Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143 return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153 writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158 writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg) __er16flash(hw, (reg))
162#define er32flash(reg) __er32flash(hw, (reg))
163#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166/**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238}
239
240/**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279}
280
281/**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 if (ret_val)
305 e_warn("Failed to disable ULP\n");
306
307 ret_val = hw->phy.ops.acquire(hw);
308 if (ret_val) {
309 e_dbg("Failed to initialize PHY flow\n");
310 goto out;
311 }
312
313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
314 * inaccessible and resetting the PHY is not blocked, toggle the
315 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 */
317 switch (hw->mac.type) {
318 case e1000_pch_lpt:
319 case e1000_pch_spt:
320 case e1000_pch_cnp:
321 case e1000_pch_tgp:
322 case e1000_pch_adp:
323 case e1000_pch_mtp:
324 case e1000_pch_lnp:
325 case e1000_pch_ptp:
326 case e1000_pch_nvp:
327 if (e1000_phy_is_accessible_pchlan(hw))
328 break;
329
330 /* Before toggling LANPHYPC, see if PHY is accessible by
331 * forcing MAC to SMBus mode first.
332 */
333 mac_reg = er32(CTRL_EXT);
334 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
335 ew32(CTRL_EXT, mac_reg);
336
337 /* Wait 50 milliseconds for MAC to finish any retries
338 * that it might be trying to perform from previous
339 * attempts to acknowledge any phy read requests.
340 */
341 msleep(50);
342
343 fallthrough;
344 case e1000_pch2lan:
345 if (e1000_phy_is_accessible_pchlan(hw))
346 break;
347
348 fallthrough;
349 case e1000_pchlan:
350 if ((hw->mac.type == e1000_pchlan) &&
351 (fwsm & E1000_ICH_FWSM_FW_VALID))
352 break;
353
354 if (hw->phy.ops.check_reset_block(hw)) {
355 e_dbg("Required LANPHYPC toggle blocked by ME\n");
356 ret_val = -E1000_ERR_PHY;
357 break;
358 }
359
360 /* Toggle LANPHYPC Value bit */
361 e1000_toggle_lanphypc_pch_lpt(hw);
362 if (hw->mac.type >= e1000_pch_lpt) {
363 if (e1000_phy_is_accessible_pchlan(hw))
364 break;
365
366 /* Toggling LANPHYPC brings the PHY out of SMBus mode
367 * so ensure that the MAC is also out of SMBus mode
368 */
369 mac_reg = er32(CTRL_EXT);
370 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
371 ew32(CTRL_EXT, mac_reg);
372
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 ret_val = -E1000_ERR_PHY;
377 }
378 break;
379 default:
380 break;
381 }
382
383 hw->phy.ops.release(hw);
384 if (!ret_val) {
385
386 /* Check to see if able to reset PHY. Print error if not */
387 if (hw->phy.ops.check_reset_block(hw)) {
388 e_err("Reset blocked by ME\n");
389 goto out;
390 }
391
392 /* Reset the PHY before any access to it. Doing so, ensures
393 * that the PHY is in a known good state before we read/write
394 * PHY registers. The generic reset is sufficient here,
395 * because we haven't determined the PHY type yet.
396 */
397 ret_val = e1000e_phy_hw_reset_generic(hw);
398 if (ret_val)
399 goto out;
400
401 /* On a successful reset, possibly need to wait for the PHY
402 * to quiesce to an accessible state before returning control
403 * to the calling function. If the PHY does not quiesce, then
404 * return E1000E_BLK_PHY_RESET, as this is the condition that
405 * the PHY is in.
406 */
407 ret_val = hw->phy.ops.check_reset_block(hw);
408 if (ret_val)
409 e_err("ME blocked access to PHY after reset\n");
410 }
411
412out:
413 /* Ungate automatic PHY configuration on non-managed 82579 */
414 if ((hw->mac.type == e1000_pch2lan) &&
415 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
416 usleep_range(10000, 11000);
417 e1000_gate_hw_phy_config_ich8lan(hw, false);
418 }
419
420 return ret_val;
421}
422
423/**
424 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
425 * @hw: pointer to the HW structure
426 *
427 * Initialize family-specific PHY parameters and function pointers.
428 **/
429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
430{
431 struct e1000_phy_info *phy = &hw->phy;
432 s32 ret_val;
433
434 phy->addr = 1;
435 phy->reset_delay_us = 100;
436
437 phy->ops.set_page = e1000_set_page_igp;
438 phy->ops.read_reg = e1000_read_phy_reg_hv;
439 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
440 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
441 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
442 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
443 phy->ops.write_reg = e1000_write_phy_reg_hv;
444 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
445 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
446 phy->ops.power_up = e1000_power_up_phy_copper;
447 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
448 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
449
450 phy->id = e1000_phy_unknown;
451
452 ret_val = e1000_init_phy_workarounds_pchlan(hw);
453 if (ret_val)
454 return ret_val;
455
456 if (phy->id == e1000_phy_unknown)
457 switch (hw->mac.type) {
458 default:
459 ret_val = e1000e_get_phy_id(hw);
460 if (ret_val)
461 return ret_val;
462 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
463 break;
464 fallthrough;
465 case e1000_pch2lan:
466 case e1000_pch_lpt:
467 case e1000_pch_spt:
468 case e1000_pch_cnp:
469 case e1000_pch_tgp:
470 case e1000_pch_adp:
471 case e1000_pch_mtp:
472 case e1000_pch_lnp:
473 case e1000_pch_ptp:
474 case e1000_pch_nvp:
475 /* In case the PHY needs to be in mdio slow mode,
476 * set slow mode and try to get the PHY id again.
477 */
478 ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 if (ret_val)
480 return ret_val;
481 ret_val = e1000e_get_phy_id(hw);
482 if (ret_val)
483 return ret_val;
484 break;
485 }
486 phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488 switch (phy->type) {
489 case e1000_phy_82577:
490 case e1000_phy_82579:
491 case e1000_phy_i217:
492 phy->ops.check_polarity = e1000_check_polarity_82577;
493 phy->ops.force_speed_duplex =
494 e1000_phy_force_speed_duplex_82577;
495 phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 phy->ops.get_info = e1000_get_phy_info_82577;
497 phy->ops.commit = e1000e_phy_sw_reset;
498 break;
499 case e1000_phy_82578:
500 phy->ops.check_polarity = e1000_check_polarity_m88;
501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 phy->ops.get_info = e1000e_get_phy_info_m88;
504 break;
505 default:
506 ret_val = -E1000_ERR_PHY;
507 break;
508 }
509
510 return ret_val;
511}
512
513/**
514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515 * @hw: pointer to the HW structure
516 *
517 * Initialize family-specific PHY parameters and function pointers.
518 **/
519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520{
521 struct e1000_phy_info *phy = &hw->phy;
522 s32 ret_val;
523 u16 i = 0;
524
525 phy->addr = 1;
526 phy->reset_delay_us = 100;
527
528 phy->ops.power_up = e1000_power_up_phy_copper;
529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531 /* We may need to do this twice - once for IGP and if that fails,
532 * we'll set BM func pointers and try again
533 */
534 ret_val = e1000e_determine_phy_address(hw);
535 if (ret_val) {
536 phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 e_dbg("Cannot determine PHY addr. Erroring out\n");
541 return ret_val;
542 }
543 }
544
545 phy->id = 0;
546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 (i++ < 100)) {
548 usleep_range(1000, 1100);
549 ret_val = e1000e_get_phy_id(hw);
550 if (ret_val)
551 return ret_val;
552 }
553
554 /* Verify phy id */
555 switch (phy->id) {
556 case IGP03E1000_E_PHY_ID:
557 phy->type = e1000_phy_igp_3;
558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 phy->ops.get_info = e1000e_get_phy_info_igp;
562 phy->ops.check_polarity = e1000_check_polarity_igp;
563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 break;
565 case IFE_E_PHY_ID:
566 case IFE_PLUS_E_PHY_ID:
567 case IFE_C_E_PHY_ID:
568 phy->type = e1000_phy_ife;
569 phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 phy->ops.get_info = e1000_get_phy_info_ife;
571 phy->ops.check_polarity = e1000_check_polarity_ife;
572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 break;
574 case BME1000_E_PHY_ID:
575 phy->type = e1000_phy_bm;
576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 phy->ops.commit = e1000e_phy_sw_reset;
580 phy->ops.get_info = e1000e_get_phy_info_m88;
581 phy->ops.check_polarity = e1000_check_polarity_m88;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 break;
584 default:
585 return -E1000_ERR_PHY;
586 }
587
588 return 0;
589}
590
591/**
592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593 * @hw: pointer to the HW structure
594 *
595 * Initialize family-specific NVM parameters and function
596 * pointers.
597 **/
598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599{
600 struct e1000_nvm_info *nvm = &hw->nvm;
601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 u32 gfpreg, sector_base_addr, sector_end_addr;
603 u16 i;
604 u32 nvm_size;
605
606 nvm->type = e1000_nvm_flash_sw;
607
608 if (hw->mac.type >= e1000_pch_spt) {
609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 * STRAP register. This is because in SPT the GbE Flash region
611 * is no longer accessed through the flash registers. Instead,
612 * the mechanism has changed, and the Flash region access
613 * registers are now implemented in GbE memory space.
614 */
615 nvm->flash_base_addr = 0;
616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 * NVM_SIZE_MULTIPLIER;
618 nvm->flash_bank_size = nvm_size / 2;
619 /* Adjust to word count */
620 nvm->flash_bank_size /= sizeof(u16);
621 /* Set the base address for flash register access */
622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 } else {
624 /* Can't read flash registers if register set isn't mapped. */
625 if (!hw->flash_address) {
626 e_dbg("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr
641 << FLASH_SECTOR_ADDR_SHIFT;
642
643 /* find total size of the NVM, then cut in half since the total
644 * size represents two separate NVM banks.
645 */
646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 << FLASH_SECTOR_ADDR_SHIFT);
648 nvm->flash_bank_size /= 2;
649 /* Adjust to word count */
650 nvm->flash_bank_size /= sizeof(u16);
651 }
652
653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655 /* Clear shadow ram */
656 for (i = 0; i < nvm->word_size; i++) {
657 dev_spec->shadow_ram[i].modified = false;
658 dev_spec->shadow_ram[i].value = 0xFFFF;
659 }
660
661 return 0;
662}
663
664/**
665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666 * @hw: pointer to the HW structure
667 *
668 * Initialize family-specific MAC parameters and function
669 * pointers.
670 **/
671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672{
673 struct e1000_mac_info *mac = &hw->mac;
674
675 /* Set media type function pointer */
676 hw->phy.media_type = e1000_media_type_copper;
677
678 /* Set mta register count */
679 mac->mta_reg_count = 32;
680 /* Set rar entry count */
681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 if (mac->type == e1000_ich8lan)
683 mac->rar_entry_count--;
684 /* FWSM register */
685 mac->has_fwsm = true;
686 /* ARC subsystem not supported */
687 mac->arc_subsystem_valid = false;
688 /* Adaptive IFS supported */
689 mac->adaptive_ifs = true;
690
691 /* LED and other operations */
692 switch (mac->type) {
693 case e1000_ich8lan:
694 case e1000_ich9lan:
695 case e1000_ich10lan:
696 /* check management mode */
697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 /* ID LED init */
699 mac->ops.id_led_init = e1000e_id_led_init_generic;
700 /* blink LED */
701 mac->ops.blink_led = e1000e_blink_led_generic;
702 /* setup LED */
703 mac->ops.setup_led = e1000e_setup_led_generic;
704 /* cleanup LED */
705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 /* turn on/off LED */
707 mac->ops.led_on = e1000_led_on_ich8lan;
708 mac->ops.led_off = e1000_led_off_ich8lan;
709 break;
710 case e1000_pch2lan:
711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 mac->ops.rar_set = e1000_rar_set_pch2lan;
713 fallthrough;
714 case e1000_pch_lpt:
715 case e1000_pch_spt:
716 case e1000_pch_cnp:
717 case e1000_pch_tgp:
718 case e1000_pch_adp:
719 case e1000_pch_mtp:
720 case e1000_pch_lnp:
721 case e1000_pch_ptp:
722 case e1000_pch_nvp:
723 case e1000_pchlan:
724 /* check management mode */
725 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
726 /* ID LED init */
727 mac->ops.id_led_init = e1000_id_led_init_pchlan;
728 /* setup LED */
729 mac->ops.setup_led = e1000_setup_led_pchlan;
730 /* cleanup LED */
731 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
732 /* turn on/off LED */
733 mac->ops.led_on = e1000_led_on_pchlan;
734 mac->ops.led_off = e1000_led_off_pchlan;
735 break;
736 default:
737 break;
738 }
739
740 if (mac->type >= e1000_pch_lpt) {
741 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
742 mac->ops.rar_set = e1000_rar_set_pch_lpt;
743 mac->ops.setup_physical_interface =
744 e1000_setup_copper_link_pch_lpt;
745 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
746 }
747
748 /* Enable PCS Lock-loss workaround for ICH8 */
749 if (mac->type == e1000_ich8lan)
750 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751
752 return 0;
753}
754
755/**
756 * __e1000_access_emi_reg_locked - Read/write EMI register
757 * @hw: pointer to the HW structure
758 * @address: EMI address to program
759 * @data: pointer to value to read/write from/to the EMI address
760 * @read: boolean flag to indicate read or write
761 *
762 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
763 **/
764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
765 u16 *data, bool read)
766{
767 s32 ret_val;
768
769 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
770 if (ret_val)
771 return ret_val;
772
773 if (read)
774 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
775 else
776 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777
778 return ret_val;
779}
780
781/**
782 * e1000_read_emi_reg_locked - Read Extended Management Interface register
783 * @hw: pointer to the HW structure
784 * @addr: EMI address to program
785 * @data: value to be read from the EMI address
786 *
787 * Assumes the SW/FW/HW Semaphore is already acquired.
788 **/
789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
790{
791 return __e1000_access_emi_reg_locked(hw, addr, data, true);
792}
793
794/**
795 * e1000_write_emi_reg_locked - Write Extended Management Interface register
796 * @hw: pointer to the HW structure
797 * @addr: EMI address to program
798 * @data: value to be written to the EMI address
799 *
800 * Assumes the SW/FW/HW Semaphore is already acquired.
801 **/
802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
803{
804 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
805}
806
807/**
808 * e1000_set_eee_pchlan - Enable/disable EEE support
809 * @hw: pointer to the HW structure
810 *
811 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
812 * the link and the EEE capabilities of the link partner. The LPI Control
813 * register bits will remain set only if/when link is up.
814 *
815 * EEE LPI must not be asserted earlier than one second after link is up.
816 * On 82579, EEE LPI should not be enabled until such time otherwise there
817 * can be link issues with some switches. Other devices can have EEE LPI
818 * enabled immediately upon link up since they have a timer in hardware which
819 * prevents LPI from being asserted too early.
820 **/
821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
822{
823 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
824 s32 ret_val;
825 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
826
827 switch (hw->phy.type) {
828 case e1000_phy_82579:
829 lpa = I82579_EEE_LP_ABILITY;
830 pcs_status = I82579_EEE_PCS_STATUS;
831 adv_addr = I82579_EEE_ADVERTISEMENT;
832 break;
833 case e1000_phy_i217:
834 lpa = I217_EEE_LP_ABILITY;
835 pcs_status = I217_EEE_PCS_STATUS;
836 adv_addr = I217_EEE_ADVERTISEMENT;
837 break;
838 default:
839 return 0;
840 }
841
842 ret_val = hw->phy.ops.acquire(hw);
843 if (ret_val)
844 return ret_val;
845
846 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
847 if (ret_val)
848 goto release;
849
850 /* Clear bits that enable EEE in various speeds */
851 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
852
853 /* Enable EEE if not disabled by user */
854 if (!dev_spec->eee_disable) {
855 /* Save off link partner's EEE ability */
856 ret_val = e1000_read_emi_reg_locked(hw, lpa,
857 &dev_spec->eee_lp_ability);
858 if (ret_val)
859 goto release;
860
861 /* Read EEE advertisement */
862 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
863 if (ret_val)
864 goto release;
865
866 /* Enable EEE only for speeds in which the link partner is
867 * EEE capable and for which we advertise EEE.
868 */
869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
870 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
871
872 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
873 e1e_rphy_locked(hw, MII_LPA, &data);
874 if (data & LPA_100FULL)
875 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
876 else
877 /* EEE is not supported in 100Half, so ignore
878 * partner's EEE in 100 ability if full-duplex
879 * is not advertised.
880 */
881 dev_spec->eee_lp_ability &=
882 ~I82579_EEE_100_SUPPORTED;
883 }
884 }
885
886 if (hw->phy.type == e1000_phy_82579) {
887 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888 &data);
889 if (ret_val)
890 goto release;
891
892 data &= ~I82579_LPI_100_PLL_SHUT;
893 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
894 data);
895 }
896
897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899 if (ret_val)
900 goto release;
901
902 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
903release:
904 hw->phy.ops.release(hw);
905
906 return ret_val;
907}
908
909/**
910 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
911 * @hw: pointer to the HW structure
912 * @link: link up bool flag
913 *
914 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
915 * preventing further DMA write requests. Workaround the issue by disabling
916 * the de-assertion of the clock request when in 1Gpbs mode.
917 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
918 * speeds in order to avoid Tx hangs.
919 **/
920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
921{
922 u32 fextnvm6 = er32(FEXTNVM6);
923 u32 status = er32(STATUS);
924 s32 ret_val = 0;
925 u16 reg;
926
927 if (link && (status & E1000_STATUS_SPEED_1000)) {
928 ret_val = hw->phy.ops.acquire(hw);
929 if (ret_val)
930 return ret_val;
931
932 ret_val =
933 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934 ®);
935 if (ret_val)
936 goto release;
937
938 ret_val =
939 e1000e_write_kmrn_reg_locked(hw,
940 E1000_KMRNCTRLSTA_K1_CONFIG,
941 reg &
942 ~E1000_KMRNCTRLSTA_K1_ENABLE);
943 if (ret_val)
944 goto release;
945
946 usleep_range(10, 20);
947
948 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
949
950 ret_val =
951 e1000e_write_kmrn_reg_locked(hw,
952 E1000_KMRNCTRLSTA_K1_CONFIG,
953 reg);
954release:
955 hw->phy.ops.release(hw);
956 } else {
957 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
958 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
959
960 if ((hw->phy.revision > 5) || !link ||
961 ((status & E1000_STATUS_SPEED_100) &&
962 (status & E1000_STATUS_FD)))
963 goto update_fextnvm6;
964
965 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
966 if (ret_val)
967 return ret_val;
968
969 /* Clear link status transmit timeout */
970 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
971
972 if (status & E1000_STATUS_SPEED_100) {
973 /* Set inband Tx timeout to 5x10us for 100Half */
974 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976 /* Do not extend the K1 entry latency for 100Half */
977 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 } else {
979 /* Set inband Tx timeout to 50x10us for 10Full/Half */
980 reg |= 50 <<
981 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
982
983 /* Extend the K1 entry latency for 10 Mbps */
984 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
985 }
986
987 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
988 if (ret_val)
989 return ret_val;
990
991update_fextnvm6:
992 ew32(FEXTNVM6, fextnvm6);
993 }
994
995 return ret_val;
996}
997
998/**
999 * e1000_platform_pm_pch_lpt - Set platform power management values
1000 * @hw: pointer to the HW structure
1001 * @link: bool indicating link status
1002 *
1003 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 * when link is up (which must not exceed the maximum latency supported
1006 * by the platform), otherwise specify there is no LTR requirement.
1007 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 * Capability register set, on this device LTR is set by writing the
1010 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 * message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1019 u32 lat_enc_d = 0; /* latency decoded */
1020 u16 lat_enc = 0; /* latency encoded */
1021
1022 if (link) {
1023 u16 speed, duplex, scale = 0;
1024 u16 max_snoop, max_nosnoop;
1025 u16 max_ltr_enc; /* max LTR latency encoded */
1026 u64 value;
1027 u32 rxa;
1028
1029 if (!hw->adapter->max_frame_size) {
1030 e_dbg("max_frame_size not set.\n");
1031 return -E1000_ERR_CONFIG;
1032 }
1033
1034 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035 if (!speed) {
1036 e_dbg("Speed not set.\n");
1037 return -E1000_ERR_CONFIG;
1038 }
1039
1040 /* Rx Packet Buffer Allocation size (KB) */
1041 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043 /* Determine the maximum latency tolerated by the device.
1044 *
1045 * Per the PCIe spec, the tolerated latencies are encoded as
1046 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1049 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050 */
1051 rxa *= 512;
1052 value = (rxa > hw->adapter->max_frame_size) ?
1053 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054 0;
1055
1056 while (value > PCI_LTR_VALUE_MASK) {
1057 scale++;
1058 value = DIV_ROUND_UP(value, BIT(5));
1059 }
1060 if (scale > E1000_LTRV_SCALE_MAX) {
1061 e_dbg("Invalid LTR latency scale %d\n", scale);
1062 return -E1000_ERR_CONFIG;
1063 }
1064 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066 /* Determine the maximum latency tolerated by the platform */
1067 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068 &max_snoop);
1069 pci_read_config_word(hw->adapter->pdev,
1070 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078 (1U << (E1000_LTRV_SCALE_FACTOR *
1079 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081 if (lat_enc_d > max_ltr_enc_d)
1082 lat_enc = max_ltr_enc;
1083 }
1084
1085 /* Set Snoop and No-Snoop latencies the same */
1086 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087 ew32(LTRV, reg);
1088
1089 return 0;
1090}
1091
1092/**
1093 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 * @hw: pointer to the HW structure
1095 * @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 * When link is down, configure ULP mode to significantly reduce the power
1098 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1099 * ME firmware to start the ULP configuration. If not on an ME enabled
1100 * system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104 u32 mac_reg;
1105 s32 ret_val = 0;
1106 u16 phy_reg;
1107 u16 oem_reg = 0;
1108
1109 if ((hw->mac.type < e1000_pch_lpt) ||
1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115 return 0;
1116
1117 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118 /* Request ME configure ULP mode in the PHY */
1119 mac_reg = er32(H2ME);
1120 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121 ew32(H2ME, mac_reg);
1122
1123 goto out;
1124 }
1125
1126 if (!to_sx) {
1127 int i = 0;
1128
1129 /* Poll up to 5 seconds for Cable Disconnected indication */
1130 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131 /* Bail if link is re-acquired */
1132 if (er32(STATUS) & E1000_STATUS_LU)
1133 return -E1000_ERR_PHY;
1134
1135 if (i++ == 100)
1136 break;
1137
1138 msleep(50);
1139 }
1140 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141 (er32(FEXT) &
1142 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143 }
1144
1145 ret_val = hw->phy.ops.acquire(hw);
1146 if (ret_val)
1147 goto out;
1148
1149 /* Force SMBus mode in PHY */
1150 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151 if (ret_val)
1152 goto release;
1153 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156 /* Force SMBus mode in MAC */
1157 mac_reg = er32(CTRL_EXT);
1158 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159 ew32(CTRL_EXT, mac_reg);
1160
1161 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1162 * LPLU and disable Gig speed when entering ULP
1163 */
1164 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166 &oem_reg);
1167 if (ret_val)
1168 goto release;
1169
1170 phy_reg = oem_reg;
1171 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174 phy_reg);
1175
1176 if (ret_val)
1177 goto release;
1178 }
1179
1180 /* Set Inband ULP Exit, Reset to SMBus mode and
1181 * Disable SMBus Release on PERST# in PHY
1182 */
1183 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184 if (ret_val)
1185 goto release;
1186 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188 if (to_sx) {
1189 if (er32(WUFC) & E1000_WUFC_LNKC)
1190 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191 else
1192 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196 } else {
1197 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200 }
1201 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203 /* Set Disable SMBus Release on PERST# in MAC */
1204 mac_reg = er32(FEXTNVM7);
1205 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206 ew32(FEXTNVM7, mac_reg);
1207
1208 /* Commit ULP changes in PHY by starting auto ULP configuration */
1209 phy_reg |= I218_ULP_CONFIG1_START;
1210 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215 oem_reg);
1216 if (ret_val)
1217 goto release;
1218 }
1219
1220release:
1221 hw->phy.ops.release(hw);
1222out:
1223 if (ret_val)
1224 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225 else
1226 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228 return ret_val;
1229}
1230
1231/**
1232 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 * @hw: pointer to the HW structure
1234 * @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 * Un-configure ULP mode when link is up, the system is transitioned from
1237 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1238 * system, poll for an indication from ME that ULP has been un-configured.
1239 * If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 * During nominal operation, this function is called when link is acquired
1242 * to disable ULP mode (force=false); otherwise, for example when unloading
1243 * the driver or during Sx->S0 transitions, this is called with force=true
1244 * to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248 s32 ret_val = 0;
1249 u32 mac_reg;
1250 u16 phy_reg;
1251 int i = 0;
1252
1253 if ((hw->mac.type < e1000_pch_lpt) ||
1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259 return 0;
1260
1261 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262 struct e1000_adapter *adapter = hw->adapter;
1263 bool firmware_bug = false;
1264
1265 if (force) {
1266 /* Request ME un-configure ULP mode in the PHY */
1267 mac_reg = er32(H2ME);
1268 mac_reg &= ~E1000_H2ME_ULP;
1269 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270 ew32(H2ME, mac_reg);
1271 }
1272
1273 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274 * If this takes more than 1 second, show a warning indicating a
1275 * firmware bug
1276 */
1277 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278 if (i++ == 250) {
1279 ret_val = -E1000_ERR_PHY;
1280 goto out;
1281 }
1282 if (i > 100 && !firmware_bug)
1283 firmware_bug = true;
1284
1285 usleep_range(10000, 11000);
1286 }
1287 if (firmware_bug)
1288 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289 i * 10);
1290 else
1291 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292 i * 10);
1293
1294 if (force) {
1295 mac_reg = er32(H2ME);
1296 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297 ew32(H2ME, mac_reg);
1298 } else {
1299 /* Clear H2ME.ULP after ME ULP configuration */
1300 mac_reg = er32(H2ME);
1301 mac_reg &= ~E1000_H2ME_ULP;
1302 ew32(H2ME, mac_reg);
1303 }
1304
1305 goto out;
1306 }
1307
1308 ret_val = hw->phy.ops.acquire(hw);
1309 if (ret_val)
1310 goto out;
1311
1312 if (force)
1313 /* Toggle LANPHYPC Value bit */
1314 e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316 /* Unforce SMBus mode in PHY */
1317 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318 if (ret_val) {
1319 /* The MAC might be in PCIe mode, so temporarily force to
1320 * SMBus mode in order to access the PHY.
1321 */
1322 mac_reg = er32(CTRL_EXT);
1323 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324 ew32(CTRL_EXT, mac_reg);
1325
1326 msleep(50);
1327
1328 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329 &phy_reg);
1330 if (ret_val)
1331 goto release;
1332 }
1333 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336 /* Unforce SMBus mode in MAC */
1337 mac_reg = er32(CTRL_EXT);
1338 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339 ew32(CTRL_EXT, mac_reg);
1340
1341 /* When ULP mode was previously entered, K1 was disabled by the
1342 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1343 */
1344 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345 if (ret_val)
1346 goto release;
1347 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350 /* Clear ULP enabled configuration */
1351 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352 if (ret_val)
1353 goto release;
1354 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355 I218_ULP_CONFIG1_STICKY_ULP |
1356 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357 I218_ULP_CONFIG1_WOL_HOST |
1358 I218_ULP_CONFIG1_INBAND_EXIT |
1359 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364 /* Commit ULP changes by starting auto ULP configuration */
1365 phy_reg |= I218_ULP_CONFIG1_START;
1366 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368 /* Clear Disable SMBus Release on PERST# in MAC */
1369 mac_reg = er32(FEXTNVM7);
1370 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371 ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374 hw->phy.ops.release(hw);
1375 if (force) {
1376 e1000_phy_hw_reset(hw);
1377 msleep(50);
1378 }
1379out:
1380 if (ret_val)
1381 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382 else
1383 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385 return ret_val;
1386}
1387
1388/**
1389 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 * @hw: pointer to the HW structure
1391 *
1392 * Checks to see of the link status of the hardware has changed. If a
1393 * change in link status has been detected, then we read the PHY registers
1394 * to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398 struct e1000_mac_info *mac = &hw->mac;
1399 s32 ret_val, tipg_reg = 0;
1400 u16 emi_addr, emi_val = 0;
1401 bool link;
1402 u16 phy_reg;
1403
1404 /* We only want to go out to the PHY registers to see if Auto-Neg
1405 * has completed and/or if our link status has changed. The
1406 * get_link_status flag is set upon receiving a Link Status
1407 * Change or Rx Sequence Error interrupt.
1408 */
1409 if (!mac->get_link_status)
1410 return 0;
1411 mac->get_link_status = false;
1412
1413 /* First we want to see if the MII Status Register reports
1414 * link. If so, then we want to get the current speed/duplex
1415 * of the PHY.
1416 */
1417 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418 if (ret_val)
1419 goto out;
1420
1421 if (hw->mac.type == e1000_pchlan) {
1422 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423 if (ret_val)
1424 goto out;
1425 }
1426
1427 /* When connected at 10Mbps half-duplex, some parts are excessively
1428 * aggressive resulting in many collisions. To avoid this, increase
1429 * the IPG and reduce Rx latency in the PHY.
1430 */
1431 if ((hw->mac.type >= e1000_pch2lan) && link) {
1432 u16 speed, duplex;
1433
1434 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435 tipg_reg = er32(TIPG);
1436 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439 tipg_reg |= 0xFF;
1440 /* Reduce Rx latency in analog PHY */
1441 emi_val = 0;
1442 } else if (hw->mac.type >= e1000_pch_spt &&
1443 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444 tipg_reg |= 0xC;
1445 emi_val = 1;
1446 } else {
1447
1448 /* Roll back the default values */
1449 tipg_reg |= 0x08;
1450 emi_val = 1;
1451 }
1452
1453 ew32(TIPG, tipg_reg);
1454
1455 ret_val = hw->phy.ops.acquire(hw);
1456 if (ret_val)
1457 goto out;
1458
1459 if (hw->mac.type == e1000_pch2lan)
1460 emi_addr = I82579_RX_CONFIG;
1461 else
1462 emi_addr = I217_RX_CONFIG;
1463 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465 if (hw->mac.type >= e1000_pch_lpt) {
1466 u16 phy_reg;
1467
1468 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470 if (speed == SPEED_100 || speed == SPEED_10)
1471 phy_reg |= 0x3E8;
1472 else
1473 phy_reg |= 0xFA;
1474 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476 if (speed == SPEED_1000) {
1477 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478 &phy_reg);
1479
1480 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483 phy_reg);
1484 }
1485 }
1486 hw->phy.ops.release(hw);
1487
1488 if (ret_val)
1489 goto out;
1490
1491 if (hw->mac.type >= e1000_pch_spt) {
1492 u16 data;
1493 u16 ptr_gap;
1494
1495 if (speed == SPEED_1000) {
1496 ret_val = hw->phy.ops.acquire(hw);
1497 if (ret_val)
1498 goto out;
1499
1500 ret_val = e1e_rphy_locked(hw,
1501 PHY_REG(776, 20),
1502 &data);
1503 if (ret_val) {
1504 hw->phy.ops.release(hw);
1505 goto out;
1506 }
1507
1508 ptr_gap = (data & (0x3FF << 2)) >> 2;
1509 if (ptr_gap < 0x18) {
1510 data &= ~(0x3FF << 2);
1511 data |= (0x18 << 2);
1512 ret_val =
1513 e1e_wphy_locked(hw,
1514 PHY_REG(776, 20),
1515 data);
1516 }
1517 hw->phy.ops.release(hw);
1518 if (ret_val)
1519 goto out;
1520 } else {
1521 ret_val = hw->phy.ops.acquire(hw);
1522 if (ret_val)
1523 goto out;
1524
1525 ret_val = e1e_wphy_locked(hw,
1526 PHY_REG(776, 20),
1527 0xC023);
1528 hw->phy.ops.release(hw);
1529 if (ret_val)
1530 goto out;
1531
1532 }
1533 }
1534 }
1535
1536 /* I217 Packet Loss issue:
1537 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538 * on power up.
1539 * Set the Beacon Duration for I217 to 8 usec
1540 */
1541 if (hw->mac.type >= e1000_pch_lpt) {
1542 u32 mac_reg;
1543
1544 mac_reg = er32(FEXTNVM4);
1545 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547 ew32(FEXTNVM4, mac_reg);
1548 }
1549
1550 /* Work-around I218 hang issue */
1551 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556 if (ret_val)
1557 goto out;
1558 }
1559 if (hw->mac.type >= e1000_pch_lpt) {
1560 /* Set platform power management values for
1561 * Latency Tolerance Reporting (LTR)
1562 */
1563 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564 if (ret_val)
1565 goto out;
1566 }
1567
1568 /* Clear link partner's EEE ability */
1569 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571 if (hw->mac.type >= e1000_pch_lpt) {
1572 u32 fextnvm6 = er32(FEXTNVM6);
1573
1574 if (hw->mac.type == e1000_pch_spt) {
1575 /* FEXTNVM6 K1-off workaround - for SPT only */
1576 u32 pcieanacfg = er32(PCIEANACFG);
1577
1578 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580 else
1581 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582 }
1583
1584 ew32(FEXTNVM6, fextnvm6);
1585 }
1586
1587 if (!link)
1588 goto out;
1589
1590 switch (hw->mac.type) {
1591 case e1000_pch2lan:
1592 ret_val = e1000_k1_workaround_lv(hw);
1593 if (ret_val)
1594 return ret_val;
1595 fallthrough;
1596 case e1000_pchlan:
1597 if (hw->phy.type == e1000_phy_82578) {
1598 ret_val = e1000_link_stall_workaround_hv(hw);
1599 if (ret_val)
1600 return ret_val;
1601 }
1602
1603 /* Workaround for PCHx parts in half-duplex:
1604 * Set the number of preambles removed from the packet
1605 * when it is passed from the PHY to the MAC to prevent
1606 * the MAC from misinterpreting the packet type.
1607 */
1608 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615 break;
1616 default:
1617 break;
1618 }
1619
1620 /* Check if there was DownShift, must be checked
1621 * immediately after link-up
1622 */
1623 e1000e_check_downshift(hw);
1624
1625 /* Enable/Disable EEE after link up */
1626 if (hw->phy.type > e1000_phy_82579) {
1627 ret_val = e1000_set_eee_pchlan(hw);
1628 if (ret_val)
1629 return ret_val;
1630 }
1631
1632 /* If we are forcing speed/duplex, then we simply return since
1633 * we have already determined whether we have link or not.
1634 */
1635 if (!mac->autoneg)
1636 return -E1000_ERR_CONFIG;
1637
1638 /* Auto-Neg is enabled. Auto Speed Detection takes care
1639 * of MAC speed/duplex configuration. So we only need to
1640 * configure Collision Distance in the MAC.
1641 */
1642 mac->ops.config_collision_dist(hw);
1643
1644 /* Configure Flow Control now that Auto-Neg has completed.
1645 * First, we need to restore the desired flow control
1646 * settings because we may have had to re-autoneg with a
1647 * different link partner.
1648 */
1649 ret_val = e1000e_config_fc_after_link_up(hw);
1650 if (ret_val)
1651 e_dbg("Error configuring flow control\n");
1652
1653 return ret_val;
1654
1655out:
1656 mac->get_link_status = true;
1657 return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662 struct e1000_hw *hw = &adapter->hw;
1663 s32 rc;
1664
1665 rc = e1000_init_mac_params_ich8lan(hw);
1666 if (rc)
1667 return rc;
1668
1669 rc = e1000_init_nvm_params_ich8lan(hw);
1670 if (rc)
1671 return rc;
1672
1673 switch (hw->mac.type) {
1674 case e1000_ich8lan:
1675 case e1000_ich9lan:
1676 case e1000_ich10lan:
1677 rc = e1000_init_phy_params_ich8lan(hw);
1678 break;
1679 case e1000_pchlan:
1680 case e1000_pch2lan:
1681 case e1000_pch_lpt:
1682 case e1000_pch_spt:
1683 case e1000_pch_cnp:
1684 case e1000_pch_tgp:
1685 case e1000_pch_adp:
1686 case e1000_pch_mtp:
1687 case e1000_pch_lnp:
1688 case e1000_pch_ptp:
1689 case e1000_pch_nvp:
1690 rc = e1000_init_phy_params_pchlan(hw);
1691 break;
1692 default:
1693 break;
1694 }
1695 if (rc)
1696 return rc;
1697
1698 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700 */
1701 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707 hw->mac.ops.blink_led = NULL;
1708 }
1709
1710 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711 (adapter->hw.phy.type != e1000_phy_ife))
1712 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714 /* Enable workaround for 82579 w/ ME enabled */
1715 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719 return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 * @hw: pointer to the HW structure
1727 *
1728 * Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732 mutex_lock(&nvm_mutex);
1733
1734 return 0;
1735}
1736
1737/**
1738 * e1000_release_nvm_ich8lan - Release NVM mutex
1739 * @hw: pointer to the HW structure
1740 *
1741 * Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745 mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 * @hw: pointer to the HW structure
1751 *
1752 * Acquires the software control flag for performing PHY and select
1753 * MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758 s32 ret_val = 0;
1759
1760 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761 &hw->adapter->state)) {
1762 e_dbg("contention for Phy access\n");
1763 return -E1000_ERR_PHY;
1764 }
1765
1766 while (timeout) {
1767 extcnf_ctrl = er32(EXTCNF_CTRL);
1768 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769 break;
1770
1771 mdelay(1);
1772 timeout--;
1773 }
1774
1775 if (!timeout) {
1776 e_dbg("SW has already locked the resource.\n");
1777 ret_val = -E1000_ERR_CONFIG;
1778 goto out;
1779 }
1780
1781 timeout = SW_FLAG_TIMEOUT;
1782
1783 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784 ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786 while (timeout) {
1787 extcnf_ctrl = er32(EXTCNF_CTRL);
1788 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789 break;
1790
1791 mdelay(1);
1792 timeout--;
1793 }
1794
1795 if (!timeout) {
1796 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797 er32(FWSM), extcnf_ctrl);
1798 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799 ew32(EXTCNF_CTRL, extcnf_ctrl);
1800 ret_val = -E1000_ERR_CONFIG;
1801 goto out;
1802 }
1803
1804out:
1805 if (ret_val)
1806 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808 return ret_val;
1809}
1810
1811/**
1812 * e1000_release_swflag_ich8lan - Release software control flag
1813 * @hw: pointer to the HW structure
1814 *
1815 * Releases the software control flag for performing PHY and select
1816 * MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820 u32 extcnf_ctrl;
1821
1822 extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826 ew32(EXTCNF_CTRL, extcnf_ctrl);
1827 } else {
1828 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829 }
1830
1831 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 * e1000_check_mng_mode_ich8lan - Checks management mode
1836 * @hw: pointer to the HW structure
1837 *
1838 * This checks if the adapter has any manageability enabled.
1839 * This is a function pointer entry point only called by read/write
1840 * routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844 u32 fwsm;
1845
1846 fwsm = er32(FWSM);
1847 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848 ((fwsm & E1000_FWSM_MODE_MASK) ==
1849 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 * e1000_check_mng_mode_pchlan - Checks management mode
1854 * @hw: pointer to the HW structure
1855 *
1856 * This checks if the adapter has iAMT enabled.
1857 * This is a function pointer entry point only called by read/write
1858 * routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862 u32 fwsm;
1863
1864 fwsm = er32(FWSM);
1865 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 * e1000_rar_set_pch2lan - Set receive address register
1871 * @hw: pointer to the HW structure
1872 * @addr: pointer to the receive address
1873 * @index: receive address array register
1874 *
1875 * Sets the receive address array register at index to the address passed
1876 * in by addr. For 82579, RAR[0] is the base address register that is to
1877 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 * Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882 u32 rar_low, rar_high;
1883
1884 /* HW expects these in little endian so we reverse the byte order
1885 * from network order (big endian) to little endian
1886 */
1887 rar_low = ((u32)addr[0] |
1888 ((u32)addr[1] << 8) |
1889 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893 /* If MAC address zero, no need to set the AV bit */
1894 if (rar_low || rar_high)
1895 rar_high |= E1000_RAH_AV;
1896
1897 if (index == 0) {
1898 ew32(RAL(index), rar_low);
1899 e1e_flush();
1900 ew32(RAH(index), rar_high);
1901 e1e_flush();
1902 return 0;
1903 }
1904
1905 /* RAR[1-6] are owned by manageability. Skip those and program the
1906 * next address into the SHRA register array.
1907 */
1908 if (index < (u32)(hw->mac.rar_entry_count)) {
1909 s32 ret_val;
1910
1911 ret_val = e1000_acquire_swflag_ich8lan(hw);
1912 if (ret_val)
1913 goto out;
1914
1915 ew32(SHRAL(index - 1), rar_low);
1916 e1e_flush();
1917 ew32(SHRAH(index - 1), rar_high);
1918 e1e_flush();
1919
1920 e1000_release_swflag_ich8lan(hw);
1921
1922 /* verify the register updates */
1923 if ((er32(SHRAL(index - 1)) == rar_low) &&
1924 (er32(SHRAH(index - 1)) == rar_high))
1925 return 0;
1926
1927 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928 (index - 1), er32(FWSM));
1929 }
1930
1931out:
1932 e_dbg("Failed to write receive address at index %d\n", index);
1933 return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 * @hw: pointer to the HW structure
1939 *
1940 * Get the number of available receive registers that the Host can
1941 * program. SHRA[0-10] are the shared receive address registers
1942 * that are shared between the Host and manageability engine (ME).
1943 * ME can reserve any number of addresses and the host needs to be
1944 * able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948 u32 wlock_mac;
1949 u32 num_entries;
1950
1951 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954 switch (wlock_mac) {
1955 case 0:
1956 /* All SHRA[0..10] and RAR[0] available */
1957 num_entries = hw->mac.rar_entry_count;
1958 break;
1959 case 1:
1960 /* Only RAR[0] available */
1961 num_entries = 1;
1962 break;
1963 default:
1964 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965 num_entries = wlock_mac + 1;
1966 break;
1967 }
1968
1969 return num_entries;
1970}
1971
1972/**
1973 * e1000_rar_set_pch_lpt - Set receive address registers
1974 * @hw: pointer to the HW structure
1975 * @addr: pointer to the receive address
1976 * @index: receive address array register
1977 *
1978 * Sets the receive address register array at index to the address passed
1979 * in by addr. For LPT, RAR[0] is the base address register that is to
1980 * contain the MAC address. SHRA[0-10] are the shared receive address
1981 * registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985 u32 rar_low, rar_high;
1986 u32 wlock_mac;
1987
1988 /* HW expects these in little endian so we reverse the byte order
1989 * from network order (big endian) to little endian
1990 */
1991 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996 /* If MAC address zero, no need to set the AV bit */
1997 if (rar_low || rar_high)
1998 rar_high |= E1000_RAH_AV;
1999
2000 if (index == 0) {
2001 ew32(RAL(index), rar_low);
2002 e1e_flush();
2003 ew32(RAH(index), rar_high);
2004 e1e_flush();
2005 return 0;
2006 }
2007
2008 /* The manageability engine (ME) can lock certain SHRAR registers that
2009 * it is using - those registers are unavailable for use.
2010 */
2011 if (index < hw->mac.rar_entry_count) {
2012 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015 /* Check if all SHRAR registers are locked */
2016 if (wlock_mac == 1)
2017 goto out;
2018
2019 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020 s32 ret_val;
2021
2022 ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024 if (ret_val)
2025 goto out;
2026
2027 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028 e1e_flush();
2029 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030 e1e_flush();
2031
2032 e1000_release_swflag_ich8lan(hw);
2033
2034 /* verify the register updates */
2035 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037 return 0;
2038 }
2039 }
2040
2041out:
2042 e_dbg("Failed to write receive address at index %d\n", index);
2043 return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 * @hw: pointer to the HW structure
2049 *
2050 * Checks if firmware is blocking the reset of the PHY.
2051 * This is a function pointer entry point only called by
2052 * reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056 bool blocked = false;
2057 int i = 0;
2058
2059 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060 (i++ < 30))
2061 usleep_range(10000, 11000);
2062 return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 * @hw: pointer to the HW structure
2068 *
2069 * Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074 u16 phy_data;
2075 u32 strap = er32(STRAP);
2076 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2077 s32 ret_val;
2078
2079 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082 if (ret_val)
2083 return ret_val;
2084
2085 phy_data &= ~HV_SMB_ADDR_MASK;
2086 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089 if (hw->phy.type == e1000_phy_i217) {
2090 /* Restore SMBus frequency */
2091 if (freq--) {
2092 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093 phy_data |= (freq & BIT(0)) <<
2094 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095 phy_data |= (freq & BIT(1)) <<
2096 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097 } else {
2098 e_dbg("Unsupported SMB frequency in PHY\n");
2099 }
2100 }
2101
2102 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 * @hw: pointer to the HW structure
2108 *
2109 * SW should configure the LCD from the NVM extended configuration region
2110 * as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114 struct e1000_phy_info *phy = &hw->phy;
2115 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116 s32 ret_val = 0;
2117 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119 /* Initialize the PHY from the NVM on ICH platforms. This
2120 * is needed due to an issue where the NVM configuration is
2121 * not properly autoloaded after power transitions.
2122 * Therefore, after each PHY reset, we will load the
2123 * configuration data out of the NVM manually.
2124 */
2125 switch (hw->mac.type) {
2126 case e1000_ich8lan:
2127 if (phy->type != e1000_phy_igp_3)
2128 return ret_val;
2129
2130 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133 break;
2134 }
2135 fallthrough;
2136 case e1000_pchlan:
2137 case e1000_pch2lan:
2138 case e1000_pch_lpt:
2139 case e1000_pch_spt:
2140 case e1000_pch_cnp:
2141 case e1000_pch_tgp:
2142 case e1000_pch_adp:
2143 case e1000_pch_mtp:
2144 case e1000_pch_lnp:
2145 case e1000_pch_ptp:
2146 case e1000_pch_nvp:
2147 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148 break;
2149 default:
2150 return ret_val;
2151 }
2152
2153 ret_val = hw->phy.ops.acquire(hw);
2154 if (ret_val)
2155 return ret_val;
2156
2157 data = er32(FEXTNVM);
2158 if (!(data & sw_cfg_mask))
2159 goto release;
2160
2161 /* Make sure HW does not configure LCD from PHY
2162 * extended configuration before SW configuration
2163 */
2164 data = er32(EXTCNF_CTRL);
2165 if ((hw->mac.type < e1000_pch2lan) &&
2166 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167 goto release;
2168
2169 cnf_size = er32(EXTCNF_SIZE);
2170 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172 if (!cnf_size)
2173 goto release;
2174
2175 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178 if (((hw->mac.type == e1000_pchlan) &&
2179 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180 (hw->mac.type > e1000_pchlan)) {
2181 /* HW configures the SMBus address and LEDs when the
2182 * OEM and LCD Write Enable bits are set in the NVM.
2183 * When both NVM bits are cleared, SW will configure
2184 * them instead.
2185 */
2186 ret_val = e1000_write_smbus_addr(hw);
2187 if (ret_val)
2188 goto release;
2189
2190 data = er32(LEDCTL);
2191 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192 (u16)data);
2193 if (ret_val)
2194 goto release;
2195 }
2196
2197 /* Configure LCD from extended configuration region. */
2198
2199 /* cnf_base_addr is in DWORD */
2200 word_addr = (u16)(cnf_base_addr << 1);
2201
2202 for (i = 0; i < cnf_size; i++) {
2203 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2204 if (ret_val)
2205 goto release;
2206
2207 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208 1, ®_addr);
2209 if (ret_val)
2210 goto release;
2211
2212 /* Save off the PHY page for future writes. */
2213 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214 phy_page = reg_data;
2215 continue;
2216 }
2217
2218 reg_addr &= PHY_REG_MASK;
2219 reg_addr |= phy_page;
2220
2221 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222 if (ret_val)
2223 goto release;
2224 }
2225
2226release:
2227 hw->phy.ops.release(hw);
2228 return ret_val;
2229}
2230
2231/**
2232 * e1000_k1_gig_workaround_hv - K1 Si workaround
2233 * @hw: pointer to the HW structure
2234 * @link: link up bool flag
2235 *
2236 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2238 * If link is down, the function will restore the default K1 setting located
2239 * in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243 s32 ret_val = 0;
2244 u16 status_reg = 0;
2245 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247 if (hw->mac.type != e1000_pchlan)
2248 return 0;
2249
2250 /* Wrap the whole flow with the sw flag */
2251 ret_val = hw->phy.ops.acquire(hw);
2252 if (ret_val)
2253 return ret_val;
2254
2255 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256 if (link) {
2257 if (hw->phy.type == e1000_phy_82578) {
2258 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259 &status_reg);
2260 if (ret_val)
2261 goto release;
2262
2263 status_reg &= (BM_CS_STATUS_LINK_UP |
2264 BM_CS_STATUS_RESOLVED |
2265 BM_CS_STATUS_SPEED_MASK);
2266
2267 if (status_reg == (BM_CS_STATUS_LINK_UP |
2268 BM_CS_STATUS_RESOLVED |
2269 BM_CS_STATUS_SPEED_1000))
2270 k1_enable = false;
2271 }
2272
2273 if (hw->phy.type == e1000_phy_82577) {
2274 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275 if (ret_val)
2276 goto release;
2277
2278 status_reg &= (HV_M_STATUS_LINK_UP |
2279 HV_M_STATUS_AUTONEG_COMPLETE |
2280 HV_M_STATUS_SPEED_MASK);
2281
2282 if (status_reg == (HV_M_STATUS_LINK_UP |
2283 HV_M_STATUS_AUTONEG_COMPLETE |
2284 HV_M_STATUS_SPEED_1000))
2285 k1_enable = false;
2286 }
2287
2288 /* Link stall fix for link up */
2289 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290 if (ret_val)
2291 goto release;
2292
2293 } else {
2294 /* Link stall fix for link down */
2295 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296 if (ret_val)
2297 goto release;
2298 }
2299
2300 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303 hw->phy.ops.release(hw);
2304
2305 return ret_val;
2306}
2307
2308/**
2309 * e1000_configure_k1_ich8lan - Configure K1 power state
2310 * @hw: pointer to the HW structure
2311 * @k1_enable: K1 state to configure
2312 *
2313 * Configure the K1 power state based on the provided parameter.
2314 * Assumes semaphore already acquired.
2315 *
2316 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320 s32 ret_val;
2321 u32 ctrl_reg = 0;
2322 u32 ctrl_ext = 0;
2323 u32 reg = 0;
2324 u16 kmrn_reg = 0;
2325
2326 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327 &kmrn_reg);
2328 if (ret_val)
2329 return ret_val;
2330
2331 if (k1_enable)
2332 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333 else
2334 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337 kmrn_reg);
2338 if (ret_val)
2339 return ret_val;
2340
2341 usleep_range(20, 40);
2342 ctrl_ext = er32(CTRL_EXT);
2343 ctrl_reg = er32(CTRL);
2344
2345 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346 reg |= E1000_CTRL_FRCSPD;
2347 ew32(CTRL, reg);
2348
2349 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350 e1e_flush();
2351 usleep_range(20, 40);
2352 ew32(CTRL, ctrl_reg);
2353 ew32(CTRL_EXT, ctrl_ext);
2354 e1e_flush();
2355 usleep_range(20, 40);
2356
2357 return 0;
2358}
2359
2360/**
2361 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 * @hw: pointer to the HW structure
2363 * @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2367 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371 s32 ret_val = 0;
2372 u32 mac_reg;
2373 u16 oem_reg;
2374
2375 if (hw->mac.type < e1000_pchlan)
2376 return ret_val;
2377
2378 ret_val = hw->phy.ops.acquire(hw);
2379 if (ret_val)
2380 return ret_val;
2381
2382 if (hw->mac.type == e1000_pchlan) {
2383 mac_reg = er32(EXTCNF_CTRL);
2384 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385 goto release;
2386 }
2387
2388 mac_reg = er32(FEXTNVM);
2389 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390 goto release;
2391
2392 mac_reg = er32(PHY_CTRL);
2393
2394 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395 if (ret_val)
2396 goto release;
2397
2398 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400 if (d0_state) {
2401 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402 oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405 oem_reg |= HV_OEM_BITS_LPLU;
2406 } else {
2407 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409 oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412 E1000_PHY_CTRL_NOND0A_LPLU))
2413 oem_reg |= HV_OEM_BITS_LPLU;
2414 }
2415
2416 /* Set Restart auto-neg to activate the bits */
2417 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418 !hw->phy.ops.check_reset_block(hw))
2419 oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424 hw->phy.ops.release(hw);
2425
2426 return ret_val;
2427}
2428
2429/**
2430 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 * @hw: pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435 s32 ret_val;
2436 u16 data;
2437
2438 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439 if (ret_val)
2440 return ret_val;
2441
2442 data |= HV_KMRN_MDIO_SLOW;
2443
2444 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446 return ret_val;
2447}
2448
2449/**
2450 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 * @hw: pointer to the HW structure
2452 *
2453 * A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457 s32 ret_val = 0;
2458 u16 phy_data;
2459
2460 if (hw->mac.type != e1000_pchlan)
2461 return 0;
2462
2463 /* Set MDIO slow mode before any other MDIO access */
2464 if (hw->phy.type == e1000_phy_82577) {
2465 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466 if (ret_val)
2467 return ret_val;
2468 }
2469
2470 if (((hw->phy.type == e1000_phy_82577) &&
2471 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473 /* Disable generation of early preamble */
2474 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475 if (ret_val)
2476 return ret_val;
2477
2478 /* Preamble tuning for SSC */
2479 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480 if (ret_val)
2481 return ret_val;
2482 }
2483
2484 if (hw->phy.type == e1000_phy_82578) {
2485 /* Return registers to default by doing a soft reset then
2486 * writing 0x3140 to the control register.
2487 */
2488 if (hw->phy.revision < 2) {
2489 e1000e_phy_sw_reset(hw);
2490 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491 if (ret_val)
2492 return ret_val;
2493 }
2494 }
2495
2496 /* Select page 0 */
2497 ret_val = hw->phy.ops.acquire(hw);
2498 if (ret_val)
2499 return ret_val;
2500
2501 hw->phy.addr = 1;
2502 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503 hw->phy.ops.release(hw);
2504 if (ret_val)
2505 return ret_val;
2506
2507 /* Configure the K1 Si workaround during phy reset assuming there is
2508 * link so that it disables K1 if link is in 1Gbps.
2509 */
2510 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511 if (ret_val)
2512 return ret_val;
2513
2514 /* Workaround for link disconnects on a busy hub in half duplex */
2515 ret_val = hw->phy.ops.acquire(hw);
2516 if (ret_val)
2517 return ret_val;
2518 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519 if (ret_val)
2520 goto release;
2521 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522 if (ret_val)
2523 goto release;
2524
2525 /* set MSE higher to enable link to stay up when noise is high */
2526 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528 hw->phy.ops.release(hw);
2529
2530 return ret_val;
2531}
2532
2533/**
2534 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 * @hw: pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539 u32 mac_reg;
2540 u16 i, phy_reg = 0;
2541 s32 ret_val;
2542
2543 ret_val = hw->phy.ops.acquire(hw);
2544 if (ret_val)
2545 return;
2546 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547 if (ret_val)
2548 goto release;
2549
2550 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552 mac_reg = er32(RAL(i));
2553 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554 (u16)(mac_reg & 0xFFFF));
2555 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556 (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558 mac_reg = er32(RAH(i));
2559 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560 (u16)(mac_reg & 0xFFFF));
2561 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562 (u16)((mac_reg & E1000_RAH_AV) >> 16));
2563 }
2564
2565 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568 hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 * with 82579 PHY
2574 * @hw: pointer to the HW structure
2575 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579 s32 ret_val = 0;
2580 u16 phy_reg, data;
2581 u32 mac_reg;
2582 u16 i;
2583
2584 if (hw->mac.type < e1000_pch2lan)
2585 return 0;
2586
2587 /* disable Rx path while enabling/disabling workaround */
2588 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590 if (ret_val)
2591 return ret_val;
2592
2593 if (enable) {
2594 /* Write Rx addresses (rar_entry_count for RAL/H, and
2595 * SHRAL/H) and initial CRC values to the MAC
2596 */
2597 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598 u8 mac_addr[ETH_ALEN] = { 0 };
2599 u32 addr_high, addr_low;
2600
2601 addr_high = er32(RAH(i));
2602 if (!(addr_high & E1000_RAH_AV))
2603 continue;
2604 addr_low = er32(RAL(i));
2605 mac_addr[0] = (addr_low & 0xFF);
2606 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609 mac_addr[4] = (addr_high & 0xFF);
2610 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613 }
2614
2615 /* Write Rx addresses to the PHY */
2616 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618 /* Enable jumbo frame workaround in the MAC */
2619 mac_reg = er32(FFLT_DBG);
2620 mac_reg &= ~BIT(14);
2621 mac_reg |= (7 << 15);
2622 ew32(FFLT_DBG, mac_reg);
2623
2624 mac_reg = er32(RCTL);
2625 mac_reg |= E1000_RCTL_SECRC;
2626 ew32(RCTL, mac_reg);
2627
2628 ret_val = e1000e_read_kmrn_reg(hw,
2629 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630 &data);
2631 if (ret_val)
2632 return ret_val;
2633 ret_val = e1000e_write_kmrn_reg(hw,
2634 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635 data | BIT(0));
2636 if (ret_val)
2637 return ret_val;
2638 ret_val = e1000e_read_kmrn_reg(hw,
2639 E1000_KMRNCTRLSTA_HD_CTRL,
2640 &data);
2641 if (ret_val)
2642 return ret_val;
2643 data &= ~(0xF << 8);
2644 data |= (0xB << 8);
2645 ret_val = e1000e_write_kmrn_reg(hw,
2646 E1000_KMRNCTRLSTA_HD_CTRL,
2647 data);
2648 if (ret_val)
2649 return ret_val;
2650
2651 /* Enable jumbo frame workaround in the PHY */
2652 e1e_rphy(hw, PHY_REG(769, 23), &data);
2653 data &= ~(0x7F << 5);
2654 data |= (0x37 << 5);
2655 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656 if (ret_val)
2657 return ret_val;
2658 e1e_rphy(hw, PHY_REG(769, 16), &data);
2659 data &= ~BIT(13);
2660 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661 if (ret_val)
2662 return ret_val;
2663 e1e_rphy(hw, PHY_REG(776, 20), &data);
2664 data &= ~(0x3FF << 2);
2665 data |= (E1000_TX_PTR_GAP << 2);
2666 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667 if (ret_val)
2668 return ret_val;
2669 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670 if (ret_val)
2671 return ret_val;
2672 e1e_rphy(hw, HV_PM_CTRL, &data);
2673 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674 if (ret_val)
2675 return ret_val;
2676 } else {
2677 /* Write MAC register values back to h/w defaults */
2678 mac_reg = er32(FFLT_DBG);
2679 mac_reg &= ~(0xF << 14);
2680 ew32(FFLT_DBG, mac_reg);
2681
2682 mac_reg = er32(RCTL);
2683 mac_reg &= ~E1000_RCTL_SECRC;
2684 ew32(RCTL, mac_reg);
2685
2686 ret_val = e1000e_read_kmrn_reg(hw,
2687 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688 &data);
2689 if (ret_val)
2690 return ret_val;
2691 ret_val = e1000e_write_kmrn_reg(hw,
2692 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693 data & ~BIT(0));
2694 if (ret_val)
2695 return ret_val;
2696 ret_val = e1000e_read_kmrn_reg(hw,
2697 E1000_KMRNCTRLSTA_HD_CTRL,
2698 &data);
2699 if (ret_val)
2700 return ret_val;
2701 data &= ~(0xF << 8);
2702 data |= (0xB << 8);
2703 ret_val = e1000e_write_kmrn_reg(hw,
2704 E1000_KMRNCTRLSTA_HD_CTRL,
2705 data);
2706 if (ret_val)
2707 return ret_val;
2708
2709 /* Write PHY register values back to h/w defaults */
2710 e1e_rphy(hw, PHY_REG(769, 23), &data);
2711 data &= ~(0x7F << 5);
2712 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713 if (ret_val)
2714 return ret_val;
2715 e1e_rphy(hw, PHY_REG(769, 16), &data);
2716 data |= BIT(13);
2717 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718 if (ret_val)
2719 return ret_val;
2720 e1e_rphy(hw, PHY_REG(776, 20), &data);
2721 data &= ~(0x3FF << 2);
2722 data |= (0x8 << 2);
2723 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724 if (ret_val)
2725 return ret_val;
2726 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727 if (ret_val)
2728 return ret_val;
2729 e1e_rphy(hw, HV_PM_CTRL, &data);
2730 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731 if (ret_val)
2732 return ret_val;
2733 }
2734
2735 /* re-enable Rx path after enabling/disabling workaround */
2736 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 * @hw: pointer to the HW structure
2742 *
2743 * A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747 s32 ret_val = 0;
2748
2749 if (hw->mac.type != e1000_pch2lan)
2750 return 0;
2751
2752 /* Set MDIO slow mode before any other MDIO access */
2753 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754 if (ret_val)
2755 return ret_val;
2756
2757 ret_val = hw->phy.ops.acquire(hw);
2758 if (ret_val)
2759 return ret_val;
2760 /* set MSE higher to enable link to stay up when noise is high */
2761 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762 if (ret_val)
2763 goto release;
2764 /* drop link after 5 times MSE threshold was reached */
2765 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767 hw->phy.ops.release(hw);
2768
2769 return ret_val;
2770}
2771
2772/**
2773 * e1000_k1_workaround_lv - K1 Si workaround
2774 * @hw: pointer to the HW structure
2775 *
2776 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 * Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781 s32 ret_val = 0;
2782 u16 status_reg = 0;
2783
2784 if (hw->mac.type != e1000_pch2lan)
2785 return 0;
2786
2787 /* Set K1 beacon duration based on 10Mbs speed */
2788 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789 if (ret_val)
2790 return ret_val;
2791
2792 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794 if (status_reg &
2795 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796 u16 pm_phy_reg;
2797
2798 /* LV 1G/100 Packet drop issue wa */
2799 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800 if (ret_val)
2801 return ret_val;
2802 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804 if (ret_val)
2805 return ret_val;
2806 } else {
2807 u32 mac_reg;
2808
2809 mac_reg = er32(FEXTNVM4);
2810 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812 ew32(FEXTNVM4, mac_reg);
2813 }
2814 }
2815
2816 return ret_val;
2817}
2818
2819/**
2820 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 * @hw: pointer to the HW structure
2822 * @gate: boolean set to true to gate, false to ungate
2823 *
2824 * Gate/ungate the automatic PHY configuration via hardware; perform
2825 * the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829 u32 extcnf_ctrl;
2830
2831 if (hw->mac.type < e1000_pch2lan)
2832 return;
2833
2834 extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836 if (gate)
2837 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838 else
2839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841 ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 * @hw: pointer to the HW structure
2847 *
2848 * Check the appropriate indication the MAC has finished configuring the
2849 * PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855 /* Wait for basic configuration completes before proceeding */
2856 do {
2857 data = er32(STATUS);
2858 data &= E1000_STATUS_LAN_INIT_DONE;
2859 usleep_range(100, 200);
2860 } while ((!data) && --loop);
2861
2862 /* If basic configuration is incomplete before the above loop
2863 * count reaches 0, loading the configuration from NVM will
2864 * leave the PHY in a bad state possibly resulting in no link.
2865 */
2866 if (loop == 0)
2867 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869 /* Clear the Init Done bit for the next init event */
2870 data = er32(STATUS);
2871 data &= ~E1000_STATUS_LAN_INIT_DONE;
2872 ew32(STATUS, data);
2873}
2874
2875/**
2876 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 * @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881 s32 ret_val = 0;
2882 u16 reg;
2883
2884 if (hw->phy.ops.check_reset_block(hw))
2885 return 0;
2886
2887 /* Allow time for h/w to get to quiescent state after reset */
2888 usleep_range(10000, 11000);
2889
2890 /* Perform any necessary post-reset workarounds */
2891 switch (hw->mac.type) {
2892 case e1000_pchlan:
2893 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894 if (ret_val)
2895 return ret_val;
2896 break;
2897 case e1000_pch2lan:
2898 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899 if (ret_val)
2900 return ret_val;
2901 break;
2902 default:
2903 break;
2904 }
2905
2906 /* Clear the host wakeup bit after lcd reset */
2907 if (hw->mac.type >= e1000_pchlan) {
2908 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2909 reg &= ~BM_WUC_HOST_WU_BIT;
2910 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911 }
2912
2913 /* Configure the LCD with the extended configuration region in NVM */
2914 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915 if (ret_val)
2916 return ret_val;
2917
2918 /* Configure the LCD with the OEM bits in NVM */
2919 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921 if (hw->mac.type == e1000_pch2lan) {
2922 /* Ungate automatic PHY configuration on non-managed 82579 */
2923 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924 usleep_range(10000, 11000);
2925 e1000_gate_hw_phy_config_ich8lan(hw, false);
2926 }
2927
2928 /* Set EEE LPI Update Timer to 200usec */
2929 ret_val = hw->phy.ops.acquire(hw);
2930 if (ret_val)
2931 return ret_val;
2932 ret_val = e1000_write_emi_reg_locked(hw,
2933 I82579_LPI_UPDATE_TIMER,
2934 0x1387);
2935 hw->phy.ops.release(hw);
2936 }
2937
2938 return ret_val;
2939}
2940
2941/**
2942 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 * @hw: pointer to the HW structure
2944 *
2945 * Resets the PHY
2946 * This is a function pointer entry point called by drivers
2947 * or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951 s32 ret_val = 0;
2952
2953 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954 if ((hw->mac.type == e1000_pch2lan) &&
2955 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956 e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958 ret_val = e1000e_phy_hw_reset_generic(hw);
2959 if (ret_val)
2960 return ret_val;
2961
2962 return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 * @hw: pointer to the HW structure
2968 * @active: true to enable LPLU, false to disable
2969 *
2970 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2971 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 * the phy speed. This function will manually set the LPLU bit and restart
2973 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 * since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978 s32 ret_val;
2979 u16 oem_reg;
2980
2981 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982 if (ret_val)
2983 return ret_val;
2984
2985 if (active)
2986 oem_reg |= HV_OEM_BITS_LPLU;
2987 else
2988 oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990 if (!hw->phy.ops.check_reset_block(hw))
2991 oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 * @hw: pointer to the HW structure
2999 * @active: true to enable LPLU, false to disable
3000 *
3001 * Sets the LPLU D0 state according to the active flag. When
3002 * activating LPLU this function also disables smart speed
3003 * and vice versa. LPLU will not be activated unless the
3004 * device autonegotiation advertisement meets standards of
3005 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 * This is a function pointer entry point only called by
3007 * PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011 struct e1000_phy_info *phy = &hw->phy;
3012 u32 phy_ctrl;
3013 s32 ret_val = 0;
3014 u16 data;
3015
3016 if (phy->type == e1000_phy_ife)
3017 return 0;
3018
3019 phy_ctrl = er32(PHY_CTRL);
3020
3021 if (active) {
3022 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023 ew32(PHY_CTRL, phy_ctrl);
3024
3025 if (phy->type != e1000_phy_igp_3)
3026 return 0;
3027
3028 /* Call gig speed drop workaround on LPLU before accessing
3029 * any PHY registers
3030 */
3031 if (hw->mac.type == e1000_ich8lan)
3032 e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034 /* When LPLU is enabled, we should disable SmartSpeed */
3035 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036 if (ret_val)
3037 return ret_val;
3038 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040 if (ret_val)
3041 return ret_val;
3042 } else {
3043 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044 ew32(PHY_CTRL, phy_ctrl);
3045
3046 if (phy->type != e1000_phy_igp_3)
3047 return 0;
3048
3049 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3050 * during Dx states where the power conservation is most
3051 * important. During driver activity we should enable
3052 * SmartSpeed, so performance is maintained.
3053 */
3054 if (phy->smart_speed == e1000_smart_speed_on) {
3055 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056 &data);
3057 if (ret_val)
3058 return ret_val;
3059
3060 data |= IGP01E1000_PSCFR_SMART_SPEED;
3061 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062 data);
3063 if (ret_val)
3064 return ret_val;
3065 } else if (phy->smart_speed == e1000_smart_speed_off) {
3066 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067 &data);
3068 if (ret_val)
3069 return ret_val;
3070
3071 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073 data);
3074 if (ret_val)
3075 return ret_val;
3076 }
3077 }
3078
3079 return 0;
3080}
3081
3082/**
3083 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 * @hw: pointer to the HW structure
3085 * @active: true to enable LPLU, false to disable
3086 *
3087 * Sets the LPLU D3 state according to the active flag. When
3088 * activating LPLU this function also disables smart speed
3089 * and vice versa. LPLU will not be activated unless the
3090 * device autonegotiation advertisement meets standards of
3091 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 * This is a function pointer entry point only called by
3093 * PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097 struct e1000_phy_info *phy = &hw->phy;
3098 u32 phy_ctrl;
3099 s32 ret_val = 0;
3100 u16 data;
3101
3102 phy_ctrl = er32(PHY_CTRL);
3103
3104 if (!active) {
3105 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106 ew32(PHY_CTRL, phy_ctrl);
3107
3108 if (phy->type != e1000_phy_igp_3)
3109 return 0;
3110
3111 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3112 * during Dx states where the power conservation is most
3113 * important. During driver activity we should enable
3114 * SmartSpeed, so performance is maintained.
3115 */
3116 if (phy->smart_speed == e1000_smart_speed_on) {
3117 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118 &data);
3119 if (ret_val)
3120 return ret_val;
3121
3122 data |= IGP01E1000_PSCFR_SMART_SPEED;
3123 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124 data);
3125 if (ret_val)
3126 return ret_val;
3127 } else if (phy->smart_speed == e1000_smart_speed_off) {
3128 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129 &data);
3130 if (ret_val)
3131 return ret_val;
3132
3133 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135 data);
3136 if (ret_val)
3137 return ret_val;
3138 }
3139 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143 ew32(PHY_CTRL, phy_ctrl);
3144
3145 if (phy->type != e1000_phy_igp_3)
3146 return 0;
3147
3148 /* Call gig speed drop workaround on LPLU before accessing
3149 * any PHY registers
3150 */
3151 if (hw->mac.type == e1000_ich8lan)
3152 e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154 /* When LPLU is enabled, we should disable SmartSpeed */
3155 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156 if (ret_val)
3157 return ret_val;
3158
3159 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161 }
3162
3163 return ret_val;
3164}
3165
3166/**
3167 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 * @hw: pointer to the HW structure
3169 * @bank: pointer to the variable that returns the active bank
3170 *
3171 * Reads signature byte from the NVM using the flash access registers.
3172 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176 u32 eecd;
3177 struct e1000_nvm_info *nvm = &hw->nvm;
3178 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180 u32 nvm_dword = 0;
3181 u8 sig_byte = 0;
3182 s32 ret_val;
3183
3184 switch (hw->mac.type) {
3185 case e1000_pch_spt:
3186 case e1000_pch_cnp:
3187 case e1000_pch_tgp:
3188 case e1000_pch_adp:
3189 case e1000_pch_mtp:
3190 case e1000_pch_lnp:
3191 case e1000_pch_ptp:
3192 case e1000_pch_nvp:
3193 bank1_offset = nvm->flash_bank_size;
3194 act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196 /* set bank to 0 in case flash read fails */
3197 *bank = 0;
3198
3199 /* Check bank 0 */
3200 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201 &nvm_dword);
3202 if (ret_val)
3203 return ret_val;
3204 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206 E1000_ICH_NVM_SIG_VALUE) {
3207 *bank = 0;
3208 return 0;
3209 }
3210
3211 /* Check bank 1 */
3212 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213 bank1_offset,
3214 &nvm_dword);
3215 if (ret_val)
3216 return ret_val;
3217 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219 E1000_ICH_NVM_SIG_VALUE) {
3220 *bank = 1;
3221 return 0;
3222 }
3223
3224 e_dbg("ERROR: No valid NVM bank present\n");
3225 return -E1000_ERR_NVM;
3226 case e1000_ich8lan:
3227 case e1000_ich9lan:
3228 eecd = er32(EECD);
3229 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230 E1000_EECD_SEC1VAL_VALID_MASK) {
3231 if (eecd & E1000_EECD_SEC1VAL)
3232 *bank = 1;
3233 else
3234 *bank = 0;
3235
3236 return 0;
3237 }
3238 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239 fallthrough;
3240 default:
3241 /* set bank to 0 in case flash read fails */
3242 *bank = 0;
3243
3244 /* Check bank 0 */
3245 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246 &sig_byte);
3247 if (ret_val)
3248 return ret_val;
3249 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250 E1000_ICH_NVM_SIG_VALUE) {
3251 *bank = 0;
3252 return 0;
3253 }
3254
3255 /* Check bank 1 */
3256 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257 bank1_offset,
3258 &sig_byte);
3259 if (ret_val)
3260 return ret_val;
3261 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262 E1000_ICH_NVM_SIG_VALUE) {
3263 *bank = 1;
3264 return 0;
3265 }
3266
3267 e_dbg("ERROR: No valid NVM bank present\n");
3268 return -E1000_ERR_NVM;
3269 }
3270}
3271
3272/**
3273 * e1000_read_nvm_spt - NVM access for SPT
3274 * @hw: pointer to the HW structure
3275 * @offset: The offset (in bytes) of the word(s) to read.
3276 * @words: Size of data to read in words.
3277 * @data: pointer to the word(s) to read at offset.
3278 *
3279 * Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282 u16 *data)
3283{
3284 struct e1000_nvm_info *nvm = &hw->nvm;
3285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286 u32 act_offset;
3287 s32 ret_val = 0;
3288 u32 bank = 0;
3289 u32 dword = 0;
3290 u16 offset_to_read;
3291 u16 i;
3292
3293 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 (words == 0)) {
3295 e_dbg("nvm parameter(s) out of bounds\n");
3296 ret_val = -E1000_ERR_NVM;
3297 goto out;
3298 }
3299
3300 nvm->ops.acquire(hw);
3301
3302 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 if (ret_val) {
3304 e_dbg("Could not detect valid bank, assuming bank 0\n");
3305 bank = 0;
3306 }
3307
3308 act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 act_offset += offset;
3310
3311 ret_val = 0;
3312
3313 for (i = 0; i < words; i += 2) {
3314 if (words - i == 1) {
3315 if (dev_spec->shadow_ram[offset + i].modified) {
3316 data[i] =
3317 dev_spec->shadow_ram[offset + i].value;
3318 } else {
3319 offset_to_read = act_offset + i -
3320 ((act_offset + i) % 2);
3321 ret_val =
3322 e1000_read_flash_dword_ich8lan(hw,
3323 offset_to_read,
3324 &dword);
3325 if (ret_val)
3326 break;
3327 if ((act_offset + i) % 2 == 0)
3328 data[i] = (u16)(dword & 0xFFFF);
3329 else
3330 data[i] = (u16)((dword >> 16) & 0xFFFF);
3331 }
3332 } else {
3333 offset_to_read = act_offset + i;
3334 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336 ret_val =
3337 e1000_read_flash_dword_ich8lan(hw,
3338 offset_to_read,
3339 &dword);
3340 if (ret_val)
3341 break;
3342 }
3343 if (dev_spec->shadow_ram[offset + i].modified)
3344 data[i] =
3345 dev_spec->shadow_ram[offset + i].value;
3346 else
3347 data[i] = (u16)(dword & 0xFFFF);
3348 if (dev_spec->shadow_ram[offset + i].modified)
3349 data[i + 1] =
3350 dev_spec->shadow_ram[offset + i + 1].value;
3351 else
3352 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353 }
3354 }
3355
3356 nvm->ops.release(hw);
3357
3358out:
3359 if (ret_val)
3360 e_dbg("NVM read error: %d\n", ret_val);
3361
3362 return ret_val;
3363}
3364
3365/**
3366 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 * @hw: pointer to the HW structure
3368 * @offset: The offset (in bytes) of the word(s) to read.
3369 * @words: Size of data to read in words
3370 * @data: Pointer to the word(s) to read at offset.
3371 *
3372 * Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375 u16 *data)
3376{
3377 struct e1000_nvm_info *nvm = &hw->nvm;
3378 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379 u32 act_offset;
3380 s32 ret_val = 0;
3381 u32 bank = 0;
3382 u16 i, word;
3383
3384 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385 (words == 0)) {
3386 e_dbg("nvm parameter(s) out of bounds\n");
3387 ret_val = -E1000_ERR_NVM;
3388 goto out;
3389 }
3390
3391 nvm->ops.acquire(hw);
3392
3393 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394 if (ret_val) {
3395 e_dbg("Could not detect valid bank, assuming bank 0\n");
3396 bank = 0;
3397 }
3398
3399 act_offset = (bank) ? nvm->flash_bank_size : 0;
3400 act_offset += offset;
3401
3402 ret_val = 0;
3403 for (i = 0; i < words; i++) {
3404 if (dev_spec->shadow_ram[offset + i].modified) {
3405 data[i] = dev_spec->shadow_ram[offset + i].value;
3406 } else {
3407 ret_val = e1000_read_flash_word_ich8lan(hw,
3408 act_offset + i,
3409 &word);
3410 if (ret_val)
3411 break;
3412 data[i] = word;
3413 }
3414 }
3415
3416 nvm->ops.release(hw);
3417
3418out:
3419 if (ret_val)
3420 e_dbg("NVM read error: %d\n", ret_val);
3421
3422 return ret_val;
3423}
3424
3425/**
3426 * e1000_flash_cycle_init_ich8lan - Initialize flash
3427 * @hw: pointer to the HW structure
3428 *
3429 * This function does initial flash setup so that a new read/write/erase cycle
3430 * can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434 union ich8_hws_flash_status hsfsts;
3435 s32 ret_val = -E1000_ERR_NVM;
3436
3437 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439 /* Check if the flash descriptor is valid */
3440 if (!hsfsts.hsf_status.fldesvalid) {
3441 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3442 return -E1000_ERR_NVM;
3443 }
3444
3445 /* Clear FCERR and DAEL in hw status by writing 1 */
3446 hsfsts.hsf_status.flcerr = 1;
3447 hsfsts.hsf_status.dael = 1;
3448 if (hw->mac.type >= e1000_pch_spt)
3449 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450 else
3451 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453 /* Either we should have a hardware SPI cycle in progress
3454 * bit to check against, in order to start a new cycle or
3455 * FDONE bit should be changed in the hardware so that it
3456 * is 1 after hardware reset, which can then be used as an
3457 * indication whether a cycle is in progress or has been
3458 * completed.
3459 */
3460
3461 if (!hsfsts.hsf_status.flcinprog) {
3462 /* There is no cycle running at present,
3463 * so we can start a cycle.
3464 * Begin by setting Flash Cycle Done.
3465 */
3466 hsfsts.hsf_status.flcdone = 1;
3467 if (hw->mac.type >= e1000_pch_spt)
3468 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469 else
3470 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471 ret_val = 0;
3472 } else {
3473 s32 i;
3474
3475 /* Otherwise poll for sometime so the current
3476 * cycle has a chance to end before giving up.
3477 */
3478 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480 if (!hsfsts.hsf_status.flcinprog) {
3481 ret_val = 0;
3482 break;
3483 }
3484 udelay(1);
3485 }
3486 if (!ret_val) {
3487 /* Successful in waiting for previous cycle to timeout,
3488 * now set the Flash Cycle Done.
3489 */
3490 hsfsts.hsf_status.flcdone = 1;
3491 if (hw->mac.type >= e1000_pch_spt)
3492 ew32flash(ICH_FLASH_HSFSTS,
3493 hsfsts.regval & 0xFFFF);
3494 else
3495 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496 } else {
3497 e_dbg("Flash controller busy, cannot get access\n");
3498 }
3499 }
3500
3501 return ret_val;
3502}
3503
3504/**
3505 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 * @hw: pointer to the HW structure
3507 * @timeout: maximum time to wait for completion
3508 *
3509 * This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513 union ich8_hws_flash_ctrl hsflctl;
3514 union ich8_hws_flash_status hsfsts;
3515 u32 i = 0;
3516
3517 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518 if (hw->mac.type >= e1000_pch_spt)
3519 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520 else
3521 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522 hsflctl.hsf_ctrl.flcgo = 1;
3523
3524 if (hw->mac.type >= e1000_pch_spt)
3525 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526 else
3527 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529 /* wait till FDONE bit is set to 1 */
3530 do {
3531 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532 if (hsfsts.hsf_status.flcdone)
3533 break;
3534 udelay(1);
3535 } while (i++ < timeout);
3536
3537 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538 return 0;
3539
3540 return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 * e1000_read_flash_dword_ich8lan - Read dword from flash
3545 * @hw: pointer to the HW structure
3546 * @offset: offset to data location
3547 * @data: pointer to the location for storing the data
3548 *
3549 * Reads the flash dword at offset into data. Offset is converted
3550 * to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553 u32 *data)
3554{
3555 /* Must convert word offset into bytes. */
3556 offset <<= 1;
3557 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 * e1000_read_flash_word_ich8lan - Read word from flash
3562 * @hw: pointer to the HW structure
3563 * @offset: offset to data location
3564 * @data: pointer to the location for storing the data
3565 *
3566 * Reads the flash word at offset into data. Offset is converted
3567 * to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570 u16 *data)
3571{
3572 /* Must convert offset into bytes. */
3573 offset <<= 1;
3574
3575 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 * e1000_read_flash_byte_ich8lan - Read byte from flash
3580 * @hw: pointer to the HW structure
3581 * @offset: The offset of the byte to read.
3582 * @data: Pointer to a byte to store the value read.
3583 *
3584 * Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587 u8 *data)
3588{
3589 s32 ret_val;
3590 u16 word = 0;
3591
3592 /* In SPT, only 32 bits access is supported,
3593 * so this function should not be called.
3594 */
3595 if (hw->mac.type >= e1000_pch_spt)
3596 return -E1000_ERR_NVM;
3597 else
3598 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600 if (ret_val)
3601 return ret_val;
3602
3603 *data = (u8)word;
3604
3605 return 0;
3606}
3607
3608/**
3609 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 * @hw: pointer to the HW structure
3611 * @offset: The offset (in bytes) of the byte or word to read.
3612 * @size: Size of data to read, 1=byte 2=word
3613 * @data: Pointer to the word to store the value read.
3614 *
3615 * Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618 u8 size, u16 *data)
3619{
3620 union ich8_hws_flash_status hsfsts;
3621 union ich8_hws_flash_ctrl hsflctl;
3622 u32 flash_linear_addr;
3623 u32 flash_data = 0;
3624 s32 ret_val = -E1000_ERR_NVM;
3625 u8 count = 0;
3626
3627 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628 return -E1000_ERR_NVM;
3629
3630 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631 hw->nvm.flash_base_addr);
3632
3633 do {
3634 udelay(1);
3635 /* Steps */
3636 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637 if (ret_val)
3638 break;
3639
3640 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642 hsflctl.hsf_ctrl.fldbcount = size - 1;
3643 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648 ret_val =
3649 e1000_flash_cycle_ich8lan(hw,
3650 ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652 /* Check if FCERR is set to 1, if set to 1, clear it
3653 * and try the whole sequence a few more times, else
3654 * read in (shift in) the Flash Data0, the order is
3655 * least significant byte first msb to lsb
3656 */
3657 if (!ret_val) {
3658 flash_data = er32flash(ICH_FLASH_FDATA0);
3659 if (size == 1)
3660 *data = (u8)(flash_data & 0x000000FF);
3661 else if (size == 2)
3662 *data = (u16)(flash_data & 0x0000FFFF);
3663 break;
3664 } else {
3665 /* If we've gotten here, then things are probably
3666 * completely hosed, but if the error condition is
3667 * detected, it won't hurt to give it another try...
3668 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669 */
3670 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671 if (hsfsts.hsf_status.flcerr) {
3672 /* Repeat for some time before giving up. */
3673 continue;
3674 } else if (!hsfsts.hsf_status.flcdone) {
3675 e_dbg("Timeout error - flash cycle did not complete.\n");
3676 break;
3677 }
3678 }
3679 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681 return ret_val;
3682}
3683
3684/**
3685 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 * @hw: pointer to the HW structure
3687 * @offset: The offset (in bytes) of the dword to read.
3688 * @data: Pointer to the dword to store the value read.
3689 *
3690 * Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694 u32 *data)
3695{
3696 union ich8_hws_flash_status hsfsts;
3697 union ich8_hws_flash_ctrl hsflctl;
3698 u32 flash_linear_addr;
3699 s32 ret_val = -E1000_ERR_NVM;
3700 u8 count = 0;
3701
3702 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703 return -E1000_ERR_NVM;
3704 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705 hw->nvm.flash_base_addr);
3706
3707 do {
3708 udelay(1);
3709 /* Steps */
3710 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711 if (ret_val)
3712 break;
3713 /* In SPT, This register is in Lan memory space, not flash.
3714 * Therefore, only 32 bit access is supported
3715 */
3716 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721 /* In SPT, This register is in Lan memory space, not flash.
3722 * Therefore, only 32 bit access is supported
3723 */
3724 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727 ret_val =
3728 e1000_flash_cycle_ich8lan(hw,
3729 ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731 /* Check if FCERR is set to 1, if set to 1, clear it
3732 * and try the whole sequence a few more times, else
3733 * read in (shift in) the Flash Data0, the order is
3734 * least significant byte first msb to lsb
3735 */
3736 if (!ret_val) {
3737 *data = er32flash(ICH_FLASH_FDATA0);
3738 break;
3739 } else {
3740 /* If we've gotten here, then things are probably
3741 * completely hosed, but if the error condition is
3742 * detected, it won't hurt to give it another try...
3743 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744 */
3745 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746 if (hsfsts.hsf_status.flcerr) {
3747 /* Repeat for some time before giving up. */
3748 continue;
3749 } else if (!hsfsts.hsf_status.flcdone) {
3750 e_dbg("Timeout error - flash cycle did not complete.\n");
3751 break;
3752 }
3753 }
3754 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756 return ret_val;
3757}
3758
3759/**
3760 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 * @hw: pointer to the HW structure
3762 * @offset: The offset (in bytes) of the word(s) to write.
3763 * @words: Size of data to write in words
3764 * @data: Pointer to the word(s) to write at offset.
3765 *
3766 * Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769 u16 *data)
3770{
3771 struct e1000_nvm_info *nvm = &hw->nvm;
3772 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773 u16 i;
3774
3775 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776 (words == 0)) {
3777 e_dbg("nvm parameter(s) out of bounds\n");
3778 return -E1000_ERR_NVM;
3779 }
3780
3781 nvm->ops.acquire(hw);
3782
3783 for (i = 0; i < words; i++) {
3784 dev_spec->shadow_ram[offset + i].modified = true;
3785 dev_spec->shadow_ram[offset + i].value = data[i];
3786 }
3787
3788 nvm->ops.release(hw);
3789
3790 return 0;
3791}
3792
3793/**
3794 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 * @hw: pointer to the HW structure
3796 *
3797 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 * which writes the checksum to the shadow ram. The changes in the shadow
3799 * ram are then committed to the EEPROM by processing each bank at a time
3800 * checking for the modified bit and writing only the pending changes.
3801 * After a successful commit, the shadow ram is cleared and is ready for
3802 * future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806 struct e1000_nvm_info *nvm = &hw->nvm;
3807 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809 s32 ret_val;
3810 u32 dword = 0;
3811
3812 ret_val = e1000e_update_nvm_checksum_generic(hw);
3813 if (ret_val)
3814 goto out;
3815
3816 if (nvm->type != e1000_nvm_flash_sw)
3817 goto out;
3818
3819 nvm->ops.acquire(hw);
3820
3821 /* We're writing to the opposite bank so if we're on bank 1,
3822 * write to bank 0 etc. We also need to erase the segment that
3823 * is going to be written
3824 */
3825 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826 if (ret_val) {
3827 e_dbg("Could not detect valid bank, assuming bank 0\n");
3828 bank = 0;
3829 }
3830
3831 if (bank == 0) {
3832 new_bank_offset = nvm->flash_bank_size;
3833 old_bank_offset = 0;
3834 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835 if (ret_val)
3836 goto release;
3837 } else {
3838 old_bank_offset = nvm->flash_bank_size;
3839 new_bank_offset = 0;
3840 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841 if (ret_val)
3842 goto release;
3843 }
3844 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845 /* Determine whether to write the value stored
3846 * in the other NVM bank or a modified value stored
3847 * in the shadow RAM
3848 */
3849 ret_val = e1000_read_flash_dword_ich8lan(hw,
3850 i + old_bank_offset,
3851 &dword);
3852
3853 if (dev_spec->shadow_ram[i].modified) {
3854 dword &= 0xffff0000;
3855 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856 }
3857 if (dev_spec->shadow_ram[i + 1].modified) {
3858 dword &= 0x0000ffff;
3859 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860 << 16);
3861 }
3862 if (ret_val)
3863 break;
3864
3865 /* If the word is 0x13, then make sure the signature bits
3866 * (15:14) are 11b until the commit has completed.
3867 * This will allow us to write 10b which indicates the
3868 * signature is valid. We want to do this after the write
3869 * has completed so that we don't mark the segment valid
3870 * while the write is still in progress
3871 */
3872 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875 /* Convert offset to bytes. */
3876 act_offset = (i + new_bank_offset) << 1;
3877
3878 usleep_range(100, 200);
3879
3880 /* Write the data to the new bank. Offset in words */
3881 act_offset = i + new_bank_offset;
3882 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883 dword);
3884 if (ret_val)
3885 break;
3886 }
3887
3888 /* Don't bother writing the segment valid bits if sector
3889 * programming failed.
3890 */
3891 if (ret_val) {
3892 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893 e_dbg("Flash commit failed.\n");
3894 goto release;
3895 }
3896
3897 /* Finally validate the new segment by setting bit 15:14
3898 * to 10b in word 0x13 , this can be done without an
3899 * erase as well since these bits are 11 to start with
3900 * and we need to change bit 14 to 0b
3901 */
3902 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904 /*offset in words but we read dword */
3905 --act_offset;
3906 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908 if (ret_val)
3909 goto release;
3910
3911 dword &= 0xBFFFFFFF;
3912 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914 if (ret_val)
3915 goto release;
3916
3917 /* offset in words but we read dword */
3918 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921 if (ret_val)
3922 goto release;
3923
3924 dword &= 0x00FFFFFF;
3925 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927 if (ret_val)
3928 goto release;
3929
3930 /* Great! Everything worked, we can now clear the cached entries. */
3931 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932 dev_spec->shadow_ram[i].modified = false;
3933 dev_spec->shadow_ram[i].value = 0xFFFF;
3934 }
3935
3936release:
3937 nvm->ops.release(hw);
3938
3939 /* Reload the EEPROM, or else modifications will not appear
3940 * until after the next adapter reset.
3941 */
3942 if (!ret_val) {
3943 nvm->ops.reload(hw);
3944 usleep_range(10000, 11000);
3945 }
3946
3947out:
3948 if (ret_val)
3949 e_dbg("NVM update error: %d\n", ret_val);
3950
3951 return ret_val;
3952}
3953
3954/**
3955 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 * @hw: pointer to the HW structure
3957 *
3958 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 * which writes the checksum to the shadow ram. The changes in the shadow
3960 * ram are then committed to the EEPROM by processing each bank at a time
3961 * checking for the modified bit and writing only the pending changes.
3962 * After a successful commit, the shadow ram is cleared and is ready for
3963 * future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967 struct e1000_nvm_info *nvm = &hw->nvm;
3968 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970 s32 ret_val;
3971 u16 data = 0;
3972
3973 ret_val = e1000e_update_nvm_checksum_generic(hw);
3974 if (ret_val)
3975 goto out;
3976
3977 if (nvm->type != e1000_nvm_flash_sw)
3978 goto out;
3979
3980 nvm->ops.acquire(hw);
3981
3982 /* We're writing to the opposite bank so if we're on bank 1,
3983 * write to bank 0 etc. We also need to erase the segment that
3984 * is going to be written
3985 */
3986 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987 if (ret_val) {
3988 e_dbg("Could not detect valid bank, assuming bank 0\n");
3989 bank = 0;
3990 }
3991
3992 if (bank == 0) {
3993 new_bank_offset = nvm->flash_bank_size;
3994 old_bank_offset = 0;
3995 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996 if (ret_val)
3997 goto release;
3998 } else {
3999 old_bank_offset = nvm->flash_bank_size;
4000 new_bank_offset = 0;
4001 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002 if (ret_val)
4003 goto release;
4004 }
4005 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006 if (dev_spec->shadow_ram[i].modified) {
4007 data = dev_spec->shadow_ram[i].value;
4008 } else {
4009 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010 old_bank_offset,
4011 &data);
4012 if (ret_val)
4013 break;
4014 }
4015
4016 /* If the word is 0x13, then make sure the signature bits
4017 * (15:14) are 11b until the commit has completed.
4018 * This will allow us to write 10b which indicates the
4019 * signature is valid. We want to do this after the write
4020 * has completed so that we don't mark the segment valid
4021 * while the write is still in progress
4022 */
4023 if (i == E1000_ICH_NVM_SIG_WORD)
4024 data |= E1000_ICH_NVM_SIG_MASK;
4025
4026 /* Convert offset to bytes. */
4027 act_offset = (i + new_bank_offset) << 1;
4028
4029 usleep_range(100, 200);
4030 /* Write the bytes to the new bank. */
4031 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032 act_offset,
4033 (u8)data);
4034 if (ret_val)
4035 break;
4036
4037 usleep_range(100, 200);
4038 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039 act_offset + 1,
4040 (u8)(data >> 8));
4041 if (ret_val)
4042 break;
4043 }
4044
4045 /* Don't bother writing the segment valid bits if sector
4046 * programming failed.
4047 */
4048 if (ret_val) {
4049 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050 e_dbg("Flash commit failed.\n");
4051 goto release;
4052 }
4053
4054 /* Finally validate the new segment by setting bit 15:14
4055 * to 10b in word 0x13 , this can be done without an
4056 * erase as well since these bits are 11 to start with
4057 * and we need to change bit 14 to 0b
4058 */
4059 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061 if (ret_val)
4062 goto release;
4063
4064 data &= 0xBFFF;
4065 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066 act_offset * 2 + 1,
4067 (u8)(data >> 8));
4068 if (ret_val)
4069 goto release;
4070
4071 /* And invalidate the previously valid segment by setting
4072 * its signature word (0x13) high_byte to 0b. This can be
4073 * done without an erase because flash erase sets all bits
4074 * to 1's. We can write 1's to 0's without an erase
4075 */
4076 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078 if (ret_val)
4079 goto release;
4080
4081 /* Great! Everything worked, we can now clear the cached entries. */
4082 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083 dev_spec->shadow_ram[i].modified = false;
4084 dev_spec->shadow_ram[i].value = 0xFFFF;
4085 }
4086
4087release:
4088 nvm->ops.release(hw);
4089
4090 /* Reload the EEPROM, or else modifications will not appear
4091 * until after the next adapter reset.
4092 */
4093 if (!ret_val) {
4094 nvm->ops.reload(hw);
4095 usleep_range(10000, 11000);
4096 }
4097
4098out:
4099 if (ret_val)
4100 e_dbg("NVM update error: %d\n", ret_val);
4101
4102 return ret_val;
4103}
4104
4105/**
4106 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 * @hw: pointer to the HW structure
4108 *
4109 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 * calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115 s32 ret_val;
4116 u16 data;
4117 u16 word;
4118 u16 valid_csum_mask;
4119
4120 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4121 * the checksum needs to be fixed. This bit is an indication that
4122 * the NVM was prepared by OEM software and did not calculate
4123 * the checksum...a likely scenario.
4124 */
4125 switch (hw->mac.type) {
4126 case e1000_pch_lpt:
4127 case e1000_pch_spt:
4128 case e1000_pch_cnp:
4129 case e1000_pch_tgp:
4130 case e1000_pch_adp:
4131 case e1000_pch_mtp:
4132 case e1000_pch_lnp:
4133 case e1000_pch_ptp:
4134 case e1000_pch_nvp:
4135 word = NVM_COMPAT;
4136 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137 break;
4138 default:
4139 word = NVM_FUTURE_INIT_WORD1;
4140 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141 break;
4142 }
4143
4144 ret_val = e1000_read_nvm(hw, word, 1, &data);
4145 if (ret_val)
4146 return ret_val;
4147
4148 if (!(data & valid_csum_mask)) {
4149 e_dbg("NVM Checksum valid bit not set\n");
4150
4151 if (hw->mac.type < e1000_pch_tgp) {
4152 data |= valid_csum_mask;
4153 ret_val = e1000_write_nvm(hw, word, 1, &data);
4154 if (ret_val)
4155 return ret_val;
4156 ret_val = e1000e_update_nvm_checksum(hw);
4157 if (ret_val)
4158 return ret_val;
4159 }
4160 }
4161
4162 return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 * @hw: pointer to the HW structure
4168 *
4169 * To prevent malicious write/erase of the NVM, set it to be read-only
4170 * so that the hardware ignores all write/erase cycles of the NVM via
4171 * the flash control registers. The shadow-ram copy of the NVM will
4172 * still be updated, however any updates to this copy will not stick
4173 * across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177 struct e1000_nvm_info *nvm = &hw->nvm;
4178 union ich8_flash_protected_range pr0;
4179 union ich8_hws_flash_status hsfsts;
4180 u32 gfpreg;
4181
4182 nvm->ops.acquire(hw);
4183
4184 gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186 /* Write-protect GbE Sector of NVM */
4187 pr0.regval = er32flash(ICH_FLASH_PR0);
4188 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190 pr0.range.wpe = true;
4191 ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193 /* Lock down a subset of GbE Flash Control Registers, e.g.
4194 * PR0 to prevent the write-protection from being lifted.
4195 * Once FLOCKDN is set, the registers protected by it cannot
4196 * be written until FLOCKDN is cleared by a hardware reset.
4197 */
4198 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199 hsfsts.hsf_status.flockdn = true;
4200 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202 nvm->ops.release(hw);
4203}
4204
4205/**
4206 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 * @hw: pointer to the HW structure
4208 * @offset: The offset (in bytes) of the byte/word to read.
4209 * @size: Size of data to read, 1=byte 2=word
4210 * @data: The byte(s) to write to the NVM.
4211 *
4212 * Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215 u8 size, u16 data)
4216{
4217 union ich8_hws_flash_status hsfsts;
4218 union ich8_hws_flash_ctrl hsflctl;
4219 u32 flash_linear_addr;
4220 u32 flash_data = 0;
4221 s32 ret_val;
4222 u8 count = 0;
4223
4224 if (hw->mac.type >= e1000_pch_spt) {
4225 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226 return -E1000_ERR_NVM;
4227 } else {
4228 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229 return -E1000_ERR_NVM;
4230 }
4231
4232 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233 hw->nvm.flash_base_addr);
4234
4235 do {
4236 udelay(1);
4237 /* Steps */
4238 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239 if (ret_val)
4240 break;
4241 /* In SPT, This register is in Lan memory space, not
4242 * flash. Therefore, only 32 bit access is supported
4243 */
4244 if (hw->mac.type >= e1000_pch_spt)
4245 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246 else
4247 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250 hsflctl.hsf_ctrl.fldbcount = size - 1;
4251 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252 /* In SPT, This register is in Lan memory space,
4253 * not flash. Therefore, only 32 bit access is
4254 * supported
4255 */
4256 if (hw->mac.type >= e1000_pch_spt)
4257 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258 else
4259 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263 if (size == 1)
4264 flash_data = (u32)data & 0x00FF;
4265 else
4266 flash_data = (u32)data;
4267
4268 ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270 /* check if FCERR is set to 1 , if set to 1, clear it
4271 * and try the whole sequence a few more times else done
4272 */
4273 ret_val =
4274 e1000_flash_cycle_ich8lan(hw,
4275 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276 if (!ret_val)
4277 break;
4278
4279 /* If we're here, then things are most likely
4280 * completely hosed, but if the error condition
4281 * is detected, it won't hurt to give it another
4282 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283 */
4284 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285 if (hsfsts.hsf_status.flcerr)
4286 /* Repeat for some time before giving up. */
4287 continue;
4288 if (!hsfsts.hsf_status.flcdone) {
4289 e_dbg("Timeout error - flash cycle did not complete.\n");
4290 break;
4291 }
4292 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294 return ret_val;
4295}
4296
4297/**
4298* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299* @hw: pointer to the HW structure
4300* @offset: The offset (in bytes) of the dwords to read.
4301* @data: The 4 bytes to write to the NVM.
4302*
4303* Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306 u32 data)
4307{
4308 union ich8_hws_flash_status hsfsts;
4309 union ich8_hws_flash_ctrl hsflctl;
4310 u32 flash_linear_addr;
4311 s32 ret_val;
4312 u8 count = 0;
4313
4314 if (hw->mac.type >= e1000_pch_spt) {
4315 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316 return -E1000_ERR_NVM;
4317 }
4318 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319 hw->nvm.flash_base_addr);
4320 do {
4321 udelay(1);
4322 /* Steps */
4323 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324 if (ret_val)
4325 break;
4326
4327 /* In SPT, This register is in Lan memory space, not
4328 * flash. Therefore, only 32 bit access is supported
4329 */
4330 if (hw->mac.type >= e1000_pch_spt)
4331 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332 >> 16;
4333 else
4334 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339 /* In SPT, This register is in Lan memory space,
4340 * not flash. Therefore, only 32 bit access is
4341 * supported
4342 */
4343 if (hw->mac.type >= e1000_pch_spt)
4344 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345 else
4346 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350 ew32flash(ICH_FLASH_FDATA0, data);
4351
4352 /* check if FCERR is set to 1 , if set to 1, clear it
4353 * and try the whole sequence a few more times else done
4354 */
4355 ret_val =
4356 e1000_flash_cycle_ich8lan(hw,
4357 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359 if (!ret_val)
4360 break;
4361
4362 /* If we're here, then things are most likely
4363 * completely hosed, but if the error condition
4364 * is detected, it won't hurt to give it another
4365 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366 */
4367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369 if (hsfsts.hsf_status.flcerr)
4370 /* Repeat for some time before giving up. */
4371 continue;
4372 if (!hsfsts.hsf_status.flcdone) {
4373 e_dbg("Timeout error - flash cycle did not complete.\n");
4374 break;
4375 }
4376 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378 return ret_val;
4379}
4380
4381/**
4382 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 * @hw: pointer to the HW structure
4384 * @offset: The index of the byte to read.
4385 * @data: The byte to write to the NVM.
4386 *
4387 * Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390 u8 data)
4391{
4392 u16 word = (u16)data;
4393
4394 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399* @hw: pointer to the HW structure
4400* @offset: The offset of the word to write.
4401* @dword: The dword to write to the NVM.
4402*
4403* Writes a single dword to the NVM using the flash access registers.
4404* Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407 u32 offset, u32 dword)
4408{
4409 s32 ret_val;
4410 u16 program_retries;
4411
4412 /* Must convert word offset into bytes. */
4413 offset <<= 1;
4414 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416 if (!ret_val)
4417 return ret_val;
4418 for (program_retries = 0; program_retries < 100; program_retries++) {
4419 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420 usleep_range(100, 200);
4421 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422 if (!ret_val)
4423 break;
4424 }
4425 if (program_retries == 100)
4426 return -E1000_ERR_NVM;
4427
4428 return 0;
4429}
4430
4431/**
4432 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 * @hw: pointer to the HW structure
4434 * @offset: The offset of the byte to write.
4435 * @byte: The byte to write to the NVM.
4436 *
4437 * Writes a single byte to the NVM using the flash access registers.
4438 * Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441 u32 offset, u8 byte)
4442{
4443 s32 ret_val;
4444 u16 program_retries;
4445
4446 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447 if (!ret_val)
4448 return ret_val;
4449
4450 for (program_retries = 0; program_retries < 100; program_retries++) {
4451 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452 usleep_range(100, 200);
4453 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454 if (!ret_val)
4455 break;
4456 }
4457 if (program_retries == 100)
4458 return -E1000_ERR_NVM;
4459
4460 return 0;
4461}
4462
4463/**
4464 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 * @hw: pointer to the HW structure
4466 * @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 * bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473 struct e1000_nvm_info *nvm = &hw->nvm;
4474 union ich8_hws_flash_status hsfsts;
4475 union ich8_hws_flash_ctrl hsflctl;
4476 u32 flash_linear_addr;
4477 /* bank size is in 16bit words - adjust to bytes */
4478 u32 flash_bank_size = nvm->flash_bank_size * 2;
4479 s32 ret_val;
4480 s32 count = 0;
4481 s32 j, iteration, sector_size;
4482
4483 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485 /* Determine HW Sector size: Read BERASE bits of hw flash status
4486 * register
4487 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488 * consecutive sectors. The start index for the nth Hw sector
4489 * can be calculated as = bank * 4096 + n * 256
4490 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491 * The start index for the nth Hw sector can be calculated
4492 * as = bank * 4096
4493 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494 * (ich9 only, otherwise error condition)
4495 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496 */
4497 switch (hsfsts.hsf_status.berasesz) {
4498 case 0:
4499 /* Hw sector size 256 */
4500 sector_size = ICH_FLASH_SEG_SIZE_256;
4501 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502 break;
4503 case 1:
4504 sector_size = ICH_FLASH_SEG_SIZE_4K;
4505 iteration = 1;
4506 break;
4507 case 2:
4508 sector_size = ICH_FLASH_SEG_SIZE_8K;
4509 iteration = 1;
4510 break;
4511 case 3:
4512 sector_size = ICH_FLASH_SEG_SIZE_64K;
4513 iteration = 1;
4514 break;
4515 default:
4516 return -E1000_ERR_NVM;
4517 }
4518
4519 /* Start with the base address, then add the sector offset. */
4520 flash_linear_addr = hw->nvm.flash_base_addr;
4521 flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523 for (j = 0; j < iteration; j++) {
4524 do {
4525 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527 /* Steps */
4528 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529 if (ret_val)
4530 return ret_val;
4531
4532 /* Write a value 11 (block Erase) in Flash
4533 * Cycle field in hw flash control
4534 */
4535 if (hw->mac.type >= e1000_pch_spt)
4536 hsflctl.regval =
4537 er32flash(ICH_FLASH_HSFSTS) >> 16;
4538 else
4539 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542 if (hw->mac.type >= e1000_pch_spt)
4543 ew32flash(ICH_FLASH_HSFSTS,
4544 hsflctl.regval << 16);
4545 else
4546 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548 /* Write the last 24 bits of an index within the
4549 * block into Flash Linear address field in Flash
4550 * Address.
4551 */
4552 flash_linear_addr += (j * sector_size);
4553 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556 if (!ret_val)
4557 break;
4558
4559 /* Check if FCERR is set to 1. If 1,
4560 * clear it and try the whole sequence
4561 * a few more times else Done
4562 */
4563 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564 if (hsfsts.hsf_status.flcerr)
4565 /* repeat for some time before giving up */
4566 continue;
4567 else if (!hsfsts.hsf_status.flcdone)
4568 return ret_val;
4569 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570 }
4571
4572 return 0;
4573}
4574
4575/**
4576 * e1000_valid_led_default_ich8lan - Set the default LED settings
4577 * @hw: pointer to the HW structure
4578 * @data: Pointer to the LED settings
4579 *
4580 * Reads the LED default settings from the NVM to data. If the NVM LED
4581 * settings is all 0's or F's, set the LED default to a valid LED default
4582 * setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586 s32 ret_val;
4587
4588 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589 if (ret_val) {
4590 e_dbg("NVM Read Error\n");
4591 return ret_val;
4592 }
4593
4594 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595 *data = ID_LED_DEFAULT_ICH8LAN;
4596
4597 return 0;
4598}
4599
4600/**
4601 * e1000_id_led_init_pchlan - store LED configurations
4602 * @hw: pointer to the HW structure
4603 *
4604 * PCH does not control LEDs via the LEDCTL register, rather it uses
4605 * the PHY LED configuration register.
4606 *
4607 * PCH also does not have an "always on" or "always off" mode which
4608 * complicates the ID feature. Instead of using the "on" mode to indicate
4609 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 * use "link_up" mode. The LEDs will still ID on request if there is no
4611 * link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615 struct e1000_mac_info *mac = &hw->mac;
4616 s32 ret_val;
4617 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619 u16 data, i, temp, shift;
4620
4621 /* Get default ID LED modes */
4622 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623 if (ret_val)
4624 return ret_val;
4625
4626 mac->ledctl_default = er32(LEDCTL);
4627 mac->ledctl_mode1 = mac->ledctl_default;
4628 mac->ledctl_mode2 = mac->ledctl_default;
4629
4630 for (i = 0; i < 4; i++) {
4631 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632 shift = (i * 5);
4633 switch (temp) {
4634 case ID_LED_ON1_DEF2:
4635 case ID_LED_ON1_ON2:
4636 case ID_LED_ON1_OFF2:
4637 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638 mac->ledctl_mode1 |= (ledctl_on << shift);
4639 break;
4640 case ID_LED_OFF1_DEF2:
4641 case ID_LED_OFF1_ON2:
4642 case ID_LED_OFF1_OFF2:
4643 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644 mac->ledctl_mode1 |= (ledctl_off << shift);
4645 break;
4646 default:
4647 /* Do nothing */
4648 break;
4649 }
4650 switch (temp) {
4651 case ID_LED_DEF1_ON2:
4652 case ID_LED_ON1_ON2:
4653 case ID_LED_OFF1_ON2:
4654 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655 mac->ledctl_mode2 |= (ledctl_on << shift);
4656 break;
4657 case ID_LED_DEF1_OFF2:
4658 case ID_LED_ON1_OFF2:
4659 case ID_LED_OFF1_OFF2:
4660 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661 mac->ledctl_mode2 |= (ledctl_off << shift);
4662 break;
4663 default:
4664 /* Do nothing */
4665 break;
4666 }
4667 }
4668
4669 return 0;
4670}
4671
4672/**
4673 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 * @hw: pointer to the HW structure
4675 *
4676 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 * register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681 struct e1000_bus_info *bus = &hw->bus;
4682 s32 ret_val;
4683
4684 ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686 /* ICH devices are "PCI Express"-ish. They have
4687 * a configuration space, but do not contain
4688 * PCI Express Capability registers, so bus width
4689 * must be hardcoded.
4690 */
4691 if (bus->width == e1000_bus_width_unknown)
4692 bus->width = e1000_bus_width_pcie_x1;
4693
4694 return ret_val;
4695}
4696
4697/**
4698 * e1000_reset_hw_ich8lan - Reset the hardware
4699 * @hw: pointer to the HW structure
4700 *
4701 * Does a full reset of the hardware which includes a reset of the PHY and
4702 * MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707 u16 kum_cfg;
4708 u32 ctrl, reg;
4709 s32 ret_val;
4710
4711 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4712 * on the last TLP read/write transaction when MAC is reset.
4713 */
4714 ret_val = e1000e_disable_pcie_master(hw);
4715 if (ret_val)
4716 e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718 e_dbg("Masking off all interrupts\n");
4719 ew32(IMC, 0xffffffff);
4720
4721 /* Disable the Transmit and Receive units. Then delay to allow
4722 * any pending transactions to complete before we hit the MAC
4723 * with the global reset.
4724 */
4725 ew32(RCTL, 0);
4726 ew32(TCTL, E1000_TCTL_PSP);
4727 e1e_flush();
4728
4729 usleep_range(10000, 11000);
4730
4731 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4732 if (hw->mac.type == e1000_ich8lan) {
4733 /* Set Tx and Rx buffer allocation to 8k apiece. */
4734 ew32(PBA, E1000_PBA_8K);
4735 /* Set Packet Buffer Size to 16k. */
4736 ew32(PBS, E1000_PBS_16K);
4737 }
4738
4739 if (hw->mac.type == e1000_pchlan) {
4740 /* Save the NVM K1 bit setting */
4741 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742 if (ret_val)
4743 return ret_val;
4744
4745 if (kum_cfg & E1000_NVM_K1_ENABLE)
4746 dev_spec->nvm_k1_enabled = true;
4747 else
4748 dev_spec->nvm_k1_enabled = false;
4749 }
4750
4751 ctrl = er32(CTRL);
4752
4753 if (!hw->phy.ops.check_reset_block(hw)) {
4754 /* Full-chip reset requires MAC and PHY reset at the same
4755 * time to make sure the interface between MAC and the
4756 * external PHY is reset.
4757 */
4758 ctrl |= E1000_CTRL_PHY_RST;
4759
4760 /* Gate automatic PHY configuration by hardware on
4761 * non-managed 82579
4762 */
4763 if ((hw->mac.type == e1000_pch2lan) &&
4764 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765 e1000_gate_hw_phy_config_ich8lan(hw, true);
4766 }
4767 ret_val = e1000_acquire_swflag_ich8lan(hw);
4768 e_dbg("Issuing a global reset to ich8lan\n");
4769 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770 /* cannot issue a flush here because it hangs the hardware */
4771 msleep(20);
4772
4773 /* Set Phy Config Counter to 50msec */
4774 if (hw->mac.type == e1000_pch2lan) {
4775 reg = er32(FEXTNVM3);
4776 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778 ew32(FEXTNVM3, reg);
4779 }
4780
4781 if (!ret_val)
4782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784 if (ctrl & E1000_CTRL_PHY_RST) {
4785 ret_val = hw->phy.ops.get_cfg_done(hw);
4786 if (ret_val)
4787 return ret_val;
4788
4789 ret_val = e1000_post_phy_reset_ich8lan(hw);
4790 if (ret_val)
4791 return ret_val;
4792 }
4793
4794 /* For PCH, this write will make sure that any noise
4795 * will be detected as a CRC error and be dropped rather than show up
4796 * as a bad packet to the DMA engine.
4797 */
4798 if (hw->mac.type == e1000_pchlan)
4799 ew32(CRC_OFFSET, 0x65656565);
4800
4801 ew32(IMC, 0xffffffff);
4802 er32(ICR);
4803
4804 reg = er32(KABGTXD);
4805 reg |= E1000_KABGTXD_BGSQLBIAS;
4806 ew32(KABGTXD, reg);
4807
4808 return 0;
4809}
4810
4811/**
4812 * e1000_init_hw_ich8lan - Initialize the hardware
4813 * @hw: pointer to the HW structure
4814 *
4815 * Prepares the hardware for transmit and receive by doing the following:
4816 * - initialize hardware bits
4817 * - initialize LED identification
4818 * - setup receive address registers
4819 * - setup flow control
4820 * - setup transmit descriptors
4821 * - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825 struct e1000_mac_info *mac = &hw->mac;
4826 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827 s32 ret_val;
4828 u16 i;
4829
4830 e1000_initialize_hw_bits_ich8lan(hw);
4831
4832 /* Initialize identification LED */
4833 ret_val = mac->ops.id_led_init(hw);
4834 /* An error is not fatal and we should not stop init due to this */
4835 if (ret_val)
4836 e_dbg("Error initializing identification LED\n");
4837
4838 /* Setup the receive address. */
4839 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841 /* Zero out the Multicast HASH table */
4842 e_dbg("Zeroing the MTA\n");
4843 for (i = 0; i < mac->mta_reg_count; i++)
4844 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847 * the ME. Disable wakeup by clearing the host wakeup bit.
4848 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849 */
4850 if (hw->phy.type == e1000_phy_82578) {
4851 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852 i &= ~BM_WUC_HOST_WU_BIT;
4853 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855 if (ret_val)
4856 return ret_val;
4857 }
4858
4859 /* Setup link and flow control */
4860 ret_val = mac->ops.setup_link(hw);
4861
4862 /* Set the transmit descriptor write-back policy for both queues */
4863 txdctl = er32(TXDCTL(0));
4864 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865 E1000_TXDCTL_FULL_TX_DESC_WB);
4866 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868 ew32(TXDCTL(0), txdctl);
4869 txdctl = er32(TXDCTL(1));
4870 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871 E1000_TXDCTL_FULL_TX_DESC_WB);
4872 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874 ew32(TXDCTL(1), txdctl);
4875
4876 /* ICH8 has opposite polarity of no_snoop bits.
4877 * By default, we should use snoop behavior.
4878 */
4879 if (mac->type == e1000_ich8lan)
4880 snoop = PCIE_ICH8_SNOOP_ALL;
4881 else
4882 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883 e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885 /* Enable workaround for packet loss issue on TGP PCH
4886 * Do not gate DMA clock from the modPHY block
4887 */
4888 if (mac->type >= e1000_pch_tgp) {
4889 fflt_dbg = er32(FFLT_DBG);
4890 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891 ew32(FFLT_DBG, fflt_dbg);
4892 }
4893
4894 ctrl_ext = er32(CTRL_EXT);
4895 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896 ew32(CTRL_EXT, ctrl_ext);
4897
4898 /* Clear all of the statistics registers (clear on read). It is
4899 * important that we do this after we have tried to establish link
4900 * because the symbol error count will increment wildly if there
4901 * is no link.
4902 */
4903 e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905 return ret_val;
4906}
4907
4908/**
4909 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 * @hw: pointer to the HW structure
4911 *
4912 * Sets/Clears required hardware bits necessary for correctly setting up the
4913 * hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917 u32 reg;
4918
4919 /* Extended Device Control */
4920 reg = er32(CTRL_EXT);
4921 reg |= BIT(22);
4922 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923 if (hw->mac.type >= e1000_pchlan)
4924 reg |= E1000_CTRL_EXT_PHYPDEN;
4925 ew32(CTRL_EXT, reg);
4926
4927 /* Transmit Descriptor Control 0 */
4928 reg = er32(TXDCTL(0));
4929 reg |= BIT(22);
4930 ew32(TXDCTL(0), reg);
4931
4932 /* Transmit Descriptor Control 1 */
4933 reg = er32(TXDCTL(1));
4934 reg |= BIT(22);
4935 ew32(TXDCTL(1), reg);
4936
4937 /* Transmit Arbitration Control 0 */
4938 reg = er32(TARC(0));
4939 if (hw->mac.type == e1000_ich8lan)
4940 reg |= BIT(28) | BIT(29);
4941 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942 ew32(TARC(0), reg);
4943
4944 /* Transmit Arbitration Control 1 */
4945 reg = er32(TARC(1));
4946 if (er32(TCTL) & E1000_TCTL_MULR)
4947 reg &= ~BIT(28);
4948 else
4949 reg |= BIT(28);
4950 reg |= BIT(24) | BIT(26) | BIT(30);
4951 ew32(TARC(1), reg);
4952
4953 /* Device Status */
4954 if (hw->mac.type == e1000_ich8lan) {
4955 reg = er32(STATUS);
4956 reg &= ~BIT(31);
4957 ew32(STATUS, reg);
4958 }
4959
4960 /* work-around descriptor data corruption issue during nfs v2 udp
4961 * traffic, just disable the nfs filtering capability
4962 */
4963 reg = er32(RFCTL);
4964 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966 /* Disable IPv6 extension header parsing because some malformed
4967 * IPv6 headers can hang the Rx.
4968 */
4969 if (hw->mac.type == e1000_ich8lan)
4970 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971 ew32(RFCTL, reg);
4972
4973 /* Enable ECC on Lynxpoint */
4974 if (hw->mac.type >= e1000_pch_lpt) {
4975 reg = er32(PBECCSTS);
4976 reg |= E1000_PBECCSTS_ECC_ENABLE;
4977 ew32(PBECCSTS, reg);
4978
4979 reg = er32(CTRL);
4980 reg |= E1000_CTRL_MEHE;
4981 ew32(CTRL, reg);
4982 }
4983}
4984
4985/**
4986 * e1000_setup_link_ich8lan - Setup flow control and link settings
4987 * @hw: pointer to the HW structure
4988 *
4989 * Determines which flow control settings to use, then configures flow
4990 * control. Calls the appropriate media-specific link configuration
4991 * function. Assuming the adapter has a valid link partner, a valid link
4992 * should be established. Assumes the hardware has previously been reset
4993 * and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997 s32 ret_val;
4998
4999 if (hw->phy.ops.check_reset_block(hw))
5000 return 0;
5001
5002 /* ICH parts do not have a word in the NVM to determine
5003 * the default flow control setting, so we explicitly
5004 * set it to full.
5005 */
5006 if (hw->fc.requested_mode == e1000_fc_default) {
5007 /* Workaround h/w hang when Tx flow control enabled */
5008 if (hw->mac.type == e1000_pchlan)
5009 hw->fc.requested_mode = e1000_fc_rx_pause;
5010 else
5011 hw->fc.requested_mode = e1000_fc_full;
5012 }
5013
5014 /* Save off the requested flow control mode for use later. Depending
5015 * on the link partner's capabilities, we may or may not use this mode.
5016 */
5017 hw->fc.current_mode = hw->fc.requested_mode;
5018
5019 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021 /* Continue to configure the copper link. */
5022 ret_val = hw->mac.ops.setup_physical_interface(hw);
5023 if (ret_val)
5024 return ret_val;
5025
5026 ew32(FCTTV, hw->fc.pause_time);
5027 if ((hw->phy.type == e1000_phy_82578) ||
5028 (hw->phy.type == e1000_phy_82579) ||
5029 (hw->phy.type == e1000_phy_i217) ||
5030 (hw->phy.type == e1000_phy_82577)) {
5031 ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034 hw->fc.pause_time);
5035 if (ret_val)
5036 return ret_val;
5037 }
5038
5039 return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 * @hw: pointer to the HW structure
5045 *
5046 * Configures the kumeran interface to the PHY to wait the appropriate time
5047 * when polling the PHY, then call the generic setup_copper_link to finish
5048 * configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052 u32 ctrl;
5053 s32 ret_val;
5054 u16 reg_data;
5055
5056 ctrl = er32(CTRL);
5057 ctrl |= E1000_CTRL_SLU;
5058 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059 ew32(CTRL, ctrl);
5060
5061 /* Set the mac to wait the maximum time between each iteration
5062 * and increase the max iterations when polling the phy;
5063 * this fixes erroneous timeouts at 10Mbps.
5064 */
5065 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066 if (ret_val)
5067 return ret_val;
5068 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069 ®_data);
5070 if (ret_val)
5071 return ret_val;
5072 reg_data |= 0x3F;
5073 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074 reg_data);
5075 if (ret_val)
5076 return ret_val;
5077
5078 switch (hw->phy.type) {
5079 case e1000_phy_igp_3:
5080 ret_val = e1000e_copper_link_setup_igp(hw);
5081 if (ret_val)
5082 return ret_val;
5083 break;
5084 case e1000_phy_bm:
5085 case e1000_phy_82578:
5086 ret_val = e1000e_copper_link_setup_m88(hw);
5087 if (ret_val)
5088 return ret_val;
5089 break;
5090 case e1000_phy_82577:
5091 case e1000_phy_82579:
5092 ret_val = e1000_copper_link_setup_82577(hw);
5093 if (ret_val)
5094 return ret_val;
5095 break;
5096 case e1000_phy_ife:
5097 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5098 if (ret_val)
5099 return ret_val;
5100
5101 reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103 switch (hw->phy.mdix) {
5104 case 1:
5105 reg_data &= ~IFE_PMC_FORCE_MDIX;
5106 break;
5107 case 2:
5108 reg_data |= IFE_PMC_FORCE_MDIX;
5109 break;
5110 case 0:
5111 default:
5112 reg_data |= IFE_PMC_AUTO_MDIX;
5113 break;
5114 }
5115 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116 if (ret_val)
5117 return ret_val;
5118 break;
5119 default:
5120 break;
5121 }
5122
5123 return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 * @hw: pointer to the HW structure
5129 *
5130 * Calls the PHY specific link setup function and then calls the
5131 * generic setup_copper_link to finish configuring the link for
5132 * Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136 u32 ctrl;
5137 s32 ret_val;
5138
5139 ctrl = er32(CTRL);
5140 ctrl |= E1000_CTRL_SLU;
5141 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142 ew32(CTRL, ctrl);
5143
5144 ret_val = e1000_copper_link_setup_82577(hw);
5145 if (ret_val)
5146 return ret_val;
5147
5148 return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 * @hw: pointer to the HW structure
5154 * @speed: pointer to store current link speed
5155 * @duplex: pointer to store the current link duplex
5156 *
5157 * Calls the generic get_speed_and_duplex to retrieve the current link
5158 * information and then calls the Kumeran lock loss workaround for links at
5159 * gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162 u16 *duplex)
5163{
5164 s32 ret_val;
5165
5166 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167 if (ret_val)
5168 return ret_val;
5169
5170 if ((hw->mac.type == e1000_ich8lan) &&
5171 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173 }
5174
5175 return ret_val;
5176}
5177
5178/**
5179 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 * @hw: pointer to the HW structure
5181 *
5182 * Work-around for 82566 Kumeran PCS lock loss:
5183 * On link status change (i.e. PCI reset, speed change) and link is up and
5184 * speed is gigabit-
5185 * 0) if workaround is optionally disabled do nothing
5186 * 1) wait 1ms for Kumeran link to come up
5187 * 2) check Kumeran Diagnostic register PCS lock loss bit
5188 * 3) if not set the link is locked (all is good), otherwise...
5189 * 4) reset the PHY
5190 * 5) repeat up to 10 times
5191 * Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196 u32 phy_ctrl;
5197 s32 ret_val;
5198 u16 i, data;
5199 bool link;
5200
5201 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202 return 0;
5203
5204 /* Make sure link is up before proceeding. If not just return.
5205 * Attempting this while link is negotiating fouled up link
5206 * stability
5207 */
5208 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209 if (!link)
5210 return 0;
5211
5212 for (i = 0; i < 10; i++) {
5213 /* read once to clear */
5214 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215 if (ret_val)
5216 return ret_val;
5217 /* and again to get new status */
5218 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219 if (ret_val)
5220 return ret_val;
5221
5222 /* check for PCS lock */
5223 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224 return 0;
5225
5226 /* Issue PHY reset */
5227 e1000_phy_hw_reset(hw);
5228 mdelay(5);
5229 }
5230 /* Disable GigE link negotiation */
5231 phy_ctrl = er32(PHY_CTRL);
5232 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234 ew32(PHY_CTRL, phy_ctrl);
5235
5236 /* Call gig speed drop workaround on Gig disable before accessing
5237 * any PHY registers
5238 */
5239 e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241 /* unable to acquire PCS lock */
5242 return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 * @hw: pointer to the HW structure
5248 * @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 * If ICH8, set the current Kumeran workaround state (enabled - true
5251 * /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254 bool state)
5255{
5256 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258 if (hw->mac.type != e1000_ich8lan) {
5259 e_dbg("Workaround applies to ICH8 only.\n");
5260 return;
5261 }
5262
5263 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 * @hw: pointer to the HW structure
5269 *
5270 * Workaround for 82566 power-down on D3 entry:
5271 * 1) disable gigabit link
5272 * 2) write VR power-down enable
5273 * 3) read it back
5274 * Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278 u32 reg;
5279 u16 data;
5280 u8 retry = 0;
5281
5282 if (hw->phy.type != e1000_phy_igp_3)
5283 return;
5284
5285 /* Try the workaround twice (if needed) */
5286 do {
5287 /* Disable link */
5288 reg = er32(PHY_CTRL);
5289 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291 ew32(PHY_CTRL, reg);
5292
5293 /* Call gig speed drop workaround on Gig disable before
5294 * accessing any PHY registers
5295 */
5296 if (hw->mac.type == e1000_ich8lan)
5297 e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299 /* Write VR power-down enable */
5300 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304 /* Read it back and test */
5305 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308 break;
5309
5310 /* Issue PHY reset and repeat at most one more time */
5311 reg = er32(CTRL);
5312 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313 retry++;
5314 } while (retry);
5315}
5316
5317/**
5318 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 * @hw: pointer to the HW structure
5320 *
5321 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 * LPLU, Gig disable, MDIC PHY reset):
5323 * 1) Set Kumeran Near-end loopback
5324 * 2) Clear Kumeran Near-end loopback
5325 * Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329 s32 ret_val;
5330 u16 reg_data;
5331
5332 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333 return;
5334
5335 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336 ®_data);
5337 if (ret_val)
5338 return;
5339 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341 reg_data);
5342 if (ret_val)
5343 return;
5344 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 * @hw: pointer to the HW structure
5351 *
5352 * During S0 to Sx transition, it is possible the link remains at gig
5353 * instead of negotiating to a lower speed. Before going to Sx, set
5354 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5355 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5356 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 * needs to be written.
5358 * Parts that support (and are linked to a partner which support) EEE in
5359 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 * than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365 u32 phy_ctrl;
5366 s32 ret_val;
5367
5368 phy_ctrl = er32(PHY_CTRL);
5369 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371 if (hw->phy.type == e1000_phy_i217) {
5372 u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378 (hw->mac.type >= e1000_pch_spt)) {
5379 u32 fextnvm6 = er32(FEXTNVM6);
5380
5381 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382 }
5383
5384 ret_val = hw->phy.ops.acquire(hw);
5385 if (ret_val)
5386 goto out;
5387
5388 if (!dev_spec->eee_disable) {
5389 u16 eee_advert;
5390
5391 ret_val =
5392 e1000_read_emi_reg_locked(hw,
5393 I217_EEE_ADVERTISEMENT,
5394 &eee_advert);
5395 if (ret_val)
5396 goto release;
5397
5398 /* Disable LPLU if both link partners support 100BaseT
5399 * EEE and 100Full is advertised on both ends of the
5400 * link, and enable Auto Enable LPI since there will
5401 * be no driver to enable LPI while in Sx.
5402 */
5403 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404 (dev_spec->eee_lp_ability &
5405 I82579_EEE_100_SUPPORTED) &&
5406 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408 E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410 /* Set Auto Enable LPI after link up */
5411 e1e_rphy_locked(hw,
5412 I217_LPI_GPIO_CTRL, &phy_reg);
5413 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414 e1e_wphy_locked(hw,
5415 I217_LPI_GPIO_CTRL, phy_reg);
5416 }
5417 }
5418
5419 /* For i217 Intel Rapid Start Technology support,
5420 * when the system is going into Sx and no manageability engine
5421 * is present, the driver must configure proxy to reset only on
5422 * power good. LPI (Low Power Idle) state must also reset only
5423 * on power good, as well as the MTA (Multicast table array).
5424 * The SMBus release must also be disabled on LCD reset.
5425 */
5426 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427 /* Enable proxy to reset only on power good. */
5428 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432 /* Set bit enable LPI (EEE) to reset only on
5433 * power good.
5434 */
5435 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439 /* Disable the SMB release on LCD reset. */
5440 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443 }
5444
5445 /* Enable MTA to reset for Intel Rapid Start Technology
5446 * Support
5447 */
5448 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453 hw->phy.ops.release(hw);
5454 }
5455out:
5456 ew32(PHY_CTRL, phy_ctrl);
5457
5458 if (hw->mac.type == e1000_ich8lan)
5459 e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461 if (hw->mac.type >= e1000_pchlan) {
5462 e1000_oem_bits_config_ich8lan(hw, false);
5463
5464 /* Reset PHY to activate OEM bits on 82577/8 */
5465 if (hw->mac.type == e1000_pchlan)
5466 e1000e_phy_hw_reset_generic(hw);
5467
5468 ret_val = hw->phy.ops.acquire(hw);
5469 if (ret_val)
5470 return;
5471 e1000_write_smbus_addr(hw);
5472 hw->phy.ops.release(hw);
5473 }
5474}
5475
5476/**
5477 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 * @hw: pointer to the HW structure
5479 *
5480 * During Sx to S0 transitions on non-managed devices or managed devices
5481 * on which PHY resets are not blocked, if the PHY registers cannot be
5482 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 * the PHY.
5484 * On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488 s32 ret_val;
5489
5490 if (hw->mac.type < e1000_pch2lan)
5491 return;
5492
5493 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494 if (ret_val) {
5495 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496 return;
5497 }
5498
5499 /* For i217 Intel Rapid Start Technology support when the system
5500 * is transitioning from Sx and no manageability engine is present
5501 * configure SMBus to restore on reset, disable proxy, and enable
5502 * the reset on MTA (Multicast table array).
5503 */
5504 if (hw->phy.type == e1000_phy_i217) {
5505 u16 phy_reg;
5506
5507 ret_val = hw->phy.ops.acquire(hw);
5508 if (ret_val) {
5509 e_dbg("Failed to setup iRST\n");
5510 return;
5511 }
5512
5513 /* Clear Auto Enable LPI after link up */
5514 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519 /* Restore clear on SMB if no manageability engine
5520 * is present
5521 */
5522 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523 if (ret_val)
5524 goto release;
5525 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528 /* Disable Proxy */
5529 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530 }
5531 /* Enable reset on MTA */
5532 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533 if (ret_val)
5534 goto release;
5535 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538 if (ret_val)
5539 e_dbg("Error %d in resume workarounds\n", ret_val);
5540 hw->phy.ops.release(hw);
5541 }
5542}
5543
5544/**
5545 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 * @hw: pointer to the HW structure
5547 *
5548 * Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552 if (hw->phy.type == e1000_phy_ife)
5553 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555 ew32(LEDCTL, hw->mac.ledctl_default);
5556 return 0;
5557}
5558
5559/**
5560 * e1000_led_on_ich8lan - Turn LEDs on
5561 * @hw: pointer to the HW structure
5562 *
5563 * Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567 if (hw->phy.type == e1000_phy_ife)
5568 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571 ew32(LEDCTL, hw->mac.ledctl_mode2);
5572 return 0;
5573}
5574
5575/**
5576 * e1000_led_off_ich8lan - Turn LEDs off
5577 * @hw: pointer to the HW structure
5578 *
5579 * Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583 if (hw->phy.type == e1000_phy_ife)
5584 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585 (IFE_PSCL_PROBE_MODE |
5586 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588 ew32(LEDCTL, hw->mac.ledctl_mode1);
5589 return 0;
5590}
5591
5592/**
5593 * e1000_setup_led_pchlan - Configures SW controllable LED
5594 * @hw: pointer to the HW structure
5595 *
5596 * This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 * e1000_cleanup_led_pchlan - Restore the default LED operation
5605 * @hw: pointer to the HW structure
5606 *
5607 * Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 * e1000_led_on_pchlan - Turn LEDs on
5616 * @hw: pointer to the HW structure
5617 *
5618 * Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622 u16 data = (u16)hw->mac.ledctl_mode2;
5623 u32 i, led;
5624
5625 /* If no link, then turn LED on by setting the invert bit
5626 * for each LED that's mode is "link_up" in ledctl_mode2.
5627 */
5628 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629 for (i = 0; i < 3; i++) {
5630 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632 E1000_LEDCTL_MODE_LINK_UP)
5633 continue;
5634 if (led & E1000_PHY_LED0_IVRT)
5635 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636 else
5637 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638 }
5639 }
5640
5641 return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 * e1000_led_off_pchlan - Turn LEDs off
5646 * @hw: pointer to the HW structure
5647 *
5648 * Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652 u16 data = (u16)hw->mac.ledctl_mode1;
5653 u32 i, led;
5654
5655 /* If no link, then turn LED off by clearing the invert bit
5656 * for each LED that's mode is "link_up" in ledctl_mode1.
5657 */
5658 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659 for (i = 0; i < 3; i++) {
5660 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662 E1000_LEDCTL_MODE_LINK_UP)
5663 continue;
5664 if (led & E1000_PHY_LED0_IVRT)
5665 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666 else
5667 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668 }
5669 }
5670
5671 return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 * @hw: pointer to the HW structure
5677 *
5678 * Read appropriate register for the config done bit for completion status
5679 * and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 * config done bit, so only an error is logged and continues. If we were
5683 * to return with error, EEPROM-less silicon would not be able to be reset
5684 * or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688 s32 ret_val = 0;
5689 u32 bank = 0;
5690 u32 status;
5691
5692 e1000e_get_cfg_done_generic(hw);
5693
5694 /* Wait for indication from h/w that it has completed basic config */
5695 if (hw->mac.type >= e1000_ich10lan) {
5696 e1000_lan_init_done_ich8lan(hw);
5697 } else {
5698 ret_val = e1000e_get_auto_rd_done(hw);
5699 if (ret_val) {
5700 /* When auto config read does not complete, do not
5701 * return with an error. This can happen in situations
5702 * where there is no eeprom and prevents getting link.
5703 */
5704 e_dbg("Auto Read Done did not complete\n");
5705 ret_val = 0;
5706 }
5707 }
5708
5709 /* Clear PHY Reset Asserted bit */
5710 status = er32(STATUS);
5711 if (status & E1000_STATUS_PHYRA)
5712 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713 else
5714 e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717 if (hw->mac.type <= e1000_ich9lan) {
5718 if (!(er32(EECD) & E1000_EECD_PRES) &&
5719 (hw->phy.type == e1000_phy_igp_3)) {
5720 e1000e_phy_init_script_igp3(hw);
5721 }
5722 } else {
5723 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724 /* Maybe we should do a basic PHY config */
5725 e_dbg("EEPROM not present\n");
5726 ret_val = -E1000_ERR_CONFIG;
5727 }
5728 }
5729
5730 return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742 /* If the management interface is not enabled, then power down */
5743 if (!(hw->mac.ops.check_mng_mode(hw) ||
5744 hw->phy.ops.check_reset_block(hw)))
5745 e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 * @hw: pointer to the HW structure
5751 *
5752 * Clears hardware counters specific to the silicon family and calls
5753 * clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757 u16 phy_data;
5758 s32 ret_val;
5759
5760 e1000e_clear_hw_cntrs_base(hw);
5761
5762 er32(ALGNERRC);
5763 er32(RXERRC);
5764 er32(TNCRS);
5765 er32(CEXTERR);
5766 er32(TSCTC);
5767 er32(TSCTFC);
5768
5769 er32(MGTPRC);
5770 er32(MGTPDC);
5771 er32(MGTPTC);
5772
5773 er32(IAC);
5774 er32(ICRXOC);
5775
5776 /* Clear PHY statistics registers */
5777 if ((hw->phy.type == e1000_phy_82578) ||
5778 (hw->phy.type == e1000_phy_82579) ||
5779 (hw->phy.type == e1000_phy_i217) ||
5780 (hw->phy.type == e1000_phy_82577)) {
5781 ret_val = hw->phy.ops.acquire(hw);
5782 if (ret_val)
5783 return;
5784 ret_val = hw->phy.ops.set_page(hw,
5785 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786 if (ret_val)
5787 goto release;
5788 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803 hw->phy.ops.release(hw);
5804 }
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808 /* check_mng_mode dependent on mac type */
5809 .check_for_link = e1000_check_for_copper_link_ich8lan,
5810 /* cleanup_led dependent on mac type */
5811 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5812 .get_bus_info = e1000_get_bus_info_ich8lan,
5813 .set_lan_id = e1000_set_lan_id_single_port,
5814 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5815 /* led_on dependent on mac type */
5816 /* led_off dependent on mac type */
5817 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5818 .reset_hw = e1000_reset_hw_ich8lan,
5819 .init_hw = e1000_init_hw_ich8lan,
5820 .setup_link = e1000_setup_link_ich8lan,
5821 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822 /* id_led_init dependent on mac type */
5823 .config_collision_dist = e1000e_config_collision_dist_generic,
5824 .rar_set = e1000e_rar_set_generic,
5825 .rar_get_count = e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829 .acquire = e1000_acquire_swflag_ich8lan,
5830 .check_reset_block = e1000_check_reset_block_ich8lan,
5831 .commit = NULL,
5832 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5833 .get_cable_length = e1000e_get_cable_length_igp_2,
5834 .read_reg = e1000e_read_phy_reg_igp,
5835 .release = e1000_release_swflag_ich8lan,
5836 .reset = e1000_phy_hw_reset_ich8lan,
5837 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5838 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5839 .write_reg = e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843 .acquire = e1000_acquire_nvm_ich8lan,
5844 .read = e1000_read_nvm_ich8lan,
5845 .release = e1000_release_nvm_ich8lan,
5846 .reload = e1000e_reload_nvm_generic,
5847 .update = e1000_update_nvm_checksum_ich8lan,
5848 .valid_led_default = e1000_valid_led_default_ich8lan,
5849 .validate = e1000_validate_nvm_checksum_ich8lan,
5850 .write = e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854 .acquire = e1000_acquire_nvm_ich8lan,
5855 .release = e1000_release_nvm_ich8lan,
5856 .read = e1000_read_nvm_spt,
5857 .update = e1000_update_nvm_checksum_spt,
5858 .reload = e1000e_reload_nvm_generic,
5859 .valid_led_default = e1000_valid_led_default_ich8lan,
5860 .validate = e1000_validate_nvm_checksum_ich8lan,
5861 .write = e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865 .mac = e1000_ich8lan,
5866 .flags = FLAG_HAS_WOL
5867 | FLAG_IS_ICH
5868 | FLAG_HAS_CTRLEXT_ON_LOAD
5869 | FLAG_HAS_AMT
5870 | FLAG_HAS_FLASH
5871 | FLAG_APME_IN_WUC,
5872 .pba = 8,
5873 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874 .get_variants = e1000_get_variants_ich8lan,
5875 .mac_ops = &ich8_mac_ops,
5876 .phy_ops = &ich8_phy_ops,
5877 .nvm_ops = &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881 .mac = e1000_ich9lan,
5882 .flags = FLAG_HAS_JUMBO_FRAMES
5883 | FLAG_IS_ICH
5884 | FLAG_HAS_WOL
5885 | FLAG_HAS_CTRLEXT_ON_LOAD
5886 | FLAG_HAS_AMT
5887 | FLAG_HAS_FLASH
5888 | FLAG_APME_IN_WUC,
5889 .pba = 18,
5890 .max_hw_frame_size = DEFAULT_JUMBO,
5891 .get_variants = e1000_get_variants_ich8lan,
5892 .mac_ops = &ich8_mac_ops,
5893 .phy_ops = &ich8_phy_ops,
5894 .nvm_ops = &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898 .mac = e1000_ich10lan,
5899 .flags = FLAG_HAS_JUMBO_FRAMES
5900 | FLAG_IS_ICH
5901 | FLAG_HAS_WOL
5902 | FLAG_HAS_CTRLEXT_ON_LOAD
5903 | FLAG_HAS_AMT
5904 | FLAG_HAS_FLASH
5905 | FLAG_APME_IN_WUC,
5906 .pba = 18,
5907 .max_hw_frame_size = DEFAULT_JUMBO,
5908 .get_variants = e1000_get_variants_ich8lan,
5909 .mac_ops = &ich8_mac_ops,
5910 .phy_ops = &ich8_phy_ops,
5911 .nvm_ops = &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915 .mac = e1000_pchlan,
5916 .flags = FLAG_IS_ICH
5917 | FLAG_HAS_WOL
5918 | FLAG_HAS_CTRLEXT_ON_LOAD
5919 | FLAG_HAS_AMT
5920 | FLAG_HAS_FLASH
5921 | FLAG_HAS_JUMBO_FRAMES
5922 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923 | FLAG_APME_IN_WUC,
5924 .flags2 = FLAG2_HAS_PHY_STATS,
5925 .pba = 26,
5926 .max_hw_frame_size = 4096,
5927 .get_variants = e1000_get_variants_ich8lan,
5928 .mac_ops = &ich8_mac_ops,
5929 .phy_ops = &ich8_phy_ops,
5930 .nvm_ops = &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934 .mac = e1000_pch2lan,
5935 .flags = FLAG_IS_ICH
5936 | FLAG_HAS_WOL
5937 | FLAG_HAS_HW_TIMESTAMP
5938 | FLAG_HAS_CTRLEXT_ON_LOAD
5939 | FLAG_HAS_AMT
5940 | FLAG_HAS_FLASH
5941 | FLAG_HAS_JUMBO_FRAMES
5942 | FLAG_APME_IN_WUC,
5943 .flags2 = FLAG2_HAS_PHY_STATS
5944 | FLAG2_HAS_EEE
5945 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946 .pba = 26,
5947 .max_hw_frame_size = 9022,
5948 .get_variants = e1000_get_variants_ich8lan,
5949 .mac_ops = &ich8_mac_ops,
5950 .phy_ops = &ich8_phy_ops,
5951 .nvm_ops = &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955 .mac = e1000_pch_lpt,
5956 .flags = FLAG_IS_ICH
5957 | FLAG_HAS_WOL
5958 | FLAG_HAS_HW_TIMESTAMP
5959 | FLAG_HAS_CTRLEXT_ON_LOAD
5960 | FLAG_HAS_AMT
5961 | FLAG_HAS_FLASH
5962 | FLAG_HAS_JUMBO_FRAMES
5963 | FLAG_APME_IN_WUC,
5964 .flags2 = FLAG2_HAS_PHY_STATS
5965 | FLAG2_HAS_EEE
5966 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967 .pba = 26,
5968 .max_hw_frame_size = 9022,
5969 .get_variants = e1000_get_variants_ich8lan,
5970 .mac_ops = &ich8_mac_ops,
5971 .phy_ops = &ich8_phy_ops,
5972 .nvm_ops = &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976 .mac = e1000_pch_spt,
5977 .flags = FLAG_IS_ICH
5978 | FLAG_HAS_WOL
5979 | FLAG_HAS_HW_TIMESTAMP
5980 | FLAG_HAS_CTRLEXT_ON_LOAD
5981 | FLAG_HAS_AMT
5982 | FLAG_HAS_FLASH
5983 | FLAG_HAS_JUMBO_FRAMES
5984 | FLAG_APME_IN_WUC,
5985 .flags2 = FLAG2_HAS_PHY_STATS
5986 | FLAG2_HAS_EEE,
5987 .pba = 26,
5988 .max_hw_frame_size = 9022,
5989 .get_variants = e1000_get_variants_ich8lan,
5990 .mac_ops = &ich8_mac_ops,
5991 .phy_ops = &ich8_phy_ops,
5992 .nvm_ops = &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996 .mac = e1000_pch_cnp,
5997 .flags = FLAG_IS_ICH
5998 | FLAG_HAS_WOL
5999 | FLAG_HAS_HW_TIMESTAMP
6000 | FLAG_HAS_CTRLEXT_ON_LOAD
6001 | FLAG_HAS_AMT
6002 | FLAG_HAS_FLASH
6003 | FLAG_HAS_JUMBO_FRAMES
6004 | FLAG_APME_IN_WUC,
6005 .flags2 = FLAG2_HAS_PHY_STATS
6006 | FLAG2_HAS_EEE,
6007 .pba = 26,
6008 .max_hw_frame_size = 9022,
6009 .get_variants = e1000_get_variants_ich8lan,
6010 .mac_ops = &ich8_mac_ops,
6011 .phy_ops = &ich8_phy_ops,
6012 .nvm_ops = &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016 .mac = e1000_pch_tgp,
6017 .flags = FLAG_IS_ICH
6018 | FLAG_HAS_WOL
6019 | FLAG_HAS_HW_TIMESTAMP
6020 | FLAG_HAS_CTRLEXT_ON_LOAD
6021 | FLAG_HAS_AMT
6022 | FLAG_HAS_FLASH
6023 | FLAG_HAS_JUMBO_FRAMES
6024 | FLAG_APME_IN_WUC,
6025 .flags2 = FLAG2_HAS_PHY_STATS
6026 | FLAG2_HAS_EEE,
6027 .pba = 26,
6028 .max_hw_frame_size = 9022,
6029 .get_variants = e1000_get_variants_ich8lan,
6030 .mac_ops = &ich8_mac_ops,
6031 .phy_ops = &ich8_phy_ops,
6032 .nvm_ops = &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036 .mac = e1000_pch_adp,
6037 .flags = FLAG_IS_ICH
6038 | FLAG_HAS_WOL
6039 | FLAG_HAS_HW_TIMESTAMP
6040 | FLAG_HAS_CTRLEXT_ON_LOAD
6041 | FLAG_HAS_AMT
6042 | FLAG_HAS_FLASH
6043 | FLAG_HAS_JUMBO_FRAMES
6044 | FLAG_APME_IN_WUC,
6045 .flags2 = FLAG2_HAS_PHY_STATS
6046 | FLAG2_HAS_EEE,
6047 .pba = 26,
6048 .max_hw_frame_size = 9022,
6049 .get_variants = e1000_get_variants_ich8lan,
6050 .mac_ops = &ich8_mac_ops,
6051 .phy_ops = &ich8_phy_ops,
6052 .nvm_ops = &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056 .mac = e1000_pch_mtp,
6057 .flags = FLAG_IS_ICH
6058 | FLAG_HAS_WOL
6059 | FLAG_HAS_HW_TIMESTAMP
6060 | FLAG_HAS_CTRLEXT_ON_LOAD
6061 | FLAG_HAS_AMT
6062 | FLAG_HAS_FLASH
6063 | FLAG_HAS_JUMBO_FRAMES
6064 | FLAG_APME_IN_WUC,
6065 .flags2 = FLAG2_HAS_PHY_STATS
6066 | FLAG2_HAS_EEE,
6067 .pba = 26,
6068 .max_hw_frame_size = 9022,
6069 .get_variants = e1000_get_variants_ich8lan,
6070 .mac_ops = &ich8_mac_ops,
6071 .phy_ops = &ich8_phy_ops,
6072 .nvm_ops = &spt_nvm_ops,
6073};
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59#include "e1000.h"
60
61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62/* Offset 04h HSFSTS */
63union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76};
77
78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79/* Offset 06h FLCTL */
80union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89};
90
91/* ICH Flash Region Access Permissions */
92union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100};
101
102/* ICH Flash Protected Region */
103union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113};
114
115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160{
161 return readw(hw->flash_address + reg);
162}
163
164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165{
166 return readl(hw->flash_address + reg);
167}
168
169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170{
171 writew(val, hw->flash_address + reg);
172}
173
174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175{
176 writel(val, hw->flash_address + reg);
177}
178
179#define er16flash(reg) __er16flash(hw, (reg))
180#define er32flash(reg) __er32flash(hw, (reg))
181#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184/**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195{
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239out:
240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
252 }
253 }
254
255 return true;
256}
257
258/**
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
261 *
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
264 **/
265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266{
267 u32 mac_reg;
268
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
274
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
285
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
290
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295 msleep(30);
296 }
297}
298
299/**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307{
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
311
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
314 */
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
319 */
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
322
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
327 }
328
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 */
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 if (e1000_phy_is_accessible_pchlan(hw))
337 break;
338
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
341 */
342 mac_reg = er32(CTRL_EXT);
343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 ew32(CTRL_EXT, mac_reg);
345
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
349 */
350 msleep(50);
351
352 /* fall-through */
353 case e1000_pch2lan:
354 if (e1000_phy_is_accessible_pchlan(hw))
355 break;
356
357 /* fall-through */
358 case e1000_pchlan:
359 if ((hw->mac.type == e1000_pchlan) &&
360 (fwsm & E1000_ICH_FWSM_FW_VALID))
361 break;
362
363 if (hw->phy.ops.check_reset_block(hw)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val = -E1000_ERR_PHY;
366 break;
367 }
368
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw);
371 if (hw->mac.type >= e1000_pch_lpt) {
372 if (e1000_phy_is_accessible_pchlan(hw))
373 break;
374
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
377 */
378 mac_reg = er32(CTRL_EXT);
379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 ew32(CTRL_EXT, mac_reg);
381
382 if (e1000_phy_is_accessible_pchlan(hw))
383 break;
384
385 ret_val = -E1000_ERR_PHY;
386 }
387 break;
388 default:
389 break;
390 }
391
392 hw->phy.ops.release(hw);
393 if (!ret_val) {
394
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw->phy.ops.check_reset_block(hw)) {
397 e_err("Reset blocked by ME\n");
398 goto out;
399 }
400
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
405 */
406 ret_val = e1000e_phy_hw_reset_generic(hw);
407 if (ret_val)
408 goto out;
409
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 * the PHY is in.
415 */
416 ret_val = hw->phy.ops.check_reset_block(hw);
417 if (ret_val)
418 e_err("ME blocked access to PHY after reset\n");
419 }
420
421out:
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw->mac.type == e1000_pch2lan) &&
424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw, false);
427 }
428
429 return ret_val;
430}
431
432/**
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
435 *
436 * Initialize family-specific PHY parameters and function pointers.
437 **/
438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439{
440 struct e1000_phy_info *phy = &hw->phy;
441 s32 ret_val;
442
443 phy->addr = 1;
444 phy->reset_delay_us = 100;
445
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.write_reg = e1000_write_phy_reg_hv;
453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 phy->ops.power_up = e1000_power_up_phy_copper;
456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458
459 phy->id = e1000_phy_unknown;
460
461 ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 if (ret_val)
463 return ret_val;
464
465 if (phy->id == e1000_phy_unknown)
466 switch (hw->mac.type) {
467 default:
468 ret_val = e1000e_get_phy_id(hw);
469 if (ret_val)
470 return ret_val;
471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 break;
473 /* fall-through */
474 case e1000_pch2lan:
475 case e1000_pch_lpt:
476 case e1000_pch_spt:
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
479 */
480 ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 if (ret_val)
482 return ret_val;
483 ret_val = e1000e_get_phy_id(hw);
484 if (ret_val)
485 return ret_val;
486 break;
487 }
488 phy->type = e1000e_get_phy_type_from_id(phy->id);
489
490 switch (phy->type) {
491 case e1000_phy_82577:
492 case e1000_phy_82579:
493 case e1000_phy_i217:
494 phy->ops.check_polarity = e1000_check_polarity_82577;
495 phy->ops.force_speed_duplex =
496 e1000_phy_force_speed_duplex_82577;
497 phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 phy->ops.get_info = e1000_get_phy_info_82577;
499 phy->ops.commit = e1000e_phy_sw_reset;
500 break;
501 case e1000_phy_82578:
502 phy->ops.check_polarity = e1000_check_polarity_m88;
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 phy->ops.get_info = e1000e_get_phy_info_m88;
506 break;
507 default:
508 ret_val = -E1000_ERR_PHY;
509 break;
510 }
511
512 return ret_val;
513}
514
515/**
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
518 *
519 * Initialize family-specific PHY parameters and function pointers.
520 **/
521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522{
523 struct e1000_phy_info *phy = &hw->phy;
524 s32 ret_val;
525 u16 i = 0;
526
527 phy->addr = 1;
528 phy->reset_delay_us = 100;
529
530 phy->ops.power_up = e1000_power_up_phy_copper;
531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
535 */
536 ret_val = e1000e_determine_phy_address(hw);
537 if (ret_val) {
538 phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 ret_val = e1000e_determine_phy_address(hw);
541 if (ret_val) {
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
543 return ret_val;
544 }
545 }
546
547 phy->id = 0;
548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 (i++ < 100)) {
550 usleep_range(1000, 2000);
551 ret_val = e1000e_get_phy_id(hw);
552 if (ret_val)
553 return ret_val;
554 }
555
556 /* Verify phy id */
557 switch (phy->id) {
558 case IGP03E1000_E_PHY_ID:
559 phy->type = e1000_phy_igp_3;
560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 phy->ops.get_info = e1000e_get_phy_info_igp;
564 phy->ops.check_polarity = e1000_check_polarity_igp;
565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 break;
567 case IFE_E_PHY_ID:
568 case IFE_PLUS_E_PHY_ID:
569 case IFE_C_E_PHY_ID:
570 phy->type = e1000_phy_ife;
571 phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 phy->ops.get_info = e1000_get_phy_info_ife;
573 phy->ops.check_polarity = e1000_check_polarity_ife;
574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 break;
576 case BME1000_E_PHY_ID:
577 phy->type = e1000_phy_bm;
578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.commit = e1000e_phy_sw_reset;
582 phy->ops.get_info = e1000e_get_phy_info_m88;
583 phy->ops.check_polarity = e1000_check_polarity_m88;
584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 break;
586 default:
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591}
592
593/**
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
596 *
597 * Initialize family-specific NVM parameters and function
598 * pointers.
599 **/
600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601{
602 struct e1000_nvm_info *nvm = &hw->nvm;
603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 u32 gfpreg, sector_base_addr, sector_end_addr;
605 u16 i;
606 u32 nvm_size;
607
608 nvm->type = e1000_nvm_flash_sw;
609
610 if (hw->mac.type == e1000_pch_spt) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
616 */
617 nvm->flash_base_addr = 0;
618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER;
620 nvm->flash_bank_size = nvm_size / 2;
621 /* Adjust to word count */
622 nvm->flash_bank_size /= sizeof(u16);
623 /* Set the base address for flash register access */
624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 } else {
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw->flash_address) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG;
630 }
631
632 gfpreg = er32flash(ICH_FLASH_GFPREG);
633
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
636 * the overall size.
637 */
638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640
641 /* flash_base_addr is byte-aligned */
642 nvm->flash_base_addr = sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT;
644
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
647 */
648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 << FLASH_SECTOR_ADDR_SHIFT);
650 nvm->flash_bank_size /= 2;
651 /* Adjust to word count */
652 nvm->flash_bank_size /= sizeof(u16);
653 }
654
655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656
657 /* Clear shadow ram */
658 for (i = 0; i < nvm->word_size; i++) {
659 dev_spec->shadow_ram[i].modified = false;
660 dev_spec->shadow_ram[i].value = 0xFFFF;
661 }
662
663 return 0;
664}
665
666/**
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
669 *
670 * Initialize family-specific MAC parameters and function
671 * pointers.
672 **/
673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674{
675 struct e1000_mac_info *mac = &hw->mac;
676
677 /* Set media type function pointer */
678 hw->phy.media_type = e1000_media_type_copper;
679
680 /* Set mta register count */
681 mac->mta_reg_count = 32;
682 /* Set rar entry count */
683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 if (mac->type == e1000_ich8lan)
685 mac->rar_entry_count--;
686 /* FWSM register */
687 mac->has_fwsm = true;
688 /* ARC subsystem not supported */
689 mac->arc_subsystem_valid = false;
690 /* Adaptive IFS supported */
691 mac->adaptive_ifs = true;
692
693 /* LED and other operations */
694 switch (mac->type) {
695 case e1000_ich8lan:
696 case e1000_ich9lan:
697 case e1000_ich10lan:
698 /* check management mode */
699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 /* ID LED init */
701 mac->ops.id_led_init = e1000e_id_led_init_generic;
702 /* blink LED */
703 mac->ops.blink_led = e1000e_blink_led_generic;
704 /* setup LED */
705 mac->ops.setup_led = e1000e_setup_led_generic;
706 /* cleanup LED */
707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 /* turn on/off LED */
709 mac->ops.led_on = e1000_led_on_ich8lan;
710 mac->ops.led_off = e1000_led_off_ich8lan;
711 break;
712 case e1000_pch2lan:
713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 mac->ops.rar_set = e1000_rar_set_pch2lan;
715 /* fall-through */
716 case e1000_pch_lpt:
717 case e1000_pch_spt:
718 case e1000_pchlan:
719 /* check management mode */
720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 /* ID LED init */
722 mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 /* setup LED */
724 mac->ops.setup_led = e1000_setup_led_pchlan;
725 /* cleanup LED */
726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 /* turn on/off LED */
728 mac->ops.led_on = e1000_led_on_pchlan;
729 mac->ops.led_off = e1000_led_off_pchlan;
730 break;
731 default:
732 break;
733 }
734
735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 mac->ops.setup_physical_interface =
739 e1000_setup_copper_link_pch_lpt;
740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 }
742
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac->type == e1000_ich8lan)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746
747 return 0;
748}
749
750/**
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
756 *
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
758 **/
759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 u16 *data, bool read)
761{
762 s32 ret_val;
763
764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 if (ret_val)
766 return ret_val;
767
768 if (read)
769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 else
771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772
773 return ret_val;
774}
775
776/**
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
781 *
782 * Assumes the SW/FW/HW Semaphore is already acquired.
783 **/
784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785{
786 return __e1000_access_emi_reg_locked(hw, addr, data, true);
787}
788
789/**
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
794 *
795 * Assumes the SW/FW/HW Semaphore is already acquired.
796 **/
797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798{
799 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800}
801
802/**
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
805 *
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
809 *
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
815 **/
816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817{
818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 s32 ret_val;
820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821
822 switch (hw->phy.type) {
823 case e1000_phy_82579:
824 lpa = I82579_EEE_LP_ABILITY;
825 pcs_status = I82579_EEE_PCS_STATUS;
826 adv_addr = I82579_EEE_ADVERTISEMENT;
827 break;
828 case e1000_phy_i217:
829 lpa = I217_EEE_LP_ABILITY;
830 pcs_status = I217_EEE_PCS_STATUS;
831 adv_addr = I217_EEE_ADVERTISEMENT;
832 break;
833 default:
834 return 0;
835 }
836
837 ret_val = hw->phy.ops.acquire(hw);
838 if (ret_val)
839 return ret_val;
840
841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 if (ret_val)
843 goto release;
844
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec->eee_disable) {
850 /* Save off link partner's EEE ability */
851 ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 &dev_spec->eee_lp_ability);
853 if (ret_val)
854 goto release;
855
856 /* Read EEE advertisement */
857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 if (ret_val)
859 goto release;
860
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
863 */
864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 e1e_rphy_locked(hw, MII_LPA, &data);
869 if (data & LPA_100FULL)
870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 else
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
874 * is not advertised.
875 */
876 dev_spec->eee_lp_ability &=
877 ~I82579_EEE_100_SUPPORTED;
878 }
879 }
880
881 if (hw->phy.type == e1000_phy_82579) {
882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 &data);
884 if (ret_val)
885 goto release;
886
887 data &= ~I82579_LPI_100_PLL_SHUT;
888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 data);
890 }
891
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 if (ret_val)
895 goto release;
896
897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898release:
899 hw->phy.ops.release(hw);
900
901 return ret_val;
902}
903
904/**
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
908 *
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
914 **/
915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916{
917 u32 fextnvm6 = er32(FEXTNVM6);
918 u32 status = er32(STATUS);
919 s32 ret_val = 0;
920 u16 reg;
921
922 if (link && (status & E1000_STATUS_SPEED_1000)) {
923 ret_val = hw->phy.ops.acquire(hw);
924 if (ret_val)
925 return ret_val;
926
927 ret_val =
928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 ®);
930 if (ret_val)
931 goto release;
932
933 ret_val =
934 e1000e_write_kmrn_reg_locked(hw,
935 E1000_KMRNCTRLSTA_K1_CONFIG,
936 reg &
937 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 if (ret_val)
939 goto release;
940
941 usleep_range(10, 20);
942
943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944
945 ret_val =
946 e1000e_write_kmrn_reg_locked(hw,
947 E1000_KMRNCTRLSTA_K1_CONFIG,
948 reg);
949release:
950 hw->phy.ops.release(hw);
951 } else {
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954
955 if ((hw->phy.revision > 5) || !link ||
956 ((status & E1000_STATUS_SPEED_100) &&
957 (status & E1000_STATUS_FD)))
958 goto update_fextnvm6;
959
960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
961 if (ret_val)
962 return ret_val;
963
964 /* Clear link status transmit timeout */
965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966
967 if (status & E1000_STATUS_SPEED_100) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 } else {
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
975 reg |= 50 <<
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 }
981
982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 if (ret_val)
984 return ret_val;
985
986update_fextnvm6:
987 ew32(FEXTNVM6, fextnvm6);
988 }
989
990 return ret_val;
991}
992
993/**
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
997 *
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 u16 lat_enc = 0; /* latency encoded */
1014
1015 if (link) {
1016 u16 speed, duplex, scale = 0;
1017 u16 max_snoop, max_nosnoop;
1018 u16 max_ltr_enc; /* max LTR latency encoded */
1019 u64 value;
1020 u32 rxa;
1021
1022 if (!hw->adapter->max_frame_size) {
1023 e_dbg("max_frame_size not set.\n");
1024 return -E1000_ERR_CONFIG;
1025 }
1026
1027 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028 if (!speed) {
1029 e_dbg("Speed not set.\n");
1030 return -E1000_ERR_CONFIG;
1031 }
1032
1033 /* Rx Packet Buffer Allocation size (KB) */
1034 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036 /* Determine the maximum latency tolerated by the device.
1037 *
1038 * Per the PCIe spec, the tolerated latencies are encoded as
1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043 */
1044 rxa *= 512;
1045 value = (rxa > hw->adapter->max_frame_size) ?
1046 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047 0;
1048
1049 while (value > PCI_LTR_VALUE_MASK) {
1050 scale++;
1051 value = DIV_ROUND_UP(value, (1 << 5));
1052 }
1053 if (scale > E1000_LTRV_SCALE_MAX) {
1054 e_dbg("Invalid LTR latency scale %d\n", scale);
1055 return -E1000_ERR_CONFIG;
1056 }
1057 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059 /* Determine the maximum latency tolerated by the platform */
1060 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061 &max_snoop);
1062 pci_read_config_word(hw->adapter->pdev,
1063 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066 if (lat_enc > max_ltr_enc)
1067 lat_enc = max_ltr_enc;
1068 }
1069
1070 /* Set Snoop and No-Snoop latencies the same */
1071 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072 ew32(LTRV, reg);
1073
1074 return 0;
1075}
1076
1077/**
1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 * @hw: pointer to the HW structure
1080 * @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 * When link is down, configure ULP mode to significantly reduce the power
1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1084 * ME firmware to start the ULP configuration. If not on an ME enabled
1085 * system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089 u32 mac_reg;
1090 s32 ret_val = 0;
1091 u16 phy_reg;
1092 u16 oem_reg = 0;
1093
1094 if ((hw->mac.type < e1000_pch_lpt) ||
1095 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100 return 0;
1101
1102 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg = er32(H2ME);
1105 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 ew32(H2ME, mac_reg);
1107
1108 goto out;
1109 }
1110
1111 if (!to_sx) {
1112 int i = 0;
1113
1114 /* Poll up to 5 seconds for Cable Disconnected indication */
1115 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116 /* Bail if link is re-acquired */
1117 if (er32(STATUS) & E1000_STATUS_LU)
1118 return -E1000_ERR_PHY;
1119
1120 if (i++ == 100)
1121 break;
1122
1123 msleep(50);
1124 }
1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126 (er32(FEXT) &
1127 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128 }
1129
1130 ret_val = hw->phy.ops.acquire(hw);
1131 if (ret_val)
1132 goto out;
1133
1134 /* Force SMBus mode in PHY */
1135 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136 if (ret_val)
1137 goto release;
1138 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141 /* Force SMBus mode in MAC */
1142 mac_reg = er32(CTRL_EXT);
1143 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144 ew32(CTRL_EXT, mac_reg);
1145
1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1147 * LPLU and disable Gig speed when entering ULP
1148 */
1149 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151 &oem_reg);
1152 if (ret_val)
1153 goto release;
1154
1155 phy_reg = oem_reg;
1156 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 phy_reg);
1160
1161 if (ret_val)
1162 goto release;
1163 }
1164
1165 /* Set Inband ULP Exit, Reset to SMBus mode and
1166 * Disable SMBus Release on PERST# in PHY
1167 */
1168 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169 if (ret_val)
1170 goto release;
1171 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173 if (to_sx) {
1174 if (er32(WUFC) & E1000_WUFC_LNKC)
1175 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176 else
1177 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181 } else {
1182 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185 }
1186 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188 /* Set Disable SMBus Release on PERST# in MAC */
1189 mac_reg = er32(FEXTNVM7);
1190 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191 ew32(FEXTNVM7, mac_reg);
1192
1193 /* Commit ULP changes in PHY by starting auto ULP configuration */
1194 phy_reg |= I218_ULP_CONFIG1_START;
1195 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200 oem_reg);
1201 if (ret_val)
1202 goto release;
1203 }
1204
1205release:
1206 hw->phy.ops.release(hw);
1207out:
1208 if (ret_val)
1209 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210 else
1211 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213 return ret_val;
1214}
1215
1216/**
1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 * @hw: pointer to the HW structure
1219 * @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 * Un-configure ULP mode when link is up, the system is transitioned from
1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1223 * system, poll for an indication from ME that ULP has been un-configured.
1224 * If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 * During nominal operation, this function is called when link is acquired
1227 * to disable ULP mode (force=false); otherwise, for example when unloading
1228 * the driver or during Sx->S0 transitions, this is called with force=true
1229 * to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233 s32 ret_val = 0;
1234 u32 mac_reg;
1235 u16 phy_reg;
1236 int i = 0;
1237
1238 if ((hw->mac.type < e1000_pch_lpt) ||
1239 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244 return 0;
1245
1246 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247 if (force) {
1248 /* Request ME un-configure ULP mode in the PHY */
1249 mac_reg = er32(H2ME);
1250 mac_reg &= ~E1000_H2ME_ULP;
1251 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252 ew32(H2ME, mac_reg);
1253 }
1254
1255 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257 if (i++ == 30) {
1258 ret_val = -E1000_ERR_PHY;
1259 goto out;
1260 }
1261
1262 usleep_range(10000, 20000);
1263 }
1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265
1266 if (force) {
1267 mac_reg = er32(H2ME);
1268 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269 ew32(H2ME, mac_reg);
1270 } else {
1271 /* Clear H2ME.ULP after ME ULP configuration */
1272 mac_reg = er32(H2ME);
1273 mac_reg &= ~E1000_H2ME_ULP;
1274 ew32(H2ME, mac_reg);
1275 }
1276
1277 goto out;
1278 }
1279
1280 ret_val = hw->phy.ops.acquire(hw);
1281 if (ret_val)
1282 goto out;
1283
1284 if (force)
1285 /* Toggle LANPHYPC Value bit */
1286 e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288 /* Unforce SMBus mode in PHY */
1289 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290 if (ret_val) {
1291 /* The MAC might be in PCIe mode, so temporarily force to
1292 * SMBus mode in order to access the PHY.
1293 */
1294 mac_reg = er32(CTRL_EXT);
1295 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296 ew32(CTRL_EXT, mac_reg);
1297
1298 msleep(50);
1299
1300 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301 &phy_reg);
1302 if (ret_val)
1303 goto release;
1304 }
1305 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308 /* Unforce SMBus mode in MAC */
1309 mac_reg = er32(CTRL_EXT);
1310 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311 ew32(CTRL_EXT, mac_reg);
1312
1313 /* When ULP mode was previously entered, K1 was disabled by the
1314 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1315 */
1316 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317 if (ret_val)
1318 goto release;
1319 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322 /* Clear ULP enabled configuration */
1323 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324 if (ret_val)
1325 goto release;
1326 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327 I218_ULP_CONFIG1_STICKY_ULP |
1328 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329 I218_ULP_CONFIG1_WOL_HOST |
1330 I218_ULP_CONFIG1_INBAND_EXIT |
1331 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336 /* Commit ULP changes by starting auto ULP configuration */
1337 phy_reg |= I218_ULP_CONFIG1_START;
1338 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340 /* Clear Disable SMBus Release on PERST# in MAC */
1341 mac_reg = er32(FEXTNVM7);
1342 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343 ew32(FEXTNVM7, mac_reg);
1344
1345release:
1346 hw->phy.ops.release(hw);
1347 if (force) {
1348 e1000_phy_hw_reset(hw);
1349 msleep(50);
1350 }
1351out:
1352 if (ret_val)
1353 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354 else
1355 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356
1357 return ret_val;
1358}
1359
1360/**
1361 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 * @hw: pointer to the HW structure
1363 *
1364 * Checks to see of the link status of the hardware has changed. If a
1365 * change in link status has been detected, then we read the PHY registers
1366 * to get the current speed/duplex if link exists.
1367 **/
1368static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369{
1370 struct e1000_mac_info *mac = &hw->mac;
1371 s32 ret_val, tipg_reg = 0;
1372 u16 emi_addr, emi_val = 0;
1373 bool link;
1374 u16 phy_reg;
1375
1376 /* We only want to go out to the PHY registers to see if Auto-Neg
1377 * has completed and/or if our link status has changed. The
1378 * get_link_status flag is set upon receiving a Link Status
1379 * Change or Rx Sequence Error interrupt.
1380 */
1381 if (!mac->get_link_status)
1382 return 0;
1383
1384 /* First we want to see if the MII Status Register reports
1385 * link. If so, then we want to get the current speed/duplex
1386 * of the PHY.
1387 */
1388 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389 if (ret_val)
1390 return ret_val;
1391
1392 if (hw->mac.type == e1000_pchlan) {
1393 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394 if (ret_val)
1395 return ret_val;
1396 }
1397
1398 /* When connected at 10Mbps half-duplex, some parts are excessively
1399 * aggressive resulting in many collisions. To avoid this, increase
1400 * the IPG and reduce Rx latency in the PHY.
1401 */
1402 if (((hw->mac.type == e1000_pch2lan) ||
1403 (hw->mac.type == e1000_pch_lpt) ||
1404 (hw->mac.type == e1000_pch_spt)) && link) {
1405 u16 speed, duplex;
1406
1407 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408 tipg_reg = er32(TIPG);
1409 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410
1411 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412 tipg_reg |= 0xFF;
1413 /* Reduce Rx latency in analog PHY */
1414 emi_val = 0;
1415 } else if (hw->mac.type == e1000_pch_spt &&
1416 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417 tipg_reg |= 0xC;
1418 emi_val = 1;
1419 } else {
1420
1421 /* Roll back the default values */
1422 tipg_reg |= 0x08;
1423 emi_val = 1;
1424 }
1425
1426 ew32(TIPG, tipg_reg);
1427
1428 ret_val = hw->phy.ops.acquire(hw);
1429 if (ret_val)
1430 return ret_val;
1431
1432 if (hw->mac.type == e1000_pch2lan)
1433 emi_addr = I82579_RX_CONFIG;
1434 else
1435 emi_addr = I217_RX_CONFIG;
1436 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437
1438 if (hw->mac.type == e1000_pch_lpt ||
1439 hw->mac.type == e1000_pch_spt) {
1440 u16 phy_reg;
1441
1442 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 if (speed == SPEED_100 || speed == SPEED_10)
1445 phy_reg |= 0x3E8;
1446 else
1447 phy_reg |= 0xFA;
1448 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449 }
1450 hw->phy.ops.release(hw);
1451
1452 if (ret_val)
1453 return ret_val;
1454
1455 if (hw->mac.type == e1000_pch_spt) {
1456 u16 data;
1457 u16 ptr_gap;
1458
1459 if (speed == SPEED_1000) {
1460 ret_val = hw->phy.ops.acquire(hw);
1461 if (ret_val)
1462 return ret_val;
1463
1464 ret_val = e1e_rphy_locked(hw,
1465 PHY_REG(776, 20),
1466 &data);
1467 if (ret_val) {
1468 hw->phy.ops.release(hw);
1469 return ret_val;
1470 }
1471
1472 ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 if (ptr_gap < 0x18) {
1474 data &= ~(0x3FF << 2);
1475 data |= (0x18 << 2);
1476 ret_val =
1477 e1e_wphy_locked(hw,
1478 PHY_REG(776, 20),
1479 data);
1480 }
1481 hw->phy.ops.release(hw);
1482 if (ret_val)
1483 return ret_val;
1484 } else {
1485 ret_val = hw->phy.ops.acquire(hw);
1486 if (ret_val)
1487 return ret_val;
1488
1489 ret_val = e1e_wphy_locked(hw,
1490 PHY_REG(776, 20),
1491 0xC023);
1492 hw->phy.ops.release(hw);
1493 if (ret_val)
1494 return ret_val;
1495
1496 }
1497 }
1498 }
1499
1500 /* I217 Packet Loss issue:
1501 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 * on power up.
1503 * Set the Beacon Duration for I217 to 8 usec
1504 */
1505 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506 u32 mac_reg;
1507
1508 mac_reg = er32(FEXTNVM4);
1509 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 ew32(FEXTNVM4, mac_reg);
1512 }
1513
1514 /* Work-around I218 hang issue */
1515 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 if (ret_val)
1521 return ret_val;
1522 }
1523 if ((hw->mac.type == e1000_pch_lpt) ||
1524 (hw->mac.type == e1000_pch_spt)) {
1525 /* Set platform power management values for
1526 * Latency Tolerance Reporting (LTR)
1527 */
1528 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529 if (ret_val)
1530 return ret_val;
1531 }
1532
1533 /* Clear link partner's EEE ability */
1534 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536 /* FEXTNVM6 K1-off workaround */
1537 if (hw->mac.type == e1000_pch_spt) {
1538 u32 pcieanacfg = er32(PCIEANACFG);
1539 u32 fextnvm6 = er32(FEXTNVM6);
1540
1541 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543 else
1544 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1545
1546 ew32(FEXTNVM6, fextnvm6);
1547 }
1548
1549 if (!link)
1550 return 0; /* No link detected */
1551
1552 mac->get_link_status = false;
1553
1554 switch (hw->mac.type) {
1555 case e1000_pch2lan:
1556 ret_val = e1000_k1_workaround_lv(hw);
1557 if (ret_val)
1558 return ret_val;
1559 /* fall-thru */
1560 case e1000_pchlan:
1561 if (hw->phy.type == e1000_phy_82578) {
1562 ret_val = e1000_link_stall_workaround_hv(hw);
1563 if (ret_val)
1564 return ret_val;
1565 }
1566
1567 /* Workaround for PCHx parts in half-duplex:
1568 * Set the number of preambles removed from the packet
1569 * when it is passed from the PHY to the MAC to prevent
1570 * the MAC from misinterpreting the packet type.
1571 */
1572 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574
1575 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577
1578 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579 break;
1580 default:
1581 break;
1582 }
1583
1584 /* Check if there was DownShift, must be checked
1585 * immediately after link-up
1586 */
1587 e1000e_check_downshift(hw);
1588
1589 /* Enable/Disable EEE after link up */
1590 if (hw->phy.type > e1000_phy_82579) {
1591 ret_val = e1000_set_eee_pchlan(hw);
1592 if (ret_val)
1593 return ret_val;
1594 }
1595
1596 /* If we are forcing speed/duplex, then we simply return since
1597 * we have already determined whether we have link or not.
1598 */
1599 if (!mac->autoneg)
1600 return -E1000_ERR_CONFIG;
1601
1602 /* Auto-Neg is enabled. Auto Speed Detection takes care
1603 * of MAC speed/duplex configuration. So we only need to
1604 * configure Collision Distance in the MAC.
1605 */
1606 mac->ops.config_collision_dist(hw);
1607
1608 /* Configure Flow Control now that Auto-Neg has completed.
1609 * First, we need to restore the desired flow control
1610 * settings because we may have had to re-autoneg with a
1611 * different link partner.
1612 */
1613 ret_val = e1000e_config_fc_after_link_up(hw);
1614 if (ret_val)
1615 e_dbg("Error configuring flow control\n");
1616
1617 return ret_val;
1618}
1619
1620static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621{
1622 struct e1000_hw *hw = &adapter->hw;
1623 s32 rc;
1624
1625 rc = e1000_init_mac_params_ich8lan(hw);
1626 if (rc)
1627 return rc;
1628
1629 rc = e1000_init_nvm_params_ich8lan(hw);
1630 if (rc)
1631 return rc;
1632
1633 switch (hw->mac.type) {
1634 case e1000_ich8lan:
1635 case e1000_ich9lan:
1636 case e1000_ich10lan:
1637 rc = e1000_init_phy_params_ich8lan(hw);
1638 break;
1639 case e1000_pchlan:
1640 case e1000_pch2lan:
1641 case e1000_pch_lpt:
1642 case e1000_pch_spt:
1643 rc = e1000_init_phy_params_pchlan(hw);
1644 break;
1645 default:
1646 break;
1647 }
1648 if (rc)
1649 return rc;
1650
1651 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653 */
1654 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659
1660 hw->mac.ops.blink_led = NULL;
1661 }
1662
1663 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664 (adapter->hw.phy.type != e1000_phy_ife))
1665 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666
1667 /* Enable workaround for 82579 w/ ME enabled */
1668 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671
1672 return 0;
1673}
1674
1675static DEFINE_MUTEX(nvm_mutex);
1676
1677/**
1678 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 * @hw: pointer to the HW structure
1680 *
1681 * Acquires the mutex for performing NVM operations.
1682 **/
1683static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684{
1685 mutex_lock(&nvm_mutex);
1686
1687 return 0;
1688}
1689
1690/**
1691 * e1000_release_nvm_ich8lan - Release NVM mutex
1692 * @hw: pointer to the HW structure
1693 *
1694 * Releases the mutex used while performing NVM operations.
1695 **/
1696static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697{
1698 mutex_unlock(&nvm_mutex);
1699}
1700
1701/**
1702 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 * @hw: pointer to the HW structure
1704 *
1705 * Acquires the software control flag for performing PHY and select
1706 * MAC CSR accesses.
1707 **/
1708static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709{
1710 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711 s32 ret_val = 0;
1712
1713 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714 &hw->adapter->state)) {
1715 e_dbg("contention for Phy access\n");
1716 return -E1000_ERR_PHY;
1717 }
1718
1719 while (timeout) {
1720 extcnf_ctrl = er32(EXTCNF_CTRL);
1721 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722 break;
1723
1724 mdelay(1);
1725 timeout--;
1726 }
1727
1728 if (!timeout) {
1729 e_dbg("SW has already locked the resource.\n");
1730 ret_val = -E1000_ERR_CONFIG;
1731 goto out;
1732 }
1733
1734 timeout = SW_FLAG_TIMEOUT;
1735
1736 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737 ew32(EXTCNF_CTRL, extcnf_ctrl);
1738
1739 while (timeout) {
1740 extcnf_ctrl = er32(EXTCNF_CTRL);
1741 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742 break;
1743
1744 mdelay(1);
1745 timeout--;
1746 }
1747
1748 if (!timeout) {
1749 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750 er32(FWSM), extcnf_ctrl);
1751 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752 ew32(EXTCNF_CTRL, extcnf_ctrl);
1753 ret_val = -E1000_ERR_CONFIG;
1754 goto out;
1755 }
1756
1757out:
1758 if (ret_val)
1759 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760
1761 return ret_val;
1762}
1763
1764/**
1765 * e1000_release_swflag_ich8lan - Release software control flag
1766 * @hw: pointer to the HW structure
1767 *
1768 * Releases the software control flag for performing PHY and select
1769 * MAC CSR accesses.
1770 **/
1771static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772{
1773 u32 extcnf_ctrl;
1774
1775 extcnf_ctrl = er32(EXTCNF_CTRL);
1776
1777 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779 ew32(EXTCNF_CTRL, extcnf_ctrl);
1780 } else {
1781 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782 }
1783
1784 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785}
1786
1787/**
1788 * e1000_check_mng_mode_ich8lan - Checks management mode
1789 * @hw: pointer to the HW structure
1790 *
1791 * This checks if the adapter has any manageability enabled.
1792 * This is a function pointer entry point only called by read/write
1793 * routines for the PHY and NVM parts.
1794 **/
1795static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796{
1797 u32 fwsm;
1798
1799 fwsm = er32(FWSM);
1800 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801 ((fwsm & E1000_FWSM_MODE_MASK) ==
1802 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803}
1804
1805/**
1806 * e1000_check_mng_mode_pchlan - Checks management mode
1807 * @hw: pointer to the HW structure
1808 *
1809 * This checks if the adapter has iAMT enabled.
1810 * This is a function pointer entry point only called by read/write
1811 * routines for the PHY and NVM parts.
1812 **/
1813static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814{
1815 u32 fwsm;
1816
1817 fwsm = er32(FWSM);
1818 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820}
1821
1822/**
1823 * e1000_rar_set_pch2lan - Set receive address register
1824 * @hw: pointer to the HW structure
1825 * @addr: pointer to the receive address
1826 * @index: receive address array register
1827 *
1828 * Sets the receive address array register at index to the address passed
1829 * in by addr. For 82579, RAR[0] is the base address register that is to
1830 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 * Use SHRA[0-3] in place of those reserved for ME.
1832 **/
1833static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834{
1835 u32 rar_low, rar_high;
1836
1837 /* HW expects these in little endian so we reverse the byte order
1838 * from network order (big endian) to little endian
1839 */
1840 rar_low = ((u32)addr[0] |
1841 ((u32)addr[1] << 8) |
1842 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843
1844 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846 /* If MAC address zero, no need to set the AV bit */
1847 if (rar_low || rar_high)
1848 rar_high |= E1000_RAH_AV;
1849
1850 if (index == 0) {
1851 ew32(RAL(index), rar_low);
1852 e1e_flush();
1853 ew32(RAH(index), rar_high);
1854 e1e_flush();
1855 return 0;
1856 }
1857
1858 /* RAR[1-6] are owned by manageability. Skip those and program the
1859 * next address into the SHRA register array.
1860 */
1861 if (index < (u32)(hw->mac.rar_entry_count)) {
1862 s32 ret_val;
1863
1864 ret_val = e1000_acquire_swflag_ich8lan(hw);
1865 if (ret_val)
1866 goto out;
1867
1868 ew32(SHRAL(index - 1), rar_low);
1869 e1e_flush();
1870 ew32(SHRAH(index - 1), rar_high);
1871 e1e_flush();
1872
1873 e1000_release_swflag_ich8lan(hw);
1874
1875 /* verify the register updates */
1876 if ((er32(SHRAL(index - 1)) == rar_low) &&
1877 (er32(SHRAH(index - 1)) == rar_high))
1878 return 0;
1879
1880 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881 (index - 1), er32(FWSM));
1882 }
1883
1884out:
1885 e_dbg("Failed to write receive address at index %d\n", index);
1886 return -E1000_ERR_CONFIG;
1887}
1888
1889/**
1890 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 * @hw: pointer to the HW structure
1892 *
1893 * Get the number of available receive registers that the Host can
1894 * program. SHRA[0-10] are the shared receive address registers
1895 * that are shared between the Host and manageability engine (ME).
1896 * ME can reserve any number of addresses and the host needs to be
1897 * able to tell how many available registers it has access to.
1898 **/
1899static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900{
1901 u32 wlock_mac;
1902 u32 num_entries;
1903
1904 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907 switch (wlock_mac) {
1908 case 0:
1909 /* All SHRA[0..10] and RAR[0] available */
1910 num_entries = hw->mac.rar_entry_count;
1911 break;
1912 case 1:
1913 /* Only RAR[0] available */
1914 num_entries = 1;
1915 break;
1916 default:
1917 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918 num_entries = wlock_mac + 1;
1919 break;
1920 }
1921
1922 return num_entries;
1923}
1924
1925/**
1926 * e1000_rar_set_pch_lpt - Set receive address registers
1927 * @hw: pointer to the HW structure
1928 * @addr: pointer to the receive address
1929 * @index: receive address array register
1930 *
1931 * Sets the receive address register array at index to the address passed
1932 * in by addr. For LPT, RAR[0] is the base address register that is to
1933 * contain the MAC address. SHRA[0-10] are the shared receive address
1934 * registers that are shared between the Host and manageability engine (ME).
1935 **/
1936static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937{
1938 u32 rar_low, rar_high;
1939 u32 wlock_mac;
1940
1941 /* HW expects these in little endian so we reverse the byte order
1942 * from network order (big endian) to little endian
1943 */
1944 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946
1947 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948
1949 /* If MAC address zero, no need to set the AV bit */
1950 if (rar_low || rar_high)
1951 rar_high |= E1000_RAH_AV;
1952
1953 if (index == 0) {
1954 ew32(RAL(index), rar_low);
1955 e1e_flush();
1956 ew32(RAH(index), rar_high);
1957 e1e_flush();
1958 return 0;
1959 }
1960
1961 /* The manageability engine (ME) can lock certain SHRAR registers that
1962 * it is using - those registers are unavailable for use.
1963 */
1964 if (index < hw->mac.rar_entry_count) {
1965 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968 /* Check if all SHRAR registers are locked */
1969 if (wlock_mac == 1)
1970 goto out;
1971
1972 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973 s32 ret_val;
1974
1975 ret_val = e1000_acquire_swflag_ich8lan(hw);
1976
1977 if (ret_val)
1978 goto out;
1979
1980 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981 e1e_flush();
1982 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983 e1e_flush();
1984
1985 e1000_release_swflag_ich8lan(hw);
1986
1987 /* verify the register updates */
1988 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990 return 0;
1991 }
1992 }
1993
1994out:
1995 e_dbg("Failed to write receive address at index %d\n", index);
1996 return -E1000_ERR_CONFIG;
1997}
1998
1999/**
2000 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 * @hw: pointer to the HW structure
2002 *
2003 * Checks if firmware is blocking the reset of the PHY.
2004 * This is a function pointer entry point only called by
2005 * reset routines.
2006 **/
2007static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008{
2009 bool blocked = false;
2010 int i = 0;
2011
2012 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013 (i++ < 30))
2014 usleep_range(10000, 20000);
2015 return blocked ? E1000_BLK_PHY_RESET : 0;
2016}
2017
2018/**
2019 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 * @hw: pointer to the HW structure
2021 *
2022 * Assumes semaphore already acquired.
2023 *
2024 **/
2025static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026{
2027 u16 phy_data;
2028 u32 strap = er32(STRAP);
2029 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030 E1000_STRAP_SMT_FREQ_SHIFT;
2031 s32 ret_val;
2032
2033 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034
2035 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036 if (ret_val)
2037 return ret_val;
2038
2039 phy_data &= ~HV_SMB_ADDR_MASK;
2040 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042
2043 if (hw->phy.type == e1000_phy_i217) {
2044 /* Restore SMBus frequency */
2045 if (freq--) {
2046 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047 phy_data |= (freq & (1 << 0)) <<
2048 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049 phy_data |= (freq & (1 << 1)) <<
2050 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051 } else {
2052 e_dbg("Unsupported SMB frequency in PHY\n");
2053 }
2054 }
2055
2056 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057}
2058
2059/**
2060 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 * @hw: pointer to the HW structure
2062 *
2063 * SW should configure the LCD from the NVM extended configuration region
2064 * as a workaround for certain parts.
2065 **/
2066static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067{
2068 struct e1000_phy_info *phy = &hw->phy;
2069 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070 s32 ret_val = 0;
2071 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072
2073 /* Initialize the PHY from the NVM on ICH platforms. This
2074 * is needed due to an issue where the NVM configuration is
2075 * not properly autoloaded after power transitions.
2076 * Therefore, after each PHY reset, we will load the
2077 * configuration data out of the NVM manually.
2078 */
2079 switch (hw->mac.type) {
2080 case e1000_ich8lan:
2081 if (phy->type != e1000_phy_igp_3)
2082 return ret_val;
2083
2084 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087 break;
2088 }
2089 /* Fall-thru */
2090 case e1000_pchlan:
2091 case e1000_pch2lan:
2092 case e1000_pch_lpt:
2093 case e1000_pch_spt:
2094 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095 break;
2096 default:
2097 return ret_val;
2098 }
2099
2100 ret_val = hw->phy.ops.acquire(hw);
2101 if (ret_val)
2102 return ret_val;
2103
2104 data = er32(FEXTNVM);
2105 if (!(data & sw_cfg_mask))
2106 goto release;
2107
2108 /* Make sure HW does not configure LCD from PHY
2109 * extended configuration before SW configuration
2110 */
2111 data = er32(EXTCNF_CTRL);
2112 if ((hw->mac.type < e1000_pch2lan) &&
2113 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114 goto release;
2115
2116 cnf_size = er32(EXTCNF_SIZE);
2117 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119 if (!cnf_size)
2120 goto release;
2121
2122 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124
2125 if (((hw->mac.type == e1000_pchlan) &&
2126 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127 (hw->mac.type > e1000_pchlan)) {
2128 /* HW configures the SMBus address and LEDs when the
2129 * OEM and LCD Write Enable bits are set in the NVM.
2130 * When both NVM bits are cleared, SW will configure
2131 * them instead.
2132 */
2133 ret_val = e1000_write_smbus_addr(hw);
2134 if (ret_val)
2135 goto release;
2136
2137 data = er32(LEDCTL);
2138 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139 (u16)data);
2140 if (ret_val)
2141 goto release;
2142 }
2143
2144 /* Configure LCD from extended configuration region. */
2145
2146 /* cnf_base_addr is in DWORD */
2147 word_addr = (u16)(cnf_base_addr << 1);
2148
2149 for (i = 0; i < cnf_size; i++) {
2150 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2151 if (ret_val)
2152 goto release;
2153
2154 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155 1, ®_addr);
2156 if (ret_val)
2157 goto release;
2158
2159 /* Save off the PHY page for future writes. */
2160 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161 phy_page = reg_data;
2162 continue;
2163 }
2164
2165 reg_addr &= PHY_REG_MASK;
2166 reg_addr |= phy_page;
2167
2168 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169 if (ret_val)
2170 goto release;
2171 }
2172
2173release:
2174 hw->phy.ops.release(hw);
2175 return ret_val;
2176}
2177
2178/**
2179 * e1000_k1_gig_workaround_hv - K1 Si workaround
2180 * @hw: pointer to the HW structure
2181 * @link: link up bool flag
2182 *
2183 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2185 * If link is down, the function will restore the default K1 setting located
2186 * in the NVM.
2187 **/
2188static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189{
2190 s32 ret_val = 0;
2191 u16 status_reg = 0;
2192 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193
2194 if (hw->mac.type != e1000_pchlan)
2195 return 0;
2196
2197 /* Wrap the whole flow with the sw flag */
2198 ret_val = hw->phy.ops.acquire(hw);
2199 if (ret_val)
2200 return ret_val;
2201
2202 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203 if (link) {
2204 if (hw->phy.type == e1000_phy_82578) {
2205 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206 &status_reg);
2207 if (ret_val)
2208 goto release;
2209
2210 status_reg &= (BM_CS_STATUS_LINK_UP |
2211 BM_CS_STATUS_RESOLVED |
2212 BM_CS_STATUS_SPEED_MASK);
2213
2214 if (status_reg == (BM_CS_STATUS_LINK_UP |
2215 BM_CS_STATUS_RESOLVED |
2216 BM_CS_STATUS_SPEED_1000))
2217 k1_enable = false;
2218 }
2219
2220 if (hw->phy.type == e1000_phy_82577) {
2221 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222 if (ret_val)
2223 goto release;
2224
2225 status_reg &= (HV_M_STATUS_LINK_UP |
2226 HV_M_STATUS_AUTONEG_COMPLETE |
2227 HV_M_STATUS_SPEED_MASK);
2228
2229 if (status_reg == (HV_M_STATUS_LINK_UP |
2230 HV_M_STATUS_AUTONEG_COMPLETE |
2231 HV_M_STATUS_SPEED_1000))
2232 k1_enable = false;
2233 }
2234
2235 /* Link stall fix for link up */
2236 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237 if (ret_val)
2238 goto release;
2239
2240 } else {
2241 /* Link stall fix for link down */
2242 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243 if (ret_val)
2244 goto release;
2245 }
2246
2247 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248
2249release:
2250 hw->phy.ops.release(hw);
2251
2252 return ret_val;
2253}
2254
2255/**
2256 * e1000_configure_k1_ich8lan - Configure K1 power state
2257 * @hw: pointer to the HW structure
2258 * @enable: K1 state to configure
2259 *
2260 * Configure the K1 power state based on the provided parameter.
2261 * Assumes semaphore already acquired.
2262 *
2263 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264 **/
2265s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266{
2267 s32 ret_val;
2268 u32 ctrl_reg = 0;
2269 u32 ctrl_ext = 0;
2270 u32 reg = 0;
2271 u16 kmrn_reg = 0;
2272
2273 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274 &kmrn_reg);
2275 if (ret_val)
2276 return ret_val;
2277
2278 if (k1_enable)
2279 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280 else
2281 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282
2283 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284 kmrn_reg);
2285 if (ret_val)
2286 return ret_val;
2287
2288 usleep_range(20, 40);
2289 ctrl_ext = er32(CTRL_EXT);
2290 ctrl_reg = er32(CTRL);
2291
2292 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293 reg |= E1000_CTRL_FRCSPD;
2294 ew32(CTRL, reg);
2295
2296 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297 e1e_flush();
2298 usleep_range(20, 40);
2299 ew32(CTRL, ctrl_reg);
2300 ew32(CTRL_EXT, ctrl_ext);
2301 e1e_flush();
2302 usleep_range(20, 40);
2303
2304 return 0;
2305}
2306
2307/**
2308 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 * @hw: pointer to the HW structure
2310 * @d0_state: boolean if entering d0 or d3 device state
2311 *
2312 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2314 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2315 **/
2316static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317{
2318 s32 ret_val = 0;
2319 u32 mac_reg;
2320 u16 oem_reg;
2321
2322 if (hw->mac.type < e1000_pchlan)
2323 return ret_val;
2324
2325 ret_val = hw->phy.ops.acquire(hw);
2326 if (ret_val)
2327 return ret_val;
2328
2329 if (hw->mac.type == e1000_pchlan) {
2330 mac_reg = er32(EXTCNF_CTRL);
2331 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332 goto release;
2333 }
2334
2335 mac_reg = er32(FEXTNVM);
2336 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337 goto release;
2338
2339 mac_reg = er32(PHY_CTRL);
2340
2341 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342 if (ret_val)
2343 goto release;
2344
2345 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346
2347 if (d0_state) {
2348 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349 oem_reg |= HV_OEM_BITS_GBE_DIS;
2350
2351 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352 oem_reg |= HV_OEM_BITS_LPLU;
2353 } else {
2354 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356 oem_reg |= HV_OEM_BITS_GBE_DIS;
2357
2358 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359 E1000_PHY_CTRL_NOND0A_LPLU))
2360 oem_reg |= HV_OEM_BITS_LPLU;
2361 }
2362
2363 /* Set Restart auto-neg to activate the bits */
2364 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365 !hw->phy.ops.check_reset_block(hw))
2366 oem_reg |= HV_OEM_BITS_RESTART_AN;
2367
2368 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369
2370release:
2371 hw->phy.ops.release(hw);
2372
2373 return ret_val;
2374}
2375
2376/**
2377 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 * @hw: pointer to the HW structure
2379 **/
2380static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381{
2382 s32 ret_val;
2383 u16 data;
2384
2385 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386 if (ret_val)
2387 return ret_val;
2388
2389 data |= HV_KMRN_MDIO_SLOW;
2390
2391 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392
2393 return ret_val;
2394}
2395
2396/**
2397 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 * done after every PHY reset.
2399 **/
2400static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401{
2402 s32 ret_val = 0;
2403 u16 phy_data;
2404
2405 if (hw->mac.type != e1000_pchlan)
2406 return 0;
2407
2408 /* Set MDIO slow mode before any other MDIO access */
2409 if (hw->phy.type == e1000_phy_82577) {
2410 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411 if (ret_val)
2412 return ret_val;
2413 }
2414
2415 if (((hw->phy.type == e1000_phy_82577) &&
2416 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418 /* Disable generation of early preamble */
2419 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420 if (ret_val)
2421 return ret_val;
2422
2423 /* Preamble tuning for SSC */
2424 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425 if (ret_val)
2426 return ret_val;
2427 }
2428
2429 if (hw->phy.type == e1000_phy_82578) {
2430 /* Return registers to default by doing a soft reset then
2431 * writing 0x3140 to the control register.
2432 */
2433 if (hw->phy.revision < 2) {
2434 e1000e_phy_sw_reset(hw);
2435 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2436 }
2437 }
2438
2439 /* Select page 0 */
2440 ret_val = hw->phy.ops.acquire(hw);
2441 if (ret_val)
2442 return ret_val;
2443
2444 hw->phy.addr = 1;
2445 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446 hw->phy.ops.release(hw);
2447 if (ret_val)
2448 return ret_val;
2449
2450 /* Configure the K1 Si workaround during phy reset assuming there is
2451 * link so that it disables K1 if link is in 1Gbps.
2452 */
2453 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454 if (ret_val)
2455 return ret_val;
2456
2457 /* Workaround for link disconnects on a busy hub in half duplex */
2458 ret_val = hw->phy.ops.acquire(hw);
2459 if (ret_val)
2460 return ret_val;
2461 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462 if (ret_val)
2463 goto release;
2464 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465 if (ret_val)
2466 goto release;
2467
2468 /* set MSE higher to enable link to stay up when noise is high */
2469 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470release:
2471 hw->phy.ops.release(hw);
2472
2473 return ret_val;
2474}
2475
2476/**
2477 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 * @hw: pointer to the HW structure
2479 **/
2480void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481{
2482 u32 mac_reg;
2483 u16 i, phy_reg = 0;
2484 s32 ret_val;
2485
2486 ret_val = hw->phy.ops.acquire(hw);
2487 if (ret_val)
2488 return;
2489 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490 if (ret_val)
2491 goto release;
2492
2493 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495 mac_reg = er32(RAL(i));
2496 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497 (u16)(mac_reg & 0xFFFF));
2498 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499 (u16)((mac_reg >> 16) & 0xFFFF));
2500
2501 mac_reg = er32(RAH(i));
2502 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503 (u16)(mac_reg & 0xFFFF));
2504 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505 (u16)((mac_reg & E1000_RAH_AV)
2506 >> 16));
2507 }
2508
2509 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510
2511release:
2512 hw->phy.ops.release(hw);
2513}
2514
2515/**
2516 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 * with 82579 PHY
2518 * @hw: pointer to the HW structure
2519 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520 **/
2521s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522{
2523 s32 ret_val = 0;
2524 u16 phy_reg, data;
2525 u32 mac_reg;
2526 u16 i;
2527
2528 if (hw->mac.type < e1000_pch2lan)
2529 return 0;
2530
2531 /* disable Rx path while enabling/disabling workaround */
2532 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2534 if (ret_val)
2535 return ret_val;
2536
2537 if (enable) {
2538 /* Write Rx addresses (rar_entry_count for RAL/H, and
2539 * SHRAL/H) and initial CRC values to the MAC
2540 */
2541 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542 u8 mac_addr[ETH_ALEN] = { 0 };
2543 u32 addr_high, addr_low;
2544
2545 addr_high = er32(RAH(i));
2546 if (!(addr_high & E1000_RAH_AV))
2547 continue;
2548 addr_low = er32(RAL(i));
2549 mac_addr[0] = (addr_low & 0xFF);
2550 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553 mac_addr[4] = (addr_high & 0xFF);
2554 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555
2556 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557 }
2558
2559 /* Write Rx addresses to the PHY */
2560 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561
2562 /* Enable jumbo frame workaround in the MAC */
2563 mac_reg = er32(FFLT_DBG);
2564 mac_reg &= ~(1 << 14);
2565 mac_reg |= (7 << 15);
2566 ew32(FFLT_DBG, mac_reg);
2567
2568 mac_reg = er32(RCTL);
2569 mac_reg |= E1000_RCTL_SECRC;
2570 ew32(RCTL, mac_reg);
2571
2572 ret_val = e1000e_read_kmrn_reg(hw,
2573 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574 &data);
2575 if (ret_val)
2576 return ret_val;
2577 ret_val = e1000e_write_kmrn_reg(hw,
2578 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579 data | (1 << 0));
2580 if (ret_val)
2581 return ret_val;
2582 ret_val = e1000e_read_kmrn_reg(hw,
2583 E1000_KMRNCTRLSTA_HD_CTRL,
2584 &data);
2585 if (ret_val)
2586 return ret_val;
2587 data &= ~(0xF << 8);
2588 data |= (0xB << 8);
2589 ret_val = e1000e_write_kmrn_reg(hw,
2590 E1000_KMRNCTRLSTA_HD_CTRL,
2591 data);
2592 if (ret_val)
2593 return ret_val;
2594
2595 /* Enable jumbo frame workaround in the PHY */
2596 e1e_rphy(hw, PHY_REG(769, 23), &data);
2597 data &= ~(0x7F << 5);
2598 data |= (0x37 << 5);
2599 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600 if (ret_val)
2601 return ret_val;
2602 e1e_rphy(hw, PHY_REG(769, 16), &data);
2603 data &= ~(1 << 13);
2604 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605 if (ret_val)
2606 return ret_val;
2607 e1e_rphy(hw, PHY_REG(776, 20), &data);
2608 data &= ~(0x3FF << 2);
2609 data |= (E1000_TX_PTR_GAP << 2);
2610 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611 if (ret_val)
2612 return ret_val;
2613 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614 if (ret_val)
2615 return ret_val;
2616 e1e_rphy(hw, HV_PM_CTRL, &data);
2617 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2618 if (ret_val)
2619 return ret_val;
2620 } else {
2621 /* Write MAC register values back to h/w defaults */
2622 mac_reg = er32(FFLT_DBG);
2623 mac_reg &= ~(0xF << 14);
2624 ew32(FFLT_DBG, mac_reg);
2625
2626 mac_reg = er32(RCTL);
2627 mac_reg &= ~E1000_RCTL_SECRC;
2628 ew32(RCTL, mac_reg);
2629
2630 ret_val = e1000e_read_kmrn_reg(hw,
2631 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632 &data);
2633 if (ret_val)
2634 return ret_val;
2635 ret_val = e1000e_write_kmrn_reg(hw,
2636 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637 data & ~(1 << 0));
2638 if (ret_val)
2639 return ret_val;
2640 ret_val = e1000e_read_kmrn_reg(hw,
2641 E1000_KMRNCTRLSTA_HD_CTRL,
2642 &data);
2643 if (ret_val)
2644 return ret_val;
2645 data &= ~(0xF << 8);
2646 data |= (0xB << 8);
2647 ret_val = e1000e_write_kmrn_reg(hw,
2648 E1000_KMRNCTRLSTA_HD_CTRL,
2649 data);
2650 if (ret_val)
2651 return ret_val;
2652
2653 /* Write PHY register values back to h/w defaults */
2654 e1e_rphy(hw, PHY_REG(769, 23), &data);
2655 data &= ~(0x7F << 5);
2656 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657 if (ret_val)
2658 return ret_val;
2659 e1e_rphy(hw, PHY_REG(769, 16), &data);
2660 data |= (1 << 13);
2661 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662 if (ret_val)
2663 return ret_val;
2664 e1e_rphy(hw, PHY_REG(776, 20), &data);
2665 data &= ~(0x3FF << 2);
2666 data |= (0x8 << 2);
2667 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668 if (ret_val)
2669 return ret_val;
2670 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671 if (ret_val)
2672 return ret_val;
2673 e1e_rphy(hw, HV_PM_CTRL, &data);
2674 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2675 if (ret_val)
2676 return ret_val;
2677 }
2678
2679 /* re-enable Rx path after enabling/disabling workaround */
2680 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2681}
2682
2683/**
2684 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 * done after every PHY reset.
2686 **/
2687static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688{
2689 s32 ret_val = 0;
2690
2691 if (hw->mac.type != e1000_pch2lan)
2692 return 0;
2693
2694 /* Set MDIO slow mode before any other MDIO access */
2695 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696 if (ret_val)
2697 return ret_val;
2698
2699 ret_val = hw->phy.ops.acquire(hw);
2700 if (ret_val)
2701 return ret_val;
2702 /* set MSE higher to enable link to stay up when noise is high */
2703 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704 if (ret_val)
2705 goto release;
2706 /* drop link after 5 times MSE threshold was reached */
2707 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708release:
2709 hw->phy.ops.release(hw);
2710
2711 return ret_val;
2712}
2713
2714/**
2715 * e1000_k1_gig_workaround_lv - K1 Si workaround
2716 * @hw: pointer to the HW structure
2717 *
2718 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 * Disable K1 in 1000Mbps and 100Mbps
2720 **/
2721static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722{
2723 s32 ret_val = 0;
2724 u16 status_reg = 0;
2725
2726 if (hw->mac.type != e1000_pch2lan)
2727 return 0;
2728
2729 /* Set K1 beacon duration based on 10Mbs speed */
2730 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731 if (ret_val)
2732 return ret_val;
2733
2734 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736 if (status_reg &
2737 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738 u16 pm_phy_reg;
2739
2740 /* LV 1G/100 Packet drop issue wa */
2741 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742 if (ret_val)
2743 return ret_val;
2744 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746 if (ret_val)
2747 return ret_val;
2748 } else {
2749 u32 mac_reg;
2750
2751 mac_reg = er32(FEXTNVM4);
2752 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754 ew32(FEXTNVM4, mac_reg);
2755 }
2756 }
2757
2758 return ret_val;
2759}
2760
2761/**
2762 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 * @hw: pointer to the HW structure
2764 * @gate: boolean set to true to gate, false to ungate
2765 *
2766 * Gate/ungate the automatic PHY configuration via hardware; perform
2767 * the configuration via software instead.
2768 **/
2769static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770{
2771 u32 extcnf_ctrl;
2772
2773 if (hw->mac.type < e1000_pch2lan)
2774 return;
2775
2776 extcnf_ctrl = er32(EXTCNF_CTRL);
2777
2778 if (gate)
2779 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780 else
2781 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782
2783 ew32(EXTCNF_CTRL, extcnf_ctrl);
2784}
2785
2786/**
2787 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 * @hw: pointer to the HW structure
2789 *
2790 * Check the appropriate indication the MAC has finished configuring the
2791 * PHY after a software reset.
2792 **/
2793static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794{
2795 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796
2797 /* Wait for basic configuration completes before proceeding */
2798 do {
2799 data = er32(STATUS);
2800 data &= E1000_STATUS_LAN_INIT_DONE;
2801 usleep_range(100, 200);
2802 } while ((!data) && --loop);
2803
2804 /* If basic configuration is incomplete before the above loop
2805 * count reaches 0, loading the configuration from NVM will
2806 * leave the PHY in a bad state possibly resulting in no link.
2807 */
2808 if (loop == 0)
2809 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810
2811 /* Clear the Init Done bit for the next init event */
2812 data = er32(STATUS);
2813 data &= ~E1000_STATUS_LAN_INIT_DONE;
2814 ew32(STATUS, data);
2815}
2816
2817/**
2818 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 * @hw: pointer to the HW structure
2820 **/
2821static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822{
2823 s32 ret_val = 0;
2824 u16 reg;
2825
2826 if (hw->phy.ops.check_reset_block(hw))
2827 return 0;
2828
2829 /* Allow time for h/w to get to quiescent state after reset */
2830 usleep_range(10000, 20000);
2831
2832 /* Perform any necessary post-reset workarounds */
2833 switch (hw->mac.type) {
2834 case e1000_pchlan:
2835 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836 if (ret_val)
2837 return ret_val;
2838 break;
2839 case e1000_pch2lan:
2840 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841 if (ret_val)
2842 return ret_val;
2843 break;
2844 default:
2845 break;
2846 }
2847
2848 /* Clear the host wakeup bit after lcd reset */
2849 if (hw->mac.type >= e1000_pchlan) {
2850 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2851 reg &= ~BM_WUC_HOST_WU_BIT;
2852 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853 }
2854
2855 /* Configure the LCD with the extended configuration region in NVM */
2856 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857 if (ret_val)
2858 return ret_val;
2859
2860 /* Configure the LCD with the OEM bits in NVM */
2861 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862
2863 if (hw->mac.type == e1000_pch2lan) {
2864 /* Ungate automatic PHY configuration on non-managed 82579 */
2865 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866 usleep_range(10000, 20000);
2867 e1000_gate_hw_phy_config_ich8lan(hw, false);
2868 }
2869
2870 /* Set EEE LPI Update Timer to 200usec */
2871 ret_val = hw->phy.ops.acquire(hw);
2872 if (ret_val)
2873 return ret_val;
2874 ret_val = e1000_write_emi_reg_locked(hw,
2875 I82579_LPI_UPDATE_TIMER,
2876 0x1387);
2877 hw->phy.ops.release(hw);
2878 }
2879
2880 return ret_val;
2881}
2882
2883/**
2884 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 * @hw: pointer to the HW structure
2886 *
2887 * Resets the PHY
2888 * This is a function pointer entry point called by drivers
2889 * or other shared routines.
2890 **/
2891static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892{
2893 s32 ret_val = 0;
2894
2895 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896 if ((hw->mac.type == e1000_pch2lan) &&
2897 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898 e1000_gate_hw_phy_config_ich8lan(hw, true);
2899
2900 ret_val = e1000e_phy_hw_reset_generic(hw);
2901 if (ret_val)
2902 return ret_val;
2903
2904 return e1000_post_phy_reset_ich8lan(hw);
2905}
2906
2907/**
2908 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 * @hw: pointer to the HW structure
2910 * @active: true to enable LPLU, false to disable
2911 *
2912 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2913 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 * the phy speed. This function will manually set the LPLU bit and restart
2915 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 * since it configures the same bit.
2917 **/
2918static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919{
2920 s32 ret_val;
2921 u16 oem_reg;
2922
2923 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924 if (ret_val)
2925 return ret_val;
2926
2927 if (active)
2928 oem_reg |= HV_OEM_BITS_LPLU;
2929 else
2930 oem_reg &= ~HV_OEM_BITS_LPLU;
2931
2932 if (!hw->phy.ops.check_reset_block(hw))
2933 oem_reg |= HV_OEM_BITS_RESTART_AN;
2934
2935 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936}
2937
2938/**
2939 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 * @hw: pointer to the HW structure
2941 * @active: true to enable LPLU, false to disable
2942 *
2943 * Sets the LPLU D0 state according to the active flag. When
2944 * activating LPLU this function also disables smart speed
2945 * and vice versa. LPLU will not be activated unless the
2946 * device autonegotiation advertisement meets standards of
2947 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 * This is a function pointer entry point only called by
2949 * PHY setup routines.
2950 **/
2951static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952{
2953 struct e1000_phy_info *phy = &hw->phy;
2954 u32 phy_ctrl;
2955 s32 ret_val = 0;
2956 u16 data;
2957
2958 if (phy->type == e1000_phy_ife)
2959 return 0;
2960
2961 phy_ctrl = er32(PHY_CTRL);
2962
2963 if (active) {
2964 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965 ew32(PHY_CTRL, phy_ctrl);
2966
2967 if (phy->type != e1000_phy_igp_3)
2968 return 0;
2969
2970 /* Call gig speed drop workaround on LPLU before accessing
2971 * any PHY registers
2972 */
2973 if (hw->mac.type == e1000_ich8lan)
2974 e1000e_gig_downshift_workaround_ich8lan(hw);
2975
2976 /* When LPLU is enabled, we should disable SmartSpeed */
2977 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978 if (ret_val)
2979 return ret_val;
2980 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982 if (ret_val)
2983 return ret_val;
2984 } else {
2985 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986 ew32(PHY_CTRL, phy_ctrl);
2987
2988 if (phy->type != e1000_phy_igp_3)
2989 return 0;
2990
2991 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2992 * during Dx states where the power conservation is most
2993 * important. During driver activity we should enable
2994 * SmartSpeed, so performance is maintained.
2995 */
2996 if (phy->smart_speed == e1000_smart_speed_on) {
2997 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998 &data);
2999 if (ret_val)
3000 return ret_val;
3001
3002 data |= IGP01E1000_PSCFR_SMART_SPEED;
3003 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 data);
3005 if (ret_val)
3006 return ret_val;
3007 } else if (phy->smart_speed == e1000_smart_speed_off) {
3008 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009 &data);
3010 if (ret_val)
3011 return ret_val;
3012
3013 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 data);
3016 if (ret_val)
3017 return ret_val;
3018 }
3019 }
3020
3021 return 0;
3022}
3023
3024/**
3025 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 * @hw: pointer to the HW structure
3027 * @active: true to enable LPLU, false to disable
3028 *
3029 * Sets the LPLU D3 state according to the active flag. When
3030 * activating LPLU this function also disables smart speed
3031 * and vice versa. LPLU will not be activated unless the
3032 * device autonegotiation advertisement meets standards of
3033 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 * This is a function pointer entry point only called by
3035 * PHY setup routines.
3036 **/
3037static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038{
3039 struct e1000_phy_info *phy = &hw->phy;
3040 u32 phy_ctrl;
3041 s32 ret_val = 0;
3042 u16 data;
3043
3044 phy_ctrl = er32(PHY_CTRL);
3045
3046 if (!active) {
3047 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048 ew32(PHY_CTRL, phy_ctrl);
3049
3050 if (phy->type != e1000_phy_igp_3)
3051 return 0;
3052
3053 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3054 * during Dx states where the power conservation is most
3055 * important. During driver activity we should enable
3056 * SmartSpeed, so performance is maintained.
3057 */
3058 if (phy->smart_speed == e1000_smart_speed_on) {
3059 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 &data);
3061 if (ret_val)
3062 return ret_val;
3063
3064 data |= IGP01E1000_PSCFR_SMART_SPEED;
3065 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 data);
3067 if (ret_val)
3068 return ret_val;
3069 } else if (phy->smart_speed == e1000_smart_speed_off) {
3070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 &data);
3072 if (ret_val)
3073 return ret_val;
3074
3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 data);
3078 if (ret_val)
3079 return ret_val;
3080 }
3081 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085 ew32(PHY_CTRL, phy_ctrl);
3086
3087 if (phy->type != e1000_phy_igp_3)
3088 return 0;
3089
3090 /* Call gig speed drop workaround on LPLU before accessing
3091 * any PHY registers
3092 */
3093 if (hw->mac.type == e1000_ich8lan)
3094 e1000e_gig_downshift_workaround_ich8lan(hw);
3095
3096 /* When LPLU is enabled, we should disable SmartSpeed */
3097 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098 if (ret_val)
3099 return ret_val;
3100
3101 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103 }
3104
3105 return ret_val;
3106}
3107
3108/**
3109 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 * @hw: pointer to the HW structure
3111 * @bank: pointer to the variable that returns the active bank
3112 *
3113 * Reads signature byte from the NVM using the flash access registers.
3114 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115 **/
3116static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117{
3118 u32 eecd;
3119 struct e1000_nvm_info *nvm = &hw->nvm;
3120 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122 u32 nvm_dword = 0;
3123 u8 sig_byte = 0;
3124 s32 ret_val;
3125
3126 switch (hw->mac.type) {
3127 case e1000_pch_spt:
3128 bank1_offset = nvm->flash_bank_size;
3129 act_offset = E1000_ICH_NVM_SIG_WORD;
3130
3131 /* set bank to 0 in case flash read fails */
3132 *bank = 0;
3133
3134 /* Check bank 0 */
3135 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136 &nvm_dword);
3137 if (ret_val)
3138 return ret_val;
3139 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141 E1000_ICH_NVM_SIG_VALUE) {
3142 *bank = 0;
3143 return 0;
3144 }
3145
3146 /* Check bank 1 */
3147 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148 bank1_offset,
3149 &nvm_dword);
3150 if (ret_val)
3151 return ret_val;
3152 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154 E1000_ICH_NVM_SIG_VALUE) {
3155 *bank = 1;
3156 return 0;
3157 }
3158
3159 e_dbg("ERROR: No valid NVM bank present\n");
3160 return -E1000_ERR_NVM;
3161 case e1000_ich8lan:
3162 case e1000_ich9lan:
3163 eecd = er32(EECD);
3164 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165 E1000_EECD_SEC1VAL_VALID_MASK) {
3166 if (eecd & E1000_EECD_SEC1VAL)
3167 *bank = 1;
3168 else
3169 *bank = 0;
3170
3171 return 0;
3172 }
3173 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174 /* fall-thru */
3175 default:
3176 /* set bank to 0 in case flash read fails */
3177 *bank = 0;
3178
3179 /* Check bank 0 */
3180 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181 &sig_byte);
3182 if (ret_val)
3183 return ret_val;
3184 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185 E1000_ICH_NVM_SIG_VALUE) {
3186 *bank = 0;
3187 return 0;
3188 }
3189
3190 /* Check bank 1 */
3191 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192 bank1_offset,
3193 &sig_byte);
3194 if (ret_val)
3195 return ret_val;
3196 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197 E1000_ICH_NVM_SIG_VALUE) {
3198 *bank = 1;
3199 return 0;
3200 }
3201
3202 e_dbg("ERROR: No valid NVM bank present\n");
3203 return -E1000_ERR_NVM;
3204 }
3205}
3206
3207/**
3208 * e1000_read_nvm_spt - NVM access for SPT
3209 * @hw: pointer to the HW structure
3210 * @offset: The offset (in bytes) of the word(s) to read.
3211 * @words: Size of data to read in words.
3212 * @data: pointer to the word(s) to read at offset.
3213 *
3214 * Reads a word(s) from the NVM
3215 **/
3216static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217 u16 *data)
3218{
3219 struct e1000_nvm_info *nvm = &hw->nvm;
3220 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221 u32 act_offset;
3222 s32 ret_val = 0;
3223 u32 bank = 0;
3224 u32 dword = 0;
3225 u16 offset_to_read;
3226 u16 i;
3227
3228 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229 (words == 0)) {
3230 e_dbg("nvm parameter(s) out of bounds\n");
3231 ret_val = -E1000_ERR_NVM;
3232 goto out;
3233 }
3234
3235 nvm->ops.acquire(hw);
3236
3237 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238 if (ret_val) {
3239 e_dbg("Could not detect valid bank, assuming bank 0\n");
3240 bank = 0;
3241 }
3242
3243 act_offset = (bank) ? nvm->flash_bank_size : 0;
3244 act_offset += offset;
3245
3246 ret_val = 0;
3247
3248 for (i = 0; i < words; i += 2) {
3249 if (words - i == 1) {
3250 if (dev_spec->shadow_ram[offset + i].modified) {
3251 data[i] =
3252 dev_spec->shadow_ram[offset + i].value;
3253 } else {
3254 offset_to_read = act_offset + i -
3255 ((act_offset + i) % 2);
3256 ret_val =
3257 e1000_read_flash_dword_ich8lan(hw,
3258 offset_to_read,
3259 &dword);
3260 if (ret_val)
3261 break;
3262 if ((act_offset + i) % 2 == 0)
3263 data[i] = (u16)(dword & 0xFFFF);
3264 else
3265 data[i] = (u16)((dword >> 16) & 0xFFFF);
3266 }
3267 } else {
3268 offset_to_read = act_offset + i;
3269 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271 ret_val =
3272 e1000_read_flash_dword_ich8lan(hw,
3273 offset_to_read,
3274 &dword);
3275 if (ret_val)
3276 break;
3277 }
3278 if (dev_spec->shadow_ram[offset + i].modified)
3279 data[i] =
3280 dev_spec->shadow_ram[offset + i].value;
3281 else
3282 data[i] = (u16)(dword & 0xFFFF);
3283 if (dev_spec->shadow_ram[offset + i].modified)
3284 data[i + 1] =
3285 dev_spec->shadow_ram[offset + i + 1].value;
3286 else
3287 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288 }
3289 }
3290
3291 nvm->ops.release(hw);
3292
3293out:
3294 if (ret_val)
3295 e_dbg("NVM read error: %d\n", ret_val);
3296
3297 return ret_val;
3298}
3299
3300/**
3301 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 * @hw: pointer to the HW structure
3303 * @offset: The offset (in bytes) of the word(s) to read.
3304 * @words: Size of data to read in words
3305 * @data: Pointer to the word(s) to read at offset.
3306 *
3307 * Reads a word(s) from the NVM using the flash access registers.
3308 **/
3309static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310 u16 *data)
3311{
3312 struct e1000_nvm_info *nvm = &hw->nvm;
3313 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314 u32 act_offset;
3315 s32 ret_val = 0;
3316 u32 bank = 0;
3317 u16 i, word;
3318
3319 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320 (words == 0)) {
3321 e_dbg("nvm parameter(s) out of bounds\n");
3322 ret_val = -E1000_ERR_NVM;
3323 goto out;
3324 }
3325
3326 nvm->ops.acquire(hw);
3327
3328 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329 if (ret_val) {
3330 e_dbg("Could not detect valid bank, assuming bank 0\n");
3331 bank = 0;
3332 }
3333
3334 act_offset = (bank) ? nvm->flash_bank_size : 0;
3335 act_offset += offset;
3336
3337 ret_val = 0;
3338 for (i = 0; i < words; i++) {
3339 if (dev_spec->shadow_ram[offset + i].modified) {
3340 data[i] = dev_spec->shadow_ram[offset + i].value;
3341 } else {
3342 ret_val = e1000_read_flash_word_ich8lan(hw,
3343 act_offset + i,
3344 &word);
3345 if (ret_val)
3346 break;
3347 data[i] = word;
3348 }
3349 }
3350
3351 nvm->ops.release(hw);
3352
3353out:
3354 if (ret_val)
3355 e_dbg("NVM read error: %d\n", ret_val);
3356
3357 return ret_val;
3358}
3359
3360/**
3361 * e1000_flash_cycle_init_ich8lan - Initialize flash
3362 * @hw: pointer to the HW structure
3363 *
3364 * This function does initial flash setup so that a new read/write/erase cycle
3365 * can be started.
3366 **/
3367static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368{
3369 union ich8_hws_flash_status hsfsts;
3370 s32 ret_val = -E1000_ERR_NVM;
3371
3372 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373
3374 /* Check if the flash descriptor is valid */
3375 if (!hsfsts.hsf_status.fldesvalid) {
3376 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3377 return -E1000_ERR_NVM;
3378 }
3379
3380 /* Clear FCERR and DAEL in hw status by writing 1 */
3381 hsfsts.hsf_status.flcerr = 1;
3382 hsfsts.hsf_status.dael = 1;
3383 if (hw->mac.type == e1000_pch_spt)
3384 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385 else
3386 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387
3388 /* Either we should have a hardware SPI cycle in progress
3389 * bit to check against, in order to start a new cycle or
3390 * FDONE bit should be changed in the hardware so that it
3391 * is 1 after hardware reset, which can then be used as an
3392 * indication whether a cycle is in progress or has been
3393 * completed.
3394 */
3395
3396 if (!hsfsts.hsf_status.flcinprog) {
3397 /* There is no cycle running at present,
3398 * so we can start a cycle.
3399 * Begin by setting Flash Cycle Done.
3400 */
3401 hsfsts.hsf_status.flcdone = 1;
3402 if (hw->mac.type == e1000_pch_spt)
3403 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404 else
3405 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406 ret_val = 0;
3407 } else {
3408 s32 i;
3409
3410 /* Otherwise poll for sometime so the current
3411 * cycle has a chance to end before giving up.
3412 */
3413 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415 if (!hsfsts.hsf_status.flcinprog) {
3416 ret_val = 0;
3417 break;
3418 }
3419 udelay(1);
3420 }
3421 if (!ret_val) {
3422 /* Successful in waiting for previous cycle to timeout,
3423 * now set the Flash Cycle Done.
3424 */
3425 hsfsts.hsf_status.flcdone = 1;
3426 if (hw->mac.type == e1000_pch_spt)
3427 ew32flash(ICH_FLASH_HSFSTS,
3428 hsfsts.regval & 0xFFFF);
3429 else
3430 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431 } else {
3432 e_dbg("Flash controller busy, cannot get access\n");
3433 }
3434 }
3435
3436 return ret_val;
3437}
3438
3439/**
3440 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 * @hw: pointer to the HW structure
3442 * @timeout: maximum time to wait for completion
3443 *
3444 * This function starts a flash cycle and waits for its completion.
3445 **/
3446static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447{
3448 union ich8_hws_flash_ctrl hsflctl;
3449 union ich8_hws_flash_status hsfsts;
3450 u32 i = 0;
3451
3452 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453 if (hw->mac.type == e1000_pch_spt)
3454 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455 else
3456 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457 hsflctl.hsf_ctrl.flcgo = 1;
3458
3459 if (hw->mac.type == e1000_pch_spt)
3460 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461 else
3462 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463
3464 /* wait till FDONE bit is set to 1 */
3465 do {
3466 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467 if (hsfsts.hsf_status.flcdone)
3468 break;
3469 udelay(1);
3470 } while (i++ < timeout);
3471
3472 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473 return 0;
3474
3475 return -E1000_ERR_NVM;
3476}
3477
3478/**
3479 * e1000_read_flash_dword_ich8lan - Read dword from flash
3480 * @hw: pointer to the HW structure
3481 * @offset: offset to data location
3482 * @data: pointer to the location for storing the data
3483 *
3484 * Reads the flash dword at offset into data. Offset is converted
3485 * to bytes before read.
3486 **/
3487static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488 u32 *data)
3489{
3490 /* Must convert word offset into bytes. */
3491 offset <<= 1;
3492 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493}
3494
3495/**
3496 * e1000_read_flash_word_ich8lan - Read word from flash
3497 * @hw: pointer to the HW structure
3498 * @offset: offset to data location
3499 * @data: pointer to the location for storing the data
3500 *
3501 * Reads the flash word at offset into data. Offset is converted
3502 * to bytes before read.
3503 **/
3504static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505 u16 *data)
3506{
3507 /* Must convert offset into bytes. */
3508 offset <<= 1;
3509
3510 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511}
3512
3513/**
3514 * e1000_read_flash_byte_ich8lan - Read byte from flash
3515 * @hw: pointer to the HW structure
3516 * @offset: The offset of the byte to read.
3517 * @data: Pointer to a byte to store the value read.
3518 *
3519 * Reads a single byte from the NVM using the flash access registers.
3520 **/
3521static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522 u8 *data)
3523{
3524 s32 ret_val;
3525 u16 word = 0;
3526
3527 /* In SPT, only 32 bits access is supported,
3528 * so this function should not be called.
3529 */
3530 if (hw->mac.type == e1000_pch_spt)
3531 return -E1000_ERR_NVM;
3532 else
3533 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534
3535 if (ret_val)
3536 return ret_val;
3537
3538 *data = (u8)word;
3539
3540 return 0;
3541}
3542
3543/**
3544 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 * @hw: pointer to the HW structure
3546 * @offset: The offset (in bytes) of the byte or word to read.
3547 * @size: Size of data to read, 1=byte 2=word
3548 * @data: Pointer to the word to store the value read.
3549 *
3550 * Reads a byte or word from the NVM using the flash access registers.
3551 **/
3552static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553 u8 size, u16 *data)
3554{
3555 union ich8_hws_flash_status hsfsts;
3556 union ich8_hws_flash_ctrl hsflctl;
3557 u32 flash_linear_addr;
3558 u32 flash_data = 0;
3559 s32 ret_val = -E1000_ERR_NVM;
3560 u8 count = 0;
3561
3562 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563 return -E1000_ERR_NVM;
3564
3565 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566 hw->nvm.flash_base_addr);
3567
3568 do {
3569 udelay(1);
3570 /* Steps */
3571 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572 if (ret_val)
3573 break;
3574
3575 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577 hsflctl.hsf_ctrl.fldbcount = size - 1;
3578 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580
3581 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582
3583 ret_val =
3584 e1000_flash_cycle_ich8lan(hw,
3585 ICH_FLASH_READ_COMMAND_TIMEOUT);
3586
3587 /* Check if FCERR is set to 1, if set to 1, clear it
3588 * and try the whole sequence a few more times, else
3589 * read in (shift in) the Flash Data0, the order is
3590 * least significant byte first msb to lsb
3591 */
3592 if (!ret_val) {
3593 flash_data = er32flash(ICH_FLASH_FDATA0);
3594 if (size == 1)
3595 *data = (u8)(flash_data & 0x000000FF);
3596 else if (size == 2)
3597 *data = (u16)(flash_data & 0x0000FFFF);
3598 break;
3599 } else {
3600 /* If we've gotten here, then things are probably
3601 * completely hosed, but if the error condition is
3602 * detected, it won't hurt to give it another try...
3603 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604 */
3605 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606 if (hsfsts.hsf_status.flcerr) {
3607 /* Repeat for some time before giving up. */
3608 continue;
3609 } else if (!hsfsts.hsf_status.flcdone) {
3610 e_dbg("Timeout error - flash cycle did not complete.\n");
3611 break;
3612 }
3613 }
3614 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615
3616 return ret_val;
3617}
3618
3619/**
3620 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 * @hw: pointer to the HW structure
3622 * @offset: The offset (in bytes) of the dword to read.
3623 * @data: Pointer to the dword to store the value read.
3624 *
3625 * Reads a byte or word from the NVM using the flash access registers.
3626 **/
3627
3628static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629 u32 *data)
3630{
3631 union ich8_hws_flash_status hsfsts;
3632 union ich8_hws_flash_ctrl hsflctl;
3633 u32 flash_linear_addr;
3634 s32 ret_val = -E1000_ERR_NVM;
3635 u8 count = 0;
3636
3637 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638 hw->mac.type != e1000_pch_spt)
3639 return -E1000_ERR_NVM;
3640 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641 hw->nvm.flash_base_addr);
3642
3643 do {
3644 udelay(1);
3645 /* Steps */
3646 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647 if (ret_val)
3648 break;
3649 /* In SPT, This register is in Lan memory space, not flash.
3650 * Therefore, only 32 bit access is supported
3651 */
3652 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653
3654 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657 /* In SPT, This register is in Lan memory space, not flash.
3658 * Therefore, only 32 bit access is supported
3659 */
3660 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662
3663 ret_val =
3664 e1000_flash_cycle_ich8lan(hw,
3665 ICH_FLASH_READ_COMMAND_TIMEOUT);
3666
3667 /* Check if FCERR is set to 1, if set to 1, clear it
3668 * and try the whole sequence a few more times, else
3669 * read in (shift in) the Flash Data0, the order is
3670 * least significant byte first msb to lsb
3671 */
3672 if (!ret_val) {
3673 *data = er32flash(ICH_FLASH_FDATA0);
3674 break;
3675 } else {
3676 /* If we've gotten here, then things are probably
3677 * completely hosed, but if the error condition is
3678 * detected, it won't hurt to give it another try...
3679 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680 */
3681 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682 if (hsfsts.hsf_status.flcerr) {
3683 /* Repeat for some time before giving up. */
3684 continue;
3685 } else if (!hsfsts.hsf_status.flcdone) {
3686 e_dbg("Timeout error - flash cycle did not complete.\n");
3687 break;
3688 }
3689 }
3690 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691
3692 return ret_val;
3693}
3694
3695/**
3696 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 * @hw: pointer to the HW structure
3698 * @offset: The offset (in bytes) of the word(s) to write.
3699 * @words: Size of data to write in words
3700 * @data: Pointer to the word(s) to write at offset.
3701 *
3702 * Writes a byte or word to the NVM using the flash access registers.
3703 **/
3704static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705 u16 *data)
3706{
3707 struct e1000_nvm_info *nvm = &hw->nvm;
3708 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709 u16 i;
3710
3711 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712 (words == 0)) {
3713 e_dbg("nvm parameter(s) out of bounds\n");
3714 return -E1000_ERR_NVM;
3715 }
3716
3717 nvm->ops.acquire(hw);
3718
3719 for (i = 0; i < words; i++) {
3720 dev_spec->shadow_ram[offset + i].modified = true;
3721 dev_spec->shadow_ram[offset + i].value = data[i];
3722 }
3723
3724 nvm->ops.release(hw);
3725
3726 return 0;
3727}
3728
3729/**
3730 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 * @hw: pointer to the HW structure
3732 *
3733 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 * which writes the checksum to the shadow ram. The changes in the shadow
3735 * ram are then committed to the EEPROM by processing each bank at a time
3736 * checking for the modified bit and writing only the pending changes.
3737 * After a successful commit, the shadow ram is cleared and is ready for
3738 * future writes.
3739 **/
3740static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741{
3742 struct e1000_nvm_info *nvm = &hw->nvm;
3743 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745 s32 ret_val;
3746 u32 dword = 0;
3747
3748 ret_val = e1000e_update_nvm_checksum_generic(hw);
3749 if (ret_val)
3750 goto out;
3751
3752 if (nvm->type != e1000_nvm_flash_sw)
3753 goto out;
3754
3755 nvm->ops.acquire(hw);
3756
3757 /* We're writing to the opposite bank so if we're on bank 1,
3758 * write to bank 0 etc. We also need to erase the segment that
3759 * is going to be written
3760 */
3761 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762 if (ret_val) {
3763 e_dbg("Could not detect valid bank, assuming bank 0\n");
3764 bank = 0;
3765 }
3766
3767 if (bank == 0) {
3768 new_bank_offset = nvm->flash_bank_size;
3769 old_bank_offset = 0;
3770 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771 if (ret_val)
3772 goto release;
3773 } else {
3774 old_bank_offset = nvm->flash_bank_size;
3775 new_bank_offset = 0;
3776 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777 if (ret_val)
3778 goto release;
3779 }
3780 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781 /* Determine whether to write the value stored
3782 * in the other NVM bank or a modified value stored
3783 * in the shadow RAM
3784 */
3785 ret_val = e1000_read_flash_dword_ich8lan(hw,
3786 i + old_bank_offset,
3787 &dword);
3788
3789 if (dev_spec->shadow_ram[i].modified) {
3790 dword &= 0xffff0000;
3791 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792 }
3793 if (dev_spec->shadow_ram[i + 1].modified) {
3794 dword &= 0x0000ffff;
3795 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796 << 16);
3797 }
3798 if (ret_val)
3799 break;
3800
3801 /* If the word is 0x13, then make sure the signature bits
3802 * (15:14) are 11b until the commit has completed.
3803 * This will allow us to write 10b which indicates the
3804 * signature is valid. We want to do this after the write
3805 * has completed so that we don't mark the segment valid
3806 * while the write is still in progress
3807 */
3808 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810
3811 /* Convert offset to bytes. */
3812 act_offset = (i + new_bank_offset) << 1;
3813
3814 usleep_range(100, 200);
3815
3816 /* Write the data to the new bank. Offset in words */
3817 act_offset = i + new_bank_offset;
3818 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819 dword);
3820 if (ret_val)
3821 break;
3822 }
3823
3824 /* Don't bother writing the segment valid bits if sector
3825 * programming failed.
3826 */
3827 if (ret_val) {
3828 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829 e_dbg("Flash commit failed.\n");
3830 goto release;
3831 }
3832
3833 /* Finally validate the new segment by setting bit 15:14
3834 * to 10b in word 0x13 , this can be done without an
3835 * erase as well since these bits are 11 to start with
3836 * and we need to change bit 14 to 0b
3837 */
3838 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839
3840 /*offset in words but we read dword */
3841 --act_offset;
3842 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843
3844 if (ret_val)
3845 goto release;
3846
3847 dword &= 0xBFFFFFFF;
3848 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849
3850 if (ret_val)
3851 goto release;
3852
3853 /* And invalidate the previously valid segment by setting
3854 * its signature word (0x13) high_byte to 0b. This can be
3855 * done without an erase because flash erase sets all bits
3856 * to 1's. We can write 1's to 0's without an erase
3857 */
3858 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859
3860 /* offset in words but we read dword */
3861 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863
3864 if (ret_val)
3865 goto release;
3866
3867 dword &= 0x00FFFFFF;
3868 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869
3870 if (ret_val)
3871 goto release;
3872
3873 /* Great! Everything worked, we can now clear the cached entries. */
3874 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875 dev_spec->shadow_ram[i].modified = false;
3876 dev_spec->shadow_ram[i].value = 0xFFFF;
3877 }
3878
3879release:
3880 nvm->ops.release(hw);
3881
3882 /* Reload the EEPROM, or else modifications will not appear
3883 * until after the next adapter reset.
3884 */
3885 if (!ret_val) {
3886 nvm->ops.reload(hw);
3887 usleep_range(10000, 20000);
3888 }
3889
3890out:
3891 if (ret_val)
3892 e_dbg("NVM update error: %d\n", ret_val);
3893
3894 return ret_val;
3895}
3896
3897/**
3898 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 * @hw: pointer to the HW structure
3900 *
3901 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 * which writes the checksum to the shadow ram. The changes in the shadow
3903 * ram are then committed to the EEPROM by processing each bank at a time
3904 * checking for the modified bit and writing only the pending changes.
3905 * After a successful commit, the shadow ram is cleared and is ready for
3906 * future writes.
3907 **/
3908static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909{
3910 struct e1000_nvm_info *nvm = &hw->nvm;
3911 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913 s32 ret_val;
3914 u16 data = 0;
3915
3916 ret_val = e1000e_update_nvm_checksum_generic(hw);
3917 if (ret_val)
3918 goto out;
3919
3920 if (nvm->type != e1000_nvm_flash_sw)
3921 goto out;
3922
3923 nvm->ops.acquire(hw);
3924
3925 /* We're writing to the opposite bank so if we're on bank 1,
3926 * write to bank 0 etc. We also need to erase the segment that
3927 * is going to be written
3928 */
3929 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930 if (ret_val) {
3931 e_dbg("Could not detect valid bank, assuming bank 0\n");
3932 bank = 0;
3933 }
3934
3935 if (bank == 0) {
3936 new_bank_offset = nvm->flash_bank_size;
3937 old_bank_offset = 0;
3938 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939 if (ret_val)
3940 goto release;
3941 } else {
3942 old_bank_offset = nvm->flash_bank_size;
3943 new_bank_offset = 0;
3944 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945 if (ret_val)
3946 goto release;
3947 }
3948 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949 if (dev_spec->shadow_ram[i].modified) {
3950 data = dev_spec->shadow_ram[i].value;
3951 } else {
3952 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953 old_bank_offset,
3954 &data);
3955 if (ret_val)
3956 break;
3957 }
3958
3959 /* If the word is 0x13, then make sure the signature bits
3960 * (15:14) are 11b until the commit has completed.
3961 * This will allow us to write 10b which indicates the
3962 * signature is valid. We want to do this after the write
3963 * has completed so that we don't mark the segment valid
3964 * while the write is still in progress
3965 */
3966 if (i == E1000_ICH_NVM_SIG_WORD)
3967 data |= E1000_ICH_NVM_SIG_MASK;
3968
3969 /* Convert offset to bytes. */
3970 act_offset = (i + new_bank_offset) << 1;
3971
3972 usleep_range(100, 200);
3973 /* Write the bytes to the new bank. */
3974 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975 act_offset,
3976 (u8)data);
3977 if (ret_val)
3978 break;
3979
3980 usleep_range(100, 200);
3981 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982 act_offset + 1,
3983 (u8)(data >> 8));
3984 if (ret_val)
3985 break;
3986 }
3987
3988 /* Don't bother writing the segment valid bits if sector
3989 * programming failed.
3990 */
3991 if (ret_val) {
3992 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993 e_dbg("Flash commit failed.\n");
3994 goto release;
3995 }
3996
3997 /* Finally validate the new segment by setting bit 15:14
3998 * to 10b in word 0x13 , this can be done without an
3999 * erase as well since these bits are 11 to start with
4000 * and we need to change bit 14 to 0b
4001 */
4002 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004 if (ret_val)
4005 goto release;
4006
4007 data &= 0xBFFF;
4008 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009 act_offset * 2 + 1,
4010 (u8)(data >> 8));
4011 if (ret_val)
4012 goto release;
4013
4014 /* And invalidate the previously valid segment by setting
4015 * its signature word (0x13) high_byte to 0b. This can be
4016 * done without an erase because flash erase sets all bits
4017 * to 1's. We can write 1's to 0's without an erase
4018 */
4019 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021 if (ret_val)
4022 goto release;
4023
4024 /* Great! Everything worked, we can now clear the cached entries. */
4025 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026 dev_spec->shadow_ram[i].modified = false;
4027 dev_spec->shadow_ram[i].value = 0xFFFF;
4028 }
4029
4030release:
4031 nvm->ops.release(hw);
4032
4033 /* Reload the EEPROM, or else modifications will not appear
4034 * until after the next adapter reset.
4035 */
4036 if (!ret_val) {
4037 nvm->ops.reload(hw);
4038 usleep_range(10000, 20000);
4039 }
4040
4041out:
4042 if (ret_val)
4043 e_dbg("NVM update error: %d\n", ret_val);
4044
4045 return ret_val;
4046}
4047
4048/**
4049 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 * @hw: pointer to the HW structure
4051 *
4052 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 * calculated, in which case we need to calculate the checksum and set bit 6.
4055 **/
4056static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057{
4058 s32 ret_val;
4059 u16 data;
4060 u16 word;
4061 u16 valid_csum_mask;
4062
4063 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4064 * the checksum needs to be fixed. This bit is an indication that
4065 * the NVM was prepared by OEM software and did not calculate
4066 * the checksum...a likely scenario.
4067 */
4068 switch (hw->mac.type) {
4069 case e1000_pch_lpt:
4070 case e1000_pch_spt:
4071 word = NVM_COMPAT;
4072 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073 break;
4074 default:
4075 word = NVM_FUTURE_INIT_WORD1;
4076 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077 break;
4078 }
4079
4080 ret_val = e1000_read_nvm(hw, word, 1, &data);
4081 if (ret_val)
4082 return ret_val;
4083
4084 if (!(data & valid_csum_mask)) {
4085 data |= valid_csum_mask;
4086 ret_val = e1000_write_nvm(hw, word, 1, &data);
4087 if (ret_val)
4088 return ret_val;
4089 ret_val = e1000e_update_nvm_checksum(hw);
4090 if (ret_val)
4091 return ret_val;
4092 }
4093
4094 return e1000e_validate_nvm_checksum_generic(hw);
4095}
4096
4097/**
4098 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 * @hw: pointer to the HW structure
4100 *
4101 * To prevent malicious write/erase of the NVM, set it to be read-only
4102 * so that the hardware ignores all write/erase cycles of the NVM via
4103 * the flash control registers. The shadow-ram copy of the NVM will
4104 * still be updated, however any updates to this copy will not stick
4105 * across driver reloads.
4106 **/
4107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108{
4109 struct e1000_nvm_info *nvm = &hw->nvm;
4110 union ich8_flash_protected_range pr0;
4111 union ich8_hws_flash_status hsfsts;
4112 u32 gfpreg;
4113
4114 nvm->ops.acquire(hw);
4115
4116 gfpreg = er32flash(ICH_FLASH_GFPREG);
4117
4118 /* Write-protect GbE Sector of NVM */
4119 pr0.regval = er32flash(ICH_FLASH_PR0);
4120 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122 pr0.range.wpe = true;
4123 ew32flash(ICH_FLASH_PR0, pr0.regval);
4124
4125 /* Lock down a subset of GbE Flash Control Registers, e.g.
4126 * PR0 to prevent the write-protection from being lifted.
4127 * Once FLOCKDN is set, the registers protected by it cannot
4128 * be written until FLOCKDN is cleared by a hardware reset.
4129 */
4130 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131 hsfsts.hsf_status.flockdn = true;
4132 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133
4134 nvm->ops.release(hw);
4135}
4136
4137/**
4138 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 * @hw: pointer to the HW structure
4140 * @offset: The offset (in bytes) of the byte/word to read.
4141 * @size: Size of data to read, 1=byte 2=word
4142 * @data: The byte(s) to write to the NVM.
4143 *
4144 * Writes one/two bytes to the NVM using the flash access registers.
4145 **/
4146static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147 u8 size, u16 data)
4148{
4149 union ich8_hws_flash_status hsfsts;
4150 union ich8_hws_flash_ctrl hsflctl;
4151 u32 flash_linear_addr;
4152 u32 flash_data = 0;
4153 s32 ret_val;
4154 u8 count = 0;
4155
4156 if (hw->mac.type == e1000_pch_spt) {
4157 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158 return -E1000_ERR_NVM;
4159 } else {
4160 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161 return -E1000_ERR_NVM;
4162 }
4163
4164 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165 hw->nvm.flash_base_addr);
4166
4167 do {
4168 udelay(1);
4169 /* Steps */
4170 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171 if (ret_val)
4172 break;
4173 /* In SPT, This register is in Lan memory space, not
4174 * flash. Therefore, only 32 bit access is supported
4175 */
4176 if (hw->mac.type == e1000_pch_spt)
4177 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178 else
4179 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180
4181 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182 hsflctl.hsf_ctrl.fldbcount = size - 1;
4183 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184 /* In SPT, This register is in Lan memory space,
4185 * not flash. Therefore, only 32 bit access is
4186 * supported
4187 */
4188 if (hw->mac.type == e1000_pch_spt)
4189 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190 else
4191 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192
4193 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194
4195 if (size == 1)
4196 flash_data = (u32)data & 0x00FF;
4197 else
4198 flash_data = (u32)data;
4199
4200 ew32flash(ICH_FLASH_FDATA0, flash_data);
4201
4202 /* check if FCERR is set to 1 , if set to 1, clear it
4203 * and try the whole sequence a few more times else done
4204 */
4205 ret_val =
4206 e1000_flash_cycle_ich8lan(hw,
4207 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208 if (!ret_val)
4209 break;
4210
4211 /* If we're here, then things are most likely
4212 * completely hosed, but if the error condition
4213 * is detected, it won't hurt to give it another
4214 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215 */
4216 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217 if (hsfsts.hsf_status.flcerr)
4218 /* Repeat for some time before giving up. */
4219 continue;
4220 if (!hsfsts.hsf_status.flcdone) {
4221 e_dbg("Timeout error - flash cycle did not complete.\n");
4222 break;
4223 }
4224 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225
4226 return ret_val;
4227}
4228
4229/**
4230* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231* @hw: pointer to the HW structure
4232* @offset: The offset (in bytes) of the dwords to read.
4233* @data: The 4 bytes to write to the NVM.
4234*
4235* Writes one/two/four bytes to the NVM using the flash access registers.
4236**/
4237static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238 u32 data)
4239{
4240 union ich8_hws_flash_status hsfsts;
4241 union ich8_hws_flash_ctrl hsflctl;
4242 u32 flash_linear_addr;
4243 s32 ret_val;
4244 u8 count = 0;
4245
4246 if (hw->mac.type == e1000_pch_spt) {
4247 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248 return -E1000_ERR_NVM;
4249 }
4250 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251 hw->nvm.flash_base_addr);
4252 do {
4253 udelay(1);
4254 /* Steps */
4255 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256 if (ret_val)
4257 break;
4258
4259 /* In SPT, This register is in Lan memory space, not
4260 * flash. Therefore, only 32 bit access is supported
4261 */
4262 if (hw->mac.type == e1000_pch_spt)
4263 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264 >> 16;
4265 else
4266 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267
4268 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270
4271 /* In SPT, This register is in Lan memory space,
4272 * not flash. Therefore, only 32 bit access is
4273 * supported
4274 */
4275 if (hw->mac.type == e1000_pch_spt)
4276 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277 else
4278 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279
4280 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281
4282 ew32flash(ICH_FLASH_FDATA0, data);
4283
4284 /* check if FCERR is set to 1 , if set to 1, clear it
4285 * and try the whole sequence a few more times else done
4286 */
4287 ret_val =
4288 e1000_flash_cycle_ich8lan(hw,
4289 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290
4291 if (!ret_val)
4292 break;
4293
4294 /* If we're here, then things are most likely
4295 * completely hosed, but if the error condition
4296 * is detected, it won't hurt to give it another
4297 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298 */
4299 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300
4301 if (hsfsts.hsf_status.flcerr)
4302 /* Repeat for some time before giving up. */
4303 continue;
4304 if (!hsfsts.hsf_status.flcdone) {
4305 e_dbg("Timeout error - flash cycle did not complete.\n");
4306 break;
4307 }
4308 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309
4310 return ret_val;
4311}
4312
4313/**
4314 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 * @hw: pointer to the HW structure
4316 * @offset: The index of the byte to read.
4317 * @data: The byte to write to the NVM.
4318 *
4319 * Writes a single byte to the NVM using the flash access registers.
4320 **/
4321static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322 u8 data)
4323{
4324 u16 word = (u16)data;
4325
4326 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327}
4328
4329/**
4330* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331* @hw: pointer to the HW structure
4332* @offset: The offset of the word to write.
4333* @dword: The dword to write to the NVM.
4334*
4335* Writes a single dword to the NVM using the flash access registers.
4336* Goes through a retry algorithm before giving up.
4337**/
4338static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339 u32 offset, u32 dword)
4340{
4341 s32 ret_val;
4342 u16 program_retries;
4343
4344 /* Must convert word offset into bytes. */
4345 offset <<= 1;
4346 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347
4348 if (!ret_val)
4349 return ret_val;
4350 for (program_retries = 0; program_retries < 100; program_retries++) {
4351 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352 usleep_range(100, 200);
4353 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354 if (!ret_val)
4355 break;
4356 }
4357 if (program_retries == 100)
4358 return -E1000_ERR_NVM;
4359
4360 return 0;
4361}
4362
4363/**
4364 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 * @hw: pointer to the HW structure
4366 * @offset: The offset of the byte to write.
4367 * @byte: The byte to write to the NVM.
4368 *
4369 * Writes a single byte to the NVM using the flash access registers.
4370 * Goes through a retry algorithm before giving up.
4371 **/
4372static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373 u32 offset, u8 byte)
4374{
4375 s32 ret_val;
4376 u16 program_retries;
4377
4378 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379 if (!ret_val)
4380 return ret_val;
4381
4382 for (program_retries = 0; program_retries < 100; program_retries++) {
4383 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384 usleep_range(100, 200);
4385 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386 if (!ret_val)
4387 break;
4388 }
4389 if (program_retries == 100)
4390 return -E1000_ERR_NVM;
4391
4392 return 0;
4393}
4394
4395/**
4396 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 * @hw: pointer to the HW structure
4398 * @bank: 0 for first bank, 1 for second bank, etc.
4399 *
4400 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 * bank N is 4096 * N + flash_reg_addr.
4402 **/
4403static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404{
4405 struct e1000_nvm_info *nvm = &hw->nvm;
4406 union ich8_hws_flash_status hsfsts;
4407 union ich8_hws_flash_ctrl hsflctl;
4408 u32 flash_linear_addr;
4409 /* bank size is in 16bit words - adjust to bytes */
4410 u32 flash_bank_size = nvm->flash_bank_size * 2;
4411 s32 ret_val;
4412 s32 count = 0;
4413 s32 j, iteration, sector_size;
4414
4415 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416
4417 /* Determine HW Sector size: Read BERASE bits of hw flash status
4418 * register
4419 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420 * consecutive sectors. The start index for the nth Hw sector
4421 * can be calculated as = bank * 4096 + n * 256
4422 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423 * The start index for the nth Hw sector can be calculated
4424 * as = bank * 4096
4425 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426 * (ich9 only, otherwise error condition)
4427 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428 */
4429 switch (hsfsts.hsf_status.berasesz) {
4430 case 0:
4431 /* Hw sector size 256 */
4432 sector_size = ICH_FLASH_SEG_SIZE_256;
4433 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434 break;
4435 case 1:
4436 sector_size = ICH_FLASH_SEG_SIZE_4K;
4437 iteration = 1;
4438 break;
4439 case 2:
4440 sector_size = ICH_FLASH_SEG_SIZE_8K;
4441 iteration = 1;
4442 break;
4443 case 3:
4444 sector_size = ICH_FLASH_SEG_SIZE_64K;
4445 iteration = 1;
4446 break;
4447 default:
4448 return -E1000_ERR_NVM;
4449 }
4450
4451 /* Start with the base address, then add the sector offset. */
4452 flash_linear_addr = hw->nvm.flash_base_addr;
4453 flash_linear_addr += (bank) ? flash_bank_size : 0;
4454
4455 for (j = 0; j < iteration; j++) {
4456 do {
4457 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458
4459 /* Steps */
4460 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461 if (ret_val)
4462 return ret_val;
4463
4464 /* Write a value 11 (block Erase) in Flash
4465 * Cycle field in hw flash control
4466 */
4467 if (hw->mac.type == e1000_pch_spt)
4468 hsflctl.regval =
4469 er32flash(ICH_FLASH_HSFSTS) >> 16;
4470 else
4471 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472
4473 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474 if (hw->mac.type == e1000_pch_spt)
4475 ew32flash(ICH_FLASH_HSFSTS,
4476 hsflctl.regval << 16);
4477 else
4478 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479
4480 /* Write the last 24 bits of an index within the
4481 * block into Flash Linear address field in Flash
4482 * Address.
4483 */
4484 flash_linear_addr += (j * sector_size);
4485 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486
4487 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488 if (!ret_val)
4489 break;
4490
4491 /* Check if FCERR is set to 1. If 1,
4492 * clear it and try the whole sequence
4493 * a few more times else Done
4494 */
4495 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496 if (hsfsts.hsf_status.flcerr)
4497 /* repeat for some time before giving up */
4498 continue;
4499 else if (!hsfsts.hsf_status.flcdone)
4500 return ret_val;
4501 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502 }
4503
4504 return 0;
4505}
4506
4507/**
4508 * e1000_valid_led_default_ich8lan - Set the default LED settings
4509 * @hw: pointer to the HW structure
4510 * @data: Pointer to the LED settings
4511 *
4512 * Reads the LED default settings from the NVM to data. If the NVM LED
4513 * settings is all 0's or F's, set the LED default to a valid LED default
4514 * setting.
4515 **/
4516static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517{
4518 s32 ret_val;
4519
4520 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521 if (ret_val) {
4522 e_dbg("NVM Read Error\n");
4523 return ret_val;
4524 }
4525
4526 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527 *data = ID_LED_DEFAULT_ICH8LAN;
4528
4529 return 0;
4530}
4531
4532/**
4533 * e1000_id_led_init_pchlan - store LED configurations
4534 * @hw: pointer to the HW structure
4535 *
4536 * PCH does not control LEDs via the LEDCTL register, rather it uses
4537 * the PHY LED configuration register.
4538 *
4539 * PCH also does not have an "always on" or "always off" mode which
4540 * complicates the ID feature. Instead of using the "on" mode to indicate
4541 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 * use "link_up" mode. The LEDs will still ID on request if there is no
4543 * link based on logic in e1000_led_[on|off]_pchlan().
4544 **/
4545static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546{
4547 struct e1000_mac_info *mac = &hw->mac;
4548 s32 ret_val;
4549 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551 u16 data, i, temp, shift;
4552
4553 /* Get default ID LED modes */
4554 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555 if (ret_val)
4556 return ret_val;
4557
4558 mac->ledctl_default = er32(LEDCTL);
4559 mac->ledctl_mode1 = mac->ledctl_default;
4560 mac->ledctl_mode2 = mac->ledctl_default;
4561
4562 for (i = 0; i < 4; i++) {
4563 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564 shift = (i * 5);
4565 switch (temp) {
4566 case ID_LED_ON1_DEF2:
4567 case ID_LED_ON1_ON2:
4568 case ID_LED_ON1_OFF2:
4569 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570 mac->ledctl_mode1 |= (ledctl_on << shift);
4571 break;
4572 case ID_LED_OFF1_DEF2:
4573 case ID_LED_OFF1_ON2:
4574 case ID_LED_OFF1_OFF2:
4575 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576 mac->ledctl_mode1 |= (ledctl_off << shift);
4577 break;
4578 default:
4579 /* Do nothing */
4580 break;
4581 }
4582 switch (temp) {
4583 case ID_LED_DEF1_ON2:
4584 case ID_LED_ON1_ON2:
4585 case ID_LED_OFF1_ON2:
4586 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587 mac->ledctl_mode2 |= (ledctl_on << shift);
4588 break;
4589 case ID_LED_DEF1_OFF2:
4590 case ID_LED_ON1_OFF2:
4591 case ID_LED_OFF1_OFF2:
4592 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593 mac->ledctl_mode2 |= (ledctl_off << shift);
4594 break;
4595 default:
4596 /* Do nothing */
4597 break;
4598 }
4599 }
4600
4601 return 0;
4602}
4603
4604/**
4605 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 * @hw: pointer to the HW structure
4607 *
4608 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 * register, so the the bus width is hard coded.
4610 **/
4611static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612{
4613 struct e1000_bus_info *bus = &hw->bus;
4614 s32 ret_val;
4615
4616 ret_val = e1000e_get_bus_info_pcie(hw);
4617
4618 /* ICH devices are "PCI Express"-ish. They have
4619 * a configuration space, but do not contain
4620 * PCI Express Capability registers, so bus width
4621 * must be hardcoded.
4622 */
4623 if (bus->width == e1000_bus_width_unknown)
4624 bus->width = e1000_bus_width_pcie_x1;
4625
4626 return ret_val;
4627}
4628
4629/**
4630 * e1000_reset_hw_ich8lan - Reset the hardware
4631 * @hw: pointer to the HW structure
4632 *
4633 * Does a full reset of the hardware which includes a reset of the PHY and
4634 * MAC.
4635 **/
4636static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637{
4638 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639 u16 kum_cfg;
4640 u32 ctrl, reg;
4641 s32 ret_val;
4642
4643 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4644 * on the last TLP read/write transaction when MAC is reset.
4645 */
4646 ret_val = e1000e_disable_pcie_master(hw);
4647 if (ret_val)
4648 e_dbg("PCI-E Master disable polling has failed.\n");
4649
4650 e_dbg("Masking off all interrupts\n");
4651 ew32(IMC, 0xffffffff);
4652
4653 /* Disable the Transmit and Receive units. Then delay to allow
4654 * any pending transactions to complete before we hit the MAC
4655 * with the global reset.
4656 */
4657 ew32(RCTL, 0);
4658 ew32(TCTL, E1000_TCTL_PSP);
4659 e1e_flush();
4660
4661 usleep_range(10000, 20000);
4662
4663 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4664 if (hw->mac.type == e1000_ich8lan) {
4665 /* Set Tx and Rx buffer allocation to 8k apiece. */
4666 ew32(PBA, E1000_PBA_8K);
4667 /* Set Packet Buffer Size to 16k. */
4668 ew32(PBS, E1000_PBS_16K);
4669 }
4670
4671 if (hw->mac.type == e1000_pchlan) {
4672 /* Save the NVM K1 bit setting */
4673 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674 if (ret_val)
4675 return ret_val;
4676
4677 if (kum_cfg & E1000_NVM_K1_ENABLE)
4678 dev_spec->nvm_k1_enabled = true;
4679 else
4680 dev_spec->nvm_k1_enabled = false;
4681 }
4682
4683 ctrl = er32(CTRL);
4684
4685 if (!hw->phy.ops.check_reset_block(hw)) {
4686 /* Full-chip reset requires MAC and PHY reset at the same
4687 * time to make sure the interface between MAC and the
4688 * external PHY is reset.
4689 */
4690 ctrl |= E1000_CTRL_PHY_RST;
4691
4692 /* Gate automatic PHY configuration by hardware on
4693 * non-managed 82579
4694 */
4695 if ((hw->mac.type == e1000_pch2lan) &&
4696 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697 e1000_gate_hw_phy_config_ich8lan(hw, true);
4698 }
4699 ret_val = e1000_acquire_swflag_ich8lan(hw);
4700 e_dbg("Issuing a global reset to ich8lan\n");
4701 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702 /* cannot issue a flush here because it hangs the hardware */
4703 msleep(20);
4704
4705 /* Set Phy Config Counter to 50msec */
4706 if (hw->mac.type == e1000_pch2lan) {
4707 reg = er32(FEXTNVM3);
4708 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710 ew32(FEXTNVM3, reg);
4711 }
4712
4713 if (!ret_val)
4714 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715
4716 if (ctrl & E1000_CTRL_PHY_RST) {
4717 ret_val = hw->phy.ops.get_cfg_done(hw);
4718 if (ret_val)
4719 return ret_val;
4720
4721 ret_val = e1000_post_phy_reset_ich8lan(hw);
4722 if (ret_val)
4723 return ret_val;
4724 }
4725
4726 /* For PCH, this write will make sure that any noise
4727 * will be detected as a CRC error and be dropped rather than show up
4728 * as a bad packet to the DMA engine.
4729 */
4730 if (hw->mac.type == e1000_pchlan)
4731 ew32(CRC_OFFSET, 0x65656565);
4732
4733 ew32(IMC, 0xffffffff);
4734 er32(ICR);
4735
4736 reg = er32(KABGTXD);
4737 reg |= E1000_KABGTXD_BGSQLBIAS;
4738 ew32(KABGTXD, reg);
4739
4740 return 0;
4741}
4742
4743/**
4744 * e1000_init_hw_ich8lan - Initialize the hardware
4745 * @hw: pointer to the HW structure
4746 *
4747 * Prepares the hardware for transmit and receive by doing the following:
4748 * - initialize hardware bits
4749 * - initialize LED identification
4750 * - setup receive address registers
4751 * - setup flow control
4752 * - setup transmit descriptors
4753 * - clear statistics
4754 **/
4755static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756{
4757 struct e1000_mac_info *mac = &hw->mac;
4758 u32 ctrl_ext, txdctl, snoop;
4759 s32 ret_val;
4760 u16 i;
4761
4762 e1000_initialize_hw_bits_ich8lan(hw);
4763
4764 /* Initialize identification LED */
4765 ret_val = mac->ops.id_led_init(hw);
4766 /* An error is not fatal and we should not stop init due to this */
4767 if (ret_val)
4768 e_dbg("Error initializing identification LED\n");
4769
4770 /* Setup the receive address. */
4771 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772
4773 /* Zero out the Multicast HASH table */
4774 e_dbg("Zeroing the MTA\n");
4775 for (i = 0; i < mac->mta_reg_count; i++)
4776 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777
4778 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779 * the ME. Disable wakeup by clearing the host wakeup bit.
4780 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781 */
4782 if (hw->phy.type == e1000_phy_82578) {
4783 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784 i &= ~BM_WUC_HOST_WU_BIT;
4785 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787 if (ret_val)
4788 return ret_val;
4789 }
4790
4791 /* Setup link and flow control */
4792 ret_val = mac->ops.setup_link(hw);
4793
4794 /* Set the transmit descriptor write-back policy for both queues */
4795 txdctl = er32(TXDCTL(0));
4796 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797 E1000_TXDCTL_FULL_TX_DESC_WB);
4798 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800 ew32(TXDCTL(0), txdctl);
4801 txdctl = er32(TXDCTL(1));
4802 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803 E1000_TXDCTL_FULL_TX_DESC_WB);
4804 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806 ew32(TXDCTL(1), txdctl);
4807
4808 /* ICH8 has opposite polarity of no_snoop bits.
4809 * By default, we should use snoop behavior.
4810 */
4811 if (mac->type == e1000_ich8lan)
4812 snoop = PCIE_ICH8_SNOOP_ALL;
4813 else
4814 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815 e1000e_set_pcie_no_snoop(hw, snoop);
4816
4817 ctrl_ext = er32(CTRL_EXT);
4818 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819 ew32(CTRL_EXT, ctrl_ext);
4820
4821 /* Clear all of the statistics registers (clear on read). It is
4822 * important that we do this after we have tried to establish link
4823 * because the symbol error count will increment wildly if there
4824 * is no link.
4825 */
4826 e1000_clear_hw_cntrs_ich8lan(hw);
4827
4828 return ret_val;
4829}
4830
4831/**
4832 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 * @hw: pointer to the HW structure
4834 *
4835 * Sets/Clears required hardware bits necessary for correctly setting up the
4836 * hardware for transmit and receive.
4837 **/
4838static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839{
4840 u32 reg;
4841
4842 /* Extended Device Control */
4843 reg = er32(CTRL_EXT);
4844 reg |= (1 << 22);
4845 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846 if (hw->mac.type >= e1000_pchlan)
4847 reg |= E1000_CTRL_EXT_PHYPDEN;
4848 ew32(CTRL_EXT, reg);
4849
4850 /* Transmit Descriptor Control 0 */
4851 reg = er32(TXDCTL(0));
4852 reg |= (1 << 22);
4853 ew32(TXDCTL(0), reg);
4854
4855 /* Transmit Descriptor Control 1 */
4856 reg = er32(TXDCTL(1));
4857 reg |= (1 << 22);
4858 ew32(TXDCTL(1), reg);
4859
4860 /* Transmit Arbitration Control 0 */
4861 reg = er32(TARC(0));
4862 if (hw->mac.type == e1000_ich8lan)
4863 reg |= (1 << 28) | (1 << 29);
4864 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4865 ew32(TARC(0), reg);
4866
4867 /* Transmit Arbitration Control 1 */
4868 reg = er32(TARC(1));
4869 if (er32(TCTL) & E1000_TCTL_MULR)
4870 reg &= ~(1 << 28);
4871 else
4872 reg |= (1 << 28);
4873 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4874 ew32(TARC(1), reg);
4875
4876 /* Device Status */
4877 if (hw->mac.type == e1000_ich8lan) {
4878 reg = er32(STATUS);
4879 reg &= ~(1 << 31);
4880 ew32(STATUS, reg);
4881 }
4882
4883 /* work-around descriptor data corruption issue during nfs v2 udp
4884 * traffic, just disable the nfs filtering capability
4885 */
4886 reg = er32(RFCTL);
4887 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888
4889 /* Disable IPv6 extension header parsing because some malformed
4890 * IPv6 headers can hang the Rx.
4891 */
4892 if (hw->mac.type == e1000_ich8lan)
4893 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894 ew32(RFCTL, reg);
4895
4896 /* Enable ECC on Lynxpoint */
4897 if ((hw->mac.type == e1000_pch_lpt) ||
4898 (hw->mac.type == e1000_pch_spt)) {
4899 reg = er32(PBECCSTS);
4900 reg |= E1000_PBECCSTS_ECC_ENABLE;
4901 ew32(PBECCSTS, reg);
4902
4903 reg = er32(CTRL);
4904 reg |= E1000_CTRL_MEHE;
4905 ew32(CTRL, reg);
4906 }
4907}
4908
4909/**
4910 * e1000_setup_link_ich8lan - Setup flow control and link settings
4911 * @hw: pointer to the HW structure
4912 *
4913 * Determines which flow control settings to use, then configures flow
4914 * control. Calls the appropriate media-specific link configuration
4915 * function. Assuming the adapter has a valid link partner, a valid link
4916 * should be established. Assumes the hardware has previously been reset
4917 * and the transmitter and receiver are not enabled.
4918 **/
4919static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920{
4921 s32 ret_val;
4922
4923 if (hw->phy.ops.check_reset_block(hw))
4924 return 0;
4925
4926 /* ICH parts do not have a word in the NVM to determine
4927 * the default flow control setting, so we explicitly
4928 * set it to full.
4929 */
4930 if (hw->fc.requested_mode == e1000_fc_default) {
4931 /* Workaround h/w hang when Tx flow control enabled */
4932 if (hw->mac.type == e1000_pchlan)
4933 hw->fc.requested_mode = e1000_fc_rx_pause;
4934 else
4935 hw->fc.requested_mode = e1000_fc_full;
4936 }
4937
4938 /* Save off the requested flow control mode for use later. Depending
4939 * on the link partner's capabilities, we may or may not use this mode.
4940 */
4941 hw->fc.current_mode = hw->fc.requested_mode;
4942
4943 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4944
4945 /* Continue to configure the copper link. */
4946 ret_val = hw->mac.ops.setup_physical_interface(hw);
4947 if (ret_val)
4948 return ret_val;
4949
4950 ew32(FCTTV, hw->fc.pause_time);
4951 if ((hw->phy.type == e1000_phy_82578) ||
4952 (hw->phy.type == e1000_phy_82579) ||
4953 (hw->phy.type == e1000_phy_i217) ||
4954 (hw->phy.type == e1000_phy_82577)) {
4955 ew32(FCRTV_PCH, hw->fc.refresh_time);
4956
4957 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958 hw->fc.pause_time);
4959 if (ret_val)
4960 return ret_val;
4961 }
4962
4963 return e1000e_set_fc_watermarks(hw);
4964}
4965
4966/**
4967 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 * @hw: pointer to the HW structure
4969 *
4970 * Configures the kumeran interface to the PHY to wait the appropriate time
4971 * when polling the PHY, then call the generic setup_copper_link to finish
4972 * configuring the copper link.
4973 **/
4974static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975{
4976 u32 ctrl;
4977 s32 ret_val;
4978 u16 reg_data;
4979
4980 ctrl = er32(CTRL);
4981 ctrl |= E1000_CTRL_SLU;
4982 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983 ew32(CTRL, ctrl);
4984
4985 /* Set the mac to wait the maximum time between each iteration
4986 * and increase the max iterations when polling the phy;
4987 * this fixes erroneous timeouts at 10Mbps.
4988 */
4989 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990 if (ret_val)
4991 return ret_val;
4992 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993 ®_data);
4994 if (ret_val)
4995 return ret_val;
4996 reg_data |= 0x3F;
4997 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998 reg_data);
4999 if (ret_val)
5000 return ret_val;
5001
5002 switch (hw->phy.type) {
5003 case e1000_phy_igp_3:
5004 ret_val = e1000e_copper_link_setup_igp(hw);
5005 if (ret_val)
5006 return ret_val;
5007 break;
5008 case e1000_phy_bm:
5009 case e1000_phy_82578:
5010 ret_val = e1000e_copper_link_setup_m88(hw);
5011 if (ret_val)
5012 return ret_val;
5013 break;
5014 case e1000_phy_82577:
5015 case e1000_phy_82579:
5016 ret_val = e1000_copper_link_setup_82577(hw);
5017 if (ret_val)
5018 return ret_val;
5019 break;
5020 case e1000_phy_ife:
5021 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5022 if (ret_val)
5023 return ret_val;
5024
5025 reg_data &= ~IFE_PMC_AUTO_MDIX;
5026
5027 switch (hw->phy.mdix) {
5028 case 1:
5029 reg_data &= ~IFE_PMC_FORCE_MDIX;
5030 break;
5031 case 2:
5032 reg_data |= IFE_PMC_FORCE_MDIX;
5033 break;
5034 case 0:
5035 default:
5036 reg_data |= IFE_PMC_AUTO_MDIX;
5037 break;
5038 }
5039 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040 if (ret_val)
5041 return ret_val;
5042 break;
5043 default:
5044 break;
5045 }
5046
5047 return e1000e_setup_copper_link(hw);
5048}
5049
5050/**
5051 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 * @hw: pointer to the HW structure
5053 *
5054 * Calls the PHY specific link setup function and then calls the
5055 * generic setup_copper_link to finish configuring the link for
5056 * Lynxpoint PCH devices
5057 **/
5058static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059{
5060 u32 ctrl;
5061 s32 ret_val;
5062
5063 ctrl = er32(CTRL);
5064 ctrl |= E1000_CTRL_SLU;
5065 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066 ew32(CTRL, ctrl);
5067
5068 ret_val = e1000_copper_link_setup_82577(hw);
5069 if (ret_val)
5070 return ret_val;
5071
5072 return e1000e_setup_copper_link(hw);
5073}
5074
5075/**
5076 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 * @hw: pointer to the HW structure
5078 * @speed: pointer to store current link speed
5079 * @duplex: pointer to store the current link duplex
5080 *
5081 * Calls the generic get_speed_and_duplex to retrieve the current link
5082 * information and then calls the Kumeran lock loss workaround for links at
5083 * gigabit speeds.
5084 **/
5085static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086 u16 *duplex)
5087{
5088 s32 ret_val;
5089
5090 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091 if (ret_val)
5092 return ret_val;
5093
5094 if ((hw->mac.type == e1000_ich8lan) &&
5095 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097 }
5098
5099 return ret_val;
5100}
5101
5102/**
5103 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 * @hw: pointer to the HW structure
5105 *
5106 * Work-around for 82566 Kumeran PCS lock loss:
5107 * On link status change (i.e. PCI reset, speed change) and link is up and
5108 * speed is gigabit-
5109 * 0) if workaround is optionally disabled do nothing
5110 * 1) wait 1ms for Kumeran link to come up
5111 * 2) check Kumeran Diagnostic register PCS lock loss bit
5112 * 3) if not set the link is locked (all is good), otherwise...
5113 * 4) reset the PHY
5114 * 5) repeat up to 10 times
5115 * Note: this is only called for IGP3 copper when speed is 1gb.
5116 **/
5117static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118{
5119 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120 u32 phy_ctrl;
5121 s32 ret_val;
5122 u16 i, data;
5123 bool link;
5124
5125 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126 return 0;
5127
5128 /* Make sure link is up before proceeding. If not just return.
5129 * Attempting this while link is negotiating fouled up link
5130 * stability
5131 */
5132 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133 if (!link)
5134 return 0;
5135
5136 for (i = 0; i < 10; i++) {
5137 /* read once to clear */
5138 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139 if (ret_val)
5140 return ret_val;
5141 /* and again to get new status */
5142 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143 if (ret_val)
5144 return ret_val;
5145
5146 /* check for PCS lock */
5147 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148 return 0;
5149
5150 /* Issue PHY reset */
5151 e1000_phy_hw_reset(hw);
5152 mdelay(5);
5153 }
5154 /* Disable GigE link negotiation */
5155 phy_ctrl = er32(PHY_CTRL);
5156 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158 ew32(PHY_CTRL, phy_ctrl);
5159
5160 /* Call gig speed drop workaround on Gig disable before accessing
5161 * any PHY registers
5162 */
5163 e1000e_gig_downshift_workaround_ich8lan(hw);
5164
5165 /* unable to acquire PCS lock */
5166 return -E1000_ERR_PHY;
5167}
5168
5169/**
5170 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 * @hw: pointer to the HW structure
5172 * @state: boolean value used to set the current Kumeran workaround state
5173 *
5174 * If ICH8, set the current Kumeran workaround state (enabled - true
5175 * /disabled - false).
5176 **/
5177void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178 bool state)
5179{
5180 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181
5182 if (hw->mac.type != e1000_ich8lan) {
5183 e_dbg("Workaround applies to ICH8 only.\n");
5184 return;
5185 }
5186
5187 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188}
5189
5190/**
5191 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 * @hw: pointer to the HW structure
5193 *
5194 * Workaround for 82566 power-down on D3 entry:
5195 * 1) disable gigabit link
5196 * 2) write VR power-down enable
5197 * 3) read it back
5198 * Continue if successful, else issue LCD reset and repeat
5199 **/
5200void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201{
5202 u32 reg;
5203 u16 data;
5204 u8 retry = 0;
5205
5206 if (hw->phy.type != e1000_phy_igp_3)
5207 return;
5208
5209 /* Try the workaround twice (if needed) */
5210 do {
5211 /* Disable link */
5212 reg = er32(PHY_CTRL);
5213 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215 ew32(PHY_CTRL, reg);
5216
5217 /* Call gig speed drop workaround on Gig disable before
5218 * accessing any PHY registers
5219 */
5220 if (hw->mac.type == e1000_ich8lan)
5221 e1000e_gig_downshift_workaround_ich8lan(hw);
5222
5223 /* Write VR power-down enable */
5224 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227
5228 /* Read it back and test */
5229 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232 break;
5233
5234 /* Issue PHY reset and repeat at most one more time */
5235 reg = er32(CTRL);
5236 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237 retry++;
5238 } while (retry);
5239}
5240
5241/**
5242 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 * @hw: pointer to the HW structure
5244 *
5245 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 * LPLU, Gig disable, MDIC PHY reset):
5247 * 1) Set Kumeran Near-end loopback
5248 * 2) Clear Kumeran Near-end loopback
5249 * Should only be called for ICH8[m] devices with any 1G Phy.
5250 **/
5251void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252{
5253 s32 ret_val;
5254 u16 reg_data;
5255
5256 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257 return;
5258
5259 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260 ®_data);
5261 if (ret_val)
5262 return;
5263 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265 reg_data);
5266 if (ret_val)
5267 return;
5268 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5270}
5271
5272/**
5273 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 * @hw: pointer to the HW structure
5275 *
5276 * During S0 to Sx transition, it is possible the link remains at gig
5277 * instead of negotiating to a lower speed. Before going to Sx, set
5278 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5279 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5280 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 * needs to be written.
5282 * Parts that support (and are linked to a partner which support) EEE in
5283 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 * than 10Mbps w/o EEE.
5285 **/
5286void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287{
5288 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289 u32 phy_ctrl;
5290 s32 ret_val;
5291
5292 phy_ctrl = er32(PHY_CTRL);
5293 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294
5295 if (hw->phy.type == e1000_phy_i217) {
5296 u16 phy_reg, device_id = hw->adapter->pdev->device;
5297
5298 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302 (hw->mac.type == e1000_pch_spt)) {
5303 u32 fextnvm6 = er32(FEXTNVM6);
5304
5305 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306 }
5307
5308 ret_val = hw->phy.ops.acquire(hw);
5309 if (ret_val)
5310 goto out;
5311
5312 if (!dev_spec->eee_disable) {
5313 u16 eee_advert;
5314
5315 ret_val =
5316 e1000_read_emi_reg_locked(hw,
5317 I217_EEE_ADVERTISEMENT,
5318 &eee_advert);
5319 if (ret_val)
5320 goto release;
5321
5322 /* Disable LPLU if both link partners support 100BaseT
5323 * EEE and 100Full is advertised on both ends of the
5324 * link, and enable Auto Enable LPI since there will
5325 * be no driver to enable LPI while in Sx.
5326 */
5327 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328 (dev_spec->eee_lp_ability &
5329 I82579_EEE_100_SUPPORTED) &&
5330 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332 E1000_PHY_CTRL_NOND0A_LPLU);
5333
5334 /* Set Auto Enable LPI after link up */
5335 e1e_rphy_locked(hw,
5336 I217_LPI_GPIO_CTRL, &phy_reg);
5337 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338 e1e_wphy_locked(hw,
5339 I217_LPI_GPIO_CTRL, phy_reg);
5340 }
5341 }
5342
5343 /* For i217 Intel Rapid Start Technology support,
5344 * when the system is going into Sx and no manageability engine
5345 * is present, the driver must configure proxy to reset only on
5346 * power good. LPI (Low Power Idle) state must also reset only
5347 * on power good, as well as the MTA (Multicast table array).
5348 * The SMBus release must also be disabled on LCD reset.
5349 */
5350 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351 /* Enable proxy to reset only on power good. */
5352 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355
5356 /* Set bit enable LPI (EEE) to reset only on
5357 * power good.
5358 */
5359 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362
5363 /* Disable the SMB release on LCD reset. */
5364 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367 }
5368
5369 /* Enable MTA to reset for Intel Rapid Start Technology
5370 * Support
5371 */
5372 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375
5376release:
5377 hw->phy.ops.release(hw);
5378 }
5379out:
5380 ew32(PHY_CTRL, phy_ctrl);
5381
5382 if (hw->mac.type == e1000_ich8lan)
5383 e1000e_gig_downshift_workaround_ich8lan(hw);
5384
5385 if (hw->mac.type >= e1000_pchlan) {
5386 e1000_oem_bits_config_ich8lan(hw, false);
5387
5388 /* Reset PHY to activate OEM bits on 82577/8 */
5389 if (hw->mac.type == e1000_pchlan)
5390 e1000e_phy_hw_reset_generic(hw);
5391
5392 ret_val = hw->phy.ops.acquire(hw);
5393 if (ret_val)
5394 return;
5395 e1000_write_smbus_addr(hw);
5396 hw->phy.ops.release(hw);
5397 }
5398}
5399
5400/**
5401 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 * @hw: pointer to the HW structure
5403 *
5404 * During Sx to S0 transitions on non-managed devices or managed devices
5405 * on which PHY resets are not blocked, if the PHY registers cannot be
5406 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 * the PHY.
5408 * On i217, setup Intel Rapid Start Technology.
5409 **/
5410void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411{
5412 s32 ret_val;
5413
5414 if (hw->mac.type < e1000_pch2lan)
5415 return;
5416
5417 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418 if (ret_val) {
5419 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420 return;
5421 }
5422
5423 /* For i217 Intel Rapid Start Technology support when the system
5424 * is transitioning from Sx and no manageability engine is present
5425 * configure SMBus to restore on reset, disable proxy, and enable
5426 * the reset on MTA (Multicast table array).
5427 */
5428 if (hw->phy.type == e1000_phy_i217) {
5429 u16 phy_reg;
5430
5431 ret_val = hw->phy.ops.acquire(hw);
5432 if (ret_val) {
5433 e_dbg("Failed to setup iRST\n");
5434 return;
5435 }
5436
5437 /* Clear Auto Enable LPI after link up */
5438 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441
5442 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443 /* Restore clear on SMB if no manageability engine
5444 * is present
5445 */
5446 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447 if (ret_val)
5448 goto release;
5449 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451
5452 /* Disable Proxy */
5453 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454 }
5455 /* Enable reset on MTA */
5456 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457 if (ret_val)
5458 goto release;
5459 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461release:
5462 if (ret_val)
5463 e_dbg("Error %d in resume workarounds\n", ret_val);
5464 hw->phy.ops.release(hw);
5465 }
5466}
5467
5468/**
5469 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 * @hw: pointer to the HW structure
5471 *
5472 * Return the LED back to the default configuration.
5473 **/
5474static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475{
5476 if (hw->phy.type == e1000_phy_ife)
5477 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478
5479 ew32(LEDCTL, hw->mac.ledctl_default);
5480 return 0;
5481}
5482
5483/**
5484 * e1000_led_on_ich8lan - Turn LEDs on
5485 * @hw: pointer to the HW structure
5486 *
5487 * Turn on the LEDs.
5488 **/
5489static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490{
5491 if (hw->phy.type == e1000_phy_ife)
5492 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494
5495 ew32(LEDCTL, hw->mac.ledctl_mode2);
5496 return 0;
5497}
5498
5499/**
5500 * e1000_led_off_ich8lan - Turn LEDs off
5501 * @hw: pointer to the HW structure
5502 *
5503 * Turn off the LEDs.
5504 **/
5505static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506{
5507 if (hw->phy.type == e1000_phy_ife)
5508 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509 (IFE_PSCL_PROBE_MODE |
5510 IFE_PSCL_PROBE_LEDS_OFF));
5511
5512 ew32(LEDCTL, hw->mac.ledctl_mode1);
5513 return 0;
5514}
5515
5516/**
5517 * e1000_setup_led_pchlan - Configures SW controllable LED
5518 * @hw: pointer to the HW structure
5519 *
5520 * This prepares the SW controllable LED for use.
5521 **/
5522static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523{
5524 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525}
5526
5527/**
5528 * e1000_cleanup_led_pchlan - Restore the default LED operation
5529 * @hw: pointer to the HW structure
5530 *
5531 * Return the LED back to the default configuration.
5532 **/
5533static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534{
5535 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536}
5537
5538/**
5539 * e1000_led_on_pchlan - Turn LEDs on
5540 * @hw: pointer to the HW structure
5541 *
5542 * Turn on the LEDs.
5543 **/
5544static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545{
5546 u16 data = (u16)hw->mac.ledctl_mode2;
5547 u32 i, led;
5548
5549 /* If no link, then turn LED on by setting the invert bit
5550 * for each LED that's mode is "link_up" in ledctl_mode2.
5551 */
5552 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553 for (i = 0; i < 3; i++) {
5554 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556 E1000_LEDCTL_MODE_LINK_UP)
5557 continue;
5558 if (led & E1000_PHY_LED0_IVRT)
5559 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560 else
5561 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562 }
5563 }
5564
5565 return e1e_wphy(hw, HV_LED_CONFIG, data);
5566}
5567
5568/**
5569 * e1000_led_off_pchlan - Turn LEDs off
5570 * @hw: pointer to the HW structure
5571 *
5572 * Turn off the LEDs.
5573 **/
5574static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575{
5576 u16 data = (u16)hw->mac.ledctl_mode1;
5577 u32 i, led;
5578
5579 /* If no link, then turn LED off by clearing the invert bit
5580 * for each LED that's mode is "link_up" in ledctl_mode1.
5581 */
5582 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583 for (i = 0; i < 3; i++) {
5584 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586 E1000_LEDCTL_MODE_LINK_UP)
5587 continue;
5588 if (led & E1000_PHY_LED0_IVRT)
5589 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590 else
5591 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592 }
5593 }
5594
5595 return e1e_wphy(hw, HV_LED_CONFIG, data);
5596}
5597
5598/**
5599 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 * @hw: pointer to the HW structure
5601 *
5602 * Read appropriate register for the config done bit for completion status
5603 * and configure the PHY through s/w for EEPROM-less parts.
5604 *
5605 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 * config done bit, so only an error is logged and continues. If we were
5607 * to return with error, EEPROM-less silicon would not be able to be reset
5608 * or change link.
5609 **/
5610static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611{
5612 s32 ret_val = 0;
5613 u32 bank = 0;
5614 u32 status;
5615
5616 e1000e_get_cfg_done_generic(hw);
5617
5618 /* Wait for indication from h/w that it has completed basic config */
5619 if (hw->mac.type >= e1000_ich10lan) {
5620 e1000_lan_init_done_ich8lan(hw);
5621 } else {
5622 ret_val = e1000e_get_auto_rd_done(hw);
5623 if (ret_val) {
5624 /* When auto config read does not complete, do not
5625 * return with an error. This can happen in situations
5626 * where there is no eeprom and prevents getting link.
5627 */
5628 e_dbg("Auto Read Done did not complete\n");
5629 ret_val = 0;
5630 }
5631 }
5632
5633 /* Clear PHY Reset Asserted bit */
5634 status = er32(STATUS);
5635 if (status & E1000_STATUS_PHYRA)
5636 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637 else
5638 e_dbg("PHY Reset Asserted not set - needs delay\n");
5639
5640 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641 if (hw->mac.type <= e1000_ich9lan) {
5642 if (!(er32(EECD) & E1000_EECD_PRES) &&
5643 (hw->phy.type == e1000_phy_igp_3)) {
5644 e1000e_phy_init_script_igp3(hw);
5645 }
5646 } else {
5647 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648 /* Maybe we should do a basic PHY config */
5649 e_dbg("EEPROM not present\n");
5650 ret_val = -E1000_ERR_CONFIG;
5651 }
5652 }
5653
5654 return ret_val;
5655}
5656
5657/**
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5660 *
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5663 **/
5664static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665{
5666 /* If the management interface is not enabled, then power down */
5667 if (!(hw->mac.ops.check_mng_mode(hw) ||
5668 hw->phy.ops.check_reset_block(hw)))
5669 e1000_power_down_phy_copper(hw);
5670}
5671
5672/**
5673 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 * @hw: pointer to the HW structure
5675 *
5676 * Clears hardware counters specific to the silicon family and calls
5677 * clear_hw_cntrs_generic to clear all general purpose counters.
5678 **/
5679static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680{
5681 u16 phy_data;
5682 s32 ret_val;
5683
5684 e1000e_clear_hw_cntrs_base(hw);
5685
5686 er32(ALGNERRC);
5687 er32(RXERRC);
5688 er32(TNCRS);
5689 er32(CEXTERR);
5690 er32(TSCTC);
5691 er32(TSCTFC);
5692
5693 er32(MGTPRC);
5694 er32(MGTPDC);
5695 er32(MGTPTC);
5696
5697 er32(IAC);
5698 er32(ICRXOC);
5699
5700 /* Clear PHY statistics registers */
5701 if ((hw->phy.type == e1000_phy_82578) ||
5702 (hw->phy.type == e1000_phy_82579) ||
5703 (hw->phy.type == e1000_phy_i217) ||
5704 (hw->phy.type == e1000_phy_82577)) {
5705 ret_val = hw->phy.ops.acquire(hw);
5706 if (ret_val)
5707 return;
5708 ret_val = hw->phy.ops.set_page(hw,
5709 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710 if (ret_val)
5711 goto release;
5712 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726release:
5727 hw->phy.ops.release(hw);
5728 }
5729}
5730
5731static const struct e1000_mac_operations ich8_mac_ops = {
5732 /* check_mng_mode dependent on mac type */
5733 .check_for_link = e1000_check_for_copper_link_ich8lan,
5734 /* cleanup_led dependent on mac type */
5735 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5736 .get_bus_info = e1000_get_bus_info_ich8lan,
5737 .set_lan_id = e1000_set_lan_id_single_port,
5738 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5739 /* led_on dependent on mac type */
5740 /* led_off dependent on mac type */
5741 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5742 .reset_hw = e1000_reset_hw_ich8lan,
5743 .init_hw = e1000_init_hw_ich8lan,
5744 .setup_link = e1000_setup_link_ich8lan,
5745 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746 /* id_led_init dependent on mac type */
5747 .config_collision_dist = e1000e_config_collision_dist_generic,
5748 .rar_set = e1000e_rar_set_generic,
5749 .rar_get_count = e1000e_rar_get_count_generic,
5750};
5751
5752static const struct e1000_phy_operations ich8_phy_ops = {
5753 .acquire = e1000_acquire_swflag_ich8lan,
5754 .check_reset_block = e1000_check_reset_block_ich8lan,
5755 .commit = NULL,
5756 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5757 .get_cable_length = e1000e_get_cable_length_igp_2,
5758 .read_reg = e1000e_read_phy_reg_igp,
5759 .release = e1000_release_swflag_ich8lan,
5760 .reset = e1000_phy_hw_reset_ich8lan,
5761 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5762 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5763 .write_reg = e1000e_write_phy_reg_igp,
5764};
5765
5766static const struct e1000_nvm_operations ich8_nvm_ops = {
5767 .acquire = e1000_acquire_nvm_ich8lan,
5768 .read = e1000_read_nvm_ich8lan,
5769 .release = e1000_release_nvm_ich8lan,
5770 .reload = e1000e_reload_nvm_generic,
5771 .update = e1000_update_nvm_checksum_ich8lan,
5772 .valid_led_default = e1000_valid_led_default_ich8lan,
5773 .validate = e1000_validate_nvm_checksum_ich8lan,
5774 .write = e1000_write_nvm_ich8lan,
5775};
5776
5777static const struct e1000_nvm_operations spt_nvm_ops = {
5778 .acquire = e1000_acquire_nvm_ich8lan,
5779 .release = e1000_release_nvm_ich8lan,
5780 .read = e1000_read_nvm_spt,
5781 .update = e1000_update_nvm_checksum_spt,
5782 .reload = e1000e_reload_nvm_generic,
5783 .valid_led_default = e1000_valid_led_default_ich8lan,
5784 .validate = e1000_validate_nvm_checksum_ich8lan,
5785 .write = e1000_write_nvm_ich8lan,
5786};
5787
5788const struct e1000_info e1000_ich8_info = {
5789 .mac = e1000_ich8lan,
5790 .flags = FLAG_HAS_WOL
5791 | FLAG_IS_ICH
5792 | FLAG_HAS_CTRLEXT_ON_LOAD
5793 | FLAG_HAS_AMT
5794 | FLAG_HAS_FLASH
5795 | FLAG_APME_IN_WUC,
5796 .pba = 8,
5797 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798 .get_variants = e1000_get_variants_ich8lan,
5799 .mac_ops = &ich8_mac_ops,
5800 .phy_ops = &ich8_phy_ops,
5801 .nvm_ops = &ich8_nvm_ops,
5802};
5803
5804const struct e1000_info e1000_ich9_info = {
5805 .mac = e1000_ich9lan,
5806 .flags = FLAG_HAS_JUMBO_FRAMES
5807 | FLAG_IS_ICH
5808 | FLAG_HAS_WOL
5809 | FLAG_HAS_CTRLEXT_ON_LOAD
5810 | FLAG_HAS_AMT
5811 | FLAG_HAS_FLASH
5812 | FLAG_APME_IN_WUC,
5813 .pba = 18,
5814 .max_hw_frame_size = DEFAULT_JUMBO,
5815 .get_variants = e1000_get_variants_ich8lan,
5816 .mac_ops = &ich8_mac_ops,
5817 .phy_ops = &ich8_phy_ops,
5818 .nvm_ops = &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich10_info = {
5822 .mac = e1000_ich10lan,
5823 .flags = FLAG_HAS_JUMBO_FRAMES
5824 | FLAG_IS_ICH
5825 | FLAG_HAS_WOL
5826 | FLAG_HAS_CTRLEXT_ON_LOAD
5827 | FLAG_HAS_AMT
5828 | FLAG_HAS_FLASH
5829 | FLAG_APME_IN_WUC,
5830 .pba = 18,
5831 .max_hw_frame_size = DEFAULT_JUMBO,
5832 .get_variants = e1000_get_variants_ich8lan,
5833 .mac_ops = &ich8_mac_ops,
5834 .phy_ops = &ich8_phy_ops,
5835 .nvm_ops = &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_pch_info = {
5839 .mac = e1000_pchlan,
5840 .flags = FLAG_IS_ICH
5841 | FLAG_HAS_WOL
5842 | FLAG_HAS_CTRLEXT_ON_LOAD
5843 | FLAG_HAS_AMT
5844 | FLAG_HAS_FLASH
5845 | FLAG_HAS_JUMBO_FRAMES
5846 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847 | FLAG_APME_IN_WUC,
5848 .flags2 = FLAG2_HAS_PHY_STATS,
5849 .pba = 26,
5850 .max_hw_frame_size = 4096,
5851 .get_variants = e1000_get_variants_ich8lan,
5852 .mac_ops = &ich8_mac_ops,
5853 .phy_ops = &ich8_phy_ops,
5854 .nvm_ops = &ich8_nvm_ops,
5855};
5856
5857const struct e1000_info e1000_pch2_info = {
5858 .mac = e1000_pch2lan,
5859 .flags = FLAG_IS_ICH
5860 | FLAG_HAS_WOL
5861 | FLAG_HAS_HW_TIMESTAMP
5862 | FLAG_HAS_CTRLEXT_ON_LOAD
5863 | FLAG_HAS_AMT
5864 | FLAG_HAS_FLASH
5865 | FLAG_HAS_JUMBO_FRAMES
5866 | FLAG_APME_IN_WUC,
5867 .flags2 = FLAG2_HAS_PHY_STATS
5868 | FLAG2_HAS_EEE,
5869 .pba = 26,
5870 .max_hw_frame_size = 9022,
5871 .get_variants = e1000_get_variants_ich8lan,
5872 .mac_ops = &ich8_mac_ops,
5873 .phy_ops = &ich8_phy_ops,
5874 .nvm_ops = &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_pch_lpt_info = {
5878 .mac = e1000_pch_lpt,
5879 .flags = FLAG_IS_ICH
5880 | FLAG_HAS_WOL
5881 | FLAG_HAS_HW_TIMESTAMP
5882 | FLAG_HAS_CTRLEXT_ON_LOAD
5883 | FLAG_HAS_AMT
5884 | FLAG_HAS_FLASH
5885 | FLAG_HAS_JUMBO_FRAMES
5886 | FLAG_APME_IN_WUC,
5887 .flags2 = FLAG2_HAS_PHY_STATS
5888 | FLAG2_HAS_EEE,
5889 .pba = 26,
5890 .max_hw_frame_size = 9022,
5891 .get_variants = e1000_get_variants_ich8lan,
5892 .mac_ops = &ich8_mac_ops,
5893 .phy_ops = &ich8_phy_ops,
5894 .nvm_ops = &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_pch_spt_info = {
5898 .mac = e1000_pch_spt,
5899 .flags = FLAG_IS_ICH
5900 | FLAG_HAS_WOL
5901 | FLAG_HAS_HW_TIMESTAMP
5902 | FLAG_HAS_CTRLEXT_ON_LOAD
5903 | FLAG_HAS_AMT
5904 | FLAG_HAS_FLASH
5905 | FLAG_HAS_JUMBO_FRAMES
5906 | FLAG_APME_IN_WUC,
5907 .flags2 = FLAG2_HAS_PHY_STATS
5908 | FLAG2_HAS_EEE,
5909 .pba = 26,
5910 .max_hw_frame_size = 9022,
5911 .get_variants = e1000_get_variants_ich8lan,
5912 .mac_ops = &ich8_mac_ops,
5913 .phy_ops = &ich8_phy_ops,
5914 .nvm_ops = &spt_nvm_ops,
5915};