Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/types.h>
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/etherdevice.h>
11#include <linux/pci.h>
12#include <linux/firmware.h>
13
14#include "iwl-drv.h"
15#include "iwl-modparams.h"
16#include "iwl-nvm-parse.h"
17#include "iwl-prph.h"
18#include "iwl-io.h"
19#include "iwl-csr.h"
20#include "fw/acpi.h"
21#include "fw/api/nvm-reg.h"
22#include "fw/api/commands.h"
23#include "fw/api/cmdhdr.h"
24#include "fw/img.h"
25#include "mei/iwl-mei.h"
26
27/* NVM offsets (in words) definitions */
28enum nvm_offsets {
29 /* NVM HW-Section offset (in words) definitions */
30 SUBSYSTEM_ID = 0x0A,
31 HW_ADDR = 0x15,
32
33 /* NVM SW-Section offset (in words) definitions */
34 NVM_SW_SECTION = 0x1C0,
35 NVM_VERSION = 0,
36 RADIO_CFG = 1,
37 SKU = 2,
38 N_HW_ADDRS = 3,
39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40
41 /* NVM calibration section offset (in words) definitions */
42 NVM_CALIB_SECTION = 0x2B8,
43 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44
45 /* NVM REGULATORY -Section offset (in words) definitions */
46 NVM_CHANNELS_SDP = 0,
47};
48
49enum ext_nvm_offsets {
50 /* NVM HW-Section offset (in words) definitions */
51 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52
53 /* NVM SW-Section offset (in words) definitions */
54 NVM_VERSION_EXT_NVM = 0,
55 N_HW_ADDRS_FAMILY_8000 = 3,
56
57 /* NVM PHY_SKU-Section offset (in words) definitions */
58 RADIO_CFG_FAMILY_EXT_NVM = 0,
59 SKU_FAMILY_8000 = 2,
60
61 /* NVM REGULATORY -Section offset (in words) definitions */
62 NVM_CHANNELS_EXTENDED = 0,
63 NVM_LAR_OFFSET_OLD = 0x4C7,
64 NVM_LAR_OFFSET = 0x507,
65 NVM_LAR_ENABLED = 0x7,
66};
67
68/* SKU Capabilities (actual values from NVM definition) */
69enum nvm_sku_bits {
70 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
71 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
72 NVM_SKU_CAP_11N_ENABLE = BIT(2),
73 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
74 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
75};
76
77/*
78 * These are the channel numbers in the order that they are stored in the NVM
79 */
80static const u16 iwl_nvm_channels[] = {
81 /* 2.4 GHz */
82 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 /* 5 GHz */
84 36, 40, 44, 48, 52, 56, 60, 64,
85 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 149, 153, 157, 161, 165
87};
88
89static const u16 iwl_ext_nvm_channels[] = {
90 /* 2.4 GHz */
91 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 /* 5 GHz */
93 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 149, 153, 157, 161, 165, 169, 173, 177, 181
96};
97
98static const u16 iwl_uhb_nvm_channels[] = {
99 /* 2.4 GHz */
100 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 /* 5 GHz */
102 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 149, 153, 157, 161, 165, 169, 173, 177, 181,
105 /* 6-7 GHz */
106 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110};
111
112#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
113#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
114#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
115#define NUM_2GHZ_CHANNELS 14
116#define NUM_5GHZ_CHANNELS 37
117#define FIRST_2GHZ_HT_MINUS 5
118#define LAST_2GHZ_HT_PLUS 9
119#define N_HW_ADDR_MASK 0xF
120
121/* rate data (static) */
122static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138};
139#define RATES_24_OFFS 0
140#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
141#define RATES_52_OFFS 4
142#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
143
144/**
145 * enum iwl_nvm_channel_flags - channel flags in NVM
146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
149 * @NVM_CHANNEL_RADAR: radar detection required
150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152 * on same channel on 2.4 or same UNII band on 5.2
153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159 */
160enum iwl_nvm_channel_flags {
161 NVM_CHANNEL_VALID = BIT(0),
162 NVM_CHANNEL_IBSS = BIT(1),
163 NVM_CHANNEL_ACTIVE = BIT(3),
164 NVM_CHANNEL_RADAR = BIT(4),
165 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
166 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
167 NVM_CHANNEL_UNIFORM = BIT(7),
168 NVM_CHANNEL_20MHZ = BIT(8),
169 NVM_CHANNEL_40MHZ = BIT(9),
170 NVM_CHANNEL_80MHZ = BIT(10),
171 NVM_CHANNEL_160MHZ = BIT(11),
172 NVM_CHANNEL_DC_HIGH = BIT(12),
173};
174
175/**
176 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177 * domain.
178 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179 * 2.4Ghz band is allowed.
180 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181 * 5Ghz band is allowed.
182 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183 * for this regulatory domain (valid only in 5Ghz).
184 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185 * for this regulatory domain (valid only in 5Ghz).
186 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189 * for this regulatory domain (valid only in 5Ghz).
190 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192 */
193enum iwl_reg_capa_flags_v1 {
194 REG_CAPA_V1_BF_CCD_LOW_BAND = BIT(0),
195 REG_CAPA_V1_BF_CCD_HIGH_BAND = BIT(1),
196 REG_CAPA_V1_160MHZ_ALLOWED = BIT(2),
197 REG_CAPA_V1_80MHZ_ALLOWED = BIT(3),
198 REG_CAPA_V1_MCS_8_ALLOWED = BIT(4),
199 REG_CAPA_V1_MCS_9_ALLOWED = BIT(5),
200 REG_CAPA_V1_40MHZ_FORBIDDEN = BIT(7),
201 REG_CAPA_V1_DC_HIGH_ENABLED = BIT(9),
202 REG_CAPA_V1_11AX_DISABLED = BIT(10),
203}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204
205/**
206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207 * domain (version 2).
208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209 * disabled.
210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211 * 2.4Ghz band is allowed.
212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213 * 5Ghz band is allowed.
214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215 * for this regulatory domain (valid only in 5Ghz).
216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217 * for this regulatory domain (valid only in 5Ghz).
218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221 * 126, 122) are disabled.
222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223 * for this regulatory domain (uvalid only in 5Ghz).
224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225 */
226enum iwl_reg_capa_flags_v2 {
227 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
228 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
229 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
230 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
231 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
232 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
233 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
234 REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
235 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
236 REG_CAPA_V2_11AX_DISABLED = BIT(10),
237}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238
239/**
240 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241 * domain.
242 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243 * for this regulatory domain (valid only in 5Ghz).
244 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245 * for this regulatory domain (valid only in 5Ghz).
246 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251 * for this regulatory domain (valid only in 5GHz).
252 */
253enum iwl_reg_capa_flags_v4 {
254 REG_CAPA_V4_160MHZ_ALLOWED = BIT(3),
255 REG_CAPA_V4_80MHZ_ALLOWED = BIT(4),
256 REG_CAPA_V4_MCS_12_ALLOWED = BIT(5),
257 REG_CAPA_V4_MCS_13_ALLOWED = BIT(6),
258 REG_CAPA_V4_11BE_DISABLED = BIT(8),
259 REG_CAPA_V4_11AX_DISABLED = BIT(13),
260 REG_CAPA_V4_320MHZ_ALLOWED = BIT(16),
261}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262
263/*
264* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265* MCC update command response.
266*/
267#define REG_CAPA_V2_RESP_VER 6
268
269/* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270 * MCC update command response.
271 */
272#define REG_CAPA_V4_RESP_VER 8
273
274/**
275 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276 * handling the different APIs of reg_capa_flags.
277 *
278 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279 * for this regulatory domain.
280 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281 * for this regulatory domain (valid only in 5 and 6 Ghz).
282 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283 * for this regulatory domain (valid only in 5 and 6 Ghz).
284 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285 * for this regulatory domain (valid only in 6 Ghz).
286 * @disable_11ax: 11ax is forbidden for this regulatory domain.
287 * @disable_11be: 11be is forbidden for this regulatory domain.
288 */
289struct iwl_reg_capa {
290 bool allow_40mhz;
291 bool allow_80mhz;
292 bool allow_160mhz;
293 bool allow_320mhz;
294 bool disable_11ax;
295 bool disable_11be;
296};
297
298static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 int chan, u32 flags)
300{
301#define CHECK_AND_PRINT_I(x) \
302 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
303
304 if (!(flags & NVM_CHANNEL_VALID)) {
305 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 chan, flags);
307 return;
308 }
309
310 /* Note: already can print up to 101 characters, 110 is the limit! */
311 IWL_DEBUG_DEV(dev, level,
312 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 chan, flags,
314 CHECK_AND_PRINT_I(VALID),
315 CHECK_AND_PRINT_I(IBSS),
316 CHECK_AND_PRINT_I(ACTIVE),
317 CHECK_AND_PRINT_I(RADAR),
318 CHECK_AND_PRINT_I(INDOOR_ONLY),
319 CHECK_AND_PRINT_I(GO_CONCURRENT),
320 CHECK_AND_PRINT_I(UNIFORM),
321 CHECK_AND_PRINT_I(20MHZ),
322 CHECK_AND_PRINT_I(40MHZ),
323 CHECK_AND_PRINT_I(80MHZ),
324 CHECK_AND_PRINT_I(160MHZ),
325 CHECK_AND_PRINT_I(DC_HIGH));
326#undef CHECK_AND_PRINT_I
327}
328
329static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 u32 nvm_flags, const struct iwl_cfg *cfg)
331{
332 u32 flags = IEEE80211_CHAN_NO_HT40;
333
334 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 if (ch_num <= LAST_2GHZ_HT_PLUS)
336 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 else
343 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 }
345 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 flags |= IEEE80211_CHAN_NO_80MHZ;
347 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 flags |= IEEE80211_CHAN_NO_160MHZ;
349
350 if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 flags |= IEEE80211_CHAN_NO_IR;
352
353 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 flags |= IEEE80211_CHAN_NO_IR;
355
356 if (nvm_flags & NVM_CHANNEL_RADAR)
357 flags |= IEEE80211_CHAN_RADAR;
358
359 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 flags |= IEEE80211_CHAN_INDOOR_ONLY;
361
362 /* Set the GO concurrent flag only in case that NO_IR is set.
363 * Otherwise it is meaningless
364 */
365 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 (flags & IEEE80211_CHAN_NO_IR))
367 flags |= IEEE80211_CHAN_IR_CONCURRENT;
368
369 return flags;
370}
371
372static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373{
374 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 return NL80211_BAND_6GHZ;
376 }
377
378 if (ch_idx >= NUM_2GHZ_CHANNELS)
379 return NL80211_BAND_5GHZ;
380 return NL80211_BAND_2GHZ;
381}
382
383static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 struct iwl_nvm_data *data,
385 const void * const nvm_ch_flags,
386 u32 sbands_flags, bool v4)
387{
388 int ch_idx;
389 int n_channels = 0;
390 struct ieee80211_channel *channel;
391 u32 ch_flags;
392 int num_of_ch;
393 const u16 *nvm_chan;
394
395 if (cfg->uhb_supported) {
396 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 nvm_chan = iwl_uhb_nvm_channels;
398 } else if (cfg->nvm_type == IWL_NVM_EXT) {
399 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 nvm_chan = iwl_ext_nvm_channels;
401 } else {
402 num_of_ch = IWL_NVM_NUM_CHANNELS;
403 nvm_chan = iwl_nvm_channels;
404 }
405
406 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 enum nl80211_band band =
408 iwl_nl80211_band_from_channel_idx(ch_idx);
409
410 if (v4)
411 ch_flags =
412 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 else
414 ch_flags =
415 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416
417 if (band == NL80211_BAND_5GHZ &&
418 !data->sku_cap_band_52ghz_enable)
419 continue;
420
421 /* workaround to disable wide channels in 5GHz */
422 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 band == NL80211_BAND_5GHZ) {
424 ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 NVM_CHANNEL_80MHZ |
426 NVM_CHANNEL_160MHZ);
427 }
428
429 if (ch_flags & NVM_CHANNEL_160MHZ)
430 data->vht160_supported = true;
431
432 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 !(ch_flags & NVM_CHANNEL_VALID)) {
434 /*
435 * Channels might become valid later if lar is
436 * supported, hence we still want to add them to
437 * the list of supported channels to cfg80211.
438 */
439 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 nvm_chan[ch_idx], ch_flags);
441 continue;
442 }
443
444 channel = &data->channels[n_channels];
445 n_channels++;
446
447 channel->hw_value = nvm_chan[ch_idx];
448 channel->band = band;
449 channel->center_freq =
450 ieee80211_channel_to_frequency(
451 channel->hw_value, channel->band);
452
453 /* Initialize regulatory-based run-time data */
454
455 /*
456 * Default value - highest tx power value. max_power
457 * is not used in mvm, and is used for backwards compatibility
458 */
459 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460
461 /* don't put limitations in case we're using LAR */
462 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 ch_idx, band,
465 ch_flags, cfg);
466 else
467 channel->flags = 0;
468
469 /* TODO: Don't put limitations on UHB devices as we still don't
470 * have NVM for them
471 */
472 if (cfg->uhb_supported)
473 channel->flags = 0;
474 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 channel->hw_value, ch_flags);
476 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 channel->hw_value, channel->max_power);
478 }
479
480 return n_channels;
481}
482
483static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 struct iwl_nvm_data *data,
485 struct ieee80211_sta_vht_cap *vht_cap,
486 u8 tx_chains, u8 rx_chains)
487{
488 const struct iwl_cfg *cfg = trans->cfg;
489 int num_rx_ants = num_of_ant(rx_chains);
490 int num_tx_ants = num_of_ant(tx_chains);
491
492 vht_cap->vht_supported = true;
493
494 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 IEEE80211_VHT_CAP_RXSTBC_1 |
496 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 IEEE80211_VHT_MAX_AMPDU_1024K <<
499 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500
501 if (!trans->cfg->ht_params->stbc)
502 vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503
504 if (data->vht160_supported)
505 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 IEEE80211_VHT_CAP_SHORT_GI_160;
507
508 if (cfg->vht_mu_mimo_supported)
509 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510
511 if (cfg->ht_params->ldpc)
512 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513
514 if (data->sku_cap_mimo_disabled) {
515 num_rx_ants = 1;
516 num_tx_ants = 1;
517 }
518
519 if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 else
522 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523
524 switch (iwlwifi_mod_params.amsdu_size) {
525 case IWL_AMSDU_DEF:
526 if (trans->trans_cfg->mq_rx_supported)
527 vht_cap->cap |=
528 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 else
530 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 break;
532 case IWL_AMSDU_2K:
533 if (trans->trans_cfg->mq_rx_supported)
534 vht_cap->cap |=
535 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 else
537 WARN(1, "RB size of 2K is not supported by this device\n");
538 break;
539 case IWL_AMSDU_4K:
540 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 break;
542 case IWL_AMSDU_8K:
543 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 break;
545 case IWL_AMSDU_12K:
546 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 break;
548 default:
549 break;
550 }
551
552 vht_cap->vht_mcs.rx_mcs_map =
553 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561
562 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 /* this works because NOT_SUPPORTED == 3 */
565 vht_cap->vht_mcs.rx_mcs_map |=
566 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 }
568
569 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570
571 vht_cap->vht_mcs.tx_highest |=
572 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573}
574
575static const u8 iwl_vendor_caps[] = {
576 0xdd, /* vendor element */
577 0x06, /* length */
578 0x00, 0x17, 0x35, /* Intel OUI */
579 0x08, /* type (Intel Capabilities) */
580 /* followed by 16 bits of capabilities */
581#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
582 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 0x00
584};
585
586static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 {
588 .types_mask = BIT(NL80211_IFTYPE_STATION),
589 .he_cap = {
590 .has_he = true,
591 .he_cap_elem = {
592 .mac_cap_info[0] =
593 IEEE80211_HE_MAC_CAP0_HTC_HE,
594 .mac_cap_info[1] =
595 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 .mac_cap_info[2] =
598 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 .mac_cap_info[3] =
600 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 .mac_cap_info[4] =
603 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 .mac_cap_info[5] =
606 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 .phy_cap_info[1] =
612 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 .phy_cap_info[2] =
616 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 .phy_cap_info[3] =
619 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 .phy_cap_info[4] =
624 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 .phy_cap_info[6] =
628 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 .phy_cap_info[7] =
632 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 .phy_cap_info[8] =
635 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 .phy_cap_info[9] =
641 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 .phy_cap_info[10] =
646 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 },
648 /*
649 * Set default Tx/Rx HE MCS NSS Support field.
650 * Indicate support for up to 2 spatial streams and all
651 * MCS, without any special cases
652 */
653 .he_mcs_nss_supp = {
654 .rx_mcs_80 = cpu_to_le16(0xfffa),
655 .tx_mcs_80 = cpu_to_le16(0xfffa),
656 .rx_mcs_160 = cpu_to_le16(0xfffa),
657 .tx_mcs_160 = cpu_to_le16(0xfffa),
658 .rx_mcs_80p80 = cpu_to_le16(0xffff),
659 .tx_mcs_80p80 = cpu_to_le16(0xffff),
660 },
661 /*
662 * Set default PPE thresholds, with PPET16 set to 0,
663 * PPET8 set to 7
664 */
665 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 },
667 .eht_cap = {
668 .has_eht = true,
669 .eht_cap_elem = {
670 .mac_cap_info[0] =
671 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
672 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
673 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
674 IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
675 .phy_cap_info[0] =
676 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 .phy_cap_info[1] =
682 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
683 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 .phy_cap_info[3] =
685 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692
693 .phy_cap_info[4] =
694 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 .phy_cap_info[5] =
698 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 .phy_cap_info[6] =
703 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 .phy_cap_info[8] =
706 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 },
709
710 /* For all MCS and bandwidth, set 2 NSS for both Tx and
711 * Rx - note we don't set the only_20mhz, but due to this
712 * being a union, it gets set correctly anyway.
713 */
714 .eht_mcs_nss_supp = {
715 .bw._80 = {
716 .rx_tx_mcs9_max_nss = 0x22,
717 .rx_tx_mcs11_max_nss = 0x22,
718 .rx_tx_mcs13_max_nss = 0x22,
719 },
720 .bw._160 = {
721 .rx_tx_mcs9_max_nss = 0x22,
722 .rx_tx_mcs11_max_nss = 0x22,
723 .rx_tx_mcs13_max_nss = 0x22,
724 },
725 .bw._320 = {
726 .rx_tx_mcs9_max_nss = 0x22,
727 .rx_tx_mcs11_max_nss = 0x22,
728 .rx_tx_mcs13_max_nss = 0x22,
729 },
730 },
731
732 /*
733 * PPE thresholds for NSS = 2, and RU index bitmap set
734 * to 0xc.
735 */
736 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 },
738 },
739 {
740 .types_mask = BIT(NL80211_IFTYPE_AP),
741 .he_cap = {
742 .has_he = true,
743 .he_cap_elem = {
744 .mac_cap_info[0] =
745 IEEE80211_HE_MAC_CAP0_HTC_HE,
746 .mac_cap_info[1] =
747 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 .mac_cap_info[3] =
750 IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 .phy_cap_info[1] =
752 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 .phy_cap_info[2] =
754 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 .phy_cap_info[3] =
757 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 .phy_cap_info[6] =
762 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 .phy_cap_info[7] =
764 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 .phy_cap_info[8] =
766 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 .phy_cap_info[9] =
769 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 },
772 /*
773 * Set default Tx/Rx HE MCS NSS Support field.
774 * Indicate support for up to 2 spatial streams and all
775 * MCS, without any special cases
776 */
777 .he_mcs_nss_supp = {
778 .rx_mcs_80 = cpu_to_le16(0xfffa),
779 .tx_mcs_80 = cpu_to_le16(0xfffa),
780 .rx_mcs_160 = cpu_to_le16(0xfffa),
781 .tx_mcs_160 = cpu_to_le16(0xfffa),
782 .rx_mcs_80p80 = cpu_to_le16(0xffff),
783 .tx_mcs_80p80 = cpu_to_le16(0xffff),
784 },
785 /*
786 * Set default PPE thresholds, with PPET16 set to 0,
787 * PPET8 set to 7
788 */
789 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 },
791 .eht_cap = {
792 .has_eht = true,
793 .eht_cap_elem = {
794 .mac_cap_info[0] =
795 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
796 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
797 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
798 .phy_cap_info[0] =
799 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
800 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
801 .phy_cap_info[5] =
802 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
803 },
804
805 /* For all MCS and bandwidth, set 2 NSS for both Tx and
806 * Rx - note we don't set the only_20mhz, but due to this
807 * being a union, it gets set correctly anyway.
808 */
809 .eht_mcs_nss_supp = {
810 .bw._80 = {
811 .rx_tx_mcs9_max_nss = 0x22,
812 .rx_tx_mcs11_max_nss = 0x22,
813 .rx_tx_mcs13_max_nss = 0x22,
814 },
815 .bw._160 = {
816 .rx_tx_mcs9_max_nss = 0x22,
817 .rx_tx_mcs11_max_nss = 0x22,
818 .rx_tx_mcs13_max_nss = 0x22,
819 },
820 .bw._320 = {
821 .rx_tx_mcs9_max_nss = 0x22,
822 .rx_tx_mcs11_max_nss = 0x22,
823 .rx_tx_mcs13_max_nss = 0x22,
824 },
825 },
826
827 /*
828 * PPE thresholds for NSS = 2, and RU index bitmap set
829 * to 0xc.
830 */
831 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
832 },
833 },
834};
835
836static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
837 struct iwl_nvm_data *data,
838 struct ieee80211_supported_band *sband,
839 u8 tx_chains, u8 rx_chains)
840{
841 struct ieee80211_sta_ht_cap ht_cap;
842 struct ieee80211_sta_vht_cap vht_cap = {};
843 struct ieee80211_sband_iftype_data *iftype_data;
844 u16 he_6ghz_capa = 0;
845 u32 exp;
846 int i;
847
848 if (sband->band != NL80211_BAND_6GHZ)
849 return;
850
851 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
852 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
853 tx_chains, rx_chains);
854 WARN_ON(!ht_cap.ht_supported);
855 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
856 WARN_ON(!vht_cap.vht_supported);
857
858 he_6ghz_capa |=
859 u16_encode_bits(ht_cap.ampdu_density,
860 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
861 exp = u32_get_bits(vht_cap.cap,
862 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
863 he_6ghz_capa |=
864 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
865 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
866 he_6ghz_capa |=
867 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
868 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
869 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
870 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
871 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
872 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
873
874 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
875
876 /* we know it's writable - we set it before ourselves */
877 iftype_data = (void *)(uintptr_t)sband->iftype_data;
878 for (i = 0; i < sband->n_iftype_data; i++)
879 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
880}
881
882static void
883iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
884 struct iwl_nvm_data *data,
885 struct ieee80211_supported_band *sband,
886 struct ieee80211_sband_iftype_data *iftype_data,
887 u8 tx_chains, u8 rx_chains,
888 const struct iwl_fw *fw)
889{
890 bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
891 bool no_320;
892
893 no_320 = !trans->trans_cfg->integrated &&
894 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
895
896 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
897 iftype_data->eht_cap.has_eht = false;
898
899 /* Advertise an A-MPDU exponent extension based on
900 * operating band
901 */
902 if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
903 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
904 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
905 else if (sband->band != NL80211_BAND_2GHZ)
906 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
907 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
908 else
909 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
910 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
911
912 switch (sband->band) {
913 case NL80211_BAND_2GHZ:
914 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
915 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
916 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
917 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
918 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
919 break;
920 case NL80211_BAND_6GHZ:
921 if (!no_320) {
922 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
923 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
924 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
925 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
926 }
927 fallthrough;
928 case NL80211_BAND_5GHZ:
929 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
930 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
931 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
932 break;
933 default:
934 WARN_ON(1);
935 break;
936 }
937
938 if ((tx_chains & rx_chains) == ANT_AB) {
939 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
940 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
941 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
942 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
943 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
944 if (!is_ap) {
945 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
946 IEEE80211_HE_PHY_CAP7_MAX_NC_2;
947
948 if (iftype_data->eht_cap.has_eht) {
949 /*
950 * Set the number of sounding dimensions for each
951 * bandwidth to 1 to indicate the maximal supported
952 * value of TXVECTOR parameter NUM_STS of 2
953 */
954 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
955
956 /*
957 * Set the MAX NC to 1 to indicate sounding feedback of
958 * 2 supported by the beamfomee.
959 */
960 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
961 }
962 }
963 } else {
964 struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
965 &iftype_data->he_cap.he_mcs_nss_supp;
966
967 if (iftype_data->eht_cap.has_eht) {
968 struct ieee80211_eht_mcs_nss_supp *mcs_nss =
969 &iftype_data->eht_cap.eht_mcs_nss_supp;
970
971 memset(mcs_nss, 0x11, sizeof(*mcs_nss));
972 }
973
974 if (!is_ap) {
975 /* If not 2x2, we need to indicate 1x1 in the
976 * Midamble RX Max NSTS - but not for AP mode
977 */
978 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
979 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
980 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
981 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
982 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
983 IEEE80211_HE_PHY_CAP7_MAX_NC_1;
984 }
985
986 he_mcs_nss_supp->rx_mcs_80 |=
987 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
988 he_mcs_nss_supp->tx_mcs_80 |=
989 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
990 he_mcs_nss_supp->rx_mcs_160 |=
991 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
992 he_mcs_nss_supp->tx_mcs_160 |=
993 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
994 he_mcs_nss_supp->rx_mcs_80p80 |=
995 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
996 he_mcs_nss_supp->tx_mcs_80p80 |=
997 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
998 }
999
1000 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1001 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1002 IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1003
1004 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1005 case IWL_CFG_RF_TYPE_GF:
1006 case IWL_CFG_RF_TYPE_MR:
1007 case IWL_CFG_RF_TYPE_MS:
1008 case IWL_CFG_RF_TYPE_FM:
1009 case IWL_CFG_RF_TYPE_WH:
1010 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1011 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1012 if (!is_ap)
1013 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1014 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1015 break;
1016 }
1017
1018 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1019 iftype_data->eht_cap.has_eht) {
1020 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1021 ~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1022 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1023 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1024 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1025 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1026 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1027 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1028 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1029 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1030 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1031 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1032 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1033 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1034 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1035 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1036 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1037 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1038 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1039 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1040 IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1041 }
1042
1043 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1044 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1045 IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1046
1047 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1048 !is_ap) {
1049 iftype_data->vendor_elems.data = iwl_vendor_caps;
1050 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1051 }
1052
1053 if (!trans->cfg->ht_params->stbc) {
1054 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1055 ~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1056 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1057 ~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1058 }
1059}
1060
1061static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1062 struct iwl_nvm_data *data,
1063 struct ieee80211_supported_band *sband,
1064 u8 tx_chains, u8 rx_chains,
1065 const struct iwl_fw *fw)
1066{
1067 struct ieee80211_sband_iftype_data *iftype_data;
1068 int i;
1069
1070 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1071 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1072 BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1073
1074 switch (sband->band) {
1075 case NL80211_BAND_2GHZ:
1076 iftype_data = data->iftd.low;
1077 break;
1078 case NL80211_BAND_5GHZ:
1079 iftype_data = data->iftd.high;
1080 break;
1081 case NL80211_BAND_6GHZ:
1082 iftype_data = data->iftd.uhb;
1083 break;
1084 default:
1085 WARN_ON(1);
1086 return;
1087 }
1088
1089 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1090
1091 _ieee80211_set_sband_iftype_data(sband, iftype_data,
1092 ARRAY_SIZE(iwl_he_eht_capa));
1093
1094 for (i = 0; i < sband->n_iftype_data; i++)
1095 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1096 tx_chains, rx_chains, fw);
1097
1098 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1099}
1100
1101void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1102 u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1103{
1104 struct ieee80211_supported_band *sband;
1105
1106 sband = &data->bands[NL80211_BAND_2GHZ];
1107 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1108 tx_chains, rx_chains);
1109
1110 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1111 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1112 fw);
1113
1114 sband = &data->bands[NL80211_BAND_5GHZ];
1115 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1116 tx_chains, rx_chains);
1117 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1118 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1119 tx_chains, rx_chains);
1120
1121 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1122 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1123 fw);
1124
1125 sband = &data->bands[NL80211_BAND_6GHZ];
1126 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1127 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1128 fw);
1129}
1130IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1131
1132static void iwl_init_sbands(struct iwl_trans *trans,
1133 struct iwl_nvm_data *data,
1134 const void *nvm_ch_flags, u8 tx_chains,
1135 u8 rx_chains, u32 sbands_flags, bool v4,
1136 const struct iwl_fw *fw)
1137{
1138 struct device *dev = trans->dev;
1139 const struct iwl_cfg *cfg = trans->cfg;
1140 int n_channels;
1141 int n_used = 0;
1142 struct ieee80211_supported_band *sband;
1143
1144 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1145 sbands_flags, v4);
1146 sband = &data->bands[NL80211_BAND_2GHZ];
1147 sband->band = NL80211_BAND_2GHZ;
1148 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1149 sband->n_bitrates = N_RATES_24;
1150 n_used += iwl_init_sband_channels(data, sband, n_channels,
1151 NL80211_BAND_2GHZ);
1152 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1153 tx_chains, rx_chains);
1154
1155 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1156 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1157 fw);
1158
1159 sband = &data->bands[NL80211_BAND_5GHZ];
1160 sband->band = NL80211_BAND_5GHZ;
1161 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1162 sband->n_bitrates = N_RATES_52;
1163 n_used += iwl_init_sband_channels(data, sband, n_channels,
1164 NL80211_BAND_5GHZ);
1165 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1166 tx_chains, rx_chains);
1167 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1168 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1169 tx_chains, rx_chains);
1170
1171 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1172 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1173 fw);
1174
1175 /* 6GHz band. */
1176 sband = &data->bands[NL80211_BAND_6GHZ];
1177 sband->band = NL80211_BAND_6GHZ;
1178 /* use the same rates as 5GHz band */
1179 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1180 sband->n_bitrates = N_RATES_52;
1181 n_used += iwl_init_sband_channels(data, sband, n_channels,
1182 NL80211_BAND_6GHZ);
1183
1184 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1185 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1186 fw);
1187 else
1188 sband->n_channels = 0;
1189 if (n_channels != n_used)
1190 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1191 n_used, n_channels);
1192}
1193
1194static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1195 const __le16 *phy_sku)
1196{
1197 if (cfg->nvm_type != IWL_NVM_EXT)
1198 return le16_to_cpup(nvm_sw + SKU);
1199
1200 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1201}
1202
1203static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1204{
1205 if (cfg->nvm_type != IWL_NVM_EXT)
1206 return le16_to_cpup(nvm_sw + NVM_VERSION);
1207 else
1208 return le32_to_cpup((const __le32 *)(nvm_sw +
1209 NVM_VERSION_EXT_NVM));
1210}
1211
1212static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1213 const __le16 *phy_sku)
1214{
1215 if (cfg->nvm_type != IWL_NVM_EXT)
1216 return le16_to_cpup(nvm_sw + RADIO_CFG);
1217
1218 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1219
1220}
1221
1222static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1223{
1224 int n_hw_addr;
1225
1226 if (cfg->nvm_type != IWL_NVM_EXT)
1227 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1228
1229 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1230
1231 return n_hw_addr & N_HW_ADDR_MASK;
1232}
1233
1234static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1235 struct iwl_nvm_data *data,
1236 u32 radio_cfg)
1237{
1238 if (cfg->nvm_type != IWL_NVM_EXT) {
1239 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1240 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1241 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1242 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1243 return;
1244 }
1245
1246 /* set the radio configuration for family 8000 */
1247 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1248 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1249 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1250 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1251 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1252 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1253}
1254
1255static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1256{
1257 const u8 *hw_addr;
1258
1259 hw_addr = (const u8 *)&mac_addr0;
1260 dest[0] = hw_addr[3];
1261 dest[1] = hw_addr[2];
1262 dest[2] = hw_addr[1];
1263 dest[3] = hw_addr[0];
1264
1265 hw_addr = (const u8 *)&mac_addr1;
1266 dest[4] = hw_addr[1];
1267 dest[5] = hw_addr[0];
1268}
1269
1270static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1271 struct iwl_nvm_data *data)
1272{
1273 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1274 CSR_MAC_ADDR0_STRAP(trans)));
1275 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1276 CSR_MAC_ADDR1_STRAP(trans)));
1277
1278 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1279 /*
1280 * If the OEM fused a valid address, use it instead of the one in the
1281 * OTP
1282 */
1283 if (is_valid_ether_addr(data->hw_addr))
1284 return;
1285
1286 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1287 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1288
1289 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1290}
1291
1292static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1293 const struct iwl_cfg *cfg,
1294 struct iwl_nvm_data *data,
1295 const __le16 *mac_override,
1296 const __be16 *nvm_hw)
1297{
1298 const u8 *hw_addr;
1299
1300 if (mac_override) {
1301 static const u8 reserved_mac[] = {
1302 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1303 };
1304
1305 hw_addr = (const u8 *)(mac_override +
1306 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1307
1308 /*
1309 * Store the MAC address from MAO section.
1310 * No byte swapping is required in MAO section
1311 */
1312 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1313
1314 /*
1315 * Force the use of the OTP MAC address in case of reserved MAC
1316 * address in the NVM, or if address is given but invalid.
1317 */
1318 if (is_valid_ether_addr(data->hw_addr) &&
1319 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1320 return;
1321
1322 IWL_ERR(trans,
1323 "mac address from nvm override section is not valid\n");
1324 }
1325
1326 if (nvm_hw) {
1327 /* read the mac address from WFMP registers */
1328 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1329 WFMP_MAC_ADDR_0));
1330 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1331 WFMP_MAC_ADDR_1));
1332
1333 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1334
1335 return;
1336 }
1337
1338 IWL_ERR(trans, "mac address is not found\n");
1339}
1340
1341static int iwl_set_hw_address(struct iwl_trans *trans,
1342 const struct iwl_cfg *cfg,
1343 struct iwl_nvm_data *data, const __be16 *nvm_hw,
1344 const __le16 *mac_override)
1345{
1346 if (cfg->mac_addr_from_csr) {
1347 iwl_set_hw_address_from_csr(trans, data);
1348 } else if (cfg->nvm_type != IWL_NVM_EXT) {
1349 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1350
1351 /* The byte order is little endian 16 bit, meaning 214365 */
1352 data->hw_addr[0] = hw_addr[1];
1353 data->hw_addr[1] = hw_addr[0];
1354 data->hw_addr[2] = hw_addr[3];
1355 data->hw_addr[3] = hw_addr[2];
1356 data->hw_addr[4] = hw_addr[5];
1357 data->hw_addr[5] = hw_addr[4];
1358 } else {
1359 iwl_set_hw_address_family_8000(trans, cfg, data,
1360 mac_override, nvm_hw);
1361 }
1362
1363 if (!is_valid_ether_addr(data->hw_addr)) {
1364 IWL_ERR(trans, "no valid mac address was found\n");
1365 return -EINVAL;
1366 }
1367
1368 if (!trans->csme_own)
1369 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1370 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1371
1372 return 0;
1373}
1374
1375static bool
1376iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1377 const __be16 *nvm_hw)
1378{
1379 /*
1380 * Workaround a bug in Indonesia SKUs where the regulatory in
1381 * some 7000-family OTPs erroneously allow wide channels in
1382 * 5GHz. To check for Indonesia, we take the SKU value from
1383 * bits 1-4 in the subsystem ID and check if it is either 5 or
1384 * 9. In those cases, we need to force-disable wide channels
1385 * in 5GHz otherwise the FW will throw a sysassert when we try
1386 * to use them.
1387 */
1388 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1389 /*
1390 * Unlike the other sections in the NVM, the hw
1391 * section uses big-endian.
1392 */
1393 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1394 u8 sku = (subsystem_id & 0x1e) >> 1;
1395
1396 if (sku == 5 || sku == 9) {
1397 IWL_DEBUG_EEPROM(trans->dev,
1398 "disabling wide channels in 5GHz (0x%0x %d)\n",
1399 subsystem_id, sku);
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
1407struct iwl_nvm_data *
1408iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1409 const struct iwl_mei_nvm *mei_nvm,
1410 const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1411{
1412 struct iwl_nvm_data *data;
1413 u32 sbands_flags = 0;
1414 u8 rx_chains = fw->valid_rx_ant;
1415 u8 tx_chains = fw->valid_rx_ant;
1416
1417 if (cfg->uhb_supported)
1418 data = kzalloc(struct_size(data, channels,
1419 IWL_NVM_NUM_CHANNELS_UHB),
1420 GFP_KERNEL);
1421 else
1422 data = kzalloc(struct_size(data, channels,
1423 IWL_NVM_NUM_CHANNELS_EXT),
1424 GFP_KERNEL);
1425 if (!data)
1426 return NULL;
1427
1428 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1429 IWL_NVM_NUM_CHANNELS_UHB);
1430 data->nvm_version = mei_nvm->nvm_version;
1431
1432 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1433 if (data->valid_tx_ant)
1434 tx_chains &= data->valid_tx_ant;
1435 if (data->valid_rx_ant)
1436 rx_chains &= data->valid_rx_ant;
1437 if (tx_ant)
1438 tx_chains &= tx_ant;
1439 if (rx_ant)
1440 rx_chains &= rx_ant;
1441
1442 data->sku_cap_mimo_disabled = false;
1443 data->sku_cap_band_24ghz_enable = true;
1444 data->sku_cap_band_52ghz_enable = true;
1445 data->sku_cap_11n_enable =
1446 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1447 data->sku_cap_11ac_enable = true;
1448 data->sku_cap_11ax_enable =
1449 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1450
1451 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1452
1453 data->n_hw_addrs = mei_nvm->n_hw_addrs;
1454 /* If no valid mac address was found - bail out */
1455 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1456 kfree(data);
1457 return NULL;
1458 }
1459
1460 if (data->lar_enabled &&
1461 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1462 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1463
1464 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1465 sbands_flags, true, fw);
1466
1467 return data;
1468}
1469IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1470
1471struct iwl_nvm_data *
1472iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1473 const struct iwl_fw *fw,
1474 const __be16 *nvm_hw, const __le16 *nvm_sw,
1475 const __le16 *nvm_calib, const __le16 *regulatory,
1476 const __le16 *mac_override, const __le16 *phy_sku,
1477 u8 tx_chains, u8 rx_chains)
1478{
1479 struct iwl_nvm_data *data;
1480 bool lar_enabled;
1481 u32 sku, radio_cfg;
1482 u32 sbands_flags = 0;
1483 u16 lar_config;
1484 const __le16 *ch_section;
1485
1486 if (cfg->uhb_supported)
1487 data = kzalloc(struct_size(data, channels,
1488 IWL_NVM_NUM_CHANNELS_UHB),
1489 GFP_KERNEL);
1490 else if (cfg->nvm_type != IWL_NVM_EXT)
1491 data = kzalloc(struct_size(data, channels,
1492 IWL_NVM_NUM_CHANNELS),
1493 GFP_KERNEL);
1494 else
1495 data = kzalloc(struct_size(data, channels,
1496 IWL_NVM_NUM_CHANNELS_EXT),
1497 GFP_KERNEL);
1498 if (!data)
1499 return NULL;
1500
1501 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1502
1503 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1504 iwl_set_radio_cfg(cfg, data, radio_cfg);
1505 if (data->valid_tx_ant)
1506 tx_chains &= data->valid_tx_ant;
1507 if (data->valid_rx_ant)
1508 rx_chains &= data->valid_rx_ant;
1509
1510 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1511 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1512 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1513 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1514 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1515 data->sku_cap_11n_enable = false;
1516 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1517 (sku & NVM_SKU_CAP_11AC_ENABLE);
1518 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1519
1520 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1521
1522 if (cfg->nvm_type != IWL_NVM_EXT) {
1523 /* Checking for required sections */
1524 if (!nvm_calib) {
1525 IWL_ERR(trans,
1526 "Can't parse empty Calib NVM sections\n");
1527 kfree(data);
1528 return NULL;
1529 }
1530
1531 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1532 ®ulatory[NVM_CHANNELS_SDP] :
1533 &nvm_sw[NVM_CHANNELS];
1534
1535 /* in family 8000 Xtal calibration values moved to OTP */
1536 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1537 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1538 lar_enabled = true;
1539 } else {
1540 u16 lar_offset = data->nvm_version < 0xE39 ?
1541 NVM_LAR_OFFSET_OLD :
1542 NVM_LAR_OFFSET;
1543
1544 lar_config = le16_to_cpup(regulatory + lar_offset);
1545 data->lar_enabled = !!(lar_config &
1546 NVM_LAR_ENABLED);
1547 lar_enabled = data->lar_enabled;
1548 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
1549 }
1550
1551 /* If no valid mac address was found - bail out */
1552 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1553 kfree(data);
1554 return NULL;
1555 }
1556
1557 if (lar_enabled &&
1558 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1559 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1560
1561 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1562 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1563
1564 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1565 sbands_flags, false, fw);
1566 data->calib_version = 255;
1567
1568 return data;
1569}
1570IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1571
1572static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1573 int ch_idx, u16 nvm_flags,
1574 struct iwl_reg_capa reg_capa,
1575 const struct iwl_cfg *cfg)
1576{
1577 u32 flags = NL80211_RRF_NO_HT40;
1578
1579 if (ch_idx < NUM_2GHZ_CHANNELS &&
1580 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1581 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1582 flags &= ~NL80211_RRF_NO_HT40PLUS;
1583 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1584 flags &= ~NL80211_RRF_NO_HT40MINUS;
1585 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1586 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1587 flags &= ~NL80211_RRF_NO_HT40PLUS;
1588 else
1589 flags &= ~NL80211_RRF_NO_HT40MINUS;
1590 }
1591
1592 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1593 flags |= NL80211_RRF_NO_80MHZ;
1594 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1595 flags |= NL80211_RRF_NO_160MHZ;
1596
1597 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1598 flags |= NL80211_RRF_NO_IR;
1599
1600 if (nvm_flags & NVM_CHANNEL_RADAR)
1601 flags |= NL80211_RRF_DFS;
1602
1603 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1604 flags |= NL80211_RRF_NO_OUTDOOR;
1605
1606 /* Set the GO concurrent flag only in case that NO_IR is set.
1607 * Otherwise it is meaningless
1608 */
1609 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1610 if (flags & NL80211_RRF_NO_IR)
1611 flags |= NL80211_RRF_GO_CONCURRENT;
1612 if (flags & NL80211_RRF_DFS) {
1613 flags |= NL80211_RRF_DFS_CONCURRENT;
1614 /* Our device doesn't set active bit for DFS channels
1615 * however, once marked as DFS no-ir is not needed.
1616 */
1617 flags &= ~NL80211_RRF_NO_IR;
1618 }
1619 }
1620 /*
1621 * reg_capa is per regulatory domain so apply it for every channel
1622 */
1623 if (ch_idx >= NUM_2GHZ_CHANNELS) {
1624 if (!reg_capa.allow_40mhz)
1625 flags |= NL80211_RRF_NO_HT40;
1626
1627 if (!reg_capa.allow_80mhz)
1628 flags |= NL80211_RRF_NO_80MHZ;
1629
1630 if (!reg_capa.allow_160mhz)
1631 flags |= NL80211_RRF_NO_160MHZ;
1632
1633 if (!reg_capa.allow_320mhz)
1634 flags |= NL80211_RRF_NO_320MHZ;
1635 }
1636
1637 if (reg_capa.disable_11ax)
1638 flags |= NL80211_RRF_NO_HE;
1639
1640 if (reg_capa.disable_11be)
1641 flags |= NL80211_RRF_NO_EHT;
1642
1643 return flags;
1644}
1645
1646static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1647{
1648 struct iwl_reg_capa reg_capa = {};
1649
1650 if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1651 reg_capa.allow_40mhz = true;
1652 reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1653 reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1654 reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1655 reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1656 reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1657 } else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1658 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1659 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1660 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1661 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1662 } else {
1663 reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1664 reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1665 reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1666 reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1667 }
1668 return reg_capa;
1669}
1670
1671struct ieee80211_regdomain *
1672iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1673 int num_of_ch, __le32 *channels, u16 fw_mcc,
1674 u16 geo_info, u32 cap, u8 resp_ver)
1675{
1676 int ch_idx;
1677 u16 ch_flags;
1678 u32 reg_rule_flags, prev_reg_rule_flags = 0;
1679 const u16 *nvm_chan;
1680 struct ieee80211_regdomain *regd, *copy_rd;
1681 struct ieee80211_reg_rule *rule;
1682 enum nl80211_band band;
1683 int center_freq, prev_center_freq = 0;
1684 int valid_rules = 0;
1685 bool new_rule;
1686 int max_num_ch;
1687 struct iwl_reg_capa reg_capa;
1688
1689 if (cfg->uhb_supported) {
1690 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1691 nvm_chan = iwl_uhb_nvm_channels;
1692 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1693 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1694 nvm_chan = iwl_ext_nvm_channels;
1695 } else {
1696 max_num_ch = IWL_NVM_NUM_CHANNELS;
1697 nvm_chan = iwl_nvm_channels;
1698 }
1699
1700 if (num_of_ch > max_num_ch) {
1701 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1702 "Num of channels (%d) is greater than expected. Truncating to %d\n",
1703 num_of_ch, max_num_ch);
1704 num_of_ch = max_num_ch;
1705 }
1706
1707 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1708 return ERR_PTR(-EINVAL);
1709
1710 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1711 num_of_ch);
1712
1713 /* build a regdomain rule for every valid channel */
1714 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1715 if (!regd)
1716 return ERR_PTR(-ENOMEM);
1717
1718 /* set alpha2 from FW. */
1719 regd->alpha2[0] = fw_mcc >> 8;
1720 regd->alpha2[1] = fw_mcc & 0xff;
1721
1722 /* parse regulatory capability flags */
1723 reg_capa = iwl_get_reg_capa(cap, resp_ver);
1724
1725 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1726 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1727 band = iwl_nl80211_band_from_channel_idx(ch_idx);
1728 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1729 band);
1730 new_rule = false;
1731
1732 if (!(ch_flags & NVM_CHANNEL_VALID)) {
1733 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1734 nvm_chan[ch_idx], ch_flags);
1735 continue;
1736 }
1737
1738 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1739 ch_flags, reg_capa,
1740 cfg);
1741
1742 /* we can't continue the same rule */
1743 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1744 center_freq - prev_center_freq > 20) {
1745 valid_rules++;
1746 new_rule = true;
1747 }
1748
1749 rule = ®d->reg_rules[valid_rules - 1];
1750
1751 if (new_rule)
1752 rule->freq_range.start_freq_khz =
1753 MHZ_TO_KHZ(center_freq - 10);
1754
1755 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1756
1757 /* this doesn't matter - not used by FW */
1758 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1759 rule->power_rule.max_eirp =
1760 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1761
1762 rule->flags = reg_rule_flags;
1763
1764 /* rely on auto-calculation to merge BW of contiguous chans */
1765 rule->flags |= NL80211_RRF_AUTO_BW;
1766 rule->freq_range.max_bandwidth_khz = 0;
1767
1768 prev_center_freq = center_freq;
1769 prev_reg_rule_flags = reg_rule_flags;
1770
1771 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1772 nvm_chan[ch_idx], ch_flags);
1773
1774 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1775 band == NL80211_BAND_2GHZ)
1776 continue;
1777
1778 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1779 }
1780
1781 /*
1782 * Certain firmware versions might report no valid channels
1783 * if booted in RF-kill, i.e. not all calibrations etc. are
1784 * running. We'll get out of this situation later when the
1785 * rfkill is removed and we update the regdomain again, but
1786 * since cfg80211 doesn't accept an empty regdomain, add a
1787 * dummy (unusable) rule here in this case so we can init.
1788 */
1789 if (!valid_rules) {
1790 valid_rules = 1;
1791 rule = ®d->reg_rules[valid_rules - 1];
1792 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1793 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1794 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1795 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1796 rule->power_rule.max_eirp =
1797 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1798 }
1799
1800 regd->n_reg_rules = valid_rules;
1801
1802 /*
1803 * Narrow down regdom for unused regulatory rules to prevent hole
1804 * between reg rules to wmm rules.
1805 */
1806 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1807 GFP_KERNEL);
1808 if (!copy_rd)
1809 copy_rd = ERR_PTR(-ENOMEM);
1810
1811 kfree(regd);
1812 return copy_rd;
1813}
1814IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1815
1816#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1817#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1818#define MAX_NVM_FILE_LEN 16384
1819
1820void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1821 unsigned int len)
1822{
1823#define IWL_4165_DEVICE_ID 0x5501
1824#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1825
1826 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1827 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1828 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1829 /* OTP 0x52 bug work around: it's a 1x1 device */
1830 data[3] = ANT_B | (ANT_B << 4);
1831}
1832IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1833
1834/*
1835 * Reads external NVM from a file into mvm->nvm_sections
1836 *
1837 * HOW TO CREATE THE NVM FILE FORMAT:
1838 * ------------------------------
1839 * 1. create hex file, format:
1840 * 3800 -> header
1841 * 0000 -> header
1842 * 5a40 -> data
1843 *
1844 * rev - 6 bit (word1)
1845 * len - 10 bit (word1)
1846 * id - 4 bit (word2)
1847 * rsv - 12 bit (word2)
1848 *
1849 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1850 *
1851 * 3. create binary file from the hex file
1852 *
1853 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1854 */
1855int iwl_read_external_nvm(struct iwl_trans *trans,
1856 const char *nvm_file_name,
1857 struct iwl_nvm_section *nvm_sections)
1858{
1859 int ret, section_size;
1860 u16 section_id;
1861 const struct firmware *fw_entry;
1862 const struct {
1863 __le16 word1;
1864 __le16 word2;
1865 u8 data[];
1866 } *file_sec;
1867 const u8 *eof;
1868 u8 *temp;
1869 int max_section_size;
1870 const __le32 *dword_buff;
1871
1872#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1873#define NVM_WORD2_ID(x) (x >> 12)
1874#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1875#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1876#define NVM_HEADER_0 (0x2A504C54)
1877#define NVM_HEADER_1 (0x4E564D2A)
1878#define NVM_HEADER_SIZE (4 * sizeof(u32))
1879
1880 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1881
1882 /* Maximal size depends on NVM version */
1883 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1884 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1885 else
1886 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1887
1888 /*
1889 * Obtain NVM image via request_firmware. Since we already used
1890 * request_firmware_nowait() for the firmware binary load and only
1891 * get here after that we assume the NVM request can be satisfied
1892 * synchronously.
1893 */
1894 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1895 if (ret) {
1896 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1897 nvm_file_name, ret);
1898 return ret;
1899 }
1900
1901 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1902 nvm_file_name, fw_entry->size);
1903
1904 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1905 IWL_ERR(trans, "NVM file too large\n");
1906 ret = -EINVAL;
1907 goto out;
1908 }
1909
1910 eof = fw_entry->data + fw_entry->size;
1911 dword_buff = (const __le32 *)fw_entry->data;
1912
1913 /* some NVM file will contain a header.
1914 * The header is identified by 2 dwords header as follow:
1915 * dword[0] = 0x2A504C54
1916 * dword[1] = 0x4E564D2A
1917 *
1918 * This header must be skipped when providing the NVM data to the FW.
1919 */
1920 if (fw_entry->size > NVM_HEADER_SIZE &&
1921 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1922 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1923 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1924 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1925 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1926 le32_to_cpu(dword_buff[3]));
1927
1928 /* nvm file validation, dword_buff[2] holds the file version */
1929 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1930 trans->hw_rev_step == SILICON_C_STEP &&
1931 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1932 ret = -EFAULT;
1933 goto out;
1934 }
1935 } else {
1936 file_sec = (const void *)fw_entry->data;
1937 }
1938
1939 while (true) {
1940 if (file_sec->data > eof) {
1941 IWL_ERR(trans,
1942 "ERROR - NVM file too short for section header\n");
1943 ret = -EINVAL;
1944 break;
1945 }
1946
1947 /* check for EOF marker */
1948 if (!file_sec->word1 && !file_sec->word2) {
1949 ret = 0;
1950 break;
1951 }
1952
1953 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1954 section_size =
1955 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1956 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1957 } else {
1958 section_size = 2 * EXT_NVM_WORD2_LEN(
1959 le16_to_cpu(file_sec->word2));
1960 section_id = EXT_NVM_WORD1_ID(
1961 le16_to_cpu(file_sec->word1));
1962 }
1963
1964 if (section_size > max_section_size) {
1965 IWL_ERR(trans, "ERROR - section too large (%d)\n",
1966 section_size);
1967 ret = -EINVAL;
1968 break;
1969 }
1970
1971 if (!section_size) {
1972 IWL_ERR(trans, "ERROR - section empty\n");
1973 ret = -EINVAL;
1974 break;
1975 }
1976
1977 if (file_sec->data + section_size > eof) {
1978 IWL_ERR(trans,
1979 "ERROR - NVM file too short for section (%d bytes)\n",
1980 section_size);
1981 ret = -EINVAL;
1982 break;
1983 }
1984
1985 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1986 "Invalid NVM section ID %d\n", section_id)) {
1987 ret = -EINVAL;
1988 break;
1989 }
1990
1991 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1992 if (!temp) {
1993 ret = -ENOMEM;
1994 break;
1995 }
1996
1997 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1998
1999 kfree(nvm_sections[section_id].data);
2000 nvm_sections[section_id].data = temp;
2001 nvm_sections[section_id].length = section_size;
2002
2003 /* advance to the next section */
2004 file_sec = (const void *)(file_sec->data + section_size);
2005 }
2006out:
2007 release_firmware(fw_entry);
2008 return ret;
2009}
2010IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2011
2012struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2013 const struct iwl_fw *fw,
2014 u8 set_tx_ant, u8 set_rx_ant)
2015{
2016 struct iwl_nvm_get_info cmd = {};
2017 struct iwl_nvm_data *nvm;
2018 struct iwl_host_cmd hcmd = {
2019 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2020 .data = { &cmd, },
2021 .len = { sizeof(cmd) },
2022 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2023 };
2024 int ret;
2025 bool empty_otp;
2026 u32 mac_flags;
2027 u32 sbands_flags = 0;
2028 u8 tx_ant;
2029 u8 rx_ant;
2030
2031 /*
2032 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2033 * in v3, except for the channel profile part of the
2034 * regulatory. So we can just access the new struct, with the
2035 * exception of the latter.
2036 */
2037 struct iwl_nvm_get_info_rsp *rsp;
2038 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2039 bool v4 = fw_has_api(&fw->ucode_capa,
2040 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2041 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2042 void *channel_profile;
2043
2044 ret = iwl_trans_send_cmd(trans, &hcmd);
2045 if (ret)
2046 return ERR_PTR(ret);
2047
2048 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2049 "Invalid payload len in NVM response from FW %d",
2050 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2051 ret = -EINVAL;
2052 goto out;
2053 }
2054
2055 rsp = (void *)hcmd.resp_pkt->data;
2056 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2057 NVM_GENERAL_FLAGS_EMPTY_OTP);
2058 if (empty_otp)
2059 IWL_INFO(trans, "OTP is empty\n");
2060
2061 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2062 if (!nvm) {
2063 ret = -ENOMEM;
2064 goto out;
2065 }
2066
2067 iwl_set_hw_address_from_csr(trans, nvm);
2068 /* TODO: if platform NVM has MAC address - override it here */
2069
2070 if (!is_valid_ether_addr(nvm->hw_addr)) {
2071 IWL_ERR(trans, "no valid mac address was found\n");
2072 ret = -EINVAL;
2073 goto err_free;
2074 }
2075
2076 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2077
2078 /* Initialize general data */
2079 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2080 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2081 if (nvm->n_hw_addrs == 0)
2082 IWL_WARN(trans,
2083 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2084 empty_otp);
2085
2086 /* Initialize MAC sku data */
2087 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2088 nvm->sku_cap_11ac_enable =
2089 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2090 nvm->sku_cap_11n_enable =
2091 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2092 nvm->sku_cap_11ax_enable =
2093 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2094 nvm->sku_cap_band_24ghz_enable =
2095 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2096 nvm->sku_cap_band_52ghz_enable =
2097 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2098 nvm->sku_cap_mimo_disabled =
2099 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2100 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2101 nvm->sku_cap_11be_enable = true;
2102
2103 /* Initialize PHY sku data */
2104 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2105 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2106
2107 if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2108 fw_has_capa(&fw->ucode_capa,
2109 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2110 nvm->lar_enabled = true;
2111 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2112 }
2113
2114 rsp_v3 = (void *)rsp;
2115 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2116 (void *)rsp_v3->regulatory.channel_profile;
2117
2118 tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2119 rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2120
2121 if (set_tx_ant)
2122 tx_ant &= set_tx_ant;
2123 if (set_rx_ant)
2124 rx_ant &= set_rx_ant;
2125
2126 iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2127 sbands_flags, v4, fw);
2128
2129 iwl_free_resp(&hcmd);
2130 return nvm;
2131
2132err_free:
2133 kfree(nvm);
2134out:
2135 iwl_free_resp(&hcmd);
2136 return ERR_PTR(ret);
2137}
2138IWL_EXPORT_SYMBOL(iwl_get_nvm);
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 Intel Deutschland GmbH
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * USA
25 *
26 * The full GNU General Public License is included in this distribution
27 * in the file called COPYING.
28 *
29 * Contact Information:
30 * Intel Linux Wireless <linuxwifi@intel.com>
31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 *
33 * BSD LICENSE
34 *
35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 *
43 * * Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * * Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * * Neither the name Intel Corporation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
56 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
57 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
58 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
59 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
60 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
61 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
62 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
63 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64 *****************************************************************************/
65#include <linux/types.h>
66#include <linux/slab.h>
67#include <linux/export.h>
68#include <linux/etherdevice.h>
69#include <linux/pci.h>
70#include "iwl-drv.h"
71#include "iwl-modparams.h"
72#include "iwl-nvm-parse.h"
73#include "iwl-prph.h"
74#include "iwl-io.h"
75#include "iwl-csr.h"
76
77/* NVM offsets (in words) definitions */
78enum wkp_nvm_offsets {
79 /* NVM HW-Section offset (in words) definitions */
80 HW_ADDR = 0x15,
81
82 /* NVM SW-Section offset (in words) definitions */
83 NVM_SW_SECTION = 0x1C0,
84 NVM_VERSION = 0,
85 RADIO_CFG = 1,
86 SKU = 2,
87 N_HW_ADDRS = 3,
88 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
89
90 /* NVM calibration section offset (in words) definitions */
91 NVM_CALIB_SECTION = 0x2B8,
92 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
93};
94
95enum family_8000_nvm_offsets {
96 /* NVM HW-Section offset (in words) definitions */
97 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
98 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
99 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
100 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
101 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
102
103 /* NVM SW-Section offset (in words) definitions */
104 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
105 NVM_VERSION_FAMILY_8000 = 0,
106 RADIO_CFG_FAMILY_8000 = 0,
107 SKU_FAMILY_8000 = 2,
108 N_HW_ADDRS_FAMILY_8000 = 3,
109
110 /* NVM REGULATORY -Section offset (in words) definitions */
111 NVM_CHANNELS_FAMILY_8000 = 0,
112 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
113 NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
114 NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
115
116 /* NVM calibration section offset (in words) definitions */
117 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
118 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
119};
120
121/* SKU Capabilities (actual values from NVM definition) */
122enum nvm_sku_bits {
123 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
124 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
125 NVM_SKU_CAP_11N_ENABLE = BIT(2),
126 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
128};
129
130/*
131 * These are the channel numbers in the order that they are stored in the NVM
132 */
133static const u8 iwl_nvm_channels[] = {
134 /* 2.4 GHz */
135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 /* 5 GHz */
137 36, 40, 44 , 48, 52, 56, 60, 64,
138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 149, 153, 157, 161, 165
140};
141
142static const u8 iwl_nvm_channels_family_8000[] = {
143 /* 2.4 GHz */
144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 /* 5 GHz */
146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 149, 153, 157, 161, 165, 169, 173, 177, 181
149};
150
151#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
152#define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
153#define NUM_2GHZ_CHANNELS 14
154#define NUM_2GHZ_CHANNELS_FAMILY_8000 14
155#define FIRST_2GHZ_HT_MINUS 5
156#define LAST_2GHZ_HT_PLUS 9
157#define LAST_5GHZ_HT 165
158#define LAST_5GHZ_HT_FAMILY_8000 181
159#define N_HW_ADDR_MASK 0xF
160
161/* rate data (static) */
162static struct ieee80211_rate iwl_cfg80211_rates[] = {
163 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
164 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
167 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
169 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
171 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
172 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
173 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
174 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
175 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
176 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
177 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
178};
179#define RATES_24_OFFS 0
180#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
181#define RATES_52_OFFS 4
182#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
183
184/**
185 * enum iwl_nvm_channel_flags - channel flags in NVM
186 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
187 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
188 * @NVM_CHANNEL_ACTIVE: active scanning allowed
189 * @NVM_CHANNEL_RADAR: radar detection required
190 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
191 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
192 * on same channel on 2.4 or same UNII band on 5.2
193 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
194 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
195 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
196 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
197 */
198enum iwl_nvm_channel_flags {
199 NVM_CHANNEL_VALID = BIT(0),
200 NVM_CHANNEL_IBSS = BIT(1),
201 NVM_CHANNEL_ACTIVE = BIT(3),
202 NVM_CHANNEL_RADAR = BIT(4),
203 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
204 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
205 NVM_CHANNEL_WIDE = BIT(8),
206 NVM_CHANNEL_40MHZ = BIT(9),
207 NVM_CHANNEL_80MHZ = BIT(10),
208 NVM_CHANNEL_160MHZ = BIT(11),
209};
210
211#define CHECK_AND_PRINT_I(x) \
212 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
213
214static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
215 u16 nvm_flags, const struct iwl_cfg *cfg)
216{
217 u32 flags = IEEE80211_CHAN_NO_HT40;
218 u32 last_5ghz_ht = LAST_5GHZ_HT;
219
220 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
221 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
222
223 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
224 if (ch_num <= LAST_2GHZ_HT_PLUS)
225 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
226 if (ch_num >= FIRST_2GHZ_HT_MINUS)
227 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
228 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
229 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
230 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
231 else
232 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
233 }
234 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
235 flags |= IEEE80211_CHAN_NO_80MHZ;
236 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
237 flags |= IEEE80211_CHAN_NO_160MHZ;
238
239 if (!(nvm_flags & NVM_CHANNEL_IBSS))
240 flags |= IEEE80211_CHAN_NO_IR;
241
242 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
243 flags |= IEEE80211_CHAN_NO_IR;
244
245 if (nvm_flags & NVM_CHANNEL_RADAR)
246 flags |= IEEE80211_CHAN_RADAR;
247
248 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
249 flags |= IEEE80211_CHAN_INDOOR_ONLY;
250
251 /* Set the GO concurrent flag only in case that NO_IR is set.
252 * Otherwise it is meaningless
253 */
254 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
255 (flags & IEEE80211_CHAN_NO_IR))
256 flags |= IEEE80211_CHAN_IR_CONCURRENT;
257
258 return flags;
259}
260
261static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
262 struct iwl_nvm_data *data,
263 const __le16 * const nvm_ch_flags,
264 bool lar_supported)
265{
266 int ch_idx;
267 int n_channels = 0;
268 struct ieee80211_channel *channel;
269 u16 ch_flags;
270 bool is_5ghz;
271 int num_of_ch, num_2ghz_channels;
272 const u8 *nvm_chan;
273
274 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
275 num_of_ch = IWL_NUM_CHANNELS;
276 nvm_chan = &iwl_nvm_channels[0];
277 num_2ghz_channels = NUM_2GHZ_CHANNELS;
278 } else {
279 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
280 nvm_chan = &iwl_nvm_channels_family_8000[0];
281 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
282 }
283
284 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
285 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
286
287 if (ch_idx >= num_2ghz_channels &&
288 !data->sku_cap_band_52GHz_enable)
289 continue;
290
291 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
292 /*
293 * Channels might become valid later if lar is
294 * supported, hence we still want to add them to
295 * the list of supported channels to cfg80211.
296 */
297 IWL_DEBUG_EEPROM(dev,
298 "Ch. %d Flags %x [%sGHz] - No traffic\n",
299 nvm_chan[ch_idx],
300 ch_flags,
301 (ch_idx >= num_2ghz_channels) ?
302 "5.2" : "2.4");
303 continue;
304 }
305
306 channel = &data->channels[n_channels];
307 n_channels++;
308
309 channel->hw_value = nvm_chan[ch_idx];
310 channel->band = (ch_idx < num_2ghz_channels) ?
311 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
312 channel->center_freq =
313 ieee80211_channel_to_frequency(
314 channel->hw_value, channel->band);
315
316 /* Initialize regulatory-based run-time data */
317
318 /*
319 * Default value - highest tx power value. max_power
320 * is not used in mvm, and is used for backwards compatibility
321 */
322 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
323 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
324
325 /* don't put limitations in case we're using LAR */
326 if (!lar_supported)
327 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
328 ch_idx, is_5ghz,
329 ch_flags, cfg);
330 else
331 channel->flags = 0;
332
333 IWL_DEBUG_EEPROM(dev,
334 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
335 channel->hw_value,
336 is_5ghz ? "5.2" : "2.4",
337 CHECK_AND_PRINT_I(VALID),
338 CHECK_AND_PRINT_I(IBSS),
339 CHECK_AND_PRINT_I(ACTIVE),
340 CHECK_AND_PRINT_I(RADAR),
341 CHECK_AND_PRINT_I(WIDE),
342 CHECK_AND_PRINT_I(INDOOR_ONLY),
343 CHECK_AND_PRINT_I(GO_CONCURRENT),
344 ch_flags,
345 channel->max_power,
346 ((ch_flags & NVM_CHANNEL_IBSS) &&
347 !(ch_flags & NVM_CHANNEL_RADAR))
348 ? "" : "not ");
349 }
350
351 return n_channels;
352}
353
354static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
355 struct iwl_nvm_data *data,
356 struct ieee80211_sta_vht_cap *vht_cap,
357 u8 tx_chains, u8 rx_chains)
358{
359 int num_rx_ants = num_of_ant(rx_chains);
360 int num_tx_ants = num_of_ant(tx_chains);
361 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
362 IEEE80211_VHT_MAX_AMPDU_1024K);
363
364 vht_cap->vht_supported = true;
365
366 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
367 IEEE80211_VHT_CAP_RXSTBC_1 |
368 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
369 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
370 max_ampdu_exponent <<
371 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
372
373 if (cfg->vht_mu_mimo_supported)
374 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
375
376 if (cfg->ht_params->ldpc)
377 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
378
379 if (data->sku_cap_mimo_disabled) {
380 num_rx_ants = 1;
381 num_tx_ants = 1;
382 }
383
384 if (num_tx_ants > 1)
385 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
386 else
387 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
388
389 switch (iwlwifi_mod_params.amsdu_size) {
390 case IWL_AMSDU_4K:
391 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
392 break;
393 case IWL_AMSDU_8K:
394 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
395 break;
396 case IWL_AMSDU_12K:
397 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
398 break;
399 default:
400 break;
401 }
402
403 vht_cap->vht_mcs.rx_mcs_map =
404 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
405 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
406 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
407 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
408 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
409 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
410 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
411 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
412
413 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
414 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
415 /* this works because NOT_SUPPORTED == 3 */
416 vht_cap->vht_mcs.rx_mcs_map |=
417 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
418 }
419
420 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
421}
422
423static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
424 struct iwl_nvm_data *data,
425 const __le16 *ch_section,
426 u8 tx_chains, u8 rx_chains, bool lar_supported)
427{
428 int n_channels;
429 int n_used = 0;
430 struct ieee80211_supported_band *sband;
431
432 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
433 n_channels = iwl_init_channel_map(
434 dev, cfg, data,
435 &ch_section[NVM_CHANNELS], lar_supported);
436 else
437 n_channels = iwl_init_channel_map(
438 dev, cfg, data,
439 &ch_section[NVM_CHANNELS_FAMILY_8000],
440 lar_supported);
441
442 sband = &data->bands[IEEE80211_BAND_2GHZ];
443 sband->band = IEEE80211_BAND_2GHZ;
444 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
445 sband->n_bitrates = N_RATES_24;
446 n_used += iwl_init_sband_channels(data, sband, n_channels,
447 IEEE80211_BAND_2GHZ);
448 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
449 tx_chains, rx_chains);
450
451 sband = &data->bands[IEEE80211_BAND_5GHZ];
452 sband->band = IEEE80211_BAND_5GHZ;
453 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
454 sband->n_bitrates = N_RATES_52;
455 n_used += iwl_init_sband_channels(data, sband, n_channels,
456 IEEE80211_BAND_5GHZ);
457 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
458 tx_chains, rx_chains);
459 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
460 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
461 tx_chains, rx_chains);
462
463 if (n_channels != n_used)
464 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
465 n_used, n_channels);
466}
467
468static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
469 const __le16 *phy_sku)
470{
471 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
472 return le16_to_cpup(nvm_sw + SKU);
473
474 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
475}
476
477static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
478{
479 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
480 return le16_to_cpup(nvm_sw + NVM_VERSION);
481 else
482 return le32_to_cpup((__le32 *)(nvm_sw +
483 NVM_VERSION_FAMILY_8000));
484}
485
486static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
487 const __le16 *phy_sku)
488{
489 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
490 return le16_to_cpup(nvm_sw + RADIO_CFG);
491
492 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
493
494}
495
496static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
497{
498 int n_hw_addr;
499
500 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
501 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
502
503 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
504
505 return n_hw_addr & N_HW_ADDR_MASK;
506}
507
508static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
509 struct iwl_nvm_data *data,
510 u32 radio_cfg)
511{
512 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
513 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
514 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
515 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
516 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
517 return;
518 }
519
520 /* set the radio configuration for family 8000 */
521 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
522 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
523 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
524 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
525 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
526 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
527}
528
529static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
530{
531 const u8 *hw_addr;
532
533 hw_addr = (const u8 *)&mac_addr0;
534 dest[0] = hw_addr[3];
535 dest[1] = hw_addr[2];
536 dest[2] = hw_addr[1];
537 dest[3] = hw_addr[0];
538
539 hw_addr = (const u8 *)&mac_addr1;
540 dest[4] = hw_addr[1];
541 dest[5] = hw_addr[0];
542}
543
544static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
545 struct iwl_nvm_data *data)
546{
547 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
548 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
549
550 /* If OEM did not fuse address - get it from OTP */
551 if (!mac_addr0 && !mac_addr1) {
552 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
553 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
554 }
555
556 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
557}
558
559static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
560 const struct iwl_cfg *cfg,
561 struct iwl_nvm_data *data,
562 const __le16 *mac_override,
563 const __le16 *nvm_hw)
564{
565 const u8 *hw_addr;
566
567 if (mac_override) {
568 static const u8 reserved_mac[] = {
569 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
570 };
571
572 hw_addr = (const u8 *)(mac_override +
573 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
574
575 /*
576 * Store the MAC address from MAO section.
577 * No byte swapping is required in MAO section
578 */
579 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
580
581 /*
582 * Force the use of the OTP MAC address in case of reserved MAC
583 * address in the NVM, or if address is given but invalid.
584 */
585 if (is_valid_ether_addr(data->hw_addr) &&
586 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
587 return;
588
589 IWL_ERR(trans,
590 "mac address from nvm override section is not valid\n");
591 }
592
593 if (nvm_hw) {
594 /* read the mac address from WFMP registers */
595 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
596 WFMP_MAC_ADDR_0));
597 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
598 WFMP_MAC_ADDR_1));
599
600 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
601
602 return;
603 }
604
605 IWL_ERR(trans, "mac address is not found\n");
606}
607
608static int iwl_set_hw_address(struct iwl_trans *trans,
609 const struct iwl_cfg *cfg,
610 struct iwl_nvm_data *data, const __le16 *nvm_hw,
611 const __le16 *mac_override)
612{
613 if (cfg->mac_addr_from_csr) {
614 iwl_set_hw_address_from_csr(trans, data);
615 } else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
616 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
617
618 /* The byte order is little endian 16 bit, meaning 214365 */
619 data->hw_addr[0] = hw_addr[1];
620 data->hw_addr[1] = hw_addr[0];
621 data->hw_addr[2] = hw_addr[3];
622 data->hw_addr[3] = hw_addr[2];
623 data->hw_addr[4] = hw_addr[5];
624 data->hw_addr[5] = hw_addr[4];
625 } else {
626 iwl_set_hw_address_family_8000(trans, cfg, data,
627 mac_override, nvm_hw);
628 }
629
630 if (!is_valid_ether_addr(data->hw_addr)) {
631 IWL_ERR(trans, "no valid mac address was found\n");
632 return -EINVAL;
633 }
634
635 return 0;
636}
637
638struct iwl_nvm_data *
639iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
640 const __le16 *nvm_hw, const __le16 *nvm_sw,
641 const __le16 *nvm_calib, const __le16 *regulatory,
642 const __le16 *mac_override, const __le16 *phy_sku,
643 u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
644{
645 struct device *dev = trans->dev;
646 struct iwl_nvm_data *data;
647 bool lar_enabled;
648 u32 sku, radio_cfg;
649 u16 lar_config;
650 const __le16 *ch_section;
651
652 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
653 data = kzalloc(sizeof(*data) +
654 sizeof(struct ieee80211_channel) *
655 IWL_NUM_CHANNELS,
656 GFP_KERNEL);
657 else
658 data = kzalloc(sizeof(*data) +
659 sizeof(struct ieee80211_channel) *
660 IWL_NUM_CHANNELS_FAMILY_8000,
661 GFP_KERNEL);
662 if (!data)
663 return NULL;
664
665 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
666
667 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
668 iwl_set_radio_cfg(cfg, data, radio_cfg);
669 if (data->valid_tx_ant)
670 tx_chains &= data->valid_tx_ant;
671 if (data->valid_rx_ant)
672 rx_chains &= data->valid_rx_ant;
673
674 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
675 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
676 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
677 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
678 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
679 data->sku_cap_11n_enable = false;
680 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
681 (sku & NVM_SKU_CAP_11AC_ENABLE);
682 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
683
684 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
685
686 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
687 /* Checking for required sections */
688 if (!nvm_calib) {
689 IWL_ERR(trans,
690 "Can't parse empty Calib NVM sections\n");
691 kfree(data);
692 return NULL;
693 }
694 /* in family 8000 Xtal calibration values moved to OTP */
695 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
696 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
697 lar_enabled = true;
698 ch_section = nvm_sw;
699 } else {
700 u16 lar_offset = data->nvm_version < 0xE39 ?
701 NVM_LAR_OFFSET_FAMILY_8000_OLD :
702 NVM_LAR_OFFSET_FAMILY_8000;
703
704 lar_config = le16_to_cpup(regulatory + lar_offset);
705 data->lar_enabled = !!(lar_config &
706 NVM_LAR_ENABLED_FAMILY_8000);
707 lar_enabled = data->lar_enabled;
708 ch_section = regulatory;
709 }
710
711 /* If no valid mac address was found - bail out */
712 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
713 kfree(data);
714 return NULL;
715 }
716
717 iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
718 lar_fw_supported && lar_enabled);
719 data->calib_version = 255;
720
721 return data;
722}
723IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
724
725static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
726 int ch_idx, u16 nvm_flags,
727 const struct iwl_cfg *cfg)
728{
729 u32 flags = NL80211_RRF_NO_HT40;
730 u32 last_5ghz_ht = LAST_5GHZ_HT;
731
732 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
733 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
734
735 if (ch_idx < NUM_2GHZ_CHANNELS &&
736 (nvm_flags & NVM_CHANNEL_40MHZ)) {
737 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
738 flags &= ~NL80211_RRF_NO_HT40PLUS;
739 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
740 flags &= ~NL80211_RRF_NO_HT40MINUS;
741 } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
742 (nvm_flags & NVM_CHANNEL_40MHZ)) {
743 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
744 flags &= ~NL80211_RRF_NO_HT40PLUS;
745 else
746 flags &= ~NL80211_RRF_NO_HT40MINUS;
747 }
748
749 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
750 flags |= NL80211_RRF_NO_80MHZ;
751 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
752 flags |= NL80211_RRF_NO_160MHZ;
753
754 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
755 flags |= NL80211_RRF_NO_IR;
756
757 if (nvm_flags & NVM_CHANNEL_RADAR)
758 flags |= NL80211_RRF_DFS;
759
760 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
761 flags |= NL80211_RRF_NO_OUTDOOR;
762
763 /* Set the GO concurrent flag only in case that NO_IR is set.
764 * Otherwise it is meaningless
765 */
766 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
767 (flags & NL80211_RRF_NO_IR))
768 flags |= NL80211_RRF_GO_CONCURRENT;
769
770 return flags;
771}
772
773struct ieee80211_regdomain *
774iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
775 int num_of_ch, __le32 *channels, u16 fw_mcc)
776{
777 int ch_idx;
778 u16 ch_flags, prev_ch_flags = 0;
779 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
780 iwl_nvm_channels_family_8000 : iwl_nvm_channels;
781 struct ieee80211_regdomain *regd;
782 int size_of_regd;
783 struct ieee80211_reg_rule *rule;
784 enum ieee80211_band band;
785 int center_freq, prev_center_freq = 0;
786 int valid_rules = 0;
787 bool new_rule;
788 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
789 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
790
791 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
792 return ERR_PTR(-EINVAL);
793
794 if (WARN_ON(num_of_ch > max_num_ch))
795 num_of_ch = max_num_ch;
796
797 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
798 num_of_ch);
799
800 /* build a regdomain rule for every valid channel */
801 size_of_regd =
802 sizeof(struct ieee80211_regdomain) +
803 num_of_ch * sizeof(struct ieee80211_reg_rule);
804
805 regd = kzalloc(size_of_regd, GFP_KERNEL);
806 if (!regd)
807 return ERR_PTR(-ENOMEM);
808
809 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
810 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
811 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
812 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
813 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
814 band);
815 new_rule = false;
816
817 if (!(ch_flags & NVM_CHANNEL_VALID)) {
818 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
819 "Ch. %d Flags %x [%sGHz] - No traffic\n",
820 nvm_chan[ch_idx],
821 ch_flags,
822 (ch_idx >= NUM_2GHZ_CHANNELS) ?
823 "5.2" : "2.4");
824 continue;
825 }
826
827 /* we can't continue the same rule */
828 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
829 center_freq - prev_center_freq > 20) {
830 valid_rules++;
831 new_rule = true;
832 }
833
834 rule = ®d->reg_rules[valid_rules - 1];
835
836 if (new_rule)
837 rule->freq_range.start_freq_khz =
838 MHZ_TO_KHZ(center_freq - 10);
839
840 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
841
842 /* this doesn't matter - not used by FW */
843 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
844 rule->power_rule.max_eirp =
845 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
846
847 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
848 ch_flags, cfg);
849
850 /* rely on auto-calculation to merge BW of contiguous chans */
851 rule->flags |= NL80211_RRF_AUTO_BW;
852 rule->freq_range.max_bandwidth_khz = 0;
853
854 prev_ch_flags = ch_flags;
855 prev_center_freq = center_freq;
856
857 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
858 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
859 center_freq,
860 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
861 CHECK_AND_PRINT_I(VALID),
862 CHECK_AND_PRINT_I(ACTIVE),
863 CHECK_AND_PRINT_I(RADAR),
864 CHECK_AND_PRINT_I(WIDE),
865 CHECK_AND_PRINT_I(40MHZ),
866 CHECK_AND_PRINT_I(80MHZ),
867 CHECK_AND_PRINT_I(160MHZ),
868 CHECK_AND_PRINT_I(INDOOR_ONLY),
869 CHECK_AND_PRINT_I(GO_CONCURRENT),
870 ch_flags,
871 ((ch_flags & NVM_CHANNEL_ACTIVE) &&
872 !(ch_flags & NVM_CHANNEL_RADAR))
873 ? "" : "not ");
874 }
875
876 regd->n_reg_rules = valid_rules;
877
878 /* set alpha2 from FW. */
879 regd->alpha2[0] = fw_mcc >> 8;
880 regd->alpha2[1] = fw_mcc & 0xff;
881
882 return regd;
883}
884IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);