Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/types.h>
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/etherdevice.h>
11#include <linux/pci.h>
12#include <linux/firmware.h>
13
14#include "iwl-drv.h"
15#include "iwl-modparams.h"
16#include "iwl-nvm-parse.h"
17#include "iwl-prph.h"
18#include "iwl-io.h"
19#include "iwl-csr.h"
20#include "fw/acpi.h"
21#include "fw/api/nvm-reg.h"
22#include "fw/api/commands.h"
23#include "fw/api/cmdhdr.h"
24#include "fw/img.h"
25#include "mei/iwl-mei.h"
26
27/* NVM offsets (in words) definitions */
28enum nvm_offsets {
29 /* NVM HW-Section offset (in words) definitions */
30 SUBSYSTEM_ID = 0x0A,
31 HW_ADDR = 0x15,
32
33 /* NVM SW-Section offset (in words) definitions */
34 NVM_SW_SECTION = 0x1C0,
35 NVM_VERSION = 0,
36 RADIO_CFG = 1,
37 SKU = 2,
38 N_HW_ADDRS = 3,
39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40
41 /* NVM calibration section offset (in words) definitions */
42 NVM_CALIB_SECTION = 0x2B8,
43 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44
45 /* NVM REGULATORY -Section offset (in words) definitions */
46 NVM_CHANNELS_SDP = 0,
47};
48
49enum ext_nvm_offsets {
50 /* NVM HW-Section offset (in words) definitions */
51 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52
53 /* NVM SW-Section offset (in words) definitions */
54 NVM_VERSION_EXT_NVM = 0,
55 N_HW_ADDRS_FAMILY_8000 = 3,
56
57 /* NVM PHY_SKU-Section offset (in words) definitions */
58 RADIO_CFG_FAMILY_EXT_NVM = 0,
59 SKU_FAMILY_8000 = 2,
60
61 /* NVM REGULATORY -Section offset (in words) definitions */
62 NVM_CHANNELS_EXTENDED = 0,
63 NVM_LAR_OFFSET_OLD = 0x4C7,
64 NVM_LAR_OFFSET = 0x507,
65 NVM_LAR_ENABLED = 0x7,
66};
67
68/* SKU Capabilities (actual values from NVM definition) */
69enum nvm_sku_bits {
70 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
71 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
72 NVM_SKU_CAP_11N_ENABLE = BIT(2),
73 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
74 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
75};
76
77/*
78 * These are the channel numbers in the order that they are stored in the NVM
79 */
80static const u16 iwl_nvm_channels[] = {
81 /* 2.4 GHz */
82 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 /* 5 GHz */
84 36, 40, 44, 48, 52, 56, 60, 64,
85 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 149, 153, 157, 161, 165
87};
88
89static const u16 iwl_ext_nvm_channels[] = {
90 /* 2.4 GHz */
91 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 /* 5 GHz */
93 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 149, 153, 157, 161, 165, 169, 173, 177, 181
96};
97
98static const u16 iwl_uhb_nvm_channels[] = {
99 /* 2.4 GHz */
100 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 /* 5 GHz */
102 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 149, 153, 157, 161, 165, 169, 173, 177, 181,
105 /* 6-7 GHz */
106 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110};
111
112#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
113#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
114#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
115#define NUM_2GHZ_CHANNELS 14
116#define NUM_5GHZ_CHANNELS 37
117#define FIRST_2GHZ_HT_MINUS 5
118#define LAST_2GHZ_HT_PLUS 9
119#define N_HW_ADDR_MASK 0xF
120
121/* rate data (static) */
122static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138};
139#define RATES_24_OFFS 0
140#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
141#define RATES_52_OFFS 4
142#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
143
144/**
145 * enum iwl_nvm_channel_flags - channel flags in NVM
146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
149 * @NVM_CHANNEL_RADAR: radar detection required
150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152 * on same channel on 2.4 or same UNII band on 5.2
153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159 */
160enum iwl_nvm_channel_flags {
161 NVM_CHANNEL_VALID = BIT(0),
162 NVM_CHANNEL_IBSS = BIT(1),
163 NVM_CHANNEL_ACTIVE = BIT(3),
164 NVM_CHANNEL_RADAR = BIT(4),
165 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
166 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
167 NVM_CHANNEL_UNIFORM = BIT(7),
168 NVM_CHANNEL_20MHZ = BIT(8),
169 NVM_CHANNEL_40MHZ = BIT(9),
170 NVM_CHANNEL_80MHZ = BIT(10),
171 NVM_CHANNEL_160MHZ = BIT(11),
172 NVM_CHANNEL_DC_HIGH = BIT(12),
173};
174
175/**
176 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177 * domain.
178 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179 * 2.4Ghz band is allowed.
180 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181 * 5Ghz band is allowed.
182 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183 * for this regulatory domain (valid only in 5Ghz).
184 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185 * for this regulatory domain (valid only in 5Ghz).
186 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189 * for this regulatory domain (valid only in 5Ghz).
190 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192 */
193enum iwl_reg_capa_flags_v1 {
194 REG_CAPA_V1_BF_CCD_LOW_BAND = BIT(0),
195 REG_CAPA_V1_BF_CCD_HIGH_BAND = BIT(1),
196 REG_CAPA_V1_160MHZ_ALLOWED = BIT(2),
197 REG_CAPA_V1_80MHZ_ALLOWED = BIT(3),
198 REG_CAPA_V1_MCS_8_ALLOWED = BIT(4),
199 REG_CAPA_V1_MCS_9_ALLOWED = BIT(5),
200 REG_CAPA_V1_40MHZ_FORBIDDEN = BIT(7),
201 REG_CAPA_V1_DC_HIGH_ENABLED = BIT(9),
202 REG_CAPA_V1_11AX_DISABLED = BIT(10),
203}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204
205/**
206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207 * domain (version 2).
208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209 * disabled.
210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211 * 2.4Ghz band is allowed.
212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213 * 5Ghz band is allowed.
214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215 * for this regulatory domain (valid only in 5Ghz).
216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217 * for this regulatory domain (valid only in 5Ghz).
218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221 * 126, 122) are disabled.
222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223 * for this regulatory domain (uvalid only in 5Ghz).
224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225 */
226enum iwl_reg_capa_flags_v2 {
227 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
228 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
229 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
230 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
231 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
232 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
233 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
234 REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
235 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
236 REG_CAPA_V2_11AX_DISABLED = BIT(10),
237}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238
239/**
240 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241 * domain.
242 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243 * for this regulatory domain (valid only in 5Ghz).
244 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245 * for this regulatory domain (valid only in 5Ghz).
246 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251 * for this regulatory domain (valid only in 5GHz).
252 */
253enum iwl_reg_capa_flags_v4 {
254 REG_CAPA_V4_160MHZ_ALLOWED = BIT(3),
255 REG_CAPA_V4_80MHZ_ALLOWED = BIT(4),
256 REG_CAPA_V4_MCS_12_ALLOWED = BIT(5),
257 REG_CAPA_V4_MCS_13_ALLOWED = BIT(6),
258 REG_CAPA_V4_11BE_DISABLED = BIT(8),
259 REG_CAPA_V4_11AX_DISABLED = BIT(13),
260 REG_CAPA_V4_320MHZ_ALLOWED = BIT(16),
261}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262
263/*
264* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265* MCC update command response.
266*/
267#define REG_CAPA_V2_RESP_VER 6
268
269/* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270 * MCC update command response.
271 */
272#define REG_CAPA_V4_RESP_VER 8
273
274/**
275 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276 * handling the different APIs of reg_capa_flags.
277 *
278 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279 * for this regulatory domain.
280 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281 * for this regulatory domain (valid only in 5 and 6 Ghz).
282 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283 * for this regulatory domain (valid only in 5 and 6 Ghz).
284 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285 * for this regulatory domain (valid only in 6 Ghz).
286 * @disable_11ax: 11ax is forbidden for this regulatory domain.
287 * @disable_11be: 11be is forbidden for this regulatory domain.
288 */
289struct iwl_reg_capa {
290 bool allow_40mhz;
291 bool allow_80mhz;
292 bool allow_160mhz;
293 bool allow_320mhz;
294 bool disable_11ax;
295 bool disable_11be;
296};
297
298static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 int chan, u32 flags)
300{
301#define CHECK_AND_PRINT_I(x) \
302 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
303
304 if (!(flags & NVM_CHANNEL_VALID)) {
305 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 chan, flags);
307 return;
308 }
309
310 /* Note: already can print up to 101 characters, 110 is the limit! */
311 IWL_DEBUG_DEV(dev, level,
312 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 chan, flags,
314 CHECK_AND_PRINT_I(VALID),
315 CHECK_AND_PRINT_I(IBSS),
316 CHECK_AND_PRINT_I(ACTIVE),
317 CHECK_AND_PRINT_I(RADAR),
318 CHECK_AND_PRINT_I(INDOOR_ONLY),
319 CHECK_AND_PRINT_I(GO_CONCURRENT),
320 CHECK_AND_PRINT_I(UNIFORM),
321 CHECK_AND_PRINT_I(20MHZ),
322 CHECK_AND_PRINT_I(40MHZ),
323 CHECK_AND_PRINT_I(80MHZ),
324 CHECK_AND_PRINT_I(160MHZ),
325 CHECK_AND_PRINT_I(DC_HIGH));
326#undef CHECK_AND_PRINT_I
327}
328
329static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 u32 nvm_flags, const struct iwl_cfg *cfg)
331{
332 u32 flags = IEEE80211_CHAN_NO_HT40;
333
334 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 if (ch_num <= LAST_2GHZ_HT_PLUS)
336 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 else
343 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 }
345 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 flags |= IEEE80211_CHAN_NO_80MHZ;
347 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 flags |= IEEE80211_CHAN_NO_160MHZ;
349
350 if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 flags |= IEEE80211_CHAN_NO_IR;
352
353 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 flags |= IEEE80211_CHAN_NO_IR;
355
356 if (nvm_flags & NVM_CHANNEL_RADAR)
357 flags |= IEEE80211_CHAN_RADAR;
358
359 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 flags |= IEEE80211_CHAN_INDOOR_ONLY;
361
362 /* Set the GO concurrent flag only in case that NO_IR is set.
363 * Otherwise it is meaningless
364 */
365 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 (flags & IEEE80211_CHAN_NO_IR))
367 flags |= IEEE80211_CHAN_IR_CONCURRENT;
368
369 return flags;
370}
371
372static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373{
374 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 return NL80211_BAND_6GHZ;
376 }
377
378 if (ch_idx >= NUM_2GHZ_CHANNELS)
379 return NL80211_BAND_5GHZ;
380 return NL80211_BAND_2GHZ;
381}
382
383static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 struct iwl_nvm_data *data,
385 const void * const nvm_ch_flags,
386 u32 sbands_flags, bool v4)
387{
388 int ch_idx;
389 int n_channels = 0;
390 struct ieee80211_channel *channel;
391 u32 ch_flags;
392 int num_of_ch;
393 const u16 *nvm_chan;
394
395 if (cfg->uhb_supported) {
396 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 nvm_chan = iwl_uhb_nvm_channels;
398 } else if (cfg->nvm_type == IWL_NVM_EXT) {
399 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 nvm_chan = iwl_ext_nvm_channels;
401 } else {
402 num_of_ch = IWL_NVM_NUM_CHANNELS;
403 nvm_chan = iwl_nvm_channels;
404 }
405
406 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 enum nl80211_band band =
408 iwl_nl80211_band_from_channel_idx(ch_idx);
409
410 if (v4)
411 ch_flags =
412 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 else
414 ch_flags =
415 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416
417 if (band == NL80211_BAND_5GHZ &&
418 !data->sku_cap_band_52ghz_enable)
419 continue;
420
421 /* workaround to disable wide channels in 5GHz */
422 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 band == NL80211_BAND_5GHZ) {
424 ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 NVM_CHANNEL_80MHZ |
426 NVM_CHANNEL_160MHZ);
427 }
428
429 if (ch_flags & NVM_CHANNEL_160MHZ)
430 data->vht160_supported = true;
431
432 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 !(ch_flags & NVM_CHANNEL_VALID)) {
434 /*
435 * Channels might become valid later if lar is
436 * supported, hence we still want to add them to
437 * the list of supported channels to cfg80211.
438 */
439 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 nvm_chan[ch_idx], ch_flags);
441 continue;
442 }
443
444 channel = &data->channels[n_channels];
445 n_channels++;
446
447 channel->hw_value = nvm_chan[ch_idx];
448 channel->band = band;
449 channel->center_freq =
450 ieee80211_channel_to_frequency(
451 channel->hw_value, channel->band);
452
453 /* Initialize regulatory-based run-time data */
454
455 /*
456 * Default value - highest tx power value. max_power
457 * is not used in mvm, and is used for backwards compatibility
458 */
459 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460
461 /* don't put limitations in case we're using LAR */
462 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 ch_idx, band,
465 ch_flags, cfg);
466 else
467 channel->flags = 0;
468
469 /* TODO: Don't put limitations on UHB devices as we still don't
470 * have NVM for them
471 */
472 if (cfg->uhb_supported)
473 channel->flags = 0;
474 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 channel->hw_value, ch_flags);
476 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 channel->hw_value, channel->max_power);
478 }
479
480 return n_channels;
481}
482
483static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 struct iwl_nvm_data *data,
485 struct ieee80211_sta_vht_cap *vht_cap,
486 u8 tx_chains, u8 rx_chains)
487{
488 const struct iwl_cfg *cfg = trans->cfg;
489 int num_rx_ants = num_of_ant(rx_chains);
490 int num_tx_ants = num_of_ant(tx_chains);
491
492 vht_cap->vht_supported = true;
493
494 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 IEEE80211_VHT_CAP_RXSTBC_1 |
496 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 IEEE80211_VHT_MAX_AMPDU_1024K <<
499 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500
501 if (!trans->cfg->ht_params->stbc)
502 vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503
504 if (data->vht160_supported)
505 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 IEEE80211_VHT_CAP_SHORT_GI_160;
507
508 if (cfg->vht_mu_mimo_supported)
509 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510
511 if (cfg->ht_params->ldpc)
512 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513
514 if (data->sku_cap_mimo_disabled) {
515 num_rx_ants = 1;
516 num_tx_ants = 1;
517 }
518
519 if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 else
522 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523
524 switch (iwlwifi_mod_params.amsdu_size) {
525 case IWL_AMSDU_DEF:
526 if (trans->trans_cfg->mq_rx_supported)
527 vht_cap->cap |=
528 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 else
530 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 break;
532 case IWL_AMSDU_2K:
533 if (trans->trans_cfg->mq_rx_supported)
534 vht_cap->cap |=
535 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 else
537 WARN(1, "RB size of 2K is not supported by this device\n");
538 break;
539 case IWL_AMSDU_4K:
540 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 break;
542 case IWL_AMSDU_8K:
543 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 break;
545 case IWL_AMSDU_12K:
546 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 break;
548 default:
549 break;
550 }
551
552 vht_cap->vht_mcs.rx_mcs_map =
553 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561
562 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 /* this works because NOT_SUPPORTED == 3 */
565 vht_cap->vht_mcs.rx_mcs_map |=
566 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 }
568
569 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570
571 vht_cap->vht_mcs.tx_highest |=
572 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573}
574
575static const u8 iwl_vendor_caps[] = {
576 0xdd, /* vendor element */
577 0x06, /* length */
578 0x00, 0x17, 0x35, /* Intel OUI */
579 0x08, /* type (Intel Capabilities) */
580 /* followed by 16 bits of capabilities */
581#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
582 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 0x00
584};
585
586static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 {
588 .types_mask = BIT(NL80211_IFTYPE_STATION),
589 .he_cap = {
590 .has_he = true,
591 .he_cap_elem = {
592 .mac_cap_info[0] =
593 IEEE80211_HE_MAC_CAP0_HTC_HE,
594 .mac_cap_info[1] =
595 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 .mac_cap_info[2] =
598 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 .mac_cap_info[3] =
600 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 .mac_cap_info[4] =
603 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 .mac_cap_info[5] =
606 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 .phy_cap_info[1] =
612 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 .phy_cap_info[2] =
616 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 .phy_cap_info[3] =
619 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 .phy_cap_info[4] =
624 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 .phy_cap_info[6] =
628 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 .phy_cap_info[7] =
632 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 .phy_cap_info[8] =
635 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 .phy_cap_info[9] =
641 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 .phy_cap_info[10] =
646 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 },
648 /*
649 * Set default Tx/Rx HE MCS NSS Support field.
650 * Indicate support for up to 2 spatial streams and all
651 * MCS, without any special cases
652 */
653 .he_mcs_nss_supp = {
654 .rx_mcs_80 = cpu_to_le16(0xfffa),
655 .tx_mcs_80 = cpu_to_le16(0xfffa),
656 .rx_mcs_160 = cpu_to_le16(0xfffa),
657 .tx_mcs_160 = cpu_to_le16(0xfffa),
658 .rx_mcs_80p80 = cpu_to_le16(0xffff),
659 .tx_mcs_80p80 = cpu_to_le16(0xffff),
660 },
661 /*
662 * Set default PPE thresholds, with PPET16 set to 0,
663 * PPET8 set to 7
664 */
665 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 },
667 .eht_cap = {
668 .has_eht = true,
669 .eht_cap_elem = {
670 .mac_cap_info[0] =
671 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
672 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
673 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
674 IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
675 .phy_cap_info[0] =
676 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 .phy_cap_info[1] =
682 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
683 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 .phy_cap_info[3] =
685 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692
693 .phy_cap_info[4] =
694 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 .phy_cap_info[5] =
698 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 .phy_cap_info[6] =
703 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 .phy_cap_info[8] =
706 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 },
709
710 /* For all MCS and bandwidth, set 2 NSS for both Tx and
711 * Rx - note we don't set the only_20mhz, but due to this
712 * being a union, it gets set correctly anyway.
713 */
714 .eht_mcs_nss_supp = {
715 .bw._80 = {
716 .rx_tx_mcs9_max_nss = 0x22,
717 .rx_tx_mcs11_max_nss = 0x22,
718 .rx_tx_mcs13_max_nss = 0x22,
719 },
720 .bw._160 = {
721 .rx_tx_mcs9_max_nss = 0x22,
722 .rx_tx_mcs11_max_nss = 0x22,
723 .rx_tx_mcs13_max_nss = 0x22,
724 },
725 .bw._320 = {
726 .rx_tx_mcs9_max_nss = 0x22,
727 .rx_tx_mcs11_max_nss = 0x22,
728 .rx_tx_mcs13_max_nss = 0x22,
729 },
730 },
731
732 /*
733 * PPE thresholds for NSS = 2, and RU index bitmap set
734 * to 0xc.
735 */
736 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 },
738 },
739 {
740 .types_mask = BIT(NL80211_IFTYPE_AP),
741 .he_cap = {
742 .has_he = true,
743 .he_cap_elem = {
744 .mac_cap_info[0] =
745 IEEE80211_HE_MAC_CAP0_HTC_HE,
746 .mac_cap_info[1] =
747 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 .mac_cap_info[3] =
750 IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 .phy_cap_info[1] =
752 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 .phy_cap_info[2] =
754 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 .phy_cap_info[3] =
757 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 .phy_cap_info[6] =
762 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 .phy_cap_info[7] =
764 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 .phy_cap_info[8] =
766 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 .phy_cap_info[9] =
769 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 },
772 /*
773 * Set default Tx/Rx HE MCS NSS Support field.
774 * Indicate support for up to 2 spatial streams and all
775 * MCS, without any special cases
776 */
777 .he_mcs_nss_supp = {
778 .rx_mcs_80 = cpu_to_le16(0xfffa),
779 .tx_mcs_80 = cpu_to_le16(0xfffa),
780 .rx_mcs_160 = cpu_to_le16(0xfffa),
781 .tx_mcs_160 = cpu_to_le16(0xfffa),
782 .rx_mcs_80p80 = cpu_to_le16(0xffff),
783 .tx_mcs_80p80 = cpu_to_le16(0xffff),
784 },
785 /*
786 * Set default PPE thresholds, with PPET16 set to 0,
787 * PPET8 set to 7
788 */
789 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 },
791 .eht_cap = {
792 .has_eht = true,
793 .eht_cap_elem = {
794 .mac_cap_info[0] =
795 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
796 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
797 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
798 .phy_cap_info[0] =
799 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
800 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
801 .phy_cap_info[5] =
802 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
803 },
804
805 /* For all MCS and bandwidth, set 2 NSS for both Tx and
806 * Rx - note we don't set the only_20mhz, but due to this
807 * being a union, it gets set correctly anyway.
808 */
809 .eht_mcs_nss_supp = {
810 .bw._80 = {
811 .rx_tx_mcs9_max_nss = 0x22,
812 .rx_tx_mcs11_max_nss = 0x22,
813 .rx_tx_mcs13_max_nss = 0x22,
814 },
815 .bw._160 = {
816 .rx_tx_mcs9_max_nss = 0x22,
817 .rx_tx_mcs11_max_nss = 0x22,
818 .rx_tx_mcs13_max_nss = 0x22,
819 },
820 .bw._320 = {
821 .rx_tx_mcs9_max_nss = 0x22,
822 .rx_tx_mcs11_max_nss = 0x22,
823 .rx_tx_mcs13_max_nss = 0x22,
824 },
825 },
826
827 /*
828 * PPE thresholds for NSS = 2, and RU index bitmap set
829 * to 0xc.
830 */
831 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
832 },
833 },
834};
835
836static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
837 struct iwl_nvm_data *data,
838 struct ieee80211_supported_band *sband,
839 u8 tx_chains, u8 rx_chains)
840{
841 struct ieee80211_sta_ht_cap ht_cap;
842 struct ieee80211_sta_vht_cap vht_cap = {};
843 struct ieee80211_sband_iftype_data *iftype_data;
844 u16 he_6ghz_capa = 0;
845 u32 exp;
846 int i;
847
848 if (sband->band != NL80211_BAND_6GHZ)
849 return;
850
851 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
852 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
853 tx_chains, rx_chains);
854 WARN_ON(!ht_cap.ht_supported);
855 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
856 WARN_ON(!vht_cap.vht_supported);
857
858 he_6ghz_capa |=
859 u16_encode_bits(ht_cap.ampdu_density,
860 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
861 exp = u32_get_bits(vht_cap.cap,
862 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
863 he_6ghz_capa |=
864 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
865 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
866 he_6ghz_capa |=
867 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
868 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
869 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
870 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
871 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
872 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
873
874 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
875
876 /* we know it's writable - we set it before ourselves */
877 iftype_data = (void *)(uintptr_t)sband->iftype_data;
878 for (i = 0; i < sband->n_iftype_data; i++)
879 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
880}
881
882static void
883iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
884 struct iwl_nvm_data *data,
885 struct ieee80211_supported_band *sband,
886 struct ieee80211_sband_iftype_data *iftype_data,
887 u8 tx_chains, u8 rx_chains,
888 const struct iwl_fw *fw)
889{
890 bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
891 bool no_320;
892
893 no_320 = !trans->trans_cfg->integrated &&
894 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
895
896 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
897 iftype_data->eht_cap.has_eht = false;
898
899 /* Advertise an A-MPDU exponent extension based on
900 * operating band
901 */
902 if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
903 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
904 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
905 else if (sband->band != NL80211_BAND_2GHZ)
906 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
907 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
908 else
909 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
910 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
911
912 switch (sband->band) {
913 case NL80211_BAND_2GHZ:
914 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
915 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
916 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
917 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
918 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
919 break;
920 case NL80211_BAND_6GHZ:
921 if (!no_320) {
922 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
923 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
924 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
925 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
926 }
927 fallthrough;
928 case NL80211_BAND_5GHZ:
929 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
930 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
931 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
932 break;
933 default:
934 WARN_ON(1);
935 break;
936 }
937
938 if ((tx_chains & rx_chains) == ANT_AB) {
939 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
940 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
941 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
942 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
943 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
944 if (!is_ap) {
945 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
946 IEEE80211_HE_PHY_CAP7_MAX_NC_2;
947
948 if (iftype_data->eht_cap.has_eht) {
949 /*
950 * Set the number of sounding dimensions for each
951 * bandwidth to 1 to indicate the maximal supported
952 * value of TXVECTOR parameter NUM_STS of 2
953 */
954 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
955
956 /*
957 * Set the MAX NC to 1 to indicate sounding feedback of
958 * 2 supported by the beamfomee.
959 */
960 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
961 }
962 }
963 } else {
964 struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
965 &iftype_data->he_cap.he_mcs_nss_supp;
966
967 if (iftype_data->eht_cap.has_eht) {
968 struct ieee80211_eht_mcs_nss_supp *mcs_nss =
969 &iftype_data->eht_cap.eht_mcs_nss_supp;
970
971 memset(mcs_nss, 0x11, sizeof(*mcs_nss));
972 }
973
974 if (!is_ap) {
975 /* If not 2x2, we need to indicate 1x1 in the
976 * Midamble RX Max NSTS - but not for AP mode
977 */
978 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
979 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
980 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
981 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
982 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
983 IEEE80211_HE_PHY_CAP7_MAX_NC_1;
984 }
985
986 he_mcs_nss_supp->rx_mcs_80 |=
987 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
988 he_mcs_nss_supp->tx_mcs_80 |=
989 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
990 he_mcs_nss_supp->rx_mcs_160 |=
991 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
992 he_mcs_nss_supp->tx_mcs_160 |=
993 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
994 he_mcs_nss_supp->rx_mcs_80p80 |=
995 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
996 he_mcs_nss_supp->tx_mcs_80p80 |=
997 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
998 }
999
1000 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1001 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1002 IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1003
1004 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1005 case IWL_CFG_RF_TYPE_GF:
1006 case IWL_CFG_RF_TYPE_MR:
1007 case IWL_CFG_RF_TYPE_MS:
1008 case IWL_CFG_RF_TYPE_FM:
1009 case IWL_CFG_RF_TYPE_WH:
1010 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1011 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1012 if (!is_ap)
1013 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1014 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1015 break;
1016 }
1017
1018 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1019 iftype_data->eht_cap.has_eht) {
1020 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1021 ~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1022 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1023 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1024 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1025 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1026 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1027 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1028 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1029 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1030 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1031 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1032 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1033 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1034 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1035 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1036 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1037 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1038 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1039 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1040 IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1041 }
1042
1043 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1044 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1045 IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1046
1047 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1048 !is_ap) {
1049 iftype_data->vendor_elems.data = iwl_vendor_caps;
1050 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1051 }
1052
1053 if (!trans->cfg->ht_params->stbc) {
1054 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1055 ~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1056 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1057 ~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1058 }
1059}
1060
1061static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1062 struct iwl_nvm_data *data,
1063 struct ieee80211_supported_band *sband,
1064 u8 tx_chains, u8 rx_chains,
1065 const struct iwl_fw *fw)
1066{
1067 struct ieee80211_sband_iftype_data *iftype_data;
1068 int i;
1069
1070 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1071 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1072 BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1073
1074 switch (sband->band) {
1075 case NL80211_BAND_2GHZ:
1076 iftype_data = data->iftd.low;
1077 break;
1078 case NL80211_BAND_5GHZ:
1079 iftype_data = data->iftd.high;
1080 break;
1081 case NL80211_BAND_6GHZ:
1082 iftype_data = data->iftd.uhb;
1083 break;
1084 default:
1085 WARN_ON(1);
1086 return;
1087 }
1088
1089 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1090
1091 _ieee80211_set_sband_iftype_data(sband, iftype_data,
1092 ARRAY_SIZE(iwl_he_eht_capa));
1093
1094 for (i = 0; i < sband->n_iftype_data; i++)
1095 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1096 tx_chains, rx_chains, fw);
1097
1098 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1099}
1100
1101void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1102 u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1103{
1104 struct ieee80211_supported_band *sband;
1105
1106 sband = &data->bands[NL80211_BAND_2GHZ];
1107 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1108 tx_chains, rx_chains);
1109
1110 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1111 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1112 fw);
1113
1114 sband = &data->bands[NL80211_BAND_5GHZ];
1115 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1116 tx_chains, rx_chains);
1117 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1118 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1119 tx_chains, rx_chains);
1120
1121 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1122 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1123 fw);
1124
1125 sband = &data->bands[NL80211_BAND_6GHZ];
1126 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1127 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1128 fw);
1129}
1130IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1131
1132static void iwl_init_sbands(struct iwl_trans *trans,
1133 struct iwl_nvm_data *data,
1134 const void *nvm_ch_flags, u8 tx_chains,
1135 u8 rx_chains, u32 sbands_flags, bool v4,
1136 const struct iwl_fw *fw)
1137{
1138 struct device *dev = trans->dev;
1139 const struct iwl_cfg *cfg = trans->cfg;
1140 int n_channels;
1141 int n_used = 0;
1142 struct ieee80211_supported_band *sband;
1143
1144 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1145 sbands_flags, v4);
1146 sband = &data->bands[NL80211_BAND_2GHZ];
1147 sband->band = NL80211_BAND_2GHZ;
1148 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1149 sband->n_bitrates = N_RATES_24;
1150 n_used += iwl_init_sband_channels(data, sband, n_channels,
1151 NL80211_BAND_2GHZ);
1152 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1153 tx_chains, rx_chains);
1154
1155 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1156 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1157 fw);
1158
1159 sband = &data->bands[NL80211_BAND_5GHZ];
1160 sband->band = NL80211_BAND_5GHZ;
1161 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1162 sband->n_bitrates = N_RATES_52;
1163 n_used += iwl_init_sband_channels(data, sband, n_channels,
1164 NL80211_BAND_5GHZ);
1165 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1166 tx_chains, rx_chains);
1167 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1168 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1169 tx_chains, rx_chains);
1170
1171 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1172 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1173 fw);
1174
1175 /* 6GHz band. */
1176 sband = &data->bands[NL80211_BAND_6GHZ];
1177 sband->band = NL80211_BAND_6GHZ;
1178 /* use the same rates as 5GHz band */
1179 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1180 sband->n_bitrates = N_RATES_52;
1181 n_used += iwl_init_sband_channels(data, sband, n_channels,
1182 NL80211_BAND_6GHZ);
1183
1184 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1185 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1186 fw);
1187 else
1188 sband->n_channels = 0;
1189 if (n_channels != n_used)
1190 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1191 n_used, n_channels);
1192}
1193
1194static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1195 const __le16 *phy_sku)
1196{
1197 if (cfg->nvm_type != IWL_NVM_EXT)
1198 return le16_to_cpup(nvm_sw + SKU);
1199
1200 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1201}
1202
1203static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1204{
1205 if (cfg->nvm_type != IWL_NVM_EXT)
1206 return le16_to_cpup(nvm_sw + NVM_VERSION);
1207 else
1208 return le32_to_cpup((const __le32 *)(nvm_sw +
1209 NVM_VERSION_EXT_NVM));
1210}
1211
1212static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1213 const __le16 *phy_sku)
1214{
1215 if (cfg->nvm_type != IWL_NVM_EXT)
1216 return le16_to_cpup(nvm_sw + RADIO_CFG);
1217
1218 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1219
1220}
1221
1222static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1223{
1224 int n_hw_addr;
1225
1226 if (cfg->nvm_type != IWL_NVM_EXT)
1227 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1228
1229 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1230
1231 return n_hw_addr & N_HW_ADDR_MASK;
1232}
1233
1234static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1235 struct iwl_nvm_data *data,
1236 u32 radio_cfg)
1237{
1238 if (cfg->nvm_type != IWL_NVM_EXT) {
1239 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1240 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1241 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1242 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1243 return;
1244 }
1245
1246 /* set the radio configuration for family 8000 */
1247 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1248 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1249 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1250 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1251 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1252 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1253}
1254
1255static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1256{
1257 const u8 *hw_addr;
1258
1259 hw_addr = (const u8 *)&mac_addr0;
1260 dest[0] = hw_addr[3];
1261 dest[1] = hw_addr[2];
1262 dest[2] = hw_addr[1];
1263 dest[3] = hw_addr[0];
1264
1265 hw_addr = (const u8 *)&mac_addr1;
1266 dest[4] = hw_addr[1];
1267 dest[5] = hw_addr[0];
1268}
1269
1270static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1271 struct iwl_nvm_data *data)
1272{
1273 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1274 CSR_MAC_ADDR0_STRAP(trans)));
1275 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1276 CSR_MAC_ADDR1_STRAP(trans)));
1277
1278 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1279 /*
1280 * If the OEM fused a valid address, use it instead of the one in the
1281 * OTP
1282 */
1283 if (is_valid_ether_addr(data->hw_addr))
1284 return;
1285
1286 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1287 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1288
1289 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1290}
1291
1292static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1293 const struct iwl_cfg *cfg,
1294 struct iwl_nvm_data *data,
1295 const __le16 *mac_override,
1296 const __be16 *nvm_hw)
1297{
1298 const u8 *hw_addr;
1299
1300 if (mac_override) {
1301 static const u8 reserved_mac[] = {
1302 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1303 };
1304
1305 hw_addr = (const u8 *)(mac_override +
1306 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1307
1308 /*
1309 * Store the MAC address from MAO section.
1310 * No byte swapping is required in MAO section
1311 */
1312 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1313
1314 /*
1315 * Force the use of the OTP MAC address in case of reserved MAC
1316 * address in the NVM, or if address is given but invalid.
1317 */
1318 if (is_valid_ether_addr(data->hw_addr) &&
1319 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1320 return;
1321
1322 IWL_ERR(trans,
1323 "mac address from nvm override section is not valid\n");
1324 }
1325
1326 if (nvm_hw) {
1327 /* read the mac address from WFMP registers */
1328 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1329 WFMP_MAC_ADDR_0));
1330 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1331 WFMP_MAC_ADDR_1));
1332
1333 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1334
1335 return;
1336 }
1337
1338 IWL_ERR(trans, "mac address is not found\n");
1339}
1340
1341static int iwl_set_hw_address(struct iwl_trans *trans,
1342 const struct iwl_cfg *cfg,
1343 struct iwl_nvm_data *data, const __be16 *nvm_hw,
1344 const __le16 *mac_override)
1345{
1346 if (cfg->mac_addr_from_csr) {
1347 iwl_set_hw_address_from_csr(trans, data);
1348 } else if (cfg->nvm_type != IWL_NVM_EXT) {
1349 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1350
1351 /* The byte order is little endian 16 bit, meaning 214365 */
1352 data->hw_addr[0] = hw_addr[1];
1353 data->hw_addr[1] = hw_addr[0];
1354 data->hw_addr[2] = hw_addr[3];
1355 data->hw_addr[3] = hw_addr[2];
1356 data->hw_addr[4] = hw_addr[5];
1357 data->hw_addr[5] = hw_addr[4];
1358 } else {
1359 iwl_set_hw_address_family_8000(trans, cfg, data,
1360 mac_override, nvm_hw);
1361 }
1362
1363 if (!is_valid_ether_addr(data->hw_addr)) {
1364 IWL_ERR(trans, "no valid mac address was found\n");
1365 return -EINVAL;
1366 }
1367
1368 if (!trans->csme_own)
1369 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1370 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1371
1372 return 0;
1373}
1374
1375static bool
1376iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1377 const __be16 *nvm_hw)
1378{
1379 /*
1380 * Workaround a bug in Indonesia SKUs where the regulatory in
1381 * some 7000-family OTPs erroneously allow wide channels in
1382 * 5GHz. To check for Indonesia, we take the SKU value from
1383 * bits 1-4 in the subsystem ID and check if it is either 5 or
1384 * 9. In those cases, we need to force-disable wide channels
1385 * in 5GHz otherwise the FW will throw a sysassert when we try
1386 * to use them.
1387 */
1388 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1389 /*
1390 * Unlike the other sections in the NVM, the hw
1391 * section uses big-endian.
1392 */
1393 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1394 u8 sku = (subsystem_id & 0x1e) >> 1;
1395
1396 if (sku == 5 || sku == 9) {
1397 IWL_DEBUG_EEPROM(trans->dev,
1398 "disabling wide channels in 5GHz (0x%0x %d)\n",
1399 subsystem_id, sku);
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
1407struct iwl_nvm_data *
1408iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1409 const struct iwl_mei_nvm *mei_nvm,
1410 const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1411{
1412 struct iwl_nvm_data *data;
1413 u32 sbands_flags = 0;
1414 u8 rx_chains = fw->valid_rx_ant;
1415 u8 tx_chains = fw->valid_rx_ant;
1416
1417 if (cfg->uhb_supported)
1418 data = kzalloc(struct_size(data, channels,
1419 IWL_NVM_NUM_CHANNELS_UHB),
1420 GFP_KERNEL);
1421 else
1422 data = kzalloc(struct_size(data, channels,
1423 IWL_NVM_NUM_CHANNELS_EXT),
1424 GFP_KERNEL);
1425 if (!data)
1426 return NULL;
1427
1428 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1429 IWL_NVM_NUM_CHANNELS_UHB);
1430 data->nvm_version = mei_nvm->nvm_version;
1431
1432 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1433 if (data->valid_tx_ant)
1434 tx_chains &= data->valid_tx_ant;
1435 if (data->valid_rx_ant)
1436 rx_chains &= data->valid_rx_ant;
1437 if (tx_ant)
1438 tx_chains &= tx_ant;
1439 if (rx_ant)
1440 rx_chains &= rx_ant;
1441
1442 data->sku_cap_mimo_disabled = false;
1443 data->sku_cap_band_24ghz_enable = true;
1444 data->sku_cap_band_52ghz_enable = true;
1445 data->sku_cap_11n_enable =
1446 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1447 data->sku_cap_11ac_enable = true;
1448 data->sku_cap_11ax_enable =
1449 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1450
1451 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1452
1453 data->n_hw_addrs = mei_nvm->n_hw_addrs;
1454 /* If no valid mac address was found - bail out */
1455 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1456 kfree(data);
1457 return NULL;
1458 }
1459
1460 if (data->lar_enabled &&
1461 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1462 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1463
1464 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1465 sbands_flags, true, fw);
1466
1467 return data;
1468}
1469IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1470
1471struct iwl_nvm_data *
1472iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1473 const struct iwl_fw *fw,
1474 const __be16 *nvm_hw, const __le16 *nvm_sw,
1475 const __le16 *nvm_calib, const __le16 *regulatory,
1476 const __le16 *mac_override, const __le16 *phy_sku,
1477 u8 tx_chains, u8 rx_chains)
1478{
1479 struct iwl_nvm_data *data;
1480 bool lar_enabled;
1481 u32 sku, radio_cfg;
1482 u32 sbands_flags = 0;
1483 u16 lar_config;
1484 const __le16 *ch_section;
1485
1486 if (cfg->uhb_supported)
1487 data = kzalloc(struct_size(data, channels,
1488 IWL_NVM_NUM_CHANNELS_UHB),
1489 GFP_KERNEL);
1490 else if (cfg->nvm_type != IWL_NVM_EXT)
1491 data = kzalloc(struct_size(data, channels,
1492 IWL_NVM_NUM_CHANNELS),
1493 GFP_KERNEL);
1494 else
1495 data = kzalloc(struct_size(data, channels,
1496 IWL_NVM_NUM_CHANNELS_EXT),
1497 GFP_KERNEL);
1498 if (!data)
1499 return NULL;
1500
1501 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1502
1503 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1504 iwl_set_radio_cfg(cfg, data, radio_cfg);
1505 if (data->valid_tx_ant)
1506 tx_chains &= data->valid_tx_ant;
1507 if (data->valid_rx_ant)
1508 rx_chains &= data->valid_rx_ant;
1509
1510 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1511 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1512 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1513 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1514 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1515 data->sku_cap_11n_enable = false;
1516 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1517 (sku & NVM_SKU_CAP_11AC_ENABLE);
1518 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1519
1520 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1521
1522 if (cfg->nvm_type != IWL_NVM_EXT) {
1523 /* Checking for required sections */
1524 if (!nvm_calib) {
1525 IWL_ERR(trans,
1526 "Can't parse empty Calib NVM sections\n");
1527 kfree(data);
1528 return NULL;
1529 }
1530
1531 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1532 ®ulatory[NVM_CHANNELS_SDP] :
1533 &nvm_sw[NVM_CHANNELS];
1534
1535 /* in family 8000 Xtal calibration values moved to OTP */
1536 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1537 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1538 lar_enabled = true;
1539 } else {
1540 u16 lar_offset = data->nvm_version < 0xE39 ?
1541 NVM_LAR_OFFSET_OLD :
1542 NVM_LAR_OFFSET;
1543
1544 lar_config = le16_to_cpup(regulatory + lar_offset);
1545 data->lar_enabled = !!(lar_config &
1546 NVM_LAR_ENABLED);
1547 lar_enabled = data->lar_enabled;
1548 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
1549 }
1550
1551 /* If no valid mac address was found - bail out */
1552 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1553 kfree(data);
1554 return NULL;
1555 }
1556
1557 if (lar_enabled &&
1558 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1559 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1560
1561 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1562 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1563
1564 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1565 sbands_flags, false, fw);
1566 data->calib_version = 255;
1567
1568 return data;
1569}
1570IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1571
1572static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1573 int ch_idx, u16 nvm_flags,
1574 struct iwl_reg_capa reg_capa,
1575 const struct iwl_cfg *cfg)
1576{
1577 u32 flags = NL80211_RRF_NO_HT40;
1578
1579 if (ch_idx < NUM_2GHZ_CHANNELS &&
1580 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1581 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1582 flags &= ~NL80211_RRF_NO_HT40PLUS;
1583 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1584 flags &= ~NL80211_RRF_NO_HT40MINUS;
1585 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1586 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1587 flags &= ~NL80211_RRF_NO_HT40PLUS;
1588 else
1589 flags &= ~NL80211_RRF_NO_HT40MINUS;
1590 }
1591
1592 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1593 flags |= NL80211_RRF_NO_80MHZ;
1594 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1595 flags |= NL80211_RRF_NO_160MHZ;
1596
1597 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1598 flags |= NL80211_RRF_NO_IR;
1599
1600 if (nvm_flags & NVM_CHANNEL_RADAR)
1601 flags |= NL80211_RRF_DFS;
1602
1603 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1604 flags |= NL80211_RRF_NO_OUTDOOR;
1605
1606 /* Set the GO concurrent flag only in case that NO_IR is set.
1607 * Otherwise it is meaningless
1608 */
1609 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1610 if (flags & NL80211_RRF_NO_IR)
1611 flags |= NL80211_RRF_GO_CONCURRENT;
1612 if (flags & NL80211_RRF_DFS) {
1613 flags |= NL80211_RRF_DFS_CONCURRENT;
1614 /* Our device doesn't set active bit for DFS channels
1615 * however, once marked as DFS no-ir is not needed.
1616 */
1617 flags &= ~NL80211_RRF_NO_IR;
1618 }
1619 }
1620 /*
1621 * reg_capa is per regulatory domain so apply it for every channel
1622 */
1623 if (ch_idx >= NUM_2GHZ_CHANNELS) {
1624 if (!reg_capa.allow_40mhz)
1625 flags |= NL80211_RRF_NO_HT40;
1626
1627 if (!reg_capa.allow_80mhz)
1628 flags |= NL80211_RRF_NO_80MHZ;
1629
1630 if (!reg_capa.allow_160mhz)
1631 flags |= NL80211_RRF_NO_160MHZ;
1632
1633 if (!reg_capa.allow_320mhz)
1634 flags |= NL80211_RRF_NO_320MHZ;
1635 }
1636
1637 if (reg_capa.disable_11ax)
1638 flags |= NL80211_RRF_NO_HE;
1639
1640 if (reg_capa.disable_11be)
1641 flags |= NL80211_RRF_NO_EHT;
1642
1643 return flags;
1644}
1645
1646static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1647{
1648 struct iwl_reg_capa reg_capa = {};
1649
1650 if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1651 reg_capa.allow_40mhz = true;
1652 reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1653 reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1654 reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1655 reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1656 reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1657 } else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1658 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1659 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1660 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1661 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1662 } else {
1663 reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1664 reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1665 reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1666 reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1667 }
1668 return reg_capa;
1669}
1670
1671struct ieee80211_regdomain *
1672iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1673 int num_of_ch, __le32 *channels, u16 fw_mcc,
1674 u16 geo_info, u32 cap, u8 resp_ver)
1675{
1676 int ch_idx;
1677 u16 ch_flags;
1678 u32 reg_rule_flags, prev_reg_rule_flags = 0;
1679 const u16 *nvm_chan;
1680 struct ieee80211_regdomain *regd, *copy_rd;
1681 struct ieee80211_reg_rule *rule;
1682 enum nl80211_band band;
1683 int center_freq, prev_center_freq = 0;
1684 int valid_rules = 0;
1685 bool new_rule;
1686 int max_num_ch;
1687 struct iwl_reg_capa reg_capa;
1688
1689 if (cfg->uhb_supported) {
1690 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1691 nvm_chan = iwl_uhb_nvm_channels;
1692 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1693 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1694 nvm_chan = iwl_ext_nvm_channels;
1695 } else {
1696 max_num_ch = IWL_NVM_NUM_CHANNELS;
1697 nvm_chan = iwl_nvm_channels;
1698 }
1699
1700 if (num_of_ch > max_num_ch) {
1701 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1702 "Num of channels (%d) is greater than expected. Truncating to %d\n",
1703 num_of_ch, max_num_ch);
1704 num_of_ch = max_num_ch;
1705 }
1706
1707 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1708 return ERR_PTR(-EINVAL);
1709
1710 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1711 num_of_ch);
1712
1713 /* build a regdomain rule for every valid channel */
1714 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1715 if (!regd)
1716 return ERR_PTR(-ENOMEM);
1717
1718 /* set alpha2 from FW. */
1719 regd->alpha2[0] = fw_mcc >> 8;
1720 regd->alpha2[1] = fw_mcc & 0xff;
1721
1722 /* parse regulatory capability flags */
1723 reg_capa = iwl_get_reg_capa(cap, resp_ver);
1724
1725 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1726 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1727 band = iwl_nl80211_band_from_channel_idx(ch_idx);
1728 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1729 band);
1730 new_rule = false;
1731
1732 if (!(ch_flags & NVM_CHANNEL_VALID)) {
1733 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1734 nvm_chan[ch_idx], ch_flags);
1735 continue;
1736 }
1737
1738 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1739 ch_flags, reg_capa,
1740 cfg);
1741
1742 /* we can't continue the same rule */
1743 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1744 center_freq - prev_center_freq > 20) {
1745 valid_rules++;
1746 new_rule = true;
1747 }
1748
1749 rule = ®d->reg_rules[valid_rules - 1];
1750
1751 if (new_rule)
1752 rule->freq_range.start_freq_khz =
1753 MHZ_TO_KHZ(center_freq - 10);
1754
1755 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1756
1757 /* this doesn't matter - not used by FW */
1758 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1759 rule->power_rule.max_eirp =
1760 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1761
1762 rule->flags = reg_rule_flags;
1763
1764 /* rely on auto-calculation to merge BW of contiguous chans */
1765 rule->flags |= NL80211_RRF_AUTO_BW;
1766 rule->freq_range.max_bandwidth_khz = 0;
1767
1768 prev_center_freq = center_freq;
1769 prev_reg_rule_flags = reg_rule_flags;
1770
1771 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1772 nvm_chan[ch_idx], ch_flags);
1773
1774 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1775 band == NL80211_BAND_2GHZ)
1776 continue;
1777
1778 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1779 }
1780
1781 /*
1782 * Certain firmware versions might report no valid channels
1783 * if booted in RF-kill, i.e. not all calibrations etc. are
1784 * running. We'll get out of this situation later when the
1785 * rfkill is removed and we update the regdomain again, but
1786 * since cfg80211 doesn't accept an empty regdomain, add a
1787 * dummy (unusable) rule here in this case so we can init.
1788 */
1789 if (!valid_rules) {
1790 valid_rules = 1;
1791 rule = ®d->reg_rules[valid_rules - 1];
1792 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1793 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1794 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1795 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1796 rule->power_rule.max_eirp =
1797 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1798 }
1799
1800 regd->n_reg_rules = valid_rules;
1801
1802 /*
1803 * Narrow down regdom for unused regulatory rules to prevent hole
1804 * between reg rules to wmm rules.
1805 */
1806 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1807 GFP_KERNEL);
1808 if (!copy_rd)
1809 copy_rd = ERR_PTR(-ENOMEM);
1810
1811 kfree(regd);
1812 return copy_rd;
1813}
1814IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1815
1816#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1817#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1818#define MAX_NVM_FILE_LEN 16384
1819
1820void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1821 unsigned int len)
1822{
1823#define IWL_4165_DEVICE_ID 0x5501
1824#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1825
1826 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1827 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1828 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1829 /* OTP 0x52 bug work around: it's a 1x1 device */
1830 data[3] = ANT_B | (ANT_B << 4);
1831}
1832IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1833
1834/*
1835 * Reads external NVM from a file into mvm->nvm_sections
1836 *
1837 * HOW TO CREATE THE NVM FILE FORMAT:
1838 * ------------------------------
1839 * 1. create hex file, format:
1840 * 3800 -> header
1841 * 0000 -> header
1842 * 5a40 -> data
1843 *
1844 * rev - 6 bit (word1)
1845 * len - 10 bit (word1)
1846 * id - 4 bit (word2)
1847 * rsv - 12 bit (word2)
1848 *
1849 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1850 *
1851 * 3. create binary file from the hex file
1852 *
1853 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1854 */
1855int iwl_read_external_nvm(struct iwl_trans *trans,
1856 const char *nvm_file_name,
1857 struct iwl_nvm_section *nvm_sections)
1858{
1859 int ret, section_size;
1860 u16 section_id;
1861 const struct firmware *fw_entry;
1862 const struct {
1863 __le16 word1;
1864 __le16 word2;
1865 u8 data[];
1866 } *file_sec;
1867 const u8 *eof;
1868 u8 *temp;
1869 int max_section_size;
1870 const __le32 *dword_buff;
1871
1872#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1873#define NVM_WORD2_ID(x) (x >> 12)
1874#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1875#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1876#define NVM_HEADER_0 (0x2A504C54)
1877#define NVM_HEADER_1 (0x4E564D2A)
1878#define NVM_HEADER_SIZE (4 * sizeof(u32))
1879
1880 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1881
1882 /* Maximal size depends on NVM version */
1883 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1884 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1885 else
1886 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1887
1888 /*
1889 * Obtain NVM image via request_firmware. Since we already used
1890 * request_firmware_nowait() for the firmware binary load and only
1891 * get here after that we assume the NVM request can be satisfied
1892 * synchronously.
1893 */
1894 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1895 if (ret) {
1896 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1897 nvm_file_name, ret);
1898 return ret;
1899 }
1900
1901 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1902 nvm_file_name, fw_entry->size);
1903
1904 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1905 IWL_ERR(trans, "NVM file too large\n");
1906 ret = -EINVAL;
1907 goto out;
1908 }
1909
1910 eof = fw_entry->data + fw_entry->size;
1911 dword_buff = (const __le32 *)fw_entry->data;
1912
1913 /* some NVM file will contain a header.
1914 * The header is identified by 2 dwords header as follow:
1915 * dword[0] = 0x2A504C54
1916 * dword[1] = 0x4E564D2A
1917 *
1918 * This header must be skipped when providing the NVM data to the FW.
1919 */
1920 if (fw_entry->size > NVM_HEADER_SIZE &&
1921 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1922 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1923 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1924 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1925 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1926 le32_to_cpu(dword_buff[3]));
1927
1928 /* nvm file validation, dword_buff[2] holds the file version */
1929 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1930 trans->hw_rev_step == SILICON_C_STEP &&
1931 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1932 ret = -EFAULT;
1933 goto out;
1934 }
1935 } else {
1936 file_sec = (const void *)fw_entry->data;
1937 }
1938
1939 while (true) {
1940 if (file_sec->data > eof) {
1941 IWL_ERR(trans,
1942 "ERROR - NVM file too short for section header\n");
1943 ret = -EINVAL;
1944 break;
1945 }
1946
1947 /* check for EOF marker */
1948 if (!file_sec->word1 && !file_sec->word2) {
1949 ret = 0;
1950 break;
1951 }
1952
1953 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1954 section_size =
1955 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1956 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1957 } else {
1958 section_size = 2 * EXT_NVM_WORD2_LEN(
1959 le16_to_cpu(file_sec->word2));
1960 section_id = EXT_NVM_WORD1_ID(
1961 le16_to_cpu(file_sec->word1));
1962 }
1963
1964 if (section_size > max_section_size) {
1965 IWL_ERR(trans, "ERROR - section too large (%d)\n",
1966 section_size);
1967 ret = -EINVAL;
1968 break;
1969 }
1970
1971 if (!section_size) {
1972 IWL_ERR(trans, "ERROR - section empty\n");
1973 ret = -EINVAL;
1974 break;
1975 }
1976
1977 if (file_sec->data + section_size > eof) {
1978 IWL_ERR(trans,
1979 "ERROR - NVM file too short for section (%d bytes)\n",
1980 section_size);
1981 ret = -EINVAL;
1982 break;
1983 }
1984
1985 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1986 "Invalid NVM section ID %d\n", section_id)) {
1987 ret = -EINVAL;
1988 break;
1989 }
1990
1991 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1992 if (!temp) {
1993 ret = -ENOMEM;
1994 break;
1995 }
1996
1997 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1998
1999 kfree(nvm_sections[section_id].data);
2000 nvm_sections[section_id].data = temp;
2001 nvm_sections[section_id].length = section_size;
2002
2003 /* advance to the next section */
2004 file_sec = (const void *)(file_sec->data + section_size);
2005 }
2006out:
2007 release_firmware(fw_entry);
2008 return ret;
2009}
2010IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2011
2012struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2013 const struct iwl_fw *fw,
2014 u8 set_tx_ant, u8 set_rx_ant)
2015{
2016 struct iwl_nvm_get_info cmd = {};
2017 struct iwl_nvm_data *nvm;
2018 struct iwl_host_cmd hcmd = {
2019 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2020 .data = { &cmd, },
2021 .len = { sizeof(cmd) },
2022 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2023 };
2024 int ret;
2025 bool empty_otp;
2026 u32 mac_flags;
2027 u32 sbands_flags = 0;
2028 u8 tx_ant;
2029 u8 rx_ant;
2030
2031 /*
2032 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2033 * in v3, except for the channel profile part of the
2034 * regulatory. So we can just access the new struct, with the
2035 * exception of the latter.
2036 */
2037 struct iwl_nvm_get_info_rsp *rsp;
2038 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2039 bool v4 = fw_has_api(&fw->ucode_capa,
2040 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2041 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2042 void *channel_profile;
2043
2044 ret = iwl_trans_send_cmd(trans, &hcmd);
2045 if (ret)
2046 return ERR_PTR(ret);
2047
2048 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2049 "Invalid payload len in NVM response from FW %d",
2050 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2051 ret = -EINVAL;
2052 goto out;
2053 }
2054
2055 rsp = (void *)hcmd.resp_pkt->data;
2056 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2057 NVM_GENERAL_FLAGS_EMPTY_OTP);
2058 if (empty_otp)
2059 IWL_INFO(trans, "OTP is empty\n");
2060
2061 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2062 if (!nvm) {
2063 ret = -ENOMEM;
2064 goto out;
2065 }
2066
2067 iwl_set_hw_address_from_csr(trans, nvm);
2068 /* TODO: if platform NVM has MAC address - override it here */
2069
2070 if (!is_valid_ether_addr(nvm->hw_addr)) {
2071 IWL_ERR(trans, "no valid mac address was found\n");
2072 ret = -EINVAL;
2073 goto err_free;
2074 }
2075
2076 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2077
2078 /* Initialize general data */
2079 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2080 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2081 if (nvm->n_hw_addrs == 0)
2082 IWL_WARN(trans,
2083 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2084 empty_otp);
2085
2086 /* Initialize MAC sku data */
2087 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2088 nvm->sku_cap_11ac_enable =
2089 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2090 nvm->sku_cap_11n_enable =
2091 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2092 nvm->sku_cap_11ax_enable =
2093 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2094 nvm->sku_cap_band_24ghz_enable =
2095 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2096 nvm->sku_cap_band_52ghz_enable =
2097 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2098 nvm->sku_cap_mimo_disabled =
2099 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2100 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2101 nvm->sku_cap_11be_enable = true;
2102
2103 /* Initialize PHY sku data */
2104 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2105 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2106
2107 if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2108 fw_has_capa(&fw->ucode_capa,
2109 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2110 nvm->lar_enabled = true;
2111 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2112 }
2113
2114 rsp_v3 = (void *)rsp;
2115 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2116 (void *)rsp_v3->regulatory.channel_profile;
2117
2118 tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2119 rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2120
2121 if (set_tx_ant)
2122 tx_ant &= set_tx_ant;
2123 if (set_rx_ant)
2124 rx_ant &= set_rx_ant;
2125
2126 iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2127 sbands_flags, v4, fw);
2128
2129 iwl_free_resp(&hcmd);
2130 return nvm;
2131
2132err_free:
2133 kfree(nvm);
2134out:
2135 iwl_free_resp(&hcmd);
2136 return ERR_PTR(ret);
2137}
2138IWL_EXPORT_SYMBOL(iwl_get_nvm);
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63#include <linux/types.h>
64#include <linux/slab.h>
65#include <linux/export.h>
66#include <linux/etherdevice.h>
67#include <linux/pci.h>
68#include <linux/firmware.h>
69
70#include "iwl-drv.h"
71#include "iwl-modparams.h"
72#include "iwl-nvm-parse.h"
73#include "iwl-prph.h"
74#include "iwl-io.h"
75#include "iwl-csr.h"
76#include "fw/acpi.h"
77#include "fw/api/nvm-reg.h"
78#include "fw/api/commands.h"
79#include "fw/api/cmdhdr.h"
80#include "fw/img.h"
81
82/* NVM offsets (in words) definitions */
83enum nvm_offsets {
84 /* NVM HW-Section offset (in words) definitions */
85 SUBSYSTEM_ID = 0x0A,
86 HW_ADDR = 0x15,
87
88 /* NVM SW-Section offset (in words) definitions */
89 NVM_SW_SECTION = 0x1C0,
90 NVM_VERSION = 0,
91 RADIO_CFG = 1,
92 SKU = 2,
93 N_HW_ADDRS = 3,
94 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95
96 /* NVM calibration section offset (in words) definitions */
97 NVM_CALIB_SECTION = 0x2B8,
98 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99
100 /* NVM REGULATORY -Section offset (in words) definitions */
101 NVM_CHANNELS_SDP = 0,
102};
103
104enum ext_nvm_offsets {
105 /* NVM HW-Section offset (in words) definitions */
106 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107
108 /* NVM SW-Section offset (in words) definitions */
109 NVM_VERSION_EXT_NVM = 0,
110 RADIO_CFG_FAMILY_EXT_NVM = 0,
111 SKU_FAMILY_8000 = 2,
112 N_HW_ADDRS_FAMILY_8000 = 3,
113
114 /* NVM REGULATORY -Section offset (in words) definitions */
115 NVM_CHANNELS_EXTENDED = 0,
116 NVM_LAR_OFFSET_OLD = 0x4C7,
117 NVM_LAR_OFFSET = 0x507,
118 NVM_LAR_ENABLED = 0x7,
119};
120
121/* SKU Capabilities (actual values from NVM definition) */
122enum nvm_sku_bits {
123 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
124 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
125 NVM_SKU_CAP_11N_ENABLE = BIT(2),
126 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
128};
129
130/*
131 * These are the channel numbers in the order that they are stored in the NVM
132 */
133static const u16 iwl_nvm_channels[] = {
134 /* 2.4 GHz */
135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 /* 5 GHz */
137 36, 40, 44 , 48, 52, 56, 60, 64,
138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 149, 153, 157, 161, 165
140};
141
142static const u16 iwl_ext_nvm_channels[] = {
143 /* 2.4 GHz */
144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 /* 5 GHz */
146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 149, 153, 157, 161, 165, 169, 173, 177, 181
149};
150
151static const u16 iwl_uhb_nvm_channels[] = {
152 /* 2.4 GHz */
153 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 /* 5 GHz */
155 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 149, 153, 157, 161, 165, 169, 173, 177, 181,
158 /* 6-7 GHz */
159 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237, 241,
160 245, 249, 253, 257, 261, 265, 269, 273, 277, 281, 285, 289, 293, 297,
161 301, 305, 309, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353,
162 357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 401, 405, 409,
163 413, 417, 421
164};
165
166#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
167#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
168#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
169#define NUM_2GHZ_CHANNELS 14
170#define FIRST_2GHZ_HT_MINUS 5
171#define LAST_2GHZ_HT_PLUS 9
172#define N_HW_ADDR_MASK 0xF
173
174/* rate data (static) */
175static struct ieee80211_rate iwl_cfg80211_rates[] = {
176 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
177 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
178 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
179 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
180 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
181 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
182 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
183 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
184 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
185 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
186 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
187 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
188 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
189 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
190 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
191};
192#define RATES_24_OFFS 0
193#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
194#define RATES_52_OFFS 4
195#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
196
197/**
198 * enum iwl_nvm_channel_flags - channel flags in NVM
199 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
200 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
201 * @NVM_CHANNEL_ACTIVE: active scanning allowed
202 * @NVM_CHANNEL_RADAR: radar detection required
203 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
204 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
205 * on same channel on 2.4 or same UNII band on 5.2
206 * @NVM_CHANNEL_UNIFORM: uniform spreading required
207 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
208 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
209 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
210 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
211 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
212 */
213enum iwl_nvm_channel_flags {
214 NVM_CHANNEL_VALID = BIT(0),
215 NVM_CHANNEL_IBSS = BIT(1),
216 NVM_CHANNEL_ACTIVE = BIT(3),
217 NVM_CHANNEL_RADAR = BIT(4),
218 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
219 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
220 NVM_CHANNEL_UNIFORM = BIT(7),
221 NVM_CHANNEL_20MHZ = BIT(8),
222 NVM_CHANNEL_40MHZ = BIT(9),
223 NVM_CHANNEL_80MHZ = BIT(10),
224 NVM_CHANNEL_160MHZ = BIT(11),
225 NVM_CHANNEL_DC_HIGH = BIT(12),
226};
227
228static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
229 int chan, u32 flags)
230{
231#define CHECK_AND_PRINT_I(x) \
232 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
233
234 if (!(flags & NVM_CHANNEL_VALID)) {
235 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
236 chan, flags);
237 return;
238 }
239
240 /* Note: already can print up to 101 characters, 110 is the limit! */
241 IWL_DEBUG_DEV(dev, level,
242 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
243 chan, flags,
244 CHECK_AND_PRINT_I(VALID),
245 CHECK_AND_PRINT_I(IBSS),
246 CHECK_AND_PRINT_I(ACTIVE),
247 CHECK_AND_PRINT_I(RADAR),
248 CHECK_AND_PRINT_I(INDOOR_ONLY),
249 CHECK_AND_PRINT_I(GO_CONCURRENT),
250 CHECK_AND_PRINT_I(UNIFORM),
251 CHECK_AND_PRINT_I(20MHZ),
252 CHECK_AND_PRINT_I(40MHZ),
253 CHECK_AND_PRINT_I(80MHZ),
254 CHECK_AND_PRINT_I(160MHZ),
255 CHECK_AND_PRINT_I(DC_HIGH));
256#undef CHECK_AND_PRINT_I
257}
258
259static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
260 u32 nvm_flags, const struct iwl_cfg *cfg)
261{
262 u32 flags = IEEE80211_CHAN_NO_HT40;
263
264 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
265 if (ch_num <= LAST_2GHZ_HT_PLUS)
266 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
267 if (ch_num >= FIRST_2GHZ_HT_MINUS)
268 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
269 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
270 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
271 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
272 else
273 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
274 }
275 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
276 flags |= IEEE80211_CHAN_NO_80MHZ;
277 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
278 flags |= IEEE80211_CHAN_NO_160MHZ;
279
280 if (!(nvm_flags & NVM_CHANNEL_IBSS))
281 flags |= IEEE80211_CHAN_NO_IR;
282
283 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
284 flags |= IEEE80211_CHAN_NO_IR;
285
286 if (nvm_flags & NVM_CHANNEL_RADAR)
287 flags |= IEEE80211_CHAN_RADAR;
288
289 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
290 flags |= IEEE80211_CHAN_INDOOR_ONLY;
291
292 /* Set the GO concurrent flag only in case that NO_IR is set.
293 * Otherwise it is meaningless
294 */
295 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
296 (flags & IEEE80211_CHAN_NO_IR))
297 flags |= IEEE80211_CHAN_IR_CONCURRENT;
298
299 return flags;
300}
301
302static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
303 struct iwl_nvm_data *data,
304 const void * const nvm_ch_flags,
305 u32 sbands_flags, bool v4)
306{
307 int ch_idx;
308 int n_channels = 0;
309 struct ieee80211_channel *channel;
310 u32 ch_flags;
311 int num_of_ch, num_2ghz_channels = NUM_2GHZ_CHANNELS;
312 const u16 *nvm_chan;
313
314 if (cfg->uhb_supported) {
315 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
316 nvm_chan = iwl_uhb_nvm_channels;
317 } else if (cfg->nvm_type == IWL_NVM_EXT) {
318 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
319 nvm_chan = iwl_ext_nvm_channels;
320 } else {
321 num_of_ch = IWL_NVM_NUM_CHANNELS;
322 nvm_chan = iwl_nvm_channels;
323 }
324
325 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
326 bool is_5ghz = (ch_idx >= num_2ghz_channels);
327
328 if (v4)
329 ch_flags =
330 __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
331 else
332 ch_flags =
333 __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
334
335 if (is_5ghz && !data->sku_cap_band_52ghz_enable)
336 continue;
337
338 /* workaround to disable wide channels in 5GHz */
339 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
340 is_5ghz) {
341 ch_flags &= ~(NVM_CHANNEL_40MHZ |
342 NVM_CHANNEL_80MHZ |
343 NVM_CHANNEL_160MHZ);
344 }
345
346 if (ch_flags & NVM_CHANNEL_160MHZ)
347 data->vht160_supported = true;
348
349 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
350 !(ch_flags & NVM_CHANNEL_VALID)) {
351 /*
352 * Channels might become valid later if lar is
353 * supported, hence we still want to add them to
354 * the list of supported channels to cfg80211.
355 */
356 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
357 nvm_chan[ch_idx], ch_flags);
358 continue;
359 }
360
361 channel = &data->channels[n_channels];
362 n_channels++;
363
364 channel->hw_value = nvm_chan[ch_idx];
365 channel->band = is_5ghz ?
366 NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
367 channel->center_freq =
368 ieee80211_channel_to_frequency(
369 channel->hw_value, channel->band);
370
371 /* Initialize regulatory-based run-time data */
372
373 /*
374 * Default value - highest tx power value. max_power
375 * is not used in mvm, and is used for backwards compatibility
376 */
377 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
378
379 /* don't put limitations in case we're using LAR */
380 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
381 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
382 ch_idx, is_5ghz,
383 ch_flags, cfg);
384 else
385 channel->flags = 0;
386
387 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
388 channel->hw_value, ch_flags);
389 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
390 channel->hw_value, channel->max_power);
391 }
392
393 return n_channels;
394}
395
396static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
397 struct iwl_nvm_data *data,
398 struct ieee80211_sta_vht_cap *vht_cap,
399 u8 tx_chains, u8 rx_chains)
400{
401 const struct iwl_cfg *cfg = trans->cfg;
402 int num_rx_ants = num_of_ant(rx_chains);
403 int num_tx_ants = num_of_ant(tx_chains);
404 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
405 IEEE80211_VHT_MAX_AMPDU_1024K);
406
407 vht_cap->vht_supported = true;
408
409 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
410 IEEE80211_VHT_CAP_RXSTBC_1 |
411 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
412 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
413 max_ampdu_exponent <<
414 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
415
416 if (data->vht160_supported)
417 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
418 IEEE80211_VHT_CAP_SHORT_GI_160;
419
420 if (cfg->vht_mu_mimo_supported)
421 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
422
423 if (cfg->ht_params->ldpc)
424 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
425
426 if (data->sku_cap_mimo_disabled) {
427 num_rx_ants = 1;
428 num_tx_ants = 1;
429 }
430
431 if (num_tx_ants > 1)
432 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
433 else
434 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
435
436 switch (iwlwifi_mod_params.amsdu_size) {
437 case IWL_AMSDU_DEF:
438 if (trans->trans_cfg->mq_rx_supported)
439 vht_cap->cap |=
440 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
441 else
442 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
443 break;
444 case IWL_AMSDU_2K:
445 if (trans->trans_cfg->mq_rx_supported)
446 vht_cap->cap |=
447 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
448 else
449 WARN(1, "RB size of 2K is not supported by this device\n");
450 break;
451 case IWL_AMSDU_4K:
452 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
453 break;
454 case IWL_AMSDU_8K:
455 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
456 break;
457 case IWL_AMSDU_12K:
458 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
459 break;
460 default:
461 break;
462 }
463
464 vht_cap->vht_mcs.rx_mcs_map =
465 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
466 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
467 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
468 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
469 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
470 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
471 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
472 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
473
474 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
475 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
476 /* this works because NOT_SUPPORTED == 3 */
477 vht_cap->vht_mcs.rx_mcs_map |=
478 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
479 }
480
481 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
482
483 vht_cap->vht_mcs.tx_highest |=
484 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
485}
486
487static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
488 {
489 .types_mask = BIT(NL80211_IFTYPE_STATION),
490 .he_cap = {
491 .has_he = true,
492 .he_cap_elem = {
493 .mac_cap_info[0] =
494 IEEE80211_HE_MAC_CAP0_HTC_HE |
495 IEEE80211_HE_MAC_CAP0_TWT_REQ,
496 .mac_cap_info[1] =
497 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
498 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
499 .mac_cap_info[2] =
500 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
501 IEEE80211_HE_MAC_CAP2_ACK_EN,
502 .mac_cap_info[3] =
503 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
504 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
505 .mac_cap_info[4] =
506 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
507 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
508 .mac_cap_info[5] =
509 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
510 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
511 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
512 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
513 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
514 .phy_cap_info[0] =
515 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
516 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
517 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
518 .phy_cap_info[1] =
519 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
520 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
521 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
522 .phy_cap_info[2] =
523 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
524 .phy_cap_info[3] =
525 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
526 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
527 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
528 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
529 .phy_cap_info[4] =
530 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
531 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
532 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
533 .phy_cap_info[5] =
534 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
535 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
536 .phy_cap_info[6] =
537 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
538 .phy_cap_info[7] =
539 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
540 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
541 IEEE80211_HE_PHY_CAP7_MAX_NC_1,
542 .phy_cap_info[8] =
543 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
544 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
545 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
546 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
547 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
548 .phy_cap_info[9] =
549 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
550 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
551 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
552 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
553 },
554 /*
555 * Set default Tx/Rx HE MCS NSS Support field.
556 * Indicate support for up to 2 spatial streams and all
557 * MCS, without any special cases
558 */
559 .he_mcs_nss_supp = {
560 .rx_mcs_80 = cpu_to_le16(0xfffa),
561 .tx_mcs_80 = cpu_to_le16(0xfffa),
562 .rx_mcs_160 = cpu_to_le16(0xfffa),
563 .tx_mcs_160 = cpu_to_le16(0xfffa),
564 .rx_mcs_80p80 = cpu_to_le16(0xffff),
565 .tx_mcs_80p80 = cpu_to_le16(0xffff),
566 },
567 /*
568 * Set default PPE thresholds, with PPET16 set to 0,
569 * PPET8 set to 7
570 */
571 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
572 },
573 },
574 {
575 .types_mask = BIT(NL80211_IFTYPE_AP),
576 .he_cap = {
577 .has_he = true,
578 .he_cap_elem = {
579 .mac_cap_info[0] =
580 IEEE80211_HE_MAC_CAP0_HTC_HE,
581 .mac_cap_info[1] =
582 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
583 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
584 .mac_cap_info[2] =
585 IEEE80211_HE_MAC_CAP2_BSR |
586 IEEE80211_HE_MAC_CAP2_ACK_EN,
587 .mac_cap_info[3] =
588 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
589 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
590 .mac_cap_info[4] =
591 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
592 .mac_cap_info[5] =
593 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
594 .phy_cap_info[0] =
595 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
596 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
597 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
598 .phy_cap_info[1] =
599 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
600 .phy_cap_info[2] =
601 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
602 .phy_cap_info[3] =
603 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
604 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
605 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
606 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
607 .phy_cap_info[4] =
608 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
609 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
610 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
611 .phy_cap_info[5] =
612 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
613 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
614 .phy_cap_info[6] =
615 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
616 .phy_cap_info[7] =
617 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
618 IEEE80211_HE_PHY_CAP7_MAX_NC_1,
619 .phy_cap_info[8] =
620 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
621 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
622 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
623 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
624 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
625 .phy_cap_info[9] =
626 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
627 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
628 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
629 },
630 /*
631 * Set default Tx/Rx HE MCS NSS Support field.
632 * Indicate support for up to 2 spatial streams and all
633 * MCS, without any special cases
634 */
635 .he_mcs_nss_supp = {
636 .rx_mcs_80 = cpu_to_le16(0xfffa),
637 .tx_mcs_80 = cpu_to_le16(0xfffa),
638 .rx_mcs_160 = cpu_to_le16(0xfffa),
639 .tx_mcs_160 = cpu_to_le16(0xfffa),
640 .rx_mcs_80p80 = cpu_to_le16(0xffff),
641 .tx_mcs_80p80 = cpu_to_le16(0xffff),
642 },
643 /*
644 * Set default PPE thresholds, with PPET16 set to 0,
645 * PPET8 set to 7
646 */
647 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
648 },
649 },
650};
651
652static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
653 u8 tx_chains, u8 rx_chains)
654{
655 sband->iftype_data = iwl_he_capa;
656 sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
657
658 /* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
659 if ((tx_chains & rx_chains) != ANT_AB) {
660 int i;
661
662 for (i = 0; i < sband->n_iftype_data; i++) {
663 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
664 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
665 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
666 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
667 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
668 ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
669 }
670 }
671}
672
673static void iwl_init_sbands(struct iwl_trans *trans,
674 struct iwl_nvm_data *data,
675 const void *nvm_ch_flags, u8 tx_chains,
676 u8 rx_chains, u32 sbands_flags, bool v4)
677{
678 struct device *dev = trans->dev;
679 const struct iwl_cfg *cfg = trans->cfg;
680 int n_channels;
681 int n_used = 0;
682 struct ieee80211_supported_band *sband;
683
684 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
685 sbands_flags, v4);
686 sband = &data->bands[NL80211_BAND_2GHZ];
687 sband->band = NL80211_BAND_2GHZ;
688 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
689 sband->n_bitrates = N_RATES_24;
690 n_used += iwl_init_sband_channels(data, sband, n_channels,
691 NL80211_BAND_2GHZ);
692 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
693 tx_chains, rx_chains);
694
695 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
696 iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
697
698 sband = &data->bands[NL80211_BAND_5GHZ];
699 sband->band = NL80211_BAND_5GHZ;
700 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
701 sband->n_bitrates = N_RATES_52;
702 n_used += iwl_init_sband_channels(data, sband, n_channels,
703 NL80211_BAND_5GHZ);
704 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
705 tx_chains, rx_chains);
706 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
707 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
708 tx_chains, rx_chains);
709
710 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
711 iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
712
713 if (n_channels != n_used)
714 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
715 n_used, n_channels);
716}
717
718static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
719 const __le16 *phy_sku)
720{
721 if (cfg->nvm_type != IWL_NVM_EXT)
722 return le16_to_cpup(nvm_sw + SKU);
723
724 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
725}
726
727static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
728{
729 if (cfg->nvm_type != IWL_NVM_EXT)
730 return le16_to_cpup(nvm_sw + NVM_VERSION);
731 else
732 return le32_to_cpup((__le32 *)(nvm_sw +
733 NVM_VERSION_EXT_NVM));
734}
735
736static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
737 const __le16 *phy_sku)
738{
739 if (cfg->nvm_type != IWL_NVM_EXT)
740 return le16_to_cpup(nvm_sw + RADIO_CFG);
741
742 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
743
744}
745
746static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
747{
748 int n_hw_addr;
749
750 if (cfg->nvm_type != IWL_NVM_EXT)
751 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
752
753 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
754
755 return n_hw_addr & N_HW_ADDR_MASK;
756}
757
758static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
759 struct iwl_nvm_data *data,
760 u32 radio_cfg)
761{
762 if (cfg->nvm_type != IWL_NVM_EXT) {
763 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
764 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
765 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
766 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
767 return;
768 }
769
770 /* set the radio configuration for family 8000 */
771 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
772 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
773 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
774 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
775 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
776 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
777}
778
779static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
780{
781 const u8 *hw_addr;
782
783 hw_addr = (const u8 *)&mac_addr0;
784 dest[0] = hw_addr[3];
785 dest[1] = hw_addr[2];
786 dest[2] = hw_addr[1];
787 dest[3] = hw_addr[0];
788
789 hw_addr = (const u8 *)&mac_addr1;
790 dest[4] = hw_addr[1];
791 dest[5] = hw_addr[0];
792}
793
794static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
795 struct iwl_nvm_data *data)
796{
797 __le32 mac_addr0 =
798 cpu_to_le32(iwl_read32(trans,
799 trans->trans_cfg->csr->mac_addr0_strap));
800 __le32 mac_addr1 =
801 cpu_to_le32(iwl_read32(trans,
802 trans->trans_cfg->csr->mac_addr1_strap));
803
804 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
805 /*
806 * If the OEM fused a valid address, use it instead of the one in the
807 * OTP
808 */
809 if (is_valid_ether_addr(data->hw_addr))
810 return;
811
812 mac_addr0 = cpu_to_le32(iwl_read32(trans,
813 trans->trans_cfg->csr->mac_addr0_otp));
814 mac_addr1 = cpu_to_le32(iwl_read32(trans,
815 trans->trans_cfg->csr->mac_addr1_otp));
816
817 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
818}
819
820static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
821 const struct iwl_cfg *cfg,
822 struct iwl_nvm_data *data,
823 const __le16 *mac_override,
824 const __be16 *nvm_hw)
825{
826 const u8 *hw_addr;
827
828 if (mac_override) {
829 static const u8 reserved_mac[] = {
830 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
831 };
832
833 hw_addr = (const u8 *)(mac_override +
834 MAC_ADDRESS_OVERRIDE_EXT_NVM);
835
836 /*
837 * Store the MAC address from MAO section.
838 * No byte swapping is required in MAO section
839 */
840 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
841
842 /*
843 * Force the use of the OTP MAC address in case of reserved MAC
844 * address in the NVM, or if address is given but invalid.
845 */
846 if (is_valid_ether_addr(data->hw_addr) &&
847 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
848 return;
849
850 IWL_ERR(trans,
851 "mac address from nvm override section is not valid\n");
852 }
853
854 if (nvm_hw) {
855 /* read the mac address from WFMP registers */
856 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
857 WFMP_MAC_ADDR_0));
858 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
859 WFMP_MAC_ADDR_1));
860
861 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
862
863 return;
864 }
865
866 IWL_ERR(trans, "mac address is not found\n");
867}
868
869static int iwl_set_hw_address(struct iwl_trans *trans,
870 const struct iwl_cfg *cfg,
871 struct iwl_nvm_data *data, const __be16 *nvm_hw,
872 const __le16 *mac_override)
873{
874 if (cfg->mac_addr_from_csr) {
875 iwl_set_hw_address_from_csr(trans, data);
876 } else if (cfg->nvm_type != IWL_NVM_EXT) {
877 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
878
879 /* The byte order is little endian 16 bit, meaning 214365 */
880 data->hw_addr[0] = hw_addr[1];
881 data->hw_addr[1] = hw_addr[0];
882 data->hw_addr[2] = hw_addr[3];
883 data->hw_addr[3] = hw_addr[2];
884 data->hw_addr[4] = hw_addr[5];
885 data->hw_addr[5] = hw_addr[4];
886 } else {
887 iwl_set_hw_address_family_8000(trans, cfg, data,
888 mac_override, nvm_hw);
889 }
890
891 if (!is_valid_ether_addr(data->hw_addr)) {
892 IWL_ERR(trans, "no valid mac address was found\n");
893 return -EINVAL;
894 }
895
896 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
897
898 return 0;
899}
900
901static bool
902iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
903 const __be16 *nvm_hw)
904{
905 /*
906 * Workaround a bug in Indonesia SKUs where the regulatory in
907 * some 7000-family OTPs erroneously allow wide channels in
908 * 5GHz. To check for Indonesia, we take the SKU value from
909 * bits 1-4 in the subsystem ID and check if it is either 5 or
910 * 9. In those cases, we need to force-disable wide channels
911 * in 5GHz otherwise the FW will throw a sysassert when we try
912 * to use them.
913 */
914 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
915 /*
916 * Unlike the other sections in the NVM, the hw
917 * section uses big-endian.
918 */
919 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
920 u8 sku = (subsystem_id & 0x1e) >> 1;
921
922 if (sku == 5 || sku == 9) {
923 IWL_DEBUG_EEPROM(trans->dev,
924 "disabling wide channels in 5GHz (0x%0x %d)\n",
925 subsystem_id, sku);
926 return true;
927 }
928 }
929
930 return false;
931}
932
933struct iwl_nvm_data *
934iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
935 const __be16 *nvm_hw, const __le16 *nvm_sw,
936 const __le16 *nvm_calib, const __le16 *regulatory,
937 const __le16 *mac_override, const __le16 *phy_sku,
938 u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
939{
940 struct iwl_nvm_data *data;
941 bool lar_enabled;
942 u32 sku, radio_cfg;
943 u32 sbands_flags = 0;
944 u16 lar_config;
945 const __le16 *ch_section;
946
947 if (cfg->uhb_supported)
948 data = kzalloc(struct_size(data, channels,
949 IWL_NVM_NUM_CHANNELS_UHB),
950 GFP_KERNEL);
951 else if (cfg->nvm_type != IWL_NVM_EXT)
952 data = kzalloc(struct_size(data, channels,
953 IWL_NVM_NUM_CHANNELS),
954 GFP_KERNEL);
955 else
956 data = kzalloc(struct_size(data, channels,
957 IWL_NVM_NUM_CHANNELS_EXT),
958 GFP_KERNEL);
959 if (!data)
960 return NULL;
961
962 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
963
964 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
965 iwl_set_radio_cfg(cfg, data, radio_cfg);
966 if (data->valid_tx_ant)
967 tx_chains &= data->valid_tx_ant;
968 if (data->valid_rx_ant)
969 rx_chains &= data->valid_rx_ant;
970
971 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
972 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
973 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
974 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
975 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
976 data->sku_cap_11n_enable = false;
977 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
978 (sku & NVM_SKU_CAP_11AC_ENABLE);
979 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
980
981 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
982
983 if (cfg->nvm_type != IWL_NVM_EXT) {
984 /* Checking for required sections */
985 if (!nvm_calib) {
986 IWL_ERR(trans,
987 "Can't parse empty Calib NVM sections\n");
988 kfree(data);
989 return NULL;
990 }
991
992 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
993 ®ulatory[NVM_CHANNELS_SDP] :
994 &nvm_sw[NVM_CHANNELS];
995
996 /* in family 8000 Xtal calibration values moved to OTP */
997 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
998 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
999 lar_enabled = true;
1000 } else {
1001 u16 lar_offset = data->nvm_version < 0xE39 ?
1002 NVM_LAR_OFFSET_OLD :
1003 NVM_LAR_OFFSET;
1004
1005 lar_config = le16_to_cpup(regulatory + lar_offset);
1006 data->lar_enabled = !!(lar_config &
1007 NVM_LAR_ENABLED);
1008 lar_enabled = data->lar_enabled;
1009 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
1010 }
1011
1012 /* If no valid mac address was found - bail out */
1013 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1014 kfree(data);
1015 return NULL;
1016 }
1017
1018 if (lar_fw_supported && lar_enabled)
1019 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1020
1021 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1022 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1023
1024 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1025 sbands_flags, false);
1026 data->calib_version = 255;
1027
1028 return data;
1029}
1030IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1031
1032static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1033 int ch_idx, u16 nvm_flags,
1034 const struct iwl_cfg *cfg)
1035{
1036 u32 flags = NL80211_RRF_NO_HT40;
1037
1038 if (ch_idx < NUM_2GHZ_CHANNELS &&
1039 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1040 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1041 flags &= ~NL80211_RRF_NO_HT40PLUS;
1042 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1043 flags &= ~NL80211_RRF_NO_HT40MINUS;
1044 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1045 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1046 flags &= ~NL80211_RRF_NO_HT40PLUS;
1047 else
1048 flags &= ~NL80211_RRF_NO_HT40MINUS;
1049 }
1050
1051 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1052 flags |= NL80211_RRF_NO_80MHZ;
1053 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1054 flags |= NL80211_RRF_NO_160MHZ;
1055
1056 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1057 flags |= NL80211_RRF_NO_IR;
1058
1059 if (nvm_flags & NVM_CHANNEL_RADAR)
1060 flags |= NL80211_RRF_DFS;
1061
1062 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1063 flags |= NL80211_RRF_NO_OUTDOOR;
1064
1065 /* Set the GO concurrent flag only in case that NO_IR is set.
1066 * Otherwise it is meaningless
1067 */
1068 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1069 (flags & NL80211_RRF_NO_IR))
1070 flags |= NL80211_RRF_GO_CONCURRENT;
1071
1072 return flags;
1073}
1074
1075struct ieee80211_regdomain *
1076iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1077 int num_of_ch, __le32 *channels, u16 fw_mcc,
1078 u16 geo_info)
1079{
1080 int ch_idx;
1081 u16 ch_flags;
1082 u32 reg_rule_flags, prev_reg_rule_flags = 0;
1083 const u16 *nvm_chan;
1084 struct ieee80211_regdomain *regd, *copy_rd;
1085 struct ieee80211_reg_rule *rule;
1086 enum nl80211_band band;
1087 int center_freq, prev_center_freq = 0;
1088 int valid_rules = 0;
1089 bool new_rule;
1090 int max_num_ch;
1091
1092 if (cfg->uhb_supported) {
1093 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1094 nvm_chan = iwl_uhb_nvm_channels;
1095 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1096 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1097 nvm_chan = iwl_ext_nvm_channels;
1098 } else {
1099 max_num_ch = IWL_NVM_NUM_CHANNELS;
1100 nvm_chan = iwl_nvm_channels;
1101 }
1102
1103 if (WARN_ON(num_of_ch > max_num_ch))
1104 num_of_ch = max_num_ch;
1105
1106 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1107 return ERR_PTR(-EINVAL);
1108
1109 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1110 num_of_ch);
1111
1112 /* build a regdomain rule for every valid channel */
1113 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1114 if (!regd)
1115 return ERR_PTR(-ENOMEM);
1116
1117 /* set alpha2 from FW. */
1118 regd->alpha2[0] = fw_mcc >> 8;
1119 regd->alpha2[1] = fw_mcc & 0xff;
1120
1121 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1122 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1123 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1124 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1125 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1126 band);
1127 new_rule = false;
1128
1129 if (!(ch_flags & NVM_CHANNEL_VALID)) {
1130 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1131 nvm_chan[ch_idx], ch_flags);
1132 continue;
1133 }
1134
1135 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1136 ch_flags, cfg);
1137
1138 /* we can't continue the same rule */
1139 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1140 center_freq - prev_center_freq > 20) {
1141 valid_rules++;
1142 new_rule = true;
1143 }
1144
1145 rule = ®d->reg_rules[valid_rules - 1];
1146
1147 if (new_rule)
1148 rule->freq_range.start_freq_khz =
1149 MHZ_TO_KHZ(center_freq - 10);
1150
1151 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1152
1153 /* this doesn't matter - not used by FW */
1154 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1155 rule->power_rule.max_eirp =
1156 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1157
1158 rule->flags = reg_rule_flags;
1159
1160 /* rely on auto-calculation to merge BW of contiguous chans */
1161 rule->flags |= NL80211_RRF_AUTO_BW;
1162 rule->freq_range.max_bandwidth_khz = 0;
1163
1164 prev_center_freq = center_freq;
1165 prev_reg_rule_flags = reg_rule_flags;
1166
1167 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1168 nvm_chan[ch_idx], ch_flags);
1169
1170 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1171 band == NL80211_BAND_2GHZ)
1172 continue;
1173
1174 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1175 }
1176
1177 regd->n_reg_rules = valid_rules;
1178
1179 /*
1180 * Narrow down regdom for unused regulatory rules to prevent hole
1181 * between reg rules to wmm rules.
1182 */
1183 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1184 GFP_KERNEL);
1185 if (!copy_rd)
1186 copy_rd = ERR_PTR(-ENOMEM);
1187
1188 kfree(regd);
1189 return copy_rd;
1190}
1191IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1192
1193#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1194#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1195#define MAX_NVM_FILE_LEN 16384
1196
1197void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1198 unsigned int len)
1199{
1200#define IWL_4165_DEVICE_ID 0x5501
1201#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1202
1203 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1204 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1205 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1206 /* OTP 0x52 bug work around: it's a 1x1 device */
1207 data[3] = ANT_B | (ANT_B << 4);
1208}
1209IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1210
1211/*
1212 * Reads external NVM from a file into mvm->nvm_sections
1213 *
1214 * HOW TO CREATE THE NVM FILE FORMAT:
1215 * ------------------------------
1216 * 1. create hex file, format:
1217 * 3800 -> header
1218 * 0000 -> header
1219 * 5a40 -> data
1220 *
1221 * rev - 6 bit (word1)
1222 * len - 10 bit (word1)
1223 * id - 4 bit (word2)
1224 * rsv - 12 bit (word2)
1225 *
1226 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1227 *
1228 * 3. create binary file from the hex file
1229 *
1230 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1231 */
1232int iwl_read_external_nvm(struct iwl_trans *trans,
1233 const char *nvm_file_name,
1234 struct iwl_nvm_section *nvm_sections)
1235{
1236 int ret, section_size;
1237 u16 section_id;
1238 const struct firmware *fw_entry;
1239 const struct {
1240 __le16 word1;
1241 __le16 word2;
1242 u8 data[];
1243 } *file_sec;
1244 const u8 *eof;
1245 u8 *temp;
1246 int max_section_size;
1247 const __le32 *dword_buff;
1248
1249#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1250#define NVM_WORD2_ID(x) (x >> 12)
1251#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1252#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1253#define NVM_HEADER_0 (0x2A504C54)
1254#define NVM_HEADER_1 (0x4E564D2A)
1255#define NVM_HEADER_SIZE (4 * sizeof(u32))
1256
1257 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1258
1259 /* Maximal size depends on NVM version */
1260 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1261 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1262 else
1263 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1264
1265 /*
1266 * Obtain NVM image via request_firmware. Since we already used
1267 * request_firmware_nowait() for the firmware binary load and only
1268 * get here after that we assume the NVM request can be satisfied
1269 * synchronously.
1270 */
1271 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1272 if (ret) {
1273 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1274 nvm_file_name, ret);
1275 return ret;
1276 }
1277
1278 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1279 nvm_file_name, fw_entry->size);
1280
1281 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1282 IWL_ERR(trans, "NVM file too large\n");
1283 ret = -EINVAL;
1284 goto out;
1285 }
1286
1287 eof = fw_entry->data + fw_entry->size;
1288 dword_buff = (__le32 *)fw_entry->data;
1289
1290 /* some NVM file will contain a header.
1291 * The header is identified by 2 dwords header as follow:
1292 * dword[0] = 0x2A504C54
1293 * dword[1] = 0x4E564D2A
1294 *
1295 * This header must be skipped when providing the NVM data to the FW.
1296 */
1297 if (fw_entry->size > NVM_HEADER_SIZE &&
1298 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1299 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1300 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1301 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1302 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1303 le32_to_cpu(dword_buff[3]));
1304
1305 /* nvm file validation, dword_buff[2] holds the file version */
1306 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1307 CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1308 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1309 ret = -EFAULT;
1310 goto out;
1311 }
1312 } else {
1313 file_sec = (void *)fw_entry->data;
1314 }
1315
1316 while (true) {
1317 if (file_sec->data > eof) {
1318 IWL_ERR(trans,
1319 "ERROR - NVM file too short for section header\n");
1320 ret = -EINVAL;
1321 break;
1322 }
1323
1324 /* check for EOF marker */
1325 if (!file_sec->word1 && !file_sec->word2) {
1326 ret = 0;
1327 break;
1328 }
1329
1330 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1331 section_size =
1332 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1333 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1334 } else {
1335 section_size = 2 * EXT_NVM_WORD2_LEN(
1336 le16_to_cpu(file_sec->word2));
1337 section_id = EXT_NVM_WORD1_ID(
1338 le16_to_cpu(file_sec->word1));
1339 }
1340
1341 if (section_size > max_section_size) {
1342 IWL_ERR(trans, "ERROR - section too large (%d)\n",
1343 section_size);
1344 ret = -EINVAL;
1345 break;
1346 }
1347
1348 if (!section_size) {
1349 IWL_ERR(trans, "ERROR - section empty\n");
1350 ret = -EINVAL;
1351 break;
1352 }
1353
1354 if (file_sec->data + section_size > eof) {
1355 IWL_ERR(trans,
1356 "ERROR - NVM file too short for section (%d bytes)\n",
1357 section_size);
1358 ret = -EINVAL;
1359 break;
1360 }
1361
1362 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1363 "Invalid NVM section ID %d\n", section_id)) {
1364 ret = -EINVAL;
1365 break;
1366 }
1367
1368 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1369 if (!temp) {
1370 ret = -ENOMEM;
1371 break;
1372 }
1373
1374 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1375
1376 kfree(nvm_sections[section_id].data);
1377 nvm_sections[section_id].data = temp;
1378 nvm_sections[section_id].length = section_size;
1379
1380 /* advance to the next section */
1381 file_sec = (void *)(file_sec->data + section_size);
1382 }
1383out:
1384 release_firmware(fw_entry);
1385 return ret;
1386}
1387IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1388
1389struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1390 const struct iwl_fw *fw)
1391{
1392 struct iwl_nvm_get_info cmd = {};
1393 struct iwl_nvm_data *nvm;
1394 struct iwl_host_cmd hcmd = {
1395 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1396 .data = { &cmd, },
1397 .len = { sizeof(cmd) },
1398 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1399 };
1400 int ret;
1401 bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
1402 fw_has_capa(&fw->ucode_capa,
1403 IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1404 bool empty_otp;
1405 u32 mac_flags;
1406 u32 sbands_flags = 0;
1407 /*
1408 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1409 * in v3, except for the channel profile part of the
1410 * regulatory. So we can just access the new struct, with the
1411 * exception of the latter.
1412 */
1413 struct iwl_nvm_get_info_rsp *rsp;
1414 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1415 bool v4 = fw_has_api(&fw->ucode_capa,
1416 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1417 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1418 void *channel_profile;
1419
1420 ret = iwl_trans_send_cmd(trans, &hcmd);
1421 if (ret)
1422 return ERR_PTR(ret);
1423
1424 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1425 "Invalid payload len in NVM response from FW %d",
1426 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1427 ret = -EINVAL;
1428 goto out;
1429 }
1430
1431 rsp = (void *)hcmd.resp_pkt->data;
1432 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1433 NVM_GENERAL_FLAGS_EMPTY_OTP);
1434 if (empty_otp)
1435 IWL_INFO(trans, "OTP is empty\n");
1436
1437 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1438 if (!nvm) {
1439 ret = -ENOMEM;
1440 goto out;
1441 }
1442
1443 iwl_set_hw_address_from_csr(trans, nvm);
1444 /* TODO: if platform NVM has MAC address - override it here */
1445
1446 if (!is_valid_ether_addr(nvm->hw_addr)) {
1447 IWL_ERR(trans, "no valid mac address was found\n");
1448 ret = -EINVAL;
1449 goto err_free;
1450 }
1451
1452 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1453
1454 /* Initialize general data */
1455 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1456 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1457 if (nvm->n_hw_addrs == 0)
1458 IWL_WARN(trans,
1459 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1460 empty_otp);
1461
1462 /* Initialize MAC sku data */
1463 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1464 nvm->sku_cap_11ac_enable =
1465 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1466 nvm->sku_cap_11n_enable =
1467 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1468 nvm->sku_cap_11ax_enable =
1469 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1470 nvm->sku_cap_band_24ghz_enable =
1471 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1472 nvm->sku_cap_band_52ghz_enable =
1473 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1474 nvm->sku_cap_mimo_disabled =
1475 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1476
1477 /* Initialize PHY sku data */
1478 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1479 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1480
1481 if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
1482 nvm->lar_enabled = true;
1483 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1484 }
1485
1486 rsp_v3 = (void *)rsp;
1487 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1488 (void *)rsp_v3->regulatory.channel_profile;
1489
1490 iwl_init_sbands(trans, nvm,
1491 channel_profile,
1492 nvm->valid_tx_ant & fw->valid_tx_ant,
1493 nvm->valid_rx_ant & fw->valid_rx_ant,
1494 sbands_flags, v4);
1495
1496 iwl_free_resp(&hcmd);
1497 return nvm;
1498
1499err_free:
1500 kfree(nvm);
1501out:
1502 iwl_free_resp(&hcmd);
1503 return ERR_PTR(ret);
1504}
1505IWL_EXPORT_SYMBOL(iwl_get_nvm);