Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
   7#include <linux/types.h>
   8#include <linux/slab.h>
   9#include <linux/export.h>
  10#include <linux/etherdevice.h>
  11#include <linux/pci.h>
  12#include <linux/firmware.h>
  13
  14#include "iwl-drv.h"
  15#include "iwl-modparams.h"
  16#include "iwl-nvm-parse.h"
  17#include "iwl-prph.h"
  18#include "iwl-io.h"
  19#include "iwl-csr.h"
  20#include "fw/acpi.h"
  21#include "fw/api/nvm-reg.h"
  22#include "fw/api/commands.h"
  23#include "fw/api/cmdhdr.h"
  24#include "fw/img.h"
  25#include "mei/iwl-mei.h"
  26
  27/* NVM offsets (in words) definitions */
  28enum nvm_offsets {
  29	/* NVM HW-Section offset (in words) definitions */
  30	SUBSYSTEM_ID = 0x0A,
  31	HW_ADDR = 0x15,
  32
  33	/* NVM SW-Section offset (in words) definitions */
  34	NVM_SW_SECTION = 0x1C0,
  35	NVM_VERSION = 0,
  36	RADIO_CFG = 1,
  37	SKU = 2,
  38	N_HW_ADDRS = 3,
  39	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
  40
  41	/* NVM calibration section offset (in words) definitions */
  42	NVM_CALIB_SECTION = 0x2B8,
  43	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
  44
  45	/* NVM REGULATORY -Section offset (in words) definitions */
  46	NVM_CHANNELS_SDP = 0,
  47};
  48
  49enum ext_nvm_offsets {
  50	/* NVM HW-Section offset (in words) definitions */
  51	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
  52
  53	/* NVM SW-Section offset (in words) definitions */
  54	NVM_VERSION_EXT_NVM = 0,
  55	N_HW_ADDRS_FAMILY_8000 = 3,
  56
  57	/* NVM PHY_SKU-Section offset (in words) definitions */
  58	RADIO_CFG_FAMILY_EXT_NVM = 0,
  59	SKU_FAMILY_8000 = 2,
  60
  61	/* NVM REGULATORY -Section offset (in words) definitions */
  62	NVM_CHANNELS_EXTENDED = 0,
  63	NVM_LAR_OFFSET_OLD = 0x4C7,
  64	NVM_LAR_OFFSET = 0x507,
  65	NVM_LAR_ENABLED = 0x7,
  66};
  67
  68/* SKU Capabilities (actual values from NVM definition) */
  69enum nvm_sku_bits {
  70	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
  71	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
  72	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
  73	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
  74	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
  75};
  76
  77/*
  78 * These are the channel numbers in the order that they are stored in the NVM
  79 */
  80static const u16 iwl_nvm_channels[] = {
  81	/* 2.4 GHz */
  82	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  83	/* 5 GHz */
  84	36, 40, 44, 48, 52, 56, 60, 64,
  85	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  86	149, 153, 157, 161, 165
  87};
  88
  89static const u16 iwl_ext_nvm_channels[] = {
  90	/* 2.4 GHz */
  91	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  92	/* 5 GHz */
  93	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
  94	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  95	149, 153, 157, 161, 165, 169, 173, 177, 181
  96};
  97
  98static const u16 iwl_uhb_nvm_channels[] = {
  99	/* 2.4 GHz */
 100	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 101	/* 5 GHz */
 102	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
 103	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 104	149, 153, 157, 161, 165, 169, 173, 177, 181,
 105	/* 6-7 GHz */
 106	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
 107	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
 108	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
 109	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
 110};
 111
 112#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
 113#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
 114#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
 115#define NUM_2GHZ_CHANNELS		14
 116#define NUM_5GHZ_CHANNELS		37
 117#define FIRST_2GHZ_HT_MINUS		5
 118#define LAST_2GHZ_HT_PLUS		9
 119#define N_HW_ADDR_MASK			0xF
 120
 121/* rate data (static) */
 122static struct ieee80211_rate iwl_cfg80211_rates[] = {
 123	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
 124	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
 125	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 126	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
 127	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 128	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
 129	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 130	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
 131	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
 132	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
 133	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
 134	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
 135	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
 136	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
 137	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
 138};
 139#define RATES_24_OFFS	0
 140#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
 141#define RATES_52_OFFS	4
 142#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
 143
 144/**
 145 * enum iwl_nvm_channel_flags - channel flags in NVM
 146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 149 * @NVM_CHANNEL_RADAR: radar detection required
 150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 152 *	on same channel on 2.4 or same UNII band on 5.2
 153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
 159 */
 160enum iwl_nvm_channel_flags {
 161	NVM_CHANNEL_VALID		= BIT(0),
 162	NVM_CHANNEL_IBSS		= BIT(1),
 163	NVM_CHANNEL_ACTIVE		= BIT(3),
 164	NVM_CHANNEL_RADAR		= BIT(4),
 165	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
 166	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
 167	NVM_CHANNEL_UNIFORM		= BIT(7),
 168	NVM_CHANNEL_20MHZ		= BIT(8),
 169	NVM_CHANNEL_40MHZ		= BIT(9),
 170	NVM_CHANNEL_80MHZ		= BIT(10),
 171	NVM_CHANNEL_160MHZ		= BIT(11),
 172	NVM_CHANNEL_DC_HIGH		= BIT(12),
 173};
 174
 175/**
 176 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
 177 * domain.
 178 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 179 *	2.4Ghz band is allowed.
 180 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 181 *	5Ghz band is allowed.
 182 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 183 *	for this regulatory domain (valid only in 5Ghz).
 184 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 185 *	for this regulatory domain (valid only in 5Ghz).
 186 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 187 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 188 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 189 *	for this regulatory domain (valid only in 5Ghz).
 190 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
 191 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 192 */
 193enum iwl_reg_capa_flags_v1 {
 194	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
 195	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
 196	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
 197	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
 198	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
 199	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
 200	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
 201	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
 202	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
 203}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
 204
 205/**
 206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
 207 * domain (version 2).
 208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
 209 *	disabled.
 210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 211 *	2.4Ghz band is allowed.
 212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 213 *	5Ghz band is allowed.
 214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 215 *	for this regulatory domain (valid only in 5Ghz).
 216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 217 *	for this regulatory domain (valid only in 5Ghz).
 218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
 221 *	126, 122) are disabled.
 222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
 223 *	for this regulatory domain (uvalid only in 5Ghz).
 224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 225 */
 226enum iwl_reg_capa_flags_v2 {
 227	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
 228	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
 229	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
 230	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
 231	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
 232	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
 233	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
 234	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
 235	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
 236	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
 237}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
 238
 239/**
 240 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
 241 * domain.
 242 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 243 *	for this regulatory domain (valid only in 5Ghz).
 244 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 245 *	for this regulatory domain (valid only in 5Ghz).
 246 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
 247 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
 248 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
 249 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 250 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
 251 *	for this regulatory domain (valid only in 5GHz).
 252 */
 253enum iwl_reg_capa_flags_v4 {
 254	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
 255	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
 256	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
 257	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
 258	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
 259	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
 260	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
 261}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
 262
 263/*
 264* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
 265* MCC update command response.
 266*/
 267#define REG_CAPA_V2_RESP_VER	6
 268
 269/* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
 270 * MCC update command response.
 271 */
 272#define REG_CAPA_V4_RESP_VER	8
 273
 274/**
 275 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
 276 * handling the different APIs of reg_capa_flags.
 277 *
 278 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
 279 *	for this regulatory domain.
 280 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
 281 *	for this regulatory domain (valid only in 5 and 6 Ghz).
 282 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
 283 *	for this regulatory domain (valid only in 5 and 6 Ghz).
 284 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
 285 *	for this regulatory domain (valid only in 6 Ghz).
 286 * @disable_11ax: 11ax is forbidden for this regulatory domain.
 287 * @disable_11be: 11be is forbidden for this regulatory domain.
 288 */
 289struct iwl_reg_capa {
 290	bool allow_40mhz;
 291	bool allow_80mhz;
 292	bool allow_160mhz;
 293	bool allow_320mhz;
 294	bool disable_11ax;
 295	bool disable_11be;
 296};
 297
 298static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
 299					       int chan, u32 flags)
 300{
 301#define CHECK_AND_PRINT_I(x)	\
 302	((flags & NVM_CHANNEL_##x) ? " " #x : "")
 303
 304	if (!(flags & NVM_CHANNEL_VALID)) {
 305		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
 306			      chan, flags);
 307		return;
 308	}
 309
 310	/* Note: already can print up to 101 characters, 110 is the limit! */
 311	IWL_DEBUG_DEV(dev, level,
 312		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
 313		      chan, flags,
 314		      CHECK_AND_PRINT_I(VALID),
 315		      CHECK_AND_PRINT_I(IBSS),
 316		      CHECK_AND_PRINT_I(ACTIVE),
 317		      CHECK_AND_PRINT_I(RADAR),
 318		      CHECK_AND_PRINT_I(INDOOR_ONLY),
 319		      CHECK_AND_PRINT_I(GO_CONCURRENT),
 320		      CHECK_AND_PRINT_I(UNIFORM),
 321		      CHECK_AND_PRINT_I(20MHZ),
 322		      CHECK_AND_PRINT_I(40MHZ),
 323		      CHECK_AND_PRINT_I(80MHZ),
 324		      CHECK_AND_PRINT_I(160MHZ),
 325		      CHECK_AND_PRINT_I(DC_HIGH));
 326#undef CHECK_AND_PRINT_I
 327}
 328
 329static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
 330				 u32 nvm_flags, const struct iwl_cfg *cfg)
 331{
 332	u32 flags = IEEE80211_CHAN_NO_HT40;
 333
 334	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
 335		if (ch_num <= LAST_2GHZ_HT_PLUS)
 336			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 337		if (ch_num >= FIRST_2GHZ_HT_MINUS)
 338			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 339	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
 340		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
 341			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 342		else
 343			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 344	}
 345	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
 346		flags |= IEEE80211_CHAN_NO_80MHZ;
 347	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
 348		flags |= IEEE80211_CHAN_NO_160MHZ;
 349
 350	if (!(nvm_flags & NVM_CHANNEL_IBSS))
 351		flags |= IEEE80211_CHAN_NO_IR;
 352
 353	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
 354		flags |= IEEE80211_CHAN_NO_IR;
 355
 356	if (nvm_flags & NVM_CHANNEL_RADAR)
 357		flags |= IEEE80211_CHAN_RADAR;
 358
 359	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
 360		flags |= IEEE80211_CHAN_INDOOR_ONLY;
 361
 362	/* Set the GO concurrent flag only in case that NO_IR is set.
 363	 * Otherwise it is meaningless
 364	 */
 365	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
 366	    (flags & IEEE80211_CHAN_NO_IR))
 367		flags |= IEEE80211_CHAN_IR_CONCURRENT;
 368
 369	return flags;
 370}
 371
 372static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
 373{
 374	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
 375		return NL80211_BAND_6GHZ;
 376	}
 377
 378	if (ch_idx >= NUM_2GHZ_CHANNELS)
 379		return NL80211_BAND_5GHZ;
 380	return NL80211_BAND_2GHZ;
 381}
 382
 383static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
 384				struct iwl_nvm_data *data,
 385				const void * const nvm_ch_flags,
 386				u32 sbands_flags, bool v4)
 387{
 388	int ch_idx;
 389	int n_channels = 0;
 390	struct ieee80211_channel *channel;
 391	u32 ch_flags;
 392	int num_of_ch;
 393	const u16 *nvm_chan;
 394
 395	if (cfg->uhb_supported) {
 396		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
 397		nvm_chan = iwl_uhb_nvm_channels;
 398	} else if (cfg->nvm_type == IWL_NVM_EXT) {
 399		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
 400		nvm_chan = iwl_ext_nvm_channels;
 401	} else {
 402		num_of_ch = IWL_NVM_NUM_CHANNELS;
 403		nvm_chan = iwl_nvm_channels;
 404	}
 405
 406	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
 407		enum nl80211_band band =
 408			iwl_nl80211_band_from_channel_idx(ch_idx);
 409
 410		if (v4)
 411			ch_flags =
 412				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
 413		else
 414			ch_flags =
 415				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
 416
 417		if (band == NL80211_BAND_5GHZ &&
 418		    !data->sku_cap_band_52ghz_enable)
 419			continue;
 420
 421		/* workaround to disable wide channels in 5GHz */
 422		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
 423		    band == NL80211_BAND_5GHZ) {
 424			ch_flags &= ~(NVM_CHANNEL_40MHZ |
 425				     NVM_CHANNEL_80MHZ |
 426				     NVM_CHANNEL_160MHZ);
 427		}
 428
 429		if (ch_flags & NVM_CHANNEL_160MHZ)
 430			data->vht160_supported = true;
 431
 432		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
 433		    !(ch_flags & NVM_CHANNEL_VALID)) {
 434			/*
 435			 * Channels might become valid later if lar is
 436			 * supported, hence we still want to add them to
 437			 * the list of supported channels to cfg80211.
 438			 */
 439			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 440						    nvm_chan[ch_idx], ch_flags);
 441			continue;
 442		}
 443
 444		channel = &data->channels[n_channels];
 445		n_channels++;
 446
 447		channel->hw_value = nvm_chan[ch_idx];
 448		channel->band = band;
 449		channel->center_freq =
 450			ieee80211_channel_to_frequency(
 451				channel->hw_value, channel->band);
 452
 453		/* Initialize regulatory-based run-time data */
 454
 455		/*
 456		 * Default value - highest tx power value.  max_power
 457		 * is not used in mvm, and is used for backwards compatibility
 458		 */
 459		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
 460
 461		/* don't put limitations in case we're using LAR */
 462		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
 463			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
 464							       ch_idx, band,
 465							       ch_flags, cfg);
 466		else
 467			channel->flags = 0;
 468
 469		/* TODO: Don't put limitations on UHB devices as we still don't
 470		 * have NVM for them
 471		 */
 472		if (cfg->uhb_supported)
 473			channel->flags = 0;
 474		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 475					    channel->hw_value, ch_flags);
 476		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
 477				 channel->hw_value, channel->max_power);
 478	}
 479
 480	return n_channels;
 481}
 482
 483static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
 484				  struct iwl_nvm_data *data,
 485				  struct ieee80211_sta_vht_cap *vht_cap,
 486				  u8 tx_chains, u8 rx_chains)
 487{
 488	const struct iwl_cfg *cfg = trans->cfg;
 489	int num_rx_ants = num_of_ant(rx_chains);
 490	int num_tx_ants = num_of_ant(tx_chains);
 491
 492	vht_cap->vht_supported = true;
 493
 494	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
 495		       IEEE80211_VHT_CAP_RXSTBC_1 |
 496		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
 497		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
 498		       IEEE80211_VHT_MAX_AMPDU_1024K <<
 499		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
 500
 501	if (!trans->cfg->ht_params->stbc)
 502		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
 503
 504	if (data->vht160_supported)
 505		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
 506				IEEE80211_VHT_CAP_SHORT_GI_160;
 507
 508	if (cfg->vht_mu_mimo_supported)
 509		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
 510
 511	if (cfg->ht_params->ldpc)
 512		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
 513
 514	if (data->sku_cap_mimo_disabled) {
 515		num_rx_ants = 1;
 516		num_tx_ants = 1;
 517	}
 518
 519	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
 520		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
 521	else
 522		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
 523
 524	switch (iwlwifi_mod_params.amsdu_size) {
 525	case IWL_AMSDU_DEF:
 526		if (trans->trans_cfg->mq_rx_supported)
 527			vht_cap->cap |=
 528				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 529		else
 530			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 531		break;
 532	case IWL_AMSDU_2K:
 533		if (trans->trans_cfg->mq_rx_supported)
 534			vht_cap->cap |=
 535				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 536		else
 537			WARN(1, "RB size of 2K is not supported by this device\n");
 538		break;
 539	case IWL_AMSDU_4K:
 540		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 541		break;
 542	case IWL_AMSDU_8K:
 543		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
 544		break;
 545	case IWL_AMSDU_12K:
 546		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 547		break;
 548	default:
 549		break;
 550	}
 551
 552	vht_cap->vht_mcs.rx_mcs_map =
 553		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
 554			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
 555			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
 556			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
 557			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
 558			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
 559			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
 560			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
 561
 562	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
 563		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
 564		/* this works because NOT_SUPPORTED == 3 */
 565		vht_cap->vht_mcs.rx_mcs_map |=
 566			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
 567	}
 568
 569	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
 570
 571	vht_cap->vht_mcs.tx_highest |=
 572		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
 573}
 574
 575static const u8 iwl_vendor_caps[] = {
 576	0xdd,			/* vendor element */
 577	0x06,			/* length */
 578	0x00, 0x17, 0x35,	/* Intel OUI */
 579	0x08,			/* type (Intel Capabilities) */
 580	/* followed by 16 bits of capabilities */
 581#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
 582	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
 583	0x00
 584};
 585
 586static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
 587	{
 588		.types_mask = BIT(NL80211_IFTYPE_STATION),
 589		.he_cap = {
 590			.has_he = true,
 591			.he_cap_elem = {
 592				.mac_cap_info[0] =
 593					IEEE80211_HE_MAC_CAP0_HTC_HE,
 
 594				.mac_cap_info[1] =
 595					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 596					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 597				.mac_cap_info[2] =
 598					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
 599				.mac_cap_info[3] =
 600					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
 601					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
 602				.mac_cap_info[4] =
 603					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
 604					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
 605				.mac_cap_info[5] =
 606					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
 607					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
 608					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
 609					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
 610					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
 
 
 
 
 611				.phy_cap_info[1] =
 612					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
 613					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
 614					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 615				.phy_cap_info[2] =
 616					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
 617					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
 618				.phy_cap_info[3] =
 619					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
 620					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 621					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
 622					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 623				.phy_cap_info[4] =
 624					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
 625					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
 626					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
 627				.phy_cap_info[6] =
 628					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
 629					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
 630					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 631				.phy_cap_info[7] =
 632					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
 633					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 634				.phy_cap_info[8] =
 635					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 636					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
 637					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
 638					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
 639					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 640				.phy_cap_info[9] =
 641					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
 642					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
 643					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
 644					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
 645				.phy_cap_info[10] =
 646					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
 647			},
 648			/*
 649			 * Set default Tx/Rx HE MCS NSS Support field.
 650			 * Indicate support for up to 2 spatial streams and all
 651			 * MCS, without any special cases
 652			 */
 653			.he_mcs_nss_supp = {
 654				.rx_mcs_80 = cpu_to_le16(0xfffa),
 655				.tx_mcs_80 = cpu_to_le16(0xfffa),
 656				.rx_mcs_160 = cpu_to_le16(0xfffa),
 657				.tx_mcs_160 = cpu_to_le16(0xfffa),
 658				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 659				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 660			},
 661			/*
 662			 * Set default PPE thresholds, with PPET16 set to 0,
 663			 * PPET8 set to 7
 664			 */
 665			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 666		},
 667		.eht_cap = {
 668			.has_eht = true,
 669			.eht_cap_elem = {
 670				.mac_cap_info[0] =
 671					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
 672					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
 673					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
 674					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
 675				.phy_cap_info[0] =
 676					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
 677					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
 678					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
 679					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
 680					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
 681				.phy_cap_info[1] =
 682					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
 683					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
 684				.phy_cap_info[3] =
 685					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
 686					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
 687					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
 688					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
 689					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
 690					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
 691					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
 692
 693				.phy_cap_info[4] =
 694					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
 695					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
 696					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
 697				.phy_cap_info[5] =
 698					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
 699					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
 700					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
 701					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
 702				.phy_cap_info[6] =
 703					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
 704					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
 705				.phy_cap_info[8] =
 706					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
 707					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
 708			},
 709
 710			/* For all MCS and bandwidth, set 2 NSS for both Tx and
 711			 * Rx - note we don't set the only_20mhz, but due to this
 712			 * being a union, it gets set correctly anyway.
 713			 */
 714			.eht_mcs_nss_supp = {
 715				.bw._80 = {
 716					.rx_tx_mcs9_max_nss = 0x22,
 717					.rx_tx_mcs11_max_nss = 0x22,
 718					.rx_tx_mcs13_max_nss = 0x22,
 719				},
 720				.bw._160 = {
 721					.rx_tx_mcs9_max_nss = 0x22,
 722					.rx_tx_mcs11_max_nss = 0x22,
 723					.rx_tx_mcs13_max_nss = 0x22,
 724				},
 725				.bw._320 = {
 726					.rx_tx_mcs9_max_nss = 0x22,
 727					.rx_tx_mcs11_max_nss = 0x22,
 728					.rx_tx_mcs13_max_nss = 0x22,
 729				},
 730			},
 731
 732			/*
 733			 * PPE thresholds for NSS = 2, and RU index bitmap set
 734			 * to 0xc.
 735			 */
 736			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
 737		},
 738	},
 739	{
 740		.types_mask = BIT(NL80211_IFTYPE_AP),
 741		.he_cap = {
 742			.has_he = true,
 743			.he_cap_elem = {
 744				.mac_cap_info[0] =
 745					IEEE80211_HE_MAC_CAP0_HTC_HE,
 746				.mac_cap_info[1] =
 747					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 748					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 749				.mac_cap_info[3] =
 750					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
 
 
 
 751				.phy_cap_info[1] =
 752					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 753				.phy_cap_info[2] =
 754					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
 755					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 756				.phy_cap_info[3] =
 757					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
 758					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 759					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
 760					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 761				.phy_cap_info[6] =
 762					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 763				.phy_cap_info[7] =
 764					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 765				.phy_cap_info[8] =
 766					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 767					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 768				.phy_cap_info[9] =
 769					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
 770					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
 771			},
 772			/*
 773			 * Set default Tx/Rx HE MCS NSS Support field.
 774			 * Indicate support for up to 2 spatial streams and all
 775			 * MCS, without any special cases
 776			 */
 777			.he_mcs_nss_supp = {
 778				.rx_mcs_80 = cpu_to_le16(0xfffa),
 779				.tx_mcs_80 = cpu_to_le16(0xfffa),
 780				.rx_mcs_160 = cpu_to_le16(0xfffa),
 781				.tx_mcs_160 = cpu_to_le16(0xfffa),
 782				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 783				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 784			},
 785			/*
 786			 * Set default PPE thresholds, with PPET16 set to 0,
 787			 * PPET8 set to 7
 788			 */
 789			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 790		},
 791		.eht_cap = {
 792			.has_eht = true,
 793			.eht_cap_elem = {
 794				.mac_cap_info[0] =
 795					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
 796					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
 797					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
 798				.phy_cap_info[0] =
 799					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
 800					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
 801				.phy_cap_info[5] =
 802					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
 803			},
 804
 805			/* For all MCS and bandwidth, set 2 NSS for both Tx and
 806			 * Rx - note we don't set the only_20mhz, but due to this
 807			 * being a union, it gets set correctly anyway.
 808			 */
 809			.eht_mcs_nss_supp = {
 810				.bw._80 = {
 811					.rx_tx_mcs9_max_nss = 0x22,
 812					.rx_tx_mcs11_max_nss = 0x22,
 813					.rx_tx_mcs13_max_nss = 0x22,
 814				},
 815				.bw._160 = {
 816					.rx_tx_mcs9_max_nss = 0x22,
 817					.rx_tx_mcs11_max_nss = 0x22,
 818					.rx_tx_mcs13_max_nss = 0x22,
 819				},
 820				.bw._320 = {
 821					.rx_tx_mcs9_max_nss = 0x22,
 822					.rx_tx_mcs11_max_nss = 0x22,
 823					.rx_tx_mcs13_max_nss = 0x22,
 824				},
 825			},
 826
 827			/*
 828			 * PPE thresholds for NSS = 2, and RU index bitmap set
 829			 * to 0xc.
 830			 */
 831			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
 832		},
 833	},
 834};
 835
 836static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
 837				  struct iwl_nvm_data *data,
 838				  struct ieee80211_supported_band *sband,
 839				  u8 tx_chains, u8 rx_chains)
 840{
 841	struct ieee80211_sta_ht_cap ht_cap;
 842	struct ieee80211_sta_vht_cap vht_cap = {};
 843	struct ieee80211_sband_iftype_data *iftype_data;
 844	u16 he_6ghz_capa = 0;
 845	u32 exp;
 846	int i;
 847
 848	if (sband->band != NL80211_BAND_6GHZ)
 849		return;
 850
 851	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
 852	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
 853			     tx_chains, rx_chains);
 854	WARN_ON(!ht_cap.ht_supported);
 855	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
 856	WARN_ON(!vht_cap.vht_supported);
 857
 858	he_6ghz_capa |=
 859		u16_encode_bits(ht_cap.ampdu_density,
 860				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
 861	exp = u32_get_bits(vht_cap.cap,
 862			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
 863	he_6ghz_capa |=
 864		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
 865	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
 866	he_6ghz_capa |=
 867		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
 868	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
 869	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
 870		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
 871	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
 872		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
 873
 874	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
 875
 876	/* we know it's writable - we set it before ourselves */
 877	iftype_data = (void *)(uintptr_t)sband->iftype_data;
 878	for (i = 0; i < sband->n_iftype_data; i++)
 879		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
 880}
 881
 882static void
 883iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
 884			 struct iwl_nvm_data *data,
 885			 struct ieee80211_supported_band *sband,
 886			 struct ieee80211_sband_iftype_data *iftype_data,
 887			 u8 tx_chains, u8 rx_chains,
 888			 const struct iwl_fw *fw)
 889{
 890	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
 891	bool no_320;
 892
 893	no_320 = !trans->trans_cfg->integrated &&
 894		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
 895
 896	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
 897		iftype_data->eht_cap.has_eht = false;
 898
 899	/* Advertise an A-MPDU exponent extension based on
 900	 * operating band
 901	 */
 902	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
 903		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 904			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
 905	else if (sband->band != NL80211_BAND_2GHZ)
 906		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 907			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
 908	else
 909		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 910			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
 911
 912	switch (sband->band) {
 913	case NL80211_BAND_2GHZ:
 914		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 915			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
 916		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
 917			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
 918				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
 919		break;
 920	case NL80211_BAND_6GHZ:
 921		if (!no_320) {
 922			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
 923				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
 924			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
 925				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
 926		}
 927		fallthrough;
 928	case NL80211_BAND_5GHZ:
 929		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 930			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
 931			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
 932		break;
 933	default:
 934		WARN_ON(1);
 935		break;
 936	}
 937
 938	if ((tx_chains & rx_chains) == ANT_AB) {
 939		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
 940			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
 941		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
 942			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
 943			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
 944		if (!is_ap) {
 945			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 946				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
 947
 948			if (iftype_data->eht_cap.has_eht) {
 949				/*
 950				 * Set the number of sounding dimensions for each
 951				 * bandwidth to 1 to indicate the maximal supported
 952				 * value of TXVECTOR parameter NUM_STS of 2
 953				 */
 954				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
 955
 956				/*
 957				 * Set the MAX NC to 1 to indicate sounding feedback of
 958				 * 2 supported by the beamfomee.
 959				 */
 960				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
 961			}
 962		}
 963	} else {
 964		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
 965			&iftype_data->he_cap.he_mcs_nss_supp;
 966
 967		if (iftype_data->eht_cap.has_eht) {
 968			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
 969				&iftype_data->eht_cap.eht_mcs_nss_supp;
 970
 971			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
 972		}
 973
 974		if (!is_ap) {
 975			/* If not 2x2, we need to indicate 1x1 in the
 976			 * Midamble RX Max NSTS - but not for AP mode
 977			 */
 978			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
 979				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
 980			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
 981				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
 982			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 983				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
 984		}
 985
 986		he_mcs_nss_supp->rx_mcs_80 |=
 987			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 988		he_mcs_nss_supp->tx_mcs_80 |=
 989			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 990		he_mcs_nss_supp->rx_mcs_160 |=
 991			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 992		he_mcs_nss_supp->tx_mcs_160 |=
 993			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 994		he_mcs_nss_supp->rx_mcs_80p80 |=
 995			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 996		he_mcs_nss_supp->tx_mcs_80p80 |=
 997			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
 998	}
 999
1000	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1001		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1002			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1003
1004	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1005	case IWL_CFG_RF_TYPE_GF:
1006	case IWL_CFG_RF_TYPE_MR:
1007	case IWL_CFG_RF_TYPE_MS:
1008	case IWL_CFG_RF_TYPE_FM:
1009	case IWL_CFG_RF_TYPE_WH:
1010		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1011			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1012		if (!is_ap)
1013			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1014				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1015		break;
1016	}
1017
1018	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1019	    iftype_data->eht_cap.has_eht) {
1020		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1021			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1022			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1023		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1024			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1025			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1026			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1027			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1028			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1029			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1030			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1031		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1032			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1033			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1034		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1035			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1036		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1037			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1038			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1039		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1040			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1041	}
1042
1043	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1044		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1045			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1046
1047	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1048	    !is_ap) {
1049		iftype_data->vendor_elems.data = iwl_vendor_caps;
1050		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1051	}
1052
1053	if (!trans->cfg->ht_params->stbc) {
1054		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1055			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1056		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1057			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1058	}
1059}
1060
1061static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1062				 struct iwl_nvm_data *data,
1063				 struct ieee80211_supported_band *sband,
1064				 u8 tx_chains, u8 rx_chains,
1065				 const struct iwl_fw *fw)
1066{
1067	struct ieee80211_sband_iftype_data *iftype_data;
1068	int i;
1069
1070	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1071	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1072	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
 
 
 
1073
1074	switch (sband->band) {
1075	case NL80211_BAND_2GHZ:
1076		iftype_data = data->iftd.low;
1077		break;
1078	case NL80211_BAND_5GHZ:
1079		iftype_data = data->iftd.high;
1080		break;
1081	case NL80211_BAND_6GHZ:
1082		iftype_data = data->iftd.uhb;
1083		break;
1084	default:
1085		WARN_ON(1);
1086		return;
1087	}
1088
1089	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1090
1091	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1092					 ARRAY_SIZE(iwl_he_eht_capa));
1093
1094	for (i = 0; i < sband->n_iftype_data; i++)
1095		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1096					 tx_chains, rx_chains, fw);
1097
1098	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1099}
1100
1101void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1102		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1103{
1104	struct ieee80211_supported_band *sband;
1105
1106	sband = &data->bands[NL80211_BAND_2GHZ];
1107	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1108			     tx_chains, rx_chains);
1109
1110	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1111		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1112				     fw);
1113
1114	sband = &data->bands[NL80211_BAND_5GHZ];
1115	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1116			     tx_chains, rx_chains);
1117	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1118		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1119				      tx_chains, rx_chains);
1120
1121	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1122		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1123				     fw);
1124
1125	sband = &data->bands[NL80211_BAND_6GHZ];
1126	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1127		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1128				     fw);
1129}
1130IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1131
1132static void iwl_init_sbands(struct iwl_trans *trans,
1133			    struct iwl_nvm_data *data,
1134			    const void *nvm_ch_flags, u8 tx_chains,
1135			    u8 rx_chains, u32 sbands_flags, bool v4,
1136			    const struct iwl_fw *fw)
1137{
1138	struct device *dev = trans->dev;
1139	const struct iwl_cfg *cfg = trans->cfg;
1140	int n_channels;
1141	int n_used = 0;
1142	struct ieee80211_supported_band *sband;
1143
1144	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1145					  sbands_flags, v4);
1146	sband = &data->bands[NL80211_BAND_2GHZ];
1147	sband->band = NL80211_BAND_2GHZ;
1148	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1149	sband->n_bitrates = N_RATES_24;
1150	n_used += iwl_init_sband_channels(data, sband, n_channels,
1151					  NL80211_BAND_2GHZ);
1152	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1153			     tx_chains, rx_chains);
1154
1155	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1156		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1157				     fw);
1158
1159	sband = &data->bands[NL80211_BAND_5GHZ];
1160	sband->band = NL80211_BAND_5GHZ;
1161	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1162	sband->n_bitrates = N_RATES_52;
1163	n_used += iwl_init_sband_channels(data, sband, n_channels,
1164					  NL80211_BAND_5GHZ);
1165	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1166			     tx_chains, rx_chains);
1167	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1168		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1169				      tx_chains, rx_chains);
1170
1171	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1172		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1173				     fw);
1174
1175	/* 6GHz band. */
1176	sband = &data->bands[NL80211_BAND_6GHZ];
1177	sband->band = NL80211_BAND_6GHZ;
1178	/* use the same rates as 5GHz band */
1179	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1180	sband->n_bitrates = N_RATES_52;
1181	n_used += iwl_init_sband_channels(data, sband, n_channels,
1182					  NL80211_BAND_6GHZ);
1183
1184	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1185		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1186				     fw);
1187	else
1188		sband->n_channels = 0;
1189	if (n_channels != n_used)
1190		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1191			    n_used, n_channels);
1192}
1193
1194static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1195		       const __le16 *phy_sku)
1196{
1197	if (cfg->nvm_type != IWL_NVM_EXT)
1198		return le16_to_cpup(nvm_sw + SKU);
1199
1200	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1201}
1202
1203static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1204{
1205	if (cfg->nvm_type != IWL_NVM_EXT)
1206		return le16_to_cpup(nvm_sw + NVM_VERSION);
1207	else
1208		return le32_to_cpup((const __le32 *)(nvm_sw +
1209						     NVM_VERSION_EXT_NVM));
1210}
1211
1212static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1213			     const __le16 *phy_sku)
1214{
1215	if (cfg->nvm_type != IWL_NVM_EXT)
1216		return le16_to_cpup(nvm_sw + RADIO_CFG);
1217
1218	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1219
1220}
1221
1222static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1223{
1224	int n_hw_addr;
1225
1226	if (cfg->nvm_type != IWL_NVM_EXT)
1227		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1228
1229	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1230
1231	return n_hw_addr & N_HW_ADDR_MASK;
1232}
1233
1234static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1235			      struct iwl_nvm_data *data,
1236			      u32 radio_cfg)
1237{
1238	if (cfg->nvm_type != IWL_NVM_EXT) {
1239		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1240		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1241		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1242		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1243		return;
1244	}
1245
1246	/* set the radio configuration for family 8000 */
1247	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1248	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1249	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1250	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1251	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1252	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1253}
1254
1255static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1256{
1257	const u8 *hw_addr;
1258
1259	hw_addr = (const u8 *)&mac_addr0;
1260	dest[0] = hw_addr[3];
1261	dest[1] = hw_addr[2];
1262	dest[2] = hw_addr[1];
1263	dest[3] = hw_addr[0];
1264
1265	hw_addr = (const u8 *)&mac_addr1;
1266	dest[4] = hw_addr[1];
1267	dest[5] = hw_addr[0];
1268}
1269
1270static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1271					struct iwl_nvm_data *data)
1272{
1273	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1274						  CSR_MAC_ADDR0_STRAP(trans)));
1275	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1276						  CSR_MAC_ADDR1_STRAP(trans)));
1277
1278	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1279	/*
1280	 * If the OEM fused a valid address, use it instead of the one in the
1281	 * OTP
1282	 */
1283	if (is_valid_ether_addr(data->hw_addr))
1284		return;
1285
1286	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1287	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1288
1289	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1290}
1291
1292static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1293					   const struct iwl_cfg *cfg,
1294					   struct iwl_nvm_data *data,
1295					   const __le16 *mac_override,
1296					   const __be16 *nvm_hw)
1297{
1298	const u8 *hw_addr;
1299
1300	if (mac_override) {
1301		static const u8 reserved_mac[] = {
1302			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1303		};
1304
1305		hw_addr = (const u8 *)(mac_override +
1306				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1307
1308		/*
1309		 * Store the MAC address from MAO section.
1310		 * No byte swapping is required in MAO section
1311		 */
1312		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1313
1314		/*
1315		 * Force the use of the OTP MAC address in case of reserved MAC
1316		 * address in the NVM, or if address is given but invalid.
1317		 */
1318		if (is_valid_ether_addr(data->hw_addr) &&
1319		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1320			return;
1321
1322		IWL_ERR(trans,
1323			"mac address from nvm override section is not valid\n");
1324	}
1325
1326	if (nvm_hw) {
1327		/* read the mac address from WFMP registers */
1328		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1329						WFMP_MAC_ADDR_0));
1330		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1331						WFMP_MAC_ADDR_1));
1332
1333		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1334
1335		return;
1336	}
1337
1338	IWL_ERR(trans, "mac address is not found\n");
1339}
1340
1341static int iwl_set_hw_address(struct iwl_trans *trans,
1342			      const struct iwl_cfg *cfg,
1343			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1344			      const __le16 *mac_override)
1345{
1346	if (cfg->mac_addr_from_csr) {
1347		iwl_set_hw_address_from_csr(trans, data);
1348	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1349		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1350
1351		/* The byte order is little endian 16 bit, meaning 214365 */
1352		data->hw_addr[0] = hw_addr[1];
1353		data->hw_addr[1] = hw_addr[0];
1354		data->hw_addr[2] = hw_addr[3];
1355		data->hw_addr[3] = hw_addr[2];
1356		data->hw_addr[4] = hw_addr[5];
1357		data->hw_addr[5] = hw_addr[4];
1358	} else {
1359		iwl_set_hw_address_family_8000(trans, cfg, data,
1360					       mac_override, nvm_hw);
1361	}
1362
1363	if (!is_valid_ether_addr(data->hw_addr)) {
1364		IWL_ERR(trans, "no valid mac address was found\n");
1365		return -EINVAL;
1366	}
1367
1368	if (!trans->csme_own)
1369		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1370			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1371
1372	return 0;
1373}
1374
1375static bool
1376iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1377			const __be16 *nvm_hw)
1378{
1379	/*
1380	 * Workaround a bug in Indonesia SKUs where the regulatory in
1381	 * some 7000-family OTPs erroneously allow wide channels in
1382	 * 5GHz.  To check for Indonesia, we take the SKU value from
1383	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1384	 * 9.  In those cases, we need to force-disable wide channels
1385	 * in 5GHz otherwise the FW will throw a sysassert when we try
1386	 * to use them.
1387	 */
1388	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1389		/*
1390		 * Unlike the other sections in the NVM, the hw
1391		 * section uses big-endian.
1392		 */
1393		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1394		u8 sku = (subsystem_id & 0x1e) >> 1;
1395
1396		if (sku == 5 || sku == 9) {
1397			IWL_DEBUG_EEPROM(trans->dev,
1398					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1399					 subsystem_id, sku);
1400			return true;
1401		}
1402	}
1403
1404	return false;
1405}
1406
1407struct iwl_nvm_data *
1408iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1409		       const struct iwl_mei_nvm *mei_nvm,
1410		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1411{
1412	struct iwl_nvm_data *data;
1413	u32 sbands_flags = 0;
1414	u8 rx_chains = fw->valid_rx_ant;
1415	u8 tx_chains = fw->valid_rx_ant;
1416
1417	if (cfg->uhb_supported)
1418		data = kzalloc(struct_size(data, channels,
1419					   IWL_NVM_NUM_CHANNELS_UHB),
1420					   GFP_KERNEL);
1421	else
1422		data = kzalloc(struct_size(data, channels,
1423					   IWL_NVM_NUM_CHANNELS_EXT),
1424					   GFP_KERNEL);
1425	if (!data)
1426		return NULL;
1427
1428	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1429		     IWL_NVM_NUM_CHANNELS_UHB);
1430	data->nvm_version = mei_nvm->nvm_version;
1431
1432	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1433	if (data->valid_tx_ant)
1434		tx_chains &= data->valid_tx_ant;
1435	if (data->valid_rx_ant)
1436		rx_chains &= data->valid_rx_ant;
1437	if (tx_ant)
1438		tx_chains &= tx_ant;
1439	if (rx_ant)
1440		rx_chains &= rx_ant;
1441
1442	data->sku_cap_mimo_disabled = false;
1443	data->sku_cap_band_24ghz_enable = true;
1444	data->sku_cap_band_52ghz_enable = true;
1445	data->sku_cap_11n_enable =
1446		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1447	data->sku_cap_11ac_enable = true;
1448	data->sku_cap_11ax_enable =
1449		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1450
1451	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1452
1453	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1454	/* If no valid mac address was found - bail out */
1455	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1456		kfree(data);
1457		return NULL;
1458	}
1459
1460	if (data->lar_enabled &&
1461	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1462		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1463
1464	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1465			sbands_flags, true, fw);
1466
1467	return data;
1468}
1469IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1470
1471struct iwl_nvm_data *
1472iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1473		   const struct iwl_fw *fw,
1474		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1475		   const __le16 *nvm_calib, const __le16 *regulatory,
1476		   const __le16 *mac_override, const __le16 *phy_sku,
1477		   u8 tx_chains, u8 rx_chains)
1478{
1479	struct iwl_nvm_data *data;
1480	bool lar_enabled;
1481	u32 sku, radio_cfg;
1482	u32 sbands_flags = 0;
1483	u16 lar_config;
1484	const __le16 *ch_section;
1485
1486	if (cfg->uhb_supported)
1487		data = kzalloc(struct_size(data, channels,
1488					   IWL_NVM_NUM_CHANNELS_UHB),
1489					   GFP_KERNEL);
1490	else if (cfg->nvm_type != IWL_NVM_EXT)
1491		data = kzalloc(struct_size(data, channels,
1492					   IWL_NVM_NUM_CHANNELS),
1493					   GFP_KERNEL);
1494	else
1495		data = kzalloc(struct_size(data, channels,
1496					   IWL_NVM_NUM_CHANNELS_EXT),
1497					   GFP_KERNEL);
1498	if (!data)
1499		return NULL;
1500
1501	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1502
1503	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1504	iwl_set_radio_cfg(cfg, data, radio_cfg);
1505	if (data->valid_tx_ant)
1506		tx_chains &= data->valid_tx_ant;
1507	if (data->valid_rx_ant)
1508		rx_chains &= data->valid_rx_ant;
1509
1510	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1511	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1512	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1513	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1514	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1515		data->sku_cap_11n_enable = false;
1516	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1517				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1518	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1519
1520	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1521
1522	if (cfg->nvm_type != IWL_NVM_EXT) {
1523		/* Checking for required sections */
1524		if (!nvm_calib) {
1525			IWL_ERR(trans,
1526				"Can't parse empty Calib NVM sections\n");
1527			kfree(data);
1528			return NULL;
1529		}
1530
1531		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1532			     &regulatory[NVM_CHANNELS_SDP] :
1533			     &nvm_sw[NVM_CHANNELS];
1534
1535		/* in family 8000 Xtal calibration values moved to OTP */
1536		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1537		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1538		lar_enabled = true;
1539	} else {
1540		u16 lar_offset = data->nvm_version < 0xE39 ?
1541				 NVM_LAR_OFFSET_OLD :
1542				 NVM_LAR_OFFSET;
1543
1544		lar_config = le16_to_cpup(regulatory + lar_offset);
1545		data->lar_enabled = !!(lar_config &
1546				       NVM_LAR_ENABLED);
1547		lar_enabled = data->lar_enabled;
1548		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1549	}
1550
1551	/* If no valid mac address was found - bail out */
1552	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1553		kfree(data);
1554		return NULL;
1555	}
1556
1557	if (lar_enabled &&
1558	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1559		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1560
1561	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1562		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1563
1564	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1565			sbands_flags, false, fw);
1566	data->calib_version = 255;
1567
1568	return data;
1569}
1570IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1571
1572static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1573				       int ch_idx, u16 nvm_flags,
1574				       struct iwl_reg_capa reg_capa,
1575				       const struct iwl_cfg *cfg)
1576{
1577	u32 flags = NL80211_RRF_NO_HT40;
1578
1579	if (ch_idx < NUM_2GHZ_CHANNELS &&
1580	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1581		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1582			flags &= ~NL80211_RRF_NO_HT40PLUS;
1583		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1584			flags &= ~NL80211_RRF_NO_HT40MINUS;
1585	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1586		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1587			flags &= ~NL80211_RRF_NO_HT40PLUS;
1588		else
1589			flags &= ~NL80211_RRF_NO_HT40MINUS;
1590	}
1591
1592	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1593		flags |= NL80211_RRF_NO_80MHZ;
1594	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1595		flags |= NL80211_RRF_NO_160MHZ;
1596
1597	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1598		flags |= NL80211_RRF_NO_IR;
1599
1600	if (nvm_flags & NVM_CHANNEL_RADAR)
1601		flags |= NL80211_RRF_DFS;
1602
1603	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1604		flags |= NL80211_RRF_NO_OUTDOOR;
1605
1606	/* Set the GO concurrent flag only in case that NO_IR is set.
1607	 * Otherwise it is meaningless
1608	 */
1609	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1610		if (flags & NL80211_RRF_NO_IR)
1611			flags |= NL80211_RRF_GO_CONCURRENT;
1612		if (flags & NL80211_RRF_DFS) {
1613			flags |= NL80211_RRF_DFS_CONCURRENT;
1614			/* Our device doesn't set active bit for DFS channels
1615			 * however, once marked as DFS no-ir is not needed.
1616			 */
1617			flags &= ~NL80211_RRF_NO_IR;
1618		}
1619	}
1620	/*
1621	 * reg_capa is per regulatory domain so apply it for every channel
1622	 */
1623	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1624		if (!reg_capa.allow_40mhz)
1625			flags |= NL80211_RRF_NO_HT40;
1626
1627		if (!reg_capa.allow_80mhz)
1628			flags |= NL80211_RRF_NO_80MHZ;
1629
1630		if (!reg_capa.allow_160mhz)
1631			flags |= NL80211_RRF_NO_160MHZ;
1632
1633		if (!reg_capa.allow_320mhz)
1634			flags |= NL80211_RRF_NO_320MHZ;
1635	}
1636
1637	if (reg_capa.disable_11ax)
1638		flags |= NL80211_RRF_NO_HE;
1639
1640	if (reg_capa.disable_11be)
1641		flags |= NL80211_RRF_NO_EHT;
1642
1643	return flags;
1644}
1645
1646static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1647{
1648	struct iwl_reg_capa reg_capa = {};
1649
1650	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1651		reg_capa.allow_40mhz = true;
1652		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1653		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1654		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1655		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1656		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1657	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1658		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1659		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1660		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1661		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1662	} else {
1663		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1664		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1665		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1666		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1667	}
1668	return reg_capa;
1669}
1670
1671struct ieee80211_regdomain *
1672iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1673		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1674		       u16 geo_info, u32 cap, u8 resp_ver)
1675{
1676	int ch_idx;
1677	u16 ch_flags;
1678	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1679	const u16 *nvm_chan;
1680	struct ieee80211_regdomain *regd, *copy_rd;
1681	struct ieee80211_reg_rule *rule;
1682	enum nl80211_band band;
1683	int center_freq, prev_center_freq = 0;
1684	int valid_rules = 0;
1685	bool new_rule;
1686	int max_num_ch;
1687	struct iwl_reg_capa reg_capa;
1688
1689	if (cfg->uhb_supported) {
1690		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1691		nvm_chan = iwl_uhb_nvm_channels;
1692	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1693		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1694		nvm_chan = iwl_ext_nvm_channels;
1695	} else {
1696		max_num_ch = IWL_NVM_NUM_CHANNELS;
1697		nvm_chan = iwl_nvm_channels;
1698	}
1699
1700	if (num_of_ch > max_num_ch) {
1701		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1702			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1703			      num_of_ch, max_num_ch);
1704		num_of_ch = max_num_ch;
1705	}
1706
1707	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1708		return ERR_PTR(-EINVAL);
1709
1710	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1711		      num_of_ch);
1712
1713	/* build a regdomain rule for every valid channel */
1714	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1715	if (!regd)
1716		return ERR_PTR(-ENOMEM);
1717
1718	/* set alpha2 from FW. */
1719	regd->alpha2[0] = fw_mcc >> 8;
1720	regd->alpha2[1] = fw_mcc & 0xff;
1721
1722	/* parse regulatory capability flags */
1723	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1724
1725	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1726		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1727		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1728		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1729							     band);
1730		new_rule = false;
1731
1732		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1733			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1734						    nvm_chan[ch_idx], ch_flags);
1735			continue;
1736		}
1737
1738		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1739							     ch_flags, reg_capa,
1740							     cfg);
1741
1742		/* we can't continue the same rule */
1743		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1744		    center_freq - prev_center_freq > 20) {
1745			valid_rules++;
1746			new_rule = true;
1747		}
1748
1749		rule = &regd->reg_rules[valid_rules - 1];
1750
1751		if (new_rule)
1752			rule->freq_range.start_freq_khz =
1753						MHZ_TO_KHZ(center_freq - 10);
1754
1755		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1756
1757		/* this doesn't matter - not used by FW */
1758		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1759		rule->power_rule.max_eirp =
1760			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1761
1762		rule->flags = reg_rule_flags;
1763
1764		/* rely on auto-calculation to merge BW of contiguous chans */
1765		rule->flags |= NL80211_RRF_AUTO_BW;
1766		rule->freq_range.max_bandwidth_khz = 0;
1767
1768		prev_center_freq = center_freq;
1769		prev_reg_rule_flags = reg_rule_flags;
1770
1771		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1772					    nvm_chan[ch_idx], ch_flags);
1773
1774		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1775		    band == NL80211_BAND_2GHZ)
1776			continue;
1777
1778		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1779	}
1780
1781	/*
1782	 * Certain firmware versions might report no valid channels
1783	 * if booted in RF-kill, i.e. not all calibrations etc. are
1784	 * running. We'll get out of this situation later when the
1785	 * rfkill is removed and we update the regdomain again, but
1786	 * since cfg80211 doesn't accept an empty regdomain, add a
1787	 * dummy (unusable) rule here in this case so we can init.
1788	 */
1789	if (!valid_rules) {
1790		valid_rules = 1;
1791		rule = &regd->reg_rules[valid_rules - 1];
1792		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1793		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1794		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1795		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1796		rule->power_rule.max_eirp =
1797			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1798	}
1799
1800	regd->n_reg_rules = valid_rules;
1801
1802	/*
1803	 * Narrow down regdom for unused regulatory rules to prevent hole
1804	 * between reg rules to wmm rules.
1805	 */
1806	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1807			  GFP_KERNEL);
1808	if (!copy_rd)
1809		copy_rd = ERR_PTR(-ENOMEM);
1810
1811	kfree(regd);
1812	return copy_rd;
1813}
1814IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1815
1816#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1817#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1818#define MAX_NVM_FILE_LEN	16384
1819
1820void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1821		    unsigned int len)
1822{
1823#define IWL_4165_DEVICE_ID	0x5501
1824#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1825
1826	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1827	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1828	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1829		/* OTP 0x52 bug work around: it's a 1x1 device */
1830		data[3] = ANT_B | (ANT_B << 4);
1831}
1832IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1833
1834/*
1835 * Reads external NVM from a file into mvm->nvm_sections
1836 *
1837 * HOW TO CREATE THE NVM FILE FORMAT:
1838 * ------------------------------
1839 * 1. create hex file, format:
1840 *      3800 -> header
1841 *      0000 -> header
1842 *      5a40 -> data
1843 *
1844 *   rev - 6 bit (word1)
1845 *   len - 10 bit (word1)
1846 *   id - 4 bit (word2)
1847 *   rsv - 12 bit (word2)
1848 *
1849 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1850 *
1851 * 3. create binary file from the hex file
1852 *
1853 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1854 */
1855int iwl_read_external_nvm(struct iwl_trans *trans,
1856			  const char *nvm_file_name,
1857			  struct iwl_nvm_section *nvm_sections)
1858{
1859	int ret, section_size;
1860	u16 section_id;
1861	const struct firmware *fw_entry;
1862	const struct {
1863		__le16 word1;
1864		__le16 word2;
1865		u8 data[];
1866	} *file_sec;
1867	const u8 *eof;
1868	u8 *temp;
1869	int max_section_size;
1870	const __le32 *dword_buff;
1871
1872#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1873#define NVM_WORD2_ID(x) (x >> 12)
1874#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1875#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1876#define NVM_HEADER_0	(0x2A504C54)
1877#define NVM_HEADER_1	(0x4E564D2A)
1878#define NVM_HEADER_SIZE	(4 * sizeof(u32))
1879
1880	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1881
1882	/* Maximal size depends on NVM version */
1883	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1884		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1885	else
1886		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1887
1888	/*
1889	 * Obtain NVM image via request_firmware. Since we already used
1890	 * request_firmware_nowait() for the firmware binary load and only
1891	 * get here after that we assume the NVM request can be satisfied
1892	 * synchronously.
1893	 */
1894	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1895	if (ret) {
1896		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1897			nvm_file_name, ret);
1898		return ret;
1899	}
1900
1901	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1902		 nvm_file_name, fw_entry->size);
1903
1904	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1905		IWL_ERR(trans, "NVM file too large\n");
1906		ret = -EINVAL;
1907		goto out;
1908	}
1909
1910	eof = fw_entry->data + fw_entry->size;
1911	dword_buff = (const __le32 *)fw_entry->data;
1912
1913	/* some NVM file will contain a header.
1914	 * The header is identified by 2 dwords header as follow:
1915	 * dword[0] = 0x2A504C54
1916	 * dword[1] = 0x4E564D2A
1917	 *
1918	 * This header must be skipped when providing the NVM data to the FW.
1919	 */
1920	if (fw_entry->size > NVM_HEADER_SIZE &&
1921	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1922	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1923		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1924		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1925		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1926			 le32_to_cpu(dword_buff[3]));
1927
1928		/* nvm file validation, dword_buff[2] holds the file version */
1929		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1930		    trans->hw_rev_step == SILICON_C_STEP &&
1931		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1932			ret = -EFAULT;
1933			goto out;
1934		}
1935	} else {
1936		file_sec = (const void *)fw_entry->data;
1937	}
1938
1939	while (true) {
1940		if (file_sec->data > eof) {
1941			IWL_ERR(trans,
1942				"ERROR - NVM file too short for section header\n");
1943			ret = -EINVAL;
1944			break;
1945		}
1946
1947		/* check for EOF marker */
1948		if (!file_sec->word1 && !file_sec->word2) {
1949			ret = 0;
1950			break;
1951		}
1952
1953		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1954			section_size =
1955				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1956			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1957		} else {
1958			section_size = 2 * EXT_NVM_WORD2_LEN(
1959						le16_to_cpu(file_sec->word2));
1960			section_id = EXT_NVM_WORD1_ID(
1961						le16_to_cpu(file_sec->word1));
1962		}
1963
1964		if (section_size > max_section_size) {
1965			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1966				section_size);
1967			ret = -EINVAL;
1968			break;
1969		}
1970
1971		if (!section_size) {
1972			IWL_ERR(trans, "ERROR - section empty\n");
1973			ret = -EINVAL;
1974			break;
1975		}
1976
1977		if (file_sec->data + section_size > eof) {
1978			IWL_ERR(trans,
1979				"ERROR - NVM file too short for section (%d bytes)\n",
1980				section_size);
1981			ret = -EINVAL;
1982			break;
1983		}
1984
1985		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1986			 "Invalid NVM section ID %d\n", section_id)) {
1987			ret = -EINVAL;
1988			break;
1989		}
1990
1991		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1992		if (!temp) {
1993			ret = -ENOMEM;
1994			break;
1995		}
1996
1997		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1998
1999		kfree(nvm_sections[section_id].data);
2000		nvm_sections[section_id].data = temp;
2001		nvm_sections[section_id].length = section_size;
2002
2003		/* advance to the next section */
2004		file_sec = (const void *)(file_sec->data + section_size);
2005	}
2006out:
2007	release_firmware(fw_entry);
2008	return ret;
2009}
2010IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2011
2012struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2013				 const struct iwl_fw *fw,
2014				 u8 set_tx_ant, u8 set_rx_ant)
2015{
2016	struct iwl_nvm_get_info cmd = {};
2017	struct iwl_nvm_data *nvm;
2018	struct iwl_host_cmd hcmd = {
2019		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2020		.data = { &cmd, },
2021		.len = { sizeof(cmd) },
2022		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2023	};
2024	int  ret;
2025	bool empty_otp;
2026	u32 mac_flags;
2027	u32 sbands_flags = 0;
2028	u8 tx_ant;
2029	u8 rx_ant;
2030
2031	/*
2032	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2033	 * in v3, except for the channel profile part of the
2034	 * regulatory.  So we can just access the new struct, with the
2035	 * exception of the latter.
2036	 */
2037	struct iwl_nvm_get_info_rsp *rsp;
2038	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2039	bool v4 = fw_has_api(&fw->ucode_capa,
2040			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2041	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2042	void *channel_profile;
2043
2044	ret = iwl_trans_send_cmd(trans, &hcmd);
2045	if (ret)
2046		return ERR_PTR(ret);
2047
2048	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2049		 "Invalid payload len in NVM response from FW %d",
2050		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2051		ret = -EINVAL;
2052		goto out;
2053	}
2054
2055	rsp = (void *)hcmd.resp_pkt->data;
2056	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2057		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2058	if (empty_otp)
2059		IWL_INFO(trans, "OTP is empty\n");
2060
2061	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2062	if (!nvm) {
2063		ret = -ENOMEM;
2064		goto out;
2065	}
2066
2067	iwl_set_hw_address_from_csr(trans, nvm);
2068	/* TODO: if platform NVM has MAC address - override it here */
2069
2070	if (!is_valid_ether_addr(nvm->hw_addr)) {
2071		IWL_ERR(trans, "no valid mac address was found\n");
2072		ret = -EINVAL;
2073		goto err_free;
2074	}
2075
2076	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2077
2078	/* Initialize general data */
2079	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2080	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2081	if (nvm->n_hw_addrs == 0)
2082		IWL_WARN(trans,
2083			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2084			 empty_otp);
2085
2086	/* Initialize MAC sku data */
2087	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2088	nvm->sku_cap_11ac_enable =
2089		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2090	nvm->sku_cap_11n_enable =
2091		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2092	nvm->sku_cap_11ax_enable =
2093		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2094	nvm->sku_cap_band_24ghz_enable =
2095		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2096	nvm->sku_cap_band_52ghz_enable =
2097		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2098	nvm->sku_cap_mimo_disabled =
2099		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2100	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2101		nvm->sku_cap_11be_enable = true;
2102
2103	/* Initialize PHY sku data */
2104	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2105	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2106
2107	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2108	    fw_has_capa(&fw->ucode_capa,
2109			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2110		nvm->lar_enabled = true;
2111		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2112	}
2113
2114	rsp_v3 = (void *)rsp;
2115	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2116			  (void *)rsp_v3->regulatory.channel_profile;
2117
2118	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2119	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2120
2121	if (set_tx_ant)
2122		tx_ant &= set_tx_ant;
2123	if (set_rx_ant)
2124		rx_ant &= set_rx_ant;
2125
2126	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2127			sbands_flags, v4, fw);
2128
2129	iwl_free_resp(&hcmd);
2130	return nvm;
2131
2132err_free:
2133	kfree(nvm);
2134out:
2135	iwl_free_resp(&hcmd);
2136	return ERR_PTR(ret);
2137}
2138IWL_EXPORT_SYMBOL(iwl_get_nvm);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
   7#include <linux/types.h>
   8#include <linux/slab.h>
   9#include <linux/export.h>
  10#include <linux/etherdevice.h>
  11#include <linux/pci.h>
  12#include <linux/firmware.h>
  13
  14#include "iwl-drv.h"
  15#include "iwl-modparams.h"
  16#include "iwl-nvm-parse.h"
  17#include "iwl-prph.h"
  18#include "iwl-io.h"
  19#include "iwl-csr.h"
  20#include "fw/acpi.h"
  21#include "fw/api/nvm-reg.h"
  22#include "fw/api/commands.h"
  23#include "fw/api/cmdhdr.h"
  24#include "fw/img.h"
 
  25
  26/* NVM offsets (in words) definitions */
  27enum nvm_offsets {
  28	/* NVM HW-Section offset (in words) definitions */
  29	SUBSYSTEM_ID = 0x0A,
  30	HW_ADDR = 0x15,
  31
  32	/* NVM SW-Section offset (in words) definitions */
  33	NVM_SW_SECTION = 0x1C0,
  34	NVM_VERSION = 0,
  35	RADIO_CFG = 1,
  36	SKU = 2,
  37	N_HW_ADDRS = 3,
  38	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
  39
  40	/* NVM calibration section offset (in words) definitions */
  41	NVM_CALIB_SECTION = 0x2B8,
  42	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
  43
  44	/* NVM REGULATORY -Section offset (in words) definitions */
  45	NVM_CHANNELS_SDP = 0,
  46};
  47
  48enum ext_nvm_offsets {
  49	/* NVM HW-Section offset (in words) definitions */
  50	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
  51
  52	/* NVM SW-Section offset (in words) definitions */
  53	NVM_VERSION_EXT_NVM = 0,
  54	N_HW_ADDRS_FAMILY_8000 = 3,
  55
  56	/* NVM PHY_SKU-Section offset (in words) definitions */
  57	RADIO_CFG_FAMILY_EXT_NVM = 0,
  58	SKU_FAMILY_8000 = 2,
  59
  60	/* NVM REGULATORY -Section offset (in words) definitions */
  61	NVM_CHANNELS_EXTENDED = 0,
  62	NVM_LAR_OFFSET_OLD = 0x4C7,
  63	NVM_LAR_OFFSET = 0x507,
  64	NVM_LAR_ENABLED = 0x7,
  65};
  66
  67/* SKU Capabilities (actual values from NVM definition) */
  68enum nvm_sku_bits {
  69	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
  70	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
  71	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
  72	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
  73	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
  74};
  75
  76/*
  77 * These are the channel numbers in the order that they are stored in the NVM
  78 */
  79static const u16 iwl_nvm_channels[] = {
  80	/* 2.4 GHz */
  81	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  82	/* 5 GHz */
  83	36, 40, 44 , 48, 52, 56, 60, 64,
  84	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  85	149, 153, 157, 161, 165
  86};
  87
  88static const u16 iwl_ext_nvm_channels[] = {
  89	/* 2.4 GHz */
  90	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  91	/* 5 GHz */
  92	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
  93	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  94	149, 153, 157, 161, 165, 169, 173, 177, 181
  95};
  96
  97static const u16 iwl_uhb_nvm_channels[] = {
  98	/* 2.4 GHz */
  99	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 100	/* 5 GHz */
 101	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
 102	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 103	149, 153, 157, 161, 165, 169, 173, 177, 181,
 104	/* 6-7 GHz */
 105	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
 106	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
 107	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
 108	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
 109};
 110
 111#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
 112#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
 113#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
 114#define NUM_2GHZ_CHANNELS		14
 115#define NUM_5GHZ_CHANNELS		37
 116#define FIRST_2GHZ_HT_MINUS		5
 117#define LAST_2GHZ_HT_PLUS		9
 118#define N_HW_ADDR_MASK			0xF
 119
 120/* rate data (static) */
 121static struct ieee80211_rate iwl_cfg80211_rates[] = {
 122	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
 123	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
 124	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 125	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
 126	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 127	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
 128	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 129	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
 130	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
 131	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
 132	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
 133	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
 134	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
 135	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
 136	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
 137};
 138#define RATES_24_OFFS	0
 139#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
 140#define RATES_52_OFFS	4
 141#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
 142
 143/**
 144 * enum iwl_nvm_channel_flags - channel flags in NVM
 145 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 146 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 147 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 148 * @NVM_CHANNEL_RADAR: radar detection required
 149 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 150 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 151 *	on same channel on 2.4 or same UNII band on 5.2
 152 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 153 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 154 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 155 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 156 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 157 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
 158 */
 159enum iwl_nvm_channel_flags {
 160	NVM_CHANNEL_VALID		= BIT(0),
 161	NVM_CHANNEL_IBSS		= BIT(1),
 162	NVM_CHANNEL_ACTIVE		= BIT(3),
 163	NVM_CHANNEL_RADAR		= BIT(4),
 164	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
 165	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
 166	NVM_CHANNEL_UNIFORM		= BIT(7),
 167	NVM_CHANNEL_20MHZ		= BIT(8),
 168	NVM_CHANNEL_40MHZ		= BIT(9),
 169	NVM_CHANNEL_80MHZ		= BIT(10),
 170	NVM_CHANNEL_160MHZ		= BIT(11),
 171	NVM_CHANNEL_DC_HIGH		= BIT(12),
 172};
 173
 174/**
 175 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
 176 * domain.
 177 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 178 *	2.4Ghz band is allowed.
 179 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 180 *	5Ghz band is allowed.
 181 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 182 *	for this regulatory domain (valid only in 5Ghz).
 183 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 184 *	for this regulatory domain (valid only in 5Ghz).
 185 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 186 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 187 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 188 *	for this regulatory domain (valid only in 5Ghz).
 189 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
 190 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 191 */
 192enum iwl_reg_capa_flags {
 193	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
 194	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
 195	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
 196	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
 197	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
 198	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
 199	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
 200	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
 201	REG_CAPA_11AX_DISABLED		= BIT(10),
 202};
 203
 204/**
 205 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
 206 * domain (version 2).
 207 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
 208 *	disabled.
 209 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 210 *	2.4Ghz band is allowed.
 211 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 212 *	5Ghz band is allowed.
 213 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 214 *	for this regulatory domain (valid only in 5Ghz).
 215 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 216 *	for this regulatory domain (valid only in 5Ghz).
 217 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 218 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 219 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
 220 *	126, 122) are disabled.
 221 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
 222 *	for this regulatory domain (uvalid only in 5Ghz).
 223 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 224 */
 225enum iwl_reg_capa_flags_v2 {
 226	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
 227	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
 228	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
 229	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
 230	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
 231	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
 232	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
 233	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
 234	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
 235	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
 236};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237
 238/*
 239* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
 240* MCC update command response.
 241*/
 242#define REG_CAPA_V2_RESP_VER	6
 243
 
 
 
 
 
 244/**
 245 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
 246 * handling the different APIs of reg_capa_flags.
 247 *
 248 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
 249 *	for this regulatory domain (valid only in 5Ghz).
 250 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
 251 *	for this regulatory domain (valid only in 5Ghz).
 252 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
 253 *	for this regulatory domain (valid only in 5Ghz).
 
 
 254 * @disable_11ax: 11ax is forbidden for this regulatory domain.
 
 255 */
 256struct iwl_reg_capa {
 257	u16 allow_40mhz;
 258	u16 allow_80mhz;
 259	u16 allow_160mhz;
 260	u16 disable_11ax;
 
 
 261};
 262
 263static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
 264					       int chan, u32 flags)
 265{
 266#define CHECK_AND_PRINT_I(x)	\
 267	((flags & NVM_CHANNEL_##x) ? " " #x : "")
 268
 269	if (!(flags & NVM_CHANNEL_VALID)) {
 270		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
 271			      chan, flags);
 272		return;
 273	}
 274
 275	/* Note: already can print up to 101 characters, 110 is the limit! */
 276	IWL_DEBUG_DEV(dev, level,
 277		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
 278		      chan, flags,
 279		      CHECK_AND_PRINT_I(VALID),
 280		      CHECK_AND_PRINT_I(IBSS),
 281		      CHECK_AND_PRINT_I(ACTIVE),
 282		      CHECK_AND_PRINT_I(RADAR),
 283		      CHECK_AND_PRINT_I(INDOOR_ONLY),
 284		      CHECK_AND_PRINT_I(GO_CONCURRENT),
 285		      CHECK_AND_PRINT_I(UNIFORM),
 286		      CHECK_AND_PRINT_I(20MHZ),
 287		      CHECK_AND_PRINT_I(40MHZ),
 288		      CHECK_AND_PRINT_I(80MHZ),
 289		      CHECK_AND_PRINT_I(160MHZ),
 290		      CHECK_AND_PRINT_I(DC_HIGH));
 291#undef CHECK_AND_PRINT_I
 292}
 293
 294static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
 295				 u32 nvm_flags, const struct iwl_cfg *cfg)
 296{
 297	u32 flags = IEEE80211_CHAN_NO_HT40;
 298
 299	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
 300		if (ch_num <= LAST_2GHZ_HT_PLUS)
 301			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 302		if (ch_num >= FIRST_2GHZ_HT_MINUS)
 303			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 304	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
 305		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
 306			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 307		else
 308			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 309	}
 310	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
 311		flags |= IEEE80211_CHAN_NO_80MHZ;
 312	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
 313		flags |= IEEE80211_CHAN_NO_160MHZ;
 314
 315	if (!(nvm_flags & NVM_CHANNEL_IBSS))
 316		flags |= IEEE80211_CHAN_NO_IR;
 317
 318	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
 319		flags |= IEEE80211_CHAN_NO_IR;
 320
 321	if (nvm_flags & NVM_CHANNEL_RADAR)
 322		flags |= IEEE80211_CHAN_RADAR;
 323
 324	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
 325		flags |= IEEE80211_CHAN_INDOOR_ONLY;
 326
 327	/* Set the GO concurrent flag only in case that NO_IR is set.
 328	 * Otherwise it is meaningless
 329	 */
 330	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
 331	    (flags & IEEE80211_CHAN_NO_IR))
 332		flags |= IEEE80211_CHAN_IR_CONCURRENT;
 333
 334	return flags;
 335}
 336
 337static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
 338{
 339	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
 340		return NL80211_BAND_6GHZ;
 341	}
 342
 343	if (ch_idx >= NUM_2GHZ_CHANNELS)
 344		return NL80211_BAND_5GHZ;
 345	return NL80211_BAND_2GHZ;
 346}
 347
 348static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
 349				struct iwl_nvm_data *data,
 350				const void * const nvm_ch_flags,
 351				u32 sbands_flags, bool v4)
 352{
 353	int ch_idx;
 354	int n_channels = 0;
 355	struct ieee80211_channel *channel;
 356	u32 ch_flags;
 357	int num_of_ch;
 358	const u16 *nvm_chan;
 359
 360	if (cfg->uhb_supported) {
 361		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
 362		nvm_chan = iwl_uhb_nvm_channels;
 363	} else if (cfg->nvm_type == IWL_NVM_EXT) {
 364		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
 365		nvm_chan = iwl_ext_nvm_channels;
 366	} else {
 367		num_of_ch = IWL_NVM_NUM_CHANNELS;
 368		nvm_chan = iwl_nvm_channels;
 369	}
 370
 371	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
 372		enum nl80211_band band =
 373			iwl_nl80211_band_from_channel_idx(ch_idx);
 374
 375		if (v4)
 376			ch_flags =
 377				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
 378		else
 379			ch_flags =
 380				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
 381
 382		if (band == NL80211_BAND_5GHZ &&
 383		    !data->sku_cap_band_52ghz_enable)
 384			continue;
 385
 386		/* workaround to disable wide channels in 5GHz */
 387		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
 388		    band == NL80211_BAND_5GHZ) {
 389			ch_flags &= ~(NVM_CHANNEL_40MHZ |
 390				     NVM_CHANNEL_80MHZ |
 391				     NVM_CHANNEL_160MHZ);
 392		}
 393
 394		if (ch_flags & NVM_CHANNEL_160MHZ)
 395			data->vht160_supported = true;
 396
 397		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
 398		    !(ch_flags & NVM_CHANNEL_VALID)) {
 399			/*
 400			 * Channels might become valid later if lar is
 401			 * supported, hence we still want to add them to
 402			 * the list of supported channels to cfg80211.
 403			 */
 404			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 405						    nvm_chan[ch_idx], ch_flags);
 406			continue;
 407		}
 408
 409		channel = &data->channels[n_channels];
 410		n_channels++;
 411
 412		channel->hw_value = nvm_chan[ch_idx];
 413		channel->band = band;
 414		channel->center_freq =
 415			ieee80211_channel_to_frequency(
 416				channel->hw_value, channel->band);
 417
 418		/* Initialize regulatory-based run-time data */
 419
 420		/*
 421		 * Default value - highest tx power value.  max_power
 422		 * is not used in mvm, and is used for backwards compatibility
 423		 */
 424		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
 425
 426		/* don't put limitations in case we're using LAR */
 427		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
 428			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
 429							       ch_idx, band,
 430							       ch_flags, cfg);
 431		else
 432			channel->flags = 0;
 433
 434		/* TODO: Don't put limitations on UHB devices as we still don't
 435		 * have NVM for them
 436		 */
 437		if (cfg->uhb_supported)
 438			channel->flags = 0;
 439		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 440					    channel->hw_value, ch_flags);
 441		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
 442				 channel->hw_value, channel->max_power);
 443	}
 444
 445	return n_channels;
 446}
 447
 448static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
 449				  struct iwl_nvm_data *data,
 450				  struct ieee80211_sta_vht_cap *vht_cap,
 451				  u8 tx_chains, u8 rx_chains)
 452{
 453	const struct iwl_cfg *cfg = trans->cfg;
 454	int num_rx_ants = num_of_ant(rx_chains);
 455	int num_tx_ants = num_of_ant(tx_chains);
 456
 457	vht_cap->vht_supported = true;
 458
 459	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
 460		       IEEE80211_VHT_CAP_RXSTBC_1 |
 461		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
 462		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
 463		       IEEE80211_VHT_MAX_AMPDU_1024K <<
 464		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
 465
 
 
 
 466	if (data->vht160_supported)
 467		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
 468				IEEE80211_VHT_CAP_SHORT_GI_160;
 469
 470	if (cfg->vht_mu_mimo_supported)
 471		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
 472
 473	if (cfg->ht_params->ldpc)
 474		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
 475
 476	if (data->sku_cap_mimo_disabled) {
 477		num_rx_ants = 1;
 478		num_tx_ants = 1;
 479	}
 480
 481	if (num_tx_ants > 1)
 482		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
 483	else
 484		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
 485
 486	switch (iwlwifi_mod_params.amsdu_size) {
 487	case IWL_AMSDU_DEF:
 488		if (trans->trans_cfg->mq_rx_supported)
 489			vht_cap->cap |=
 490				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 491		else
 492			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 493		break;
 494	case IWL_AMSDU_2K:
 495		if (trans->trans_cfg->mq_rx_supported)
 496			vht_cap->cap |=
 497				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 498		else
 499			WARN(1, "RB size of 2K is not supported by this device\n");
 500		break;
 501	case IWL_AMSDU_4K:
 502		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 503		break;
 504	case IWL_AMSDU_8K:
 505		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
 506		break;
 507	case IWL_AMSDU_12K:
 508		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 509		break;
 510	default:
 511		break;
 512	}
 513
 514	vht_cap->vht_mcs.rx_mcs_map =
 515		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
 516			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
 517			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
 518			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
 519			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
 520			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
 521			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
 522			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
 523
 524	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
 525		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
 526		/* this works because NOT_SUPPORTED == 3 */
 527		vht_cap->vht_mcs.rx_mcs_map |=
 528			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
 529	}
 530
 531	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
 532
 533	vht_cap->vht_mcs.tx_highest |=
 534		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
 535}
 536
 537static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
 
 
 
 
 
 
 
 
 
 
 
 538	{
 539		.types_mask = BIT(NL80211_IFTYPE_STATION),
 540		.he_cap = {
 541			.has_he = true,
 542			.he_cap_elem = {
 543				.mac_cap_info[0] =
 544					IEEE80211_HE_MAC_CAP0_HTC_HE |
 545					IEEE80211_HE_MAC_CAP0_TWT_REQ,
 546				.mac_cap_info[1] =
 547					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 548					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 549				.mac_cap_info[2] =
 550					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
 551				.mac_cap_info[3] =
 552					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
 
 553				.mac_cap_info[4] =
 554					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
 555					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
 556				.mac_cap_info[5] =
 557					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
 558					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
 559					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
 560					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
 561					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
 562				.phy_cap_info[0] =
 563					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
 564					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
 565					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
 566				.phy_cap_info[1] =
 567					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
 568					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
 569					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 570				.phy_cap_info[2] =
 571					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 
 572				.phy_cap_info[3] =
 573					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
 574					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 575					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
 576					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 577				.phy_cap_info[4] =
 578					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
 579					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
 580					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
 581				.phy_cap_info[6] =
 582					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
 583					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
 584					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 585				.phy_cap_info[7] =
 586					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
 587					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 588				.phy_cap_info[8] =
 589					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 590					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
 591					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
 592					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
 593					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 594				.phy_cap_info[9] =
 595					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
 596					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
 597					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
 
 
 
 598			},
 599			/*
 600			 * Set default Tx/Rx HE MCS NSS Support field.
 601			 * Indicate support for up to 2 spatial streams and all
 602			 * MCS, without any special cases
 603			 */
 604			.he_mcs_nss_supp = {
 605				.rx_mcs_80 = cpu_to_le16(0xfffa),
 606				.tx_mcs_80 = cpu_to_le16(0xfffa),
 607				.rx_mcs_160 = cpu_to_le16(0xfffa),
 608				.tx_mcs_160 = cpu_to_le16(0xfffa),
 609				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 610				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 611			},
 612			/*
 613			 * Set default PPE thresholds, with PPET16 set to 0,
 614			 * PPET8 set to 7
 615			 */
 616			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 617		},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618	},
 619	{
 620		.types_mask = BIT(NL80211_IFTYPE_AP),
 621		.he_cap = {
 622			.has_he = true,
 623			.he_cap_elem = {
 624				.mac_cap_info[0] =
 625					IEEE80211_HE_MAC_CAP0_HTC_HE,
 626				.mac_cap_info[1] =
 627					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 628					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 629				.mac_cap_info[3] =
 630					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
 631				.phy_cap_info[0] =
 632					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
 633					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
 634				.phy_cap_info[1] =
 635					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 636				.phy_cap_info[2] =
 
 637					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 638				.phy_cap_info[3] =
 639					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
 640					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 641					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
 642					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 643				.phy_cap_info[6] =
 644					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 645				.phy_cap_info[7] =
 646					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 647				.phy_cap_info[8] =
 648					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 649					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 650				.phy_cap_info[9] =
 651					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
 
 652			},
 653			/*
 654			 * Set default Tx/Rx HE MCS NSS Support field.
 655			 * Indicate support for up to 2 spatial streams and all
 656			 * MCS, without any special cases
 657			 */
 658			.he_mcs_nss_supp = {
 659				.rx_mcs_80 = cpu_to_le16(0xfffa),
 660				.tx_mcs_80 = cpu_to_le16(0xfffa),
 661				.rx_mcs_160 = cpu_to_le16(0xfffa),
 662				.tx_mcs_160 = cpu_to_le16(0xfffa),
 663				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 664				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 665			},
 666			/*
 667			 * Set default PPE thresholds, with PPET16 set to 0,
 668			 * PPET8 set to 7
 669			 */
 670			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 671		},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	},
 673};
 674
 675static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
 676				  struct iwl_nvm_data *data,
 677				  struct ieee80211_supported_band *sband,
 678				  u8 tx_chains, u8 rx_chains)
 679{
 680	struct ieee80211_sta_ht_cap ht_cap;
 681	struct ieee80211_sta_vht_cap vht_cap = {};
 682	struct ieee80211_sband_iftype_data *iftype_data;
 683	u16 he_6ghz_capa = 0;
 684	u32 exp;
 685	int i;
 686
 687	if (sband->band != NL80211_BAND_6GHZ)
 688		return;
 689
 690	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
 691	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
 692			     tx_chains, rx_chains);
 693	WARN_ON(!ht_cap.ht_supported);
 694	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
 695	WARN_ON(!vht_cap.vht_supported);
 696
 697	he_6ghz_capa |=
 698		u16_encode_bits(ht_cap.ampdu_density,
 699				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
 700	exp = u32_get_bits(vht_cap.cap,
 701			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
 702	he_6ghz_capa |=
 703		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
 704	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
 705	he_6ghz_capa |=
 706		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
 707	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
 708	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
 709		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
 710	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
 711		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
 712
 713	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
 714
 715	/* we know it's writable - we set it before ourselves */
 716	iftype_data = (void *)sband->iftype_data;
 717	for (i = 0; i < sband->n_iftype_data; i++)
 718		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
 719}
 720
 721static void
 722iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
 
 723			 struct ieee80211_supported_band *sband,
 724			 struct ieee80211_sband_iftype_data *iftype_data,
 725			 u8 tx_chains, u8 rx_chains,
 726			 const struct iwl_fw *fw)
 727{
 728	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
 
 
 
 
 
 
 
 729
 730	/* Advertise an A-MPDU exponent extension based on
 731	 * operating band
 732	 */
 733	if (sband->band != NL80211_BAND_2GHZ)
 
 
 
 734		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 735			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
 736	else
 737		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 738			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
 739
 740	if (is_ap && iwlwifi_mod_params.nvm_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 
 742			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
 
 
 
 
 
 743
 744	if ((tx_chains & rx_chains) == ANT_AB) {
 
 
 745		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
 746			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
 747			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
 748		if (!is_ap)
 749			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 750				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
 751	} else if (!is_ap) {
 752		/* If not 2x2, we need to indicate 1x1 in the
 753		 * Midamble RX Max NSTS - but not for AP mode
 754		 */
 755		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
 756			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
 757		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
 758			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
 759		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 760			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
 761	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
 764	case IWL_CFG_RF_TYPE_GF:
 765	case IWL_CFG_RF_TYPE_MR:
 
 
 
 766		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
 767			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
 768		if (!is_ap)
 769			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
 770				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
 771		break;
 772	}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
 775		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
 776			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 777}
 778
 779static void iwl_init_he_hw_capab(struct iwl_trans *trans,
 780				 struct iwl_nvm_data *data,
 781				 struct ieee80211_supported_band *sband,
 782				 u8 tx_chains, u8 rx_chains,
 783				 const struct iwl_fw *fw)
 784{
 785	struct ieee80211_sband_iftype_data *iftype_data;
 786	int i;
 787
 788	/* should only initialize once */
 789	if (WARN_ON(sband->iftype_data))
 790		return;
 791
 792	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
 793	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
 794
 795	switch (sband->band) {
 796	case NL80211_BAND_2GHZ:
 797		iftype_data = data->iftd.low;
 798		break;
 799	case NL80211_BAND_5GHZ:
 
 
 800	case NL80211_BAND_6GHZ:
 801		iftype_data = data->iftd.high;
 802		break;
 803	default:
 804		WARN_ON(1);
 805		return;
 806	}
 807
 808	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
 809
 810	sband->iftype_data = iftype_data;
 811	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
 812
 813	for (i = 0; i < sband->n_iftype_data; i++)
 814		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
 815					 tx_chains, rx_chains, fw);
 816
 817	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
 818}
 819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820static void iwl_init_sbands(struct iwl_trans *trans,
 821			    struct iwl_nvm_data *data,
 822			    const void *nvm_ch_flags, u8 tx_chains,
 823			    u8 rx_chains, u32 sbands_flags, bool v4,
 824			    const struct iwl_fw *fw)
 825{
 826	struct device *dev = trans->dev;
 827	const struct iwl_cfg *cfg = trans->cfg;
 828	int n_channels;
 829	int n_used = 0;
 830	struct ieee80211_supported_band *sband;
 831
 832	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
 833					  sbands_flags, v4);
 834	sband = &data->bands[NL80211_BAND_2GHZ];
 835	sband->band = NL80211_BAND_2GHZ;
 836	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
 837	sband->n_bitrates = N_RATES_24;
 838	n_used += iwl_init_sband_channels(data, sband, n_channels,
 839					  NL80211_BAND_2GHZ);
 840	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
 841			     tx_chains, rx_chains);
 842
 843	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
 844		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
 845				     fw);
 846
 847	sband = &data->bands[NL80211_BAND_5GHZ];
 848	sband->band = NL80211_BAND_5GHZ;
 849	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
 850	sband->n_bitrates = N_RATES_52;
 851	n_used += iwl_init_sband_channels(data, sband, n_channels,
 852					  NL80211_BAND_5GHZ);
 853	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
 854			     tx_chains, rx_chains);
 855	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
 856		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
 857				      tx_chains, rx_chains);
 858
 859	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
 860		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
 861				     fw);
 862
 863	/* 6GHz band. */
 864	sband = &data->bands[NL80211_BAND_6GHZ];
 865	sband->band = NL80211_BAND_6GHZ;
 866	/* use the same rates as 5GHz band */
 867	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
 868	sband->n_bitrates = N_RATES_52;
 869	n_used += iwl_init_sband_channels(data, sband, n_channels,
 870					  NL80211_BAND_6GHZ);
 871
 872	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
 873		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
 874				     fw);
 875	else
 876		sband->n_channels = 0;
 877	if (n_channels != n_used)
 878		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
 879			    n_used, n_channels);
 880}
 881
 882static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
 883		       const __le16 *phy_sku)
 884{
 885	if (cfg->nvm_type != IWL_NVM_EXT)
 886		return le16_to_cpup(nvm_sw + SKU);
 887
 888	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
 889}
 890
 891static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
 892{
 893	if (cfg->nvm_type != IWL_NVM_EXT)
 894		return le16_to_cpup(nvm_sw + NVM_VERSION);
 895	else
 896		return le32_to_cpup((__le32 *)(nvm_sw +
 897					       NVM_VERSION_EXT_NVM));
 898}
 899
 900static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
 901			     const __le16 *phy_sku)
 902{
 903	if (cfg->nvm_type != IWL_NVM_EXT)
 904		return le16_to_cpup(nvm_sw + RADIO_CFG);
 905
 906	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
 907
 908}
 909
 910static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
 911{
 912	int n_hw_addr;
 913
 914	if (cfg->nvm_type != IWL_NVM_EXT)
 915		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
 916
 917	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
 918
 919	return n_hw_addr & N_HW_ADDR_MASK;
 920}
 921
 922static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
 923			      struct iwl_nvm_data *data,
 924			      u32 radio_cfg)
 925{
 926	if (cfg->nvm_type != IWL_NVM_EXT) {
 927		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
 928		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
 929		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
 930		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
 931		return;
 932	}
 933
 934	/* set the radio configuration for family 8000 */
 935	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
 936	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
 937	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
 938	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
 939	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
 940	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
 941}
 942
 943static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
 944{
 945	const u8 *hw_addr;
 946
 947	hw_addr = (const u8 *)&mac_addr0;
 948	dest[0] = hw_addr[3];
 949	dest[1] = hw_addr[2];
 950	dest[2] = hw_addr[1];
 951	dest[3] = hw_addr[0];
 952
 953	hw_addr = (const u8 *)&mac_addr1;
 954	dest[4] = hw_addr[1];
 955	dest[5] = hw_addr[0];
 956}
 957
 958static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
 959					struct iwl_nvm_data *data)
 960{
 961	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
 962	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
 
 
 963
 964	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
 965	/*
 966	 * If the OEM fused a valid address, use it instead of the one in the
 967	 * OTP
 968	 */
 969	if (is_valid_ether_addr(data->hw_addr))
 970		return;
 971
 972	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
 973	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
 974
 975	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
 976}
 977
 978static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
 979					   const struct iwl_cfg *cfg,
 980					   struct iwl_nvm_data *data,
 981					   const __le16 *mac_override,
 982					   const __be16 *nvm_hw)
 983{
 984	const u8 *hw_addr;
 985
 986	if (mac_override) {
 987		static const u8 reserved_mac[] = {
 988			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
 989		};
 990
 991		hw_addr = (const u8 *)(mac_override +
 992				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
 993
 994		/*
 995		 * Store the MAC address from MAO section.
 996		 * No byte swapping is required in MAO section
 997		 */
 998		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
 999
1000		/*
1001		 * Force the use of the OTP MAC address in case of reserved MAC
1002		 * address in the NVM, or if address is given but invalid.
1003		 */
1004		if (is_valid_ether_addr(data->hw_addr) &&
1005		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1006			return;
1007
1008		IWL_ERR(trans,
1009			"mac address from nvm override section is not valid\n");
1010	}
1011
1012	if (nvm_hw) {
1013		/* read the mac address from WFMP registers */
1014		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1015						WFMP_MAC_ADDR_0));
1016		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1017						WFMP_MAC_ADDR_1));
1018
1019		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1020
1021		return;
1022	}
1023
1024	IWL_ERR(trans, "mac address is not found\n");
1025}
1026
1027static int iwl_set_hw_address(struct iwl_trans *trans,
1028			      const struct iwl_cfg *cfg,
1029			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1030			      const __le16 *mac_override)
1031{
1032	if (cfg->mac_addr_from_csr) {
1033		iwl_set_hw_address_from_csr(trans, data);
1034	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1035		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1036
1037		/* The byte order is little endian 16 bit, meaning 214365 */
1038		data->hw_addr[0] = hw_addr[1];
1039		data->hw_addr[1] = hw_addr[0];
1040		data->hw_addr[2] = hw_addr[3];
1041		data->hw_addr[3] = hw_addr[2];
1042		data->hw_addr[4] = hw_addr[5];
1043		data->hw_addr[5] = hw_addr[4];
1044	} else {
1045		iwl_set_hw_address_family_8000(trans, cfg, data,
1046					       mac_override, nvm_hw);
1047	}
1048
1049	if (!is_valid_ether_addr(data->hw_addr)) {
1050		IWL_ERR(trans, "no valid mac address was found\n");
1051		return -EINVAL;
1052	}
1053
1054	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
 
 
1055
1056	return 0;
1057}
1058
1059static bool
1060iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1061			const __be16 *nvm_hw)
1062{
1063	/*
1064	 * Workaround a bug in Indonesia SKUs where the regulatory in
1065	 * some 7000-family OTPs erroneously allow wide channels in
1066	 * 5GHz.  To check for Indonesia, we take the SKU value from
1067	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1068	 * 9.  In those cases, we need to force-disable wide channels
1069	 * in 5GHz otherwise the FW will throw a sysassert when we try
1070	 * to use them.
1071	 */
1072	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1073		/*
1074		 * Unlike the other sections in the NVM, the hw
1075		 * section uses big-endian.
1076		 */
1077		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1078		u8 sku = (subsystem_id & 0x1e) >> 1;
1079
1080		if (sku == 5 || sku == 9) {
1081			IWL_DEBUG_EEPROM(trans->dev,
1082					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1083					 subsystem_id, sku);
1084			return true;
1085		}
1086	}
1087
1088	return false;
1089}
1090
1091struct iwl_nvm_data *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1093		   const struct iwl_fw *fw,
1094		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1095		   const __le16 *nvm_calib, const __le16 *regulatory,
1096		   const __le16 *mac_override, const __le16 *phy_sku,
1097		   u8 tx_chains, u8 rx_chains)
1098{
1099	struct iwl_nvm_data *data;
1100	bool lar_enabled;
1101	u32 sku, radio_cfg;
1102	u32 sbands_flags = 0;
1103	u16 lar_config;
1104	const __le16 *ch_section;
1105
1106	if (cfg->uhb_supported)
1107		data = kzalloc(struct_size(data, channels,
1108					   IWL_NVM_NUM_CHANNELS_UHB),
1109					   GFP_KERNEL);
1110	else if (cfg->nvm_type != IWL_NVM_EXT)
1111		data = kzalloc(struct_size(data, channels,
1112					   IWL_NVM_NUM_CHANNELS),
1113					   GFP_KERNEL);
1114	else
1115		data = kzalloc(struct_size(data, channels,
1116					   IWL_NVM_NUM_CHANNELS_EXT),
1117					   GFP_KERNEL);
1118	if (!data)
1119		return NULL;
1120
1121	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1122
1123	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1124	iwl_set_radio_cfg(cfg, data, radio_cfg);
1125	if (data->valid_tx_ant)
1126		tx_chains &= data->valid_tx_ant;
1127	if (data->valid_rx_ant)
1128		rx_chains &= data->valid_rx_ant;
1129
1130	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1131	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1132	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1133	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1134	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1135		data->sku_cap_11n_enable = false;
1136	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1137				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1138	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1139
1140	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1141
1142	if (cfg->nvm_type != IWL_NVM_EXT) {
1143		/* Checking for required sections */
1144		if (!nvm_calib) {
1145			IWL_ERR(trans,
1146				"Can't parse empty Calib NVM sections\n");
1147			kfree(data);
1148			return NULL;
1149		}
1150
1151		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1152			     &regulatory[NVM_CHANNELS_SDP] :
1153			     &nvm_sw[NVM_CHANNELS];
1154
1155		/* in family 8000 Xtal calibration values moved to OTP */
1156		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1157		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1158		lar_enabled = true;
1159	} else {
1160		u16 lar_offset = data->nvm_version < 0xE39 ?
1161				 NVM_LAR_OFFSET_OLD :
1162				 NVM_LAR_OFFSET;
1163
1164		lar_config = le16_to_cpup(regulatory + lar_offset);
1165		data->lar_enabled = !!(lar_config &
1166				       NVM_LAR_ENABLED);
1167		lar_enabled = data->lar_enabled;
1168		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1169	}
1170
1171	/* If no valid mac address was found - bail out */
1172	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1173		kfree(data);
1174		return NULL;
1175	}
1176
1177	if (lar_enabled &&
1178	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1179		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1180
1181	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1182		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1183
1184	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1185			sbands_flags, false, fw);
1186	data->calib_version = 255;
1187
1188	return data;
1189}
1190IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1191
1192static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1193				       int ch_idx, u16 nvm_flags,
1194				       struct iwl_reg_capa reg_capa,
1195				       const struct iwl_cfg *cfg)
1196{
1197	u32 flags = NL80211_RRF_NO_HT40;
1198
1199	if (ch_idx < NUM_2GHZ_CHANNELS &&
1200	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1201		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1202			flags &= ~NL80211_RRF_NO_HT40PLUS;
1203		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1204			flags &= ~NL80211_RRF_NO_HT40MINUS;
1205	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1206		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1207			flags &= ~NL80211_RRF_NO_HT40PLUS;
1208		else
1209			flags &= ~NL80211_RRF_NO_HT40MINUS;
1210	}
1211
1212	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1213		flags |= NL80211_RRF_NO_80MHZ;
1214	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1215		flags |= NL80211_RRF_NO_160MHZ;
1216
1217	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1218		flags |= NL80211_RRF_NO_IR;
1219
1220	if (nvm_flags & NVM_CHANNEL_RADAR)
1221		flags |= NL80211_RRF_DFS;
1222
1223	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1224		flags |= NL80211_RRF_NO_OUTDOOR;
1225
1226	/* Set the GO concurrent flag only in case that NO_IR is set.
1227	 * Otherwise it is meaningless
1228	 */
1229	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1230	    (flags & NL80211_RRF_NO_IR))
1231		flags |= NL80211_RRF_GO_CONCURRENT;
1232
 
 
 
 
 
 
 
1233	/*
1234	 * reg_capa is per regulatory domain so apply it for every channel
1235	 */
1236	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1237		if (!reg_capa.allow_40mhz)
1238			flags |= NL80211_RRF_NO_HT40;
1239
1240		if (!reg_capa.allow_80mhz)
1241			flags |= NL80211_RRF_NO_80MHZ;
1242
1243		if (!reg_capa.allow_160mhz)
1244			flags |= NL80211_RRF_NO_160MHZ;
 
 
 
1245	}
 
1246	if (reg_capa.disable_11ax)
1247		flags |= NL80211_RRF_NO_HE;
1248
 
 
 
1249	return flags;
1250}
1251
1252static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1253{
1254	struct iwl_reg_capa reg_capa;
1255
1256	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
 
 
 
 
 
 
 
1257		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1258		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1259		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1260		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1261	} else {
1262		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1263		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1264		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1265		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1266	}
1267	return reg_capa;
1268}
1269
1270struct ieee80211_regdomain *
1271iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1272		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1273		       u16 geo_info, u16 cap, u8 resp_ver)
1274{
1275	int ch_idx;
1276	u16 ch_flags;
1277	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1278	const u16 *nvm_chan;
1279	struct ieee80211_regdomain *regd, *copy_rd;
1280	struct ieee80211_reg_rule *rule;
1281	enum nl80211_band band;
1282	int center_freq, prev_center_freq = 0;
1283	int valid_rules = 0;
1284	bool new_rule;
1285	int max_num_ch;
1286	struct iwl_reg_capa reg_capa;
1287
1288	if (cfg->uhb_supported) {
1289		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1290		nvm_chan = iwl_uhb_nvm_channels;
1291	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1292		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1293		nvm_chan = iwl_ext_nvm_channels;
1294	} else {
1295		max_num_ch = IWL_NVM_NUM_CHANNELS;
1296		nvm_chan = iwl_nvm_channels;
1297	}
1298
1299	if (WARN_ON(num_of_ch > max_num_ch))
 
 
 
1300		num_of_ch = max_num_ch;
 
1301
1302	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1303		return ERR_PTR(-EINVAL);
1304
1305	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1306		      num_of_ch);
1307
1308	/* build a regdomain rule for every valid channel */
1309	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1310	if (!regd)
1311		return ERR_PTR(-ENOMEM);
1312
1313	/* set alpha2 from FW. */
1314	regd->alpha2[0] = fw_mcc >> 8;
1315	regd->alpha2[1] = fw_mcc & 0xff;
1316
1317	/* parse regulatory capability flags */
1318	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1319
1320	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1321		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1322		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1323		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1324							     band);
1325		new_rule = false;
1326
1327		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1328			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1329						    nvm_chan[ch_idx], ch_flags);
1330			continue;
1331		}
1332
1333		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1334							     ch_flags, reg_capa,
1335							     cfg);
1336
1337		/* we can't continue the same rule */
1338		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1339		    center_freq - prev_center_freq > 20) {
1340			valid_rules++;
1341			new_rule = true;
1342		}
1343
1344		rule = &regd->reg_rules[valid_rules - 1];
1345
1346		if (new_rule)
1347			rule->freq_range.start_freq_khz =
1348						MHZ_TO_KHZ(center_freq - 10);
1349
1350		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1351
1352		/* this doesn't matter - not used by FW */
1353		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1354		rule->power_rule.max_eirp =
1355			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1356
1357		rule->flags = reg_rule_flags;
1358
1359		/* rely on auto-calculation to merge BW of contiguous chans */
1360		rule->flags |= NL80211_RRF_AUTO_BW;
1361		rule->freq_range.max_bandwidth_khz = 0;
1362
1363		prev_center_freq = center_freq;
1364		prev_reg_rule_flags = reg_rule_flags;
1365
1366		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1367					    nvm_chan[ch_idx], ch_flags);
1368
1369		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1370		    band == NL80211_BAND_2GHZ)
1371			continue;
1372
1373		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1374	}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376	regd->n_reg_rules = valid_rules;
1377
1378	/*
1379	 * Narrow down regdom for unused regulatory rules to prevent hole
1380	 * between reg rules to wmm rules.
1381	 */
1382	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1383			  GFP_KERNEL);
1384	if (!copy_rd)
1385		copy_rd = ERR_PTR(-ENOMEM);
1386
1387	kfree(regd);
1388	return copy_rd;
1389}
1390IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1391
1392#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1393#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1394#define MAX_NVM_FILE_LEN	16384
1395
1396void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1397		    unsigned int len)
1398{
1399#define IWL_4165_DEVICE_ID	0x5501
1400#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1401
1402	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1403	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1404	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1405		/* OTP 0x52 bug work around: it's a 1x1 device */
1406		data[3] = ANT_B | (ANT_B << 4);
1407}
1408IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1409
1410/*
1411 * Reads external NVM from a file into mvm->nvm_sections
1412 *
1413 * HOW TO CREATE THE NVM FILE FORMAT:
1414 * ------------------------------
1415 * 1. create hex file, format:
1416 *      3800 -> header
1417 *      0000 -> header
1418 *      5a40 -> data
1419 *
1420 *   rev - 6 bit (word1)
1421 *   len - 10 bit (word1)
1422 *   id - 4 bit (word2)
1423 *   rsv - 12 bit (word2)
1424 *
1425 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1426 *
1427 * 3. create binary file from the hex file
1428 *
1429 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1430 */
1431int iwl_read_external_nvm(struct iwl_trans *trans,
1432			  const char *nvm_file_name,
1433			  struct iwl_nvm_section *nvm_sections)
1434{
1435	int ret, section_size;
1436	u16 section_id;
1437	const struct firmware *fw_entry;
1438	const struct {
1439		__le16 word1;
1440		__le16 word2;
1441		u8 data[];
1442	} *file_sec;
1443	const u8 *eof;
1444	u8 *temp;
1445	int max_section_size;
1446	const __le32 *dword_buff;
1447
1448#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1449#define NVM_WORD2_ID(x) (x >> 12)
1450#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1451#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1452#define NVM_HEADER_0	(0x2A504C54)
1453#define NVM_HEADER_1	(0x4E564D2A)
1454#define NVM_HEADER_SIZE	(4 * sizeof(u32))
1455
1456	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1457
1458	/* Maximal size depends on NVM version */
1459	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1460		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1461	else
1462		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1463
1464	/*
1465	 * Obtain NVM image via request_firmware. Since we already used
1466	 * request_firmware_nowait() for the firmware binary load and only
1467	 * get here after that we assume the NVM request can be satisfied
1468	 * synchronously.
1469	 */
1470	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1471	if (ret) {
1472		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1473			nvm_file_name, ret);
1474		return ret;
1475	}
1476
1477	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1478		 nvm_file_name, fw_entry->size);
1479
1480	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1481		IWL_ERR(trans, "NVM file too large\n");
1482		ret = -EINVAL;
1483		goto out;
1484	}
1485
1486	eof = fw_entry->data + fw_entry->size;
1487	dword_buff = (__le32 *)fw_entry->data;
1488
1489	/* some NVM file will contain a header.
1490	 * The header is identified by 2 dwords header as follow:
1491	 * dword[0] = 0x2A504C54
1492	 * dword[1] = 0x4E564D2A
1493	 *
1494	 * This header must be skipped when providing the NVM data to the FW.
1495	 */
1496	if (fw_entry->size > NVM_HEADER_SIZE &&
1497	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1498	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1499		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1500		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1501		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1502			 le32_to_cpu(dword_buff[3]));
1503
1504		/* nvm file validation, dword_buff[2] holds the file version */
1505		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1506		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1507		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1508			ret = -EFAULT;
1509			goto out;
1510		}
1511	} else {
1512		file_sec = (void *)fw_entry->data;
1513	}
1514
1515	while (true) {
1516		if (file_sec->data > eof) {
1517			IWL_ERR(trans,
1518				"ERROR - NVM file too short for section header\n");
1519			ret = -EINVAL;
1520			break;
1521		}
1522
1523		/* check for EOF marker */
1524		if (!file_sec->word1 && !file_sec->word2) {
1525			ret = 0;
1526			break;
1527		}
1528
1529		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1530			section_size =
1531				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1532			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1533		} else {
1534			section_size = 2 * EXT_NVM_WORD2_LEN(
1535						le16_to_cpu(file_sec->word2));
1536			section_id = EXT_NVM_WORD1_ID(
1537						le16_to_cpu(file_sec->word1));
1538		}
1539
1540		if (section_size > max_section_size) {
1541			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1542				section_size);
1543			ret = -EINVAL;
1544			break;
1545		}
1546
1547		if (!section_size) {
1548			IWL_ERR(trans, "ERROR - section empty\n");
1549			ret = -EINVAL;
1550			break;
1551		}
1552
1553		if (file_sec->data + section_size > eof) {
1554			IWL_ERR(trans,
1555				"ERROR - NVM file too short for section (%d bytes)\n",
1556				section_size);
1557			ret = -EINVAL;
1558			break;
1559		}
1560
1561		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1562			 "Invalid NVM section ID %d\n", section_id)) {
1563			ret = -EINVAL;
1564			break;
1565		}
1566
1567		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1568		if (!temp) {
1569			ret = -ENOMEM;
1570			break;
1571		}
1572
1573		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1574
1575		kfree(nvm_sections[section_id].data);
1576		nvm_sections[section_id].data = temp;
1577		nvm_sections[section_id].length = section_size;
1578
1579		/* advance to the next section */
1580		file_sec = (void *)(file_sec->data + section_size);
1581	}
1582out:
1583	release_firmware(fw_entry);
1584	return ret;
1585}
1586IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1587
1588struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1589				 const struct iwl_fw *fw)
 
1590{
1591	struct iwl_nvm_get_info cmd = {};
1592	struct iwl_nvm_data *nvm;
1593	struct iwl_host_cmd hcmd = {
1594		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1595		.data = { &cmd, },
1596		.len = { sizeof(cmd) },
1597		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1598	};
1599	int  ret;
1600	bool empty_otp;
1601	u32 mac_flags;
1602	u32 sbands_flags = 0;
 
 
 
1603	/*
1604	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1605	 * in v3, except for the channel profile part of the
1606	 * regulatory.  So we can just access the new struct, with the
1607	 * exception of the latter.
1608	 */
1609	struct iwl_nvm_get_info_rsp *rsp;
1610	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1611	bool v4 = fw_has_api(&fw->ucode_capa,
1612			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1613	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1614	void *channel_profile;
1615
1616	ret = iwl_trans_send_cmd(trans, &hcmd);
1617	if (ret)
1618		return ERR_PTR(ret);
1619
1620	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1621		 "Invalid payload len in NVM response from FW %d",
1622		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1623		ret = -EINVAL;
1624		goto out;
1625	}
1626
1627	rsp = (void *)hcmd.resp_pkt->data;
1628	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1629		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1630	if (empty_otp)
1631		IWL_INFO(trans, "OTP is empty\n");
1632
1633	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1634	if (!nvm) {
1635		ret = -ENOMEM;
1636		goto out;
1637	}
1638
1639	iwl_set_hw_address_from_csr(trans, nvm);
1640	/* TODO: if platform NVM has MAC address - override it here */
1641
1642	if (!is_valid_ether_addr(nvm->hw_addr)) {
1643		IWL_ERR(trans, "no valid mac address was found\n");
1644		ret = -EINVAL;
1645		goto err_free;
1646	}
1647
1648	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1649
1650	/* Initialize general data */
1651	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1652	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1653	if (nvm->n_hw_addrs == 0)
1654		IWL_WARN(trans,
1655			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1656			 empty_otp);
1657
1658	/* Initialize MAC sku data */
1659	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1660	nvm->sku_cap_11ac_enable =
1661		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1662	nvm->sku_cap_11n_enable =
1663		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1664	nvm->sku_cap_11ax_enable =
1665		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1666	nvm->sku_cap_band_24ghz_enable =
1667		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1668	nvm->sku_cap_band_52ghz_enable =
1669		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1670	nvm->sku_cap_mimo_disabled =
1671		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
 
 
1672
1673	/* Initialize PHY sku data */
1674	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1675	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1676
1677	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1678	    fw_has_capa(&fw->ucode_capa,
1679			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1680		nvm->lar_enabled = true;
1681		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1682	}
1683
1684	rsp_v3 = (void *)rsp;
1685	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1686			  (void *)rsp_v3->regulatory.channel_profile;
1687
1688	iwl_init_sbands(trans, nvm,
1689			channel_profile,
1690			nvm->valid_tx_ant & fw->valid_tx_ant,
1691			nvm->valid_rx_ant & fw->valid_rx_ant,
 
 
 
 
 
1692			sbands_flags, v4, fw);
1693
1694	iwl_free_resp(&hcmd);
1695	return nvm;
1696
1697err_free:
1698	kfree(nvm);
1699out:
1700	iwl_free_resp(&hcmd);
1701	return ERR_PTR(ret);
1702}
1703IWL_EXPORT_SYMBOL(iwl_get_nvm);