Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode_set_atime(inode, sd_v1_atime(sd), 0);
1261		inode_set_mtime(inode, sd_v1_mtime(sd), 0);
1262		inode_set_ctime(inode, sd_v1_ctime(sd), 0);
 
 
 
1263
1264		inode->i_blocks = sd_v1_blocks(sd);
1265		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1266		blocks = (inode->i_size + 511) >> 9;
1267		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1268
1269		/*
1270		 * there was a bug in <=3.5.23 when i_blocks could take
1271		 * negative values. Starting from 3.5.17 this value could
1272		 * even be stored in stat data. For such files we set
1273		 * i_blocks based on file size. Just 2 notes: this can be
1274		 * wrong for sparse files. On-disk value will be only
1275		 * updated if file's inode will ever change
1276		 */
1277		if (inode->i_blocks > blocks) {
1278			inode->i_blocks = blocks;
1279		}
1280
1281		rdev = sd_v1_rdev(sd);
1282		REISERFS_I(inode)->i_first_direct_byte =
1283		    sd_v1_first_direct_byte(sd);
1284
1285		/*
1286		 * an early bug in the quota code can give us an odd
1287		 * number for the block count.  This is incorrect, fix it here.
1288		 */
1289		if (inode->i_blocks & 1) {
1290			inode->i_blocks++;
1291		}
1292		inode_set_bytes(inode,
1293				to_real_used_space(inode, inode->i_blocks,
1294						   SD_V1_SIZE));
1295		/*
1296		 * nopack is initially zero for v1 objects. For v2 objects,
1297		 * nopack is initialised from sd_attrs
1298		 */
1299		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1300	} else {
1301		/*
1302		 * new stat data found, but object may have old items
1303		 * (directories and symlinks)
1304		 */
1305		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1306
1307		inode->i_mode = sd_v2_mode(sd);
1308		set_nlink(inode, sd_v2_nlink(sd));
1309		i_uid_write(inode, sd_v2_uid(sd));
1310		inode->i_size = sd_v2_size(sd);
1311		i_gid_write(inode, sd_v2_gid(sd));
1312		inode_set_mtime(inode, sd_v2_mtime(sd), 0);
1313		inode_set_atime(inode, sd_v2_atime(sd), 0);
1314		inode_set_ctime(inode, sd_v2_ctime(sd), 0);
 
 
 
1315		inode->i_blocks = sd_v2_blocks(sd);
1316		rdev = sd_v2_rdev(sd);
1317		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1318			inode->i_generation =
1319			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1320		else
1321			inode->i_generation = sd_v2_generation(sd);
1322
1323		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1324			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1325		else
1326			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1327		REISERFS_I(inode)->i_first_direct_byte = 0;
1328		set_inode_sd_version(inode, STAT_DATA_V2);
1329		inode_set_bytes(inode,
1330				to_real_used_space(inode, inode->i_blocks,
1331						   SD_V2_SIZE));
1332		/*
1333		 * read persistent inode attributes from sd and initialise
1334		 * generic inode flags from them
1335		 */
1336		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1337		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1338	}
1339
1340	pathrelse(path);
1341	if (S_ISREG(inode->i_mode)) {
1342		inode->i_op = &reiserfs_file_inode_operations;
1343		inode->i_fop = &reiserfs_file_operations;
1344		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1345	} else if (S_ISDIR(inode->i_mode)) {
1346		inode->i_op = &reiserfs_dir_inode_operations;
1347		inode->i_fop = &reiserfs_dir_operations;
1348	} else if (S_ISLNK(inode->i_mode)) {
1349		inode->i_op = &reiserfs_symlink_inode_operations;
1350		inode_nohighmem(inode);
1351		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1352	} else {
1353		inode->i_blocks = 0;
1354		inode->i_op = &reiserfs_special_inode_operations;
1355		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1356	}
1357}
1358
1359/* update new stat data with inode fields */
1360static void inode2sd(void *sd, struct inode *inode, loff_t size)
1361{
1362	struct stat_data *sd_v2 = (struct stat_data *)sd;
1363
1364	set_sd_v2_mode(sd_v2, inode->i_mode);
1365	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1366	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1367	set_sd_v2_size(sd_v2, size);
1368	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1369	set_sd_v2_mtime(sd_v2, inode_get_mtime_sec(inode));
1370	set_sd_v2_atime(sd_v2, inode_get_atime_sec(inode));
1371	set_sd_v2_ctime(sd_v2, inode_get_ctime_sec(inode));
1372	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1373	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1374		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1375	else
1376		set_sd_v2_generation(sd_v2, inode->i_generation);
1377	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1378}
1379
1380/* used to copy inode's fields to old stat data */
1381static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1382{
1383	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1384
1385	set_sd_v1_mode(sd_v1, inode->i_mode);
1386	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1387	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1388	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1389	set_sd_v1_size(sd_v1, size);
1390	set_sd_v1_atime(sd_v1, inode_get_atime_sec(inode));
1391	set_sd_v1_ctime(sd_v1, inode_get_ctime_sec(inode));
1392	set_sd_v1_mtime(sd_v1, inode_get_mtime_sec(inode));
1393
1394	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1395		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1396	else
1397		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1398
1399	/* Sigh. i_first_direct_byte is back */
1400	set_sd_v1_first_direct_byte(sd_v1,
1401				    REISERFS_I(inode)->i_first_direct_byte);
1402}
1403
1404/*
1405 * NOTE, you must prepare the buffer head before sending it here,
1406 * and then log it after the call
1407 */
1408static void update_stat_data(struct treepath *path, struct inode *inode,
1409			     loff_t size)
1410{
1411	struct buffer_head *bh;
1412	struct item_head *ih;
1413
1414	bh = PATH_PLAST_BUFFER(path);
1415	ih = tp_item_head(path);
1416
1417	if (!is_statdata_le_ih(ih))
1418		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1419			       INODE_PKEY(inode), ih);
1420
1421	/* path points to old stat data */
1422	if (stat_data_v1(ih)) {
1423		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1424	} else {
1425		inode2sd(ih_item_body(bh, ih), inode, size);
1426	}
1427
1428	return;
1429}
1430
1431void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1432			     struct inode *inode, loff_t size)
1433{
1434	struct cpu_key key;
1435	INITIALIZE_PATH(path);
1436	struct buffer_head *bh;
1437	int fs_gen;
1438	struct item_head *ih, tmp_ih;
1439	int retval;
1440
1441	BUG_ON(!th->t_trans_id);
1442
1443	/* key type is unimportant */
1444	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1445
1446	for (;;) {
1447		int pos;
1448		/* look for the object's stat data */
1449		retval = search_item(inode->i_sb, &key, &path);
1450		if (retval == IO_ERROR) {
1451			reiserfs_error(inode->i_sb, "vs-13050",
1452				       "i/o failure occurred trying to "
1453				       "update %K stat data", &key);
1454			return;
1455		}
1456		if (retval == ITEM_NOT_FOUND) {
1457			pos = PATH_LAST_POSITION(&path);
1458			pathrelse(&path);
1459			if (inode->i_nlink == 0) {
1460				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1461				return;
1462			}
1463			reiserfs_warning(inode->i_sb, "vs-13060",
1464					 "stat data of object %k (nlink == %d) "
1465					 "not found (pos %d)",
1466					 INODE_PKEY(inode), inode->i_nlink,
1467					 pos);
1468			reiserfs_check_path(&path);
1469			return;
1470		}
1471
1472		/*
1473		 * sigh, prepare_for_journal might schedule.  When it
1474		 * schedules the FS might change.  We have to detect that,
1475		 * and loop back to the search if the stat data item has moved
1476		 */
1477		bh = get_last_bh(&path);
1478		ih = tp_item_head(&path);
1479		copy_item_head(&tmp_ih, ih);
1480		fs_gen = get_generation(inode->i_sb);
1481		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1482
1483		/* Stat_data item has been moved after scheduling. */
1484		if (fs_changed(fs_gen, inode->i_sb)
1485		    && item_moved(&tmp_ih, &path)) {
1486			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1487			continue;
1488		}
1489		break;
1490	}
1491	update_stat_data(&path, inode, size);
1492	journal_mark_dirty(th, bh);
1493	pathrelse(&path);
1494	return;
1495}
1496
1497/*
1498 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1499 * does a make_bad_inode when things go wrong.  But, we need to make sure
1500 * and clear the key in the private portion of the inode, otherwise a
1501 * corresponding iput might try to delete whatever object the inode last
1502 * represented.
1503 */
1504static void reiserfs_make_bad_inode(struct inode *inode)
1505{
1506	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1507	make_bad_inode(inode);
1508}
1509
1510/*
1511 * initially this function was derived from minix or ext2's analog and
1512 * evolved as the prototype did
1513 */
1514int reiserfs_init_locked_inode(struct inode *inode, void *p)
1515{
1516	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1517	inode->i_ino = args->objectid;
1518	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1519	return 0;
1520}
1521
1522/*
1523 * looks for stat data in the tree, and fills up the fields of in-core
1524 * inode stat data fields
1525 */
1526void reiserfs_read_locked_inode(struct inode *inode,
1527				struct reiserfs_iget_args *args)
1528{
1529	INITIALIZE_PATH(path_to_sd);
1530	struct cpu_key key;
1531	unsigned long dirino;
1532	int retval;
1533
1534	dirino = args->dirid;
1535
1536	/*
1537	 * set version 1, version 2 could be used too, because stat data
1538	 * key is the same in both versions
1539	 */
1540	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1541
1542	/* look for the object's stat data */
1543	retval = search_item(inode->i_sb, &key, &path_to_sd);
1544	if (retval == IO_ERROR) {
1545		reiserfs_error(inode->i_sb, "vs-13070",
1546			       "i/o failure occurred trying to find "
1547			       "stat data of %K", &key);
1548		reiserfs_make_bad_inode(inode);
1549		return;
1550	}
1551
1552	/* a stale NFS handle can trigger this without it being an error */
1553	if (retval != ITEM_FOUND) {
1554		pathrelse(&path_to_sd);
1555		reiserfs_make_bad_inode(inode);
1556		clear_nlink(inode);
1557		return;
1558	}
1559
1560	init_inode(inode, &path_to_sd);
1561
1562	/*
1563	 * It is possible that knfsd is trying to access inode of a file
1564	 * that is being removed from the disk by some other thread. As we
1565	 * update sd on unlink all that is required is to check for nlink
1566	 * here. This bug was first found by Sizif when debugging
1567	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1568	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1569
1570	 * More logical fix would require changes in fs/inode.c:iput() to
1571	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1572	 * in iget() to return NULL if I_FREEING inode is found in
1573	 * hash-table.
1574	 */
1575
1576	/*
1577	 * Currently there is one place where it's ok to meet inode with
1578	 * nlink==0: processing of open-unlinked and half-truncated files
1579	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1580	 */
1581	if ((inode->i_nlink == 0) &&
1582	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1583		reiserfs_warning(inode->i_sb, "vs-13075",
1584				 "dead inode read from disk %K. "
1585				 "This is likely to be race with knfsd. Ignore",
1586				 &key);
1587		reiserfs_make_bad_inode(inode);
1588	}
1589
1590	/* init inode should be relsing */
1591	reiserfs_check_path(&path_to_sd);
1592
1593	/*
1594	 * Stat data v1 doesn't support ACLs.
1595	 */
1596	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1597		cache_no_acl(inode);
1598}
1599
1600/*
1601 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1602 *
1603 * @inode:    inode from hash table to check
1604 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1605 *
1606 * This function is called by iget5_locked() to distinguish reiserfs inodes
1607 * having the same inode numbers. Such inodes can only exist due to some
1608 * error condition. One of them should be bad. Inodes with identical
1609 * inode numbers (objectids) are distinguished by parent directory ids.
1610 *
1611 */
1612int reiserfs_find_actor(struct inode *inode, void *opaque)
1613{
1614	struct reiserfs_iget_args *args;
1615
1616	args = opaque;
1617	/* args is already in CPU order */
1618	return (inode->i_ino == args->objectid) &&
1619	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1620}
1621
1622struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1623{
1624	struct inode *inode;
1625	struct reiserfs_iget_args args;
1626	int depth;
1627
1628	args.objectid = key->on_disk_key.k_objectid;
1629	args.dirid = key->on_disk_key.k_dir_id;
1630	depth = reiserfs_write_unlock_nested(s);
1631	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1632			     reiserfs_find_actor, reiserfs_init_locked_inode,
1633			     (void *)(&args));
1634	reiserfs_write_lock_nested(s, depth);
1635	if (!inode)
1636		return ERR_PTR(-ENOMEM);
1637
1638	if (inode->i_state & I_NEW) {
1639		reiserfs_read_locked_inode(inode, &args);
1640		unlock_new_inode(inode);
1641	}
1642
1643	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1644		/* either due to i/o error or a stale NFS handle */
1645		iput(inode);
1646		inode = NULL;
1647	}
1648	return inode;
1649}
1650
1651static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1652	u32 objectid, u32 dir_id, u32 generation)
1653
1654{
1655	struct cpu_key key;
1656	struct inode *inode;
1657
1658	key.on_disk_key.k_objectid = objectid;
1659	key.on_disk_key.k_dir_id = dir_id;
1660	reiserfs_write_lock(sb);
1661	inode = reiserfs_iget(sb, &key);
1662	if (inode && !IS_ERR(inode) && generation != 0 &&
1663	    generation != inode->i_generation) {
1664		iput(inode);
1665		inode = NULL;
1666	}
1667	reiserfs_write_unlock(sb);
1668
1669	return d_obtain_alias(inode);
1670}
1671
1672struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1673		int fh_len, int fh_type)
1674{
1675	/*
1676	 * fhtype happens to reflect the number of u32s encoded.
1677	 * due to a bug in earlier code, fhtype might indicate there
1678	 * are more u32s then actually fitted.
1679	 * so if fhtype seems to be more than len, reduce fhtype.
1680	 * Valid types are:
1681	 *   2 - objectid + dir_id - legacy support
1682	 *   3 - objectid + dir_id + generation
1683	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1684	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1685	 *   6 - as above plus generation of directory
1686	 * 6 does not fit in NFSv2 handles
1687	 */
1688	if (fh_type > fh_len) {
1689		if (fh_type != 6 || fh_len != 5)
1690			reiserfs_warning(sb, "reiserfs-13077",
1691				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1692				fh_type, fh_len);
1693		fh_type = fh_len;
1694	}
1695	if (fh_len < 2)
1696		return NULL;
1697
1698	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1699		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1700}
1701
1702struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1703		int fh_len, int fh_type)
1704{
1705	if (fh_type > fh_len)
1706		fh_type = fh_len;
1707	if (fh_type < 4)
1708		return NULL;
1709
1710	return reiserfs_get_dentry(sb,
1711		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1712		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1713		(fh_type == 6) ? fid->raw[5] : 0);
1714}
1715
1716int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1717		       struct inode *parent)
1718{
1719	int maxlen = *lenp;
1720
1721	if (parent && (maxlen < 5)) {
1722		*lenp = 5;
1723		return FILEID_INVALID;
1724	} else if (maxlen < 3) {
1725		*lenp = 3;
1726		return FILEID_INVALID;
1727	}
1728
1729	data[0] = inode->i_ino;
1730	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1731	data[2] = inode->i_generation;
1732	*lenp = 3;
1733	if (parent) {
1734		data[3] = parent->i_ino;
1735		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1736		*lenp = 5;
1737		if (maxlen >= 6) {
1738			data[5] = parent->i_generation;
1739			*lenp = 6;
1740		}
1741	}
1742	return *lenp;
1743}
1744
1745/*
1746 * looks for stat data, then copies fields to it, marks the buffer
1747 * containing stat data as dirty
1748 */
1749/*
1750 * reiserfs inodes are never really dirty, since the dirty inode call
1751 * always logs them.  This call allows the VFS inode marking routines
1752 * to properly mark inodes for datasync and such, but only actually
1753 * does something when called for a synchronous update.
1754 */
1755int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1756{
1757	struct reiserfs_transaction_handle th;
1758	int jbegin_count = 1;
1759
1760	if (sb_rdonly(inode->i_sb))
1761		return -EROFS;
1762	/*
1763	 * memory pressure can sometimes initiate write_inode calls with
1764	 * sync == 1,
1765	 * these cases are just when the system needs ram, not when the
1766	 * inode needs to reach disk for safety, and they can safely be
1767	 * ignored because the altered inode has already been logged.
1768	 */
1769	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1770		reiserfs_write_lock(inode->i_sb);
1771		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1772			reiserfs_update_sd(&th, inode);
1773			journal_end_sync(&th);
1774		}
1775		reiserfs_write_unlock(inode->i_sb);
1776	}
1777	return 0;
1778}
1779
1780/*
1781 * stat data of new object is inserted already, this inserts the item
1782 * containing "." and ".." entries
1783 */
1784static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1785				  struct inode *inode,
1786				  struct item_head *ih, struct treepath *path,
1787				  struct inode *dir)
1788{
1789	struct super_block *sb = th->t_super;
1790	char empty_dir[EMPTY_DIR_SIZE];
1791	char *body = empty_dir;
1792	struct cpu_key key;
1793	int retval;
1794
1795	BUG_ON(!th->t_trans_id);
1796
1797	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1798		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1799		      TYPE_DIRENTRY, 3 /*key length */ );
1800
1801	/*
1802	 * compose item head for new item. Directories consist of items of
1803	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1804	 * is done by reiserfs_new_inode
1805	 */
1806	if (old_format_only(sb)) {
1807		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1808				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1809
1810		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1811				       ih->ih_key.k_objectid,
1812				       INODE_PKEY(dir)->k_dir_id,
1813				       INODE_PKEY(dir)->k_objectid);
1814	} else {
1815		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1816				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1817
1818		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1819				    ih->ih_key.k_objectid,
1820				    INODE_PKEY(dir)->k_dir_id,
1821				    INODE_PKEY(dir)->k_objectid);
1822	}
1823
1824	/* look for place in the tree for new item */
1825	retval = search_item(sb, &key, path);
1826	if (retval == IO_ERROR) {
1827		reiserfs_error(sb, "vs-13080",
1828			       "i/o failure occurred creating new directory");
1829		return -EIO;
1830	}
1831	if (retval == ITEM_FOUND) {
1832		pathrelse(path);
1833		reiserfs_warning(sb, "vs-13070",
1834				 "object with this key exists (%k)",
1835				 &(ih->ih_key));
1836		return -EEXIST;
1837	}
1838
1839	/* insert item, that is empty directory item */
1840	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1841}
1842
1843/*
1844 * stat data of object has been inserted, this inserts the item
1845 * containing the body of symlink
1846 */
1847static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1848				struct inode *inode,
1849				struct item_head *ih,
1850				struct treepath *path, const char *symname,
1851				int item_len)
1852{
1853	struct super_block *sb = th->t_super;
1854	struct cpu_key key;
1855	int retval;
1856
1857	BUG_ON(!th->t_trans_id);
1858
1859	_make_cpu_key(&key, KEY_FORMAT_3_5,
1860		      le32_to_cpu(ih->ih_key.k_dir_id),
1861		      le32_to_cpu(ih->ih_key.k_objectid),
1862		      1, TYPE_DIRECT, 3 /*key length */ );
1863
1864	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1865			  0 /*free_space */ );
1866
1867	/* look for place in the tree for new item */
1868	retval = search_item(sb, &key, path);
1869	if (retval == IO_ERROR) {
1870		reiserfs_error(sb, "vs-13080",
1871			       "i/o failure occurred creating new symlink");
1872		return -EIO;
1873	}
1874	if (retval == ITEM_FOUND) {
1875		pathrelse(path);
1876		reiserfs_warning(sb, "vs-13080",
1877				 "object with this key exists (%k)",
1878				 &(ih->ih_key));
1879		return -EEXIST;
1880	}
1881
1882	/* insert item, that is body of symlink */
1883	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1884}
1885
1886/*
1887 * inserts the stat data into the tree, and then calls
1888 * reiserfs_new_directory (to insert ".", ".." item if new object is
1889 * directory) or reiserfs_new_symlink (to insert symlink body if new
1890 * object is symlink) or nothing (if new object is regular file)
1891
1892 * NOTE! uid and gid must already be set in the inode.  If we return
1893 * non-zero due to an error, we have to drop the quota previously allocated
1894 * for the fresh inode.  This can only be done outside a transaction, so
1895 * if we return non-zero, we also end the transaction.
1896 *
1897 * @th: active transaction handle
1898 * @dir: parent directory for new inode
1899 * @mode: mode of new inode
1900 * @symname: symlink contents if inode is symlink
1901 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1902 *         symlinks
1903 * @inode: inode to be filled
1904 * @security: optional security context to associate with this inode
1905 */
1906int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1907		       struct inode *dir, umode_t mode, const char *symname,
1908		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1909		          strlen (symname) for symlinks) */
1910		       loff_t i_size, struct dentry *dentry,
1911		       struct inode *inode,
1912		       struct reiserfs_security_handle *security)
1913{
1914	struct super_block *sb = dir->i_sb;
1915	struct reiserfs_iget_args args;
1916	INITIALIZE_PATH(path_to_key);
1917	struct cpu_key key;
1918	struct item_head ih;
1919	struct stat_data sd;
1920	int retval;
1921	int err;
1922	int depth;
1923
1924	BUG_ON(!th->t_trans_id);
1925
1926	depth = reiserfs_write_unlock_nested(sb);
1927	err = dquot_alloc_inode(inode);
1928	reiserfs_write_lock_nested(sb, depth);
1929	if (err)
1930		goto out_end_trans;
1931	if (!dir->i_nlink) {
1932		err = -EPERM;
1933		goto out_bad_inode;
1934	}
1935
1936	/* item head of new item */
1937	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1938	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1939	if (!ih.ih_key.k_objectid) {
1940		err = -ENOMEM;
1941		goto out_bad_inode;
1942	}
1943	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1944	if (old_format_only(sb))
1945		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1946				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1947	else
1948		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1949				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1950	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1951	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1952
1953	depth = reiserfs_write_unlock_nested(inode->i_sb);
1954	err = insert_inode_locked4(inode, args.objectid,
1955			     reiserfs_find_actor, &args);
1956	reiserfs_write_lock_nested(inode->i_sb, depth);
1957	if (err) {
1958		err = -EINVAL;
1959		goto out_bad_inode;
1960	}
1961
1962	if (old_format_only(sb))
1963		/*
1964		 * not a perfect generation count, as object ids can be reused,
1965		 * but this is as good as reiserfs can do right now.
1966		 * note that the private part of inode isn't filled in yet,
1967		 * we have to use the directory.
1968		 */
1969		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1970	else
1971#if defined( USE_INODE_GENERATION_COUNTER )
1972		inode->i_generation =
1973		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1974#else
1975		inode->i_generation = ++event;
1976#endif
1977
1978	/* fill stat data */
1979	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1980
1981	/* uid and gid must already be set by the caller for quota init */
1982
1983	simple_inode_init_ts(inode);
1984	inode->i_size = i_size;
1985	inode->i_blocks = 0;
1986	inode->i_bytes = 0;
1987	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1988	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1989
1990	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1991	REISERFS_I(inode)->i_flags = 0;
1992	REISERFS_I(inode)->i_prealloc_block = 0;
1993	REISERFS_I(inode)->i_prealloc_count = 0;
1994	REISERFS_I(inode)->i_trans_id = 0;
1995	REISERFS_I(inode)->i_jl = NULL;
1996	REISERFS_I(inode)->i_attrs =
1997	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1998	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1999	reiserfs_init_xattr_rwsem(inode);
2000
2001	/* key to search for correct place for new stat data */
2002	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2003		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2004		      TYPE_STAT_DATA, 3 /*key length */ );
2005
2006	/* find proper place for inserting of stat data */
2007	retval = search_item(sb, &key, &path_to_key);
2008	if (retval == IO_ERROR) {
2009		err = -EIO;
2010		goto out_bad_inode;
2011	}
2012	if (retval == ITEM_FOUND) {
2013		pathrelse(&path_to_key);
2014		err = -EEXIST;
2015		goto out_bad_inode;
2016	}
2017	if (old_format_only(sb)) {
2018		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2019		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2020			pathrelse(&path_to_key);
2021			err = -EINVAL;
2022			goto out_bad_inode;
2023		}
2024		inode2sd_v1(&sd, inode, inode->i_size);
2025	} else {
2026		inode2sd(&sd, inode, inode->i_size);
2027	}
2028	/*
2029	 * store in in-core inode the key of stat data and version all
2030	 * object items will have (directory items will have old offset
2031	 * format, other new objects will consist of new items)
2032	 */
2033	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2034		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2035	else
2036		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2037	if (old_format_only(sb))
2038		set_inode_sd_version(inode, STAT_DATA_V1);
2039	else
2040		set_inode_sd_version(inode, STAT_DATA_V2);
2041
2042	/* insert the stat data into the tree */
2043#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2044	if (REISERFS_I(dir)->new_packing_locality)
2045		th->displace_new_blocks = 1;
2046#endif
2047	retval =
2048	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2049				 (char *)(&sd));
2050	if (retval) {
2051		err = retval;
2052		reiserfs_check_path(&path_to_key);
2053		goto out_bad_inode;
2054	}
2055#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2056	if (!th->displace_new_blocks)
2057		REISERFS_I(dir)->new_packing_locality = 0;
2058#endif
2059	if (S_ISDIR(mode)) {
2060		/* insert item with "." and ".." */
2061		retval =
2062		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2063	}
2064
2065	if (S_ISLNK(mode)) {
2066		/* insert body of symlink */
2067		if (!old_format_only(sb))
2068			i_size = ROUND_UP(i_size);
2069		retval =
2070		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2071					 i_size);
2072	}
2073	if (retval) {
2074		err = retval;
2075		reiserfs_check_path(&path_to_key);
2076		journal_end(th);
2077		goto out_inserted_sd;
2078	}
2079
2080	/*
2081	 * Mark it private if we're creating the privroot
2082	 * or something under it.
2083	 */
2084	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2085		reiserfs_init_priv_inode(inode);
 
 
2086
2087	if (reiserfs_posixacl(inode->i_sb)) {
2088		reiserfs_write_unlock(inode->i_sb);
2089		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2090		reiserfs_write_lock(inode->i_sb);
2091		if (retval) {
2092			err = retval;
2093			reiserfs_check_path(&path_to_key);
2094			journal_end(th);
2095			goto out_inserted_sd;
2096		}
2097	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2098		reiserfs_warning(inode->i_sb, "jdm-13090",
2099				 "ACLs aren't enabled in the fs, "
2100				 "but vfs thinks they are!");
2101	}
2102
2103	if (security->name) {
2104		reiserfs_write_unlock(inode->i_sb);
2105		retval = reiserfs_security_write(th, inode, security);
2106		reiserfs_write_lock(inode->i_sb);
2107		if (retval) {
2108			err = retval;
2109			reiserfs_check_path(&path_to_key);
2110			retval = journal_end(th);
2111			if (retval)
2112				err = retval;
2113			goto out_inserted_sd;
2114		}
2115	}
2116
2117	reiserfs_update_sd(th, inode);
2118	reiserfs_check_path(&path_to_key);
2119
2120	return 0;
2121
2122out_bad_inode:
2123	/* Invalidate the object, nothing was inserted yet */
2124	INODE_PKEY(inode)->k_objectid = 0;
2125
2126	/* Quota change must be inside a transaction for journaling */
2127	depth = reiserfs_write_unlock_nested(inode->i_sb);
2128	dquot_free_inode(inode);
2129	reiserfs_write_lock_nested(inode->i_sb, depth);
2130
2131out_end_trans:
2132	journal_end(th);
2133	/*
2134	 * Drop can be outside and it needs more credits so it's better
2135	 * to have it outside
2136	 */
2137	depth = reiserfs_write_unlock_nested(inode->i_sb);
2138	dquot_drop(inode);
2139	reiserfs_write_lock_nested(inode->i_sb, depth);
2140	inode->i_flags |= S_NOQUOTA;
2141	make_bad_inode(inode);
2142
2143out_inserted_sd:
2144	clear_nlink(inode);
2145	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2146	if (inode->i_state & I_NEW)
2147		unlock_new_inode(inode);
2148	iput(inode);
2149	return err;
2150}
2151
2152/*
2153 * finds the tail page in the page cache,
2154 * reads the last block in.
2155 *
2156 * On success, page_result is set to a locked, pinned page, and bh_result
2157 * is set to an up to date buffer for the last block in the file.  returns 0.
2158 *
2159 * tail conversion is not done, so bh_result might not be valid for writing
2160 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2161 * trying to write the block.
2162 *
2163 * on failure, nonzero is returned, page_result and bh_result are untouched.
2164 */
2165static int grab_tail_page(struct inode *inode,
2166			  struct page **page_result,
2167			  struct buffer_head **bh_result)
2168{
2169
2170	/*
2171	 * we want the page with the last byte in the file,
2172	 * not the page that will hold the next byte for appending
2173	 */
2174	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2175	unsigned long pos = 0;
2176	unsigned long start = 0;
2177	unsigned long blocksize = inode->i_sb->s_blocksize;
2178	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2179	struct buffer_head *bh;
2180	struct buffer_head *head;
2181	struct page *page;
2182	int error;
2183
2184	/*
2185	 * we know that we are only called with inode->i_size > 0.
2186	 * we also know that a file tail can never be as big as a block
2187	 * If i_size % blocksize == 0, our file is currently block aligned
2188	 * and it won't need converting or zeroing after a truncate.
2189	 */
2190	if ((offset & (blocksize - 1)) == 0) {
2191		return -ENOENT;
2192	}
2193	page = grab_cache_page(inode->i_mapping, index);
2194	error = -ENOMEM;
2195	if (!page) {
2196		goto out;
2197	}
2198	/* start within the page of the last block in the file */
2199	start = (offset / blocksize) * blocksize;
2200
2201	error = __block_write_begin(page, start, offset - start,
2202				    reiserfs_get_block_create_0);
2203	if (error)
2204		goto unlock;
2205
2206	head = page_buffers(page);
2207	bh = head;
2208	do {
2209		if (pos >= start) {
2210			break;
2211		}
2212		bh = bh->b_this_page;
2213		pos += blocksize;
2214	} while (bh != head);
2215
2216	if (!buffer_uptodate(bh)) {
2217		/*
2218		 * note, this should never happen, prepare_write should be
2219		 * taking care of this for us.  If the buffer isn't up to
2220		 * date, I've screwed up the code to find the buffer, or the
2221		 * code to call prepare_write
2222		 */
2223		reiserfs_error(inode->i_sb, "clm-6000",
2224			       "error reading block %lu", bh->b_blocknr);
2225		error = -EIO;
2226		goto unlock;
2227	}
2228	*bh_result = bh;
2229	*page_result = page;
2230
2231out:
2232	return error;
2233
2234unlock:
2235	unlock_page(page);
2236	put_page(page);
2237	return error;
2238}
2239
2240/*
2241 * vfs version of truncate file.  Must NOT be called with
2242 * a transaction already started.
2243 *
2244 * some code taken from block_truncate_page
2245 */
2246int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2247{
2248	struct reiserfs_transaction_handle th;
2249	/* we want the offset for the first byte after the end of the file */
2250	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2251	unsigned blocksize = inode->i_sb->s_blocksize;
2252	unsigned length;
2253	struct page *page = NULL;
2254	int error;
2255	struct buffer_head *bh = NULL;
2256	int err2;
2257
2258	reiserfs_write_lock(inode->i_sb);
2259
2260	if (inode->i_size > 0) {
2261		error = grab_tail_page(inode, &page, &bh);
2262		if (error) {
2263			/*
2264			 * -ENOENT means we truncated past the end of the
2265			 * file, and get_block_create_0 could not find a
2266			 * block to read in, which is ok.
2267			 */
2268			if (error != -ENOENT)
2269				reiserfs_error(inode->i_sb, "clm-6001",
2270					       "grab_tail_page failed %d",
2271					       error);
2272			page = NULL;
2273			bh = NULL;
2274		}
2275	}
2276
2277	/*
2278	 * so, if page != NULL, we have a buffer head for the offset at
2279	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2280	 * then we have an unformatted node.  Otherwise, we have a direct item,
2281	 * and no zeroing is required on disk.  We zero after the truncate,
2282	 * because the truncate might pack the item anyway
2283	 * (it will unmap bh if it packs).
2284	 *
2285	 * it is enough to reserve space in transaction for 2 balancings:
2286	 * one for "save" link adding and another for the first
2287	 * cut_from_item. 1 is for update_sd
2288	 */
2289	error = journal_begin(&th, inode->i_sb,
2290			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2291	if (error)
2292		goto out;
2293	reiserfs_update_inode_transaction(inode);
2294	if (update_timestamps)
2295		/*
2296		 * we are doing real truncate: if the system crashes
2297		 * before the last transaction of truncating gets committed
2298		 * - on reboot the file either appears truncated properly
2299		 * or not truncated at all
2300		 */
2301		add_save_link(&th, inode, 1);
2302	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2303	error = journal_end(&th);
2304	if (error)
2305		goto out;
2306
2307	/* check reiserfs_do_truncate after ending the transaction */
2308	if (err2) {
2309		error = err2;
2310  		goto out;
2311	}
2312	
2313	if (update_timestamps) {
2314		error = remove_save_link(inode, 1 /* truncate */);
2315		if (error)
2316			goto out;
2317	}
2318
2319	if (page) {
2320		length = offset & (blocksize - 1);
2321		/* if we are not on a block boundary */
2322		if (length) {
2323			length = blocksize - length;
2324			zero_user(page, offset, length);
2325			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2326				mark_buffer_dirty(bh);
2327			}
2328		}
2329		unlock_page(page);
2330		put_page(page);
2331	}
2332
2333	reiserfs_write_unlock(inode->i_sb);
2334
2335	return 0;
2336out:
2337	if (page) {
2338		unlock_page(page);
2339		put_page(page);
2340	}
2341
2342	reiserfs_write_unlock(inode->i_sb);
2343
2344	return error;
2345}
2346
2347static int map_block_for_writepage(struct inode *inode,
2348				   struct buffer_head *bh_result,
2349				   unsigned long block)
2350{
2351	struct reiserfs_transaction_handle th;
2352	int fs_gen;
2353	struct item_head tmp_ih;
2354	struct item_head *ih;
2355	struct buffer_head *bh;
2356	__le32 *item;
2357	struct cpu_key key;
2358	INITIALIZE_PATH(path);
2359	int pos_in_item;
2360	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2361	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2362	int retval;
2363	int use_get_block = 0;
2364	int bytes_copied = 0;
2365	int copy_size;
2366	int trans_running = 0;
2367
2368	/*
2369	 * catch places below that try to log something without
2370	 * starting a trans
2371	 */
2372	th.t_trans_id = 0;
2373
2374	if (!buffer_uptodate(bh_result)) {
2375		return -EIO;
2376	}
2377
2378	kmap(bh_result->b_page);
2379start_over:
2380	reiserfs_write_lock(inode->i_sb);
2381	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2382
2383research:
2384	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2385	if (retval != POSITION_FOUND) {
2386		use_get_block = 1;
2387		goto out;
2388	}
2389
2390	bh = get_last_bh(&path);
2391	ih = tp_item_head(&path);
2392	item = tp_item_body(&path);
2393	pos_in_item = path.pos_in_item;
2394
2395	/* we've found an unformatted node */
2396	if (indirect_item_found(retval, ih)) {
2397		if (bytes_copied > 0) {
2398			reiserfs_warning(inode->i_sb, "clm-6002",
2399					 "bytes_copied %d", bytes_copied);
2400		}
2401		if (!get_block_num(item, pos_in_item)) {
2402			/* crap, we are writing to a hole */
2403			use_get_block = 1;
2404			goto out;
2405		}
2406		set_block_dev_mapped(bh_result,
2407				     get_block_num(item, pos_in_item), inode);
2408	} else if (is_direct_le_ih(ih)) {
2409		char *p;
2410		p = page_address(bh_result->b_page);
2411		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2412		copy_size = ih_item_len(ih) - pos_in_item;
2413
2414		fs_gen = get_generation(inode->i_sb);
2415		copy_item_head(&tmp_ih, ih);
2416
2417		if (!trans_running) {
2418			/* vs-3050 is gone, no need to drop the path */
2419			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2420			if (retval)
2421				goto out;
2422			reiserfs_update_inode_transaction(inode);
2423			trans_running = 1;
2424			if (fs_changed(fs_gen, inode->i_sb)
2425			    && item_moved(&tmp_ih, &path)) {
2426				reiserfs_restore_prepared_buffer(inode->i_sb,
2427								 bh);
2428				goto research;
2429			}
2430		}
2431
2432		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2433
2434		if (fs_changed(fs_gen, inode->i_sb)
2435		    && item_moved(&tmp_ih, &path)) {
2436			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2437			goto research;
2438		}
2439
2440		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2441		       copy_size);
2442
2443		journal_mark_dirty(&th, bh);
2444		bytes_copied += copy_size;
2445		set_block_dev_mapped(bh_result, 0, inode);
2446
2447		/* are there still bytes left? */
2448		if (bytes_copied < bh_result->b_size &&
2449		    (byte_offset + bytes_copied) < inode->i_size) {
2450			set_cpu_key_k_offset(&key,
2451					     cpu_key_k_offset(&key) +
2452					     copy_size);
2453			goto research;
2454		}
2455	} else {
2456		reiserfs_warning(inode->i_sb, "clm-6003",
2457				 "bad item inode %lu", inode->i_ino);
2458		retval = -EIO;
2459		goto out;
2460	}
2461	retval = 0;
2462
2463out:
2464	pathrelse(&path);
2465	if (trans_running) {
2466		int err = journal_end(&th);
2467		if (err)
2468			retval = err;
2469		trans_running = 0;
2470	}
2471	reiserfs_write_unlock(inode->i_sb);
2472
2473	/* this is where we fill in holes in the file. */
2474	if (use_get_block) {
2475		retval = reiserfs_get_block(inode, block, bh_result,
2476					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2477					    | GET_BLOCK_NO_DANGLE);
2478		if (!retval) {
2479			if (!buffer_mapped(bh_result)
2480			    || bh_result->b_blocknr == 0) {
2481				/* get_block failed to find a mapped unformatted node. */
2482				use_get_block = 0;
2483				goto start_over;
2484			}
2485		}
2486	}
2487	kunmap(bh_result->b_page);
2488
2489	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2490		/*
2491		 * we've copied data from the page into the direct item, so the
2492		 * buffer in the page is now clean, mark it to reflect that.
2493		 */
2494		lock_buffer(bh_result);
2495		clear_buffer_dirty(bh_result);
2496		unlock_buffer(bh_result);
2497	}
2498	return retval;
2499}
2500
2501/*
2502 * mason@suse.com: updated in 2.5.54 to follow the same general io
2503 * start/recovery path as __block_write_full_folio, along with special
2504 * code to handle reiserfs tails.
2505 */
2506static int reiserfs_write_full_folio(struct folio *folio,
2507				    struct writeback_control *wbc)
2508{
2509	struct inode *inode = folio->mapping->host;
2510	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2511	int error = 0;
2512	unsigned long block;
2513	sector_t last_block;
2514	struct buffer_head *head, *bh;
2515	int partial = 0;
2516	int nr = 0;
2517	int checked = folio_test_checked(folio);
2518	struct reiserfs_transaction_handle th;
2519	struct super_block *s = inode->i_sb;
2520	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2521	th.t_trans_id = 0;
2522
2523	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2524	if (checked && (current->flags & PF_MEMALLOC)) {
2525		folio_redirty_for_writepage(wbc, folio);
2526		folio_unlock(folio);
2527		return 0;
2528	}
2529
2530	/*
2531	 * The folio dirty bit is cleared before writepage is called, which
2532	 * means we have to tell create_empty_buffers to make dirty buffers
2533	 * The folio really should be up to date at this point, so tossing
2534	 * in the BH_Uptodate is just a sanity check.
2535	 */
2536	head = folio_buffers(folio);
2537	if (!head)
2538		head = create_empty_buffers(folio, s->s_blocksize,
2539				     (1 << BH_Dirty) | (1 << BH_Uptodate));
 
 
2540
2541	/*
2542	 * last folio in the file, zero out any contents past the
2543	 * last byte in the file
2544	 */
2545	if (folio->index >= end_index) {
2546		unsigned last_offset;
2547
2548		last_offset = inode->i_size & (PAGE_SIZE - 1);
2549		/* no file contents in this folio */
2550		if (folio->index >= end_index + 1 || !last_offset) {
2551			folio_unlock(folio);
2552			return 0;
2553		}
2554		folio_zero_segment(folio, last_offset, folio_size(folio));
2555	}
2556	bh = head;
2557	block = folio->index << (PAGE_SHIFT - s->s_blocksize_bits);
2558	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2559	/* first map all the buffers, logging any direct items we find */
2560	do {
2561		if (block > last_block) {
2562			/*
2563			 * This can happen when the block size is less than
2564			 * the folio size.  The corresponding bytes in the folio
2565			 * were zero filled above
2566			 */
2567			clear_buffer_dirty(bh);
2568			set_buffer_uptodate(bh);
2569		} else if ((checked || buffer_dirty(bh)) &&
2570			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2571			/*
2572			 * not mapped yet, or it points to a direct item, search
2573			 * the btree for the mapping info, and log any direct
2574			 * items found
2575			 */
2576			if ((error = map_block_for_writepage(inode, bh, block))) {
2577				goto fail;
2578			}
2579		}
2580		bh = bh->b_this_page;
2581		block++;
2582	} while (bh != head);
2583
2584	/*
2585	 * we start the transaction after map_block_for_writepage,
2586	 * because it can create holes in the file (an unbounded operation).
2587	 * starting it here, we can make a reliable estimate for how many
2588	 * blocks we're going to log
2589	 */
2590	if (checked) {
2591		folio_clear_checked(folio);
2592		reiserfs_write_lock(s);
2593		error = journal_begin(&th, s, bh_per_page + 1);
2594		if (error) {
2595			reiserfs_write_unlock(s);
2596			goto fail;
2597		}
2598		reiserfs_update_inode_transaction(inode);
2599	}
2600	/* now go through and lock any dirty buffers on the folio */
2601	do {
2602		get_bh(bh);
2603		if (!buffer_mapped(bh))
2604			continue;
2605		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2606			continue;
2607
2608		if (checked) {
2609			reiserfs_prepare_for_journal(s, bh, 1);
2610			journal_mark_dirty(&th, bh);
2611			continue;
2612		}
2613		/*
2614		 * from this point on, we know the buffer is mapped to a
2615		 * real block and not a direct item
2616		 */
2617		if (wbc->sync_mode != WB_SYNC_NONE) {
2618			lock_buffer(bh);
2619		} else {
2620			if (!trylock_buffer(bh)) {
2621				folio_redirty_for_writepage(wbc, folio);
2622				continue;
2623			}
2624		}
2625		if (test_clear_buffer_dirty(bh)) {
2626			mark_buffer_async_write(bh);
2627		} else {
2628			unlock_buffer(bh);
2629		}
2630	} while ((bh = bh->b_this_page) != head);
2631
2632	if (checked) {
2633		error = journal_end(&th);
2634		reiserfs_write_unlock(s);
2635		if (error)
2636			goto fail;
2637	}
2638	BUG_ON(folio_test_writeback(folio));
2639	folio_start_writeback(folio);
2640	folio_unlock(folio);
2641
2642	/*
2643	 * since any buffer might be the only dirty buffer on the folio,
2644	 * the first submit_bh can bring the folio out of writeback.
2645	 * be careful with the buffers.
2646	 */
2647	do {
2648		struct buffer_head *next = bh->b_this_page;
2649		if (buffer_async_write(bh)) {
2650			submit_bh(REQ_OP_WRITE, bh);
2651			nr++;
2652		}
2653		put_bh(bh);
2654		bh = next;
2655	} while (bh != head);
2656
2657	error = 0;
2658done:
2659	if (nr == 0) {
2660		/*
2661		 * if this folio only had a direct item, it is very possible for
2662		 * no io to be required without there being an error.  Or,
2663		 * someone else could have locked them and sent them down the
2664		 * pipe without locking the folio
2665		 */
2666		bh = head;
2667		do {
2668			if (!buffer_uptodate(bh)) {
2669				partial = 1;
2670				break;
2671			}
2672			bh = bh->b_this_page;
2673		} while (bh != head);
2674		if (!partial)
2675			folio_mark_uptodate(folio);
2676		folio_end_writeback(folio);
2677	}
2678	return error;
2679
2680fail:
2681	/*
2682	 * catches various errors, we need to make sure any valid dirty blocks
2683	 * get to the media.  The folio is currently locked and not marked for
2684	 * writeback
2685	 */
2686	folio_clear_uptodate(folio);
2687	bh = head;
2688	do {
2689		get_bh(bh);
2690		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2691			lock_buffer(bh);
2692			mark_buffer_async_write(bh);
2693		} else {
2694			/*
2695			 * clear any dirty bits that might have come from
2696			 * getting attached to a dirty folio
2697			 */
2698			clear_buffer_dirty(bh);
2699		}
2700		bh = bh->b_this_page;
2701	} while (bh != head);
2702	folio_set_error(folio);
2703	BUG_ON(folio_test_writeback(folio));
2704	folio_start_writeback(folio);
2705	folio_unlock(folio);
2706	do {
2707		struct buffer_head *next = bh->b_this_page;
2708		if (buffer_async_write(bh)) {
2709			clear_buffer_dirty(bh);
2710			submit_bh(REQ_OP_WRITE, bh);
2711			nr++;
2712		}
2713		put_bh(bh);
2714		bh = next;
2715	} while (bh != head);
2716	goto done;
2717}
2718
2719static int reiserfs_read_folio(struct file *f, struct folio *folio)
2720{
2721	return block_read_full_folio(folio, reiserfs_get_block);
2722}
2723
2724static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2725{
2726	struct folio *folio = page_folio(page);
2727	struct inode *inode = folio->mapping->host;
2728	reiserfs_wait_on_write_block(inode->i_sb);
2729	return reiserfs_write_full_folio(folio, wbc);
2730}
2731
2732static void reiserfs_truncate_failed_write(struct inode *inode)
2733{
2734	truncate_inode_pages(inode->i_mapping, inode->i_size);
2735	reiserfs_truncate_file(inode, 0);
2736}
2737
2738static int reiserfs_write_begin(struct file *file,
2739				struct address_space *mapping,
2740				loff_t pos, unsigned len,
2741				struct page **pagep, void **fsdata)
2742{
2743	struct inode *inode;
2744	struct page *page;
2745	pgoff_t index;
2746	int ret;
2747	int old_ref = 0;
2748
2749 	inode = mapping->host;
 
 
 
 
 
 
 
2750	index = pos >> PAGE_SHIFT;
2751	page = grab_cache_page_write_begin(mapping, index);
2752	if (!page)
2753		return -ENOMEM;
2754	*pagep = page;
2755
2756	reiserfs_wait_on_write_block(inode->i_sb);
2757	fix_tail_page_for_writing(page);
2758	if (reiserfs_transaction_running(inode->i_sb)) {
2759		struct reiserfs_transaction_handle *th;
2760		th = (struct reiserfs_transaction_handle *)current->
2761		    journal_info;
2762		BUG_ON(!th->t_refcount);
2763		BUG_ON(!th->t_trans_id);
2764		old_ref = th->t_refcount;
2765		th->t_refcount++;
2766	}
2767	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2768	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2769		struct reiserfs_transaction_handle *th = current->journal_info;
2770		/*
2771		 * this gets a little ugly.  If reiserfs_get_block returned an
2772		 * error and left a transacstion running, we've got to close
2773		 * it, and we've got to free handle if it was a persistent
2774		 * transaction.
2775		 *
2776		 * But, if we had nested into an existing transaction, we need
2777		 * to just drop the ref count on the handle.
2778		 *
2779		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2780		 * and it was a persistent trans.  Otherwise, it was nested
2781		 * above.
2782		 */
2783		if (th->t_refcount > old_ref) {
2784			if (old_ref)
2785				th->t_refcount--;
2786			else {
2787				int err;
2788				reiserfs_write_lock(inode->i_sb);
2789				err = reiserfs_end_persistent_transaction(th);
2790				reiserfs_write_unlock(inode->i_sb);
2791				if (err)
2792					ret = err;
2793			}
2794		}
2795	}
2796	if (ret) {
2797		unlock_page(page);
2798		put_page(page);
2799		/* Truncate allocated blocks */
2800		reiserfs_truncate_failed_write(inode);
2801	}
2802	return ret;
2803}
2804
2805int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2806{
2807	struct inode *inode = page->mapping->host;
2808	int ret;
2809	int old_ref = 0;
2810	int depth;
2811
2812	depth = reiserfs_write_unlock_nested(inode->i_sb);
2813	reiserfs_wait_on_write_block(inode->i_sb);
2814	reiserfs_write_lock_nested(inode->i_sb, depth);
2815
2816	fix_tail_page_for_writing(page);
2817	if (reiserfs_transaction_running(inode->i_sb)) {
2818		struct reiserfs_transaction_handle *th;
2819		th = (struct reiserfs_transaction_handle *)current->
2820		    journal_info;
2821		BUG_ON(!th->t_refcount);
2822		BUG_ON(!th->t_trans_id);
2823		old_ref = th->t_refcount;
2824		th->t_refcount++;
2825	}
2826
2827	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2828	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2829		struct reiserfs_transaction_handle *th = current->journal_info;
2830		/*
2831		 * this gets a little ugly.  If reiserfs_get_block returned an
2832		 * error and left a transacstion running, we've got to close
2833		 * it, and we've got to free handle if it was a persistent
2834		 * transaction.
2835		 *
2836		 * But, if we had nested into an existing transaction, we need
2837		 * to just drop the ref count on the handle.
2838		 *
2839		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2840		 * and it was a persistent trans.  Otherwise, it was nested
2841		 * above.
2842		 */
2843		if (th->t_refcount > old_ref) {
2844			if (old_ref)
2845				th->t_refcount--;
2846			else {
2847				int err;
2848				reiserfs_write_lock(inode->i_sb);
2849				err = reiserfs_end_persistent_transaction(th);
2850				reiserfs_write_unlock(inode->i_sb);
2851				if (err)
2852					ret = err;
2853			}
2854		}
2855	}
2856	return ret;
2857
2858}
2859
2860static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2861{
2862	return generic_block_bmap(as, block, reiserfs_bmap);
2863}
2864
2865static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2866			      loff_t pos, unsigned len, unsigned copied,
2867			      struct page *page, void *fsdata)
2868{
2869	struct folio *folio = page_folio(page);
2870	struct inode *inode = page->mapping->host;
2871	int ret = 0;
2872	int update_sd = 0;
2873	struct reiserfs_transaction_handle *th;
2874	unsigned start;
2875	bool locked = false;
2876
 
 
 
2877	reiserfs_wait_on_write_block(inode->i_sb);
2878	if (reiserfs_transaction_running(inode->i_sb))
2879		th = current->journal_info;
2880	else
2881		th = NULL;
2882
2883	start = pos & (PAGE_SIZE - 1);
2884	if (unlikely(copied < len)) {
2885		if (!folio_test_uptodate(folio))
2886			copied = 0;
2887
2888		folio_zero_new_buffers(folio, start + copied, start + len);
2889	}
2890	flush_dcache_folio(folio);
2891
2892	reiserfs_commit_page(inode, page, start, start + copied);
2893
2894	/*
2895	 * generic_commit_write does this for us, but does not update the
2896	 * transaction tracking stuff when the size changes.  So, we have
2897	 * to do the i_size updates here.
2898	 */
2899	if (pos + copied > inode->i_size) {
2900		struct reiserfs_transaction_handle myth;
2901		reiserfs_write_lock(inode->i_sb);
2902		locked = true;
2903		/*
2904		 * If the file have grown beyond the border where it
2905		 * can have a tail, unmark it as needing a tail
2906		 * packing
2907		 */
2908		if ((have_large_tails(inode->i_sb)
2909		     && inode->i_size > i_block_size(inode) * 4)
2910		    || (have_small_tails(inode->i_sb)
2911			&& inode->i_size > i_block_size(inode)))
2912			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2913
2914		ret = journal_begin(&myth, inode->i_sb, 1);
2915		if (ret)
2916			goto journal_error;
2917
2918		reiserfs_update_inode_transaction(inode);
2919		inode->i_size = pos + copied;
2920		/*
2921		 * this will just nest into our transaction.  It's important
2922		 * to use mark_inode_dirty so the inode gets pushed around on
2923		 * the dirty lists, and so that O_SYNC works as expected
2924		 */
2925		mark_inode_dirty(inode);
2926		reiserfs_update_sd(&myth, inode);
2927		update_sd = 1;
2928		ret = journal_end(&myth);
2929		if (ret)
2930			goto journal_error;
2931	}
2932	if (th) {
2933		if (!locked) {
2934			reiserfs_write_lock(inode->i_sb);
2935			locked = true;
2936		}
2937		if (!update_sd)
2938			mark_inode_dirty(inode);
2939		ret = reiserfs_end_persistent_transaction(th);
2940		if (ret)
2941			goto out;
2942	}
2943
2944out:
2945	if (locked)
2946		reiserfs_write_unlock(inode->i_sb);
2947	unlock_page(page);
2948	put_page(page);
2949
2950	if (pos + len > inode->i_size)
2951		reiserfs_truncate_failed_write(inode);
2952
2953	return ret == 0 ? copied : ret;
2954
2955journal_error:
2956	reiserfs_write_unlock(inode->i_sb);
2957	locked = false;
2958	if (th) {
2959		if (!update_sd)
2960			reiserfs_update_sd(th, inode);
2961		ret = reiserfs_end_persistent_transaction(th);
2962	}
2963	goto out;
2964}
2965
2966int reiserfs_commit_write(struct file *f, struct page *page,
2967			  unsigned from, unsigned to)
2968{
2969	struct inode *inode = page->mapping->host;
2970	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2971	int ret = 0;
2972	int update_sd = 0;
2973	struct reiserfs_transaction_handle *th = NULL;
2974	int depth;
2975
2976	depth = reiserfs_write_unlock_nested(inode->i_sb);
2977	reiserfs_wait_on_write_block(inode->i_sb);
2978	reiserfs_write_lock_nested(inode->i_sb, depth);
2979
2980	if (reiserfs_transaction_running(inode->i_sb)) {
2981		th = current->journal_info;
2982	}
2983	reiserfs_commit_page(inode, page, from, to);
2984
2985	/*
2986	 * generic_commit_write does this for us, but does not update the
2987	 * transaction tracking stuff when the size changes.  So, we have
2988	 * to do the i_size updates here.
2989	 */
2990	if (pos > inode->i_size) {
2991		struct reiserfs_transaction_handle myth;
2992		/*
2993		 * If the file have grown beyond the border where it
2994		 * can have a tail, unmark it as needing a tail
2995		 * packing
2996		 */
2997		if ((have_large_tails(inode->i_sb)
2998		     && inode->i_size > i_block_size(inode) * 4)
2999		    || (have_small_tails(inode->i_sb)
3000			&& inode->i_size > i_block_size(inode)))
3001			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3002
3003		ret = journal_begin(&myth, inode->i_sb, 1);
3004		if (ret)
3005			goto journal_error;
3006
3007		reiserfs_update_inode_transaction(inode);
3008		inode->i_size = pos;
3009		/*
3010		 * this will just nest into our transaction.  It's important
3011		 * to use mark_inode_dirty so the inode gets pushed around
3012		 * on the dirty lists, and so that O_SYNC works as expected
3013		 */
3014		mark_inode_dirty(inode);
3015		reiserfs_update_sd(&myth, inode);
3016		update_sd = 1;
3017		ret = journal_end(&myth);
3018		if (ret)
3019			goto journal_error;
3020	}
3021	if (th) {
3022		if (!update_sd)
3023			mark_inode_dirty(inode);
3024		ret = reiserfs_end_persistent_transaction(th);
3025		if (ret)
3026			goto out;
3027	}
3028
3029out:
3030	return ret;
3031
3032journal_error:
3033	if (th) {
3034		if (!update_sd)
3035			reiserfs_update_sd(th, inode);
3036		ret = reiserfs_end_persistent_transaction(th);
3037	}
3038
3039	return ret;
3040}
3041
3042void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3043{
3044	if (reiserfs_attrs(inode->i_sb)) {
3045		if (sd_attrs & REISERFS_SYNC_FL)
3046			inode->i_flags |= S_SYNC;
3047		else
3048			inode->i_flags &= ~S_SYNC;
3049		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3050			inode->i_flags |= S_IMMUTABLE;
3051		else
3052			inode->i_flags &= ~S_IMMUTABLE;
3053		if (sd_attrs & REISERFS_APPEND_FL)
3054			inode->i_flags |= S_APPEND;
3055		else
3056			inode->i_flags &= ~S_APPEND;
3057		if (sd_attrs & REISERFS_NOATIME_FL)
3058			inode->i_flags |= S_NOATIME;
3059		else
3060			inode->i_flags &= ~S_NOATIME;
3061		if (sd_attrs & REISERFS_NOTAIL_FL)
3062			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3063		else
3064			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3065	}
3066}
3067
3068/*
3069 * decide if this buffer needs to stay around for data logging or ordered
3070 * write purposes
3071 */
3072static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3073{
3074	int ret = 1;
3075	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3076
3077	lock_buffer(bh);
3078	spin_lock(&j->j_dirty_buffers_lock);
3079	if (!buffer_mapped(bh)) {
3080		goto free_jh;
3081	}
3082	/*
3083	 * the page is locked, and the only places that log a data buffer
3084	 * also lock the page.
3085	 */
3086	if (reiserfs_file_data_log(inode)) {
3087		/*
3088		 * very conservative, leave the buffer pinned if
3089		 * anyone might need it.
3090		 */
3091		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3092			ret = 0;
3093		}
3094	} else  if (buffer_dirty(bh)) {
3095		struct reiserfs_journal_list *jl;
3096		struct reiserfs_jh *jh = bh->b_private;
3097
3098		/*
3099		 * why is this safe?
3100		 * reiserfs_setattr updates i_size in the on disk
3101		 * stat data before allowing vmtruncate to be called.
3102		 *
3103		 * If buffer was put onto the ordered list for this
3104		 * transaction, we know for sure either this transaction
3105		 * or an older one already has updated i_size on disk,
3106		 * and this ordered data won't be referenced in the file
3107		 * if we crash.
3108		 *
3109		 * if the buffer was put onto the ordered list for an older
3110		 * transaction, we need to leave it around
3111		 */
3112		if (jh && (jl = jh->jl)
3113		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3114			ret = 0;
3115	}
3116free_jh:
3117	if (ret && bh->b_private) {
3118		reiserfs_free_jh(bh);
3119	}
3120	spin_unlock(&j->j_dirty_buffers_lock);
3121	unlock_buffer(bh);
3122	return ret;
3123}
3124
3125/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3126static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3127				    size_t length)
3128{
3129	struct buffer_head *head, *bh, *next;
3130	struct inode *inode = folio->mapping->host;
3131	unsigned int curr_off = 0;
3132	unsigned int stop = offset + length;
3133	int partial_page = (offset || length < folio_size(folio));
3134	int ret = 1;
3135
3136	BUG_ON(!folio_test_locked(folio));
3137
3138	if (!partial_page)
3139		folio_clear_checked(folio);
3140
3141	head = folio_buffers(folio);
3142	if (!head)
3143		goto out;
3144
 
3145	bh = head;
3146	do {
3147		unsigned int next_off = curr_off + bh->b_size;
3148		next = bh->b_this_page;
3149
3150		if (next_off > stop)
3151			goto out;
3152
3153		/*
3154		 * is this block fully invalidated?
3155		 */
3156		if (offset <= curr_off) {
3157			if (invalidate_folio_can_drop(inode, bh))
3158				reiserfs_unmap_buffer(bh);
3159			else
3160				ret = 0;
3161		}
3162		curr_off = next_off;
3163		bh = next;
3164	} while (bh != head);
3165
3166	/*
3167	 * We release buffers only if the entire page is being invalidated.
3168	 * The get_block cached value has been unconditionally invalidated,
3169	 * so real IO is not possible anymore.
3170	 */
3171	if (!partial_page && ret) {
3172		ret = filemap_release_folio(folio, 0);
3173		/* maybe should BUG_ON(!ret); - neilb */
3174	}
3175out:
3176	return;
3177}
3178
3179static bool reiserfs_dirty_folio(struct address_space *mapping,
3180		struct folio *folio)
3181{
3182	if (reiserfs_file_data_log(mapping->host)) {
3183		folio_set_checked(folio);
3184		return filemap_dirty_folio(mapping, folio);
 
3185	}
3186	return block_dirty_folio(mapping, folio);
3187}
3188
3189/*
3190 * Returns true if the folio's buffers were dropped.  The folio is locked.
3191 *
3192 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3193 * in the buffers at folio_buffers(folio).
3194 *
3195 * even in -o notail mode, we can't be sure an old mount without -o notail
3196 * didn't create files with tails.
3197 */
3198static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3199{
3200	struct inode *inode = folio->mapping->host;
3201	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3202	struct buffer_head *head;
3203	struct buffer_head *bh;
3204	bool ret = true;
3205
3206	WARN_ON(folio_test_checked(folio));
3207	spin_lock(&j->j_dirty_buffers_lock);
3208	head = folio_buffers(folio);
3209	bh = head;
3210	do {
3211		if (bh->b_private) {
3212			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3213				reiserfs_free_jh(bh);
3214			} else {
3215				ret = false;
3216				break;
3217			}
3218		}
3219		bh = bh->b_this_page;
3220	} while (bh != head);
3221	if (ret)
3222		ret = try_to_free_buffers(folio);
3223	spin_unlock(&j->j_dirty_buffers_lock);
3224	return ret;
3225}
3226
3227/*
3228 * We thank Mingming Cao for helping us understand in great detail what
3229 * to do in this section of the code.
3230 */
3231static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3232{
3233	struct file *file = iocb->ki_filp;
3234	struct inode *inode = file->f_mapping->host;
3235	size_t count = iov_iter_count(iter);
3236	ssize_t ret;
3237
3238	ret = blockdev_direct_IO(iocb, inode, iter,
3239				 reiserfs_get_blocks_direct_io);
3240
3241	/*
3242	 * In case of error extending write may have instantiated a few
3243	 * blocks outside i_size. Trim these off again.
3244	 */
3245	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3246		loff_t isize = i_size_read(inode);
3247		loff_t end = iocb->ki_pos + count;
3248
3249		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3250			truncate_setsize(inode, isize);
3251			reiserfs_vfs_truncate_file(inode);
3252		}
3253	}
3254
3255	return ret;
3256}
3257
3258int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3259		     struct iattr *attr)
3260{
3261	struct inode *inode = d_inode(dentry);
3262	unsigned int ia_valid;
3263	int error;
3264
3265	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3266	if (error)
3267		return error;
3268
3269	/* must be turned off for recursive notify_change calls */
3270	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3271
3272	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3273		error = dquot_initialize(inode);
3274		if (error)
3275			return error;
3276	}
3277	reiserfs_write_lock(inode->i_sb);
3278	if (attr->ia_valid & ATTR_SIZE) {
3279		/*
3280		 * version 2 items will be caught by the s_maxbytes check
3281		 * done for us in vmtruncate
3282		 */
3283		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3284		    attr->ia_size > MAX_NON_LFS) {
3285			reiserfs_write_unlock(inode->i_sb);
3286			error = -EFBIG;
3287			goto out;
3288		}
3289
3290		inode_dio_wait(inode);
3291
3292		/* fill in hole pointers in the expanding truncate case. */
3293		if (attr->ia_size > inode->i_size) {
3294			loff_t pos = attr->ia_size;
3295
3296			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3297				pos++;
3298			error = generic_cont_expand_simple(inode, pos);
3299			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3300				int err;
3301				struct reiserfs_transaction_handle th;
3302				/* we're changing at most 2 bitmaps, inode + super */
3303				err = journal_begin(&th, inode->i_sb, 4);
3304				if (!err) {
3305					reiserfs_discard_prealloc(&th, inode);
3306					err = journal_end(&th);
3307				}
3308				if (err)
3309					error = err;
3310			}
3311			if (error) {
3312				reiserfs_write_unlock(inode->i_sb);
3313				goto out;
3314			}
3315			/*
3316			 * file size is changed, ctime and mtime are
3317			 * to be updated
3318			 */
3319			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3320		}
3321	}
3322	reiserfs_write_unlock(inode->i_sb);
3323
3324	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3325	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3326	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3327		/* stat data of format v3.5 has 16 bit uid and gid */
3328		error = -EINVAL;
3329		goto out;
3330	}
3331
3332	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3333	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3334		struct reiserfs_transaction_handle th;
3335		int jbegin_count =
3336		    2 *
3337		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3338		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3339		    2;
3340
3341		error = reiserfs_chown_xattrs(inode, attr);
3342
3343		if (error)
3344			return error;
3345
3346		/*
3347		 * (user+group)*(old+new) structure - we count quota
3348		 * info and , inode write (sb, inode)
3349		 */
3350		reiserfs_write_lock(inode->i_sb);
3351		error = journal_begin(&th, inode->i_sb, jbegin_count);
3352		reiserfs_write_unlock(inode->i_sb);
3353		if (error)
3354			goto out;
3355		error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3356		reiserfs_write_lock(inode->i_sb);
3357		if (error) {
3358			journal_end(&th);
3359			reiserfs_write_unlock(inode->i_sb);
3360			goto out;
3361		}
3362
3363		/*
3364		 * Update corresponding info in inode so that everything
3365		 * is in one transaction
3366		 */
3367		if (attr->ia_valid & ATTR_UID)
3368			inode->i_uid = attr->ia_uid;
3369		if (attr->ia_valid & ATTR_GID)
3370			inode->i_gid = attr->ia_gid;
3371		mark_inode_dirty(inode);
3372		error = journal_end(&th);
3373		reiserfs_write_unlock(inode->i_sb);
3374		if (error)
3375			goto out;
3376	}
3377
3378	if ((attr->ia_valid & ATTR_SIZE) &&
3379	    attr->ia_size != i_size_read(inode)) {
3380		error = inode_newsize_ok(inode, attr->ia_size);
3381		if (!error) {
3382			/*
3383			 * Could race against reiserfs_file_release
3384			 * if called from NFS, so take tailpack mutex.
3385			 */
3386			mutex_lock(&REISERFS_I(inode)->tailpack);
3387			truncate_setsize(inode, attr->ia_size);
3388			reiserfs_truncate_file(inode, 1);
3389			mutex_unlock(&REISERFS_I(inode)->tailpack);
3390		}
3391	}
3392
3393	if (!error) {
3394		setattr_copy(&nop_mnt_idmap, inode, attr);
3395		mark_inode_dirty(inode);
3396	}
3397
3398	if (!error && reiserfs_posixacl(inode->i_sb)) {
3399		if (attr->ia_valid & ATTR_MODE)
3400			error = reiserfs_acl_chmod(dentry);
3401	}
3402
3403out:
3404	return error;
3405}
3406
3407const struct address_space_operations reiserfs_address_space_operations = {
3408	.writepage = reiserfs_writepage,
3409	.read_folio = reiserfs_read_folio,
3410	.readahead = reiserfs_readahead,
3411	.release_folio = reiserfs_release_folio,
3412	.invalidate_folio = reiserfs_invalidate_folio,
3413	.write_begin = reiserfs_write_begin,
3414	.write_end = reiserfs_write_end,
3415	.bmap = reiserfs_aop_bmap,
3416	.direct_IO = reiserfs_direct_IO,
3417	.dirty_folio = reiserfs_dirty_folio,
3418};
v5.14.15
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to readpage,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p = NULL;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 308		if (p)
 309			kunmap(bh_result->b_page);
 310		if (result == IO_ERROR)
 311			return -EIO;
 312		/*
 313		 * We do not return -ENOENT if there is a hole but page is
 314		 * uptodate, because it means that there is some MMAPED data
 315		 * associated with it that is yet to be written to disk.
 316		 */
 317		if ((args & GET_BLOCK_NO_HOLE)
 318		    && !PageUptodate(bh_result->b_page)) {
 319			return -ENOENT;
 320		}
 321		return 0;
 322	}
 323
 324	bh = get_last_bh(&path);
 325	ih = tp_item_head(&path);
 326	if (is_indirect_le_ih(ih)) {
 327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 328
 329		/*
 330		 * FIXME: here we could cache indirect item or part of it in
 331		 * the inode to avoid search_by_key in case of subsequent
 332		 * access to file
 333		 */
 334		blocknr = get_block_num(ind_item, path.pos_in_item);
 335		ret = 0;
 336		if (blocknr) {
 337			map_bh(bh_result, inode->i_sb, blocknr);
 338			if (path.pos_in_item ==
 339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 340				set_buffer_boundary(bh_result);
 341			}
 342		} else
 343			/*
 344			 * We do not return -ENOENT if there is a hole but
 345			 * page is uptodate, because it means that there is
 346			 * some MMAPED data associated with it that is
 347			 * yet to be written to disk.
 348			 */
 349		if ((args & GET_BLOCK_NO_HOLE)
 350			    && !PageUptodate(bh_result->b_page)) {
 351			ret = -ENOENT;
 352		}
 353
 354		pathrelse(&path);
 355		if (p)
 356			kunmap(bh_result->b_page);
 357		return ret;
 358	}
 359	/* requested data are in direct item(s) */
 360	if (!(args & GET_BLOCK_READ_DIRECT)) {
 361		/*
 362		 * we are called by bmap. FIXME: we can not map block of file
 363		 * when it is stored in direct item(s)
 364		 */
 365		pathrelse(&path);
 366		if (p)
 367			kunmap(bh_result->b_page);
 368		return -ENOENT;
 369	}
 370
 371	/*
 372	 * if we've got a direct item, and the buffer or page was uptodate,
 373	 * we don't want to pull data off disk again.  skip to the
 374	 * end, where we map the buffer and return
 375	 */
 376	if (buffer_uptodate(bh_result)) {
 377		goto finished;
 378	} else
 379		/*
 380		 * grab_tail_page can trigger calls to reiserfs_get_block on
 381		 * up to date pages without any buffers.  If the page is up
 382		 * to date, we don't want read old data off disk.  Set the up
 383		 * to date bit on the buffer instead and jump to the end
 384		 */
 385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 386		set_buffer_uptodate(bh_result);
 387		goto finished;
 388	}
 389	/* read file tail into part of page */
 390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 391	copy_item_head(&tmp_ih, ih);
 392
 393	/*
 394	 * we only want to kmap if we are reading the tail into the page.
 395	 * this is not the common case, so we don't kmap until we are
 396	 * sure we need to.  But, this means the item might move if
 397	 * kmap schedules
 398	 */
 399	if (!p)
 400		p = (char *)kmap(bh_result->b_page);
 401
 402	p += offset;
 403	memset(p, 0, inode->i_sb->s_blocksize);
 404	do {
 405		if (!is_direct_le_ih(ih)) {
 406			BUG();
 407		}
 408		/*
 409		 * make sure we don't read more bytes than actually exist in
 410		 * the file.  This can happen in odd cases where i_size isn't
 411		 * correct, and when direct item padding results in a few
 412		 * extra bytes at the end of the direct item
 413		 */
 414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 415			break;
 416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 417			chars =
 418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 419			    path.pos_in_item;
 420			done = 1;
 421		} else {
 422			chars = ih_item_len(ih) - path.pos_in_item;
 423		}
 424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 425
 426		if (done)
 427			break;
 428
 429		p += chars;
 430
 431		/*
 432		 * we done, if read direct item is not the last item of
 433		 * node FIXME: we could try to check right delimiting key
 434		 * to see whether direct item continues in the right
 435		 * neighbor or rely on i_size
 436		 */
 437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 438			break;
 439
 440		/* update key to look for the next piece */
 441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 442		result = search_for_position_by_key(inode->i_sb, &key, &path);
 443		if (result != POSITION_FOUND)
 444			/* i/o error most likely */
 445			break;
 446		bh = get_last_bh(&path);
 447		ih = tp_item_head(&path);
 448	} while (1);
 449
 450	flush_dcache_page(bh_result->b_page);
 451	kunmap(bh_result->b_page);
 452
 453finished:
 454	pathrelse(&path);
 455
 456	if (result == IO_ERROR)
 457		return -EIO;
 458
 459	/*
 460	 * this buffer has valid data, but isn't valid for io.  mapping it to
 461	 * block #0 tells the rest of reiserfs it just has a tail in it
 462	 */
 463	map_bh(bh_result, inode->i_sb, 0);
 464	set_buffer_uptodate(bh_result);
 465	return 0;
 466}
 467
 468/*
 469 * this is called to create file map. So, _get_block_create_0 will not
 470 * read direct item
 471 */
 472static int reiserfs_bmap(struct inode *inode, sector_t block,
 473			 struct buffer_head *bh_result, int create)
 474{
 475	if (!file_capable(inode, block))
 476		return -EFBIG;
 477
 478	reiserfs_write_lock(inode->i_sb);
 479	/* do not read the direct item */
 480	_get_block_create_0(inode, block, bh_result, 0);
 481	reiserfs_write_unlock(inode->i_sb);
 482	return 0;
 483}
 484
 485/*
 486 * special version of get_block that is only used by grab_tail_page right
 487 * now.  It is sent to __block_write_begin, and when you try to get a
 488 * block past the end of the file (or a block from a hole) it returns
 489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 490 * be able to do i/o on the buffers returned, unless an error value
 491 * is also returned.
 492 *
 493 * So, this allows __block_write_begin to be used for reading a single block
 494 * in a page.  Where it does not produce a valid page for holes, or past the
 495 * end of the file.  This turns out to be exactly what we need for reading
 496 * tails for conversion.
 497 *
 498 * The point of the wrapper is forcing a certain value for create, even
 499 * though the VFS layer is calling this function with create==1.  If you
 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 501 * don't use this function.
 502*/
 503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 504				       struct buffer_head *bh_result,
 505				       int create)
 506{
 507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 508}
 509
 510/*
 511 * This is special helper for reiserfs_get_block in case we are executing
 512 * direct_IO request.
 513 */
 514static int reiserfs_get_blocks_direct_io(struct inode *inode,
 515					 sector_t iblock,
 516					 struct buffer_head *bh_result,
 517					 int create)
 518{
 519	int ret;
 520
 521	bh_result->b_page = NULL;
 522
 523	/*
 524	 * We set the b_size before reiserfs_get_block call since it is
 525	 * referenced in convert_tail_for_hole() that may be called from
 526	 * reiserfs_get_block()
 527	 */
 528	bh_result->b_size = i_blocksize(inode);
 529
 530	ret = reiserfs_get_block(inode, iblock, bh_result,
 531				 create | GET_BLOCK_NO_DANGLE);
 532	if (ret)
 533		goto out;
 534
 535	/* don't allow direct io onto tail pages */
 536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 537		/*
 538		 * make sure future calls to the direct io funcs for this
 539		 * offset in the file fail by unmapping the buffer
 540		 */
 541		clear_buffer_mapped(bh_result);
 542		ret = -EINVAL;
 543	}
 544
 545	/*
 546	 * Possible unpacked tail. Flush the data before pages have
 547	 * disappeared
 548	 */
 549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 550		int err;
 551
 552		reiserfs_write_lock(inode->i_sb);
 553
 554		err = reiserfs_commit_for_inode(inode);
 555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 556
 557		reiserfs_write_unlock(inode->i_sb);
 558
 559		if (err < 0)
 560			ret = err;
 561	}
 562out:
 563	return ret;
 564}
 565
 566/*
 567 * helper function for when reiserfs_get_block is called for a hole
 568 * but the file tail is still in a direct item
 569 * bh_result is the buffer head for the hole
 570 * tail_offset is the offset of the start of the tail in the file
 571 *
 572 * This calls prepare_write, which will start a new transaction
 573 * you should not be in a transaction, or have any paths held when you
 574 * call this.
 575 */
 576static int convert_tail_for_hole(struct inode *inode,
 577				 struct buffer_head *bh_result,
 578				 loff_t tail_offset)
 579{
 580	unsigned long index;
 581	unsigned long tail_end;
 582	unsigned long tail_start;
 583	struct page *tail_page;
 584	struct page *hole_page = bh_result->b_page;
 585	int retval = 0;
 586
 587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 588		return -EIO;
 589
 590	/* always try to read until the end of the block */
 591	tail_start = tail_offset & (PAGE_SIZE - 1);
 592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 593
 594	index = tail_offset >> PAGE_SHIFT;
 595	/*
 596	 * hole_page can be zero in case of direct_io, we are sure
 597	 * that we cannot get here if we write with O_DIRECT into tail page
 598	 */
 599	if (!hole_page || index != hole_page->index) {
 600		tail_page = grab_cache_page(inode->i_mapping, index);
 601		retval = -ENOMEM;
 602		if (!tail_page) {
 603			goto out;
 604		}
 605	} else {
 606		tail_page = hole_page;
 607	}
 608
 609	/*
 610	 * we don't have to make sure the conversion did not happen while
 611	 * we were locking the page because anyone that could convert
 612	 * must first take i_mutex.
 613	 *
 614	 * We must fix the tail page for writing because it might have buffers
 615	 * that are mapped, but have a block number of 0.  This indicates tail
 616	 * data that has been read directly into the page, and
 617	 * __block_write_begin won't trigger a get_block in this case.
 618	 */
 619	fix_tail_page_for_writing(tail_page);
 620	retval = __reiserfs_write_begin(tail_page, tail_start,
 621				      tail_end - tail_start);
 622	if (retval)
 623		goto unlock;
 624
 625	/* tail conversion might change the data in the page */
 626	flush_dcache_page(tail_page);
 627
 628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 629
 630unlock:
 631	if (tail_page != hole_page) {
 632		unlock_page(tail_page);
 633		put_page(tail_page);
 634	}
 635out:
 636	return retval;
 637}
 638
 639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 640				  sector_t block,
 641				  struct inode *inode,
 642				  b_blocknr_t * allocated_block_nr,
 643				  struct treepath *path, int flags)
 644{
 645	BUG_ON(!th->t_trans_id);
 646
 647#ifdef REISERFS_PREALLOCATE
 648	if (!(flags & GET_BLOCK_NO_IMUX)) {
 649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 650						  path, block);
 651	}
 652#endif
 653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 654					 block);
 655}
 656
 657int reiserfs_get_block(struct inode *inode, sector_t block,
 658		       struct buffer_head *bh_result, int create)
 659{
 660	int repeat, retval = 0;
 661	/* b_blocknr_t is (unsigned) 32 bit int*/
 662	b_blocknr_t allocated_block_nr = 0;
 663	INITIALIZE_PATH(path);
 664	int pos_in_item;
 665	struct cpu_key key;
 666	struct buffer_head *bh, *unbh = NULL;
 667	struct item_head *ih, tmp_ih;
 668	__le32 *item;
 669	int done;
 670	int fs_gen;
 671	struct reiserfs_transaction_handle *th = NULL;
 672	/*
 673	 * space reserved in transaction batch:
 674	 * . 3 balancings in direct->indirect conversion
 675	 * . 1 block involved into reiserfs_update_sd()
 676	 * XXX in practically impossible worst case direct2indirect()
 677	 * can incur (much) more than 3 balancings.
 678	 * quota update for user, group
 679	 */
 680	int jbegin_count =
 681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 683	int version;
 684	int dangle = 1;
 685	loff_t new_offset =
 686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 687
 688	reiserfs_write_lock(inode->i_sb);
 689	version = get_inode_item_key_version(inode);
 690
 691	if (!file_capable(inode, block)) {
 692		reiserfs_write_unlock(inode->i_sb);
 693		return -EFBIG;
 694	}
 695
 696	/*
 697	 * if !create, we aren't changing the FS, so we don't need to
 698	 * log anything, so we don't need to start a transaction
 699	 */
 700	if (!(create & GET_BLOCK_CREATE)) {
 701		int ret;
 702		/* find number of block-th logical block of the file */
 703		ret = _get_block_create_0(inode, block, bh_result,
 704					  create | GET_BLOCK_READ_DIRECT);
 705		reiserfs_write_unlock(inode->i_sb);
 706		return ret;
 707	}
 708
 709	/*
 710	 * if we're already in a transaction, make sure to close
 711	 * any new transactions we start in this func
 712	 */
 713	if ((create & GET_BLOCK_NO_DANGLE) ||
 714	    reiserfs_transaction_running(inode->i_sb))
 715		dangle = 0;
 716
 717	/*
 718	 * If file is of such a size, that it might have a tail and
 719	 * tails are enabled  we should mark it as possibly needing
 720	 * tail packing on close
 721	 */
 722	if ((have_large_tails(inode->i_sb)
 723	     && inode->i_size < i_block_size(inode) * 4)
 724	    || (have_small_tails(inode->i_sb)
 725		&& inode->i_size < i_block_size(inode)))
 726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 727
 728	/* set the key of the first byte in the 'block'-th block of file */
 729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 731start_trans:
 732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 733		if (!th) {
 734			retval = -ENOMEM;
 735			goto failure;
 736		}
 737		reiserfs_update_inode_transaction(inode);
 738	}
 739research:
 740
 741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 742	if (retval == IO_ERROR) {
 743		retval = -EIO;
 744		goto failure;
 745	}
 746
 747	bh = get_last_bh(&path);
 748	ih = tp_item_head(&path);
 749	item = tp_item_body(&path);
 750	pos_in_item = path.pos_in_item;
 751
 752	fs_gen = get_generation(inode->i_sb);
 753	copy_item_head(&tmp_ih, ih);
 754
 755	if (allocation_needed
 756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 757		/* we have to allocate block for the unformatted node */
 758		if (!th) {
 759			pathrelse(&path);
 760			goto start_trans;
 761		}
 762
 763		repeat =
 764		    _allocate_block(th, block, inode, &allocated_block_nr,
 765				    &path, create);
 766
 767		/*
 768		 * restart the transaction to give the journal a chance to free
 769		 * some blocks.  releases the path, so we have to go back to
 770		 * research if we succeed on the second try
 771		 */
 772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 774			retval = restart_transaction(th, inode, &path);
 775			if (retval)
 776				goto failure;
 777			repeat =
 778			    _allocate_block(th, block, inode,
 779					    &allocated_block_nr, NULL, create);
 780
 781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 782				goto research;
 783			}
 784			if (repeat == QUOTA_EXCEEDED)
 785				retval = -EDQUOT;
 786			else
 787				retval = -ENOSPC;
 788			goto failure;
 789		}
 790
 791		if (fs_changed(fs_gen, inode->i_sb)
 792		    && item_moved(&tmp_ih, &path)) {
 793			goto research;
 794		}
 795	}
 796
 797	if (indirect_item_found(retval, ih)) {
 798		b_blocknr_t unfm_ptr;
 799		/*
 800		 * 'block'-th block is in the file already (there is
 801		 * corresponding cell in some indirect item). But it may be
 802		 * zero unformatted node pointer (hole)
 803		 */
 804		unfm_ptr = get_block_num(item, pos_in_item);
 805		if (unfm_ptr == 0) {
 806			/* use allocated block to plug the hole */
 807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 808			if (fs_changed(fs_gen, inode->i_sb)
 809			    && item_moved(&tmp_ih, &path)) {
 810				reiserfs_restore_prepared_buffer(inode->i_sb,
 811								 bh);
 812				goto research;
 813			}
 814			set_buffer_new(bh_result);
 815			if (buffer_dirty(bh_result)
 816			    && reiserfs_data_ordered(inode->i_sb))
 817				reiserfs_add_ordered_list(inode, bh_result);
 818			put_block_num(item, pos_in_item, allocated_block_nr);
 819			unfm_ptr = allocated_block_nr;
 820			journal_mark_dirty(th, bh);
 821			reiserfs_update_sd(th, inode);
 822		}
 823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 824		pathrelse(&path);
 825		retval = 0;
 826		if (!dangle && th)
 827			retval = reiserfs_end_persistent_transaction(th);
 828
 829		reiserfs_write_unlock(inode->i_sb);
 830
 831		/*
 832		 * the item was found, so new blocks were not added to the file
 833		 * there is no need to make sure the inode is updated with this
 834		 * transaction
 835		 */
 836		return retval;
 837	}
 838
 839	if (!th) {
 840		pathrelse(&path);
 841		goto start_trans;
 842	}
 843
 844	/*
 845	 * desired position is not found or is in the direct item. We have
 846	 * to append file with holes up to 'block'-th block converting
 847	 * direct items to indirect one if necessary
 848	 */
 849	done = 0;
 850	do {
 851		if (is_statdata_le_ih(ih)) {
 852			__le32 unp = 0;
 853			struct cpu_key tmp_key;
 854
 855			/* indirect item has to be inserted */
 856			make_le_item_head(&tmp_ih, &key, version, 1,
 857					  TYPE_INDIRECT, UNFM_P_SIZE,
 858					  0 /* free_space */ );
 859
 860			/*
 861			 * we are going to add 'block'-th block to the file.
 862			 * Use allocated block for that
 863			 */
 864			if (cpu_key_k_offset(&key) == 1) {
 865				unp = cpu_to_le32(allocated_block_nr);
 866				set_block_dev_mapped(bh_result,
 867						     allocated_block_nr, inode);
 868				set_buffer_new(bh_result);
 869				done = 1;
 870			}
 871			tmp_key = key;	/* ;) */
 872			set_cpu_key_k_offset(&tmp_key, 1);
 873			PATH_LAST_POSITION(&path)++;
 874
 875			retval =
 876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 877						 inode, (char *)&unp);
 878			if (retval) {
 879				reiserfs_free_block(th, inode,
 880						    allocated_block_nr, 1);
 881				/*
 882				 * retval == -ENOSPC, -EDQUOT or -EIO
 883				 * or -EEXIST
 884				 */
 885				goto failure;
 886			}
 887		} else if (is_direct_le_ih(ih)) {
 888			/* direct item has to be converted */
 889			loff_t tail_offset;
 890
 891			tail_offset =
 892			    ((le_ih_k_offset(ih) -
 893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 894
 895			/*
 896			 * direct item we just found fits into block we have
 897			 * to map. Convert it into unformatted node: use
 898			 * bh_result for the conversion
 899			 */
 900			if (tail_offset == cpu_key_k_offset(&key)) {
 901				set_block_dev_mapped(bh_result,
 902						     allocated_block_nr, inode);
 903				unbh = bh_result;
 904				done = 1;
 905			} else {
 906				/*
 907				 * we have to pad file tail stored in direct
 908				 * item(s) up to block size and convert it
 909				 * to unformatted node. FIXME: this should
 910				 * also get into page cache
 911				 */
 912
 913				pathrelse(&path);
 914				/*
 915				 * ugly, but we can only end the transaction if
 916				 * we aren't nested
 917				 */
 918				BUG_ON(!th->t_refcount);
 919				if (th->t_refcount == 1) {
 920					retval =
 921					    reiserfs_end_persistent_transaction
 922					    (th);
 923					th = NULL;
 924					if (retval)
 925						goto failure;
 926				}
 927
 928				retval =
 929				    convert_tail_for_hole(inode, bh_result,
 930							  tail_offset);
 931				if (retval) {
 932					if (retval != -ENOSPC)
 933						reiserfs_error(inode->i_sb,
 934							"clm-6004",
 935							"convert tail failed "
 936							"inode %lu, error %d",
 937							inode->i_ino,
 938							retval);
 939					if (allocated_block_nr) {
 940						/*
 941						 * the bitmap, the super,
 942						 * and the stat data == 3
 943						 */
 944						if (!th)
 945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 946						if (th)
 947							reiserfs_free_block(th,
 948									    inode,
 949									    allocated_block_nr,
 950									    1);
 951					}
 952					goto failure;
 953				}
 954				goto research;
 955			}
 956			retval =
 957			    direct2indirect(th, inode, &path, unbh,
 958					    tail_offset);
 959			if (retval) {
 960				reiserfs_unmap_buffer(unbh);
 961				reiserfs_free_block(th, inode,
 962						    allocated_block_nr, 1);
 963				goto failure;
 964			}
 965			/*
 966			 * it is important the set_buffer_uptodate is done
 967			 * after the direct2indirect.  The buffer might
 968			 * contain valid data newer than the data on disk
 969			 * (read by readpage, changed, and then sent here by
 970			 * writepage).  direct2indirect needs to know if unbh
 971			 * was already up to date, so it can decide if the
 972			 * data in unbh needs to be replaced with data from
 973			 * the disk
 974			 */
 975			set_buffer_uptodate(unbh);
 976
 977			/*
 978			 * unbh->b_page == NULL in case of DIRECT_IO request,
 979			 * this means buffer will disappear shortly, so it
 980			 * should not be added to
 981			 */
 982			if (unbh->b_page) {
 983				/*
 984				 * we've converted the tail, so we must
 985				 * flush unbh before the transaction commits
 986				 */
 987				reiserfs_add_tail_list(inode, unbh);
 988
 989				/*
 990				 * mark it dirty now to prevent commit_write
 991				 * from adding this buffer to the inode's
 992				 * dirty buffer list
 993				 */
 994				/*
 995				 * AKPM: changed __mark_buffer_dirty to
 996				 * mark_buffer_dirty().  It's still atomic,
 997				 * but it sets the page dirty too, which makes
 998				 * it eligible for writeback at any time by the
 999				 * VM (which was also the case with
1000				 * __mark_buffer_dirty())
1001				 */
1002				mark_buffer_dirty(unbh);
1003			}
1004		} else {
1005			/*
1006			 * append indirect item with holes if needed, when
1007			 * appending pointer to 'block'-th block use block,
1008			 * which is already allocated
1009			 */
1010			struct cpu_key tmp_key;
1011			/*
1012			 * We use this in case we need to allocate
1013			 * only one block which is a fastpath
1014			 */
1015			unp_t unf_single = 0;
1016			unp_t *un;
1017			__u64 max_to_insert =
1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019			    UNFM_P_SIZE;
1020			__u64 blocks_needed;
1021
1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023			       "vs-804: invalid position for append");
1024			/*
1025			 * indirect item has to be appended,
1026			 * set up key of that position
1027			 * (key type is unimportant)
1028			 */
1029			make_cpu_key(&tmp_key, inode,
1030				     le_key_k_offset(version,
1031						     &ih->ih_key) +
1032				     op_bytes_number(ih,
1033						     inode->i_sb->s_blocksize),
1034				     TYPE_INDIRECT, 3);
1035
1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037			       "green-805: invalid offset");
1038			blocks_needed =
1039			    1 +
1040			    ((cpu_key_k_offset(&key) -
1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042			     s_blocksize_bits);
1043
1044			if (blocks_needed == 1) {
1045				un = &unf_single;
1046			} else {
1047				un = kcalloc(min(blocks_needed, max_to_insert),
1048					     UNFM_P_SIZE, GFP_NOFS);
1049				if (!un) {
1050					un = &unf_single;
1051					blocks_needed = 1;
1052					max_to_insert = 0;
1053				}
1054			}
1055			if (blocks_needed <= max_to_insert) {
1056				/*
1057				 * we are going to add target block to
1058				 * the file. Use allocated block for that
1059				 */
1060				un[blocks_needed - 1] =
1061				    cpu_to_le32(allocated_block_nr);
1062				set_block_dev_mapped(bh_result,
1063						     allocated_block_nr, inode);
1064				set_buffer_new(bh_result);
1065				done = 1;
1066			} else {
1067				/* paste hole to the indirect item */
1068				/*
1069				 * If kcalloc failed, max_to_insert becomes
1070				 * zero and it means we only have space for
1071				 * one block
1072				 */
1073				blocks_needed =
1074				    max_to_insert ? max_to_insert : 1;
1075			}
1076			retval =
1077			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1078						     (char *)un,
1079						     UNFM_P_SIZE *
1080						     blocks_needed);
1081
1082			if (blocks_needed != 1)
1083				kfree(un);
1084
1085			if (retval) {
1086				reiserfs_free_block(th, inode,
1087						    allocated_block_nr, 1);
1088				goto failure;
1089			}
1090			if (!done) {
1091				/*
1092				 * We need to mark new file size in case
1093				 * this function will be interrupted/aborted
1094				 * later on. And we may do this only for
1095				 * holes.
1096				 */
1097				inode->i_size +=
1098				    inode->i_sb->s_blocksize * blocks_needed;
1099			}
1100		}
1101
1102		if (done == 1)
1103			break;
1104
1105		/*
1106		 * this loop could log more blocks than we had originally
1107		 * asked for.  So, we have to allow the transaction to end
1108		 * if it is too big or too full.  Update the inode so things
1109		 * are consistent if we crash before the function returns
1110		 * release the path so that anybody waiting on the path before
1111		 * ending their transaction will be able to continue.
1112		 */
1113		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1114			retval = restart_transaction(th, inode, &path);
1115			if (retval)
1116				goto failure;
1117		}
1118		/*
1119		 * inserting indirect pointers for a hole can take a
1120		 * long time.  reschedule if needed and also release the write
1121		 * lock for others.
1122		 */
1123		reiserfs_cond_resched(inode->i_sb);
1124
1125		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1126		if (retval == IO_ERROR) {
1127			retval = -EIO;
1128			goto failure;
1129		}
1130		if (retval == POSITION_FOUND) {
1131			reiserfs_warning(inode->i_sb, "vs-825",
1132					 "%K should not be found", &key);
1133			retval = -EEXIST;
1134			if (allocated_block_nr)
1135				reiserfs_free_block(th, inode,
1136						    allocated_block_nr, 1);
1137			pathrelse(&path);
1138			goto failure;
1139		}
1140		bh = get_last_bh(&path);
1141		ih = tp_item_head(&path);
1142		item = tp_item_body(&path);
1143		pos_in_item = path.pos_in_item;
1144	} while (1);
1145
1146	retval = 0;
1147
1148failure:
1149	if (th && (!dangle || (retval && !th->t_trans_id))) {
1150		int err;
1151		if (th->t_trans_id)
1152			reiserfs_update_sd(th, inode);
1153		err = reiserfs_end_persistent_transaction(th);
1154		if (err)
1155			retval = err;
1156	}
1157
1158	reiserfs_write_unlock(inode->i_sb);
1159	reiserfs_check_path(&path);
1160	return retval;
1161}
1162
1163static void reiserfs_readahead(struct readahead_control *rac)
1164{
1165	mpage_readahead(rac, reiserfs_get_block);
1166}
1167
1168/*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
1173static int real_space_diff(struct inode *inode, int sd_size)
1174{
1175	int bytes;
1176	loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179		return sd_size;
1180
1181	/*
1182	 * End of file is also in full block with indirect reference, so round
1183	 * up to the next block.
1184	 *
1185	 * there is just no way to know if the tail is actually packed
1186	 * on the file, so we have to assume it isn't.  When we pack the
1187	 * tail, we add 4 bytes to pretend there really is an unformatted
1188	 * node pointer
1189	 */
1190	bytes =
1191	    ((inode->i_size +
1192	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193	    sd_size;
1194	return bytes;
1195}
1196
1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198					int sd_size)
1199{
1200	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201		return inode->i_size +
1202		    (loff_t) (real_space_diff(inode, sd_size));
1203	}
1204	return ((loff_t) real_space_diff(inode, sd_size)) +
1205	    (((loff_t) blocks) << 9);
1206}
1207
1208/* Compute number of blocks used by file in ReiserFS counting */
1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210{
1211	loff_t bytes = inode_get_bytes(inode);
1212	loff_t real_space = real_space_diff(inode, sd_size);
1213
1214	/* keeps fsck and non-quota versions of reiserfs happy */
1215	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216		bytes += (loff_t) 511;
1217	}
1218
1219	/*
1220	 * files from before the quota patch might i_blocks such that
1221	 * bytes < real_space.  Deal with that here to prevent it from
1222	 * going negative.
1223	 */
1224	if (bytes < real_space)
1225		return 0;
1226	return (bytes - real_space) >> 9;
1227}
1228
1229/*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236/* called by read_locked_inode */
1237static void init_inode(struct inode *inode, struct treepath *path)
1238{
1239	struct buffer_head *bh;
1240	struct item_head *ih;
1241	__u32 rdev;
1242
1243	bh = PATH_PLAST_BUFFER(path);
1244	ih = tp_item_head(path);
1245
1246	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249	REISERFS_I(inode)->i_flags = 0;
1250	REISERFS_I(inode)->i_prealloc_block = 0;
1251	REISERFS_I(inode)->i_prealloc_count = 0;
1252	REISERFS_I(inode)->i_trans_id = 0;
1253	REISERFS_I(inode)->i_jl = NULL;
1254	reiserfs_init_xattr_rwsem(inode);
1255
1256	if (stat_data_v1(ih)) {
1257		struct stat_data_v1 *sd =
1258		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259		unsigned long blocks;
1260
1261		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262		set_inode_sd_version(inode, STAT_DATA_V1);
1263		inode->i_mode = sd_v1_mode(sd);
1264		set_nlink(inode, sd_v1_nlink(sd));
1265		i_uid_write(inode, sd_v1_uid(sd));
1266		i_gid_write(inode, sd_v1_gid(sd));
1267		inode->i_size = sd_v1_size(sd);
1268		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271		inode->i_atime.tv_nsec = 0;
1272		inode->i_ctime.tv_nsec = 0;
1273		inode->i_mtime.tv_nsec = 0;
1274
1275		inode->i_blocks = sd_v1_blocks(sd);
1276		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277		blocks = (inode->i_size + 511) >> 9;
1278		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280		/*
1281		 * there was a bug in <=3.5.23 when i_blocks could take
1282		 * negative values. Starting from 3.5.17 this value could
1283		 * even be stored in stat data. For such files we set
1284		 * i_blocks based on file size. Just 2 notes: this can be
1285		 * wrong for sparse files. On-disk value will be only
1286		 * updated if file's inode will ever change
1287		 */
1288		if (inode->i_blocks > blocks) {
1289			inode->i_blocks = blocks;
1290		}
1291
1292		rdev = sd_v1_rdev(sd);
1293		REISERFS_I(inode)->i_first_direct_byte =
1294		    sd_v1_first_direct_byte(sd);
1295
1296		/*
1297		 * an early bug in the quota code can give us an odd
1298		 * number for the block count.  This is incorrect, fix it here.
1299		 */
1300		if (inode->i_blocks & 1) {
1301			inode->i_blocks++;
1302		}
1303		inode_set_bytes(inode,
1304				to_real_used_space(inode, inode->i_blocks,
1305						   SD_V1_SIZE));
1306		/*
1307		 * nopack is initially zero for v1 objects. For v2 objects,
1308		 * nopack is initialised from sd_attrs
1309		 */
1310		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311	} else {
1312		/*
1313		 * new stat data found, but object may have old items
1314		 * (directories and symlinks)
1315		 */
1316		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318		inode->i_mode = sd_v2_mode(sd);
1319		set_nlink(inode, sd_v2_nlink(sd));
1320		i_uid_write(inode, sd_v2_uid(sd));
1321		inode->i_size = sd_v2_size(sd);
1322		i_gid_write(inode, sd_v2_gid(sd));
1323		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326		inode->i_ctime.tv_nsec = 0;
1327		inode->i_mtime.tv_nsec = 0;
1328		inode->i_atime.tv_nsec = 0;
1329		inode->i_blocks = sd_v2_blocks(sd);
1330		rdev = sd_v2_rdev(sd);
1331		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332			inode->i_generation =
1333			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334		else
1335			inode->i_generation = sd_v2_generation(sd);
1336
1337		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339		else
1340			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341		REISERFS_I(inode)->i_first_direct_byte = 0;
1342		set_inode_sd_version(inode, STAT_DATA_V2);
1343		inode_set_bytes(inode,
1344				to_real_used_space(inode, inode->i_blocks,
1345						   SD_V2_SIZE));
1346		/*
1347		 * read persistent inode attributes from sd and initialise
1348		 * generic inode flags from them
1349		 */
1350		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352	}
1353
1354	pathrelse(path);
1355	if (S_ISREG(inode->i_mode)) {
1356		inode->i_op = &reiserfs_file_inode_operations;
1357		inode->i_fop = &reiserfs_file_operations;
1358		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359	} else if (S_ISDIR(inode->i_mode)) {
1360		inode->i_op = &reiserfs_dir_inode_operations;
1361		inode->i_fop = &reiserfs_dir_operations;
1362	} else if (S_ISLNK(inode->i_mode)) {
1363		inode->i_op = &reiserfs_symlink_inode_operations;
1364		inode_nohighmem(inode);
1365		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366	} else {
1367		inode->i_blocks = 0;
1368		inode->i_op = &reiserfs_special_inode_operations;
1369		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370	}
1371}
1372
1373/* update new stat data with inode fields */
1374static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375{
1376	struct stat_data *sd_v2 = (struct stat_data *)sd;
1377
1378	set_sd_v2_mode(sd_v2, inode->i_mode);
1379	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1380	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1381	set_sd_v2_size(sd_v2, size);
1382	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1383	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1384	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1385	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1386	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1387	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1388		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1389	else
1390		set_sd_v2_generation(sd_v2, inode->i_generation);
1391	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1392}
1393
1394/* used to copy inode's fields to old stat data */
1395static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1396{
1397	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1398
1399	set_sd_v1_mode(sd_v1, inode->i_mode);
1400	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1401	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1402	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1403	set_sd_v1_size(sd_v1, size);
1404	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1405	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1406	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1407
1408	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1409		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1410	else
1411		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1412
1413	/* Sigh. i_first_direct_byte is back */
1414	set_sd_v1_first_direct_byte(sd_v1,
1415				    REISERFS_I(inode)->i_first_direct_byte);
1416}
1417
1418/*
1419 * NOTE, you must prepare the buffer head before sending it here,
1420 * and then log it after the call
1421 */
1422static void update_stat_data(struct treepath *path, struct inode *inode,
1423			     loff_t size)
1424{
1425	struct buffer_head *bh;
1426	struct item_head *ih;
1427
1428	bh = PATH_PLAST_BUFFER(path);
1429	ih = tp_item_head(path);
1430
1431	if (!is_statdata_le_ih(ih))
1432		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1433			       INODE_PKEY(inode), ih);
1434
1435	/* path points to old stat data */
1436	if (stat_data_v1(ih)) {
1437		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1438	} else {
1439		inode2sd(ih_item_body(bh, ih), inode, size);
1440	}
1441
1442	return;
1443}
1444
1445void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1446			     struct inode *inode, loff_t size)
1447{
1448	struct cpu_key key;
1449	INITIALIZE_PATH(path);
1450	struct buffer_head *bh;
1451	int fs_gen;
1452	struct item_head *ih, tmp_ih;
1453	int retval;
1454
1455	BUG_ON(!th->t_trans_id);
1456
1457	/* key type is unimportant */
1458	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1459
1460	for (;;) {
1461		int pos;
1462		/* look for the object's stat data */
1463		retval = search_item(inode->i_sb, &key, &path);
1464		if (retval == IO_ERROR) {
1465			reiserfs_error(inode->i_sb, "vs-13050",
1466				       "i/o failure occurred trying to "
1467				       "update %K stat data", &key);
1468			return;
1469		}
1470		if (retval == ITEM_NOT_FOUND) {
1471			pos = PATH_LAST_POSITION(&path);
1472			pathrelse(&path);
1473			if (inode->i_nlink == 0) {
1474				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1475				return;
1476			}
1477			reiserfs_warning(inode->i_sb, "vs-13060",
1478					 "stat data of object %k (nlink == %d) "
1479					 "not found (pos %d)",
1480					 INODE_PKEY(inode), inode->i_nlink,
1481					 pos);
1482			reiserfs_check_path(&path);
1483			return;
1484		}
1485
1486		/*
1487		 * sigh, prepare_for_journal might schedule.  When it
1488		 * schedules the FS might change.  We have to detect that,
1489		 * and loop back to the search if the stat data item has moved
1490		 */
1491		bh = get_last_bh(&path);
1492		ih = tp_item_head(&path);
1493		copy_item_head(&tmp_ih, ih);
1494		fs_gen = get_generation(inode->i_sb);
1495		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1496
1497		/* Stat_data item has been moved after scheduling. */
1498		if (fs_changed(fs_gen, inode->i_sb)
1499		    && item_moved(&tmp_ih, &path)) {
1500			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1501			continue;
1502		}
1503		break;
1504	}
1505	update_stat_data(&path, inode, size);
1506	journal_mark_dirty(th, bh);
1507	pathrelse(&path);
1508	return;
1509}
1510
1511/*
1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1513 * does a make_bad_inode when things go wrong.  But, we need to make sure
1514 * and clear the key in the private portion of the inode, otherwise a
1515 * corresponding iput might try to delete whatever object the inode last
1516 * represented.
1517 */
1518static void reiserfs_make_bad_inode(struct inode *inode)
1519{
1520	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1521	make_bad_inode(inode);
1522}
1523
1524/*
1525 * initially this function was derived from minix or ext2's analog and
1526 * evolved as the prototype did
1527 */
1528int reiserfs_init_locked_inode(struct inode *inode, void *p)
1529{
1530	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1531	inode->i_ino = args->objectid;
1532	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1533	return 0;
1534}
1535
1536/*
1537 * looks for stat data in the tree, and fills up the fields of in-core
1538 * inode stat data fields
1539 */
1540void reiserfs_read_locked_inode(struct inode *inode,
1541				struct reiserfs_iget_args *args)
1542{
1543	INITIALIZE_PATH(path_to_sd);
1544	struct cpu_key key;
1545	unsigned long dirino;
1546	int retval;
1547
1548	dirino = args->dirid;
1549
1550	/*
1551	 * set version 1, version 2 could be used too, because stat data
1552	 * key is the same in both versions
1553	 */
1554	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1555
1556	/* look for the object's stat data */
1557	retval = search_item(inode->i_sb, &key, &path_to_sd);
1558	if (retval == IO_ERROR) {
1559		reiserfs_error(inode->i_sb, "vs-13070",
1560			       "i/o failure occurred trying to find "
1561			       "stat data of %K", &key);
1562		reiserfs_make_bad_inode(inode);
1563		return;
1564	}
1565
1566	/* a stale NFS handle can trigger this without it being an error */
1567	if (retval != ITEM_FOUND) {
1568		pathrelse(&path_to_sd);
1569		reiserfs_make_bad_inode(inode);
1570		clear_nlink(inode);
1571		return;
1572	}
1573
1574	init_inode(inode, &path_to_sd);
1575
1576	/*
1577	 * It is possible that knfsd is trying to access inode of a file
1578	 * that is being removed from the disk by some other thread. As we
1579	 * update sd on unlink all that is required is to check for nlink
1580	 * here. This bug was first found by Sizif when debugging
1581	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1582	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1583
1584	 * More logical fix would require changes in fs/inode.c:iput() to
1585	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1586	 * in iget() to return NULL if I_FREEING inode is found in
1587	 * hash-table.
1588	 */
1589
1590	/*
1591	 * Currently there is one place where it's ok to meet inode with
1592	 * nlink==0: processing of open-unlinked and half-truncated files
1593	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1594	 */
1595	if ((inode->i_nlink == 0) &&
1596	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1597		reiserfs_warning(inode->i_sb, "vs-13075",
1598				 "dead inode read from disk %K. "
1599				 "This is likely to be race with knfsd. Ignore",
1600				 &key);
1601		reiserfs_make_bad_inode(inode);
1602	}
1603
1604	/* init inode should be relsing */
1605	reiserfs_check_path(&path_to_sd);
1606
1607	/*
1608	 * Stat data v1 doesn't support ACLs.
1609	 */
1610	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1611		cache_no_acl(inode);
1612}
1613
1614/*
1615 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1616 *
1617 * @inode:    inode from hash table to check
1618 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1619 *
1620 * This function is called by iget5_locked() to distinguish reiserfs inodes
1621 * having the same inode numbers. Such inodes can only exist due to some
1622 * error condition. One of them should be bad. Inodes with identical
1623 * inode numbers (objectids) are distinguished by parent directory ids.
1624 *
1625 */
1626int reiserfs_find_actor(struct inode *inode, void *opaque)
1627{
1628	struct reiserfs_iget_args *args;
1629
1630	args = opaque;
1631	/* args is already in CPU order */
1632	return (inode->i_ino == args->objectid) &&
1633	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1634}
1635
1636struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1637{
1638	struct inode *inode;
1639	struct reiserfs_iget_args args;
1640	int depth;
1641
1642	args.objectid = key->on_disk_key.k_objectid;
1643	args.dirid = key->on_disk_key.k_dir_id;
1644	depth = reiserfs_write_unlock_nested(s);
1645	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1646			     reiserfs_find_actor, reiserfs_init_locked_inode,
1647			     (void *)(&args));
1648	reiserfs_write_lock_nested(s, depth);
1649	if (!inode)
1650		return ERR_PTR(-ENOMEM);
1651
1652	if (inode->i_state & I_NEW) {
1653		reiserfs_read_locked_inode(inode, &args);
1654		unlock_new_inode(inode);
1655	}
1656
1657	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1658		/* either due to i/o error or a stale NFS handle */
1659		iput(inode);
1660		inode = NULL;
1661	}
1662	return inode;
1663}
1664
1665static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1666	u32 objectid, u32 dir_id, u32 generation)
1667
1668{
1669	struct cpu_key key;
1670	struct inode *inode;
1671
1672	key.on_disk_key.k_objectid = objectid;
1673	key.on_disk_key.k_dir_id = dir_id;
1674	reiserfs_write_lock(sb);
1675	inode = reiserfs_iget(sb, &key);
1676	if (inode && !IS_ERR(inode) && generation != 0 &&
1677	    generation != inode->i_generation) {
1678		iput(inode);
1679		inode = NULL;
1680	}
1681	reiserfs_write_unlock(sb);
1682
1683	return d_obtain_alias(inode);
1684}
1685
1686struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1687		int fh_len, int fh_type)
1688{
1689	/*
1690	 * fhtype happens to reflect the number of u32s encoded.
1691	 * due to a bug in earlier code, fhtype might indicate there
1692	 * are more u32s then actually fitted.
1693	 * so if fhtype seems to be more than len, reduce fhtype.
1694	 * Valid types are:
1695	 *   2 - objectid + dir_id - legacy support
1696	 *   3 - objectid + dir_id + generation
1697	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1698	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1699	 *   6 - as above plus generation of directory
1700	 * 6 does not fit in NFSv2 handles
1701	 */
1702	if (fh_type > fh_len) {
1703		if (fh_type != 6 || fh_len != 5)
1704			reiserfs_warning(sb, "reiserfs-13077",
1705				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1706				fh_type, fh_len);
1707		fh_type = fh_len;
1708	}
1709	if (fh_len < 2)
1710		return NULL;
1711
1712	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1713		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1714}
1715
1716struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1717		int fh_len, int fh_type)
1718{
1719	if (fh_type > fh_len)
1720		fh_type = fh_len;
1721	if (fh_type < 4)
1722		return NULL;
1723
1724	return reiserfs_get_dentry(sb,
1725		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1726		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1727		(fh_type == 6) ? fid->raw[5] : 0);
1728}
1729
1730int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1731		       struct inode *parent)
1732{
1733	int maxlen = *lenp;
1734
1735	if (parent && (maxlen < 5)) {
1736		*lenp = 5;
1737		return FILEID_INVALID;
1738	} else if (maxlen < 3) {
1739		*lenp = 3;
1740		return FILEID_INVALID;
1741	}
1742
1743	data[0] = inode->i_ino;
1744	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1745	data[2] = inode->i_generation;
1746	*lenp = 3;
1747	if (parent) {
1748		data[3] = parent->i_ino;
1749		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1750		*lenp = 5;
1751		if (maxlen >= 6) {
1752			data[5] = parent->i_generation;
1753			*lenp = 6;
1754		}
1755	}
1756	return *lenp;
1757}
1758
1759/*
1760 * looks for stat data, then copies fields to it, marks the buffer
1761 * containing stat data as dirty
1762 */
1763/*
1764 * reiserfs inodes are never really dirty, since the dirty inode call
1765 * always logs them.  This call allows the VFS inode marking routines
1766 * to properly mark inodes for datasync and such, but only actually
1767 * does something when called for a synchronous update.
1768 */
1769int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1770{
1771	struct reiserfs_transaction_handle th;
1772	int jbegin_count = 1;
1773
1774	if (sb_rdonly(inode->i_sb))
1775		return -EROFS;
1776	/*
1777	 * memory pressure can sometimes initiate write_inode calls with
1778	 * sync == 1,
1779	 * these cases are just when the system needs ram, not when the
1780	 * inode needs to reach disk for safety, and they can safely be
1781	 * ignored because the altered inode has already been logged.
1782	 */
1783	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1784		reiserfs_write_lock(inode->i_sb);
1785		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1786			reiserfs_update_sd(&th, inode);
1787			journal_end_sync(&th);
1788		}
1789		reiserfs_write_unlock(inode->i_sb);
1790	}
1791	return 0;
1792}
1793
1794/*
1795 * stat data of new object is inserted already, this inserts the item
1796 * containing "." and ".." entries
1797 */
1798static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1799				  struct inode *inode,
1800				  struct item_head *ih, struct treepath *path,
1801				  struct inode *dir)
1802{
1803	struct super_block *sb = th->t_super;
1804	char empty_dir[EMPTY_DIR_SIZE];
1805	char *body = empty_dir;
1806	struct cpu_key key;
1807	int retval;
1808
1809	BUG_ON(!th->t_trans_id);
1810
1811	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1812		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1813		      TYPE_DIRENTRY, 3 /*key length */ );
1814
1815	/*
1816	 * compose item head for new item. Directories consist of items of
1817	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1818	 * is done by reiserfs_new_inode
1819	 */
1820	if (old_format_only(sb)) {
1821		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1823
1824		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1825				       ih->ih_key.k_objectid,
1826				       INODE_PKEY(dir)->k_dir_id,
1827				       INODE_PKEY(dir)->k_objectid);
1828	} else {
1829		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1830				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1831
1832		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1833				    ih->ih_key.k_objectid,
1834				    INODE_PKEY(dir)->k_dir_id,
1835				    INODE_PKEY(dir)->k_objectid);
1836	}
1837
1838	/* look for place in the tree for new item */
1839	retval = search_item(sb, &key, path);
1840	if (retval == IO_ERROR) {
1841		reiserfs_error(sb, "vs-13080",
1842			       "i/o failure occurred creating new directory");
1843		return -EIO;
1844	}
1845	if (retval == ITEM_FOUND) {
1846		pathrelse(path);
1847		reiserfs_warning(sb, "vs-13070",
1848				 "object with this key exists (%k)",
1849				 &(ih->ih_key));
1850		return -EEXIST;
1851	}
1852
1853	/* insert item, that is empty directory item */
1854	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1855}
1856
1857/*
1858 * stat data of object has been inserted, this inserts the item
1859 * containing the body of symlink
1860 */
1861static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1862				struct inode *inode,
1863				struct item_head *ih,
1864				struct treepath *path, const char *symname,
1865				int item_len)
1866{
1867	struct super_block *sb = th->t_super;
1868	struct cpu_key key;
1869	int retval;
1870
1871	BUG_ON(!th->t_trans_id);
1872
1873	_make_cpu_key(&key, KEY_FORMAT_3_5,
1874		      le32_to_cpu(ih->ih_key.k_dir_id),
1875		      le32_to_cpu(ih->ih_key.k_objectid),
1876		      1, TYPE_DIRECT, 3 /*key length */ );
1877
1878	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1879			  0 /*free_space */ );
1880
1881	/* look for place in the tree for new item */
1882	retval = search_item(sb, &key, path);
1883	if (retval == IO_ERROR) {
1884		reiserfs_error(sb, "vs-13080",
1885			       "i/o failure occurred creating new symlink");
1886		return -EIO;
1887	}
1888	if (retval == ITEM_FOUND) {
1889		pathrelse(path);
1890		reiserfs_warning(sb, "vs-13080",
1891				 "object with this key exists (%k)",
1892				 &(ih->ih_key));
1893		return -EEXIST;
1894	}
1895
1896	/* insert item, that is body of symlink */
1897	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1898}
1899
1900/*
1901 * inserts the stat data into the tree, and then calls
1902 * reiserfs_new_directory (to insert ".", ".." item if new object is
1903 * directory) or reiserfs_new_symlink (to insert symlink body if new
1904 * object is symlink) or nothing (if new object is regular file)
1905
1906 * NOTE! uid and gid must already be set in the inode.  If we return
1907 * non-zero due to an error, we have to drop the quota previously allocated
1908 * for the fresh inode.  This can only be done outside a transaction, so
1909 * if we return non-zero, we also end the transaction.
1910 *
1911 * @th: active transaction handle
1912 * @dir: parent directory for new inode
1913 * @mode: mode of new inode
1914 * @symname: symlink contents if inode is symlink
1915 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1916 *         symlinks
1917 * @inode: inode to be filled
1918 * @security: optional security context to associate with this inode
1919 */
1920int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1921		       struct inode *dir, umode_t mode, const char *symname,
1922		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1923		          strlen (symname) for symlinks) */
1924		       loff_t i_size, struct dentry *dentry,
1925		       struct inode *inode,
1926		       struct reiserfs_security_handle *security)
1927{
1928	struct super_block *sb = dir->i_sb;
1929	struct reiserfs_iget_args args;
1930	INITIALIZE_PATH(path_to_key);
1931	struct cpu_key key;
1932	struct item_head ih;
1933	struct stat_data sd;
1934	int retval;
1935	int err;
1936	int depth;
1937
1938	BUG_ON(!th->t_trans_id);
1939
1940	depth = reiserfs_write_unlock_nested(sb);
1941	err = dquot_alloc_inode(inode);
1942	reiserfs_write_lock_nested(sb, depth);
1943	if (err)
1944		goto out_end_trans;
1945	if (!dir->i_nlink) {
1946		err = -EPERM;
1947		goto out_bad_inode;
1948	}
1949
1950	/* item head of new item */
1951	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1952	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1953	if (!ih.ih_key.k_objectid) {
1954		err = -ENOMEM;
1955		goto out_bad_inode;
1956	}
1957	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1958	if (old_format_only(sb))
1959		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1960				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1961	else
1962		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1963				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1964	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1965	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1966
1967	depth = reiserfs_write_unlock_nested(inode->i_sb);
1968	err = insert_inode_locked4(inode, args.objectid,
1969			     reiserfs_find_actor, &args);
1970	reiserfs_write_lock_nested(inode->i_sb, depth);
1971	if (err) {
1972		err = -EINVAL;
1973		goto out_bad_inode;
1974	}
1975
1976	if (old_format_only(sb))
1977		/*
1978		 * not a perfect generation count, as object ids can be reused,
1979		 * but this is as good as reiserfs can do right now.
1980		 * note that the private part of inode isn't filled in yet,
1981		 * we have to use the directory.
1982		 */
1983		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1984	else
1985#if defined( USE_INODE_GENERATION_COUNTER )
1986		inode->i_generation =
1987		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1988#else
1989		inode->i_generation = ++event;
1990#endif
1991
1992	/* fill stat data */
1993	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1994
1995	/* uid and gid must already be set by the caller for quota init */
1996
1997	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1998	inode->i_size = i_size;
1999	inode->i_blocks = 0;
2000	inode->i_bytes = 0;
2001	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2002	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2003
2004	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2005	REISERFS_I(inode)->i_flags = 0;
2006	REISERFS_I(inode)->i_prealloc_block = 0;
2007	REISERFS_I(inode)->i_prealloc_count = 0;
2008	REISERFS_I(inode)->i_trans_id = 0;
2009	REISERFS_I(inode)->i_jl = NULL;
2010	REISERFS_I(inode)->i_attrs =
2011	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2012	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2013	reiserfs_init_xattr_rwsem(inode);
2014
2015	/* key to search for correct place for new stat data */
2016	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2017		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2018		      TYPE_STAT_DATA, 3 /*key length */ );
2019
2020	/* find proper place for inserting of stat data */
2021	retval = search_item(sb, &key, &path_to_key);
2022	if (retval == IO_ERROR) {
2023		err = -EIO;
2024		goto out_bad_inode;
2025	}
2026	if (retval == ITEM_FOUND) {
2027		pathrelse(&path_to_key);
2028		err = -EEXIST;
2029		goto out_bad_inode;
2030	}
2031	if (old_format_only(sb)) {
2032		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2033		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2034			pathrelse(&path_to_key);
2035			err = -EINVAL;
2036			goto out_bad_inode;
2037		}
2038		inode2sd_v1(&sd, inode, inode->i_size);
2039	} else {
2040		inode2sd(&sd, inode, inode->i_size);
2041	}
2042	/*
2043	 * store in in-core inode the key of stat data and version all
2044	 * object items will have (directory items will have old offset
2045	 * format, other new objects will consist of new items)
2046	 */
2047	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2048		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2049	else
2050		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2051	if (old_format_only(sb))
2052		set_inode_sd_version(inode, STAT_DATA_V1);
2053	else
2054		set_inode_sd_version(inode, STAT_DATA_V2);
2055
2056	/* insert the stat data into the tree */
2057#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2058	if (REISERFS_I(dir)->new_packing_locality)
2059		th->displace_new_blocks = 1;
2060#endif
2061	retval =
2062	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2063				 (char *)(&sd));
2064	if (retval) {
2065		err = retval;
2066		reiserfs_check_path(&path_to_key);
2067		goto out_bad_inode;
2068	}
2069#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2070	if (!th->displace_new_blocks)
2071		REISERFS_I(dir)->new_packing_locality = 0;
2072#endif
2073	if (S_ISDIR(mode)) {
2074		/* insert item with "." and ".." */
2075		retval =
2076		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2077	}
2078
2079	if (S_ISLNK(mode)) {
2080		/* insert body of symlink */
2081		if (!old_format_only(sb))
2082			i_size = ROUND_UP(i_size);
2083		retval =
2084		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2085					 i_size);
2086	}
2087	if (retval) {
2088		err = retval;
2089		reiserfs_check_path(&path_to_key);
2090		journal_end(th);
2091		goto out_inserted_sd;
2092	}
2093
2094	/*
2095	 * Mark it private if we're creating the privroot
2096	 * or something under it.
2097	 */
2098	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2099		inode->i_flags |= S_PRIVATE;
2100		inode->i_opflags &= ~IOP_XATTR;
2101	}
2102
2103	if (reiserfs_posixacl(inode->i_sb)) {
2104		reiserfs_write_unlock(inode->i_sb);
2105		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2106		reiserfs_write_lock(inode->i_sb);
2107		if (retval) {
2108			err = retval;
2109			reiserfs_check_path(&path_to_key);
2110			journal_end(th);
2111			goto out_inserted_sd;
2112		}
2113	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2114		reiserfs_warning(inode->i_sb, "jdm-13090",
2115				 "ACLs aren't enabled in the fs, "
2116				 "but vfs thinks they are!");
2117	}
2118
2119	if (security->name) {
2120		reiserfs_write_unlock(inode->i_sb);
2121		retval = reiserfs_security_write(th, inode, security);
2122		reiserfs_write_lock(inode->i_sb);
2123		if (retval) {
2124			err = retval;
2125			reiserfs_check_path(&path_to_key);
2126			retval = journal_end(th);
2127			if (retval)
2128				err = retval;
2129			goto out_inserted_sd;
2130		}
2131	}
2132
2133	reiserfs_update_sd(th, inode);
2134	reiserfs_check_path(&path_to_key);
2135
2136	return 0;
2137
2138out_bad_inode:
2139	/* Invalidate the object, nothing was inserted yet */
2140	INODE_PKEY(inode)->k_objectid = 0;
2141
2142	/* Quota change must be inside a transaction for journaling */
2143	depth = reiserfs_write_unlock_nested(inode->i_sb);
2144	dquot_free_inode(inode);
2145	reiserfs_write_lock_nested(inode->i_sb, depth);
2146
2147out_end_trans:
2148	journal_end(th);
2149	/*
2150	 * Drop can be outside and it needs more credits so it's better
2151	 * to have it outside
2152	 */
2153	depth = reiserfs_write_unlock_nested(inode->i_sb);
2154	dquot_drop(inode);
2155	reiserfs_write_lock_nested(inode->i_sb, depth);
2156	inode->i_flags |= S_NOQUOTA;
2157	make_bad_inode(inode);
2158
2159out_inserted_sd:
2160	clear_nlink(inode);
2161	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2162	if (inode->i_state & I_NEW)
2163		unlock_new_inode(inode);
2164	iput(inode);
2165	return err;
2166}
2167
2168/*
2169 * finds the tail page in the page cache,
2170 * reads the last block in.
2171 *
2172 * On success, page_result is set to a locked, pinned page, and bh_result
2173 * is set to an up to date buffer for the last block in the file.  returns 0.
2174 *
2175 * tail conversion is not done, so bh_result might not be valid for writing
2176 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2177 * trying to write the block.
2178 *
2179 * on failure, nonzero is returned, page_result and bh_result are untouched.
2180 */
2181static int grab_tail_page(struct inode *inode,
2182			  struct page **page_result,
2183			  struct buffer_head **bh_result)
2184{
2185
2186	/*
2187	 * we want the page with the last byte in the file,
2188	 * not the page that will hold the next byte for appending
2189	 */
2190	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2191	unsigned long pos = 0;
2192	unsigned long start = 0;
2193	unsigned long blocksize = inode->i_sb->s_blocksize;
2194	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2195	struct buffer_head *bh;
2196	struct buffer_head *head;
2197	struct page *page;
2198	int error;
2199
2200	/*
2201	 * we know that we are only called with inode->i_size > 0.
2202	 * we also know that a file tail can never be as big as a block
2203	 * If i_size % blocksize == 0, our file is currently block aligned
2204	 * and it won't need converting or zeroing after a truncate.
2205	 */
2206	if ((offset & (blocksize - 1)) == 0) {
2207		return -ENOENT;
2208	}
2209	page = grab_cache_page(inode->i_mapping, index);
2210	error = -ENOMEM;
2211	if (!page) {
2212		goto out;
2213	}
2214	/* start within the page of the last block in the file */
2215	start = (offset / blocksize) * blocksize;
2216
2217	error = __block_write_begin(page, start, offset - start,
2218				    reiserfs_get_block_create_0);
2219	if (error)
2220		goto unlock;
2221
2222	head = page_buffers(page);
2223	bh = head;
2224	do {
2225		if (pos >= start) {
2226			break;
2227		}
2228		bh = bh->b_this_page;
2229		pos += blocksize;
2230	} while (bh != head);
2231
2232	if (!buffer_uptodate(bh)) {
2233		/*
2234		 * note, this should never happen, prepare_write should be
2235		 * taking care of this for us.  If the buffer isn't up to
2236		 * date, I've screwed up the code to find the buffer, or the
2237		 * code to call prepare_write
2238		 */
2239		reiserfs_error(inode->i_sb, "clm-6000",
2240			       "error reading block %lu", bh->b_blocknr);
2241		error = -EIO;
2242		goto unlock;
2243	}
2244	*bh_result = bh;
2245	*page_result = page;
2246
2247out:
2248	return error;
2249
2250unlock:
2251	unlock_page(page);
2252	put_page(page);
2253	return error;
2254}
2255
2256/*
2257 * vfs version of truncate file.  Must NOT be called with
2258 * a transaction already started.
2259 *
2260 * some code taken from block_truncate_page
2261 */
2262int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2263{
2264	struct reiserfs_transaction_handle th;
2265	/* we want the offset for the first byte after the end of the file */
2266	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2267	unsigned blocksize = inode->i_sb->s_blocksize;
2268	unsigned length;
2269	struct page *page = NULL;
2270	int error;
2271	struct buffer_head *bh = NULL;
2272	int err2;
2273
2274	reiserfs_write_lock(inode->i_sb);
2275
2276	if (inode->i_size > 0) {
2277		error = grab_tail_page(inode, &page, &bh);
2278		if (error) {
2279			/*
2280			 * -ENOENT means we truncated past the end of the
2281			 * file, and get_block_create_0 could not find a
2282			 * block to read in, which is ok.
2283			 */
2284			if (error != -ENOENT)
2285				reiserfs_error(inode->i_sb, "clm-6001",
2286					       "grab_tail_page failed %d",
2287					       error);
2288			page = NULL;
2289			bh = NULL;
2290		}
2291	}
2292
2293	/*
2294	 * so, if page != NULL, we have a buffer head for the offset at
2295	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2296	 * then we have an unformatted node.  Otherwise, we have a direct item,
2297	 * and no zeroing is required on disk.  We zero after the truncate,
2298	 * because the truncate might pack the item anyway
2299	 * (it will unmap bh if it packs).
2300	 *
2301	 * it is enough to reserve space in transaction for 2 balancings:
2302	 * one for "save" link adding and another for the first
2303	 * cut_from_item. 1 is for update_sd
2304	 */
2305	error = journal_begin(&th, inode->i_sb,
2306			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2307	if (error)
2308		goto out;
2309	reiserfs_update_inode_transaction(inode);
2310	if (update_timestamps)
2311		/*
2312		 * we are doing real truncate: if the system crashes
2313		 * before the last transaction of truncating gets committed
2314		 * - on reboot the file either appears truncated properly
2315		 * or not truncated at all
2316		 */
2317		add_save_link(&th, inode, 1);
2318	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2319	error = journal_end(&th);
2320	if (error)
2321		goto out;
2322
2323	/* check reiserfs_do_truncate after ending the transaction */
2324	if (err2) {
2325		error = err2;
2326  		goto out;
2327	}
2328	
2329	if (update_timestamps) {
2330		error = remove_save_link(inode, 1 /* truncate */);
2331		if (error)
2332			goto out;
2333	}
2334
2335	if (page) {
2336		length = offset & (blocksize - 1);
2337		/* if we are not on a block boundary */
2338		if (length) {
2339			length = blocksize - length;
2340			zero_user(page, offset, length);
2341			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2342				mark_buffer_dirty(bh);
2343			}
2344		}
2345		unlock_page(page);
2346		put_page(page);
2347	}
2348
2349	reiserfs_write_unlock(inode->i_sb);
2350
2351	return 0;
2352out:
2353	if (page) {
2354		unlock_page(page);
2355		put_page(page);
2356	}
2357
2358	reiserfs_write_unlock(inode->i_sb);
2359
2360	return error;
2361}
2362
2363static int map_block_for_writepage(struct inode *inode,
2364				   struct buffer_head *bh_result,
2365				   unsigned long block)
2366{
2367	struct reiserfs_transaction_handle th;
2368	int fs_gen;
2369	struct item_head tmp_ih;
2370	struct item_head *ih;
2371	struct buffer_head *bh;
2372	__le32 *item;
2373	struct cpu_key key;
2374	INITIALIZE_PATH(path);
2375	int pos_in_item;
2376	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2377	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2378	int retval;
2379	int use_get_block = 0;
2380	int bytes_copied = 0;
2381	int copy_size;
2382	int trans_running = 0;
2383
2384	/*
2385	 * catch places below that try to log something without
2386	 * starting a trans
2387	 */
2388	th.t_trans_id = 0;
2389
2390	if (!buffer_uptodate(bh_result)) {
2391		return -EIO;
2392	}
2393
2394	kmap(bh_result->b_page);
2395start_over:
2396	reiserfs_write_lock(inode->i_sb);
2397	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2398
2399research:
2400	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2401	if (retval != POSITION_FOUND) {
2402		use_get_block = 1;
2403		goto out;
2404	}
2405
2406	bh = get_last_bh(&path);
2407	ih = tp_item_head(&path);
2408	item = tp_item_body(&path);
2409	pos_in_item = path.pos_in_item;
2410
2411	/* we've found an unformatted node */
2412	if (indirect_item_found(retval, ih)) {
2413		if (bytes_copied > 0) {
2414			reiserfs_warning(inode->i_sb, "clm-6002",
2415					 "bytes_copied %d", bytes_copied);
2416		}
2417		if (!get_block_num(item, pos_in_item)) {
2418			/* crap, we are writing to a hole */
2419			use_get_block = 1;
2420			goto out;
2421		}
2422		set_block_dev_mapped(bh_result,
2423				     get_block_num(item, pos_in_item), inode);
2424	} else if (is_direct_le_ih(ih)) {
2425		char *p;
2426		p = page_address(bh_result->b_page);
2427		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2428		copy_size = ih_item_len(ih) - pos_in_item;
2429
2430		fs_gen = get_generation(inode->i_sb);
2431		copy_item_head(&tmp_ih, ih);
2432
2433		if (!trans_running) {
2434			/* vs-3050 is gone, no need to drop the path */
2435			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2436			if (retval)
2437				goto out;
2438			reiserfs_update_inode_transaction(inode);
2439			trans_running = 1;
2440			if (fs_changed(fs_gen, inode->i_sb)
2441			    && item_moved(&tmp_ih, &path)) {
2442				reiserfs_restore_prepared_buffer(inode->i_sb,
2443								 bh);
2444				goto research;
2445			}
2446		}
2447
2448		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2449
2450		if (fs_changed(fs_gen, inode->i_sb)
2451		    && item_moved(&tmp_ih, &path)) {
2452			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2453			goto research;
2454		}
2455
2456		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2457		       copy_size);
2458
2459		journal_mark_dirty(&th, bh);
2460		bytes_copied += copy_size;
2461		set_block_dev_mapped(bh_result, 0, inode);
2462
2463		/* are there still bytes left? */
2464		if (bytes_copied < bh_result->b_size &&
2465		    (byte_offset + bytes_copied) < inode->i_size) {
2466			set_cpu_key_k_offset(&key,
2467					     cpu_key_k_offset(&key) +
2468					     copy_size);
2469			goto research;
2470		}
2471	} else {
2472		reiserfs_warning(inode->i_sb, "clm-6003",
2473				 "bad item inode %lu", inode->i_ino);
2474		retval = -EIO;
2475		goto out;
2476	}
2477	retval = 0;
2478
2479out:
2480	pathrelse(&path);
2481	if (trans_running) {
2482		int err = journal_end(&th);
2483		if (err)
2484			retval = err;
2485		trans_running = 0;
2486	}
2487	reiserfs_write_unlock(inode->i_sb);
2488
2489	/* this is where we fill in holes in the file. */
2490	if (use_get_block) {
2491		retval = reiserfs_get_block(inode, block, bh_result,
2492					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2493					    | GET_BLOCK_NO_DANGLE);
2494		if (!retval) {
2495			if (!buffer_mapped(bh_result)
2496			    || bh_result->b_blocknr == 0) {
2497				/* get_block failed to find a mapped unformatted node. */
2498				use_get_block = 0;
2499				goto start_over;
2500			}
2501		}
2502	}
2503	kunmap(bh_result->b_page);
2504
2505	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2506		/*
2507		 * we've copied data from the page into the direct item, so the
2508		 * buffer in the page is now clean, mark it to reflect that.
2509		 */
2510		lock_buffer(bh_result);
2511		clear_buffer_dirty(bh_result);
2512		unlock_buffer(bh_result);
2513	}
2514	return retval;
2515}
2516
2517/*
2518 * mason@suse.com: updated in 2.5.54 to follow the same general io
2519 * start/recovery path as __block_write_full_page, along with special
2520 * code to handle reiserfs tails.
2521 */
2522static int reiserfs_write_full_page(struct page *page,
2523				    struct writeback_control *wbc)
2524{
2525	struct inode *inode = page->mapping->host;
2526	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2527	int error = 0;
2528	unsigned long block;
2529	sector_t last_block;
2530	struct buffer_head *head, *bh;
2531	int partial = 0;
2532	int nr = 0;
2533	int checked = PageChecked(page);
2534	struct reiserfs_transaction_handle th;
2535	struct super_block *s = inode->i_sb;
2536	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2537	th.t_trans_id = 0;
2538
2539	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2540	if (checked && (current->flags & PF_MEMALLOC)) {
2541		redirty_page_for_writepage(wbc, page);
2542		unlock_page(page);
2543		return 0;
2544	}
2545
2546	/*
2547	 * The page dirty bit is cleared before writepage is called, which
2548	 * means we have to tell create_empty_buffers to make dirty buffers
2549	 * The page really should be up to date at this point, so tossing
2550	 * in the BH_Uptodate is just a sanity check.
2551	 */
2552	if (!page_has_buffers(page)) {
2553		create_empty_buffers(page, s->s_blocksize,
 
2554				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2555	}
2556	head = page_buffers(page);
2557
2558	/*
2559	 * last page in the file, zero out any contents past the
2560	 * last byte in the file
2561	 */
2562	if (page->index >= end_index) {
2563		unsigned last_offset;
2564
2565		last_offset = inode->i_size & (PAGE_SIZE - 1);
2566		/* no file contents in this page */
2567		if (page->index >= end_index + 1 || !last_offset) {
2568			unlock_page(page);
2569			return 0;
2570		}
2571		zero_user_segment(page, last_offset, PAGE_SIZE);
2572	}
2573	bh = head;
2574	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2575	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2576	/* first map all the buffers, logging any direct items we find */
2577	do {
2578		if (block > last_block) {
2579			/*
2580			 * This can happen when the block size is less than
2581			 * the page size.  The corresponding bytes in the page
2582			 * were zero filled above
2583			 */
2584			clear_buffer_dirty(bh);
2585			set_buffer_uptodate(bh);
2586		} else if ((checked || buffer_dirty(bh)) &&
2587			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2588			/*
2589			 * not mapped yet, or it points to a direct item, search
2590			 * the btree for the mapping info, and log any direct
2591			 * items found
2592			 */
2593			if ((error = map_block_for_writepage(inode, bh, block))) {
2594				goto fail;
2595			}
2596		}
2597		bh = bh->b_this_page;
2598		block++;
2599	} while (bh != head);
2600
2601	/*
2602	 * we start the transaction after map_block_for_writepage,
2603	 * because it can create holes in the file (an unbounded operation).
2604	 * starting it here, we can make a reliable estimate for how many
2605	 * blocks we're going to log
2606	 */
2607	if (checked) {
2608		ClearPageChecked(page);
2609		reiserfs_write_lock(s);
2610		error = journal_begin(&th, s, bh_per_page + 1);
2611		if (error) {
2612			reiserfs_write_unlock(s);
2613			goto fail;
2614		}
2615		reiserfs_update_inode_transaction(inode);
2616	}
2617	/* now go through and lock any dirty buffers on the page */
2618	do {
2619		get_bh(bh);
2620		if (!buffer_mapped(bh))
2621			continue;
2622		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2623			continue;
2624
2625		if (checked) {
2626			reiserfs_prepare_for_journal(s, bh, 1);
2627			journal_mark_dirty(&th, bh);
2628			continue;
2629		}
2630		/*
2631		 * from this point on, we know the buffer is mapped to a
2632		 * real block and not a direct item
2633		 */
2634		if (wbc->sync_mode != WB_SYNC_NONE) {
2635			lock_buffer(bh);
2636		} else {
2637			if (!trylock_buffer(bh)) {
2638				redirty_page_for_writepage(wbc, page);
2639				continue;
2640			}
2641		}
2642		if (test_clear_buffer_dirty(bh)) {
2643			mark_buffer_async_write(bh);
2644		} else {
2645			unlock_buffer(bh);
2646		}
2647	} while ((bh = bh->b_this_page) != head);
2648
2649	if (checked) {
2650		error = journal_end(&th);
2651		reiserfs_write_unlock(s);
2652		if (error)
2653			goto fail;
2654	}
2655	BUG_ON(PageWriteback(page));
2656	set_page_writeback(page);
2657	unlock_page(page);
2658
2659	/*
2660	 * since any buffer might be the only dirty buffer on the page,
2661	 * the first submit_bh can bring the page out of writeback.
2662	 * be careful with the buffers.
2663	 */
2664	do {
2665		struct buffer_head *next = bh->b_this_page;
2666		if (buffer_async_write(bh)) {
2667			submit_bh(REQ_OP_WRITE, 0, bh);
2668			nr++;
2669		}
2670		put_bh(bh);
2671		bh = next;
2672	} while (bh != head);
2673
2674	error = 0;
2675done:
2676	if (nr == 0) {
2677		/*
2678		 * if this page only had a direct item, it is very possible for
2679		 * no io to be required without there being an error.  Or,
2680		 * someone else could have locked them and sent them down the
2681		 * pipe without locking the page
2682		 */
2683		bh = head;
2684		do {
2685			if (!buffer_uptodate(bh)) {
2686				partial = 1;
2687				break;
2688			}
2689			bh = bh->b_this_page;
2690		} while (bh != head);
2691		if (!partial)
2692			SetPageUptodate(page);
2693		end_page_writeback(page);
2694	}
2695	return error;
2696
2697fail:
2698	/*
2699	 * catches various errors, we need to make sure any valid dirty blocks
2700	 * get to the media.  The page is currently locked and not marked for
2701	 * writeback
2702	 */
2703	ClearPageUptodate(page);
2704	bh = head;
2705	do {
2706		get_bh(bh);
2707		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2708			lock_buffer(bh);
2709			mark_buffer_async_write(bh);
2710		} else {
2711			/*
2712			 * clear any dirty bits that might have come from
2713			 * getting attached to a dirty page
2714			 */
2715			clear_buffer_dirty(bh);
2716		}
2717		bh = bh->b_this_page;
2718	} while (bh != head);
2719	SetPageError(page);
2720	BUG_ON(PageWriteback(page));
2721	set_page_writeback(page);
2722	unlock_page(page);
2723	do {
2724		struct buffer_head *next = bh->b_this_page;
2725		if (buffer_async_write(bh)) {
2726			clear_buffer_dirty(bh);
2727			submit_bh(REQ_OP_WRITE, 0, bh);
2728			nr++;
2729		}
2730		put_bh(bh);
2731		bh = next;
2732	} while (bh != head);
2733	goto done;
2734}
2735
2736static int reiserfs_readpage(struct file *f, struct page *page)
2737{
2738	return block_read_full_page(page, reiserfs_get_block);
2739}
2740
2741static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2742{
2743	struct inode *inode = page->mapping->host;
 
2744	reiserfs_wait_on_write_block(inode->i_sb);
2745	return reiserfs_write_full_page(page, wbc);
2746}
2747
2748static void reiserfs_truncate_failed_write(struct inode *inode)
2749{
2750	truncate_inode_pages(inode->i_mapping, inode->i_size);
2751	reiserfs_truncate_file(inode, 0);
2752}
2753
2754static int reiserfs_write_begin(struct file *file,
2755				struct address_space *mapping,
2756				loff_t pos, unsigned len, unsigned flags,
2757				struct page **pagep, void **fsdata)
2758{
2759	struct inode *inode;
2760	struct page *page;
2761	pgoff_t index;
2762	int ret;
2763	int old_ref = 0;
2764
2765 	inode = mapping->host;
2766	*fsdata = NULL;
2767 	if (flags & AOP_FLAG_CONT_EXPAND &&
2768 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2769 		pos ++;
2770		*fsdata = (void *)(unsigned long)flags;
2771	}
2772
2773	index = pos >> PAGE_SHIFT;
2774	page = grab_cache_page_write_begin(mapping, index, flags);
2775	if (!page)
2776		return -ENOMEM;
2777	*pagep = page;
2778
2779	reiserfs_wait_on_write_block(inode->i_sb);
2780	fix_tail_page_for_writing(page);
2781	if (reiserfs_transaction_running(inode->i_sb)) {
2782		struct reiserfs_transaction_handle *th;
2783		th = (struct reiserfs_transaction_handle *)current->
2784		    journal_info;
2785		BUG_ON(!th->t_refcount);
2786		BUG_ON(!th->t_trans_id);
2787		old_ref = th->t_refcount;
2788		th->t_refcount++;
2789	}
2790	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2791	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2792		struct reiserfs_transaction_handle *th = current->journal_info;
2793		/*
2794		 * this gets a little ugly.  If reiserfs_get_block returned an
2795		 * error and left a transacstion running, we've got to close
2796		 * it, and we've got to free handle if it was a persistent
2797		 * transaction.
2798		 *
2799		 * But, if we had nested into an existing transaction, we need
2800		 * to just drop the ref count on the handle.
2801		 *
2802		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2803		 * and it was a persistent trans.  Otherwise, it was nested
2804		 * above.
2805		 */
2806		if (th->t_refcount > old_ref) {
2807			if (old_ref)
2808				th->t_refcount--;
2809			else {
2810				int err;
2811				reiserfs_write_lock(inode->i_sb);
2812				err = reiserfs_end_persistent_transaction(th);
2813				reiserfs_write_unlock(inode->i_sb);
2814				if (err)
2815					ret = err;
2816			}
2817		}
2818	}
2819	if (ret) {
2820		unlock_page(page);
2821		put_page(page);
2822		/* Truncate allocated blocks */
2823		reiserfs_truncate_failed_write(inode);
2824	}
2825	return ret;
2826}
2827
2828int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2829{
2830	struct inode *inode = page->mapping->host;
2831	int ret;
2832	int old_ref = 0;
2833	int depth;
2834
2835	depth = reiserfs_write_unlock_nested(inode->i_sb);
2836	reiserfs_wait_on_write_block(inode->i_sb);
2837	reiserfs_write_lock_nested(inode->i_sb, depth);
2838
2839	fix_tail_page_for_writing(page);
2840	if (reiserfs_transaction_running(inode->i_sb)) {
2841		struct reiserfs_transaction_handle *th;
2842		th = (struct reiserfs_transaction_handle *)current->
2843		    journal_info;
2844		BUG_ON(!th->t_refcount);
2845		BUG_ON(!th->t_trans_id);
2846		old_ref = th->t_refcount;
2847		th->t_refcount++;
2848	}
2849
2850	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2851	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2852		struct reiserfs_transaction_handle *th = current->journal_info;
2853		/*
2854		 * this gets a little ugly.  If reiserfs_get_block returned an
2855		 * error and left a transacstion running, we've got to close
2856		 * it, and we've got to free handle if it was a persistent
2857		 * transaction.
2858		 *
2859		 * But, if we had nested into an existing transaction, we need
2860		 * to just drop the ref count on the handle.
2861		 *
2862		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2863		 * and it was a persistent trans.  Otherwise, it was nested
2864		 * above.
2865		 */
2866		if (th->t_refcount > old_ref) {
2867			if (old_ref)
2868				th->t_refcount--;
2869			else {
2870				int err;
2871				reiserfs_write_lock(inode->i_sb);
2872				err = reiserfs_end_persistent_transaction(th);
2873				reiserfs_write_unlock(inode->i_sb);
2874				if (err)
2875					ret = err;
2876			}
2877		}
2878	}
2879	return ret;
2880
2881}
2882
2883static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2884{
2885	return generic_block_bmap(as, block, reiserfs_bmap);
2886}
2887
2888static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2889			      loff_t pos, unsigned len, unsigned copied,
2890			      struct page *page, void *fsdata)
2891{
 
2892	struct inode *inode = page->mapping->host;
2893	int ret = 0;
2894	int update_sd = 0;
2895	struct reiserfs_transaction_handle *th;
2896	unsigned start;
2897	bool locked = false;
2898
2899	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2900		pos ++;
2901
2902	reiserfs_wait_on_write_block(inode->i_sb);
2903	if (reiserfs_transaction_running(inode->i_sb))
2904		th = current->journal_info;
2905	else
2906		th = NULL;
2907
2908	start = pos & (PAGE_SIZE - 1);
2909	if (unlikely(copied < len)) {
2910		if (!PageUptodate(page))
2911			copied = 0;
2912
2913		page_zero_new_buffers(page, start + copied, start + len);
2914	}
2915	flush_dcache_page(page);
2916
2917	reiserfs_commit_page(inode, page, start, start + copied);
2918
2919	/*
2920	 * generic_commit_write does this for us, but does not update the
2921	 * transaction tracking stuff when the size changes.  So, we have
2922	 * to do the i_size updates here.
2923	 */
2924	if (pos + copied > inode->i_size) {
2925		struct reiserfs_transaction_handle myth;
2926		reiserfs_write_lock(inode->i_sb);
2927		locked = true;
2928		/*
2929		 * If the file have grown beyond the border where it
2930		 * can have a tail, unmark it as needing a tail
2931		 * packing
2932		 */
2933		if ((have_large_tails(inode->i_sb)
2934		     && inode->i_size > i_block_size(inode) * 4)
2935		    || (have_small_tails(inode->i_sb)
2936			&& inode->i_size > i_block_size(inode)))
2937			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2938
2939		ret = journal_begin(&myth, inode->i_sb, 1);
2940		if (ret)
2941			goto journal_error;
2942
2943		reiserfs_update_inode_transaction(inode);
2944		inode->i_size = pos + copied;
2945		/*
2946		 * this will just nest into our transaction.  It's important
2947		 * to use mark_inode_dirty so the inode gets pushed around on
2948		 * the dirty lists, and so that O_SYNC works as expected
2949		 */
2950		mark_inode_dirty(inode);
2951		reiserfs_update_sd(&myth, inode);
2952		update_sd = 1;
2953		ret = journal_end(&myth);
2954		if (ret)
2955			goto journal_error;
2956	}
2957	if (th) {
2958		if (!locked) {
2959			reiserfs_write_lock(inode->i_sb);
2960			locked = true;
2961		}
2962		if (!update_sd)
2963			mark_inode_dirty(inode);
2964		ret = reiserfs_end_persistent_transaction(th);
2965		if (ret)
2966			goto out;
2967	}
2968
2969out:
2970	if (locked)
2971		reiserfs_write_unlock(inode->i_sb);
2972	unlock_page(page);
2973	put_page(page);
2974
2975	if (pos + len > inode->i_size)
2976		reiserfs_truncate_failed_write(inode);
2977
2978	return ret == 0 ? copied : ret;
2979
2980journal_error:
2981	reiserfs_write_unlock(inode->i_sb);
2982	locked = false;
2983	if (th) {
2984		if (!update_sd)
2985			reiserfs_update_sd(th, inode);
2986		ret = reiserfs_end_persistent_transaction(th);
2987	}
2988	goto out;
2989}
2990
2991int reiserfs_commit_write(struct file *f, struct page *page,
2992			  unsigned from, unsigned to)
2993{
2994	struct inode *inode = page->mapping->host;
2995	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2996	int ret = 0;
2997	int update_sd = 0;
2998	struct reiserfs_transaction_handle *th = NULL;
2999	int depth;
3000
3001	depth = reiserfs_write_unlock_nested(inode->i_sb);
3002	reiserfs_wait_on_write_block(inode->i_sb);
3003	reiserfs_write_lock_nested(inode->i_sb, depth);
3004
3005	if (reiserfs_transaction_running(inode->i_sb)) {
3006		th = current->journal_info;
3007	}
3008	reiserfs_commit_page(inode, page, from, to);
3009
3010	/*
3011	 * generic_commit_write does this for us, but does not update the
3012	 * transaction tracking stuff when the size changes.  So, we have
3013	 * to do the i_size updates here.
3014	 */
3015	if (pos > inode->i_size) {
3016		struct reiserfs_transaction_handle myth;
3017		/*
3018		 * If the file have grown beyond the border where it
3019		 * can have a tail, unmark it as needing a tail
3020		 * packing
3021		 */
3022		if ((have_large_tails(inode->i_sb)
3023		     && inode->i_size > i_block_size(inode) * 4)
3024		    || (have_small_tails(inode->i_sb)
3025			&& inode->i_size > i_block_size(inode)))
3026			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3027
3028		ret = journal_begin(&myth, inode->i_sb, 1);
3029		if (ret)
3030			goto journal_error;
3031
3032		reiserfs_update_inode_transaction(inode);
3033		inode->i_size = pos;
3034		/*
3035		 * this will just nest into our transaction.  It's important
3036		 * to use mark_inode_dirty so the inode gets pushed around
3037		 * on the dirty lists, and so that O_SYNC works as expected
3038		 */
3039		mark_inode_dirty(inode);
3040		reiserfs_update_sd(&myth, inode);
3041		update_sd = 1;
3042		ret = journal_end(&myth);
3043		if (ret)
3044			goto journal_error;
3045	}
3046	if (th) {
3047		if (!update_sd)
3048			mark_inode_dirty(inode);
3049		ret = reiserfs_end_persistent_transaction(th);
3050		if (ret)
3051			goto out;
3052	}
3053
3054out:
3055	return ret;
3056
3057journal_error:
3058	if (th) {
3059		if (!update_sd)
3060			reiserfs_update_sd(th, inode);
3061		ret = reiserfs_end_persistent_transaction(th);
3062	}
3063
3064	return ret;
3065}
3066
3067void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3068{
3069	if (reiserfs_attrs(inode->i_sb)) {
3070		if (sd_attrs & REISERFS_SYNC_FL)
3071			inode->i_flags |= S_SYNC;
3072		else
3073			inode->i_flags &= ~S_SYNC;
3074		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3075			inode->i_flags |= S_IMMUTABLE;
3076		else
3077			inode->i_flags &= ~S_IMMUTABLE;
3078		if (sd_attrs & REISERFS_APPEND_FL)
3079			inode->i_flags |= S_APPEND;
3080		else
3081			inode->i_flags &= ~S_APPEND;
3082		if (sd_attrs & REISERFS_NOATIME_FL)
3083			inode->i_flags |= S_NOATIME;
3084		else
3085			inode->i_flags &= ~S_NOATIME;
3086		if (sd_attrs & REISERFS_NOTAIL_FL)
3087			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3088		else
3089			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3090	}
3091}
3092
3093/*
3094 * decide if this buffer needs to stay around for data logging or ordered
3095 * write purposes
3096 */
3097static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3098{
3099	int ret = 1;
3100	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3101
3102	lock_buffer(bh);
3103	spin_lock(&j->j_dirty_buffers_lock);
3104	if (!buffer_mapped(bh)) {
3105		goto free_jh;
3106	}
3107	/*
3108	 * the page is locked, and the only places that log a data buffer
3109	 * also lock the page.
3110	 */
3111	if (reiserfs_file_data_log(inode)) {
3112		/*
3113		 * very conservative, leave the buffer pinned if
3114		 * anyone might need it.
3115		 */
3116		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3117			ret = 0;
3118		}
3119	} else  if (buffer_dirty(bh)) {
3120		struct reiserfs_journal_list *jl;
3121		struct reiserfs_jh *jh = bh->b_private;
3122
3123		/*
3124		 * why is this safe?
3125		 * reiserfs_setattr updates i_size in the on disk
3126		 * stat data before allowing vmtruncate to be called.
3127		 *
3128		 * If buffer was put onto the ordered list for this
3129		 * transaction, we know for sure either this transaction
3130		 * or an older one already has updated i_size on disk,
3131		 * and this ordered data won't be referenced in the file
3132		 * if we crash.
3133		 *
3134		 * if the buffer was put onto the ordered list for an older
3135		 * transaction, we need to leave it around
3136		 */
3137		if (jh && (jl = jh->jl)
3138		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3139			ret = 0;
3140	}
3141free_jh:
3142	if (ret && bh->b_private) {
3143		reiserfs_free_jh(bh);
3144	}
3145	spin_unlock(&j->j_dirty_buffers_lock);
3146	unlock_buffer(bh);
3147	return ret;
3148}
3149
3150/* clm -- taken from fs/buffer.c:block_invalidate_page */
3151static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3152				    unsigned int length)
3153{
3154	struct buffer_head *head, *bh, *next;
3155	struct inode *inode = page->mapping->host;
3156	unsigned int curr_off = 0;
3157	unsigned int stop = offset + length;
3158	int partial_page = (offset || length < PAGE_SIZE);
3159	int ret = 1;
3160
3161	BUG_ON(!PageLocked(page));
3162
3163	if (!partial_page)
3164		ClearPageChecked(page);
3165
3166	if (!page_has_buffers(page))
 
3167		goto out;
3168
3169	head = page_buffers(page);
3170	bh = head;
3171	do {
3172		unsigned int next_off = curr_off + bh->b_size;
3173		next = bh->b_this_page;
3174
3175		if (next_off > stop)
3176			goto out;
3177
3178		/*
3179		 * is this block fully invalidated?
3180		 */
3181		if (offset <= curr_off) {
3182			if (invalidatepage_can_drop(inode, bh))
3183				reiserfs_unmap_buffer(bh);
3184			else
3185				ret = 0;
3186		}
3187		curr_off = next_off;
3188		bh = next;
3189	} while (bh != head);
3190
3191	/*
3192	 * We release buffers only if the entire page is being invalidated.
3193	 * The get_block cached value has been unconditionally invalidated,
3194	 * so real IO is not possible anymore.
3195	 */
3196	if (!partial_page && ret) {
3197		ret = try_to_release_page(page, 0);
3198		/* maybe should BUG_ON(!ret); - neilb */
3199	}
3200out:
3201	return;
3202}
3203
3204static int reiserfs_set_page_dirty(struct page *page)
 
3205{
3206	struct inode *inode = page->mapping->host;
3207	if (reiserfs_file_data_log(inode)) {
3208		SetPageChecked(page);
3209		return __set_page_dirty_nobuffers(page);
3210	}
3211	return __set_page_dirty_buffers(page);
3212}
3213
3214/*
3215 * Returns 1 if the page's buffers were dropped.  The page is locked.
3216 *
3217 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3218 * in the buffers at page_buffers(page).
3219 *
3220 * even in -o notail mode, we can't be sure an old mount without -o notail
3221 * didn't create files with tails.
3222 */
3223static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3224{
3225	struct inode *inode = page->mapping->host;
3226	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3227	struct buffer_head *head;
3228	struct buffer_head *bh;
3229	int ret = 1;
3230
3231	WARN_ON(PageChecked(page));
3232	spin_lock(&j->j_dirty_buffers_lock);
3233	head = page_buffers(page);
3234	bh = head;
3235	do {
3236		if (bh->b_private) {
3237			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3238				reiserfs_free_jh(bh);
3239			} else {
3240				ret = 0;
3241				break;
3242			}
3243		}
3244		bh = bh->b_this_page;
3245	} while (bh != head);
3246	if (ret)
3247		ret = try_to_free_buffers(page);
3248	spin_unlock(&j->j_dirty_buffers_lock);
3249	return ret;
3250}
3251
3252/*
3253 * We thank Mingming Cao for helping us understand in great detail what
3254 * to do in this section of the code.
3255 */
3256static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3257{
3258	struct file *file = iocb->ki_filp;
3259	struct inode *inode = file->f_mapping->host;
3260	size_t count = iov_iter_count(iter);
3261	ssize_t ret;
3262
3263	ret = blockdev_direct_IO(iocb, inode, iter,
3264				 reiserfs_get_blocks_direct_io);
3265
3266	/*
3267	 * In case of error extending write may have instantiated a few
3268	 * blocks outside i_size. Trim these off again.
3269	 */
3270	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3271		loff_t isize = i_size_read(inode);
3272		loff_t end = iocb->ki_pos + count;
3273
3274		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3275			truncate_setsize(inode, isize);
3276			reiserfs_vfs_truncate_file(inode);
3277		}
3278	}
3279
3280	return ret;
3281}
3282
3283int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3284		     struct iattr *attr)
3285{
3286	struct inode *inode = d_inode(dentry);
3287	unsigned int ia_valid;
3288	int error;
3289
3290	error = setattr_prepare(&init_user_ns, dentry, attr);
3291	if (error)
3292		return error;
3293
3294	/* must be turned off for recursive notify_change calls */
3295	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3296
3297	if (is_quota_modification(inode, attr)) {
3298		error = dquot_initialize(inode);
3299		if (error)
3300			return error;
3301	}
3302	reiserfs_write_lock(inode->i_sb);
3303	if (attr->ia_valid & ATTR_SIZE) {
3304		/*
3305		 * version 2 items will be caught by the s_maxbytes check
3306		 * done for us in vmtruncate
3307		 */
3308		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3309		    attr->ia_size > MAX_NON_LFS) {
3310			reiserfs_write_unlock(inode->i_sb);
3311			error = -EFBIG;
3312			goto out;
3313		}
3314
3315		inode_dio_wait(inode);
3316
3317		/* fill in hole pointers in the expanding truncate case. */
3318		if (attr->ia_size > inode->i_size) {
3319			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3320			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3321				int err;
3322				struct reiserfs_transaction_handle th;
3323				/* we're changing at most 2 bitmaps, inode + super */
3324				err = journal_begin(&th, inode->i_sb, 4);
3325				if (!err) {
3326					reiserfs_discard_prealloc(&th, inode);
3327					err = journal_end(&th);
3328				}
3329				if (err)
3330					error = err;
3331			}
3332			if (error) {
3333				reiserfs_write_unlock(inode->i_sb);
3334				goto out;
3335			}
3336			/*
3337			 * file size is changed, ctime and mtime are
3338			 * to be updated
3339			 */
3340			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3341		}
3342	}
3343	reiserfs_write_unlock(inode->i_sb);
3344
3345	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3346	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3347	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3348		/* stat data of format v3.5 has 16 bit uid and gid */
3349		error = -EINVAL;
3350		goto out;
3351	}
3352
3353	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3354	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3355		struct reiserfs_transaction_handle th;
3356		int jbegin_count =
3357		    2 *
3358		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3359		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3360		    2;
3361
3362		error = reiserfs_chown_xattrs(inode, attr);
3363
3364		if (error)
3365			return error;
3366
3367		/*
3368		 * (user+group)*(old+new) structure - we count quota
3369		 * info and , inode write (sb, inode)
3370		 */
3371		reiserfs_write_lock(inode->i_sb);
3372		error = journal_begin(&th, inode->i_sb, jbegin_count);
3373		reiserfs_write_unlock(inode->i_sb);
3374		if (error)
3375			goto out;
3376		error = dquot_transfer(inode, attr);
3377		reiserfs_write_lock(inode->i_sb);
3378		if (error) {
3379			journal_end(&th);
3380			reiserfs_write_unlock(inode->i_sb);
3381			goto out;
3382		}
3383
3384		/*
3385		 * Update corresponding info in inode so that everything
3386		 * is in one transaction
3387		 */
3388		if (attr->ia_valid & ATTR_UID)
3389			inode->i_uid = attr->ia_uid;
3390		if (attr->ia_valid & ATTR_GID)
3391			inode->i_gid = attr->ia_gid;
3392		mark_inode_dirty(inode);
3393		error = journal_end(&th);
3394		reiserfs_write_unlock(inode->i_sb);
3395		if (error)
3396			goto out;
3397	}
3398
3399	if ((attr->ia_valid & ATTR_SIZE) &&
3400	    attr->ia_size != i_size_read(inode)) {
3401		error = inode_newsize_ok(inode, attr->ia_size);
3402		if (!error) {
3403			/*
3404			 * Could race against reiserfs_file_release
3405			 * if called from NFS, so take tailpack mutex.
3406			 */
3407			mutex_lock(&REISERFS_I(inode)->tailpack);
3408			truncate_setsize(inode, attr->ia_size);
3409			reiserfs_truncate_file(inode, 1);
3410			mutex_unlock(&REISERFS_I(inode)->tailpack);
3411		}
3412	}
3413
3414	if (!error) {
3415		setattr_copy(&init_user_ns, inode, attr);
3416		mark_inode_dirty(inode);
3417	}
3418
3419	if (!error && reiserfs_posixacl(inode->i_sb)) {
3420		if (attr->ia_valid & ATTR_MODE)
3421			error = reiserfs_acl_chmod(inode);
3422	}
3423
3424out:
3425	return error;
3426}
3427
3428const struct address_space_operations reiserfs_address_space_operations = {
3429	.writepage = reiserfs_writepage,
3430	.readpage = reiserfs_readpage,
3431	.readahead = reiserfs_readahead,
3432	.releasepage = reiserfs_releasepage,
3433	.invalidatepage = reiserfs_invalidatepage,
3434	.write_begin = reiserfs_write_begin,
3435	.write_end = reiserfs_write_end,
3436	.bmap = reiserfs_aop_bmap,
3437	.direct_IO = reiserfs_direct_IO,
3438	.set_page_dirty = reiserfs_set_page_dirty,
3439};