Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326	case e1000_pch_nvp:
 327		if (e1000_phy_is_accessible_pchlan(hw))
 328			break;
 329
 330		/* Before toggling LANPHYPC, see if PHY is accessible by
 331		 * forcing MAC to SMBus mode first.
 332		 */
 333		mac_reg = er32(CTRL_EXT);
 334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 335		ew32(CTRL_EXT, mac_reg);
 336
 337		/* Wait 50 milliseconds for MAC to finish any retries
 338		 * that it might be trying to perform from previous
 339		 * attempts to acknowledge any phy read requests.
 340		 */
 341		msleep(50);
 342
 343		fallthrough;
 344	case e1000_pch2lan:
 345		if (e1000_phy_is_accessible_pchlan(hw))
 346			break;
 347
 348		fallthrough;
 349	case e1000_pchlan:
 350		if ((hw->mac.type == e1000_pchlan) &&
 351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 352			break;
 353
 354		if (hw->phy.ops.check_reset_block(hw)) {
 355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 356			ret_val = -E1000_ERR_PHY;
 357			break;
 358		}
 359
 360		/* Toggle LANPHYPC Value bit */
 361		e1000_toggle_lanphypc_pch_lpt(hw);
 362		if (hw->mac.type >= e1000_pch_lpt) {
 363			if (e1000_phy_is_accessible_pchlan(hw))
 364				break;
 365
 366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 367			 * so ensure that the MAC is also out of SMBus mode
 368			 */
 369			mac_reg = er32(CTRL_EXT);
 370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 371			ew32(CTRL_EXT, mac_reg);
 372
 373			if (e1000_phy_is_accessible_pchlan(hw))
 374				break;
 375
 376			ret_val = -E1000_ERR_PHY;
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382
 383	hw->phy.ops.release(hw);
 384	if (!ret_val) {
 385
 386		/* Check to see if able to reset PHY.  Print error if not */
 387		if (hw->phy.ops.check_reset_block(hw)) {
 388			e_err("Reset blocked by ME\n");
 389			goto out;
 390		}
 391
 392		/* Reset the PHY before any access to it.  Doing so, ensures
 393		 * that the PHY is in a known good state before we read/write
 394		 * PHY registers.  The generic reset is sufficient here,
 395		 * because we haven't determined the PHY type yet.
 396		 */
 397		ret_val = e1000e_phy_hw_reset_generic(hw);
 398		if (ret_val)
 399			goto out;
 400
 401		/* On a successful reset, possibly need to wait for the PHY
 402		 * to quiesce to an accessible state before returning control
 403		 * to the calling function.  If the PHY does not quiesce, then
 404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 405		 *  the PHY is in.
 406		 */
 407		ret_val = hw->phy.ops.check_reset_block(hw);
 408		if (ret_val)
 409			e_err("ME blocked access to PHY after reset\n");
 410	}
 411
 412out:
 413	/* Ungate automatic PHY configuration on non-managed 82579 */
 414	if ((hw->mac.type == e1000_pch2lan) &&
 415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 416		usleep_range(10000, 11000);
 417		e1000_gate_hw_phy_config_ich8lan(hw, false);
 418	}
 419
 420	return ret_val;
 421}
 422
 423/**
 424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Initialize family-specific PHY parameters and function pointers.
 428 **/
 429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433
 434	phy->addr = 1;
 435	phy->reset_delay_us = 100;
 436
 437	phy->ops.set_page = e1000_set_page_igp;
 438	phy->ops.read_reg = e1000_read_phy_reg_hv;
 439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 443	phy->ops.write_reg = e1000_write_phy_reg_hv;
 444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 446	phy->ops.power_up = e1000_power_up_phy_copper;
 447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 449
 450	phy->id = e1000_phy_unknown;
 451
 452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 453	if (ret_val)
 454		return ret_val;
 455
 456	if (phy->id == e1000_phy_unknown)
 457		switch (hw->mac.type) {
 458		default:
 459			ret_val = e1000e_get_phy_id(hw);
 460			if (ret_val)
 461				return ret_val;
 462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 463				break;
 464			fallthrough;
 465		case e1000_pch2lan:
 466		case e1000_pch_lpt:
 467		case e1000_pch_spt:
 468		case e1000_pch_cnp:
 469		case e1000_pch_tgp:
 470		case e1000_pch_adp:
 471		case e1000_pch_mtp:
 472		case e1000_pch_lnp:
 473		case e1000_pch_ptp:
 474		case e1000_pch_nvp:
 475			/* In case the PHY needs to be in mdio slow mode,
 476			 * set slow mode and try to get the PHY id again.
 477			 */
 478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 479			if (ret_val)
 480				return ret_val;
 481			ret_val = e1000e_get_phy_id(hw);
 482			if (ret_val)
 483				return ret_val;
 484			break;
 485		}
 486	phy->type = e1000e_get_phy_type_from_id(phy->id);
 487
 488	switch (phy->type) {
 489	case e1000_phy_82577:
 490	case e1000_phy_82579:
 491	case e1000_phy_i217:
 492		phy->ops.check_polarity = e1000_check_polarity_82577;
 493		phy->ops.force_speed_duplex =
 494		    e1000_phy_force_speed_duplex_82577;
 495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 496		phy->ops.get_info = e1000_get_phy_info_82577;
 497		phy->ops.commit = e1000e_phy_sw_reset;
 498		break;
 499	case e1000_phy_82578:
 500		phy->ops.check_polarity = e1000_check_polarity_m88;
 501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 503		phy->ops.get_info = e1000e_get_phy_info_m88;
 504		break;
 505	default:
 506		ret_val = -E1000_ERR_PHY;
 507		break;
 508	}
 509
 510	return ret_val;
 511}
 512
 513/**
 514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Initialize family-specific PHY parameters and function pointers.
 518 **/
 519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 520{
 521	struct e1000_phy_info *phy = &hw->phy;
 522	s32 ret_val;
 523	u16 i = 0;
 524
 525	phy->addr = 1;
 526	phy->reset_delay_us = 100;
 527
 528	phy->ops.power_up = e1000_power_up_phy_copper;
 529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 530
 531	/* We may need to do this twice - once for IGP and if that fails,
 532	 * we'll set BM func pointers and try again
 533	 */
 534	ret_val = e1000e_determine_phy_address(hw);
 535	if (ret_val) {
 536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 538		ret_val = e1000e_determine_phy_address(hw);
 539		if (ret_val) {
 540			e_dbg("Cannot determine PHY addr. Erroring out\n");
 541			return ret_val;
 542		}
 543	}
 544
 545	phy->id = 0;
 546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 547	       (i++ < 100)) {
 548		usleep_range(1000, 1100);
 549		ret_val = e1000e_get_phy_id(hw);
 550		if (ret_val)
 551			return ret_val;
 552	}
 553
 554	/* Verify phy id */
 555	switch (phy->id) {
 556	case IGP03E1000_E_PHY_ID:
 557		phy->type = e1000_phy_igp_3;
 558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 561		phy->ops.get_info = e1000e_get_phy_info_igp;
 562		phy->ops.check_polarity = e1000_check_polarity_igp;
 563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 564		break;
 565	case IFE_E_PHY_ID:
 566	case IFE_PLUS_E_PHY_ID:
 567	case IFE_C_E_PHY_ID:
 568		phy->type = e1000_phy_ife;
 569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 570		phy->ops.get_info = e1000_get_phy_info_ife;
 571		phy->ops.check_polarity = e1000_check_polarity_ife;
 572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 573		break;
 574	case BME1000_E_PHY_ID:
 575		phy->type = e1000_phy_bm;
 576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 579		phy->ops.commit = e1000e_phy_sw_reset;
 580		phy->ops.get_info = e1000e_get_phy_info_m88;
 581		phy->ops.check_polarity = e1000_check_polarity_m88;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 583		break;
 584	default:
 585		return -E1000_ERR_PHY;
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Initialize family-specific NVM parameters and function
 596 *  pointers.
 597 **/
 598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 599{
 600	struct e1000_nvm_info *nvm = &hw->nvm;
 601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 602	u32 gfpreg, sector_base_addr, sector_end_addr;
 603	u16 i;
 604	u32 nvm_size;
 605
 606	nvm->type = e1000_nvm_flash_sw;
 607
 608	if (hw->mac.type >= e1000_pch_spt) {
 609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 610		 * STRAP register. This is because in SPT the GbE Flash region
 611		 * is no longer accessed through the flash registers. Instead,
 612		 * the mechanism has changed, and the Flash region access
 613		 * registers are now implemented in GbE memory space.
 614		 */
 615		nvm->flash_base_addr = 0;
 616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 617		    * NVM_SIZE_MULTIPLIER;
 618		nvm->flash_bank_size = nvm_size / 2;
 619		/* Adjust to word count */
 620		nvm->flash_bank_size /= sizeof(u16);
 621		/* Set the base address for flash register access */
 622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 623	} else {
 624		/* Can't read flash registers if register set isn't mapped. */
 625		if (!hw->flash_address) {
 626			e_dbg("ERROR: Flash registers not mapped\n");
 627			return -E1000_ERR_CONFIG;
 628		}
 629
 630		gfpreg = er32flash(ICH_FLASH_GFPREG);
 631
 632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 633		 * Add 1 to sector_end_addr since this sector is included in
 634		 * the overall size.
 635		 */
 636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 638
 639		/* flash_base_addr is byte-aligned */
 640		nvm->flash_base_addr = sector_base_addr
 641		    << FLASH_SECTOR_ADDR_SHIFT;
 642
 643		/* find total size of the NVM, then cut in half since the total
 644		 * size represents two separate NVM banks.
 645		 */
 646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 647					<< FLASH_SECTOR_ADDR_SHIFT);
 648		nvm->flash_bank_size /= 2;
 649		/* Adjust to word count */
 650		nvm->flash_bank_size /= sizeof(u16);
 651	}
 652
 653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 654
 655	/* Clear shadow ram */
 656	for (i = 0; i < nvm->word_size; i++) {
 657		dev_spec->shadow_ram[i].modified = false;
 658		dev_spec->shadow_ram[i].value = 0xFFFF;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Initialize family-specific MAC parameters and function
 669 *  pointers.
 670 **/
 671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 672{
 673	struct e1000_mac_info *mac = &hw->mac;
 674
 675	/* Set media type function pointer */
 676	hw->phy.media_type = e1000_media_type_copper;
 677
 678	/* Set mta register count */
 679	mac->mta_reg_count = 32;
 680	/* Set rar entry count */
 681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 682	if (mac->type == e1000_ich8lan)
 683		mac->rar_entry_count--;
 684	/* FWSM register */
 685	mac->has_fwsm = true;
 686	/* ARC subsystem not supported */
 687	mac->arc_subsystem_valid = false;
 688	/* Adaptive IFS supported */
 689	mac->adaptive_ifs = true;
 690
 691	/* LED and other operations */
 692	switch (mac->type) {
 693	case e1000_ich8lan:
 694	case e1000_ich9lan:
 695	case e1000_ich10lan:
 696		/* check management mode */
 697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 698		/* ID LED init */
 699		mac->ops.id_led_init = e1000e_id_led_init_generic;
 700		/* blink LED */
 701		mac->ops.blink_led = e1000e_blink_led_generic;
 702		/* setup LED */
 703		mac->ops.setup_led = e1000e_setup_led_generic;
 704		/* cleanup LED */
 705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 706		/* turn on/off LED */
 707		mac->ops.led_on = e1000_led_on_ich8lan;
 708		mac->ops.led_off = e1000_led_off_ich8lan;
 709		break;
 710	case e1000_pch2lan:
 711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 712		mac->ops.rar_set = e1000_rar_set_pch2lan;
 713		fallthrough;
 714	case e1000_pch_lpt:
 715	case e1000_pch_spt:
 716	case e1000_pch_cnp:
 717	case e1000_pch_tgp:
 718	case e1000_pch_adp:
 719	case e1000_pch_mtp:
 720	case e1000_pch_lnp:
 721	case e1000_pch_ptp:
 722	case e1000_pch_nvp:
 723	case e1000_pchlan:
 724		/* check management mode */
 725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 726		/* ID LED init */
 727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 728		/* setup LED */
 729		mac->ops.setup_led = e1000_setup_led_pchlan;
 730		/* cleanup LED */
 731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 732		/* turn on/off LED */
 733		mac->ops.led_on = e1000_led_on_pchlan;
 734		mac->ops.led_off = e1000_led_off_pchlan;
 735		break;
 736	default:
 737		break;
 738	}
 739
 740	if (mac->type >= e1000_pch_lpt) {
 741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 743		mac->ops.setup_physical_interface =
 744		    e1000_setup_copper_link_pch_lpt;
 745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 746	}
 747
 748	/* Enable PCS Lock-loss workaround for ICH8 */
 749	if (mac->type == e1000_ich8lan)
 750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 751
 752	return 0;
 753}
 754
 755/**
 756 *  __e1000_access_emi_reg_locked - Read/write EMI register
 757 *  @hw: pointer to the HW structure
 758 *  @address: EMI address to program
 759 *  @data: pointer to value to read/write from/to the EMI address
 760 *  @read: boolean flag to indicate read or write
 761 *
 762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 765					 u16 *data, bool read)
 766{
 767	s32 ret_val;
 768
 769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 770	if (ret_val)
 771		return ret_val;
 772
 773	if (read)
 774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 775	else
 776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 777
 778	return ret_val;
 779}
 780
 781/**
 782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 783 *  @hw: pointer to the HW structure
 784 *  @addr: EMI address to program
 785 *  @data: value to be read from the EMI address
 786 *
 787 *  Assumes the SW/FW/HW Semaphore is already acquired.
 788 **/
 789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 790{
 791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 792}
 793
 794/**
 795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 796 *  @hw: pointer to the HW structure
 797 *  @addr: EMI address to program
 798 *  @data: value to be written to the EMI address
 799 *
 800 *  Assumes the SW/FW/HW Semaphore is already acquired.
 801 **/
 802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 803{
 804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 805}
 806
 807/**
 808 *  e1000_set_eee_pchlan - Enable/disable EEE support
 809 *  @hw: pointer to the HW structure
 810 *
 811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 812 *  the link and the EEE capabilities of the link partner.  The LPI Control
 813 *  register bits will remain set only if/when link is up.
 814 *
 815 *  EEE LPI must not be asserted earlier than one second after link is up.
 816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 817 *  can be link issues with some switches.  Other devices can have EEE LPI
 818 *  enabled immediately upon link up since they have a timer in hardware which
 819 *  prevents LPI from being asserted too early.
 820 **/
 821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 822{
 823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 824	s32 ret_val;
 825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 826
 827	switch (hw->phy.type) {
 828	case e1000_phy_82579:
 829		lpa = I82579_EEE_LP_ABILITY;
 830		pcs_status = I82579_EEE_PCS_STATUS;
 831		adv_addr = I82579_EEE_ADVERTISEMENT;
 832		break;
 833	case e1000_phy_i217:
 834		lpa = I217_EEE_LP_ABILITY;
 835		pcs_status = I217_EEE_PCS_STATUS;
 836		adv_addr = I217_EEE_ADVERTISEMENT;
 837		break;
 838	default:
 839		return 0;
 840	}
 841
 842	ret_val = hw->phy.ops.acquire(hw);
 843	if (ret_val)
 844		return ret_val;
 845
 846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 847	if (ret_val)
 848		goto release;
 849
 850	/* Clear bits that enable EEE in various speeds */
 851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 852
 853	/* Enable EEE if not disabled by user */
 854	if (!dev_spec->eee_disable) {
 855		/* Save off link partner's EEE ability */
 856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 857						    &dev_spec->eee_lp_ability);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Read EEE advertisement */
 862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 863		if (ret_val)
 864			goto release;
 865
 866		/* Enable EEE only for speeds in which the link partner is
 867		 * EEE capable and for which we advertise EEE.
 868		 */
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 871
 872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 873			e1e_rphy_locked(hw, MII_LPA, &data);
 874			if (data & LPA_100FULL)
 875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 876			else
 877				/* EEE is not supported in 100Half, so ignore
 878				 * partner's EEE in 100 ability if full-duplex
 879				 * is not advertised.
 880				 */
 881				dev_spec->eee_lp_ability &=
 882				    ~I82579_EEE_100_SUPPORTED;
 883		}
 884	}
 885
 886	if (hw->phy.type == e1000_phy_82579) {
 887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888						    &data);
 889		if (ret_val)
 890			goto release;
 891
 892		data &= ~I82579_LPI_100_PLL_SHUT;
 893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 894						     data);
 895	}
 896
 897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 899	if (ret_val)
 900		goto release;
 901
 902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 903release:
 904	hw->phy.ops.release(hw);
 905
 906	return ret_val;
 907}
 908
 909/**
 910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 911 *  @hw:   pointer to the HW structure
 912 *  @link: link up bool flag
 913 *
 914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 915 *  preventing further DMA write requests.  Workaround the issue by disabling
 916 *  the de-assertion of the clock request when in 1Gpbs mode.
 917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 918 *  speeds in order to avoid Tx hangs.
 919 **/
 920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 921{
 922	u32 fextnvm6 = er32(FEXTNVM6);
 923	u32 status = er32(STATUS);
 924	s32 ret_val = 0;
 925	u16 reg;
 926
 927	if (link && (status & E1000_STATUS_SPEED_1000)) {
 928		ret_val = hw->phy.ops.acquire(hw);
 929		if (ret_val)
 930			return ret_val;
 931
 932		ret_val =
 933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 934						&reg);
 935		if (ret_val)
 936			goto release;
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg &
 942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 943		if (ret_val)
 944			goto release;
 945
 946		usleep_range(10, 20);
 947
 948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 949
 950		ret_val =
 951		    e1000e_write_kmrn_reg_locked(hw,
 952						 E1000_KMRNCTRLSTA_K1_CONFIG,
 953						 reg);
 954release:
 955		hw->phy.ops.release(hw);
 956	} else {
 957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 959
 960		if ((hw->phy.revision > 5) || !link ||
 961		    ((status & E1000_STATUS_SPEED_100) &&
 962		     (status & E1000_STATUS_FD)))
 963			goto update_fextnvm6;
 964
 965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 966		if (ret_val)
 967			return ret_val;
 968
 969		/* Clear link status transmit timeout */
 970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 971
 972		if (status & E1000_STATUS_SPEED_100) {
 973			/* Set inband Tx timeout to 5x10us for 100Half */
 974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 975
 976			/* Do not extend the K1 entry latency for 100Half */
 977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 978		} else {
 979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 980			reg |= 50 <<
 981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 982
 983			/* Extend the K1 entry latency for 10 Mbps */
 984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 985		}
 986
 987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 988		if (ret_val)
 989			return ret_val;
 990
 991update_fextnvm6:
 992		ew32(FEXTNVM6, fextnvm6);
 993	}
 994
 995	return ret_val;
 996}
 997
 998/**
 999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078			(1U << (E1000_LTRV_SCALE_FACTOR *
1079				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081		if (lat_enc_d > max_ltr_enc_d)
1082			lat_enc = max_ltr_enc;
1083	}
1084
1085	/* Set Snoop and No-Snoop latencies the same */
1086	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087	ew32(LTRV, reg);
1088
1089	return 0;
1090}
1091
1092/**
1093 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 *  @hw: pointer to the HW structure
1095 *  @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 *  When link is down, configure ULP mode to significantly reduce the power
1098 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1099 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1100 *  system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104	u32 mac_reg;
1105	s32 ret_val = 0;
1106	u16 phy_reg;
1107	u16 oem_reg = 0;
1108
1109	if ((hw->mac.type < e1000_pch_lpt) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115		return 0;
1116
1117	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118		/* Request ME configure ULP mode in the PHY */
1119		mac_reg = er32(H2ME);
1120		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121		ew32(H2ME, mac_reg);
1122
1123		goto out;
1124	}
1125
1126	if (!to_sx) {
1127		int i = 0;
1128
1129		/* Poll up to 5 seconds for Cable Disconnected indication */
1130		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131			/* Bail if link is re-acquired */
1132			if (er32(STATUS) & E1000_STATUS_LU)
1133				return -E1000_ERR_PHY;
1134
1135			if (i++ == 100)
1136				break;
1137
1138			msleep(50);
1139		}
1140		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141		      (er32(FEXT) &
1142		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143	}
1144
1145	ret_val = hw->phy.ops.acquire(hw);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Force SMBus mode in PHY */
1150	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151	if (ret_val)
1152		goto release;
1153	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156	/* Force SMBus mode in MAC */
1157	mac_reg = er32(CTRL_EXT);
1158	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159	ew32(CTRL_EXT, mac_reg);
1160
1161	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1162	 * LPLU and disable Gig speed when entering ULP
1163	 */
1164	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166						       &oem_reg);
1167		if (ret_val)
1168			goto release;
1169
1170		phy_reg = oem_reg;
1171		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174							phy_reg);
1175
1176		if (ret_val)
1177			goto release;
1178	}
1179
1180	/* Set Inband ULP Exit, Reset to SMBus mode and
1181	 * Disable SMBus Release on PERST# in PHY
1182	 */
1183	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184	if (ret_val)
1185		goto release;
1186	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188	if (to_sx) {
1189		if (er32(WUFC) & E1000_WUFC_LNKC)
1190			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191		else
1192			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196	} else {
1197		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200	}
1201	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203	/* Set Disable SMBus Release on PERST# in MAC */
1204	mac_reg = er32(FEXTNVM7);
1205	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206	ew32(FEXTNVM7, mac_reg);
1207
1208	/* Commit ULP changes in PHY by starting auto ULP configuration */
1209	phy_reg |= I218_ULP_CONFIG1_START;
1210	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215							oem_reg);
1216		if (ret_val)
1217			goto release;
1218	}
1219
1220release:
1221	hw->phy.ops.release(hw);
1222out:
1223	if (ret_val)
1224		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225	else
1226		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228	return ret_val;
1229}
1230
1231/**
1232 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 *  @hw: pointer to the HW structure
1234 *  @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 *  Un-configure ULP mode when link is up, the system is transitioned from
1237 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1238 *  system, poll for an indication from ME that ULP has been un-configured.
1239 *  If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 *  During nominal operation, this function is called when link is acquired
1242 *  to disable ULP mode (force=false); otherwise, for example when unloading
1243 *  the driver or during Sx->S0 transitions, this is called with force=true
1244 *  to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248	s32 ret_val = 0;
1249	u32 mac_reg;
1250	u16 phy_reg;
1251	int i = 0;
1252
1253	if ((hw->mac.type < e1000_pch_lpt) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259		return 0;
1260
1261	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262		struct e1000_adapter *adapter = hw->adapter;
1263		bool firmware_bug = false;
1264
1265		if (force) {
1266			/* Request ME un-configure ULP mode in the PHY */
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ULP;
1269			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270			ew32(H2ME, mac_reg);
1271		}
1272
1273		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274		 * If this takes more than 1 second, show a warning indicating a
1275		 * firmware bug
1276		 */
1277		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278			if (i++ == 250) {
1279				ret_val = -E1000_ERR_PHY;
1280				goto out;
1281			}
1282			if (i > 100 && !firmware_bug)
1283				firmware_bug = true;
1284
1285			usleep_range(10000, 11000);
1286		}
1287		if (firmware_bug)
1288			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289			       i * 10);
1290		else
1291			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292			      i * 10);
1293
1294		if (force) {
1295			mac_reg = er32(H2ME);
1296			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297			ew32(H2ME, mac_reg);
1298		} else {
1299			/* Clear H2ME.ULP after ME ULP configuration */
1300			mac_reg = er32(H2ME);
1301			mac_reg &= ~E1000_H2ME_ULP;
1302			ew32(H2ME, mac_reg);
1303		}
1304
1305		goto out;
1306	}
1307
1308	ret_val = hw->phy.ops.acquire(hw);
1309	if (ret_val)
1310		goto out;
1311
1312	if (force)
1313		/* Toggle LANPHYPC Value bit */
1314		e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316	/* Unforce SMBus mode in PHY */
1317	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318	if (ret_val) {
1319		/* The MAC might be in PCIe mode, so temporarily force to
1320		 * SMBus mode in order to access the PHY.
1321		 */
1322		mac_reg = er32(CTRL_EXT);
1323		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324		ew32(CTRL_EXT, mac_reg);
1325
1326		msleep(50);
1327
1328		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329						       &phy_reg);
1330		if (ret_val)
1331			goto release;
1332	}
1333	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336	/* Unforce SMBus mode in MAC */
1337	mac_reg = er32(CTRL_EXT);
1338	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339	ew32(CTRL_EXT, mac_reg);
1340
1341	/* When ULP mode was previously entered, K1 was disabled by the
1342	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1343	 */
1344	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345	if (ret_val)
1346		goto release;
1347	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350	/* Clear ULP enabled configuration */
1351	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352	if (ret_val)
1353		goto release;
1354	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355		     I218_ULP_CONFIG1_STICKY_ULP |
1356		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357		     I218_ULP_CONFIG1_WOL_HOST |
1358		     I218_ULP_CONFIG1_INBAND_EXIT |
1359		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364	/* Commit ULP changes by starting auto ULP configuration */
1365	phy_reg |= I218_ULP_CONFIG1_START;
1366	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368	/* Clear Disable SMBus Release on PERST# in MAC */
1369	mac_reg = er32(FEXTNVM7);
1370	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371	ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374	hw->phy.ops.release(hw);
1375	if (force) {
1376		e1000_phy_hw_reset(hw);
1377		msleep(50);
1378	}
1379out:
1380	if (ret_val)
1381		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382	else
1383		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385	return ret_val;
1386}
1387
1388/**
1389 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Checks to see of the link status of the hardware has changed.  If a
1393 *  change in link status has been detected, then we read the PHY registers
1394 *  to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398	struct e1000_mac_info *mac = &hw->mac;
1399	s32 ret_val, tipg_reg = 0;
1400	u16 emi_addr, emi_val = 0;
1401	bool link;
1402	u16 phy_reg;
1403
1404	/* We only want to go out to the PHY registers to see if Auto-Neg
1405	 * has completed and/or if our link status has changed.  The
1406	 * get_link_status flag is set upon receiving a Link Status
1407	 * Change or Rx Sequence Error interrupt.
1408	 */
1409	if (!mac->get_link_status)
1410		return 0;
1411	mac->get_link_status = false;
1412
1413	/* First we want to see if the MII Status Register reports
1414	 * link.  If so, then we want to get the current speed/duplex
1415	 * of the PHY.
1416	 */
1417	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418	if (ret_val)
1419		goto out;
1420
1421	if (hw->mac.type == e1000_pchlan) {
1422		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423		if (ret_val)
1424			goto out;
1425	}
1426
1427	/* When connected at 10Mbps half-duplex, some parts are excessively
1428	 * aggressive resulting in many collisions. To avoid this, increase
1429	 * the IPG and reduce Rx latency in the PHY.
1430	 */
1431	if ((hw->mac.type >= e1000_pch2lan) && link) {
 
 
1432		u16 speed, duplex;
1433
1434		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435		tipg_reg = er32(TIPG);
1436		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439			tipg_reg |= 0xFF;
1440			/* Reduce Rx latency in analog PHY */
1441			emi_val = 0;
1442		} else if (hw->mac.type >= e1000_pch_spt &&
1443			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444			tipg_reg |= 0xC;
1445			emi_val = 1;
1446		} else {
1447
1448			/* Roll back the default values */
1449			tipg_reg |= 0x08;
1450			emi_val = 1;
1451		}
1452
1453		ew32(TIPG, tipg_reg);
1454
1455		ret_val = hw->phy.ops.acquire(hw);
1456		if (ret_val)
1457			goto out;
1458
1459		if (hw->mac.type == e1000_pch2lan)
1460			emi_addr = I82579_RX_CONFIG;
1461		else
1462			emi_addr = I217_RX_CONFIG;
1463		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465		if (hw->mac.type >= e1000_pch_lpt) {
 
1466			u16 phy_reg;
1467
1468			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470			if (speed == SPEED_100 || speed == SPEED_10)
1471				phy_reg |= 0x3E8;
1472			else
1473				phy_reg |= 0xFA;
1474			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476			if (speed == SPEED_1000) {
1477				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478							    &phy_reg);
1479
1480				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483							     phy_reg);
1484			}
1485		}
1486		hw->phy.ops.release(hw);
1487
1488		if (ret_val)
1489			goto out;
1490
1491		if (hw->mac.type >= e1000_pch_spt) {
1492			u16 data;
1493			u16 ptr_gap;
1494
1495			if (speed == SPEED_1000) {
1496				ret_val = hw->phy.ops.acquire(hw);
1497				if (ret_val)
1498					goto out;
1499
1500				ret_val = e1e_rphy_locked(hw,
1501							  PHY_REG(776, 20),
1502							  &data);
1503				if (ret_val) {
1504					hw->phy.ops.release(hw);
1505					goto out;
1506				}
1507
1508				ptr_gap = (data & (0x3FF << 2)) >> 2;
1509				if (ptr_gap < 0x18) {
1510					data &= ~(0x3FF << 2);
1511					data |= (0x18 << 2);
1512					ret_val =
1513					    e1e_wphy_locked(hw,
1514							    PHY_REG(776, 20),
1515							    data);
1516				}
1517				hw->phy.ops.release(hw);
1518				if (ret_val)
1519					goto out;
1520			} else {
1521				ret_val = hw->phy.ops.acquire(hw);
1522				if (ret_val)
1523					goto out;
1524
1525				ret_val = e1e_wphy_locked(hw,
1526							  PHY_REG(776, 20),
1527							  0xC023);
1528				hw->phy.ops.release(hw);
1529				if (ret_val)
1530					goto out;
1531
1532			}
1533		}
1534	}
1535
1536	/* I217 Packet Loss issue:
1537	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538	 * on power up.
1539	 * Set the Beacon Duration for I217 to 8 usec
1540	 */
1541	if (hw->mac.type >= e1000_pch_lpt) {
1542		u32 mac_reg;
1543
1544		mac_reg = er32(FEXTNVM4);
1545		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547		ew32(FEXTNVM4, mac_reg);
1548	}
1549
1550	/* Work-around I218 hang issue */
1551	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556		if (ret_val)
1557			goto out;
1558	}
1559	if (hw->mac.type >= e1000_pch_lpt) {
 
1560		/* Set platform power management values for
1561		 * Latency Tolerance Reporting (LTR)
1562		 */
1563		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564		if (ret_val)
1565			goto out;
1566	}
1567
1568	/* Clear link partner's EEE ability */
1569	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571	if (hw->mac.type >= e1000_pch_lpt) {
 
 
1572		u32 fextnvm6 = er32(FEXTNVM6);
1573
1574		if (hw->mac.type == e1000_pch_spt) {
1575			/* FEXTNVM6 K1-off workaround - for SPT only */
1576			u32 pcieanacfg = er32(PCIEANACFG);
1577
1578			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580			else
1581				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582		}
1583
1584		ew32(FEXTNVM6, fextnvm6);
1585	}
1586
1587	if (!link)
1588		goto out;
 
 
1589
1590	switch (hw->mac.type) {
1591	case e1000_pch2lan:
1592		ret_val = e1000_k1_workaround_lv(hw);
1593		if (ret_val)
1594			return ret_val;
1595		fallthrough;
1596	case e1000_pchlan:
1597		if (hw->phy.type == e1000_phy_82578) {
1598			ret_val = e1000_link_stall_workaround_hv(hw);
1599			if (ret_val)
1600				return ret_val;
1601		}
1602
1603		/* Workaround for PCHx parts in half-duplex:
1604		 * Set the number of preambles removed from the packet
1605		 * when it is passed from the PHY to the MAC to prevent
1606		 * the MAC from misinterpreting the packet type.
1607		 */
1608		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615		break;
1616	default:
1617		break;
1618	}
1619
1620	/* Check if there was DownShift, must be checked
1621	 * immediately after link-up
1622	 */
1623	e1000e_check_downshift(hw);
1624
1625	/* Enable/Disable EEE after link up */
1626	if (hw->phy.type > e1000_phy_82579) {
1627		ret_val = e1000_set_eee_pchlan(hw);
1628		if (ret_val)
1629			return ret_val;
1630	}
1631
1632	/* If we are forcing speed/duplex, then we simply return since
1633	 * we have already determined whether we have link or not.
1634	 */
1635	if (!mac->autoneg)
1636		return -E1000_ERR_CONFIG;
1637
1638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1639	 * of MAC speed/duplex configuration.  So we only need to
1640	 * configure Collision Distance in the MAC.
1641	 */
1642	mac->ops.config_collision_dist(hw);
1643
1644	/* Configure Flow Control now that Auto-Neg has completed.
1645	 * First, we need to restore the desired flow control
1646	 * settings because we may have had to re-autoneg with a
1647	 * different link partner.
1648	 */
1649	ret_val = e1000e_config_fc_after_link_up(hw);
1650	if (ret_val)
1651		e_dbg("Error configuring flow control\n");
1652
1653	return ret_val;
1654
1655out:
1656	mac->get_link_status = true;
1657	return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	s32 rc;
1664
1665	rc = e1000_init_mac_params_ich8lan(hw);
1666	if (rc)
1667		return rc;
1668
1669	rc = e1000_init_nvm_params_ich8lan(hw);
1670	if (rc)
1671		return rc;
1672
1673	switch (hw->mac.type) {
1674	case e1000_ich8lan:
1675	case e1000_ich9lan:
1676	case e1000_ich10lan:
1677		rc = e1000_init_phy_params_ich8lan(hw);
1678		break;
1679	case e1000_pchlan:
1680	case e1000_pch2lan:
1681	case e1000_pch_lpt:
1682	case e1000_pch_spt:
1683	case e1000_pch_cnp:
1684	case e1000_pch_tgp:
1685	case e1000_pch_adp:
1686	case e1000_pch_mtp:
1687	case e1000_pch_lnp:
1688	case e1000_pch_ptp:
1689	case e1000_pch_nvp:
1690		rc = e1000_init_phy_params_pchlan(hw);
1691		break;
1692	default:
1693		break;
1694	}
1695	if (rc)
1696		return rc;
1697
1698	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700	 */
1701	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707		hw->mac.ops.blink_led = NULL;
1708	}
1709
1710	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711	    (adapter->hw.phy.type != e1000_phy_ife))
1712		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714	/* Enable workaround for 82579 w/ ME enabled */
1715	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719	return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 *  @hw: pointer to the HW structure
1727 *
1728 *  Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732	mutex_lock(&nvm_mutex);
1733
1734	return 0;
1735}
1736
1737/**
1738 *  e1000_release_nvm_ich8lan - Release NVM mutex
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745	mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 *  @hw: pointer to the HW structure
1751 *
1752 *  Acquires the software control flag for performing PHY and select
1753 *  MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758	s32 ret_val = 0;
1759
1760	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761			     &hw->adapter->state)) {
1762		e_dbg("contention for Phy access\n");
1763		return -E1000_ERR_PHY;
1764	}
1765
1766	while (timeout) {
1767		extcnf_ctrl = er32(EXTCNF_CTRL);
1768		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769			break;
1770
1771		mdelay(1);
1772		timeout--;
1773	}
1774
1775	if (!timeout) {
1776		e_dbg("SW has already locked the resource.\n");
1777		ret_val = -E1000_ERR_CONFIG;
1778		goto out;
1779	}
1780
1781	timeout = SW_FLAG_TIMEOUT;
1782
1783	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784	ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786	while (timeout) {
1787		extcnf_ctrl = er32(EXTCNF_CTRL);
1788		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789			break;
1790
1791		mdelay(1);
1792		timeout--;
1793	}
1794
1795	if (!timeout) {
1796		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797		      er32(FWSM), extcnf_ctrl);
1798		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799		ew32(EXTCNF_CTRL, extcnf_ctrl);
1800		ret_val = -E1000_ERR_CONFIG;
1801		goto out;
1802	}
1803
1804out:
1805	if (ret_val)
1806		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000_release_swflag_ich8lan - Release software control flag
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Releases the software control flag for performing PHY and select
1816 *  MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820	u32 extcnf_ctrl;
1821
1822	extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826		ew32(EXTCNF_CTRL, extcnf_ctrl);
1827	} else {
1828		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829	}
1830
1831	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 *  e1000_check_mng_mode_ich8lan - Checks management mode
1836 *  @hw: pointer to the HW structure
1837 *
1838 *  This checks if the adapter has any manageability enabled.
1839 *  This is a function pointer entry point only called by read/write
1840 *  routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844	u32 fwsm;
1845
1846	fwsm = er32(FWSM);
1847	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848		((fwsm & E1000_FWSM_MODE_MASK) ==
1849		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 *  e1000_check_mng_mode_pchlan - Checks management mode
1854 *  @hw: pointer to the HW structure
1855 *
1856 *  This checks if the adapter has iAMT enabled.
1857 *  This is a function pointer entry point only called by read/write
1858 *  routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862	u32 fwsm;
1863
1864	fwsm = er32(FWSM);
1865	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 *  e1000_rar_set_pch2lan - Set receive address register
1871 *  @hw: pointer to the HW structure
1872 *  @addr: pointer to the receive address
1873 *  @index: receive address array register
1874 *
1875 *  Sets the receive address array register at index to the address passed
1876 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1877 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 *  Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882	u32 rar_low, rar_high;
1883
1884	/* HW expects these in little endian so we reverse the byte order
1885	 * from network order (big endian) to little endian
1886	 */
1887	rar_low = ((u32)addr[0] |
1888		   ((u32)addr[1] << 8) |
1889		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893	/* If MAC address zero, no need to set the AV bit */
1894	if (rar_low || rar_high)
1895		rar_high |= E1000_RAH_AV;
1896
1897	if (index == 0) {
1898		ew32(RAL(index), rar_low);
1899		e1e_flush();
1900		ew32(RAH(index), rar_high);
1901		e1e_flush();
1902		return 0;
1903	}
1904
1905	/* RAR[1-6] are owned by manageability.  Skip those and program the
1906	 * next address into the SHRA register array.
1907	 */
1908	if (index < (u32)(hw->mac.rar_entry_count)) {
1909		s32 ret_val;
1910
1911		ret_val = e1000_acquire_swflag_ich8lan(hw);
1912		if (ret_val)
1913			goto out;
1914
1915		ew32(SHRAL(index - 1), rar_low);
1916		e1e_flush();
1917		ew32(SHRAH(index - 1), rar_high);
1918		e1e_flush();
1919
1920		e1000_release_swflag_ich8lan(hw);
1921
1922		/* verify the register updates */
1923		if ((er32(SHRAL(index - 1)) == rar_low) &&
1924		    (er32(SHRAH(index - 1)) == rar_high))
1925			return 0;
1926
1927		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928		      (index - 1), er32(FWSM));
1929	}
1930
1931out:
1932	e_dbg("Failed to write receive address at index %d\n", index);
1933	return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  Get the number of available receive registers that the Host can
1941 *  program. SHRA[0-10] are the shared receive address registers
1942 *  that are shared between the Host and manageability engine (ME).
1943 *  ME can reserve any number of addresses and the host needs to be
1944 *  able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948	u32 wlock_mac;
1949	u32 num_entries;
1950
1951	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954	switch (wlock_mac) {
1955	case 0:
1956		/* All SHRA[0..10] and RAR[0] available */
1957		num_entries = hw->mac.rar_entry_count;
1958		break;
1959	case 1:
1960		/* Only RAR[0] available */
1961		num_entries = 1;
1962		break;
1963	default:
1964		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965		num_entries = wlock_mac + 1;
1966		break;
1967	}
1968
1969	return num_entries;
1970}
1971
1972/**
1973 *  e1000_rar_set_pch_lpt - Set receive address registers
1974 *  @hw: pointer to the HW structure
1975 *  @addr: pointer to the receive address
1976 *  @index: receive address array register
1977 *
1978 *  Sets the receive address register array at index to the address passed
1979 *  in by addr. For LPT, RAR[0] is the base address register that is to
1980 *  contain the MAC address. SHRA[0-10] are the shared receive address
1981 *  registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985	u32 rar_low, rar_high;
1986	u32 wlock_mac;
1987
1988	/* HW expects these in little endian so we reverse the byte order
1989	 * from network order (big endian) to little endian
1990	 */
1991	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996	/* If MAC address zero, no need to set the AV bit */
1997	if (rar_low || rar_high)
1998		rar_high |= E1000_RAH_AV;
1999
2000	if (index == 0) {
2001		ew32(RAL(index), rar_low);
2002		e1e_flush();
2003		ew32(RAH(index), rar_high);
2004		e1e_flush();
2005		return 0;
2006	}
2007
2008	/* The manageability engine (ME) can lock certain SHRAR registers that
2009	 * it is using - those registers are unavailable for use.
2010	 */
2011	if (index < hw->mac.rar_entry_count) {
2012		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015		/* Check if all SHRAR registers are locked */
2016		if (wlock_mac == 1)
2017			goto out;
2018
2019		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020			s32 ret_val;
2021
2022			ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024			if (ret_val)
2025				goto out;
2026
2027			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028			e1e_flush();
2029			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030			e1e_flush();
2031
2032			e1000_release_swflag_ich8lan(hw);
2033
2034			/* verify the register updates */
2035			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037				return 0;
2038		}
2039	}
2040
2041out:
2042	e_dbg("Failed to write receive address at index %d\n", index);
2043	return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 *  @hw: pointer to the HW structure
2049 *
2050 *  Checks if firmware is blocking the reset of the PHY.
2051 *  This is a function pointer entry point only called by
2052 *  reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056	bool blocked = false;
2057	int i = 0;
2058
2059	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060	       (i++ < 30))
2061		usleep_range(10000, 11000);
2062	return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074	u16 phy_data;
2075	u32 strap = er32(STRAP);
2076	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2077	s32 ret_val;
2078
2079	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082	if (ret_val)
2083		return ret_val;
2084
2085	phy_data &= ~HV_SMB_ADDR_MASK;
2086	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089	if (hw->phy.type == e1000_phy_i217) {
2090		/* Restore SMBus frequency */
2091		if (freq--) {
2092			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093			phy_data |= (freq & BIT(0)) <<
2094			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095			phy_data |= (freq & BIT(1)) <<
2096			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097		} else {
2098			e_dbg("Unsupported SMB frequency in PHY\n");
2099		}
2100	}
2101
2102	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:   pointer to the HW structure
2108 *
2109 *  SW should configure the LCD from the NVM extended configuration region
2110 *  as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114	struct e1000_phy_info *phy = &hw->phy;
2115	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116	s32 ret_val = 0;
2117	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119	/* Initialize the PHY from the NVM on ICH platforms.  This
2120	 * is needed due to an issue where the NVM configuration is
2121	 * not properly autoloaded after power transitions.
2122	 * Therefore, after each PHY reset, we will load the
2123	 * configuration data out of the NVM manually.
2124	 */
2125	switch (hw->mac.type) {
2126	case e1000_ich8lan:
2127		if (phy->type != e1000_phy_igp_3)
2128			return ret_val;
2129
2130		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133			break;
2134		}
2135		fallthrough;
2136	case e1000_pchlan:
2137	case e1000_pch2lan:
2138	case e1000_pch_lpt:
2139	case e1000_pch_spt:
2140	case e1000_pch_cnp:
2141	case e1000_pch_tgp:
2142	case e1000_pch_adp:
2143	case e1000_pch_mtp:
2144	case e1000_pch_lnp:
2145	case e1000_pch_ptp:
2146	case e1000_pch_nvp:
2147		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148		break;
2149	default:
2150		return ret_val;
2151	}
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		return ret_val;
2156
2157	data = er32(FEXTNVM);
2158	if (!(data & sw_cfg_mask))
2159		goto release;
2160
2161	/* Make sure HW does not configure LCD from PHY
2162	 * extended configuration before SW configuration
2163	 */
2164	data = er32(EXTCNF_CTRL);
2165	if ((hw->mac.type < e1000_pch2lan) &&
2166	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167		goto release;
2168
2169	cnf_size = er32(EXTCNF_SIZE);
2170	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172	if (!cnf_size)
2173		goto release;
2174
2175	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178	if (((hw->mac.type == e1000_pchlan) &&
2179	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180	    (hw->mac.type > e1000_pchlan)) {
2181		/* HW configures the SMBus address and LEDs when the
2182		 * OEM and LCD Write Enable bits are set in the NVM.
2183		 * When both NVM bits are cleared, SW will configure
2184		 * them instead.
2185		 */
2186		ret_val = e1000_write_smbus_addr(hw);
2187		if (ret_val)
2188			goto release;
2189
2190		data = er32(LEDCTL);
2191		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192							(u16)data);
2193		if (ret_val)
2194			goto release;
2195	}
2196
2197	/* Configure LCD from extended configuration region. */
2198
2199	/* cnf_base_addr is in DWORD */
2200	word_addr = (u16)(cnf_base_addr << 1);
2201
2202	for (i = 0; i < cnf_size; i++) {
2203		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2204		if (ret_val)
2205			goto release;
2206
2207		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208					 1, &reg_addr);
2209		if (ret_val)
2210			goto release;
2211
2212		/* Save off the PHY page for future writes. */
2213		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214			phy_page = reg_data;
2215			continue;
2216		}
2217
2218		reg_addr &= PHY_REG_MASK;
2219		reg_addr |= phy_page;
2220
2221		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222		if (ret_val)
2223			goto release;
2224	}
2225
2226release:
2227	hw->phy.ops.release(hw);
2228	return ret_val;
2229}
2230
2231/**
2232 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2233 *  @hw:   pointer to the HW structure
2234 *  @link: link up bool flag
2235 *
2236 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2238 *  If link is down, the function will restore the default K1 setting located
2239 *  in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243	s32 ret_val = 0;
2244	u16 status_reg = 0;
2245	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247	if (hw->mac.type != e1000_pchlan)
2248		return 0;
2249
2250	/* Wrap the whole flow with the sw flag */
2251	ret_val = hw->phy.ops.acquire(hw);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256	if (link) {
2257		if (hw->phy.type == e1000_phy_82578) {
2258			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259						  &status_reg);
2260			if (ret_val)
2261				goto release;
2262
2263			status_reg &= (BM_CS_STATUS_LINK_UP |
2264				       BM_CS_STATUS_RESOLVED |
2265				       BM_CS_STATUS_SPEED_MASK);
2266
2267			if (status_reg == (BM_CS_STATUS_LINK_UP |
2268					   BM_CS_STATUS_RESOLVED |
2269					   BM_CS_STATUS_SPEED_1000))
2270				k1_enable = false;
2271		}
2272
2273		if (hw->phy.type == e1000_phy_82577) {
2274			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275			if (ret_val)
2276				goto release;
2277
2278			status_reg &= (HV_M_STATUS_LINK_UP |
2279				       HV_M_STATUS_AUTONEG_COMPLETE |
2280				       HV_M_STATUS_SPEED_MASK);
2281
2282			if (status_reg == (HV_M_STATUS_LINK_UP |
2283					   HV_M_STATUS_AUTONEG_COMPLETE |
2284					   HV_M_STATUS_SPEED_1000))
2285				k1_enable = false;
2286		}
2287
2288		/* Link stall fix for link up */
2289		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290		if (ret_val)
2291			goto release;
2292
2293	} else {
2294		/* Link stall fix for link down */
2295		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296		if (ret_val)
2297			goto release;
2298	}
2299
2300	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303	hw->phy.ops.release(hw);
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_configure_k1_ich8lan - Configure K1 power state
2310 *  @hw: pointer to the HW structure
2311 *  @k1_enable: K1 state to configure
2312 *
2313 *  Configure the K1 power state based on the provided parameter.
2314 *  Assumes semaphore already acquired.
2315 *
2316 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320	s32 ret_val;
2321	u32 ctrl_reg = 0;
2322	u32 ctrl_ext = 0;
2323	u32 reg = 0;
2324	u16 kmrn_reg = 0;
2325
2326	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327					      &kmrn_reg);
2328	if (ret_val)
2329		return ret_val;
2330
2331	if (k1_enable)
2332		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333	else
2334		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337					       kmrn_reg);
2338	if (ret_val)
2339		return ret_val;
2340
2341	usleep_range(20, 40);
2342	ctrl_ext = er32(CTRL_EXT);
2343	ctrl_reg = er32(CTRL);
2344
2345	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346	reg |= E1000_CTRL_FRCSPD;
2347	ew32(CTRL, reg);
2348
2349	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350	e1e_flush();
2351	usleep_range(20, 40);
2352	ew32(CTRL, ctrl_reg);
2353	ew32(CTRL_EXT, ctrl_ext);
2354	e1e_flush();
2355	usleep_range(20, 40);
2356
2357	return 0;
2358}
2359
2360/**
2361 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 *  @hw:       pointer to the HW structure
2363 *  @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2367 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371	s32 ret_val = 0;
2372	u32 mac_reg;
2373	u16 oem_reg;
2374
2375	if (hw->mac.type < e1000_pchlan)
2376		return ret_val;
2377
2378	ret_val = hw->phy.ops.acquire(hw);
2379	if (ret_val)
2380		return ret_val;
2381
2382	if (hw->mac.type == e1000_pchlan) {
2383		mac_reg = er32(EXTCNF_CTRL);
2384		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385			goto release;
2386	}
2387
2388	mac_reg = er32(FEXTNVM);
2389	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390		goto release;
2391
2392	mac_reg = er32(PHY_CTRL);
2393
2394	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395	if (ret_val)
2396		goto release;
2397
2398	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400	if (d0_state) {
2401		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402			oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405			oem_reg |= HV_OEM_BITS_LPLU;
2406	} else {
2407		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409			oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412			       E1000_PHY_CTRL_NOND0A_LPLU))
2413			oem_reg |= HV_OEM_BITS_LPLU;
2414	}
2415
2416	/* Set Restart auto-neg to activate the bits */
2417	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418	    !hw->phy.ops.check_reset_block(hw))
2419		oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424	hw->phy.ops.release(hw);
2425
2426	return ret_val;
2427}
2428
2429/**
2430 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 *  @hw:   pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435	s32 ret_val;
2436	u16 data;
2437
2438	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439	if (ret_val)
2440		return ret_val;
2441
2442	data |= HV_KMRN_MDIO_SLOW;
2443
2444	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446	return ret_val;
2447}
2448
2449/**
2450 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 *  @hw: pointer to the HW structure
2452 *
2453 *  A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457	s32 ret_val = 0;
2458	u16 phy_data;
2459
2460	if (hw->mac.type != e1000_pchlan)
2461		return 0;
2462
2463	/* Set MDIO slow mode before any other MDIO access */
2464	if (hw->phy.type == e1000_phy_82577) {
2465		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (((hw->phy.type == e1000_phy_82577) &&
2471	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473		/* Disable generation of early preamble */
2474		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475		if (ret_val)
2476			return ret_val;
2477
2478		/* Preamble tuning for SSC */
2479		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (hw->phy.type == e1000_phy_82578) {
2485		/* Return registers to default by doing a soft reset then
2486		 * writing 0x3140 to the control register.
2487		 */
2488		if (hw->phy.revision < 2) {
2489			e1000e_phy_sw_reset(hw);
2490			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491			if (ret_val)
2492				return ret_val;
2493		}
2494	}
2495
2496	/* Select page 0 */
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	hw->phy.addr = 1;
2502	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503	hw->phy.ops.release(hw);
2504	if (ret_val)
2505		return ret_val;
2506
2507	/* Configure the K1 Si workaround during phy reset assuming there is
2508	 * link so that it disables K1 if link is in 1Gbps.
2509	 */
2510	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511	if (ret_val)
2512		return ret_val;
2513
2514	/* Workaround for link disconnects on a busy hub in half duplex */
2515	ret_val = hw->phy.ops.acquire(hw);
2516	if (ret_val)
2517		return ret_val;
2518	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519	if (ret_val)
2520		goto release;
2521	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522	if (ret_val)
2523		goto release;
2524
2525	/* set MSE higher to enable link to stay up when noise is high */
2526	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528	hw->phy.ops.release(hw);
2529
2530	return ret_val;
2531}
2532
2533/**
2534 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 *  @hw:   pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539	u32 mac_reg;
2540	u16 i, phy_reg = 0;
2541	s32 ret_val;
2542
2543	ret_val = hw->phy.ops.acquire(hw);
2544	if (ret_val)
2545		return;
2546	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547	if (ret_val)
2548		goto release;
2549
2550	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552		mac_reg = er32(RAL(i));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554					   (u16)(mac_reg & 0xFFFF));
2555		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556					   (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558		mac_reg = er32(RAH(i));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560					   (u16)(mac_reg & 0xFFFF));
2561		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2563	}
2564
2565	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568	hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 *  with 82579 PHY
2574 *  @hw: pointer to the HW structure
2575 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579	s32 ret_val = 0;
2580	u16 phy_reg, data;
2581	u32 mac_reg;
2582	u16 i;
2583
2584	if (hw->mac.type < e1000_pch2lan)
2585		return 0;
2586
2587	/* disable Rx path while enabling/disabling workaround */
2588	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590	if (ret_val)
2591		return ret_val;
2592
2593	if (enable) {
2594		/* Write Rx addresses (rar_entry_count for RAL/H, and
2595		 * SHRAL/H) and initial CRC values to the MAC
2596		 */
2597		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598			u8 mac_addr[ETH_ALEN] = { 0 };
2599			u32 addr_high, addr_low;
2600
2601			addr_high = er32(RAH(i));
2602			if (!(addr_high & E1000_RAH_AV))
2603				continue;
2604			addr_low = er32(RAL(i));
2605			mac_addr[0] = (addr_low & 0xFF);
2606			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609			mac_addr[4] = (addr_high & 0xFF);
2610			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613		}
2614
2615		/* Write Rx addresses to the PHY */
2616		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618		/* Enable jumbo frame workaround in the MAC */
2619		mac_reg = er32(FFLT_DBG);
2620		mac_reg &= ~BIT(14);
2621		mac_reg |= (7 << 15);
2622		ew32(FFLT_DBG, mac_reg);
2623
2624		mac_reg = er32(RCTL);
2625		mac_reg |= E1000_RCTL_SECRC;
2626		ew32(RCTL, mac_reg);
2627
2628		ret_val = e1000e_read_kmrn_reg(hw,
2629					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630					       &data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000e_write_kmrn_reg(hw,
2634						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635						data | BIT(0));
2636		if (ret_val)
2637			return ret_val;
2638		ret_val = e1000e_read_kmrn_reg(hw,
2639					       E1000_KMRNCTRLSTA_HD_CTRL,
2640					       &data);
2641		if (ret_val)
2642			return ret_val;
2643		data &= ~(0xF << 8);
2644		data |= (0xB << 8);
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_HD_CTRL,
2647						data);
2648		if (ret_val)
2649			return ret_val;
2650
2651		/* Enable jumbo frame workaround in the PHY */
2652		e1e_rphy(hw, PHY_REG(769, 23), &data);
2653		data &= ~(0x7F << 5);
2654		data |= (0x37 << 5);
2655		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656		if (ret_val)
2657			return ret_val;
2658		e1e_rphy(hw, PHY_REG(769, 16), &data);
2659		data &= ~BIT(13);
2660		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661		if (ret_val)
2662			return ret_val;
2663		e1e_rphy(hw, PHY_REG(776, 20), &data);
2664		data &= ~(0x3FF << 2);
2665		data |= (E1000_TX_PTR_GAP << 2);
2666		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667		if (ret_val)
2668			return ret_val;
2669		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, HV_PM_CTRL, &data);
2673		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674		if (ret_val)
2675			return ret_val;
2676	} else {
2677		/* Write MAC register values back to h/w defaults */
2678		mac_reg = er32(FFLT_DBG);
2679		mac_reg &= ~(0xF << 14);
2680		ew32(FFLT_DBG, mac_reg);
2681
2682		mac_reg = er32(RCTL);
2683		mac_reg &= ~E1000_RCTL_SECRC;
2684		ew32(RCTL, mac_reg);
2685
2686		ret_val = e1000e_read_kmrn_reg(hw,
2687					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688					       &data);
2689		if (ret_val)
2690			return ret_val;
2691		ret_val = e1000e_write_kmrn_reg(hw,
2692						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693						data & ~BIT(0));
2694		if (ret_val)
2695			return ret_val;
2696		ret_val = e1000e_read_kmrn_reg(hw,
2697					       E1000_KMRNCTRLSTA_HD_CTRL,
2698					       &data);
2699		if (ret_val)
2700			return ret_val;
2701		data &= ~(0xF << 8);
2702		data |= (0xB << 8);
2703		ret_val = e1000e_write_kmrn_reg(hw,
2704						E1000_KMRNCTRLSTA_HD_CTRL,
2705						data);
2706		if (ret_val)
2707			return ret_val;
2708
2709		/* Write PHY register values back to h/w defaults */
2710		e1e_rphy(hw, PHY_REG(769, 23), &data);
2711		data &= ~(0x7F << 5);
2712		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713		if (ret_val)
2714			return ret_val;
2715		e1e_rphy(hw, PHY_REG(769, 16), &data);
2716		data |= BIT(13);
2717		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718		if (ret_val)
2719			return ret_val;
2720		e1e_rphy(hw, PHY_REG(776, 20), &data);
2721		data &= ~(0x3FF << 2);
2722		data |= (0x8 << 2);
2723		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724		if (ret_val)
2725			return ret_val;
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, HV_PM_CTRL, &data);
2730		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731		if (ret_val)
2732			return ret_val;
2733	}
2734
2735	/* re-enable Rx path after enabling/disabling workaround */
2736	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 *  @hw: pointer to the HW structure
2742 *
2743 *  A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747	s32 ret_val = 0;
2748
2749	if (hw->mac.type != e1000_pch2lan)
2750		return 0;
2751
2752	/* Set MDIO slow mode before any other MDIO access */
2753	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754	if (ret_val)
2755		return ret_val;
2756
2757	ret_val = hw->phy.ops.acquire(hw);
2758	if (ret_val)
2759		return ret_val;
2760	/* set MSE higher to enable link to stay up when noise is high */
2761	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762	if (ret_val)
2763		goto release;
2764	/* drop link after 5 times MSE threshold was reached */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767	hw->phy.ops.release(hw);
2768
2769	return ret_val;
2770}
2771
2772/**
2773 *  e1000_k1_workaround_lv - K1 Si workaround
2774 *  @hw:   pointer to the HW structure
2775 *
2776 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 *  Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781	s32 ret_val = 0;
2782	u16 status_reg = 0;
2783
2784	if (hw->mac.type != e1000_pch2lan)
2785		return 0;
2786
2787	/* Set K1 beacon duration based on 10Mbs speed */
2788	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789	if (ret_val)
2790		return ret_val;
2791
2792	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794		if (status_reg &
2795		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796			u16 pm_phy_reg;
2797
2798			/* LV 1G/100 Packet drop issue wa  */
2799			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800			if (ret_val)
2801				return ret_val;
2802			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806		} else {
2807			u32 mac_reg;
2808
2809			mac_reg = er32(FEXTNVM4);
2810			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812			ew32(FEXTNVM4, mac_reg);
2813		}
2814	}
2815
2816	return ret_val;
2817}
2818
2819/**
2820 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 *  @hw:   pointer to the HW structure
2822 *  @gate: boolean set to true to gate, false to ungate
2823 *
2824 *  Gate/ungate the automatic PHY configuration via hardware; perform
2825 *  the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829	u32 extcnf_ctrl;
2830
2831	if (hw->mac.type < e1000_pch2lan)
2832		return;
2833
2834	extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836	if (gate)
2837		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838	else
2839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841	ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 *  @hw: pointer to the HW structure
2847 *
2848 *  Check the appropriate indication the MAC has finished configuring the
2849 *  PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855	/* Wait for basic configuration completes before proceeding */
2856	do {
2857		data = er32(STATUS);
2858		data &= E1000_STATUS_LAN_INIT_DONE;
2859		usleep_range(100, 200);
2860	} while ((!data) && --loop);
2861
2862	/* If basic configuration is incomplete before the above loop
2863	 * count reaches 0, loading the configuration from NVM will
2864	 * leave the PHY in a bad state possibly resulting in no link.
2865	 */
2866	if (loop == 0)
2867		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869	/* Clear the Init Done bit for the next init event */
2870	data = er32(STATUS);
2871	data &= ~E1000_STATUS_LAN_INIT_DONE;
2872	ew32(STATUS, data);
2873}
2874
2875/**
2876 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 *  @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881	s32 ret_val = 0;
2882	u16 reg;
2883
2884	if (hw->phy.ops.check_reset_block(hw))
2885		return 0;
2886
2887	/* Allow time for h/w to get to quiescent state after reset */
2888	usleep_range(10000, 11000);
2889
2890	/* Perform any necessary post-reset workarounds */
2891	switch (hw->mac.type) {
2892	case e1000_pchlan:
2893		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894		if (ret_val)
2895			return ret_val;
2896		break;
2897	case e1000_pch2lan:
2898		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899		if (ret_val)
2900			return ret_val;
2901		break;
2902	default:
2903		break;
2904	}
2905
2906	/* Clear the host wakeup bit after lcd reset */
2907	if (hw->mac.type >= e1000_pchlan) {
2908		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2909		reg &= ~BM_WUC_HOST_WU_BIT;
2910		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911	}
2912
2913	/* Configure the LCD with the extended configuration region in NVM */
2914	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915	if (ret_val)
2916		return ret_val;
2917
2918	/* Configure the LCD with the OEM bits in NVM */
2919	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921	if (hw->mac.type == e1000_pch2lan) {
2922		/* Ungate automatic PHY configuration on non-managed 82579 */
2923		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924			usleep_range(10000, 11000);
2925			e1000_gate_hw_phy_config_ich8lan(hw, false);
2926		}
2927
2928		/* Set EEE LPI Update Timer to 200usec */
2929		ret_val = hw->phy.ops.acquire(hw);
2930		if (ret_val)
2931			return ret_val;
2932		ret_val = e1000_write_emi_reg_locked(hw,
2933						     I82579_LPI_UPDATE_TIMER,
2934						     0x1387);
2935		hw->phy.ops.release(hw);
2936	}
2937
2938	return ret_val;
2939}
2940
2941/**
2942 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 *  @hw: pointer to the HW structure
2944 *
2945 *  Resets the PHY
2946 *  This is a function pointer entry point called by drivers
2947 *  or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951	s32 ret_val = 0;
2952
2953	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954	if ((hw->mac.type == e1000_pch2lan) &&
2955	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956		e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958	ret_val = e1000e_phy_hw_reset_generic(hw);
2959	if (ret_val)
2960		return ret_val;
2961
2962	return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 *  @hw: pointer to the HW structure
2968 *  @active: true to enable LPLU, false to disable
2969 *
2970 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2971 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 *  the phy speed. This function will manually set the LPLU bit and restart
2973 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 *  since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978	s32 ret_val;
2979	u16 oem_reg;
2980
2981	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982	if (ret_val)
2983		return ret_val;
2984
2985	if (active)
2986		oem_reg |= HV_OEM_BITS_LPLU;
2987	else
2988		oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990	if (!hw->phy.ops.check_reset_block(hw))
2991		oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 *  @hw: pointer to the HW structure
2999 *  @active: true to enable LPLU, false to disable
3000 *
3001 *  Sets the LPLU D0 state according to the active flag.  When
3002 *  activating LPLU this function also disables smart speed
3003 *  and vice versa.  LPLU will not be activated unless the
3004 *  device autonegotiation advertisement meets standards of
3005 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 *  This is a function pointer entry point only called by
3007 *  PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011	struct e1000_phy_info *phy = &hw->phy;
3012	u32 phy_ctrl;
3013	s32 ret_val = 0;
3014	u16 data;
3015
3016	if (phy->type == e1000_phy_ife)
3017		return 0;
3018
3019	phy_ctrl = er32(PHY_CTRL);
3020
3021	if (active) {
3022		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023		ew32(PHY_CTRL, phy_ctrl);
3024
3025		if (phy->type != e1000_phy_igp_3)
3026			return 0;
3027
3028		/* Call gig speed drop workaround on LPLU before accessing
3029		 * any PHY registers
3030		 */
3031		if (hw->mac.type == e1000_ich8lan)
3032			e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034		/* When LPLU is enabled, we should disable SmartSpeed */
3035		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036		if (ret_val)
3037			return ret_val;
3038		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040		if (ret_val)
3041			return ret_val;
3042	} else {
3043		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044		ew32(PHY_CTRL, phy_ctrl);
3045
3046		if (phy->type != e1000_phy_igp_3)
3047			return 0;
3048
3049		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3050		 * during Dx states where the power conservation is most
3051		 * important.  During driver activity we should enable
3052		 * SmartSpeed, so performance is maintained.
3053		 */
3054		if (phy->smart_speed == e1000_smart_speed_on) {
3055			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056					   &data);
3057			if (ret_val)
3058				return ret_val;
3059
3060			data |= IGP01E1000_PSCFR_SMART_SPEED;
3061			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062					   data);
3063			if (ret_val)
3064				return ret_val;
3065		} else if (phy->smart_speed == e1000_smart_speed_off) {
3066			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   &data);
3068			if (ret_val)
3069				return ret_val;
3070
3071			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   data);
3074			if (ret_val)
3075				return ret_val;
3076		}
3077	}
3078
3079	return 0;
3080}
3081
3082/**
3083 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 *  @hw: pointer to the HW structure
3085 *  @active: true to enable LPLU, false to disable
3086 *
3087 *  Sets the LPLU D3 state according to the active flag.  When
3088 *  activating LPLU this function also disables smart speed
3089 *  and vice versa.  LPLU will not be activated unless the
3090 *  device autonegotiation advertisement meets standards of
3091 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 *  This is a function pointer entry point only called by
3093 *  PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097	struct e1000_phy_info *phy = &hw->phy;
3098	u32 phy_ctrl;
3099	s32 ret_val = 0;
3100	u16 data;
3101
3102	phy_ctrl = er32(PHY_CTRL);
3103
3104	if (!active) {
3105		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106		ew32(PHY_CTRL, phy_ctrl);
3107
3108		if (phy->type != e1000_phy_igp_3)
3109			return 0;
3110
3111		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3112		 * during Dx states where the power conservation is most
3113		 * important.  During driver activity we should enable
3114		 * SmartSpeed, so performance is maintained.
3115		 */
3116		if (phy->smart_speed == e1000_smart_speed_on) {
3117			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118					   &data);
3119			if (ret_val)
3120				return ret_val;
3121
3122			data |= IGP01E1000_PSCFR_SMART_SPEED;
3123			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124					   data);
3125			if (ret_val)
3126				return ret_val;
3127		} else if (phy->smart_speed == e1000_smart_speed_off) {
3128			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129					   &data);
3130			if (ret_val)
3131				return ret_val;
3132
3133			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135					   data);
3136			if (ret_val)
3137				return ret_val;
3138		}
3139	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143		ew32(PHY_CTRL, phy_ctrl);
3144
3145		if (phy->type != e1000_phy_igp_3)
3146			return 0;
3147
3148		/* Call gig speed drop workaround on LPLU before accessing
3149		 * any PHY registers
3150		 */
3151		if (hw->mac.type == e1000_ich8lan)
3152			e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154		/* When LPLU is enabled, we should disable SmartSpeed */
3155		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156		if (ret_val)
3157			return ret_val;
3158
3159		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161	}
3162
3163	return ret_val;
3164}
3165
3166/**
3167 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 *  @hw: pointer to the HW structure
3169 *  @bank:  pointer to the variable that returns the active bank
3170 *
3171 *  Reads signature byte from the NVM using the flash access registers.
3172 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176	u32 eecd;
3177	struct e1000_nvm_info *nvm = &hw->nvm;
3178	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180	u32 nvm_dword = 0;
3181	u8 sig_byte = 0;
3182	s32 ret_val;
3183
3184	switch (hw->mac.type) {
3185	case e1000_pch_spt:
3186	case e1000_pch_cnp:
3187	case e1000_pch_tgp:
3188	case e1000_pch_adp:
3189	case e1000_pch_mtp:
3190	case e1000_pch_lnp:
3191	case e1000_pch_ptp:
3192	case e1000_pch_nvp:
3193		bank1_offset = nvm->flash_bank_size;
3194		act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196		/* set bank to 0 in case flash read fails */
3197		*bank = 0;
3198
3199		/* Check bank 0 */
3200		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201							 &nvm_dword);
3202		if (ret_val)
3203			return ret_val;
3204		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206		    E1000_ICH_NVM_SIG_VALUE) {
3207			*bank = 0;
3208			return 0;
3209		}
3210
3211		/* Check bank 1 */
3212		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213							 bank1_offset,
3214							 &nvm_dword);
3215		if (ret_val)
3216			return ret_val;
3217		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219		    E1000_ICH_NVM_SIG_VALUE) {
3220			*bank = 1;
3221			return 0;
3222		}
3223
3224		e_dbg("ERROR: No valid NVM bank present\n");
3225		return -E1000_ERR_NVM;
3226	case e1000_ich8lan:
3227	case e1000_ich9lan:
3228		eecd = er32(EECD);
3229		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231			if (eecd & E1000_EECD_SEC1VAL)
3232				*bank = 1;
3233			else
3234				*bank = 0;
3235
3236			return 0;
3237		}
3238		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239		fallthrough;
3240	default:
3241		/* set bank to 0 in case flash read fails */
3242		*bank = 0;
3243
3244		/* Check bank 0 */
3245		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246							&sig_byte);
3247		if (ret_val)
3248			return ret_val;
3249		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250		    E1000_ICH_NVM_SIG_VALUE) {
3251			*bank = 0;
3252			return 0;
3253		}
3254
3255		/* Check bank 1 */
3256		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257							bank1_offset,
3258							&sig_byte);
3259		if (ret_val)
3260			return ret_val;
3261		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262		    E1000_ICH_NVM_SIG_VALUE) {
3263			*bank = 1;
3264			return 0;
3265		}
3266
3267		e_dbg("ERROR: No valid NVM bank present\n");
3268		return -E1000_ERR_NVM;
3269	}
3270}
3271
3272/**
3273 *  e1000_read_nvm_spt - NVM access for SPT
3274 *  @hw: pointer to the HW structure
3275 *  @offset: The offset (in bytes) of the word(s) to read.
3276 *  @words: Size of data to read in words.
3277 *  @data: pointer to the word(s) to read at offset.
3278 *
3279 *  Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282			      u16 *data)
3283{
3284	struct e1000_nvm_info *nvm = &hw->nvm;
3285	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286	u32 act_offset;
3287	s32 ret_val = 0;
3288	u32 bank = 0;
3289	u32 dword = 0;
3290	u16 offset_to_read;
3291	u16 i;
3292
3293	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294	    (words == 0)) {
3295		e_dbg("nvm parameter(s) out of bounds\n");
3296		ret_val = -E1000_ERR_NVM;
3297		goto out;
3298	}
3299
3300	nvm->ops.acquire(hw);
3301
3302	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303	if (ret_val) {
3304		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305		bank = 0;
3306	}
3307
3308	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309	act_offset += offset;
3310
3311	ret_val = 0;
3312
3313	for (i = 0; i < words; i += 2) {
3314		if (words - i == 1) {
3315			if (dev_spec->shadow_ram[offset + i].modified) {
3316				data[i] =
3317				    dev_spec->shadow_ram[offset + i].value;
3318			} else {
3319				offset_to_read = act_offset + i -
3320				    ((act_offset + i) % 2);
3321				ret_val =
3322				  e1000_read_flash_dword_ich8lan(hw,
3323								 offset_to_read,
3324								 &dword);
3325				if (ret_val)
3326					break;
3327				if ((act_offset + i) % 2 == 0)
3328					data[i] = (u16)(dword & 0xFFFF);
3329				else
3330					data[i] = (u16)((dword >> 16) & 0xFFFF);
3331			}
3332		} else {
3333			offset_to_read = act_offset + i;
3334			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336				ret_val =
3337				  e1000_read_flash_dword_ich8lan(hw,
3338								 offset_to_read,
3339								 &dword);
3340				if (ret_val)
3341					break;
3342			}
3343			if (dev_spec->shadow_ram[offset + i].modified)
3344				data[i] =
3345				    dev_spec->shadow_ram[offset + i].value;
3346			else
3347				data[i] = (u16)(dword & 0xFFFF);
3348			if (dev_spec->shadow_ram[offset + i].modified)
3349				data[i + 1] =
3350				    dev_spec->shadow_ram[offset + i + 1].value;
3351			else
3352				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353		}
3354	}
3355
3356	nvm->ops.release(hw);
3357
3358out:
3359	if (ret_val)
3360		e_dbg("NVM read error: %d\n", ret_val);
3361
3362	return ret_val;
3363}
3364
3365/**
3366 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 *  @hw: pointer to the HW structure
3368 *  @offset: The offset (in bytes) of the word(s) to read.
3369 *  @words: Size of data to read in words
3370 *  @data: Pointer to the word(s) to read at offset.
3371 *
3372 *  Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375				  u16 *data)
3376{
3377	struct e1000_nvm_info *nvm = &hw->nvm;
3378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379	u32 act_offset;
3380	s32 ret_val = 0;
3381	u32 bank = 0;
3382	u16 i, word;
3383
3384	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385	    (words == 0)) {
3386		e_dbg("nvm parameter(s) out of bounds\n");
3387		ret_val = -E1000_ERR_NVM;
3388		goto out;
3389	}
3390
3391	nvm->ops.acquire(hw);
3392
3393	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394	if (ret_val) {
3395		e_dbg("Could not detect valid bank, assuming bank 0\n");
3396		bank = 0;
3397	}
3398
3399	act_offset = (bank) ? nvm->flash_bank_size : 0;
3400	act_offset += offset;
3401
3402	ret_val = 0;
3403	for (i = 0; i < words; i++) {
3404		if (dev_spec->shadow_ram[offset + i].modified) {
3405			data[i] = dev_spec->shadow_ram[offset + i].value;
3406		} else {
3407			ret_val = e1000_read_flash_word_ich8lan(hw,
3408								act_offset + i,
3409								&word);
3410			if (ret_val)
3411				break;
3412			data[i] = word;
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3427 *  @hw: pointer to the HW structure
3428 *
3429 *  This function does initial flash setup so that a new read/write/erase cycle
3430 *  can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434	union ich8_hws_flash_status hsfsts;
3435	s32 ret_val = -E1000_ERR_NVM;
3436
3437	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439	/* Check if the flash descriptor is valid */
3440	if (!hsfsts.hsf_status.fldesvalid) {
3441		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3442		return -E1000_ERR_NVM;
3443	}
3444
3445	/* Clear FCERR and DAEL in hw status by writing 1 */
3446	hsfsts.hsf_status.flcerr = 1;
3447	hsfsts.hsf_status.dael = 1;
3448	if (hw->mac.type >= e1000_pch_spt)
3449		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450	else
3451		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453	/* Either we should have a hardware SPI cycle in progress
3454	 * bit to check against, in order to start a new cycle or
3455	 * FDONE bit should be changed in the hardware so that it
3456	 * is 1 after hardware reset, which can then be used as an
3457	 * indication whether a cycle is in progress or has been
3458	 * completed.
3459	 */
3460
3461	if (!hsfsts.hsf_status.flcinprog) {
3462		/* There is no cycle running at present,
3463		 * so we can start a cycle.
3464		 * Begin by setting Flash Cycle Done.
3465		 */
3466		hsfsts.hsf_status.flcdone = 1;
3467		if (hw->mac.type >= e1000_pch_spt)
3468			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469		else
3470			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471		ret_val = 0;
3472	} else {
3473		s32 i;
3474
3475		/* Otherwise poll for sometime so the current
3476		 * cycle has a chance to end before giving up.
3477		 */
3478		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480			if (!hsfsts.hsf_status.flcinprog) {
3481				ret_val = 0;
3482				break;
3483			}
3484			udelay(1);
3485		}
3486		if (!ret_val) {
3487			/* Successful in waiting for previous cycle to timeout,
3488			 * now set the Flash Cycle Done.
3489			 */
3490			hsfsts.hsf_status.flcdone = 1;
3491			if (hw->mac.type >= e1000_pch_spt)
3492				ew32flash(ICH_FLASH_HSFSTS,
3493					  hsfsts.regval & 0xFFFF);
3494			else
3495				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496		} else {
3497			e_dbg("Flash controller busy, cannot get access\n");
3498		}
3499	}
3500
3501	return ret_val;
3502}
3503
3504/**
3505 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 *  @hw: pointer to the HW structure
3507 *  @timeout: maximum time to wait for completion
3508 *
3509 *  This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513	union ich8_hws_flash_ctrl hsflctl;
3514	union ich8_hws_flash_status hsfsts;
3515	u32 i = 0;
3516
3517	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518	if (hw->mac.type >= e1000_pch_spt)
3519		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520	else
3521		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522	hsflctl.hsf_ctrl.flcgo = 1;
3523
3524	if (hw->mac.type >= e1000_pch_spt)
3525		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526	else
3527		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529	/* wait till FDONE bit is set to 1 */
3530	do {
3531		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532		if (hsfsts.hsf_status.flcdone)
3533			break;
3534		udelay(1);
3535	} while (i++ < timeout);
3536
3537	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538		return 0;
3539
3540	return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3545 *  @hw: pointer to the HW structure
3546 *  @offset: offset to data location
3547 *  @data: pointer to the location for storing the data
3548 *
3549 *  Reads the flash dword at offset into data.  Offset is converted
3550 *  to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553					  u32 *data)
3554{
3555	/* Must convert word offset into bytes. */
3556	offset <<= 1;
3557	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 *  e1000_read_flash_word_ich8lan - Read word from flash
3562 *  @hw: pointer to the HW structure
3563 *  @offset: offset to data location
3564 *  @data: pointer to the location for storing the data
3565 *
3566 *  Reads the flash word at offset into data.  Offset is converted
3567 *  to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570					 u16 *data)
3571{
3572	/* Must convert offset into bytes. */
3573	offset <<= 1;
3574
3575	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3580 *  @hw: pointer to the HW structure
3581 *  @offset: The offset of the byte to read.
3582 *  @data: Pointer to a byte to store the value read.
3583 *
3584 *  Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587					 u8 *data)
3588{
3589	s32 ret_val;
3590	u16 word = 0;
3591
3592	/* In SPT, only 32 bits access is supported,
3593	 * so this function should not be called.
3594	 */
3595	if (hw->mac.type >= e1000_pch_spt)
3596		return -E1000_ERR_NVM;
3597	else
3598		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600	if (ret_val)
3601		return ret_val;
3602
3603	*data = (u8)word;
3604
3605	return 0;
3606}
3607
3608/**
3609 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 *  @hw: pointer to the HW structure
3611 *  @offset: The offset (in bytes) of the byte or word to read.
3612 *  @size: Size of data to read, 1=byte 2=word
3613 *  @data: Pointer to the word to store the value read.
3614 *
3615 *  Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618					 u8 size, u16 *data)
3619{
3620	union ich8_hws_flash_status hsfsts;
3621	union ich8_hws_flash_ctrl hsflctl;
3622	u32 flash_linear_addr;
3623	u32 flash_data = 0;
3624	s32 ret_val = -E1000_ERR_NVM;
3625	u8 count = 0;
3626
3627	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628		return -E1000_ERR_NVM;
3629
3630	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631			     hw->nvm.flash_base_addr);
3632
3633	do {
3634		udelay(1);
3635		/* Steps */
3636		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637		if (ret_val)
3638			break;
3639
3640		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642		hsflctl.hsf_ctrl.fldbcount = size - 1;
3643		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648		ret_val =
3649		    e1000_flash_cycle_ich8lan(hw,
3650					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652		/* Check if FCERR is set to 1, if set to 1, clear it
3653		 * and try the whole sequence a few more times, else
3654		 * read in (shift in) the Flash Data0, the order is
3655		 * least significant byte first msb to lsb
3656		 */
3657		if (!ret_val) {
3658			flash_data = er32flash(ICH_FLASH_FDATA0);
3659			if (size == 1)
3660				*data = (u8)(flash_data & 0x000000FF);
3661			else if (size == 2)
3662				*data = (u16)(flash_data & 0x0000FFFF);
3663			break;
3664		} else {
3665			/* If we've gotten here, then things are probably
3666			 * completely hosed, but if the error condition is
3667			 * detected, it won't hurt to give it another try...
3668			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669			 */
3670			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671			if (hsfsts.hsf_status.flcerr) {
3672				/* Repeat for some time before giving up. */
3673				continue;
3674			} else if (!hsfsts.hsf_status.flcdone) {
3675				e_dbg("Timeout error - flash cycle did not complete.\n");
3676				break;
3677			}
3678		}
3679	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681	return ret_val;
3682}
3683
3684/**
3685 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 *  @hw: pointer to the HW structure
3687 *  @offset: The offset (in bytes) of the dword to read.
3688 *  @data: Pointer to the dword to store the value read.
3689 *
3690 *  Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694					   u32 *data)
3695{
3696	union ich8_hws_flash_status hsfsts;
3697	union ich8_hws_flash_ctrl hsflctl;
3698	u32 flash_linear_addr;
3699	s32 ret_val = -E1000_ERR_NVM;
3700	u8 count = 0;
3701
3702	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
 
3703		return -E1000_ERR_NVM;
3704	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705			     hw->nvm.flash_base_addr);
3706
3707	do {
3708		udelay(1);
3709		/* Steps */
3710		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711		if (ret_val)
3712			break;
3713		/* In SPT, This register is in Lan memory space, not flash.
3714		 * Therefore, only 32 bit access is supported
3715		 */
3716		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721		/* In SPT, This register is in Lan memory space, not flash.
3722		 * Therefore, only 32 bit access is supported
3723		 */
3724		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727		ret_val =
3728		   e1000_flash_cycle_ich8lan(hw,
3729					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731		/* Check if FCERR is set to 1, if set to 1, clear it
3732		 * and try the whole sequence a few more times, else
3733		 * read in (shift in) the Flash Data0, the order is
3734		 * least significant byte first msb to lsb
3735		 */
3736		if (!ret_val) {
3737			*data = er32flash(ICH_FLASH_FDATA0);
3738			break;
3739		} else {
3740			/* If we've gotten here, then things are probably
3741			 * completely hosed, but if the error condition is
3742			 * detected, it won't hurt to give it another try...
3743			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744			 */
3745			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746			if (hsfsts.hsf_status.flcerr) {
3747				/* Repeat for some time before giving up. */
3748				continue;
3749			} else if (!hsfsts.hsf_status.flcdone) {
3750				e_dbg("Timeout error - flash cycle did not complete.\n");
3751				break;
3752			}
3753		}
3754	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756	return ret_val;
3757}
3758
3759/**
3760 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 *  @hw: pointer to the HW structure
3762 *  @offset: The offset (in bytes) of the word(s) to write.
3763 *  @words: Size of data to write in words
3764 *  @data: Pointer to the word(s) to write at offset.
3765 *
3766 *  Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769				   u16 *data)
3770{
3771	struct e1000_nvm_info *nvm = &hw->nvm;
3772	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773	u16 i;
3774
3775	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776	    (words == 0)) {
3777		e_dbg("nvm parameter(s) out of bounds\n");
3778		return -E1000_ERR_NVM;
3779	}
3780
3781	nvm->ops.acquire(hw);
3782
3783	for (i = 0; i < words; i++) {
3784		dev_spec->shadow_ram[offset + i].modified = true;
3785		dev_spec->shadow_ram[offset + i].value = data[i];
3786	}
3787
3788	nvm->ops.release(hw);
3789
3790	return 0;
3791}
3792
3793/**
3794 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 *  @hw: pointer to the HW structure
3796 *
3797 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 *  which writes the checksum to the shadow ram.  The changes in the shadow
3799 *  ram are then committed to the EEPROM by processing each bank at a time
3800 *  checking for the modified bit and writing only the pending changes.
3801 *  After a successful commit, the shadow ram is cleared and is ready for
3802 *  future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806	struct e1000_nvm_info *nvm = &hw->nvm;
3807	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809	s32 ret_val;
3810	u32 dword = 0;
3811
3812	ret_val = e1000e_update_nvm_checksum_generic(hw);
3813	if (ret_val)
3814		goto out;
3815
3816	if (nvm->type != e1000_nvm_flash_sw)
3817		goto out;
3818
3819	nvm->ops.acquire(hw);
3820
3821	/* We're writing to the opposite bank so if we're on bank 1,
3822	 * write to bank 0 etc.  We also need to erase the segment that
3823	 * is going to be written
3824	 */
3825	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826	if (ret_val) {
3827		e_dbg("Could not detect valid bank, assuming bank 0\n");
3828		bank = 0;
3829	}
3830
3831	if (bank == 0) {
3832		new_bank_offset = nvm->flash_bank_size;
3833		old_bank_offset = 0;
3834		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835		if (ret_val)
3836			goto release;
3837	} else {
3838		old_bank_offset = nvm->flash_bank_size;
3839		new_bank_offset = 0;
3840		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841		if (ret_val)
3842			goto release;
3843	}
3844	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845		/* Determine whether to write the value stored
3846		 * in the other NVM bank or a modified value stored
3847		 * in the shadow RAM
3848		 */
3849		ret_val = e1000_read_flash_dword_ich8lan(hw,
3850							 i + old_bank_offset,
3851							 &dword);
3852
3853		if (dev_spec->shadow_ram[i].modified) {
3854			dword &= 0xffff0000;
3855			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856		}
3857		if (dev_spec->shadow_ram[i + 1].modified) {
3858			dword &= 0x0000ffff;
3859			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860				  << 16);
3861		}
3862		if (ret_val)
3863			break;
3864
3865		/* If the word is 0x13, then make sure the signature bits
3866		 * (15:14) are 11b until the commit has completed.
3867		 * This will allow us to write 10b which indicates the
3868		 * signature is valid.  We want to do this after the write
3869		 * has completed so that we don't mark the segment valid
3870		 * while the write is still in progress
3871		 */
3872		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875		/* Convert offset to bytes. */
3876		act_offset = (i + new_bank_offset) << 1;
3877
3878		usleep_range(100, 200);
3879
3880		/* Write the data to the new bank. Offset in words */
3881		act_offset = i + new_bank_offset;
3882		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883								dword);
3884		if (ret_val)
3885			break;
3886	}
3887
3888	/* Don't bother writing the segment valid bits if sector
3889	 * programming failed.
3890	 */
3891	if (ret_val) {
3892		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893		e_dbg("Flash commit failed.\n");
3894		goto release;
3895	}
3896
3897	/* Finally validate the new segment by setting bit 15:14
3898	 * to 10b in word 0x13 , this can be done without an
3899	 * erase as well since these bits are 11 to start with
3900	 * and we need to change bit 14 to 0b
3901	 */
3902	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904	/*offset in words but we read dword */
3905	--act_offset;
3906	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908	if (ret_val)
3909		goto release;
3910
3911	dword &= 0xBFFFFFFF;
3912	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914	if (ret_val)
3915		goto release;
3916
 
 
 
 
 
 
 
3917	/* offset in words but we read dword */
3918	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921	if (ret_val)
3922		goto release;
3923
3924	dword &= 0x00FFFFFF;
3925	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927	if (ret_val)
3928		goto release;
3929
3930	/* Great!  Everything worked, we can now clear the cached entries. */
3931	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932		dev_spec->shadow_ram[i].modified = false;
3933		dev_spec->shadow_ram[i].value = 0xFFFF;
3934	}
3935
3936release:
3937	nvm->ops.release(hw);
3938
3939	/* Reload the EEPROM, or else modifications will not appear
3940	 * until after the next adapter reset.
3941	 */
3942	if (!ret_val) {
3943		nvm->ops.reload(hw);
3944		usleep_range(10000, 11000);
3945	}
3946
3947out:
3948	if (ret_val)
3949		e_dbg("NVM update error: %d\n", ret_val);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 *  which writes the checksum to the shadow ram.  The changes in the shadow
3960 *  ram are then committed to the EEPROM by processing each bank at a time
3961 *  checking for the modified bit and writing only the pending changes.
3962 *  After a successful commit, the shadow ram is cleared and is ready for
3963 *  future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967	struct e1000_nvm_info *nvm = &hw->nvm;
3968	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970	s32 ret_val;
3971	u16 data = 0;
3972
3973	ret_val = e1000e_update_nvm_checksum_generic(hw);
3974	if (ret_val)
3975		goto out;
3976
3977	if (nvm->type != e1000_nvm_flash_sw)
3978		goto out;
3979
3980	nvm->ops.acquire(hw);
3981
3982	/* We're writing to the opposite bank so if we're on bank 1,
3983	 * write to bank 0 etc.  We also need to erase the segment that
3984	 * is going to be written
3985	 */
3986	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987	if (ret_val) {
3988		e_dbg("Could not detect valid bank, assuming bank 0\n");
3989		bank = 0;
3990	}
3991
3992	if (bank == 0) {
3993		new_bank_offset = nvm->flash_bank_size;
3994		old_bank_offset = 0;
3995		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996		if (ret_val)
3997			goto release;
3998	} else {
3999		old_bank_offset = nvm->flash_bank_size;
4000		new_bank_offset = 0;
4001		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002		if (ret_val)
4003			goto release;
4004	}
4005	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006		if (dev_spec->shadow_ram[i].modified) {
4007			data = dev_spec->shadow_ram[i].value;
4008		} else {
4009			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010								old_bank_offset,
4011								&data);
4012			if (ret_val)
4013				break;
4014		}
4015
4016		/* If the word is 0x13, then make sure the signature bits
4017		 * (15:14) are 11b until the commit has completed.
4018		 * This will allow us to write 10b which indicates the
4019		 * signature is valid.  We want to do this after the write
4020		 * has completed so that we don't mark the segment valid
4021		 * while the write is still in progress
4022		 */
4023		if (i == E1000_ICH_NVM_SIG_WORD)
4024			data |= E1000_ICH_NVM_SIG_MASK;
4025
4026		/* Convert offset to bytes. */
4027		act_offset = (i + new_bank_offset) << 1;
4028
4029		usleep_range(100, 200);
4030		/* Write the bytes to the new bank. */
4031		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032							       act_offset,
4033							       (u8)data);
4034		if (ret_val)
4035			break;
4036
4037		usleep_range(100, 200);
4038		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039							       act_offset + 1,
4040							       (u8)(data >> 8));
4041		if (ret_val)
4042			break;
4043	}
4044
4045	/* Don't bother writing the segment valid bits if sector
4046	 * programming failed.
4047	 */
4048	if (ret_val) {
4049		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050		e_dbg("Flash commit failed.\n");
4051		goto release;
4052	}
4053
4054	/* Finally validate the new segment by setting bit 15:14
4055	 * to 10b in word 0x13 , this can be done without an
4056	 * erase as well since these bits are 11 to start with
4057	 * and we need to change bit 14 to 0b
4058	 */
4059	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061	if (ret_val)
4062		goto release;
4063
4064	data &= 0xBFFF;
4065	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066						       act_offset * 2 + 1,
4067						       (u8)(data >> 8));
4068	if (ret_val)
4069		goto release;
4070
4071	/* And invalidate the previously valid segment by setting
4072	 * its signature word (0x13) high_byte to 0b. This can be
4073	 * done without an erase because flash erase sets all bits
4074	 * to 1's. We can write 1's to 0's without an erase
4075	 */
4076	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078	if (ret_val)
4079		goto release;
4080
4081	/* Great!  Everything worked, we can now clear the cached entries. */
4082	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083		dev_spec->shadow_ram[i].modified = false;
4084		dev_spec->shadow_ram[i].value = 0xFFFF;
4085	}
4086
4087release:
4088	nvm->ops.release(hw);
4089
4090	/* Reload the EEPROM, or else modifications will not appear
4091	 * until after the next adapter reset.
4092	 */
4093	if (!ret_val) {
4094		nvm->ops.reload(hw);
4095		usleep_range(10000, 11000);
4096	}
4097
4098out:
4099	if (ret_val)
4100		e_dbg("NVM update error: %d\n", ret_val);
4101
4102	return ret_val;
4103}
4104
4105/**
4106 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 *  @hw: pointer to the HW structure
4108 *
4109 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 *  calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115	s32 ret_val;
4116	u16 data;
4117	u16 word;
4118	u16 valid_csum_mask;
4119
4120	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4121	 * the checksum needs to be fixed.  This bit is an indication that
4122	 * the NVM was prepared by OEM software and did not calculate
4123	 * the checksum...a likely scenario.
4124	 */
4125	switch (hw->mac.type) {
4126	case e1000_pch_lpt:
4127	case e1000_pch_spt:
4128	case e1000_pch_cnp:
4129	case e1000_pch_tgp:
4130	case e1000_pch_adp:
4131	case e1000_pch_mtp:
4132	case e1000_pch_lnp:
4133	case e1000_pch_ptp:
4134	case e1000_pch_nvp:
4135		word = NVM_COMPAT;
4136		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137		break;
4138	default:
4139		word = NVM_FUTURE_INIT_WORD1;
4140		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141		break;
4142	}
4143
4144	ret_val = e1000_read_nvm(hw, word, 1, &data);
4145	if (ret_val)
4146		return ret_val;
4147
4148	if (!(data & valid_csum_mask)) {
4149		e_dbg("NVM Checksum valid bit not set\n");
4150
4151		if (hw->mac.type < e1000_pch_tgp) {
4152			data |= valid_csum_mask;
4153			ret_val = e1000_write_nvm(hw, word, 1, &data);
4154			if (ret_val)
4155				return ret_val;
4156			ret_val = e1000e_update_nvm_checksum(hw);
4157			if (ret_val)
4158				return ret_val;
4159		}
4160	}
4161
4162	return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  To prevent malicious write/erase of the NVM, set it to be read-only
4170 *  so that the hardware ignores all write/erase cycles of the NVM via
4171 *  the flash control registers.  The shadow-ram copy of the NVM will
4172 *  still be updated, however any updates to this copy will not stick
4173 *  across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177	struct e1000_nvm_info *nvm = &hw->nvm;
4178	union ich8_flash_protected_range pr0;
4179	union ich8_hws_flash_status hsfsts;
4180	u32 gfpreg;
4181
4182	nvm->ops.acquire(hw);
4183
4184	gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186	/* Write-protect GbE Sector of NVM */
4187	pr0.regval = er32flash(ICH_FLASH_PR0);
4188	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190	pr0.range.wpe = true;
4191	ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193	/* Lock down a subset of GbE Flash Control Registers, e.g.
4194	 * PR0 to prevent the write-protection from being lifted.
4195	 * Once FLOCKDN is set, the registers protected by it cannot
4196	 * be written until FLOCKDN is cleared by a hardware reset.
4197	 */
4198	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199	hsfsts.hsf_status.flockdn = true;
4200	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202	nvm->ops.release(hw);
4203}
4204
4205/**
4206 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 *  @hw: pointer to the HW structure
4208 *  @offset: The offset (in bytes) of the byte/word to read.
4209 *  @size: Size of data to read, 1=byte 2=word
4210 *  @data: The byte(s) to write to the NVM.
4211 *
4212 *  Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215					  u8 size, u16 data)
4216{
4217	union ich8_hws_flash_status hsfsts;
4218	union ich8_hws_flash_ctrl hsflctl;
4219	u32 flash_linear_addr;
4220	u32 flash_data = 0;
4221	s32 ret_val;
4222	u8 count = 0;
4223
4224	if (hw->mac.type >= e1000_pch_spt) {
4225		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	} else {
4228		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229			return -E1000_ERR_NVM;
4230	}
4231
4232	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233			     hw->nvm.flash_base_addr);
4234
4235	do {
4236		udelay(1);
4237		/* Steps */
4238		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239		if (ret_val)
4240			break;
4241		/* In SPT, This register is in Lan memory space, not
4242		 * flash.  Therefore, only 32 bit access is supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246		else
4247			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250		hsflctl.hsf_ctrl.fldbcount = size - 1;
4251		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252		/* In SPT, This register is in Lan memory space,
4253		 * not flash.  Therefore, only 32 bit access is
4254		 * supported
4255		 */
4256		if (hw->mac.type >= e1000_pch_spt)
4257			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258		else
4259			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263		if (size == 1)
4264			flash_data = (u32)data & 0x00FF;
4265		else
4266			flash_data = (u32)data;
4267
4268		ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270		/* check if FCERR is set to 1 , if set to 1, clear it
4271		 * and try the whole sequence a few more times else done
4272		 */
4273		ret_val =
4274		    e1000_flash_cycle_ich8lan(hw,
4275					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276		if (!ret_val)
4277			break;
4278
4279		/* If we're here, then things are most likely
4280		 * completely hosed, but if the error condition
4281		 * is detected, it won't hurt to give it another
4282		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283		 */
4284		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285		if (hsfsts.hsf_status.flcerr)
4286			/* Repeat for some time before giving up. */
4287			continue;
4288		if (!hsfsts.hsf_status.flcdone) {
4289			e_dbg("Timeout error - flash cycle did not complete.\n");
4290			break;
4291		}
4292	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294	return ret_val;
4295}
4296
4297/**
4298*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299*  @hw: pointer to the HW structure
4300*  @offset: The offset (in bytes) of the dwords to read.
4301*  @data: The 4 bytes to write to the NVM.
4302*
4303*  Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306					    u32 data)
4307{
4308	union ich8_hws_flash_status hsfsts;
4309	union ich8_hws_flash_ctrl hsflctl;
4310	u32 flash_linear_addr;
4311	s32 ret_val;
4312	u8 count = 0;
4313
4314	if (hw->mac.type >= e1000_pch_spt) {
4315		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316			return -E1000_ERR_NVM;
4317	}
4318	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319			     hw->nvm.flash_base_addr);
4320	do {
4321		udelay(1);
4322		/* Steps */
4323		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324		if (ret_val)
4325			break;
4326
4327		/* In SPT, This register is in Lan memory space, not
4328		 * flash.  Therefore, only 32 bit access is supported
4329		 */
4330		if (hw->mac.type >= e1000_pch_spt)
4331			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332			    >> 16;
4333		else
4334			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339		/* In SPT, This register is in Lan memory space,
4340		 * not flash.  Therefore, only 32 bit access is
4341		 * supported
4342		 */
4343		if (hw->mac.type >= e1000_pch_spt)
4344			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345		else
4346			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350		ew32flash(ICH_FLASH_FDATA0, data);
4351
4352		/* check if FCERR is set to 1 , if set to 1, clear it
4353		 * and try the whole sequence a few more times else done
4354		 */
4355		ret_val =
4356		   e1000_flash_cycle_ich8lan(hw,
4357					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359		if (!ret_val)
4360			break;
4361
4362		/* If we're here, then things are most likely
4363		 * completely hosed, but if the error condition
4364		 * is detected, it won't hurt to give it another
4365		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366		 */
4367		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369		if (hsfsts.hsf_status.flcerr)
4370			/* Repeat for some time before giving up. */
4371			continue;
4372		if (!hsfsts.hsf_status.flcdone) {
4373			e_dbg("Timeout error - flash cycle did not complete.\n");
4374			break;
4375		}
4376	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378	return ret_val;
4379}
4380
4381/**
4382 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The index of the byte to read.
4385 *  @data: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390					  u8 data)
4391{
4392	u16 word = (u16)data;
4393
4394	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399*  @hw: pointer to the HW structure
4400*  @offset: The offset of the word to write.
4401*  @dword: The dword to write to the NVM.
4402*
4403*  Writes a single dword to the NVM using the flash access registers.
4404*  Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407						 u32 offset, u32 dword)
4408{
4409	s32 ret_val;
4410	u16 program_retries;
4411
4412	/* Must convert word offset into bytes. */
4413	offset <<= 1;
4414	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416	if (!ret_val)
4417		return ret_val;
4418	for (program_retries = 0; program_retries < 100; program_retries++) {
4419		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420		usleep_range(100, 200);
4421		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422		if (!ret_val)
4423			break;
4424	}
4425	if (program_retries == 100)
4426		return -E1000_ERR_NVM;
4427
4428	return 0;
4429}
4430
4431/**
4432 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 *  @hw: pointer to the HW structure
4434 *  @offset: The offset of the byte to write.
4435 *  @byte: The byte to write to the NVM.
4436 *
4437 *  Writes a single byte to the NVM using the flash access registers.
4438 *  Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441						u32 offset, u8 byte)
4442{
4443	s32 ret_val;
4444	u16 program_retries;
4445
4446	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447	if (!ret_val)
4448		return ret_val;
4449
4450	for (program_retries = 0; program_retries < 100; program_retries++) {
4451		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452		usleep_range(100, 200);
4453		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454		if (!ret_val)
4455			break;
4456	}
4457	if (program_retries == 100)
4458		return -E1000_ERR_NVM;
4459
4460	return 0;
4461}
4462
4463/**
4464 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 *  @hw: pointer to the HW structure
4466 *  @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 *  bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473	struct e1000_nvm_info *nvm = &hw->nvm;
4474	union ich8_hws_flash_status hsfsts;
4475	union ich8_hws_flash_ctrl hsflctl;
4476	u32 flash_linear_addr;
4477	/* bank size is in 16bit words - adjust to bytes */
4478	u32 flash_bank_size = nvm->flash_bank_size * 2;
4479	s32 ret_val;
4480	s32 count = 0;
4481	s32 j, iteration, sector_size;
4482
4483	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485	/* Determine HW Sector size: Read BERASE bits of hw flash status
4486	 * register
4487	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488	 *     consecutive sectors.  The start index for the nth Hw sector
4489	 *     can be calculated as = bank * 4096 + n * 256
4490	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491	 *     The start index for the nth Hw sector can be calculated
4492	 *     as = bank * 4096
4493	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494	 *     (ich9 only, otherwise error condition)
4495	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496	 */
4497	switch (hsfsts.hsf_status.berasesz) {
4498	case 0:
4499		/* Hw sector size 256 */
4500		sector_size = ICH_FLASH_SEG_SIZE_256;
4501		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502		break;
4503	case 1:
4504		sector_size = ICH_FLASH_SEG_SIZE_4K;
4505		iteration = 1;
4506		break;
4507	case 2:
4508		sector_size = ICH_FLASH_SEG_SIZE_8K;
4509		iteration = 1;
4510		break;
4511	case 3:
4512		sector_size = ICH_FLASH_SEG_SIZE_64K;
4513		iteration = 1;
4514		break;
4515	default:
4516		return -E1000_ERR_NVM;
4517	}
4518
4519	/* Start with the base address, then add the sector offset. */
4520	flash_linear_addr = hw->nvm.flash_base_addr;
4521	flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523	for (j = 0; j < iteration; j++) {
4524		do {
4525			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527			/* Steps */
4528			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529			if (ret_val)
4530				return ret_val;
4531
4532			/* Write a value 11 (block Erase) in Flash
4533			 * Cycle field in hw flash control
4534			 */
4535			if (hw->mac.type >= e1000_pch_spt)
4536				hsflctl.regval =
4537				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4538			else
4539				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542			if (hw->mac.type >= e1000_pch_spt)
4543				ew32flash(ICH_FLASH_HSFSTS,
4544					  hsflctl.regval << 16);
4545			else
4546				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548			/* Write the last 24 bits of an index within the
4549			 * block into Flash Linear address field in Flash
4550			 * Address.
4551			 */
4552			flash_linear_addr += (j * sector_size);
4553			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556			if (!ret_val)
4557				break;
4558
4559			/* Check if FCERR is set to 1.  If 1,
4560			 * clear it and try the whole sequence
4561			 * a few more times else Done
4562			 */
4563			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564			if (hsfsts.hsf_status.flcerr)
4565				/* repeat for some time before giving up */
4566				continue;
4567			else if (!hsfsts.hsf_status.flcdone)
4568				return ret_val;
4569		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570	}
4571
4572	return 0;
4573}
4574
4575/**
4576 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4577 *  @hw: pointer to the HW structure
4578 *  @data: Pointer to the LED settings
4579 *
4580 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4581 *  settings is all 0's or F's, set the LED default to a valid LED default
4582 *  setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586	s32 ret_val;
4587
4588	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589	if (ret_val) {
4590		e_dbg("NVM Read Error\n");
4591		return ret_val;
4592	}
4593
4594	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595		*data = ID_LED_DEFAULT_ICH8LAN;
4596
4597	return 0;
4598}
4599
4600/**
4601 *  e1000_id_led_init_pchlan - store LED configurations
4602 *  @hw: pointer to the HW structure
4603 *
4604 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4605 *  the PHY LED configuration register.
4606 *
4607 *  PCH also does not have an "always on" or "always off" mode which
4608 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4609 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4611 *  link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615	struct e1000_mac_info *mac = &hw->mac;
4616	s32 ret_val;
4617	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619	u16 data, i, temp, shift;
4620
4621	/* Get default ID LED modes */
4622	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623	if (ret_val)
4624		return ret_val;
4625
4626	mac->ledctl_default = er32(LEDCTL);
4627	mac->ledctl_mode1 = mac->ledctl_default;
4628	mac->ledctl_mode2 = mac->ledctl_default;
4629
4630	for (i = 0; i < 4; i++) {
4631		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632		shift = (i * 5);
4633		switch (temp) {
4634		case ID_LED_ON1_DEF2:
4635		case ID_LED_ON1_ON2:
4636		case ID_LED_ON1_OFF2:
4637			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638			mac->ledctl_mode1 |= (ledctl_on << shift);
4639			break;
4640		case ID_LED_OFF1_DEF2:
4641		case ID_LED_OFF1_ON2:
4642		case ID_LED_OFF1_OFF2:
4643			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644			mac->ledctl_mode1 |= (ledctl_off << shift);
4645			break;
4646		default:
4647			/* Do nothing */
4648			break;
4649		}
4650		switch (temp) {
4651		case ID_LED_DEF1_ON2:
4652		case ID_LED_ON1_ON2:
4653		case ID_LED_OFF1_ON2:
4654			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655			mac->ledctl_mode2 |= (ledctl_on << shift);
4656			break;
4657		case ID_LED_DEF1_OFF2:
4658		case ID_LED_ON1_OFF2:
4659		case ID_LED_OFF1_OFF2:
4660			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661			mac->ledctl_mode2 |= (ledctl_off << shift);
4662			break;
4663		default:
4664			/* Do nothing */
4665			break;
4666		}
4667	}
4668
4669	return 0;
4670}
4671
4672/**
4673 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 *  @hw: pointer to the HW structure
4675 *
4676 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 *  register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681	struct e1000_bus_info *bus = &hw->bus;
4682	s32 ret_val;
4683
4684	ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686	/* ICH devices are "PCI Express"-ish.  They have
4687	 * a configuration space, but do not contain
4688	 * PCI Express Capability registers, so bus width
4689	 * must be hardcoded.
4690	 */
4691	if (bus->width == e1000_bus_width_unknown)
4692		bus->width = e1000_bus_width_pcie_x1;
4693
4694	return ret_val;
4695}
4696
4697/**
4698 *  e1000_reset_hw_ich8lan - Reset the hardware
4699 *  @hw: pointer to the HW structure
4700 *
4701 *  Does a full reset of the hardware which includes a reset of the PHY and
4702 *  MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707	u16 kum_cfg;
4708	u32 ctrl, reg;
4709	s32 ret_val;
4710
4711	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4712	 * on the last TLP read/write transaction when MAC is reset.
4713	 */
4714	ret_val = e1000e_disable_pcie_master(hw);
4715	if (ret_val)
4716		e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718	e_dbg("Masking off all interrupts\n");
4719	ew32(IMC, 0xffffffff);
4720
4721	/* Disable the Transmit and Receive units.  Then delay to allow
4722	 * any pending transactions to complete before we hit the MAC
4723	 * with the global reset.
4724	 */
4725	ew32(RCTL, 0);
4726	ew32(TCTL, E1000_TCTL_PSP);
4727	e1e_flush();
4728
4729	usleep_range(10000, 11000);
4730
4731	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4732	if (hw->mac.type == e1000_ich8lan) {
4733		/* Set Tx and Rx buffer allocation to 8k apiece. */
4734		ew32(PBA, E1000_PBA_8K);
4735		/* Set Packet Buffer Size to 16k. */
4736		ew32(PBS, E1000_PBS_16K);
4737	}
4738
4739	if (hw->mac.type == e1000_pchlan) {
4740		/* Save the NVM K1 bit setting */
4741		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742		if (ret_val)
4743			return ret_val;
4744
4745		if (kum_cfg & E1000_NVM_K1_ENABLE)
4746			dev_spec->nvm_k1_enabled = true;
4747		else
4748			dev_spec->nvm_k1_enabled = false;
4749	}
4750
4751	ctrl = er32(CTRL);
4752
4753	if (!hw->phy.ops.check_reset_block(hw)) {
4754		/* Full-chip reset requires MAC and PHY reset at the same
4755		 * time to make sure the interface between MAC and the
4756		 * external PHY is reset.
4757		 */
4758		ctrl |= E1000_CTRL_PHY_RST;
4759
4760		/* Gate automatic PHY configuration by hardware on
4761		 * non-managed 82579
4762		 */
4763		if ((hw->mac.type == e1000_pch2lan) &&
4764		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765			e1000_gate_hw_phy_config_ich8lan(hw, true);
4766	}
4767	ret_val = e1000_acquire_swflag_ich8lan(hw);
4768	e_dbg("Issuing a global reset to ich8lan\n");
4769	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770	/* cannot issue a flush here because it hangs the hardware */
4771	msleep(20);
4772
4773	/* Set Phy Config Counter to 50msec */
4774	if (hw->mac.type == e1000_pch2lan) {
4775		reg = er32(FEXTNVM3);
4776		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778		ew32(FEXTNVM3, reg);
4779	}
4780
4781	if (!ret_val)
4782		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784	if (ctrl & E1000_CTRL_PHY_RST) {
4785		ret_val = hw->phy.ops.get_cfg_done(hw);
4786		if (ret_val)
4787			return ret_val;
4788
4789		ret_val = e1000_post_phy_reset_ich8lan(hw);
4790		if (ret_val)
4791			return ret_val;
4792	}
4793
4794	/* For PCH, this write will make sure that any noise
4795	 * will be detected as a CRC error and be dropped rather than show up
4796	 * as a bad packet to the DMA engine.
4797	 */
4798	if (hw->mac.type == e1000_pchlan)
4799		ew32(CRC_OFFSET, 0x65656565);
4800
4801	ew32(IMC, 0xffffffff);
4802	er32(ICR);
4803
4804	reg = er32(KABGTXD);
4805	reg |= E1000_KABGTXD_BGSQLBIAS;
4806	ew32(KABGTXD, reg);
4807
4808	return 0;
4809}
4810
4811/**
4812 *  e1000_init_hw_ich8lan - Initialize the hardware
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Prepares the hardware for transmit and receive by doing the following:
4816 *   - initialize hardware bits
4817 *   - initialize LED identification
4818 *   - setup receive address registers
4819 *   - setup flow control
4820 *   - setup transmit descriptors
4821 *   - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825	struct e1000_mac_info *mac = &hw->mac;
4826	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827	s32 ret_val;
4828	u16 i;
4829
4830	e1000_initialize_hw_bits_ich8lan(hw);
4831
4832	/* Initialize identification LED */
4833	ret_val = mac->ops.id_led_init(hw);
4834	/* An error is not fatal and we should not stop init due to this */
4835	if (ret_val)
4836		e_dbg("Error initializing identification LED\n");
4837
4838	/* Setup the receive address. */
4839	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841	/* Zero out the Multicast HASH table */
4842	e_dbg("Zeroing the MTA\n");
4843	for (i = 0; i < mac->mta_reg_count; i++)
4844		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4848	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849	 */
4850	if (hw->phy.type == e1000_phy_82578) {
4851		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852		i &= ~BM_WUC_HOST_WU_BIT;
4853		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855		if (ret_val)
4856			return ret_val;
4857	}
4858
4859	/* Setup link and flow control */
4860	ret_val = mac->ops.setup_link(hw);
4861
4862	/* Set the transmit descriptor write-back policy for both queues */
4863	txdctl = er32(TXDCTL(0));
4864	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868	ew32(TXDCTL(0), txdctl);
4869	txdctl = er32(TXDCTL(1));
4870	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871		  E1000_TXDCTL_FULL_TX_DESC_WB);
4872	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874	ew32(TXDCTL(1), txdctl);
4875
4876	/* ICH8 has opposite polarity of no_snoop bits.
4877	 * By default, we should use snoop behavior.
4878	 */
4879	if (mac->type == e1000_ich8lan)
4880		snoop = PCIE_ICH8_SNOOP_ALL;
4881	else
4882		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883	e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885	/* Enable workaround for packet loss issue on TGP PCH
4886	 * Do not gate DMA clock from the modPHY block
4887	 */
4888	if (mac->type >= e1000_pch_tgp) {
4889		fflt_dbg = er32(FFLT_DBG);
4890		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891		ew32(FFLT_DBG, fflt_dbg);
4892	}
4893
4894	ctrl_ext = er32(CTRL_EXT);
4895	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896	ew32(CTRL_EXT, ctrl_ext);
4897
4898	/* Clear all of the statistics registers (clear on read).  It is
4899	 * important that we do this after we have tried to establish link
4900	 * because the symbol error count will increment wildly if there
4901	 * is no link.
4902	 */
4903	e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905	return ret_val;
4906}
4907
4908/**
4909 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 *  @hw: pointer to the HW structure
4911 *
4912 *  Sets/Clears required hardware bits necessary for correctly setting up the
4913 *  hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917	u32 reg;
4918
4919	/* Extended Device Control */
4920	reg = er32(CTRL_EXT);
4921	reg |= BIT(22);
4922	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923	if (hw->mac.type >= e1000_pchlan)
4924		reg |= E1000_CTRL_EXT_PHYPDEN;
4925	ew32(CTRL_EXT, reg);
4926
4927	/* Transmit Descriptor Control 0 */
4928	reg = er32(TXDCTL(0));
4929	reg |= BIT(22);
4930	ew32(TXDCTL(0), reg);
4931
4932	/* Transmit Descriptor Control 1 */
4933	reg = er32(TXDCTL(1));
4934	reg |= BIT(22);
4935	ew32(TXDCTL(1), reg);
4936
4937	/* Transmit Arbitration Control 0 */
4938	reg = er32(TARC(0));
4939	if (hw->mac.type == e1000_ich8lan)
4940		reg |= BIT(28) | BIT(29);
4941	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942	ew32(TARC(0), reg);
4943
4944	/* Transmit Arbitration Control 1 */
4945	reg = er32(TARC(1));
4946	if (er32(TCTL) & E1000_TCTL_MULR)
4947		reg &= ~BIT(28);
4948	else
4949		reg |= BIT(28);
4950	reg |= BIT(24) | BIT(26) | BIT(30);
4951	ew32(TARC(1), reg);
4952
4953	/* Device Status */
4954	if (hw->mac.type == e1000_ich8lan) {
4955		reg = er32(STATUS);
4956		reg &= ~BIT(31);
4957		ew32(STATUS, reg);
4958	}
4959
4960	/* work-around descriptor data corruption issue during nfs v2 udp
4961	 * traffic, just disable the nfs filtering capability
4962	 */
4963	reg = er32(RFCTL);
4964	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966	/* Disable IPv6 extension header parsing because some malformed
4967	 * IPv6 headers can hang the Rx.
4968	 */
4969	if (hw->mac.type == e1000_ich8lan)
4970		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971	ew32(RFCTL, reg);
4972
4973	/* Enable ECC on Lynxpoint */
4974	if (hw->mac.type >= e1000_pch_lpt) {
 
4975		reg = er32(PBECCSTS);
4976		reg |= E1000_PBECCSTS_ECC_ENABLE;
4977		ew32(PBECCSTS, reg);
4978
4979		reg = er32(CTRL);
4980		reg |= E1000_CTRL_MEHE;
4981		ew32(CTRL, reg);
4982	}
4983}
4984
4985/**
4986 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4987 *  @hw: pointer to the HW structure
4988 *
4989 *  Determines which flow control settings to use, then configures flow
4990 *  control.  Calls the appropriate media-specific link configuration
4991 *  function.  Assuming the adapter has a valid link partner, a valid link
4992 *  should be established.  Assumes the hardware has previously been reset
4993 *  and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997	s32 ret_val;
4998
4999	if (hw->phy.ops.check_reset_block(hw))
5000		return 0;
5001
5002	/* ICH parts do not have a word in the NVM to determine
5003	 * the default flow control setting, so we explicitly
5004	 * set it to full.
5005	 */
5006	if (hw->fc.requested_mode == e1000_fc_default) {
5007		/* Workaround h/w hang when Tx flow control enabled */
5008		if (hw->mac.type == e1000_pchlan)
5009			hw->fc.requested_mode = e1000_fc_rx_pause;
5010		else
5011			hw->fc.requested_mode = e1000_fc_full;
5012	}
5013
5014	/* Save off the requested flow control mode for use later.  Depending
5015	 * on the link partner's capabilities, we may or may not use this mode.
5016	 */
5017	hw->fc.current_mode = hw->fc.requested_mode;
5018
5019	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021	/* Continue to configure the copper link. */
5022	ret_val = hw->mac.ops.setup_physical_interface(hw);
5023	if (ret_val)
5024		return ret_val;
5025
5026	ew32(FCTTV, hw->fc.pause_time);
5027	if ((hw->phy.type == e1000_phy_82578) ||
5028	    (hw->phy.type == e1000_phy_82579) ||
5029	    (hw->phy.type == e1000_phy_i217) ||
5030	    (hw->phy.type == e1000_phy_82577)) {
5031		ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034				   hw->fc.pause_time);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 *  @hw: pointer to the HW structure
5045 *
5046 *  Configures the kumeran interface to the PHY to wait the appropriate time
5047 *  when polling the PHY, then call the generic setup_copper_link to finish
5048 *  configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052	u32 ctrl;
5053	s32 ret_val;
5054	u16 reg_data;
5055
5056	ctrl = er32(CTRL);
5057	ctrl |= E1000_CTRL_SLU;
5058	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059	ew32(CTRL, ctrl);
5060
5061	/* Set the mac to wait the maximum time between each iteration
5062	 * and increase the max iterations when polling the phy;
5063	 * this fixes erroneous timeouts at 10Mbps.
5064	 */
5065	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066	if (ret_val)
5067		return ret_val;
5068	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069				       &reg_data);
5070	if (ret_val)
5071		return ret_val;
5072	reg_data |= 0x3F;
5073	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074					reg_data);
5075	if (ret_val)
5076		return ret_val;
5077
5078	switch (hw->phy.type) {
5079	case e1000_phy_igp_3:
5080		ret_val = e1000e_copper_link_setup_igp(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_bm:
5085	case e1000_phy_82578:
5086		ret_val = e1000e_copper_link_setup_m88(hw);
5087		if (ret_val)
5088			return ret_val;
5089		break;
5090	case e1000_phy_82577:
5091	case e1000_phy_82579:
5092		ret_val = e1000_copper_link_setup_82577(hw);
5093		if (ret_val)
5094			return ret_val;
5095		break;
5096	case e1000_phy_ife:
5097		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5098		if (ret_val)
5099			return ret_val;
5100
5101		reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103		switch (hw->phy.mdix) {
5104		case 1:
5105			reg_data &= ~IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 2:
5108			reg_data |= IFE_PMC_FORCE_MDIX;
5109			break;
5110		case 0:
5111		default:
5112			reg_data |= IFE_PMC_AUTO_MDIX;
5113			break;
5114		}
5115		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116		if (ret_val)
5117			return ret_val;
5118		break;
5119	default:
5120		break;
5121	}
5122
5123	return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 *  @hw: pointer to the HW structure
5129 *
5130 *  Calls the PHY specific link setup function and then calls the
5131 *  generic setup_copper_link to finish configuring the link for
5132 *  Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136	u32 ctrl;
5137	s32 ret_val;
5138
5139	ctrl = er32(CTRL);
5140	ctrl |= E1000_CTRL_SLU;
5141	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142	ew32(CTRL, ctrl);
5143
5144	ret_val = e1000_copper_link_setup_82577(hw);
5145	if (ret_val)
5146		return ret_val;
5147
5148	return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 *  @hw: pointer to the HW structure
5154 *  @speed: pointer to store current link speed
5155 *  @duplex: pointer to store the current link duplex
5156 *
5157 *  Calls the generic get_speed_and_duplex to retrieve the current link
5158 *  information and then calls the Kumeran lock loss workaround for links at
5159 *  gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162					  u16 *duplex)
5163{
5164	s32 ret_val;
5165
5166	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167	if (ret_val)
5168		return ret_val;
5169
5170	if ((hw->mac.type == e1000_ich8lan) &&
5171	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173	}
5174
5175	return ret_val;
5176}
5177
5178/**
5179 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 *  @hw: pointer to the HW structure
5181 *
5182 *  Work-around for 82566 Kumeran PCS lock loss:
5183 *  On link status change (i.e. PCI reset, speed change) and link is up and
5184 *  speed is gigabit-
5185 *    0) if workaround is optionally disabled do nothing
5186 *    1) wait 1ms for Kumeran link to come up
5187 *    2) check Kumeran Diagnostic register PCS lock loss bit
5188 *    3) if not set the link is locked (all is good), otherwise...
5189 *    4) reset the PHY
5190 *    5) repeat up to 10 times
5191 *  Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196	u32 phy_ctrl;
5197	s32 ret_val;
5198	u16 i, data;
5199	bool link;
5200
5201	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202		return 0;
5203
5204	/* Make sure link is up before proceeding.  If not just return.
5205	 * Attempting this while link is negotiating fouled up link
5206	 * stability
5207	 */
5208	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209	if (!link)
5210		return 0;
5211
5212	for (i = 0; i < 10; i++) {
5213		/* read once to clear */
5214		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215		if (ret_val)
5216			return ret_val;
5217		/* and again to get new status */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221
5222		/* check for PCS lock */
5223		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224			return 0;
5225
5226		/* Issue PHY reset */
5227		e1000_phy_hw_reset(hw);
5228		mdelay(5);
5229	}
5230	/* Disable GigE link negotiation */
5231	phy_ctrl = er32(PHY_CTRL);
5232	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234	ew32(PHY_CTRL, phy_ctrl);
5235
5236	/* Call gig speed drop workaround on Gig disable before accessing
5237	 * any PHY registers
5238	 */
5239	e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241	/* unable to acquire PCS lock */
5242	return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 *  @hw: pointer to the HW structure
5248 *  @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 *  If ICH8, set the current Kumeran workaround state (enabled - true
5251 *  /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254						  bool state)
5255{
5256	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258	if (hw->mac.type != e1000_ich8lan) {
5259		e_dbg("Workaround applies to ICH8 only.\n");
5260		return;
5261	}
5262
5263	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 *  @hw: pointer to the HW structure
5269 *
5270 *  Workaround for 82566 power-down on D3 entry:
5271 *    1) disable gigabit link
5272 *    2) write VR power-down enable
5273 *    3) read it back
5274 *  Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278	u32 reg;
5279	u16 data;
5280	u8 retry = 0;
5281
5282	if (hw->phy.type != e1000_phy_igp_3)
5283		return;
5284
5285	/* Try the workaround twice (if needed) */
5286	do {
5287		/* Disable link */
5288		reg = er32(PHY_CTRL);
5289		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291		ew32(PHY_CTRL, reg);
5292
5293		/* Call gig speed drop workaround on Gig disable before
5294		 * accessing any PHY registers
5295		 */
5296		if (hw->mac.type == e1000_ich8lan)
5297			e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299		/* Write VR power-down enable */
5300		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304		/* Read it back and test */
5305		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308			break;
5309
5310		/* Issue PHY reset and repeat at most one more time */
5311		reg = er32(CTRL);
5312		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313		retry++;
5314	} while (retry);
5315}
5316
5317/**
5318 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 *  @hw: pointer to the HW structure
5320 *
5321 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 *  LPLU, Gig disable, MDIC PHY reset):
5323 *    1) Set Kumeran Near-end loopback
5324 *    2) Clear Kumeran Near-end loopback
5325 *  Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329	s32 ret_val;
5330	u16 reg_data;
5331
5332	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333		return;
5334
5335	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336				       &reg_data);
5337	if (ret_val)
5338		return;
5339	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341					reg_data);
5342	if (ret_val)
5343		return;
5344	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 *  @hw: pointer to the HW structure
5351 *
5352 *  During S0 to Sx transition, it is possible the link remains at gig
5353 *  instead of negotiating to a lower speed.  Before going to Sx, set
5354 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5355 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5356 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 *  needs to be written.
5358 *  Parts that support (and are linked to a partner which support) EEE in
5359 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 *  than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365	u32 phy_ctrl;
5366	s32 ret_val;
5367
5368	phy_ctrl = er32(PHY_CTRL);
5369	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371	if (hw->phy.type == e1000_phy_i217) {
5372		u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378		    (hw->mac.type >= e1000_pch_spt)) {
5379			u32 fextnvm6 = er32(FEXTNVM6);
5380
5381			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382		}
5383
5384		ret_val = hw->phy.ops.acquire(hw);
5385		if (ret_val)
5386			goto out;
5387
5388		if (!dev_spec->eee_disable) {
5389			u16 eee_advert;
5390
5391			ret_val =
5392			    e1000_read_emi_reg_locked(hw,
5393						      I217_EEE_ADVERTISEMENT,
5394						      &eee_advert);
5395			if (ret_val)
5396				goto release;
5397
5398			/* Disable LPLU if both link partners support 100BaseT
5399			 * EEE and 100Full is advertised on both ends of the
5400			 * link, and enable Auto Enable LPI since there will
5401			 * be no driver to enable LPI while in Sx.
5402			 */
5403			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404			    (dev_spec->eee_lp_ability &
5405			     I82579_EEE_100_SUPPORTED) &&
5406			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408					      E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410				/* Set Auto Enable LPI after link up */
5411				e1e_rphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, &phy_reg);
5413				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414				e1e_wphy_locked(hw,
5415						I217_LPI_GPIO_CTRL, phy_reg);
5416			}
5417		}
5418
5419		/* For i217 Intel Rapid Start Technology support,
5420		 * when the system is going into Sx and no manageability engine
5421		 * is present, the driver must configure proxy to reset only on
5422		 * power good.  LPI (Low Power Idle) state must also reset only
5423		 * on power good, as well as the MTA (Multicast table array).
5424		 * The SMBus release must also be disabled on LCD reset.
5425		 */
5426		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427			/* Enable proxy to reset only on power good. */
5428			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432			/* Set bit enable LPI (EEE) to reset only on
5433			 * power good.
5434			 */
5435			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439			/* Disable the SMB release on LCD reset. */
5440			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443		}
5444
5445		/* Enable MTA to reset for Intel Rapid Start Technology
5446		 * Support
5447		 */
5448		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453		hw->phy.ops.release(hw);
5454	}
5455out:
5456	ew32(PHY_CTRL, phy_ctrl);
5457
5458	if (hw->mac.type == e1000_ich8lan)
5459		e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461	if (hw->mac.type >= e1000_pchlan) {
5462		e1000_oem_bits_config_ich8lan(hw, false);
5463
5464		/* Reset PHY to activate OEM bits on 82577/8 */
5465		if (hw->mac.type == e1000_pchlan)
5466			e1000e_phy_hw_reset_generic(hw);
5467
5468		ret_val = hw->phy.ops.acquire(hw);
5469		if (ret_val)
5470			return;
5471		e1000_write_smbus_addr(hw);
5472		hw->phy.ops.release(hw);
5473	}
5474}
5475
5476/**
5477 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 *  @hw: pointer to the HW structure
5479 *
5480 *  During Sx to S0 transitions on non-managed devices or managed devices
5481 *  on which PHY resets are not blocked, if the PHY registers cannot be
5482 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 *  the PHY.
5484 *  On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488	s32 ret_val;
5489
5490	if (hw->mac.type < e1000_pch2lan)
5491		return;
5492
5493	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494	if (ret_val) {
5495		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496		return;
5497	}
5498
5499	/* For i217 Intel Rapid Start Technology support when the system
5500	 * is transitioning from Sx and no manageability engine is present
5501	 * configure SMBus to restore on reset, disable proxy, and enable
5502	 * the reset on MTA (Multicast table array).
5503	 */
5504	if (hw->phy.type == e1000_phy_i217) {
5505		u16 phy_reg;
5506
5507		ret_val = hw->phy.ops.acquire(hw);
5508		if (ret_val) {
5509			e_dbg("Failed to setup iRST\n");
5510			return;
5511		}
5512
5513		/* Clear Auto Enable LPI after link up */
5514		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519			/* Restore clear on SMB if no manageability engine
5520			 * is present
5521			 */
5522			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523			if (ret_val)
5524				goto release;
5525			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528			/* Disable Proxy */
5529			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530		}
5531		/* Enable reset on MTA */
5532		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533		if (ret_val)
5534			goto release;
5535		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538		if (ret_val)
5539			e_dbg("Error %d in resume workarounds\n", ret_val);
5540		hw->phy.ops.release(hw);
5541	}
5542}
5543
5544/**
5545 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552	if (hw->phy.type == e1000_phy_ife)
5553		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555	ew32(LEDCTL, hw->mac.ledctl_default);
5556	return 0;
5557}
5558
5559/**
5560 *  e1000_led_on_ich8lan - Turn LEDs on
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567	if (hw->phy.type == e1000_phy_ife)
5568		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571	ew32(LEDCTL, hw->mac.ledctl_mode2);
5572	return 0;
5573}
5574
5575/**
5576 *  e1000_led_off_ich8lan - Turn LEDs off
5577 *  @hw: pointer to the HW structure
5578 *
5579 *  Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583	if (hw->phy.type == e1000_phy_ife)
5584		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585				(IFE_PSCL_PROBE_MODE |
5586				 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588	ew32(LEDCTL, hw->mac.ledctl_mode1);
5589	return 0;
5590}
5591
5592/**
5593 *  e1000_setup_led_pchlan - Configures SW controllable LED
5594 *  @hw: pointer to the HW structure
5595 *
5596 *  This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5605 *  @hw: pointer to the HW structure
5606 *
5607 *  Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 *  e1000_led_on_pchlan - Turn LEDs on
5616 *  @hw: pointer to the HW structure
5617 *
5618 *  Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622	u16 data = (u16)hw->mac.ledctl_mode2;
5623	u32 i, led;
5624
5625	/* If no link, then turn LED on by setting the invert bit
5626	 * for each LED that's mode is "link_up" in ledctl_mode2.
5627	 */
5628	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629		for (i = 0; i < 3; i++) {
5630			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632			    E1000_LEDCTL_MODE_LINK_UP)
5633				continue;
5634			if (led & E1000_PHY_LED0_IVRT)
5635				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636			else
5637				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638		}
5639	}
5640
5641	return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 *  e1000_led_off_pchlan - Turn LEDs off
5646 *  @hw: pointer to the HW structure
5647 *
5648 *  Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652	u16 data = (u16)hw->mac.ledctl_mode1;
5653	u32 i, led;
5654
5655	/* If no link, then turn LED off by clearing the invert bit
5656	 * for each LED that's mode is "link_up" in ledctl_mode1.
5657	 */
5658	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659		for (i = 0; i < 3; i++) {
5660			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662			    E1000_LEDCTL_MODE_LINK_UP)
5663				continue;
5664			if (led & E1000_PHY_LED0_IVRT)
5665				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666			else
5667				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668		}
5669	}
5670
5671	return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Read appropriate register for the config done bit for completion status
5679 *  and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 *  config done bit, so only an error is logged and continues.  If we were
5683 *  to return with error, EEPROM-less silicon would not be able to be reset
5684 *  or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688	s32 ret_val = 0;
5689	u32 bank = 0;
5690	u32 status;
5691
5692	e1000e_get_cfg_done_generic(hw);
5693
5694	/* Wait for indication from h/w that it has completed basic config */
5695	if (hw->mac.type >= e1000_ich10lan) {
5696		e1000_lan_init_done_ich8lan(hw);
5697	} else {
5698		ret_val = e1000e_get_auto_rd_done(hw);
5699		if (ret_val) {
5700			/* When auto config read does not complete, do not
5701			 * return with an error. This can happen in situations
5702			 * where there is no eeprom and prevents getting link.
5703			 */
5704			e_dbg("Auto Read Done did not complete\n");
5705			ret_val = 0;
5706		}
5707	}
5708
5709	/* Clear PHY Reset Asserted bit */
5710	status = er32(STATUS);
5711	if (status & E1000_STATUS_PHYRA)
5712		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713	else
5714		e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717	if (hw->mac.type <= e1000_ich9lan) {
5718		if (!(er32(EECD) & E1000_EECD_PRES) &&
5719		    (hw->phy.type == e1000_phy_igp_3)) {
5720			e1000e_phy_init_script_igp3(hw);
5721		}
5722	} else {
5723		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724			/* Maybe we should do a basic PHY config */
5725			e_dbg("EEPROM not present\n");
5726			ret_val = -E1000_ERR_CONFIG;
5727		}
5728	}
5729
5730	return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742	/* If the management interface is not enabled, then power down */
5743	if (!(hw->mac.ops.check_mng_mode(hw) ||
5744	      hw->phy.ops.check_reset_block(hw)))
5745		e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 *  @hw: pointer to the HW structure
5751 *
5752 *  Clears hardware counters specific to the silicon family and calls
5753 *  clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757	u16 phy_data;
5758	s32 ret_val;
5759
5760	e1000e_clear_hw_cntrs_base(hw);
5761
5762	er32(ALGNERRC);
5763	er32(RXERRC);
5764	er32(TNCRS);
5765	er32(CEXTERR);
5766	er32(TSCTC);
5767	er32(TSCTFC);
5768
5769	er32(MGTPRC);
5770	er32(MGTPDC);
5771	er32(MGTPTC);
5772
5773	er32(IAC);
5774	er32(ICRXOC);
5775
5776	/* Clear PHY statistics registers */
5777	if ((hw->phy.type == e1000_phy_82578) ||
5778	    (hw->phy.type == e1000_phy_82579) ||
5779	    (hw->phy.type == e1000_phy_i217) ||
5780	    (hw->phy.type == e1000_phy_82577)) {
5781		ret_val = hw->phy.ops.acquire(hw);
5782		if (ret_val)
5783			return;
5784		ret_val = hw->phy.ops.set_page(hw,
5785					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786		if (ret_val)
5787			goto release;
5788		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803		hw->phy.ops.release(hw);
5804	}
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808	/* check_mng_mode dependent on mac type */
5809	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5810	/* cleanup_led dependent on mac type */
5811	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5812	.get_bus_info		= e1000_get_bus_info_ich8lan,
5813	.set_lan_id		= e1000_set_lan_id_single_port,
5814	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5815	/* led_on dependent on mac type */
5816	/* led_off dependent on mac type */
5817	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5818	.reset_hw		= e1000_reset_hw_ich8lan,
5819	.init_hw		= e1000_init_hw_ich8lan,
5820	.setup_link		= e1000_setup_link_ich8lan,
5821	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822	/* id_led_init dependent on mac type */
5823	.config_collision_dist	= e1000e_config_collision_dist_generic,
5824	.rar_set		= e1000e_rar_set_generic,
5825	.rar_get_count		= e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829	.acquire		= e1000_acquire_swflag_ich8lan,
5830	.check_reset_block	= e1000_check_reset_block_ich8lan,
5831	.commit			= NULL,
5832	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5833	.get_cable_length	= e1000e_get_cable_length_igp_2,
5834	.read_reg		= e1000e_read_phy_reg_igp,
5835	.release		= e1000_release_swflag_ich8lan,
5836	.reset			= e1000_phy_hw_reset_ich8lan,
5837	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5838	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5839	.write_reg		= e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843	.acquire		= e1000_acquire_nvm_ich8lan,
5844	.read			= e1000_read_nvm_ich8lan,
5845	.release		= e1000_release_nvm_ich8lan,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.update			= e1000_update_nvm_checksum_ich8lan,
5848	.valid_led_default	= e1000_valid_led_default_ich8lan,
5849	.validate		= e1000_validate_nvm_checksum_ich8lan,
5850	.write			= e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854	.acquire		= e1000_acquire_nvm_ich8lan,
5855	.release		= e1000_release_nvm_ich8lan,
5856	.read			= e1000_read_nvm_spt,
5857	.update			= e1000_update_nvm_checksum_spt,
5858	.reload			= e1000e_reload_nvm_generic,
5859	.valid_led_default	= e1000_valid_led_default_ich8lan,
5860	.validate		= e1000_validate_nvm_checksum_ich8lan,
5861	.write			= e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865	.mac			= e1000_ich8lan,
5866	.flags			= FLAG_HAS_WOL
5867				  | FLAG_IS_ICH
5868				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869				  | FLAG_HAS_AMT
5870				  | FLAG_HAS_FLASH
5871				  | FLAG_APME_IN_WUC,
5872	.pba			= 8,
5873	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874	.get_variants		= e1000_get_variants_ich8lan,
5875	.mac_ops		= &ich8_mac_ops,
5876	.phy_ops		= &ich8_phy_ops,
5877	.nvm_ops		= &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881	.mac			= e1000_ich9lan,
5882	.flags			= FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_IS_ICH
5884				  | FLAG_HAS_WOL
5885				  | FLAG_HAS_CTRLEXT_ON_LOAD
5886				  | FLAG_HAS_AMT
5887				  | FLAG_HAS_FLASH
5888				  | FLAG_APME_IN_WUC,
5889	.pba			= 18,
5890	.max_hw_frame_size	= DEFAULT_JUMBO,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898	.mac			= e1000_ich10lan,
5899	.flags			= FLAG_HAS_JUMBO_FRAMES
5900				  | FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_APME_IN_WUC,
5906	.pba			= 18,
5907	.max_hw_frame_size	= DEFAULT_JUMBO,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915	.mac			= e1000_pchlan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_CTRLEXT_ON_LOAD
5919				  | FLAG_HAS_AMT
5920				  | FLAG_HAS_FLASH
5921				  | FLAG_HAS_JUMBO_FRAMES
5922				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS,
5925	.pba			= 26,
5926	.max_hw_frame_size	= 4096,
5927	.get_variants		= e1000_get_variants_ich8lan,
5928	.mac_ops		= &ich8_mac_ops,
5929	.phy_ops		= &ich8_phy_ops,
5930	.nvm_ops		= &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934	.mac			= e1000_pch2lan,
5935	.flags			= FLAG_IS_ICH
5936				  | FLAG_HAS_WOL
5937				  | FLAG_HAS_HW_TIMESTAMP
5938				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939				  | FLAG_HAS_AMT
5940				  | FLAG_HAS_FLASH
5941				  | FLAG_HAS_JUMBO_FRAMES
5942				  | FLAG_APME_IN_WUC,
5943	.flags2			= FLAG2_HAS_PHY_STATS
5944				  | FLAG2_HAS_EEE
5945				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946	.pba			= 26,
5947	.max_hw_frame_size	= 9022,
5948	.get_variants		= e1000_get_variants_ich8lan,
5949	.mac_ops		= &ich8_mac_ops,
5950	.phy_ops		= &ich8_phy_ops,
5951	.nvm_ops		= &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955	.mac			= e1000_pch_lpt,
5956	.flags			= FLAG_IS_ICH
5957				  | FLAG_HAS_WOL
5958				  | FLAG_HAS_HW_TIMESTAMP
5959				  | FLAG_HAS_CTRLEXT_ON_LOAD
5960				  | FLAG_HAS_AMT
5961				  | FLAG_HAS_FLASH
5962				  | FLAG_HAS_JUMBO_FRAMES
5963				  | FLAG_APME_IN_WUC,
5964	.flags2			= FLAG2_HAS_PHY_STATS
5965				  | FLAG2_HAS_EEE
5966				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967	.pba			= 26,
5968	.max_hw_frame_size	= 9022,
5969	.get_variants		= e1000_get_variants_ich8lan,
5970	.mac_ops		= &ich8_mac_ops,
5971	.phy_ops		= &ich8_phy_ops,
5972	.nvm_ops		= &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976	.mac			= e1000_pch_spt,
5977	.flags			= FLAG_IS_ICH
5978				  | FLAG_HAS_WOL
5979				  | FLAG_HAS_HW_TIMESTAMP
5980				  | FLAG_HAS_CTRLEXT_ON_LOAD
5981				  | FLAG_HAS_AMT
5982				  | FLAG_HAS_FLASH
5983				  | FLAG_HAS_JUMBO_FRAMES
5984				  | FLAG_APME_IN_WUC,
5985	.flags2			= FLAG2_HAS_PHY_STATS
5986				  | FLAG2_HAS_EEE,
5987	.pba			= 26,
5988	.max_hw_frame_size	= 9022,
5989	.get_variants		= e1000_get_variants_ich8lan,
5990	.mac_ops		= &ich8_mac_ops,
5991	.phy_ops		= &ich8_phy_ops,
5992	.nvm_ops		= &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996	.mac			= e1000_pch_cnp,
5997	.flags			= FLAG_IS_ICH
5998				  | FLAG_HAS_WOL
5999				  | FLAG_HAS_HW_TIMESTAMP
6000				  | FLAG_HAS_CTRLEXT_ON_LOAD
6001				  | FLAG_HAS_AMT
6002				  | FLAG_HAS_FLASH
6003				  | FLAG_HAS_JUMBO_FRAMES
6004				  | FLAG_APME_IN_WUC,
6005	.flags2			= FLAG2_HAS_PHY_STATS
6006				  | FLAG2_HAS_EEE,
6007	.pba			= 26,
6008	.max_hw_frame_size	= 9022,
6009	.get_variants		= e1000_get_variants_ich8lan,
6010	.mac_ops		= &ich8_mac_ops,
6011	.phy_ops		= &ich8_phy_ops,
6012	.nvm_ops		= &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016	.mac			= e1000_pch_tgp,
6017	.flags			= FLAG_IS_ICH
6018				  | FLAG_HAS_WOL
6019				  | FLAG_HAS_HW_TIMESTAMP
6020				  | FLAG_HAS_CTRLEXT_ON_LOAD
6021				  | FLAG_HAS_AMT
6022				  | FLAG_HAS_FLASH
6023				  | FLAG_HAS_JUMBO_FRAMES
6024				  | FLAG_APME_IN_WUC,
6025	.flags2			= FLAG2_HAS_PHY_STATS
6026				  | FLAG2_HAS_EEE,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036	.mac			= e1000_pch_adp,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056	.mac			= e1000_pch_mtp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
v4.6
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82562G 10/100 Network Connection
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64	struct ich8_hsfsts {
  65		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  66		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  67		u16 dael:1;	/* bit 2 Direct Access error Log */
  68		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  69		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  70		u16 reserved1:2;	/* bit 13:6 Reserved */
  71		u16 reserved2:6;	/* bit 13:6 Reserved */
  72		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  73		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  74	} hsf_status;
  75	u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81	struct ich8_hsflctl {
  82		u16 flcgo:1;	/* 0 Flash Cycle Go */
  83		u16 flcycle:2;	/* 2:1 Flash Cycle */
  84		u16 reserved:5;	/* 7:3 Reserved  */
  85		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  86		u16 flockdn:6;	/* 15:10 Reserved */
  87	} hsf_ctrl;
  88	u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93	struct ich8_flracc {
  94		u32 grra:8;	/* 0:7 GbE region Read Access */
  95		u32 grwa:8;	/* 8:15 GbE region Write Access */
  96		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  97		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  98	} hsf_flregacc;
  99	u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104	struct ich8_pr {
 105		u32 base:13;	/* 0:12 Protected Range Base */
 106		u32 reserved1:2;	/* 13:14 Reserved */
 107		u32 rpe:1;	/* 15 Read Protection Enable */
 108		u32 limit:13;	/* 16:28 Protected Range Limit */
 109		u32 reserved2:2;	/* 29:30 Reserved */
 110		u32 wpe:1;	/* 31 Write Protection Enable */
 111	} range;
 112	u32 regval;
 113};
 114
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119						u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121					 u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123					 u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125					 u8 size, u16 *data);
 126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 127					   u32 *data);
 128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 129					  u32 offset, u32 *data);
 130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 131					    u32 offset, u32 data);
 132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 133						 u32 offset, u32 dword);
 134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 158
 159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 160{
 161	return readw(hw->flash_address + reg);
 162}
 163
 164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 165{
 166	return readl(hw->flash_address + reg);
 167}
 168
 169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 170{
 171	writew(val, hw->flash_address + reg);
 172}
 173
 174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 175{
 176	writel(val, hw->flash_address + reg);
 177}
 178
 179#define er16flash(reg)		__er16flash(hw, (reg))
 180#define er32flash(reg)		__er32flash(hw, (reg))
 181#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 182#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 183
 184/**
 185 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  Test access to the PHY registers by reading the PHY ID registers.  If
 189 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 190 *  otherwise assume the read PHY ID is correct if it is valid.
 191 *
 192 *  Assumes the sw/fw/hw semaphore is already acquired.
 193 **/
 194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 195{
 196	u16 phy_reg = 0;
 197	u32 phy_id = 0;
 198	s32 ret_val = 0;
 199	u16 retry_count;
 200	u32 mac_reg = 0;
 201
 202	for (retry_count = 0; retry_count < 2; retry_count++) {
 203		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 204		if (ret_val || (phy_reg == 0xFFFF))
 205			continue;
 206		phy_id = (u32)(phy_reg << 16);
 207
 208		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 209		if (ret_val || (phy_reg == 0xFFFF)) {
 210			phy_id = 0;
 211			continue;
 212		}
 213		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 214		break;
 215	}
 216
 217	if (hw->phy.id) {
 218		if (hw->phy.id == phy_id)
 219			goto out;
 220	} else if (phy_id) {
 221		hw->phy.id = phy_id;
 222		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 223		goto out;
 224	}
 225
 226	/* In case the PHY needs to be in mdio slow mode,
 227	 * set slow mode and try to get the PHY id again.
 228	 */
 229	if (hw->mac.type < e1000_pch_lpt) {
 230		hw->phy.ops.release(hw);
 231		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 232		if (!ret_val)
 233			ret_val = e1000e_get_phy_id(hw);
 234		hw->phy.ops.acquire(hw);
 235	}
 236
 237	if (ret_val)
 238		return false;
 239out:
 240	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
 241		/* Only unforce SMBus if ME is not active */
 242		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 243			/* Unforce SMBus mode in PHY */
 244			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 245			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 246			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 247
 248			/* Unforce SMBus mode in MAC */
 249			mac_reg = er32(CTRL_EXT);
 250			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 251			ew32(CTRL_EXT, mac_reg);
 252		}
 253	}
 254
 255	return true;
 256}
 257
 258/**
 259 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 260 *  @hw: pointer to the HW structure
 261 *
 262 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 263 *  used to reset the PHY to a quiescent state when necessary.
 264 **/
 265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 266{
 267	u32 mac_reg;
 268
 269	/* Set Phy Config Counter to 50msec */
 270	mac_reg = er32(FEXTNVM3);
 271	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 272	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 273	ew32(FEXTNVM3, mac_reg);
 274
 275	/* Toggle LANPHYPC Value bit */
 276	mac_reg = er32(CTRL);
 277	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 278	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 279	ew32(CTRL, mac_reg);
 280	e1e_flush();
 281	usleep_range(10, 20);
 282	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 283	ew32(CTRL, mac_reg);
 284	e1e_flush();
 285
 286	if (hw->mac.type < e1000_pch_lpt) {
 287		msleep(50);
 288	} else {
 289		u16 count = 20;
 290
 291		do {
 292			usleep_range(5000, 10000);
 293		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 294
 295		msleep(30);
 296	}
 297}
 298
 299/**
 300 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 301 *  @hw: pointer to the HW structure
 302 *
 303 *  Workarounds/flow necessary for PHY initialization during driver load
 304 *  and resume paths.
 305 **/
 306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 307{
 308	struct e1000_adapter *adapter = hw->adapter;
 309	u32 mac_reg, fwsm = er32(FWSM);
 310	s32 ret_val;
 311
 312	/* Gate automatic PHY configuration by hardware on managed and
 313	 * non-managed 82579 and newer adapters.
 314	 */
 315	e1000_gate_hw_phy_config_ich8lan(hw, true);
 316
 317	/* It is not possible to be certain of the current state of ULP
 318	 * so forcibly disable it.
 319	 */
 320	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 321	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 322
 323	ret_val = hw->phy.ops.acquire(hw);
 324	if (ret_val) {
 325		e_dbg("Failed to initialize PHY flow\n");
 326		goto out;
 327	}
 328
 329	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 330	 * inaccessible and resetting the PHY is not blocked, toggle the
 331	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 332	 */
 333	switch (hw->mac.type) {
 334	case e1000_pch_lpt:
 335	case e1000_pch_spt:
 
 
 
 
 
 
 
 336		if (e1000_phy_is_accessible_pchlan(hw))
 337			break;
 338
 339		/* Before toggling LANPHYPC, see if PHY is accessible by
 340		 * forcing MAC to SMBus mode first.
 341		 */
 342		mac_reg = er32(CTRL_EXT);
 343		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 344		ew32(CTRL_EXT, mac_reg);
 345
 346		/* Wait 50 milliseconds for MAC to finish any retries
 347		 * that it might be trying to perform from previous
 348		 * attempts to acknowledge any phy read requests.
 349		 */
 350		msleep(50);
 351
 352		/* fall-through */
 353	case e1000_pch2lan:
 354		if (e1000_phy_is_accessible_pchlan(hw))
 355			break;
 356
 357		/* fall-through */
 358	case e1000_pchlan:
 359		if ((hw->mac.type == e1000_pchlan) &&
 360		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 361			break;
 362
 363		if (hw->phy.ops.check_reset_block(hw)) {
 364			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 365			ret_val = -E1000_ERR_PHY;
 366			break;
 367		}
 368
 369		/* Toggle LANPHYPC Value bit */
 370		e1000_toggle_lanphypc_pch_lpt(hw);
 371		if (hw->mac.type >= e1000_pch_lpt) {
 372			if (e1000_phy_is_accessible_pchlan(hw))
 373				break;
 374
 375			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 376			 * so ensure that the MAC is also out of SMBus mode
 377			 */
 378			mac_reg = er32(CTRL_EXT);
 379			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 380			ew32(CTRL_EXT, mac_reg);
 381
 382			if (e1000_phy_is_accessible_pchlan(hw))
 383				break;
 384
 385			ret_val = -E1000_ERR_PHY;
 386		}
 387		break;
 388	default:
 389		break;
 390	}
 391
 392	hw->phy.ops.release(hw);
 393	if (!ret_val) {
 394
 395		/* Check to see if able to reset PHY.  Print error if not */
 396		if (hw->phy.ops.check_reset_block(hw)) {
 397			e_err("Reset blocked by ME\n");
 398			goto out;
 399		}
 400
 401		/* Reset the PHY before any access to it.  Doing so, ensures
 402		 * that the PHY is in a known good state before we read/write
 403		 * PHY registers.  The generic reset is sufficient here,
 404		 * because we haven't determined the PHY type yet.
 405		 */
 406		ret_val = e1000e_phy_hw_reset_generic(hw);
 407		if (ret_val)
 408			goto out;
 409
 410		/* On a successful reset, possibly need to wait for the PHY
 411		 * to quiesce to an accessible state before returning control
 412		 * to the calling function.  If the PHY does not quiesce, then
 413		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 414		 *  the PHY is in.
 415		 */
 416		ret_val = hw->phy.ops.check_reset_block(hw);
 417		if (ret_val)
 418			e_err("ME blocked access to PHY after reset\n");
 419	}
 420
 421out:
 422	/* Ungate automatic PHY configuration on non-managed 82579 */
 423	if ((hw->mac.type == e1000_pch2lan) &&
 424	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 425		usleep_range(10000, 20000);
 426		e1000_gate_hw_phy_config_ich8lan(hw, false);
 427	}
 428
 429	return ret_val;
 430}
 431
 432/**
 433 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 434 *  @hw: pointer to the HW structure
 435 *
 436 *  Initialize family-specific PHY parameters and function pointers.
 437 **/
 438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 439{
 440	struct e1000_phy_info *phy = &hw->phy;
 441	s32 ret_val;
 442
 443	phy->addr = 1;
 444	phy->reset_delay_us = 100;
 445
 446	phy->ops.set_page = e1000_set_page_igp;
 447	phy->ops.read_reg = e1000_read_phy_reg_hv;
 448	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 449	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 450	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 451	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 452	phy->ops.write_reg = e1000_write_phy_reg_hv;
 453	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 454	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 455	phy->ops.power_up = e1000_power_up_phy_copper;
 456	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 457	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458
 459	phy->id = e1000_phy_unknown;
 460
 461	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 462	if (ret_val)
 463		return ret_val;
 464
 465	if (phy->id == e1000_phy_unknown)
 466		switch (hw->mac.type) {
 467		default:
 468			ret_val = e1000e_get_phy_id(hw);
 469			if (ret_val)
 470				return ret_val;
 471			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 472				break;
 473			/* fall-through */
 474		case e1000_pch2lan:
 475		case e1000_pch_lpt:
 476		case e1000_pch_spt:
 
 
 
 
 
 
 
 477			/* In case the PHY needs to be in mdio slow mode,
 478			 * set slow mode and try to get the PHY id again.
 479			 */
 480			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 481			if (ret_val)
 482				return ret_val;
 483			ret_val = e1000e_get_phy_id(hw);
 484			if (ret_val)
 485				return ret_val;
 486			break;
 487		}
 488	phy->type = e1000e_get_phy_type_from_id(phy->id);
 489
 490	switch (phy->type) {
 491	case e1000_phy_82577:
 492	case e1000_phy_82579:
 493	case e1000_phy_i217:
 494		phy->ops.check_polarity = e1000_check_polarity_82577;
 495		phy->ops.force_speed_duplex =
 496		    e1000_phy_force_speed_duplex_82577;
 497		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 498		phy->ops.get_info = e1000_get_phy_info_82577;
 499		phy->ops.commit = e1000e_phy_sw_reset;
 500		break;
 501	case e1000_phy_82578:
 502		phy->ops.check_polarity = e1000_check_polarity_m88;
 503		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 504		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 505		phy->ops.get_info = e1000e_get_phy_info_m88;
 506		break;
 507	default:
 508		ret_val = -E1000_ERR_PHY;
 509		break;
 510	}
 511
 512	return ret_val;
 513}
 514
 515/**
 516 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Initialize family-specific PHY parameters and function pointers.
 520 **/
 521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 522{
 523	struct e1000_phy_info *phy = &hw->phy;
 524	s32 ret_val;
 525	u16 i = 0;
 526
 527	phy->addr = 1;
 528	phy->reset_delay_us = 100;
 529
 530	phy->ops.power_up = e1000_power_up_phy_copper;
 531	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 532
 533	/* We may need to do this twice - once for IGP and if that fails,
 534	 * we'll set BM func pointers and try again
 535	 */
 536	ret_val = e1000e_determine_phy_address(hw);
 537	if (ret_val) {
 538		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 539		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 540		ret_val = e1000e_determine_phy_address(hw);
 541		if (ret_val) {
 542			e_dbg("Cannot determine PHY addr. Erroring out\n");
 543			return ret_val;
 544		}
 545	}
 546
 547	phy->id = 0;
 548	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 549	       (i++ < 100)) {
 550		usleep_range(1000, 2000);
 551		ret_val = e1000e_get_phy_id(hw);
 552		if (ret_val)
 553			return ret_val;
 554	}
 555
 556	/* Verify phy id */
 557	switch (phy->id) {
 558	case IGP03E1000_E_PHY_ID:
 559		phy->type = e1000_phy_igp_3;
 560		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 561		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 562		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 563		phy->ops.get_info = e1000e_get_phy_info_igp;
 564		phy->ops.check_polarity = e1000_check_polarity_igp;
 565		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 566		break;
 567	case IFE_E_PHY_ID:
 568	case IFE_PLUS_E_PHY_ID:
 569	case IFE_C_E_PHY_ID:
 570		phy->type = e1000_phy_ife;
 571		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 572		phy->ops.get_info = e1000_get_phy_info_ife;
 573		phy->ops.check_polarity = e1000_check_polarity_ife;
 574		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 575		break;
 576	case BME1000_E_PHY_ID:
 577		phy->type = e1000_phy_bm;
 578		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 579		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 580		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 581		phy->ops.commit = e1000e_phy_sw_reset;
 582		phy->ops.get_info = e1000e_get_phy_info_m88;
 583		phy->ops.check_polarity = e1000_check_polarity_m88;
 584		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 585		break;
 586	default:
 587		return -E1000_ERR_PHY;
 588	}
 589
 590	return 0;
 591}
 592
 593/**
 594 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 595 *  @hw: pointer to the HW structure
 596 *
 597 *  Initialize family-specific NVM parameters and function
 598 *  pointers.
 599 **/
 600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 601{
 602	struct e1000_nvm_info *nvm = &hw->nvm;
 603	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 604	u32 gfpreg, sector_base_addr, sector_end_addr;
 605	u16 i;
 606	u32 nvm_size;
 607
 608	nvm->type = e1000_nvm_flash_sw;
 609
 610	if (hw->mac.type == e1000_pch_spt) {
 611		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 612		 * STRAP register. This is because in SPT the GbE Flash region
 613		 * is no longer accessed through the flash registers. Instead,
 614		 * the mechanism has changed, and the Flash region access
 615		 * registers are now implemented in GbE memory space.
 616		 */
 617		nvm->flash_base_addr = 0;
 618		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 619		    * NVM_SIZE_MULTIPLIER;
 620		nvm->flash_bank_size = nvm_size / 2;
 621		/* Adjust to word count */
 622		nvm->flash_bank_size /= sizeof(u16);
 623		/* Set the base address for flash register access */
 624		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 625	} else {
 626		/* Can't read flash registers if register set isn't mapped. */
 627		if (!hw->flash_address) {
 628			e_dbg("ERROR: Flash registers not mapped\n");
 629			return -E1000_ERR_CONFIG;
 630		}
 631
 632		gfpreg = er32flash(ICH_FLASH_GFPREG);
 633
 634		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 635		 * Add 1 to sector_end_addr since this sector is included in
 636		 * the overall size.
 637		 */
 638		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 639		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 640
 641		/* flash_base_addr is byte-aligned */
 642		nvm->flash_base_addr = sector_base_addr
 643		    << FLASH_SECTOR_ADDR_SHIFT;
 644
 645		/* find total size of the NVM, then cut in half since the total
 646		 * size represents two separate NVM banks.
 647		 */
 648		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 649					<< FLASH_SECTOR_ADDR_SHIFT);
 650		nvm->flash_bank_size /= 2;
 651		/* Adjust to word count */
 652		nvm->flash_bank_size /= sizeof(u16);
 653	}
 654
 655	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 656
 657	/* Clear shadow ram */
 658	for (i = 0; i < nvm->word_size; i++) {
 659		dev_spec->shadow_ram[i].modified = false;
 660		dev_spec->shadow_ram[i].value = 0xFFFF;
 661	}
 662
 663	return 0;
 664}
 665
 666/**
 667 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 668 *  @hw: pointer to the HW structure
 669 *
 670 *  Initialize family-specific MAC parameters and function
 671 *  pointers.
 672 **/
 673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 674{
 675	struct e1000_mac_info *mac = &hw->mac;
 676
 677	/* Set media type function pointer */
 678	hw->phy.media_type = e1000_media_type_copper;
 679
 680	/* Set mta register count */
 681	mac->mta_reg_count = 32;
 682	/* Set rar entry count */
 683	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 684	if (mac->type == e1000_ich8lan)
 685		mac->rar_entry_count--;
 686	/* FWSM register */
 687	mac->has_fwsm = true;
 688	/* ARC subsystem not supported */
 689	mac->arc_subsystem_valid = false;
 690	/* Adaptive IFS supported */
 691	mac->adaptive_ifs = true;
 692
 693	/* LED and other operations */
 694	switch (mac->type) {
 695	case e1000_ich8lan:
 696	case e1000_ich9lan:
 697	case e1000_ich10lan:
 698		/* check management mode */
 699		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 700		/* ID LED init */
 701		mac->ops.id_led_init = e1000e_id_led_init_generic;
 702		/* blink LED */
 703		mac->ops.blink_led = e1000e_blink_led_generic;
 704		/* setup LED */
 705		mac->ops.setup_led = e1000e_setup_led_generic;
 706		/* cleanup LED */
 707		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 708		/* turn on/off LED */
 709		mac->ops.led_on = e1000_led_on_ich8lan;
 710		mac->ops.led_off = e1000_led_off_ich8lan;
 711		break;
 712	case e1000_pch2lan:
 713		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 714		mac->ops.rar_set = e1000_rar_set_pch2lan;
 715		/* fall-through */
 716	case e1000_pch_lpt:
 717	case e1000_pch_spt:
 
 
 
 
 
 
 
 718	case e1000_pchlan:
 719		/* check management mode */
 720		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 721		/* ID LED init */
 722		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 723		/* setup LED */
 724		mac->ops.setup_led = e1000_setup_led_pchlan;
 725		/* cleanup LED */
 726		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 727		/* turn on/off LED */
 728		mac->ops.led_on = e1000_led_on_pchlan;
 729		mac->ops.led_off = e1000_led_off_pchlan;
 730		break;
 731	default:
 732		break;
 733	}
 734
 735	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
 736		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 737		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 738		mac->ops.setup_physical_interface =
 739		    e1000_setup_copper_link_pch_lpt;
 740		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 741	}
 742
 743	/* Enable PCS Lock-loss workaround for ICH8 */
 744	if (mac->type == e1000_ich8lan)
 745		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 746
 747	return 0;
 748}
 749
 750/**
 751 *  __e1000_access_emi_reg_locked - Read/write EMI register
 752 *  @hw: pointer to the HW structure
 753 *  @addr: EMI address to program
 754 *  @data: pointer to value to read/write from/to the EMI address
 755 *  @read: boolean flag to indicate read or write
 756 *
 757 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 758 **/
 759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 760					 u16 *data, bool read)
 761{
 762	s32 ret_val;
 763
 764	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 765	if (ret_val)
 766		return ret_val;
 767
 768	if (read)
 769		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 770	else
 771		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 772
 773	return ret_val;
 774}
 775
 776/**
 777 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 778 *  @hw: pointer to the HW structure
 779 *  @addr: EMI address to program
 780 *  @data: value to be read from the EMI address
 781 *
 782 *  Assumes the SW/FW/HW Semaphore is already acquired.
 783 **/
 784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 785{
 786	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 787}
 788
 789/**
 790 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 791 *  @hw: pointer to the HW structure
 792 *  @addr: EMI address to program
 793 *  @data: value to be written to the EMI address
 794 *
 795 *  Assumes the SW/FW/HW Semaphore is already acquired.
 796 **/
 797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 798{
 799	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 807 *  the link and the EEE capabilities of the link partner.  The LPI Control
 808 *  register bits will remain set only if/when link is up.
 809 *
 810 *  EEE LPI must not be asserted earlier than one second after link is up.
 811 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 812 *  can be link issues with some switches.  Other devices can have EEE LPI
 813 *  enabled immediately upon link up since they have a timer in hardware which
 814 *  prevents LPI from being asserted too early.
 815 **/
 816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 817{
 818	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 819	s32 ret_val;
 820	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 821
 822	switch (hw->phy.type) {
 823	case e1000_phy_82579:
 824		lpa = I82579_EEE_LP_ABILITY;
 825		pcs_status = I82579_EEE_PCS_STATUS;
 826		adv_addr = I82579_EEE_ADVERTISEMENT;
 827		break;
 828	case e1000_phy_i217:
 829		lpa = I217_EEE_LP_ABILITY;
 830		pcs_status = I217_EEE_PCS_STATUS;
 831		adv_addr = I217_EEE_ADVERTISEMENT;
 832		break;
 833	default:
 834		return 0;
 835	}
 836
 837	ret_val = hw->phy.ops.acquire(hw);
 838	if (ret_val)
 839		return ret_val;
 840
 841	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 842	if (ret_val)
 843		goto release;
 844
 845	/* Clear bits that enable EEE in various speeds */
 846	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 847
 848	/* Enable EEE if not disabled by user */
 849	if (!dev_spec->eee_disable) {
 850		/* Save off link partner's EEE ability */
 851		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 852						    &dev_spec->eee_lp_ability);
 853		if (ret_val)
 854			goto release;
 855
 856		/* Read EEE advertisement */
 857		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Enable EEE only for speeds in which the link partner is
 862		 * EEE capable and for which we advertise EEE.
 863		 */
 864		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 865			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 866
 867		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 868			e1e_rphy_locked(hw, MII_LPA, &data);
 869			if (data & LPA_100FULL)
 870				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 871			else
 872				/* EEE is not supported in 100Half, so ignore
 873				 * partner's EEE in 100 ability if full-duplex
 874				 * is not advertised.
 875				 */
 876				dev_spec->eee_lp_ability &=
 877				    ~I82579_EEE_100_SUPPORTED;
 878		}
 879	}
 880
 881	if (hw->phy.type == e1000_phy_82579) {
 882		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 883						    &data);
 884		if (ret_val)
 885			goto release;
 886
 887		data &= ~I82579_LPI_100_PLL_SHUT;
 888		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 889						     data);
 890	}
 891
 892	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 893	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 894	if (ret_val)
 895		goto release;
 896
 897	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 898release:
 899	hw->phy.ops.release(hw);
 900
 901	return ret_val;
 902}
 903
 904/**
 905 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 906 *  @hw:   pointer to the HW structure
 907 *  @link: link up bool flag
 908 *
 909 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 910 *  preventing further DMA write requests.  Workaround the issue by disabling
 911 *  the de-assertion of the clock request when in 1Gpbs mode.
 912 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 913 *  speeds in order to avoid Tx hangs.
 914 **/
 915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 916{
 917	u32 fextnvm6 = er32(FEXTNVM6);
 918	u32 status = er32(STATUS);
 919	s32 ret_val = 0;
 920	u16 reg;
 921
 922	if (link && (status & E1000_STATUS_SPEED_1000)) {
 923		ret_val = hw->phy.ops.acquire(hw);
 924		if (ret_val)
 925			return ret_val;
 926
 927		ret_val =
 928		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 929						&reg);
 930		if (ret_val)
 931			goto release;
 932
 933		ret_val =
 934		    e1000e_write_kmrn_reg_locked(hw,
 935						 E1000_KMRNCTRLSTA_K1_CONFIG,
 936						 reg &
 937						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 938		if (ret_val)
 939			goto release;
 940
 941		usleep_range(10, 20);
 942
 943		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 944
 945		ret_val =
 946		    e1000e_write_kmrn_reg_locked(hw,
 947						 E1000_KMRNCTRLSTA_K1_CONFIG,
 948						 reg);
 949release:
 950		hw->phy.ops.release(hw);
 951	} else {
 952		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 953		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 954
 955		if ((hw->phy.revision > 5) || !link ||
 956		    ((status & E1000_STATUS_SPEED_100) &&
 957		     (status & E1000_STATUS_FD)))
 958			goto update_fextnvm6;
 959
 960		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 961		if (ret_val)
 962			return ret_val;
 963
 964		/* Clear link status transmit timeout */
 965		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 966
 967		if (status & E1000_STATUS_SPEED_100) {
 968			/* Set inband Tx timeout to 5x10us for 100Half */
 969			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971			/* Do not extend the K1 entry latency for 100Half */
 972			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973		} else {
 974			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 975			reg |= 50 <<
 976			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 977
 978			/* Extend the K1 entry latency for 10 Mbps */
 979			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 980		}
 981
 982		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 983		if (ret_val)
 984			return ret_val;
 985
 986update_fextnvm6:
 987		ew32(FEXTNVM6, fextnvm6);
 988	}
 989
 990	return ret_val;
 991}
 992
 993/**
 994 *  e1000_platform_pm_pch_lpt - Set platform power management values
 995 *  @hw: pointer to the HW structure
 996 *  @link: bool indicating link status
 997 *
 998 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 999 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 *  when link is up (which must not exceed the maximum latency supported
1001 *  by the platform), otherwise specify there is no LTR requirement.
1002 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 *  Capability register set, on this device LTR is set by writing the
1005 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 *  message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
1013	u16 lat_enc = 0;	/* latency encoded */
1014
1015	if (link) {
1016		u16 speed, duplex, scale = 0;
1017		u16 max_snoop, max_nosnoop;
1018		u16 max_ltr_enc;	/* max LTR latency encoded */
1019		u64 value;
1020		u32 rxa;
1021
1022		if (!hw->adapter->max_frame_size) {
1023			e_dbg("max_frame_size not set.\n");
1024			return -E1000_ERR_CONFIG;
1025		}
1026
1027		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028		if (!speed) {
1029			e_dbg("Speed not set.\n");
1030			return -E1000_ERR_CONFIG;
1031		}
1032
1033		/* Rx Packet Buffer Allocation size (KB) */
1034		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036		/* Determine the maximum latency tolerated by the device.
1037		 *
1038		 * Per the PCIe spec, the tolerated latencies are encoded as
1039		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043		 */
1044		rxa *= 512;
1045		value = (rxa > hw->adapter->max_frame_size) ?
1046			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047			0;
1048
1049		while (value > PCI_LTR_VALUE_MASK) {
1050			scale++;
1051			value = DIV_ROUND_UP(value, (1 << 5));
1052		}
1053		if (scale > E1000_LTRV_SCALE_MAX) {
1054			e_dbg("Invalid LTR latency scale %d\n", scale);
1055			return -E1000_ERR_CONFIG;
1056		}
1057		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059		/* Determine the maximum latency tolerated by the platform */
1060		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061				     &max_snoop);
1062		pci_read_config_word(hw->adapter->pdev,
1063				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1067			lat_enc = max_ltr_enc;
1068	}
1069
1070	/* Set Snoop and No-Snoop latencies the same */
1071	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072	ew32(LTRV, reg);
1073
1074	return 0;
1075}
1076
1077/**
1078 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 *  @hw: pointer to the HW structure
1080 *  @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 *  When link is down, configure ULP mode to significantly reduce the power
1083 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085 *  system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089	u32 mac_reg;
1090	s32 ret_val = 0;
1091	u16 phy_reg;
1092	u16 oem_reg = 0;
1093
1094	if ((hw->mac.type < e1000_pch_lpt) ||
1095	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100		return 0;
1101
1102	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103		/* Request ME configure ULP mode in the PHY */
1104		mac_reg = er32(H2ME);
1105		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106		ew32(H2ME, mac_reg);
1107
1108		goto out;
1109	}
1110
1111	if (!to_sx) {
1112		int i = 0;
1113
1114		/* Poll up to 5 seconds for Cable Disconnected indication */
1115		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116			/* Bail if link is re-acquired */
1117			if (er32(STATUS) & E1000_STATUS_LU)
1118				return -E1000_ERR_PHY;
1119
1120			if (i++ == 100)
1121				break;
1122
1123			msleep(50);
1124		}
1125		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126		      (er32(FEXT) &
1127		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128	}
1129
1130	ret_val = hw->phy.ops.acquire(hw);
1131	if (ret_val)
1132		goto out;
1133
1134	/* Force SMBus mode in PHY */
1135	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136	if (ret_val)
1137		goto release;
1138	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141	/* Force SMBus mode in MAC */
1142	mac_reg = er32(CTRL_EXT);
1143	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144	ew32(CTRL_EXT, mac_reg);
1145
1146	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147	 * LPLU and disable Gig speed when entering ULP
1148	 */
1149	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151						       &oem_reg);
1152		if (ret_val)
1153			goto release;
1154
1155		phy_reg = oem_reg;
1156		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159							phy_reg);
1160
1161		if (ret_val)
1162			goto release;
1163	}
1164
1165	/* Set Inband ULP Exit, Reset to SMBus mode and
1166	 * Disable SMBus Release on PERST# in PHY
1167	 */
1168	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169	if (ret_val)
1170		goto release;
1171	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173	if (to_sx) {
1174		if (er32(WUFC) & E1000_WUFC_LNKC)
1175			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176		else
1177			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181	} else {
1182		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185	}
1186	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188	/* Set Disable SMBus Release on PERST# in MAC */
1189	mac_reg = er32(FEXTNVM7);
1190	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191	ew32(FEXTNVM7, mac_reg);
1192
1193	/* Commit ULP changes in PHY by starting auto ULP configuration */
1194	phy_reg |= I218_ULP_CONFIG1_START;
1195	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200							oem_reg);
1201		if (ret_val)
1202			goto release;
1203	}
1204
1205release:
1206	hw->phy.ops.release(hw);
1207out:
1208	if (ret_val)
1209		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210	else
1211		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213	return ret_val;
1214}
1215
1216/**
1217 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 *  @hw: pointer to the HW structure
1219 *  @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 *  Un-configure ULP mode when link is up, the system is transitioned from
1222 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223 *  system, poll for an indication from ME that ULP has been un-configured.
1224 *  If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 *  During nominal operation, this function is called when link is acquired
1227 *  to disable ULP mode (force=false); otherwise, for example when unloading
1228 *  the driver or during Sx->S0 transitions, this is called with force=true
1229 *  to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233	s32 ret_val = 0;
1234	u32 mac_reg;
1235	u16 phy_reg;
1236	int i = 0;
1237
1238	if ((hw->mac.type < e1000_pch_lpt) ||
1239	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244		return 0;
1245
1246	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1247		if (force) {
1248			/* Request ME un-configure ULP mode in the PHY */
1249			mac_reg = er32(H2ME);
1250			mac_reg &= ~E1000_H2ME_ULP;
1251			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252			ew32(H2ME, mac_reg);
1253		}
1254
1255		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1256		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257			if (i++ == 30) {
1258				ret_val = -E1000_ERR_PHY;
1259				goto out;
1260			}
 
 
1261
1262			usleep_range(10000, 20000);
1263		}
1264		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1265
1266		if (force) {
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269			ew32(H2ME, mac_reg);
1270		} else {
1271			/* Clear H2ME.ULP after ME ULP configuration */
1272			mac_reg = er32(H2ME);
1273			mac_reg &= ~E1000_H2ME_ULP;
1274			ew32(H2ME, mac_reg);
1275		}
1276
1277		goto out;
1278	}
1279
1280	ret_val = hw->phy.ops.acquire(hw);
1281	if (ret_val)
1282		goto out;
1283
1284	if (force)
1285		/* Toggle LANPHYPC Value bit */
1286		e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288	/* Unforce SMBus mode in PHY */
1289	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290	if (ret_val) {
1291		/* The MAC might be in PCIe mode, so temporarily force to
1292		 * SMBus mode in order to access the PHY.
1293		 */
1294		mac_reg = er32(CTRL_EXT);
1295		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296		ew32(CTRL_EXT, mac_reg);
1297
1298		msleep(50);
1299
1300		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301						       &phy_reg);
1302		if (ret_val)
1303			goto release;
1304	}
1305	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308	/* Unforce SMBus mode in MAC */
1309	mac_reg = er32(CTRL_EXT);
1310	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311	ew32(CTRL_EXT, mac_reg);
1312
1313	/* When ULP mode was previously entered, K1 was disabled by the
1314	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315	 */
1316	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317	if (ret_val)
1318		goto release;
1319	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322	/* Clear ULP enabled configuration */
1323	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324	if (ret_val)
1325		goto release;
1326	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327		     I218_ULP_CONFIG1_STICKY_ULP |
1328		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329		     I218_ULP_CONFIG1_WOL_HOST |
1330		     I218_ULP_CONFIG1_INBAND_EXIT |
1331		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336	/* Commit ULP changes by starting auto ULP configuration */
1337	phy_reg |= I218_ULP_CONFIG1_START;
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Clear Disable SMBus Release on PERST# in MAC */
1341	mac_reg = er32(FEXTNVM7);
1342	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343	ew32(FEXTNVM7, mac_reg);
1344
1345release:
1346	hw->phy.ops.release(hw);
1347	if (force) {
1348		e1000_phy_hw_reset(hw);
1349		msleep(50);
1350	}
1351out:
1352	if (ret_val)
1353		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354	else
1355		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356
1357	return ret_val;
1358}
1359
1360/**
1361 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 *  @hw: pointer to the HW structure
1363 *
1364 *  Checks to see of the link status of the hardware has changed.  If a
1365 *  change in link status has been detected, then we read the PHY registers
1366 *  to get the current speed/duplex if link exists.
1367 **/
1368static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369{
1370	struct e1000_mac_info *mac = &hw->mac;
1371	s32 ret_val, tipg_reg = 0;
1372	u16 emi_addr, emi_val = 0;
1373	bool link;
1374	u16 phy_reg;
1375
1376	/* We only want to go out to the PHY registers to see if Auto-Neg
1377	 * has completed and/or if our link status has changed.  The
1378	 * get_link_status flag is set upon receiving a Link Status
1379	 * Change or Rx Sequence Error interrupt.
1380	 */
1381	if (!mac->get_link_status)
1382		return 0;
 
1383
1384	/* First we want to see if the MII Status Register reports
1385	 * link.  If so, then we want to get the current speed/duplex
1386	 * of the PHY.
1387	 */
1388	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389	if (ret_val)
1390		return ret_val;
1391
1392	if (hw->mac.type == e1000_pchlan) {
1393		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394		if (ret_val)
1395			return ret_val;
1396	}
1397
1398	/* When connected at 10Mbps half-duplex, some parts are excessively
1399	 * aggressive resulting in many collisions. To avoid this, increase
1400	 * the IPG and reduce Rx latency in the PHY.
1401	 */
1402	if (((hw->mac.type == e1000_pch2lan) ||
1403	     (hw->mac.type == e1000_pch_lpt) ||
1404	     (hw->mac.type == e1000_pch_spt)) && link) {
1405		u16 speed, duplex;
1406
1407		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408		tipg_reg = er32(TIPG);
1409		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410
1411		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412			tipg_reg |= 0xFF;
1413			/* Reduce Rx latency in analog PHY */
1414			emi_val = 0;
1415		} else if (hw->mac.type == e1000_pch_spt &&
1416			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417			tipg_reg |= 0xC;
1418			emi_val = 1;
1419		} else {
1420
1421			/* Roll back the default values */
1422			tipg_reg |= 0x08;
1423			emi_val = 1;
1424		}
1425
1426		ew32(TIPG, tipg_reg);
1427
1428		ret_val = hw->phy.ops.acquire(hw);
1429		if (ret_val)
1430			return ret_val;
1431
1432		if (hw->mac.type == e1000_pch2lan)
1433			emi_addr = I82579_RX_CONFIG;
1434		else
1435			emi_addr = I217_RX_CONFIG;
1436		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437
1438		if (hw->mac.type == e1000_pch_lpt ||
1439		    hw->mac.type == e1000_pch_spt) {
1440			u16 phy_reg;
1441
1442			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444			if (speed == SPEED_100 || speed == SPEED_10)
1445				phy_reg |= 0x3E8;
1446			else
1447				phy_reg |= 0xFA;
1448			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
 
 
 
 
 
 
 
 
 
 
1449		}
1450		hw->phy.ops.release(hw);
1451
1452		if (ret_val)
1453			return ret_val;
1454
1455		if (hw->mac.type == e1000_pch_spt) {
1456			u16 data;
1457			u16 ptr_gap;
1458
1459			if (speed == SPEED_1000) {
1460				ret_val = hw->phy.ops.acquire(hw);
1461				if (ret_val)
1462					return ret_val;
1463
1464				ret_val = e1e_rphy_locked(hw,
1465							  PHY_REG(776, 20),
1466							  &data);
1467				if (ret_val) {
1468					hw->phy.ops.release(hw);
1469					return ret_val;
1470				}
1471
1472				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473				if (ptr_gap < 0x18) {
1474					data &= ~(0x3FF << 2);
1475					data |= (0x18 << 2);
1476					ret_val =
1477					    e1e_wphy_locked(hw,
1478							    PHY_REG(776, 20),
1479							    data);
1480				}
1481				hw->phy.ops.release(hw);
1482				if (ret_val)
1483					return ret_val;
1484			} else {
1485				ret_val = hw->phy.ops.acquire(hw);
1486				if (ret_val)
1487					return ret_val;
1488
1489				ret_val = e1e_wphy_locked(hw,
1490							  PHY_REG(776, 20),
1491							  0xC023);
1492				hw->phy.ops.release(hw);
1493				if (ret_val)
1494					return ret_val;
1495
1496			}
1497		}
1498	}
1499
1500	/* I217 Packet Loss issue:
1501	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502	 * on power up.
1503	 * Set the Beacon Duration for I217 to 8 usec
1504	 */
1505	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506		u32 mac_reg;
1507
1508		mac_reg = er32(FEXTNVM4);
1509		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511		ew32(FEXTNVM4, mac_reg);
1512	}
1513
1514	/* Work-around I218 hang issue */
1515	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523	if ((hw->mac.type == e1000_pch_lpt) ||
1524	    (hw->mac.type == e1000_pch_spt)) {
1525		/* Set platform power management values for
1526		 * Latency Tolerance Reporting (LTR)
1527		 */
1528		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529		if (ret_val)
1530			return ret_val;
1531	}
1532
1533	/* Clear link partner's EEE ability */
1534	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536	/* FEXTNVM6 K1-off workaround */
1537	if (hw->mac.type == e1000_pch_spt) {
1538		u32 pcieanacfg = er32(PCIEANACFG);
1539		u32 fextnvm6 = er32(FEXTNVM6);
1540
1541		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543		else
1544			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
 
 
 
 
 
1545
1546		ew32(FEXTNVM6, fextnvm6);
1547	}
1548
1549	if (!link)
1550		return 0;	/* No link detected */
1551
1552	mac->get_link_status = false;
1553
1554	switch (hw->mac.type) {
1555	case e1000_pch2lan:
1556		ret_val = e1000_k1_workaround_lv(hw);
1557		if (ret_val)
1558			return ret_val;
1559		/* fall-thru */
1560	case e1000_pchlan:
1561		if (hw->phy.type == e1000_phy_82578) {
1562			ret_val = e1000_link_stall_workaround_hv(hw);
1563			if (ret_val)
1564				return ret_val;
1565		}
1566
1567		/* Workaround for PCHx parts in half-duplex:
1568		 * Set the number of preambles removed from the packet
1569		 * when it is passed from the PHY to the MAC to prevent
1570		 * the MAC from misinterpreting the packet type.
1571		 */
1572		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574
1575		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577
1578		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579		break;
1580	default:
1581		break;
1582	}
1583
1584	/* Check if there was DownShift, must be checked
1585	 * immediately after link-up
1586	 */
1587	e1000e_check_downshift(hw);
1588
1589	/* Enable/Disable EEE after link up */
1590	if (hw->phy.type > e1000_phy_82579) {
1591		ret_val = e1000_set_eee_pchlan(hw);
1592		if (ret_val)
1593			return ret_val;
1594	}
1595
1596	/* If we are forcing speed/duplex, then we simply return since
1597	 * we have already determined whether we have link or not.
1598	 */
1599	if (!mac->autoneg)
1600		return -E1000_ERR_CONFIG;
1601
1602	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1603	 * of MAC speed/duplex configuration.  So we only need to
1604	 * configure Collision Distance in the MAC.
1605	 */
1606	mac->ops.config_collision_dist(hw);
1607
1608	/* Configure Flow Control now that Auto-Neg has completed.
1609	 * First, we need to restore the desired flow control
1610	 * settings because we may have had to re-autoneg with a
1611	 * different link partner.
1612	 */
1613	ret_val = e1000e_config_fc_after_link_up(hw);
1614	if (ret_val)
1615		e_dbg("Error configuring flow control\n");
1616
1617	return ret_val;
 
 
 
 
1618}
1619
1620static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621{
1622	struct e1000_hw *hw = &adapter->hw;
1623	s32 rc;
1624
1625	rc = e1000_init_mac_params_ich8lan(hw);
1626	if (rc)
1627		return rc;
1628
1629	rc = e1000_init_nvm_params_ich8lan(hw);
1630	if (rc)
1631		return rc;
1632
1633	switch (hw->mac.type) {
1634	case e1000_ich8lan:
1635	case e1000_ich9lan:
1636	case e1000_ich10lan:
1637		rc = e1000_init_phy_params_ich8lan(hw);
1638		break;
1639	case e1000_pchlan:
1640	case e1000_pch2lan:
1641	case e1000_pch_lpt:
1642	case e1000_pch_spt:
 
 
 
 
 
 
 
1643		rc = e1000_init_phy_params_pchlan(hw);
1644		break;
1645	default:
1646		break;
1647	}
1648	if (rc)
1649		return rc;
1650
1651	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653	 */
1654	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659
1660		hw->mac.ops.blink_led = NULL;
1661	}
1662
1663	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664	    (adapter->hw.phy.type != e1000_phy_ife))
1665		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666
1667	/* Enable workaround for 82579 w/ ME enabled */
1668	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671
1672	return 0;
1673}
1674
1675static DEFINE_MUTEX(nvm_mutex);
1676
1677/**
1678 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 *  @hw: pointer to the HW structure
1680 *
1681 *  Acquires the mutex for performing NVM operations.
1682 **/
1683static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684{
1685	mutex_lock(&nvm_mutex);
1686
1687	return 0;
1688}
1689
1690/**
1691 *  e1000_release_nvm_ich8lan - Release NVM mutex
1692 *  @hw: pointer to the HW structure
1693 *
1694 *  Releases the mutex used while performing NVM operations.
1695 **/
1696static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697{
1698	mutex_unlock(&nvm_mutex);
1699}
1700
1701/**
1702 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Acquires the software control flag for performing PHY and select
1706 *  MAC CSR accesses.
1707 **/
1708static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709{
1710	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711	s32 ret_val = 0;
1712
1713	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714			     &hw->adapter->state)) {
1715		e_dbg("contention for Phy access\n");
1716		return -E1000_ERR_PHY;
1717	}
1718
1719	while (timeout) {
1720		extcnf_ctrl = er32(EXTCNF_CTRL);
1721		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722			break;
1723
1724		mdelay(1);
1725		timeout--;
1726	}
1727
1728	if (!timeout) {
1729		e_dbg("SW has already locked the resource.\n");
1730		ret_val = -E1000_ERR_CONFIG;
1731		goto out;
1732	}
1733
1734	timeout = SW_FLAG_TIMEOUT;
1735
1736	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737	ew32(EXTCNF_CTRL, extcnf_ctrl);
1738
1739	while (timeout) {
1740		extcnf_ctrl = er32(EXTCNF_CTRL);
1741		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742			break;
1743
1744		mdelay(1);
1745		timeout--;
1746	}
1747
1748	if (!timeout) {
1749		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750		      er32(FWSM), extcnf_ctrl);
1751		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752		ew32(EXTCNF_CTRL, extcnf_ctrl);
1753		ret_val = -E1000_ERR_CONFIG;
1754		goto out;
1755	}
1756
1757out:
1758	if (ret_val)
1759		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760
1761	return ret_val;
1762}
1763
1764/**
1765 *  e1000_release_swflag_ich8lan - Release software control flag
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Releases the software control flag for performing PHY and select
1769 *  MAC CSR accesses.
1770 **/
1771static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772{
1773	u32 extcnf_ctrl;
1774
1775	extcnf_ctrl = er32(EXTCNF_CTRL);
1776
1777	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779		ew32(EXTCNF_CTRL, extcnf_ctrl);
1780	} else {
1781		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782	}
1783
1784	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785}
1786
1787/**
1788 *  e1000_check_mng_mode_ich8lan - Checks management mode
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  This checks if the adapter has any manageability enabled.
1792 *  This is a function pointer entry point only called by read/write
1793 *  routines for the PHY and NVM parts.
1794 **/
1795static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796{
1797	u32 fwsm;
1798
1799	fwsm = er32(FWSM);
1800	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801		((fwsm & E1000_FWSM_MODE_MASK) ==
1802		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803}
1804
1805/**
1806 *  e1000_check_mng_mode_pchlan - Checks management mode
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  This checks if the adapter has iAMT enabled.
1810 *  This is a function pointer entry point only called by read/write
1811 *  routines for the PHY and NVM parts.
1812 **/
1813static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814{
1815	u32 fwsm;
1816
1817	fwsm = er32(FWSM);
1818	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820}
1821
1822/**
1823 *  e1000_rar_set_pch2lan - Set receive address register
1824 *  @hw: pointer to the HW structure
1825 *  @addr: pointer to the receive address
1826 *  @index: receive address array register
1827 *
1828 *  Sets the receive address array register at index to the address passed
1829 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1830 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 *  Use SHRA[0-3] in place of those reserved for ME.
1832 **/
1833static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834{
1835	u32 rar_low, rar_high;
1836
1837	/* HW expects these in little endian so we reverse the byte order
1838	 * from network order (big endian) to little endian
1839	 */
1840	rar_low = ((u32)addr[0] |
1841		   ((u32)addr[1] << 8) |
1842		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843
1844	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846	/* If MAC address zero, no need to set the AV bit */
1847	if (rar_low || rar_high)
1848		rar_high |= E1000_RAH_AV;
1849
1850	if (index == 0) {
1851		ew32(RAL(index), rar_low);
1852		e1e_flush();
1853		ew32(RAH(index), rar_high);
1854		e1e_flush();
1855		return 0;
1856	}
1857
1858	/* RAR[1-6] are owned by manageability.  Skip those and program the
1859	 * next address into the SHRA register array.
1860	 */
1861	if (index < (u32)(hw->mac.rar_entry_count)) {
1862		s32 ret_val;
1863
1864		ret_val = e1000_acquire_swflag_ich8lan(hw);
1865		if (ret_val)
1866			goto out;
1867
1868		ew32(SHRAL(index - 1), rar_low);
1869		e1e_flush();
1870		ew32(SHRAH(index - 1), rar_high);
1871		e1e_flush();
1872
1873		e1000_release_swflag_ich8lan(hw);
1874
1875		/* verify the register updates */
1876		if ((er32(SHRAL(index - 1)) == rar_low) &&
1877		    (er32(SHRAH(index - 1)) == rar_high))
1878			return 0;
1879
1880		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881		      (index - 1), er32(FWSM));
1882	}
1883
1884out:
1885	e_dbg("Failed to write receive address at index %d\n", index);
1886	return -E1000_ERR_CONFIG;
1887}
1888
1889/**
1890 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Get the number of available receive registers that the Host can
1894 *  program. SHRA[0-10] are the shared receive address registers
1895 *  that are shared between the Host and manageability engine (ME).
1896 *  ME can reserve any number of addresses and the host needs to be
1897 *  able to tell how many available registers it has access to.
1898 **/
1899static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900{
1901	u32 wlock_mac;
1902	u32 num_entries;
1903
1904	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907	switch (wlock_mac) {
1908	case 0:
1909		/* All SHRA[0..10] and RAR[0] available */
1910		num_entries = hw->mac.rar_entry_count;
1911		break;
1912	case 1:
1913		/* Only RAR[0] available */
1914		num_entries = 1;
1915		break;
1916	default:
1917		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918		num_entries = wlock_mac + 1;
1919		break;
1920	}
1921
1922	return num_entries;
1923}
1924
1925/**
1926 *  e1000_rar_set_pch_lpt - Set receive address registers
1927 *  @hw: pointer to the HW structure
1928 *  @addr: pointer to the receive address
1929 *  @index: receive address array register
1930 *
1931 *  Sets the receive address register array at index to the address passed
1932 *  in by addr. For LPT, RAR[0] is the base address register that is to
1933 *  contain the MAC address. SHRA[0-10] are the shared receive address
1934 *  registers that are shared between the Host and manageability engine (ME).
1935 **/
1936static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937{
1938	u32 rar_low, rar_high;
1939	u32 wlock_mac;
1940
1941	/* HW expects these in little endian so we reverse the byte order
1942	 * from network order (big endian) to little endian
1943	 */
1944	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946
1947	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948
1949	/* If MAC address zero, no need to set the AV bit */
1950	if (rar_low || rar_high)
1951		rar_high |= E1000_RAH_AV;
1952
1953	if (index == 0) {
1954		ew32(RAL(index), rar_low);
1955		e1e_flush();
1956		ew32(RAH(index), rar_high);
1957		e1e_flush();
1958		return 0;
1959	}
1960
1961	/* The manageability engine (ME) can lock certain SHRAR registers that
1962	 * it is using - those registers are unavailable for use.
1963	 */
1964	if (index < hw->mac.rar_entry_count) {
1965		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968		/* Check if all SHRAR registers are locked */
1969		if (wlock_mac == 1)
1970			goto out;
1971
1972		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973			s32 ret_val;
1974
1975			ret_val = e1000_acquire_swflag_ich8lan(hw);
1976
1977			if (ret_val)
1978				goto out;
1979
1980			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981			e1e_flush();
1982			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983			e1e_flush();
1984
1985			e1000_release_swflag_ich8lan(hw);
1986
1987			/* verify the register updates */
1988			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990				return 0;
1991		}
1992	}
1993
1994out:
1995	e_dbg("Failed to write receive address at index %d\n", index);
1996	return -E1000_ERR_CONFIG;
1997}
1998
1999/**
2000 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 *  @hw: pointer to the HW structure
2002 *
2003 *  Checks if firmware is blocking the reset of the PHY.
2004 *  This is a function pointer entry point only called by
2005 *  reset routines.
2006 **/
2007static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008{
2009	bool blocked = false;
2010	int i = 0;
2011
2012	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013	       (i++ < 30))
2014		usleep_range(10000, 20000);
2015	return blocked ? E1000_BLK_PHY_RESET : 0;
2016}
2017
2018/**
2019 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 *  @hw: pointer to the HW structure
2021 *
2022 *  Assumes semaphore already acquired.
2023 *
2024 **/
2025static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026{
2027	u16 phy_data;
2028	u32 strap = er32(STRAP);
2029	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030	    E1000_STRAP_SMT_FREQ_SHIFT;
2031	s32 ret_val;
2032
2033	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034
2035	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036	if (ret_val)
2037		return ret_val;
2038
2039	phy_data &= ~HV_SMB_ADDR_MASK;
2040	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042
2043	if (hw->phy.type == e1000_phy_i217) {
2044		/* Restore SMBus frequency */
2045		if (freq--) {
2046			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047			phy_data |= (freq & (1 << 0)) <<
2048			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049			phy_data |= (freq & (1 << 1)) <<
2050			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051		} else {
2052			e_dbg("Unsupported SMB frequency in PHY\n");
2053		}
2054	}
2055
2056	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057}
2058
2059/**
2060 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 *  @hw:   pointer to the HW structure
2062 *
2063 *  SW should configure the LCD from the NVM extended configuration region
2064 *  as a workaround for certain parts.
2065 **/
2066static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067{
2068	struct e1000_phy_info *phy = &hw->phy;
2069	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070	s32 ret_val = 0;
2071	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072
2073	/* Initialize the PHY from the NVM on ICH platforms.  This
2074	 * is needed due to an issue where the NVM configuration is
2075	 * not properly autoloaded after power transitions.
2076	 * Therefore, after each PHY reset, we will load the
2077	 * configuration data out of the NVM manually.
2078	 */
2079	switch (hw->mac.type) {
2080	case e1000_ich8lan:
2081		if (phy->type != e1000_phy_igp_3)
2082			return ret_val;
2083
2084		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087			break;
2088		}
2089		/* Fall-thru */
2090	case e1000_pchlan:
2091	case e1000_pch2lan:
2092	case e1000_pch_lpt:
2093	case e1000_pch_spt:
 
 
 
 
 
 
 
2094		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095		break;
2096	default:
2097		return ret_val;
2098	}
2099
2100	ret_val = hw->phy.ops.acquire(hw);
2101	if (ret_val)
2102		return ret_val;
2103
2104	data = er32(FEXTNVM);
2105	if (!(data & sw_cfg_mask))
2106		goto release;
2107
2108	/* Make sure HW does not configure LCD from PHY
2109	 * extended configuration before SW configuration
2110	 */
2111	data = er32(EXTCNF_CTRL);
2112	if ((hw->mac.type < e1000_pch2lan) &&
2113	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114		goto release;
2115
2116	cnf_size = er32(EXTCNF_SIZE);
2117	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119	if (!cnf_size)
2120		goto release;
2121
2122	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124
2125	if (((hw->mac.type == e1000_pchlan) &&
2126	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127	    (hw->mac.type > e1000_pchlan)) {
2128		/* HW configures the SMBus address and LEDs when the
2129		 * OEM and LCD Write Enable bits are set in the NVM.
2130		 * When both NVM bits are cleared, SW will configure
2131		 * them instead.
2132		 */
2133		ret_val = e1000_write_smbus_addr(hw);
2134		if (ret_val)
2135			goto release;
2136
2137		data = er32(LEDCTL);
2138		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139							(u16)data);
2140		if (ret_val)
2141			goto release;
2142	}
2143
2144	/* Configure LCD from extended configuration region. */
2145
2146	/* cnf_base_addr is in DWORD */
2147	word_addr = (u16)(cnf_base_addr << 1);
2148
2149	for (i = 0; i < cnf_size; i++) {
2150		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2151		if (ret_val)
2152			goto release;
2153
2154		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155					 1, &reg_addr);
2156		if (ret_val)
2157			goto release;
2158
2159		/* Save off the PHY page for future writes. */
2160		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161			phy_page = reg_data;
2162			continue;
2163		}
2164
2165		reg_addr &= PHY_REG_MASK;
2166		reg_addr |= phy_page;
2167
2168		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169		if (ret_val)
2170			goto release;
2171	}
2172
2173release:
2174	hw->phy.ops.release(hw);
2175	return ret_val;
2176}
2177
2178/**
2179 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2180 *  @hw:   pointer to the HW structure
2181 *  @link: link up bool flag
2182 *
2183 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2185 *  If link is down, the function will restore the default K1 setting located
2186 *  in the NVM.
2187 **/
2188static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189{
2190	s32 ret_val = 0;
2191	u16 status_reg = 0;
2192	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193
2194	if (hw->mac.type != e1000_pchlan)
2195		return 0;
2196
2197	/* Wrap the whole flow with the sw flag */
2198	ret_val = hw->phy.ops.acquire(hw);
2199	if (ret_val)
2200		return ret_val;
2201
2202	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203	if (link) {
2204		if (hw->phy.type == e1000_phy_82578) {
2205			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206						  &status_reg);
2207			if (ret_val)
2208				goto release;
2209
2210			status_reg &= (BM_CS_STATUS_LINK_UP |
2211				       BM_CS_STATUS_RESOLVED |
2212				       BM_CS_STATUS_SPEED_MASK);
2213
2214			if (status_reg == (BM_CS_STATUS_LINK_UP |
2215					   BM_CS_STATUS_RESOLVED |
2216					   BM_CS_STATUS_SPEED_1000))
2217				k1_enable = false;
2218		}
2219
2220		if (hw->phy.type == e1000_phy_82577) {
2221			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222			if (ret_val)
2223				goto release;
2224
2225			status_reg &= (HV_M_STATUS_LINK_UP |
2226				       HV_M_STATUS_AUTONEG_COMPLETE |
2227				       HV_M_STATUS_SPEED_MASK);
2228
2229			if (status_reg == (HV_M_STATUS_LINK_UP |
2230					   HV_M_STATUS_AUTONEG_COMPLETE |
2231					   HV_M_STATUS_SPEED_1000))
2232				k1_enable = false;
2233		}
2234
2235		/* Link stall fix for link up */
2236		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237		if (ret_val)
2238			goto release;
2239
2240	} else {
2241		/* Link stall fix for link down */
2242		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243		if (ret_val)
2244			goto release;
2245	}
2246
2247	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248
2249release:
2250	hw->phy.ops.release(hw);
2251
2252	return ret_val;
2253}
2254
2255/**
2256 *  e1000_configure_k1_ich8lan - Configure K1 power state
2257 *  @hw: pointer to the HW structure
2258 *  @enable: K1 state to configure
2259 *
2260 *  Configure the K1 power state based on the provided parameter.
2261 *  Assumes semaphore already acquired.
2262 *
2263 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264 **/
2265s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266{
2267	s32 ret_val;
2268	u32 ctrl_reg = 0;
2269	u32 ctrl_ext = 0;
2270	u32 reg = 0;
2271	u16 kmrn_reg = 0;
2272
2273	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274					      &kmrn_reg);
2275	if (ret_val)
2276		return ret_val;
2277
2278	if (k1_enable)
2279		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280	else
2281		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282
2283	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284					       kmrn_reg);
2285	if (ret_val)
2286		return ret_val;
2287
2288	usleep_range(20, 40);
2289	ctrl_ext = er32(CTRL_EXT);
2290	ctrl_reg = er32(CTRL);
2291
2292	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293	reg |= E1000_CTRL_FRCSPD;
2294	ew32(CTRL, reg);
2295
2296	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297	e1e_flush();
2298	usleep_range(20, 40);
2299	ew32(CTRL, ctrl_reg);
2300	ew32(CTRL_EXT, ctrl_ext);
2301	e1e_flush();
2302	usleep_range(20, 40);
2303
2304	return 0;
2305}
2306
2307/**
2308 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 *  @hw:       pointer to the HW structure
2310 *  @d0_state: boolean if entering d0 or d3 device state
2311 *
2312 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2314 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2315 **/
2316static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317{
2318	s32 ret_val = 0;
2319	u32 mac_reg;
2320	u16 oem_reg;
2321
2322	if (hw->mac.type < e1000_pchlan)
2323		return ret_val;
2324
2325	ret_val = hw->phy.ops.acquire(hw);
2326	if (ret_val)
2327		return ret_val;
2328
2329	if (hw->mac.type == e1000_pchlan) {
2330		mac_reg = er32(EXTCNF_CTRL);
2331		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332			goto release;
2333	}
2334
2335	mac_reg = er32(FEXTNVM);
2336	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337		goto release;
2338
2339	mac_reg = er32(PHY_CTRL);
2340
2341	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342	if (ret_val)
2343		goto release;
2344
2345	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346
2347	if (d0_state) {
2348		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349			oem_reg |= HV_OEM_BITS_GBE_DIS;
2350
2351		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352			oem_reg |= HV_OEM_BITS_LPLU;
2353	} else {
2354		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356			oem_reg |= HV_OEM_BITS_GBE_DIS;
2357
2358		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359			       E1000_PHY_CTRL_NOND0A_LPLU))
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	}
2362
2363	/* Set Restart auto-neg to activate the bits */
2364	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365	    !hw->phy.ops.check_reset_block(hw))
2366		oem_reg |= HV_OEM_BITS_RESTART_AN;
2367
2368	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369
2370release:
2371	hw->phy.ops.release(hw);
2372
2373	return ret_val;
2374}
2375
2376/**
2377 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 *  @hw:   pointer to the HW structure
2379 **/
2380static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381{
2382	s32 ret_val;
2383	u16 data;
2384
2385	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386	if (ret_val)
2387		return ret_val;
2388
2389	data |= HV_KMRN_MDIO_SLOW;
2390
2391	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392
2393	return ret_val;
2394}
2395
2396/**
2397 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 *  done after every PHY reset.
 
 
2399 **/
2400static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401{
2402	s32 ret_val = 0;
2403	u16 phy_data;
2404
2405	if (hw->mac.type != e1000_pchlan)
2406		return 0;
2407
2408	/* Set MDIO slow mode before any other MDIO access */
2409	if (hw->phy.type == e1000_phy_82577) {
2410		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411		if (ret_val)
2412			return ret_val;
2413	}
2414
2415	if (((hw->phy.type == e1000_phy_82577) &&
2416	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418		/* Disable generation of early preamble */
2419		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420		if (ret_val)
2421			return ret_val;
2422
2423		/* Preamble tuning for SSC */
2424		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425		if (ret_val)
2426			return ret_val;
2427	}
2428
2429	if (hw->phy.type == e1000_phy_82578) {
2430		/* Return registers to default by doing a soft reset then
2431		 * writing 0x3140 to the control register.
2432		 */
2433		if (hw->phy.revision < 2) {
2434			e1000e_phy_sw_reset(hw);
2435			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
 
 
2436		}
2437	}
2438
2439	/* Select page 0 */
2440	ret_val = hw->phy.ops.acquire(hw);
2441	if (ret_val)
2442		return ret_val;
2443
2444	hw->phy.addr = 1;
2445	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446	hw->phy.ops.release(hw);
2447	if (ret_val)
2448		return ret_val;
2449
2450	/* Configure the K1 Si workaround during phy reset assuming there is
2451	 * link so that it disables K1 if link is in 1Gbps.
2452	 */
2453	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454	if (ret_val)
2455		return ret_val;
2456
2457	/* Workaround for link disconnects on a busy hub in half duplex */
2458	ret_val = hw->phy.ops.acquire(hw);
2459	if (ret_val)
2460		return ret_val;
2461	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462	if (ret_val)
2463		goto release;
2464	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465	if (ret_val)
2466		goto release;
2467
2468	/* set MSE higher to enable link to stay up when noise is high */
2469	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470release:
2471	hw->phy.ops.release(hw);
2472
2473	return ret_val;
2474}
2475
2476/**
2477 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 *  @hw:   pointer to the HW structure
2479 **/
2480void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481{
2482	u32 mac_reg;
2483	u16 i, phy_reg = 0;
2484	s32 ret_val;
2485
2486	ret_val = hw->phy.ops.acquire(hw);
2487	if (ret_val)
2488		return;
2489	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490	if (ret_val)
2491		goto release;
2492
2493	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495		mac_reg = er32(RAL(i));
2496		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497					   (u16)(mac_reg & 0xFFFF));
2498		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499					   (u16)((mac_reg >> 16) & 0xFFFF));
2500
2501		mac_reg = er32(RAH(i));
2502		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503					   (u16)(mac_reg & 0xFFFF));
2504		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505					   (u16)((mac_reg & E1000_RAH_AV)
2506						 >> 16));
2507	}
2508
2509	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510
2511release:
2512	hw->phy.ops.release(hw);
2513}
2514
2515/**
2516 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 *  with 82579 PHY
2518 *  @hw: pointer to the HW structure
2519 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520 **/
2521s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522{
2523	s32 ret_val = 0;
2524	u16 phy_reg, data;
2525	u32 mac_reg;
2526	u16 i;
2527
2528	if (hw->mac.type < e1000_pch2lan)
2529		return 0;
2530
2531	/* disable Rx path while enabling/disabling workaround */
2532	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2534	if (ret_val)
2535		return ret_val;
2536
2537	if (enable) {
2538		/* Write Rx addresses (rar_entry_count for RAL/H, and
2539		 * SHRAL/H) and initial CRC values to the MAC
2540		 */
2541		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542			u8 mac_addr[ETH_ALEN] = { 0 };
2543			u32 addr_high, addr_low;
2544
2545			addr_high = er32(RAH(i));
2546			if (!(addr_high & E1000_RAH_AV))
2547				continue;
2548			addr_low = er32(RAL(i));
2549			mac_addr[0] = (addr_low & 0xFF);
2550			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553			mac_addr[4] = (addr_high & 0xFF);
2554			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555
2556			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557		}
2558
2559		/* Write Rx addresses to the PHY */
2560		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561
2562		/* Enable jumbo frame workaround in the MAC */
2563		mac_reg = er32(FFLT_DBG);
2564		mac_reg &= ~(1 << 14);
2565		mac_reg |= (7 << 15);
2566		ew32(FFLT_DBG, mac_reg);
2567
2568		mac_reg = er32(RCTL);
2569		mac_reg |= E1000_RCTL_SECRC;
2570		ew32(RCTL, mac_reg);
2571
2572		ret_val = e1000e_read_kmrn_reg(hw,
2573					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574					       &data);
2575		if (ret_val)
2576			return ret_val;
2577		ret_val = e1000e_write_kmrn_reg(hw,
2578						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579						data | (1 << 0));
2580		if (ret_val)
2581			return ret_val;
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_HD_CTRL,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		data &= ~(0xF << 8);
2588		data |= (0xB << 8);
2589		ret_val = e1000e_write_kmrn_reg(hw,
2590						E1000_KMRNCTRLSTA_HD_CTRL,
2591						data);
2592		if (ret_val)
2593			return ret_val;
2594
2595		/* Enable jumbo frame workaround in the PHY */
2596		e1e_rphy(hw, PHY_REG(769, 23), &data);
2597		data &= ~(0x7F << 5);
2598		data |= (0x37 << 5);
2599		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600		if (ret_val)
2601			return ret_val;
2602		e1e_rphy(hw, PHY_REG(769, 16), &data);
2603		data &= ~(1 << 13);
2604		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605		if (ret_val)
2606			return ret_val;
2607		e1e_rphy(hw, PHY_REG(776, 20), &data);
2608		data &= ~(0x3FF << 2);
2609		data |= (E1000_TX_PTR_GAP << 2);
2610		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611		if (ret_val)
2612			return ret_val;
2613		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614		if (ret_val)
2615			return ret_val;
2616		e1e_rphy(hw, HV_PM_CTRL, &data);
2617		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2618		if (ret_val)
2619			return ret_val;
2620	} else {
2621		/* Write MAC register values back to h/w defaults */
2622		mac_reg = er32(FFLT_DBG);
2623		mac_reg &= ~(0xF << 14);
2624		ew32(FFLT_DBG, mac_reg);
2625
2626		mac_reg = er32(RCTL);
2627		mac_reg &= ~E1000_RCTL_SECRC;
2628		ew32(RCTL, mac_reg);
2629
2630		ret_val = e1000e_read_kmrn_reg(hw,
2631					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632					       &data);
2633		if (ret_val)
2634			return ret_val;
2635		ret_val = e1000e_write_kmrn_reg(hw,
2636						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637						data & ~(1 << 0));
2638		if (ret_val)
2639			return ret_val;
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_HD_CTRL,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		data &= ~(0xF << 8);
2646		data |= (0xB << 8);
2647		ret_val = e1000e_write_kmrn_reg(hw,
2648						E1000_KMRNCTRLSTA_HD_CTRL,
2649						data);
2650		if (ret_val)
2651			return ret_val;
2652
2653		/* Write PHY register values back to h/w defaults */
2654		e1e_rphy(hw, PHY_REG(769, 23), &data);
2655		data &= ~(0x7F << 5);
2656		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657		if (ret_val)
2658			return ret_val;
2659		e1e_rphy(hw, PHY_REG(769, 16), &data);
2660		data |= (1 << 13);
2661		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662		if (ret_val)
2663			return ret_val;
2664		e1e_rphy(hw, PHY_REG(776, 20), &data);
2665		data &= ~(0x3FF << 2);
2666		data |= (0x8 << 2);
2667		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668		if (ret_val)
2669			return ret_val;
2670		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671		if (ret_val)
2672			return ret_val;
2673		e1e_rphy(hw, HV_PM_CTRL, &data);
2674		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2675		if (ret_val)
2676			return ret_val;
2677	}
2678
2679	/* re-enable Rx path after enabling/disabling workaround */
2680	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2681}
2682
2683/**
2684 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 *  done after every PHY reset.
 
 
2686 **/
2687static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688{
2689	s32 ret_val = 0;
2690
2691	if (hw->mac.type != e1000_pch2lan)
2692		return 0;
2693
2694	/* Set MDIO slow mode before any other MDIO access */
2695	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696	if (ret_val)
2697		return ret_val;
2698
2699	ret_val = hw->phy.ops.acquire(hw);
2700	if (ret_val)
2701		return ret_val;
2702	/* set MSE higher to enable link to stay up when noise is high */
2703	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704	if (ret_val)
2705		goto release;
2706	/* drop link after 5 times MSE threshold was reached */
2707	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708release:
2709	hw->phy.ops.release(hw);
2710
2711	return ret_val;
2712}
2713
2714/**
2715 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2716 *  @hw:   pointer to the HW structure
2717 *
2718 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 *  Disable K1 in 1000Mbps and 100Mbps
2720 **/
2721static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722{
2723	s32 ret_val = 0;
2724	u16 status_reg = 0;
2725
2726	if (hw->mac.type != e1000_pch2lan)
2727		return 0;
2728
2729	/* Set K1 beacon duration based on 10Mbs speed */
2730	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731	if (ret_val)
2732		return ret_val;
2733
2734	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736		if (status_reg &
2737		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738			u16 pm_phy_reg;
2739
2740			/* LV 1G/100 Packet drop issue wa  */
2741			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742			if (ret_val)
2743				return ret_val;
2744			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746			if (ret_val)
2747				return ret_val;
2748		} else {
2749			u32 mac_reg;
2750
2751			mac_reg = er32(FEXTNVM4);
2752			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754			ew32(FEXTNVM4, mac_reg);
2755		}
2756	}
2757
2758	return ret_val;
2759}
2760
2761/**
2762 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 *  @hw:   pointer to the HW structure
2764 *  @gate: boolean set to true to gate, false to ungate
2765 *
2766 *  Gate/ungate the automatic PHY configuration via hardware; perform
2767 *  the configuration via software instead.
2768 **/
2769static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770{
2771	u32 extcnf_ctrl;
2772
2773	if (hw->mac.type < e1000_pch2lan)
2774		return;
2775
2776	extcnf_ctrl = er32(EXTCNF_CTRL);
2777
2778	if (gate)
2779		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780	else
2781		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782
2783	ew32(EXTCNF_CTRL, extcnf_ctrl);
2784}
2785
2786/**
2787 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 *  @hw: pointer to the HW structure
2789 *
2790 *  Check the appropriate indication the MAC has finished configuring the
2791 *  PHY after a software reset.
2792 **/
2793static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794{
2795	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796
2797	/* Wait for basic configuration completes before proceeding */
2798	do {
2799		data = er32(STATUS);
2800		data &= E1000_STATUS_LAN_INIT_DONE;
2801		usleep_range(100, 200);
2802	} while ((!data) && --loop);
2803
2804	/* If basic configuration is incomplete before the above loop
2805	 * count reaches 0, loading the configuration from NVM will
2806	 * leave the PHY in a bad state possibly resulting in no link.
2807	 */
2808	if (loop == 0)
2809		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810
2811	/* Clear the Init Done bit for the next init event */
2812	data = er32(STATUS);
2813	data &= ~E1000_STATUS_LAN_INIT_DONE;
2814	ew32(STATUS, data);
2815}
2816
2817/**
2818 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 *  @hw: pointer to the HW structure
2820 **/
2821static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822{
2823	s32 ret_val = 0;
2824	u16 reg;
2825
2826	if (hw->phy.ops.check_reset_block(hw))
2827		return 0;
2828
2829	/* Allow time for h/w to get to quiescent state after reset */
2830	usleep_range(10000, 20000);
2831
2832	/* Perform any necessary post-reset workarounds */
2833	switch (hw->mac.type) {
2834	case e1000_pchlan:
2835		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836		if (ret_val)
2837			return ret_val;
2838		break;
2839	case e1000_pch2lan:
2840		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841		if (ret_val)
2842			return ret_val;
2843		break;
2844	default:
2845		break;
2846	}
2847
2848	/* Clear the host wakeup bit after lcd reset */
2849	if (hw->mac.type >= e1000_pchlan) {
2850		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851		reg &= ~BM_WUC_HOST_WU_BIT;
2852		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853	}
2854
2855	/* Configure the LCD with the extended configuration region in NVM */
2856	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857	if (ret_val)
2858		return ret_val;
2859
2860	/* Configure the LCD with the OEM bits in NVM */
2861	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862
2863	if (hw->mac.type == e1000_pch2lan) {
2864		/* Ungate automatic PHY configuration on non-managed 82579 */
2865		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866			usleep_range(10000, 20000);
2867			e1000_gate_hw_phy_config_ich8lan(hw, false);
2868		}
2869
2870		/* Set EEE LPI Update Timer to 200usec */
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874		ret_val = e1000_write_emi_reg_locked(hw,
2875						     I82579_LPI_UPDATE_TIMER,
2876						     0x1387);
2877		hw->phy.ops.release(hw);
2878	}
2879
2880	return ret_val;
2881}
2882
2883/**
2884 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 *  @hw: pointer to the HW structure
2886 *
2887 *  Resets the PHY
2888 *  This is a function pointer entry point called by drivers
2889 *  or other shared routines.
2890 **/
2891static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892{
2893	s32 ret_val = 0;
2894
2895	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896	if ((hw->mac.type == e1000_pch2lan) &&
2897	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898		e1000_gate_hw_phy_config_ich8lan(hw, true);
2899
2900	ret_val = e1000e_phy_hw_reset_generic(hw);
2901	if (ret_val)
2902		return ret_val;
2903
2904	return e1000_post_phy_reset_ich8lan(hw);
2905}
2906
2907/**
2908 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 *  @hw: pointer to the HW structure
2910 *  @active: true to enable LPLU, false to disable
2911 *
2912 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2913 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 *  the phy speed. This function will manually set the LPLU bit and restart
2915 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 *  since it configures the same bit.
2917 **/
2918static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919{
2920	s32 ret_val;
2921	u16 oem_reg;
2922
2923	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924	if (ret_val)
2925		return ret_val;
2926
2927	if (active)
2928		oem_reg |= HV_OEM_BITS_LPLU;
2929	else
2930		oem_reg &= ~HV_OEM_BITS_LPLU;
2931
2932	if (!hw->phy.ops.check_reset_block(hw))
2933		oem_reg |= HV_OEM_BITS_RESTART_AN;
2934
2935	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936}
2937
2938/**
2939 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 *  @hw: pointer to the HW structure
2941 *  @active: true to enable LPLU, false to disable
2942 *
2943 *  Sets the LPLU D0 state according to the active flag.  When
2944 *  activating LPLU this function also disables smart speed
2945 *  and vice versa.  LPLU will not be activated unless the
2946 *  device autonegotiation advertisement meets standards of
2947 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 *  This is a function pointer entry point only called by
2949 *  PHY setup routines.
2950 **/
2951static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952{
2953	struct e1000_phy_info *phy = &hw->phy;
2954	u32 phy_ctrl;
2955	s32 ret_val = 0;
2956	u16 data;
2957
2958	if (phy->type == e1000_phy_ife)
2959		return 0;
2960
2961	phy_ctrl = er32(PHY_CTRL);
2962
2963	if (active) {
2964		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965		ew32(PHY_CTRL, phy_ctrl);
2966
2967		if (phy->type != e1000_phy_igp_3)
2968			return 0;
2969
2970		/* Call gig speed drop workaround on LPLU before accessing
2971		 * any PHY registers
2972		 */
2973		if (hw->mac.type == e1000_ich8lan)
2974			e1000e_gig_downshift_workaround_ich8lan(hw);
2975
2976		/* When LPLU is enabled, we should disable SmartSpeed */
2977		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978		if (ret_val)
2979			return ret_val;
2980		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982		if (ret_val)
2983			return ret_val;
2984	} else {
2985		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986		ew32(PHY_CTRL, phy_ctrl);
2987
2988		if (phy->type != e1000_phy_igp_3)
2989			return 0;
2990
2991		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2992		 * during Dx states where the power conservation is most
2993		 * important.  During driver activity we should enable
2994		 * SmartSpeed, so performance is maintained.
2995		 */
2996		if (phy->smart_speed == e1000_smart_speed_on) {
2997			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998					   &data);
2999			if (ret_val)
3000				return ret_val;
3001
3002			data |= IGP01E1000_PSCFR_SMART_SPEED;
3003			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004					   data);
3005			if (ret_val)
3006				return ret_val;
3007		} else if (phy->smart_speed == e1000_smart_speed_off) {
3008			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009					   &data);
3010			if (ret_val)
3011				return ret_val;
3012
3013			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015					   data);
3016			if (ret_val)
3017				return ret_val;
3018		}
3019	}
3020
3021	return 0;
3022}
3023
3024/**
3025 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 *  @hw: pointer to the HW structure
3027 *  @active: true to enable LPLU, false to disable
3028 *
3029 *  Sets the LPLU D3 state according to the active flag.  When
3030 *  activating LPLU this function also disables smart speed
3031 *  and vice versa.  LPLU will not be activated unless the
3032 *  device autonegotiation advertisement meets standards of
3033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 *  This is a function pointer entry point only called by
3035 *  PHY setup routines.
3036 **/
3037static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038{
3039	struct e1000_phy_info *phy = &hw->phy;
3040	u32 phy_ctrl;
3041	s32 ret_val = 0;
3042	u16 data;
3043
3044	phy_ctrl = er32(PHY_CTRL);
3045
3046	if (!active) {
3047		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048		ew32(PHY_CTRL, phy_ctrl);
3049
3050		if (phy->type != e1000_phy_igp_3)
3051			return 0;
3052
3053		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054		 * during Dx states where the power conservation is most
3055		 * important.  During driver activity we should enable
3056		 * SmartSpeed, so performance is maintained.
3057		 */
3058		if (phy->smart_speed == e1000_smart_speed_on) {
3059			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   &data);
3061			if (ret_val)
3062				return ret_val;
3063
3064			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066					   data);
3067			if (ret_val)
3068				return ret_val;
3069		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071					   &data);
3072			if (ret_val)
3073				return ret_val;
3074
3075			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077					   data);
3078			if (ret_val)
3079				return ret_val;
3080		}
3081	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085		ew32(PHY_CTRL, phy_ctrl);
3086
3087		if (phy->type != e1000_phy_igp_3)
3088			return 0;
3089
3090		/* Call gig speed drop workaround on LPLU before accessing
3091		 * any PHY registers
3092		 */
3093		if (hw->mac.type == e1000_ich8lan)
3094			e1000e_gig_downshift_workaround_ich8lan(hw);
3095
3096		/* When LPLU is enabled, we should disable SmartSpeed */
3097		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098		if (ret_val)
3099			return ret_val;
3100
3101		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103	}
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 *  @hw: pointer to the HW structure
3111 *  @bank:  pointer to the variable that returns the active bank
3112 *
3113 *  Reads signature byte from the NVM using the flash access registers.
3114 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115 **/
3116static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117{
3118	u32 eecd;
3119	struct e1000_nvm_info *nvm = &hw->nvm;
3120	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122	u32 nvm_dword = 0;
3123	u8 sig_byte = 0;
3124	s32 ret_val;
3125
3126	switch (hw->mac.type) {
3127	case e1000_pch_spt:
 
 
 
 
 
 
 
3128		bank1_offset = nvm->flash_bank_size;
3129		act_offset = E1000_ICH_NVM_SIG_WORD;
3130
3131		/* set bank to 0 in case flash read fails */
3132		*bank = 0;
3133
3134		/* Check bank 0 */
3135		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136							 &nvm_dword);
3137		if (ret_val)
3138			return ret_val;
3139		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141		    E1000_ICH_NVM_SIG_VALUE) {
3142			*bank = 0;
3143			return 0;
3144		}
3145
3146		/* Check bank 1 */
3147		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148							 bank1_offset,
3149							 &nvm_dword);
3150		if (ret_val)
3151			return ret_val;
3152		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154		    E1000_ICH_NVM_SIG_VALUE) {
3155			*bank = 1;
3156			return 0;
3157		}
3158
3159		e_dbg("ERROR: No valid NVM bank present\n");
3160		return -E1000_ERR_NVM;
3161	case e1000_ich8lan:
3162	case e1000_ich9lan:
3163		eecd = er32(EECD);
3164		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165		    E1000_EECD_SEC1VAL_VALID_MASK) {
3166			if (eecd & E1000_EECD_SEC1VAL)
3167				*bank = 1;
3168			else
3169				*bank = 0;
3170
3171			return 0;
3172		}
3173		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174		/* fall-thru */
3175	default:
3176		/* set bank to 0 in case flash read fails */
3177		*bank = 0;
3178
3179		/* Check bank 0 */
3180		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181							&sig_byte);
3182		if (ret_val)
3183			return ret_val;
3184		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185		    E1000_ICH_NVM_SIG_VALUE) {
3186			*bank = 0;
3187			return 0;
3188		}
3189
3190		/* Check bank 1 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192							bank1_offset,
3193							&sig_byte);
3194		if (ret_val)
3195			return ret_val;
3196		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197		    E1000_ICH_NVM_SIG_VALUE) {
3198			*bank = 1;
3199			return 0;
3200		}
3201
3202		e_dbg("ERROR: No valid NVM bank present\n");
3203		return -E1000_ERR_NVM;
3204	}
3205}
3206
3207/**
3208 *  e1000_read_nvm_spt - NVM access for SPT
3209 *  @hw: pointer to the HW structure
3210 *  @offset: The offset (in bytes) of the word(s) to read.
3211 *  @words: Size of data to read in words.
3212 *  @data: pointer to the word(s) to read at offset.
3213 *
3214 *  Reads a word(s) from the NVM
3215 **/
3216static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217			      u16 *data)
3218{
3219	struct e1000_nvm_info *nvm = &hw->nvm;
3220	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221	u32 act_offset;
3222	s32 ret_val = 0;
3223	u32 bank = 0;
3224	u32 dword = 0;
3225	u16 offset_to_read;
3226	u16 i;
3227
3228	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229	    (words == 0)) {
3230		e_dbg("nvm parameter(s) out of bounds\n");
3231		ret_val = -E1000_ERR_NVM;
3232		goto out;
3233	}
3234
3235	nvm->ops.acquire(hw);
3236
3237	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238	if (ret_val) {
3239		e_dbg("Could not detect valid bank, assuming bank 0\n");
3240		bank = 0;
3241	}
3242
3243	act_offset = (bank) ? nvm->flash_bank_size : 0;
3244	act_offset += offset;
3245
3246	ret_val = 0;
3247
3248	for (i = 0; i < words; i += 2) {
3249		if (words - i == 1) {
3250			if (dev_spec->shadow_ram[offset + i].modified) {
3251				data[i] =
3252				    dev_spec->shadow_ram[offset + i].value;
3253			} else {
3254				offset_to_read = act_offset + i -
3255				    ((act_offset + i) % 2);
3256				ret_val =
3257				  e1000_read_flash_dword_ich8lan(hw,
3258								 offset_to_read,
3259								 &dword);
3260				if (ret_val)
3261					break;
3262				if ((act_offset + i) % 2 == 0)
3263					data[i] = (u16)(dword & 0xFFFF);
3264				else
3265					data[i] = (u16)((dword >> 16) & 0xFFFF);
3266			}
3267		} else {
3268			offset_to_read = act_offset + i;
3269			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271				ret_val =
3272				  e1000_read_flash_dword_ich8lan(hw,
3273								 offset_to_read,
3274								 &dword);
3275				if (ret_val)
3276					break;
3277			}
3278			if (dev_spec->shadow_ram[offset + i].modified)
3279				data[i] =
3280				    dev_spec->shadow_ram[offset + i].value;
3281			else
3282				data[i] = (u16)(dword & 0xFFFF);
3283			if (dev_spec->shadow_ram[offset + i].modified)
3284				data[i + 1] =
3285				    dev_spec->shadow_ram[offset + i + 1].value;
3286			else
3287				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288		}
3289	}
3290
3291	nvm->ops.release(hw);
3292
3293out:
3294	if (ret_val)
3295		e_dbg("NVM read error: %d\n", ret_val);
3296
3297	return ret_val;
3298}
3299
3300/**
3301 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 *  @hw: pointer to the HW structure
3303 *  @offset: The offset (in bytes) of the word(s) to read.
3304 *  @words: Size of data to read in words
3305 *  @data: Pointer to the word(s) to read at offset.
3306 *
3307 *  Reads a word(s) from the NVM using the flash access registers.
3308 **/
3309static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310				  u16 *data)
3311{
3312	struct e1000_nvm_info *nvm = &hw->nvm;
3313	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314	u32 act_offset;
3315	s32 ret_val = 0;
3316	u32 bank = 0;
3317	u16 i, word;
3318
3319	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320	    (words == 0)) {
3321		e_dbg("nvm parameter(s) out of bounds\n");
3322		ret_val = -E1000_ERR_NVM;
3323		goto out;
3324	}
3325
3326	nvm->ops.acquire(hw);
3327
3328	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329	if (ret_val) {
3330		e_dbg("Could not detect valid bank, assuming bank 0\n");
3331		bank = 0;
3332	}
3333
3334	act_offset = (bank) ? nvm->flash_bank_size : 0;
3335	act_offset += offset;
3336
3337	ret_val = 0;
3338	for (i = 0; i < words; i++) {
3339		if (dev_spec->shadow_ram[offset + i].modified) {
3340			data[i] = dev_spec->shadow_ram[offset + i].value;
3341		} else {
3342			ret_val = e1000_read_flash_word_ich8lan(hw,
3343								act_offset + i,
3344								&word);
3345			if (ret_val)
3346				break;
3347			data[i] = word;
3348		}
3349	}
3350
3351	nvm->ops.release(hw);
3352
3353out:
3354	if (ret_val)
3355		e_dbg("NVM read error: %d\n", ret_val);
3356
3357	return ret_val;
3358}
3359
3360/**
3361 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3362 *  @hw: pointer to the HW structure
3363 *
3364 *  This function does initial flash setup so that a new read/write/erase cycle
3365 *  can be started.
3366 **/
3367static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368{
3369	union ich8_hws_flash_status hsfsts;
3370	s32 ret_val = -E1000_ERR_NVM;
3371
3372	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373
3374	/* Check if the flash descriptor is valid */
3375	if (!hsfsts.hsf_status.fldesvalid) {
3376		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3377		return -E1000_ERR_NVM;
3378	}
3379
3380	/* Clear FCERR and DAEL in hw status by writing 1 */
3381	hsfsts.hsf_status.flcerr = 1;
3382	hsfsts.hsf_status.dael = 1;
3383	if (hw->mac.type == e1000_pch_spt)
3384		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385	else
3386		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387
3388	/* Either we should have a hardware SPI cycle in progress
3389	 * bit to check against, in order to start a new cycle or
3390	 * FDONE bit should be changed in the hardware so that it
3391	 * is 1 after hardware reset, which can then be used as an
3392	 * indication whether a cycle is in progress or has been
3393	 * completed.
3394	 */
3395
3396	if (!hsfsts.hsf_status.flcinprog) {
3397		/* There is no cycle running at present,
3398		 * so we can start a cycle.
3399		 * Begin by setting Flash Cycle Done.
3400		 */
3401		hsfsts.hsf_status.flcdone = 1;
3402		if (hw->mac.type == e1000_pch_spt)
3403			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404		else
3405			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406		ret_val = 0;
3407	} else {
3408		s32 i;
3409
3410		/* Otherwise poll for sometime so the current
3411		 * cycle has a chance to end before giving up.
3412		 */
3413		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415			if (!hsfsts.hsf_status.flcinprog) {
3416				ret_val = 0;
3417				break;
3418			}
3419			udelay(1);
3420		}
3421		if (!ret_val) {
3422			/* Successful in waiting for previous cycle to timeout,
3423			 * now set the Flash Cycle Done.
3424			 */
3425			hsfsts.hsf_status.flcdone = 1;
3426			if (hw->mac.type == e1000_pch_spt)
3427				ew32flash(ICH_FLASH_HSFSTS,
3428					  hsfsts.regval & 0xFFFF);
3429			else
3430				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431		} else {
3432			e_dbg("Flash controller busy, cannot get access\n");
3433		}
3434	}
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 *  @hw: pointer to the HW structure
3442 *  @timeout: maximum time to wait for completion
3443 *
3444 *  This function starts a flash cycle and waits for its completion.
3445 **/
3446static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447{
3448	union ich8_hws_flash_ctrl hsflctl;
3449	union ich8_hws_flash_status hsfsts;
3450	u32 i = 0;
3451
3452	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453	if (hw->mac.type == e1000_pch_spt)
3454		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455	else
3456		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457	hsflctl.hsf_ctrl.flcgo = 1;
3458
3459	if (hw->mac.type == e1000_pch_spt)
3460		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461	else
3462		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463
3464	/* wait till FDONE bit is set to 1 */
3465	do {
3466		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467		if (hsfsts.hsf_status.flcdone)
3468			break;
3469		udelay(1);
3470	} while (i++ < timeout);
3471
3472	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473		return 0;
3474
3475	return -E1000_ERR_NVM;
3476}
3477
3478/**
3479 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3480 *  @hw: pointer to the HW structure
3481 *  @offset: offset to data location
3482 *  @data: pointer to the location for storing the data
3483 *
3484 *  Reads the flash dword at offset into data.  Offset is converted
3485 *  to bytes before read.
3486 **/
3487static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488					  u32 *data)
3489{
3490	/* Must convert word offset into bytes. */
3491	offset <<= 1;
3492	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493}
3494
3495/**
3496 *  e1000_read_flash_word_ich8lan - Read word from flash
3497 *  @hw: pointer to the HW structure
3498 *  @offset: offset to data location
3499 *  @data: pointer to the location for storing the data
3500 *
3501 *  Reads the flash word at offset into data.  Offset is converted
3502 *  to bytes before read.
3503 **/
3504static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505					 u16 *data)
3506{
3507	/* Must convert offset into bytes. */
3508	offset <<= 1;
3509
3510	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511}
3512
3513/**
3514 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3515 *  @hw: pointer to the HW structure
3516 *  @offset: The offset of the byte to read.
3517 *  @data: Pointer to a byte to store the value read.
3518 *
3519 *  Reads a single byte from the NVM using the flash access registers.
3520 **/
3521static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522					 u8 *data)
3523{
3524	s32 ret_val;
3525	u16 word = 0;
3526
3527	/* In SPT, only 32 bits access is supported,
3528	 * so this function should not be called.
3529	 */
3530	if (hw->mac.type == e1000_pch_spt)
3531		return -E1000_ERR_NVM;
3532	else
3533		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534
3535	if (ret_val)
3536		return ret_val;
3537
3538	*data = (u8)word;
3539
3540	return 0;
3541}
3542
3543/**
3544 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 *  @hw: pointer to the HW structure
3546 *  @offset: The offset (in bytes) of the byte or word to read.
3547 *  @size: Size of data to read, 1=byte 2=word
3548 *  @data: Pointer to the word to store the value read.
3549 *
3550 *  Reads a byte or word from the NVM using the flash access registers.
3551 **/
3552static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553					 u8 size, u16 *data)
3554{
3555	union ich8_hws_flash_status hsfsts;
3556	union ich8_hws_flash_ctrl hsflctl;
3557	u32 flash_linear_addr;
3558	u32 flash_data = 0;
3559	s32 ret_val = -E1000_ERR_NVM;
3560	u8 count = 0;
3561
3562	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563		return -E1000_ERR_NVM;
3564
3565	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566			     hw->nvm.flash_base_addr);
3567
3568	do {
3569		udelay(1);
3570		/* Steps */
3571		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572		if (ret_val)
3573			break;
3574
3575		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577		hsflctl.hsf_ctrl.fldbcount = size - 1;
3578		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580
3581		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582
3583		ret_val =
3584		    e1000_flash_cycle_ich8lan(hw,
3585					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3586
3587		/* Check if FCERR is set to 1, if set to 1, clear it
3588		 * and try the whole sequence a few more times, else
3589		 * read in (shift in) the Flash Data0, the order is
3590		 * least significant byte first msb to lsb
3591		 */
3592		if (!ret_val) {
3593			flash_data = er32flash(ICH_FLASH_FDATA0);
3594			if (size == 1)
3595				*data = (u8)(flash_data & 0x000000FF);
3596			else if (size == 2)
3597				*data = (u16)(flash_data & 0x0000FFFF);
3598			break;
3599		} else {
3600			/* If we've gotten here, then things are probably
3601			 * completely hosed, but if the error condition is
3602			 * detected, it won't hurt to give it another try...
3603			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604			 */
3605			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606			if (hsfsts.hsf_status.flcerr) {
3607				/* Repeat for some time before giving up. */
3608				continue;
3609			} else if (!hsfsts.hsf_status.flcdone) {
3610				e_dbg("Timeout error - flash cycle did not complete.\n");
3611				break;
3612			}
3613		}
3614	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615
3616	return ret_val;
3617}
3618
3619/**
3620 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 *  @hw: pointer to the HW structure
3622 *  @offset: The offset (in bytes) of the dword to read.
3623 *  @data: Pointer to the dword to store the value read.
3624 *
3625 *  Reads a byte or word from the NVM using the flash access registers.
3626 **/
3627
3628static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629					   u32 *data)
3630{
3631	union ich8_hws_flash_status hsfsts;
3632	union ich8_hws_flash_ctrl hsflctl;
3633	u32 flash_linear_addr;
3634	s32 ret_val = -E1000_ERR_NVM;
3635	u8 count = 0;
3636
3637	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638	    hw->mac.type != e1000_pch_spt)
3639		return -E1000_ERR_NVM;
3640	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641			     hw->nvm.flash_base_addr);
3642
3643	do {
3644		udelay(1);
3645		/* Steps */
3646		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647		if (ret_val)
3648			break;
3649		/* In SPT, This register is in Lan memory space, not flash.
3650		 * Therefore, only 32 bit access is supported
3651		 */
3652		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653
3654		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657		/* In SPT, This register is in Lan memory space, not flash.
3658		 * Therefore, only 32 bit access is supported
3659		 */
3660		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662
3663		ret_val =
3664		   e1000_flash_cycle_ich8lan(hw,
3665					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3666
3667		/* Check if FCERR is set to 1, if set to 1, clear it
3668		 * and try the whole sequence a few more times, else
3669		 * read in (shift in) the Flash Data0, the order is
3670		 * least significant byte first msb to lsb
3671		 */
3672		if (!ret_val) {
3673			*data = er32flash(ICH_FLASH_FDATA0);
3674			break;
3675		} else {
3676			/* If we've gotten here, then things are probably
3677			 * completely hosed, but if the error condition is
3678			 * detected, it won't hurt to give it another try...
3679			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680			 */
3681			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682			if (hsfsts.hsf_status.flcerr) {
3683				/* Repeat for some time before giving up. */
3684				continue;
3685			} else if (!hsfsts.hsf_status.flcdone) {
3686				e_dbg("Timeout error - flash cycle did not complete.\n");
3687				break;
3688			}
3689		}
3690	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691
3692	return ret_val;
3693}
3694
3695/**
3696 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 *  @hw: pointer to the HW structure
3698 *  @offset: The offset (in bytes) of the word(s) to write.
3699 *  @words: Size of data to write in words
3700 *  @data: Pointer to the word(s) to write at offset.
3701 *
3702 *  Writes a byte or word to the NVM using the flash access registers.
3703 **/
3704static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705				   u16 *data)
3706{
3707	struct e1000_nvm_info *nvm = &hw->nvm;
3708	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709	u16 i;
3710
3711	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712	    (words == 0)) {
3713		e_dbg("nvm parameter(s) out of bounds\n");
3714		return -E1000_ERR_NVM;
3715	}
3716
3717	nvm->ops.acquire(hw);
3718
3719	for (i = 0; i < words; i++) {
3720		dev_spec->shadow_ram[offset + i].modified = true;
3721		dev_spec->shadow_ram[offset + i].value = data[i];
3722	}
3723
3724	nvm->ops.release(hw);
3725
3726	return 0;
3727}
3728
3729/**
3730 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 *  @hw: pointer to the HW structure
3732 *
3733 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 *  which writes the checksum to the shadow ram.  The changes in the shadow
3735 *  ram are then committed to the EEPROM by processing each bank at a time
3736 *  checking for the modified bit and writing only the pending changes.
3737 *  After a successful commit, the shadow ram is cleared and is ready for
3738 *  future writes.
3739 **/
3740static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741{
3742	struct e1000_nvm_info *nvm = &hw->nvm;
3743	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745	s32 ret_val;
3746	u32 dword = 0;
3747
3748	ret_val = e1000e_update_nvm_checksum_generic(hw);
3749	if (ret_val)
3750		goto out;
3751
3752	if (nvm->type != e1000_nvm_flash_sw)
3753		goto out;
3754
3755	nvm->ops.acquire(hw);
3756
3757	/* We're writing to the opposite bank so if we're on bank 1,
3758	 * write to bank 0 etc.  We also need to erase the segment that
3759	 * is going to be written
3760	 */
3761	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762	if (ret_val) {
3763		e_dbg("Could not detect valid bank, assuming bank 0\n");
3764		bank = 0;
3765	}
3766
3767	if (bank == 0) {
3768		new_bank_offset = nvm->flash_bank_size;
3769		old_bank_offset = 0;
3770		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771		if (ret_val)
3772			goto release;
3773	} else {
3774		old_bank_offset = nvm->flash_bank_size;
3775		new_bank_offset = 0;
3776		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777		if (ret_val)
3778			goto release;
3779	}
3780	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781		/* Determine whether to write the value stored
3782		 * in the other NVM bank or a modified value stored
3783		 * in the shadow RAM
3784		 */
3785		ret_val = e1000_read_flash_dword_ich8lan(hw,
3786							 i + old_bank_offset,
3787							 &dword);
3788
3789		if (dev_spec->shadow_ram[i].modified) {
3790			dword &= 0xffff0000;
3791			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792		}
3793		if (dev_spec->shadow_ram[i + 1].modified) {
3794			dword &= 0x0000ffff;
3795			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796				  << 16);
3797		}
3798		if (ret_val)
3799			break;
3800
3801		/* If the word is 0x13, then make sure the signature bits
3802		 * (15:14) are 11b until the commit has completed.
3803		 * This will allow us to write 10b which indicates the
3804		 * signature is valid.  We want to do this after the write
3805		 * has completed so that we don't mark the segment valid
3806		 * while the write is still in progress
3807		 */
3808		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810
3811		/* Convert offset to bytes. */
3812		act_offset = (i + new_bank_offset) << 1;
3813
3814		usleep_range(100, 200);
3815
3816		/* Write the data to the new bank. Offset in words */
3817		act_offset = i + new_bank_offset;
3818		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819								dword);
3820		if (ret_val)
3821			break;
3822	}
3823
3824	/* Don't bother writing the segment valid bits if sector
3825	 * programming failed.
3826	 */
3827	if (ret_val) {
3828		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829		e_dbg("Flash commit failed.\n");
3830		goto release;
3831	}
3832
3833	/* Finally validate the new segment by setting bit 15:14
3834	 * to 10b in word 0x13 , this can be done without an
3835	 * erase as well since these bits are 11 to start with
3836	 * and we need to change bit 14 to 0b
3837	 */
3838	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839
3840	/*offset in words but we read dword */
3841	--act_offset;
3842	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843
3844	if (ret_val)
3845		goto release;
3846
3847	dword &= 0xBFFFFFFF;
3848	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849
3850	if (ret_val)
3851		goto release;
3852
3853	/* And invalidate the previously valid segment by setting
3854	 * its signature word (0x13) high_byte to 0b. This can be
3855	 * done without an erase because flash erase sets all bits
3856	 * to 1's. We can write 1's to 0's without an erase
3857	 */
3858	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859
3860	/* offset in words but we read dword */
3861	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863
3864	if (ret_val)
3865		goto release;
3866
3867	dword &= 0x00FFFFFF;
3868	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869
3870	if (ret_val)
3871		goto release;
3872
3873	/* Great!  Everything worked, we can now clear the cached entries. */
3874	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875		dev_spec->shadow_ram[i].modified = false;
3876		dev_spec->shadow_ram[i].value = 0xFFFF;
3877	}
3878
3879release:
3880	nvm->ops.release(hw);
3881
3882	/* Reload the EEPROM, or else modifications will not appear
3883	 * until after the next adapter reset.
3884	 */
3885	if (!ret_val) {
3886		nvm->ops.reload(hw);
3887		usleep_range(10000, 20000);
3888	}
3889
3890out:
3891	if (ret_val)
3892		e_dbg("NVM update error: %d\n", ret_val);
3893
3894	return ret_val;
3895}
3896
3897/**
3898 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 *  @hw: pointer to the HW structure
3900 *
3901 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 *  which writes the checksum to the shadow ram.  The changes in the shadow
3903 *  ram are then committed to the EEPROM by processing each bank at a time
3904 *  checking for the modified bit and writing only the pending changes.
3905 *  After a successful commit, the shadow ram is cleared and is ready for
3906 *  future writes.
3907 **/
3908static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909{
3910	struct e1000_nvm_info *nvm = &hw->nvm;
3911	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913	s32 ret_val;
3914	u16 data = 0;
3915
3916	ret_val = e1000e_update_nvm_checksum_generic(hw);
3917	if (ret_val)
3918		goto out;
3919
3920	if (nvm->type != e1000_nvm_flash_sw)
3921		goto out;
3922
3923	nvm->ops.acquire(hw);
3924
3925	/* We're writing to the opposite bank so if we're on bank 1,
3926	 * write to bank 0 etc.  We also need to erase the segment that
3927	 * is going to be written
3928	 */
3929	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930	if (ret_val) {
3931		e_dbg("Could not detect valid bank, assuming bank 0\n");
3932		bank = 0;
3933	}
3934
3935	if (bank == 0) {
3936		new_bank_offset = nvm->flash_bank_size;
3937		old_bank_offset = 0;
3938		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939		if (ret_val)
3940			goto release;
3941	} else {
3942		old_bank_offset = nvm->flash_bank_size;
3943		new_bank_offset = 0;
3944		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945		if (ret_val)
3946			goto release;
3947	}
3948	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949		if (dev_spec->shadow_ram[i].modified) {
3950			data = dev_spec->shadow_ram[i].value;
3951		} else {
3952			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953								old_bank_offset,
3954								&data);
3955			if (ret_val)
3956				break;
3957		}
3958
3959		/* If the word is 0x13, then make sure the signature bits
3960		 * (15:14) are 11b until the commit has completed.
3961		 * This will allow us to write 10b which indicates the
3962		 * signature is valid.  We want to do this after the write
3963		 * has completed so that we don't mark the segment valid
3964		 * while the write is still in progress
3965		 */
3966		if (i == E1000_ICH_NVM_SIG_WORD)
3967			data |= E1000_ICH_NVM_SIG_MASK;
3968
3969		/* Convert offset to bytes. */
3970		act_offset = (i + new_bank_offset) << 1;
3971
3972		usleep_range(100, 200);
3973		/* Write the bytes to the new bank. */
3974		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975							       act_offset,
3976							       (u8)data);
3977		if (ret_val)
3978			break;
3979
3980		usleep_range(100, 200);
3981		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982							       act_offset + 1,
3983							       (u8)(data >> 8));
3984		if (ret_val)
3985			break;
3986	}
3987
3988	/* Don't bother writing the segment valid bits if sector
3989	 * programming failed.
3990	 */
3991	if (ret_val) {
3992		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993		e_dbg("Flash commit failed.\n");
3994		goto release;
3995	}
3996
3997	/* Finally validate the new segment by setting bit 15:14
3998	 * to 10b in word 0x13 , this can be done without an
3999	 * erase as well since these bits are 11 to start with
4000	 * and we need to change bit 14 to 0b
4001	 */
4002	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004	if (ret_val)
4005		goto release;
4006
4007	data &= 0xBFFF;
4008	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009						       act_offset * 2 + 1,
4010						       (u8)(data >> 8));
4011	if (ret_val)
4012		goto release;
4013
4014	/* And invalidate the previously valid segment by setting
4015	 * its signature word (0x13) high_byte to 0b. This can be
4016	 * done without an erase because flash erase sets all bits
4017	 * to 1's. We can write 1's to 0's without an erase
4018	 */
4019	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021	if (ret_val)
4022		goto release;
4023
4024	/* Great!  Everything worked, we can now clear the cached entries. */
4025	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026		dev_spec->shadow_ram[i].modified = false;
4027		dev_spec->shadow_ram[i].value = 0xFFFF;
4028	}
4029
4030release:
4031	nvm->ops.release(hw);
4032
4033	/* Reload the EEPROM, or else modifications will not appear
4034	 * until after the next adapter reset.
4035	 */
4036	if (!ret_val) {
4037		nvm->ops.reload(hw);
4038		usleep_range(10000, 20000);
4039	}
4040
4041out:
4042	if (ret_val)
4043		e_dbg("NVM update error: %d\n", ret_val);
4044
4045	return ret_val;
4046}
4047
4048/**
4049 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 *  @hw: pointer to the HW structure
4051 *
4052 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 *  calculated, in which case we need to calculate the checksum and set bit 6.
4055 **/
4056static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057{
4058	s32 ret_val;
4059	u16 data;
4060	u16 word;
4061	u16 valid_csum_mask;
4062
4063	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4064	 * the checksum needs to be fixed.  This bit is an indication that
4065	 * the NVM was prepared by OEM software and did not calculate
4066	 * the checksum...a likely scenario.
4067	 */
4068	switch (hw->mac.type) {
4069	case e1000_pch_lpt:
4070	case e1000_pch_spt:
 
 
 
 
 
 
 
4071		word = NVM_COMPAT;
4072		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073		break;
4074	default:
4075		word = NVM_FUTURE_INIT_WORD1;
4076		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077		break;
4078	}
4079
4080	ret_val = e1000_read_nvm(hw, word, 1, &data);
4081	if (ret_val)
4082		return ret_val;
4083
4084	if (!(data & valid_csum_mask)) {
4085		data |= valid_csum_mask;
4086		ret_val = e1000_write_nvm(hw, word, 1, &data);
4087		if (ret_val)
4088			return ret_val;
4089		ret_val = e1000e_update_nvm_checksum(hw);
4090		if (ret_val)
4091			return ret_val;
 
 
 
 
4092	}
4093
4094	return e1000e_validate_nvm_checksum_generic(hw);
4095}
4096
4097/**
4098 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 *  @hw: pointer to the HW structure
4100 *
4101 *  To prevent malicious write/erase of the NVM, set it to be read-only
4102 *  so that the hardware ignores all write/erase cycles of the NVM via
4103 *  the flash control registers.  The shadow-ram copy of the NVM will
4104 *  still be updated, however any updates to this copy will not stick
4105 *  across driver reloads.
4106 **/
4107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108{
4109	struct e1000_nvm_info *nvm = &hw->nvm;
4110	union ich8_flash_protected_range pr0;
4111	union ich8_hws_flash_status hsfsts;
4112	u32 gfpreg;
4113
4114	nvm->ops.acquire(hw);
4115
4116	gfpreg = er32flash(ICH_FLASH_GFPREG);
4117
4118	/* Write-protect GbE Sector of NVM */
4119	pr0.regval = er32flash(ICH_FLASH_PR0);
4120	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122	pr0.range.wpe = true;
4123	ew32flash(ICH_FLASH_PR0, pr0.regval);
4124
4125	/* Lock down a subset of GbE Flash Control Registers, e.g.
4126	 * PR0 to prevent the write-protection from being lifted.
4127	 * Once FLOCKDN is set, the registers protected by it cannot
4128	 * be written until FLOCKDN is cleared by a hardware reset.
4129	 */
4130	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131	hsfsts.hsf_status.flockdn = true;
4132	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133
4134	nvm->ops.release(hw);
4135}
4136
4137/**
4138 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 *  @hw: pointer to the HW structure
4140 *  @offset: The offset (in bytes) of the byte/word to read.
4141 *  @size: Size of data to read, 1=byte 2=word
4142 *  @data: The byte(s) to write to the NVM.
4143 *
4144 *  Writes one/two bytes to the NVM using the flash access registers.
4145 **/
4146static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147					  u8 size, u16 data)
4148{
4149	union ich8_hws_flash_status hsfsts;
4150	union ich8_hws_flash_ctrl hsflctl;
4151	u32 flash_linear_addr;
4152	u32 flash_data = 0;
4153	s32 ret_val;
4154	u8 count = 0;
4155
4156	if (hw->mac.type == e1000_pch_spt) {
4157		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158			return -E1000_ERR_NVM;
4159	} else {
4160		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161			return -E1000_ERR_NVM;
4162	}
4163
4164	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165			     hw->nvm.flash_base_addr);
4166
4167	do {
4168		udelay(1);
4169		/* Steps */
4170		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171		if (ret_val)
4172			break;
4173		/* In SPT, This register is in Lan memory space, not
4174		 * flash.  Therefore, only 32 bit access is supported
4175		 */
4176		if (hw->mac.type == e1000_pch_spt)
4177			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178		else
4179			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180
4181		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182		hsflctl.hsf_ctrl.fldbcount = size - 1;
4183		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184		/* In SPT, This register is in Lan memory space,
4185		 * not flash.  Therefore, only 32 bit access is
4186		 * supported
4187		 */
4188		if (hw->mac.type == e1000_pch_spt)
4189			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190		else
4191			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192
4193		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194
4195		if (size == 1)
4196			flash_data = (u32)data & 0x00FF;
4197		else
4198			flash_data = (u32)data;
4199
4200		ew32flash(ICH_FLASH_FDATA0, flash_data);
4201
4202		/* check if FCERR is set to 1 , if set to 1, clear it
4203		 * and try the whole sequence a few more times else done
4204		 */
4205		ret_val =
4206		    e1000_flash_cycle_ich8lan(hw,
4207					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208		if (!ret_val)
4209			break;
4210
4211		/* If we're here, then things are most likely
4212		 * completely hosed, but if the error condition
4213		 * is detected, it won't hurt to give it another
4214		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215		 */
4216		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217		if (hsfsts.hsf_status.flcerr)
4218			/* Repeat for some time before giving up. */
4219			continue;
4220		if (!hsfsts.hsf_status.flcdone) {
4221			e_dbg("Timeout error - flash cycle did not complete.\n");
4222			break;
4223		}
4224	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225
4226	return ret_val;
4227}
4228
4229/**
4230*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231*  @hw: pointer to the HW structure
4232*  @offset: The offset (in bytes) of the dwords to read.
4233*  @data: The 4 bytes to write to the NVM.
4234*
4235*  Writes one/two/four bytes to the NVM using the flash access registers.
4236**/
4237static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238					    u32 data)
4239{
4240	union ich8_hws_flash_status hsfsts;
4241	union ich8_hws_flash_ctrl hsflctl;
4242	u32 flash_linear_addr;
4243	s32 ret_val;
4244	u8 count = 0;
4245
4246	if (hw->mac.type == e1000_pch_spt) {
4247		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248			return -E1000_ERR_NVM;
4249	}
4250	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251			     hw->nvm.flash_base_addr);
4252	do {
4253		udelay(1);
4254		/* Steps */
4255		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256		if (ret_val)
4257			break;
4258
4259		/* In SPT, This register is in Lan memory space, not
4260		 * flash.  Therefore, only 32 bit access is supported
4261		 */
4262		if (hw->mac.type == e1000_pch_spt)
4263			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264			    >> 16;
4265		else
4266			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267
4268		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270
4271		/* In SPT, This register is in Lan memory space,
4272		 * not flash.  Therefore, only 32 bit access is
4273		 * supported
4274		 */
4275		if (hw->mac.type == e1000_pch_spt)
4276			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277		else
4278			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279
4280		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281
4282		ew32flash(ICH_FLASH_FDATA0, data);
4283
4284		/* check if FCERR is set to 1 , if set to 1, clear it
4285		 * and try the whole sequence a few more times else done
4286		 */
4287		ret_val =
4288		   e1000_flash_cycle_ich8lan(hw,
4289					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290
4291		if (!ret_val)
4292			break;
4293
4294		/* If we're here, then things are most likely
4295		 * completely hosed, but if the error condition
4296		 * is detected, it won't hurt to give it another
4297		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298		 */
4299		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300
4301		if (hsfsts.hsf_status.flcerr)
4302			/* Repeat for some time before giving up. */
4303			continue;
4304		if (!hsfsts.hsf_status.flcdone) {
4305			e_dbg("Timeout error - flash cycle did not complete.\n");
4306			break;
4307		}
4308	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309
4310	return ret_val;
4311}
4312
4313/**
4314 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 *  @hw: pointer to the HW structure
4316 *  @offset: The index of the byte to read.
4317 *  @data: The byte to write to the NVM.
4318 *
4319 *  Writes a single byte to the NVM using the flash access registers.
4320 **/
4321static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322					  u8 data)
4323{
4324	u16 word = (u16)data;
4325
4326	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327}
4328
4329/**
4330*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331*  @hw: pointer to the HW structure
4332*  @offset: The offset of the word to write.
4333*  @dword: The dword to write to the NVM.
4334*
4335*  Writes a single dword to the NVM using the flash access registers.
4336*  Goes through a retry algorithm before giving up.
4337**/
4338static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339						 u32 offset, u32 dword)
4340{
4341	s32 ret_val;
4342	u16 program_retries;
4343
4344	/* Must convert word offset into bytes. */
4345	offset <<= 1;
4346	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347
4348	if (!ret_val)
4349		return ret_val;
4350	for (program_retries = 0; program_retries < 100; program_retries++) {
4351		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352		usleep_range(100, 200);
4353		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354		if (!ret_val)
4355			break;
4356	}
4357	if (program_retries == 100)
4358		return -E1000_ERR_NVM;
4359
4360	return 0;
4361}
4362
4363/**
4364 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 *  @hw: pointer to the HW structure
4366 *  @offset: The offset of the byte to write.
4367 *  @byte: The byte to write to the NVM.
4368 *
4369 *  Writes a single byte to the NVM using the flash access registers.
4370 *  Goes through a retry algorithm before giving up.
4371 **/
4372static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373						u32 offset, u8 byte)
4374{
4375	s32 ret_val;
4376	u16 program_retries;
4377
4378	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379	if (!ret_val)
4380		return ret_val;
4381
4382	for (program_retries = 0; program_retries < 100; program_retries++) {
4383		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384		usleep_range(100, 200);
4385		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386		if (!ret_val)
4387			break;
4388	}
4389	if (program_retries == 100)
4390		return -E1000_ERR_NVM;
4391
4392	return 0;
4393}
4394
4395/**
4396 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 *  @hw: pointer to the HW structure
4398 *  @bank: 0 for first bank, 1 for second bank, etc.
4399 *
4400 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 *  bank N is 4096 * N + flash_reg_addr.
4402 **/
4403static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404{
4405	struct e1000_nvm_info *nvm = &hw->nvm;
4406	union ich8_hws_flash_status hsfsts;
4407	union ich8_hws_flash_ctrl hsflctl;
4408	u32 flash_linear_addr;
4409	/* bank size is in 16bit words - adjust to bytes */
4410	u32 flash_bank_size = nvm->flash_bank_size * 2;
4411	s32 ret_val;
4412	s32 count = 0;
4413	s32 j, iteration, sector_size;
4414
4415	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416
4417	/* Determine HW Sector size: Read BERASE bits of hw flash status
4418	 * register
4419	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420	 *     consecutive sectors.  The start index for the nth Hw sector
4421	 *     can be calculated as = bank * 4096 + n * 256
4422	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423	 *     The start index for the nth Hw sector can be calculated
4424	 *     as = bank * 4096
4425	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426	 *     (ich9 only, otherwise error condition)
4427	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428	 */
4429	switch (hsfsts.hsf_status.berasesz) {
4430	case 0:
4431		/* Hw sector size 256 */
4432		sector_size = ICH_FLASH_SEG_SIZE_256;
4433		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434		break;
4435	case 1:
4436		sector_size = ICH_FLASH_SEG_SIZE_4K;
4437		iteration = 1;
4438		break;
4439	case 2:
4440		sector_size = ICH_FLASH_SEG_SIZE_8K;
4441		iteration = 1;
4442		break;
4443	case 3:
4444		sector_size = ICH_FLASH_SEG_SIZE_64K;
4445		iteration = 1;
4446		break;
4447	default:
4448		return -E1000_ERR_NVM;
4449	}
4450
4451	/* Start with the base address, then add the sector offset. */
4452	flash_linear_addr = hw->nvm.flash_base_addr;
4453	flash_linear_addr += (bank) ? flash_bank_size : 0;
4454
4455	for (j = 0; j < iteration; j++) {
4456		do {
4457			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458
4459			/* Steps */
4460			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461			if (ret_val)
4462				return ret_val;
4463
4464			/* Write a value 11 (block Erase) in Flash
4465			 * Cycle field in hw flash control
4466			 */
4467			if (hw->mac.type == e1000_pch_spt)
4468				hsflctl.regval =
4469				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4470			else
4471				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472
4473			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474			if (hw->mac.type == e1000_pch_spt)
4475				ew32flash(ICH_FLASH_HSFSTS,
4476					  hsflctl.regval << 16);
4477			else
4478				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479
4480			/* Write the last 24 bits of an index within the
4481			 * block into Flash Linear address field in Flash
4482			 * Address.
4483			 */
4484			flash_linear_addr += (j * sector_size);
4485			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486
4487			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488			if (!ret_val)
4489				break;
4490
4491			/* Check if FCERR is set to 1.  If 1,
4492			 * clear it and try the whole sequence
4493			 * a few more times else Done
4494			 */
4495			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496			if (hsfsts.hsf_status.flcerr)
4497				/* repeat for some time before giving up */
4498				continue;
4499			else if (!hsfsts.hsf_status.flcdone)
4500				return ret_val;
4501		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502	}
4503
4504	return 0;
4505}
4506
4507/**
4508 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4509 *  @hw: pointer to the HW structure
4510 *  @data: Pointer to the LED settings
4511 *
4512 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4513 *  settings is all 0's or F's, set the LED default to a valid LED default
4514 *  setting.
4515 **/
4516static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517{
4518	s32 ret_val;
4519
4520	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521	if (ret_val) {
4522		e_dbg("NVM Read Error\n");
4523		return ret_val;
4524	}
4525
4526	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527		*data = ID_LED_DEFAULT_ICH8LAN;
4528
4529	return 0;
4530}
4531
4532/**
4533 *  e1000_id_led_init_pchlan - store LED configurations
4534 *  @hw: pointer to the HW structure
4535 *
4536 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4537 *  the PHY LED configuration register.
4538 *
4539 *  PCH also does not have an "always on" or "always off" mode which
4540 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4541 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4543 *  link based on logic in e1000_led_[on|off]_pchlan().
4544 **/
4545static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546{
4547	struct e1000_mac_info *mac = &hw->mac;
4548	s32 ret_val;
4549	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551	u16 data, i, temp, shift;
4552
4553	/* Get default ID LED modes */
4554	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555	if (ret_val)
4556		return ret_val;
4557
4558	mac->ledctl_default = er32(LEDCTL);
4559	mac->ledctl_mode1 = mac->ledctl_default;
4560	mac->ledctl_mode2 = mac->ledctl_default;
4561
4562	for (i = 0; i < 4; i++) {
4563		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564		shift = (i * 5);
4565		switch (temp) {
4566		case ID_LED_ON1_DEF2:
4567		case ID_LED_ON1_ON2:
4568		case ID_LED_ON1_OFF2:
4569			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570			mac->ledctl_mode1 |= (ledctl_on << shift);
4571			break;
4572		case ID_LED_OFF1_DEF2:
4573		case ID_LED_OFF1_ON2:
4574		case ID_LED_OFF1_OFF2:
4575			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576			mac->ledctl_mode1 |= (ledctl_off << shift);
4577			break;
4578		default:
4579			/* Do nothing */
4580			break;
4581		}
4582		switch (temp) {
4583		case ID_LED_DEF1_ON2:
4584		case ID_LED_ON1_ON2:
4585		case ID_LED_OFF1_ON2:
4586			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode2 |= (ledctl_on << shift);
4588			break;
4589		case ID_LED_DEF1_OFF2:
4590		case ID_LED_ON1_OFF2:
4591		case ID_LED_OFF1_OFF2:
4592			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593			mac->ledctl_mode2 |= (ledctl_off << shift);
4594			break;
4595		default:
4596			/* Do nothing */
4597			break;
4598		}
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 *  @hw: pointer to the HW structure
4607 *
4608 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 *  register, so the the bus width is hard coded.
4610 **/
4611static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612{
4613	struct e1000_bus_info *bus = &hw->bus;
4614	s32 ret_val;
4615
4616	ret_val = e1000e_get_bus_info_pcie(hw);
4617
4618	/* ICH devices are "PCI Express"-ish.  They have
4619	 * a configuration space, but do not contain
4620	 * PCI Express Capability registers, so bus width
4621	 * must be hardcoded.
4622	 */
4623	if (bus->width == e1000_bus_width_unknown)
4624		bus->width = e1000_bus_width_pcie_x1;
4625
4626	return ret_val;
4627}
4628
4629/**
4630 *  e1000_reset_hw_ich8lan - Reset the hardware
4631 *  @hw: pointer to the HW structure
4632 *
4633 *  Does a full reset of the hardware which includes a reset of the PHY and
4634 *  MAC.
4635 **/
4636static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637{
4638	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639	u16 kum_cfg;
4640	u32 ctrl, reg;
4641	s32 ret_val;
4642
4643	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4644	 * on the last TLP read/write transaction when MAC is reset.
4645	 */
4646	ret_val = e1000e_disable_pcie_master(hw);
4647	if (ret_val)
4648		e_dbg("PCI-E Master disable polling has failed.\n");
4649
4650	e_dbg("Masking off all interrupts\n");
4651	ew32(IMC, 0xffffffff);
4652
4653	/* Disable the Transmit and Receive units.  Then delay to allow
4654	 * any pending transactions to complete before we hit the MAC
4655	 * with the global reset.
4656	 */
4657	ew32(RCTL, 0);
4658	ew32(TCTL, E1000_TCTL_PSP);
4659	e1e_flush();
4660
4661	usleep_range(10000, 20000);
4662
4663	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4664	if (hw->mac.type == e1000_ich8lan) {
4665		/* Set Tx and Rx buffer allocation to 8k apiece. */
4666		ew32(PBA, E1000_PBA_8K);
4667		/* Set Packet Buffer Size to 16k. */
4668		ew32(PBS, E1000_PBS_16K);
4669	}
4670
4671	if (hw->mac.type == e1000_pchlan) {
4672		/* Save the NVM K1 bit setting */
4673		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674		if (ret_val)
4675			return ret_val;
4676
4677		if (kum_cfg & E1000_NVM_K1_ENABLE)
4678			dev_spec->nvm_k1_enabled = true;
4679		else
4680			dev_spec->nvm_k1_enabled = false;
4681	}
4682
4683	ctrl = er32(CTRL);
4684
4685	if (!hw->phy.ops.check_reset_block(hw)) {
4686		/* Full-chip reset requires MAC and PHY reset at the same
4687		 * time to make sure the interface between MAC and the
4688		 * external PHY is reset.
4689		 */
4690		ctrl |= E1000_CTRL_PHY_RST;
4691
4692		/* Gate automatic PHY configuration by hardware on
4693		 * non-managed 82579
4694		 */
4695		if ((hw->mac.type == e1000_pch2lan) &&
4696		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697			e1000_gate_hw_phy_config_ich8lan(hw, true);
4698	}
4699	ret_val = e1000_acquire_swflag_ich8lan(hw);
4700	e_dbg("Issuing a global reset to ich8lan\n");
4701	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702	/* cannot issue a flush here because it hangs the hardware */
4703	msleep(20);
4704
4705	/* Set Phy Config Counter to 50msec */
4706	if (hw->mac.type == e1000_pch2lan) {
4707		reg = er32(FEXTNVM3);
4708		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710		ew32(FEXTNVM3, reg);
4711	}
4712
4713	if (!ret_val)
4714		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715
4716	if (ctrl & E1000_CTRL_PHY_RST) {
4717		ret_val = hw->phy.ops.get_cfg_done(hw);
4718		if (ret_val)
4719			return ret_val;
4720
4721		ret_val = e1000_post_phy_reset_ich8lan(hw);
4722		if (ret_val)
4723			return ret_val;
4724	}
4725
4726	/* For PCH, this write will make sure that any noise
4727	 * will be detected as a CRC error and be dropped rather than show up
4728	 * as a bad packet to the DMA engine.
4729	 */
4730	if (hw->mac.type == e1000_pchlan)
4731		ew32(CRC_OFFSET, 0x65656565);
4732
4733	ew32(IMC, 0xffffffff);
4734	er32(ICR);
4735
4736	reg = er32(KABGTXD);
4737	reg |= E1000_KABGTXD_BGSQLBIAS;
4738	ew32(KABGTXD, reg);
4739
4740	return 0;
4741}
4742
4743/**
4744 *  e1000_init_hw_ich8lan - Initialize the hardware
4745 *  @hw: pointer to the HW structure
4746 *
4747 *  Prepares the hardware for transmit and receive by doing the following:
4748 *   - initialize hardware bits
4749 *   - initialize LED identification
4750 *   - setup receive address registers
4751 *   - setup flow control
4752 *   - setup transmit descriptors
4753 *   - clear statistics
4754 **/
4755static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756{
4757	struct e1000_mac_info *mac = &hw->mac;
4758	u32 ctrl_ext, txdctl, snoop;
4759	s32 ret_val;
4760	u16 i;
4761
4762	e1000_initialize_hw_bits_ich8lan(hw);
4763
4764	/* Initialize identification LED */
4765	ret_val = mac->ops.id_led_init(hw);
4766	/* An error is not fatal and we should not stop init due to this */
4767	if (ret_val)
4768		e_dbg("Error initializing identification LED\n");
4769
4770	/* Setup the receive address. */
4771	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772
4773	/* Zero out the Multicast HASH table */
4774	e_dbg("Zeroing the MTA\n");
4775	for (i = 0; i < mac->mta_reg_count; i++)
4776		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777
4778	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4780	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781	 */
4782	if (hw->phy.type == e1000_phy_82578) {
4783		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784		i &= ~BM_WUC_HOST_WU_BIT;
4785		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787		if (ret_val)
4788			return ret_val;
4789	}
4790
4791	/* Setup link and flow control */
4792	ret_val = mac->ops.setup_link(hw);
4793
4794	/* Set the transmit descriptor write-back policy for both queues */
4795	txdctl = er32(TXDCTL(0));
4796	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797		  E1000_TXDCTL_FULL_TX_DESC_WB);
4798	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800	ew32(TXDCTL(0), txdctl);
4801	txdctl = er32(TXDCTL(1));
4802	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803		  E1000_TXDCTL_FULL_TX_DESC_WB);
4804	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806	ew32(TXDCTL(1), txdctl);
4807
4808	/* ICH8 has opposite polarity of no_snoop bits.
4809	 * By default, we should use snoop behavior.
4810	 */
4811	if (mac->type == e1000_ich8lan)
4812		snoop = PCIE_ICH8_SNOOP_ALL;
4813	else
4814		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815	e1000e_set_pcie_no_snoop(hw, snoop);
4816
 
 
 
 
 
 
 
 
 
4817	ctrl_ext = er32(CTRL_EXT);
4818	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819	ew32(CTRL_EXT, ctrl_ext);
4820
4821	/* Clear all of the statistics registers (clear on read).  It is
4822	 * important that we do this after we have tried to establish link
4823	 * because the symbol error count will increment wildly if there
4824	 * is no link.
4825	 */
4826	e1000_clear_hw_cntrs_ich8lan(hw);
4827
4828	return ret_val;
4829}
4830
4831/**
4832 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 *  @hw: pointer to the HW structure
4834 *
4835 *  Sets/Clears required hardware bits necessary for correctly setting up the
4836 *  hardware for transmit and receive.
4837 **/
4838static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839{
4840	u32 reg;
4841
4842	/* Extended Device Control */
4843	reg = er32(CTRL_EXT);
4844	reg |= (1 << 22);
4845	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846	if (hw->mac.type >= e1000_pchlan)
4847		reg |= E1000_CTRL_EXT_PHYPDEN;
4848	ew32(CTRL_EXT, reg);
4849
4850	/* Transmit Descriptor Control 0 */
4851	reg = er32(TXDCTL(0));
4852	reg |= (1 << 22);
4853	ew32(TXDCTL(0), reg);
4854
4855	/* Transmit Descriptor Control 1 */
4856	reg = er32(TXDCTL(1));
4857	reg |= (1 << 22);
4858	ew32(TXDCTL(1), reg);
4859
4860	/* Transmit Arbitration Control 0 */
4861	reg = er32(TARC(0));
4862	if (hw->mac.type == e1000_ich8lan)
4863		reg |= (1 << 28) | (1 << 29);
4864	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4865	ew32(TARC(0), reg);
4866
4867	/* Transmit Arbitration Control 1 */
4868	reg = er32(TARC(1));
4869	if (er32(TCTL) & E1000_TCTL_MULR)
4870		reg &= ~(1 << 28);
4871	else
4872		reg |= (1 << 28);
4873	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4874	ew32(TARC(1), reg);
4875
4876	/* Device Status */
4877	if (hw->mac.type == e1000_ich8lan) {
4878		reg = er32(STATUS);
4879		reg &= ~(1 << 31);
4880		ew32(STATUS, reg);
4881	}
4882
4883	/* work-around descriptor data corruption issue during nfs v2 udp
4884	 * traffic, just disable the nfs filtering capability
4885	 */
4886	reg = er32(RFCTL);
4887	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888
4889	/* Disable IPv6 extension header parsing because some malformed
4890	 * IPv6 headers can hang the Rx.
4891	 */
4892	if (hw->mac.type == e1000_ich8lan)
4893		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894	ew32(RFCTL, reg);
4895
4896	/* Enable ECC on Lynxpoint */
4897	if ((hw->mac.type == e1000_pch_lpt) ||
4898	    (hw->mac.type == e1000_pch_spt)) {
4899		reg = er32(PBECCSTS);
4900		reg |= E1000_PBECCSTS_ECC_ENABLE;
4901		ew32(PBECCSTS, reg);
4902
4903		reg = er32(CTRL);
4904		reg |= E1000_CTRL_MEHE;
4905		ew32(CTRL, reg);
4906	}
4907}
4908
4909/**
4910 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4911 *  @hw: pointer to the HW structure
4912 *
4913 *  Determines which flow control settings to use, then configures flow
4914 *  control.  Calls the appropriate media-specific link configuration
4915 *  function.  Assuming the adapter has a valid link partner, a valid link
4916 *  should be established.  Assumes the hardware has previously been reset
4917 *  and the transmitter and receiver are not enabled.
4918 **/
4919static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920{
4921	s32 ret_val;
4922
4923	if (hw->phy.ops.check_reset_block(hw))
4924		return 0;
4925
4926	/* ICH parts do not have a word in the NVM to determine
4927	 * the default flow control setting, so we explicitly
4928	 * set it to full.
4929	 */
4930	if (hw->fc.requested_mode == e1000_fc_default) {
4931		/* Workaround h/w hang when Tx flow control enabled */
4932		if (hw->mac.type == e1000_pchlan)
4933			hw->fc.requested_mode = e1000_fc_rx_pause;
4934		else
4935			hw->fc.requested_mode = e1000_fc_full;
4936	}
4937
4938	/* Save off the requested flow control mode for use later.  Depending
4939	 * on the link partner's capabilities, we may or may not use this mode.
4940	 */
4941	hw->fc.current_mode = hw->fc.requested_mode;
4942
4943	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4944
4945	/* Continue to configure the copper link. */
4946	ret_val = hw->mac.ops.setup_physical_interface(hw);
4947	if (ret_val)
4948		return ret_val;
4949
4950	ew32(FCTTV, hw->fc.pause_time);
4951	if ((hw->phy.type == e1000_phy_82578) ||
4952	    (hw->phy.type == e1000_phy_82579) ||
4953	    (hw->phy.type == e1000_phy_i217) ||
4954	    (hw->phy.type == e1000_phy_82577)) {
4955		ew32(FCRTV_PCH, hw->fc.refresh_time);
4956
4957		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958				   hw->fc.pause_time);
4959		if (ret_val)
4960			return ret_val;
4961	}
4962
4963	return e1000e_set_fc_watermarks(hw);
4964}
4965
4966/**
4967 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 *  @hw: pointer to the HW structure
4969 *
4970 *  Configures the kumeran interface to the PHY to wait the appropriate time
4971 *  when polling the PHY, then call the generic setup_copper_link to finish
4972 *  configuring the copper link.
4973 **/
4974static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975{
4976	u32 ctrl;
4977	s32 ret_val;
4978	u16 reg_data;
4979
4980	ctrl = er32(CTRL);
4981	ctrl |= E1000_CTRL_SLU;
4982	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983	ew32(CTRL, ctrl);
4984
4985	/* Set the mac to wait the maximum time between each iteration
4986	 * and increase the max iterations when polling the phy;
4987	 * this fixes erroneous timeouts at 10Mbps.
4988	 */
4989	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990	if (ret_val)
4991		return ret_val;
4992	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993				       &reg_data);
4994	if (ret_val)
4995		return ret_val;
4996	reg_data |= 0x3F;
4997	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998					reg_data);
4999	if (ret_val)
5000		return ret_val;
5001
5002	switch (hw->phy.type) {
5003	case e1000_phy_igp_3:
5004		ret_val = e1000e_copper_link_setup_igp(hw);
5005		if (ret_val)
5006			return ret_val;
5007		break;
5008	case e1000_phy_bm:
5009	case e1000_phy_82578:
5010		ret_val = e1000e_copper_link_setup_m88(hw);
5011		if (ret_val)
5012			return ret_val;
5013		break;
5014	case e1000_phy_82577:
5015	case e1000_phy_82579:
5016		ret_val = e1000_copper_link_setup_82577(hw);
5017		if (ret_val)
5018			return ret_val;
5019		break;
5020	case e1000_phy_ife:
5021		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022		if (ret_val)
5023			return ret_val;
5024
5025		reg_data &= ~IFE_PMC_AUTO_MDIX;
5026
5027		switch (hw->phy.mdix) {
5028		case 1:
5029			reg_data &= ~IFE_PMC_FORCE_MDIX;
5030			break;
5031		case 2:
5032			reg_data |= IFE_PMC_FORCE_MDIX;
5033			break;
5034		case 0:
5035		default:
5036			reg_data |= IFE_PMC_AUTO_MDIX;
5037			break;
5038		}
5039		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040		if (ret_val)
5041			return ret_val;
5042		break;
5043	default:
5044		break;
5045	}
5046
5047	return e1000e_setup_copper_link(hw);
5048}
5049
5050/**
5051 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 *  @hw: pointer to the HW structure
5053 *
5054 *  Calls the PHY specific link setup function and then calls the
5055 *  generic setup_copper_link to finish configuring the link for
5056 *  Lynxpoint PCH devices
5057 **/
5058static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059{
5060	u32 ctrl;
5061	s32 ret_val;
5062
5063	ctrl = er32(CTRL);
5064	ctrl |= E1000_CTRL_SLU;
5065	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066	ew32(CTRL, ctrl);
5067
5068	ret_val = e1000_copper_link_setup_82577(hw);
5069	if (ret_val)
5070		return ret_val;
5071
5072	return e1000e_setup_copper_link(hw);
5073}
5074
5075/**
5076 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 *  @hw: pointer to the HW structure
5078 *  @speed: pointer to store current link speed
5079 *  @duplex: pointer to store the current link duplex
5080 *
5081 *  Calls the generic get_speed_and_duplex to retrieve the current link
5082 *  information and then calls the Kumeran lock loss workaround for links at
5083 *  gigabit speeds.
5084 **/
5085static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086					  u16 *duplex)
5087{
5088	s32 ret_val;
5089
5090	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091	if (ret_val)
5092		return ret_val;
5093
5094	if ((hw->mac.type == e1000_ich8lan) &&
5095	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097	}
5098
5099	return ret_val;
5100}
5101
5102/**
5103 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Work-around for 82566 Kumeran PCS lock loss:
5107 *  On link status change (i.e. PCI reset, speed change) and link is up and
5108 *  speed is gigabit-
5109 *    0) if workaround is optionally disabled do nothing
5110 *    1) wait 1ms for Kumeran link to come up
5111 *    2) check Kumeran Diagnostic register PCS lock loss bit
5112 *    3) if not set the link is locked (all is good), otherwise...
5113 *    4) reset the PHY
5114 *    5) repeat up to 10 times
5115 *  Note: this is only called for IGP3 copper when speed is 1gb.
5116 **/
5117static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118{
5119	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120	u32 phy_ctrl;
5121	s32 ret_val;
5122	u16 i, data;
5123	bool link;
5124
5125	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126		return 0;
5127
5128	/* Make sure link is up before proceeding.  If not just return.
5129	 * Attempting this while link is negotiating fouled up link
5130	 * stability
5131	 */
5132	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133	if (!link)
5134		return 0;
5135
5136	for (i = 0; i < 10; i++) {
5137		/* read once to clear */
5138		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139		if (ret_val)
5140			return ret_val;
5141		/* and again to get new status */
5142		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143		if (ret_val)
5144			return ret_val;
5145
5146		/* check for PCS lock */
5147		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148			return 0;
5149
5150		/* Issue PHY reset */
5151		e1000_phy_hw_reset(hw);
5152		mdelay(5);
5153	}
5154	/* Disable GigE link negotiation */
5155	phy_ctrl = er32(PHY_CTRL);
5156	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158	ew32(PHY_CTRL, phy_ctrl);
5159
5160	/* Call gig speed drop workaround on Gig disable before accessing
5161	 * any PHY registers
5162	 */
5163	e1000e_gig_downshift_workaround_ich8lan(hw);
5164
5165	/* unable to acquire PCS lock */
5166	return -E1000_ERR_PHY;
5167}
5168
5169/**
5170 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 *  @hw: pointer to the HW structure
5172 *  @state: boolean value used to set the current Kumeran workaround state
5173 *
5174 *  If ICH8, set the current Kumeran workaround state (enabled - true
5175 *  /disabled - false).
5176 **/
5177void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178						  bool state)
5179{
5180	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181
5182	if (hw->mac.type != e1000_ich8lan) {
5183		e_dbg("Workaround applies to ICH8 only.\n");
5184		return;
5185	}
5186
5187	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188}
5189
5190/**
5191 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 *  @hw: pointer to the HW structure
5193 *
5194 *  Workaround for 82566 power-down on D3 entry:
5195 *    1) disable gigabit link
5196 *    2) write VR power-down enable
5197 *    3) read it back
5198 *  Continue if successful, else issue LCD reset and repeat
5199 **/
5200void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201{
5202	u32 reg;
5203	u16 data;
5204	u8 retry = 0;
5205
5206	if (hw->phy.type != e1000_phy_igp_3)
5207		return;
5208
5209	/* Try the workaround twice (if needed) */
5210	do {
5211		/* Disable link */
5212		reg = er32(PHY_CTRL);
5213		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215		ew32(PHY_CTRL, reg);
5216
5217		/* Call gig speed drop workaround on Gig disable before
5218		 * accessing any PHY registers
5219		 */
5220		if (hw->mac.type == e1000_ich8lan)
5221			e1000e_gig_downshift_workaround_ich8lan(hw);
5222
5223		/* Write VR power-down enable */
5224		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227
5228		/* Read it back and test */
5229		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232			break;
5233
5234		/* Issue PHY reset and repeat at most one more time */
5235		reg = er32(CTRL);
5236		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237		retry++;
5238	} while (retry);
5239}
5240
5241/**
5242 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 *  @hw: pointer to the HW structure
5244 *
5245 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 *  LPLU, Gig disable, MDIC PHY reset):
5247 *    1) Set Kumeran Near-end loopback
5248 *    2) Clear Kumeran Near-end loopback
5249 *  Should only be called for ICH8[m] devices with any 1G Phy.
5250 **/
5251void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252{
5253	s32 ret_val;
5254	u16 reg_data;
5255
5256	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257		return;
5258
5259	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260				       &reg_data);
5261	if (ret_val)
5262		return;
5263	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265					reg_data);
5266	if (ret_val)
5267		return;
5268	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5270}
5271
5272/**
5273 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 *  @hw: pointer to the HW structure
5275 *
5276 *  During S0 to Sx transition, it is possible the link remains at gig
5277 *  instead of negotiating to a lower speed.  Before going to Sx, set
5278 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5279 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5280 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 *  needs to be written.
5282 *  Parts that support (and are linked to a partner which support) EEE in
5283 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 *  than 10Mbps w/o EEE.
5285 **/
5286void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287{
5288	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289	u32 phy_ctrl;
5290	s32 ret_val;
5291
5292	phy_ctrl = er32(PHY_CTRL);
5293	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294
5295	if (hw->phy.type == e1000_phy_i217) {
5296		u16 phy_reg, device_id = hw->adapter->pdev->device;
5297
5298		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302		    (hw->mac.type == e1000_pch_spt)) {
5303			u32 fextnvm6 = er32(FEXTNVM6);
5304
5305			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306		}
5307
5308		ret_val = hw->phy.ops.acquire(hw);
5309		if (ret_val)
5310			goto out;
5311
5312		if (!dev_spec->eee_disable) {
5313			u16 eee_advert;
5314
5315			ret_val =
5316			    e1000_read_emi_reg_locked(hw,
5317						      I217_EEE_ADVERTISEMENT,
5318						      &eee_advert);
5319			if (ret_val)
5320				goto release;
5321
5322			/* Disable LPLU if both link partners support 100BaseT
5323			 * EEE and 100Full is advertised on both ends of the
5324			 * link, and enable Auto Enable LPI since there will
5325			 * be no driver to enable LPI while in Sx.
5326			 */
5327			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328			    (dev_spec->eee_lp_ability &
5329			     I82579_EEE_100_SUPPORTED) &&
5330			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332					      E1000_PHY_CTRL_NOND0A_LPLU);
5333
5334				/* Set Auto Enable LPI after link up */
5335				e1e_rphy_locked(hw,
5336						I217_LPI_GPIO_CTRL, &phy_reg);
5337				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338				e1e_wphy_locked(hw,
5339						I217_LPI_GPIO_CTRL, phy_reg);
5340			}
5341		}
5342
5343		/* For i217 Intel Rapid Start Technology support,
5344		 * when the system is going into Sx and no manageability engine
5345		 * is present, the driver must configure proxy to reset only on
5346		 * power good.  LPI (Low Power Idle) state must also reset only
5347		 * on power good, as well as the MTA (Multicast table array).
5348		 * The SMBus release must also be disabled on LCD reset.
5349		 */
5350		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351			/* Enable proxy to reset only on power good. */
5352			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355
5356			/* Set bit enable LPI (EEE) to reset only on
5357			 * power good.
5358			 */
5359			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362
5363			/* Disable the SMB release on LCD reset. */
5364			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367		}
5368
5369		/* Enable MTA to reset for Intel Rapid Start Technology
5370		 * Support
5371		 */
5372		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375
5376release:
5377		hw->phy.ops.release(hw);
5378	}
5379out:
5380	ew32(PHY_CTRL, phy_ctrl);
5381
5382	if (hw->mac.type == e1000_ich8lan)
5383		e1000e_gig_downshift_workaround_ich8lan(hw);
5384
5385	if (hw->mac.type >= e1000_pchlan) {
5386		e1000_oem_bits_config_ich8lan(hw, false);
5387
5388		/* Reset PHY to activate OEM bits on 82577/8 */
5389		if (hw->mac.type == e1000_pchlan)
5390			e1000e_phy_hw_reset_generic(hw);
5391
5392		ret_val = hw->phy.ops.acquire(hw);
5393		if (ret_val)
5394			return;
5395		e1000_write_smbus_addr(hw);
5396		hw->phy.ops.release(hw);
5397	}
5398}
5399
5400/**
5401 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 *  @hw: pointer to the HW structure
5403 *
5404 *  During Sx to S0 transitions on non-managed devices or managed devices
5405 *  on which PHY resets are not blocked, if the PHY registers cannot be
5406 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 *  the PHY.
5408 *  On i217, setup Intel Rapid Start Technology.
5409 **/
5410void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411{
5412	s32 ret_val;
5413
5414	if (hw->mac.type < e1000_pch2lan)
5415		return;
5416
5417	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418	if (ret_val) {
5419		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420		return;
5421	}
5422
5423	/* For i217 Intel Rapid Start Technology support when the system
5424	 * is transitioning from Sx and no manageability engine is present
5425	 * configure SMBus to restore on reset, disable proxy, and enable
5426	 * the reset on MTA (Multicast table array).
5427	 */
5428	if (hw->phy.type == e1000_phy_i217) {
5429		u16 phy_reg;
5430
5431		ret_val = hw->phy.ops.acquire(hw);
5432		if (ret_val) {
5433			e_dbg("Failed to setup iRST\n");
5434			return;
5435		}
5436
5437		/* Clear Auto Enable LPI after link up */
5438		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441
5442		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443			/* Restore clear on SMB if no manageability engine
5444			 * is present
5445			 */
5446			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447			if (ret_val)
5448				goto release;
5449			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451
5452			/* Disable Proxy */
5453			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454		}
5455		/* Enable reset on MTA */
5456		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457		if (ret_val)
5458			goto release;
5459		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461release:
5462		if (ret_val)
5463			e_dbg("Error %d in resume workarounds\n", ret_val);
5464		hw->phy.ops.release(hw);
5465	}
5466}
5467
5468/**
5469 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 *  @hw: pointer to the HW structure
5471 *
5472 *  Return the LED back to the default configuration.
5473 **/
5474static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475{
5476	if (hw->phy.type == e1000_phy_ife)
5477		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478
5479	ew32(LEDCTL, hw->mac.ledctl_default);
5480	return 0;
5481}
5482
5483/**
5484 *  e1000_led_on_ich8lan - Turn LEDs on
5485 *  @hw: pointer to the HW structure
5486 *
5487 *  Turn on the LEDs.
5488 **/
5489static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490{
5491	if (hw->phy.type == e1000_phy_ife)
5492		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494
5495	ew32(LEDCTL, hw->mac.ledctl_mode2);
5496	return 0;
5497}
5498
5499/**
5500 *  e1000_led_off_ich8lan - Turn LEDs off
5501 *  @hw: pointer to the HW structure
5502 *
5503 *  Turn off the LEDs.
5504 **/
5505static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506{
5507	if (hw->phy.type == e1000_phy_ife)
5508		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509				(IFE_PSCL_PROBE_MODE |
5510				 IFE_PSCL_PROBE_LEDS_OFF));
5511
5512	ew32(LEDCTL, hw->mac.ledctl_mode1);
5513	return 0;
5514}
5515
5516/**
5517 *  e1000_setup_led_pchlan - Configures SW controllable LED
5518 *  @hw: pointer to the HW structure
5519 *
5520 *  This prepares the SW controllable LED for use.
5521 **/
5522static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523{
5524	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525}
5526
5527/**
5528 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5529 *  @hw: pointer to the HW structure
5530 *
5531 *  Return the LED back to the default configuration.
5532 **/
5533static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534{
5535	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536}
5537
5538/**
5539 *  e1000_led_on_pchlan - Turn LEDs on
5540 *  @hw: pointer to the HW structure
5541 *
5542 *  Turn on the LEDs.
5543 **/
5544static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545{
5546	u16 data = (u16)hw->mac.ledctl_mode2;
5547	u32 i, led;
5548
5549	/* If no link, then turn LED on by setting the invert bit
5550	 * for each LED that's mode is "link_up" in ledctl_mode2.
5551	 */
5552	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553		for (i = 0; i < 3; i++) {
5554			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556			    E1000_LEDCTL_MODE_LINK_UP)
5557				continue;
5558			if (led & E1000_PHY_LED0_IVRT)
5559				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560			else
5561				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562		}
5563	}
5564
5565	return e1e_wphy(hw, HV_LED_CONFIG, data);
5566}
5567
5568/**
5569 *  e1000_led_off_pchlan - Turn LEDs off
5570 *  @hw: pointer to the HW structure
5571 *
5572 *  Turn off the LEDs.
5573 **/
5574static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575{
5576	u16 data = (u16)hw->mac.ledctl_mode1;
5577	u32 i, led;
5578
5579	/* If no link, then turn LED off by clearing the invert bit
5580	 * for each LED that's mode is "link_up" in ledctl_mode1.
5581	 */
5582	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583		for (i = 0; i < 3; i++) {
5584			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586			    E1000_LEDCTL_MODE_LINK_UP)
5587				continue;
5588			if (led & E1000_PHY_LED0_IVRT)
5589				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590			else
5591				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592		}
5593	}
5594
5595	return e1e_wphy(hw, HV_LED_CONFIG, data);
5596}
5597
5598/**
5599 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 *  @hw: pointer to the HW structure
5601 *
5602 *  Read appropriate register for the config done bit for completion status
5603 *  and configure the PHY through s/w for EEPROM-less parts.
5604 *
5605 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 *  config done bit, so only an error is logged and continues.  If we were
5607 *  to return with error, EEPROM-less silicon would not be able to be reset
5608 *  or change link.
5609 **/
5610static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611{
5612	s32 ret_val = 0;
5613	u32 bank = 0;
5614	u32 status;
5615
5616	e1000e_get_cfg_done_generic(hw);
5617
5618	/* Wait for indication from h/w that it has completed basic config */
5619	if (hw->mac.type >= e1000_ich10lan) {
5620		e1000_lan_init_done_ich8lan(hw);
5621	} else {
5622		ret_val = e1000e_get_auto_rd_done(hw);
5623		if (ret_val) {
5624			/* When auto config read does not complete, do not
5625			 * return with an error. This can happen in situations
5626			 * where there is no eeprom and prevents getting link.
5627			 */
5628			e_dbg("Auto Read Done did not complete\n");
5629			ret_val = 0;
5630		}
5631	}
5632
5633	/* Clear PHY Reset Asserted bit */
5634	status = er32(STATUS);
5635	if (status & E1000_STATUS_PHYRA)
5636		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637	else
5638		e_dbg("PHY Reset Asserted not set - needs delay\n");
5639
5640	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641	if (hw->mac.type <= e1000_ich9lan) {
5642		if (!(er32(EECD) & E1000_EECD_PRES) &&
5643		    (hw->phy.type == e1000_phy_igp_3)) {
5644			e1000e_phy_init_script_igp3(hw);
5645		}
5646	} else {
5647		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648			/* Maybe we should do a basic PHY config */
5649			e_dbg("EEPROM not present\n");
5650			ret_val = -E1000_ERR_CONFIG;
5651		}
5652	}
5653
5654	return ret_val;
5655}
5656
5657/**
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5660 *
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5663 **/
5664static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665{
5666	/* If the management interface is not enabled, then power down */
5667	if (!(hw->mac.ops.check_mng_mode(hw) ||
5668	      hw->phy.ops.check_reset_block(hw)))
5669		e1000_power_down_phy_copper(hw);
5670}
5671
5672/**
5673 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 *  @hw: pointer to the HW structure
5675 *
5676 *  Clears hardware counters specific to the silicon family and calls
5677 *  clear_hw_cntrs_generic to clear all general purpose counters.
5678 **/
5679static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680{
5681	u16 phy_data;
5682	s32 ret_val;
5683
5684	e1000e_clear_hw_cntrs_base(hw);
5685
5686	er32(ALGNERRC);
5687	er32(RXERRC);
5688	er32(TNCRS);
5689	er32(CEXTERR);
5690	er32(TSCTC);
5691	er32(TSCTFC);
5692
5693	er32(MGTPRC);
5694	er32(MGTPDC);
5695	er32(MGTPTC);
5696
5697	er32(IAC);
5698	er32(ICRXOC);
5699
5700	/* Clear PHY statistics registers */
5701	if ((hw->phy.type == e1000_phy_82578) ||
5702	    (hw->phy.type == e1000_phy_82579) ||
5703	    (hw->phy.type == e1000_phy_i217) ||
5704	    (hw->phy.type == e1000_phy_82577)) {
5705		ret_val = hw->phy.ops.acquire(hw);
5706		if (ret_val)
5707			return;
5708		ret_val = hw->phy.ops.set_page(hw,
5709					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710		if (ret_val)
5711			goto release;
5712		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726release:
5727		hw->phy.ops.release(hw);
5728	}
5729}
5730
5731static const struct e1000_mac_operations ich8_mac_ops = {
5732	/* check_mng_mode dependent on mac type */
5733	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5734	/* cleanup_led dependent on mac type */
5735	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5736	.get_bus_info		= e1000_get_bus_info_ich8lan,
5737	.set_lan_id		= e1000_set_lan_id_single_port,
5738	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5739	/* led_on dependent on mac type */
5740	/* led_off dependent on mac type */
5741	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5742	.reset_hw		= e1000_reset_hw_ich8lan,
5743	.init_hw		= e1000_init_hw_ich8lan,
5744	.setup_link		= e1000_setup_link_ich8lan,
5745	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746	/* id_led_init dependent on mac type */
5747	.config_collision_dist	= e1000e_config_collision_dist_generic,
5748	.rar_set		= e1000e_rar_set_generic,
5749	.rar_get_count		= e1000e_rar_get_count_generic,
5750};
5751
5752static const struct e1000_phy_operations ich8_phy_ops = {
5753	.acquire		= e1000_acquire_swflag_ich8lan,
5754	.check_reset_block	= e1000_check_reset_block_ich8lan,
5755	.commit			= NULL,
5756	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5757	.get_cable_length	= e1000e_get_cable_length_igp_2,
5758	.read_reg		= e1000e_read_phy_reg_igp,
5759	.release		= e1000_release_swflag_ich8lan,
5760	.reset			= e1000_phy_hw_reset_ich8lan,
5761	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5762	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5763	.write_reg		= e1000e_write_phy_reg_igp,
5764};
5765
5766static const struct e1000_nvm_operations ich8_nvm_ops = {
5767	.acquire		= e1000_acquire_nvm_ich8lan,
5768	.read			= e1000_read_nvm_ich8lan,
5769	.release		= e1000_release_nvm_ich8lan,
5770	.reload			= e1000e_reload_nvm_generic,
5771	.update			= e1000_update_nvm_checksum_ich8lan,
5772	.valid_led_default	= e1000_valid_led_default_ich8lan,
5773	.validate		= e1000_validate_nvm_checksum_ich8lan,
5774	.write			= e1000_write_nvm_ich8lan,
5775};
5776
5777static const struct e1000_nvm_operations spt_nvm_ops = {
5778	.acquire		= e1000_acquire_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.read			= e1000_read_nvm_spt,
5781	.update			= e1000_update_nvm_checksum_spt,
5782	.reload			= e1000e_reload_nvm_generic,
5783	.valid_led_default	= e1000_valid_led_default_ich8lan,
5784	.validate		= e1000_validate_nvm_checksum_ich8lan,
5785	.write			= e1000_write_nvm_ich8lan,
5786};
5787
5788const struct e1000_info e1000_ich8_info = {
5789	.mac			= e1000_ich8lan,
5790	.flags			= FLAG_HAS_WOL
5791				  | FLAG_IS_ICH
5792				  | FLAG_HAS_CTRLEXT_ON_LOAD
5793				  | FLAG_HAS_AMT
5794				  | FLAG_HAS_FLASH
5795				  | FLAG_APME_IN_WUC,
5796	.pba			= 8,
5797	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798	.get_variants		= e1000_get_variants_ich8lan,
5799	.mac_ops		= &ich8_mac_ops,
5800	.phy_ops		= &ich8_phy_ops,
5801	.nvm_ops		= &ich8_nvm_ops,
5802};
5803
5804const struct e1000_info e1000_ich9_info = {
5805	.mac			= e1000_ich9lan,
5806	.flags			= FLAG_HAS_JUMBO_FRAMES
5807				  | FLAG_IS_ICH
5808				  | FLAG_HAS_WOL
5809				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810				  | FLAG_HAS_AMT
5811				  | FLAG_HAS_FLASH
5812				  | FLAG_APME_IN_WUC,
5813	.pba			= 18,
5814	.max_hw_frame_size	= DEFAULT_JUMBO,
5815	.get_variants		= e1000_get_variants_ich8lan,
5816	.mac_ops		= &ich8_mac_ops,
5817	.phy_ops		= &ich8_phy_ops,
5818	.nvm_ops		= &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich10_info = {
5822	.mac			= e1000_ich10lan,
5823	.flags			= FLAG_HAS_JUMBO_FRAMES
5824				  | FLAG_IS_ICH
5825				  | FLAG_HAS_WOL
5826				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827				  | FLAG_HAS_AMT
5828				  | FLAG_HAS_FLASH
5829				  | FLAG_APME_IN_WUC,
5830	.pba			= 18,
5831	.max_hw_frame_size	= DEFAULT_JUMBO,
5832	.get_variants		= e1000_get_variants_ich8lan,
5833	.mac_ops		= &ich8_mac_ops,
5834	.phy_ops		= &ich8_phy_ops,
5835	.nvm_ops		= &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_pch_info = {
5839	.mac			= e1000_pchlan,
5840	.flags			= FLAG_IS_ICH
5841				  | FLAG_HAS_WOL
5842				  | FLAG_HAS_CTRLEXT_ON_LOAD
5843				  | FLAG_HAS_AMT
5844				  | FLAG_HAS_FLASH
5845				  | FLAG_HAS_JUMBO_FRAMES
5846				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847				  | FLAG_APME_IN_WUC,
5848	.flags2			= FLAG2_HAS_PHY_STATS,
5849	.pba			= 26,
5850	.max_hw_frame_size	= 4096,
5851	.get_variants		= e1000_get_variants_ich8lan,
5852	.mac_ops		= &ich8_mac_ops,
5853	.phy_ops		= &ich8_phy_ops,
5854	.nvm_ops		= &ich8_nvm_ops,
5855};
5856
5857const struct e1000_info e1000_pch2_info = {
5858	.mac			= e1000_pch2lan,
5859	.flags			= FLAG_IS_ICH
5860				  | FLAG_HAS_WOL
5861				  | FLAG_HAS_HW_TIMESTAMP
5862				  | FLAG_HAS_CTRLEXT_ON_LOAD
5863				  | FLAG_HAS_AMT
5864				  | FLAG_HAS_FLASH
5865				  | FLAG_HAS_JUMBO_FRAMES
5866				  | FLAG_APME_IN_WUC,
5867	.flags2			= FLAG2_HAS_PHY_STATS
5868				  | FLAG2_HAS_EEE,
 
5869	.pba			= 26,
5870	.max_hw_frame_size	= 9022,
5871	.get_variants		= e1000_get_variants_ich8lan,
5872	.mac_ops		= &ich8_mac_ops,
5873	.phy_ops		= &ich8_phy_ops,
5874	.nvm_ops		= &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_pch_lpt_info = {
5878	.mac			= e1000_pch_lpt,
5879	.flags			= FLAG_IS_ICH
5880				  | FLAG_HAS_WOL
5881				  | FLAG_HAS_HW_TIMESTAMP
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_HAS_JUMBO_FRAMES
5886				  | FLAG_APME_IN_WUC,
5887	.flags2			= FLAG2_HAS_PHY_STATS
5888				  | FLAG2_HAS_EEE,
 
5889	.pba			= 26,
5890	.max_hw_frame_size	= 9022,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_pch_spt_info = {
5898	.mac			= e1000_pch_spt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5899	.flags			= FLAG_IS_ICH
5900				  | FLAG_HAS_WOL
5901				  | FLAG_HAS_HW_TIMESTAMP
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_HAS_JUMBO_FRAMES
5906				  | FLAG_APME_IN_WUC,
5907	.flags2			= FLAG2_HAS_PHY_STATS
5908				  | FLAG2_HAS_EEE,
5909	.pba			= 26,
5910	.max_hw_frame_size	= 9022,
5911	.get_variants		= e1000_get_variants_ich8lan,
5912	.mac_ops		= &ich8_mac_ops,
5913	.phy_ops		= &ich8_phy_ops,
5914	.nvm_ops		= &spt_nvm_ops,
5915};