		/*
2993		 * If the file have grown beyond the border where it
2994		 * can have a tail, unmark it as needing a tail
2995		 * packing
2996		 */
2997		if ((have_large_tails(inode->i_sb)
2998		     && inode->i_size > i_block_size(inode) * 4)
2999		    || (have_small_tails(inode->i_sb)
3000			&& inode->i_size > i_block_size(inode)))
3001			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3002
3003		ret = journal_begin(&myth, inode->i_sb, 1);
3004		if (ret)
3005			goto journal_error;
3006
3007		reiserfs_update_inode_transaction(inode);
3008		inode->i_size = pos;
3009		/*
3010		 * this will just nest into our transaction.  It's important
3011		 * to use mark_inode_dirty so the inode gets pushed around
3012		 * on the dirty lists, and so that O_SYNC works as expected
3013		 */
3014		mark_inode_dirty(inode);
3015		reiserfs_update_sd(&myth, inode);
3016		update_sd = 1;
3017		ret = journal_end(&myth);
3018		if (ret)
3019			goto journal_error;
3020	}
3021	if (th) {
3022		if (!update_sd)
3023			mark_inode_dirty(inode);
3024		ret = reiserfs_end_persistent_transaction(th);
3025		if (ret)
3026			goto out;
3027	}
3028
3029out:
3030	return ret;
3031
3032journal_error:
3033	if (th) {
3034		if (!update_sd)
3035			reiserfs_update_sd(th, inode);
3036		ret = reiserfs_end_persistent_transaction(th);
3037	}
3038
3039	return ret;
3040}
3041
3042void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3043{
3044	if (reiserfs_attrs(inode->i_sb)) {
3045		if (sd_attrs & REISERFS_SYNC_FL)
3046			inode->i_flags |= S_SYNC;
3047		else
3048			inode->i_flags &= ~S_SYNC;
3049		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3050			inode->i_flags |= S_IMMUTABLE;
3051		else
3052			inode->i_flags &= ~S_IMMUTABLE;
3053		if (sd_attrs & REISERFS_APPEND_FL)
3054			inode->i_flags |= S_APPEND;
3055		else
3056			inode->i_flags &= ~S_APPEND;
3057		if (sd_attrs & REISERFS_NOATIME_FL)
3058			inode->i_flags |= S_NOATIME;
3059		else
3060			inode->i_flags &= ~S_NOATIME;
3061		if (sd_attrs & REISERFS_NOTAIL_FL)
3062			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3063		else
3064			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3065	}
3066}
3067
3068/*
3069 * decide if this buffer needs to stay around for data logging or ordered
3070 * write purposes
3071 */
3072static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073{
3074	int ret = 1;
3075	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3076
3077	lock_buffer(bh);
3078	spin_lock(&j->j_dirty_buffers_lock);
3079	if (!buffer_mapped(bh)) {
3080		goto free_jh;
3081	}
3082	/*
3083	 * the page is locked, and the only places that log a data buffer
3084	 * also lock the page.
3085	 */
3086	if (reiserfs_file_data_log(inode)) {
3087		/*
3088		 * very conservative, leave the buffer pinned if
3089		 * anyone might need it.
3090		 */
3091		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3092			ret = 0;
3093		}
3094	} else  if (buffer_dirty(bh)) {
3095		struct reiserfs_journal_list *jl;
3096		struct reiserfs_jh *jh = bh->b_private;
3097
3098		/*
3099		 * why is this safe?
3100		 * reiserfs_setattr updates i_size in the on disk
3101		 * stat data before allowing vmtruncate to be called.
3102		 *
3103		 * If buffer was put onto the ordered list for this
3104		 * transaction, we know for sure either this transaction
3105		 * or an older one already has updated i_size on disk,
3106		 * and this ordered data won't be referenced in the file
3107		 * if we crash.
3108		 *
3109		 * if the buffer was put onto the ordered list for an older
3110		 * transaction, we need to leave it around
3111		 */
3112		if (jh && (jl = jh->jl)
3113		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3114			ret = 0;
3115	}
3116free_jh:
3117	if (ret && bh->b_private) {
3118		reiserfs_free_jh(bh);
3119	}
3120	spin_unlock(&j->j_dirty_buffers_lock);
3121	unlock_buffer(bh);
3122	return ret;
3123}
3124
3125/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3126static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3127				    size_t length)
3128{
3129	struct buffer_head *head, *bh, *next;
3130	struct inode *inode = folio->mapping->host;
3131	unsigned int curr_off = 0;
3132	unsigned int stop = offset + length;
3133	int partial_page = (offset || length < folio_size(folio));
3134	int ret = 1;
3135
3136	BUG_ON(!folio_test_locked(folio));
3137
3138	if (!partial_page)
3139		folio_clear_checked(folio);
3140
3141	head = folio_buffers(folio);
3142	if (!head)
3143		goto out;
3144
 
3145	bh = head;
3146	do {
3147		unsigned int next_off = curr_off + bh->b_size;
3148		next = bh->b_this_page;
3149
3150		if (next_off > stop)
3151			goto out;
3152
3153		/*
3154		 * is this block fully invalidated?
3155		 */
3156		if (offset <= curr_off) {
3157			if (invalidate_folio_can_drop(inode, bh))
3158				reiserfs_unmap_buffer(bh);
3159			else
3160				ret = 0;
3161		}
3162		curr_off = next_off;
3163		bh = next;
3164	} while (bh != head);
3165
3166	/*
3167	 * We release buffers only if the entire page is being invalidated.
3168	 * The get_block cached value has been unconditionally invalidated,
3169	 * so real IO is not possible anymore.
3170	 */
3171	if (!partial_page && ret) {
3172		ret = filemap_release_folio(folio, 0);
3173		/* maybe should BUG_ON(!ret); - neilb */
3174	}
3175out:
3176	return;
3177}
3178
3179static bool reiserfs_dirty_folio(struct address_space *mapping,
3180		struct folio *folio)
3181{
3182	if (reiserfs_file_data_log(mapping->host)) {
3183		folio_set_checked(folio);
3184		return filemap_dirty_folio(mapping, folio);
 
3185	}
3186	return block_dirty_folio(mapping, folio);
3187}
3188
3189/*
3190 * Returns true if the folio's buffers were dropped.  The folio is locked.
3191 *
3192 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3193 * in the buffers at folio_buffers(folio).
3194 *
3195 * even in -o notail mode, we can't be sure an old mount without -o notail
3196 * didn't create files with tails.
3197 */
3198static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3199{
3200	struct inode *inode = folio->mapping->host;
3201	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3202	struct buffer_head *head;
3203	struct buffer_head *bh;
3204	bool ret = true;
3205
3206	WARN_ON(folio_test_checked(folio));
3207	spin_lock(&j->j_dirty_buffers_lock);
3208	head = folio_buffers(folio);
3209	bh = head;
3210	do {
3211		if (bh->b_private) {
3212			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3213				reiserfs_free_jh(bh);
3214			} else {
3215				ret = false;
3216				break;
3217			}
3218		}
3219		bh = bh->b_this_page;
3220	} while (bh != head);
3221	if (ret)
3222		ret = try_to_free_buffers(folio);
3223	spin_unlock(&j->j_dirty_buffers_lock);
3224	return ret;
3225}
3226
3227/*
3228 * We thank Mingming Cao for helping us understand in great detail what
3229 * to do in this section of the code.
3230 */
3231static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3232{
3233	struct file *file = iocb->ki_filp;
3234	struct inode *inode = file->f_mapping->host;
3235	size_t count = iov_iter_count(iter);
3236	ssize_t ret;
3237
3238	ret = blockdev_direct_IO(iocb, inode, iter,
3239				 reiserfs_get_blocks_direct_io);
3240
3241	/*
3242	 * In case of error extending write may have instantiated a few
3243	 * blocks outside i_size. Trim these off again.
3244	 */
3245	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3246		loff_t isize = i_size_read(inode);
3247		loff_t end = iocb->ki_pos + count;
3248
3249		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3250			truncate_setsize(inode, isize);
3251			reiserfs_vfs_truncate_file(inode);
3252		}
3253	}
3254
3255	return ret;
3256}
3257
3258int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3259		     struct iattr *attr)
3260{
3261	struct inode *inode = d_inode(dentry);
3262	unsigned int ia_valid;
 
3263	int error;
3264
3265	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3266	if (error)
3267		return error;
3268
3269	/* must be turned off for recursive notify_change calls */
3270	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3271
3272	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3273		error = dquot_initialize(inode);
3274		if (error)
3275			return error;
3276	}
3277	reiserfs_write_lock(inode->i_sb);
3278	if (attr->ia_valid & ATTR_SIZE) {
3279		/*
3280		 * version 2 items will be caught by the s_maxbytes check
3281		 * done for us in vmtruncate
3282		 */
3283		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3284		    attr->ia_size > MAX_NON_LFS) {
3285			reiserfs_write_unlock(inode->i_sb);
3286			error = -EFBIG;
3287			goto out;
3288		}
3289
3290		inode_dio_wait(inode);
3291
3292		/* fill in hole pointers in the expanding truncate case. */
3293		if (attr->ia_size > inode->i_size) {
3294			loff_t pos = attr->ia_size;
3295
3296			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3297				pos++;
3298			error = generic_cont_expand_simple(inode, pos);
3299			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3300				int err;
3301				struct reiserfs_transaction_handle th;
3302				/* we're changing at most 2 bitmaps, inode + super */
3303				err = journal_begin(&th, inode->i_sb, 4);
3304				if (!err) {
3305					reiserfs_discard_prealloc(&th, inode);
3306					err = journal_end(&th);
3307				}
3308				if (err)
3309					error = err;
3310			}
3311			if (error) {
3312				reiserfs_write_unlock(inode->i_sb);
3313				goto out;
3314			}
3315			/*
3316			 * file size is changed, ctime and mtime are
3317			 * to be updated
3318			 */
3319			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3320		}
3321	}
3322	reiserfs_write_unlock(inode->i_sb);
3323
3324	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3325	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3326	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3327		/* stat data of format v3.5 has 16 bit uid and gid */
3328		error = -EINVAL;
3329		goto out;
3330	}
3331
3332	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3333	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3334		struct reiserfs_transaction_handle th;
3335		int jbegin_count =
3336		    2 *
3337		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3338		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3339		    2;
3340
3341		error = reiserfs_chown_xattrs(inode, attr);
3342
3343		if (error)
3344			return error;
3345
3346		/*
3347		 * (user+group)*(old+new) structure - we count quota
3348		 * info and , inode write (sb, inode)
3349		 */
3350		reiserfs_write_lock(inode->i_sb);
3351		error = journal_begin(&th, inode->i_sb, jbegin_count);
3352		reiserfs_write_unlock(inode->i_sb);
3353		if (error)
3354			goto out;
3355		error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3356		reiserfs_write_lock(inode->i_sb);
3357		if (error) {
3358			journal_end(&th);
3359			reiserfs_write_unlock(inode->i_sb);
3360			goto out;
3361		}
3362
3363		/*
3364		 * Update corresponding info in inode so that everything
3365		 * is in one transaction
3366		 */
3367		if (attr->ia_valid & ATTR_UID)
3368			inode->i_uid = attr->ia_uid;
3369		if (attr->ia_valid & ATTR_GID)
3370			inode->i_gid = attr->ia_gid;
3371		mark_inode_dirty(inode);
3372		error = journal_end(&th);
3373		reiserfs_write_unlock(inode->i_sb);
3374		if (error)
3375			goto out;
3376	}
3377
 
 
 
 
 
 
 
3378	if ((attr->ia_valid & ATTR_SIZE) &&
3379	    attr->ia_size != i_size_read(inode)) {
3380		error = inode_newsize_ok(inode, attr->ia_size);
3381		if (!error) {
3382			/*
3383			 * Could race against reiserfs_file_release
3384			 * if called from NFS, so take tailpack mutex.
3385			 */
3386			mutex_lock(&REISERFS_I(inode)->tailpack);
3387			truncate_setsize(inode, attr->ia_size);
3388			reiserfs_truncate_file(inode, 1);
3389			mutex_unlock(&REISERFS_I(inode)->tailpack);
3390		}
3391	}
3392
3393	if (!error) {
3394		setattr_copy(&nop_mnt_idmap, inode, attr);
3395		mark_inode_dirty(inode);
3396	}
 
3397
3398	if (!error && reiserfs_posixacl(inode->i_sb)) {
3399		if (attr->ia_valid & ATTR_MODE)
3400			error = reiserfs_acl_chmod(dentry);
3401	}
3402
3403out:
 
 
3404	return error;
3405}
3406
3407const struct address_space_operations reiserfs_address_space_operations = {
3408	.writepage = reiserfs_writepage,
3409	.read_folio = reiserfs_read_folio,
3410	.readahead = reiserfs_readahead,
3411	.release_folio = reiserfs_release_folio,
3412	.invalidate_folio = reiserfs_invalidate_folio,
3413	.write_begin = reiserfs_write_begin,
3414	.write_end = reiserfs_write_end,
3415	.bmap = reiserfs_aop_bmap,
3416	.direct_IO = reiserfs_direct_IO,
3417	.dirty_folio = reiserfs_dirty_folio,
3418};
v3.5.6
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <asm/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
 
 
  21
  22int reiserfs_commit_write(struct file *f, struct page *page,
  23			  unsigned from, unsigned to);
  24
  25void reiserfs_evict_inode(struct inode *inode)
  26{
  27	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
 
 
 
  28	int jbegin_count =
  29	    JOURNAL_PER_BALANCE_CNT * 2 +
  30	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  31	struct reiserfs_transaction_handle th;
  32	int depth;
  33	int err;
  34
  35	if (!inode->i_nlink && !is_bad_inode(inode))
  36		dquot_initialize(inode);
  37
  38	truncate_inode_pages(&inode->i_data, 0);
  39	if (inode->i_nlink)
  40		goto no_delete;
  41
  42	depth = reiserfs_write_lock_once(inode->i_sb);
 
 
 
 
 
  43
  44	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
  45	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
  46		reiserfs_delete_xattrs(inode);
  47
 
 
  48		if (journal_begin(&th, inode->i_sb, jbegin_count))
  49			goto out;
  50		reiserfs_update_inode_transaction(inode);
  51
  52		reiserfs_discard_prealloc(&th, inode);
  53
  54		err = reiserfs_delete_object(&th, inode);
  55
  56		/* Do quota update inside a transaction for journaled quotas. We must do that
  57		 * after delete_object so that quota updates go into the same transaction as
  58		 * stat data deletion */
  59		if (!err) 
 
 
 
  60			dquot_free_inode(inode);
 
 
  61
  62		if (journal_end(&th, inode->i_sb, jbegin_count))
  63			goto out;
  64
  65		/* check return value from reiserfs_delete_object after
 
  66		 * ending the transaction
  67		 */
  68		if (err)
  69		    goto out;
  70
  71		/* all items of file are deleted, so we can remove "save" link */
  72		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
  73								 * about an error here */
 
 
 
 
 
  74	} else {
  75		/* no object items are in the tree */
  76		;
  77	}
  78      out:
  79	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
 
 
  80	dquot_drop(inode);
  81	inode->i_blocks = 0;
  82	reiserfs_write_unlock_once(inode->i_sb, depth);
  83	return;
  84
  85no_delete:
  86	clear_inode(inode);
  87	dquot_drop(inode);
  88}
  89
  90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
  91			  __u32 objectid, loff_t offset, int type, int length)
  92{
  93	key->version = version;
  94
  95	key->on_disk_key.k_dir_id = dirid;
  96	key->on_disk_key.k_objectid = objectid;
  97	set_cpu_key_k_offset(key, offset);
  98	set_cpu_key_k_type(key, type);
  99	key->key_length = length;
 100}
 101
 102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
 103   offset and type of key */
 
 
 104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 105		  int type, int length)
 106{
 107	_make_cpu_key(key, get_inode_item_key_version(inode),
 108		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 109		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 110		      length);
 111}
 112
 113//
 114// when key is 0, do not set version and short key
 115//
 116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 117			      int version,
 118			      loff_t offset, int type, int length,
 119			      int entry_count /*or ih_free_space */ )
 120{
 121	if (key) {
 122		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 123		ih->ih_key.k_objectid =
 124		    cpu_to_le32(key->on_disk_key.k_objectid);
 125	}
 126	put_ih_version(ih, version);
 127	set_le_ih_k_offset(ih, offset);
 128	set_le_ih_k_type(ih, type);
 129	put_ih_item_len(ih, length);
 130	/*    set_ih_free_space (ih, 0); */
 131	// for directory items it is entry count, for directs and stat
 132	// datas - 0xffff, for indirects - 0
 
 
 133	put_ih_entry_count(ih, entry_count);
 134}
 135
 136//
 137// FIXME: we might cache recently accessed indirect item
 
 
 
 
 138
 139// Ugh.  Not too eager for that....
 140//  I cut the code until such time as I see a convincing argument (benchmark).
 141// I don't want a bloated inode struct..., and I don't like code complexity....
 142
 143/* cutting the code is fine, since it really isn't in use yet and is easy
 144** to add back in.  But, Vladimir has a really good idea here.  Think
 145** about what happens for reading a file.  For each page,
 146** The VFS layer calls reiserfs_readpage, who searches the tree to find
 147** an indirect item.  This indirect item has X number of pointers, where
 148** X is a big number if we've done the block allocation right.  But,
 149** we only use one or two of these pointers during each call to readpage,
 150** needlessly researching again later on.
 151**
 152** The size of the cache could be dynamic based on the size of the file.
 153**
 154** I'd also like to see us cache the location the stat data item, since
 155** we are needlessly researching for that frequently.
 156**
 157** --chris
 158*/
 159
 160/* If this page has a file tail in it, and
 161** it was read in by get_block_create_0, the page data is valid,
 162** but tail is still sitting in a direct item, and we can't write to
 163** it.  So, look through this page, and check all the mapped buffers
 164** to make sure they have valid block numbers.  Any that don't need
 165** to be unmapped, so that __block_write_begin will correctly call
 166** reiserfs_get_block to convert the tail into an unformatted node
 167*/
 
 168static inline void fix_tail_page_for_writing(struct page *page)
 169{
 170	struct buffer_head *head, *next, *bh;
 171
 172	if (page && page_has_buffers(page)) {
 173		head = page_buffers(page);
 174		bh = head;
 175		do {
 176			next = bh->b_this_page;
 177			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 178				reiserfs_unmap_buffer(bh);
 179			}
 180			bh = next;
 181		} while (bh != head);
 182	}
 183}
 184
 185/* reiserfs_get_block does not need to allocate a block only if it has been
 186   done already or non-hole position has been found in the indirect item */
 
 
 187static inline int allocation_needed(int retval, b_blocknr_t allocated,
 188				    struct item_head *ih,
 189				    __le32 * item, int pos_in_item)
 190{
 191	if (allocated)
 192		return 0;
 193	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 194	    get_block_num(item, pos_in_item))
 195		return 0;
 196	return 1;
 197}
 198
 199static inline int indirect_item_found(int retval, struct item_head *ih)
 200{
 201	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 202}
 203
 204static inline void set_block_dev_mapped(struct buffer_head *bh,
 205					b_blocknr_t block, struct inode *inode)
 206{
 207	map_bh(bh, inode->i_sb, block);
 208}
 209
 210//
 211// files which were created in the earlier version can not be longer,
 212// than 2 gb
 213//
 214static int file_capable(struct inode *inode, sector_t block)
 215{
 216	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
 217	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
 
 
 218		return 1;
 219
 220	return 0;
 221}
 222
 223static int restart_transaction(struct reiserfs_transaction_handle *th,
 224			       struct inode *inode, struct treepath *path)
 225{
 226	struct super_block *s = th->t_super;
 227	int len = th->t_blocks_allocated;
 228	int err;
 229
 230	BUG_ON(!th->t_trans_id);
 231	BUG_ON(!th->t_refcount);
 232
 233	pathrelse(path);
 234
 235	/* we cannot restart while nested */
 236	if (th->t_refcount > 1) {
 237		return 0;
 238	}
 239	reiserfs_update_sd(th, inode);
 240	err = journal_end(th, s, len);
 241	if (!err) {
 242		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 243		if (!err)
 244			reiserfs_update_inode_transaction(inode);
 245	}
 246	return err;
 247}
 248
 249// it is called by get_block when create == 0. Returns block number
 250// for 'block'-th logical block of file. When it hits direct item it
 251// returns 0 (being called from bmap) or read direct item into piece
 252// of page (bh_result)
 253
 254// Please improve the english/clarity in the comment above, as it is
 255// hard to understand.
 256
 257static int _get_block_create_0(struct inode *inode, sector_t block,
 258			       struct buffer_head *bh_result, int args)
 259{
 260	INITIALIZE_PATH(path);
 261	struct cpu_key key;
 262	struct buffer_head *bh;
 263	struct item_head *ih, tmp_ih;
 264	b_blocknr_t blocknr;
 265	char *p = NULL;
 266	int chars;
 267	int ret;
 268	int result;
 269	int done = 0;
 270	unsigned long offset;
 271
 272	// prepare the key to look for the 'block'-th block of file
 273	make_cpu_key(&key, inode,
 274		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 275		     3);
 276
 277	result = search_for_position_by_key(inode->i_sb, &key, &path);
 278	if (result != POSITION_FOUND) {
 279		pathrelse(&path);
 280		if (p)
 281			kunmap(bh_result->b_page);
 282		if (result == IO_ERROR)
 283			return -EIO;
 284		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 285		// That there is some MMAPED data associated with it that is yet to be written to disk.
 
 
 
 286		if ((args & GET_BLOCK_NO_HOLE)
 287		    && !PageUptodate(bh_result->b_page)) {
 288			return -ENOENT;
 289		}
 290		return 0;
 291	}
 292	//
 293	bh = get_last_bh(&path);
 294	ih = get_ih(&path);
 295	if (is_indirect_le_ih(ih)) {
 296		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
 297
 298		/* FIXME: here we could cache indirect item or part of it in
 299		   the inode to avoid search_by_key in case of subsequent
 300		   access to file */
 
 
 301		blocknr = get_block_num(ind_item, path.pos_in_item);
 302		ret = 0;
 303		if (blocknr) {
 304			map_bh(bh_result, inode->i_sb, blocknr);
 305			if (path.pos_in_item ==
 306			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 307				set_buffer_boundary(bh_result);
 308			}
 309		} else
 310			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 311			// That there is some MMAPED data associated with it that is yet to  be written to disk.
 
 
 
 
 312		if ((args & GET_BLOCK_NO_HOLE)
 313			    && !PageUptodate(bh_result->b_page)) {
 314			ret = -ENOENT;
 315		}
 316
 317		pathrelse(&path);
 318		if (p)
 319			kunmap(bh_result->b_page);
 320		return ret;
 321	}
 322	// requested data are in direct item(s)
 323	if (!(args & GET_BLOCK_READ_DIRECT)) {
 324		// we are called by bmap. FIXME: we can not map block of file
 325		// when it is stored in direct item(s)
 
 
 326		pathrelse(&path);
 327		if (p)
 328			kunmap(bh_result->b_page);
 329		return -ENOENT;
 330	}
 331
 332	/* if we've got a direct item, and the buffer or page was uptodate,
 333	 ** we don't want to pull data off disk again.  skip to the
 334	 ** end, where we map the buffer and return
 
 335	 */
 336	if (buffer_uptodate(bh_result)) {
 337		goto finished;
 338	} else
 339		/*
 340		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
 341		 ** pages without any buffers.  If the page is up to date, we don't want
 342		 ** read old data off disk.  Set the up to date bit on the buffer instead
 343		 ** and jump to the end
 344		 */
 345	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 346		set_buffer_uptodate(bh_result);
 347		goto finished;
 348	}
 349	// read file tail into part of page
 350	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
 351	copy_item_head(&tmp_ih, ih);
 352
 353	/* we only want to kmap if we are reading the tail into the page.
 354	 ** this is not the common case, so we don't kmap until we are
 355	 ** sure we need to.  But, this means the item might move if
 356	 ** kmap schedules
 
 357	 */
 358	if (!p)
 359		p = (char *)kmap(bh_result->b_page);
 360
 361	p += offset;
 362	memset(p, 0, inode->i_sb->s_blocksize);
 363	do {
 364		if (!is_direct_le_ih(ih)) {
 365			BUG();
 366		}
 367		/* make sure we don't read more bytes than actually exist in
 368		 ** the file.  This can happen in odd cases where i_size isn't
 369		 ** correct, and when direct item padding results in a few
 370		 ** extra bytes at the end of the direct item
 
 371		 */
 372		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 373			break;
 374		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 375			chars =
 376			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 377			    path.pos_in_item;
 378			done = 1;
 379		} else {
 380			chars = ih_item_len(ih) - path.pos_in_item;
 381		}
 382		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
 383
 384		if (done)
 385			break;
 386
 387		p += chars;
 388
 
 
 
 
 
 
 389		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 390			// we done, if read direct item is not the last item of
 391			// node FIXME: we could try to check right delimiting key
 392			// to see whether direct item continues in the right
 393			// neighbor or rely on i_size
 394			break;
 395
 396		// update key to look for the next piece
 397		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 398		result = search_for_position_by_key(inode->i_sb, &key, &path);
 399		if (result != POSITION_FOUND)
 400			// i/o error most likely
 401			break;
 402		bh = get_last_bh(&path);
 403		ih = get_ih(&path);
 404	} while (1);
 405
 406	flush_dcache_page(bh_result->b_page);
 407	kunmap(bh_result->b_page);
 408
 409      finished:
 410	pathrelse(&path);
 411
 412	if (result == IO_ERROR)
 413		return -EIO;
 414
 415	/* this buffer has valid data, but isn't valid for io.  mapping it to
 
 416	 * block #0 tells the rest of reiserfs it just has a tail in it
 417	 */
 418	map_bh(bh_result, inode->i_sb, 0);
 419	set_buffer_uptodate(bh_result);
 420	return 0;
 421}
 422
 423// this is called to create file map. So, _get_block_create_0 will not
 424// read direct item
 
 
 425static int reiserfs_bmap(struct inode *inode, sector_t block,
 426			 struct buffer_head *bh_result, int create)
 427{
 428	if (!file_capable(inode, block))
 429		return -EFBIG;
 430
 431	reiserfs_write_lock(inode->i_sb);
 432	/* do not read the direct item */
 433	_get_block_create_0(inode, block, bh_result, 0);
 434	reiserfs_write_unlock(inode->i_sb);
 435	return 0;
 436}
 437
 438/* special version of get_block that is only used by grab_tail_page right
 439** now.  It is sent to __block_write_begin, and when you try to get a
 440** block past the end of the file (or a block from a hole) it returns
 441** -ENOENT instead of a valid buffer.  __block_write_begin expects to
 442** be able to do i/o on the buffers returned, unless an error value
 443** is also returned.
 444**
 445** So, this allows __block_write_begin to be used for reading a single block
 446** in a page.  Where it does not produce a valid page for holes, or past the
 447** end of the file.  This turns out to be exactly what we need for reading
 448** tails for conversion.
 449**
 450** The point of the wrapper is forcing a certain value for create, even
 451** though the VFS layer is calling this function with create==1.  If you
 452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 453** don't use this function.
 
 454*/
 455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 456				       struct buffer_head *bh_result,
 457				       int create)
 458{
 459	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 460}
 461
 462/* This is special helper for reiserfs_get_block in case we are executing
 463   direct_IO request. */
 
 
 464static int reiserfs_get_blocks_direct_io(struct inode *inode,
 465					 sector_t iblock,
 466					 struct buffer_head *bh_result,
 467					 int create)
 468{
 469	int ret;
 470
 471	bh_result->b_page = NULL;
 472
 473	/* We set the b_size before reiserfs_get_block call since it is
 474	   referenced in convert_tail_for_hole() that may be called from
 475	   reiserfs_get_block() */
 476	bh_result->b_size = (1 << inode->i_blkbits);
 
 
 477
 478	ret = reiserfs_get_block(inode, iblock, bh_result,
 479				 create | GET_BLOCK_NO_DANGLE);
 480	if (ret)
 481		goto out;
 482
 483	/* don't allow direct io onto tail pages */
 484	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 485		/* make sure future calls to the direct io funcs for this offset
 486		 ** in the file fail by unmapping the buffer
 
 487		 */
 488		clear_buffer_mapped(bh_result);
 489		ret = -EINVAL;
 490	}
 491	/* Possible unpacked tail. Flush the data before pages have
 492	   disappeared */
 
 
 
 493	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 494		int err;
 495
 496		reiserfs_write_lock(inode->i_sb);
 497
 498		err = reiserfs_commit_for_inode(inode);
 499		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 500
 501		reiserfs_write_unlock(inode->i_sb);
 502
 503		if (err < 0)
 504			ret = err;
 505	}
 506      out:
 507	return ret;
 508}
 509
 510/*
 511** helper function for when reiserfs_get_block is called for a hole
 512** but the file tail is still in a direct item
 513** bh_result is the buffer head for the hole
 514** tail_offset is the offset of the start of the tail in the file
 515**
 516** This calls prepare_write, which will start a new transaction
 517** you should not be in a transaction, or have any paths held when you
 518** call this.
 519*/
 520static int convert_tail_for_hole(struct inode *inode,
 521				 struct buffer_head *bh_result,
 522				 loff_t tail_offset)
 523{
 524	unsigned long index;
 525	unsigned long tail_end;
 526	unsigned long tail_start;
 527	struct page *tail_page;
 528	struct page *hole_page = bh_result->b_page;
 529	int retval = 0;
 530
 531	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 532		return -EIO;
 533
 534	/* always try to read until the end of the block */
 535	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
 536	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 537
 538	index = tail_offset >> PAGE_CACHE_SHIFT;
 539	/* hole_page can be zero in case of direct_io, we are sure
 540	   that we cannot get here if we write with O_DIRECT into
 541	   tail page */
 
 542	if (!hole_page || index != hole_page->index) {
 543		tail_page = grab_cache_page(inode->i_mapping, index);
 544		retval = -ENOMEM;
 545		if (!tail_page) {
 546			goto out;
 547		}
 548	} else {
 549		tail_page = hole_page;
 550	}
 551
 552	/* we don't have to make sure the conversion did not happen while
 553	 ** we were locking the page because anyone that could convert
 554	 ** must first take i_mutex.
 555	 **
 556	 ** We must fix the tail page for writing because it might have buffers
 557	 ** that are mapped, but have a block number of 0.  This indicates tail
 558	 ** data that has been read directly into the page, and
 559	 ** __block_write_begin won't trigger a get_block in this case.
 
 560	 */
 561	fix_tail_page_for_writing(tail_page);
 562	retval = __reiserfs_write_begin(tail_page, tail_start,
 563				      tail_end - tail_start);
 564	if (retval)
 565		goto unlock;
 566
 567	/* tail conversion might change the data in the page */
 568	flush_dcache_page(tail_page);
 569
 570	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 571
 572      unlock:
 573	if (tail_page != hole_page) {
 574		unlock_page(tail_page);
 575		page_cache_release(tail_page);
 576	}
 577      out:
 578	return retval;
 579}
 580
 581static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 582				  sector_t block,
 583				  struct inode *inode,
 584				  b_blocknr_t * allocated_block_nr,
 585				  struct treepath *path, int flags)
 586{
 587	BUG_ON(!th->t_trans_id);
 588
 589#ifdef REISERFS_PREALLOCATE
 590	if (!(flags & GET_BLOCK_NO_IMUX)) {
 591		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 592						  path, block);
 593	}
 594#endif
 595	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 596					 block);
 597}
 598
 599int reiserfs_get_block(struct inode *inode, sector_t block,
 600		       struct buffer_head *bh_result, int create)
 601{
 602	int repeat, retval = 0;
 603	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
 
 604	INITIALIZE_PATH(path);
 605	int pos_in_item;
 606	struct cpu_key key;
 607	struct buffer_head *bh, *unbh = NULL;
 608	struct item_head *ih, tmp_ih;
 609	__le32 *item;
 610	int done;
 611	int fs_gen;
 612	int lock_depth;
 613	struct reiserfs_transaction_handle *th = NULL;
 614	/* space reserved in transaction batch:
 615	   . 3 balancings in direct->indirect conversion
 616	   . 1 block involved into reiserfs_update_sd()
 617	   XXX in practically impossible worst case direct2indirect()
 618	   can incur (much) more than 3 balancings.
 619	   quota update for user, group */
 
 
 620	int jbegin_count =
 621	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 622	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 623	int version;
 624	int dangle = 1;
 625	loff_t new_offset =
 626	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 627
 628	lock_depth = reiserfs_write_lock_once(inode->i_sb);
 629	version = get_inode_item_key_version(inode);
 630
 631	if (!file_capable(inode, block)) {
 632		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 633		return -EFBIG;
 634	}
 635
 636	/* if !create, we aren't changing the FS, so we don't need to
 637	 ** log anything, so we don't need to start a transaction
 
 638	 */
 639	if (!(create & GET_BLOCK_CREATE)) {
 640		int ret;
 641		/* find number of block-th logical block of the file */
 642		ret = _get_block_create_0(inode, block, bh_result,
 643					  create | GET_BLOCK_READ_DIRECT);
 644		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 645		return ret;
 646	}
 
 647	/*
 648	 * if we're already in a transaction, make sure to close
 649	 * any new transactions we start in this func
 650	 */
 651	if ((create & GET_BLOCK_NO_DANGLE) ||
 652	    reiserfs_transaction_running(inode->i_sb))
 653		dangle = 0;
 654
 655	/* If file is of such a size, that it might have a tail and tails are enabled
 656	 ** we should mark it as possibly needing tail packing on close
 
 
 657	 */
 658	if ((have_large_tails(inode->i_sb)
 659	     && inode->i_size < i_block_size(inode) * 4)
 660	    || (have_small_tails(inode->i_sb)
 661		&& inode->i_size < i_block_size(inode)))
 662		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 663
 664	/* set the key of the first byte in the 'block'-th block of file */
 665	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 666	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 667	      start_trans:
 668		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 669		if (!th) {
 670			retval = -ENOMEM;
 671			goto failure;
 672		}
 673		reiserfs_update_inode_transaction(inode);
 674	}
 675      research:
 676
 677	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 678	if (retval == IO_ERROR) {
 679		retval = -EIO;
 680		goto failure;
 681	}
 682
 683	bh = get_last_bh(&path);
 684	ih = get_ih(&path);
 685	item = get_item(&path);
 686	pos_in_item = path.pos_in_item;
 687
 688	fs_gen = get_generation(inode->i_sb);
 689	copy_item_head(&tmp_ih, ih);
 690
 691	if (allocation_needed
 692	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 693		/* we have to allocate block for the unformatted node */
 694		if (!th) {
 695			pathrelse(&path);
 696			goto start_trans;
 697		}
 698
 699		repeat =
 700		    _allocate_block(th, block, inode, &allocated_block_nr,
 701				    &path, create);
 702
 
 
 
 
 
 703		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 704			/* restart the transaction to give the journal a chance to free
 705			 ** some blocks.  releases the path, so we have to go back to
 706			 ** research if we succeed on the second try
 707			 */
 708			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 709			retval = restart_transaction(th, inode, &path);
 710			if (retval)
 711				goto failure;
 712			repeat =
 713			    _allocate_block(th, block, inode,
 714					    &allocated_block_nr, NULL, create);
 715
 716			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 717				goto research;
 718			}
 719			if (repeat == QUOTA_EXCEEDED)
 720				retval = -EDQUOT;
 721			else
 722				retval = -ENOSPC;
 723			goto failure;
 724		}
 725
 726		if (fs_changed(fs_gen, inode->i_sb)
 727		    && item_moved(&tmp_ih, &path)) {
 728			goto research;
 729		}
 730	}
 731
 732	if (indirect_item_found(retval, ih)) {
 733		b_blocknr_t unfm_ptr;
 734		/* 'block'-th block is in the file already (there is
 735		   corresponding cell in some indirect item). But it may be
 736		   zero unformatted node pointer (hole) */
 
 
 737		unfm_ptr = get_block_num(item, pos_in_item);
 738		if (unfm_ptr == 0) {
 739			/* use allocated block to plug the hole */
 740			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 741			if (fs_changed(fs_gen, inode->i_sb)
 742			    && item_moved(&tmp_ih, &path)) {
 743				reiserfs_restore_prepared_buffer(inode->i_sb,
 744								 bh);
 745				goto research;
 746			}
 747			set_buffer_new(bh_result);
 748			if (buffer_dirty(bh_result)
 749			    && reiserfs_data_ordered(inode->i_sb))
 750				reiserfs_add_ordered_list(inode, bh_result);
 751			put_block_num(item, pos_in_item, allocated_block_nr);
 752			unfm_ptr = allocated_block_nr;
 753			journal_mark_dirty(th, inode->i_sb, bh);
 754			reiserfs_update_sd(th, inode);
 755		}
 756		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 757		pathrelse(&path);
 758		retval = 0;
 759		if (!dangle && th)
 760			retval = reiserfs_end_persistent_transaction(th);
 761
 762		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 763
 764		/* the item was found, so new blocks were not added to the file
 765		 ** there is no need to make sure the inode is updated with this
 766		 ** transaction
 
 767		 */
 768		return retval;
 769	}
 770
 771	if (!th) {
 772		pathrelse(&path);
 773		goto start_trans;
 774	}
 775
 776	/* desired position is not found or is in the direct item. We have
 777	   to append file with holes up to 'block'-th block converting
 778	   direct items to indirect one if necessary */
 
 
 779	done = 0;
 780	do {
 781		if (is_statdata_le_ih(ih)) {
 782			__le32 unp = 0;
 783			struct cpu_key tmp_key;
 784
 785			/* indirect item has to be inserted */
 786			make_le_item_head(&tmp_ih, &key, version, 1,
 787					  TYPE_INDIRECT, UNFM_P_SIZE,
 788					  0 /* free_space */ );
 789
 
 
 
 
 790			if (cpu_key_k_offset(&key) == 1) {
 791				/* we are going to add 'block'-th block to the file. Use
 792				   allocated block for that */
 793				unp = cpu_to_le32(allocated_block_nr);
 794				set_block_dev_mapped(bh_result,
 795						     allocated_block_nr, inode);
 796				set_buffer_new(bh_result);
 797				done = 1;
 798			}
 799			tmp_key = key;	// ;)
 800			set_cpu_key_k_offset(&tmp_key, 1);
 801			PATH_LAST_POSITION(&path)++;
 802
 803			retval =
 804			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 805						 inode, (char *)&unp);
 806			if (retval) {
 807				reiserfs_free_block(th, inode,
 808						    allocated_block_nr, 1);
 809				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
 
 
 
 
 810			}
 811			//mark_tail_converted (inode);
 812		} else if (is_direct_le_ih(ih)) {
 813			/* direct item has to be converted */
 814			loff_t tail_offset;
 815
 816			tail_offset =
 817			    ((le_ih_k_offset(ih) -
 818			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 
 
 
 
 
 
 819			if (tail_offset == cpu_key_k_offset(&key)) {
 820				/* direct item we just found fits into block we have
 821				   to map. Convert it into unformatted node: use
 822				   bh_result for the conversion */
 823				set_block_dev_mapped(bh_result,
 824						     allocated_block_nr, inode);
 825				unbh = bh_result;
 826				done = 1;
 827			} else {
 828				/* we have to padd file tail stored in direct item(s)
 829				   up to block size and convert it to unformatted
 830				   node. FIXME: this should also get into page cache */
 
 
 
 831
 832				pathrelse(&path);
 833				/*
 834				 * ugly, but we can only end the transaction if
 835				 * we aren't nested
 836				 */
 837				BUG_ON(!th->t_refcount);
 838				if (th->t_refcount == 1) {
 839					retval =
 840					    reiserfs_end_persistent_transaction
 841					    (th);
 842					th = NULL;
 843					if (retval)
 844						goto failure;
 845				}
 846
 847				retval =
 848				    convert_tail_for_hole(inode, bh_result,
 849							  tail_offset);
 850				if (retval) {
 851					if (retval != -ENOSPC)
 852						reiserfs_error(inode->i_sb,
 853							"clm-6004",
 854							"convert tail failed "
 855							"inode %lu, error %d",
 856							inode->i_ino,
 857							retval);
 858					if (allocated_block_nr) {
 859						/* the bitmap, the super, and the stat data == 3 */
 
 
 
 860						if (!th)
 861							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 862						if (th)
 863							reiserfs_free_block(th,
 864									    inode,
 865									    allocated_block_nr,
 866									    1);
 867					}
 868					goto failure;
 869				}
 870				goto research;
 871			}
 872			retval =
 873			    direct2indirect(th, inode, &path, unbh,
 874					    tail_offset);
 875			if (retval) {
 876				reiserfs_unmap_buffer(unbh);
 877				reiserfs_free_block(th, inode,
 878						    allocated_block_nr, 1);
 879				goto failure;
 880			}
 881			/* it is important the set_buffer_uptodate is done after
 882			 ** the direct2indirect.  The buffer might contain valid
 883			 ** data newer than the data on disk (read by readpage, changed,
 884			 ** and then sent here by writepage).  direct2indirect needs
 885			 ** to know if unbh was already up to date, so it can decide
 886			 ** if the data in unbh needs to be replaced with data from
 887			 ** the disk
 
 
 888			 */
 889			set_buffer_uptodate(unbh);
 890
 891			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
 892			   buffer will disappear shortly, so it should not be added to
 
 
 893			 */
 894			if (unbh->b_page) {
 895				/* we've converted the tail, so we must
 896				 ** flush unbh before the transaction commits
 
 897				 */
 898				reiserfs_add_tail_list(inode, unbh);
 899
 900				/* mark it dirty now to prevent commit_write from adding
 901				 ** this buffer to the inode's dirty buffer list
 
 
 902				 */
 903				/*
 904				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
 905				 * It's still atomic, but it sets the page dirty too,
 906				 * which makes it eligible for writeback at any time by the
 907				 * VM (which was also the case with __mark_buffer_dirty())
 
 
 908				 */
 909				mark_buffer_dirty(unbh);
 910			}
 911		} else {
 912			/* append indirect item with holes if needed, when appending
 913			   pointer to 'block'-th block use block, which is already
 914			   allocated */
 
 
 915			struct cpu_key tmp_key;
 916			unp_t unf_single = 0;	// We use this in case we need to allocate only
 917			// one block which is a fastpath
 
 
 
 918			unp_t *un;
 919			__u64 max_to_insert =
 920			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
 921			    UNFM_P_SIZE;
 922			__u64 blocks_needed;
 923
 924			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
 925			       "vs-804: invalid position for append");
 926			/* indirect item has to be appended, set up key of that position */
 
 
 
 
 927			make_cpu_key(&tmp_key, inode,
 928				     le_key_k_offset(version,
 929						     &(ih->ih_key)) +
 930				     op_bytes_number(ih,
 931						     inode->i_sb->s_blocksize),
 932				     //pos_in_item * inode->i_sb->s_blocksize,
 933				     TYPE_INDIRECT, 3);	// key type is unimportant
 934
 935			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
 936			       "green-805: invalid offset");
 937			blocks_needed =
 938			    1 +
 939			    ((cpu_key_k_offset(&key) -
 940			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
 941			     s_blocksize_bits);
 942
 943			if (blocks_needed == 1) {
 944				un = &unf_single;
 945			} else {
 946				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 
 947				if (!un) {
 948					un = &unf_single;
 949					blocks_needed = 1;
 950					max_to_insert = 0;
 951				}
 952			}
 953			if (blocks_needed <= max_to_insert) {
 954				/* we are going to add target block to the file. Use allocated
 955				   block for that */
 
 
 956				un[blocks_needed - 1] =
 957				    cpu_to_le32(allocated_block_nr);
 958				set_block_dev_mapped(bh_result,
 959						     allocated_block_nr, inode);
 960				set_buffer_new(bh_result);
 961				done = 1;
 962			} else {
 963				/* paste hole to the indirect item */
 964				/* If kmalloc failed, max_to_insert becomes zero and it means we
 965				   only have space for one block */
 
 
 
 966				blocks_needed =
 967				    max_to_insert ? max_to_insert : 1;
 968			}
 969			retval =
 970			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
 971						     (char *)un,
 972						     UNFM_P_SIZE *
 973						     blocks_needed);
 974
 975			if (blocks_needed != 1)
 976				kfree(un);
 977
 978			if (retval) {
 979				reiserfs_free_block(th, inode,
 980						    allocated_block_nr, 1);
 981				goto failure;
 982			}
 983			if (!done) {
 984				/* We need to mark new file size in case this function will be
 985				   interrupted/aborted later on. And we may do this only for
 986				   holes. */
 
 
 
 987				inode->i_size +=
 988				    inode->i_sb->s_blocksize * blocks_needed;
 989			}
 990		}
 991
 992		if (done == 1)
 993			break;
 994
 995		/* this loop could log more blocks than we had originally asked
 996		 ** for.  So, we have to allow the transaction to end if it is
 997		 ** too big or too full.  Update the inode so things are
 998		 ** consistent if we crash before the function returns
 999		 **
1000		 ** release the path so that anybody waiting on the path before
1001		 ** ending their transaction will be able to continue.
1002		 */
1003		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004			retval = restart_transaction(th, inode, &path);
1005			if (retval)
1006				goto failure;
1007		}
1008		/*
1009		 * inserting indirect pointers for a hole can take a
1010		 * long time.  reschedule if needed and also release the write
1011		 * lock for others.
1012		 */
1013		if (need_resched()) {
1014			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015			schedule();
1016			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017		}
1018
1019		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020		if (retval == IO_ERROR) {
1021			retval = -EIO;
1022			goto failure;
1023		}
1024		if (retval == POSITION_FOUND) {
1025			reiserfs_warning(inode->i_sb, "vs-825",
1026					 "%K should not be found", &key);
1027			retval = -EEXIST;
1028			if (allocated_block_nr)
1029				reiserfs_free_block(th, inode,
1030						    allocated_block_nr, 1);
1031			pathrelse(&path);
1032			goto failure;
1033		}
1034		bh = get_last_bh(&path);
1035		ih = get_ih(&path);
1036		item = get_item(&path);
1037		pos_in_item = path.pos_in_item;
1038	} while (1);
1039
1040	retval = 0;
1041
1042      failure:
1043	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044		int err;
1045		if (th->t_trans_id)
1046			reiserfs_update_sd(th, inode);
1047		err = reiserfs_end_persistent_transaction(th);
1048		if (err)
1049			retval = err;
1050	}
1051
1052	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053	reiserfs_check_path(&path);
1054	return retval;
1055}
1056
1057static int
1058reiserfs_readpages(struct file *file, struct address_space *mapping,
1059		   struct list_head *pages, unsigned nr_pages)
1060{
1061	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062}
1063
1064/* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
 
 
1066 */
1067static int real_space_diff(struct inode *inode, int sd_size)
1068{
1069	int bytes;
1070	loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073		return sd_size;
1074
1075	/* End of file is also in full block with indirect reference, so round
1076	 ** up to the next block.
1077	 **
1078	 ** there is just no way to know if the tail is actually packed
1079	 ** on the file, so we have to assume it isn't.  When we pack the
1080	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081	 ** node pointer
 
1082	 */
1083	bytes =
1084	    ((inode->i_size +
1085	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086	    sd_size;
1087	return bytes;
1088}
1089
1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091					int sd_size)
1092{
1093	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094		return inode->i_size +
1095		    (loff_t) (real_space_diff(inode, sd_size));
1096	}
1097	return ((loff_t) real_space_diff(inode, sd_size)) +
1098	    (((loff_t) blocks) << 9);
1099}
1100
1101/* Compute number of blocks used by file in ReiserFS counting */
1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103{
1104	loff_t bytes = inode_get_bytes(inode);
1105	loff_t real_space = real_space_diff(inode, sd_size);
1106
1107	/* keeps fsck and non-quota versions of reiserfs happy */
1108	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109		bytes += (loff_t) 511;
1110	}
1111
1112	/* files from before the quota patch might i_blocks such that
1113	 ** bytes < real_space.  Deal with that here to prevent it from
1114	 ** going negative.
 
1115	 */
1116	if (bytes < real_space)
1117		return 0;
1118	return (bytes - real_space) >> 9;
1119}
1120
1121//
1122// BAD: new directories have stat data of new type and all other items
1123// of old type. Version stored in the inode says about body items, so
1124// in update_stat_data we can not rely on inode, but have to check
1125// item version directly
1126//
1127
1128// called by read_locked_inode
1129static void init_inode(struct inode *inode, struct treepath *path)
1130{
1131	struct buffer_head *bh;
1132	struct item_head *ih;
1133	__u32 rdev;
1134	//int version = ITEM_VERSION_1;
1135
1136	bh = PATH_PLAST_BUFFER(path);
1137	ih = PATH_PITEM_HEAD(path);
1138
1139	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142	REISERFS_I(inode)->i_flags = 0;
1143	REISERFS_I(inode)->i_prealloc_block = 0;
1144	REISERFS_I(inode)->i_prealloc_count = 0;
1145	REISERFS_I(inode)->i_trans_id = 0;
1146	REISERFS_I(inode)->i_jl = NULL;
1147	reiserfs_init_xattr_rwsem(inode);
1148
1149	if (stat_data_v1(ih)) {
1150		struct stat_data_v1 *sd =
1151		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152		unsigned long blocks;
1153
1154		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155		set_inode_sd_version(inode, STAT_DATA_V1);
1156		inode->i_mode = sd_v1_mode(sd);
1157		set_nlink(inode, sd_v1_nlink(sd));
1158		inode->i_uid = sd_v1_uid(sd);
1159		inode->i_gid = sd_v1_gid(sd);
1160		inode->i_size = sd_v1_size(sd);
1161		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164		inode->i_atime.tv_nsec = 0;
1165		inode->i_ctime.tv_nsec = 0;
1166		inode->i_mtime.tv_nsec = 0;
1167
1168		inode->i_blocks = sd_v1_blocks(sd);
1169		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170		blocks = (inode->i_size + 511) >> 9;
1171		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
 
 
 
 
 
 
 
 
 
1172		if (inode->i_blocks > blocks) {
1173			// there was a bug in <=3.5.23 when i_blocks could take negative
1174			// values. Starting from 3.5.17 this value could even be stored in
1175			// stat data. For such files we set i_blocks based on file
1176			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177			// only updated if file's inode will ever change
1178			inode->i_blocks = blocks;
1179		}
1180
1181		rdev = sd_v1_rdev(sd);
1182		REISERFS_I(inode)->i_first_direct_byte =
1183		    sd_v1_first_direct_byte(sd);
1184		/* an early bug in the quota code can give us an odd number for the
1185		 ** block count.  This is incorrect, fix it here.
 
 
1186		 */
1187		if (inode->i_blocks & 1) {
1188			inode->i_blocks++;
1189		}
1190		inode_set_bytes(inode,
1191				to_real_used_space(inode, inode->i_blocks,
1192						   SD_V1_SIZE));
1193		/* nopack is initially zero for v1 objects. For v2 objects,
1194		   nopack is initialised from sd_attrs */
 
 
1195		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196	} else {
1197		// new stat data found, but object may have old items
1198		// (directories and symlinks)
1199		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
 
 
1200
1201		inode->i_mode = sd_v2_mode(sd);
1202		set_nlink(inode, sd_v2_nlink(sd));
1203		inode->i_uid = sd_v2_uid(sd);
1204		inode->i_size = sd_v2_size(sd);
1205		inode->i_gid = sd_v2_gid(sd);
1206		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209		inode->i_ctime.tv_nsec = 0;
1210		inode->i_mtime.tv_nsec = 0;
1211		inode->i_atime.tv_nsec = 0;
1212		inode->i_blocks = sd_v2_blocks(sd);
1213		rdev = sd_v2_rdev(sd);
1214		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215			inode->i_generation =
1216			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217		else
1218			inode->i_generation = sd_v2_generation(sd);
1219
1220		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222		else
1223			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224		REISERFS_I(inode)->i_first_direct_byte = 0;
1225		set_inode_sd_version(inode, STAT_DATA_V2);
1226		inode_set_bytes(inode,
1227				to_real_used_space(inode, inode->i_blocks,
1228						   SD_V2_SIZE));
1229		/* read persistent inode attributes from sd and initialise
1230		   generic inode flags from them */
 
 
1231		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233	}
1234
1235	pathrelse(path);
1236	if (S_ISREG(inode->i_mode)) {
1237		inode->i_op = &reiserfs_file_inode_operations;
1238		inode->i_fop = &reiserfs_file_operations;
1239		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240	} else if (S_ISDIR(inode->i_mode)) {
1241		inode->i_op = &reiserfs_dir_inode_operations;
1242		inode->i_fop = &reiserfs_dir_operations;
1243	} else if (S_ISLNK(inode->i_mode)) {
1244		inode->i_op = &reiserfs_symlink_inode_operations;
 
1245		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246	} else {
1247		inode->i_blocks = 0;
1248		inode->i_op = &reiserfs_special_inode_operations;
1249		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250	}
1251}
1252
1253// update new stat data with inode fields
1254static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255{
1256	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257	__u16 flags;
1258
1259	set_sd_v2_mode(sd_v2, inode->i_mode);
1260	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261	set_sd_v2_uid(sd_v2, inode->i_uid);
1262	set_sd_v2_size(sd_v2, size);
1263	set_sd_v2_gid(sd_v2, inode->i_gid);
1264	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270	else
1271		set_sd_v2_generation(sd_v2, inode->i_generation);
1272	flags = REISERFS_I(inode)->i_attrs;
1273	i_attrs_to_sd_attrs(inode, &flags);
1274	set_sd_v2_attrs(sd_v2, flags);
1275}
1276
1277// used to copy inode's fields to old stat data
1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279{
1280	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282	set_sd_v1_mode(sd_v1, inode->i_mode);
1283	set_sd_v1_uid(sd_v1, inode->i_uid);
1284	set_sd_v1_gid(sd_v1, inode->i_gid);
1285	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286	set_sd_v1_size(sd_v1, size);
1287	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293	else
1294		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296	// Sigh. i_first_direct_byte is back
1297	set_sd_v1_first_direct_byte(sd_v1,
1298				    REISERFS_I(inode)->i_first_direct_byte);
1299}
1300
1301/* NOTE, you must prepare the buffer head before sending it here,
1302** and then log it after the call
1303*/
 
1304static void update_stat_data(struct treepath *path, struct inode *inode,
1305			     loff_t size)
1306{
1307	struct buffer_head *bh;
1308	struct item_head *ih;
1309
1310	bh = PATH_PLAST_BUFFER(path);
1311	ih = PATH_PITEM_HEAD(path);
1312
1313	if (!is_statdata_le_ih(ih))
1314		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315			       INODE_PKEY(inode), ih);
1316
 
1317	if (stat_data_v1(ih)) {
1318		// path points to old stat data
1319		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320	} else {
1321		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322	}
1323
1324	return;
1325}
1326
1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328			     struct inode *inode, loff_t size)
1329{
1330	struct cpu_key key;
1331	INITIALIZE_PATH(path);
1332	struct buffer_head *bh;
1333	int fs_gen;
1334	struct item_head *ih, tmp_ih;
1335	int retval;
1336
1337	BUG_ON(!th->t_trans_id);
1338
1339	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
 
1340
1341	for (;;) {
1342		int pos;
1343		/* look for the object's stat data */
1344		retval = search_item(inode->i_sb, &key, &path);
1345		if (retval == IO_ERROR) {
1346			reiserfs_error(inode->i_sb, "vs-13050",
1347				       "i/o failure occurred trying to "
1348				       "update %K stat data", &key);
1349			return;
1350		}
1351		if (retval == ITEM_NOT_FOUND) {
1352			pos = PATH_LAST_POSITION(&path);
1353			pathrelse(&path);
1354			if (inode->i_nlink == 0) {
1355				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356				return;
1357			}
1358			reiserfs_warning(inode->i_sb, "vs-13060",
1359					 "stat data of object %k (nlink == %d) "
1360					 "not found (pos %d)",
1361					 INODE_PKEY(inode), inode->i_nlink,
1362					 pos);
1363			reiserfs_check_path(&path);
1364			return;
1365		}
1366
1367		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368		 ** FS might change.  We have to detect that, and loop back to the
1369		 ** search if the stat data item has moved
 
1370		 */
1371		bh = get_last_bh(&path);
1372		ih = get_ih(&path);
1373		copy_item_head(&tmp_ih, ih);
1374		fs_gen = get_generation(inode->i_sb);
1375		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 
 
1376		if (fs_changed(fs_gen, inode->i_sb)
1377		    && item_moved(&tmp_ih, &path)) {
1378			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379			continue;	/* Stat_data item has been moved after scheduling. */
1380		}
1381		break;
1382	}
1383	update_stat_data(&path, inode, size);
1384	journal_mark_dirty(th, th->t_super, bh);
1385	pathrelse(&path);
1386	return;
1387}
1388
1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390** does a make_bad_inode when things go wrong.  But, we need to make sure
1391** and clear the key in the private portion of the inode, otherwise a
1392** corresponding iput might try to delete whatever object the inode last
1393** represented.
1394*/
 
1395static void reiserfs_make_bad_inode(struct inode *inode)
1396{
1397	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398	make_bad_inode(inode);
1399}
1400
1401//
1402// initially this function was derived from minix or ext2's analog and
1403// evolved as the prototype did
1404//
1405
1406int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407{
1408	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409	inode->i_ino = args->objectid;
1410	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411	return 0;
1412}
1413
1414/* looks for stat data in the tree, and fills up the fields of in-core
1415   inode stat data fields */
 
 
1416void reiserfs_read_locked_inode(struct inode *inode,
1417				struct reiserfs_iget_args *args)
1418{
1419	INITIALIZE_PATH(path_to_sd);
1420	struct cpu_key key;
1421	unsigned long dirino;
1422	int retval;
1423
1424	dirino = args->dirid;
1425
1426	/* set version 1, version 2 could be used too, because stat data
1427	   key is the same in both versions */
1428	key.version = KEY_FORMAT_3_5;
1429	key.on_disk_key.k_dir_id = dirino;
1430	key.on_disk_key.k_objectid = inode->i_ino;
1431	key.on_disk_key.k_offset = 0;
1432	key.on_disk_key.k_type = 0;
1433
1434	/* look for the object's stat data */
1435	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436	if (retval == IO_ERROR) {
1437		reiserfs_error(inode->i_sb, "vs-13070",
1438			       "i/o failure occurred trying to find "
1439			       "stat data of %K", &key);
1440		reiserfs_make_bad_inode(inode);
1441		return;
1442	}
 
 
1443	if (retval != ITEM_FOUND) {
1444		/* a stale NFS handle can trigger this without it being an error */
1445		pathrelse(&path_to_sd);
1446		reiserfs_make_bad_inode(inode);
1447		clear_nlink(inode);
1448		return;
1449	}
1450
1451	init_inode(inode, &path_to_sd);
1452
1453	/* It is possible that knfsd is trying to access inode of a file
1454	   that is being removed from the disk by some other thread. As we
1455	   update sd on unlink all that is required is to check for nlink
1456	   here. This bug was first found by Sizif when debugging
1457	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460	   More logical fix would require changes in fs/inode.c:iput() to
1461	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462	   in iget() to return NULL if I_FREEING inode is found in
1463	   hash-table. */
1464	/* Currently there is one place where it's ok to meet inode with
1465	   nlink==0: processing of open-unlinked and half-truncated files
1466	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
 
 
 
 
 
1467	if ((inode->i_nlink == 0) &&
1468	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469		reiserfs_warning(inode->i_sb, "vs-13075",
1470				 "dead inode read from disk %K. "
1471				 "This is likely to be race with knfsd. Ignore",
1472				 &key);
1473		reiserfs_make_bad_inode(inode);
1474	}
1475
1476	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
 
1477
1478	/*
1479	 * Stat data v1 doesn't support ACLs.
1480	 */
1481	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482		cache_no_acl(inode);
1483}
1484
1485/**
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487 *
1488 * @inode:    inode from hash table to check
1489 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490 *
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1495 *
1496 */
1497int reiserfs_find_actor(struct inode *inode, void *opaque)
1498{
1499	struct reiserfs_iget_args *args;
1500
1501	args = opaque;
1502	/* args is already in CPU order */
1503	return (inode->i_ino == args->objectid) &&
1504	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505}
1506
1507struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508{
1509	struct inode *inode;
1510	struct reiserfs_iget_args args;
 
1511
1512	args.objectid = key->on_disk_key.k_objectid;
1513	args.dirid = key->on_disk_key.k_dir_id;
1514	reiserfs_write_unlock(s);
1515	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517			     (void *)(&args));
1518	reiserfs_write_lock(s);
1519	if (!inode)
1520		return ERR_PTR(-ENOMEM);
1521
1522	if (inode->i_state & I_NEW) {
1523		reiserfs_read_locked_inode(inode, &args);
1524		unlock_new_inode(inode);
1525	}
1526
1527	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528		/* either due to i/o error or a stale NFS handle */
1529		iput(inode);
1530		inode = NULL;
1531	}
1532	return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536	u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539	struct cpu_key key;
1540	struct inode *inode;
1541
1542	key.on_disk_key.k_objectid = objectid;
1543	key.on_disk_key.k_dir_id = dir_id;
1544	reiserfs_write_lock(sb);
1545	inode = reiserfs_iget(sb, &key);
1546	if (inode && !IS_ERR(inode) && generation != 0 &&
1547	    generation != inode->i_generation) {
1548		iput(inode);
1549		inode = NULL;
1550	}
1551	reiserfs_write_unlock(sb);
1552
1553	return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557		int fh_len, int fh_type)
1558{
1559	/* fhtype happens to reflect the number of u32s encoded.
 
1560	 * due to a bug in earlier code, fhtype might indicate there
1561	 * are more u32s then actually fitted.
1562	 * so if fhtype seems to be more than len, reduce fhtype.
1563	 * Valid types are:
1564	 *   2 - objectid + dir_id - legacy support
1565	 *   3 - objectid + dir_id + generation
1566	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568	 *   6 - as above plus generation of directory
1569	 * 6 does not fit in NFSv2 handles
1570	 */
1571	if (fh_type > fh_len) {
1572		if (fh_type != 6 || fh_len != 5)
1573			reiserfs_warning(sb, "reiserfs-13077",
1574				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575				fh_type, fh_len);
1576		fh_type = 5;
1577	}
 
 
1578
1579	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1580		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1581}
1582
1583struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1584		int fh_len, int fh_type)
1585{
 
 
1586	if (fh_type < 4)
1587		return NULL;
1588
1589	return reiserfs_get_dentry(sb,
1590		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1591		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1592		(fh_type == 6) ? fid->raw[5] : 0);
1593}
1594
1595int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1596		       struct inode *parent)
1597{
1598	int maxlen = *lenp;
1599
1600	if (parent && (maxlen < 5)) {
1601		*lenp = 5;
1602		return 255;
1603	} else if (maxlen < 3) {
1604		*lenp = 3;
1605		return 255;
1606	}
1607
1608	data[0] = inode->i_ino;
1609	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1610	data[2] = inode->i_generation;
1611	*lenp = 3;
1612	if (parent) {
1613		data[3] = parent->i_ino;
1614		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1615		*lenp = 5;
1616		if (maxlen >= 6) {
1617			data[5] = parent->i_generation;
1618			*lenp = 6;
1619		}
1620	}
1621	return *lenp;
1622}
1623
1624/* looks for stat data, then copies fields to it, marks the buffer
1625   containing stat data as dirty */
1626/* reiserfs inodes are never really dirty, since the dirty inode call
1627** always logs them.  This call allows the VFS inode marking routines
1628** to properly mark inodes for datasync and such, but only actually
1629** does something when called for a synchronous update.
1630*/
 
 
 
1631int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1632{
1633	struct reiserfs_transaction_handle th;
1634	int jbegin_count = 1;
1635
1636	if (inode->i_sb->s_flags & MS_RDONLY)
1637		return -EROFS;
1638	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639	 ** these cases are just when the system needs ram, not when the
1640	 ** inode needs to reach disk for safety, and they can safely be
1641	 ** ignored because the altered inode has already been logged.
 
 
1642	 */
1643	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1644		reiserfs_write_lock(inode->i_sb);
1645		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646			reiserfs_update_sd(&th, inode);
1647			journal_end_sync(&th, inode->i_sb, jbegin_count);
1648		}
1649		reiserfs_write_unlock(inode->i_sb);
1650	}
1651	return 0;
1652}
1653
1654/* stat data of new object is inserted already, this inserts the item
1655   containing "." and ".." entries */
 
 
1656static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657				  struct inode *inode,
1658				  struct item_head *ih, struct treepath *path,
1659				  struct inode *dir)
1660{
1661	struct super_block *sb = th->t_super;
1662	char empty_dir[EMPTY_DIR_SIZE];
1663	char *body = empty_dir;
1664	struct cpu_key key;
1665	int retval;
1666
1667	BUG_ON(!th->t_trans_id);
1668
1669	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671		      TYPE_DIRENTRY, 3 /*key length */ );
1672
1673	/* compose item head for new item. Directories consist of items of
1674	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675	   is done by reiserfs_new_inode */
 
 
1676	if (old_format_only(sb)) {
1677		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679
1680		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681				       ih->ih_key.k_objectid,
1682				       INODE_PKEY(dir)->k_dir_id,
1683				       INODE_PKEY(dir)->k_objectid);
1684	} else {
1685		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687
1688		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689				    ih->ih_key.k_objectid,
1690				    INODE_PKEY(dir)->k_dir_id,
1691				    INODE_PKEY(dir)->k_objectid);
1692	}
1693
1694	/* look for place in the tree for new item */
1695	retval = search_item(sb, &key, path);
1696	if (retval == IO_ERROR) {
1697		reiserfs_error(sb, "vs-13080",
1698			       "i/o failure occurred creating new directory");
1699		return -EIO;
1700	}
1701	if (retval == ITEM_FOUND) {
1702		pathrelse(path);
1703		reiserfs_warning(sb, "vs-13070",
1704				 "object with this key exists (%k)",
1705				 &(ih->ih_key));
1706		return -EEXIST;
1707	}
1708
1709	/* insert item, that is empty directory item */
1710	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711}
1712
1713/* stat data of object has been inserted, this inserts the item
1714   containing the body of symlink */
1715static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
 
 
 
1716				struct item_head *ih,
1717				struct treepath *path, const char *symname,
1718				int item_len)
1719{
1720	struct super_block *sb = th->t_super;
1721	struct cpu_key key;
1722	int retval;
1723
1724	BUG_ON(!th->t_trans_id);
1725
1726	_make_cpu_key(&key, KEY_FORMAT_3_5,
1727		      le32_to_cpu(ih->ih_key.k_dir_id),
1728		      le32_to_cpu(ih->ih_key.k_objectid),
1729		      1, TYPE_DIRECT, 3 /*key length */ );
1730
1731	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732			  0 /*free_space */ );
1733
1734	/* look for place in the tree for new item */
1735	retval = search_item(sb, &key, path);
1736	if (retval == IO_ERROR) {
1737		reiserfs_error(sb, "vs-13080",
1738			       "i/o failure occurred creating new symlink");
1739		return -EIO;
1740	}
1741	if (retval == ITEM_FOUND) {
1742		pathrelse(path);
1743		reiserfs_warning(sb, "vs-13080",
1744				 "object with this key exists (%k)",
1745				 &(ih->ih_key));
1746		return -EEXIST;
1747	}
1748
1749	/* insert item, that is body of symlink */
1750	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751}
1752
1753/* inserts the stat data into the tree, and then calls
1754   reiserfs_new_directory (to insert ".", ".." item if new object is
1755   directory) or reiserfs_new_symlink (to insert symlink body if new
1756   object is symlink) or nothing (if new object is regular file)
1757
1758   NOTE! uid and gid must already be set in the inode.  If we return
1759   non-zero due to an error, we have to drop the quota previously allocated
1760   for the fresh inode.  This can only be done outside a transaction, so
1761   if we return non-zero, we also end the transaction.  */
 
 
 
 
 
 
 
 
 
 
 
1762int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763		       struct inode *dir, umode_t mode, const char *symname,
1764		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765		          strlen (symname) for symlinks) */
1766		       loff_t i_size, struct dentry *dentry,
1767		       struct inode *inode,
1768		       struct reiserfs_security_handle *security)
1769{
1770	struct super_block *sb;
1771	struct reiserfs_iget_args args;
1772	INITIALIZE_PATH(path_to_key);
1773	struct cpu_key key;
1774	struct item_head ih;
1775	struct stat_data sd;
1776	int retval;
1777	int err;
 
1778
1779	BUG_ON(!th->t_trans_id);
1780
1781	dquot_initialize(inode);
1782	err = dquot_alloc_inode(inode);
 
1783	if (err)
1784		goto out_end_trans;
1785	if (!dir->i_nlink) {
1786		err = -EPERM;
1787		goto out_bad_inode;
1788	}
1789
1790	sb = dir->i_sb;
1791
1792	/* item head of new item */
1793	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1794	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1795	if (!ih.ih_key.k_objectid) {
1796		err = -ENOMEM;
1797		goto out_bad_inode;
1798	}
1799	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1800	if (old_format_only(sb))
1801		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1802				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1803	else
1804		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1805				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1806	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1807	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1808	if (insert_inode_locked4(inode, args.objectid,
1809			     reiserfs_find_actor, &args) < 0) {
 
 
 
 
1810		err = -EINVAL;
1811		goto out_bad_inode;
1812	}
 
1813	if (old_format_only(sb))
1814		/* not a perfect generation count, as object ids can be reused, but
1815		 ** this is as good as reiserfs can do right now.
1816		 ** note that the private part of inode isn't filled in yet, we have
1817		 ** to use the directory.
 
1818		 */
1819		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1820	else
1821#if defined( USE_INODE_GENERATION_COUNTER )
1822		inode->i_generation =
1823		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1824#else
1825		inode->i_generation = ++event;
1826#endif
1827
1828	/* fill stat data */
1829	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1830
1831	/* uid and gid must already be set by the caller for quota init */
1832
1833	/* symlink cannot be immutable or append only, right? */
1834	if (S_ISLNK(inode->i_mode))
1835		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1836
1837	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1838	inode->i_size = i_size;
1839	inode->i_blocks = 0;
1840	inode->i_bytes = 0;
1841	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1842	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1843
1844	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1845	REISERFS_I(inode)->i_flags = 0;
1846	REISERFS_I(inode)->i_prealloc_block = 0;
1847	REISERFS_I(inode)->i_prealloc_count = 0;
1848	REISERFS_I(inode)->i_trans_id = 0;
1849	REISERFS_I(inode)->i_jl = NULL;
1850	REISERFS_I(inode)->i_attrs =
1851	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1852	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1853	reiserfs_init_xattr_rwsem(inode);
1854
1855	/* key to search for correct place for new stat data */
1856	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1857		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1858		      TYPE_STAT_DATA, 3 /*key length */ );
1859
1860	/* find proper place for inserting of stat data */
1861	retval = search_item(sb, &key, &path_to_key);
1862	if (retval == IO_ERROR) {
1863		err = -EIO;
1864		goto out_bad_inode;
1865	}
1866	if (retval == ITEM_FOUND) {
1867		pathrelse(&path_to_key);
1868		err = -EEXIST;
1869		goto out_bad_inode;
1870	}
1871	if (old_format_only(sb)) {
1872		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
 
1873			pathrelse(&path_to_key);
1874			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1875			err = -EINVAL;
1876			goto out_bad_inode;
1877		}
1878		inode2sd_v1(&sd, inode, inode->i_size);
1879	} else {
1880		inode2sd(&sd, inode, inode->i_size);
1881	}
1882	// store in in-core inode the key of stat data and version all
1883	// object items will have (directory items will have old offset
1884	// format, other new objects will consist of new items)
 
 
1885	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1886		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1887	else
1888		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1889	if (old_format_only(sb))
1890		set_inode_sd_version(inode, STAT_DATA_V1);
1891	else
1892		set_inode_sd_version(inode, STAT_DATA_V2);
1893
1894	/* insert the stat data into the tree */
1895#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1896	if (REISERFS_I(dir)->new_packing_locality)
1897		th->displace_new_blocks = 1;
1898#endif
1899	retval =
1900	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1901				 (char *)(&sd));
1902	if (retval) {
1903		err = retval;
1904		reiserfs_check_path(&path_to_key);
1905		goto out_bad_inode;
1906	}
1907#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1908	if (!th->displace_new_blocks)
1909		REISERFS_I(dir)->new_packing_locality = 0;
1910#endif
1911	if (S_ISDIR(mode)) {
1912		/* insert item with "." and ".." */
1913		retval =
1914		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1915	}
1916
1917	if (S_ISLNK(mode)) {
1918		/* insert body of symlink */
1919		if (!old_format_only(sb))
1920			i_size = ROUND_UP(i_size);
1921		retval =
1922		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1923					 i_size);
1924	}
1925	if (retval) {
1926		err = retval;
1927		reiserfs_check_path(&path_to_key);
1928		journal_end(th, th->t_super, th->t_blocks_allocated);
1929		goto out_inserted_sd;
1930	}
1931
 
 
 
 
 
 
 
1932	if (reiserfs_posixacl(inode->i_sb)) {
 
1933		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
 
1934		if (retval) {
1935			err = retval;
1936			reiserfs_check_path(&path_to_key);
1937			journal_end(th, th->t_super, th->t_blocks_allocated);
1938			goto out_inserted_sd;
1939		}
1940	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1941		reiserfs_warning(inode->i_sb, "jdm-13090",
1942				 "ACLs aren't enabled in the fs, "
1943				 "but vfs thinks they are!");
1944	} else if (IS_PRIVATE(dir))
1945		inode->i_flags |= S_PRIVATE;
1946
1947	if (security->name) {
 
1948		retval = reiserfs_security_write(th, inode, security);
 
1949		if (retval) {
1950			err = retval;
1951			reiserfs_check_path(&path_to_key);
1952			retval = journal_end(th, th->t_super,
1953					     th->t_blocks_allocated);
1954			if (retval)
1955				err = retval;
1956			goto out_inserted_sd;
1957		}
1958	}
1959
1960	reiserfs_update_sd(th, inode);
1961	reiserfs_check_path(&path_to_key);
1962
1963	return 0;
1964
1965/* it looks like you can easily compress these two goto targets into
1966 * one.  Keeping it like this doesn't actually hurt anything, and they
1967 * are place holders for what the quota code actually needs.
1968 */
1969      out_bad_inode:
1970	/* Invalidate the object, nothing was inserted yet */
1971	INODE_PKEY(inode)->k_objectid = 0;
1972
1973	/* Quota change must be inside a transaction for journaling */
 
1974	dquot_free_inode(inode);
 
1975
1976      out_end_trans:
1977	journal_end(th, th->t_super, th->t_blocks_allocated);
1978	/* Drop can be outside and it needs more credits so it's better to have it outside */
 
 
 
 
1979	dquot_drop(inode);
 
1980	inode->i_flags |= S_NOQUOTA;
1981	make_bad_inode(inode);
1982
1983      out_inserted_sd:
1984	clear_nlink(inode);
1985	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1986	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
 
1987	iput(inode);
1988	return err;
1989}
1990
1991/*
1992** finds the tail page in the page cache,
1993** reads the last block in.
1994**
1995** On success, page_result is set to a locked, pinned page, and bh_result
1996** is set to an up to date buffer for the last block in the file.  returns 0.
1997**
1998** tail conversion is not done, so bh_result might not be valid for writing
1999** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2000** trying to write the block.
2001**
2002** on failure, nonzero is returned, page_result and bh_result are untouched.
2003*/
2004static int grab_tail_page(struct inode *inode,
2005			  struct page **page_result,
2006			  struct buffer_head **bh_result)
2007{
2008
2009	/* we want the page with the last byte in the file,
2010	 ** not the page that will hold the next byte for appending
 
2011	 */
2012	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2013	unsigned long pos = 0;
2014	unsigned long start = 0;
2015	unsigned long blocksize = inode->i_sb->s_blocksize;
2016	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2017	struct buffer_head *bh;
2018	struct buffer_head *head;
2019	struct page *page;
2020	int error;
2021
2022	/* we know that we are only called with inode->i_size > 0.
2023	 ** we also know that a file tail can never be as big as a block
2024	 ** If i_size % blocksize == 0, our file is currently block aligned
2025	 ** and it won't need converting or zeroing after a truncate.
 
2026	 */
2027	if ((offset & (blocksize - 1)) == 0) {
2028		return -ENOENT;
2029	}
2030	page = grab_cache_page(inode->i_mapping, index);
2031	error = -ENOMEM;
2032	if (!page) {
2033		goto out;
2034	}
2035	/* start within the page of the last block in the file */
2036	start = (offset / blocksize) * blocksize;
2037
2038	error = __block_write_begin(page, start, offset - start,
2039				    reiserfs_get_block_create_0);
2040	if (error)
2041		goto unlock;
2042
2043	head = page_buffers(page);
2044	bh = head;
2045	do {
2046		if (pos >= start) {
2047			break;
2048		}
2049		bh = bh->b_this_page;
2050		pos += blocksize;
2051	} while (bh != head);
2052
2053	if (!buffer_uptodate(bh)) {
2054		/* note, this should never happen, prepare_write should
2055		 ** be taking care of this for us.  If the buffer isn't up to date,
2056		 ** I've screwed up the code to find the buffer, or the code to
2057		 ** call prepare_write
 
2058		 */
2059		reiserfs_error(inode->i_sb, "clm-6000",
2060			       "error reading block %lu", bh->b_blocknr);
2061		error = -EIO;
2062		goto unlock;
2063	}
2064	*bh_result = bh;
2065	*page_result = page;
2066
2067      out:
2068	return error;
2069
2070      unlock:
2071	unlock_page(page);
2072	page_cache_release(page);
2073	return error;
2074}
2075
2076/*
2077** vfs version of truncate file.  Must NOT be called with
2078** a transaction already started.
2079**
2080** some code taken from block_truncate_page
2081*/
2082int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2083{
2084	struct reiserfs_transaction_handle th;
2085	/* we want the offset for the first byte after the end of the file */
2086	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2087	unsigned blocksize = inode->i_sb->s_blocksize;
2088	unsigned length;
2089	struct page *page = NULL;
2090	int error;
2091	struct buffer_head *bh = NULL;
2092	int err2;
2093	int lock_depth;
2094
2095	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2096
2097	if (inode->i_size > 0) {
2098		error = grab_tail_page(inode, &page, &bh);
2099		if (error) {
2100			// -ENOENT means we truncated past the end of the file,
2101			// and get_block_create_0 could not find a block to read in,
2102			// which is ok.
 
 
2103			if (error != -ENOENT)
2104				reiserfs_error(inode->i_sb, "clm-6001",
2105					       "grab_tail_page failed %d",
2106					       error);
2107			page = NULL;
2108			bh = NULL;
2109		}
2110	}
2111
2112	/* so, if page != NULL, we have a buffer head for the offset at
2113	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2114	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2115	 ** and no zeroing is required on disk.  We zero after the truncate,
2116	 ** because the truncate might pack the item anyway
2117	 ** (it will unmap bh if it packs).
2118	 */
2119	/* it is enough to reserve space in transaction for 2 balancings:
2120	   one for "save" link adding and another for the first
2121	   cut_from_item. 1 is for update_sd */
 
 
2122	error = journal_begin(&th, inode->i_sb,
2123			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2124	if (error)
2125		goto out;
2126	reiserfs_update_inode_transaction(inode);
2127	if (update_timestamps)
2128		/* we are doing real truncate: if the system crashes before the last
2129		   transaction of truncating gets committed - on reboot the file
2130		   either appears truncated properly or not truncated at all */
 
 
 
2131		add_save_link(&th, inode, 1);
2132	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2133	error =
2134	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2135	if (error)
2136		goto out;
2137
2138	/* check reiserfs_do_truncate after ending the transaction */
2139	if (err2) {
2140		error = err2;
2141  		goto out;
2142	}
2143	
2144	if (update_timestamps) {
2145		error = remove_save_link(inode, 1 /* truncate */);
2146		if (error)
2147			goto out;
2148	}
2149
2150	if (page) {
2151		length = offset & (blocksize - 1);
2152		/* if we are not on a block boundary */
2153		if (length) {
2154			length = blocksize - length;
2155			zero_user(page, offset, length);
2156			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2157				mark_buffer_dirty(bh);
2158			}
2159		}
2160		unlock_page(page);
2161		page_cache_release(page);
2162	}
2163
2164	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2165
2166	return 0;
2167      out:
2168	if (page) {
2169		unlock_page(page);
2170		page_cache_release(page);
2171	}
2172
2173	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2174
2175	return error;
2176}
2177
2178static int map_block_for_writepage(struct inode *inode,
2179				   struct buffer_head *bh_result,
2180				   unsigned long block)
2181{
2182	struct reiserfs_transaction_handle th;
2183	int fs_gen;
2184	struct item_head tmp_ih;
2185	struct item_head *ih;
2186	struct buffer_head *bh;
2187	__le32 *item;
2188	struct cpu_key key;
2189	INITIALIZE_PATH(path);
2190	int pos_in_item;
2191	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2192	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2193	int retval;
2194	int use_get_block = 0;
2195	int bytes_copied = 0;
2196	int copy_size;
2197	int trans_running = 0;
2198
2199	/* catch places below that try to log something without starting a trans */
 
 
 
2200	th.t_trans_id = 0;
2201
2202	if (!buffer_uptodate(bh_result)) {
2203		return -EIO;
2204	}
2205
2206	kmap(bh_result->b_page);
2207      start_over:
2208	reiserfs_write_lock(inode->i_sb);
2209	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2210
2211      research:
2212	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2213	if (retval != POSITION_FOUND) {
2214		use_get_block = 1;
2215		goto out;
2216	}
2217
2218	bh = get_last_bh(&path);
2219	ih = get_ih(&path);
2220	item = get_item(&path);
2221	pos_in_item = path.pos_in_item;
2222
2223	/* we've found an unformatted node */
2224	if (indirect_item_found(retval, ih)) {
2225		if (bytes_copied > 0) {
2226			reiserfs_warning(inode->i_sb, "clm-6002",
2227					 "bytes_copied %d", bytes_copied);
2228		}
2229		if (!get_block_num(item, pos_in_item)) {
2230			/* crap, we are writing to a hole */
2231			use_get_block = 1;
2232			goto out;
2233		}
2234		set_block_dev_mapped(bh_result,
2235				     get_block_num(item, pos_in_item), inode);
2236	} else if (is_direct_le_ih(ih)) {
2237		char *p;
2238		p = page_address(bh_result->b_page);
2239		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2240		copy_size = ih_item_len(ih) - pos_in_item;
2241
2242		fs_gen = get_generation(inode->i_sb);
2243		copy_item_head(&tmp_ih, ih);
2244
2245		if (!trans_running) {
2246			/* vs-3050 is gone, no need to drop the path */
2247			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2248			if (retval)
2249				goto out;
2250			reiserfs_update_inode_transaction(inode);
2251			trans_running = 1;
2252			if (fs_changed(fs_gen, inode->i_sb)
2253			    && item_moved(&tmp_ih, &path)) {
2254				reiserfs_restore_prepared_buffer(inode->i_sb,
2255								 bh);
2256				goto research;
2257			}
2258		}
2259
2260		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2261
2262		if (fs_changed(fs_gen, inode->i_sb)
2263		    && item_moved(&tmp_ih, &path)) {
2264			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2265			goto research;
2266		}
2267
2268		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2269		       copy_size);
2270
2271		journal_mark_dirty(&th, inode->i_sb, bh);
2272		bytes_copied += copy_size;
2273		set_block_dev_mapped(bh_result, 0, inode);
2274
2275		/* are there still bytes left? */
2276		if (bytes_copied < bh_result->b_size &&
2277		    (byte_offset + bytes_copied) < inode->i_size) {
2278			set_cpu_key_k_offset(&key,
2279					     cpu_key_k_offset(&key) +
2280					     copy_size);
2281			goto research;
2282		}
2283	} else {
2284		reiserfs_warning(inode->i_sb, "clm-6003",
2285				 "bad item inode %lu", inode->i_ino);
2286		retval = -EIO;
2287		goto out;
2288	}
2289	retval = 0;
2290
2291      out:
2292	pathrelse(&path);
2293	if (trans_running) {
2294		int err = journal_end(&th, inode->i_sb, jbegin_count);
2295		if (err)
2296			retval = err;
2297		trans_running = 0;
2298	}
2299	reiserfs_write_unlock(inode->i_sb);
2300
2301	/* this is where we fill in holes in the file. */
2302	if (use_get_block) {
2303		retval = reiserfs_get_block(inode, block, bh_result,
2304					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2305					    | GET_BLOCK_NO_DANGLE);
2306		if (!retval) {
2307			if (!buffer_mapped(bh_result)
2308			    || bh_result->b_blocknr == 0) {
2309				/* get_block failed to find a mapped unformatted node. */
2310				use_get_block = 0;
2311				goto start_over;
2312			}
2313		}
2314	}
2315	kunmap(bh_result->b_page);
2316
2317	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2318		/* we've copied data from the page into the direct item, so the
 
2319		 * buffer in the page is now clean, mark it to reflect that.
2320		 */
2321		lock_buffer(bh_result);
2322		clear_buffer_dirty(bh_result);
2323		unlock_buffer(bh_result);
2324	}
2325	return retval;
2326}
2327
2328/*
2329 * mason@suse.com: updated in 2.5.54 to follow the same general io
2330 * start/recovery path as __block_write_full_page, along with special
2331 * code to handle reiserfs tails.
2332 */
2333static int reiserfs_write_full_page(struct page *page,
2334				    struct writeback_control *wbc)
2335{
2336	struct inode *inode = page->mapping->host;
2337	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2338	int error = 0;
2339	unsigned long block;
2340	sector_t last_block;
2341	struct buffer_head *head, *bh;
2342	int partial = 0;
2343	int nr = 0;
2344	int checked = PageChecked(page);
2345	struct reiserfs_transaction_handle th;
2346	struct super_block *s = inode->i_sb;
2347	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2348	th.t_trans_id = 0;
2349
2350	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2351	if (checked && (current->flags & PF_MEMALLOC)) {
2352		redirty_page_for_writepage(wbc, page);
2353		unlock_page(page);
2354		return 0;
2355	}
2356
2357	/* The page dirty bit is cleared before writepage is called, which
 
2358	 * means we have to tell create_empty_buffers to make dirty buffers
2359	 * The page really should be up to date at this point, so tossing
2360	 * in the BH_Uptodate is just a sanity check.
2361	 */
2362	if (!page_has_buffers(page)) {
2363		create_empty_buffers(page, s->s_blocksize,
 
2364				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2365	}
2366	head = page_buffers(page);
2367
2368	/* last page in the file, zero out any contents past the
2369	 ** last byte in the file
 
2370	 */
2371	if (page->index >= end_index) {
2372		unsigned last_offset;
2373
2374		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2375		/* no file contents in this page */
2376		if (page->index >= end_index + 1 || !last_offset) {
2377			unlock_page(page);
2378			return 0;
2379		}
2380		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2381	}
2382	bh = head;
2383	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2384	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2385	/* first map all the buffers, logging any direct items we find */
2386	do {
2387		if (block > last_block) {
2388			/*
2389			 * This can happen when the block size is less than
2390			 * the page size.  The corresponding bytes in the page
2391			 * were zero filled above
2392			 */
2393			clear_buffer_dirty(bh);
2394			set_buffer_uptodate(bh);
2395		} else if ((checked || buffer_dirty(bh)) &&
2396		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2397						       && bh->b_blocknr ==
2398						       0))) {
2399			/* not mapped yet, or it points to a direct item, search
2400			 * the btree for the mapping info, and log any direct
2401			 * items found
2402			 */
2403			if ((error = map_block_for_writepage(inode, bh, block))) {
2404				goto fail;
2405			}
2406		}
2407		bh = bh->b_this_page;
2408		block++;
2409	} while (bh != head);
2410
2411	/*
2412	 * we start the transaction after map_block_for_writepage,
2413	 * because it can create holes in the file (an unbounded operation).
2414	 * starting it here, we can make a reliable estimate for how many
2415	 * blocks we're going to log
2416	 */
2417	if (checked) {
2418		ClearPageChecked(page);
2419		reiserfs_write_lock(s);
2420		error = journal_begin(&th, s, bh_per_page + 1);
2421		if (error) {
2422			reiserfs_write_unlock(s);
2423			goto fail;
2424		}
2425		reiserfs_update_inode_transaction(inode);
2426	}
2427	/* now go through and lock any dirty buffers on the page */
2428	do {
2429		get_bh(bh);
2430		if (!buffer_mapped(bh))
2431			continue;
2432		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2433			continue;
2434
2435		if (checked) {
2436			reiserfs_prepare_for_journal(s, bh, 1);
2437			journal_mark_dirty(&th, s, bh);
2438			continue;
2439		}
2440		/* from this point on, we know the buffer is mapped to a
 
2441		 * real block and not a direct item
2442		 */
2443		if (wbc->sync_mode != WB_SYNC_NONE) {
2444			lock_buffer(bh);
2445		} else {
2446			if (!trylock_buffer(bh)) {
2447				redirty_page_for_writepage(wbc, page);
2448				continue;
2449			}
2450		}
2451		if (test_clear_buffer_dirty(bh)) {
2452			mark_buffer_async_write(bh);
2453		} else {
2454			unlock_buffer(bh);
2455		}
2456	} while ((bh = bh->b_this_page) != head);
2457
2458	if (checked) {
2459		error = journal_end(&th, s, bh_per_page + 1);
2460		reiserfs_write_unlock(s);
2461		if (error)
2462			goto fail;
2463	}
2464	BUG_ON(PageWriteback(page));
2465	set_page_writeback(page);
2466	unlock_page(page);
2467
2468	/*
2469	 * since any buffer might be the only dirty buffer on the page,
2470	 * the first submit_bh can bring the page out of writeback.
2471	 * be careful with the buffers.
2472	 */
2473	do {
2474		struct buffer_head *next = bh->b_this_page;
2475		if (buffer_async_write(bh)) {
2476			submit_bh(WRITE, bh);
2477			nr++;
2478		}
2479		put_bh(bh);
2480		bh = next;
2481	} while (bh != head);
2482
2483	error = 0;
2484      done:
2485	if (nr == 0) {
2486		/*
2487		 * if this page only had a direct item, it is very possible for
2488		 * no io to be required without there being an error.  Or,
2489		 * someone else could have locked them and sent them down the
2490		 * pipe without locking the page
2491		 */
2492		bh = head;
2493		do {
2494			if (!buffer_uptodate(bh)) {
2495				partial = 1;
2496				break;
2497			}
2498			bh = bh->b_this_page;
2499		} while (bh != head);
2500		if (!partial)
2501			SetPageUptodate(page);
2502		end_page_writeback(page);
2503	}
2504	return error;
2505
2506      fail:
2507	/* catches various errors, we need to make sure any valid dirty blocks
2508	 * get to the media.  The page is currently locked and not marked for
 
2509	 * writeback
2510	 */
2511	ClearPageUptodate(page);
2512	bh = head;
2513	do {
2514		get_bh(bh);
2515		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2516			lock_buffer(bh);
2517			mark_buffer_async_write(bh);
2518		} else {
2519			/*
2520			 * clear any dirty bits that might have come from getting
2521			 * attached to a dirty page
2522			 */
2523			clear_buffer_dirty(bh);
2524		}
2525		bh = bh->b_this_page;
2526	} while (bh != head);
2527	SetPageError(page);
2528	BUG_ON(PageWriteback(page));
2529	set_page_writeback(page);
2530	unlock_page(page);
2531	do {
2532		struct buffer_head *next = bh->b_this_page;
2533		if (buffer_async_write(bh)) {
2534			clear_buffer_dirty(bh);
2535			submit_bh(WRITE, bh);
2536			nr++;
2537		}
2538		put_bh(bh);
2539		bh = next;
2540	} while (bh != head);
2541	goto done;
2542}
2543
2544static int reiserfs_readpage(struct file *f, struct page *page)
2545{
2546	return block_read_full_page(page, reiserfs_get_block);
2547}
2548
2549static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2550{
2551	struct inode *inode = page->mapping->host;
 
2552	reiserfs_wait_on_write_block(inode->i_sb);
2553	return reiserfs_write_full_page(page, wbc);
2554}
2555
2556static void reiserfs_truncate_failed_write(struct inode *inode)
2557{
2558	truncate_inode_pages(inode->i_mapping, inode->i_size);
2559	reiserfs_truncate_file(inode, 0);
2560}
2561
2562static int reiserfs_write_begin(struct file *file,
2563				struct address_space *mapping,
2564				loff_t pos, unsigned len, unsigned flags,
2565				struct page **pagep, void **fsdata)
2566{
2567	struct inode *inode;
2568	struct page *page;
2569	pgoff_t index;
2570	int ret;
2571	int old_ref = 0;
2572
2573 	inode = mapping->host;
2574	*fsdata = 0;
2575 	if (flags & AOP_FLAG_CONT_EXPAND &&
2576 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2577 		pos ++;
2578		*fsdata = (void *)(unsigned long)flags;
2579	}
2580
2581	index = pos >> PAGE_CACHE_SHIFT;
2582	page = grab_cache_page_write_begin(mapping, index, flags);
2583	if (!page)
2584		return -ENOMEM;
2585	*pagep = page;
2586
2587	reiserfs_wait_on_write_block(inode->i_sb);
2588	fix_tail_page_for_writing(page);
2589	if (reiserfs_transaction_running(inode->i_sb)) {
2590		struct reiserfs_transaction_handle *th;
2591		th = (struct reiserfs_transaction_handle *)current->
2592		    journal_info;
2593		BUG_ON(!th->t_refcount);
2594		BUG_ON(!th->t_trans_id);
2595		old_ref = th->t_refcount;
2596		th->t_refcount++;
2597	}
2598	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2599	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2600		struct reiserfs_transaction_handle *th = current->journal_info;
2601		/* this gets a little ugly.  If reiserfs_get_block returned an
2602		 * error and left a transacstion running, we've got to close it,
2603		 * and we've got to free handle if it was a persistent transaction.
 
 
2604		 *
2605		 * But, if we had nested into an existing transaction, we need
2606		 * to just drop the ref count on the handle.
2607		 *
2608		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2609		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2610		 */
2611		if (th->t_refcount > old_ref) {
2612			if (old_ref)
2613				th->t_refcount--;
2614			else {
2615				int err;
2616				reiserfs_write_lock(inode->i_sb);
2617				err = reiserfs_end_persistent_transaction(th);
2618				reiserfs_write_unlock(inode->i_sb);
2619				if (err)
2620					ret = err;
2621			}
2622		}
2623	}
2624	if (ret) {
2625		unlock_page(page);
2626		page_cache_release(page);
2627		/* Truncate allocated blocks */
2628		reiserfs_truncate_failed_write(inode);
2629	}
2630	return ret;
2631}
2632
2633int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2634{
2635	struct inode *inode = page->mapping->host;
2636	int ret;
2637	int old_ref = 0;
 
2638
2639	reiserfs_write_unlock(inode->i_sb);
2640	reiserfs_wait_on_write_block(inode->i_sb);
2641	reiserfs_write_lock(inode->i_sb);
2642
2643	fix_tail_page_for_writing(page);
2644	if (reiserfs_transaction_running(inode->i_sb)) {
2645		struct reiserfs_transaction_handle *th;
2646		th = (struct reiserfs_transaction_handle *)current->
2647		    journal_info;
2648		BUG_ON(!th->t_refcount);
2649		BUG_ON(!th->t_trans_id);
2650		old_ref = th->t_refcount;
2651		th->t_refcount++;
2652	}
2653
2654	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2655	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2656		struct reiserfs_transaction_handle *th = current->journal_info;
2657		/* this gets a little ugly.  If reiserfs_get_block returned an
2658		 * error and left a transacstion running, we've got to close it,
2659		 * and we've got to free handle if it was a persistent transaction.
 
 
2660		 *
2661		 * But, if we had nested into an existing transaction, we need
2662		 * to just drop the ref count on the handle.
2663		 *
2664		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2665		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2666		 */
2667		if (th->t_refcount > old_ref) {
2668			if (old_ref)
2669				th->t_refcount--;
2670			else {
2671				int err;
2672				reiserfs_write_lock(inode->i_sb);
2673				err = reiserfs_end_persistent_transaction(th);
2674				reiserfs_write_unlock(inode->i_sb);
2675				if (err)
2676					ret = err;
2677			}
2678		}
2679	}
2680	return ret;
2681
2682}
2683
2684static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2685{
2686	return generic_block_bmap(as, block, reiserfs_bmap);
2687}
2688
2689static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2690			      loff_t pos, unsigned len, unsigned copied,
2691			      struct page *page, void *fsdata)
2692{
 
2693	struct inode *inode = page->mapping->host;
2694	int ret = 0;
2695	int update_sd = 0;
2696	struct reiserfs_transaction_handle *th;
2697	unsigned start;
2698	int lock_depth = 0;
2699	bool locked = false;
2700
2701	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2702		pos ++;
2703
2704	reiserfs_wait_on_write_block(inode->i_sb);
2705	if (reiserfs_transaction_running(inode->i_sb))
2706		th = current->journal_info;
2707	else
2708		th = NULL;
2709
2710	start = pos & (PAGE_CACHE_SIZE - 1);
2711	if (unlikely(copied < len)) {
2712		if (!PageUptodate(page))
2713			copied = 0;
2714
2715		page_zero_new_buffers(page, start + copied, start + len);
2716	}
2717	flush_dcache_page(page);
2718
2719	reiserfs_commit_page(inode, page, start, start + copied);
2720
2721	/* generic_commit_write does this for us, but does not update the
2722	 ** transaction tracking stuff when the size changes.  So, we have
2723	 ** to do the i_size updates here.
 
2724	 */
2725	if (pos + copied > inode->i_size) {
2726		struct reiserfs_transaction_handle myth;
2727		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2728		locked = true;
2729		/* If the file have grown beyond the border where it
2730		   can have a tail, unmark it as needing a tail
2731		   packing */
 
 
2732		if ((have_large_tails(inode->i_sb)
2733		     && inode->i_size > i_block_size(inode) * 4)
2734		    || (have_small_tails(inode->i_sb)
2735			&& inode->i_size > i_block_size(inode)))
2736			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2737
2738		ret = journal_begin(&myth, inode->i_sb, 1);
2739		if (ret)
2740			goto journal_error;
2741
2742		reiserfs_update_inode_transaction(inode);
2743		inode->i_size = pos + copied;
2744		/*
2745		 * this will just nest into our transaction.  It's important
2746		 * to use mark_inode_dirty so the inode gets pushed around on the
2747		 * dirty lists, and so that O_SYNC works as expected
2748		 */
2749		mark_inode_dirty(inode);
2750		reiserfs_update_sd(&myth, inode);
2751		update_sd = 1;
2752		ret = journal_end(&myth, inode->i_sb, 1);
2753		if (ret)
2754			goto journal_error;
2755	}
2756	if (th) {
2757		if (!locked) {
2758			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2759			locked = true;
2760		}
2761		if (!update_sd)
2762			mark_inode_dirty(inode);
2763		ret = reiserfs_end_persistent_transaction(th);
2764		if (ret)
2765			goto out;
2766	}
2767
2768      out:
2769	if (locked)
2770		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2771	unlock_page(page);
2772	page_cache_release(page);
2773
2774	if (pos + len > inode->i_size)
2775		reiserfs_truncate_failed_write(inode);
2776
2777	return ret == 0 ? copied : ret;
2778
2779      journal_error:
2780	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2781	locked = false;
2782	if (th) {
2783		if (!update_sd)
2784			reiserfs_update_sd(th, inode);
2785		ret = reiserfs_end_persistent_transaction(th);
2786	}
2787	goto out;
2788}
2789
2790int reiserfs_commit_write(struct file *f, struct page *page,
2791			  unsigned from, unsigned to)
2792{
2793	struct inode *inode = page->mapping->host;
2794	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2795	int ret = 0;
2796	int update_sd = 0;
2797	struct reiserfs_transaction_handle *th = NULL;
 
2798
2799	reiserfs_write_unlock(inode->i_sb);
2800	reiserfs_wait_on_write_block(inode->i_sb);
2801	reiserfs_write_lock(inode->i_sb);
2802
2803	if (reiserfs_transaction_running(inode->i_sb)) {
2804		th = current->journal_info;
2805	}
2806	reiserfs_commit_page(inode, page, from, to);
2807
2808	/* generic_commit_write does this for us, but does not update the
2809	 ** transaction tracking stuff when the size changes.  So, we have
2810	 ** to do the i_size updates here.
 
2811	 */
2812	if (pos > inode->i_size) {
2813		struct reiserfs_transaction_handle myth;
2814		/* If the file have grown beyond the border where it
2815		   can have a tail, unmark it as needing a tail
2816		   packing */
 
 
2817		if ((have_large_tails(inode->i_sb)
2818		     && inode->i_size > i_block_size(inode) * 4)
2819		    || (have_small_tails(inode->i_sb)
2820			&& inode->i_size > i_block_size(inode)))
2821			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2822
2823		ret = journal_begin(&myth, inode->i_sb, 1);
2824		if (ret)
2825			goto journal_error;
2826
2827		reiserfs_update_inode_transaction(inode);
2828		inode->i_size = pos;
2829		/*
2830		 * this will just nest into our transaction.  It's important
2831		 * to use mark_inode_dirty so the inode gets pushed around on the
2832		 * dirty lists, and so that O_SYNC works as expected
2833		 */
2834		mark_inode_dirty(inode);
2835		reiserfs_update_sd(&myth, inode);
2836		update_sd = 1;
2837		ret = journal_end(&myth, inode->i_sb, 1);
2838		if (ret)
2839			goto journal_error;
2840	}
2841	if (th) {
2842		if (!update_sd)
2843			mark_inode_dirty(inode);
2844		ret = reiserfs_end_persistent_transaction(th);
2845		if (ret)
2846			goto out;
2847	}
2848
2849      out:
2850	return ret;
2851
2852      journal_error:
2853	if (th) {
2854		if (!update_sd)
2855			reiserfs_update_sd(th, inode);
2856		ret = reiserfs_end_persistent_transaction(th);
2857	}
2858
2859	return ret;
2860}
2861
2862void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2863{
2864	if (reiserfs_attrs(inode->i_sb)) {
2865		if (sd_attrs & REISERFS_SYNC_FL)
2866			inode->i_flags |= S_SYNC;
2867		else
2868			inode->i_flags &= ~S_SYNC;
2869		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2870			inode->i_flags |= S_IMMUTABLE;
2871		else
2872			inode->i_flags &= ~S_IMMUTABLE;
2873		if (sd_attrs & REISERFS_APPEND_FL)
2874			inode->i_flags |= S_APPEND;
2875		else
2876			inode->i_flags &= ~S_APPEND;
2877		if (sd_attrs & REISERFS_NOATIME_FL)
2878			inode->i_flags |= S_NOATIME;
2879		else
2880			inode->i_flags &= ~S_NOATIME;
2881		if (sd_attrs & REISERFS_NOTAIL_FL)
2882			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2883		else
2884			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2885	}
2886}
2887
2888void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2889{
2890	if (reiserfs_attrs(inode->i_sb)) {
2891		if (inode->i_flags & S_IMMUTABLE)
2892			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2893		else
2894			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2895		if (inode->i_flags & S_SYNC)
2896			*sd_attrs |= REISERFS_SYNC_FL;
2897		else
2898			*sd_attrs &= ~REISERFS_SYNC_FL;
2899		if (inode->i_flags & S_NOATIME)
2900			*sd_attrs |= REISERFS_NOATIME_FL;
2901		else
2902			*sd_attrs &= ~REISERFS_NOATIME_FL;
2903		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2904			*sd_attrs |= REISERFS_NOTAIL_FL;
2905		else
2906			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2907	}
2908}
2909
2910/* decide if this buffer needs to stay around for data logging or ordered
2911** write purposes
2912*/
2913static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2914{
2915	int ret = 1;
2916	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2917
2918	lock_buffer(bh);
2919	spin_lock(&j->j_dirty_buffers_lock);
2920	if (!buffer_mapped(bh)) {
2921		goto free_jh;
2922	}
2923	/* the page is locked, and the only places that log a data buffer
 
2924	 * also lock the page.
2925	 */
2926	if (reiserfs_file_data_log(inode)) {
2927		/*
2928		 * very conservative, leave the buffer pinned if
2929		 * anyone might need it.
2930		 */
2931		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2932			ret = 0;
2933		}
2934	} else  if (buffer_dirty(bh)) {
2935		struct reiserfs_journal_list *jl;
2936		struct reiserfs_jh *jh = bh->b_private;
2937
2938		/* why is this safe?
 
2939		 * reiserfs_setattr updates i_size in the on disk
2940		 * stat data before allowing vmtruncate to be called.
2941		 *
2942		 * If buffer was put onto the ordered list for this
2943		 * transaction, we know for sure either this transaction
2944		 * or an older one already has updated i_size on disk,
2945		 * and this ordered data won't be referenced in the file
2946		 * if we crash.
2947		 *
2948		 * if the buffer was put onto the ordered list for an older
2949		 * transaction, we need to leave it around
2950		 */
2951		if (jh && (jl = jh->jl)
2952		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2953			ret = 0;
2954	}
2955      free_jh:
2956	if (ret && bh->b_private) {
2957		reiserfs_free_jh(bh);
2958	}
2959	spin_unlock(&j->j_dirty_buffers_lock);
2960	unlock_buffer(bh);
2961	return ret;
2962}
2963
2964/* clm -- taken from fs/buffer.c:block_invalidate_page */
2965static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
 
2966{
2967	struct buffer_head *head, *bh, *next;
2968	struct inode *inode = page->mapping->host;
2969	unsigned int curr_off = 0;
 
 
2970	int ret = 1;
2971
2972	BUG_ON(!PageLocked(page));
2973
2974	if (offset == 0)
2975		ClearPageChecked(page);
2976
2977	if (!page_has_buffers(page))
 
2978		goto out;
2979
2980	head = page_buffers(page);
2981	bh = head;
2982	do {
2983		unsigned int next_off = curr_off + bh->b_size;
2984		next = bh->b_this_page;
2985
 
 
 
2986		/*
2987		 * is this block fully invalidated?
2988		 */
2989		if (offset <= curr_off) {
2990			if (invalidatepage_can_drop(inode, bh))
2991				reiserfs_unmap_buffer(bh);
2992			else
2993				ret = 0;
2994		}
2995		curr_off = next_off;
2996		bh = next;
2997	} while (bh != head);
2998
2999	/*
3000	 * We release buffers only if the entire page is being invalidated.
3001	 * The get_block cached value has been unconditionally invalidated,
3002	 * so real IO is not possible anymore.
3003	 */
3004	if (!offset && ret) {
3005		ret = try_to_release_page(page, 0);
3006		/* maybe should BUG_ON(!ret); - neilb */
3007	}
3008      out:
3009	return;
3010}
3011
3012static int reiserfs_set_page_dirty(struct page *page)
 
3013{
3014	struct inode *inode = page->mapping->host;
3015	if (reiserfs_file_data_log(inode)) {
3016		SetPageChecked(page);
3017		return __set_page_dirty_nobuffers(page);
3018	}
3019	return __set_page_dirty_buffers(page);
3020}
3021
3022/*
3023 * Returns 1 if the page's buffers were dropped.  The page is locked.
3024 *
3025 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3026 * in the buffers at page_buffers(page).
3027 *
3028 * even in -o notail mode, we can't be sure an old mount without -o notail
3029 * didn't create files with tails.
3030 */
3031static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3032{
3033	struct inode *inode = page->mapping->host;
3034	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3035	struct buffer_head *head;
3036	struct buffer_head *bh;
3037	int ret = 1;
3038
3039	WARN_ON(PageChecked(page));
3040	spin_lock(&j->j_dirty_buffers_lock);
3041	head = page_buffers(page);
3042	bh = head;
3043	do {
3044		if (bh->b_private) {
3045			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3046				reiserfs_free_jh(bh);
3047			} else {
3048				ret = 0;
3049				break;
3050			}
3051		}
3052		bh = bh->b_this_page;
3053	} while (bh != head);
3054	if (ret)
3055		ret = try_to_free_buffers(page);
3056	spin_unlock(&j->j_dirty_buffers_lock);
3057	return ret;
3058}
3059
3060/* We thank Mingming Cao for helping us understand in great detail what
3061   to do in this section of the code. */
3062static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3063				  const struct iovec *iov, loff_t offset,
3064				  unsigned long nr_segs)
3065{
3066	struct file *file = iocb->ki_filp;
3067	struct inode *inode = file->f_mapping->host;
 
3068	ssize_t ret;
3069
3070	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3071				  reiserfs_get_blocks_direct_io);
3072
3073	/*
3074	 * In case of error extending write may have instantiated a few
3075	 * blocks outside i_size. Trim these off again.
3076	 */
3077	if (unlikely((rw & WRITE) && ret < 0)) {
3078		loff_t isize = i_size_read(inode);
3079		loff_t end = offset + iov_length(iov, nr_segs);
3080
3081		if (end > isize)
3082			vmtruncate(inode, isize);
 
 
3083	}
3084
3085	return ret;
3086}
3087
3088int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
 
3089{
3090	struct inode *inode = dentry->d_inode;
3091	unsigned int ia_valid;
3092	int depth;
3093	int error;
3094
3095	error = inode_change_ok(inode, attr);
3096	if (error)
3097		return error;
3098
3099	/* must be turned off for recursive notify_change calls */
3100	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3101
3102	depth = reiserfs_write_lock_once(inode->i_sb);
3103	if (is_quota_modification(inode, attr))
3104		dquot_initialize(inode);
3105
 
 
3106	if (attr->ia_valid & ATTR_SIZE) {
3107		/* version 2 items will be caught by the s_maxbytes check
3108		 ** done for us in vmtruncate
 
3109		 */
3110		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3111		    attr->ia_size > MAX_NON_LFS) {
 
3112			error = -EFBIG;
3113			goto out;
3114		}
3115
3116		inode_dio_wait(inode);
3117
3118		/* fill in hole pointers in the expanding truncate case. */
3119		if (attr->ia_size > inode->i_size) {
3120			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3121			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3122				int err;
3123				struct reiserfs_transaction_handle th;
3124				/* we're changing at most 2 bitmaps, inode + super */
3125				err = journal_begin(&th, inode->i_sb, 4);
3126				if (!err) {
3127					reiserfs_discard_prealloc(&th, inode);
3128					err = journal_end(&th, inode->i_sb, 4);
3129				}
3130				if (err)
3131					error = err;
3132			}
3133			if (error)
 
3134				goto out;
 
3135			/*
3136			 * file size is changed, ctime and mtime are
3137			 * to be updated
3138			 */
3139			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3140		}
3141	}
 
3142
3143	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3144	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3145	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3146		/* stat data of format v3.5 has 16 bit uid and gid */
3147		error = -EINVAL;
3148		goto out;
3149	}
3150
3151	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3152	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3153		struct reiserfs_transaction_handle th;
3154		int jbegin_count =
3155		    2 *
3156		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3157		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3158		    2;
3159
3160		error = reiserfs_chown_xattrs(inode, attr);
3161
3162		if (error)
3163			return error;
3164
3165		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
 
 
 
 
3166		error = journal_begin(&th, inode->i_sb, jbegin_count);
 
3167		if (error)
3168			goto out;
3169		error = dquot_transfer(inode, attr);
 
3170		if (error) {
3171			journal_end(&th, inode->i_sb, jbegin_count);
 
3172			goto out;
3173		}
3174
3175		/* Update corresponding info in inode so that everything is in
3176		 * one transaction */
 
 
3177		if (attr->ia_valid & ATTR_UID)
3178			inode->i_uid = attr->ia_uid;
3179		if (attr->ia_valid & ATTR_GID)
3180			inode->i_gid = attr->ia_gid;
3181		mark_inode_dirty(inode);
3182		error = journal_end(&th, inode->i_sb, jbegin_count);
 
3183		if (error)
3184			goto out;
3185	}
3186
3187	/*
3188	 * Relax the lock here, as it might truncate the
3189	 * inode pages and wait for inode pages locks.
3190	 * To release such page lock, the owner needs the
3191	 * reiserfs lock
3192	 */
3193	reiserfs_write_unlock_once(inode->i_sb, depth);
3194	if ((attr->ia_valid & ATTR_SIZE) &&
3195	    attr->ia_size != i_size_read(inode))
3196		error = vmtruncate(inode, attr->ia_size);
 
 
 
 
 
 
 
 
 
 
 
3197
3198	if (!error) {
3199		setattr_copy(inode, attr);
3200		mark_inode_dirty(inode);
3201	}
3202	depth = reiserfs_write_lock_once(inode->i_sb);
3203
3204	if (!error && reiserfs_posixacl(inode->i_sb)) {
3205		if (attr->ia_valid & ATTR_MODE)
3206			error = reiserfs_acl_chmod(inode);
3207	}
3208
3209      out:
3210	reiserfs_write_unlock_once(inode->i_sb, depth);
3211
3212	return error;
3213}
3214
3215const struct address_space_operations reiserfs_address_space_operations = {
3216	.writepage = reiserfs_writepage,
3217	.readpage = reiserfs_readpage,
3218	.readpages = reiserfs_readpages,
3219	.releasepage = reiserfs_releasepage,
3220	.invalidatepage = reiserfs_invalidatepage,
3221	.write_begin = reiserfs_write_begin,
3222	.write_end = reiserfs_write_end,
3223	.bmap = reiserfs_aop_bmap,
3224	.direct_IO = reiserfs_direct_IO,
3225	.set_page_dirty = reiserfs_set_page_dirty,
3226};